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Abstract. Building on more than one million crowdsourced annotations
that we publicly release, we propose a new automated disambiguation
solution exploiting this data (i) to learn an accurate classifier for iden-
tifying coreferring authors and (ii) to guide the clustering of scientific
publications by distinct authors in a semi-supervised way. To the best
of our knowledge, our analysis is the first to be carried out on data of
this size and coverage. With respect to the state of the art, we validate
the general pipeline used in most existing solutions, and improve by:
(i) proposing new phonetic-based blocking strategies, thereby increasing
recall; (ii) adding strong ethnicity-sensitive features for learning a linkage
function, thereby tailoring disambiguation to non-Western author names
whenever necessary; and (iii) showing the importance of balancing neg-
ative and positive examples when learning the linkage function.

1 Introduction

In academic digital libraries, author name disambiguation is the problem of
grouping together publications written by the same person. It is often difficult
because an author may use different spellings or name variants across their career
(synonymy) and/or distinct authors may share the same name (polysemy). Most
notably, author disambiguation is often more troublesome for researchers from
non-Western cultures, where personal names may be traditionally less diverse
(leading to homonym issues) or for which transliteration to Latin characters
may not be unique (leading to synonym issues). With the fast growth of the
scientific literature, author disambiguation has become a pressing issue since
the accuracy of information managed at the level of individuals directly affects:
the relevance search of results (e.g., when querying for all publications written
by a given author); the reliability of bibliometrics and author rankings (e.g.,
citation counts or other impact metrics, as studied in [28]); and/or the relevance
of scientific network analysis [21]. Thus, even small improvements in the field
significantly improve the usability of the digital libraries to some users.
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A.-C. Ngonga Ngomo and P. Křemen (Eds.): KESW 2016, CCIS 649, pp. 272–287, 2016.
DOI: 10.1007/978-3-319-45880-9 21



Ethnicity Sensitive Author Disambiguation Using Semi-supervised Learning 273

Solutions to author disambiguation have been proposed from various com-
munities [18]. On the one hand, libraries have maintained authorship control
through manual curation, either in a centralized way by hiring professional col-
laborators or through developing services that invite authors to register their
publications themselves (e.g., Google Scholar or Inspire-HEP). Recent efforts
to create persistent digital identifiers assigned to researchers (e.g., ORCID or
ResearcherID), with the objective to embed these identifiers in the submission
workflow of publishers or repositories (e.g., Elsevier or arXiv), would univo-
cally solve any disambiguation issue. As the centralized manual authorship con-
trol is expensive and the success of persistent digital identifiers requires large
and ubiquitous adoption by both researchers and publishers, fully automated
machine learning-based methods have been proposed to provide immediate, less
costly, and satisfactory solutions to author disambiguation. In this work, we
study how labeled data obtained through manual curation (either centralized or
crowdsourced) can be exploited (i) to learn an accurate classifier for identify-
ing coreferring authors, and (ii) to guide the clustering of scientific publications
by distinct authors in a semi-supervised way. Our analysis of parameters and
features of this large dataset reveal that the general pipeline commonly used
in existing solutions is an effective approach for author disambiguation. More-
over, we propose better strategies for blocking (i.e., partitioning) based on the
phonetization of author names to increase recall and ethnicity-sensitive features
for learning a linkage function which tailor our author disambiguation to non-
Western author names.

The remainder of this report is structured as follows. In Sect. 2, we briefly
review machine learning solutions for author disambiguation. The components
of our method are then defined in Sect. 3 and its implementation described in
Sect. 4. Experiments are carried out in Sect. 5, where we compare approaches to
the problem and explore feature choice. Finally, conclusions and future works
are discussed in Sect. 6.

2 Related Work

As reviewed in [7,17,26], author disambiguation algorithms are usually composed
of two main components: (i) a linkage function determining whether two pub-
lications have been written by the same author; and (ii) a clustering algorithm
producing clusters of publications assumed to be written by the same author.
Approaches can be classified along several axes, depending on the type and
amount of data available, the way the linkage function is learned or defined, or the
clustering procedure used to group publications. Methods relying on supervised
learning usually make use of a small set of hand-labeled pairs of publications
identified as being either from the same or different authors to automatically
learn a linkage function between publications [4,12,13,32,33].

Training data is usually not easily available, therefore unsupervised
approaches propose the use of domain-specific, manually designed, linkage func-
tions tailored towards author disambiguation [14,20,25,27]. These approaches
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have the advantage of not requiring hand-labeled data, but generally do not per-
form as well as supervised approaches. To reconcile both worlds, semi-supervised
methods make use of small, manually verified clusters of publications and/or
high-precision domain-specific rules to build a training set of pairs of publi-
cations, from which a linkage function is then built using supervised learning
[8,17,31]. Semi-supervised approaches also allow for the tuning of the clustering
algorithm when the latter is applied to a mixed set of labeled and unlabeled pub-
lications, e.g., by maximizing some clustering performance metric on the known
clusters [17].

In this context, we position this work as a semi-supervised solution for author
disambiguation, with the significant advantage of having a very large collection of
more than 1 million crowdsourced annotations of publications whose true authors
are identified. The extent and coverage of this data allows us to revisit, validate
and nuance previous findings regarding supervised learning of linkage functions,
and to better explore strategies for semi-supervised clustering. Furthermore, by
releasing our data in the public domain, we provide a benchmark on which
further research on author disambiguation and related topics can be evaluated.

3 Semi-supervised Author Disambiguation

Formally, let us assume a set of publications P = {p0, ..., pN−1} along with
the set of unique individuals A = {a0, ..., aM−1} having together authored all
publications in P. Let us define a signature s ∈ p from a publication as a unique
piece of information identifying one of the authors of p (e.g., the author name,
his affiliation, along with any other metadata that can be derived from p, as
illustrated in Fig. 1). Let us denote by S = {s|s ∈ p, p ∈ P} the set of all
signatures that can be extracted from all publications in P.

Fig. 1. An example signature s for “Doe, John”. A signature is defined as unique piece
of information identifying an author on a publication, along with any other metadata
that can be derived from it, such as publication title, co-authors or date of publication.

Author disambiguation can be stated as the problem of finding a partition
C = {c0, ..., cM−1} of S such that S = ∪M−1

i=0 ci, ci∩cj = φ for all i �= j, and where
subsets ci, or clusters, each corresponds to the set of all signatures belonging to
the same individual ai. Alternatively, the set A may remain (possibly partially)
unknown, such that author disambiguation boils down to finding a partition
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C where subsets ci each correspond to the set of all signatures from the same
individual (without knowing who). Finally, in the case of partially annotated
databases as studied in this work, the set extends with the partial knowledge
C′ = {c′

0, ..., c
′
M−1} of C, such that c′

i ⊆ ci, where c′
i may be empty.

The distinctive aspect of our work is the knowledge of more than 1 mil-
lion crowdsourced annotations, indicating together that all signature s ∈ c′

i are
known to correspond to the same individual ai.

Our algorithm is composed of three parts (Fig. 2): (i) a blocking scheme whose
goal is to pre-cluster signatures S into smaller groups; (ii) the construction of
a linkage function d between signatures using supervised learning; and (iii) the
semi-supervised clustering of all signatures within the same block, using d as a
pseudo distance metric.

Fig. 2. Pipeline for author disambiguation: (a) signatures are blocked to reduce com-
putational complexity, (b) a linkage function is built with supervised learning, (c) inde-
pendently within each block, signatures are grouped using hierarchical agglomerative
clustering.

3.1 Blocking

As in previous works, the first part of our algorithm consists of dividing signa-
tures S into disjoint subsets Sb0 , ...,SbK−1 , or blocks (i.e. partitions) [6], followed
by carrying out author disambiguation on each one of these blocks independently.
By doing so, the computational complexity of clustering (see Sect. 3.3) typically
reduces from O(|S|2) to O(

∑
b |Sb|2). Since disambiguation is performed inde-

pendently per block, a good blocking strategy should be designed such that
signatures from the same author are all mapped to the same block, otherwise
their correct clustering would not be possible in later stages of the workflow. As a
result, blocking should be a balance between reduced complexity and maximum
recall.

The simplest and most common strategy for blocking, referred to hereon in
as Surname and First Initial (SFI), groups signatures together if they share
the same surname(s) and the same first given name initial. Despite satisfactory
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performance, there are several cases where this simple strategy fails to cluster
related pairs of signatures together, including:

1. There are different ways of writing an author name, or signatures contain a
typo (e.g., “Mueller, R.” and “Muller, R.”).

2. An author has multiple surnames (or a patronymic) and some signatures place
the first part of the surname within the given names (e.g., “Martinez Torres,
A.” and “Torres, A. Martinez”).

3. An author has multiple surnames and, on some signatures, only the first
surname is present (e.g., “Smith-Jones, A.” and “Smith, A.”)

4. An author has multiple given names and they are not always all recorded
(e.g., “Smith, Jack” and “Smith, A. J.”)

5. An authors surname changed (e.g., due to marriage).

To account for these issues we propose instead to block signatures based on
the phonetic representation of the normalized surname. Normalization involves
stripping accents (e.g., “Jab�loński, �L” → “Jablonski, L”) and name affixes that
inconsistently appear in signatures (e.g., “van der Waals, J. D.” → “Waals, J.
D.”), while phonetization is based either on the Double Metaphone [23], the
NYSIIS [29] or the Soundex [30] phonetic algorithms for mapping author names
to their pronunciations. Together, these processing steps allow for grouping of
most name variants of the same person in the same block with a small increase
in the overall computational complexity, thereby solving case 1.

In the case of multiple surnames (cases 2 and 3), we propose to block signa-
tures in two phases. In the first phase, all the signatures with a single surname
are clustered together. Every different surname token creates a new block. In
the second phase, the signatures with multiple surnames are compared with
the blocks for the first and last surname. If the first surnames of an author were
already used as the last given names on some of the signatures, the new signature
is assigned to the block of the last surname (case 2). Otherwise, the signature
is assigned to the block of the first surname (case 3). Finally, to prevent the
creation of too large blocks, signatures are further divided along their first given
name initial. The biggest limitation of this method is leaving the cases 4 and 5
unhandled. This method might result in blocking together signatures from many
different authors with similar names.

3.2 Linkage Function

Supervised Classification. The second part of the algorithm is the automatic
construction of a pair-wise linkage function between signatures for use during
the clustering step which groups all signatures from the same author.

Formally, the goal is to build a function d : S ×S �→ [0, 1], such that d(s1, s2)
approaches 0 if both signatures s1 and s2 belong to the same author, and 1
otherwise. This problem can be cast as a supervised classification task, where
inputs are pairs of signatures and outputs are classes 0 (same authors), and 1
(distinct authors). In this work, we evaluate Random Forests (RF, [1]), Gradient
Boosted Regression Trees (GBRT, [9]), and Logistic Regression [5] as classifiers.
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Input Features. Following previous works, pairs of signatures (s1, s2) are first
transformed to vectors v ∈ R

p by building so-called similarity profiles [33] on
which supervised learning is carried out. In this work, we design and evaluate
fifteen standard input features [7,17] based on the comparison of signature fields,
as reported in the first half of Table 1. Noteworthy, the author metadata, both
provided or derived, are far more important than the publication content itself.
As an illustrative example, the Full name feature corresponds to the similarity
between the (full) author name fields of the two signatures, as measured using
as combination operator the cosine similarity between their respective (n,m)-
TF-IDF vector representations1.

Authors from different origins or ethnic groups are likely to be disambiguated
using different strategies (e.g., pairs of signatures with French author names
versus pairs of signatures with Chinese author names) [3,34]. For example, sci-
entist coming from China might more/less often change affiliations, and this
dependency, if learn’t by the classifier, should improve the fit. To support our
disambiguation algorithm, we added seven features to our feature set, with each
evaluating the degree of belonging of both signatures to an ethnic group.

More specifically, using census data extracted from [24], we build a support
vector machine classifier (using a linear kernel and one-versus-all classification
scheme) for mapping the (1, 5)-TF-IDF representation of an author name to
one of the ethnic groups, as defined in United States federal censuses. These
groups are: White, Black of African American, American Indian and Alaska
Native, Asian, Native Hawaiian and Other Pacific Islander, Japanese, Chinese,
Others. Given a pair of signatures (s1, s2), the proposed ethnicity features are
each computed as the estimated probability of s1 belonging to the corresponding
ethnic group, multiplied by the estimated probability of s2 belonging to the same
group. Each of the seven races is used to create a single new feature. In doing
so, the expectation is for the linkage function to become sensitive to the actual
origin of the authors depending on the values of these features. Indirectly, these
features also hold discriminative power since if author names are predicted to
belong to different ethnic groups, then they are also likely to correspond to
distinct people.

Building a Training Set. 1 million of crowdsourced annotations (see Sect. 3) can
be used to generate positive pairs (x = (s1, s2), y = 0) for all s1, s2 ∈ c′

i, for
all i. Similarly, negative pairs (x = (s1, s2), y = 1) can be extracted for all
s1 ∈ c′

i, s2 ∈ c′
j , for all i �= j.

The most straightforward approach for building a training set on which to
learn a linkage function is to sample an equal number of positive and negative
pairs, as suggested above. By observing that the linkage function d will even-
tually be used only on pairs of signatures from the same block Sb, a further
refinement for building a training set is to restrict positive and negative pairs
(s1, s2) to only those for which s1 and s2 belong to the same block. In doing so,
the trained classifier is forced to learn intra-block discriminative patterns rather
than inter-block differences. Furthermore, as noted in [16], most signature pairs
1 (n,m)−TF-IDF vectors are TF-IDF vectors computed from n, n+ 1, ..., m-grams.
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Table 1. Input features for learning a linkage function

Feature Combination operator

Full name Cosine similarity of (2, 4)-TF-IDF

Given names Cosine similarity of (2, 4)-TF-IDF

First given name Jaro-Winkler distance

Second given name Jaro-Winkler distance

Given name initial Equality

Affiliation Cosine similarity of (2, 4)-TF-IDF

Co-authors Cosine similarity of TF-IDF

Title Cosine similarity of (2, 4)-TF-IDF

Journal Cosine similarity of (2, 4)-TF-IDF

Abstract Cosine similarity of TF-IDF

Keywords Cosine similarity of TF-IDF

Collaborations Cosine similarity of TF-IDF

References Cosine similarity of TF-IDF

Subject Cosine similarity of TF-IDF

Year difference Absolute difference

Any ethnicity feature Product of probabilities estimated by SVM

are non-ambiguous: if both signatures share the same author names, then they
correspond to the same individual, otherwise they do not. Rather than sam-
pling pairs uniformly at random, we propose to oversample difficult cases when
building the training set (i.e., pairs of signatures with different author names
corresponding to same individual, and pairs of signatures with identical author
names but corresponding to distinct individuals) in order to improve the overall
accuracy of the linkage function.

3.3 Semi-supervised Clustering

The last component of our author disambiguation pipeline is clustering - the
process of grouping together, within a block, all signatures from the same indi-
vidual (and only those). As for many other works on author disambiguation, we
make use of hierarchical clustering [35] for building clusters of signatures in a
bottom-up fashion. The method involves iteratively merging together the two
most similar clusters until all clusters are merged together at the top of the hier-
archy. Similarity between clusters is evaluated using either complete, single or
average linkage, using as a pseudo-distance metric the probability that s1 and s2
correspond to distinct authors, as calculated from the custom linkage function
d from Sect. 3.2.

To form flat clusters from the hierarchy, one must decide on a maximum
distance threshold above which clusters are considered to correspond to distinct
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authors. Let us denote by S ′ = {s|s ∈ c′, c′ ∈ C′} the set of all signatures for
which partial clusters are known. Let us also denote by Ĉ the predicted clusters
for all signatures in S, and by Ĉ′ = {ĉ ∩ S ′|ĉ ∈ Ĉ} the predicted clusters restricted
to signatures for which partial clusters are known. From these, we evaluate the
following semi-supervised cut-off strategies, as illustrated in Fig. 3:

– No cut: all signatures from the same block are assumed to be from the same
author.

– Global cut: the threshold is chosen globally over all blocks, as the one maxi-
mizing some score f(C′, Ĉ′).

– Block cut: the threshold is chosen locally at each block b, as the one maxi-
mizing some score f(C′

b, Ĉ′
b). In case C′

b is empty, then all signatures from b
are clustered together.

Fig. 3. Semi-supervised cut-off strategies to form flat clusters of signatures. Every
dendogram represents a single block.

4 Implementation

As part of this work, we developed a stand-alone application for author disam-
biguation, publicly available online2 for free reuse or study. Our implementation
builds upon the Python scientific stack, making use of the Scikit-Learn library
[22] for the supervised learning of a linkage function and of SciPy for clustering.
All components of the disambiguation pipeline have been designed to follow the
Scikit-Learn API [2], making them easy to maintain, understand and reuse. Our
implementation is made to be efficient, exploiting parallelization when available,
and ready for production environments. It is also designed to be runnable in
an incremental fashion in which our approach is considered to be scalable. We
adopt the blocking phase in order to reduce the computational complexity from
O(N2) to O(

∑
N2

i ), which in practice tends to O(N) when Ni 	 N . This also
means that instead of having to run the disambiguation process on the whole
signature set, the process could be run only on specified blocks if desired.

2 https://github.com/inspirehep/beard.

https://github.com/inspirehep/beard
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5 Experiments

All the solutions proposed in this work are evaluated on data extracted from
the INSPIRE portal [10], a digital library for scientific literature in high-energy
physics. Overall, the portal holds more than 1 million publications P, forming
in total a set S of more than 10 million signatures. Out of these, around 13 %
have been claimed by their original authors, marked as such by professional
curators or automatically assigned to their true authors thanks to persistent
identifiers provided by publishers or other sources. Together, they constitute a
trusted set (S ′, C′) of 15,388 distinct individuals sharing 36,340 unique author
names spread within 1,201,763 signatures on 360,066 publications. This data
covers several decades in time and dozens of author nationalities worldwide.

Following the INSPIRE terms of use, the signatures S ′ and their correspond-
ing clusters C′ are released online3 under the CC0 license. To the best of our
knowledge, data of this size and coverage is the first to be publicly released in
the scope of author disambiguation research.

5.1 Evaluation Protocol

Experiments carried out to study the impact of the proposed algorithmic com-
ponents and refinements, follow a standard 3-fold cross-validation protocol,
using (S ′, C′) as ground-truth dataset. To replicate the |S ′|/|S| ≈ 13% ratio
of claimed signatures with respect to the total set of signatures, as on the
INSPIRE platform, cross-validation folds are constructed by sampling 13 % of
claimed signatures to form a training set S ′

train ⊆ S ′. The remaining signatures
S ′
test = S ′ \ S ′

train are used for testing. Therefore, C′
train = {c′ ∩ S ′

train|c′ ∈ C′}
represents the partial known clusters on the training fold, while C′

test are those
used for testing.

As commonly performed in author disambiguation research, we evaluate the
predicted clusters over testing data C′

test, using both B3 and pairwise precision,
recall and F-measure, as defined below:

PB3(C, ̂C,S) =
1

|S|
∑

s∈S

|c(s) ∩ ĉ(s)|
|ĉ(s)| RB3(C, ̂C,S) =

1

|S|
∑

s∈S

|c(s) ∩ ĉ(s)|
|c(s)| (1)

FB3(C, ̂C,S) =
2PB3(C, ̂C,S)RB3(C, ̂C,S)

PB3(C, ̂C,S) + PB3(C, ̂C,S)
(2)

Ppairwise(C, ̂C) =
|p(C) ∩ p(̂C)|

|p(̂C)|
Rpairwise(C, ̂C) =

|p(C) ∩ p(̂C)|
|p(C)| (3)

Fpairwise(C, ̂C) =
2Ppairwise(C, ̂C)Rpairwise(C, ̂C)

Ppairwise(C, ̂C) + Rpairwise(C, ̂C)
(4)

and where c(s) (resp. ĉ(s)) is the cluster c ∈ C such that s ∈ c (resp. the cluster
ĉ ∈ Ĉ such that s ∈ ĉ), and where p(C) = ∪c∈C{(s1, s2)|s1, s2 ∈ c, s1 �= s2} is

3 https://github.com/glouppe/paper-author-disambiguation.

https://github.com/glouppe/paper-author-disambiguation
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the set of all pairs of signatures from the same clusters in C. The F-measure is
the harmonic mean between these two quantities. In the analysis below, we rely
primarily on the B3 F-measure for discussing results, as the pairwise variant
tends to favor large clusters (because the number of pairs is quadratic with the
cluster size), hence unfairly giving preference to authors with many publications.
By contrast, the B3 F-measure weights clusters linearly with respect to their size.
General conclusions drawn below remain however consistent for pairwise F.

5.2 Results and Discussion

Baseline. The simplest baseline against which we compare our results consists
in grouping all signatures sharing the same (normalized) surname(s) and the
same (normalized) first given name initial. It provides a simple and fast solution
yielding decent results, as reported at the top of Table 2.

State-of-the-Art. Most methods proposed in related works have released nei-
ther their software, nor their data, making a fair comparison very difficult. Yet,
we believe solutions reported in the literature can be closely matched to our
generic pipeline, provided the blocking strategy, the linkage function and the
clustering algorithm are properly aligned. In particular, we consider hereon as
the state-of-the-art solution the following combination of components:

– Blocking: same surname and the same first given name initial strategy (SFI);
– Linkage function: all 22 features defined in Table 1, gradient boosted regres-

sion trees as supervised learning algorithm and a training set of pairs built
from (S ′

train, C′
train), by balancing easy and difficult cases.

– Clustering: agglomerative clustering using average linkage and block cuts
found to maximize FB3(C′

train, Ĉ′
train,S ′

train).

Below we study each component individually and discuss results with respect
to the underlined state-of-the-art solution.

Blocking Choices. The good precision of the state-of-the-art (0.9901), but its
lower recall (0.9760) suggest that the blocking strategy might be the limiting
factor to further overall improvements. Our experiments showed the maximum
B3 recall (i.e., if within a block, all signatures were clustered optimally) for SFI is
0.9828, which corroborates the estimation of this technique on real data by [31].
At the price of fewer and therefore slightly larger blocks, the proposed phonetic-
based blocking strategies show better maximum recall (all around 0.9905). Better
recall pushes further the upper bound on the maximum performance of author
disambiguation, as the signatures that belong to the same author and different
groups can not be clustered together by our algorithm. Let us remind that the
reported maximum recalls for the blocking strategies using phonetization are also
raised due to the better handling of multiple surnames, as described in Sect. 3.1.

As Table 2 shows, switching to either Double metaphone or NYSIIS phonetic-
based blocking allows to improve the overall F-measure score. In particular, the
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Table 2. Average precision, recall and F-measure scores on test folds. Components
correspond to the state-of-the-art choices.

Description B3 Pairwise

P R F P R F

Baseline 0.9024 0.9828 0.9409 0.8298 0.9776 0.8977

Blocking = SFI 0.9901 0.9760 0.9830 0.9948 0.9738 0.9842

Blocking = Double
metaphone

0.9856 0.9827 0.9841 0.9927 0.9817 0.9871

Blocking = NYSIIS 0.9875 0.9826 0.9850 0.9936 0.9814 0.9875

Blocking = Soundex 0.9886 0.9745 0.9815 0.9935 0.9725 0.9828

Classifier = GBRT 0.9901 0.9760 0.9830 0.9948 0.9738 0.9842

Classifier = Random Forests 0.9909 0.9783 0.9846 0.9957 0.9752 0.9854

Classifier = Linear Regression 0.9749 0.9584 0.9666 0.9717 0.9569 0.9643

Training pairs =
Non-blocked, uniform

0.9793 0.9630 0.9711 0.9756 0.9629 0.9692

Training pairs = Blocked,
uniform

0.9854 0.9720 0.9786 0.9850 0.9707 0.9778

Training pairs = Blocked,
balanced

0.9901 0.9760 0.9830 0.9948 0.9738 0.9842

Clustering = Average linkage 0.9901 0.9760 0.9830 0.9948 0.9738 0.9842

Clustering = Single linkage 0.9741 0.9603 0.9671 0.9543 0.9626 0.9584

Clustering = Complete
linkage

0.9862 0.9709 0.9785 0.9920 0.9688 0.9803

No cut (baseline) 0.9024 0.9828 0.9409 0.8298 0.9776 0.8977

Global cut 0.9892 0.9737 0.9814 0.9940 0.9727 0.9832

Block cut 0.9901 0.9760 0.9830 0.9948 0.9738 0.9842

Combined best settings 0.9888 0.9848 0.9868 0.9951 0.9831 0.9890

Best settings without
ethnicity features

0.9862 0.9819 0.9841 0.9937 0.9815 0.9876

NYSIIS-based phonetic blocking shows to be the most effective when applied
to the state-of-the-art (with an F-measure of 0.9850) while also being the most
efficient computationally (with 10,857 blocks versus 12,978 for the baseline).

Linkage Function Choices. Let us first comment on the results regarding
the supervised algorithm used to learn the linkage function. As Table 2 indi-
cates, both tree-based algorithms appear to be significantly better fit than Lin-
ear Regression (0.9830 and 0.9846 for GBRT and Random Forests versus 0.9666
for Linear Regression). This result is consistent with [33] which evaluated the
use of Random Forests for author disambiguation, but contradicts results of
[17] for which Logistic Regression appeared to be the best classifier. Provided



Ethnicity Sensitive Author Disambiguation Using Semi-supervised Learning 283

hyper-parameters are properly tuned, the superiority of tree-based methods is in
our opinion not surprising. Indeed, given the fact that the optimal linkage func-
tion is likely to be non-linear, non-parametric methods are expected to yield
better results, as the experiments here confirm.

Second, properly constructing a training set of positive and negative pairs of
signatures from which to learn a linkage function yields a significant improve-
ment. A random sampling of positive and negative pairs, without taking blocking
into account, significantly impacts the overall performance (0.9711). When pairs
are drawn only from blocks, performance increases (0.9786), which confirms our
intuition that d should be built only from pairs it will be used to eventually
cluster. Finally, making the classification problem more difficult by oversam-
pling complex cases (see Sect. 3.2) proves to be relevant, by further improving
the disambiguation results (0.9830).

Moreover, we observed that the ethnicity features serve a purpose. When
these features were not included in the features set, using the best combined
settings, the algorithm yields worse performance (0.9841).

Using Recursive Feature Elimination [11], we next evaluate the usefulness of
all fifteen standard and seven additional ethnicity features for learning the link-
age function. The analysis consists in using the state-of-the-art algorithm first
using all twenty two features, to determine the least discriminative from feature
importances [19], and then re-learn the state-of-the-art algorithm using all but
that one feature. That process is repeated recursively until eventually only one
feature remains. Results are presented in Fig. 4 for one of the three folds with
the state-of-the-art, starting from the far right, Second given name being the
least important feature, and ending on the left with all features eliminated but
Chinese. As the figure illustrates, the most important features are ethnic-based
features (Chinese, Other Asian, Black) along with Co-authors, Affiliation and
Full name. Adding the remaining other features only brings marginal improve-
ments. Overall, these results highlight the added value of the proposed ethnicity
features. Their duality in modeling both the similarity between author names
and their origins make them very strong predictors for author disambiguation.
The results also corroborate those from [14] or [8], who found that the similarity
between co-authors was a highly discriminative feature. If computational com-
plexity is a concern, this analysis also shows how decent performance can be
achieved using only a very small set of features, as also observed in [33] or [17].

Semi-supervised Clustering Choices. The last part of our experiment con-
cerns the study of agglomerative clustering and the best way to find a cut-off
threshold to form clusters. Results from Table 2 first clearly indicate that average
linkage is significantly better than both single and complete linkage.

Clustering together all signatures from the same block (i.e., baseline) is the
least effective strategy (0.9409), but yields anyhow surprisingly decent accuracy,
given the fact it requires no linkage function and no agglomerative clustering –
only the blocking function is needed to group signatures. In particular, this
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Fig. 4. Recursive feature elimination analysis.

result reveals that author names are not ambiguous in most cases4 and that
only a small fraction of them requires advanced disambiguation procedures. On
the other hand, both global and block cut thresholding strategies give better
results, with a slight advantage for the block cuts (0.9814 versus 0.9830), as
expected. In case S ′

b is empty (i.e. partial clusters are not known for any of the
signatures from the block), this therefore suggests that either using a cut-off
threshold learned globally from the known data would in general give results
only marginally worse than if the claimed signatures had been known.

CombinedBest Settings. When all best settings are combined (i.e., Blocking =
NYSIIS, Classifier = Random Forests, Training pairs = blocked and balanced,
Clustering = Average linkage, Block cuts), performance reaches 0.9862, i.e., the
best of all reported results. In particular, this combination exhibits both the high
recall of phonetic blocking based on the NYSIIS algorithm and the high precision
of Random Forests.

Execution Time. Our implementation takes around 20 h to process the com-
plete set of the data (for 10M signatures, on a 16 cores machine with 32GB of
RAM). Related work [15] reports execution times around 24 h to cluster 4M sig-
natures. Note also that shorter execution times can be achieved, at the expense
of worse results, by reducing the set of the features used.

6 Conclusions

In this work, we have revisited and validated the general author disambiguation
pipeline introduced in previous independent research work. The generic app-
roach is composed of three components, whose design and tuning are all critical
4 This holds for the data we extracted, but may in the future, with the rise of non-

Western researchers, be an underestimate of the ambiguous cases.
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to good performance: (i) a blocking function for pre-clustering signatures and
reducing computational complexity, (ii) a linkage function for identifying signa-
tures with coreferring authors and (iii) the agglomerative clustering of signatures.
Making use of a distinctively large dataset of more than 1 million crowdsourced
annotations, we experimentally study all three components and propose fur-
ther improvements. With regards to blocking, we suggest to use phonetization
of author names to increase recall while maintaining low computational com-
plexity. For the linkage function, we introduce ethnicity-sensitive features for
the automatic tailoring of disambiguation to non-Western author names when-
ever necessary. Finally, we explore semi-supervised cut-off threshold strategies
for agglomerative clustering. For all three components, experiments show that
our refinements all yield significantly better author disambiguation accuracy. In
general, the results encourage further improvements and research. For blocking,
one of the challenges is to manage signatures with inconsistent surnames or first
given names (cases 4 and 5, as described in Sect. 3.1) while maintaining blocks to
a tractable size. As phonetic algorithms are not yet perfect, another direction for
further work is the design of better phonetization functions, tailored for author
disambiguation. For the linkage function, the good results of the proposed fea-
tures pave the way for further research in ethnicity-sensitivity. The automatic
fitting of the pipeline to cultures and ethnic groups for which standard author
disambiguation is known to be less efficient (e.g., Chinese authors with many
homonyms) indeed constitutes a direction of research with great potential bene-
fits for the concerned scientific communities. Exploring other name-to-ethnicity
datasets with deeper coverage of names is another future work worth considering.

Moreover, the techniques presented in this work can be easily adapted to the
broader problem of named entity disambiguation and thus might significantly
improve accuracy of semantic search algorithms.

As part of this study, we also publicly release the annotated data extracted
from the INSPIRE platform, on which our experiments are based. To the best of
our knowledge, data of this size and coverage is the first to be available in author
disambiguation research. By releasing the data publicly, we hope to provide the
basis for further research on author disambiguation and related topics.
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