
Almost Surely Optimal Portfolios
Under Proportional Transaction Costs

Mark-Roman Feodoria and Jan Kallsen

Abstract In frictionless markets there typically exists a portfolio whose long-term
growth rate of wealth almost surely dominates that of any other portfolio. In this note
we show that this continues to hold in a Black-Scholes-typemarket with proportional
transaction costs.We heavily rely on results from Gerhold et al. (Financ Stochast
17:325–354 2013 [7]), who determine a portfolio maximizing the expected long-
term growth rate of wealth in the same setup.
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1 Introduction

Portfolio optimization is one of the oldest problems in Mathematical Finance and it
has been considered in manifold contexts and variations. A striking classical result
states that in generic frictionless markets there exists a self-financing dynamic port-
folio ϕ whose long-term growth rate of wealth

lim sup
T→∞

1

T
log(VT (ϕ))

almost surely dominates that of any competing investment strategy, cf. e.g.
[17, Theorem 3.10.1] or [8, Lemma 5.3] for markets with jumps. Here, Vt (ϕ) =
v0 + ∫ t

0 ϕsdSs represents the value at time t of a portfolio ϕ which has initial value
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v0 and trades assets S = (S0, . . . , Sd). This optimal portfolio can be obtained by
solving the Merton problem for logarithmic utility or, more specifically, by com-
puting the portfolio maximizing the expected logarithmic utility of terminal wealth.
This numeraire portfolio is known not to depend on the time horizon and it shares a
number of other interesting properties, cf. e.g. [15, 18] and the references therein.

In the presence of proportional transaction costs the solution to the Merton prob-
lem with logarithmic utility does depend on the time horizon T . It may therefore
be less obvious whether there exists a portfolio dominating any other in the long
run. Nevertheless, a natural candidate is provided by the portfolio maximizing the
expected long-term growth rate of wealth. The latter has been determined by [7, 21]
for a Black-Scholes type market with two assets. Based on the results in [7] we show
that this portfolio dominates any other’s long-term growth rate almost surely and not
just in expectation. It turns out that the optimal growth rate is deterministic and can
be computed explicitly, again based on the results of [7].

The proof of almost-sure optimality relies on the concept of shadow prices, intro-
duced by [4, 11] and applied inmany papers involving proportional transaction costs.
It relates the market with transaction costs to a fictitious frictionless market with the
same optimal portfolio. For our purposes, this concept turns out to be particularly
powerful. Indeed, it allows to reduce the present problem of almost-sure optimality
to the classical statement for frictionless markets.

The paper is organized as follows. In Sect. 2 we summarize main results of [7].
Subsequently, we prove the almost sure optimality of the strategy put forward in [7].
In Sect. 4 we verify that the almost surely optimal growth rate coincides with the
optimal expected growth rate of [7], in parallel to the frictionless case.

2 Trading with Proportional Transaction Costs

We consider a market consisting of a bond with constant interest rate and a stock S
following geometric Brownian motion. By switching to discounted prices we may
assume the bond price to be constant and equal to 1. The ask price of the stock is
modelled as

St = S0 exp
((

μ − σ

2

)
t + σWt

)
(1)

with constants S0,μ,σ > 0 and standard Brownian motionW . The bid price, on the
other hand, is assumed to equal (1 − λ)S for some constant λ ∈ (0, 1) representing
transaction costs. We set θ := μ/σ2.

The investor is assumed to enter the market with an initial endowment of v0 bonds
and no shares of stock. Dynamic trading is represented by R

2-valued predictable
processes (ϕ0,ϕ) of finite variation. Here ϕ0

t ,ϕt denote the number of bonds resp.
shares of stock at time t . A trading strategy (ϕ0,ϕ) is naturally called self-financing
if

ϕ0
t = v0 +

∫ t

0
(1 − λ)Ssdϕ↓

s −
∫ t

0
Ssdϕ↑

s , t ∈ R+, (2)
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where we write ϕ = ϕ↑ − ϕ↓ with increasing predictable processes ϕ↑,ϕ↓ which
do not grow at the same time. A self-financing strategy (ϕ0,ϕ) is admissible if its
liquidation wealth process

Vt (ϕ
0,ϕ) := ϕ0

t + ϕ+
t (1 − λ)St − ϕ−

t St , t ≥ 0

is almost surely nonnegative. By setting ϕ0 as in (2) we can and will identify any
predictable process ϕ of finite variation with the corresponding self-financing strat-
egy (ϕ0,ϕ). Accordingly, we call ϕ admissible if Vt (ϕ) := Vt (ϕ

0,ϕ), t ∈ R+ is
nonnegative.

An admissible strategy ϕ is called log-optimal for time horizon T ∈ R+ if it
maximizes

ψ �→ E (log(VT (ψ)))

over all admissible strategies ψ. As a natural counterpart for T → ∞, an admissible
strategy ϕ is expected growth-optimal if it maximizes

ψ �→ lim sup
T→∞

1

T
E (log(VT (ψ)))

over all admissible ψ. The factor 1/T is motivated by the fact that wealth typically
grows exponentially in time.

In the following, the corresponding concepts for frictionless markets with some
semimartingale price process S̃ will play a role as well. We call a predictable S̃-
integrable process ϕ S̃-admissible if its wealth process

Ṽt (ϕ) := v0 +
∫ t

0
ϕsd S̃s, t ∈ R+

stays nonnegative. An S̃-admissible strategy is log-optimal for the frictionlessmarket
S̃ if, for any time horizon T ∈ R+, it maximizes

ψ �→ E

(

log

(

v0 +
∫ T

0
ψt d S̃t

))

(3)

over all S̃-admissible strategies ψ. It is well known that such a strategy typically
exists for frictionless markets, i.e. the optimizer of (3) does not depend on the time
horizon T . If S̃ coincides with the above geometric Brownian motion S, the optimal
fraction of wealth to be invested in the stock equals the Merton ratio θ.

Let us turn back to the market S with transaction costs. As in related studies
[2, 5–7, 9, 10, 12–14, 19], a key role in the analysis will be played by shadow
prices. For the present problem the following version from [7] is needed.
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Definition 2.1 (Shadowprice)A shadowprice for the bid-ask processes (1 − λ)S, S
is a continuous semimartingale S̃ with (1 − λ)S ≤ S̃ ≤ S such that the log-optimal
portfolioϕ for the frictionless market with price process S̃ exists, is of finite variation
and the number of shares ϕ increases (resp. decreases) only on the set {S̃ = S}
(resp. {S̃ = (1 − λ)S}). Put differently, the corresponding bond investment ϕ̃0 :=
Ṽ (ϕ) − ϕS̃ satisfies (2).

We summarize a few results from [7]. In that paper, a shadow price process is
constructed explicitly. The log-optimal portfolio corresponding to this shadow asset
turns out to be expected growth-optimal for the originalmarketwith bid-ask processes
(1 − λ)S, S.

Proposition 2.2 There exists a shadow price S̃.

Proof [7, Corollary 5.2] �

Corollary 2.3 Let S̃ be a shadow price such that both the corresponding log-optimal
portfolio ϕ and its bond investment ϕ0 := Ṽ (ϕ) − ϕS̃ are nonnegative. Then

E (log(VT (ϕ))) ≥ E (log(VT (ψ))) + log(1 − λ)

for any admissible strategyψ. Moreover,ϕ is expected growth-optimal for the bid-ask
processes (1 − λ)S, S.

Proof [7, Corollary 1.9] �

Corollary 2.4 Let S̃ be a shadow price with corresponding log-optimal portfolio ϕ.

1. If θ ∈ (0, 1], then ϕ is expected growth-optimal for the bid-ask processes
(1 − λ)S, S.

2. If θ ∈ (1,∞), there exists λ0 > 0 such that for all λ ∈ (0,λ0) strategy ϕ is
expected growth-optimal for the bid-ask processes (1 − λ)S, S.

Proof 1. By [7, Theorem 5.1] (resp. the proof of [7, Corollary 5.2] for θ = 1) we
have ϕ,ϕ0 ≥ 0. Now we can apply Corollary 2.3.

2. [7, Lemma 5.3]

�
As is known from related maximization problems under proportional transaction

costs, the optimal portfolio remains untouched most of the time and is adjusted
infinitesimally whenever it deviates too strongly from the frictionless target. In the
present setup, this can be expressed in terms of the fraction of wealth invested in the
stock. More specifically, let

πt := ϕt St
ϕ0
t + ϕt St

denote the fraction of book wealth held in the risky asset, where ϕ0
t denotes the

riskless investment from (2). According to [7, Section5], the optimal strategy from
Corollary 2.4 is to keep this fraction in the interval
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[π,π] :=
[

1

1 + c
,

1

1 + c/s̄

]

, (4)

where c denotes the unique root of the function

f (c) =

⎧
⎪⎨

⎪⎩

(
c

(2θ−1+2cθ)(2−2θ−c(2θ−1))

) 1−θ
θ−1/2 − 1

1−λ (2θ − 1 + 2cθ)2 if θ ∈ (0,∞) \ { 12 , 1},
exp

(
c2−1
c

)
− 1

1−λ c
2 if θ = 1

2

in the interval ( 1−θ
θ
,∞) if θ ∈ (0, 1

2 ], in the interval ( 1−θ
θ
, 1−θ

θ−1/2 ) if θ ∈ ( 12 , 1), resp.

in the interval ( 1−θ
θ
, 0) if θ > 1, and s̄ is defined as

s̄ :=
⎧
⎨

⎩

(
c

(2θ−1+2cθ)(2−2θ−c(2θ−1))

) 1
2θ−1

if θ ∈ (0,∞) \ { 12 , 1},
exp

(
c2−1
c

)
if θ = 1

2 .

One could also consider the fraction of liquidation wealth held in the risky asset,
i.e.

πL
t := ϕt (1 − λ)St

Vt (ϕ)

for positive ϕ(t). A straightforward computation yields that (4) turns into the corre-
sponding interval [

1

1 + c/(1 − λ)
,

1

1 + c/((1 − λ)s̄)

]

for πL .
In [7] we can find a statement on the optimal expected growth rate as well:

Proposition 2.5 (Optimal expected growth rate) The optimal expected long-term
growth rate equals

δ := lim sup
T→∞

1

T
E

(
log(VT (ϕ))

)

= lim sup
T→∞

1

T
E

(
log(ṼT (ϕ))

)

=

⎧
⎪⎨

⎪⎩

(2θ−1)σ2 s̄
2(1+c)(s̄+(−2−c+2θ(1+c))s̄2θ) for θ ∈ (0,∞) \ { 12 , 1},

σ2

2(1+c)(1+c−log(s̄)) for θ = 1
2 ,

σ2

2 for θ = 1.

Proof [7, Proposition 5.4 and Remark 5.5] �

In the limit of small transaction costs, the bounds (4) and the expected growth
rate δ simplify considerably:
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Proposition 2.6 (Asymptotics) Let θ ∈ (0,∞) \ {1}. In the limit λ → 0 we have

π = θ −
(
3

4
θ2(1 − θ)2λ

)1/3

+ O(λ),

π = θ +
(
3

4
θ2(1 − θ)2λ

)1/3

+ O(λ)

for the bounds in (4) and

δ = μ2

2σ2
−

(
3σ3

√
128

θ2(1 − θ)2λ

)2/3

+ O(λ4/3) (5)

for the optimal expected long-term growth rate.

Proof [7, Corollary 6.2 and Proposition 6.3] �

Remark 2.7 For later use we remark that, unless θ = 1, the shadow price in Propo-
sition 2.2 is of the form

d S̃t = S̃t (μ̃(Yt )dt + σ̃(Yt )dWt ) , S̃0 = S0, (6)

where

1. Y is a positively recurrent one-dimensional diffusion with state space I := [1 ∧
s̄, 1 ∨ s̄],

2. μ̃ and σ̃ are positive continuous functions on I ,
3. δ = ∫

μ̃(s)2

2σ̃(s)2 dν(s), where ν denotes the stationary distribution of Y .

For θ = 1 the process S̃ = S is a shadow price.

Proof [7, Section5] �

3 Almost Sure Growth Optimality

Our first main result concerns almost sure growth optimality in the following sense.

Definition 3.1 An admissible strategy ϕ is called almost surely growth-optimal if

lim sup
T→∞

1

T
log(VT (ψ)) ≤ lim sup

T→∞
1

T
log(VT (ϕ))

almost surely for any admissible ψ.

Similarly to [7, Corollary 1.9] we have the following results, which do not use the
specific model (1) for the stock S.



Almost Surely Optimal Portfolios Under Proportional Transaction Costs 309

Proposition 3.2 Let S̃ be a shadow price with corresponding log-optimal portfolio
ϕ. If V (ϕ) is nonnegative and

lim
T→∞

1

T
log

(
VT (ϕ)

ṼT (ϕ)

)

= 0 almost surely, (7)

then ϕ is almost surely growth-optimal.

Proof Due to (1 − λ)S ≤ S̃ ≤ S we have Ṽ (ϕ) ≥ V (ϕ). This yields

1

T
log(ṼT (ϕ)) ≥ 1

T
log(VT (ϕ)) = 1

T
log(ṼT (ϕ)) + 1

T
log

(
VT (ϕ)

ṼT (ϕ)

)

and hence

lim sup
T→∞

1

T
log(ṼT (ϕ)) = lim sup

T→∞
1

T
log(VT (ϕ)) a.s. (8)

Letψ be an admissible strategy. Since Ṽ (ψ) ≥ V (ψ), we have thatψ is S̃-admissible
as well (cf. the proof of [7, Proposition 1.8]). From the log-optimality of ϕ in the
frictionless market S̃ we obtain with [17, Theorem 3.10.1] resp. [8, Lemma 5.3]

lim sup
T→∞

1

T
log(ṼT (ϕ)) ≥ lim sup

T→∞
1

T
log(ṼT (ψ)) ≥ lim sup

T→∞
1

T
log(VT (ψ)).

Together with (8) the assertion follows. �

Corollary 3.7 Let S̃ be a shadow price with corresponding log-optimal portfolio ϕ.
If ϕ and ϕ0 from (2) are nonnegative, then ϕ is almost surely growth-optimal.

Proof Since
Ṽt (ϕ) ≥ Vt (ϕ) ≥ (1 − λ)Ṽt (ϕ) (9)

(cf. the proof of [7, Corollary 1.9]), the statement follows from Proposition 3.2 �

Coming back to the Black-Scholes price processes and using the shadow price from
Proposition 2.2 we obtain the following corollaries.

Corollary 3.8 Assume λ < λ0 if θ > 1, with λ0 as in the proof of [7, Lemma 5.3].
Let S̃ be the shadow price from Proposition 2.2 with corresponding log-optimal
portfolio ϕ. Then ϕ is almost surely growth-optimal.

Proof Case θ ≤ 1: By [7, Theorem 5.1] (resp. the proof of [7, Corollary 5.2] for
θ = 1) we have ϕ0,ϕ ≥ 0. The assertion follows from Corollary 3.7.

Case θ > 1: From the proof of [7, Lemma 5.3] it follows that

Ṽt (ϕ) ≥ Vt (ϕ) ≥ K Ṽt (ϕ) (10)

for some K > 0, which yields the claim by Proposition 3.2. �
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4 Optimal Growth Rate

As our second main result we want to show that the long-term growth rate of wealth
is actually deterministic and hence coincides with the expected long-term growth
rate δ of Proposition 2.5. As may be expected, ergodicity plays a key role in this
context. For a related statement in the frictionless case, cf. [17, Corollary 3.10.2].

Theorem 4.1 Suppose that λ < λ0 if θ > 1. The optimal growth rate in Corollary
3.8 coincides with the optimal expected growth rate in Proposition 2.5, i.e.

lim
T→∞

1

T
log(VT (ϕ)) = δ.

Proof Suppose that θ 
= 1. As a first step, we show the assertion for the shadow
wealth process Ṽ (ϕ). Since the shadow price is of the form (6), the log-optimal
fraction of wealth equals

π̃t := μ̃(Yt )

σ̃2(Yt )
, t ≥ 0

by [16, Example 6.4], i.e. the corresponding log-optimal portfolio satisfies ϕt =
π̃t Ṽt (ϕ)/S̃t . This implies

ṼT (ϕ) = v0E

(∫ ·

0

π̃t

S̃t
d S̃t

)

T

= v0 exp

(∫ T

0

1

2

(
μ̃(Yt )

σ̃(Yt )

)2

dt +
∫ T

0

μ̃(Yt )

σ̃(Yt )
dWt

)

and hence

1

T
log(ṼT (ϕ)) = 1

T
log(v0) + 1

T

∫ T

0

1

2

(
μ̃(Yt )

σ̃(Yt )

)2

dt + 1

T

∫ T

0

μ̃(Yt )

σ̃(Yt )
dWt . (11)

Since the function f := μ̃2/(2σ̃2) is bounded on I , the ergodic theorem [1, II.35]
and Remark 2.7 yield

lim
T→∞

1

T

∫ T

0
f (Ys)ds =

∫
f (y)dν(y) = δ a.s. (12)

The process

Mt :=
∫ t

0

μ̃(Ys)

σ̃(Ys)
dWs, t ≥ 0

is a continuous local martingale with quadratic variation [M]t = ∫ t
0 2 f (Ys)

2ds, t ≥
0. Since f is bounded away from zero, we have aT ≤ [M]T ≤ bT , T ≥ 0 for some
a, b ∈ (0,∞). From the law of large numbers for continuous local martingales [20,
Exercise V.1.16] we obtain MT /[M]T → 0 and hence MT /T → 0 almost surely for
T → ∞. Together with (11, 12) we conclude that
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lim
T→∞

1

T
log(ṼT (ϕ)) = δ.

The assertion follows now from the fact that VT (ϕ) and ṼT (ϕ) differ at most by a
constant factor, cf. (9) resp. (10).

The case θ = 1 is of course similar to [7, Remark 5.5]. Since the entire wealth is
invested in stock, we have

log(VT (ϕ)) = log(v0) + σ2

2
T + σWT ,

which yields the long-term growth rate σ2/2 by the strong law of large numbers for
standard Brownian motion. �

From Theorem 4.1 and Proposition 2.6 we immediately obtain an asymptotic
expansion of the almost sure long-term growth rate for small transaction costs.

The existence of an explicitly computable portfolio which surely dominates any
other in the long run may be viewed as a both beautiful and extremely useful math-
ematical result. But as is well known, it faces severe obstacles in practice. Firstly,
the excess drift rate μ is typically small compared to the standard deviation σ. This
means that it may take a long time even to beat the bond-only investment strategy
with, say, 95% probability. Put differently, long term should rather be interpreted as
centuries rather than years. In addition, the frictionless target θ depends linearly on μ
which, again since it is small compared to σ, is very hard to estimate in any reliable
way. In the presence of limited past data or instationary parameters, it may even be
debatable whether the stock’s excess drift rate μ is positive at all.

Leaving these disenchanting facts aside, let us finish with a simple numerical
example in order to illustrate the results in this paper.We consider a stock with yearly
volatility σ = 20% and excess drift rate μ = 2%. The frictionless optimal excess
growth rate μ2/(2σ2) = 0.5% seems surprisingly small but should be contrasted
with the fact that the stock’s long-term growth rate (namely μ − σ2/2) vanishes—in
spite of its positive drift rate μ = 2%. The optimal fraction of wealth invested in the
stock equals θ = 1/2, which, due to the factor θ2(1 − θ)2 in (5), seems to be a rather
unpleasant parameter value if we introduce transaction costs or taxes.

If we consider transaction costs of λ = 1%, the asymptotic no-trade region from
Proposition 2.6 equals [0.42, 0.58], i.e. the investor tries to keep the fraction ofwealth
invested in stock between 42% and 58%. According to the asymptotic formula (5),
the frictionless optimal excess growth rate of 0.5% is lowered by the presence of
transaction costs to approximately 0.49%. In other words, even in the unfavourable
caseμ = 2%, θ = 1/2 the effect of transaction costs on the optimal long-termgrowth
rate appears to be rather small. For an early reference to related observations cf. [3].
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