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Preface

Mathematical Finance from its modest beginnings just a few decades ago has turned
into a thriving branch of applied mathematics, and in particular of probability and
statistics. In Germany, Ernst Eberlein was among the first to recognise the potential
and relevance of this field. He has contributed strongly to its development, not only
in terms of research, but also through manifold contributions to the community as
an organiser of conferences and workshops, by fostering international contacts and
networks, serving in societies, promoting young researchers, assuming editorial
duties, and so on. In appreciation of Ernst’s merits, and on his 70th birthday, a
conference titled Advanced Modelling in Mathematical Finance took place during
20–22 May 2015 in Kiel, where 19 talks were delivered by invited experts.

The Festschrift at hand is based on some of these presentations and on additional
invited contributions. They all reflect the title of the conference and demonstrate the
breadth of issues and methods that manifest in modern mathematical finance. First,
we give Ernst Eberlein a chance to speak for himself. An interview with him is to be
found right after the table of contents.

This volume consists of four major parts. The first one concerns the choice and
properties of stochastic processes for models in finance and other applications.
Hammerstein reviews popular classes of Lévy processes in detail before focusing
on their tail behaviour. Lévy-driven processes with a flexible dependence structure
are studied by Barndorff-Nielsen. Mandjes and Spreij, on the other hand, focus on a
class of tractable Markov processes allowing, for example, for explicit represen-
tations of their characteristic function.

In the subsequent part, aspects of statistics and risk in the broad sense are
analyzed in different respects. Geman and Liu discuss the recent evolution of
energy markets and the consequences for modelling them. The performance of
different models for the dependence of returns is studied in the contribution by
Madan. Kimura and Yoshida consider estimating dependence as well, but from the
point of view of statistical theory. Extreme value theory is applied by Beirlant,
Schoutens, De Spiegeleer, Reynkens, and Herrmann in order to find out to what
extent large losses in the financial crisis were beyond expectation.
Lütkebohmert-Holtz and Xiao investigate the contribution of time-varying
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collaterals to default risk. The question of modelling risk and uncertainty is dis-
cussed by Stahl from a fundamental perspective.

Part III considers option pricing and hedging, as well as optimisation in the
context of finance. Bayer and Schoenmakers study the computation of contingent
claim prices in affine generalisations of Merton’s jump diffusion model. Jahncke
and Kallsen apply a small jump expansion in order to approximate the prices of
options on the quadratic variation. Their approach is closely related to the one in the
contribution by Grbac, Krief and Tankov in the last chapter. The error when
hedging barrier options in exponential Lévy models is studied by Černý. Musiela,
Sokolova, and Zariphopoulou study indifference pricing in the context of forward
performance processes as an alternative to classical utility maximisation. Feodoria
and Kallsen consider almost surely long-run optimal investment in the presence of
transaction costs. The properties of optimal payoffs in the sense of Dybvig are
reviewed in the contribution by Corcuera, Fajardo, and Pamen, whereas
Rüschendorf and Wolf study this concept in the particular context of exponential
Lévy models.

The final part concerns term structure models for interest rates and commodity
prices. The basic question of absence of arbitrage is investigated by Klein, Schmidt,
and Teichmann in this context. Different variants of discrete-tenor interest rate
models are contrasted by Glau, Grbac, and Papapantoleon. A small jump approx-
imation to option prices in such models is derived in the contribution by Grbac,
Krief, and Tankov. Finally, Benth proposes a term structure model for cointegrated
commodity markets, which allows for option pricing by integral transforms.

At the end of this short introduction, we want to thank those who made this
Festschrift possible: first of all, the contributors and the anonymous referees, and in
particular Gerhard Stahl from the Talanx group who not only—along with the
German Science Foundation—provided generous financial support for the confer-
ence, but also encouraged us to put together this volume. Thanks are also due to the
staff of Springer-Verlag for accepting this project and for their professional assis-
tance. Last but not least, the editors thank Ernst himself for all his support over the
years without which we would not be who we are now.

Kiel, Germany Jan Kallsen
Berlin, Germany Antonis Papapantoleon
July 2016
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Interview with Ernst Eberlein

Would you like to tell us about your youth? Where and how did you grow up?

I was born in Rothenburg ob der Tauber, a small town in Franconia, which is the
northern half of Bavaria, where somewhat out of town in the Tauber valley my father
ran a sawmill, that specialized in oak wood. Living outside of the town came with the
benefit of being close to the river, hillsides and woods, which I enjoyed a lot. The
disadvantage was that I had a longer way to school, which I did by bike in summer
and by bus during the rest of the year. Shortly after I had entered high school, my
father passed away unexpectedly. In this situation the expectation of the family was
that I would replace him in the business as soon as I would be able to do it. As a
consequence, I left high school after six years, despite the fact that the standard
curriculum in Germany is nine years, in order to start a formal training as
‘Industriekaufmann’, a formation which I think can be translated as ‘Industrial
Business Manager’. I carried out the practical part of this training in a veneer mill
100 km away from home. Normally three years are necessary to obtain this quali-
fication, but I got it in two. It was mainly the prospect of new intellectual challenges
that led me at that point to try to go back to high school. I succeeded in recovering
part of the time I had spent within professional training, as the ministry in Munich
allowed me to skip one grade, on the basis of an exam. In summary, you can
conclude that my youth ended somewhat earlier than for most of my contemporaries.

How did you develop your interest in mathematics?

This started certainly at high school (Gymnasium in German). Looking back I
realize that I had excellent teachers in mathematics. Not that I did not do well in
other subjects too, like writing essays for example, but that part was hard work for
me, whereas doing the homework for mathematics was mostly pleasure. It was the
right intellectual challenge.
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You studied in Erlangen. What was the atmosphere like, in particular around Bauer
& Jacobs?

Let me first tell you how it happened that I started in Erlangen. Of course I had not
been aware of the great tradition which mathematics had at Erlangen University, but
one day I got a letter from an assistant at the physics department who was working
on his PhD. He had learned from a friend that I had the intention of studying either
mathematics or physics. He sent me some information on the curriculum and
recommended that I come to Erlangen. I followed his advice and we became
long-term friends. In particular, for many years we met for jogging in the evening in
the forest at the southern city limit.

When I started in the winter term of 1966/67, one of the two basic courses, namely
Linear Algebra, was taught by Konrad Jacobs. He was the most impressive per-
sonality among the professors we got to know in the first year. When he lectured he
used no notes. It looked so elegant and easy, but in fact it was not, neither for him nor
for us. There was enormous respect in front of a professor. He invited us repeatedly
to ask questions during the 15-minute break in the middle of the two-hour sessions,
but nobody dared to approach him. We did not want to admit that we were having a
hard time following his high speed at the blackboard. At the end of the first year,
based on the results that we had obtained in the weekly exercises, he invited a small
group of students for a special seminar that would start in the following semester.
This ‘by invitation only’ seminar was continued in the subsequent terms and although
at the beginning the topics where quite general like topology, number theory and
combinatorics, his guidance, together with his course in probability theory, led
towards stochastics. The surviving members of this group wrote their diploma thesis
under his supervision and he accepted several of them as PhD students.

It was only in my fourth semester that I took a course taught by Heinz Bauer. His
book on probability and measure theory which would soon become a standard
reference was in press. His teaching style was very attractive. He was fond of giving
every detail, so one had a good chance of following his arguments. I think his style
of teaching had a strong influence on the teaching style that I developed myself
later. There were plenty of other courses that we had to take, but on the basis of the
courses these two young and dynamic professors were offering, it was difficult not
to be hooked by probability theory and stochastic processes. Another attraction of
following the courses of Jacobs and Bauer was that both from time to time had
prominent visitors, who visited the department not only for research but also to
lecture. Let me just mention Alexandra Ionescu-Tulcea (Bellow) and Robert
Blumenthal.

As a student you spent a year in Paris, around 1968. What are your memories from
this time?

After three years of studies in Erlangen I thought it would be a good idea to add a
year abroad. Paris looked like the most attractive place. Jacobs introduced me with
a letter to Jacques Neveu who signed the papers such that I was accepted as a
troisième cycle student for the DEA. Neveu himself did not teach at this level
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during the academic year 1969/70. I attended courses by J. Azéma, P. Priouret and
D. Revuz and besides that I worked on my diploma thesis, for which Jacobs had
given me a very appealing subject. The diploma thesis would later become my first
publication, ‘Toeplitzfolgen und Gruppentranslationen’, since Jacobs, without even
informing me, submitted the manuscript right after I had it handed over to him for
inspection. 1970 was also the year when the mathematics department moved from
the Institut Henri Poincaré to the new building at Jussieu. The floor for the prob-
abilists (couloir 56-66) was so spacious that they had reserved an office for foreign
students which I shared with another student from Germany. That year in Paris was
a wonderful period. Besides the productive time at the department I particularly
enjoyed the international atmosphere at the Cité Universitaire.

Following your PhD, you spent time at IMPA in Rio de Janeiro and at the ETH in
Zürich. You also spent a sabbatical at Stanford in California. How did these
opportunities arise and how did they influence your career?

After I had received the PhD, a fundamental decision had to be made, either to
continue with research or to look for a job in the industry. Jacobs had received an
invitation from IMPA, but he did not want to go there himself. I think it was
because of the political situation in South America at that time. So he asked me if I
would be interested to spend a year at IMPA within the agreement on the exchange
of researchers between Germany and Brazil. I did not hesitate too long. When I
arrived in April 1973, the institute was not located where it is now, but downtown
in a historical building which is now a cultural center. I lived in Copacabana and
took a bus to the city center every morning. The probability group was headed by
Pedro Fernandez, who had received his PhD under Lucien LeCam and had attracted
other Berkeley alumni to IMPA. The first course I was asked to teach was an
introductory course on probability theory. The second was a measure theory course
which I taught in Portuguese!

Living in Rio in the early seventies cannot be compared to going there today.
Already the flight required a stop in Casablanca for refueling. Making a phone call
was complicated and too expensive. So I stayed in contact with family members
and friends by writing letters. There were also some urgent matters for which I sent
wires across the Atlantic. The colleagues at IMPA were very friendly. I remember
in particular Lindolpho de Carvalho Dias, the director. On one occasion he told me
that the Institute had acquired that magnificent piece of land at Jardim Botanico
where the institute resides now. Needless to say, I enjoyed the beaches during
sunny weekends. In particular the Barra da Tijuca, which is nowadays a part of the
metropolis, and densely covered with buildings, was just nature at that time and a
marvelous beach.

The reason why I went to Zürich was that Hans Föllmer had accepted a profes-
sorship at ETH and had an assistant position that he offered to me. As you know, in
order to be able to apply for a professorship in Germany, a Habilitation was a
necessary requirement at that time, in addition to a PhD. Zürich with its very active
life in research in statistics, actuarial sciences and stochastics in general was a rather
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attractive place for such an endeavor. In January 1978, I submitted my
Habilitationsschrift and the procedure was finished in the summer, after I had
delivered a formal lecture to the ETH faculty. I had applied for the vacant position in
probability at the Department of Mathematical Stochastics in Freiburg, accepted the
offer which I got and I started to teach in October after the Dean had asked me to do
so. It went so fast that the certificate of appointment, which had to be signed by the
prime minister of the state, arrived only six weeks later. At that age you do not worry
too much about legal risks. After four years of teaching one was allowed to ask for
the first one-semester sabbatical, which I wanted to spend abroad. I had met Ingram
Olkin who had been visiting our department. When I asked him if I could go to his
department at Stanford, he agreed and so I spent the winter of 1982/83 in California.
David Siegmund also helped greatly to make this visit successful.

During your PhD and early career, you were interested in dynamical systems and
invariance principles. Would you like to describe your early results?

Ergodic theory attracted a lot of interest at that time. There was the famous
Kolmogorov conjecture that entropy was supposed to be a complete isomorphism
invariant. This conjecture was confirmed for Bernoulli shifts by Don Ornstein in a
series of papers starting in 1970. As a student of Konrad Jacobs you were exposed to
these developments and there was some probability that he would propose a topic
from ergodic theory for your PhD. More technically, it would be a topic on
measure-theoretic dynamical systems or its topological equivalent, but not on dif-
ferential dynamical systems. What he proposed to me was a question about strict
ergodicity in continuous-time dynamical systems. Strict ergodicity for a system with
a topological structure means that it carries a unique transformation-invariant
probability measure and the question was about conditions that guarantee this
uniqueness. An equivalent way to characterize strict ergodicity is to require that, for
any continuous function, if you take time-means along orbits of the transformation,
you have to get in the limit the space mean with respect to the invariant measure.
Jacobs had obtained a partial result by showing that a system that is weakly mixing is
isomorphic to a strictly ergodic one. I was strongly motivated to work on this
problem since in my diploma thesis I had already studied strictly ergodic systems in
discrete time, namely those generated by Toeplitz sequences on the Bernoulli space
of 0’s and 1’s. In order to tackle this problem I first proved a generator theorem that
allowed me to embed aperiodic systems into a space of Lipschitz functions with the
shift transformation. Once the system was embedded in a space with nice properties,
in joint work with Manfred Denker we showed that ergodicity is enough to guarantee
the isomorphism to a strictly ergodic one. This is the definite result since the opposite
direction is evident. Any strictly ergodic system is ergodic. I continued for some time
to look into the interplay between measure-theoretic and topological properties of
dynamical systems by studying generators and in particular topological entropy, but
then I got interested in a rather different object, namely random sheets, a
two-dimensional analogue of the classical random walk. The study of random sheets
led me to stochastic dependence structures, since the restriction that the values of a
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sheet can differ only by +1 or −1 between any neighboring points on the
two-dimensional grid, entails a mixing structure for arrays of random variables once
one uses the counting measure defined by the number of sheets. In the combinatorial
part of this study I rediscovered the transfer matrix method, without being aware that
this had been a fundamental tool used by Elliott Lieb in his paper on the six-vertex
ice model. Random sheets are in fact isomorphic to six-vertex ice. Invariance
principles and later strong approximation results under a variety of dependence
assumptions were then an area that developed naturally out of this example. For
several years, while I was an active member of the Probability in Banach Spaces
group, I investigated the subtle balance between dependence assumptions and
moment conditions in the context of probabilistic limit theorems. I tried to under-
stand the borderline until which the limit theorems or strong approximation results
are valid. I organized several conferences at the Oberwolfach Institute. The con-
ference titles ‘Dependence in Probability and Statistics’ and ‘High-Dimensional
Probability’ are in use still now.

How did you get interested in mathematical finance?

Well, with the family and education background that I indicated at the beginning, it
is not really surprising that I was always interested in banking and finance in
general and watched with increasing interest what was going on in the eighties after
the Harrison and Pliska papers had appeared. Actually conversations with Michael
Harrison played a key role. In 1987 I spent seven months, my second sabbatical, at
UCSD. Murray Rosenblatt and Ron Getoor were my hosts in La Jolla. During that
stay I went to Stanford for one week and had the opportunity for several discussions
with Michael Harrison. On one occasion he gave me some handwritten notes on the
derivation of the Black-Scholes formula. I was so impressed by the elegance with
which he explained the subject that I studied further papers. The first conference on
mathematical finance which I attended was held in July 1989 at Cornell, organized
by David Heath and Bob Jarrow. It was the only occasion where I had a chance to
listen to Fischer Black. Although modest, even shy, he was already at that time a
sort of saint in the finance community. It was also during that conference that Stan
Pliska proposed that we should start a journal for Black-Scholes theory which after
a long discussion finally got the most natural name, namely Mathematical Finance.
As early as August 1992 I myself organized a conference with the title
Mathematical Finance at the Oberwolfach Institute, with Darrell Duffie and Stan
Pliska as co-organizers. This Oberwolfach series was continued in later years by
Hans Föllmer. Concerning your question allow me another remark. Your personal
background always plays an important role in what you are interested in. I am
convinced that Louis Bachelier’s ingenious thesis, which his referees—none less
than Appell, Poincaré and Boussinesq—classified in their report as being ‘on a
subject that is rather far removed from those usually treated by our candidates’,
could never have been written without his background in business and his profound
knowledge about financial markets, which he had acquired through this.
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You were one of the pioneers in the application of Lévy processes in finance. How
did you start working in this direction?

This began with statistics and data analysis. In 1987 we had started an interdisci-
plinary seminar in our University where the people involved in statistics and
probability met. The formal foundation of the Freiburg Center for Data Analysis
and Modeling (FDM), which grew out of this seminar, had to wait until 1994. The
talks in this seminar inspired me or, rather, put some pressure on me to contribute
and to start with data analysis myself. It was clear that I wanted to analyze financial
markets. I acquired daily stock price data from a data bank service. After consulting
with Stan Pliska, I got access to some of the relevant literature and one of my
talented students, Ulrich Keller, agreed to do the work on the computer. The results
were ready to be presented in January 1994 in Paris at the first conference where our
newly established European network met. Jean Jacod acted as head during the first
four years of funding for this network. That was the reason why we met in Paris.
Ole Barndorff-Nielsen was in the audience and when he saw our graphs of
empirical return distributions from German stock price data he commented ‘This
looks very much like hyperbolic distributions’. So, back at home, I read the papers
on this class of probability distributions, which Ole had introduced in the seventies
in the context of the so-called sand project. In this interdisciplinary project, people
in Aarhus studied the drift of sand under the impact of waves and this sort of
distribution turned out to be useful for the statistical description of the particle size.
Preben Blaesild was kind enough to send us a program for parameter estimation.
Once we had parameters, the question that I posed myself was: Is there a model
such that the return distributions from this model—let us say at time 1—are
hyperbolic? Being used to the Black-Scholes- or rather the Samuelson—setting, I
tried it for several months with diffusion processes. To illustrate how difficult it
sometimes is to abandon the thinking in which you were trained, let me tell you the
following story. I presented the empirical findings again, but this time including
parameter estimates, during a conference in Cortona in Italy in May, to which a
good part of the then-élite of mathematical finance had been invited by Wolfgang
Runggaldier. In the discussion following my talk one of the prominent members
of the community commented ‘This looks very interesting, but you will never be
able to develop a suitable theory based on these distributions’. I had gone through
other difficulties and it would have taken more than that to discourage me. At some
point I realized that diffusions do not and cannot work to reach the goal. With the
exception of the simplest cases, one does not even know the distribution which is
produced by a diffusion on a given time horizon. A diffusion equation or, equiv-
alently, a stochastic exponential was just not the right starting point to get what I
was looking for. Something more radical had to be done. Hyperbolic distributions
are infinitely divisible and thus they generate Lévy processes, where you get the
generating distribution back at time one. In Bauer’s book in my student days these
processes had just been called processes with stationary and independent incre-
ments. The name Lévy process came only later. Since we used log-returns for the
statistics, one had to take the ordinary exponential of the corresponding Lévy
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process instead of a stochastic exponential, in order to get exactly the distribution
that comes from the data. In the classical case of Brownian motion the difference
between the ordinary and the stochastic exponential is not that crucial, but for
jump-type Lévy processes it is. It was so simple once I had seen this point. The joint
paper with Ulrich on the hyperbolic Lévy model appeared in October 1994 as
No. 1 of the newly created FDM-preprint series and was published in the first
volume of Bernoulli a year later. Let me finish by making one more remark. That
meeting of the EU network in Paris helped showing the many avenues of research
in this field, and many network members, none of whom had been involved in
financial models before, were inspired by my talk to start working in stochastic
finance. DYNSTOCH, as we called it later for the second funding period, headed by
Michael Soerensen, became a very successful working platform and the group has
continued with an annual meeting for more than twenty years already.

Later you considered Lévy processes in the context of term structure problems.
Could you tell us about this?

Once we had introduced the exponential Lévy model for equity, it was rather
natural to look into fixed income modeling. From the point of view of mathematics,
interest rate models are a priori more challenging, because instead of the dynamics
of a single value or a finite-dimensional vector, one has to model the movements of
an infinite-dimensional object, i.e. the whole term structure as a function. We
started with the instantaneous forward rate or Heath-Jarrow-Morton approach. In
Sebastian Raible I had another talented student for this project. The paper on
term-structure models appeared in the FDM preprint series as the output of my
sabbatical in the summer of 1996, but was printed in ‘Mathematical Finance’ only
in January 1999 after a relatively slow refereeing process. By the way, Sebastian
mentioned later to me that during his time as a PhD student he had had a number of
very useful discussions on analytical issues with you, Jan. Maybe you contributed
to this project without my becoming aware of it.

The next challenge in the program to develop a Lévy-driven finance theory was
the Libor market model. This was done with Fehmi Özkan. Let me tell you how the
breakthrough came. I had been scheduled to give a series of talks at a conference for
central bankers in Mexico City. Only a few days before my departure, the BIS
informed me that the conference had to be relocated to Rio de Janeiro six months
later. Suddenly I had a free week. What a wonderful gift. At the end of that week in
which I devoted all my time to working with Fehmi, we had the Lévy Libor model
and in addition we had understood more, namely that it is more appealing to model
the forward price processes instead of the Libor rates. With the former as basic
objects, the analysis becomes much simpler as the quantity modeled is—up to the
norming constant—also the density process needed in the backward induction to go
from one forward measure to the next. One can forget about any approximation like
the frozen drift and at the same time one can obtain negative rates in a natural way.
Not only in the current market environment where the AAA Euro yield curve went
negative up to ten years—this happened intraday on June 14, 2016, for the first
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time—but because of its superb calibration properties and the easier analysis
mentioned before, the forward process approach should be the model of your
choice. The quants in the banks are struggling currently with negative rates, since
what is implemented there are models that produce positive rates only.

The Libor and the forward process model were by no means the end of the
program for term-structure modeling. In the work with Wolfgang Kluge we
included defaultable fixed-income instruments. This was extended with Zorana
Grbac to a market model with a fully-fledged credit rating system. Currently we are
working on Lévy-driven multiple curve models, which became necessary after the
2007–2009 financial crisis.

In the last decade, you did a lot of work on two-price economies. What was your
motivation?

This came out of the recent financial crisis directly. In 2008 many of the major
banks got into trouble. As a consequence their credit rating was downgraded, but
surprisingly they reported windfall profits of the order of magnitude of hundreds of
millions of US dollars in that year. Looking at their balance sheets it became clear
where these profits came from. To finance their activities these banks issue bonds.
The market value of this debt typically decreases once the issuer is downgraded.
Since it is a position on the liability side of the balance sheet of such a bank, a
decrease of its liabilities—other positions unchanged—produces profits. Following
this line of thought further, it means that an issuer of bonds will always report large
profits once its bankruptcy is looming. In discussions with Dilip Madan we came to
the conclusion that something is wrong with the valuation of instruments and the
current mark-to-market accounting rules. Entries in a balance sheet should actually
give a realistic picture of the financial status of a corporation. This goal can be
achieved if a financial instrument is marked with the bid or lower price on the asset
side and the ask or higher price on the liability side. The price of an instrument
depends then on the direction of the trade. How one can get two prices via
Knightian uncertainty is a different story and the smart part of the project. The
two-price theory has now reached a maturity where it applies to all markets in
finance and not only to illiquid ones. By means of some portion of the spread it
even provides an excellent measure for the liquidity of the corresponding market.

Would you like to describe the early days of mathematical finance? How has the
field evolved over the years?

Well, it depends on what you mean by ‘early days’. I can only comment on what I
recollect from roughly 1990 onwards and from a European perspective. Actually
mathematical finance started late on this side of the Atlantic. It was a rather small
community. One has to be aware that the first exchange for derivatives in Germany,
the DTB, started in 1990 only. Before that, derivatives were traded only OTC in this
country. Some years later in order to motivate students for the subject, I even
organised an excursion to the exchange in Frankfurt with those who attended my
course. In 1998 the DTB mutated into the Eurex, which is now one of the biggest
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derivatives exchanges worldwide. I mentioned the Oberwolfach conference in 1992
earlier. What had certainly had an impact was a series of conferences which
Wolfgang Runggaldier organized in Italy, first in 1992 in Erice in Sicily and later in
Cortona. The major representatives of the field at that time where colleagues
coming from areas where diffusions were used. To illustrate how difficult it was to
present something that was not mainstream, let me tell you what happened with my
first paper together with Jean Jacod. In 1995 I sent it to the freshly appointed editor
of the new journal Finance and Stochastics. It is the paper in which we show that
exponential Lévy models have a very rich structure in the sense that, under slight
regularity assumptions, the range of values of options, using all possible equivalent
martingale measures for the valuation, covers the whole no-arbitrage interval
excluding the boundaries. I got the manuscript back within a few days with the
comment that this approach is useless, since the model does not have a unique
pricing measure. Do not misunderstand that I want to criticize Dieter Sondermann’s
work as editor. He did a marvelous job by establishing a journal which is now one
of our best. I think his attitude had to do with the unfortunate choice of the notion of
‘incompleteness’ which insinuates that something is wrong with this model. In my
opinion it is the opposite. On the basis of market data one can pick the most
appropriate pricing operator via calibration. It is the same as extracting implied
volatilities from price data in the classical diffusion world, but the parameter space
is much richer. In any case, I had a hard time convincing the editor that the paper is
worth publishing. It appeared in the first volume of the journal. I can give you
another example of how strenuous it was not to swim with the current of diffusion
models. I had initially submitted the paper with Keller and Prause, which later
appeared in the Journal of Business, to another prominent journal whose editor at
that time had been a well-known name in financial time series. He rejected it right
away and wrote back that enough has been published already on Lévy models in
finance. I think it is no exaggeration to say that, in 1997, the published papers on
Lévy dynamics could be counted on the fingers of two hands…

Would you like to tell us about the perception of Mathematical Finance in the
probability community in the early days and later?

First let me say that probability was not the only area from which the contributors
came to the subject. Some had a background in functional analysis or PDE theory
or even physics, but since the Harrison-Pliska papers had appeared, probability
theory looked like the most natural starting point. In my opinion, academic posi-
tions in mathematical finance could be located mainly in departments of probability
theory or statistics. A number of colleagues became interested in this applied area,
but many gave up again after realizing that probability theory alone was not enough
to do interesting work. Personally, I did not get any recognition from the probability
community in Germany for working in mathematical finance. It was the opposite.
There were several interesting vacancies for which I applied. The establishment in
Germany used its position as referee to eliminate me from the list of candidates.
I experienced a similarly hostile attitude at faculty level too. It is standard practice,
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and our faculty in Freiburg is definitely no exception to this rule, that in response to
an offer from another University, the Dean works towards an increase of your
compensation in order to improve the chance that you will stay. That did not
happen when, due to increasing recognition from my colleagues abroad, I got an
offer from a foreign university. Several years later I had a chance to respond in kind,
when the faculty urged me to take over as Dean again. I had already served in this
position back in the eighties. That had been a rather interesting and busy term, since
it was during my term that the University of Freiburg initiated a curriculum in
computer science. As Dean I became chairman of the recruitment committee for the
new field. Until the establishment of the Faculty of Engineering, the new colleagues
remained part of the Mathematical Institute for a number of years. Apparently the
faculty had not been dissatisfied with the way I handled the job, but when, years
later, they urged me to serve as Dean of Mathematics and Physics, I had to tell them
that I needed to focus on research instead, in order to be able to reach a level of
recognition where I could be treated in the same way as other colleagues. When you
work with success in a very attractive area, it can also create some jealousy in the
community and amongst your colleagues in the faculty. Meanwhile, mathematical
finance has become a well-established part of a number of faculties in this country
and maybe I contributed to this state of affairs.

Which persons have influenced your scientific career the most? And which have
been very important companions over the years?

Without any doubt the most important person, as far as my career in academia is
concerned, was Konrad Jacobs. Without his encouragement and guidance I would
probably have left the academic world with a PhD or even earlier with a diploma
degree. Konrad was not a supervisor in the sense that you would or could see him
regularly and discuss the problems where you got stuck. Our contact with him was
very different from that. His seminars were very broad and inspiring. When he
became convinced that you were the right candidate, he guided you into a certain
area by indicating the right papers. In some cases he identified a precise question on
which you could work. From then on he expected that, without further discussions,
you would submit a printable paper. From his way of doing mathematics I learned
that you should look beyond the tip of your nose. In spite of the considerable
distance between professor and student at the beginning, we became lifelong friends
after my PhD. Unfortunately he passed away last year.

Albert Shiryaev visited our department for two months in the winter term
1981/82 and in a series of lectures gave a survey of semimartingale theory. It was
through these lectures that I grew fascinated by this level of stochastic processes.
This is somewhat strange because the architect of modern stochastic analysis,
Paul-André Meyer, was in Strasbourg, just ‘around the corner’ from Freiburg and I
had a chance to talk to him on a number of occasions. Let me share with you one of
his statements. I was teaching Stochastic Processes that term, essentially using
Michel Métivier’s book on semimartingales and I asked Meyer: ‘What do you think
is the most elegant way to introduce the stochastic integral?’ He answered:
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‘You can do whatever you like, you will always need half of the semester for the
integral.’ Before Shiryaev’s visit I had only become acquainted with semimartin-
gales in terms of particular results and had not seen that they had reached the state
of a mature theory. As a consequence of this visit, Albert and I became close
friends. He visited our department quite often during the last 35 years. Some stays
lasted several months. He must have spent a total of nearly two years in Freiburg in
that time span. We had many inspiring discussions on stochastic analysis and later
on financial mathematics and this is still going on.

During the last ten years I developed a very close cooperation and friendship
with Dilip Madan. We had met at several conferences as we were both working on
Lévy-driven models although using different processes. At a conference in Venice,
while enjoying a magnificent sea bream for dinner, we decided to work together.
Since then a considerable number of joint papers has appeared, some of them with
further co-authors. I will mention only Hélyette Geman, Marc Yor and Wim
Schoutens. To discuss with Dilip is a wonderful experience. He has extremely wide
knowledge in finance. Another colleague with whom I had a very fruitful coop-
eration is Jean Jacod. You can only be very impressed by his speed of thinking and
working.

Last but not least, let me emphasize that I had quite a number of extraordinarily
talented PhD students including both of you. This local strength was vital for what
we achieved on the basis of Lévy processes and more general ones.

How was the Bachelier Finance Society created? What are your impressions after
serving for almost a decade as its Executive Secretary?

The Bachelier Finance Society was created on June 4, 1996, in Aarhus. Jorgen
Nielsen had organized a conference at the University of Aarhus and that day he
asked twelve participants to join him for dinner at Kellers Gaard. The dinner took
place in a special room in the first floor of the restaurant. The building where
Kellers Gaard was operating at that time no longer exists. Dinner had not been the
main reason for bringing this group of people together. Jorgen proposed to form an
association for mathematical finance and presented statutes which he had already
drawn up. He became the first President of the Society and Stan Pliska its Executive
Secretary. At the beginning of 2001, Hélyette Geman, who had by then become the
third President of the Society, approached me asking if I would be willing to take
over from Stan. I agreed and served as Executive Secretary for the next ten years.
What kept me busy during that time were the membership administration including
the journal subscriptions, elections, the work of committees, the congresses which
we hold every second year and a whole variety of other issues which kept the
Society going. Even after deleting insignificant e-mails, I still had several thousand
e-mails in various folders. Nowadays these tasks are spread across more shoulders
than during my time. I would not like to have missed the many contacts which I had
due to that position. I am proud that I was able to contribute to the success of our
Society and hope it will help to promote the field of mathematical finance for many
years to come.
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You have served as Co-Editor for Mathematical Finance and as Associate Editor
for several other journals. How much time do these activities take up? How does it
differ from journal to journal?

With respect to the scientific quality of journals, there is little doubt that we, the
people who do the research, are best qualified to serve as editors, associate editors
or referees and to select what is accepted. This is time-consuming. Sometimes one
receives contradictory opinions from referees. This means that you have to read the
article yourself in order to come to a decision. How much time editorship consumes
depends largely on the reputation of the journal. The latter determines the number
of submissions which you have to manage. This varies a lot from journal to journal.
Top journals easily receive ten times as many articles as can be printed within a
limited page budget.

What is your opinion of the peer-review system, which is often criticized? What do
you think about open access journals?

The peer-review system has its weaknesses. It requires a lot of integrity from the
persons who act from a position of anonymity. On the other hand, criticism is very
often justified and helps to improve a submitted article. Without the anonymity
of the referee there would be less freedom to express criticism. Therefore I do not
know a system that would guarantee more fairness. If an article is rejected, you are
free—after taking care of justified criticism you received—to submit it to another
journal. The question of the integrity of referees is much more severe in the case of
applications for research funds at your science foundation and it is of fundamental
importance when somebody is asked to rank candidates for a vacant position. In
such a situation the applicants might not easily have another chance at that orga-
nization or university. In the case of a vacant position I therefore very much favour
the rules applied in the United States where up to ten letters on a candidate are
collected, while in Germany decisions are based on two or three opinions, or in the
worst case on the opinion of just one super-referee. This gives too much power to a
single person. I do not know any person who would possess such an overview as to
justify this sort of dictatorship. The latter is not to the benefit of the community, but
carries a high risk for misuse of a position. Of course as an editor of a journal you
are usually already happy if two reports become available. More is not possible for
this purpose.

Concerning the second question it is clear that our way of publishing will change
fundamentally in the future. The traditional journals have become so expensive that
in many departments almost the entire available budget has to be used for sub-
scription fees. Other technical means for the dissemination of research results are
already available.
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What does it take for a successful academic career?

What is most important is that you like what you do. The frustrations that will
inevitably occur can only be overcome if you are highly motivated. Another aspect
that I want to point out is enthusiasm for teaching. An academic career should not
be reduced to a career in research only. Teaching with enthusiasm attracts excellent
students and allows you to establish a strong working group.

What would be your advice for a young financial mathematician?

Be flexible. Get interested in new developments. What you learned during your
studies will no longer be sufficient for your job in ten or in twenty years.

You were involved in industrial projects and have been in contact with financial
regulators. How was that experience?

Working in industrial projects and with the regulators widens your horizon enor-
mously. You get a much clearer picture about what their needs are. You will realize
that data issues, statistical aspects in calibration and efficient numerical procedures
are as important as providing a mathematical theory.

During the recent financial crisis, mathematical finance was heavily criticized for
its role in it, notably Michel Rocard (a former French Prime Minister) said that
“mathematicians are responsible for crimes against humanity”. What is your
opinion on this?

Marc Yor has published an adequate answer to Mr. Rocard’s allegations.
Therefore I do not want to repeat his arguments here. That would need too much
space. Nevertheless let me add that we should use state-of-the-art models in our
work and not stick to methods that were appropriate thirty years ago. On quite a
number of occasions I have heard people in the banks or in the regulatory agencies
saying that the methods applied should be simple. First of all, what you consider to
be simple is relative to your level of knowledge. Secondly, can you imagine that
diagnosis and therapy methods should primarily be simple if you have a health
problem? You will without any doubt expect that the doctors will try to help you by
applying state-of-the-art methods. Why should this be different when millions or
billions are invested?

What should financial mathematicians do differently in order to avoid another
crisis?

In the past, mathematicians usually were far away from the C-level hierarchy
positions where the key decisions, which lead to a crisis like the last one, are made.
The situation is somewhat better nowadays. More direct access to top management
should be used to pinpoint risks that have been identified. Some of the banks which
were hit the hardest did not even have any mathematical expertise to understand the
risks of those financial instruments in which they had heavily invested.
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What is your opinion about the future of mathematical finance?

Mathematical finance is an attractive and challenging field of mathematics and it is
applied on a large scale in a rapidly developing industry, thus there is an excellent
job market. What more do you want? I cannot see any reason why it should not
have an excellent future in academia as well as in the industry.
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Part I
Flexible Levy-based Models



Tail Behaviour and Tail Dependence
of Generalized Hyperbolic Distributions

Ernst August v. Hammerstein

Abstract Generalized hyperbolic distributions have beenwell established in finance
during the last two decades. However, their application, in particular the computation
of distribution functions and quantiles, is numerically demanding. Moreover, they
are, in general, not stable under convolution which makes the computation of quan-
tiles in factor models driven by these distributions even more complicated. In the
first part of the present paper, we take a closer look at the tail behaviour of univari-
ate generalized hyperbolic distributions and their convolutions and provide asymp-
totic formulas for the quantile functions that allow for an approximate calculation
of quantiles for very small resp. large probabilities. Using the latter, we then ana-
lyze the dependence structure of multivariate generalized hyperbolic distributions.
In particular, we concentrate on the implied copula and determine its tail dependence
coefficients. Our main result states that the generalized hyperbolic copula can only
attain the two extremal values 0 or 1 for the latter, that is, it is either tail independent
or completely dependent. We provide necessary conditions for each case to occur as
well as a simpler criterion for tail independence. Possible limit distributions of the
generalized hyperbolic family are also included in our investigations.

Keywords Normal mean-variance mixture · GH distribution · Convolution tails ·
Tail dependence · Copula

1 Introduction

Almost forty years ago, generalized hyperbolic distributions (henceforth GH) have
been introduced in [5] in connection with the modeling of aeolian sand deposits and
dunemovements. Eighteen years later, they were introduced in finance by [14] where
the hyperbolic subclass was used as a more realistic model for stock returns. The
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normal inverse Gaussian subclass followed shortly after in [6], and the general case
was then considered in [11, 18, 19]. Starting from early applications to stock price
modeling and option pricing, GHdistributions have been successfully used in various
fields of finance during the last two decades, for example, in interest rate theory and
the pricing of interest rate derivatives (see [15, 16, 20]), currency markets [17], and
portfolio credit risk models [12].

There aremainly two reasons for thewidespread applicability ofGHdistributions:
First, they are infinitely divisible and therefore allow tomake use of the extensive the-
ory of Lévy processes in continuous-time models based on them. The second is their
convenient tail behaviour. On the one hand, the tails of the GH probability densities
have considerably more mass than the ones of normal distributions. This means that,
for example, extreme price movements which are observed more often nowadays
are much more likely under the assumption of GH distributed asset returns, whereas
such events are severely underestimated in models based on the normal distribution.
On the other hand, the GH densities asymptotically still decay exponentially and
therefore possess a moment generating function on some non-degenerate interval
around the origin. This is an inevitable requirement for the construction of financial
models of exponential Lévy type since stock or bond price models having infinite
expectations are obviously not very realistic. Moreover, the existence of a moment
generating function allows for an easy way to explicitly determine a risk-neutral
measure for derivative pricing via an Esscher transform.

Despite these advantages, GH distributions are, to some extent, computationally
demanding in practical applications nevertheless because their distribution functions
can neither be given in closed form, nor does there exist a well-known and quickly
convergent series expansion for them. Therefore, computing values of the distribu-
tion and quantile functions is challenging and can only be done numerically. These
procedures naturally become less stable and reliable if the arguments of the distri-
bution function are extremely large resp. the probabilities inserted into the quantile
function are very close to zero or one. The latter difficulty can occur in risk manage-
ment, especially in credit risk, where one has to calculate the value at risk or expected
shortfall for probabilities beyond 99% and to deal with small default probabilities.
In the first part of this paper, we analyze the tail behaviour of univariate GH dis-
tributions in detail and derive asymptotic formulas for the distribution and quantile
functions of GH distributions and their convolutions that enable a simple calculation
of approximate values of the latter.

The other major topic we are concerned with in the second part of the paper is
the dependence structure of multivariate GH distributions. In practice, correlation
still seems to be the predominant dependence measure although it only provides a
complete characterization of dependencies in case of a multivariate normal distri-
bution. The dependence structure of the latter is indeed linear and fully described
by the corresponding correlation matrix. However, the picture changes significantly
if one departs from the normal world. In general, zero correlation does not imply
independence, and maximal dependence (co- or countermonotonicity) can already
occur for correlations with absolute value strictly smaller than one. We will show
that the latter also holds for multivariate GH distributions.
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Another dependence concept that has gained increasing attention, especially in
credit portfolio modeling, is tail dependence. Roughly speaking, the tail dependence
coefficients give the asymptotic probabilities of joint extremal events which may be,
for example, multiple defaults in a credit portfolio within the same time interval or
severe losses of different stocks at the same trading day. Tail dependence is solely
determined by the implied copula which is inherent in every multivariate distribution
and—in contrast to correlation—completely characterizes the dependence structure
of the latter. The implied copula of a multivariate normal distribution is known
to be tail independent, that is, extreme marginal outcomes occur (asymptotically)
independent from each other. In credit and insurance risk modeling, this property
often is not realistic, therefore dependence models in this area are usually based
on copulas possessing tail dependence coefficients greater than zero like the t- or
grouped t-copula (see [10]). To see whether the implied copula of a multivariate GH
distribution provides a suitable model in this context, we determine the potential
range of its tail dependence coefficients. It turns out that only the two extremal
values 0 or 1 can be obtained, implying that the GH copula either is tail independent
or completely dependent. For both cases, we derive explicit conditions on the GH
parameters as well as a simpler criterion for tail independence.

The paper is structured as follows: In the next section, we recall the definition of
univariate GH distributions as normal mean-variance mixtures, state possible limit
distributions and provide some useful facts on normal mean-variance mixtures in
general as well as the mixing generalized inverse Gaussian distributions which will
be required later on. Section3 then is devoted to a thorough study of the tail behaviour
of univariate GH distributions and their convolutions. Multivariate GH distributions
and their weak limits are introduced in Sect. 4, where also the most important proper-
ties for the subsequent analysis of its dependence structure are discussed. The latter
is done in Sect. 5. Section6 concludes with some final remarks on possible gener-
alizations of multivariate GH distributions that have been introduced in the recent
literature.

2 Univariate GIG and GH Distributions and Some
of Their Limits

Generalized hyperbolic distributions can be defined as normal mean-variance mix-
tures where the mixing distribution is a generalized inverse Gaussian (GIG) one.
For the convenience of the reader, we first define normal mean-variance mixtures in
general and provide some of their properties which might be of their own interest.
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Definition 1 A real valued random variable X is said to have a normal mean-
variance mixture distribution if

X
d= μ + βZ + √

ZW,

where μ, β ∈ R, W ∼ N(0, 1) and Z ∼ G is a real-valued, non-negative random
variablewhich is independent ofW . Equivalently, a probabilitymeasureF on (R,B)

is said to be a normal mean-variance mixture if

F(dx) =
∫
R+

N(μ + βy, y)(dx)G(dy),

where the mixing distribution G is a probability measure on (R+,B+). We shall use
the short hand notation F = N(μ + βy, y) ◦ G.

The most important facts about normal mean-variance mixtures are summarized
in the following lemma. It especially shows that properties like stability under convo-
lutions and weak convergence are inherited from the mixing distributions. A detailed
proof can be found in [27, Lemmas 1.6 and 1.7].

Lemma 1 Let G be a class of probability distributions on (R+,B+) and suppose
G,G1,G2 ∈ G.

(a) If G possesses a moment generating function MG(u) = ∫
R+ e

uxG(dx) on some
open interval (a, b) with a < 0 < b, then F = N(μ + βy, y) ◦ G also possesses
a moment generating function, and MF(u) = eμu MG( u

2

2 + βu), a < u2

2 + βu <

b.
(b) If G = G1 ∗ G2 ∈ G, then

(
N(μ1 + βy, y) ◦ G1

) ∗ (
N(μ2 + βy, y) ◦ G2

) =
N(μ1 + μ2 + βy, y) ◦ G.

(c) If (μn)n≥1 and (βn)n≥1 are convergent sequences of real numberswith finite limits
μ, β < ∞, and (Gn)n≥1 is a weakly convergent sequence of mixing distributions

with Gn
w−→ G, then N(μn + βny, y) ◦ Gn

w−→ N(μ + βy, y) ◦ G.

We now leave the general case and concentrate on a specific class G of mixing
distributions, namely the generalized inverse Gaussian one mentioned above. This
classwas introducedmore than 60years ago (one of the first paperswhere its densities
are mentioned is [26]) and rediscovered in [5, 40, 41]. An extensive survey with
statistical applications can be found in [29]. The density of a GIG distribution is as
follows:

dGIG(λ,δ,γ )(x) =
(γ

δ

)λ 1

2Kλ(δγ )
xλ−1e− 1

2 (δ
2x−1+γ 2x) 1(0,∞)(x), (1)

where Kλ(x) denotes the modified Bessel function of third kind with index λ. Per-
mitted parameters are

δ ≥ 0, γ > 0, if λ > 0,
δ > 0, γ > 0, if λ = 0,
δ > 0, γ ≥ 0, if λ < 0.
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Parametrizations with δ = 0 or γ = 0 have to be understood as limiting cases. Using
the asymptotic behaviour (cf. [2, Formula 9.6.8])

Kλ(x) ∼ Γ (|λ|)
2

( x
2

)−|λ|
, x ↓ 0, λ �= 0, (2)

of the Bessel functions where Γ (x) denotes the Gamma function, the limit for λ > 0
is obtained as

lim
δ→0

dGIG(λ,δ,γ )(x) =
(

γ 2

2

)λ
xλ−1

Γ (λ)
e− γ 2

2 x 1(0,∞)(x) = d
G(λ,

γ 2

2 )
(x) (3)

which is nothing but the density of a Gamma distribution G(λ,
γ 2

2 ) with shape para-

meter λ and scale parameter γ 2

2 . For λ < 0, we arrive at

lim
γ→0

dGIG(λ,δ,γ )(x) =
(
2

δ2

)λ xλ−1

Γ (−λ)
e− δ2

2x 1(0,∞)(x) = d
iG(λ, δ2

2 )
(x) (4)

which equals the density of an inverse Gamma distribution iG(λ, δ2

2 ).
For |λ| = 1

2 , the Bessel function Kλ(x) can be given in explicit form: We have
K− 1

2
(x) = K 1

2
(x) = √

π
2x e

−x (cf. [2, Formula (9.6.6)] and [43, Eq. (8) on p. 79]), thus

dGIG(− 1
2 ,δ,γ )(x) = δ√

2πx3
e− 1

2x (γ x−δ)2 1(0,∞)(x) (5)

which is the density of an inverse Gaussian distribution IG(δ, γ ), showing that the
GIG distributions are, in fact, a natural extension of this subclass.

A distribution G on (R+,B+) is completely characterized by its Laplace trans-
form LG(u) = ∫

R+ e
−uxG(dx) from which many properties of G can be easily

derived. For the GIG class, we obtain the following representations (see [27, Propo-
sition 1.9] for a proof).

Proposition 1 The Laplace transforms of GIG distributions are given by

LGIG(λ,δ,γ )(u) =
(

γ√
γ 2 + 2u

)λ
Kλ

(
δ
√

γ 2 + 2u
)

Kλ(δγ )
, δ, γ > 0,

L
G(λ,

γ 2

2 )
(u) =

(
1 + 2u

γ 2

)−λ

, λ > 0,

L
iG(λ, δ2

2 )
(u) =

(
2

δ
√
2u

)λ 2Kλ

(
δ
√
2u

)
Γ (−λ)

, λ < 0.
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With help of the preceding proposition and the fact that LG1(u)LG2(u) = LG(u)
implies G1 ∗ G2 = G, one can derive the subsequent convolution properties of GIG
distributions:

(a) IG(δ1, γ ) ∗ IG(δ2, γ ) = IG(δ1 + δ2, γ ),

(b) IG(δ1, γ ) ∗ GIG
(
1
2 , δ2, γ

) = GIG
(
1
2 , δ1 + δ2, γ

)
,

(c) GIG(−λ, δ, γ ) ∗ G
(
λ,

γ 2

2

) = GIG(λ, δ, γ ), λ > 0,

(d) G
(
λ1,

γ 2

2

) ∗ G
(
λ2,

γ 2

2

) = G
(
λ1 + λ2,

γ 2

2

)
, λ1, λ2 > 0.

(6)

Further observe that all GIG(λ, δ, γ )-distributions with γ > 0 decay at an exponen-
tial rate for x → ∞, so they possess moments of arbitrary order, and the moment
generating functions are given by

MGIG(λ,δ,γ )(u) =
∫ ∞

0
eux dGIG(λ,δ,γ )(x) dx = LGIG(λ,δ,γ )(−u), u ∈ (−∞,

γ 2

2

)
.

(7)

After these preliminaries, we can now study the class of generalized hyperbolic
distributions which have been introduced in the seminal paper [5], motivated by
empirical statistics of aeolian sand deposits. The GH distributions are defined as
normal mean-variance mixtures with a GIG mixing distribution as follows:

GH(λ, α, β, δ, μ) := N(μ + βy, y) ◦ GIG
(
λ, δ,

√
α2 − β2

)
. (8)

The parameter restrictions for GIG distributions immediately imply that the GH
parameters have to fulfill the constraints

λ,μ ∈ R and
δ ≥ 0, 0 ≤ |β| < α, if λ > 0,
δ > 0, 0 ≤ |β| < α, if λ = 0,
δ > 0, 0 ≤ |β| ≤ α, if λ < 0.

As before, parametrizations with δ = 0 and |β| = α have to be understood as lim-
iting cases which by Lemma 1(c) equal normal mean-variance mixtures with the
corresponding GIG limit distributions. We defer a more precise introduction of the
latter and first concentrate on GH distributions with parameters δ > 0 and |β| < α.
Their Lebesgue densities are given by

dGH(λ,α,β,δ,μ)(x) =
∫ ∞

0
dN(μ+βy,y)(x) dGIG

(
λ,δ,

√
α2−β2

)(y) dy (9)

= a(λ, α, β, δ, μ)
(
δ2 + (x − μ)2

)(λ− 1
2 )/2

Kλ− 1
2

(
α
√

δ2 + (x − μ)2
)
eβ(x−μ)
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with the norming constant

a(λ, α, β, δ, μ) =
(
α2 − β2

) λ
2

√
2π αλ− 1

2 δλKλ

(
δ
√

α2 − β2
) . (10)

A closer look at the densities reveals that the influence of the parameters is as follows:
α determines the shape, β the skewness, μ is a location parameter, and δ serves for
scaling. λ characterizes certain subclasses and considerably influences the size of
mass contained in the tails. Setting λ = − 1

2 leads to the subclass of normal inverse
Gaussian distributions (NIG). By (8), these are the normal mean-variance mixtures
arising from inverse Gaussian mixing distributions which explains their name. With
the symmetry relation K−λ(x) = Kλ(x) and the aforementioned representation of
K− 1

2
(x), its densities are obtained from (9) and (10) as

dNIG(α,β,δ,μ)(x) = αδ

π

K1
(
α
√

δ2 + (x − μ)2
)

√
δ2 + (x − μ)2

eδ
√

α2−β2+β(x−μ). (11)

From Lemma 1(a), Proposition 1, and Eq. (7) we conclude that all GH distributions
with parameters δ > 0 and |β| < α possess a moment generating function of the
following form:

MGH(λ,α,β,δ,μ)(u) = eμu

(
α2 − β2

α2 − (β + u)2

) λ
2 Kλ

(
δ
√

α2 − (β + u)2
)

Kλ

(
δ
√

α2 − β2
) , (12)

which is defined for all u ∈ (−α − β, α − β). The characteristic functions of GH
distributions are easily obtained via the relation

φGH(λ,α,β,δ,μ)(u) =
∫
R

eiuxdGH(λ,α,β,δ,μ)(x) dx = MGH(λ,α,β,δ,μ)(iu). (13)

A detailed derivation of the weak limits of GH distributions can be found in [13,
Section3] from which we summarize the main results below. The limit distributions
emerging in the case of λ > 0 and δ → 0 are also known as Variance Gamma distri-
butions (VG). By Lemma 1(c) and Eq. (3), they are normal mean-variance mixtures
of the following form:

VG(λ, α, β, μ) = N(μ + βy, y) ◦ G
(
λ,

α2−β2

2

)
. (14)

Using the asymptotic relationship (2), the corresponding densities can be obtained
as pointwise limits (for x − μ �= 0) of the GH densities:
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dVG(λ,α,β,μ)(x) = lim
δ→0

dGH(λ,α,β,δ,μ)(x)

(15)

= (α2 − β2)λ√
π (2α)λ− 1

2 Γ (λ)
|x − μ|λ− 1

2 Kλ− 1
2
(α|x − μ|) eβ(x−μ).

This class was introduced in [31] (symmetric case β = θ = 0) and [30] (general
case), but with a different parametrization VG(σ, ν, θ, μ̃). The latter is obtained by

σ 2 = 2λ

α2 − β2
, ν = 1

λ
, θ = βσ 2 = 2βλ

α2 − β2
, μ̃ = μ.

Lemma 1(a), Proposition 1, and Eq. (7) imply that all VG distributions possess a
moment generating function which is given by

MVG(λ,α,β,μ)(u) = eμuL
GIG(λ,0,

√
α2−β2)

(− u2

2 − βu
) = eμu

(
α2 − β2

α2 − (β + u)2

)λ

(16)

for all u ∈ (−α − β, α − β).
For λ < 0, there are two possible limit cases. If α, β → 0, Lemma 1(c) and Eq. (4)

imply that the limit distributions are normal mean-variance mixtures

t(λ, δ, μ) = N(μ, y) ◦ iG
(
λ, δ2

2

)
(17)

which equal scaled and shifted t-distributions with f = −2λ degrees of freedom (the
usual Student’s t-distribution is obtained with δ2 ≡ −2λ). The associated densities
can again be obtained as pointwise limits of the GH densities:

dt(λ,δ,μ)(x) = lim
α,β→0

dGH(λ,α,β,δ,μ)(x) = Γ
(−λ + 1

2

)
√

πδ2 Γ (−λ)

(
1 + (x − μ)2

δ2

)λ− 1
2

. (18)

The other class of limit distributions for λ < 0 is obtained by letting |β| → α > 0.
Again by Lemma 1(c) and Eq. (4), these are normal mean-variance mixtures given by

GH(λ, α,±α, δ, μ) = N(μ ± αy, y) ◦ iG
(
λ, δ2

2

)
(19)

and possessing the density

dGH(λ,α,±α,δ,μ)(x) = 2λ+ 1
2

√
π αλ− 1

2 δ2λ Γ (−λ)

(
δ2 + (x − μ)2

)(λ− 1
2 )/2

(20)

×Kλ− 1
2

(
α
√

δ2 + (x − μ)2
)
e±α(x−μ).

This type of distribution was called generalized hyperbolic skew Student t-distribu-
tion and applied to financial data in [1].
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Let us close this section by noting that also the normal and GIG distributions
themselves can emerge as potential limits of univariate GH distributions. But the tail
behaviour and tail dependence of the former are already well-known, and for GIG
distributions there does not seem to exist a natural multivariate version of which the
tail dependence could be studied, therefore we tacitly ignore these two limiting cases
here and in the following.

3 Tail Behaviour of GH Distributions and Their
Convolutions

From the existence of a moment generating function one can already conclude that
the tails of the GH densities with 0 ≤ |β| < α decay at an exponential rate. More
precisely, for |x| → ∞ we have δ2 + (x − μ)2 ∼ x2, and the asymptotic behaviour
of the Bessel functions (cf. [2, formula (9.7.2)])

Kλ(x) ∼
√

π

2x
e−x, x → ∞, (21)

further implies Kλ− 1
2

(
α
√

δ2 + (x − μ)2
) ∼ √

π
2α |x|−1/2 e−α|x|, so we obtain from

Eq. (9)
dGH(λ,α,β,δ,μ)(x) ∼ c |x|λ−1 e−α|x|+βx, x → ±∞, (22)

where c = √
π
2αa(λ, α, β, δ, μ), and a(λ, α, β, δ, μ) is the norming constant from

(10). Completely analogously, we infer from Eqs. (15) and (21) that

dVG(λ,α,β.μ)(x) ∼ c̃ |x|λ−1 e−α|x|+βx, x → ±∞, (23)

where c̃ = (α2−β2)λ

(2α)λΓ (λ)
. The GH and VG densities can thus be regarded more generally

as subsets of a class of probability densities f with support R whose tail behaviour
is given by

f (x) ∼ c1 |x|a1 e−b1|x|, x → −∞, and f (x) ∼ c2 x
a2 e−b2x, x → +∞, (24)

for some constants a1, a2 ∈ R and b1, b2, c1, c2 > 0. It can be easily deduced that
every probability distribution F having a Lebesgue density f that fulfills Eq. (24)
also possesses a moment generating function which is defined at least on the open
interval (−b1, b2). In case of GH and VG distributions we have a1 = a2 = λ − 1,
b1 = α + β, b2 = α − β and c1 = c2 = c resp. c1 = c2 = c̃.

A remarkable and probably surprising property of such densities is that the tail
behaviour of the corresponding distribution functions is the same up to a multiplica-
tive constant, which is shown in the next proposition.
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Proposition 2 Let f be a probability density fulfilling (24) for some constants
a1, a2, b1, b2, c1, c2, F(x) := ∫ x

−∞ f (y) dy be the associated distribution function
and F̄(x) := 1 − F(x). Then f (x) ∼ b1 F(x) as x → −∞ and f (x) ∼ b2 F̄(x) as
x → +∞.

Proof Let us consider the right tail F̄(x) first. From the assumptions we get, using
partial integration,

F̄(x)=
∫ ∞

x
f (y) dy ∼ c2

∫ ∞

x
ya2 e−b2y dy = c2

b2
xa2 e−b2x + c2a2

b2

∫ ∞

x
ya2−1 e−b2y dy.

The claim now follows if we can show that
(∫ ∞

x ya2−1 e−b2ydy
)(
xa2e−b2x

)−1 → 0 as
x → ∞. But the latter quotient equals

1

x

∫ ∞

x

(y
x

)a2−1
e−b2(y−x)dy = 1

x

∫ ∞

0

(
y + x

x

)a2−1

e−b2y dy

and thus converges to zero as x → ∞ because the existence of an integrable majorant
ensures that the integral on the right hand side remains bounded. Possible majorants
are g(y) = (y + 1)a2−1e−b2y if a2 > 1 and g(y) = e−b2y if a2 ≤ 1. Using the change
of variables z = −y we see that for x → −∞

F(x) ∼ c1

∫ x

−∞
|y|a1 e−b1|y| dy = c1

∫ ∞

|x|
za1 e−b1z dz,

hence the assertion for the left tail immediately follows from what we have proven
above. �

The tail behaviour of the t-distributions, however, can be derived more easily.
The asymptotics of the corresponding densities are easily seen from (18) to equal
dt(λ,δ,μ)(x) ∼ c̄ |x|2λ−1, x → ±∞. Hence, Ft(λ,δ,μ)(x) ∼ sgn(x) c̄

2λ |x|2λ + 1(0,∞)(x).
The knowledge of the tail behaviour allows to derive the asymptotic behaviour of
the associated quantile functions as well. This is of particular importance for GH-
and VG-distributions whose distribution functions cannot be given in closed form,
and a reliable and rapidly convergent series expansion for these is not known either.
To determine quantiles of the former, one therefore has to resort to numerical inte-
gration of their densities in most cases (an alternative way to numerically compute
the quantile function of the hyperbolic distribution with given precision is described
in [36]). This may—depending on the quality of the integration routine used—lead
to more or less inaccurate and unstable results for p-quantiles if p is very close to 0
or 1. The quantile asymptotics are summarized in the following lemma which is a
slightly modified version of [4, Lemma 3.1]. Due to its importance for the derivation
of the tail dependence coefficients in Sect. 5, we also provide a short proof here (a
more general result on asymptotics of inverse functions can be found in the short
note [23]).
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Lemma 2 Suppose F : R → [0, 1] is a continuous and strictly increasing distrib-
ution function.

(a) If F(x) ∼ c1|x|−a1 as x → −∞ and 1 − F(x) ∼ c2x−a2 as x → ∞ for some

a1, a2, c1, c2 > 0, then F−1(u) ∼ − ( c1
u

) 1
a1 and F−1(1 − u) ∼ ( c2

u

) 1
a2 for u ↓ 0.

(b) If F(x) ∼ c1|x|a1e−b1|x| as x → −∞ and 1 − F(x) ∼ c2 xa2e−b2x as x → ∞ for
some a1, a2 ∈ R and b1, b2, c1, c2 > 0, then F−1(u) ∼ log(u)

b1
and F−1(1 − u) ∼

− log(u)
b2

for u ↓ 0.

Proof (a) If 1 − F(x) ∼ c2x−a2 as x → ∞, then for any r > 0

lim
u↓0

1 − F
(
r
( c2
u

) 1
a2

)
u

= r−a2 .

For r < 1, the right hand side of the above equation is greater than one, sowe conclude

that in this case 1 − F
(
r
( c2
u

) 1
a2

)
> u for sufficiently small u and hence F−1(1 − u) >

r
( c2
u

) 1
a2 (note that the assumptions on F imply F−1

(
F(y)

) = y for all y ∈ R). If

r > 1, then we similarly obtain 1 − F
(
r
( c2
u

) 1
a2

)
< u and thus F−1(1 − u) < r

( c2
u

) 1
a2

for sufficiently small u. This proves the assertion for F−1(1 − u), and the asymptotic
behaviour of F−1(u) for u ↓ 0 can be shown analogously.

(b) If 1 − F(x) ∼ c2 xa2e−b2x as x → ∞, then we have

lim
u↓0

1 − F
(− r log(u)

b2

)
u

= lim
u↓0 c2

(
− r log(u)

b2

)a2

ur−1 =
{∞, r < 1,

0, r > 1.

With the same reasoning as before we conclude F−1(1 − u) ∼ − log(u)
b2

for u ↓ 0, and
the corresponding result for F−1(u) is easily obtained along the same lines. �

Observe that the tails of the densities dGH(λ,α,±α,δ,μ)(x) of the generalized hyper-
bolic skew Student t-distribution behave completely differently for large arguments.
If β = α, then by (21) the asymptotic behaviour is as follows:

dGH(λ,α,α,δ,μ)(x) ∼ c̃1 |x|λ−1 e−2α|x|, x → −∞,

(25)

dGH(λ,α,α,δ,μ)(x) ∼ c̃2 |x|λ−1, x → +∞,

and the other way round if β = −α. Hence, they have one semi-heavy and one heavy
(power) tail, so the asymptotic behaviour of their distribution functions and quantiles
is obtained by combining the corresponding results above. Further, it is easily seen
fromEq. (1) that the GIG densities possess a right tail satisfying (24) with parameters
a2 = λ − 1, b2 = γ 2

2 , and c2 = γ λ

2δλKλ(δγ )
, so the above lemma and proposition can

also be applied here.
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But not only the tail behaviour of singleGHdistributions, also that of convolutions
of the latter is of practical interest in finance. Think, for example, of factor models for
credit portfolios where for each portfolio constituent a state variable Xi = √

ρM +√
1 − ρZi, 0 ≤ ρ ≤ 1, with a systematic factorM and an independent idiosyncratic

factor Zi is defined. The portfolio loss distribution derived from this approach then
entails the quantile functionF−1

Xi
(pd)of the distributionofXiwhichhas to be evaluated

for typically very small default probabilities pd . If the factor distributions FM and FZi
are not stable under convolution, the distribution of Xi is usually unknown, therefore
the quantiles F−1

Xi
(pd) can only be determined by either time-consuming simulations

or advanced numerical methods. Precisely this is the case if one assumes the factors
to be GH distributed. From Lemma 1(b) and Eq. (6), one can deduce the following
convolution properties of the GH family:

(a)NIG(α, β, δ1, μ1) ∗ NIG(α, β, δ2, μ2) = NIG(α, β, δ1 + δ2, μ1 + μ2),

(b)NIG(α, β, δ1, μ1) ∗ GH
( 1
2 , α, β, δ2, μ2

) = GH
( 1
2 , α, β, δ1 + δ2, μ1 + μ2

)
,

(c)GH(−λ, α, β, δ, μ) ∗ VG
(
λ, α, β, μ2

) = GH(λ, α, β, δ, μ1 + μ2), λ > 0,

(d) VG(λ1, α, β, μ1) ∗ VG(λ2, α, β, μ2) = VG(λ1 + λ2, α, β, μ1 + μ2), λ1, λ2 > 0.
(26)

Inspecting the Laplace transforms of GIG distributions given in Proposition 1 more
closely, one can deduce that the list of GIG convolution formulas (6) is complete, that
is, no other convolution of two GIG distributions will yield a distribution that itself
is contained in the GIG class. Consequently, there do not exist more than the four
convolution formulas above for the GH family either. In particular, a convolution of
two GH distributions with different parameters α and/or β cannot be GH distrib-
uted itself. This fact makes the application of generalized hyperbolic factor models
computationally demanding, therefore some (approximate) formulas for F−1

Xi
(pd),

at least for small probabilities pd , which are faster and easier to evaluate would be
desirable here. For a more thorough introduction to GH factor models, we refer to
[12] and [27, Chap. 3]; there the quantiles of the convolution were calculated with
help of Fourier inversion.

The behaviour of GH convolution tails is described in Proposition 3 below. The
latter applies, in fact, to an even slightly more general framework where both factors
belong to La,b, the class of distributions with exponential tails with rates a and b,
which we define as follows:

Definition 2 A distribution function F is said to have exponential tails with rates
a > 0 and b > 0 (F ∈ La,b) if for all y ∈ R

lim
x→−∞

F(x − y)

F(x)
= e−ay and lim

x→∞
F̄(x − y)

F̄(x)
= eby.

Note that most definitions of exponential tails only use one index which charac-
terizes the behaviour of the right tail F̄(x). This is due to the fact that these arose
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from extreme value theory or more generally actuarial science where one typically
works with probability distributions on R+. The above is a natural generalization
to distributions having support R we are concerned with. The class La,b is closely
related to the class Rp of regularly varying functions to be introduced in

Definition 3 A measurable function g is regularly varying with exponent p ∈ R

(g ∈ Rp) if limt→∞ g(st)
g(t) = sp for all s > 0.

We have F ∈ La,b iff F(− ln(x)) ∈ R−a and F̄(ln(x)) ∈ R−b. To see this, put
s = ey and t = e−x, then

e−ay = lim
x→−∞

F(x − y)

F(x)
⇐⇒ s−a = lim

t→∞
F(− ln(t) − ln(s))

F(− ln(t))
= lim

t→∞
F(− ln(st))

F(− ln(t))
,

and the assertion for the right tails follows analogously with s = e−y and t = ex.
From Proposition 2 it is immediately seen that for a probability distribution F that

possesses a density f fulfilling (24) we have

lim
x→−∞

F(x − y)

F(x)
= lim

x→−∞
f (x − y)

f (x)
= lim

x→−∞

( |x − y|
|x|

)a1

e−b1(|x−y|−|x|) = e−b1y,

and an analogous limit is obtained for the right tails, hence F ∈ Lb1,b2 . In particular,
we see that GH(λ, α, β, δ, μ)- and VG(λ, α, β, μ)-distributions belong to the class
Lα+β,α−β . The asymptotic behaviour of the densities of the t-distributions, however,
is easily seen from (18) to equal dt(λ,δ,μ)(x) ∼ c̄ |x|2λ−1, x → ±∞, from which we
immediately obtain that Ft(λ,δ,μ)(−x), F̄t(λ,δ,μ)(x) ∈ R2λ. We defer the latter for a
moment and first consider convolutions of factors with exponential tails.

An easy solution occurs if the factors of the convolution have exponential tails
which decay at different rates: the convolution tails are determined by the factor with
the heavier left (respectively right) tail.

Proposition 3 Suppose that F1 ∈ Lb1,b2 , F2 ∈ Lb̃1,b̃2
with moment generating func-

tions MF1(u) and MF2(u). If b1 < b̃1 and b2 < b̃2, then F1 ∗ F2 ∈ Lb1,b2 and

lim
x→−∞

(F1 ∗ F2)(x)

F1(x)
= MF2(−b1), lim

x→∞
(F1 ∗ F2)(x)

F̄1(x)
= MF2(b2).

A detailed proof of this result can be found in [27, Proposition 1.16]. The assumption
above that both tails of F1 are heavier than those of F2 was just made for notational
convenience. As it is easily seen, in general we have F1 ∗ F2 = Lb1∧b̃1,b2∧b̃2 , that is,
one factor may determine the left tail of the convolution and the other one the right
tail. In [21, Theorem 3 (b)] it has been shown that if the right tails of F1 and F2 are
both exponential with the same rate a, then the right tail ofF1 ∗ F2 is also exponential
with rate a, so we may conclude that F1 ∗ F2 = Lb1∧b̃1,b2∧b̃2 remains valid if b1 = b̃1
and/or b2 = b̃2. Summing up, we have the following
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Corollary 1 Let F1,F2 be the distribution functions of GH(λ1, α1, β1, δ1, μ1) resp.
GH(λ2, α2, β2, δ2, μ2), and F = F1 ∗ F2. If α1 + β1 �= α2 + β2 and α1 − β1 �=
α2 − β2, then

F(x) ∼ MFl
max

(−b1)F
l
max(x), x → −∞, and F̄(x) ∼ MFr

max
(b2)F̄

r
max(x), x → ∞,

where b1 = min(α1 + β1, α2 + β2), b2 = min(α1 − β1, α2 − β2), and Fl
max(x),

Fr
max(x) are the distribution functions of the GH distribution whose parameters αi, βi

attain the value b1 resp. b2. The assertions remain valid if one or both factors are
VG distributed instead.

If α1 + β1 = α2 + β2 or α1 − β1 = α2 − β2, the left resp. right tail behaviour
cannot be precisely specified, and one only has the weaker result F ∈ Lb1,b2 .

Since the convolution tails are asymptotically equivalent to the tail of one factor
distribution, multiplied by a constant, approximate quantile values of the convolution
for probabilities close to zero or one can be computed with help of Lemma 2(b). It
can be shown that the latter also applies under the weaker assumption F ∈ Lb1,b2 .
Therefore, we obtain that the asymptotic behaviour of the quantile function of a
convolution ofGHdistributionswithα1 + β1 = α2 + β2 is given byF−1(u) ∼ log(u)

α1+β1
,

u ↓ 0, and similarly, F−1(u) ∼ − log(1−u)
α1−β1

for u ↑ 1 if α1 − β1 = α2 − β2.
A corresponding result for the regularly varying tails of the t-distributions can be

obtained by applying [7, Theorem 1.1 and the Theorem on p. 54] which yields

Corollary 2 Let F1,F2 be the distribution functions of t(λ1, δ1, μ1) and t(λ2, δ2, μ2)

with corresponding densities f1, f2, then

lim|x|→∞
(f1 ∗ f2)(x)

f1(x) + f2(x)
= 1 and lim

x→−∞
(F1 ∗ F2)(x)

F1(x) + F2(x)
= lim

x→∞
(F1 ∗ F2)(x)

F̄1(x) + F̄2(x)
= 1.

If λ1 < λ2, then with the above notations we have f1(x) = o
(
f2(x)

)
as |x| → ∞ and

F1(x) = o
(
F2(x)

)
, x → −∞, as well as F̄1(x) = o

(
F̄2(x)

)
, x → ∞, consequently

lim|x|→∞
(f1 ∗ f2)(x)

f2(x)
= 1 and lim

x→−∞
(F1 ∗ F2)(x)

F2(x)
= lim

x→∞
(F1 ∗ F2)(x)

F̄2(x)
= 1

(see also [7, Theorem 2.1]). Hence, also in this case the tail behaviour of the con-
volution and the asymptotic behaviour of the convolution density is determined by
the factor with the heavier tails. Approximate quantile values can then, similarly as
before, be calculated using Lemma 2(a).
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4 Multivariate Normal Mean-Variance Mixtures
and GH Distributions

Let us first fix some notation which will be used throughout the rest of the paper: The
vectors u = (u1, . . . , ud)� and x = (x1, . . . , xd)� are elements ofRd , the superscript
� stands for the transpose of a vector ormatrix. 〈u, x〉 = u�x = ∑d

i=1 uixi denotes the
scalar product of the vectors u, x and ‖u‖ = (u21 + · · · + u2d)

1/2 the Euclidean norm
of u. If A is a real-valued d × d-square matrix, then det(A) denotes the determinant
of A. The d × d-identity matrix is labeled Id . In contrast to u and x, the letters y,
s and t are reserved for univariate real variables, that is, we assume y, s, t ∈ R or
R+. To properly distinguish between the real number zero and the zero vector, we
write 0 ∈ R and 0 := (0, . . . , 0)� ∈ Rd . Note that here and in the following d ≥ 2
indicates the dimension, whereas n is usually used as running index for all kinds of
sequences. In particular, the notation Nd(μ,Δ) will be used for the d-dimensional
normal distribution with mean vector μ and covariance matrix Δ.

With these preliminaries, we can formulate themultivariate version ofDefinition 1
as follows:

Definition 4 AnRd-valued random variable X is said to have amultivariate normal
mean-variance mixture distribution if

X
d= μ + Zβ + √

ZAW,

where μ, β ∈ Rd , A is a real-valued d × d-matrix such that Δ := AA� is positive
definite, W is a standard normally distributed random vector (W ∼ Nd(0, Id)) and
Z ∼ G is a real-valued, non-negative random variable independent of W .
Equivalently, a probabilitymeasureF on (Rd,Bd) is said to be amultivariate normal
mean-variance mixture if

F(dx) =
∫
R+

Nd(μ + yβ, yΔ)(dx)G(dy),

where the mixing distribution G is a probability measure on (R+,B+). We shall use
the short hand notation F = Nd(μ + yβ, yΔ) ◦ G.

Remark 1 Note that one can further assume w.l.o.g. | det(A)| = det(Δ) = 1, since a
(positive) multiplicative constant can always be included within the variable Z . Fur-
ther observe that the use of a single univariate mixing variable Z causes dependencies
between all entries of X, as we shall see in Sect. 5.

The straightforward generalization of Lemma 1 in Sect. 2 is

Lemma 3 Let G be a class of probability distributions on (R+,B+) and suppose
G,G1,G2 ∈ G.

(a) If G possesses a moment generating function MG(y) on some open interval
(a, b) with a < 0 < b, then F = Nd(μ + yβ, yΔ) ◦ G also possesses a moment
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generating function MF(u) = e〈u,μ〉 MG
( 〈u,Δu〉

2 + 〈u, β〉) that is defined for all
u ∈ Rd with a <

〈u,Δu〉
2 + 〈u, β〉 < b.

(b) If G = G1 ∗ G2 ∈ G, then
(
Nd(μ1 + yβ, yΔ) ◦ G1

) ∗ (
Nd(μ2 + yβ, yΔ) ◦ G2

)
= Nd(μ1 + μ2 + yβ, yΔ) ◦ G.

(c) If (μn)n≥1 and (βn)n≥1 are convergent sequences of real vectors with finite limits
μ, β ∈ Rd (that is, ‖μ‖, ‖β‖ < ∞), and (Gn)n≥1 is a sequence ofmixing distrib-

utions with Gn
w−→ G, then Nd(μn + yβn, yΔ) ◦ Gn

w−→ Nd(μ + yβ, yΔ) ◦ G.

For further reference, we also briefly highlight the relationship between multi-
variate normal mean-variance mixtures and elliptical distributions. From a financial
point of view, the latter are of some interest because they have the nice property that
within this class the Value-at-Risk (VaR) is a coherent risk measure in the sense of
[3] (this has been shown in [22, Theorem 1], see also [33, Theorem 8.28]).

Definition 5 An Rd-valued random vector X has an elliptical distribution if there
exists a function ψ : R+ → R, a symmetric, positive semidefinite d × d-matrix �

and someμ ∈ Rd such that the characteristic function φX(u) = E[ei〈u,X〉] ofX admits
the representation

φX(u) = ei〈u,μ〉ψ
(〈u, �u〉) ∀ u ∈ Rd .

The elliptical distribution L(X) then is denoted by Ed
(
μ,�,ψ(t)

)
.

It can be shown that if an elliptical distribution has a density f , then itmust necessarily
be of the form

f (x) = 1√
det(�)

h
(〈x − μ,�−1(x − μ)〉)

for somemeasurable function h : R → R+. The level sets of such a density obviously
are the ellipsoids {x ∈ Rd | 〈x − μ,�−1(x − μ)〉 = c̄}, c̄ > 0, which explains where
the name of this class of distributions stems from. The following characterization of
elliptically distributed random vectors is provided in [33, Proposition 6.27]:

Proposition 4 X ∼ Ed
(
μ,�,ψ(t)

)
if and only if

X
d= μ + RAS

where R is anR+-valued random variable, S is a random vector which is independent
of R and uniformly distributed on the unit sphere S := {ξ ∈ Rd | ‖ξ‖ = 1}, and A
is a d × d-matrix fulfilling AA� = �.

Let us note here for further reference that the multivariate normal distribution obvi-
ously is elliptic (Nd(μ,Δ) = Ed

(
μ,Δ, e− t

2
)
), and if X ∼ Nd(μ,Δ), then for the

random variable R in the corresponding representation of Proposition 4 it holds that

R
d= √

Y with Y ∼ χ2
d , see [33, Example 6.23, p. 199].

The connection between elliptical distributions and multivariate normal mean-
variance mixtures is given in
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Corollary 3 Anormalmean-variancemixture F = Nd(μ + yβ, yΔ) ◦ G is an ellip-
tical distribution if and only if β = 0, that is, if and only if it is a normal variance
mixture.

Proof The characteristic function of F can be shown to have the form φF(u) =
ei〈u,μ〉LG

( 〈u,Δu〉
2 − i〈u, β〉) which evidently has the representation ei〈u,μ〉ψ

(〈u, �u〉)
required by Definition 5 with � = Δ and ψ(t) = LG

(
t
2

)
if and only if β = 0. �

Now we leave the general theory and turn our attention to the multivariate GH
distributions. These have already been introduced as a natural generalization of the
univariate case at the end of the seminal paper [5] and were investigated further
in [8, 9]. They are defined as normal mean-variance mixtures with GIG mixing
distributions in the following way:

GHd(λ, α, β, δ, μ,Δ) := Nd(μ + yΔβ, yΔ) ◦ GIG
(
λ, δ,

√
α2 − 〈β,Δβ〉), (27)

where it is usually assumed without loss of generality (see p. 15) that det(Δ) = 1
which we shall also do in the following if not stated otherwise. Due to the parameter
restrictions ofGIGdistributions, the otherGHparameters have to fulfil the constraints

λ ∈ R, α, δ ∈ R+, β, μ ∈ Rd and
δ ≥ 0, 0 ≤ √〈β,Δβ〉 < α, if λ > 0,
δ > 0, 0 ≤ √〈β,Δβ〉 < α, if λ = 0,
δ > 0, 0 ≤ √〈β,Δβ〉 ≤ α, if λ < 0.

The meaning and influence of the parameters is essentially the same as in the uni-
variate case (see p. 7). Again, parametrizations with δ = 0, α = 0 or

√〈β,Δβ〉 = α

have to be understood as limiting cases.
Note that the above definition of multivariate GH distributions as normal mean-

variance mixtures of the form Nd(μ + yΔβ, yΔ) ◦ G is of course equivalent to
the representation Nd(μ + yβ̃, yΔ) ◦ G used above because the d × d-matrix Δ is
always regular by assumption. The modification of the mean term just simplifies
some formulas as we shall see below. For notational consistency with Sect. 2, the
term GHd(λ, α, β, δ, μ,Δ) will be reserved for multivariate GH distributions with
β,μ ∈ Rd , whereas GH(λ, α, β, δ, μ) denotes a univariate GH distribution with
β,μ ∈ R as before.

If δ > 0 and
√〈β,Δβ〉 < α, the density of GHd(λ, α, β, δ, μ,Δ) is given by

dGHd (λ,α,β,δ,μ,Δ)(x) =
∫ ∞

0
dNd (μ+yΔβ,yΔ)(x) dGIG

(
λ,δ,

√
α2−〈β,Δβ〉

)(y) dy

= (α2 − 〈β,Δβ〉) λ
2

(2π)
d
2 αλ− d

2 δλ Kλ(δ
√

α2 − 〈β,Δβ〉)
(〈x − μ,Δ−1(x − μ)〉 + δ2

)(λ− d
2 )/2

(28)

× Kλ− d
2

(
α
√

〈x − μ,Δ−1(x − μ)〉 + δ2
)
e〈β,x−μ〉.
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Remark 2 If the d × d-matrix Δ is replaced by a matrix Δ̄ of the same dimensions
with det(Δ̄) �= 1, then the normal density dNd (μ+yΔ̄β,yΔ̄)(x) has an additional factor
det(Δ̄)−1/2 whichwill be incorporated in the norming constant of dGHd (λ,α,β,δ,μ,Δ̄)(x).
Suppose Δ̄ = c1/dΔ for some c > 0, then det(Δ̄) = c, and if we also replace
λ, α, β, δ, μ by the barred parameters

λ̄ := λ, ᾱ := c
1
2d α, β̄ := β, δ̄ := c− 1

2d δ, μ̄ := μ,

then it is easily seen from (28) that the densities of GHd(λ, α, β, δ, μ,Δ) and
GHd(λ̄, ᾱ, β̄, δ̄, μ̄, Δ̄) and thus both distributions coincide. Note that these consid-
erations also remain true for all subsequently defined limit distributions. This again
shows that the assumption det(Δ) = 1 is not an essential restriction. The barred
parameters will be used later at some points in Sect. 5 to indicate that det(Δ̄) = 1 is
not assumed there.

If multivariate GH distributions would have been defined as a mixture of the
formNd(μ + yβ, yΔ) ◦ GIG

(
λ, δ,

√
α2 − 〈β,Δβ〉) (see the remark on the previous

page), then the last factor of the density (28) would be e〈Δ−1β,x−μ〉 instead of e〈β,x−μ〉,
and β̄ would have to be defined by β̄ = c1/dβ.

With the special choiceλ = − 1
2 , oneobtains themultivariate normal inverseGaussian

distribution NIGd(α, β, δ, μ,Δ) possessing the density

dNIGd (α,β,δ,μ,Δ)(x) =
√

2

π

δα
d+1
2 eδ

√
α2−〈β,Δβ〉

(2π)
d
2

(〈x − μ,Δ−1(x − μ)〉 + δ2
)− d+1

4

(29)

× Kd+1
2

(
α
√

〈x − μ,Δ−1(x − μ)〉 + δ2
)
e〈β,x−μ〉.

Let us briefly mention possible weak limits of multivariate GH distributions here.
If λ > 0 and δ → 0, then by Eqs. (27), (3), and Lemma 3(c) we have convergence
to a multivariate Variance-Gamma distribution

GHd(λ, α, β, δ, μ, Δ)
w−→Nd(μ + yΔβ, yΔ) ◦ G

(
λ,

α2−〈β,Δβ〉
2

)=VGd(λ, α, β, μ, Δ)

which has the density

dVGd(λ,α,β,μ,Δ)(x) = (α2 − 〈β,Δβ〉)λ
(2π)

d
2 αλ− d

2 2λ−1Γ (λ)

(〈x − μ,Δ−1(x − μ)〉)(λ− d
2 )/2

(30)

×Kλ− d
2

(
α
√

〈x − μ,Δ−1(x − μ)〉) e〈β,x−μ〉.

For λ < 0 and α → 0 as well as β → 0, we arrive at the multivariate scaled and
shifted t-distribution with f = −2λ degrees of freedom:
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GHd(λ, α, β, δ, μ,Δ)
w−→Nd(μ, yΔ) ◦ iG

(
λ, δ2

2

) = td(λ, δ, μ,Δ).

It has the density

dtd (λ,δ,μ,Δ)(x) = Γ
(−λ + d

2

)
(δ2π)

d
2 Γ (−λ)

(
1 + 〈x − μ,Δ−1(x − μ)〉

δ2

)λ− d
2

. (31)

If λ < 0, but 〈β,Δβ〉 → α2, then we have weak convergence to the normal mean-
variance mixture

GHd(λ, α, β, δ, μ,Δ)
w−→Nd(μ + yΔβ, yΔ) ◦ iG

(
λ, δ2

2

)

possessing the density

dGHd (λ,
√〈β,Δβ〉,β,δ,μ,Δ)(x) = 2λ+1− d

2 δ−2λ

π
d
2 Γ (−λ)αλ− d

2

(〈x − μ,Δ−1(x − μ)〉 + δ2
)(λ− d

2 )/2

(32)

× Kλ− d
2

(
α
√

〈x − μ,Δ−1(x − μ)〉 + δ2
)
e〈β,x−μ〉,

where α = √〈β,Δβ〉.
The most important properties of multivariate GH distributions are summarized

in the following theorem which goes back to [8, Theorem 1], see also [9, p. 49f].
It shows that this distribution class is closed under forming marginals, conditioning
and affine transformations.

Theorem 1 Suppose X ∼ GHd(λ, α, β, δ, μ,Δ). Let (X1,X2)
� be a partition of X

where X1 has the dimension r and X2 the dimension k = d − r, and let (β1, β2)
� and

(μ1, μ2)
� be similar partitions of β and μ. Furthermore, let

Δ =
(

Δ11 Δ12

Δ21 Δ22

)

be a partition of Δ such that Δ11 is an r × r-matrix. Then the following holds:

(a) X1 ∼ GHr(λ
∗, α∗, β∗, δ∗, μ∗,Δ∗) with starred parameters given by λ∗ = λ,

α∗= det(Δ11)
− 1

2r

√
α2 − 〈β2, (Δ22 − Δ21Δ

−1
11 Δ12)β2〉, β∗= β1 + Δ−1

11 Δ12β2,

δ∗ = det(Δ11)
1
2r δ, μ∗ = μ1, and Δ∗ = det(Δ11)

− 1
r Δ11.

(b) The conditional distribution of X2 given X1 = x1 is GHk(λ̃, α̃, β̃, δ̃, μ̃, Δ̃) with
tilded parameters λ̃ = λ − r

2 , α̃ = det(Δ11)
1
2k α, β̃ = β2, δ̃ = det(Δ11)

− 1
2k ×√

δ2 + 〈x1 − μ1,Δ
−1
11 (x1 − μ1)〉, μ̃ = μ2 + Δ21Δ

−1
11 (x1 − μ1), and Δ̃ =

det(Δ11)
1
k × (Δ22 − Δ21Δ

−1
11 Δ12).
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(c) Suppose Y = BX + b where B is a regular d × d-matrix and b ∈ Rd , then
Y ∼ GHd(λ̂, α̂, β̂, δ̂, μ̂, Δ̂)where λ̂ = λ, α̂ = | det(B)|− 1

d α, β̂ = (B−1)�β, δ̂ =
| det(B)| 1

d δ, μ̂ = Bμ + b, and Δ̂ = | det(B)|− 2
d BΔB�.

Remark 3 An important fact wewant to stress here is that the above theorem remains
also valid for all multivariate GH limit distributions considered before. Thus, one
can in particular conclude from part (b) that the limiting subclass of VG distributions
itself is, in contrast to the t limit distributions, not closed under conditioning. This
holds because the parameter δ̃ of the conditional distribution in general is greater
than zero, and the parameter λ̃ = λ − r

2 may become negative if the subdimension r
is sufficiently large.

Moreover, all margins of td(λ, δ, μ,Δ) are again t distributed tr(λ, δ∗, μ∗,Δ∗)
because if the joint distribution has the parameters α = 0 and β = 0, part (a) of the
theorem implies thatα∗ = 0 andβ∗ = 0 for everymarginal distribution. Similarly, all
margins of VGd(λ, α, β, μ,Δ) are again VG distributions because if δ = 0, then also
δ∗ = 0. In addition it canbe shown that allmargins ofGHd

(
λ,

√〈β,Δβ〉, β, δ, μ,Δ
)
-

distributions are of the same limiting type as their joint distribution, too.

Let us finally take a closer look at the moments of multivariate GH distrib-
utions. By Definition 4, every random variable X possessing a multivariate nor-

mal mean-variance mixture distribution admits the stochastic representation X
d=

μ + Zβ + √
ZAW with independent random variables Z and W ∼ Nd(0, Id). The

standardization of W and its independence from Z imply that

E(X) = μ + E(Z)β

(33)

Cov(X) = E
[
(X − E(X))(X − E(X))�

] = E(Z)Δ + Var(Z)ββ�,

with Δ = AA�, provided that E(|Z|),Var(Z) < ∞. If X ∼ GHd(λ, α, β, δ, μ,Δ),

then by (27) X
d=μ + ZΔβ + √

ZAW and Z ∼ GIG
(
λ, δ,

√
α2 − 〈β,Δβ〉). Using

Proposition 1 andEq. (7), one obtains explicit expressions forE(Z) andVar(Z)which
can be inserted into the general equations above to finally obtain

E[GHd(λ, α, β, δ, μ,Δ)] = μ + δ2

ζ

Kλ+1(ζ )

Kλ(ζ )
β,

(34)

Cov[GHd(λ, α, β, δ, μ,Δ)] = δ2

ζ

Kλ+1(ζ )

Kλ(ζ )
Δ + δ4

ζ 2

(
Kλ+2(ζ )

Kλ(ζ )
− K2

λ+1(ζ )

K2
λ(ζ )

)
ββ�
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with ζ = δ
√

α2 − 〈β,Δβ〉. In case of the Variance-Gamma limits we have

E[VGd(λ, α, β, μ,Δ)] = μ + 2λ

α2 − 〈β,Δβ〉 β,

(35)

Cov[VGd(λ, α, β, μ,Δ)] = 2λ

α2 − 〈β,Δβ〉 Δ + 4λ

(α2 − 〈β,Δβ〉)2 ββ�.

Observe that byLemma3bothmultivariateGHandVGdistributions possessmoment
generating functions and hence finite moments of arbitrary order because the mix-
ing GIG and Gamma distributions do have this property. This is no longer true for
the limit distributions with λ < 0 because the corresponding inverse Gamma mix-
ing distributions only have finite moments up to order r < −λ. By Theorem 1(a),
the marginal distributions of td(λ, δ, μ,Δ) are given by t(λ,

√
Δiiδ, μi), 1 ≤ i ≤ d

(recall that α = 0 and β = 0 in this case), and from their tail behaviour (see p. 10)
one can easily conclude that mean vector and covariance matrix of the t limit distri-
butions are well defined and finite only if λ < − 1

2 resp. λ < −1. If these constraints
are fulfilled, then

E[td(λ, δ, μ,Δ)] = μ and Cov[td(λ, δ, μ,Δ)] = δ2

−2λ − 2
Δ. (36)

In the other limiting case where 〈β,Δβ〉 = α2 > 0, Eqs. (33) state that necessary and
sufficient conditions for the existence of a mean vector and covariance matrix of the
limit distributions are that the inverse Gammamixing distributions have finite means
and variances which holds true if and only if λ < −1 and λ < −2, respectively. If λ

is appropriately small, then

E
[
GHd

(
λ,

√〈β,Δβ〉, β, δ, μ,Δ
)] = μ + δ2

−2λ − 2
β,

(37)

Cov
[
GHd

(
λ,

√〈β,Δβ〉, β, δ, μ,Δ
)] = δ2

−2λ − 2
Δ + δ4

4(λ + 1)2(−λ − 2)
ββ�.

5 On the Dependence Structure of Multivariate
GH Distributions

Correlation is probably themost established dependencemeasure due to its simplicity
and its predominant rolewithin the normalworldwhere it characterizes dependencies
almost completely. This follows from the fact that the componentsWi, 1 ≤ i ≤ d, of
a standard normally distributed random vector W ∼ Nd(0, Id) are independent from



24 E.A.v. Hammerstein

each other (the joint density is just the product of the marginal ones in this case) and
the stochastic representation

X ∼ Nd(μ,Δ) ⇐⇒ X
d= μ + AW where W ∼ Nd(0, Id) and AA� = Δ.

Since X in distribution is nothing but a linear transform of a random vector W
with independent (normally distributed) entries, the components of X can, roughly
speaking, exhibit at most linear dependencies, and exactly these are specified and
quantified by the pairwise correlations. However, things completely change if we
depart from normality and consider normal variance mixtures instead. Suppose

X ∼ Nd(μ, yΔ) ◦ G, that is, X
d= μ + √

ZAW

where L(Z) = G, W ∼ Nd(0, Id) and AA� = Δ according to Definition 4. As we
already remarked on p. 15, the mixing variable Z causes dependencies between the
components of X, but these are typically not captured by correlation as the following
lemma shows. It is a slightly more general version of [33, Lemma 6.5] which we
adopt here since—in our opinion—the result is as simple as illustrative.

Lemma 4 Suppose that X
d= μ + √

ZAW has a normal variance mixture distri-
bution where E(Z) < ∞, and Δ = AA� is a d × d-diagonal matrix such that
Cov(Xi,Xj) = 0, 1 ≤ i, j ≤ d, i �= j, by (33). Then the Xi, 1 ≤ i ≤ d, are indepen-
dent if and only if Z is almost surely constant, that is, if and only if X is multivariate
normally distributed.

Proof Because Δ is diagonal (and positive definite by Definition 4), we can assume
without loss of generality that also the matrix A is diagonal and Aii = √

Δii, 1 ≤ i ≤
d. The independence of Z and W and Jensen’s inequality then imply

E

(
d∏

i=1

|Xi − μi|
)

= E

(
(
√
Z)d

d∏
i=1

|√Δii Wi|
)

= E
(
(
√
Z)d

) d∏
i=1

E
(|√Δii Wi|

)

≥ E
(√

Z
)d d∏

i=1

E
(|√Δii Wi|

) =
d∏

i=1

E
(|Xi − μi|

)
.

Since the function f (x) = xd is strictly convex onR+ for d ≥ 2, equality throughout
holds if and only if Z is constant almost surely. �

Remark 4 The above result can even be extended: If X
d= μ + Zβ + √

ZAW has a
normal mean-variance mixture distribution with 0 < Var(Z) < ∞, Δ = AA� is a
d × d-diagonal matrix and Cov(Xi,Xj) = 0 for some 1 ≤ i �= j ≤ d, then Xi and Xj

are not independent either. This can be seen as follows: Since Δ is diagonal and
Var(Z) > 0, by (33) Cov(Xi,Xj) = 0 implies that (ββ�)ij = 0. This means, either
βi = 0 or βj = 0 (or both, but thenwewould bewithin the setting of Lemma 4 again).
Suppose βi �= 0 and βj = 0, then we calculate similarly as above
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E
(
(Xi−μi) |Xj − μj|

) = E
(
(βiZ + √

Z
√

ΔiiWi) |√Z
√

ΔjjWj|
)

= E
(
(βiZ

3
2 + Z

√
ΔiiWi)

)
E
(|√ΔjjWj|

) = βi E
(
Z

3
2
)
E
(|√ΔjjWj|

)
> βi E(Z)

3
2 E

(|√ΔjjWj|
) = E(βiZ)E(Z)

1
2 E

(|√ΔjjWj|
)

> E(βiZ)E
(
Z

1
2
)
E
(|√ΔjjWj|

) = E(Xi − μi)E
(|Xj − μj|

)
,

and the inequalities are strict because f (x) = x
3
2 and g(x) = √

x are strictly convex
resp. concave and L(Z) is non-degenerate by assumption.

Thus, in general zero correlation within multivariate normal mean-variance mix-
ture models must not be interpreted as independence. In particular, the components
Xi of a generalized hyperbolic distributed random vector X ∼ GHd(λ, α, β, δ, μ,Δ)

can never be independent because Theorem 1(b) states that the conditional
distribution L(

Xi | (X1, . . . ,Xi−1,Xi+1, . . . ,Xd)
� = x̄

) = GH(λ̃, α̃, β̃, δ̃, μ̃) always
depends on the vector x̄ (at least the parameter δ̃ does so) for every 1 ≤ i ≤ d.
Moreover, it should be observed that for generalized hyperbolic distributed ran-
dom variables the maximal attainable absolute correlation is usually strictly smaller
than one: the Cauchy–Schwarz inequality states that |Corr(X1,X2)| = 1 can occur
if and only if X2 = aX1 + b almost surely for some a, b ∈ R and a �= 0, but if
X1 ∼ GH(λ1, α1, β1, δ1, μ1) and X2 ∼ GH(λ2, α2, β2, δ2, μ2), the required linear
relationship imposes some conditions on the GH parameters. Recall that aX1 + b ∼
GH(λ, α

|a| ,
β

a , δ|a|, aμ + b) by Theorem 1(c). Thus, using the scale- and location-

invariant parameters ζi = δi(α
2
i − β2

i )
1
2 and ρi = βi

αi
, i = 1, 2, we conclude that

X2 = aX1 + b can hold only if ζ1 = ζ2, |ρ1| = |ρ2|, and λ1 = λ2.
Having seen that correlation is in general not the tool to precisely describe and

measure dependencies in multivariate models, one may ask if there exists a more
powerful notion for this purpose. The answer is provided by

Definition 6 A d-dimensional copula C : [0, 1]d → [0, 1] is a distribution function
on [0, 1]d with standard uniform marginal distributions.

Clearly, the k-dimensional margins of a copula C are also copulas for every 2 ≤ k <

d. The central role of copulas in the study of multivariate distributions is highlighted
by the following fundamental result which goes back to [42]. It not only shows
that copulas are inherent in every multivariate distribution, but also that the latter
can be constructed by plugging the desired marginal distributions into a suitably
chosen copula. A short and elegant proof of Sklar’s Theorem which is based on the
distributional transform can be found in [37].

Theorem 2 (Sklar’s Theorem) Let F be a d-dimensional distribution function with
margins F1, . . . ,Fd. Then there exists a copula C : [0, 1]d → [0, 1] such that for all
x = (x1, . . . , xd)� ∈ [−∞,∞]d

F(x1, . . . , xd) = C
(
F1(x1), . . . ,Fd(xd)

)
. (38)
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If F1, . . . ,Fd are all continuous, then C is unique, otherwise C is uniquely deter-
mined on F1(R) × · · · × Fd(R) where Fi(R) denotes the range of Fi.
Conversely, if C : [0, 1]d → [0, 1] is a copula and F1, . . . ,Fd are univariate distri-
bution functions, then the function F(x) defined by (38) is a multivariate distribution
function with margins F1, . . . ,Fd.

If all marginal distribution functions Fi of F are continuous and their generalized
inversesF−1

i are defined byF−1
i (ui) := inf{y |Fi(y) ≥ ui} (with the usual convention

inf ∅ = ∞), then Fi
(
F−1
i (ui)

) = ui. Thus it immediately follows from (38) by insert-
ing xi = F−1

i (ui), ui ∈ [0, 1], 1 ≤ i ≤ d, that in this case the unique copula CF(u)
contained in F is given by

CF(u1, . . . , ud) = F
(
F−1
1 (u1), . . . ,F

−1
d (ud)

)
. (39)

The computation of this so-called implied copula CF(u) is in general numerically
demanding if the distribution function F(x) is not known explicitly. Suppose for
example that only the density f (x) of F can be expressed in closed form, then already
the determination of a single valueF(x0) requires to evaluate a d-dimensional integral
which especially for higher dimensions d can hardly be done sufficiently precise in
reasonable time. The same problem arises if one tries to calculate the implied copula
from the moment generating functionMF(u) via Fourier inversion (see [35, Theorem
1]). But for multivariate normal mean-variance mixtures it is sometimes possible to
significantly reduce the numerical complexity: Suppose that F = Nd(μ + yβ, yΔ) ◦
G with known margins Fi possessing Lebesgue densities fi as above, and let O be an
orthogonal d × d-matrix such that OΔO� is diagonal, then

CF(u1, . . . , ud) = F
(
F−1
1 (u1), . . . ,F

−1
d (ud)

)

=
∫ F−1

d (ud )

−∞
. . .

∫ F−1
1 (u1)

−∞

∫ ∞

0
dNd (μ+yβ,yΔ)(x1, . . . , xd)G(dy) dx1 . . . dxd (40)

=
∫ ∞

0

d∏
i=1

�((O(μ+yβ))i,(OΔO�)ii)

((
O(F−1

1 (u1), . . . ,F
−1
d (ud))

�)
i

)
G(dy),

where �(μ,σ 2) denotes the (univariate) distribution function of N(μ, σ 2). The last
expression can be evaluated much easier on a computer since it only requires the
calculation of one-dimensional integrals (possibly more than one because the values
F−1
i (ui) of the marginal quantile functions may only be obtained by integrating the

corresponding densities fi(xi) numerically).
If in addition to the marginal distributions Fi also F itself possesses a Lebesgue

density f (x), a further simplification can be achieved by using the (implied) copula
density cF(u) which is defined by

cF(u1, . . . , ud) := ∂CF(u1, . . . , ud)

∂u1 . . . ∂ud
= f

(
F−1
1 (u1), . . . ,F

−1
d (ud)

)
f1

(
F−1
1 (u1)

) · · · fd
(
F−1
d (ud)

) , (41)
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Fig. 1 Densities of implied copulas of bivariate GH distributions and their limits. The
underlying distributions are as follows: top left Symmetric NIG2(10, 0, 0.2, 0, Δ̄), top right
Skewed NIG2(10,

(4
1

)
, 0.2, 0, Δ̄), bottom left Skewed NIG2(4,

( 3
−2

)
, 0.2, 0, Δ̄), bottom right

t2(−2, 2, 0, Δ̄). For all distributions Δ̄ =
(
1 ρ
ρ 1

)
with ρ = 0.3

where the last equation immediately follows from (39). Combining (41) andTheorem
1(a) allows to calculate the copula densities cGHd (λ,α,β,δ,μ,Δ)(u) of all multivariate GH
distributions including the aforementioned limits. Some results for the bivariate case
are visualized inFig. 1.Note that the choice ofρ = 0.3 implies det(Δ̄) = 1 − ρ2 < 1,
so the parameters of the t- and NIG distributions are the barred ones (λ̄, ᾱ, β̄, δ̄, μ̄)
defined in the remark on page 18. If β̄ = β = 0, then by Eqs. (34)–(36) Δ̄ equals the
correlation matrix of the related distribution.

Apart from being inherent in every multivariate distribution, the importance of
copulas relies on the fact that they encode the dependencies between themarginsFi of
F. Many popular dependence measures like, for example, Kendall’s tau, Spearman’s
rho, or the Gini coefficient can be expressed and calculated solely in terms of the
associated copulas (see [33, Proposition 7.32 and Corollary 7.35], and [34, Corollary
5.1.14]). Thus the assertion of Sklar’s Theorem might alternatively be stated in the
following way: Every multivariate distribution can be split up into two parts, the
marginal distributions and the dependence structure. The next proposition shows
that copulas and hence all dependence measures that can be derived from them are
invariant under strictly increasing transformations of the margins. A proof can be
found in, e.g., [33, Proposition 7.7].
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Proposition 5 Suppose that (X1, . . . ,Xd)
� is a random vectorwith joint distribution

function F, continuous margins Fi, 1 ≤ i ≤ d, and implied copula CF given by (39).
Let T1, . . . ,Td be strictly increasing functions andG be the joint distribution function
of

(
T1(X1), . . . ,Td(Xd)

)�
. Then the implied copulas of F and G coincide, that is,

CF = CG.

From the above proposition it especially follows that the correlation of two random
variables does not depend on the inherent copula of their joint distribution alone
because correlation is invariant under (strictly) increasing linear transformations
only, but not under arbitrary increasing mappings. Correlation is also linked to the
marginal distributions since it requires them to possess finite second moments to be
well defined, whereas by Sklar’s Theorem a copula of the joint distribution always
exists without imposing any conditions on the margins.

We now turn to the dependence measure we shall be concerned with for the rest
of this section, the coefficients of tail dependence, which are formally defined by

Definition 7 Let F be the joint distribution function of the bivariate random vector
(X1,X2)

� and F1,F2 be the marginal distribution functions of X1 and X2, then the
(strong) coefficient of upper tail dependence of F resp. X1 and X2 is

λu := λu(F) = λu(X1,X2) = lim
q↑1 P

(
X2 > F−1

2 (q) |X1 > F−1
1 (q)

)
,

provided a limit λu ∈ [0, 1] exists. If 0 < λu ≤ 1, then F resp. X1 and X2 are said
to be upper tail dependent; if λu = 0, they are called upper tail independent or
asymptotically independent in the upper tail. Similarly, the (strong) coefficient of
lower tail dependence is

λl := λl(F) = λl(X1,X2) = lim
q↓0 P

(
X2 ≤ F−1

2 (q) |X1 ≤ F−1
1 (q)

)
,

again provided a limit λl ∈ [0, 1] exists. If λu = λl = 0, then F resp. X1 and X2 are
tail independent.

If the distribution functions F1 and F2 are not continuous and strictly increasing,
F−1
1 and F−1

2 in the previous definition again have to be understood as generalized
inverses as defined on p. 24.

The larger (or smaller) q, the more rare is the event {Xi > F−1
i (q)} (respectively

{Xi ≤ F−1
i (q)}). Thus the coefficients of tail dependence are nothing but the limits

of the conditional probabilities that the second random variable takes extremal val-
ues given the first one also does so. In other words, they may be regarded as the
probabilities of joint extremal outcomes of X1 and X2. This concept also is of some
importance in finance: Suppose, for example, that X1 and X2 represent two risky
assets. If their joint distribution is lower tail dependent, the possibility that both of
them suffer severe losses at the same time cannot be neglected. In portfolio credit
risk models, X1 and X2 may be the state variables of two different firms or credit
instruments, and the coefficient of lower tail dependence can then be interpreted
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as the probability of a joint default. Tail dependence is a copula property, which is
illustrated by the subsequent

Proposition 6 Let (X1,X2)
� be a bivariate random vector with joint distribution

function F, continuous margins F1,F2, and implied copula CF as defined in (39).
Then the following holds:

(a) The coefficients of lower and upper tail dependence can be calculated by

λl = lim
q↓0

CF(q, q)

q
and λu = lim

q↑1
1 − 2q + CF(q, q)

1 − q
.

(b) If in addition F1,F2 are strictly increasing, λl and λu can be obtained by

λl = lim
q↓0 P

(
X2 ≤ F−1

2 (q) |X1 = F−1
1 (q)

) + lim
q↓0 P

(
X1 ≤ F−1

1 (q) |X2 = F−1
2 (q)

)
,

λu = lim
q↑1 P

(
X2 > F−1

2 (q) |X1 = F−1
1 (q)

) + lim
q↑1 P

(
X1 > F−1

1 (q) |X2 = F−1
2 (q)

)
.

The assertion of part (a) of the proposition can be found inmany textbooks on copulas
and dependence, and part (b) essentially follows from the ideas of [33, pp. 233 and
249]. A detailed proof can be found in [27, Proposition 2.22].

With the help of these preliminaries, we are now able to give a complete answer
to the question which members of the multivariate GH family show tail dependence
and which do not. To our knowledge, only symmetric GH distributions have been
considered in this regard in the literature so far. By Eq. (27) and Corollary 3, every
multivariate GH distribution with parameter β = 0 belongs to the class of elliptical
distributions, thus the tail independence of GHd(λ, α, 0, δ, μ,Δ) (apart from the t
limit case with α = 0) can be deduced from the more general result below of [28,

Theorem 4.3]. It uses the representation X
d= μ + RAS of an elliptically distributed

random vector X which was introduced in Proposition 4.

Theorem 3 Let X
d= μ + RAS ∼ Ed

(
μ,�,ψ(t)

)
be an elliptically distributed ran-

dom vector with �ii > 0, 1 ≤ i ≤ d, and |ρij| := |�ij/
√

�ii�jj| < 1 for all i �= j.
Then the following statements are equivalent:

(a) The distribution function FR of R is regularly varying with exponent p < 0, that
is, FR ∈ Rp (see Definition 3).

(b) (Xi,Xj)
� is tail dependent for all i �= j.

Moreover, if FR ∈ Rp with p < 0, then for all i �= j

λu(Xi,Xj) = λl(Xi,Xj) =
∫ π/2
(π/2−arcsin(ρij))/2

cos|p|(t) dt∫ π/2
0 cos|p|(t) dt

.

If X ∼ Nd(μ, yΔ) ◦ G has a normal variance mixture distribution which is ellip-

tical by Corollary 3, then X admits the stochastic representations μ + √
ZAW

d=



30 E.A.v. Hammerstein

Xμ + RAS where the vector μ and the d × d-matrix A on the left and right hand side
coincide. This equation suggests that the tail behaviour of the distribution FR of R is
mainly influenced by the distribution G of Z and vice versa. Indeed, one can show
that FR is regularly varying with exponent 2p < 0 (FR ∈ R2p) if and only if G ∈ Rp

(see [33, pp. 199 and 575f]).
Suppose now X ∼ GHd(λ, α, 0, δ, μ,Δ) (excluding the t limiting case for a

moment), then by Eq. (1) the density of the corresponding mixing distribution
GIG(λ, δ, α) has a right tail of the form described in Eq. (24) with constants
a2 = λ − 1, b2 = α2

2 , and c2 = (α/δ)λ

2Kλ(δα)
. (In case of the VG limit, the density of the

mixing Gamma distribution G
(
λ, α2

2

)
also has a right tail of the form (24) with the

same constants a2 and b2, but c2 = (α2/2)λ

Γ (λ)
.) By Proposition 2 and Definition 2,

the distribution functions of GIG(λ, δ, α) and G
(
λ, α2

2

)
both have an exponential

right tail with rate b2. In view of Definition 3 and the subsequent remark, distribution
functions with exponential right tails can be regarded as regularly varying with expo-
nent −∞. Consequently, for the distribution function FR of R in the representation

X
d= μ + RAS we have FR ∈ R−∞ as well. Theorem 3 thus yields

λu(Xi,Xj) = λl(Xi,Xj) = lim
p→−∞

∫ π/2
(π/2−arcsin(ρij))/2

cos|p|(t) dt∫ π/2
0 cos|p|(t) dt

= 0,

showing the tail independence of all symmetric GHd(λ, α, 0, δ, μ,Δ)-distributions
with parameter α > 0. An alternative way to obtain this result is to show that the
weak tail dependence coefficient of GHd(λ, α, 0, δ, μ,Δ) is always strictly smaller
than 1, which was done in [38].

In the t limiting case, however, we have X
d=μ + √

ZAW ∼ td(λ, δ, μ,Δ) with
Z ∼ iG

(
λ, δ2

2

)
, and from Eq. (4) it is easily seen that the density diG(λ,δ2/2) is reg-

ularly varying with exponent λ − 1. Hence G = FZ ∈ Rλ and thus, as pointed out
above, FR ∈ R2λ, so we conclude from Theorem 3 that λu(Xi,Xj) = λl(Xi,Xj) > 0
for all t distributions td(λ, δ, μ,Δ). The coefficients are quantified more accurately
in Theorem 4 below.

This main result of the present section shows that the dependence behaviour can
change dramatically if we move from symmetric to skewed GH distributions with
parameter β �= 0: in addition to tail independence also complete dependence can
occur, that is, both of the coefficients λl and λu may be equal to one.

Theorem 4 LetX ∼ GH2(λ, α, β, δ, μ,Δ)anddefineρ := Δ12√
Δ11Δ22

aswell as β̄i :=√
Δiiβi for i = 1, 2. Then the following holds:

(a) If 0 ≤ √〈β,Δβ〉 < α, then the GH distribution (including possible VG limits)
is tail independent if −1 < ρ ≤ 0. If 0 < ρ < 1, then

λl(X1,X2) = λu(X1,X2) =
{
0, c∗, c−1∗ > ρ,

1, min(c∗, c−1∗ ) < ρ,
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where c∗ :=
√

α2−(1−ρ2)β̄2
2+β̄1+ρβ̄2√

α2−(1−ρ2)β̄2
1+β̄2+ρβ̄1

.

(b) If λ < 0 and α = 0, then X ∼ t2(λ, δ, μ,Δ) and

λu(X1,X2) = λl(X1,X2) = 2Ft(λ− 1
2 ,

√−2λ+1,0)

(
−

√
(−2λ + 1)(1 − ρ)

1 + ρ

)
,

where Ft(λ− 1
2 ,

√−2λ+1,0) is the distribution function of the univariate Student’s

t-distribution t
(
λ − 1

2 ,
√−2λ + 1, 0

)
with f = −2λ + 1 degrees of freedom.

(c) Let λ < 0 and 0 <
√〈β,Δβ〉 = α. If (β̄1 + ρβ̄2)(β̄2 + ρβ̄1) < 0, then

λu(X1,X2) = λl(X1,X2) =
{
0, ρ < 0,
1, ρ > 0.

If (β̄1 + ρβ̄2)(β̄2 + ρβ̄1) > 0, then

λu(X1,X2) = λl(X1,X2) =
{
0, c∗, c−1∗ > ρ,

1, min(c∗, c−1∗ ) < ρ,
where c∗ := β̄1 + ρβ̄2

β̄2 + ρβ̄1
.

Proof Propositions 6 and 5 state that tail dependence is a copula property and there-
fore invariant under strictly increasing transformations of X1 and X2. But if X ∼
GH2(λ, α, β, δ, μ,Δ), the linear transformation Y =

(
1/

√
Δ11 0

0 1/
√

Δ22

)
(X − μ) obvi-

ously is strictly increasing in each component, and Theorem 1(c) implies that Y ∼
GH2(λ̄, ᾱ, β̄, δ̄, 0, Δ̄)with λ̄ = λ, ᾱ = α, β̄ =

(√
Δ11 0

0
√

Δ22

)
β, δ̄ = δ, Δ̄ =

(
1 ρ

ρ 1

)
and

ρ := Δ12/
√

Δ11Δ22. Note that we here use the barred parameters defined in Remark
2 because in general det(Δ̄) = 1 − ρ2 < 1. As already pointed out in Remarks 2
and 3 on pages 18 and 20, these considerations remain also valid for all GH limit
distributions. Hence we can and will always assume X ∼ GH2(λ, α, β̄, δ, 0, Δ̄) in
the following. The fact that Δ is supposed to be positive definite with det(Δ) = 1 by

definition implies the inequality 0 < 1
Δ11Δ22

= Δ11Δ22−Δ2
12

Δ11Δ22
= 1 − ρ2, thus |ρ| < 1.

(a) If X ∼ GH2(λ, α, β̄, δ, 0, Δ̄) and 0 ≤ √〈β,Δβ〉 < α, then by Theorem 1(a)
the marginal distributions are X1 ∼ GH

(
λ, (α2 − (1 − ρ2)β̄2

2 )
1/2, β̄1 + ρβ̄2, δ, 0

)
and X2 ∼ GH

(
λ, (α2 − (1 − ρ2)β̄2

1 )
1/2, β̄2 + ρβ̄1, δ, 0

)
. To simplify notations we

set α̂1 := (α2 − (1 − ρ2)β̄2
2 )

1/2, β̂1 := β̄1 + ρβ̄2, and α̂2 := (α2 − (1 − ρ2)β̄2
1 )

1/2,
β̂2 := β̄2 + ρβ̄1, then we obtain α̂2

1 − β̂2
1 = α̂2

2 − β̂2
2 = α2 − 〈β,Δβ〉 > 0. Thus the

densities of L(X1) and L(X2) both have tails of the form (24) (see also the remark
thereafter), and Proposition 2 implies that the corresponding distribution func-
tions F1 and F2 fulfill the assumptions of Lemma 2(b) with b1 = α̂i + β̂i and
b2 = α̂i − β̂i, i = 1, 2. From this we conclude that F−1

1 (q) ∼ clF
−1
2 (q) for q ↓ 0 as

well as F−1
1 (q) ∼ cuF

−1
2 (q) for q ↑ 1 where cl := α̂2+β̂2

α̂1+β̂1
> 0 and cu := α̂2−β̂2

α̂1−β̂1
> 0.

Note that clcu = α̂2
2−β̂2

2

α̂2
1−β̂2

1
= 1 and thus cu = c−1

l . All this also holds in theVG limit case
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with δ = 0 because Theorem 1(a) still applies there, and the univariate VG marginal
densities have tails of the form (24), too (see p. 9).

Theorem 1(b) states that the conditional distribution of Xi given Xj = xj (where
here and in the following i, j ∈ {1, 2} as well as i �= j) is given by P(Xi |Xj = xj) =
GH

(
λ − 1

2 , α(1 − ρ2)−1/2, β̄i,
√

δ2 + x2j
√
1 − ρ2, ρxj

)
, and part (c) of the same the-

orem then yields

P

(
Xi − ρxj√

δ2 + x2j
√
1 − ρ2

∣∣Xj =xj

)

= GH
(
λ − 1

2 , α

√
δ2 + x2j , β̄i

√
δ2 + x2j

√
1 − ρ2, 1, 0

)

=: GH∗
i|j

(
λ − 1

2 , α, β̄i, δ, ρ, xj
)
.

Again, this also remains true in the VG limit case (see Remark 3 on p. 20). Let Fq
i|j

denote the distribution function of GH∗
i|j

(
λ − 1

2 , α, β̄i, δ, ρ,F−1
j (q)

)
and set

hi|j(q) := (1 − ρ2)−
1
2
F−1
i (q) − ρF−1

j (q)√
δ2 + (

F−1
j (q)

)2 for q ∈ (0, 1),

then we have

lim
q↓0 P

(
Xi ≤ F−1

i (q)
∣∣Xj = F−1

j (q)
) = lim

q↓0 F
q
i|j

(
hi|j(q)

)
,

lim
q↑1 P

(
Xi > F−1

i (q)
∣∣Xj = F−1

j (q)
) = lim

q↑1 1 − Fq
i|j

(
hi|j(q)

)
.

Moreover, if α > |β| ≥ 0, then GH(λ, rα, rβ, δ, μ)
w−→ εμ for r → ∞ because

lim
r→∞φGH(λ,rα,rβ,δ,μ)(u) =

= lim
r→∞ eiuμ

(
(rα)2 − (rβ)2

(rα)2 − (rβ + iu)2

) λ
2 Kλ

(
δ
√

(rα)2 − (rβ + iu)2
)

Kλ

(
δ
√

(rα)2 − (rβ)2
)

= lim
r→∞ eiuμ

(
α2 − β2

α2 − (β + iu
r )2

) λ
2 Kλ

(
rδ

√
α2 − (β + iu

r )2
)

Kλ

(
rδ

√
α2 − β2

) = eiuμ

which implies that GH∗
i|j

(
λ − 1

2 , α, β̄i, δ, ρ,F−1
j (q)

)
converges weakly to the degen-

erate distribution ε0 if q ↓ 0 or q ↑ 1. From the asymptotic relations of the quantile
functions F−1

1 (q) and F−1
2 (q) we further obtain

lim
q↓0 hi|j(q) = (1 − ρ2)−

1
2
(
ρ − cj−i

l

)
, and lim

q↑1 hi|j(q) = (1 − ρ2)−
1
2
(
ci−j
l − ρ

)
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(remember cu = c−1
l ), consequently

lim
q↓0 P

(
Xi ≤ F−1

i (q)
∣∣Xj = F−1

j (q)
) = Fε0

(
ρ − cj−i

l√
1 − ρ2

)
=

{
0, cj−i

l > ρ,

1, cj−i
l < ρ,

as well as

lim
q↑1 P

(
Xi > F−1

i (q)
∣∣Xj = F−1

j (q)
) = 1 − Fε0

(
ci−j
l − ρ√
1 − ρ2

)
=

{
0, ci−j

l > ρ,

1, ci−j
l < ρ,

and Proposition 6(b) finally implies that λl(X1,X2) = λu(X1,X2) = 0 if and only if
cl, c

−1
l > ρ. Since cl > 0, the conditions are trivially met if ρ ≤ 0. If 0 < ρ < 1,

then at most one of the quantities cl and c−1
l can be smaller than ρ (note that the

convergence to a well-defined limit cannot be assured if cj−i
l = ρ > 0, therefore we

exclude these possibilities in our considerations). This completes the proof of (a).

(c) Because Theorem 1(a) still applies if X ∼ GH2(λ, α, β̄, δ, 0, Δ̄), λ < 0, and 0 <√〈β,Δβ〉 = α, we have, using the notations from above, Xi ∼ GH(λ, α̂i, β̂i, δ, 0),
i = 1, 2. However, in this case α̂2

i − β̂2
i = α2 − √〈β,Δβ〉 = 0, hence both marginal

distributions are univariate GH limit distributions with λ < 0 and α̂i = |β̂i|. If β̂i >

0, we conclude from Eqs. (20), (21), and Proposition 2 that the tail behaviour of
the distribution function is given by Fi(y) ∼ ci1|y|λ−1e−2α̂i|y| for y → −∞ and 1 −
Fi(y) ∼ ci2|y|λ as y → ∞ where

ci1 = 2λ−1

α̂λ+1
i δ2λΓ (|λ|) and ci2 = 2λ

|λ| α̂λ
i δ2λΓ (|λ|) .

Lemma 2 now states that F−1
i (q) ∼ log(q)

2α̂i
for q ↓ 0 and F−1

i (q) ∼ ( ci2
1−q

) 1
|λ| for

q ↑ 1. If β̂i < 0, then we analogously obtain F−1
i (q) ∼ −( ci2

q

) 1
|λ| as q ↓ 0 and

F−1
i (q) ∼ − log(1−q)

2α̂i
as q ↑ 1. Because the case β̂i = β̄i + ρβ̄j = 0 is ruled out

by assumption, the equality 0 = α̂2
i − β̂2

i = α2 − (1 − ρ2)β̄2
j − (β̄i + ρβ̄j)

2 implies

that α >
√
1 − ρ2|β̄i|. Thus, we can proceed along the same lines as in the proof of

part (a) and get

lim
q↓0 P

(
Xi ≤ F−1

i (q)
∣∣Xj = F−1

j (q)
) = Fε0

(
lim
q↓0 hi|j(q)

)
,

lim
q↑1 P

(
Xi > F−1

i (q)
∣∣Xj = F−1

j (q)
) = 1 − Fε0

(
lim
q↑1 hi|j(q)

)

if we again exclude the cases where hi|j(q) → 0 for the same reasons as above.

Suppose β̂1, β̂2 > 0, then F−1
1 (q) ∼ clF

−1
2 (q) with cl = α̂2

α̂1
= β̂2

β̂1
> 0 as q ↓ 0

and F−1
1 (q) ∼ cuF

−1
2 (q) with cu = ( c12

c22

)1/|λ| = ( α̂λ
2

α̂λ
1

)1/|λ| = β̂1

β̂2
= c−1

l for q ↑ 1. Con-
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sequently, we again have

lim
q↓0 hi|j(q) = (1 − ρ2)−

1
2
(
ρ − cj−i

l

)
, lim

q↑1 hi|j(q) = (1 − ρ2)−
1
2
(
ci−j
l − ρ

)

and conclude, analogously as before, that λl(X1,X2) = λu(X1,X2) = 0 if and only
if cl, c

−1
l > ρ. If β̂1, β̂2 < 0, the tail behaviour of the quantile functions is just

exchanged (cl � c−1
l and cu = c−1

l � cl), hence the assertion remains also valid
in this case.

Finally, let β̂1 > 0 and β̂2 < 0, then F−1
1 (q) ∼ log(q)

2α̂1
and F−1

2 (q) ∼ −( c22
q

) 1
|λ| as

q ↓ 0, thus limq↓0
F−1
1 (q)

F−1
2 (q)

= 0 and

lim
q↓0 hi|j(q) =

{
(1 − ρ2)− 1

2 ρ, i − j = −1,
−∞, i − j = 1,

hence λl(X1,X2) = 0 if and only if ρ < 0. Further F−1
1 (q) ∼ ( c12

1−q

) 1
|λ| and F−1

2 (q) ∼
− log(1−q)

2α̂1
for q ↑ 1, consequently limq↑1

F−1
2 (q)

F−1
1 (q)

= 0 and

lim
q↑1 hi|j(q) =

{−(1 − ρ2)− 1
2 ρ, i − j = 1,
∞, i − j = −1,

which implies that also λu(X1,X2) = 0 if and only if ρ < 0. Trivially, all conclusions
remain true if β̂1 < 0 and β̂2 > 0.

(b) The proof of this part goes back to [22], see also [33, p. 250]. If λ < 0 and
α = 0, we can assume X ∼ GH2(λ, 0, 0, δ, 0, Δ̄) = t2(λ, δ, 0, Δ̄), and the mar-
ginal distributions are given by L(X1) = L(X2) = GH(λ, 0, 0, δ, 0) = t(λ, δ, 0)
according to Theorem 1(a), hence we have F−1

1 (q) = F−1
2 (q) for all q ∈ (0, 1) in

this case. By Theorem 1(b), the conditional distributions also coincide, that is,
P(X2 |X1 = x) = P(X1 |X2 = x) = t

(
λ,

√
δ2 + x2

√
1 − ρ2, ρx

)
, and part (c) of the

same theorem implies

P

(√−2λ + 1√
1 − ρ2

X2 − ρx√
δ2 + x2

∣∣∣∣X1 = x

)
= P

(√−2λ + 1√
1 − ρ2

X1 − ρx√
δ2 + x2

∣∣∣∣X2 = x

)

= t
(
λ − 1

2 ,
√−2λ + 1, 0

)
.

(Note that, in principle, the additional scaling factor
√−2λ + 1 is not necessary, but

leads to the relation δ2 = −2λ + 1 = −2(λ − 1
2 ) of the parameters of the conditional

distribution which therewith becomes a classical Student’s t-distributiom with f =
−2λ + 1 degrees of freedom.) If we set



Tail Behaviour and Tail Dependence of Generalized Hyperbolic Distributions 35

h(q) :=
√−2λ + 1√

1 − ρ2

F−1
2 (q) − ρF−1

1 (q)√
δ2 + (F−1

1 (q))2
for q ∈ (0, 1),

we get, using that F−1
1 (q) = F−1

2 (q),

lim
q↓0 h(q) = −

√−2λ + 1 (1 − ρ)√
1 − ρ2

= −
√

(−2λ + 1)(1 − ρ)

1 + ρ
= − lim

q↑1 h(q),

consequently

lim
q↓0 P

(
X2 ≤ F−1

2 (q)
∣∣X1 = F−1

1 (q)
) = lim

q↓0 P
(
X1 ≤ F−1

1 (q)
∣∣X2 = F−1

2 (q)
)

= lim
q↓0 Ft(λ− 1

2 ,
√−2λ+1,0)

(
h(q)

) = Ft(λ− 1
2 ,

√−2λ+1,0)

(
−

√
(−2λ + 1)(1 − ρ)

1 + ρ

)

and

lim
q↑1 P

(
X2 > F−1

2 (q)
∣∣X1 = F−1

1 (q)
) = lim

q↑1 P
(
X1 > F−1

1 (q)
∣∣X2 = F−1

2 (q)
)

= lim
q↑1 1 − Ft(λ− 1

2 ,
√−2λ+1,0)

(
h(q)

)

= 1 − Ft(λ− 1
2 ,

√−2λ+1,0)

(√
(−2λ + 1)(1 − ρ)

1 + ρ

)
.

The symmetry relation Ft(λ−1/2,
√−2λ+1,0)(−x) = 1 − Ft(λ−1/2,

√−2λ+1,0)(x) and Pro-
position 6(b) now yield the desired result. �

The conditions c∗ > ρ and c−1∗ > ρ in Theorem 4(a) are trivially fulfilled if β̄1 =
β̄2, because then c∗ = c−1∗ = 1. This, in particular, includes the case β = 0 which
provides an alternative proof for the tail independence of symmetric GH distributions
(apart from the t limit case). In general, however, it might seem to be a little bit
cumbersome to check these conditions. The following corollary provides a simpler
criterion for tail independence of GH distributions.

Corollary 4 Suppose that X ∼ GH2(λ, α, β, δ, μ,Δ) and ρ := Δ12√
Δ11Δ22

> 0. Then

we have λl(X1,X2) = λu(X1,X2) = 0 if either
√〈β,Δβ〉 < α and β1β2 ≥ 0, or 0 <√〈β,Δβ〉 = α and β1β2 > 0.

Proof According to Theorem 4(a) and (c), we just have to show that the condi-
tions β1β2 ≥ 0 resp. > 0 imply c∗, c−1∗ > ρ. Assume

√〈β,Δβ〉 < α first. If both
β1, β2 ≥ 0, then so are β̄1 = √

Δ11β1 and β̄2 = √
Δ22β2. Since ρ > 0, we see from

the inequality 0 < α2 − 〈β,Δβ〉 = α2 − β̄2
1 − 2ρβ̄1β̄2 − β̄2

2 that β̄i < α, i = 1, 2.
Therewith we obtain
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c∗ =
√

α2 − (1 − ρ2)β̄2
2 + β̄1 + ρβ̄2√

α2 − (1 − ρ2)β̄2
1 + β̄2 + ρβ̄1

>

√
α2 − (1 − ρ2)α2 + ρβ̄1 + ρβ̄2

α + β̄1 + β̄2
= ρ,

and an analogous estimate shows that also c−1∗ > ρ. If β1 ≤ 0 and β2 ≤ 0, we use

the fact that c−1∗ may alternatively be represented by c−1∗ =
√

α2−(1−ρ2)β̄2
2−β̄1−ρβ̄2√

α2−(1−ρ2)β̄2
1−β̄2−ρβ̄1

and

similarly conclude that c∗, c−1∗ > ρ.
Now, let 0 <

√〈β,Δβ〉 = α and note that the condition β1β2 > 0 implies (β̄1 +
ρβ̄2)(β̄2 + ρβ̄1) > 0. If bothβ1, β2 > 0, then c∗ = β̄1+ρβ̄2

β̄2+ρβ̄1
>

ρβ̄1+ρβ̄2

β̄2+β̄1
= ρ, and c−1∗ >

ρ follows analogously. If β1, β2 < 0, the same result is obtained by using the repre-
sentation c∗ = −β̄1−ρβ̄2

−β̄2−ρβ̄1
. �

An immediate consequence of the preceding corollary is that complete depen-
dence (λl(X1,X2) = λu(X1,X2) = 1) within bivariate GH distributions can only
occur if the parameters β1 and β2 have opposite signs, and one might conjec-
ture that the conditions c∗, c−1∗ > ρ are also always fulfilled in these cases such
that a two-dimensional GH distribution would be tail independent for almost any
choice of parameters. However, this is not true, and it is fairly easy to construct
counterexamples: Take α = 4, β̄1 = 3, β̄2 = −2, and ρ = 0.3, then α2 − 〈β,Δβ〉 =
α2 − β̄2

1 − 2ρβ̄1β̄2 − β̄2
2 = 6.6 and

c−1
∗ =

√
α2 − (1 − ρ2)β̄2

1 + β̄2 + ρβ̄1√
α2 − (1 − ρ2)β̄2

2 + β̄1 + ρβ̄2

≈ 0.286 < ρ.

The corresponding copula density is shown in Fig. 1. In view of Theorem 4, the
densities displayed there represent all possible tail dependencies of GH distri-
butions: NIG2(10, 0, 0.2, 0, Δ̄) and NIG2(10,

(4
1

)
, 0.2, 0, Δ̄) are tail independent,

NIG2(4,
( 3
−2

)
, 0.2, 0, Δ̄) is completely dependent, and t2(−2, 2, 0, Δ̄) lies in between.

The fact that for GH distributions the coefficients of tail dependence can only
take the most extreme values 0 and 1 may surely be surprising at first glance, but this
phenomenon can also be observed in other distribution classes (making it possibly
less astonishing). For example, in [4] a similar behaviour for the upper tail dependence
coefficient λu(X1,X2) of a skewed grouped t distribution is found. An alternative
derivation and discussion of their results can also be found in [24].

6 Some Further Remarks and Developments

In the present paper, we have restricted ourselves to a thorough discussion of the
“classical” uni- and multivariate GH distributions as introduced in [5]. In recent
years, however, several possible extensions and generalizations have been suggested
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in the literature. Therefore, we conclude with a short overview over some of the latter
and explain how they emerge from resp. fit into the present context.

Multivariate affine GH models (MAGH) As shown above, the dependence struc-
ture of multivariate GH distributions is fairly strict in some sense since it neither
allows independent components nor non-trivial values of the tail dependence coef-
ficients. A possible way to relax these restrictions is to consider affine mappings of

random vectors with independent GH distributed components: If Y
d=AX + μ, where

μ ∈ Rd , A is a lower triangular d × d-matrix, and X = (X1, . . . ,Xd)
� with indepen-

dent Xi ∼ GH(λi, αi, βi, 1, 0), 1 ≤ i ≤ d, then Y is said to have a multivariate affine
GH distribution. Dependent on the choice of A, L(Y) can either possess independent
margins or show upper and lower tail dependence. A thorough discussion of this
model is provided in [39].

GeneralizedGHdistributions (GGH)This extension of themultivariate symmetric
GH family is introduced in [25]. It is obtained by allowing for more general radial
components R in the elliptical representation. If X ∼ GHd(λ, α, 0, δ, μ,Δ), then by
Definition 4, Corollary 3, Proposition 4 and the remark thereafter one may represent

X by X
d= μ + √

Z
√
YAS where A is a d × d-matrix fulfilling AA� = Δ, the random

variables Z,Y , S are independent and Z ∼ GIG(λ, δ, α), Y ∼ χ2
d , and S is uniformly

distributed on the d-dimensional unit sphere S .
The distribution of

√
Z from the above representation is a special case of an

extended GIG distribution (EGIG) which is defined in [25] as follows: Suppose that
U ∼ GIG(λ, δ, γ ), thenU

1
ν ∼ EGIG(ν, λ, δ, γ )where ν > 0, and the correspond-

ing density is given by

dEGIG(ν,λ,δ,γ )(x) =
(γ

δ

)λ ν

2Kλ(δγ )
xνλ−1e− 1

2 (δ
2x−ν+γ 2xν) 1(0,∞)(x). (42)

Moreover, a generalized Gamma distribution GG(ν, a, b) with ν ∈ R \ {0} and
a, b > 0 is defined by having the density

dGG(ν,a,b)(x) = |ν|a|ν|b

Γ (b)
xνb−1e−a|ν|xν

1(0,∞)(x). (43)

These distributions also emerge as limits of extended GIG distributions if δ → 0;
one hasEGIG(ν, λ, 0, γ ) = GG

(
ν, λ, (γ 2/2)

1
ν

)
. Further, ifY ∼ χ2

d , thenL
(√

Y
) =

GG(2, 2− 1
2 , d

2

)
, and

√
Y
2 ∼ GG

(
2, 1, d

2

)
. Summing up, amultivariate symmetricGH

distributed randomvectorX ∼ GHd(λ, α, 0, δ, μ,Δ) admits the stochastic represen-

tation X
d= μ + UV ĀS with independentU ∼ EGIG(2, λ, δ, α), V ∼ GG

(
2, 1, d

2

)
,

Ā = √
2A, and A and S as above. The multivariate generalized GH distributions

(GGH) can now be defined as the law of a d-dimensional random vector X admit-

ting the representation X
d= μ + Ū V̄ ĀS with independent Ū ∼ EGIG(|2ν|, λ, δ, α),

V̄ ∼ GG
(
2ν, 1, d

2ν

)
, a randomvectorS that is uniformlydistributedon theunit sphere
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S , and a d × d-matrix Ā satisfying ĀĀ� = Δ̄ (see [25, Theorem 5]). We then write
X ∼ GGHd(λ, α, δ, μ, Δ̄, ν). Apart from the multivariate symmetric GH distribu-
tions (ν = 1), this class also contains multivariate generalized t-distributions as well
as generalized multivariate VG distributions as special cases for appropriate para-
meter choices. By construction and Proposition 4, all these distributions are elliptic,
so their tail dependence coefficients can be derived with help of Theorem 3 along
the same lines as pointed out on p. 27f.

Remark 5 We changed the order and notation of the GGH parameters here to make
them fit better into the present context and to more clearly explain how this class
emerges as a quite natural extension of multivariate symmetric GH distributions. In
[25], GGH distributions are denoted by GGHd(μ,�, β, a, b, p), which is related to
our notation as follows:

μ = μ, � = Δ̄, β = ν, a = δ, b = α, p = λ.

GH factor models and copulas We finally want to remark that the dependence
structure of factor models for credit portfolios which have already been mentioned
on p. 12 significantly differs from that of multivariate GH distributions discussed
above. Recall that the state variables Xi in general factor models are given by

Xi := √
ρ M + √

1 − ρ Zi, 0 ≤ ρ < 1, i = 1, . . . ,N, (44)

where M,Z1, . . . ,ZN are assumed to be independent and, in addition, the Zi are
identically distributed (hence so are theXi). The corresponding distribution functions
are denoted by FM , FZ , FX and are usually supposed to be continuous and strictly
increasing onR. IfM and the Zi are standard normally distributed (M,Zi ∼ N(0, 1)),
then also the joint distribution of the Xi is a multivariate normal distribution with the
associated implied copula. However, if we assume the factors M and Zi to follow a
GH distribution (M ∼ GH(λM, αM , βM , δM , μM), Zi ∼ GH(λZ , αZ , βZ , δZ , μZ) for
all 1 ≤ i ≤ N), then the distribution of the random vectorX = (X1, . . . ,XN )� is not a
multivariate generalized hyperbolic one. This can easily be deduced from the fact that
the Xi in general are not GH distributed due the lack of stability under convolutions
of the GH class, whereas a multivariate GH distribution must always have univariate
GHmargins according to Theorem 1(a). Consequently, the implied copulaCGX of the
distribution GX of the vector X also differs from the implied copula of a multivariate
GH distribution. The factor copula CGX can be calculated by

CGX (u1, . . . , uN ) = GX
(
F−1
X (u1), . . . ,F

−1
X (uN )

)
= E

[
P
(
X1 ≤ F−1

X (u1), . . . ,XN ≤ F−1
X (uN ) |M)]

=
∫
R

N∏
i=1

FZ

(
F−1
X (ui) − √

ρ y√
1 − ρ

)
FM(dy) (45)
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and admits tail dependence (λu(Xi,Xj), λl(Xi,Xj) > 0, 1 ≤ i �= j ≤ N) if
and only if the M is heavy tailed, that is, FM ∈ Rp for some −∞ < p < 0 (see
Definition 3). This has been shown in [32]. Hence, we can conclude that factor mod-
els with GH distributions can show tail dependence if and only if FM = t(λ, δ, μ) or
FM = GH(λ, α,±α, δ, μ).
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Gamma Kernels and BSS/LSS Processes

Ole E. Barndorff-Nielsen

Abstract This paper reviews the roles of gamma type kernels in the theory and
modelling forBrownian andLévy semistationary processes. Applications to financial
econometrics and the physics of turbulence are pointed out.

Keywords Ambit stochastics · Semistationary · Volatility · Green’s function· Stochastic calculus · Identification

1 Introduction

The use of gamma kernels in modelling Brownian and Lévy semistationary (BSS
and LSS) processes, at first introduced as a simple convenient choice, has turned out
to be of a more significant nature than first envisaged. This paper reviews the roles
the kernels have had in the study of these and related types of processes and their
applications.1

BSS and LSS processes are prominent examples of the types of continuous time
stationary processes onR studied in Ambit Stochastics, a concept introduced in [14].
Two main areas of applications of such processes are financial econometrics and the
physics of turbulence, cf. for instance [21] respectively [43].

In its full generality Ambit Stochastics is a framework for modelling tempo-
spatial dynamic fields. A main point of Ambit Stochastics is that it specifically
incorporates terms modelling stochastic volatility. This is true in particular of BSS
and LSS processes.

1Proofs and technical details are, in most cases, not presented here. For these and related
literature we refer to the papers cited.
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The papers [8, 11, 49] review recent developments in the theory and applications
of Ambit Stochastics.

Section2 recalls the definitions of BSS and LSS processes and presents some
instances of the role of the gamma kernels, including an illustration of the modelling
capability. Section3 points out that the gamma kernel has an interpretation as a
Green’s function corresponding to a certain fractional differential operator.

The asymptotic behaviour of the autocorrelation functions of BSS and LSS
processes is of crucial importance for their applications, not least in regard to the
modelling of turbulence, and this is reviewed in Sect. 4 under the gamma kernel
assumption.

An outstanding issue is the establishment of an Ito type stochastic calculus forBSS
and LSS processes; the point here is that these types of processes are not in general
semimartingales. An important step in this direction has been a detailed study of the
path properties of such processes, as discussed in Sect. 5.

The questions of what can be deduced about the ingredients of a BSS or LSS
process based on knowledge of its law and/or from high frequency observations
of its sample path form the topic of Sect. 6. This involves both purely theoretical
reasoning and central questions of inference.

2 BSS and LSS Processes

The concept of Brownian semistationary processes, orBSS processes, was introduced
in [16], cf. also [14, 15]. Such a process is of the form

Yt = μ +
∫ t

−∞
g(t − s)σsdBs +

∫ t

−∞
q(t − s)asds (1)

where B is Brownian motion, σ and a are stochastic processes and g and q are
deterministic kernels with g (t) = h (t) = 0 for t ≤ 0. The process Y is stationary
provided σ and a are stationary, as we shall henceforth assume. The intended role
of the processes σ and a is to model volatility, or intermittency as it is called in
turbulence.

For simplicity we assume from now on that σ and a are independent of the
Brownian motion B. We note however that a very general treatment of stochastic
integration theory for Ambit Stochastics is given in [28].

The specification (1) is a particular case of the general concept of LSS (Lévy
semistationary) processes defined as

Yt = μ +
∫ t

−∞
g(t − s)σsdLs +

∫ t

−∞
q(t − s)asds, (2)

where L denotes an arbitrary Lévy process on R. This concept was introduced in [7]
and has been further studied for instance in [21, 48, 49, 54], and references given
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there. One of the roles of processes of type LSS is to model volatility/intermittency.
General conditions for existence of the stochastic integrals in (1) and (2) are given
in [18].

We refer to

Gt =
∫ t

−∞
g (t − s) dBs (3)

as the Gaussian base process.
The case where a = σ 2, i.e.

Yt = μ +
∫ t

−∞
g(t − s)σsdBs +

∫ t

−∞
q(t − s)σ 2

s ds, (4)

can be seen as a stationary process analogue of the so-called BNS model, discussed
extensively in financial econometrics, see for instance [22].

In this paper we discuss cases where g, and possibly also q, is of the gamma type

g (t; ν, λ) = λν

Γ (ν)
tν−1e−λt . (5)

The form of the gamma kernel means that small and large lag behaviour of Y can
be controlled separately. The more general form g (t) = tν−1f (t) with f continuous
and slowly varying at 0 offers the same type of control, and many of the asymptotic
results in the literature onBSS/LSS processes are derived under this latter assumption.
However, the gamma kernel has some very particular properties of key relevance.

We note that with g as the gamma kernel the restriction ν > 1
2 is needed for the

stochastic integral in (1) to be well defined and that (3) constitutes a semimartingale
only if ν = 1 or ν > 3

2 . For ν ∈ (
1
2 ,

3
2

)
the process is Hölder continuous with index

less than ν − 1
2 . These aspects and some of their consequences are discussed in [9,

10, 16, 19] and will be touched upon later in the paper.
As models for the timewise development of the main component of the velocity

vector in a homogeneous turbulent field stochastic processes of BSS type have been
extensively studied probabilistically and compared to empirical and simulated data,
see [14, 15, 34, 43]. Of special interest in the context of turbulence are the cases
where the roughness parameter ν of the gamma kernel satisfies either 1

2 < ν < 1 or
1 < ν < 3

2 . Near 0 the gamma kernel behaves quite differently depending onwhether
1
2 < ν < 1 or 1 < ν < 3

2 , tending respectively to 0 and ∞. The dynamics of the
process (1) is significantly different in the two cases and this has strong consequences
with respect to path behaviour and to inference onvolatility/intermittency, seeSects. 5
and 6.

Considering the setting (4) we note that to accomodate the manifest observed
skewness in the distribution of velocity differences in turbulence, cf. [3],
the conditionalmeanE {Yt+u − Yt|σ } shouldbeof the sameorder asV {Yt+u − Yt|σ } 1

2

for small values of u. This can be achieved by having
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q2 (u) ∼
∫ u

0
g2 (s) ds (6)

for u ↓ 0. With g as the gamma kernel a natural way of obtaining this is to take
q (t) = g

(
t; ν − 1

2 , λ
)
. For ν = 5

6 the resulting process may, for suitable choice of
the volatility/intermittency process σ 2, be considered as a temporal stochastic model
for fully developed turbulence; cf. the following Sect. 4.

It is natural to extend the concept of LSS processes to the specification

Yt = μ +
∫ t

−∞
g(t − s)σsdL

T
s +

∫ t

−∞
q(t − s)asds (7)

where T denotes a time change and LT
t = L (T (t)). Here T and σ represent the two

different aspects of the volatility: intensity and amplitude. For a discussion of time
change in stochastic processes and its role in modelling volatility/intermittency see
[17].

Note 1 Convolution Let

Yt =
∫ t

−∞
g(t − s)σsdL

T
s

and let h be a shift kernel. Then under mild conditions (cf. the Fubini Theorem
presented in [2]) we have

∫ t

−∞
h(t − s)Ysds =

∫ t

−∞
h ∗ g(t − s)σsdL

T
s

where h ∗ g is the convolution of h and g. The resulting process is again of LSS
type, the left hand side constituting a natural operation on LSS processes while
convolution of kernels, as on the right hand, is a useful way to flexible modelling. As
a concrete example, in [43] the convolution of twogammakernels is used successfully
as description of the spectral density function in well developed turbulence.

The paper [48] discusses the case where

Yt =
∫ t

−∞
g(t − s; ν, λ)dLs (8)

in great detail. Necessary and sufficient conditions for the existence of Y are given in
terms of ν and the Lévy measure v of L, under the assumption that σ is predictable,

strongly stationary and square integrable and satisfies E
{
σ
2(1−ν)
0

}
< ∞. Provided

the Lévy measure has log moment, existence is guaranteed for all ν > 1
2 while for

0 < ν ≤ 1
2 an additional condition on the Lévy measure is needed.

Note 2 Selfdecomposability A striking example of the special character of
the gamma kernel is the fact that whenever the process (8) is well-defined the
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one-dimensional law of Y is self-decomposable even if the driving Lévy process
L does not have that property. In view of how the class of selfdecomposable distri-
butions is defined this is both remarkable and difficult to explain. (The proof given
in [48] is by direct analytical derivation and does not throw light on the probabilistic
aspect.)

On the other hand, as shown in [13], the process Y as such is selfdecomposable
if and only if L is selfdecomposable.

We conclude this Section by an illustration of the flexibility of modelling using
gamma kernels. Here, as is often convenient, the volatility/intermittency process σ 2

is taken to be of LSS form.

Example 1 BSS process with GH marginals A stationary BSS processes with gen-
eralised hyperbolic (GH) marginals was used in [7] in connection with a study on
modelling electricity spot prices by Lévy semistationary processes. As an illustration
of the versatility of BSS/LSS processes we here represent the proof of the existence
of such a GH related process.

We recall that the GH laws are analytically very tractable and have been found
to fit empirical distributions in a wide range of applications (cf. for instance [3,
30, 31, 34]. Also, in a recent extensive development of the Kolmogorov-Obukhov
statistical theory of turbulence, Björn Birnir [23–25] has formulated a stochastic
version of the Navier-Stokes equations under which the velocity differences follow
GH distributions and this theoretical study is backed by a detailed empirical and
simulation based analysis showing excellent agreement to the GH form.

The existence of stationary BSS processes having generalised hyperbolic mar-
ginals is established on the basis of the form (4) by suitable choice of g and q as
gamma kernels and by taking σ 2 as a particular LSS process, specifically as a gener-
alised inverse Gaussian Ornstein-Uhlenbeck process (GIG-OU process).

Note first that, whatever g, q and σ 2, the conditional law of Yt given σ is normal:

Yt|σ law= N

(
μ + β

∫ t

−∞
q (t − s) σ 2

s ds,
∫ t

−∞
g2 (t − s) σ 2

s ds

)
.

Now suppose that σ 2 follows an LSS process given by

σ 2
t =

∫ t

−∞
h (t − s) dLs (9)

where L is a subordinator. Then, by the stochastic Fubini theorem we find

∫ t

−∞
q (t − s) σ 2

s ds =
∫ t

−∞

∫ t

u
q (t − s) h (s − u) dsdLu

=
∫ t

−∞
k (t − u) dLu

where k = q ∗ h, the convolution of q and h. Similarly,
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∫ t

−∞
g2 (t − s) σ 2

s ds =
∫ t

−∞
m (t − u) dLu

with m = g2 ∗ h.
Next, for 1

2 < ν < 1 define g by

g (t) =
(

λ
Γ (2ν − 1)

Γ (ν)2

)− 1
2

g

(
t; ν,

λ

2

)
.

Then we have
g2(t) = g(t; 2ν − 1, λ).

Hence, if
h(t) = g(t; 2(1 − ν), λ)

and if, moreover,
q (t) = g (t; 2ν − 1, λ)

we obtain
k (t) = m(t) = e−λt .

In other words,

Yt|σ law= N
(
μ + βϑ2

t , ϑ
2
t

)

where

ϑ2
t =

∫ t

−∞
e−λ(t−u)dLu. (10)

It follows that if the subordinator L is such that ϑ2
t has the generalised inverse

Gaussian law GIG(δ, γ ) then the law of Yt is the generalised hyperbolic GH(α, β,

μ, δ) (where α = √
β2 + γ 2). The existence of such a subordinator follows from a

theorem of Jurek and Verwaat, see [38], according to which a random variable X is
representable in law on the form

X
law=

∫ ∞

0
e−λtdLT

t (11)

if and only if the distribution of X is selfdecomposable; and selfdeconposability of
GIG has been established in [33].
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3 Gamma Kernel as Green’s Function

For any γ ∈ (0, 1) and n ∈ N the Caputo fractional derivative Dn,γ is, in its basic
form, defined by

Dn,γ f (x) = Γ (1 − γ )−1
∫ x

c
(x − ξ)−γ f (n) (ξ) dξ

where f denotes any function on the interval [c,∞) which is n times differentiable
there and such that f (n) is absolutely continuous on [c,∞). This concept was intro-
duced by [27] and has since been much generalised and extensively applied in a great
variety of scientific and technical areas. For a comprehensive exposition of this and
other concepts of fractional differentiation, see [42], cf. also [1, 44, 45].

For functions f onR letMλ with λ ≥ 0 be the operatorMλf (x) = eλxf (x) and, for
0 < γ < 1 and c ∈ R, define the operator Dn,γ

λ by

D
n,γ
λ f (x) = M−1

λ DDn,γMλf (x)

where D indicates ordinary differentiation and Dn,γ is the Caputo fractional deriva-
tive.2

Now, suppose that 1 < ν < 3
2 and consider the equation

D
1,ν−1
λ f (x) = φ(x) (12)

where φ is assumed known. We seek the solution f to this equation, stipulating that
f (c) should be equal to 0, and it turns out to be

f (x) = Γ (ν)−1
∫ x

c
(x − ξ)ν−1e−λ(x−ξ)φ(ξ)dξ. (13)

In other words,
g(x) = g (x; ν, λ) = Γ (ν)−1xν−1e−λx (14)

is the Green’s function corresponding to the operator D1,ν−1
λ when 1 < ν < 3

2 .
The verification is by direct calculation. With f given by (13) we find

(Mλf )(x) = Γ (ν)−1
∫ x

c
(x − ξ)ν−1eλξφ(ξ)dξ

2The differentiation term DDn,γ may be viewed as a special case of the more general definition

Dm,n,γ = DmDn,γ

wherem, like n, is a nonnegative integer and 0 < γ < 1. ThenDm,0,γ equals the Riemann-Liouville
fractional derivative while D0,n,γ is the Caputo fractional derivative.
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so

(Mλf )
′(x) = Γ (ν − 1)−1

∫ x

c
(x − ξ)ν−2eλξφ(ξ)dξ

and hence, for any γ ∈ (0, 1),

D
1,γ
λ f (x) = Γ (ν − 1)−1Γ (1 − γ )−1e−λxD

∫ x

c
(x − ξ)−γ

∫ ξ

c
(ξ − η)ν−2eληφ(η)dηdξ

= Γ (ν − 1)−1Γ (1 − γ )−1e−λxD
∫ x

c
eληφ(η)

∫ x

η
(x − ξ)−γ (ξ − η)ν−2dξdη

= Γ (ν − 1)−1Γ (1 − γ )−1e−λxD
∫ x

c
(x − η)−γ+ν−1eληφ(η)dη

×
∫ 1

0
(1 − w)(1−γ )−1w(ν−1)−1dw

= Γ (ν − γ )−1e−λxD
∫ x

c
(x − η)−γ+ν−1eληφ(η)dη.

Consequently, for γ = ν − 1 we have

D
1,ν−1
λ f (x) = e−λxD

∫ x

c
eληφ(η)dη = φ(x).

On the other hand, in case ν ∈ (
1
2 , 1

)
the relevant equation is

D
0,ν
λ f (x) = φ(x)

and the solution is again of the form (13). In fact,

D
0,γ
λ f (x) = Γ (ν)−1Γ (1 − γ )−1e−λxD

∫ x

c
(x − ξ)−γ

∫ ξ

c
(ξ − η)ν−1eληφ(η)dηdξ

= Γ (ν)−1Γ (1 − γ )−1e−λxD
∫ x

c
eληφ(η)dη

∫ x

η

(x − ξ)−γ (ξ − η)ν−1dξ

= Γ (ν)−1Γ (1 − γ )−1e−λxD
∫ x

c
(x − η)−γ+ν eληφ(η)dη

×
∫ 1

0
(1 − w)(1−γ )−1w(ν−1)−1dw

= Γ (ν)−1Γ (1 − γ )−1e−λxD
∫ x

c
(x − η)−γ+ν eληφ(η)dη

×
∫ 1

0
(1 − w)(1−γ )−1w(ν−1)−1dw

= Γ (1 − γ + ν)−1e−λxD
∫ x

c
(x − η)−γ+ν eληφ(η)dη
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and with γ = ν we have
D

0,ν
λ f (x) = φ (x) .

Thus, in both cases, 1
2 < ν < 1 and 1 < ν < 3

2 , the gamma kernel (14) occurs
as the Green’s function. In the former case the differential operator is of Riemann-
Liouville type and in the latter of Caputo type.

This suggests, in particular, that for suitable choice of g and q as gamma kernels
there may exist an extension of the definition of Caputo derivatives (corresponding
to taking the limit c → −∞) such that the process (4) may be viewed as the solution
to a stochastic differential equation of the form DYt = σt Ḃ + βσ 2

t .

Note 3 Introducing the operator Iνλ by

Iνλφ = M−1
λ D0,ν−1Mλφ

we may reexpress formula (13) as

f = Iνλφ

and the calculation above shows that

D
1,ν−1
λ Iνλ = I (15)

where I denotes the identity operator. Thus D1,ν−1
λ is the left inverse of Iνλ .

The operator Iνλ also has a right inverse (where, again, 1 < ν < 3
2 ). To determine

that, let
J1,γλ = M−1

λ D1,γMλ

(where γ ∈ (0, 1)). Then

IνλJ
1,γ
λ f (x) = M−1

λ D0,ν−1MλΓ (γ )−1 e−λx
∫ x

c
(x − ξ)−γ

(
eλξ f (ξ)

)′
dξ

= Γ (γ )−1 e−λxD0,ν−1
∫ x

c
(x − ξ)−γ

(
eλξ f (ξ)

)′
dξ

= 1

Γ (γ ) Γ (ν − 1)
e−λx

∫ x

c
(x − ξ)1−ν

∫ ξ

c
(ξ − η)−γ

(
eληf (η)

)′
dηdξ

= 1

Γ (γ ) Γ (ν − 1)
e−λx

∫ x

c

(
eληf (η)

)′
dη

∫ x

η
(x − ξ)1−ν (ξ − η)−γ dξ

= 1

Γ (γ ) Γ (ν − 1)
e−λx

∫ x

c
(x − η)2−ν−γ

(
eληf (η)

)′
dη

×
∫ 1

0
(1 − w)2−ν−1 w1−γ−1dw

= B (2 − ν, 1 − γ )

Γ (γ ) Γ (1 − ν)
e−λx

∫ x

c
(x − η)2−ν−γ

(
eληf (η)

)′
dη.
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So, for γ = 2 − ν we have
IνλJ

1,γ
λ f (x) = f (x) ,

i.e. J1,2−ν
λ is the right inverse of Iνλ .

Remark 1 In view of the link to fractional differentiation established in the present
Section it is pertinent briefly to refer to the broad range of studies of the relevance
of (multi)fractional calculus to turbulence modelling existing in the literature. Some
links between that literature and the ambit modelling approach are given in [52].

Another related line of study is that of space-time fractional diffusion equations
and the possibility of interpreting the associated Green’s functions as probability
densities, see [46, 55].

4 Autocorrelation

The autocorrelation function r of the Gaussian base process (3) is

r (u) =
∫ ∞
0 g (u + s) g (s) ds∫ ∞

0 g2 (s) ds
(16)

and

E
{
(Gt+u − Gt)

2
} =

∫ ∞

0
ψu (v) dv = 2

∫ ∞

0
g2 (s) dsr̄ (u) (17)

where
r̄ (u) = 1 − r (u) (18)

is the complementary autocorrelation function of G.
When g is the gamma kernel (5) the autocorrelation function is expressible in

terms of the type K Bessel functions. Specifically

r (u) = 2−ν+ 3
2 Γ

(
ν − 1

2

)−1

K̄ν− 1
2
(λu) (19)

where, for all real ν, K̄ is defined as K̄ν (x) = xνKν (x). This function (19) equals the
Whittle-Matérn autocorrelation function which is widely used in geostatistics and
other areas of spatial statistics as the autocorrelation between two points a distance
u apart in d-dimensional Euclidean space, see [37].

The asymptotic behaviour of r as u tends to 0 is of special interest and this is
given by
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2−2ν+1 Γ
(
3
2 − ν

)
Γ

(
1
2 + ν

)u2ν−1 + O(u2) for 1
2 < ν < 3

2

r̄ (u) ∼ 1

2
u| ln u

2
| + O(u3| ln(u)|) for ν = 3

2 (20)

1

2

Γ (ν − 5
2 )

Γ
(
ν − 1

2

)u2 + O(u3| ln(u)|) for 3
2 < ν

In a paper from 1948 [40] von Karmann discussed the behaviour of the double
correlation functions in three dimensional homogeneous and isotropic turbulence.
These functions are defined by

φ (r) = u (x1, x2, x3) u (x1 + r, x2, x3)

u2
(21)

and

ψ (r) = u (x1, x2, x3) u (x1, x2 + r, x3)

u2
(22)

where u denotes the main component of the three-dimensional velocity vector (i.e.
the component in the mean wind direction) and the overbar indicates mean value.
Due to the continuity equation for incompressible fluids the functions ψ and φ are
related by

ψ (r) = φ (r) + r

2
φ′ (r) , (23)

see [41], cf. also Sect. 6.2.1 of [32]. Von Karmann sets up a series of physically based
assumptions concerning this type of turbulence and supplementing these assump-
tions with some speculative reasoning he arrived at the following proposal for the
functional form of φ

φ (r) = 22/3

Γ (1/3)
r1/3K1/3 (r) . (24)

Amain point in vonKarmann’s argument was that the spectral density corresponding
to this functional form interpolates smoothly between behaving as a fourth power
near the origin and decaying at exponential rate−5/3 for large frequencies.3 Both of
these traits correspond to well documented empirical behaviour, and the 5/3 rate is
the spectral counterpart to Kolmogorov’s 2/3 law. In the same paper von Karmann
compared this form, or rather that of the transversal correlation function ψ , to wind
tunnel data obtained at California Institute of Technology and found a fair agreement
between the observations and ψ , as determined from (23).

3The −5/3 behaviour is very manifest in the socalled inertial range but, as documented by later,
extensive and accurate measurements, for the largest frequencies (the dissipation range) the spectral
density decreases at a much faster rate. The total behaviour of the spectral density is accurately
described by a formula due to Skharofsky, see for instance Fig. 5 in [35].
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We note that if φ has the form (19) then ψ as determined from (23) is given by

ψ (r) = 2−ν+ 3
2 Γ

(
ν − 1

2

)−1 (
K̄ν− 1

2
(r) + 1

2
rK̄ ′

ν− 1
2
(r)

)
. (25)

It follows from elementary properties of the Bessel functions K that we have the
simple relation

K̄ ′
ν(x) = −xK̄ν−1(x). (26)

Hence

ψ (r) = 2−ν+ 3
2 Γ

(
ν − 1

2

)−1 (
K̄ν− 1

2
(r) − 1

2
r2K̄ν− 3

2
(r)

)

= 2−ν+ 3
2 Γ

(
ν − 1

2

)−1 (
K̄ν− 1

2
(r) − 1

2
rν+ 1

2Kν− 3
2
(r)

)

= 2−ν+ 3
2 Γ

(
ν − 1

2

)−1 (
K̄ν− 1

2
(r) − 1

2
rν+ 1

2K 3
2 −ν(r)

)

i.e.

ψ (r) = 2−ν+ 3
2 Γ

(
ν − 1

2

)−1 (
K̄ν− 1

2
(r) − 1

2
r2ν−1K̄ 3

2 −ν(r)

)
. (27)

One sees that r (u) = φ̄ (u) where φ̄ (u) = 1 − φ (u); thus the asymptotic behav-
iour of φ̄ (u) as u → 0 is determined by (20). As regards the asymptotic properties
of the complementary autocorrelation function ψ̄ (u) = 1 − ψ (u) of the transversal
velocities it follows immediately from the Table that, for 1

2 < ν < 3
2 and u → 0, the

leading terms of the expansions of φ̄ (u) and ψ̄ (u) are both of order u2ν−1.
Formula (24) is a special case, obtained for ν = 5

6 , of the general form of auto-
correlation function (19). von Karmann’s derivation was not based on any specified
probability structure ormodel. Thegeneral form (19), obtainedby aFourier inversion,
was proposed as correlation function by [53] (Russian Edition 1959). As mentioned
above, that form is also known as the Whittle-Matérn correlation function. Note that
the von Karmann-Tatarski specification refers to spatial correlations whereas that of
(19) concerns timewise correlation. However, the Taylor Frozen Field Hypothesis4

provides a direct physical link between the two results.

Note 4 Expressed in terms of φ (r) itself, rather than the spectrum of φ, the basis
for von Karmann’s proposal was that φ̄ (r) provides a good fit to the behaviour of
the second order structure function both over the inertial subrange (the 2/3 law) and
at large lags. It follows from the Table (20) that the 2/3 behaviour in fact extends
all the way down to 0. Turning this observation around, the indication is that, by the

4The Hypothesis states that spatial and temporal increments of the main component of the velocity
vector are equivalent in law up to a proportional change of time. Cf. for instance [43].
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nature of the gamma kernel, the asymptotic behaviour of the third order structure
function near 0, which is linear, extends to the inertial subrange.

Note 5 Moving average processes with bi-gamma kernel The results in (20)
may also be used for describing the small scale behaviour of the following moving
average process with a gamma type kernel.

Consider the stationary Gaussian moving average process given by

Yt =
∫ ∞

−∞
g (t − s; ν, λ, μ, κ) dBs (28)

where B is Brownian motion on R and

g (t; ν, λ, μ, κ) =
{

tν−1e−λt for t > 0;
|t|μ−1 e−κ|t| for t < 0.

We refer to this as the bi-gamma kernel. In case μ = ν and κ = λ the kernel is
symmetric around 0 andmay be written as g (|t| ; ν, λ). The process Y is well defined
provided both ν and μ are greater than 1

2 , and it may be rewritten as

Yt =
∫ t

−∞
(t − s)ν−1 e−λ(t−s)dBs +

∫ ∞

t
(s − t)μ−1 e−κ(s−t)dBs.

Here

E {Y0Yu} =
∫ ∞

0
g (s; ν, λ) g (u + s; ν, λ) ds

+
∫ u

0
g (s;μ, κ) g (u − s; ν, λ) ds

+
∫ ∞

u
g (s;μ, κ) g (s − u;μ, κ) ds.

By Formula 3.383.1 in [36] we find

∫ u

0
g (s;μ, κ) g (u − s; ν, λ) ds =

∫ u

0
sμ−1e−κs (u − s)ν−1 e−λ(u−s)ds

= e−λu
∫ u

0
sμ−1 (u − s)ν−1 e−(λ+κ)sds

= e−λuB (ν, μ) 1F1 (μ; ν + μ; λ + κ) uλ+κ−1

where 1F1 is the general hypergeometric function, andwe have ([36], Formula 9.14.1)

1F1 (μ; ν + μ; (λ + κ)) =
∞∑
k=0

(μ)k

(ν + μ)k

(λ + κ)k

k! .
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All in all this implies that for u → 0 the second order structure function of (28)
is of the form

S2 (u) = cu2ν−1 + c′u2μ−1 − c′′uν+μ−1

where c, c′ and c′′ are positive constants. Thus, in particular, if 1
2 < ν < 3

2 and
1
2 < κ < 3

2 then

S2 (u) ∼
⎧⎨
⎩

cu2ν−1 for ν < μ;(
c + c′ − c′′) u2ν−1 for ν = μ;

c′u2μ−1 for ν > μ.

(29)

5 Pathwise Behaviour

The fine structure of BSS and LSS processes is discussed in [47, 49].
In [47] the authors establish a connection between the path behaviour of the BSS

process

Yt =
∫ t

−∞
(t − s)ν−1 e−λ(t−s)dBs (30)

and that of the fractional Ornstein-Uhlenbeck process YH with index H, that is

YH
t =

∫ t

−∞
e−λ(t−s)dBH

s , (31)

under the assumption that H = ν − 1
2 and ν ∈ (

1
2 , 1

) ∪ (
1, 3

2

)
so that we are in the

nonsemimartingale case. While both of these are stationary Gaussian processes, the
former is in many situations more realistic in regard to applications, particularly
for ν = 5/6 which corresponds to von Karmann’s spectral density function. This is
the case in particular for turbulence modelling. The key difference lies in the tail
behaviour of the increments for large lags.

The following result is established in [47].

Theorem 1 For all t > 0
Yt = YH

t − Dt (32)

where D ∈ C1 ([0,∞)). A concrete representation of the process D is available:

Dt =
∫ t

−∞

∫ t

s

(
e−λ(t−u) − e−λ(t−s)

) ∂

∂u
KH (u, s) dudBs

where KH denotes the kernel for the fractional Brownian motion, i.e.

KH (t, s) = (t − s)
H− 1

2+ − (−s)
H− 1

2+ .
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Similarly Y may be represented as

Yt = BH
t − Vt

where V is an absolutely continuous process.
The stochastic analysis for volatility modulated Lévy-driven Volterra processes,

developed in [4, 5, 13], is an important tool in the derivation of these results. Together
these three papers constitute a foundation for an Ito calculus for BSS and LSS
processes.

6 Recovery and Inference

Once a BSS or LSS model has been formulated the question arises as to what can be
learned about the components of the model, either in law or pathwise. In discussing
this we will, unless otherwise mentioned, assume that the skewness terms are absent.

Thus let

Yt =
∫ t

−∞
g(t − s)σsdL

T
s (33)

where LT denotes a Lévy process L time changed by a chronometer T (i.e. a cadlag
increasing process such that T (t) → −∞ for t → −∞ and T (t) → ∞ for t → ∞).
The question has several aspects: (i) In case the process has been observed continu-
ously over an interval, can any of the model components be exactly determined (ii)
Under what conditions does the law of Y uniquely determine the kernel g or the laws
of σ or L or T (iii) If the data available consists of high frequency observations, what
inference procedures for assessing some or all of the components might be available;
in particular, what can be said about the volatility/intermittency process σ 2.

Below we exemplify these aspects. For additional results, proofs and references
see [50, 51].

(i) The following example presents a case where concrete pathwise recovery of
LT over the interval (−∞, t) is possible if Y has been observed continuously over
the same interval

Example 2 Suppose that g is the gamma kernel and that σ ≡ 1 and T = t, that is

Yt =
∫ t

−∞
g (t − s; ν, λ) dLs.

By the stochastic Fubini theorem (cf. [2]) we find for ν ∈ (
1
2 , 1

)
and letting

Zt =
∫ t

−∞
g (t − u; 1 − ν, λ) Yudu
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that

Zt =
∫ t

0

∫ u

−∞
g (t − u; 1 − ν, λ) g (u − s; ν, λ) dLsdu

=
∫ t

−∞

∫ t

s
g (t − u; 1 − ν, λ) g (u − s; ν, λ) dudLs

=
∫ t

−∞

∫ t−s

0
g (w; 1 − ν, λ) g (t − s − w; ν, λ) dwdLs

=
∫ t

−∞
g (t − s; 1, λ) dLT

s = c
∫ t

−∞
e−λ(t−s)dLs

for a constant c. Hence

Z+
t =

∫ t

0
Zsds =

∫ t

0

∫ s

−∞
e−λ(s−u)dLuds

=
∫ t

−∞

∫ t

u
e−λ(s−u)dsdLu

= λ−1
∫ t

−∞

(
1 − e−λ(t−u)

)
dLu = λ−1 (Lt − Zt)

or
L = λZ+ + Z.

It is noteworthy here that L is explicitly recoverable in spite of the fact that with
ν ∈ (

1
2 , 1

)
the kernel g (t; ν, λ) tends to ∞ for t → 0.

Note 6 Under a minor regularity condition on the time change T , the same
argument goes through, giving that LT = λZ+ + Z .

Note 7 For general moving average processes driven by Lévy noise

Yt =
∫ ∞

−∞
g (t − s)L (ds)

recovery of L from complete knowledge of the realisation of Y on R is, subject to
regularity restrictions on g and L, possible in terms of linear limit operations. This
applies in particular for the gamma kernel and in that case {Ls : s ≤ t} is recoverable
from {Ys : s ∈ R}, see [50].

Consider the class G of kernels g such that g is integrable with non-vanishing
Fourier transform. This is the case in particular for the gamma kernel who’s Fourier
transform is

ĝ (ζ ; ν, λ) = λν

Γ (ν)
(λ − iζ )−ν .

It is shown in [51] that if g ∈ G and
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Yt =
∫ t

−∞
g(t − s)dLT

s ,

with T a subordinator independent of L, then the law of T is completely determined
by the laws of L and Y . This is thus, in particular, the case when g is of the gamma
type.

(ii) The paper [39], cf. also [26], introduces a powerful nonparametric procedure
for estimation of the kernel function for BSS processes

Yt =
∫ t

−∞
g (t − s) σsdBs

with kernel function g in G . This is done through determining g from the autocorre-
lation function

r (u) =
∫ ∞

0
g (s + |u|) g (s) ds.

Numerically the gamma kernel is used as a test case. (Earlier approaches to the
estimation of the kernel are presented in [26].)

(iii) A key question of inference for BSS and LSS models is how to assess the
inherent volatility σ 2. More specifically, the wish will typically be to draw accurate
inference on the accumulated volatility

σ 2+
t =

∫ t

0
σ 2
s ds.

The realised quadratic variation is a natural initial tool to this end and for BSS
processes Y , as given by (1), that will under mild conditions yield a consistent
estimator of σ 2+

t provided Y is a semimartingale, i.e. it will hold that

[Yδ]t
p→ σ 2+

t as δ → 0.

However, suppose that

Yt =
∫ t

−∞
g (t − s; ν, λ) σsdBs

with ν ∈ (
1
2 , 1

) ∪ (1, 3
2 ]. Then Y is not a semimartingale and the realised quadratic

variation [Yδ]t converges to ∞ for ν ∈ (
1
2 , 1

)
and to 0 for ν ∈ (1, 3

2 ]. The rate of
these convergences is determined by ν. For instance, when ν ∈ (

1
2 , 1

)
we have

cδ2(1−ν) [Yδ]t
p→ σ 2+

t as δ → 0

where c = λ22(1−ν)Γ (2ν − 1) /Γ (ν)2.
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Obtaining estimates of ν as a way to inference on σ 2+
t , in particular through stable

central limit theorems, requires advanced reasoning. The papers [9, 10, 29] develop
the theory of multipower variations for this and related purposes. In particular, the
latter two papers discuss the use of COF (change-of-frequency) statistics. Similar
points for LSS processes are discussed in [49].

So far we have, for simplicity of discussion, assumed that the skewness terms
in the BSS/LSS processes are 0. When this is not the case it is still possible, under
certain conditions, to establish stable central limit theorems, as shown in the above-
mentioned papers. However, consider the case.where Y is of the form (4) and g and
q are given respectively as g (t; ν, λ) and g

(
t; ν − 1

2 , λ
)
for ν ∈ (

1
2 , 1

)
, cf. (6). Then

the skewness term contains information on the volatility/intermittency process. In
fact, it can be shown that then

δ2(1−ν) [Yδ]t
p→ c

∫ t

0
σ 2
s ds + c′

∫ t

0
σ 4
s ds

for certain constants c and c′ and where [Yδ]t is the quadratic variation of Y over the
interval (0, t) at lag δ.

Recently a powerful procedure for simulation of BSS processes is presented in
[20], under the assumption that the kernel function is regularly varying at 0, as is the
case for the gamma kernel with ν ∈ (

1
2 , 1

)
, and the method is applied successfully

for inference on ν (referred to as the roughness parameter). Approximation of LSS
processes by Fourier methods is discussed in [21].

As long as the interest is solely in regard to relative volatility, inference on ν

can be avoided by using the realised relative volatility, defined as [Yδ]t / [Yδ]T for
0 < t < T . This yields

[Yδ]t / [Yδ]T
p→ σ 2+

t /σ 2+
T as δ → 0.

Associated confidence intervals based on a stable central limit theorem have been
developed in [12].
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Explicit Computations for Some Markov
Modulated Counting Processes

Michel Mandjes and Peter Spreij

Abstract In this paper we present elementary computations for someMarkov mod-
ulated counting processes, also called counting processes with regime switching.
Regime switching has become an increasingly popular concept in many branches
of science. In finance, for instance, one could identify the background process with
the ‘state of the economy’, to which asset prices react, or as an identification of the
varying default rate of an obligor. The key feature of the counting processes in this
paper is that their intensity processes are functions of a finite state Markov chain.
This kind of processes can be used tomodel default events of some companies. Many
quantities of interest in this paper, like conditional characteristic functions, can all
be derived from conditional probabilities, which can, in principle, be analytically
computed. We will also study limit results for models with rapid switching, which
occur when inflating the intensity matrix of the Markov chain by a factor tending to
infinity. The paper is largely expository in nature, with a didactic flavor.

Keywords Counting process ·Markov chain ·Markovmodulated process ·Regime
switching

AMS subject classification: 60G44 · 60G55 · 60J27

M. Mandjes · P. Spreij (B)
Korteweg-de Vries Institute for Mathematics, Universiteit van Amsterdam,
PO Box 94248, 1090 GE Amsterdam, The Netherlands
e-mail: spreij@uva.nl

M. Mandjes
e-mail: m.r.h.mandjes@uva.nl

P. Spreij
IMAPP, Radboud Universiteit, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands

© Springer International Publishing Switzerland 2016
J. Kallsen and A. Papapantoleon (eds.), Advanced Modelling in Mathematical Finance,
Springer Proceedings in Mathematics & Statistics 189,
DOI 10.1007/978-3-319-45875-5_3

63



64 M. Mandjes and P. Spreij

1 Introduction

In this paper we present some elementary computations concerning some Markov
modulated (MM) counting processes, denotedN , also called counting processes with
regime switching. Such processes fall into the class of hybrid models [29] and are in
fact Hidden Markov processes [10]. Although in the present paper we restrict our-
selves to certain counting processes, it is worth mentioning that owing to its various
attractive features, regime switching has become an increasingly popular concept
in many branches of science. In a broad spectrum of application domains it offers
a natural framework for modeling situations in which the stochastic process under
study reacts to an autonomously evolving environment. In finance, for instance, one
could identify the background process with the ‘state of the economy’, to which asset
prices react, or as an identification of the varying default rate of an obligor. In oper-
ations research, in particular in wireless networks, the concept can be used to model
the channel conditions that vary in time, and to which users react. In the literature
in the latter field there is a sizeable body of work on Markov-modulated queues, see
e.g. [2, Chap. XI] and [27], while Markov modulation has been intensively used in
insurance and risk theory as well [3]. In the economics literature, the use of regime
switching dates back to at least the late 1980s [16]. Various specific models have
been considered since then, see for instance [1, 11, 12]. For other direct applications
of models with regime switching in finance (hedging of claims, interest rate models,
credit risk, application to pension funds) we refer to [8, 22, 23, 30, 31] for recent
results.

The key feature of the counting processes, commonly denoted N , in this paper
is that their intensity processes are of the form λt = λ(Xt,Nt), where X is a finite
state Markov chain whose jumps with probability one never coincide with the jumps
of the counting process. For mathematical convenience we assume without loss of
generality that X takes its values in the set of d-dimensional basis vectors.

This kind of processes can be used to model default events of some companies.
We restrict our treatment to models where the intensity is of a special form, leading
to theMM one point process which can be used to model the default event of a single
company, its extension to the situation of defaults of various companies and an MM
Poisson process, which can be used to model defaults for a large pool of obligors
whose individual intensities of default are all the same and small.

The intensities λt = λ(Xt,Nt) that we use will be affine in Xt , i.e. λt=λ�Xtf (Nt)

for some λ ∈ R
d and some function f . It is possible to show that the joint process

(X,N) isMarkov, in fact it is an affine process after a state transformation. Thismeans
that for many quantities of interest, like conditional characteristic functions, one can
in principle use the full technical apparatus that has become available for affine
process, see [9]. However, as these quantities can all be derived from conditional
probabilities (our processes are finite, or at most countably, valued), using these
techniques is like making a detour since the conditional probabilities can be derived
by more straightforward methods. Moreover these conditional probabilities give a
direct insight into the probabilistic structure of the process and can in principle be
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analytically computed. Therefore, we circumvent the theory of affine processes and
focus on direct computation of all conditional probabilities of interest.

Wewill also study limit results formodelswith rapid switching,which occurwhen
inflating the intensitymatrix of theMarkov chain by a factor tending to infinity. Rapid
switching between (macro) economic states is unrealistic, but in models for the profit
and loss of trading positions, especially in high frequency trading, rapid switching
may take place, see [15]. We will see that the limit processes have intensities that
are expectations under the invariant distribution of the chain. This is similar to what
happens in the context of Markov modulated Ornstein-Uhlenbeck processes [18],
see also [19], whereas comparable results under scaling in the operations research
literature can be found in [5, 6].

The paper is largely expository in nature, with a didactic flavor. We do not claim
novelty of all results below. Rather we emphasize the uniform approach that we
follow, using martingale methods, that may also lead to alternative proofs of known
results, e.g. those concerning transition probabilities by using ‘ε-arguments’ as in
[27]. The organization of the paper is as follows. In Sect. 2 we study Markov modu-
lated model for the total number of defaults when there are n obligors. As a primer,
in Sect. 2.1 we extensively study the Markov modulated model for a single obligor,
in particular its distributional properties. Then we switch to the more general situa-
tion of Sect. 2.2, where our approach is inspired by the easier case of the previous
section. All results are basically obtained by exploiting the Markovian nature of the
joint process (X,N). Section3 gives a few results for the Markov modulated Poisson
process. Conditional probabilities of future values of the counting processes, when
only its own past can be observed (and not the underlying Markov chain) can be
computed using filtering theory, which is the topic of Sect. 4. In Sect. 5 we obtain the
limit results for processes where the Markov chain is rapidly switching.

2 The MMModel for Multiple Obligors

We assume throughout that a probability space (Ω,F ,P) is given. Suppose we
have n obligors with default times τ i for obligor i, i = 0, . . . , n. Let Yi

t = 1{τ i≤t},
t ∈ [0,∞). Here we encounter the canonical set-up for the intensity based approach
in credit risk modelling, see [13, Chap. 12] or [4, Chap. 6] for further details on
probabilistic aspects. We postulate for each i ∈ {1, . . . , n}

dYi
t = λt(1 − Yi

t ) dt + dmi
t, (1)

for λt a nonnegative process to be specified, but which is the same for each obligor
i. Here each mi is a martingale w.r.t. to the filtration, call it Fi, generated by Yi

and the process λ. We impose that the τi are conditionally independent given λ.
Hence, simultaneous defaults occur with probability zero, as the τ i have a continuous
distribution. By the conditional independence assumption, themi are alsomartingales
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w.r.t. F = ∨n
i=1F

i. The process λ is assumed to be predictable w.r.t. F. In all what
follows in this section we take Nt = ∑n

i=1 Y
i
t .

2.1 The MM One Point Process

For a better understanding of what follows, we single out the special case n = 1 and
we write τ instead of τ 1. There is some advantage in starting with a simpler case that
allows for more explicit formulas, is more transparent, and that at the same time can
serve as a warming up for the more general setting.

2.1.1 The General One Point Process with Intensity

Let us consider the basic case, the random variable τ has an exponential distribution
with parameter λ, and Yt = 1{τ≤t}, t ∈ [0,∞). Then Y has semimartingale decom-
position

dYt = λ(1 − Yt) dt + dmt, (2)

where λ > 0 and m a martingale w.r.t. the filtration generated by the process Y . As a
matter of fact, the distributional property of τ is equivalent to the decomposition of
Y in (2). Clearly Yt is a Bernoulli random variable, so y(t) := EYt = P(Yt = 1) =
P(τ ≤ t). Alternatively, taking expectations, we get the ODE

ẏ(t) = λ(1 − y(t)),

which is, with y(0) = 0, indeed solved by

y(t) = 1 − exp(−λt).

Let Λτ be the compensator of Y , then

Λτ
t =

∫ t

0
λ(1 − Ys) ds =

∫ t

0
λ1{s<τ } ds =

∫ t∧τ

0
λ ds = λ(τ ∧ t).

Note that Y can be considered as Nτ , the at τ stopped Poisson process with intensity
λ. The compensator Λ of N stopped at τ indeed yields Λτ .

As a first generalization we change the above setup in the sense that we postulate

dYt = λt(1 − Yt) dt + dmt, (3)

where λ is a nonnegative locally integrable Borel function, also known as the (time
varying) hazard rate. As above one can show that
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y(t) = 1 − exp

(
−

∫ t

0
λs ds

)
.

In a next generalization we suppose that λ becomes a random process defined on
an auxiliary probability space (Ω ′,F ′,P′). We can look at the product probability
space (Ω × Ω ′,F ⊗ F ′,P ⊗ P

′) and redefine in the obvious way Y , τ and λ on
this product space. The filtration we will use consists of the σ -algebras F Y

t ⊗ F λ
t .

It is assumed that λ is predictable and a.s. locally integrable w.r.t. Lebesgue mea-
sure. For a given trajectory λt = λt(ω

′) we define Y on (Ω,F ,P) as in (3). With
F λ the σ -algebra generated by the full process λ, we have that

E[Yt|F λ] = 1 − exp

(
−

∫ t

0
λs ds

)
,

and hence

y(t) = EYt = 1 − E exp

(
−

∫ t

0
λs ds

)
.

Alternatively, one can construct the point process Y as follows. Let (Ω,F ,Q) be a
probability space onwhich is defined a standard Poisson processY and independently
of Y the nonnegative predictable process λ. Put Lt = E (μ)t , the Doléans exponential
of the Q-local martingale μ given by μt = ∫ t

0 (λs1{Ys−=0} − 1) d(Ys − s). Note that
L0 = 1. Let τk be the consecutive jump times of Y , τ0 = 0. Note that the differences
τk − τk−1 have a standard exponential distribution under Q. The assertion of the
following lemma is a variation on Eq. (4.23) in [4].

Lemma 1 The density process L allows the following explicit expression,

Lt = (λτ1)
Yt exp

(
t −

∫ τ1∧t

0
λs ds

)
1{Yt≤1}.

If λ is a bounded process, L is a martingale, hence ELt = L0 = 1.

Proof By construction, L is a local martingale. For bounded λ we have E
∫ t
0 L

2
s ds ≤

C exp(2t) for some constant C, which yields L a square integrable martingale. The
given expression for Lt can be verified by an elementary, but slightly tedious com-
putation.

Under the assumption that L is a martingale (guaranteed for bounded λ), by Gir-
sanov’s theorem, see [7, Chap. VI, T3 and T4], we can define for every T > 0 a
probability P on (Ω,FT ) such that

mt := Yt − t − 〈Y , μ〉t = Yt −
∫ t

0
λs1{Ys−=0} ds

is a localmartingale underP. Note thatP(YT > 1) = EQ1{YT>1}LT = 0.Hence, under
P we have 1{Ys=0} = 1 − Ys and the expression for mt coincides with (3) for t ≤ T .
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Note that L cannot be uniformly integrable, since L∞ = 0, which follows from Lτ2 =
0. Hence it is not automatic that one can define a probability P on (Ω,F ) such that
m is a martingale on [0,∞). Note that the laws under P and Q of λ are the same.

2.1.2 The One Point Process with MM Intensity

In this section we consider (3), where we specify λt as a function of a finite state
Markov chain Xt , i.e. λt = λ(Xt). We see that, trivial cases excluded, unlike the
constant hazard rate λ in (2), we now have a rate that assumes different values
according to the states of the Markov chain. We thus have a rate that is subject to
regime switching, one also says that we have a Markov modulated rate. In order
to pose a precise mathematical model, we make some conventions. Let d be the
size of the state space of the Markov chain X. Then w.l.o.g. we may assume that X
takes its values in the set {e1, . . . , ed} of d-dimensional standard basis vectors. This
implies that any function of Xt can be written as a linear map of Xt , in particular
λ(Xt) = λ�Xt , where on the right hand side λ is a vector in Rd+.

Let Q be the transition matrix of X, for which we use the convention that Qij

for i �= j is the intensity of a transition from state j to state i. As a consequence the
column sums of Q are equal to zero. We then have

dXt = QXt dt + dMX
t ,

whereMX a martingale with values in Rd . We also assume that Q is irreducible and
we denote by π the vector representing the invariant distribution.

Furthermore it will be throughout assumed that Y and X have no simultaneous
jumps, hence the quadratic variation process [X,Y ] ([X,Y ]t = ∑

s≤t ΔXsΔYs) is
identically zero.

For the single obligor case, we pose the following model with regime switching,

dYt = λ�Xt(1 − Yt) dt + dmt,

where λ ∈ R
d+.

One way of constructing this model is by realizing it on a product space with
λt = λ�Xt as in Sect. 2.1.1. Alternatively, one can realize Y as standard Poisson
process and independently of it, X as a Markov chain on the auxiliary space under
Q. By independence, one has [X,Y ] = 0 under Q and as these brackets remain the
same under an absolutely continuous change of measure using the Q-martingale μ

of the previous section, we are then guaranteed to have [X,Y ] = 0 under P as well.
In this case it is possible to have P defined on (Ω,F ) for F = F∞, where we use
the filtration generated by Y and X. As a side remark we note that P will not be
absolutely continuous w.r.t. Q on F∞.
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In all what follows in this paper we adopt the following Convention: we will use the
generic notation M for a martingale, possibly even of varying dimensions, whose
precise form is not important.

An important role will be played by the matrices Qkλ := Q − k diag(λ) for k ≥ 0.
Here diag(λ) is the diagonal matrix with ii-element equal to λi. Here is a, possibly
known, stability result for the matrix Qλ (we take k = 1, but a similar result is
obviously true for all positive k).

Lemma 2 Let λi > 0 for all i. Then the matrix Qλ is invertible and exp(Qλt) → 0
for t → ∞.

Proof That Qλ is invertible, can be seen as follows. Write

Qλ = −(I − Qdiag(λ)−1)diag(λ)

and note that Qdiag(λ)−1 is also the intensity matrix of a Markov chain, as its off-
diagonal elements are positive and 1�Qdiag(λ)−1 = 0. Therefore I − Qdiag(λ)−1 is
invertible, and so is Qλ.

In proving the limit result, we give a probabilistic argument.1 Consider the aug-
mented matrix

Qa
λ =

(
0 −1�Qλ

0 Qλ

)
,

which is the transitionmatrix of aMarkov chain taking values in {ea0, . . . , ead}, labelled
as the standard basis vectors of Rd+1. Clearly, 0 is an absorbing state, and the only
one.Hencewhatever initial state xa(0), we have that exp(Qa

λt)x
a(0) → ea0 for t → ∞.

Computing the exponential and taking xa(0) �= ea0, we find

exp(Qa
λt)x

a =
(
1 1�(I − exp(Qλt))
0 exp(Qλt)

)
xa(0) =

(
1�(I − exp(Qλt))x(0)

exp(Qλt)x(0)

)
.

Hence exp(Qλt) → 0.

In a next section, see Remark 2, we shall see how to compute P(Yt = 1). It turns out
to be the case that

P(Yt = 1) = 1 − 1� exp(Qλt)x(0).

We conclude in view of Lemma 2 that P(Yt = 1) → 1 for t → ∞. Hence, with
probability one, the obligor eventually defaults, as expected.

1This argument has been provided by Koen de Turck, University of Ghent.
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2.2 The MMModel for Multiple Obligors

In Sect. 2.1.2 we have seen results for default processes in the situation of a single
obligor. In the present section we generalize those results, at the cost of considerably
more complexity, to the situation of multiple obligors.

2.2.1 Multiple Obligors with Time-Varying Intensity

Recall (1). Let’s first look at the constant intensity case, λt = λ > 0. Then Nt =∑n
i=1 Y

i
t satisfies

dNt = λ(n − Nt) dt + dmt, (4)

where m = ∑n
i=1 m

i. By the independence of the default times, m is a martingale
w.r.t. F andNt has the Bin(n, 1 − exp(−λt)) distribution. Moreover, givenNu, u ≤ s,
Nt − Ns has for t > s the Bin(n − Ns, 1 − exp(−λ(t − s))) distribution. This model
has long ago been used in software reliability going back to [21], with various refine-
ments, like in a Bayesian set up the parameters n and λ being random, see [25, 26]
or with time varying but deterministic intensity function λ(t), see [14].

Next we look at the case of time varying, possibly random, λ. By the assumed con-
ditional independence of the τ i given λ we have, similar to the constant λ case,
that Nt , conditional on the process λ, has a Bin(n, 1 − exp(−Λt)) distribution with
Λt = ∫ t

0 λs ds.
Let pk(t) = P(Nt = k|F λ), put

p(t) =
⎛
⎜⎝
p0(t)

...

pn(t)

⎞
⎟⎠

and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−n 0 · · · · · · · · · 0
n −(n − 1) 0 · · · · · · 0
0 n − 1 −(n − 2) 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . −1 0

0 · · · · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Then we have for p(t) the system of differential equations

ṗ(t) = λtAp(t),

which has solution (here we use that λ is real-valued)
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p(t) = exp(ΛtA)e0,

where Λt = ∫ t
0 λs ds and e0 is the first standard basis vector of Rn+1. For the vector

whose elements are the unconditional probabilities P(Nt = k) one has to take the
expectation and it depends on the specification of λ whether this results in analytic
expressions.Wewill see that this happens in case of aMarkovmodulated rate process.

2.2.2 The MM Case

We assume to have a finite state Markov process as in Sect. 2.1.2 and let λt = λ�Xt−.
For Nt one now has its submartingale decomposition

dNt = λ�Xt(n − Nt) dt + dmt .

This is the model of Sect. 2.1.2 extended to more obligors. The default rate for each
obligor has become random (λ�Xt), but is taken the same for all of them.

Let νk
t = 1{Nt=k}, k = 0, . . . , n. For notational convenience we set ν−1

t = 0. It
follows that Δνk

t = 1 iff Nt jumps from k − 1 to k at t, and Δνk
t = −1 iff Nt jumps

from k to k + 1. This can be summarized by

dνk
t = (νk−1

t− − νk
t−) dNt .

In vector form this becomes

dνt = (J − I)νt− dNt, (6)

where

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1 0

0 1
. . .

...
. . .

. . .
. . . 0

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Using the dynamics for N , we get

dνk
t = (νk−1

t− − νk
t−)(λ�Xt−(n − Nt) dt + dmt)

= λ�Xt((n − k + 1)νk−1
t − (n − k)νk

t ) dt + dMt .

Letting νt =
⎛
⎜⎝

ν0
t
...

νn
t

⎞
⎟⎠, we get from the above display
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dνt = λ�XtAνt dt + dMt, (7)

where A is as in (5). This equation for ν is a main ingredient in the next result.

Proposition 1 Let ζt = νt ⊗ Xt. The process ζ is Markov with transition matrix Q,
where Q = (A ⊗ diag(λ) + I ⊗ Q). It follows that E[ζt|Fs] = exp(Q(t − s))ζs.

Proof We will use Eq. (7) together with the dynamics of X. Using the product rule
and the fact that N and X do not jump at the same time and summarizing again all
martingale terms again asM,we get (recall themultiplication rule (A ⊗ B)(C ⊗ D) =
(AC) ⊗ (BD))

d(νt ⊗ Xt) = (
(Aνtλ

�Xt) ⊗ Xt + νt ⊗ (QXt)
)
dt + dMt

= (
(Aνt) ⊗ (Xtλ

�Xt) + νt ⊗ (QXt)
)
dt + dMt

= ((Aνt) ⊗ (diag(λ)Xt) + Iνt ⊗ (QXt)) dt + dMt

= (A ⊗ diag(λ) + I ⊗ Q)(νt ⊗ Xt) dt + dMt

= Q(νt ⊗ Xt) dt + dMt .

Note that ζt by construction consists of the indicators of the values of the joint process
(ν,X). Hence the equation dζt = Qζt dt + dMt reveals, cf. Lemma1.1 inAppendixB
of [10], that ζ (and hence (ν,X)) is Markov.

An explicit computation shows

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qnλ 0 · · · · · · · · · 0
n diag(λ) Q(n−1)λ 0 · · · · · · 0

0 (n − 1) diag(λ) Q(n−2)λ 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . Qλ 0

0 · · · · · · 0 diag(λ) Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where for k ∈ N we have Qkλ = Q − k diag(λ).

Remark 1 The original dynamic equations for Xt and Nt can be retrieved from
Proposition 1. Realizing the relations Xt = (1� ⊗ I)ζt and (1� ⊗ I)Q = 1� ⊗ Q,
and 1�A = 0, we obtain from Proposition 1

dXt = (1� ⊗ I) (Q(νt ⊗ Xt)) dt + dMt

= (1� ⊗ Q)(νt ⊗ Xt) dt + dMt

= QXt dt + dMt .

Similarly, we get from νt = (I ⊗ 1�)ζt ,
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dνt = (I ⊗ 1�) (Q(νt ⊗ Xt)) dt + dMt

= (A ⊗ λ�)(νt ⊗ Xt) dt + dMt

= Aνtλ
�Xt dt + dMt .

Using
(
0 1 · · · n)Aνt = (

n · · · 1 0
)
νt = n − Nt , we get from the last display the

decomposition dNt = (n − Nt)λ
�Xt dt + dmt back.

Letting π(t) = Eζt , we obtain from Proposition 1 the ODE

π̇(t) = Qπ(t), (9)

with the initial condition π(0) = e0 ⊗ x(0), where e0 has 1 as its first element, all
other elements being zero. We will give a rather explicit expression for π(t) =
exp(Qt)π(0), for which we need some additional results.

The differential equation for π is the following type of forward equation,

Ḟ = QF.

Here F can be any matrix valued function of appropriate dimensions. We will block-
diagonalize the matrix Q. The transformation that is needed for that is given by the
matrix V whose ij-block (i, j = 0, . . . , n) is

Vij =
(
n − j

n − i

)
(−1)i−jI.

Note that Vij = 0 for i < j, V is block lower-triangular. The inverse matrix is also
block lower-triangular with blocks

V−1
ij =

(
n − j

n − i

)
I.

One may check by direct computation that indeed VV−1 = I . It is straightforward
to verify that QV := V−1QV is block-diagonal with ith block (i = 0, . . . , n) equal
to

QV
i = Q(n−i)λ.

Putting G = V−1F we obtain
Ġ = QV G,

whose solution satisfying G(0) = I is block diagonal with ith block Gi(t) =
exp(Q(n−i)λt). We thus obtain the following lemma.

Lemma 3 The solution to the forward ODE Ḟ = QF with initial condition F(0) is
given by F(t) = exp(Qt)F(0), where
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exp(Qt) = V

⎛
⎜⎝
exp(Qnλt)

. . .

exp(Qt)

⎞
⎟⎠ V−1.

If F(t) = exp(Qt), its blocks Fij(t) can be explicitly computed. One has Fij(t) = 0 if
i < j, and for i ≥ j it holds that

Fij(t) =
(
n − j

n − i

) i∑
k=j

(−1)i−k

(
i − j

i − k

)
exp(Q(n−k)λt).

Proof We use the block triangular structure of V and V−1 together with the block
diagonal structure of QV to compute

Fij(t) =
i∑

k=j

Vik exp(Q(n−k)λt)Vkj

=
i∑

k=j

(
n − k

n − i

)
(−1)i−k exp(Q(n−k)λt)

(
n − j

n − k

)

=
(
n − j

n − i

) i∑
k=j

(−1)i−k

(
i − j

i − k

)
exp(Q(n−k)λt),

as stated.

Proposition 2 The solutionπ(t) to the system (9)ofODEsunder the initial condition
π(0) = e0 ⊗ x(0) has components π i(t) ∈ R

d given by

π i(t) =
(
n

i

) i∑
k=0

(−1)i−k

(
i

k

)
exp(Q(n−k)λt)x(0). (10)

Proof We use Lemma 3 and recall the specific form of the initial condition π(0). We
have to compute exp(Qt)π(0) and obtain fromLemma3with j = 0 forπ i(t) = Fi0(t)

π i(t) =
(

n

n − i

) i∑
k=0

(−1)i−k

(
i

i − k

)
exp(Q(n−k)λt)x(0)

=
(
n

i

) i∑
k=0

(−1)i−k

(
i

k

)
exp(Q(n−k)λt)x(0).

Remark 2 Let us look at a special case, n = 1. Then we can write Nt = Yt and it is
sufficient to compute
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π1(t) = E(YtXt) = (exp(Qt) − exp(Qλt)) x(0). (11)

As a consequence we are able to compute P(Yt = 1) = 1�
E(YtXt),

P(Yt = 1) = 1 − 1� exp(Qλt)x(0),

since 1� exp(Qt) = 1�. As exp(Qt) → π1�, we conclude in view of Lemma 2 from
(11) that π1(t) → π for t → ∞. This result should be obvious, as Yt eventually
becomes 1 and Xt converges in distribution to its invariant law.

For the case n > 1 the expressions forπ i(t) are a bit complicated, but their asymp-
totic values for t → ∞, are as expected, π i(t) → 0 for i < n, whereas πn(t) → π .
This again follows from Lemma 2.

Proposition 2 has the following corollary.

Corollary 1 Let φ(t, u) = E exp(iuNt)Xt. It holds that

φ(t, u) =
n∑

k=0

(
n

k

)
exp(iuk)(1 − exp(iu))n−k exp(Q(n−k)λt)x(0).

Proof We shall use the elementary identity

n∑
k=j

βk

(
n

k

)(
k

j

)
=

(
n

j

)
β j(1 + β)n−j

for β = −e−iu in the last step in the chain of equalities below. From Proposition 2
we obtain

E exp(iuNt)Xt =
n∑

k=0

eiukπ k(t)

=
n∑

k=0

eiuk
(
n

k

) k∑
j=0

(−1)k−j

(
k

j

)
exp(Q(n−j)λt)x(0)

=
n∑

j=0

n∑
k=j

(−eiu)k
(
n

k

)(
k

j

)
(−1)j exp(Q(n−j)λt)x(0)

=
n∑

j=0

(
n

j

)
eiju(1 − eiu)n−j exp(Q(n−j)λt)x(0).

Remark 3 Alternatively, one can compute a moment generating function ψ(t, v) =
E exp(−vNt)Xt for v ≥ 0. Let B have a binomial distribution with parameters n
and p = 1 − exp(−v). Then we have for ψ(t, v) the compact expression ψ(t, v) =
E exp((Q − Bdiag(λ))t)x(0) = E exp(QλBt)x(0).
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Remark 4 There appears to be no simpler representation for φ(t, u). We note that
this function also satisfies the PDE

φ̇(t, u) = (Q + n(eiu − 1)diag(λ))φ(t, u) + i(eiu − 1)diag(λ)
∂φ(t, u)

∂u
. (12)

Just by computing the partial derivatives, one verifies that this equation holds. Alter-
natively, one can apply the Itô formula to exp(iuNt)Xt followed by taking expecta-
tions.

2.2.3 Conditional Probabilities

The vehicle we use is the process ζ , recall ζt = νt ⊗ Xt . Our aim is to find expressions
for ζt|s = E[ζt|Fs] for t > s, fromwhich one can deduce the conditional probabilities
E[νt|Fs] andE[Nt|Fs]. By theMarkov property, Proposition 1, we haveE[ζt|Fs] =
exp(Q(t − s))ζs. Let ζt|s = E[ζt|Fs] and ζ k

t|s = E[1{Nt=k}Xt|Fs]. We aim at a more
explicit representation of the conditional probabilities ζ k

t|s for k ≥ 0. Note that ζ k
t|s =

(e�
k ⊗ I)ζt|s. Hence ζ k

t|s = (e�
k ⊗ I) exp(Q(t − s))ζs. Using Lemma 3, we have

ζ k
t|s = (e�

k ⊗ I)V

⎛
⎜⎝
exp(Qnλ(t − s))

. . .

exp(Q(t − s))

⎞
⎟⎠ V−1ζs.

By matrix computations as before this leads to the following result.

Proposition 3 It holds that

ζ k
t|s =

k∑
j=0

(
n − j

k − j

) k∑
i=0

(−1)k−i

(
k − j

k − i

)
exp(Q(n−i)λ(t − s))ζ j

s .

Note that in the formula of this proposition, only one of the ζ
j
s is different from

zero and then equal to Xs. Effectively, the sum over j thus reduces to one term only.
The conditional probabilities νk

t|s = P(Nt = k|Fs) can now simply be computed as
1�ζ k

t|s. Note that these still depend on Xs, and one has the explicit expression

E[νk
t |Fs] =

n∑
j=0

(
n − j

n − k

) k∑
i=j

(−1)k−i

(
k − j

k − i

)
1� exp(Q(n−i)λ(t − s))Xsν

j
s.

Remark 5 Consider the special case n = 1 and let Zt = YtXt , Yt as in Sect. 2.1.2.
This amounts to taking k = n = 1 in Proposition 3 and one gets for Zt|s = E[Zt|F Y

s ]
the simpler expression
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Zt|s = exp(Qλ(t − s))Zs + (
exp(Q(t − s)) − exp(Qλ(t − s))

)
Xs. (13)

The next purpose is to compute E[eiuNtXt|Fs] and from that one E[eiuNt |Fs] =
1�

E[eiuNtXt|Fs].
Proposition 4 The following hold.

E[eiuNtXt|Fs] =
n∑

k=0

n∑
j=k

(
n − k

j − k

)
(1 − eiu)n−jeiuj exp(Q(n−j)λ(t − s))ζ k

s ,

E[eiuNt |Fs] =
n∑

k=0

n∑
j=k

(
n − k

j − k

)
(1 − eiu)n−jeiuj1� exp(Q(n−j)λ(t − s))ζ k

s . (14)

Proof We start from the identity eiuNtXt = Fζt , with F = e(u) ⊗ I, where e(u) =(
1 eiu · · · eniu). Hence we have

E[eiuNtXt|Fs] = (e(u) ⊗ I) exp(Q(t − s))ζs.

This can be put into the asserted more explicit representation, involving the matrices
Qkλ by application of Proposition 3. The second assertion is a trivial consequence.

It is conceivable that only N is observed, and not the background process X. In such
a case one is only able to compute conditional expectation of quantities as above
conditioned on FN

s instead of Fs, see Sect. 4.1 for results.

3 The Markov Modulated Poisson Process

In this section we study MM Poisson processes. These have an intensity process
λt = λ�Xt , using the same notation as before. In terms of defaultable obligors, such
processes occur as limits of the total number of defaults Nt as in Sect. 2.2 where
n → ∞ and the vector λ is scaled to become λ/n, as we shall see later. So we can
use this to approximate the total number of defaults in a market with a large number
of obligors, where each of them has small default rate.

3.1 The Model

The point of departure is to postulate the dynamics of the counting process N as

dNt = λ�Xt dt + dmt .
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We follow the same approach as before. So we use that conditionally onF X we have
that Nt has a Poisson(Λt) distribution with Λt = ∫ t

0 λ�Xs ds. It follows that

E[1{Nt=k}Xt|F X ] = 1

k!Λ
k
t exp(−Λt)Xt =: pk(t)Xt,

and
d

dt
pk(t) = pk−1(t) − pk(t)λ�Xt .

Then we obtain

dE[1{Nt=k}Xt|F X ] = (
pk−1(t) − pk(t)

)
diag(λ)Xt dt + pk(t)(QXt dt + dMt),

and with π k(t) = E(pk(t)Xt) we find

π̇ k(t) = diag(λ)π k−1(t) + (Q − diag(λ))π k(t).

For k = 0, one immediately finds the solution π0(t) = exp(Qλt)x(0). For k > 0
there seems to be no simply expression in terms of exponential of Q and Qkλ as in
Proposition 2, not even for k = 1, although one has

π1(t) =
∫ t

0
exp(−Qλ(t − s))diag(λ) exp(Qλs) ds x(0).

However, it is possible to get a formula for the vector

Πn(t) =
⎛
⎜⎝

π0(t)
...

πn(t)

⎞
⎟⎠ ,

since it satisfies the ODE
Π̇n(t) = QnΠ

n(t),

where Qn ∈ R
(n+1)d×(n+1)d is given by

Qn =

⎛
⎜⎜⎜⎜⎜⎜⎝

Q − diag(λ) 0 · · · · · · 0
diag(λ) Q − diag(λ) 0 0

0 diag(λ)
. . .

. . .
...

...
. . . Q − diag(λ) 0

0 · · · 0 diag(λ) Q − diag(λ)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Together with the initial conditions π k(0) = δk0x(0), one obtains
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Πn(t) = exp(Qnt)(e
n
0 ⊗ x(0)),

where en0 is the first basis vector of R
n+1. An elementary expression for exp(Qnt) is

not available due to the fact that Q − diag(λ) and diag(λ) do not commute. Besides,
Qn is block lower triangular with identical blocks on the main diagonal and therefore
cannot be block diagonalized.

However, in the present case there is a nice expression for the characteristic function
φ(t, u) = E exp(iuNt)Xt , unlike the situation of Corollary 1. To determine φ(t, u),
we apply the Itô formula (note that [N,X] = 0) and obtain

d exp(iuNt)Xt = (eiu − 1)eiuNt−Xt−dNt + eiuNt−dXt, (15)

which yields after taking expectations and using the dynamics of X and N

φ̇(t, u) = ((eiu − 1)diag(λ) + Q)φ(t, u).

Hence
φ(t, u) = exp

(
((eiu − 1)diag(λ) + Q)t

)
x(0).

Contrary to the π k(t) of Proposition 2 we thus found a simple formula for φ(t, u).
This formula is in line with [2, Proposition 1.6] for Markovian arrival processes.

Remark 6 It is possible to obtain the above results as limits from results in Sect. 2.2.2,
by replacing there λ by λ/n and letting n → ∞.

If we look at the moment generating functions ψ(t, v) = E exp(−vNt)Xt , we
have ψ(t, v) = exp

(
(Q − (1 − e−v)diag(λ))t

)
x(0). Replace in Remark 3 the para-

meter λ with λ/n and let n → ∞ and write Bn instead of B. Then we have
ψn(t, v) = E exp

(
(Q − diag(λ)Bn/n)t

)
x(0). As Bn/n → 1 − e−v a.s., we obtain

exp
(
(Q − diag(λ)Bn/n)t

) → exp
(
(Q − diag(λ)(1 − e−v))t

)
a.s. Since the expo-

nentials are bounded, we also have convergence of the expectations by dominated
convergence. Replacing −v with iu gives the characteristic function.

3.2 Conditional Probabilities

Mimicking the approach of Sect. 2.2.2, we consider again the νk
t = 1{Nt=k}. Let

ν̄n
t =

⎛
⎜⎝

ν0
t
...

νn
t

⎞
⎟⎠ .

Then ν̄n still satisfies Eq. (6). Combining this with the dynamics of N , we obtain the
semimartingale decomposition
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dν̄n
t = λ�Xt(J − I)ν̄n

t dt + dMt .

Letting ζ̄ n
t = ν̄n

t ⊗ Xt , then we can derive, similar to the approach of Sect. 2.2.2,

dζ̄ n
t = Qnζ̄

n
t dt + dMt .

This is for each n a finite dimensional system, which can be extended to an infinite
dimensional system for ζt . The resulting infinite coefficient matrix will be lower
triangular again,

dζt = Q∞ζt dt + dMt,

where Q∞ = I∞ ⊗ Qλ − J∞ ⊗ diag(λ) with I∞ the infinite dimensional identity
matrix and J∞ the infinite dimensional counterpart of the earlier encountered matrix
J . It follows that for the vector of conditional probabilities we have

E[ζt|Fs] = exp(Q∞(t − s))ζ̄s.

This looks like an infinite dimensional expression, but E[1{Nt=n}Xt|Fs] can be com-
puted from E[ζ̄ n

t |Fs] = exp(Qn(t − s))ζ̄ n
s , which effectively reduces the infinite

dimensional system to a finite dimensional one. One can now also compute, with
��
n = (

0 · · · 0 1
) ∈ R

1×(n+1),

P(Nt = n,Xt = ej|Fs) = (��
n ⊗ e�

j ) exp(Qn(t − s))ζ̄ n
s .

3.3 Conditional Characteristic Function

Our aim is to find an expression for φt|s := E[exp(iuNt)Xt|Fs]. Since we deal in
the present section with the MM Poisson process N , the bivariate process (X,N),
unlike its counterpart in Sect. 2, is an instance of a Markov additive process [2],
and E[exp(iu(Nt − Ns))Xt|Fs] will only depend on Xs. We first follow the forward
approach.

Proposition 5 It holds that

φt|s = exp
(
((eiu − 1)diag(λ) + Q)(t − s)

)
eiuNsXs. (16)

Proof Starting point is Eq. (15). We use the dynamics of N and X to get the semi-
martingale decomposition

d exp(iuNt)Xt = (eiu − 1)eiuNtdiag(λ)Xt dt + eiuNtQXt dt + dMt

= ((eiu − 1)diag(λ) + Q)eiuNtXt dt + dMt .

Let t ≥ s. We obtain (differentials w.r.t. t)
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dφt|s = ((eiu − 1)diag(λ) + Q)φt|s dt,

which has the desired solution.

Next we outline the backward approach. Observe first that φt|s is a martingale in the
s-parameter and that due to the fact that (N,X) is Markov, we can write for some
function Φ, φt|s = Φ(t − s,Ns)Xs. We identify Φ as follows, using the Itô formula
w.r.t. s. We obtain

dφt|s = (−Φ̇(t − s,Ns) ds + (Φ(t − s,Ns− + 1) − Φ(t − s,Ns−))dNs
)
Xs−

+ Φ(t − s,Ns−) dXs

= (−Φ̇(t − s,Ns) + (Φ(t − s,Ns + 1) − Φ(t − s,Ns))diag(λ)
)
Xs ds

+ Φ(t − s,Ns)QXs ds + dMs.

The above mentioned martingale property leads to the system of ODEs (n ≥ 0)

Φ̇(t, n) = Φ(t, n + 1)diag(λ) + Φ(t, n) (Q − diag(λ)) . (17)

We have the initial conditions Φ(0, n) = exp(iun). To know Φ(t, n) it seems nec-
essary to know Φ(t, n + 1), which suggest that the ODEs are difficult to solve con-
structively. Instead, we pose a solution, we will verify that

Φ(t, n) = exp
(
((eiu − 1)diag(λ) + Q)t

)
eiun.

Differentiation of the given expression for Φ(t, n) gives

Φ̇(t, n) = Φ(t, n)((eiu − 1)diag(λ) + Q).

Note that Φ(t, n + 1) = Φ(t, n)eiu. Insertion of this into the ODE gives

Φ̇(t, n) = Φ(t, n)(eiudiag(λ) + (Q − diag(λ))),

which coincides with (17).

4 Filtering

Let N be a counting process with predictable intensity process λ. In many cases it
is conceivable that λ is an unobserved process and expressions in terms of λ are not
always useful. Let λ̂t = E[λt|FN

t ]. Then the semimartingale decomposition of N
w.r.t. the filtration FN is given by

dNt = λ̂t dt + dm̂t,



82 M. Mandjes and P. Spreij

where m̂ is a (local) martingale w.r.t. FN . The general filter of the Markov chain
X, X̂t = E[Xt|FN

t ] satisfies the following well known formula (see [7], originating
from [28]) with Q as in Sect. 2.1.2

dX̂t = QX̂t dt + λ̂+
t−(X̂λt− − X̂t−λ̂t−)(dNt − λ̂t dt),

where X̂λt = E[Xtλt|FN
t ] and where we use the notation x+ = 1x �=0/x for a real

number x. For any of the previously met models for the counting process N we have
a predictable intensity process of the formλt = λ�Xt−f (Nt−), where f depends on the
specific model at hand. It follows that λ̂t = λ�X̂t−f (Nt−). In all cases we consider it
happens that f (Nt) remains zero after it has reached zero, and henceN stops jumping
as soon as f (Nt) = 0. Since λ�Xt > 0, with the convention 0

0 = 0 the above filter
equation reduces to

dX̂t = QX̂t dt + 1

λ�X̂t−
(diag(λ)X̂t− − X̂t−λ�X̂t−)(dNt − λ̂t dt). (18)

For the specificmodels we have encounteredwe give in the next sectionsmore results
on X̂ .

4.1 Filtering for the MMMultiple Point Process

The notation of this section is as in Sect. 2.2.2 and subsequent sections. Let ζ̂t =
E[ζt|FN

t ]. Then ζ̂t = νt ⊗ X̂t , where X̂t = E[Xt|FN
t ]. For X̂t we have from (18),

dX̂t = QX̂t dt + 1

λ�X̂t−

(
diag(λ)X̂t− − X̂t−X̂�

t−λ
)

(dNt − (n − Nt)λ
�X̂t dt).

At the jump times τk (k = 1, . . . , n) (these are the order statistics of the original
default times τ i) of N we thus have

Xτk = 1

λ�X̂τk−
diag(λ)X̂τk−.

Between the jump times, X̂ evolves according to the ODE

dX̂t

dt
= QX̂t − (n − Nt)(diag(λ)X̂t− − X̂t−X̂�

t−λ),

which is also valid after the last jump of N . It follows that for t ≥ τn we have
X̂t = exp(Q(t − τn))X̂τn .
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Below we need [ν, X̂]⊗t = ∑
s≤t Δνs ⊗ ΔX̂s. Using the equations for ν and X̂, we

find

d[ν, X̂]⊗t = 1

λ�X̂t−
((J − I) ⊗ (diag(λ) − λ�X̂t−I))ζ̂t−dNt .

For ζ̂t we have, using the product formula for tensors,

dζ̂t = dνt ⊗ X̂t− + νt− ⊗ dX̂t + d[ν, X̂]⊗t .

This yields after some tedious computations the following semimartingale decom-
position for ζ̂

dζ̂t = (
I ⊗ Q + (n − Nt)(J − I) ⊗ diag(λ)

)
ζ̂t dt

+ 1

λ�X̂t−

(
J ⊗ diag(λ) − λ�X̂t−I ⊗ I

)
ζ̂t− dm̂t

= Qζ̂t dt + 1

λ�X̂t−

(
J ⊗ diag(λ) − λ�X̂t−I ⊗ I

)
ζ̂t− dm̂t,

where dm̂t = dNt − (n − Nt)λ
�X̂t dt and Q as in Sect. 2.2.2.

Here are two applications. One can now compute

P(Nt = k|FN
s ) = 1�

E[ζ k
t|s|FN

s ] = 1�ζ̂ k
t|s,

for which we can use ζ̂t|s = exp(Q(t − s))ζ̂s. Formula (14) yields for the conditional
characteristic function ofNt given its own past until time s < t the explicit expression

E[eiuNt |FN
s ] =

n∑
k=0

n∑
j=k

(
n − k

j − k

)
(1 − eiu)n−jeiuj1� exp(Q(n−j)λ(t − s))X̂sν

k
s .

In case n = 1 the above formulas simplify considerably. Here are a few examples,
where we use the notation of Sect. 2.1.2. Suppose that only Y is observed. LetF Y

t =
σ(Ys, 0 ≤ s ≤ t). With Zt := YtXt we want to compute Ẑt|s := E[Zt|F Y

s ] for t ≥ s.
Let X̂t = E[Xt|F Y

t ], then obviously, Ẑt|s = X̂t|sYs. Moreover, one has from (13)

Ẑt|s = exp(Q(t − s))X̂s − exp(Qλ(t − s))X̂s(1 − Ys).

As a consequence we have for Ŷt|s = 1�Ẑt|s

Ŷt|s = 1 − 1� exp(Qλ(t − s))X̂s(1 − Ys).
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4.2 Filtering for the MM Poisson Process

The filter equations now take the familiar form

dX̂t = QX̂t dt + 1

λ�X̂t−

(
diag(λ)X̂t− − X̂t−X̂�

t−λ
)

(dNt − λ�X̂t dt).

For ν̄t we have the infinite dimensional analogue of (6). This leads for ζ̂t = ν̄t ⊗ X̂t

as in a Sect. 4.1 to

dζ̂t = Q∞ζ̂t dt + 1

λ�X̂t−

(
J∞ ⊗ diag(λ) − λ�X̂t−I∞ ⊗ I∞

)
ζ̂t− (dNt − λ�X̂t dt).

Note that this system is infinite dimensional, but for each n we also have for ˆ̄ζ n
t =

E[ζ̂ n
t |FN

t ] the truncated finite dimensional system

d ˆ̄ζ n
t = Qn

ˆ̄ζ n
t dt + 1

λ�X̂t−

(
J ⊗ diag(λ) − λ�X̂t−I ⊗ I

) ˆ̄ζ n
t− (dNt − λ�X̂t dt).

For the conditional characteristic function E[exp(iuNt)Xt|FN
s ] we have

E[exp(iuNt)Xt|FN
s ] = exp

(
((eiu − 1)diag(λ) + Q)(t − s)

)
eiuNs X̂s,

whereas ψt = eiuNt X̂t satisfies the equation (dm̂t = dNt − λ�X̂t dt)

dψt = (
eiu

λ�X̂t−
diag(λ) − I)ψt−dm̂t +

(
Q + (eiu − 1)diag(λ)

)
ψt dt.

5 Rapid Switching

In this section we present some auxiliary results that we shall use in obtaining limits
for the various default processes when the Markov chain evolves under a rapid
switching regime, i.e. the transition matrixQwill be replaced with αQ, where α > 0
tends to infinity. In the first two results and their proofs we use the notation C(M)

for the matrix of cofactors of a square matrix M. Throughout this section we write
λ∞ for λ�π .

Lemma 4 Let Q have a unique invariant vector π . Then

C(Q) = qπ1�,
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where the constant q can be computed as det(Q̂), where Q̂ is obtained from Q by
replacing its last row with 1�.

Proof Note first that π can be obtained as the solution to Q̂π = ed , where ed is the
last basis vector ofRd . By Cramer’s rule π can be expressed using the cofactors of Q̂.
In particular, πd = Ĉdd/ det(Q̂), where Ĉ is the cofactor matrix of Q̂. But Ĉdd = Cdd ,
so πd = Cdd/ det(Q̂).

Write C = C(Q) and recall that CQ = det(Q) and hence zero. It follows that
every row of C is a left eigenvector of Q. Since Q has rank d − 1 by its assumed
irreducibility, every rowofC is amultiple of1�. HenceC = α1�, for someα ∈ R

d×1.
By similar reasoning, C = πβ for some β ∈ R

1×d . We conclude that C = qπ1� for
some real constant q. Use now Cdd = qπd and the above expression for πd to arrive
at q = det(Q̂).

Proposition 6 Let Q have a unique invariant vector π and let all λi be positive.
Then (αQ − diag(λ))−1 → −π1�

λ∞ for α → ∞.

Proof We have seen in Sect. 2.1.2 that Q − diag(λ) is invertible if all λi > 0 and
so the same is true for αQ − diag(λ). Both det(αQ − diag(λ)) and the cofactor
matrix of αQ − diag(λ) are polynomials in α and we compute the leading term.
The determinant is computed by summing products of elements of αQ − diag(λ),
from each row and each column one. The αd term in this determinant has coeffi-
cient det(Q), which is zero. Consider the term with αd−1. It is seen to be equal to
−∑d

i=1 λiC(αQ − diag(λ))ii = −αd−1 ∑d
i=1 λiC(Q − diag(λ/α))ii. For the cofac-

tor matrix itself a similar procedure applies.We getC(αQ − diag(λ)) = αd−1C(Q −
diag(λ)/α) and it results from Lemma 4 that for α → ∞

C(αQ − diag(λ))

det(αQ − diag(λ))
→ C(Q)

−∑d
i=1 λiC(Q)ii

= − qπ1�

q
∑n

i=1 λiπi
= −π1�

λ∞
.

Proposition 7 For α → ∞ it holds that

exp
(
(αQ − diag(λ))t

) → exp(−λ∞t)π1�.

Proof For any analytic function f : C → C, f (z) = ∑∞
k=0 akz

k , one defines
f (M) := ∑∞

k=0 akM
k for M ∈ C

d×d (assuming that the power series converges on
the spectrum ofM). It then holds (see also Higham [17, Definition 1.11], where this
is taken as a definition of f (M)) that

f (M) = 1

2π i

∮
Γ

(zI − M)−1f (z) dz,

where Γ is a closed contour such that all eigenvalues of M are inside it. Take M =
αQ − diag(λ). It follows from Proposition 6, note that also λ∞ lies inside Γ as it is
a convex combination of the λi, that (zI − αQ + diag(λ))−1 → 1

z+λ∞ π1�. Hence
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f (αQ − diag(λ)) → π1�f (−λ∞).

Apply this to f (z) = exp(tz).

5.1 Rapid Switching for the MMMultiple Point Process

Suppose we scale the Qmatrix with α ≥ 0, and we let Xα be Markov with transition
matrix αQ. Many (random) variables below will be indexed by α as well. Here is a
way to get accelerated dynamics for Nα

t (previously denoted Nt).
Suppose that one takes the original Markov chain X and replaces the dynamics

of N with one in which X is accelerated,

Nα
t =

∫ t

0
(n − Nα

s )λ�Xαs ds + mt . (19)

Indeed the process Xα defined by Xα
t = Xαt has intensity matrix αQ, and its invari-

ant measure is π again. Recall that, conditionally on F X , Nα
t has a Bin(n, 1 −

exp(− ∫ t
0 λ�Xαs ds)) distribution.

The ergodic property of X gives
∫ t
0 Xαs ds = 1

α

∫ αt
0 Xs ds → π t a.s. and hence by

dominated convergence for the expectations we have that the limit distribution of Nα
t

for α → ∞ is Bin(n, 1 − exp(−λ∞t)). One immediately sees that the default times
τα,k convergence in distribution to τ k that are independent and have an exponential
distribution with parameter λ∞. Keeping this in mind, the other results in this section
are easily understandable.

We recall the content of Proposition 7. Replacing λwith kλ for k ≥ 0 (zero included)
yields

exp
(
(αQ − kdiag(λ))t

) → exp(−kλ∞t)π1�. (20)

To express the dependence of the matrix Q given by (8) on α in the present section,
we writeQα (soQα = A ⊗ diag(λ) + I ⊗ αQ) and Fα(t) instead of F(t) as given in
Lemma 3.

Lemma 5 The solution Fα to the equation Ḟ = QαF, has for α → ∞ limit F∞
given by its blocks

F∞
ij (t) = f∞

ij (t)π1�,

where the f∞
ij (t) are the binomial probabilities on n − i ‘successes’ of a Bin(n −

j, exp(−λ∞t)) distribution,

f∞
ij (t) =

(
n − j

n − i

)
exp(−(n − i)λ∞t)(1 − exp(−λ∞t))i−j.
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Proof We depart from Lemma 3 and the expression for Fα
ij (t) given there when we

replace Q with αQ. Taking limits for α → ∞ yields

F∞
ij (t) =

(
n − j

n − i

) i∑
k=j

(−1)i−k

(
i − j

i − k

)
exp(−(n − k)λ∞t)π1�

=
(
n − j

n − i

)
(−1)i−j exp(−(n − j)λ∞t)

i−j∑
l=0

(
i − j

l

)
(− exp(λ∞t))lπ1�

=
(
n − j

n − i

)
exp(−(n − i)λ∞t)(1 − exp(−λ∞t))i−jπ1�,

from which the assertion follows.

Remark 7 One can also use this proposition to show that Nα
t in the limit has the

Bin(n, 1 − exp(−λ∞t)) distribution. Indeed, since ν i
0 = δi0, we get P(Nα

t = i,Xt =
ej) → F∞

i0 (t) = f∞
i0 (t)π and hence P(Nα

t = i) → f∞
i0 (t).

For conditional probabilities one has the following result.

Corollary 2 Let N be a process like in Eq. (4), with λ replaced with λ∞. For α → ∞
one has in the limit ζ i

t|s = 0 for i < Ns and for i ≥ Ns

ζ i
t|s =

(
n − Ns

n − i

)
exp(−(n − i)λ∞ (t − s))(1 − exp(−λ∞ (t − s)))i−Nsπ.

It follows that, conditional onFs, Nt − Ns has a Bin(n − Ns, 1 − exp(−λ∞ (t − s)))
distribution. In fact, one has weak convergence of the Nα to N.

Proof We compute in the limit ζ i
t|s = E[ν i

t Xt|Fs] and obtain from Lemma 5

ζ i
t|s =

n∑
j=0

F∞
ij (t − s)ζ j

s

=
n∑

j=0

f∞
ij (t − s)ν j

sπ

=
i∑

j=0

(
n − j

n − i

)
exp(−(n − i)λ∞ (t − s))(1 − exp(−λ∞ (t − s)))i−jν j

sπ

=
(
n − Ns

n − i

)
exp(−(n − i)λ∞ (t − s))(1 − exp(−λ∞ (t − s)))i−Nsπ,

from which the first assertion follows.
Weak convergence can be proved in many ways. Let us first look at the case of

one obligor, n = 1. The integral in Eq. (19) is, with τα = τ 1,α equal to
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1

α

∫ α(τα∧t)

0
λ�Xu du.

Replacing the upper limit of the integral by t, this almost surely converges to λ∞t
for α → ∞. In fact this convergence is a.s. uniform. Having already established the
convergence in distribution of the τα , and by switching to an auxiliary space on
which the τα a.s. converge to τ∞, we get

1

α

∫ α(τα∧t)

0
λ�Xu du → λ∞(τ∞ ∧ t).

This is sufficient, see [24] or [20, Sect. 8.3d] to conclude the weak convergence result
for the case n = 1.

For the general case, one first notices that the processNα is a sum ofMMone point
processes that are conditionally independent given F X and become independent in
the limit. Combine this with the result for n = 1. Alternatively, one could apply
the results in [20, Sect. 7.3d] again, although the computations will now be more
involved.

5.2 Rapid Switching for the MM Poisson Process

As before we replace Q with αQ and let α → ∞ and denote Nα the corre-
sponding counting process. We apply Proposition 7 to the matrix exponential
exp

(
((eiu − 1)diag(λ) + αQ)(t − s)

)
, and we find that the limit for α → ∞ equals

exp((eiu − 1)λ∞(t − s))π1�. Hence, by virtue of (16), we obtain E[exp(iuNα
t )

Xt|Fs] → exp((eiu − 1)λ∞(t − s))π for the limit of the conditional characteristic
function. This is just one of the many ways that eventually lead to the conclusion that
for α → ∞ the process Nα converge weakly to an ordinary Poisson process with
constant intensity λ∞. In [24] one can find the stronger result that the variational
distance between the MM law of Nα

t , t ∈ [0,T ] and the limit law is of order α−1.
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Introducing Distances Between Commodity
Markets: The Case of the US and UK
Natural Gas

Hélyette Geman and Bo Liu

Abstract The goal of the paper is twofold: first to present the energy markets in
2015 after the revolution of shale oil and shale gas; secondly investigate whether the
two major gas markets, the US and the UK, are integrated at a time when natural gas
is a much preferred source of electricity compared to coal, in particular in feeding
the ‘peakers’ providing electricity that complements solar, wind and other intermit-
tent renewables. Introducing the novel concept of distances between two commodity
markets through quantities accounting for fundamental financial economic indica-
tors, our conclusion is negative, illuminating the importance of transportation costs
yet in the case of natural gas.

Keywords Natural gas · Forward curve ·Metrics in commodity markets

1 Introduction

The energy world is experiencing dramatic changes, with a decline of prices across
the board—except possible for some renewables—, in a context of a very weakworld
economy growth and over supply of production. The Russian giant Gazprom saw
its revenues in the first semester of 2015 decline by 13% year on year, because of
a production that was the lowest since the company was incorporated in its cur-
rent form after the disintegration of the former Soviet Union and the decline of the
Russian ruble with respect to the dollar—remembering that commodities are denom-
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inated in dollars. The company has a large capacity available, but both domestic and
international demands have collapsed.

Even though the coal output increased by 37% in the period 2004–2014, invest-
ments in coal mining projects are abandoned by ‘ethical’ funds, followed by the big
banks, like Goldman Sachs that withdrew from the financing of the extension of the
mining complex in the Galileo basin in Australia, the biggest coal extraction project
in the world.

The three fossil fuels, coal, crude oil and natural gas represent in 2015 over 80%
of the world energy supply: 31% for natural gas, 29% for oil and 21% for coal.
They are used in a very large spectrum of the economic activity, including heating
and power generation, steel making and transportation. With increasing emissions
standards, as expressed for instance by theCOP21 in Paris inDecember 2015, natural
gas and low-carbon fuels will gradually replace oil and coal in the energy mix. The
three fossil fuels are forecast to each account for 25% of the global energy demand
by 2040.

The biggest story over the past decade in the energy world is the shale revolution,
thanks to one of the most innovative technologies of the 21st century: horizontal
drilling and hydraulic fracturing, or fracking, methods used to unlock natural gas
and oil from shale rocks previously seen as inaccessible. The US shale boom had
profound economic and political implications, enhancing US energy independence
and reshaping global energy balance, in addition to boosting local economies in the
basins of extraction (Fig. 1).

Fig. 1 Shale gas basins
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The first US shale oil well was drilled in South Texas’s Eagle Ford field in Septem-
ber 2008, at which time US crude oil production was only 4.7 million barrels per day.
From 2009 to 2011, oil prices recovered from $40 to around $100 per barrel, amid
post-financial crisis recovery. At the same time, the US shale industry was boom-
ing. New drilling rigs were blanketing shale fields around the country, from Texas to
North Dakota and Pennsylvania. US oil production has been steadily increasing since
then and reached a peak of 9.6 million barrels a day in April 2015. The Organization
of Oil Producing countries (OPEC), now exports half of the oil it did at the time of
the first oil shale well. The displaced oil has gone elsewhere in the world, creating a
global oil glut and triggering the price collapse.

Besides crude oil, the US gas industry is the biggest beneficiary of the shale
revolution. There has been a 72% increase in the natural gas production between
2007 and 2015. The share of shale in the US production has jumped from less than
2% in 2001 to 40% in 2014 Q1 and is projected to grow to 53% by 2040. In 2011,
the International Energy Agency (IEA) based in Paris had issued an ominous special
report suggesting that natural gas could play a more prominent role in the global
energy mix in the near term with surging post-crisis demand recovery, ample supply
and expansion of liquid natural gas (LNG) trade. US gas production has been so
vibrant that some old importing LNG terminals were converted into liquefaction
entities. Several gas export projects got federal approvals since 2011. Cheniere’s
Sabine Pass terminal in Louisiana should start exporting by the end of 2015, the first
US gas export project in 46years!

Besides the large supply, world weak demand has contributed to the oil price crash
in the recent period. The opening of two export terminals in July 2014 in Libya was
one of the elements that triggered the collapse. Both the USWTI benchmark and the
UK/international benchmark Brent tumbled from roughly $110 in June 2014 to less
than $50 by January 2015, as depicted in the Fig. 2.

They momentarily rebounded above $60 in spring 2015 before further plunging
to a six-year low in August 2015—driving the Bloomberg Commodity index to its
weakest value since 2000—and a ten year low inDecember 2015. In December 2015,
OPEC decided again not to cut its production, led by the number one oil exporter,
Saudi Arabia, which decided to protect its market share from US shale oil producers
and increased output from Iran ramping up production after the end of economic sanc-
tions against the country and the refurbishment of oil producing facilities. Countries
in South America and Africa, which have a higher cost of production like Venezuela
and Nigeria, are obviously suffering greatly from the current situation.

While the number of oil rigs fell by 64% from a highest number of 1609 between
October 2014 and October 2015, the Permian shale oil field in Texas continued to
increase its production, thanks to its unique combination of a large quantity of avail-
able oil, highest quality of shale rocks and advanced shipping and storage infrastruc-
ture.
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Fig. 2 Crude oil prices from 1986 to 2015

2 Trading Strategies in Natural Gas Markets

Natural gas, a fossil fuel, has long been prized for its ability to burn clearly and
provides relatively high levels of energy. In 1821, the first well specifically designed
to recover natural gas was dug in the US. The pure form of natural gas consists of a
mixture of hydrocarbon gases, mainly methane, a molecule consisting of one carbon
atom and four hydrogen atoms. Natural gas and oil are generally found together in
deposits beneath the earth. Amain difference between natural gas and crude oil is the
fact that natural gas requires very specific types of transmission and storage facility,
respectively pipelines and saline caverns or former gas fields; and spot trading of
natural gas is much less feasible than in the case of crude oil.

The International Energy Agency (based in Paris) estimates that for the first time
since 1982, the US will have produced in 2015 more natural gas than Russia. The
graph below depicts the trajectory of the Henry Hub natural gas index (on which all
Futures and options traded on the NYMEX are written), over the period—the US
market was the first deregulated gas market in the world and the Henry Hub index
has been observed for decades. It went from 2 $ per Million British thermal units
(MMBtus) in 1996, reached an absolute maximum of $15 in 2006, a local maximum
(like most commodities except for gold) in July 2008 at $13.5, to fluctuate today
around $3 or below. The US gas is the unique commodity whose price today has
returned to its level of 1998 (Fig. 3).
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Fig. 3 Price Trajectory of
the Henry Hub
index—1991–2015

So far, Europe has been relying onRussia for about 30%of its natural gas supplies.
Gas from the existing Nord Stream pipeline first arrives in Germany, is then fed into
a European gas network that serves consumers in Germany and other countries that
include France, the UK and the Netherlands. The project of a South Stream pipeline,
that would have included the Italian energy giant ENI together with Gazprom and
delivered gas to the EU through Bulgaria, was opposed by Washington and Brussels
after the economic sanctions decided on Russia in July 2014 and renewed in June
2015, following the annexation by Moscow of the Crimean peninsula.

A new project, called Nord Stream 2, is defended by Germany for its own needs
and European needs. In Europe (as well as in Japan, an economy where natural gas is
a crucial source of energy), the long—term contracts, where the price of natural gas
was indexed to oil prices according to a linear formula, are disappearing under the
combined effect of lower oil prices—making the formulas less profitable to natural
gas producers, and the pressure of increased productionworldwide,withLNG tankers
touring the world. At the same time, the large development in Europe of renewable
energy has made flexible gas-fired turbines necessary to provide electricity at times
when the renewable but intermittent source of energy, solar or wind, is not available.

In Australia, Coal Seam Gas (CSG) is another prospective source of energy. New
projects in East Coast Australia will increase LNG capacity by 150% and by 2016,
Australia should be a major player, likely to relieve pressure on Asian prices, Japan
in particular. Figure4 shows the very large difference between the price of natural
gas in the US (represented by the HH index) and in Japan (represented by the Japan
Korea Marker).
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Fig. 4 JKM and HH monthly spot prices, April 2010–March 2014

There have been a number of studies over the last decade investigating the price
relations between natural gas markets in different regions of the world. [12] were the
first to study the degree of integration of international gas markets. They conclude
that the North Americanmarkets were not integrated with European or Japanese ones
during the period 1993–2004. [11] focus on European spot gas markets for the period
2000–2005. They have shown UK and Continental European markets had converged
via the Interconnector; but markets within European continent had not. [10] finds an
increasing convergence of transatlantic natural gas spot prices from 1999 to 2008.
The author argues that LNG was the key driver of this convergence. [1] study a few
European spot gas markets during the period following deregulation, particularly
three major hubs: NBP in UK, Zeebrugge in Belgium and TTF in the Netherlands.
Their results indicate a highly integrated regionwith respect to natural gas, with prob-
ably crude oil as the intermediary. [3] also conclude that the co-movement between
gas prices in US and UK are mediated through crude oil prices. Their results show
that the relationship between the two prices is not stable over time—the prices may
be related, but the cointegrating relationship could change over time.

3 Natural Gas Forward Markets

As said before, spot trading is hardly feasible, except if one has access to LNG
tankers that may tour the world to stop at points of greater profitability. Hence, gas
traders need strategies based on liquid Futures contracts, which has only been the
case for the US Henry Hub index for many decades. And the main trading strategy
for many decades was to play the changes in the seasonal spread Winter/Summer,
this one increasing from a prior value to a much higher one in the case of a very cold
winter or a problem in the supply of natural gas. A famous example of this strategy is
provided by the example of the Amaranth hedge fundwhich had taken inMarch 2005
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a very large position in winter long/summer short Futures. It made a profit of $1.25
billion by the end of August: the hurricanes Rita and Katrina destroyed oil platforms
in the Gulf of Mexico, making natural gas the substitution commodity and sending
January Futures prices to very high values, aswell as the Futures spreads. A year later,
the same position—which was vastly increased in size from the previous year—lost
$6.25 billion because hurricanes did not occur and there was a large amount of gas
in inventory, a property the star trader did not pay attention to. Note that in the oil
markets of 2015, any news about a larger inventory in major countries sends prices
down further, another evidence of the crucial role of inventories.

With the arrival of shale gas and the collapse of prices, the seasonality of the US
natural gas forward curve became less pronounced (as shown in the graph below
in 2013) because of the large amount of natural gas available all year long, and the
strategies based on seasonality less profitable; hence the necessity of turning to other
types of strategies (Fig. 5).

The second gas market to be deregulated was the United Kingdom, and the liq-
uidity of Futures contracts written on the National Balancing Point (NBP) index has
been quite reasonable 60months out, as depicted in Fig. 6. Note that, beyond the
seasonality, one clearly sees an increasing shape in the two forward curves, indicat-
ing that in 2010, market participants had the view that spot prices were too low and
had to increase, both in the US and in the UK. In order to play a locational strategy
between two markets of the same commodity (or two different commodities)—like
betting on their convergence or divergence—it is important to be able to evaluate the
relative evolution of the two forward curves. In this order, we propose to use in this
section the notion of distance between the HH and the NBP forward curves.

In order tomodel commodity forward curves dynamics, [2] introduced a new state
variable representing the average of liquid forward prices. This quantity, denoted F,
and capturing the entirety of the forward curve was meant to replace the previously
widely used spot price [7, 9] when managing a portfolio of Futures positions. In
agreement with the geometric Brownian motion-based reference models, F was

Fig. 5 Henry Hub natural gas forward curve in April 2013
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Fig. 6 HH and NBP
forward curves on 8/13/2010

defined as the geometric average (quite close to the arithmetic average) of all liquid
forward contract prices:

F(t) = N

√√√√ N∏
T=1

F(t,T).

where N is a multiple of 12 in the case of a seasonal commodity.
Compared to the spot price, F has several advantages. Firstly, it is the ‘center of

gravity’ of the forward curve, a more robust quantity able to capture all the infor-
mation available at time t in the liquid forward markets. Secondly, this average is
meant to avoid all the problems related to the instability (natural gas or electricity)
or opacity (agricultural goods) of the commodity spot price. Note that in electricity
for instance, the spot forward relationship does not even hold since the convenience
yield of Keynes (1936) loses its economic interpretation as electricity is generally
not storable (as of 2015).

Thirdly, F absorbs the seasonality if we use a multiple of 12 maturities when
calculating the average. Lastly, it is the quantity (up to the discount factors) that
underlies a commodity swap spanning the period up to the maturity of the swap;
and commodity swaps are experiencing a gigantic liquidity in energy markets. In
the same way, F reflects the anticipation of the average of spot prices at stake in the
Asian options traded on a number of commodity exchanges.

Next, Borovkova and Geman define the seasonal premia s(M) for M = 1, …, 12
as the set of long-term average premia (expressed in %) in Futures expiring in the
calendar month M over the average forward price F and assume these premia to be
deterministic.
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Lastly, they introduce a stochastic cost of carry net of seasonal premium g(t,T)
defined by the adjustment of the famous spot forward relationship in terms of F(t),
the seasonal premia and the cost of carry, namely

F (t,T) = F(t) exp [s(T)+ (T − t)g(t,T)]

where the seasonal premium s has the merit to depend only on the specific maturity
month and is independent of the length of the period.

Remarks

(i) Even in absence of seasonality, the so-called ‘normal backwardation’, namely
Futures prices decreasing with the maturity property has been invalidated in
commodity markets as of 2006, where different shapes have been observed for
the forward curve, depending on the market conditions in terms of spot prices,
long term views and available inventories.

(ii) But the Samuelson effect—namely the decrease of the volatilitywith thematurity
of the Future contract—continued(s) to be empirically observed in the forward
curves. Indeed, it seems reasonable that the effects of positive or negative news
arrival has more effect on the volatility of short dated maturities than long term
ones given the reduced length of the adjustment period.

[2] build the graph of the volatilities of the functions g(t,T) and exhibit for them the
same Samuelson effect, as illustrated below by UK Futures contracts (Fig. 7).

Fig. 7 Volatilities of natural gas stochastic convenience yields
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Introducing Distances between Commodity Forward Curves

[5, 8] introduced the novel concept of ‘distance’ between forward curves. In fact,
several definitions of distances are appropriate in order to make accurate statements
and relate to economic fundamentals discussed in the literature on commodities.
Working [13] established in a seminal paper the use of the spread of the forward curve
(long term Future price minus shorted minus the short dated one) as an indication for
low inventory when the spread is negative (backwardation). In order to investigate
whether there has been a march towards integration of the US and UK natural gas
markets, we propose below measures of distances which incorporate characteristics
of the forward curve (and spot price, its limit point).

We propose three definitions of distances between two commodity markets and
will apply them to the ones of NBP and HH indexes Let F1(t, i) and F2(t, i) be the
forward prices of two commodities with maturity i months at date t; S1(t) and S2(t)
be spot prices at date t. We first define the F(t) distance

D1 (t) = |F1(t)− F2(t)|.

It is the absolute value of the difference between the two curves averages. In the
period 2010–2014, the NBP forward curve was always higher than the HH forward
curve. Hence, the absolute value disappears and D1 is approximately the arithmetic
average of the distances between each pair of forward prices of the samematurity—a
very natural distance to introduce. The second distance is the simple spot distance

D2 (t) = |S1 (t)− S2 (t) |.

where again, the absolute value can be deleted for the period after Aug 2010.
In order to account for possible differences in slopes of forward curves, we wish

to add a ‘slope term’ in the first distance. We first define the slope as the difference
between the average of the 12 furthermost points and the 12 most nearby points on
the forward curve.1 It is expressed in dollars, hence is additive to F or spot prices:

dollar slope = 12

√√√√ 61∏
T=50

F (t,T)− 12

√√√√ 13∏
T=2

F (t,T).

Wedefine the ‘dollar slope’ as the difference between the average of long-termFuture
prices and the average of short term Future prices in order to benefit from the large
number of liquid maturities available as well as remove any undesirable seasonality
effect. Note that in the case of an approximately linear forward curve, this dollar
slope coincides with the famous spread analyzed in the commodities literature. The
spread introduced by Working in 1949 as a representation of inventory was later
used by [4] who analyzed 26 commodity markets where the inventory numbers were
not available. [6] studied a database of US oil and gas prices and inventories, and

1The first nearby is avoided as it is very volatile.
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validated Working’s conjecture by directly exhibiting a high correlation between
spreads and inventories. Our definition is meant to delete the seasonality effect in the
distance and use a mix of contracts to avoid an excessive influence of a maturity of
low liquidity.

We introduce now a third distance that mixes both the average forward prices as
well as the shapes of the forward curves, namely

D3 (t) =
∣∣F1(t)− F2(t)

∣∣ + |dollar slope1 − dollar slope2|
2

.

Note that

(a) In the case of two parallel forward curves, the distanceD3 is identical toD1 since
the second term is zero

(b) In the case of approximately linear and parallel forward curves, both increasing
for instance, the distance D3 is reduced to D1 again (Fig. 8)

(b’) In the case of approximately linear forward curves with one increasing and the
other decreasing, the first term in D3 is zero and the value of D3 is the same as the
one obtained in (b), a satisfactory result since the forward curves are in both cases
not “integrated”, but for different reasons. The division by 2 of the dollar slope term
in D3 was necessary to recover these same values of D3 in (b) and (b’), a property
we view as desirable.

TheCase of HH andNBP: Are Distances DecliningOver the Period 2010–2014?

The complete 61months of NBP forward curve data are not available before August
2010. In order to be able to calculate D3, and to keep consistency of the approach
across the time horizon for D1, we focus the analysis of distances on the period with
full NBP data, namely August 13, 2010 to April 10, 2014.

In Fig. 9 we plot all distances using weekly data in the usual unit of $/Million
Btu. Compared to the brisk spot prices moves, the distances seem more stable. The
augmented Dickey-Fuller tests show that they are all stationary, D1 and D2 at 5 %,
D3 at 10 % significance level.

Fig. 8 Hypothetical forward curves
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Fig. 9 Distances between NBP and HH, August 2010–April 2014

Analyzing a database covering the period January 2005 to April 2014 and using
various econometric tests, [5] conclude that no convergence yet has occurred between
the US and UK natural gas markets; this is visually confirmed by the Fig. 10.

Fig. 10 NBP and HH
forward curve on Aug 10,
2015
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4 Conclusion

We have presented in this paper the outlook of energy markets in 2015, with a focus
on natural gas, in particular investigated whether the march toward integration of
world natural gas markets had already started between the US and the UK—the
only developed gas markets for which full forward curves have been observed for a
number of years. To this end, we analyze a database of spot and forward curves of
the Henry Hub and National Balancing Point Indexes over the period January 2005
to April 2014. In order to go beyond the standard cointegration analysis used in the
existing literature on the subject, we benefit from the information embedded in the
forward markets by using the novel concept of distance between two commodity
markets. In fact, we define three distances—two of them meant to strongly capture
the signals provided by the forward curves. Using these different perspectives, our
answer is negative as of April 2014.

This has an importance at a time when new fleets of LNG tankers are cruising the
oceans in search for discrepancies in natural gas prices.
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Three Non-Gaussian Models of Dependence
in Returns

Dilip B. Madan

Abstract Three particular models of dependence in asset returns with non-Gaussian
marginals are investigated on daily return data for sector exchange traded funds. The
first model is a full rank Gaussian copula (FGC). The second models returns as a
linear mixture of independent Lévy processes (LML). The third correlates Gaussian
components in a variance gamma representation (VGC). On a number of occasions all
three models are comparable. More generally, in some by sectors, we get a superior
performance from the LML model followed by VGC and FGC as measured by
the proportion of portfolios with higher p-values. There are occasions when the
VGC and FGC dominate. The concept of local correlation is introduced to help
discriminate between the models and it is observed that the LML models display
higher levels of local correlation especially in the tails when compared with either
the VGC or FGC models.

Keywords Variance gamma model · Exchange traded funds · Independent compo-
nents analysis · Local correlation
A number of applications in financial modelling call for the description of the joint
law of asset returns over some horizon of interest. For many of these applications
it is well recognized that the marginal return distribution of each asset return taken
individually is not Gaussian (Jondeau et al. [15], Menn et al. [28], McNeil et al.
[27], Frey and Embrechts [5]). Hence the focus on non-Gaussian multivariate return
distributions. Applications include the design of optimal portfolios where the interest
is in the physical multivariate return distribution, or the pricing of options on a basket
of stocks for which the relevant return distribution is risk neutral. The marginal
distributions reflect varying degrees of skewness and excess kurtosis, features that
may be inherited and even exaggerated in portfolios. We investigate and report on
the comparative performance of three tractable multivariate models for asset returns
that have recently appeared in the literature. The particular feature of tractability for
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the three chosen models is the ability to estimate the models in dimensions as high
as 50, by reduction to a suitable sequence of univariate estimation problems. There
are a variety of multivariate elliptical distributions like the multivariate t-distribution
(Kotz and Nadarajah [16]), or the multivariate variance gamma (Madan and Seneta
[23], Schoutens and Cariboni [31] that impose a uniform tail structure across the
different assets that we do not study here. Some of the methods developed here
could however be applied to these and other models, provided one has access to the
distribution of portfolio returns and the pairwise joint densities.

The first of our three models is a full rank Gaussian copula (FGC) that has been
proposed and studied byMalevergne and Sornette [26] and is discussed in Bouchaud
and Potters [4] along with a variety of other non-Gaussian models. In this model
each asset return is a nonlinear transform of a set of standard normal variates that
are correlated with a correlation matrix C of possibly full rank. The second model
follows the idea implicit in a multivariate normal model where all the variables are
linear transformations of independent Gaussian variates. We now consider a linear
mixture of independent but non-Gaussian variates, that like theGaussian variable, are
infinitely divisible and associated with the unit time distribution of a Lévy process.
The model was implemented for portfolio design in asset allocation by Madan and
Yen [24] using independent components analysis (ICA et al. [13]) to identify the
independent variables. It was also used byMadan [19] in an equilibrium asset pricing
model. We denote this model LML for Lévy mixture. Models of this type have
appeared in risk neutral studies and we cite for example Ballotta and Bonfiglioli [1]
and Itkin and Lipton [14], our use here leverages the use of independent components
analysis as applied to time series data with a view to maximizing non-Gaussianity.
The third model writes the marginals as following the variance gamma law (Madan
andSeneta [23],Madan et al. [22]). Themarginals are gamma time changedBrownian
motion at unit time and we correlate the Brownian motions. The model was proposed
by Eberlein and Madan [8] and employed by Madan [20] in a study pricing options
on a basket of stocks. We term this model VGC for correlated variance gamma.

In order to investigate models of dependence it is helpful to consider data where
there is somepresumption of the presence of dependencies. Though this is expected of
stock returns in general as they presumably share exposure to common macro move-
ments of the economies in which they trade, one would expect such dependencies
to be even greater for sector specific exchange traded funds (ETF’s) that constitute
diversified portfolios of similar collections of stocks. Additionally we have daily data
on the market values of these funds, thereby providing us with a fertile environment
in which to test our models of multivariate dependence.

With these considerations in mind the three models are estimated on a number of
ETF returns partitioned by economic sector, as well as one set that selects a single
ETF from each of nine sectors. The question then arises as to how one may evaluate
model performance on this data. For many applications one is interested in the return
on portfolios and so we ask howwell themodels explain the univariate distribution of
returns on arbitrary portfolios. For this evaluation we construct a thousand arbitrary
randomly generated long short portfolio returns on the unit sphere of dimension
matching the number of ETF’s. We construct both the actual portfolio return in our
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data and the distribution of this return as predicted by each of our three estimated
models. We then construct the p-value on a chi-square test for whether the actual
return comes from each of the three models in turn. Under the null hypothesis that
the data constitute independent draws from the given distribution the number of
observations in each prespecified interval has asymptoticaly a normal distribution
with a resulting chi-square distribution for the test statistic. A rule of thumb is to
use 2n2/5 intervals for a sample of size n and we employ 20 regular intervals for a
sample of 700. Finally we graph the proportion of portfolios with a p-value greater
than x for a range of x values. A model with a higher proportion of high p-values for
each candidate probability level does a better job in explaining the univariate laws
of arbitrary portfolios and is therefore a superior model for the data set in question.

Different models appear to dominate on different occasions. For example, within
sector one gets a better performance from LML while across sectors FGC and VGC
dominate LML . These observations lead us to enquire deeper into the structure
of dependence in the different models. We follow the ideas of Longin and Solnik
[18] related to extreme correlation and localize further. For this purpose, we develop
the concept of local correlation. Later in the paper we comment on the relationship
between local correlation as we define it and the formulations of Burtschell, Gregory
and Laurent [6] and Langnau [17]. We observe that for the LML model there is
greater correlation in the tails of the distribution than in the center while for FGC
and VGC correlation drops of in the tails. As the local correlation turns out to be a
real valued function defined on a subdomain for the values of the two variables, we
call this function the correlation signature of themodel andwe present the correlation
signatures for our three models as they are estimated for the energy sector and a cross
sector grouping. A richer understanding of correlations is being called for in recent
research and we note Embrechts [10] in this regard.

The outline of the rest of the paper is as follows. Section1 presents the details of the
threemodels being contrasted. Section2 outlines the estimation procedures. In Sect. 3
we present our procedure for investigating the “goodness-of-fit”. Section4 introduces
the concept of local correlation and the correlation signature of a model. Section5
describes the data and the portfolio partitions employed. Results on performance
evaluation are presented in Sect. 6 including the correlation signatures. Section7
concludes.

1 The Models Studied

We present the three models studied, FGC, LML, and VGC in three subsections.
There are numerous other alternatives to modeling non-Gaussian dependence and
we refer the reader to Bouchaud and Potters [4] for other possibilities. Our attention
to these three models is motivated partly by the property that these models may be
estimated quite easily in dimensions up to 50 or more by essentially a sequential
application of univariate methods. We have also used these three models separately
in recent papers and we cite Eberlein and Madan [8, 9] and Madan [21]. Among
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non-Gaussian models we also have the class of stochastic volatility models, however
their estimation in high dimensions via EM algorithms is quite involved especially
when one begins to consider the structure of dependencies between the volatilities
as well as the returns.

1.1 The Model FGC

From one perspective it is uninformative to compute correlations of non-Gaussian
variates as the result does not leadus to any ability atwritingdown the joint probability
law. We merely have correlation estimates and plenty of them if the dimension is
high, but there we stop. However, if the data are transformed to standard normal
variates first, before the correlation is computed then the computed correlations may
be used to write down a candidate joint multivariate normal law for these transformed
Gaussian variates. The original data is thenmodeled as a non-linear transformation of
correlated Gaussian variates. This formulation results in a specific joint multivariate
probability element.

Let X = (X1, . . . , XN ) be a vector of dimension N with continuous marginal
distributions for each Xi given by

P (Xi ≤ x) = Fi (x).

One may transform the marginal laws to standard normal variates by

Zi = �−1(Fi (Xi )),

where � is the standard normal distribution function.
By construction Zi is a standard normal variate and one may recover Xi as

Xi = F−1
i (�(Zi )) . (1)

It is supposed that the vector Z = (Z1, · · · , ZN ) is standard multivariate normal
with correlation matrix C. The joint probably density of X may be expressed in
terms of the multivariate normal density for Z by a simple change of variable. In
our application we shall take the marginal distributions Fi to come from the variance
gamma class of distributions.

1.2 The Model LML

The Lévy mixture model postulates that

X = AY, (2)
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for a mixing matrix A and an N-dimensional vector Y, with each variable Yi being
independent of (Y j , j �= i). We further suppose that each Y j has a variance gamma
distribution.

Given characteristic functions

φ j (u) = E
[
exp

(
iuY j

)]

the joint characteristic function of X, with u now a vector is easily derived to be

φX (u) =
N∏
j=1

φ j
(
(A′u) j

)
.

1.3 The Model VGC

The marginal distributions are here postulated to be in the centered variance gamma
class with

Xi = θi (gi − 1) + σi
√

gi Zi , (3)

where Zi are standard normal variates and the gi ’s are a sequence of independent
gamma variates with unit mean and variance νi . The uncentered variance gamma
process (Madan and Seneta [23], Madan [22]) at unit time is a Brownian motion
with drift θi and volatility σi time changed by a gamma process with unit mean rate
and variance rate νi . The unit time random variable may equivalently be specified
as in Eq. (3). The methods of this section could extended to other specifications
for marginal distributions that are Lévy processes written as time changed Brownian
motions. This includes theMeixner process and theCGMY model as shown inMadan
and Yor [25] as well as the Normal inverse Gaussian model of Barndorff-Nielsen [3]
among other possibilities.

In theVGC specificationwenowfurther suppose that Z ismultivariate normalwith
correlation matrix C. The joint probability density and characteristic functions are
not available in closed form as one has to integrate out a large number of independent
gamma densities which appear as products of square roots that do not separate out
in either the density or the characteristic function. The joint law, however, is easily
simulated from amultivariate normal simulation coupledwith drawings from gamma
densities.

1.4 Comparative Remarks on the Three Models

The model FGC creates dependence by taking the nonlinear transform (1) of cor-
related Gaussian variates. On the other hand in VGC the transformation is linear as
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seen in equation (3) but both the intercept and slope are stochastic but simultaneously
generated, for each asset, by a single gamma variate. The gamma variate is different
for different assets. Hence, in this case we have a stochastic linear transformation of
correlated Gaussian variates. In the model LML Gaussian variates do not appear at
all, as we now take a multivariate linear transform (2) of independent non-Gaussian
variates. However to the extent the components are modeled as time changes Brown-
ian motions independent Gaussian variates do appear in the components. The three
models create dependence in apparently quite different ways. We employ the vari-
ance gamma model for our univariate model here, but one could easily extend to the
case of the generalized hyperbolic distribution (Eberlein [7]) or its numerous special
cases.

2 Estimation Procedures

We suppose we have data Xt = (X1t , · · · , XNt ) for t = 1, · · · T independent draws
from an unknown distribution. The data is supposed to be centered with a zero
sample mean. For FGC one first estimates the marginal distribution functions on
the univariate data. We employ distributions in the variance gamma class for this
purpose (Madan and Seneta [23], Madan [22]). This gives us a matrix of marginal
VG parameters

σi , νi , θi , i = 1, · · · , N .

We then form the univariate data

Zit = �−1(FVG (Xit ;σi , νi , θi )),

where FVG is the distribution function of a VG random variable with the specified
parameters. We then estimate the correlation matrix C by

C jk = 1

T

T∑
t=1

Z jt Zkt .

For the purpose of generating observations from this model we first
simulate say10,000 readings fromamultivariate normal density Zs = (Z1s, · · · ZNs) ,

s = 1, . . . , 10,000,with this correlationmatrix and then generate simulated readings
on the variables by

X js = F−1
VG

(
�

(
Z js

)
,σ j , ν j , θ j

)
.

Such simulated draws from the estimated model are used in our subsequent analysis
of the model’s goodness of fit.
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For the LML model we first identify the mixing matrix following Madan and Yen
[24] and employ independent components analysis for this purpose. The hypothesis
of independent components analysis is precisely the statement that one is observing
a linear mixture of independent variates and this procedure first performs a principal
components analysis (PCA) to generate a set of unit variance orthogonal random
variables constructed as linear combinations of the original observed variables. It is
then observed that an equivalent PCA is obtained on multiplication by any rotation
matrix. The procedure is based on recognizing that a mixing of non-Gaussian signals
induces a convergence to Gaussianity and hence the path back to the original signals
amounts to maximizing a metric of non-Gaussianity. Such a criterion is employed to
search over the class of rotation matrices to construct the matrix A that is the product
of the matrix delivering the PCA followed by the non-Gaussianity maximizing rota-
tionmatrix. The specific criterion used is the maximization of the expected logarithm
of the hyperbolic cosine (Hyvärinen [12]). Once thematrix A has been identified, one
obtains data on the independent components on premultiplication of the observed
data matrix by the inverse of A. We further postulate that these independent com-
ponents are variance gamma random variables. We then estimate the parameters of
the variance gamma model on the data for these components for obtaining a full
estimated specification for the joint law under the LML model.

Again, for the purpose of simulating say 10,000 draws from this estimated depen-
dence model we adopt the following procedure. First we generate an N × 1 vector of
independent variance gamma random variables 10,000 times, from the N estimated
variance gamma laws. We then multiply each N × 1 vector by the N × N matrix A
to sample a draw of N observations from this probability law. The result is a matrix
of N by 10,000 readings from the LML dependence model.

For our third model, VGC we employ the same VG marginal laws estimated in
FGC and then infer the correlations between the Gaussian variates from the observed
matrix of covariances between observed returns. This procedure inflates Gaussian
component correlations relative to observed correlations by a factor that just depends
on the estimatedmarginal laws. This inflation factor is explicitly described inEberlein
andMadan [8].Onoccasion these inflation factors can lead to an estimated correlation
matrix with some entries above unity. In this case we construct the closest correlation
to our symmetric matrix using the procedures of Qi and Sun [30]. We thus generate
10,000 readings from this law by generating correlated Gaussian random variables
and independent gamma variates to form a reading on an N vector in linewith Eq. (3).
The result is a N by 10,000 matrix of draws from the VGC law.

3 Investigating Goodness of Fit

We have estimated three joint laws on asset returns in dimensions ranging from 3
to 7. It is of interest to enquire into the quality of the estimated models, or their
ability to describe the data. We do not have available in closed form the relevant
joint densities and hence we cannot compute likelihoods and the models are not
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nested in any case. We also do not have estimates of asymptotic distributions of
parameter estimates or likelihoods and hence cannot employ the procedures of non-
nested tests either. We consider a performance based evaluation as opposed to testing
whether the data comes from the proposed model. In fact these are a tractable class
of models available to us and the data may well not come from any of them as the
modeling of multidimensional financial return data is a fairly complex exercise. We
enquire instead into how well these models of dependence explain the univariate
laws of randomly chosen linear mixtures. A multivariate model that explains well
the univariate law of all linear mixtures is clearly a good candidate model for the
joint law.

With such a performance evaluation in mind, we randomly generate 1000 linear
combinations with coefficients located on the unit sphere of N dimensional space.
For each linear combination we construct readings on returns for this linear combi-
nation of asset returns in our data. Next, for each of our three models with 10,000
simulated paths we construct three sets of 10,000 simulated readings for the same
linear combination. The simulated readings are employed to construct the expected
number of observations in 20 equally spaced cells covering the interquantile range
from 5 to 95%. We then count the observed number of readings in each of these
cells for each of a thousand linear combinations. Given the counts on observed and
expected number of observations in each cell we construct a chi-square test p-value.
We thus have three sets of a thousand p-values. Finally we graph against x , a candi-
date p-value between zero and unity, the proportion of portfolios with an observed
p-value above x . There are three such graphs for each of our three models. A model
whose graph dominates that for another model clearly has a higher proportion of
portfolios with high p-values than the dominated model and hence provides us with
a superior explanation of the univariate laws of arbitrary linear combinations. The
dominating model therefore constitutes a better candidate model of dependence for
this data.

4 Local Correlation

With a view towards taking a deeper look at how dependence is modeled in an arbi-
trary joint density we consider the formulation of local correlation in the neighbour-
hood of an arbitrary point in space. We note that Burtschell, Gregory and Laurent [6]
have considered a form of local correlation in the context of credit modeling where
the correlation coefficient depends on the level of the systematic factor in an other-
wise one factor Gaussian copula construction of dependence. Langnau [17] intro-
duces deterministic time dependent correlations between driving Brownian motions
to construct a form of correlation that is local in time. We work instead with the joint
density of two random variables, focussing attention on the possibility of correlations
varying when sampling is censored to different interval ranges for the two variables
being studied.
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To partially motivate what we are after we consider the following economic sce-
nario. Suppose that in normal times stocks move around with a low volatility and
some low level of correlation. As a boom develops and money starts moving from
fixed income markets towards the stock market, arbitrage traders trying to main-
tain price relativities introduce greater correlation as volatilities also rise. A similar
pattern occurs as we go into a bear market. On occasion one may see some sec-
tors expand at the expense of another and here we may have negative correlations
occuring between a pair of stocks.

By way of a theoretical model underlying such scenarios we note that any den-
sity in two dimensional space may be expressed as a mixture of bivariate nor-
mal densities and we consider 5 such densities. They have the following means,
variances and correlations for our two variates respectively. The values for the
means for X are, μX = (0.03, 0.03, 0,−0.03,−0.03) and for Y we have μY =
(0.03,−0.03, 0, 0.03,−0.03). The standard deviations in the five cases for X are
σX = (0.3, 0.2, 0.1, 0.2, 0.3) while for Y they are σY = (0.4, 0.3, 0.15, 0.3, 0.4),
where we have induced high volatility in up and down markets, a lower volatility
when we have a movement from one asset to the other and a still lower volatility for
normal times. We take the five correlations to be ρXY = (0.8,−0.5, 0,−0.5, 0.8),
with the bull and bear markets being highly positively correlated, the movement
betweenmarkets being negatively correlated and there being no correlation in normal
times. We suppose the total sample comes from a mixture of these five joint densities
in the proportions w = (0.1, 0.05, 0.7, 0.05, 0.1). One may explicitly write the joint
density as

q(x, y) =
5∑

i=1

wi b

(
x − μX (i)

σX (i)
,
y − μY (i)

σY (i)
; ρXY (i)

)
,

where b(x, y; ρ) is the bivariate normal density with correlation coefficient ρ. We
present in Fig. 1 a sample of size 10,000 from such a density.

One may compute sensored correlations for data in the four corners for X,Y
being above or below plus or minus one percent. In this sample these correlations
are 0.6220, −0.3201, −0.2731 and 0.6038 respectively. In principle therefore one
may have correlation varying as we move around in the spatial domain.

For an analysis of such situations we consider an arbitrary joint density for two
random variables q(x, y). We now define

h(x, y) = −2 ln q(x, y).

Consider expanding the function h to second order around the point (a, b) to obtain

h(x, y) ≈ h(a, b) + ha(x − a) + hb(y − b)

+ 1

2
haa(x − a)2 + 1

2
hbb(y − b)2

+ hab(x − a)(y − b).
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Fig. 1 Sample of locally correlated data

A bivariate normal distribution has such an exact quadratic expression for the log
likelihood where we identify

�−1 =
(
haa hab
hba hbb

)
.

In this case we would have

� = 1

haahbb − h2ab

(
hbb −hab

−hba haa

)

and the correlation would be

ρab = −hab√
haahbb

. (4)

We might consider defining this value generally as the local correlation. It is then a
question as to whether this value is between −1 and 1. For this we require the square
to be less than one or

h2ab ≤ haahbb. (5)

This is precisely the condition for the negative of the log likelihood to be a convex
function.Wemust have haa, hbb > 0 alongwith (5). For manymodels with unimodal
joint densities we have the concavity of the density near the mode and hence in this
region the negative of the log likelihood is convex. The proposed definition for local
correlation will yield magnitudes dominated by unity in absolute value in this region.
There is therefore quite generally a local domain in which one may investigate the
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shape of local correlation. We call the map in this local domain the correlation
signature of the model. Additionally there are models with universally log concave
densities and for thesemodels the local correlation is universally well defined. This is
an important class of densities, much studied in its own right by Barlow and Proschan
[2], and Prèkopa [29].

We now investigate the nature of this local correlation surface for our threemodels
FGC, VGC and finally LML in separate subsections.

4.1 Local Correlation for FGC

Here the joint law is that of nonlinear transforms of correlated Gaussians. The joint
density is therefore

f (x, y) = b(g(x), h(y))g′(x)h′(y),

where b(z1, z2) is again the bivariate normal density with correlation coefficient ρ.

The functions g, h are the two nonlinear transforms, where the transformed variates
are taken to be distributed with a bivariate normal density. The negative of twice the
log density is

�(x, y) = −2 ln( f (x, y))

= −2 ln b(g(x), h(y)) − 2 ln g′(x) − 2 ln h′(y).

Define b̃(z1, z2) = −2 ln b(z1, z2). It follows that

�xy = b̃xyg
′(x)h′(y).

We have b̃xy = ρ the assumed constant correlation coefficient of the bivariate
normal and g′, h′ are high in the center and low in the tails by virtue of being
derivatives of distribution functions. Hence this model gives higher correlation in
the neck of the joint density and correspondingly lower correlation in the tails.

4.2 Local Correlation for VGC

For the VGC structure we have

x = θx (gx − 1) + σx
√

gx Zx

y = θy(gy − 1) + σy
√

gy Zy .
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The joint density is now

E

[
1

σx
√

gx
b

(
x − θ(gx − 1)

σx
√

gx
,
y − θ(gy − 1)

σy
√

gy

)
1

σy
√

gy

]
,

where E denotes the expectation operator with respect to integrating out the gamma
variates gx , gy .

The critical function now is

�(x, y) = −2 ln E

[
1

σx
√

gx
b

(
x − θ(gx − 1)

σx
√

gx
,
y − θ(gy − 1)

σy
√

gy

)
1

σy
√

gy

]

and we may consider in its place the lower bound given by expectation of the loga-
rithm. This yields the function

�̃(x, y) = −2E

[
ln

(
1

σx
√

gx
b

(
x − θ(gx − 1)

σx
√

gx
,
y − θ(gy − 1)

σy
√

gy

)
1

σy
√

gy

)]

and this generates a possibly flat correlation the expected cross partial is a scaling
of ρ.

4.3 Local Correlation for LML

For the LML model we have the joint density

f (x, y) = g(ax + by)h(cx + dy)κ,

where κ is a normalization constant.
In this case we get

�(x, y) = −2 ln g(ax + by) − 2 ln h(cx + dy) − 2 ln κ.

If we compute the cross partial derivatives on defining g̃, h̃ to be −2 ln g, −2 ln h
respectively we get

�x = g̃′a + h̃′c,
�xy = g̃′′ab + h̃′′cd,

�xx = g̃′′a2 + h̃′′c2,
�yy = g̃′′b2 + h̃′′d2.
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For our convexity condition we require that

�xx�yy ≥ �2
xy

or equivalently that

(̃
g′′a2 + h̃′′c2

) (̃
g′′b2 + h̃′′d2) ≥ (̃

g′′ab + h̃′′cd
)2

and this yields the condition

g̃′′ h̃′′ (a2d2 + b2c2 − 2abcd
) ≥ 0

or
g̃′′ h̃′′ (ad − bc)2 ≥ 0

and hence we just need that
g̃′′ h̃′′ ≥ 0.

This condition is satisfied if the marginal laws are themselves log convex. We
note that the second derivatives peak up in the tails and the center and are small in
the middle. This model can therefore lead to tail and central correlations with flat
correlations in the middle.

5 The Data Employed

Weobtained data on the time series of Exchange Traded Funds (henceforthETF) that
follow various sectors of the US economy. As we are also interested in risk neutral
laws we focused attention on funds that also have options trading on the ETF market

Table 1 ETF groupings by sector

Sectors ETF Tickers

Consumer discretionary xly,rth,xrt,itb,xhb

Energy xle,iye,ieo,oih,xop

Financials xlf,iyf,iai,kbe,kre,rkh,kce

Health and Pharmaceuticals xlv,bbh,pph

Industrials and Technology xli,iyt,iyw,xlk

Internet, Networking, Semiconductor, Software hhh, bdh, igw, smh, swh

Materials, Real estate, Telecommunications xlb, iyr, iyz, tth

Natural resources ige, gdx, slx, xme

Utilities idm, xlu, uth

Cross sectors xly,xlp,xle,xlf,xlv,xli,xlk,xlb,xlu
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Fig. 2 Portfolio Proportions with given probability values in the Consumer Discretionary sector
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Fig. 3 Portfolio Proportions with given probability values in the Energy sector

and for which we had a time series exceeding 700 days of daily data ending on July
21 2009. There are nine industry groups and the ETF’s in the group are displayed in
Table1.

For each of these nine groups we present nine graphs with three curves each, one
for FGC in black, another for LML in blue and the third for VGC in red. Each curve
displays the proportion of a thousand random linear combinations with a p-value
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Fig. 4 Portfolio Proportions with given probability values in the Financial sector
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Fig. 5 Portfolio Proportions with given probability values in the Health related sector

for a chi-square test on the univariate law for this linear combination exceeding the
candidate value given by the x axis. Figure2 displays the result for the Consumer
Discretionary sectorwhereFGC andVGC perform equallywell and dominate LML .

In Fig. 3 we have the results for the Energy sector where LML dominates, followed
by VGC and the FGC. For the Financial sector, Fig. 4, that saw a lot of movement in
this period, VGC dominates by far the other two models. In the Health related sector
Fig. 5 LML and VGC criss cross and dominate FGC. For the industrial sector, Fig. 6
all three models are equivalent. The technology sector Fig. 7 like Energy has LML
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Fig. 6 Portfolio Proportions with given probability values in the Industrial sector

p-value
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

po
rti

on
 w

ith
 h

ig
he

r p
 v

al
ue

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Technology

LML
FGC
VGC

Fig. 7 Portfolio Proportions with given probability values in the Technology sector

dominating followed by VGC and FGC. All three models are equivalent for Natural
Resources Fig. 8. Telecom, Fig. 9 sees the order VGC followed by LML and FGC.
Finally the Utility sector Fig. 10 has LML followed by VGC and FGC.

We observe from focusing in some cases around the 10% point that in five of the
nine groups we have LML dominating VGC that dominates FGC. In a further two
cases all three models are equivalent. In one case, Financials, VGC dominates the
other two by far. There is some broad preference for LML followed by VGC and then
FGC.
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Fig. 8 Portfolio Proportions with given probability values in the Natural Resource related sector
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Fig. 9 Portfolio Proportions with given probability values in the Telecom sector

We next consider the cross sector group Fig. 11 with one ETF from each of the
nine sectors. In this grouping we have a clear domination by VGC over FGC and
LML that are somewhat equivalent.
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Fig. 10 Portfolio Proportions with given probability values in the Utility sector
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Fig. 11 Portfolio Proportions with given probability values in the Cross Sector group

6 Model Correlation Signatures

We first present the details on how the correlation signatures are constructed for
each model. In each case we extract the joint density for a pair of returns in the
set of returns jointly modeled. We then evaluate the local correlation numerically
by evaluating the appropriate derivatives of the negative of the log likelihood. We
describe in separate subsections the procedure for constructing the joint density for
a pair of variables.
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6.1 FGC

For the FGC model the joint density is obtained as follows. Let the marginal distri-
bution functions be F(x), G(y). We then have that

z1 = �−1(F(x))

z2 = �−1(G(y))

are distributed bivariate normal with correlation ρ. The density of z = (z1, z2) is

b(z1, z2).

It follows that the density of x, y is

q(x, y) = b(�−1(F(x)),�−1(G(y)))
f (x)

φ (z1)

g(y)

φ(z2)
.

Once we have q we may apply our local correlation surface construction to extract
the correlation signature of this model.

We now wish to incorporate scaling to unit variance. We may do this via the
marginals as

X = x

σ

and
FX (a) = P(X ≤ a) = P

( x

σ
≤ a

)
= Fx (σa).

6.2 LML

Wewish to construct the correlation signatures of our models estimated on one of the
more volatile sectors, and we take by way of an example, the energy sector. There
are five ETF’s for which the joint law was estimated and these are

xle, iye, ieo, oih, xop.

We consider xle, iye and ieo, xop. We have modeled daily returns as

xi = φ′
i y

x j = φ′
j y.

and we have the joint characteristic functions but we shall compute the correlation
signatures for standardized variates. The variance of x is given by
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σ2
i =

∑
k

φ2
ik

(
σ2
k + θ2kνk

)
.

The standardized vector is

Xi = xi
σi

= φ′
i

σi
y = �′

i y

and it is centered of unit variance by construction.
We easily obtain from the joint characteristic function the joint characteristic

function of any 2 variates out of the full set modeled. We may invert this joint
characteristic function using two dimensional Fourier inversion for the joint density
as described for example in Hurd and Zhou [11].

6.3 VGC

For the VGC model the construction is

X = θx (gx − 1) + σx
√

gx Zx ,

Y = θy(gy − 1) + σy
√

gy Zy .

Hence given the density of Z = (Zx , Zy) we may write

q(x, y) = E

[
b

(
x − θx (gx − 1)

σx
√

gx
,
y − θy(gy − 1)

σy
√

gy

)
1

σx
√

gx

1

σy
√

gy

]

=
∫ ∞

0

∫ ∞

0
b

(
x − θx (gx − 1)

σx
√

gx
,
y − θy(gy − 1)

σy
√

gy

)
px (gx )py(gy)dgxdgy,

where px , py are the gamma densities for the two gamma time changes.
We may write the joint density more explicitly as

q(x, y) =
∫ ∞

0

∫ ∞

0
b

(
x − θx(gx − 1)

σx
√

gx
,
y − θy(gy − 1)

σy
√

gy

)
×

1

σxν
1
νx
x �

(
1
νx

)g
1
νx

− 3
2

x e− gx
νx

1

σyν
1
νy
y �

(
1
νy

)g
1
νy

− 3
2

y e− gy
νy dgxdgy .

We make the change of variable to

wx = gx

νx

wy = gy

νy
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to get

q(x, y) =
∫ ∞

0

∫ ∞

0
b

(
x − θx (νxwx − 1)

σx
√

νxwx
,
y − θy(νywy − 1)

σy
√

νywy

)
×

1

σx
√

νxwx�
(

1
νx

)w
1
νx

−1
x e−wx

1

σy
√

νywy�
(

1
νy

)w
1
νy

−1
y e−wy dwxdwy .

We evaluate this as a double sum using Gauss-Laguerre quadrature for the con-
struction of the joint density in two dimensions. This joint density computed on
grid is then input into the program that constructs the local correlation surface by
computing the required derivatives. We explicitly evaluate the joint density as

q(x, y) =
∑
i j

pi p j b

(
x − θx (νxwi − 1)

σx
√

νxwi
,
y − θy(νyw j − 1)

σy
√

νyw j

)
×

1

σx
√

νxwi�
(

1
νx

)w
1
νx

−1

i

1

σy
√

νyw j�
(

1
νy

)w
1
νy

−1

j ,

where pi are the Laguerre weights and wi are the points.

6.4 Correlation Signature Results for Energy and the Cross
Sector Group

We present in Table2 the correlation signatures for two pairs of stocks from the
Energy sector, ieo,xop and xle,iye and three pairs of stocks from the cross sector
group xly,xlp, xli,xlk and xly,xli. We observe that the local correlations in LML tend
to be substantially higher and particularly so in the tails. The local correlations are
computed at the center of the distributions and 10% age points up and down from
this level. Economically one experiences higher correlations in times of crisis that
are viewed as rare tail events. To the extent local correlation captures such spatially
contingent notions of correlation these results support the economic relevance of
such models.

7 Conclusion

Three models of dependence in asset returns with non-Gaussian marginals are inves-
tigated on ETF daily return data. The first is a full rank Gaussian copula also studied
and proposed in Malvergne and Sornette (2005) termed FGC. The second is a linear
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mixture of independent Lévy processes as proposed in Madan and Yen [24] and
studied in [19] termed LML. The third correlates Gaussian components in a vari-
ance gamma representation of the marginals as proposed in Eberlein and Madan [8]
termed VGC. All three models are easily estimated in fairly high dimensions as most
of the work is done at a univariate level. The models are evaluated on the basis of
their ability to explain the univariate laws of randomly generated portfolios.

It is observed that on a number of occasions all three models are at a comparable
level of performance. In some cases we get a superior performance from the LML
model followed by VGC and FGC. There are occasions when the VGC and FGC
dominate. The three models are tractable in different ways with the LML model
yielding closed form characteristic functions.

With a view to exploringmore deeply the different forms of dependencemodeling
the concept of local correlation is introduced. It is shown that theLMLmodel displays
higher levels of local correlation than that obtained in the FGC and VGC models.
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Abstract This paper discusses estimation of correlation between hidden
semimartingales.We show the consistency and the asymptoticmixed normality of the
proposed correlation estimator in a high frequency setting. As an example, estima-
tion of covariance between intensity processes of doubly stochastic point processes
will be mentioned.

Keywords High frequency data · Latent correlation · Asymptotic mixed normality

1 Introduction

Epps [15] showed that the sample correlation between two stock prices has downward
bias when the sampling frequency increases. In explanation, it is recognized that non-
synchronicity andmicrostructure cause this phenomenon for high frequencyfinancial
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data. Non-synchronous covariance estimation schemes and denoising techniques
have been developed in recent years.Amongmany others, seeMalliavin andMancino
[28, 29], Hayashi and Yoshida [17–19], Voev and Lunde [38], Griffin and Oomen
[16], Mykland [31], Zhou [41], Zhang et al. [39], Zhang [40], Podolskij and Vetter
[36], Jacod et al. [23],Christensen et al. [9],Bibinger [5, 6],Ogihara andYoshida [34],
Koike [24–26], Ogihara [32, 33] for developments of this field. The microstructure
is often expressed as noise added to the latent efficient prices. This modeling was
successful, at least for developing theory, though the reality of noise is not so clearly
explained. The lead-lag phenomenon is also an issue related to the non-synchronicity,
see e.g., de Jong and Nijman [11], Hoffmann et al. [21] and Abergel and Huth [1].

Jump processes have been successfully applied to analyses of financial data; see
[12–14] and others for pioneering works by Ernst Eberlein for applications of Lévy
processes and related distributions. Recently, along with the developments in mea-
surement and storage technologies, the timing of sampling is becoming more and
more precise. In order to model non-synchronicity and microstructure as well as
lead-lags, modeling of ultra high frequency phenomena is going toward use of jump
processes: Hewlett [20], Large [27], Bowsher [8], Bacry et al. [4], Cont et al. [10],
Abergel and Jedidi [2, 3], Smith et al. [37], Muni Toke and Pomponio [30], and
Ogihara and Yoshida [35]. In this stream, the aim of this paper is to present a sim-
ple estimator of correlation between two latent processes indirectly observed high
frequently. An application is correlation estimation of intensity processes of two
observable counting processes. We will prove asymptotic mixed normality in the
situation where the processes are observed in finite time horizon and the trajectory of
each underlying process is asymptotically estimable, for example where the market
is active and the number of transactions becomes large.

2 Model

We consider a stochastic basis B = (Ω,F ,F, P), F = (Ft )t∈[0,1].
On B, let X = (X1, X2) be an R

2-valued Itô process given by

Xt = X0 + ∫ t
0 X

0
s ds + ∫ t

0 X
1
s dws (t ∈ [0, 1]), (1)

where w is an r-dimensional F-Wiener process, X0 is an F0-measurable random
variable, X0 is a two-dimensional F-adapted process, X1 is an R

2 ⊗ R
r-valued F

-adapted process specified more precisely later, cf. Condition [A] below.
Let an be a positive number depending on n ∈ N. On B, consider a two-

dimensional measurable process Yn = (Y n,1,Y n,2) having a decomposition

Y
n
t = Y

n
0 +

∫ t

0
anXsds + M

n
t ,
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where M
n = (Mn,α)α=1,2 is a two-dimensional measurable process with M

n
0 = 0.

We will put additional conditions on M
n in Condition [B�], [B], [B′] and [B�] of

Sect. 3

Example 1 Suppose that each Xα is R+ = [0,∞)-valued and Y n,α is a counting
process with intensity process an Xα . This model describes the high frequency count-
ing data of the orders or transactions in the active market, for example.

Example 2 Let t j = j/n, X = w andMn
t = ∑n

j=1

{
(wtj∧t − wtj−1∧t )⊗2 − (t j ∧ t −

t j−1 ∧ t)Ir
}
. The incrementMn

t j − M
n
t j−1

is dependent onFX
t j = σ {Xs; s ∈ [0, t j ]},

and it has bias under the conditional probability P[ · |FX
t j ].

Suppose that X is unobservable but we observe Y
n instead. In this article, we

will discuss estimation of the covariation 〈X1, X2〉 from the data of Y. The idea is
very simple. First we make a filter to estimate the state of Xα and then estimate
the covariation between X1 and X2 from the filtered data. We will discuss asymp-
totic properties of our estimator when an → ∞ as n → ∞. Our method applies to
an estimation problem with ultra high frequency data in finite time horizon. From
another point of view, we can say the bracket of the drift Xt is estimated from the
observations Yn

t j /an that are contaminated by the small noises Mn
t /an .

Let I j = [t j−1, t j ) for a sampling design Π = (t j ) j=0,...,bn with 0 = t0 < t1 <

· · · < tbn = 1, bn ∈ N, and let h j = t j − t j−1. Numbers t j and h j are depending on
n. WriteΔ j V = Vt j − Vt j−1 for a process V . The matrix transpose will be denoted by
	. For a matrix A, A⊗ = A ⊗ A = AA	 and the (i, j)-element is denoted by A⊗(i, j).
We assume limn→∞ bn = ∞.

We define a covariance estimator between intensity processes associated with
sampling design Π by

Sαβ
n =

bn∑
j=2

(
Δ jY

anh j
− Δ j−1Y

anh j−1

)⊗(α,β)

(α, β = 1, 2).

This estimator depends on the scaling parameter an . We also define a correlation
estimator of intensity processes associated with sampling design Π by

C12
n = S12n√

S11n S22n
.

That is,

C12
n =

bn∑
j=2

(
Δ jY

h j
− Δ j−1Y

h j−1

)⊗(1,2)

×
[ bn∑

j=2

(
Δ jY

h j
− Δ j−1Y

h j−1

)⊗(1,1) bn∑
j=2

(
Δ jY

h j
− Δ j−1Y

h j−1

)⊗(2,2) ]−1/2

.
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This estimator does not need the value of the scaling parameter an .
The aim of this paper is to study consistency and asymptotic mixed normality of

these estimators. The organization of the paper is as follows. In the next Sect. 3, we
state assumptions and the results of this paper. In Sect. 4, we prove the theorems.

3 Results

Hereafter we will assume t j = j/bn for simplicity. In particular, h j = 1/bn =: δn
independently of j , and

Sαβ
n = 1

(anδn)2

bn∑
j=2

(
Δ jY − Δ j−1Y

)⊗(α,β)

= 1

(anδn)2

bn∑
j=2

(
Yt j − 2Yt j−1 + Yt j−2

)⊗(α,β)

for α, β = 1, 2. The equi-spaced case will be considered but some extensions to
irregular sampling cases are possible. We will often use h j when emphasizing the
length of I j rather than the uniform length δn .

In this paper, we will consider the following condition.

[A] Process X admits the representation (1) for an R
2-valued F0-measurable ran-

domvariableX0 and coefficientsXκ (κ = 0, 1) such thatX0 is a càdlàgF-adapted
process and that X1 has a representation

X
1
t = X

1
0 +

∫ t

0
X

10
s ds +

∫ t

0

r ′∑
κ ′=1

X
1κ ′
s dw̃κ ′

s (t ∈ [0, 1]),

where X1
0 is an R

2 ⊗ R
r -valuedF0-measurable random variable, w̃ = (w̃1, . . . ,

w̃r ′
) is an r ′-dimensional F-Wiener process (not necessarily independent of w),

and X
1κ ′
t (κ ′ = 0, 1, . . . , r ′) are R2 ⊗ R

r -valued càdlàg F-adapted processes.

We will consider the following conditions [B�], [B], [B′] and [B�] sorted accord-
ing to the rate of bn .

[B�]

(i) limn→∞ b2n/an = 0.
(ii)

∑bn
j=1 |Δ jM

n|2 = Op(an) as n → ∞.

[B] Mn = (Mn,α)α=1,2 is a two-dimensional F-local martingale with M
n
0 = 0 and

such that

(i) limn→∞ b5/2n /an = 0.
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(ii)
∑bn

j=1 |Δ jM
n|2 = Op(an) as n → ∞ and supt∈[0,1] |ΔM

n
t | ≤ c a1/2n for a

constant c independent of n, where ΔM
n
t = M

n
t − M

n
t−.

(iii) The absolutely continuous (with respect to the Lebesgue measure a.s.)
mapping [0, 1] � t �→ 〈Mn,w〉t ∈ R

2 ⊗ R
r satisfies supt∈[0,1] |d〈Mn,w〉t/

dt | = Op(bn) as n → ∞.

Here, 〈Mn,w〉t is the 2 × r matrix of angle brackets 〈Mn,α,wk〉t for M
n =

(Mn)α=1,2 and w = (wk)k=1,...,r .

[B′] Mn = (Mn,α)α=1,2 is a two-dimensional F-local martingale with M
n
0 = 0 sat-

isfying [B] (i), (iii) and

(ii′) E
[ ∑bn

j=1 |Mn
t j − M

n
t j−1

|2] = O(an) as n → ∞.

[B�]

(i) limn→∞ b3n/an = 0.
(ii)

∑bn
j=1 |Δ jM

n|2 = Op(an) as n → ∞.

Remark 1 [B�] is for consistency. [B], [B′] and [B�] are for asymptotic mixed nor-
mality. These conditions do not follow from each other.

Remark 2 For [B′] (ii′), it suffices to show that supt∈[0,1−δn ] E
[|Mn

t+δn
− M

n
t |2

] =
O(anδn). We note that anδn = an/bn = (an/b

5/2
n ) × b3/2n → ∞ when b5/2n /an → 0.

Remark 3 In practice, 〈Mn〉t can be of order an . Then [B] (iii) requires fairly fast
asymptotic orthogonality betweenMn and w. This condition is satisfied for example
when Y

n are counting processes.

Let x⊗̃y = ((xi y j + x j yi )/2) ∈ R
r ⊗ R

r for x = (xi ), y = (yi ) ∈ R
r , and let

x ⊗̃(α,β) = xα· ⊗̃xβ· for x = (xα
i ) ∈ R

2 ⊗ R
r .Wewrite x · y = ∑r

i=1 xi yi for x = (xi ),
y = (yi ) ∈ R

r , and x · y = ∑r
i, j=1 xi, j yi, j for x = (xi, j ), y = (yi, j ) ∈ R

r ⊗ R
r .

Let Sn = (S12n , S11n , S22n )	,

Uαβ = 2

3
〈Xα,c, Xβ,c〉1 = 2

3

∫ 1

0
Xα1
t · Xβ1

t dt (α, β = 1, 2)

and let U = (U 12,U 11,U 22)	, where Xα,c is the continuous part of Xα and Xα1
t is

the α-th row of X1
t . Let

Γ = (γ pq)p,q=(1,2),(1,1),(2,2), γ pq =
∫ 1

0
(X1

s )
⊗̃p · (X1

s )
⊗̃q ds.

For example,

(X1
s )

⊗̃p =
(
Xα1
i,s X

β1
j,s + Xα1

j,s X
β1
i,s

2

)
i, j=1,...,r

(p = (α, β))
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and

γ (α1,β1),(α2,β2) =
∫ 1

0

r∑
i, j=1

Xα11
i,s Xβ11

j,s + Xα11
j,s X

β11
i,s

2

Xα21
i,s Xβ21

j,s + Xα21
j,s X

β21
i,s

2
ds,

where Xα1
i,s is the (α, i)-element of X1

s .

Theorem 1 (a) Sn →p U as n → ∞ under [A] and [B�], where p denotes the
convergence in probability.

(b) Under [A] and any one of [B], [B ′] and [B�],

b1/2n

(
Sn −U

)
→ds Γ

1
2 ζ

as n → ∞, where ζ is an R
3-valued standard normal variable independent of

F and ds denotes the F -stable convergence.

Proof of Theorem 1 is given in Sect. 4.
Let R = U 12/

√
U 11U 22. For the correlation estimator, we have

Theorem 2 Suppose that U 11U 22 �= 0 a.s. Then

(a) C12
n →p R as n → ∞ under [A] and [B�].

(b) Under [A] and any one of [B], [B ′] and [B�],

b1/2n

(
C12
n − R

)
→ds

(
1√

U 11U 22
,

−U 12

2
√

(U 11)3U 22
,

−U 12

2
√
U 11(U 22)3

)
· Γ

1
2 ζ

as n → ∞, where ζ is an R
3-valued standard normal variable independent of

F .

Proof These results are easy consequences of Theorem 1. Apply the so-called Delta-
method for stable convergence to the second assertion. �

Example 3 (Cox process) Let F′ = (F ′
t )t∈[0,1] be a filtration on a probability space

(Ω ′,F ′, P ′). Suppose thatX is a two-dimensional nonnegative Itô process given by
(1) for an r -dimensioal F′-Wiener process w and anF ′

0-measurable random variable
X0, and two-dimensional F′-predictable processes Xκ

t (κ = 0, 1). Let μα (α = 1, 2)
be independent Poisson random measures on R+ × R+ defined on (Ω ′′,F ′′, P ′′)
with intensity measure ν(dt, dx) = dtdx . Let Y n,α

t = ∫ t
0

∫
1[0,an Xα

s ](x)μα(ds, dx).
Let Ω = Ω ′ × Ω ′′, F = F ′ × F ′′, P = P ′ × P ′′, and F = (Ft )t∈[0,1] with Ft =
∩u>t (F ′

u × F ′′
u ), whereF ′′

t is the filtration onΩ ′′ generated byμα([0, s] × B) (s ≤
t , B ∈ B(R+), α ∈ {1, 2}). Then, X-conditionally, Y n,α is a time-inhomogeneous
Poisson process with intensity function an Xα

t . The process w naturally extended to
Ω is an r -dimensional F-Wiener process,Mn,α

t = ∫ t
0

∫
1[0,an Xα

s ](x)(μα − ν)(ds, dx)
and 〈Mn,w〉 = 0, that is, [B] (iii) holds. Condition [B] (ii) is easily verified by
localization.
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4 Proof

By a localization argument, we may assume that there exists a constant K ,

sup
t∈[0,1]

(
|Xt−| + |X0

t−| + |X1
t−| + |X10

t−| +
r ′∑

κ ′=1

|X1κ ′
t− |

)
≤ K .

We write

Ṽ j = Δ j V

anδn

for a stochastic process V . Define χt = (χα
t )α=1,2 by

χα
t =

∫ t

0
an X

α
s ds.

Let Tn = (T 12
n , T 11

n , T 22
n )	 for

T αβ
n = 1

(anδn)2

bn∑
j=2

(
Δ jχ − Δ j−1χ

)⊗(α,β)

for α, β = 1, 2. By definition, Mn,α = Y n,α − Y n,α
0 − χα is an F-martinagle for each

α = 1, 2.

Lemma 1 (a) Sn − Tn →p 0 if [B�] holds.
(b) b1/2n (Sn − Tn) →p 0 if any one of [B], [B ′] and [B�] holds.
Proof Let

sαβ

j = 1

(anδn)2
(
Δ jY

n − Δ j−1Y
n
)⊗(α,β) = (

Ỹ
n
j − Ỹ

n
j−1

)⊗(α,β)

and

tαβ

j = 1

(anδn)2
(
Δ jχ − Δ j−1χ

)⊗(α,β) = (
χ̃ j − χ̃ j−1

)⊗(α,β)
.

By definition,

sαβ

j − tαβ

j = (M̃n
j − M̃

n
j−1)

⊗(α,β) + (M̃α
j − M̃α

j−1)(χ̃
β

j − χ̃
β

j−1)

+(χ̃α
j − χ̃α

j−1)(M̃
β

j − M̃β

j−1). (2)
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From (2),

|Sn − Tn | ≤
bn∑
j=2

|M̃n
j − M̃

n
j−1|2 + 2

{ bn∑
j=2

|M̃n
j − M̃

n
j−1|2

}1/2{ bn∑
j=2

|χ̃ j − χ̃ j−1|2
}1/2

.

Since
∑bn

j=1 |Δ jM
n|2 = Op(an) in any case, we have

bn∑
j=2

|M̃n
j − M̃

n
j−1|2 ≤ 4

bn∑
j=1

|M̃n
j |2 = Op(b

2
n/an). (3)

It is easy to see that

E[|χ̃ j − χ̃ j−1|2m] ≤ Cm,K

bmn
(4)

form ∈ N. In particular,
∑bn

j=1 |χ̃ j − χ̃ j−1|2 = Op(1). Thus, we have Sn − Tn →p 0

under [B�], as well as b1/2n (Sn − Tn) →p 0 under [B�].
Suppose that [B] is satisfied. We will show (b) by estimating the terms on the

right-hand side of (2). We have χ̃ j − χ̃ j−1 = Φ j + Φ ′
j , where

Φ j = X
1
t j−2

δ−1
n

∫ t j−1

t j−2

∫ s+δn

s
dwr ds

and

Φ ′
j = δ−1

n

∫ t j−1

t j−2

{∫ s+δn

s

(
X

1
r − X

1
t j−2

)
dwr +

∫ s+δn

s
X

0
r dr

}
ds.

It is easy to see that
∑bn

j=2 |Φ ′
j |2 = Op(δn). Therefore, by (3),

b1/2n

∣∣∣∣
bn∑
j=2

(M̃n
j − M̃

n
j−1) ⊗ Φ ′

j

∣∣∣∣ ≤ b1/2n

{ bn∑
j=2

∣∣M̃n
j − M̃

n
j−1

∣∣2
}1/2{ bn∑

j=2

|Φ ′
j |2

}1/2

= Op(

√
b2n/an) = op(1).

Due to [B] (iii), for any sequence of positive numbers Kn tending to ∞, we have
limn→∞ P[ρn < 1] = 0 for

ρn = inf

{
t; b−1

n sup
r∈[0,t]

∣∣∣∣d〈Mn,w〉
dr

(r)

∣∣∣∣ ≥ Kn

}
∧ 1.
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By the continuity of 〈Mn,w〉, b−1
n supr∈[0,1]

∣∣ d〈Mn ,wρn 〉
dr (r)

∣∣ ≤ Kn , where wτ
t = w(t∧τ)

for a stopping time τ . Let

τn = ρn ∧ σ n(kn) ∧ inf

{
t; sup

u,v∈[0,t]
|u−v|≤δn

|wv − wu | ≥ δ1/3n

}

∧ inf

{
t; a−1

n

bn∑
j=1

∣∣Mn
t j∧t − M

n
t j−1∧t

∣∣2 ≥ δ−1/6
n

}
,

where (σ n(k))k∈N is a localizing sequence for the locally bounded process Mn and
kn ∈ N. Since limk→∞ P[σ n(k) = 1] = 1 for each n ∈ N, there exists a sequence
(kn)n∈N such that limn→∞ P[σ n(kn) = 1] = 1. Obviously,

P[τn < 1] → 0 (n → ∞). (5)

We shall write Φ j below for Φ j defined for the stopped wτn in place of w, similarly
M

n and M̃
n for their stopped versions respectively. By Doob’s inequality, [B] (ii)

holds for the stopped M
n . For j ′ ∈ { j, j − 1},

∣∣∣∣E
[
M̃

n
j ′ ⊗ Φ j

∣∣Ft j−2

]∣∣∣∣ ≤ C (anδn)
−1|X1

t j−2
| δ−1

n

∣∣∣∣
∫ t j−1

t j−2

E

[ ∫ t j

t j−2

1(t j ′−1,t j ′ ]∩(s,s+δn ]d〈Mn,wτn 〉r
∣∣∣∣Ft j−2

]
ds

∣∣∣∣
≤ C |X1

t j−2
| E

[
sup

r∈[0,1]

∣∣∣∣d〈Mn,wρn 〉
dr

(r)

∣∣∣∣
∣∣∣∣Ft j−2

]
a−1
n

≤ CKbna
−1
n Kn.

Therefore

b1/2n

bn∑
j=2

∣∣E[
(M̃n

j − M̃
n
j−1) ⊗ Φ j

∣∣Ft j−2

]∣∣ →p 0 (6)

for Kn = (b5/2n /an)−1/2. We have

(b1/2n )2
bn∑
j=2

E
[|M̃n

j ′ |2|Φ j |2
] ≤ bn(anδn)

−2E[
bn∑
j=2

|Δ j ′M
n|2] (K δ1/3n )2

= O
(
bn(anδn)

−2(anδ
−1/6
n + an)δ

2/3
n

)
= O(b5/2n /an) = o(1). (7)
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From (6), (7) and (5), we obtain b1/2n (Sn − Tn) →p 0, by dividing the sum Sn − Tn
into sums for even j’s and odd j’s.

Under [B′], for the square-integrable martingales Mn , we can obtain (6) and (7)
with τn made of ρn and the stopping time for increments of w. �

Obviously,

1

h j

∫
I j

(∫ t

t j−2

Vs dws

)
dt − 1

h j−1

∫
I j−1

(∫ t

t j−2

Vs dws

)
dt

= 1

h j

∫
I j

(∫ t j−1

t j−2

Vs dws

)
dt + 1

h j

∫
I j

(∫ t

t j−1

Vs dws

)
dt − 1

h j−1

∫
I j−1

(∫ t

t j−2

Vs dws

)
dt

=
∫
I j−1

Hj (s)Vs dws +
∫
I j
K j (s)Vs dws

for a suitably integrable process Vs , where

Hj (s) = 1 − t j−1 − s

h j−1
and K j (s) = t j − s

h j
.

WewriteXκ = (Xακ)α=1,2 for κ = 0, 1 with Xακ taking values inRr , andX1κ ′ =
(Xα1κ ′

)α=1,2;κ ′=1,...,r ′ with Xα1κ ′
taking values in R

r . Let

Aα
j = Xα1

t j−2

∫
I j−1

Hj (s) dws + Xα1
t j−2

∫
I j

K j (s) dws,

Bα
j = 1

h j

∫
I j

∫ t

t j−2

(
Xα1
s − Xα1

t j−2

)
dws dt − 1

h j−1

∫
I j−1

∫ t

t j−2

(
Xα1
s − Xα1

t j−2

)
dws dt,

Cα
j = 1

h j

∫
I j

∫ t

t j−2

Xα0
t j−2

ds dt − 1

h j−1

∫
I j−1

∫ t

t j−2

Xα0
t j−2

ds dt and

Dα
j = 1

h j

∫
I j

∫ t

t j−2

(
Xα0
s − Xα0

t j−2

)
ds dt − 1

h j−1

∫
I j−1

∫ t

t j−2

(
Xα0
s − Xα0

t j−2

)
ds dt.

Let

t̂αj = Δ jχ
α

anh j
− Δ j−1χ

α

anh j−1
= 1

anδn

(
Δ jχ

α − Δ j−1χ
α
)
.

Then t̂αj = Aα
j + Bα

j + Cα
j + Dα

j . Note that T
αβ
n = ∑bn

j=2 t̂
α
j t̂

β

j . In what follows, ρ =
0 for the proof of the consistency and ρ = 1/2 for the proof of the mixed normality
of the estimators.
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Lemma 2 bρ
n
∑bn

j=2 FjG j →p 0 for all pairs (Fj ,G j ) ∈ {Aα
j , B

α
j ,C

α
j , D

α
j ;α =

1, 2}2\{(Aα
j , A

β

j );α, β = 1, 2}.

Proof Let Qn = bρ
n
∑bn

j=2 FjG j . For Fj = Aα
j and G j = Cβ

j , E[Q2
n] = O

(b1+2ρ−3
n ) = o(1). For Fj = Aα

j andG j = Dβ

j , E[|Qn|] = O(b1+ρ−3/2
n )o(1) = o(1)

because X
0 is càdlàg; see Billingsley [7] Lemma 1 of Sect. 12. For Fj = Aα

j and

G j = Bβ

j , the principal part consists of Qn with Fj = Aα
j and G j = Ḃβ

j with Ḃβ

j
taking the form of

Ḃβ

j = 1

hm

∫
Im

∫ t

t j−2

∫ s

t j−2

Xβ1κ ′
u dw̃κ ′

u dws dt

form = j − 1, j . Since Xβ1κ ′
is càdlàg , considering L1-estimate of the gap, we can

replace this functional by

Ḃβ

j = Xβ1κ ′
t j−2

hm

∫
Im

∫ t

t j−2

∫ s

t j−2

dw̃κ ′
u dws dt.

Then we can find orthogonality between terms in Qn to obtain E[Q2
n] = O

(b1+2ρ−3
n ) = o(1). It is easy to show that the L1-norm vanishes in the limit for other

pairs. �

Let Q1,αβ
n = ∑bn

j=2 A
α
j A

β

j . Then Itô’s formula and simple calculus yield Q1,αβ
n =

Q2,αβ
n + Q3,αβ

n , where

Q2,αβ
n =

bn∑
j=2

{
Xα1
t j−2

· Xβ1
t j−2

h j−1

3
+ Xα1

t j−2
· Xβ1

t j−2

h j

3

}

and

Q3,αβ
n =

bn∑
j=2

2(X1
t j−2

)⊗̃(α,β) ·
( ∫

I j−1

∫ t

t j−2

Hj (s) dws ⊗ Hj (t) dwt

+
∫
I j

∫ t

t j−1

K j (s) dws ⊗ K j (t) dwt +
∫
I j−1

Hj (s) dws ⊗
∫
I j

K j (s) dws

)
.

Lemma 3 bρ
n (Q

2,αβ
n −Uαβ) →p 0.
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Proof It is sufficient to prove that

bn∑
j=1

bρ
n

∫
I j

{
(X1

s )
⊗(α,β) − (X1

t j−1
)⊗(α,β)

}
ds →p 0.

By definition,

(X1
s )

⊗(α,β) − (X1
t j−1

)⊗(α,β) = (X1
s − X

1
t j−1

)⊗(α,β) + ((X1
s − X

1
t j−1

)X1
t j−1

	
)(α,β)

+(X1
t j−1

(X1
s − X

1
t j−1

)	)(α,β).

Obviously,

∣∣∣∣
bn∑
j=1

E

[
bρ
n

∫
I j

(X1
s − X

1
t j−1

)⊗(α,β) ds

∣∣∣∣Ft j−1

]∣∣∣∣ = Op(b
1+ρ−2
n ).

By assumption [A] on X
1 and the property of stochastic integral,

∣∣∣∣
bn∑
j=1

E

[
bρ
n

∫
I j

(Xα1
s − Xα1

t j−1
)(Xβ1

t j−1
)	 ds

∣∣Ft j−1

]∣∣∣∣

=
∣∣∣∣

bn∑
j=1

bρ
n

∫
I j

E

[(∫ s

t j−1

Xα10
u du

)∣∣∣∣Ft j−1

]
(Xβ1

t j−1
)	 ds

∣∣∣∣ = Op(b
1+ρ−2
n ).

Therefore, we have

bn∑
j=1

E

[
bρ
n

∫
I j

(
(X1

s )
⊗(α,β) − (X1

t j−1
)⊗(α,β)

)
ds

∣∣∣∣Ft j−1

]
→p 0. (8)

From the continuity of X1, it holds that

E

[∣∣∣∣
bn∑
j=1

E

[(
bρ
n

∫
I j

(X1
s )

⊗(α,β) − (X1
t j−1

)⊗(α,β) ds
)2∣∣∣∣Ft j−1

]∣∣∣∣
]

= O(b1+2ρ−2
n )o(1) = o(1).

Therefore, we have

bn∑
j=1

E

[(
bρ
n

∫
I j

(X1
s )

⊗(α,β) − (X1
t j−1

)⊗(α,β) ds
)2

∣∣∣∣Ft j−1

]
→p 0. (9)

By (8) and (9), we conclude the proof. �
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By recombination, we obtain Q3,αβ
n = V αβ

n + op(b
−1/2
n ) with

V αβ
n =

bn−1∑
j=2

∫
I j

{
2(X1

t j−1
)⊗̃(α,β) ·

∫ t

t j−1

Hj+1(s) dwsHj+1(t) ⊗ dwt

+2(X1
t j−2

)⊗̃(α,β) ·
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t j−1

K j (s) dwsK j (t) ⊗ dwt

+2(X1
t j−2

)⊗̃(α,β) ·
∫
I j−1

Hj (s) dwsK j (t) ⊗ dwt

}
.

Lemma 4

b
1
2
n (V 12

n , V 11
n , V 22

n )	 →ds Γ 1/2ζ.

Proof Write vαβ

j = ∫
I j
Lαβ

j dwt , where

Lαβ

j (t)u = 2(Xt j−1)
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for u ∈ R
r . Then,V αβ

n = ∑bn−1
j=2 vαβ

j . Set f αβ
t = 2(X1

t )
⊗̃(α,β),Vn = (V 12

n , V 11
n , V 22

n )	,
v j = (v12j , v11j , v22j )	 and let A, B take values in {12, 11, 22}.

Let T ∈ [0, 1]. Note that vαβ

j is Ft j -measurable. Let [bnT ]′ = min{[bnT ], (bn −
1)}. We have

[bnT ]′∑
j=2

E[b1/2n vαβ

j

∣∣Ft j−1 ] = 0.

By estimating the L2-norm of

Rn =
[bnT ]′∑
j=2
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∫
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f At j−2
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2

−
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Hj (s)
2 ds

}
K j (t)

2 dt,
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it is easy to see that Rn = op(1) as n → ∞. Now it holds that

[bnT ]′∑
j=2

E[(b1/2n v j )
⊗(A,B)

∣∣Ft j−1]

=
[bnT ]′∑
j=2
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1
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Similarly,
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which is the asymptotic orthogonality between
∑[bnT ]′

j=2 b1/2n vαβ

j and w. For the Lin-
deberg type condition,
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For an F- bounded martingale N which is orthogonal to w, i.e. 〈N ,w〉 = 0,

[bnT ]′∑
j=2

E
[
b1/2n vαβ

j Δ j N
∣∣∣Ft j−1

]
=

[bnT ]′∑
j=2

E

[
b1/2n

∫
I j

Lαβ

j (t) dwt

∫
I j

dNt

∣∣∣∣Ft j−1

]
= 0.

After all that, by Theorem 3.1 of [22], we conclude that b1/2n Vn →ds Γ 1/2ζ . �

Proof of Theorem 1
If b5/2n /an → 0, by Lemmas 1, 2, 3 and 4, we have

b1/2n

(
Sn −U

)
→ds Γ 1/2ζ.

From Lemmas 1, 2 and 3 and the above, it holds that if b2n/an → 0, then Sn →p U
as n → ∞. �
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Hunting for Black Swans in the European
Banking Sector Using Extreme Value
Analysis

Jan Beirlant, Wim Schoutens, Jan De Spiegeleer, Tom Reynkens
and Klaus Herrmann

Abstract In financial risk management, a Black Swan refers to an event that is
deemed improbable yet has massive consequences. In this communication we pro-
pose a way to investigate if the recent financial crisis was a Black Swan event for a
given bank based onweekly closing prices and derived log-returns.More specifically,
using techniques from extreme value methodology we estimate the tail behavior of
the negative log-returns over two specific horizons:

• Pre-crisis: from January 1, 1994 until August 7, 2007 (often referred to as the
official starting date of the credit crunch crisis);

• Post-crisis: from August 8, 2007 until September 23, 2014 (the cut-off date of our
study).

We illustrate this approach with Barclays and Credit Suisse data, and argue that Bar-
clays can be considered as having experienced a Black Swan and Credit Suisse not.
We then link the differences in tail risk behavior between these banks with capital-
ization and leverage indicators. We emphasize the statistical methods for modeling
univariate extremes linked with graphical support.

Keywords Extremevaluemethods ·Extremevalue index ·Scale estimator ·Weekly
returns

AMS 2000 subject classifications 62G32

1 Introduction

Clearly, the recent financial crisis that started in 2007 can be used as a motivating
example necessitating the use of extreme value analysis (EVA) in financial statistics.
Bollerslev and Todorov [5] studied the effect of the crisis for the S&P500 considering
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the contrast between the statistical probability measure and the risk neutral measure.
Here, we study the tail behavior of the negative log-returns of the weekly closing
prices of listed stocks.Using techniques fromextremevaluemethodologywepropose
to analyze the tail behavior of a bank over two specific horizons:

• Pre-Crisis: from January 1, 1994 until August 7, 2007 (often referred to as the
official starting date of the credit crunch crisis);

• Post-Crisis: from August 8, 2007 until September 23, 2014 (the cut-off date of our
study).

More specifically, we will investigate how one could decide if the recent financial
crisiswas aBlackSwanevent for a givenbankbasedon statistical differences between
both sets of return data. We illustrate this approach using data from Barclays and
Credit Suisse, two major European banks. Of course one should also connect such
a statistical finding with economic indicators of a bank, whether it experienced a
Black Swan event from an EVA perspective or not.

We restrict ourselves here to weekly return data. Indeed, financial return series
may suffer from serial dependence such as volatility clustering, which violates the
classical assumptionof independence. Such serial dependence is at leastmuchweaker
in weekly returns. Using results from Hsing [15] our statistical tests, however, will
take serial dependence into account. In Fig. 1 the negative weekly returns are plotted
against time for the selected banks. The vertical scales are identical allowing to
appreciate the impact of the crisis on the weekly losses for the different banks. We
also add a vertical line indicating August 7, 2007.

EVA is designed for estimating extreme quantities of a statistical variable, such as
Value at Risk,which has become a popular riskmeasure. Themodels underlyingEVA
contain scale and shape parameters, and the statistical methods on which estimation
of the scale and shape has been built, offer tools that can be used for general statistical
inference such as the definition of appropriate tail models for a distribution at hand.
GARCH models constitute a popular approach in analyzing financial time series
which exhibit volatility clustering. Here, however, we follow the approach outlined
in Sun and Zhou [19], using the results from Hsing [15] that Hill’s [14] estimator
is still consistent for certain types of dependent data, such as GARCH processes.
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Fig. 1 Negative weekly log-returns for Barclays and Credit Suisse
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Moreover, for a bank which was badly hit by the crisis, the fitted shape parameter can
lead to a near integrated-GARCH situation, which entails an inappropriate GARCH
fit and unreliable estimates of the GARCH innovations.

In this paper we look for indicators for truly significant changes in the log-returns
through statistical tests for changes in scale and shape parameters, and by calculating
the return period of the largest post-crisis loss, in view of the data before the crisis.
We emphasize the use of graphical methods that support decision making. In the
next section we recall the most important facts from EVA, and review the graphical
and estimation methods along the above specifications. Next, we propose estimators
for the scale parameter in case of Pareto-type distributions and provide some new
asymptotic results. In Sect. 4 we go into the problem of threshold selection when
performing inference on the shape and scale parameters. In particular we stress the
use of bias reduction techniqueswhich helps to come around the problem of choosing
a particular threshold when performing statistical inferences on the parameters. In
the final section we make the link with economical indicators.

2 A Recollection from Univariate Extreme Value
Methodology

2.1 Max-Domain of Attraction

We briefly recollect some facts from EVA. Recent books that have appeared on the
subject provide more details: Embrechts et al. [12], Coles [7], Reiss and Thomas
[17], Beirlant et al. [2], Castillo et al. [6], de Haan and Ferreira [10], and Resnick
[18]. Beirlant et al. [3] give an overview of EVA and apply it in a financial risk con-
text. EVA is based on the limit result for normalized partial maxima of i.i.d. random
variables X1, . . . , Xn . Let X1,n ≤ X2,n ≤ . . . ≤ Xn,n denote the ordered observa-
tions and hence Xn,n = max{X1, . . . , Xn}. The limit theorem is then formulated as
follows: if there exist normalizing constants an > 0 and bn such that for all x ,

lim
n→∞ P

(
(Xn,n − bn)/an ≤ x

) = G(x), (1)

for some non-degenerate distribution function G, then G is necessarily of extreme
value type; that is, up to an affine change of variables, one has

G(x) = Gξ(x) := exp
{−(1 + ξx)−1/ξ

}
if x > −1/ξ (2)

for some real value ξ. The parameter ξ is termed the extreme value index (EVI), which
is of prime interest in EVA. When ξ = 0, G0(x) is to be read as exp {− exp(−x)}.
If (1) holds, we say that F , which is underlying the data X1, X2, . . ., is in the max-
domain of attraction (MDA) ofGξ . The limiting distribution functions in (1) are then
max-stable. They are indeed the unique max-stable laws.
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The EVI ξ governs the behavior of the right-tail of F . The Fréchet domain of
attraction (ξ > 0) contains heavy-tailed distributions like the Pareto and the Student
t-distributions, i.e., tails of a negative polynomial type and infinite right endpoint.
Short-tailed distributions, with a finite right endpoint like the beta distributions,
belong to the Weibull MDA with ξ < 0. Finally the Gumbel MDA corresponding to
ξ = 0 contains a great variety of distributions with an exponentially decreasing tail,
such as the exponential, the normal and the gamma distributions, but not necessarily
with an infinite right endpoint.

In order to characterize the MDAs in a mathematically correct way, there are
now two possibilities: model descriptions through the distribution function F(x) =
P(X ≤ x) (probability view) or through the quantile function Q, defined as the
inverse function of F (quantile view).

Firstly, one candescribe theMDAs through the stochastic behavior of the so-called
peaks over threshold (POTs) X − t given that X > t . Pickands’ [16] theorem states
that X is in the MDA of Gξ if and only if for some sequence σt > 0 the conditional
distribution of the scaled excesses as t → Q(1) converges to the generalized Pareto
distribution (GPD) Pξ

P((X − t)/σt ≤ x |X > t) → Pξ(x) = 1 − (1 + ξx)−1/ξ (3)

with 1 + ξx > 0 and x > 0. Remark that in case ξ = 0 the GPD is nothing else than
the exponential distribution with distribution function 1 − exp(−x) for x > 0.
From this, one chooses an appropriate threshold t and hopes for a reasonable rate

of convergence in (3). Fitting the GPD with survival function
(
1 + ξ

σ
x
)−1/ξ

to the

excesses Xi − t for those data Xi forwhich Xi > t , one estimates the shape parameter
ξ and the scale σ for instance by maximum likelihood. In practice t can be chosen
as one of the largest data, e.g. the (k + 1)th largest data point Xn−k,n , for some
1 < k < n.

Secondly, through the work of de Haan [8, 9] the MDA characterization was
constructed on the basis of the regular varying behavior of the tail function U , which
is associated with the quantile function Q by U (x) := Q(1 − 1

x ). The MDAs can
indeed be characterized by the extended regular variation property specifying the
difference between high quantiles corresponding to tail proportions that differ by
100x%:

F ∈ MDA(ξ) ⇐⇒ lim
u→∞

U (ux) −U (u)

a(u)
= (xξ − 1)/ξ (4)

for every real valued x and some positive function a, and where the expression on
the right equals log x for ξ = 0.

In the specific case of the Fréchet MDA with ξ > 0, the extended regular variation
property (4) corresponds to regular variation of U with index ξ > 0:

F ∈ MDA(ξ > 0) ⇐⇒ U (x) = xξ�(x), (5)
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where � is a slowly varying function defined by limu→∞ �(ux)
�(u)

= 1, for all x > 0.

Then, condition (3) specifies the regular variation of the right tail function F̄ := 1 −
F with index 1/ξ. The elements of this MDA are termed Pareto-type distributions.
Remark that the regular variation of F̄ is equivalent to stating that as t → ∞

P(X/t > x |X > t) → x−1/ξ, x > 1, (6)

which then forms a simplified POT approach in comparison with (3).
Almost all authors consider the following subclass of Pareto-type distributions,

which was first introduced in Hall [13]:

F̄(x) = Ax−1/ξ
(
1 + bx−β(1 + o(1))

)
, (7)

U (x) = Aξxξ
(
1 + ξbA−ξβx−ξβ(1 + o(1))

)
, as x → ∞, (8)

where A > 0 is then the scale parameter, while β > 0 and b are the second-order
shape and scale parameters. This extra assumption then allows to derive specific
approximations for the bias and variance of the estimators, and to derive bias reduced
estimators as discussed below.

2.2 Estimation when ξ > 0

Assumption (5) can be graphically verified using log-log plots, i.e. Pareto QQ-plots,

(
log((n + 1)/ i), log Xn−i+1,n

)
, i = 1, . . . , n, (9)

which, for some k, should then be ultimately linear for a set of largest values Xn−k,n ≤
Xn−k+1,n ≤ . . . ≤ Xn,n . The classical Hill [14] estimator Hk,n of ξ > 0

Hk,n = 1

k

k∑
j=1

log Xn− j+1,n − log Xn−k,n, (10)

can be motivated as an estimator of the slope of the least squares regression line
based on the final k points in the log-log plot and passing through an appropriately
chosen anchor point

(
log((n + 1)/(k + 1)), log Xn−k,n . . .

)
, see Beirlant et al. [1]. It

can also be derived as a maximum likelihood estimator of ξ using the simple Pareto
model in the right hand side of (6) based on the relative excesses Xn− j+1,n/Xn−k,n ,
j = 1, . . . , k, over the random threshold Xn−k,n .

Hsing [15] derived the asymptotic distributionof Hk,n forweakly dependent series.
Under (7), as k, n → ∞ and k/n → 0, this leads to

√
k

(
Hk,n − ξ − B(n/k)

1 + ξβ

)
→d N (

0, ξ2(1 + χ + ω − 2ψ)
)

(11)
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as n → ∞ and k/n → 0,where B(n/k) = −ξβbA−ξβ(k/n)ξβ , andχ,ω,ψ are para-
meters of serial dependence, being 0 in case of independence. Under the condition√
kB(n/k) → λ as k, n → ∞ and k/n → 0 we then obtain

√
k

(
Hk,n − ξ

) →d N
(

λ

1 + ξβ
, ξ2(1 + χ + ω − 2ψ)

)
.

Estimators χ̂, ω̂, ψ̂ are given in (3.6) in Hsing [15]. Furthermore, Sun and Zhou [19]
showed that a GARCH(1,1) dependence structure fits to the approach of Hsing [15].

From (11) it follows that Hk,n can have high bias for a large range of k values. This
bias originates from the fact that the estimators are based on (6) replacing the limit by
an equality, which is inaccurate for too large values of k. Theoretically, this k-region
is represented by

√
kB(n/k) → λ > 0 as k, n → ∞, k/n → 0. Accommodation

of bias has been considered recently in a number of papers in case of i.i.d. data. Bias
reduced estimators typically exhibit plots which are more horizontal as a function
of k. In case the tail under consideration is a composition of two different Pareto
components, the corresponding levels of the estimates are better visible. In that
sense such estimators are useful as a diagnostic tool in order to interpret Hill plots
(k, Hk,n) and plots of other tail estimators. For instance, choosing a value of k as large
as possible, with the original and bias reduced version of the estimator approximately
equal, leads to an estimate with a smaller bias and a variance as small as possible.
Along the probability view, bias reduction can be obtained by replacing the Pareto
fit in (6) by an extended Pareto distribution (EPD) with distribution function

Gξ,κ,β(y) = 1 − (
y(1 + κ(1 − y−β)

)−1/ξ
, y > 1,

to the relative excesses Xn− j+1,n/Xn−k,n , j = 1, . . . , k using maximum likelihood
(see Beirlant et al. [4]). This EPD approximation follows when approximating the
left hand side of (6) under (7) with κ = κt = ξbt−β .

In Fig. 2, we gather the log-log plots (Pareto QQ-plots). The Hill plots with the
original Hk,n and using the EPD approximation with (ξ,κ) estimated by maximum
likelihood per k are shown in Fig. 3. We set ρ = −βξ equal to 1 and hence β̂ =
−ρ/ξ̂ = 1/ξ̂. Because of the different sample sizes for pre- and post-crisis data we
plot the estimates against the ratio k/n. The log-log plots show that there is barely
any difference in slope between the pre- and post-crisis data. The plots for the shape
estimators seem to confirm this. For Barclays, k/n values around 0.1 seem to be
suitable along the abovementioned guideline, since for k/n ≤ 0.1 for both periods,
the Hill and EPD estimates remain rather close, in contrast to the larger k values. In
the case of Credit Suisse the ultimate top portion of the log-log plot appears to be
concave leading to decreasing Hill estimates as k decreases, meeting the bias reduced
estimator only at the smallest k values, say up to k/n ≈ 0.02. For both banks, the
Hill estimates for the pre- and post-crisis are close in the suitable region for k/n.
However, in case of Barclays, the Pareto QQ-plot of the post-crisis data lies higher
than the one of the pre-crisis data, indicating a change in scale since it follows from
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Fig. 2 Log-log plots for the pre- (solid line) and post-crisis (dashed line) negative log-returns for
Barclays and Credit Suisse
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Fig. 3 Hill (blue) and EPD (orange) estimates as a function of k/n for the pre- (solid line) and
post-crisis (dashed line) negative log-returns for Barclays and Credit Suisse

(8) that the log-log plot is an approximation of the graph (log n+1
i , logU ( n+1

i )) =
(log n+1

i , ξ log A + ξ log n+1
i ) for i = 1, . . . , n. In theCredit-Suisse case, both Pareto

QQ-plots are close and hence no change in scale can be deduced.

3 Estimating the Scale Parameter

Following the suggestionmade in Einmahl et al. [11] one can also inspect for changes
in the scale parameter A introduced in (7)–(8). An initial estimator for A is given by

Âk,n = k + 1

n + 1
X1/Hk,n

n−k,n . (12)

The following theorem provides an asymptotic normality result for this estimator
which is valid for dependent data.
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Theorem 1 Under the conditions of Theorem 3.3 in Hsing [15] and under (7), when
k, n → ∞, k/n → 0 and

√
kB(n/k) → λ, we have that

√
kξ

logU (n/k)

(
Âk,n

A
− 1

)
→d N

( −λ

1 + ξβ
, 1 + χ + ω − 2ψ

)
.

Theorem 1 shows that the scale estimator can have large bias. Using ξ̂k,n and κ̂k,n ,
the EPD estimators of ξ and κ, we get the following bias reduced estimator of A:

ÂE P
k,n = k + 1

n + 1
X1/ξ̂k,n
n−k,n

(
1 − κ̂k,n

ξ̂k,n

)
. (13)

We provide an intuitive derivation for both scale estimators inAppendix 1. Theorem2
gives the asymptotic distribution of ÂE P

k,n in case of independent data. It is then clear

that ÂE P
k,n is indeed a bias reduced estimator of A. The proofs of both theorems are

postponed to Appendix 2.

Theorem 2 Assuming X1, . . . , Xn are independent and identically distributed
following (7), when k, n → ∞, k/n → 0 and

√
kB(n/k) → λ, we have that

√
kξ

logU (n/k)

(
A

ÂEP
k,n

− 1

)
→d N

(
0,

(
1 + ξβ

ξβ

)2
)

.

In Fig. 4, log Âk,n and log ÂE P
k,n are plotted for the two selected banks with the pre-

and post-crisis series. We can again select suitable regions based on the closeness
of the scale estimator and the bias reduced version. We then choose k/n ≈ 0.1 for
Barclays and k/n ≈ 0.02 for Credit Suisse. We see that there is some difference in
scale estimates between the pre- and post-crisis data for Barclays while much less
for Credit Suisse (for these values of k/n).

4 Testing for Black Swans

We define a Black Swan as a highly improbable event with large consequences.
Therefore, as a first indicator we consider the probability of obtaining a loss at
least as big as the largest loss post-crisis, in view of the data information before
the crisis. We express this in terms of the corresponding return period. Secondly,
we test for significant differences in scale and shape parameters between pre- and
post-crisis periods. While it is difficult to define a Black Swan through a minimal
return period and/or a maximal p-value level, we will argue that the financial crisis
can be considered as a Black Swan in the Barclays case, while it is not in the Credit
Suisse case.
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Fig. 4 Scale estimates Âk,n (blue) and bias reduced scale estimates ÂE P
k,n (orange), in log-scale,

as a function of k/n for the pre- (solid line) and post-crisis (dashed line) negative log-returns for
Barclays and Credit Suisse

4.1 Return Periods of Worst Negative Log-Returns

Here, and in the sequel, we denote the number of pre-crisis, respectively post-crisis,
negative log-returns by n1, respectively n2, and the ordered pre-crisis, respectively
post-crisis, negative log-returns by x1,n1 , . . . , xn1,n1 , respectively y1,n2 , . . . , yn2,n2 .
We also use the superscripts (X) and (Y ) to indicate the pre-crisis, respectively,
post-crisis data. The return period can now be denoted by rmax = 1/P(X > yn2,n2).
Then, applying the Weissman [20] estimator following from the approximation (6),

r̂max,k = 1/P̂k(X > yn2,n2) = n1 + 1

k + 1

(
yn2,n2
xn1−k,n1

)1/H (X)
k,n1

, k = 1, . . . , n1.

In a similarway as in the proof of Theorem1 inAppendix 2 (see alsoTheorem4.4.7 in
de Haan and Ferreira [10]), one can show that, treating yn2,n2 as a fixed number,

√
k√

1 + log2
(

k
n1
rmax

)
(
log rmax − log r̂max,k

)

is asymptotically normal with asymptotic variance 1 + χ + ω − 2ψ. Hence an
approximate 95% asymptotic lower confidence bound for log rmax is given by

log r̂max,k − 1.645√
k

√
1 + log2

(
k

n1
r̂max,k

)√
1 + χ̂ + ω̂ − 2ψ̂. (14)

As described in Beirlant et al. [4], a bias reduced version for return periods can be
constructed by replacing the simple Pareto distribution by the EPD in the right hand
side of (6):
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Fig. 5 Estimates of the return periods for obtaining a weekly loss as big as the largest loss post-
crisis in view of the data information before the crisis: log r̂max,k (blue) and log r̂ E P

max,k (orange), as
a function of k/n1, for Barclays and Credit Suisse. Approximate 95% asymptotic lower confidence
bounds for log r̂max are shown by the dashed lines

r̂ E P
max,k = n1 + 1

k + 1

(
1 − G ξ̂k,n1 ,κ̂k,n1 ,β̂k,n1

(
yn2,n2
xn1−k,n1

))−1

, k = 1, . . . , n1.

In Fig. 5 we plot log r̂max,k and log r̂ E P
max,k as a function of k/n1 for the two selected

banks, jointlywith the lower bounds (14) (dashed lines). Choosing k/n1 ≈ 0.1where
the different estimators coincide, we obtain for Barclays a return period e10 ≈ 22,000
weeks. This return period corresponds to 2 × 423 = 846 years using an equal fre-
quency for negative and positive log-returns. This is in sharp contrast with the cor-
responding return period e6 ≈ 400 weeks or 2 × 7.7 = 15.4 years for Credit Suisse.

4.2 Testing for Differences in Shape or Scale

We now want to test more formally if there is a significant difference in at least the
shape or the scale parameter. We consider the α = 5% significance level.

In order to test H (ξ)
0 : ξ(X) ≥ ξ(Y ) versus H (ξ)

1 : ξ(X) < ξ(Y ) we can use the test
statistic

T (ξ)
k1,k2,n1,n2

= H (Y )
k2,n2

− H (X)
k1,n1√

(H (Y )
k2 ,n2

)2 (1+χ̂2+ω̂2−2ψ̂2)

k2
+ (H (X)

k1 ,n1
)2 (1+χ̂1+ω̂1−2ψ̂1)

k1

with k1 and k2 appropriately selected number of extremes for pre- and post-crisis data,
and χ̂1, ω̂1, ψ̂1 and χ̂2, ω̂2, ψ̂2 are the corresponding estimates for χ, ω,ψ for the pre-
and post-crisis period respectively. Under equality of the tail indices the asymptotic
distribution of T (ξ)

k1,k2,n1,n2
is then standard normal for small values of k1, k2 such that√

k1B(X)(n1/k1) → 0 and
√
k2B(Y )(n2/k2) → 0.
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Similarly, to test H (A)
0 : A(X) ≥ A(Y ) versus H (A)

1 : A(X) < A(Y ) we use

T (A)
k1,k2,n1,n2

= log Â(Y )
k2,n2

− log Â(X)
k1,n1√

log2(n2/k2) (1+χ̂2+ω̂2−2ψ̂2)

k2
+ log2(n1/k1) (1+χ̂1+ω̂1−2ψ̂1)

k1

which also follows asymptotically a standard normal distribution under equality in
H (A)

0 .
As shown inAppendix 3, the two tests are not independent.We therefore have to be

prudent drawing conclusions. The joint test combines information of the two separate
tests and uses the following hypotheses: H0: H (ξ)

0 ∩ H (A)
0 versus H1: H (ξ)

1 ∪ H (A)
1 .

From (16) in Appendix 2 it follows that the determinant of the covariance matrix is
asymptotically 0 and hence a bivariate Hotelling T 2 cannot be performed. It is critical
to control the probability for a type I error of the joint test, hence asking even more
statistical evidence before concluding a Black Swan event. Using the Bonferroni
correction we obtain that the probability for a type I error for the joint test is smaller
thanα = 5%when using theα/2 = 2.5% significance level for each test separately.

In Figs. 6 and 7 we plot the p-values of the two asymptotic tests for equality of
shape and scale against k/n under equality of the ratios k1/n1 = k2/n2. The red lines
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for all possible choices of k1 and k2 for pre- and post-crisis negative log-returns for Barclays and
Credit Suisse

show the 2.5% significance level. From the discussion following Figs. 3 and 4, using
ratios around 0.1 for Barclays and around 0.02 for Credit Suisse corresponding to the
the lowest bias. The shape parameters do not show significant differences. The scale
parameters show significant results for Barclays except for k/n ≤ 0.05, whereas
for Credit Suisse the scale parameters show strongly non-significant results for k/n
smaller than 0.4.Wenowconsider the p-values for testing scale and shape differences
for all possible choices of k1, k2 for Barclays and Credit Suisse. The 3-dimensional
plots showing the p-values can be found in Appendix 4 where a red plane indicates
the 2.5% significance level. Here, we consider the indicator function which takes
value 1 when the p-value is below 2.5% and 0 otherwise. This function is plotted
in Figs. 8 and 9 where (light) blue and red correspond to 0 and 1, respectively, and
the black dashed line indicates k1/n1 = k2/n2. In case of Barclays, the test for the
scale difference is non-significant only for large values of k1, while in case of Credit
Suisse non-significance also appears for small values of k1 and k2 together.
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5 Relating Statistical Conclusions with Economic
Indicators

Above we provided statistical indicators for a Black Swan event in financial return
data linked with the recent financial crisis, measuring the probability for the expe-
rienced losses in view of the a priori return data, and by testing for significant dif-
ferences in the scale parameters of the Pareto tail before and after the crisis. For
Barclays the return period for the experienced loss as a result of the financial crisis
is extremely large and we find a significant difference in the scale parameters before
and after the crisis, and so we label Barclays as having experienced a Black Swan
event during the recent crisis in view of the pre-crisis return data only. In contrast,
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for Credit Suisse the statistical significance is not met and the return period is more
than 50 times smaller than in the Barclays case.

Of course one should be able to explain the vulnerability of a bank to such a
financial crisis in terms of its economic parameters. At the time of the financial
crisis, Barclays was a bank with an outspoken amount of leverage. Barclays’ ratio of
the assets to the equity base was almost twice as large compared to the leverage of
Credit Suisse (Fig. 10a). Credit Suisse had indeed much less assets for every dollar
of equity. This made Credit Suisse less susceptible to a shock in the financial system.

When studying theTier 1 ratio of both banks, the same conclusion holds (Fig. 10b).
This ratio relates theTier 1 capital to the risk-weighted assets of a financial institution.
Here, Barclays stands out again as amore vulnerable bank compared toCredit Suisse.
Because of its vulnerability, Barclayswitnessed a trueBlackSwan event,whereas this
was not the case for Credit Suisse. This provides some explanation for the statistical
conclusions obtained above.
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P7/06 of the Belgian State (Belgian Science Policy), and the project GOA/12/014 of the KU Leuven
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Appendix 1: Derivation of the Scale Estimators
Âk,n and ÂEP

k,n

Starting from the Hall model (7) and ignoring the second order terms yields the
approximation

F̄(x) ∼ Ax−1/ξ, as x → ∞. (15)

Alternatively, for intermediate order statistics Xn−k,n , the tail probability F̄(Xn−k,n)

can be estimated by the empirical probability k/n ≈ (k + 1)/(n + 1), leading to the
defining equation

Âk,n X
−1/Hk,n

n−k,n = k + 1

n + 1
,

where ξ in (15) is estimated by the Hill estimator Hk,n . This immediately gives (12).
In order to reduce the bias in estimating the scale parameter, ξ first needs to be
estimated by the EPD estimator ξ̂k,n to lift up the bias caused by the estimation of
ξ. The other source of bias originates from ignoring the second order terms when
approximating A. Following a similar reasoning as before, now taking the second
order terms into account, the defining equation is

ÂX−1/ξ̂k,n
n−k,n

(
1 + bX−β

n−k,n(1 + o(1))
)

= k + 1

n + 1
.

Since κ = κt = ξbt−β(1 + o(1)), we can estimate bX−β
n−k,n(1 + o(1)) by κ̂k,n/ξ̂k,n

with κ̂k,n the EPD estimator for κ at the threshold t = Xn−k,n . In order to obtain
numerically stable results, we can use that (1 + κt/ξ)

−1 ∼ 1 − κt/ξ since κt → 0
as t → ∞, which leads to the bias reduced scale estimator in (13).
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Appendix 2: Proofs for Sect. 3

Proof (Proof of Theorem 1)
Remark that √

k
(
log Âk,n − log A

)
= T (1)

k,n + T (2)
k,n ,

with

T (1)
k,n = √

k

(
log Xn−k,n

Hk,n
− logU (n/k)

ξ

)

T (2)
k,n = √

k

(
logU (n/k)

ξ
+ log

(
k + 1

n + 1

)
− log A

)
.

First, as U (x) = Aξxξ(1 + ξbA−ξβx−ξβ(1 + o(1)) when x → ∞,

T (2)
k,n = −√

kB(n/k)
1

ξβ
(1 + o(n/k)),

as n/k → ∞. Next, with H̃k,n := 1
k

∑k
j=1(log Xn− j+1,n − logU (n/k)) and

E(H̃k,n) = ξ + B(n/k)/(1 + ξβ), see Hsing [15], we get

T (1)
k,n = − logU (n/k)

Hk,nξ

√
k

(
Hk,n − ξ

) +
√
k

Hk,n
(log Xn−k,n − logU (n/k))

= − logU (n/k)

Hk,nξ

√
k

(
H̃k,n − E(H̃k,n)

)

+ 1

Hk,n

(
logU (n/k)

ξ
+ 1

) √
k(log Xn−k,n − logU (n/k))

− logU (n/k)

Hk,nξ

√
kB(n/k)

1 + ξβ
.

Hence,

√
k

(
log Âk,n − log A

)
= − logU (n/k)

Hk,nξ

√
k

(
H̃k,n − E(H̃k,n)

)

+ 1

Hk,n

(
logU (n/k)

ξ
+ 1

) √
k(log Xn−k,n − logU (n/k))

− 1

ξ

(
logU (n/k)

Hk,n(1 + βξ)
+ 1

β

)√
kB(n/k).

Using the fact that logU (n/k)/ log(n/k) → ξ as n/k → ∞, the result now follows
from Lemma 2.1 and Corollary 3.4 in Hsing [15]. �
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Proof (Proof of Theorem 2)
Using the approach from Beirlant et al. [4], we have with κn = κ(Xn−k,n)

k−1/2Zk,n := n

k
F̄(Xn−k,n) − 1

= A

(k/n)X1/ξ
n−k,n

(
1 + κn

ξ
(1 + op(1))

)
− 1

= A

ÂEP
k,n

X1/ξ̂k,n−1/ξ
n−k,n

(
1 + κn

ξ
(1 + op(1))

) (
1 − κ̂k,n

ξ̂k,n

)
− 1

= A

ÂEP
k,n

(
1 − 1

ξξ̂k,n
(ξ̂k,n − ξ) log Xn−k,n(1 + op(1))

)

×
(
1 + {κn

ξ
− κ̂k,n

ξ̂k,n
}(1 + op(1))

)
− 1,

fromwhich it follows, using κ̂k,n − κn = Op(k−1/2) and ξ̂k,n − ξ = Op(k−1/2) from
Theorem 3.1 in Beirlant et al. [4],

A

ÂEP
k,n

− 1

= k−1/2Zk,n + 1(
1 − ξ̂k,n−ξ

ξξ̂k,n
log Xn−k,n(1 + op(1))

) (
1 + {κn

ξ
− κ̂k,n

ξ̂k,n
}(1 + op(1))

) − 1

= (k−1/2Zk,n + 1)

(
1 + 1

ξξ̂k,n
(ξ̂k,n − ξ) log Xn−k,n(1 + op(1))

)

×
(
1 − {κn

ξ
− κ̂k,n

ξ̂k,n
}(1 + op(1))

)
− 1.

This implies that
√
k(A/ ÂE P

k,n − 1) has the same limit distribution as

logU (n/k)

ξ2

√
k(ξ̂k,n − ξ) − ξ−1

√
k(κ̂k,n − κn) + Zk,n.

FromTheorem 3.1 in Beirlant et al. [4] it follows that this stochastic sum is asymptot-
ically unbiased when

√
kB(n/k) → λ, while the asymptotic variance follows from

the variance of ξ̂k,n which has the asymptotic dominating coefficient logU (n/k)/ξ2

in this asymptotic representation. �
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Appendix 3: The Dependence Between Tests
on Scale and Shape

We now derive the asymptotic covariance matrix of

(
ξ
√
k

logU
(
n
k

) (log Âk,n − log A),
√
k

(
Hk,n

ξ
− 1

))
.

From

log Xn−k,n

Hk,n
− logU

(
n
k

)
ξ

= 1

ξ

(
log Xn−k,n − logU

(n
k

))
− log Xn−k,n

ξHk,n
(Hk,n − ξ),

we have using the notation from the proof of Theorem 1 that

ξT (1)
k,n

logU
(
n
k

) = √
k

(
log Xn−k,n − logU

(
n
k

)
logU

(
n
k

)
)

− √
k

(
Hk,n − ξ

Hk,n

)
log Xn−k,n

logU (n/k)

∼p

√
k

(
log Xn−k,n − logU

(
n
k

)
logU

(
n
k

)
)

− √
k
Hk,n − ξ

ξ
.

We hence have concerning the asymptotic covariance

Acov

⎛
⎝ ξT (1)

k,n

logU
( n
k

) ,
√
k
Hk,n − ξ

ξ

⎞
⎠ = Acov

(√
k
log Xn−k,n − logU

( n
k

)
logU

( n
k

) ,
√
k
Hk,n − ξ

ξ

)

− Avar

(√
k
Hk,n − ξ

ξ

)
.

From (11) we know that the asymptotic variance in this expression is asymptotically
equal to 1 + χ + ω − 2ψ.

Acov

(
ξT (1)

k,n

logU
( n
k

) ,
√
k
Hk,n − ξ

ξ

)
= k

ξ logU
( n
k

) Acov (
log Xn−k,n − logU

(n
k

)
, Hk,n − ξ

)

− (1 + χ + ω − 2ψ).

Following Hsing [15], approximating Hk,n by H+
k,n − (

log Xn−k,n − logU
(
n
k

))
with

H+
k,n = 1

k

∑k
j=1 max{log Xn− j+1,n − logU

(
n
k

)
, 0}, we find
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k Acov
(
log Xn−k,n − logU

(n
k

)
, Hk,n − ξ

)
≈ k Acov

(
log Xn−k,n − logU

(n
k

)
, H+

k,n − ξ
)

− k Avar
(
log Xn−k,n − logU

(n
k

))
.

From Corollary 3.4 in Hsing [15] it then follows that

k Acov
(
log Xn−k,n − logU

(n
k

)
, H+

k,n − ξ
)

= ξ2(1 + ψ),

k Avar
(
log Xn−k,n − logU

(n
k

))
= ξ2(1 + ω),

which results in

Acov

(
ξT (1)

k,n

logU
(
n
k

) ,
√
k
Hk,n − ξ

ξ

)
= ξ

logU
(
n
k

) (ψ − ω) − (1 + χ + ω − 2ψ).

Since T (2)
k,n is deterministic it does not play a role in the calculation of the covariance

matrix. We then get

Acov

(
ξ
√
k

logU
( n
k

) (log Âk,n − log A),
√
k
Hk,n − ξ

ξ

)
= −(1 + χ + ω − 2ψ) + ξ

logU
( n
k

) (ψ − ω).

Using the obtained expression for the asymptotic variance of both components (see
Theorem 1 and (11)) and the fact that logU

(
n
k

)
/ log(n/k) → ξ as n/k → ∞ gives

the asymptotic covariance matrix of(
ξ
√
k

logU( n
k )

(log Âk,n − log A),
√
k

(
Hk,n

ξ
− 1

))
:

(
1 + χ + ω − 2ψ −(1 + χ + ω − 2ψ) + ψ−ω

log( n
k )

−(1 + χ + ω − 2ψ) + ψ−ω

log( n
k )

1 + χ + ω − 2ψ

)

= (1 + χ + ω − ψ)

(
1 −1

−1 1

)
+ ψ − ω

log
(
n
k

)
(
0 1
1 0

)
. (16)

Appendix 4: 3D Plots of p-values for Tests

Figs. 11 and 12
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Fig. 11 p-values for testing differences in shape using T (ξ)
k1,k2,n1,n2

for all possible choices of k1
and k2 for pre- and post-crisis negative log-returns for Barclays and Credit Suisse

Fig. 12 p-values for testing differences in scale using T (A)
k1,k2,n1,n2

for all possible choices of k1 and
k2 for pre- and post-crisis negative log-returns for Barclays and Credit Suisse

References

1. Beirlant, J., Vynckier, P., Teugels, J.L.: Tail index estimation, Pareto quantile plots and regres-
sion diagnostics. J. Am. Stat. Assoc. 91, 1659–1667 (1996)

2. Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J.: Statistics of Extremes: Theory and Applica-
tions. Wiley, Chichester (2004)

3. Beirlant, J., Schoutens,W., Segers, J.:Mandelbrot’s extremism.WilmottMagazine, pp. 97–103
(2005)

4. Beirlant, J., Joossens, E., Segers, J.: Second-order refined peaks-over-threshold modelling for
heavy-tailed distributions. J. Stat. Plann. Infer. 139, 2800–2815 (2009)

5. Bollerslev, T., Todorov, V.: Tails, fears and risk premia. J. Financ. 66, 2165–2211 (2011)
6. Castillo, E., Hadi, A., Balakrishnan, N., Sarabia, J.: Extreme Value and Related Models with

Applications in Engineering and Science. Wiley, Hoboken, NJ (2005)
7. Coles, S.: An Introduction to Statistical Modelling of Extreme Calues. Springer Series in

Statistics, Springer, London (2001)
8. de Haan, L.: On regular variation and its applications to the weak convergence of sample

extremes. Mathematical Centre Tract 32, Amsterdam (1970)
9. de Haan, L.: Slow variation and characterization of domains of attraction. In: de Oliveira, T.

(ed.) Statistical Extremes and Applications, D, pp. 31–48. Reidel, Dordrecht (1984)



166 J. Beirlant et al.

10. de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer Science and Busi-
ness Media, LLC, New York, NY (2006)

11. Einmahl, J.H.J., Zhou, C., de, Haan, L.: Statistics of heteroscedastic extremes. J. R. Stat. Soc.
Ser. B. Stat. Methodol 78(1), 31–51 (2016)

12. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and
Finance. Springer, Berlin, Heidelberg (1997)

13. Hall, P.: On some simple estimates of an exponent of regular variation. J. R. Stat. Soc. Ser. B
Stat. Methodol 44, 37–42 (1982)

14. Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat.
3, 1163–1174 (1975)

15. Hsing, T.: On tail index estimation using dependent data. Ann. Statist. 19, 1547–1569 (1991)
16. Pickands III, J.: Statistical inference using extreme order statistics. Ann. Statist. 3, 119–131

(1975)
17. Reiss, R.D., Thomas, M.: Statistical Analysis of Extreme Values, with Applications to Insur-

ance, Finance, Hydrology and Other Fields, 2nd edn. Birkhaüser, Basel (2001)
18. Resnick, S.I.: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New

York, NY (2007)
19. Sun, P., Zhou, C.: Diagnosing the distribution of GARCH innovations. J. Empir. Financ. 29,

287–303 (2014)
20. Weissman, I.: Estimation of parameters and large quantiles based on the k largest observations.

J. Am. Stat. Assoc. 73, 812–815 (1978)



Collateralized Borrowing and Default Risk

Eva Lütkebohmert and Yajun Xiao

Abstract We study how margin requirements in the collateralized borrowing affect
banks’ risk exposure. In a model where a firm’s asset value and margin requirement
follow correlated geometric Brownian motions, we derive analytic expressions for
firm’s default probability and debt value. Our results show that variations in margin
requirements, reflecting funding liquidity shocks in the short-term collateralized
lending market, can lead to a significant increase in firms’ default risks, in particular
for those firms heavily relying on short-term collateralized borrowing.Moreover, our
results imply that reducing margin in liquidity crises can be very effective to restore
market lending confidence.

Keywords Collateralized borrowing · Funding liquidity · Margin requirements ·
Structural credit risk models

1 Introduction

The collateralized short-term lending market has been growing rapidly before the
outbreak of the 2008 financial crisis. [8] document that asset-backed commercial
papers (ABCP) outstanding in the United States had grown up to 1.1 trillion USD by
the end of 2006, dominating the amount of unsecured (non-asset-backed) commercial
papers (provided to firms with high-quality debt ratings) outstanding. While the repo
market, operating mostly over the counter and under collateral, is short on official
statistics [11] argue that its volume is estimated at roughly 12 trillion USD. Given
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the importance and the size of the collateralized lending market, it seems highly
necessary to account for the risks inherent in collateralized borrowing within firms’
internal risk management.

An important indicator of funding liquidity in the collateralized lending market
is the margin requirement. Margin, also called haircut, is a percentage cut from
the value of assets that are used as collateral for borrowing. For example, when a
financial institution pledges assets worth 100 dollars as collateral but can only borrow
80 dollars, the margin rate is 100−80

100 = 20%, meaning that 20% is sliced off from
the assets’ value. When margins increase significantly, financial institutions may not
be able to raise enough funds any more as they cannot provide the required collateral
for borrowing. Effectively, it means that the short-term creditors decide not to roll
over maturing debt, or in other words, a run on short-term debt occurs. Today, it is
well understood that funding liquidity dry-ups in the short-term lending market have
played a central role in the most recent crisis in which we have witnessed soaring
credit spreads accompanying runs on short-term financial instruments. Examples are
the run on ABCP starting in August 2007, on repo in September 2007, and on money
market mutual funds in September 2008.

In this paper, we provide a framework to model defaults caused by scarcity of
collateral in the short-term lending market and study its implications on default risk
for those financial institutions relying on short-term collateralized borrowings.

We build a structural model for a financial institution in which we model both
the firm’s asset value and the required margin for collateralized borrowing as two
correlated geometric Brownian motions. More precisely, we consider a financial
institution financed by a mixture of long- and short-term debt. Both types of debt are
collateralized by the firm’s assets. Short-termdebt needs to be rolled over periodically
while long-term debt is locked until maturity. The firm defaults due to insolvency
when its asset value deteriorates and falls below an exogenous threshold. This corre-
sponds to the classical Black-Cox type default (see [3]). Besides, a negative shock in
the collateralized lending market, modelled by variations in the margin process, can
increase margin requirements and hence decrease collateral value. When margins
are so high that the available collateral is not sufficient to support borrowing the
outstanding amount of short-term debt, the latter cannot be rolled over. Hence, the
short-term creditors run on debt, which triggers an illiquidity default. In this way,
our model allows for two different default scenarios.

We obtain semi-analytic solutions for both firm’s default probability and debt
value in terms of Bessel functions. Although in this paper, the implementation is
conducted under Monte Carlo simulations, the semi closed-form solutions provide
an accurate and numerically efficient alternative to compute firm’s default probabil-
ity and thus are particularly interesting for practical applications of the suggested
model for firms’ internal risk management procedure. Our numerical results show
that firm’s default probabilities tend to increase when margins increase. The increase
is more pronounced for those firms heavily relying on short-term financing or with
high rollover frequency. When lending conditions deteriorate and margin exceeds
the moderate level of 25%, the probability of a default due to tightened margin
requirements increases dramatically and can eventually dominate the probability of
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an insolvency default for firms relying to a large extent on short-term financing. We
also find that not only financing structure matters but also rollover frequency has a
strong influence on default risk. In the limiting case when short-term debt is rolled
over on a daily basis, the default probability is extremely sensitive to changes in
margin requirements. In that situation, an illiquidity default can easily be triggered
when lending conditions tighten. Such defaults can also be understood as debt runs
as discussed in [1, 8, 17]. Hence, our model is especially suitable for financial insti-
tutions relying on periodically rolled over collateralized borrowing as, for instance,
commercial paper conduits or, more general, banks in the shadow banking system.1

Additionally, we show that variations in margin requirements over short time periods
are important to explain firms’ default probabilities. Default probabilities increase in
both margin volatility and correlation between firm’s asset value andmargin process.

The remainder of the paper is structured as follows. Section2 presents the model
setup and discusses the default mechanism. The semi closed-form expressions for
default probability and debt value are derived in Sect. 3. The numerical results on
the effects of funding liquidity on a firm’s default probability are presented in Sect. 4
while Sect. 5 concludes. The Appendix provides details on the derivation of the debt
value.

2 Model

In this section, we will first describe the firm’s asset and liability structure and
then discuss the default mechanism in our setting which depends not only on the
performance of the firm’s asset value but also on the level of the margin requirement.

2.1 Firm Assets

Consider a firm which finances its risky assets by debt and equity. The firm’s asset
value (Vt )t≥0 is assumed to follow a geometric Brownian motion under the risk-
neutral measure

dVt

Vt
= r f dt + σdW 1

t , (1)

1Former Federal Reserve Chair Ben Bernanke provided a definition in April 2012 at the 2012
Federal Reserve Bank of Atlanta Financial Markets Conference: “Shadow banking, as usually
defined, comprises a diverse set of institutions and markets that, collectively, carry out traditional
banking functions–but do so outside, or in ways only loosely linked to, the traditional system
of regulated depository institutions. Examples of important components of the shadow banking
system include securitization vehicles, asset-backed commercial paper (ABCP) conduits, money
market mutual funds, markets for repurchase agreements (repos), investment banks, and mortgage
companies”.
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where r f is the constant expected return on the firm’s asset value, which equals the
risk-free rate, σ is the asset volatility and (W 1

t )t≥0 is a standard Brownian motion
representing shocks to the firm’s asset value.

2.2 Debt Structure

The firm finances its risky assets by a mixture of short- and long-term debt. Long-
term debt with maturity T has principal L and couponCL while short-term debt with
principal S and coupon CS has to be periodically renewed. We assume all debt to be
collateralized. Therefore, the firm needs to pledge its assets as collateral. To simplify
the analysis, we assume that the firm uses the entire firm asset value as collateral
to borrow. However, the firm cannot borrow the full value but only a fraction of the
collateral. The cut on the collateral is called margin or haircut, denoted bymt at time
t , and provides a measure for funding liquidity in the short-term debt market. Hence,
at each instant in time t, the firm can at most borrow

(1 − mt )Vt .

Thus, the firm can only renew maturing short-term debt S when (1 − mt )Vt is
larger than S. Otherwise, short-term creditors withdraw funds and the firm defaults
to a run on short-term debt. In contrast to an insolvency default, such a failure is
caused by tightened lending conditions or scarcity of collateral. The latest financial
crisis exhibited that the former played a critical role in liquidity dry-ups in the short-
term lending market. In the following we model nt = 1 − mt as a second geometric
Brownian motion

dnt
nt

= ηdW 2
t , (2)

where η is the constant volatility parameter, and (W 2
t )t≥0 is a standard Brownian

motion with Cov(W 1
t ,W 2

t ) = ρt.The coefficient ρ representing correlation between
firm fundamental and one minus margin is assumed to be constant and positive such
that asset value and margin are negatively correlated. This is motivated by recent
work of [2] who show that leverage is procyclical and thus, margin as the reciprocal
of leverage is countercyclical versus the firm’s asset value. Note that mt = 1 − nt
becomes negative when nt is larger than 1. In such a case, however, defaults will be
driven by insolvency risk, i.e., the firm defaults when its asset value Vt drops below
some exogenous insolvency threshold, and the margin constraint is not binding as
we will see in the next subsection.
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2.3 Default Timing

When liquidity dries up in the short-term lending market, the margin will be so high
that the firm is unable to maintain the continuously renewed short-term debt profile
and thereby the firm defaults at time

τm = inf{t > 0|ntVt ≤ eλmt S},

where λm is a constant. Such a default can be regarded as a bank run because the
short-term creditors are unwilling to lend. Besides the firm can default because of
insolvency as in the classical structural credit risk models at the first hitting time

τi = inf{t > 0|Vt ≤ eλi t B},

where λi is a constant and eλi t B is the exogenous insolvency threshold at time t . The
default time τ is hence given by

τ = min(τm, τi ).

The parameters λm and λi are exogenously given and we set

λi = r f − 1

2
σ 2 and λm = r f − 1

2
σ 2 − 1

2
η2. (3)

This particular choice of λi and λm has two advantages. First, it makes ntVte−λmt and
Vte−λi t driftless2 and hence achieves an analytic distribution of the default time τ and
the joint distribution of times τm and τi . Secondly, it reserves a reasonable economic
meaning that collateral value and short-term debt value (firm value and debt value)
will have the same expected growth rate. This implies a constant leverage ratio of
short-term debt to collateral value and total debt to firm asset value in the steady
state (see [19]). Further [19] shows that the choices of the parameters λi and λm has
little effect on default correlation for maturities less than 5years and the impact is
still rather small for maturities longer than 5years. The choice of these parameters,
however, does affect the default probability and debt evaluation, in particular, for
firms with low asset quality or high margin requirements. In practical application,
the parameters should ideally be calibrated to the firm’s short-term debt and total
liability profile such that they reflect the corresponding growth rates of the latter.

From the definition of the default times due to insolvency τi and illiquidity τm , it is
clear that when nt is larger than one implying a negative marginmt , we have τi < τm
whenever S > Bwhichusually is the case as B should reflect thefirm’s total liabilities
while S only refers to the principal of short-term debt. Thus, negative margin mt

2This transformation facilitates the analysis and will make the drift parameter redundant in the
numerical experiments. However, with drifts present, the semi close-form solutions are still achiev-
able and it causes no loss of efficiency in the simulations.
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actually does not imply any problems in our model as it refers to situations where
funding liquidity is unproblematic and defaults are solely due to insolvency. Hence,
in the simulations one could even set one as an absorbing level for the process nt .

3 Default Probability and Debt Value

In this section, we derive analytic expressions for the firm’s default probability and
for the joint density of first passage times τm and τi following the derivations in [15].
Based on these, we then provide semi-analytic formulas for the firm’s debt and equity
value. Our approach relies on the methodology introduces in [15, 19], but is also
related to work by [4, 16] who use similar techniques to study correlated defaults in
the context of pricing of credit derivatives.

3.1 Analytic Representation of Default Probability

We first reformulate the problem that the geometric Brownian motion Vt , resp. ntVt ,
breaches the threshold eλi t B, resp. eλmt S, to the problem that a two-dimensional
driftlessBrownianmotion hits zero.With the choice ofλi andλm specified in equation
(3), the processes

X1
t := ln Vt − ln eλi t B = ln

(
V0
B

)
+ (r f − 1

2
σ 2 − λi )t + σW 1

t = ln

(
V0
B

)
+ σW 1

t ,

X2
t := ln nt Vt − ln eλmt S = ln

(
n0V0
S

)
+ (r f − 1

2
σ 2 − 1

2
η2 − λm)t + σW 1

t + ηW 2
t

= ln

(
n0V0
S

)
+ σW 1

t + ηW 2
t .

turn into driftless Brownian motions. Observe that the first hitting time τi that Vt hits
eλi t B is equivalent to the one that X1 reaches zero (vertical axis), and the first time
τm that ntVt hits eλmt S is equivalent to the one that X2 reaches zero (horizontal axis).
We can rewrite X in SDE form as

(
dX1

t
d X2

t

)
= Ω

(
dZ1

t
d Z2

t

)

with the initial condition (
X1
0

X2
0

)
=

(
ln V0/B
ln n0V0/S

)
,
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where Z = (Z1, Z2)′ are uncorrelated standard Brownian motions, and the volatility
matrix equals

Ω =
(

σ
√
1 − ρ2

x σρx

0
√

σ 2 + 2ρση + η2

)
=

(
σ1

√
1 − ρ2

x σ1ρx

0 σ2

)
.

Here we use σ1 = σ and σ2 = √
σ 2 + 2ρση + η2 for notational convenience in the

sequel and we denote the covariance between X1 and X2 by

ρx = σ+ρη√
σ 2+2ρση+η2

.

In our application, 0 < ρ < 1 such that asset value and margin are negatively corre-
lated, and volatilities σ, η > 0, which implies that ρx > 0 and Ω is invertible. Thus,
we are able to define the process Z = Ω−1X where

Ω−1 =
( 1

σ1

√
1−ρ2

x

− ρx

σ2

√
1−ρ2

x

0 1
σ2

)
.

The transformation T : R2 → R
2 defined by T (x) = Ω−1x keeps the horizontal

axis unchanged but rotates the vertical axis to the line z2 = −z1
√
1 − ρ2

x/ρx such that
the angle between the horizontal axis (z2 = 0) and the line z2 = −z1

√
1 − ρ2

x/ρx is

α = π + tan−1

(
−

√
1 − ρ2

x

ρx

)

with 0 < α < π . The transformation gives that τm is the first time that Z2
t crosses the

horizontal axis and τ i is the first time that Z1
t crosses the line z2 = z1 tan α. Following

[15] we observe that the process Zt = Ω−1X initially stays in the wedge between
z2 = 0 and z2 = −z1

√
1 − ρ2

x/ρx which can be expressed in polar coordinates as

Cα = {(r cos θ, r sin θ) : r > 0, 0 < θ < α} ⊂ R
2.

The default time τ is then the exit time when the process Zt leaves the wedge Cα .
In particular, Zτ lives on the boundary of this wedge which we denote by

∂Cα = {(r cos θ, r sin θ) : r ≥ 0, θ ∈ {0, α}} ⊂ R
2.

Using these notations and denoting by Iv the modified Bessel function of the first
kind of order v, we obtain the following result which is based on corresponding
derivations in [15].
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Proposition 1 (Compare [15], Eqs. (1.4), (3.2), and (3.3)) The survival probability
of τ > t is given by3

P(τ > t) = 2r0√
2π t

e−r20 /4t
∑
n odd

1

n
sin

nπθ0

α

[
I(vn−1)/2(r

2
0/4t) + I(vn+1)/2(r

2
0/4t)

]
,

(4)
where vn = nπ/α and the density of default time is given by

P(τ ∈ dt) = − ∂
∂t P(τ > t). (5)

Additionally, the joint density P(τm ∈ ds, τi ∈ dt) of the first passage times (τm, τ i )
is given by

Ps<t (τm ∈ ds, τi ∈ dt) = dsdtπ sin α

2α2
√
s(t − s cos2 α)(t − s)

exp{− r20
2s

t − s cos 2α

(t − s) + (t − s cos 2α)
}

·
∞∑
n=1

n sin

(
nπ(α − θ0)

α

)
Inπ/2α

(
r20
2s

t − s

(t − s) + (t − s cos 2α)

)
,

(6)
for s < t , and for s > t by

Pt<s(τm ∈ ds, τi ∈ dt) = dsdtπ sin α

2α2
√
t (s − t cos2 α)(s − t)

exp{−r20
2t

s − t cos 2α

(s − t) + (s − t cos 2α)
}

·
∞∑
n=1

n sin

(
nπθ0

α

)
Inπ/2α

(
r20
2t

s − t

(s − t) + (s − t cos 2α)

)
.

(7)

Although semi-analytic, the numerical computation of these expressions is rather
difficult. Firstly, the singularity in the joint density causes problems. More pre-
cisely, it is mentioned in [15] that the joint density Pt<s(τm ∈ ds, τi ∈ dt), resp.
Ps<t (τm ∈ ds, τi ∈ dt), tends to infinity as |s − t | → 0 in case X1

0/σ1 < ρx X2
0/σ2

which implies that the initial angle θ0 lies in the second quadrant π/2 < θ0 < π .
Secondly, the truncation error can be challenging as well in evaluating the series of
Bessel functions. For instance, it is hard to determine the critical number N up to
which the sum over odd n in equation (4) needs to be computed in order to obtain
a good approximation when we evaluate (5) numerically for small t . Finally, the
modified Bessel functions of the first kind Iv(r20/4t) explode for small t. In such cir-
cumstancesMonteCarlo simulation provides an attractive alternative, either to obtain
outright approximations or to provide simple checks on the accuracy of the numerical
methods. A different approach to calculate these quantities has been suggested in a
recent paper by [14]. The authors derive analytic solutions for the Laplace transform
of the first passage times by solving a non-homogeneous modified Helmholtz equa-
tion in an infinite wedge using finite Fourier transform. The resulting solution for the
Laplace transforms can then be numerically inverted and the authors show that the

3This result can already be found in [19].
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implementation is very accurate and much more efficient in terms of computation
time when compared to Monte Carlo simulation. The following proposition states
the corresponding result in our setting. The proof is a straightforward application of
the method in [14].

Proposition 2 (Compare [14], Theorem 2) The Laplace transform of the first pas-
sage times τi , τm is given by

L(x1, x2) = E
(x1,x2)

[
e−p1τi−p2τm

] = E
[
e−p1τi−p2τm |X (0) = (x1, x2)

]

=
∞∑
n=1

√
2

α
sin(vnθ)Un(r) + exp(−D1x1 − D2x2),

(8)

where α = π + tan−1

(
−

√
1−ρ2

x

ρx

)
, vn = nπ/α, D1 = √

2p1/σ1, D2 = √
2p2/σ2,

and

Un(r) = 1

2
A(c, D1, D2)

∫ α

ϕ=0

√
2

α
sin(vnϕ)

[
Kvn (ar)

∫ r

l=0
e−G(ϕ)l l Ivn (al)dl

+ Ivn (ar)
∫ ∞

l=r
e−G(ϕ)l lKvn (al)dl

]
dϕ,

with c = p1 + p2, A(c, D1, D2) = σ 2
1 D1 + 2ρxσ1σ2D1D2 + σ 2

2 D
2
2 − 2c, a = a(c)

= √
2c, and

G(ϕ) := D1σ1 sin(α − ϕ) + D2σ sin ϕ.

Here Iv and Kv denote the modified Bessel functions of the first and the second kind,
resp., of order v.Moreover, the Laplace transform of the default time τ = min{τi , τm}
is given by

E
(x1,x2)

[
e−pτ

] = E
x1

[
e−pτi

] + E
x2

[
e−pτm

] − E
(x1,x2)

[
e−pmax{τi ,τm }] ,

where

E(x1,x2)
[
e−pmax{τi ,τm }] = 2

π

∫ ∞

v=0

Kiv(
√
2pr)

sinh(αv)
[cosh(β1v) sinh((α − θ)v) + cosh(β2v) sinh(θv)] dv

with functions β j (c)= arccos(Hj/a(c))= − i log

(
Hj

a(c) + i

√
1 − H 2

j

a(c)2

)
for j = 1, 2

and where H1 = G(0) = D1σ1 sin α and H2 = G(α) = D2σ2 sin α.

The Laplace transforms can be numerically inverted using the double Laplace
inversion formula provided in [5]. This method to compute default probabilities is
shown to be 120–180 times faster in terms of computation time thanMonteCarlo sim-
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ulation with Richardson extrapolation (compare [14], Table3). Although the numer-
ical results in this paper are based on Monte Carlo simulation, the availability of the
above analytic expressions for default probabilities in our model setting is thus very
important for practical applications.

3.2 Calculation of Debt and Firm Value

In this subsection we will derive semi-analytic expressions for debt and firm value
based on the results of the previous subsection. We will first calculate the value
of short-term debt. Therefore, denote the asset value at default time τ by V̄τ with
V̄τ = eλi τi B if τ = τi , and V̄τ = eλmτm S if τ = τm . Recall that short-term debt needs
to be periodically renewed at debt maturities. Thus, when short-term debt principal
is due at some maturity TS , the firm needs to pay off existing short-term creditors
and issues new short-term debt with the same principal S and coupon CS . The firm is
exposed to funding liquidity problems if the margin requirement at short-term debt
rollover dates significantly increases such that the firm is unable to borrow enough
short-term funds to ensure financing of its asset holdings. Assuming equal seniority
of short- and long-term debt, the total value at time 0 of periodically rolled over
short-term debt until time T is given then by

DS(V, B) = E

[
T∧τ∫
0

CSe−r f sds

]
+ E

[
e−r f Tχ{T<τ }S

] + RS
S+LE

[
e−r f τ V̄τ χ{τ≤T }

]
,

where R is the recovery rate in case of a default. This is the value of all short-term
debt that needs to be issued until time T to finance the firm’s risky assets. The first
term is the coupon payment before default, the second term is the principal payment
when there is no default prior to time T , and the third term is the recovered value in
case of default. The value of the long-term debt at time 0 can be computed similarly
as

DL(V, B) = E

[
T∧τ∫
0

CLe−r f sds

]
+ E

[
e−r f Tχ{T<τ }L

] + RL
S+LE

[
e−r f τ V̄τ χ{τ≤T }

]
.

It seems that short-term debt is equivalent to long-term debt, which is true to cer-
tain degree since short-term debt can be considered as long-term financing through
rollover.4 However, the periodic rollover exposes the firm to funding liquidity risk
which is represented by the default time τ = min{τm, τi }. The impact of firm’s financ-
ing structure and the dynamics of themargin process ondebt valuewill be investigated
in the next section. The value of total debt at time 0 is given by

4Rolling over short-term debt is common practice as firms can reclassify short-term debt as long-
term according to the Statement of Financial Accounting Standards.
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D(V, B) = DS(V, B) + DL(V, B).

A semi-analytic representation of the total debt value is provided in Proposition 3
below.

Given the values of periodically rolled over short-term debt DS(V, B) and long-
term debt DL(V, B), the debt yield yS , resp. yL , at time 0 computed as the equivalent
return on debt conditional on it being held to maturity without default, is determined
by solving

Dj (V, B) = C j

y j
(1 − e−y j T ) + je−y j T (9)

for j ∈ {L , S}. Thedifferencebetweendebt yield and the risk-free rate gives the credit
spread on the firm’s short-, resp. long-term debt. The average yield y is calculated by
setting DS + DL for the debt value Dj , the sum S + L for principal j , and CS + CL

for the coupon C j in the above formula. The average firm credit spread is then given
by y − r f .

We now turn to the total firm value that is the firm’s asset value plus the tax benefit
and minus the bankruptcy costs. Assume that the tax rate on the interests is ι. Then
the total firm value at time 0 is given by

v(V, B) = V0 + E

[
T∧τ∫
0

ιe−r f s(CS + CL)ds

]
− (1 − R)E

[
e−r f τVτ χ{τ≤T }

]
.

The equity value is the total firm value net the total debt value

E(V, B) = v(V, B) − D(V, B).

The evaluation of debt and equity is summarized in the following proposition.

Proposition 3 The value of the debt at time 0 is

D(V, B)

= CS+CL
r f

(
1 − e−r f T P(τ > T )

) − CS+CL
r f

T∫
0
e−r f s P(τ ∈ ds) + (S + L)e−r f P(τ > T )

+ R

(
T∫
0

u∫
0
e−r f v V̄v Pv<u(τm ∈ dv, τi ∈ du) +

T∫
0

T∫
u
e−r f u V̄u Pu<v(τm ∈ dv, τi ∈ du)

+
∞∫
T

T∫
0
e−r f v V̄v Pv<u(τm ∈ dv, τi ∈ du) +

T∫
0

∞∫
T
e−r f u V̄u Pu<v(τm ∈ dv, τi ∈ du)

)

(10)
and the total firm value is
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v(V, B)

= V0
ι(CS+CL )

r f

(
1 − e−r f T P(τ > T )

) − ι(CS+CL )
r f T

T∫
0
e−r f s P(τ ∈ ds)

− (1 − R)

(
T∫
0

u∫
0
e−r f v V̄v Pv<u(τm ∈ dv, τi ∈ du) +

T∫
0

T∫
u
e−r f u V̄u Pu<v(τm ∈ dv, τi ∈ du)

+
∞∫
T

T∫
0
e−r f v V̄v Pv<u(τm ∈ dv, τi ∈ du) +

T∫
0

∞∫
T
e−r f u V̄u Pu<v(τm ∈ dv, τi ∈ du)

)
,

(11)

where the value of V̄ takes

V̄v = eλmvS, λm = r f − 1

2
σ 2 − 1

2
η2,

V̄u = eλi u B, λi = r f − 1

2
σ 2.

The analytic form for the survival probability P(τ > T ), the default density P(τ ∈
ds), and the joint default density P(τm ∈ dv, τi ∈ du) is given in Proposition 1.

The proof can be found in the Appendix. It is based on the expressions for survival
probability and default time density stated in Proposition 1 which follow from [15].

4 Numerical Results

4.1 Model Parameters

We calibrate our model to parameters used in the literature on structural credit risk
models. As in [13], we set the risk-free rate equal to 8%, the historical average
of treasury rates between 1973 and 1998. For the sensitivity analysis we choose
an initial asset value equal to V0 = 100 monetary units. The volatility of the firm’s
assets is set to σ = 25% as in [18].We choose the recovery rate R = 60% following
[6], who finds that bonds have default recovery rates of around 60% across nine
different aggregate states. [9] argue that the financial firms tend to have shorter debt
maturities as they rely heavily on repo transactions with maturities from one day
to three months and commercial papers with maturities of less than 9months. In
our empirical analysis, we therefore assume the maturity of long-term debt to be
T = 1 year and short-term debt is rolled over on a quarterly basis, i.e., every three
months short-term debt matures and new short-term debt has to be issued which
then matures three months later and so on. For comparison, we also consider a daily
rollover frequency. This choice is motivated by the fact that our analysis is mainly
focusing on short-term effects of negative shocks in the lending market, reflected by
increasing margin requirements, on firms’ default risk. In other words, our model is
suitable for stress testing the effects of liquidity risk over short time periods.
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Long-term debt principal is set to 40 monetary units with a continuously paid
coupon of 3.8 monetary units. Short-term debt principal is 20 monetary units with
coupon of 1.8 monetary units. This implies that the coupon rate on long-term debt is
larger than that on short-term debt. Throughout our analysis, we keep the total debt
outstanding fixed as 60 monetary units and the coupon rate to every type of debt is
constant. As in [7], we set the default threshold B = 61.40 monetary units which
yields an appropriate credit spread as a benchmark.

Market data on margins unfortunately is not publicly available. However, there
are financial institutions collecting margin data (see e.g. [10]), and there are reports
from banks revealing margin requirements for some asset classes in certain periods.5

The Term Asset-Backed Securities Loan Facility (TALF) and the Public-Private
InvestmentProgram (PPIP), announced in early 2009, providebond lending at exactly
50% margin. The latter is an intermediate level between the 5% margin required
at the peak of the leverage bubble and the 70–90% margin demanded during the
crisis in 2008. Since then, the asset market enjoyed a sound rebound in prices and
the bond market saw a solid drop in spread. Therefore, we choose an initial margin
of m0 = 10%, resp. n0 = 90%, a level considered in a booming market. We set the
volatility of the process nt to η = 0.25 so that the unconditional mean of nt in a year
is still close to 95%. The firm fundamental and its margin requirement are affected
by the common market factor. The correlation between the two driving processes
(Vt )t≥0 and (nt )t≥0 is assumed to be ρ = 50% such that asset value and margin are
negatively correlated. The sensitivity of our results with respect to the choice of the
volatility and correlation parameters will be discussed in the next subsection. The
calibratedmodel parameters will produce 250 basis points credit spread on aggregate
debt calculated according to equation (9) with principal L + S and coupon CL + CS

and maturity in 1 year. We do not investigate the evaluation of debt and equity
in our numerical analysis. The debt value, however, is used in order to determine
an appropriate default barrier. Table1 summarizes these baseline parameters of our
numerical analysis.

4.2 Default Probability

Margin requirements measure a firm’s capability to raise funding through collater-
alized borrowing. A large negative shock in the lending market causes significant
increases in margins, which means creditors are reluctant to lend and run on debt.
Highly leveraged firms are thus especially vulnerable w.r.t. runs on collateralized
debt. By comparing the total default probability in Panel A with that in Panel C
of Fig. 1, we immediately see that default risk is substantial for banks relying on

5See, e.g., “International banking and financial market developments”, BIS Quarterly Review
December 2011, or “The role of margin requirements and haircuts in procyclicality”, CGFS Papers,
No 36.
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Table 1 Baseline parameters

Firm characteristic

Initial firm fundamental V0 = 100

Volatility of firm fundamental σ = 25%

Bankruptcy recovery rate R = 60%

Insolvency threshold B = 61.40

Debt structure

Long-term debt principal L = 40

Long-term debt coupon CL = 3.8

Maturity of long-term debt T = 1 year

Short-term debt principal S = 20

Short-term debt coupon CS = 1.8

Short-term debt rollover frequency �t = 3months

Margin

Initial margin m0 = 10%

Volatility of margin η = 25%

Correlation parameter ρ = 0.5

Macro variables

Risk-free interest rate r f = 8%

periodically rolled over funding.6 The default probability in Panel C shoots up dra-
matically, more than 10% in one year, when the ratio of short-term debt to total
debt increases form 1/3 to 1/2 and when the initial margin level is larger than 25%.
Panel B shows that the default probability due to funding liquidity risk for firms with
one-third short-term debt is almost negligible even at higher margin levels. In stark
contrast, the default probability due to funding liquidity risk picks up quickly when
margin climbs over 25% in Panel D. It completely dominates the default probability
due to insolvency if the margin is larger than 35%. The default probability caused
by illiquidity is about 20% in one year for an initial margin level of 50%. This is not
very surprising as the initial collateral value is 100 × 0.5 = 50 whereas short-term
debt principal is 30. Thus, firms will very likely fail to roll over maturing short-term
debt and hence default when margin requirements tighten. Moreover, the results in
Fig. 1 indicate that the rollover frequency matters. The higher the rollover frequency
of short-term debt is, the higher is also the firm’s default probability as the firm is
exposed to higher rollover risk. Especially in the limiting case when debt is rolled
over on a daily basis, the default probability caused by illiquidity completely dom-

6Be aware that we use n0 = 1 − m0 in our simulations not m0 directly.
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inates the one due to insolvency when the initial margin is larger than 35%. This
leads to a dramatic increase in the total default probability. A similar phenomenon
has been found in [12].

Figure1 further reveals a stylized fact observed in the crisis. Firms, taking huge
leverage in boom times in which funding liquidity seemingly can be neglected, were
severely hit by the liquidity dry-ups in the collateralized short-term debt market. For
the same reason, in the sequel analysis, we assume a mild level of margin or a short-
term debt ratio higher than the one in the base model in the interest of comparison.
We investigate how default changes against short-term debt ratio, correlation and
margin volatility.

Our results show that the default probability is highly sensitive to the firm’s debt
financing structure. Panel A of Fig. 2 indicates that even for a mild level of initial
margin, m0 = 25%, the total default probability dramatically increases from about
6.5% a year to roughly 10% a year for both rollover frequencies when the short-
term debt ratio increases to 0.6. Panel B reveals that this increase is mainly caused
by a significant rise in the default probability due to funding liquidity. Additionally,

Fig. 1 Dependence of Default Probability on Initial Margin.
Panel A shows the firm’s total default probability while Panel B illustrates its individual compo-
nents separately for short-term debt ratio equal to 1/3, the default probability due to insolvency
P(τi ≤ T, τi < τm), and the default probability due to illiquidity P(τm ≤ T, τm < τi ), for daily
and quarterly rollover frequency. Panel C and Panel D plot the same probailities for short-term
debt ratio equal to 1/2. Panel A and B use the baseline parameters listed in Table1 to produce a
credit spread of 250 bps on aggregate debt. Panel C and D use the same parameters apart from the
short-term debt ratio which is set to 1/2 here. Calculations are performed under the risk-neutral
measure
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Fig. 2 Dependence of Default Probability on Short-term Debt Ratio.
Panel A shows the firm’s total default probability whilePanel B illustrates its individual components
separately, the insolvency default probability P(τi ≤ T, τi < τm), and the illiquidity default prob-
ability P(τm ≤ T, τm < τi ), for daily and quarterly rollover frequency. The baseline parameters
listed in Table1 are used to produce the credit spread of 250 bps on aggregate debt with short-term
debt ratio equalt to 1/3 except that the intial margin is fixed at 25%. Calculations are performed
under the risk-neutral measure

Panel A of Fig. 3 shows that the total default probability increases in the correlation
between the firm’s asset value and the process nt = 1 − mt . This is caused by the
steep increase of the illiquidity default probability and the mild decrease of the
insolvency default probability shown in Panel B. The intuition here is that with
increasing (positive) correlation coefficient ρ, the firm’s asset value and the margin
process become highly negatively correlated. Therefore, even a healthy bank, defined
by good quality of firm assets, is exposed to significant default risk when lending
conditions tighten as margin level tends to be high when the firm’s asset value is low
which makes rolling over collateralized short-term debt very difficult. Furthermore,
Fig. 4 illustrates that the default probability is increasing in the volatility of themargin
process. Hence, firms are exposed to higher default risk if the margin process is more
volatile.

Thus, our results show that tightened funding conditions can increase a firm’s
default risk greatly even if it holds high quality assets. Tightened lending conditions
can arise from increasing margin requirements, higher fluctuations in the margin
process, or increasing negative correlation between firm fundamental value and mar-
gin process. Firms heavily relying on collateralized short-term funding will then be
exposed to significant default risk. Reports have shown that during the European debt
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Fig. 3 Dependence of Default Probability on Correlation.
Panel A shows the firm’s total default probability whilePanel B illustrates its individual components
separately, the default probability due to insolvency P(τi ≤ T, τi < τm), and the default probability
due to illiquidity P(τm ≤ T, τm < τi ), for daily and quarterly rollover frequency. The baseline
parameters listed in Table1 are used to produce the credit spread of 250 bps on aggregate debt with
short-term debt ratio equalt to 1/3 except that the inital margin is 25%. Calculations are performed
under the risk-neutral measure

crisis the market margin on mortgage-backed, asset-backed, and structural securities
was well above 50%.7 The lenders’ confidence collapsed and the private lending
activity basically stopped before ECB stepped up to rescue. In boom times, the fund-
ing liquidity risk could be negligible with very loose margin requirement. However,
when the market switches into a regime of distress with significantly high margin,
our results show that the default probability of a firm can dramatically increase even
if its fundamental performs well. Thus, our model can be implemented for distress
testing of firm’s exposure to rollover risk arising from collateralized borrowing.

7There is no authoritative data on the use of haircuts/initial margins in the repo market in either
Europe or the US. Table1 in the research report published by Committee on the Global Financial
System Study Group shows margin data in bilateral interviews in various financial centers with
various market users, including banks, prime brokers, custodians, asset managers, pension funds
and hedge funds. For reference see http://www.bis.org/publ/cgfs36.pdf.

http://www.bis.org/publ/cgfs36.pdf
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Fig. 4 Dependence of Default Probability on Margin Volatility.
Panel A shows the firm’s total default probability whilePanel B illustrates its individual components
separately, the insolvency default probability P(τi ≤ T, τi < τm), and the illiquidity default prob-
ability P(τm ≤ T, τm < τi ), for daily and quarterly rollover frequency. The baseline parameters
listed in Table1 are used to produce the credit spread of 250 bps on aggregate debt except that the
short-term debt ratio is set to 1/2 here. Calculations are performed under the risk-neutral measure

5 Conclusion

We propose a structural credit risk model incorporating funding liquidity risk repre-
sented by variations in margin requirements in the collateralized short-term lending
market. By modelling the firm’s asset value and margin processes as two correlated
geometric Brownian motions, we account for two different types of default: The firm
defaults due to insolvency when its asset value hits an exogenous default threshold
while the firm defaults due to illiquidity when the margin process hits another barrier
reflecting that thefirm’s collateral value is insufficient for rolling over short-termdebt.
We transform the default timing into a first passage time of two correlated Brownian
motions and derive explicit expressions for both default probabilities and debt values
in terms of Bessel functions and their integrals. These semi-analytic representations
are very useful for practical applications as numerical methods based on such expres-
sions are several times faster than Monte Carlo simulations. Our results show that
fluctuations in margin requirements can significantly expose a firm to rollover risk,
especially for firms heavily relying on short-term financing. Thus, funding liquidity
risk should be taken into account in firm’s internal risk management as well as in
debt pricing.
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Appendix

Proof of Proposition 3
We first calculate the value of short-term debt DS ,

DS(V, B)

= E

[
T∧τ∫
0

CSe−r f sds

]
+ E

[
e−r f Tχ{T<τ }S

] + S
S+LE

[
e−r f τ V̄τ χ{τ≤T }

]

= T1 + T2 + T3.

(A.1)

The first term is
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0
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= CS
r f

(
1 − e−r f T P(τ > T )

) − CS
r f

T∫
0
e−r f s P(τ ∈ ds),

where the survival probability P(τ > T ) and the default density function are given
in (4) and (5). The second term can be computed as

T2 = E
[
e−r f Tχ{T<τ }S

] = Se−r f T P(τ > T ).

The last term is
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+e−r f τm V̄τmχ{τm<T<τi } + e−r f τi V̄τi χ{τi<T<τm }

]

= RS
S+L

(
T∫
0

u∫
0
e−r f v V̄v Pv<u(τm ∈ dv, τi ∈ du) +

T∫
0
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u
e−r f u V̄u Pu<v(τm ∈ dv, τi ∈ du)
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T
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0
e−r f v V̄v Pv<u(τm ∈ dv, τi ∈ du) +

T∫
0

∞∫
T
e−r f u V̄u Pu<v(τm ∈ dv, τi ∈ du)

)
,

(A.2)
where the joint default density is given in (6) and (7). For the default time v < u, we
know

V̄v = eλmvS,

and for u < v
V̄u = eλi u B.
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The long-term debt value will be the same by replacing principal and coupon. The
total firm value is the unlevered firm value plus tax shields minus bankruptcy costs

v(V, B)

= V0 + E

[
T∧τ∫
0

ι(CS + CL)e−r f sds

]
− (1 − R)E

[
e−r f τ V̄τ χ{τ≤T }

]

= V0
ι(CS+CL )

r f

(
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) − ι(CS+CL )

r f
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0
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+
T∫
0
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u
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+
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T

T∫
0
e−r f v V̄v Pv<u(τm ∈ dv, τi ∈ du)

+
T∫
0
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T
e−r f u V̄u Pu<v(τm ∈ dv, τi ∈ du)

)
.

(A.3)

Finally, equity value is calculated as total firm value net the debt value

E(V, B) = v(V, B) − D(V, B). (A.4)

�
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Model Uncertainty in a Holistic Perspective

Gerhard Stahl

Abstract This paper focuses onmodel uncertaintywithin a holistic perspective. The
latter is characterized by a consistent approach to risk measurement by combining
stochastic, economic, operational and regulatory elements. This paper is a plea to
account for model uncertainties on the level of consequences and not at the level of
risk factors. This has important implications for validation, auditing and is of use
testing of internal models. In line with risk management approaches, uncertainties
have tomanaged. The starting point for this process is the identification andmeasure-
ment of uncertainties. To achieve this goal further specific criteria for validity and
resilience, are introduced in this paper. Examples from real world internal models
highlight the practical relevance of the introduced concepts. A concluding section
summarizes the main insights.

Keywords Solvency II · Internal models · Standard formula · Model validation ·
Model uncertainty

1 Introduction

Looking back on the development of the financial industry in the 20-th century, in
particular two components of technical progress, namely the invention of personal
computers and advances in financial engineering put their stamp on. Their com-
bined application changed the face of financial markets by dealing in real time with
derivatives and other financial instruments.

As a consequence thereof, modern risk management was integrated in the value
creation chain of financial institutions, see Wilson for an overview [1]. It turned
out to be questionable, whether the determination of regulatory capital for trading
portfolios, with a significant amount of derivatives and diversification effects due to
international activities, bymeans of so-called (regulatory) standardizedmethods was
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still adequate and economically efficient. An important lesson of those timeswas that
the complexity of derivative portfolios can in general not be captured by so-called
standardized methods. From a regulatory perspective, the solution was seen in the
application of so-called internal models, by which the adequate and yet economic
efficient capital cushion is determined by firm-specific stochastic models. Further-
more, in addition to this quantitative component, further qualitative requirements
fostered good risk management practices. It is remarkable that Egdeworth suggested
already in 1888, see [2], to base banking regulation on stochastics, however it took
more then 100years until this approach came true.

The application of internal models in the financial industry for regulatory pur-
poses started in the mid-nineties, see for example the book of Pada-Schioppa [3],
and internal models are going to be implemented for insurances under Solvency II,
see [4].
In the aftermath of the financial crisis in 2007 market participants and their stake-
holders pointed however critically on the uncertainty related to such model based
approaches. To tackle with model uncertainty in a holistic manner is the motivation
of this paper.

The post-crisis perception of model uncertainty of internal models shows their
Janus-faced ambivalence—either applied for pricing or for risk management pur-
poses. The society reacted with regulations which are based on improbable events,
in order to increase the safety of the financial system. Approaches to root decisions
by rational calculations based on extreme improbable events are not only bearing the
risk to fail their goal, but even destroys the rationality of the methods and procedures
underlying an internal model, see Luhmann’s book [5], p. 4.

This paradox or dilemma of risk-based regulation is a main motivation for this
paper. This paper provides a closer look at the interplay of model uncertainty, avail-
able background knowledge (including data and sample sizes) and the regulatory
required safety cushion of a risk management system. Starting point to grasp and
to analyze this interplay is the definition of a model in a wide sense. This defini-
tion of a holistic model is crucial, because only this perspective ensures to capture all
components in an integrated manner. This definition is in line with the general under-
standing of an internal model under Solvency II and fits perfectly to the ISO-norm
of risk management.

The model uncertainty is split-up into epistemic, aleatory and imprecision com-
ponents. This structure is embedded in the recent contributions of Aven to risk man-
agement. From this work the insights to deal with very different aspects of risk
management systems either on the level of risk factors or consequences are applied
to the assessment of model uncertainties.

The recent research contributions of Rüschendorf, Vanduffel, Puccetti, Embrechts
and Bernard, see [6–8] amoung others are applied to real-life internal models and
considered in the perspective of the quantification of uncertainties as given inDubois.
The reader may get an impression on the complexity of real-life internal models by
inspecting SCOR’s model documentation, see [9].
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Furthermore the recent work of Cambou and Fillipovic on regulatory framework
in Switzerland is interpretedwithin Aven’s framework. Last but not least applications
of model uncertainties under Solvency II are given.

The D-VaR Approach of RiskMetrics In October 1994 JP Morgan launched its 1st
edition of RiskMetrics, a model based stochastic approach to control and to report
risks related to investment portfolios, including derivatives, and to allocate economic
capital. The latter is used as a buffer against potential future losses. JP Morgan’s
initiative also raised a new dimension: transparency. It was the very first time that a
financial institution shared openly with the public their internal documents and made
business knowledge, which was expensive to be developed, available to third parties.
This strategy of transparency was surprisingly successful, because at one hand it sent
out a world-wide signal of competence to the markets about JP Morgan’s expertise
in issues of risk management. Hence, JP Morgan was acknowledged as the leader in
questions of risk management. On the other hand regulators took RiskMetrics as a
blue print to formulate the market risk amendment in 1996, see [10] which came in
law under the capital adequacy directive in 1997. The latter offered banks the option
to choose internal models or the standard formula for the calculation of regulatory
capital. This approachwas rolled out to other risk categories for banks (credit risk and
operational risk) under Basel II and is nowadays going to be applied for insurance
companies under Solvency II.

From the early days on, regulators not only feared to be assessed by arbitrage
by financial institutions which apply internal models but furthermore questioned
the precision of such models. In other words, model uncertainty was judged highly
and played an important role from the very beginning of the application of internal
models for regulatory purposes. For that reason a safety factor was applied in order
to tame model uncertainty. Based on a contribution by Stahl [11], the safety factor
of 3 was applied to internal models used by banks to capture market risk. This factor
is still—even in the aftermath of the financial crisis—in force, see [12].

The following two examples illustrate the last two paragraphs. We start with JP
Morgan’s Delta-Normal-Method.

Example 1 Let us consider a portfolio whose value may depend on n risk factors,
say R = (R1, . . . ,Rd). The D-VaR (Delta-VaR) approach is characterized by a first
order Taylor expansion of the valuation function. Hence the approximation for the
change in value of the portfolio V due to fluctuations of risk factors over a fixed
period of time is:

�V = V (R + �R) − V (R) ≈
d∑

i=1

∂V

∂Ri
�Ri = D�R, (1)

where D denotes the vector of partial derivatives

D = (∂V/∂R1, . . . , ∂V/∂Rd).
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Important examples for the risk factors Ri, commonly used in practice, are the log
prices of basic instruments such as stocks.

Stochastic models come into play in order to capture the uncertainty, how the
value of a portfolio may change over a certain holding period. Recall that the prices
of basic instruments at time t + 1 are uncertain at t, hence �V is a random variable.
Consider a Black Scholes framework, i.e. it is assumed that the log price changes
�R = � lnP follow a multivariate Gaussian distribution of dimension d,with mean
vector μ and covariance matrix �:

�R ∼ Nd(μ,�). (2)

By definition of the multivariate Gaussian distribution, a linear combination of �R
with exposure �t = (λ1, . . . , λd) follows a univariate normal distribution. Hence,
the distribution of the change of a linearized portfolio, denoted by D(�V ), is given
by the following univariate normal distribution:

D(�V ) ≈ N(D diag(�t) μ, DT diag(�t) � diag(�t)D). (3)

In practice the forecast horizon for market risk is rather short say one or ten trading
days. This allows a further simplification by setting μ = 0.

D(�V ) ≈ N(0, σ 2), (4)

where σ 2 = DT diag(�t) � diag(�t)D.

The D-VaR approach—and its generalizations—are elaborated at length in [13].
The simplicity of the D-VaR approach represents a tradeoff between mathematical
accuracy and operational feasibility of the underpinning business processes of an
internalmodel aswell as themathematical complexity. Itsmain theoretical drawbacks
are: possible poor accuracy for non-linear portfolios, positionswhich are delta neutral
call for extra caution. Its main advantages are: high transparency, speedy calculation,
rules of thumb for determining marginal VaR, applicable also for intra-day VaR etc.
If a backtesting for one trading year (i.e. 250 observations) shows no evidence for
a re-specification, the pros of the D-VaR approach rule out the cons, because the
advantages support and contribute to the use of the model by the company and the
regulators.
However the approximations (1), (2) and (4) raised the question ofmodel uncertainty,
hence a safety factorwas looked for. The following example showshowa safety factor
was determined in order to capture model uncertainty. The factor found empirical
support in the aftermath of the turmoil after September 11, see [14]. Note that Roy
[15], was the first in the middle of the last century who applied the Chebycheff
inequality in the context of risk management.

Example 2 Let F denote a symmetrical distribution function with expectation zero
and variance σ 2, then the Chebycheff inequality yields:



Model Uncertainty in a Holistic Perspective 193

F−1(1 − 1

k2
) ≤ 1

2k2
σ (5)

Compared with the Gaussian (G) case, (4) the following inequality yields at the level
of significance of α = 99%:

VaRF

VaRG
≤ 3.03 (6)

It was emphasized by Stahl in [11] that the crude nature of the Chebycheff inequality
gives sufficient reason that all kinds of uncertainties are captured.

Reflecting the examples above, model uncertainties may be evaluated at two dif-
ferent levels: it is reasonable to start with (1) and (2) at the levels of risk factors
or inputs—this is the perspective of modelers—, or the perspective of a decision
maker, i.e. a user of the model is taken. In this view uncertainties are considered at
the level of consequences. Aven [16], formalizes these two perspectives by means of
the triple

(A,C,U), (7)

whereA denotes objects like events, risk factors or input models, whereasC is related
to the consequences, i.e. the level where the economic consequences from decisions
are measured. U denotes the uncertainty in this system, which can be related to A,

C and both as well.

2 Basic Definitions—Framework

This section provides basic definitions, laying the ground for the concept of a holistic
model and the associated model uncertainty.

First, we reference to the ISO-Norm framework on risk management, see [17], for
the definition of the term risk, because it is grounded on uncertainty. This framework
fits smoothly to the concept of an internal model in wide sensewhich is introduced in
this section. This representation goes beyond a purely stochastic model by recogniz-
ing the full context. This approach captures and reflects the regulatory context given
by the (three Pillars) structure of Solvency II and related requirements of rating
agencies with respect to a holistic and firm-wide approach, see [18–20].

2.1 Holistic Models

Definition 1 Risk is defined as an effect of uncertainty on objectives, where an effect
is a deviation from the expected—positive or negative. Objectives can have differ-
ent aspects and can apply at different levels (strategic, organization-wide, project,
product, process).
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Aven generalized and improved the ISO-Norm framework on risk management
with respect to a clarification of the terminology, see Appendix B in [16] and the
formal setting for the assessment of uncertainty. However the general concept of the
ISO-Norm is valid and followed here.
The following definition taken from the ISO-Norm framework introduces the term
uncertainty.

Definition 2 Uncertainty is the state, even partial, of deficiency of information
related to understanding or knowledge of an event, its consequence or likelihood.

This paper differentiates three components of uncertainty: epistemic, aleatory and
imprecision, where the latter refers to numerical imprecision. These components are
captured by an extension of (7)

(A,C,U,P,K), (8)

whereK denotes the background knowledge and P a stochastic model for the sources
of uncertainty, see Aven [16] for details. This split of uncertainty into three compo-
nents is also considered in contributions in Diebold et al. [21], as well as in a recent
publication by the British Insurers [22].

Definition 3 The functional relation defined by

F(Xt+h | ◦) := F(Xt+h | It,ZH|t,R,O) (9)

denotes amodel in a wide sense, where F is a forecast distribution, F, with forecast
horizon h of the variable of interest, X. F is understood as the output of the model.
The definitions of the conditioning sets are given in the remarks.

The following remarks highlight some of the interpretations, which tackle the mean-
ing of a model in wide sense.

Remark 1 1. The relational reference (9) takes the information sets It,ZH|t,R,O

as sources of risk. It is the explicit incorporation of all sources of uncertainty in
an holistic approach, which is new.

2. It denotes ordinary data sets which are produced and updated continuously. It
is further split into:

It := (Dt,�t), (10)

where Dt are data related to risk factors and �t denotes an exposure vector.
In order to calibrate e.g. an Economic Scenario Generator, time series of prices
of financial instruments are an example for It . In addition to such empirical
data, experts judgements might be used, e.g. for operational risks. In any case
It denotes input data for sources of risk represented by particular models.

3. The information set ZH|t denotes some background knowledge, given at time
t for a time horizon H � h, H put to 5 years; i.e. H = 5 × h. On one hand,
ZH|t is used during the modelling process (e.g. variable selection), and on the
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other hand it reflects forward looking information, expertise (e.g. strategic issues,
especially targets). Compared with the information set It, ZH|t is not the out-
put of a physical production process but merely gathering external and internal
opinions, expectations etc.

4. With R regulatory requirements are denoted, whose compliance is a prereq-
uisite. (EIOPA frameworks, as well as requirements from rating agencies and
investors). External stakeholders may impact the model (9) significantly. Impor-
tant examples: forecast horizon h, level of significance, granularity of risk cate-
gories, requirements on the organization and business processes. With the latter
the requirements determine explicitly the costs and also influence operational
risk.

5. O denotes the organizational set-up of the undertaking. For insurance groups
with their separation of business lines this goes hand in hand with complex
segregation of duties and responsibilities. Furthermore group-wide separated
business processes are a standard.

2.2 Components of Uncertainty

The following example elaborates on these components.

Example 3 Let F denote a whole firm, an insurance say. Its total risk is assumed
to be derived from a model according to (9) and measured by some risk measure
ρ(F(Xt+h | ◦)).
How good (9) approximates reality ofF is known as epistemic uncertainty, see [23].
Typically epistemic uncertainties are captured by subjective probabilities, interval
probabilities etc. Assumed, (9) is specified, its parameters estimated, by means of the
information sets It and ZH|t, the related business processes fulfilling all requirements
imposed by R and the operational constraints stemming from O. The result is:

F̂(Xt+h | It,ZH|t,R,O); (11)

a specific parameterized version of (9). Typically the estimated model is prone to
aleatory uncertainty, which may be measured by standard statistical techniques.
Often a final numerical step is necessary, in order to calculate ρ(F̂(Xt+h | ◦)).

In practice, this calculation is realized by aMonte-Carlo-Simulation, F̂∗(Xt+h | ◦)

drawn from F̂(Xt+h | ◦). Epistemic uncertainty, denoted by Ue is given by

Ue =| ρ(F) − ρ(F(Xt+h | ◦)) | . (12)

Aleatory uncertainty, denoted by Us is given by

Us =| ρ(F(Xt+h | ◦)) − ρ(F̂(Xt+h | ◦)) | . (13)



196 G. Stahl

Uncertainty related to imprecision, denoted by Ui is given by

Ui =| ρ(F̂(Xt+h | ◦)) − ρ(F̂∗(Xt+h | ◦)) | . (14)

To determine the total uncertainty,

UT = Ue + Us + Ui (15)

further assumptions about their dependencies are crucial. Often, only two extremes
are considered: total dependence or independence, see e.g. [24].

The next subsection recalls well known approaches to quantify Ue.

2.3 Measurement of Uncertainty

There are various established approaches to determine uncertainties in (12)–(14):

• probability theory; including frequentistic and bayesian approaches,
• imprecise probabilities,
• possibility theory and
• evidence theory,

see Dubois [25], and Baudrit and Dubois [26] for a general reference to these con-
cepts. For applications in the context of risk management see: the books of Aven [16]
and [23] as a reference for the general framework as well as the ISO standard [27],
which is devoted to the question: How to express uncertainties in measurements?
The book of Oberkampf and Roy addresses applications in the field of validation,
see [28], and last but least the book of Cruz et al. which apply these techniques in
the area of operational risk, see [29].
Within the possibility theory the definition of a possibility function denoted by π is
key:

Definition 4 Apossibility distributionπ is amapping froma set	 to the unit interval
such thatπ(ω) = 1 for at least one elementω ∈ 	. ForA ⊂ 	 the possibility function
�(A) and the related necessity functions (N(A)) are derived by:

�(A) = sup
ω∈A

π(ω) (16)

N(A) = 1 − �(Ac) = inf
ω∈Ac

(1 − π(ω)). (17)

For a given α ∈ [0, 1], the α-cuts, Aα are defined by

Aα = {ω ∈ 	|π(ω) ≥ α}. (18)
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These α-cuts are nested, i.e.: α > β yields Aα ⊆ Aβ

The next definition links possibility and necessity functions to stochastic models
represented by a family of distributions P on 	.

Definition 5 Let P denote a set of probability distributions on 	. Lower and upper
probability bounds are defined as follows:

P(A) = inf
P∈P

P(A) (19)

P(A) = sup
P∈P

P(A). (20)

A possibility degree can be viewed as an upper bound of probability degree. LetPπ =
{P|A ⊆ 	 : N(A) ≤ P(A) ≤ �(A)} be the set of probability distributions encoded
by a possibility function π . This representation is coherent since upper and lower
probabilities induced by Pπ are just N and �.

3 Management of Model Uncertainty

In a landmarking paper from the Office of the Comptroller of the Currency (OCC) on
model validation, see [30], the importance of the management of model uncertainty
is highlighted. It is outlined there in detail that the outcome of the validation process
is a quantitative or qualitative assessment of model uncertainty, where a model con-
sists of three components: an information input component—which refers to It in
(9)–, a processing component and a reporting component, both refer toO in (9). The
definition of a model in a wide sense proposed in this paper is in so far more general,
as R and ZH|t are considered explicitely.
If OCC’s view on validation is accepted, the risk management principles and
processes as laid down by the ISO normmay be followed in order to identify and ana-
lyzemodel uncertainty. Furthermore the use test is seen as part of themodel validation,
because senior management assess model uncertainties in so far as their decisions
take uncertainties into account. By means of the validation process (together with
internal audit process) model uncertainty is monitored and reviewed. The outcomes
of these processes are gathered and communicated bymeans of validation (and audit)
reports.
In [30] it is emphasized (at page 1) that model uncertainty is related to potential
indirect costs such as possible adverse consequences by relying on incorrect models
or misusing of correct ones. This aspect of focusing on the consequences shows the
link to the use test and the role to be played by senior management. The OCC con-
siders in respect to the management of model uncertainty both perspectives: that of
the level of the consequences, i.e. the component C in (A,C,U,P,K)—here senior
management plays the important role with respect to assessment or evaluation—and
the level of events, i.e. the component A in (A,C,U,P,K), where the modelers and
validators identify and analyze model uncertainty.
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Example 4 Management of Model Uncertainty in Practice For insurance under-
takings which are going to opt for internal models under Solvency II it is regulatory
required, to employ a validation process. The outcome of this process showed up a
significant amount of model uncertainty both at the level of valuation models and
risk models as well. Whereas it is common knowledge that the functional form, F as
well as Xt+h,It,ZH|t and the organizational set-up O in (9) contribute at the model
uncertainty, it is a new insight that also the regulatory framework R contributes to
model uncertainty. On one handR contributes toUe via operational risk, because the
regulation of internal models under Solvency II is very prescriptive and extensive.
On the other hand Solvency II anchored the required level of capital at 99.5%. Hence
Us is of significant amount due to the large quantile.
TalanxGroup applies the OCC principles by catchingmodel uncertainties at the level
of consequences in putting aside capital for Ue,Us and Ui, where the lion part of UT

stems from Us in determining an SCR for α = 99.5%. Hence UT is a combination
of statistical analysis, insights from validation and expert judgement and estimated
as roughly 6.3% of the Group’s own funds. This is roughly an amount of one billion
Euro.

Whereas the topic of model uncertainty in the context of internal models is
reflected widely by various stakeholders, the fact that the Standard Formula (SF)
under Solvency II is also prone to model uncertainty is worth to note. The assump-
tions underlying the standard formula are summarized by EIOPA in [31]. Practical
experience has shown that the SF is not conservative compared with the option to
apply an internal model. The following example represents the SF analogue to (9):

Example 5 Model uncertainty for the Standard Formula With

Ĝ(Xt+h | IR,ZH|R,RSF), (21)

the anlogue of (9) for the SF is denoted. Compared to an internal model, the condi-
tioning information setsDR and ZH|R are static, i.e. are not adapted over time. How
ZH|R, the forward looking perspective was incorporated in the SF is unknown for the
user.
Themain drawback of the SF however is that it is impossible for the user to determine
the uncertainty

UT (Ĝ(Xt+h | IR,ZH|R,RSF).

Hence an important requirement of the ISO-norm: to determine the uncertainty of
a risk measure can not be realized. Also OCC’s main outcome of validation - the
model uncertainty can not be determined without an additional model.
Furthermore (DR,�t) = IR ⊂ It = (Dt,�t) andRSF is less challenging thenR, the
regulatory framework for an internal model. Experience with the SF has shown that:
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• Ue(Ĝ) > Ue(F)

• Us(Ĝ) > Us(F)

• Ui(Ĝ) < Ui(F)

In total we have:
UT (Ĝ) > UT (F)

Note that SF employs the cybernetic principle of a feedback loop, which is the
backbone of risk management, only in a limited way, because latest informationDR

frommarkets can not be taken into account. Taking capital market risk as an example
DR ends in 2009 in the SF. This implies that economic issues related to unbalanced
national households are not captured. This will cause challenges for future ORSA
exercises based on the SF. Furthermore, the SF violates economic principles such
as: arbitrage freeness, diversification and economy of scales. In the light that SF is
not conservative, internal models are the superior approach.

In the light of these examples it is important to formulate criteria in order to estimate
model uncertainty. In this respect the contributions of Aven and his co-authors as
well as the contributions of Oberkampf are important. The following sub-section
refers to Aven.

3.1 Realiability, Validity and Model Uncertainty

From the preceding sections we conclude that model uncertainty is unavoidable.
For that reason users and stakeholders look for criteria of reliability and validity
of internal models, which increase transparency and trustiness of reported figures.
Within Aven’s framework, see [32] and [16],

(A,C,U,P,K)

the authors formulate the following criteria. The criteria for reliability, R1−R3, are
considered first:

R1 The degree to which the risk analysis methods produce the same results at reruns
of these methods.

R2 The degree to which the risk analysis produces identical results when conducted
by different analysis teams, but using the same methods and data.

R3 The degree to which the risk analysis produces identical results when conducted
by different analysis teams with the same analysis scope and objectives, but no
restrictions on methods and data.
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These realibility criteria deserve some remarks:

Remark 2 1. Requirement R1 seems trivial, however given the challenge caused
by the complexity of O and R it takes several years of hard work to ensure this
indispensable criterion for real-life internal models. The requirement of the tech-
nical repeatability of a risk analysis is of highly practical importance. Given the
complexity of an internal model formalized by (9), R1 can only be assured, if the
business precesses underpinning the risk analysis are sufficiently mature. Oper-
ational risks from weaknesses in business processes leading to non repeatable
results are considered as unacceptable. Criterion R1 sets a minimum require-
ment on the interplay of the stochastic model based on It and its operational
implementation,O in (9). Hence, R1 formulates a minimum standard in respect
to operational risk of running an internal model.

2. Criterion R2 refers to the fact that internal models are socio-technical systems.
Human factors come into play e.g. in the model building process and in the
calibration of the model. Aspects related to human factors are captured by O in
(9) and through K in (8). R2 refers to the impact of expert judgements on the
components (12)–(14) of UT .
The relevance of criterionR2 relates implicitly to the sample size n. Formoderate
or small sample sizesUe might of significant amount and in addition is definitely
important for Us. Hence, criterion R2 refersmodeler’s contribution to (13) and
(14); his influence decreases as the sample size increases.

3. Criterion R3 offers a high degree of freedom with respect to data and methods
this assumes implicitly the regulationR component does not impose restrictions
on the components F,It and ZH|t . In regulated industries this might be too
optimistic. R3 considers

G(Xt+h | ◦) := G(Xt+h | J̃t, Z̃H|t,R,O) (22)

as an alternative to

F(Xt+h | ◦) := F(Xt+h | It,ZH|t,R,O),

as introduced in (9). Obviously all components of UT are touched by (22), how-
ever the focus will in general lay on the epistemic uncertainty

Ue = ρ(F) − ρ(G(Xt+h | ◦)). (23)

As in the case of R2, R3 refers to K and O, if however the sample size is large,
R3 is of lower importance. In this case UTG(Xt+h | ◦) is expected to be close to
UT (F(Xt+h | ◦). If the information content in J̃t and Z̃H|t is close to that in It
and ZH|t then Us should be close for the two approaches.

Now the criteria for validity are considered:

V1 The degree to which the produced risk numbers are accurate compared to the
underlying true risk.
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V2 The degree towhich the assigned probabilities adequately describe the assessor’s
uncertainties of the unknown quantities considered.

V3 The degree to which the epistemic uncertainty assessments are complete.
V4 The degree to which the analysis addresses the right quantities.

The criteria for validity V1–V4 are more common, compared to R1−R3. This is
mainly due to the fact that reliability refers to aspects related to O, which are in
general only of practical interest and go beyond pure scientificmodelling.However, it
is important to note that the criteriaV 1–V 4 are closely related to the framework as laid
down in the ISO-norm. In particular these criteria require to include all components
of UT into consideration. The following example considers aspects of V 4:

Example 6 Under Solvency II the regulatory required level of significance is α =
99.5%. For many risk categories the sample size n however is smaller then 100. This
implies that

F−1
n (0.995) > x(n), (24)

where x(1), . . . , x(n) denotes the ordered sample. From (24) follows that only a lower
bound for F−1

n (0.995) is observed. Hence, only bymeans of a model the information
given by the sample can be extrapolated. Each extrapolation is exposed yet to model
uncertainties. From this perspective it is questionable,that the Solvency II level of
significance is the right quantity in the sense of V 4, because it depends very much
on Ue and increases—compared to lower quantiles—Us. This is true for both, inter-
nal models and the standard formula as well.

This example highlights the regulatory dilemma in analogy to the quotes of Luh-
mann in the introduction. The following example, taken from [25], shows that the
set of probability distributions related to the Chebychev inequality may be related to
possibility functions.

Example 7 Again the Chebychev inequality is given by

P(X ∈ [μ − kσ,μ + kσ ]) ≥ 1 − 1

k2
. (25)

Hence the intervals [μ − kσ,μ + kσ ] can be seen as α-cuts of an associated possi-
bility function π , with

π([∞, μ − kσ ]) = π([μ + kσ,∞]) = 1

k2
.

This possibility distribution defines a family Pπ such that Pμ,σ ⊆ Pπ containing all
distributions with known mean μ and standard deviation σ.

Remark 3 As pointed out in Dubois [25], the knowledge about X is rather weakly
informative, if it is expressed by (25). Barrieu and Scandolo [33], take this view on
(25) to criticize how Stahl derived the safety factor in [11]. In [33] they apply more
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advanced methods in order to derive sharper bounds. However their critique neglects
some important parts of the context of internal models as applied in practice by the
financial industry, which is captured by the model in the wide sense. According to
the Bank of International Settlements factor three will be applied also in the revised
market risk framework, see [34], p. 95.

1. In [33] an internal model is simplified to

F(Xt+h | ◦) := F(Xt+h | It), (26)

hence the context given by ZH|t,R,O is omitted. This neglects important aspects
of R1−R3 and V 1−V 4 and as a consequence underestimates UT .

2. As a consequence, epistemic uncertainty and imprecision, Ue and Ui are not
considered in [33], whereas both are addressed in [11].

3. Furthermore and this aspect is even more important, factor three relates to a 10-
day time horizon. In practice, the time horizon for allocation economic capital
is however 250 trading days. Hence due to

ρ(F̂(Xt+250 | ◦)) ≥ 3 ρ(F̂(Xt+10 | ◦)), (27)

factor three is economically of minor importance and only but a regulatory
side condition that does not come directly into play in the allocation of capital.
Hence the application of factor three is just a regulatory minimum requirement,
not more. It is far from being conservative on a one-year time horizon.

3.2 Vulnerability, Resilience and Robustness

The concepts of reliability and validity cover important topics related to the Standard-
ized Formula and internal models as well under Solvency II. However one intuitive
and very appealing concept is still missing yet: robustness.

Definition 6 In [16], Aven introduced his concept of vulnerability, which is an
antonym to robustness, by conditional consequences:

(C,U | A). (28)

Hence, vulnerability is a two dimensional combination of consequences and uncer-
tainties, given the occurrence of an event A. Most stress tests may be represented
along the concept based on (28). Closely related to vulnerability is the concept of
resilience:

Definition 7 In [16], Aven introduced his concept of resilience by conditional con-
sequences:

(C,U | any A including new types of A). (29)
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Aven emphasizes that for the last definition some boundary, B, for A is important to
be introduced in order to become meaningful. Obviously, (29) is related to unknown
uncertainties as discussed in Diebold et al. [21]. In the field of insurance so-called
emerging risks are a real-life example, see [19]. The interpretation of Avens concepts
of vulnerability and resiliencemust be given in the context of the criteria of realiability
and validity.
If ν(X) denotes the value of portfolio X, then for an adverse a (28) will often yield:

| ν(X | A) |→ ∞. (30)

However
P(A) → 0. (31)

is difficult to assess exactly, because here model uncertainties will come into play.
The following example considers two situations of practical relevance:

Example 8 This exemplifies practical implications of (30) and (31):

1. In combination (30) and (31) show that stress tests are a tool to consider the
effect of extreme events (30) on the value of a portfolio. This will surely have
an impact on the capitalization of a firm and hence stresses capital adequacy
ratios. However all requirements of V 1−V 4 seem in general not fulfilled.

2. Hence stress tests in the sense outlined here do not contribute in a confirmatory
way to the plausibility of the risk derived from an internal model. A realistic
example for the illustrated situation (31)might, if the implications of the Lehman
default in 2007 should be incorporated in an internal model by means of redelib-
eration of the Economic Scenario Generator. To relate the observed credit spread
widening to a specific level of significance is merely an expert setting then an
empirically founded probability.

In statistics the concept of robustness is well established, see e.g. Huber and
Ronchetti [35]. Cont et al. applied these concepts in the context of risk management
in stringent way, see [36]. Heyde et al. required robustness as an important axiom
for risk measures, see [12]. Stahl et al. emphasized that the Wasserstein metric is the
canonical one, to describe continuity concepts in the framework of risk management,
see [37]. A very comprehensive overview on risk measures also considering aspects
of Knightian uncertainty is provided by Föllmer and Weber in [38]. Because risk
management is interested in valuation and calculation of risk it is in general not
possible to robustify both.

Example 9 In the light of criterion R1 and R3 it seems natural to require that small
perturbations should not change the results too much. Essentially this requires a
continuous influence function, and where the derivative of the influence function—
denoted by IF, see [35] for a definition,—of IF exists, it should be appropriately
bounded:
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λ∗ = sup
x �=y

| IF(y;T ,F) − IF(y;T ,F) |
| y − x | . (32)

The robustness requirement (32) known as local-shift-sensitivity is key in respect to
fulfill R1 and R3.

4 Uncertainty Under Solvency II

In this section, examples from practice for epistemic and stochastic uncertainties are
considered. The first subsection considers uncertainties at the level of consequences,
C in (8). In particular the impact and interplay of sample size and epistemic uncer-
tainty is analyzed. The second subsection bridges the gap of current research on
VaR-bounds and model uncertainty as considered in the last section.

4.1 Uncertainty at the Level of Consequences

If model uncertainty at the level of consequences is to be considered, it is reasonable
to look at the forecast distribution of a whole insurance undertaking. Experience
from validation of internal models over the years has shown that P in (19) and (20)
can be chosen by

P := {G,GEV,B}, (33)

which consists of three reasonable parametric models: the Gaussian (G), the Gener-
alized Extreme Value distribution (GEV) and the Burr XII (B); their definitions are
given in the Appendix. The determination of Ue will in this section be based on P.

Furthermore for each element in P the Maximum-Likelihood-Estimator (MLE),
ρ(X)n, and a non-parametric estimator (NPE), ρ(X)np, defined by:

ρ(X)np :=
∫

xdFn − F−1
n (α)

for the risk measure ρ(X)

ρ(X) = E(X) − VaRα(X)

are compared by their efficiency for the sample sizes n = 50, 100 and 400 by means
of a Monte-Carlo simulation. For internal models under Solvency II, ρ(X) is used in
order to determine the solvency capital required.
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Example 10 Uncertainty in ρ(X) The following table summarizes the results. The
columns in the following table show also the ratio between the standard error and
the VaRα(X) for α = 99.5% and α = 80% for the considered candidates, models
and sample sizes.

As outlined in Jaschke and Stahl [39], the calibration test under Solvency II
may be applied to determine the 99.5% quantile by rescaling 80% one. In the
light of the examples above such an approach would reduce both, epistemic and
aleatory uncertainty. Furthermore SCR figures anchored on the 80% level could
be easily challenged by senior management, e.g. within the Own Risk and Solvency
Assessment. From the examples given in the Tables 1, 2, 3 and 4 it is also evident that
uncertainty increases with tail weights, hence conservative approaches are penalized
twice: first at the level of determination risk and then as a consequence at the level

Table 1 This table depicts the relative estimation error 2σ
q0.005

for the parametric and non-parametric
estimates for ρp(X) resp. ρnp(X) for the sample sizes n = 50, 100 and 400 for α = 0.995. As
expected the uncertainty increases with the tail weight and decreases with the amount of prior
knowledge. The latter is expressed by the parametric versus non-parametric MLE
ρp(X), ρnp(X) n = 50 50 n = 100 100 n = 400 400

G 18 42 13 29 6 15

GEV 34 110 24 78 12 39

B 61 91 43 65 22 32

Table 2 At the 99.5% level of significance G ∈ P underestimates the risk. The result is based
on the Monte-Carlo simulation (MC) as a yardstick

MC G GEV BURR

SCR 100 82 105 103

Table 3 This table depicts the relative estimation error 2σ
q0.005

for the parametric and non-parametric
estimates forρ(X)p resp.ρnp(X) for the sample sizesn = 50, 100 and400 forα = 0.8. In this case the
uncertainty does notmonotonicallymove neither with tail weight and norwith prior knowledge. The
latter is expressed by the parametric versus non-parametric MLE.The closeness of the parametric
and non-parametric MLE indicate that the 80% quantile suits much better in the sense of V4
ρ(X)p, ρnp(X) n = 50 50 n = 100 100 n = 400 400

G 3 7 4 5 2 2

GEV 8 10 6 7 3 4

B 6 7 4 5 2 3

Table 4 At the 80% level of significance all members of P give a reasonable approximation

MC G GEV BURR

SCR 1 108 108 98
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Fig. 1 Quantiles in percent for different standard errors, n = 100. Black line Distribution based
on the Monte-Carlo simulation, Red line Parametric normal model, Dark Red line Non-parametric
normal model, Light Blue line Parametric GEV model, Blue line Non-parametric GEV model,
Green line Parametric BURR model, Dark Green line Non-parametric BURR model, Orange line
95% Confidence band

of uncertainty. Note that this adverse effect is a consequence of the too large 99.5%
quantile. The different amount of uncertainty in non-parametric versus parametric
MLE’s is an example for that. In Fig. 1 it is highlighted that α = 0 model uncertainty
is considered near a singularity. Hence it is not surprising that unexpected effects are
to be observed. This again sheds some light on the paradox mentioned by Luhmann.

In addition, Fig. 1 depicts for n = 100 and 0 ≤ α ≤ 0.05 the standard error for
the considered candidate models.

4.2 Uncertainty Induced by the Copula

In a series of papers [6–8] laid the foundations to estimate the epistemic uncertainty
caused by the aggregation of risk categories. In this subsection the risk factorsR are
defined on the d-dimensional Euclidian space, Rd . For the random vector

R = (R1, . . . ,Rd) (34)

the associated marginal distributions, Fi

Ri ∼ Fi (35)
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are assumed to be known, i.e. Ue(Ri) = 0, whereas about the copula of R different
levels of a priori information are considered. In [6] the Frechet class, denoted by

Fd(R1, . . . ,Rd), (36)

of all copulas with given marginal distributions are considered in order to derive
upper and lower bounds for the VaR of the sum

S =
d∑

i=1

Ri. (37)

In the notation of (19) and (20) this reads as

VaR = P∗(A) = sup
C∈F

P(A) (38)

VaR = P∗(A) = inf
C∈F

P(A). (39)

According to [6] the difference (38)–(39)

DU = VaR − VaR = sup
C∈F

P(A) − inf
C∈F

P(A) = P∗(A) − P∗(A) (40)

is denoted as the dependence uncertainty spread (DU). The class of probability
distributions related to Frechet class Fd will be denoted by PF . By calculating DU-
spreads (40), again the perspective moves back to the level of consequences, C.
Hence, it is worthwhile to compare heuristically the impact of either using Pμ,σ or
PF on the amount of Ue(C). With respect to Pμ,σ only the correlation of R and
the expectations E(Ri) are implicitly assumed to be known. Whereas with respect to
PF the marginal distributions Ri are assumed to be completely known and only but
their copula is unknown. Given the richness of Fd it is to be expected that for both
approaches Ue measured by DU-spreads will be very large. For that reason [7] and
[8] introduced further restrictions on PF in order to sharpen (40).

The following Theorem is taken from [8], Theorem 3.3 highlights their approach.

Theorem 1 Let q ∈ (0, 1); Ri ∼ Fi(i = 1, . . . , d) and S = ∑d
i=1 Ri satisfy

var(S) ≤ s2. Then we have:

a := max(μ − s

√
1 − α

α
,A) ≤ m ≤ VaRα(S) ≤ VaRα(S) ≤ M ≤ b := min(μ + s

√
1 − α

α
,B) (41)

In particular if s2 ≥ α(A − μ)2 + (1 − α)(B − μ)2 then a = A and b = B and the
unconditional bounds are not improved by the presence of the constraint on variance.

In Remark 3.3, in [8], the authors relate their results to so-called Cantelli bounds,
see also [33], by considering the Pμ,σ approach within Aven’s level of events, A, for
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calculating upper VaR bounds for (37) yielding the following estimation:

P(S ≤ VaRα(S)) = sup
P inPμ,σ

P(Aα) ≤ μ + σ

√
α

1 − α
, (42)

where Aα denotes an α-cut as defined in (18).

Remark 4 1. Forα = 99.5%—the required significance level under Solvency II—

the value for
√

1−α
α

in (41) and (42) is about 14, which is quite high.

2. Note, that
√

1−α
α

has an essential singularity at α = 1. Hence UT will be non-
robust in this region. Basing capital requirements on such high quantiles induces
model risk, i.e. large values for UT . This is cumbersome for all stakeholders.

Example 11 The following representative example shows an insurance expose to
six risk categories (R1, . . . ,R6). Based on the rearrangement algorithm, see [6] and
[7] the upper and lower VaR bound were calculated.

The approaches considered so far applied universal concepts to estimate uncer-
tainty in aggregation—only but high-level information based on It is considered.
In order to improve the a-priori information [7] used structural information - also
available by It . In this context, the vector R is now interpreted as representing risk
categories which are typically encountered in insurance undertakings; e.g.: natural
catastrophes, investment risk and operational risk, say. Assume on the other hand that
the vector R represents the organizational structure of and insurance group, then for
these variables a hierarchical structure is reasonable to be assumed. This approach
leads to a significant improvement of the DU-spreads.
As outlined for a large insurance group the uncertainty with respect to aggregation
may be considered from two perspectives: the group may be considered on one hand
as a portfolio of entities owned by the group:

G =
e∑

i=1

Ei, (43)

where G stands for the group and Ei for entity i, i = 1, . . . , e, where each Ei is
exposed to risk categories R (Fig. 2):

Ei =
e∑

i=1

βiRi (44)

and hence

G =
e∑

i=1

d∑
j=1

β
j
i Ri. (45)
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Fig. 2 Upper and lower VaR bounds for (R1, . . . ,R6). Overview of value-at-risk bounds for differ-
ent information sets of dependence structures on the risks. Red No information (only marginals Ri).
GreyAdditional information of stochastic independence between the categoriesmarket risk and nat-
ural catastrophes. Green Comonotonic dependence. Black Dependence given by the Monte-Carlo
simulation.BlueApproximation of the empirical dependence structure through theBernstein-copula
approach, see Pfeifer et al. [40]

Furthermore aggregation with respect to risk categories can be considered:

RG
i =

e∑
i=1

β
j
i Ri. (46)

and then

G =
d∑

i=1

RG
i (47)

where RG
i denotes the aggregate of risk category Ri on group level.

4.3 Regulatory Implications

In a recent paper by Cambou and Filipovic [41], the approach followed by FINMA—
the SWISS regulatory authority—to tackle model uncertainty is represented. For a
given list of r prescribed scenarios si for i = 1, . . . , r,where for scenario i an auxiliary
probability weight ci is given by the regulator. The associated loss li, i = 1, . . . , r
has to be determined by the insurance company:

li = E(L | si) − E(L). (48)
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Note that for insurance undertakings

ρ(L) = E(L) − VaRα(L) (49)

is used in order to determine the required capital, i.e. L denotes the variables that
captures the undertaking’s annual losses. The stressed loss distribution conditional
on scenario i is then set to be FL(x − li). The scenarion aggregation is realized via
mixing:

FSST
L (x) = p0FL(x) +

r∑
i=1

piFL(x − li), (50)

is determined, where p0 = 1 − ∑r
i=1 pi and SST is a shorthand natation for the Swiss

Solvency Test—the swissian regulatory regime.

Remark 5 1. The regulatory intervention in (50) is applied at the level of conse-
quences,C, which can be interpreted as a capital add-on. Note that the stochastic
model F remains unchanged.

2. The mixture (50) may be interpreted in different ways:

• The sum
∑r

i=1 piFL(x − zi) may be interpreted as epistemic uncertainties,
because the pi are subjective

• the associated weights pi may be interpreted as an expert judgement
• the mixture may interpreted as a linear pooling of expert knowledge
• the mixture may be interpreted within a Bayesian framework which combines
r + 1 models according to a multinomial prior function, see [42]

• themixturemaybe related toHuber’s gross errormodel, see [35]. For amixture
distributionH = (1 − α)F + αG, the distance d(F,H)may be interpreted as
Ue.

3. The practice of internal models has shown, that the coefficient of variation cv
are in general small. Hence the expectation is the dominating parameter of the
forecast distribution. Hence it is very reasonable to base regulatory interventions
on this parameter.

4. The approach of Swiss Solvency Test is close to the theory of Schmeidler and
Gilboa, see [43] where the utility of state x is valuated by:

V (x) = c
n∑

i=1

piui(x) + (1 − c)min{ui(x) | i = 1, . . . , n}. (51)

if the outcome of the adverse scenarios are just applied to the own funds the
factor 1 − c may be interpreted as an uncertainty which do not allow to deter-
mine the probabilities pi. However the consequences of the states of nature are
incorporated.
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5 Conclusions

1. In practice the interplay of capital and risk are often confounded by misinter-
preted stress test concepts. In the light of (28), stress tests should solely be applied
to valuation of ν(X). The focus on own funds would allow stakeholders to take
point-in-time aspects into account. Either pro-cyclical or anti-cyclical. The pros
and cons of such an approach is seen in discussions about the market consistent
embedded value, MCEV.

2. Own funds (OF) resp. E(X) have a greater impact on the capital adequacy ratio
(CAR)

OF

SCR
(52)

then σ(X) or VaR(X). Again this speaks for ν(X).
3. Risk models (9) should be robustified as outlined in [37]. The risk model should

be treated in the through-the-cycle spirit of the standard formula. Then a multi-
plier might be applied.

4. The superiority of internal models over the standard formula can be seen by
comparing their value of information, VoI:

VoI(G(Xt+h | J̃t, Z̃H|t,R,O) ≤ VoI(F(Xt+h | It,ZH|t,R,O) (53)

This is a re-formulation of the saying that the application of internal models
swaps on the other hand information to stakeholders by increasing transparency.
With an internal model UT in the approximation of ρ(F) can be estimated, but
this can be hardly done for the SF. The idiosyncratic contribution of a firm F in
ρSF(F) is unknown.

5. Model uncertainties should be captured by multipliers at the level of conse-
quences, C.

6. Local-shift-sensitivity is a silent feature to guarantee that Ui is under control.
7. Often an (A,C,P) approach is taken for granted, though the situation at hand

requires (A,C,U). In this context, the relevance of V 4 is underestimated.
8. For auditing, validating or approving internal models the costs differ very

much, whether (A,C,P) or (A,C,U) is assumed or appropriate. Assuming
(A,C,P) though it is (A,C,U) faces the risk to increase model uncertainties.
The (A,C,U) based approach will merely focus on capital and act on the level
of consequences.

9. With respect to V 4 and (24), the regulatory capital requirement should satisfy
ρ(X) ≤ x(n), else ρ(X) depends too much on expert judgements. In the case that
the sample size is to small, a regulatory multiplier could be applied in order
to ensure a sufficient capital cushion. To apply a 80% level together with a
multiplier is preferable compared to a 99.5% level, because in the latter case
the amount of epistemic uncertainty is not specified. This approach should be
followed both, for internal and external purposes.

10. The focus of regulatory interventions should be on the level of consequences, C.



212 G. Stahl

11. Though both, decision makers of a firm and regulators might be considered as
users, the latter emphasize more the perspective of a modeler, which considers
the whole process that constitutes a model in a wide sense, i.e. the stochastic
model including all underpinning business processes. This is a significant change
compared to (6) which is based on the level of the consequences. In [3] this
change of the regulatory perspective is described.

Appendix

Gaussian Distribution
Non parametric estimator

For the non parametric case we use the estimator

εnp = σ̂ ∗
√

α ∗ (1 − α)

n ∗ f 2(�−1(α))
∗ �−1

(
1 − ϑ

2

)
, (54)

with σ̂ the estimated standard deviation, α the quantile for which the standard error
is calculated, n the sample size, f the density of the standard normal distribution,
�−1 the quantile function of the standard normal distribution and ϑ the confidence
level.

Parametric estimator
For the parametric case we use the estimator

εp = 1√
n

∗ �−1

(
1 − ϑ

2

)
∗ σ̂ ∗

√
1 + (�−1(α))2

2
, (55)

with the same notation as before.

GEV Distribution
The density of the GEV distribution is given by

f (x;μ, σ, ξ) = 1

σ

[
1 + ξ

(
x − μ

σ

)](−1/ξ)−1

exp

{
−

[
1 + ξ

(
x − μ

σ

)]−1/ξ
}

for 1 + ξ(x − μ)/σ > 0, where μ ∈ R is the location parameter, σ > 0 is the scale
parameter and ξ ∈ R denotes the shape parameter.

Non parametric estimator
For the non parametric case we use the estimator

εnp =
√

α ∗ (1 − α)

n ∗ f̄ 2(F̄−1(α))
∗ �−1

(
1 − ϑ

2

)
, (56)
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with the same notations as in (54) and f̄ = f (x; μ̂, σ̂ , ξ̂ ) = f (x;−8530.60,
739.99,−0.116) the density of the estimated GEV distribution F̄. The parameters
were estimated with the Log-likelihood function using the method of Nelder and
Mead to determine the maximum of the function.

Parametric estimator
For the parametric case we use the estimator

εp =
√
1

n
∗ ā−1 ∗ (I(�̂))−1 ∗ ā ∗ �−1

(
1 − ϑ

2

)
, (57)

with

ā =
⎛
⎜⎝

1
1
ξ̂

∗ ((− log (α))−ξ̂ − 1)

σ̂ ∗
[
− 1

ξ̂ 2
∗ ((− log (α))−ξ̂ − 1) − log (− log (α)) ∗ (− log (α))−ξ̂

]
⎞
⎟⎠ ,

(58)
where I(�̂) denotes the observed Fisher information matrix. For different sample
sizes we get the following results for the 0.05% quantile and 95% confidence level:

BURR Distribution
The density of the BURR distribution is given by

f (x; a, b, q) = aq(x − c)a−1

ba
[
1 + (

x−c
b

)a]1+q , for x > c.

In addition to the shape parameters a > 0 and q > 0 and the scaling parameter b > 0
we introduce a location parameter c ∈ R to relax the property that the density lives
on the positive half line.

Non parametric estimator
For the non parametric case we use the estimator

εnp =
√

α ∗ (1 − α)

n ∗ f̃ 2(F̃−1(α))
∗ �−1

(
1 − ϑ

2

)
, (59)

with the same notations as in (54) and f̃ = f (x; â, b̂, q̂) = f (x; 14.24, 6912.24,
1.28) the density of the estimated BURR distribution F̃. The parameters were esti-
mated with the Log-likelihood function using the method of Nelder and Mead
to determine the maximum of the function. The parameter c was estimated with
1.33*min(data).
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Parametric Estimator
For the parametric case we use the estimator

εp =
√
1

n
∗ Ē−1 ∗ (I(�̂))−1 ∗ Ē ∗ �−1

(
1 − ϑ

2

)
, (60)

with

Ē =
⎛
⎜⎝

− b̂
â2 ∗ log (β) ∗ β

1
â

β
1
â

b̂
â ∗ log (1−α)

q̂2 ∗ (1 + β) ∗ β
1
â −1

⎞
⎟⎠ (61)

and β = (1 − α)
− 1

q̂ − 1 and the same notations as before.
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Option Pricing in Affine Generalized Merton
Models

Christian Bayer and John Schoenmakers

Abstract In this article we consider affine generalizations of theMerton jump diffu-
sion model Merton (J Finan Econ 3:125–144, 1976 [8]) and the respective pricing of
European options. On the one hand, the Brownian motion part in the Merton model
may be generalized to a log-Heston model, and on the other hand, the jump part
may be generalized to an affine process with possibly state dependent jumps. While
the characteristic function of the log-Heston component is known in closed form,
the characteristic function of the second component may be unknown explicitly. For
the latter component we propose an approximation procedure based on the method
introduced in Belomestny et al. (J Funct Anal 257(4):1222–1250, 2009 [1]). We
conclude with some numerical examples.

Keywords Affine jump models · Characteristic function approximations · Fourier
option pricing

1 Introduction

The Merton jump diffusion model [8] can be considered one of the first asset models
beyond Black-Scholes that may produce non-flat implied volatility surfaces. On the
other hand, European options within this model can be priced quasi-analytically by
means of an infinite series of Black-Scholes type expressions. From a mathematical
point of view, the logarithm of the Merton model is the sum of a compound Poisson
process and an independent Brownian motion, and as such can be seen as the sum of
two independent degenerate affine processes. The goal of this article is to enlarge the
flexibility of the Merton model by generalizing the Brownian motion to a continuous
Heston model and replacing the compound Poisson process by another, independent,
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affine model that may incorporate both stochastic volatility and jumps. In financial
modeling affine processes have become very popular the last decades, both due to
their flexibility and their analytical tractability. The theoretical analysis of affine
processes is developed in the seminal papers [4, 5]. Once the characteristic func-
tions of the affine ingredients of our new generalized Merton model are known, we
may price European options by the meanwhile standard Carr-Madan Fourier based
method [2]. For a variety of affine models, such as the Heston model and several
stochastic volatility models with state independent jumps, the characteristic func-
tion is explicitly known. However if, for instance, in an affine jump model the jump
intensity depends on the present state, a closed form expression for the characteristic
function is not known to the best of our knowledge. Yet, such models make sense in
certain applications such as crisis modeling. For example, one may wish to model an
increased intensity of downward jumps in regimes of increased volatility. In order
to cope with such kind of processes numerically, we recap and apply the general
series expansion representation for the characteristic function of an affine process
developed in [1] and present some numerical examples.

2 Merton Jump Diffusion Models

Merton [8] introduced and studied stock price models of the form

St = S0e
rt+Yt ,

where Y is the sum of a Brownian motion with drift and an independent compound
Poisson process,

Yt = γt + σWt + Jt , (1)

and r is a constant, continuously compounded risk-free rate. In (1) J may be repre-
sented as

Jt =
Nt∑
l=1

Ul,

where U1,U2, ... are i.i.d. real valued random variables and Nt denotes a Poisson
process with parameter λ. The extended characteristic function of Yt is given by,

�t (z) = E
[
eizYt

] = eizγtE
[
eizσWt

]
E

[
eiz Jt

]

= exp

[
izγt − z2σ2

2
t + λt

∫ (
eizu − 1

)
μ(du)

]
, (2)

for a certain jump probability measure μ on B(R) due to the distribution of U1.

Wehenceforth assume that themodel is givenunder a risk-neutral pricingmeasure.
Due to no-arbitrage arguments, we must have that Ste−r t is a martingale under this
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measure. This implies that

S0 = E
[
Ste

−r t
] = S0E

[
exp (Yt )

] = S0�t (−i), hence �t (−i) = 1. (3)

By (2) we then get

γ = −σ2

2
− λ

∫ (
eu − 1

)
μ(du). (4)

As an example, with λ = 0 (no jumps), γ = −σ2

2 and we retrieve the risk neutral
Black-Scholes model. Merton particularly studied the case where U is normally
distributed and derived a representation for a call (or put) option in terms of an infinite
series of Black-Scholes expressions. In this paper we are interested in generalizations
of (1) of the form

Yt = γt + σWt + X1
t , (5)

or even,
Yt = γt + Ht + X1

t , (6)

where H is the first component of a log-Heston typemodel with H0 = 0,whereas X1
t

is the first component of some generally multidimensional affine (eventually jump)
process X, independent of W and H respectively, with X1

0 = 0. In particular, the
characteristic function of X1 is possibly not known in closed form. We note that γ
later might be time-dependent, i.e., γ = γ(t).

At this stage, the separation between X1 and W (in (5)) and H (in (6)), respec-
tively, seems somewhat artificial. As we shall see in the subsequent sections, we will
use an asymptotic approximation for the characteristic function of X1, The exact
characteristic function for W and H , respectively, improves the overall accuracy of
the approximation, especially regarding the tail behavior.

3 Recap of Affine Processes and Approximate
Characteristic Functions

We consider an affine process X in the state space X ⊂ R
d , d ∈ N+, with generator

given by

A f (x) = 1

2

d∑
i, j=1

ai j (x)
∂2 f

∂xi∂x j
+

d∑
i=1

bi (x)
∂ f

∂xi
(7)

+
∫
Rd

[
f (x + z) − f (x) − z� ∂ f

∂x

]
v(x, dz),

where ai j and bi are suitably defined affine functions in x on Rd , and
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v(x, dz) =: v0(dz) + x�v1(dz)

with v0 and v1
i , i = 1, . . . , d, being suitably defined locally finite measures on

B(Rd\ {0}) with finite first moment. Alternatively, the dynamics of X are described
by the Itô-Lévy SDE:

dXt = b(Xt )dt + σ(Xt )dW (t) +
∫
Rd

z Ñ (Xt−, dt, dz), X0 = x, (8)

where W is a Wiener process in Rm and the function σ : Rd → R
d × R

m satisfies

m∑
k=1

σik(x)σ jk(x) = ai j (x).

Further, in (8)

Ñ (x, dt, dz) := Ñ (x, dt, dz,ω) := N (x, dt, dz,ω) − v(x, dz)dt,

is a compensated Poisson point process on R+ × R
d , such that

P [N (x, (0, t], B) = k] = exp(−tv(x, B))
t kvk(x, B)

k! , k = 0, 1, 2, ...

for bounded B ∈ B(Rd\ {0}). It is assumed that the coefficients in (8) (and so in (7))
satisfy sufficient conditions such that (8) has a unique weak solution X, and that X
is an affine process with generator (7). For details regarding these assumptions, in
particular the admissibility conditions that are to be fulfilled, we refer to [1], [4], see
also [5].

The characteristic function of X0;x
t , with initial value X0;x

0 = x ∈ R
d , is denoted

by,

p̂(t, x, u) := E

[
eiu

�X0;x
t

]
, x ∈ X, u ∈ R

d , t ≥ 0. (9)

For a variety of affine processes the characteristic function is explicitly known.
However, in general the characteristic function of an affine process involves the
solution of a multi-dimensional generalized Riccati equation that may not be solved
explicitly. In particular, for affine jump processes with state dependent jump part a
closed form expression for the characteristic function generally does not exist. In
this section we recall the approach by Belomestny, Kampen, and Schoenmakers [1],
who developed in general a series expansion for the log-characteristic function in
terms of the ingredients of the generator of the affine process under consideration.
By truncating this expansion one may obtain an approximation of the characteristic
function that may subsequently be used for approximate option pricing.

Henceforth, x ∈ X is fixed. It is assumed that the characteristic function (9) sat-
isfies:
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Assumption HE: There exists a non-increasing function R : (0,∞) � r → R(r)
∈ (0,∞], such that for any u ∈ R

d , the function [0,∞) � s → p̂(s, x, u) ∈ C has
a holomorphic extension to the region

Gu := {z ∈ C : |z| < R (‖u‖)} ∪ {z ∈ C : Re z ≥ 0 and |Im z| < R (‖u‖)}

(cf. Proposition 3.7, 3.8, and Theorem 4.1 and Corollary 4.2–4.4 in [1]).
Under Assumption HE, Theorem 3.4 in [1] is particularly fulfilled for each u.

Moreover, by taking in [1], Theorem 3.4–(ii),

ηu = η(‖u‖) := π

2R (‖u‖) , (10)

we arrive at the log-series representation [1]–(5.12) for the characteristic function
(w.r.t. the principal branch of the logarithm),

ln p̂(t, x, u) = ln

(∑
r≥0

hr,0(u; ηu)(1 − e−ηu t )r

)
+ iu�x (11)

+ x�
∑

r≥1 hr (u; ηu) (1 − e−ηu t )r∑
r≥0 hr,0(u; ηu)(1 − e−ηu t )r

, u ∈ R
d , t ≥ 0,

where the coefficients hr,0(u; ηu) ∈ C and hr (u; ηu) = [
hr,e1(u; ηu), ..., hr,ed (u; ηu)

]
∈ C

d with ei := (
δi j

)
j=1,...,d , can be computed algebraically from the coefficients of

the affine generator A in a way that is described below, see Eq. (15).
Alternatively, in [1] a direct expansion of the form

p̂(t, x, u) = eiu
�x

∞∑
r=0

qr (x, u; ηu)(1 − e−ηu t )r , u ∈ R
d , t ≥ 0, (12)

is derived with
qr (x, u; ηu) =

∑
|γ|≤r

hr,γ(u; ηu)x
γ,

and the hr,γ are computed by the recursion (15) as described below.

Remark 1 Because of Assumption HE, if Theorem 3.4–(i) applies for some u, it
applies for any u′ with

∥∥u′∥∥ ≤ ‖u‖. As a consequence, one may take in (11) any
ηu = η(

∥∥u′′∥∥) with
∥∥u′′∥∥ ≥ ‖u‖.

In order to outline the construction of the expansion (11), let us denote

fu(x) := eiu
�x , z ∈ R

d . (13)

http://dx.doi.org/10.1007/978-3-319--45875-5_5
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Then for each multi-index β ∈ N
d
0 we may compute algebraically

bβ(x, u) := i−|β|∂uβ

A fu(x)

fu(x)
=: b0β(u) +

∑
κ, |κ|=1

b1β,κ(u) xκ (14)

(in multi-index notation), provided that for the jump part in the generator (7),

1

fu(x)

∫
Rd

(
fu(x + z) − fu(x) − z� ∂ fu

∂x

)
v(x, dz)

=
∫
Rd

(
eiu

�z − 1 − iu�z
)

v0(dz) + x�
∫
Rd

(
eiu

�z − 1 − iu�z
)

v1(dz)

is explicitly known. That is, the cumulant generating functions of v0 and v1
i , i =

1, ..., d, are explicitly known. We note that the expression A fu(x)/ fu(x) in (14) is
termed the symbol of the operator A.As such the bβ in (14) are, modulo some integer
power of the imaginary unit, derivatives of the symbol of A.

Let us next consider a fixed u ∈ R
d and ηu > 0. Then for each multi-index γ and

integer r ≥ 0 we are going to construct hr,γ = hr,γ(u; ηu) as follows. For |γ| > r we
set hr,γ ≡ 0 and for 0 ≤ r ≤ |γ| , the hr,γ are determined by the following recursion.
As initialization we take h0,0 ≡ 1, and for 0 ≤ r < |γ| we have (cf. [1]–(4.6)),

(r + 1)hr+1,γ =
∑

|β|≤r−|γ|
η−1
u

(
γ + β

β

)
hr,γ+βb

0
β (15)

+
∑

|κ|=1, κ≤γ

∑
|β|≤r+1−|γ|

η−1
u

(
γ − κ + β

β

)
hr,γ−κ+βb

1
β,κ + rhr,γ,

where |γ| ≤ r + 1, and empty sums are defined to be zero. We next set

hr (u; ηu) := [
hr,ei (u; ηu)

]
i=1,...,d .

In view of Theorem 4.1 in [1] suitable choices of ηu are

ηu � 1 + ‖u‖2 in case of pure affine diffusions,

ηu � eζ‖u‖, ζ > 0, for affine jump processes with thinly tailed large jumps.

In practice the best choice of ηu can be determined in view of the particular problem
under consideration. Generally, on the one hand, ηu should be large enough to guar-
antee convergence of the series (11), but not too large in order to keep fast speed of
convergence.

As a natural approximation to (11) and (12) we consider for K = 1, 2, ...,
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ln p̂K (t, x, u) = ln

(
K∑

r=0

hr,0(u; ηu)(1 − e−ηu t )r

)
+ iu�x (16)

+x�
∑K

r=1 hr (u; ηu) (1 − e−ηu t )r∑K
r=0 hr,0(u; ηu)(1 − e−ηu t )r

, u ∈ R
d , t ≥ 0,

and the “ground” expansion based approximation

p̂(t, x, u) = eiu
�x

K∑
r=0

qr (x, u; ηu)(1 − e−ηu t )r , u ∈ R
d , t ≥ 0, (17)

respectively.

Remark 2 In connection with approximations (16) and (17) it seems natural to esti-
mate R using Cauchy’s criterion, and ηu according to (10). That is, we could take

ηu ≈ π

2

K

√∣∣AK fu(x)
∣∣

K ! ,

where the sequence gr (x, u) := Ar fu(x)/ fu(x) can be obtained from the recursion

gr+1,γ =
∑

|β|≤r−|γ|

(
γ + β

β

)
gr,γ+βb

0
β (18)

+
∑

|κ|=1, κ≤γ

∑
|β|≤r+1−|γ|

(
γ − κ + β

β

)
gr,γ−κ+βb

1
β,κ,

with g0,0 = 1 (cf [1]–(4.6)).

4 Generalized Merton Models

We now consider generalized Merton models of the form (5) and (6). For the char-
acteristic function of (5) we have,

�t (z) = eizγtEeizσWtEeizX
0;(0,x2 ,...,xd);1
t

= exp

[
izγt − z2σ2

2
t

]
p̂(t,

(
0, x2, ..., xd

)
, (z, 0, ..., 0)), (19)

where X ···;1
t denotes the first component of X ···

t cf. (2). Firstly, the martingale condi-
tion (3) can now be formulated as
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γ = γ(t) = −σ2

2
− t−1 ln p̂(t,

(
0, x2, . . . , xd

)
, (−i, 0, ..., 0)), (20)

that is,γmay inprinciple dependon time t.Moregenerally, the characteristic function
of (6) takes the form,

�t (z) = eizγ(t)t p̂H (t, z) p̂(t,
(
0, x2, . . . , xd

)
, (z, 0, . . . , 0)), (21)

with p̂H (t, z) := E
[
exp(izHt )

]
, and

γ(t) = −t−1 ln p̂H (t,−i) − t−1 ln p̂(t,
(
0, x2, ..., xd

)
, (−i, 0, ..., 0)). (22)

In a situation where p̂ in (19) and (21), respectively, is unknown in closed form, we
propose to replace it with an approximation p̂K due to (16) for some level K large
enough. It is convenient to choose X1

t and H such that exp
(
X1·

)
and exp (H·) are

martingales, respectively. Since X1
0 = H0 = 0, we then have γ = 0 in (22).

Before considering affine processes with really unknown characteristic function,
in the next section we recall the known characteristics of a log-Heston type model.

4.1 Heston Model

Let us consider for X = (X1, X2) a log-Heston type model with dynamics

dX1 = −1

2
α2X2dt + α

√
X2dW, X1(0) = 0, (23)

dX2 = κ
(
θ − X2

)
dt + σ

√
X2

(
ρdW +

√
1 − ρ2dW

)
, X2(0) = θ,

for some α,σ,κ, θ > 0, and −1 ≤ ρ ≤ 1. Note that the initial value of X2 is taken
to be the expectation of the long-run stationary distribution of X2. The characteristic
function X1 due to (23) is known as follows (we take Lord and Kahl’s representation
[7], using the principal branch of the square root and logarithm1):

ln p̂(t, θ, z) := ln p̂(t, (0, θ) , (z, 0)) = A(z; t) + B(z; t)θ, with (24)

A(z; t) := θκ

σ2

(
(a − d)t − 2 ln

e−dt − g

1 − g

)
,

B(z; t) := a + d

σ2

1 − edt

1 − gedt
with (25)

1Roger Lord confirmed to J.S. a typo in the published version and so we refer to the preprint version.
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a := κ − izασρ, d :=
√
a2 + α2σ2

(
iz + z2

)
, g := a + d

a − d
,

while abusing notation in (24) slightly. By construction, exp
(
X1
t

)
is a martingale and

so it holds that ln p̂(t, θ,−i) = 0. This can be easily seen from the Heston dynamics
(23) and also by taking z = −i in (25), where we then have that a = κ − zασρ ∈ R,

so d = |a| . Thus |g| = ∞ if a > 0 and |g| = 0 if a < 0 and for both cases we get
that A(−i; t) ≡ B(−i; t) ≡ 0. As a consequence we have γ = −σ2/2 in (20).

4.2 Heston Model with State Dependent Jumps

We now consider a generalized Heston model with state dependent jumps in the first
component, henceforth termed the HSDJ model, of the following form:

dX1 = −λ0a0dt −
(

λ1a1 + 1

2
α2

)
X2dt + α

√
X2dW (26)

+
∫
R

y
(
N (X2

−, dt, dy) − λ0μ0(y)dydt − X2λ1μ1(y)dydt
)
,

dX2 = κ
(
θ − X2

)
dt + σ

√
X2

(
ρdW +

√
1 − ρ2dW

)

with X1(0) = 0, X2(0) = θ and with t suppressed in Xt− (cf. (8)). In this model
N (w, dt, dy) is for each w > 0 a Poisson point process on R+ × R and μ0 and μ1

are considered to be probability densities of jumps that arrive at rate λ0 > 0 and
wλ1 > 0, respectively. Further in (26), a0 and a1 are non-negative constants given
by

a0 =
∫ (

ey − y − 1
)
μ0(y)dy and a1 =

∫ (
ey − y − 1

)
μ1(y)dy, (27)

hence in particular it is assumed that the measures associated with μ0 and μ1 have
exponential moments. In the HSDJ model the density μ0 may have support R, for
example Gaussian, while the density μ1 may be concentrated on (−∞, 0) for exam-
ple. In this way λ0 and μ0 are responsible for the “normal” random jumps in (26),
while λ1 and μ1 are responsible for downward jumps which, due to the (state) depen-
dence on X2, arrive with increasing intensity as the volatility X2 increases. As such
the model covers a stylized empirical fact observed for several underlying quantities,
such as assets, indices, or interest rates. Sinceμ0 andμ1 are assumed to be probability
densities, the dynamics of X1 in (26) may also be written as
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dX1 =
(

−λ0 (m0 + a0) −
(
1

2
α2 + λ1 (m1 + a1)

)
X2

)
dt

+ α
√
X2dW +

∫
R

yN (X2
−, dt, dy), (28)

with

m0 :=
∫
R

yμ0(y)dy and m1 :=
∫
R

yμ1(y)dy. (29)

One can show rigorously that eX
1
t is a martingale with E

[
eX

1
t

]
= 1, and so we may

take in (20) γ = −σ2/2 again (see for example [3]).
In Appendix A we spell out the generator, cf. (7), and its corresponding symbol

derivatives (14) corresponding to the HSDJ model (26).

Example 3 In the case where λ1 = 0, the characteristic function p̂λ0,μ0 of X1 is
simply given by (see (28), (27) and (29))

ln p̂λ0,μ0(t, θ, z) = ln p̂(t, θ, z) − tλ0 (a0 + m0) iz + tλ0ψ0(z)

= ln p̂(t, θ, z) − tλ0ψ0(−i)iz + tλ0ψ0(z),

where

ψ0(z) :=
∫ (

eiyz − 1
)
μ0(y)dy =

∫
eiyzμ0(y)dy − 1

follows from the characteristic function of the jump measure and p̂(t, θ, z) is given
by (24). Note that we have ln p̂λ0,μ0(t, θ,−i) = 0 again indeed. For example if the
jumps are N (c, ν2) distributed we have the well known expression

ψ0(z) = eicz−
1
2 ν2z2 − 1,

hence

ln p̂λ0,c,ν2(t, θ, z) := ln p̂(t, θ, z) + tλ0

(
eicz−

1
2 ν2z2 − izec+

1
2 ν2 + iz − 1

)
.

5 Numerical Examples

In this section we will price European options by a Fourier based method due to
Carr-Madan [2]. Let the stock price at maturity T be given as

ST = S0e
rT+YT ,
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where exp [Y·] is a martingale with Y0 = 0. If the characteristic function

�T (z) := E
[
eizYT

]

is known, then the price of a European call option with strike K at time t = 0 is given
by

C(K ) = (S0 − Ke−rT )+ + S0
2π

∫ ∞

−∞
1 − �T (z − i)

z(z − i)
e−iz ln Ke−rT

S0 dz (30)

(Carr-Madan’s formula). For more general Fourier valuation formulas, see [6]. In
general, the decay of the integrand in (30) is of order O(|z|−2) as |z| → ∞, hence
relatively slow. We therefore use a kind of variance reduction for integrals using the
formula

BS (S0, T, r,σB) = (S0 − Ke−rT )+ + S0
2π

∫ ∞

−∞
1 − �BS

T (z − i)

z(z − i)
e−iz ln Ke−rT

S0 dz,

(31)
whereBS is the well-known Black-Scholes formula based on the risk-neutral Black-
Scholes model

SBt := S0e
rT−σ2

BT/2+σBWT , with

�BS
T (z) := E

[
eiz(−σ2

BT/2+σBWT )
]

= e−(z2+iz)σ2
BT/2,

for a suitable but in principle arbitrary σB > 0. Next, subtracting (30) and (31) gives
the variance reduced formula

C(K ) = BS (S0, T, r,σB) + S0
2π

∫ ∞

−∞
�BS

T (z − i) − �T (z − i)

z(z − i)
e−iz ln Ke−rT

S0 dz,

(32)
where the integrand decays at a rate |z−2|max[|�BS

T (z − i)|, |�T (z − i)|] which is
typically (much) faster than in (30), provided that�T (z − i) tends to zero as |z|→∞.

5.1 Product of Heston Models

We first consider a model where the stock price St is obtained as the product of two
independent Heston factors, i.e., (6) with X1

t another Heston model. Clearly, in this
case a closed form expression for the characteristic function of ln St exists, and there-
fore the asymptotic expansion presented in this paper is not needed for pricing. This
allows us to easily compute accurate reference prices, and thus assess the numerical
accuracy of prices obtained from the expansion of the characteristic function. All
calculations were done using Mathematica. Using its symbolic capabilities, we have
implemented the recursion (15) in full generality.
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Table 1 Parameters of the
Heston+Heston-model. v
denotes the initial variance in
both components

Ht X1
t

α 1.0 1.0

κ 1.5 1.5

σ 0.6 0.3

θ 0.04 0.0225

ρ −0.2 −0.3

v 0.04 0.0225

The Heston parameters for the components Ht and X1
t are presented in Table1.

Additionally, we choose S0 = 10 and r = 0.05 for option pricing. Based on these
parameters, we compute the asymptotic expansion p̂K of the characteristic function
using (12) with K = 8, i.e., including the first nine terms in the expansion.

In Fig. 1, we compare the exact and the approximate characteristic functions of
the (normalized) logarithm of the stock prices—i.e., with S0 = 1 for convenience.
We can clearly see that the approximation deteriorates when |u| becomes large, but
then both the exact and the approximate characteristic functions tend to 0. Moreover,
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Fig. 1 Exact (blue) and approximate (orange) characteristic functions of the logarithm of the
normalized stock price in the generalized Merton model with two Heston factors evaluated at time
t = 1/2 and t = 2 (years)
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Table 2 Price of ATM call option with maturity T = 1 computed using domain of integration
[−L , L] for both the exact characteristic function and the approximate formula, together with the
relative error for using the approximate formula—w.r.t. the most accurate price obtained from the
exact formula

L 2 4 8 16 32 64

Exact 0.8350 0.9621 1.1105 1.1832 1.1884 1.884

Approx. 0.8353 0.9626 1.1111 1.1842 1.1896 1.1896

(Rel. error) 0.2981 0.1912 0.0665 0.0054 0.0010 0.0010

the approximation formula is more accurate for small t (cf. (11), (16) and (12), (17,
respectively).

When we come to option pricing, we plug the approximate formula for the char-
acteristic function into the Fourier pricing formula (32). For the implementation,
we clearly need to replace the infinite domain of integration by a finite one, i.e., we
use (32) integrating from−L to L , L ∈ R+. This cut-off is potentially critical for our
approximation procedure, as large integration domains (and, hence, large |u|) may
correspond to large errors of the approximate formula. Fortunately, Table2 indicates
that this effect does not materialize.

Remark 4 At this stage, we would like to highlight once more the heuristic choice
of η proposed in Remark 2. Without a good choice of η, it is very easy to run into
situations, where the approximation error is already too large for the needed domain
of integration.

Let us consider option prices and the corresponding errors for maturities from 1/2
to 5 years and for strike prices between 7 (deep in) and 13 (deep out of) the money.
Figure2 shows that errors remain small (≤2% ATM) for maturities up to 2 years.
For (deep) OTM options, it seems to be more reasonable to look at absolute instead
of relative errors, which give a similar impression.

(a) Relative error. (b) Absolute error.

Fig. 2 Relative and absolute errors of European call option prices
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Fig. 3 Implied volatility of the generalized Merton model based on two Heston factors based on
exact (blue) and approximate (orange) characteristic functions

Finally, the implied volatility in this model is plotted in Fig. 3. Considerable
deviations between the exact and the approximate formula are only observed for
higher maturities.

5.2 Generalized Merton Model with State-Dependent Jumps

Let us consider a generalizedMertonmodel of the form (6)where X1 is an affine jump
process with state-dependent jump-intensity in the sense of (26). The parameters
corresponding to the diffusive parts of both H and X1 are chosen as in Table1.
Regarding the jump part of X1, we set λ0 = 0, μ0 = 0, thereby turning off the jumps
with constant, i.e., not state dependent, intensities. The jump parameters of X1 are
chosen according to Table3.

This means that jumps in the log-price have exponentially distributed magnitude
and negative sign. The mean jump of the log-price is around 0.22, i.e., in case of a
downward jump (“crisis”), the stock loses about 20% of its value on average. The
intensity λ1 seems excessively high, but recall that this intensity is multiplied by the
instantaneous variance of the Heston component, which is started at 0.04 see (Fig. 4)
for a sample path.

Table 3 Jump parameters of
X1 X1

t

λ1 10

μ1(y) 1y<0 pepy

p 4.48
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Fig. 4 Sample path of St in the generalizedMerton model with state-dependent jumps (first panel),
volatility (more precisely, the square root of the sum of both variance components) of St (second
panel), and of the variance component of the second Heston factor. A jump occurs shortly after
time 0.75

By (33), and (34) below, we obtain

ψ0(ξ) = 0, m0 + a0 = ψ0(−i) = 0,

ψ1(ξ) =
∫ 0

−∞

(
eiξy − 1

)
pepydy = − iξ

p + iξ
, m1 + a1 = ψ1(−i) = − 1

p + 1
.

Figure5 shows the approximate characteristic function including jumps at time
t = 1/2, comparedwith the exact characteristic function.As expected, the jumps lead
to a considerable change in the characteristic function.We compare the characteristic
function to another numerical approximation based onMonte Carlo simulation. Both
approximations lead to very close results especially in the real part. The results are less
close for the imaginary part, but notice that the graphical representation exaggerates
the differences as the scale is much smaller in the second plot (from −0.1 to 0.1
instead of 0 to 1).

These changes in the distribution have the expected changes in the option prices.
In particular, the implied volatilities become larger, and also the smile becomesmuch
more pronounced, comparing Fig. 6 with Fig. 3.
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Fig. 5 Approximate characteristic function (orange) of the logarithm of the normalized stock price
in the generalizedMertonmodel with one Heston factor and one Heston factor with jumps evaluated
at time t = 1/2 (year). Comparison with the characteristic function computed by a Monte Carlo
simulation (blue)

Fig. 6 Implied volatility of the generalized Merton model with one Heston factor and one Hes-
ton factor with jumps (orange), compared with the implied volatilities computed with the exact
characteristic function in Fig. 3

Table 4 Option prices for maturity T = 1/2 for various strike prices in the Heston model plus
jumps. We compare prices obtained by the asymptotic expansion of the characteristic function with
prices obtained by Monte Carlo simulation

K 7 8 9 10 11 12 13

Monte
Carlo

3.2719 2.3688 1.5511 0.8888 0.4427 0.2006 0.0884

Asym. for-
mula

3.2279 2.3276 1.5144 0.8583 0.4217 0.1880 0.0818

Rel. error 0.0134 0.0174 0.0237 0.0343 0.0476 0.0627 0.0744
MC stat. error
Ref. price 0.0018 0.0023 0.0031 0.0044 0.0067 0.0106 0.0166
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Finally, let us directly compare the price for some European call options with
reference prices obtained by Monte Carlo simulation, see Table4. Once again, we
used S0 = 10 and r = 0.05. TheMonteCarlo prices are based on 100,000 trajectories
with 1000 time-steps each, the statistical error, i.e., the standard deviation divided by
the square root of the number of samples, is considerable smaller than the observed
difference.

Unfortunately, the results of Table4 are not as convincing as the accuracy of
the approximation in the pure diffusion case suggested, compare Table2 and Fig. 2.
We suspect a combination of slow decay of the characteristic function, sub-optimal
choice of the damping parameter η and higher truncation error of the asymptotic
characteristic function, see the conclusions below for some further comments.

6 Conclusions

From the examples we conclude that for times being not too large the approximation
procedure based on [1] performs rather well. More specifically, if no jumps are in the
play the procedure works very good, but with incorporated (state dependent) jumps
the accuracy is somewhat worse. In order to resolve this issue one could investigate
different directions. One reason for lower accuracy may be a diminished effect of
the Black-Scholes ingredients in the Fourier pricing formula (32) in the presence of
state dependent jumps. This in turn might require a larger integration range where
that approximation gets worse at the upper and lower end, respectively. As a way
out, it looks natural to replace the role of the Black-Scholes ingredients in (32) by
an affine model with state independent jumps for which the characteristic function
is known, leading to a representation of the form

Cappr(K ) = (S0 − Ke−rT )+ + S0
2π

∫ ∞

−∞
1 − �known

T (z − i)

z(z − i)
e−iz ln Ke−rT

S0 dz

+ S0
2π

∫ ∞

−∞
�known

T (z − i) − �
appr
T (z − i)

z(z − i)
e−iz ln Ke−rT

S0 dz =: Iknown + Iappr.

The integral Iknown can be computed with any desired accuracy while for the integral
Iappr a relatively small integration range may be sufficient.

Other reasons for the decreased accuracy in Sect. 5.2 for instance, may be a too
small η chosen due to Remark 2, or not enough iterations. However, we leave all
these investigations for further research, since this article is considered merely a first
guide on numerical implementation of the method in [1].
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Appendix: Generator and bβ for the HSDJ Model

By conferring (7), (8), and (26), we have in fact

v(x, dz) = v0(dz) + x�v1(dz) = λ0μ0(z1)δ0(z2)dz1dz2 + x2λ1μ1(z1)δ0(z2)dz1dz2

with δ0 being the Dirac delta function, that is the (singular) density of the Dirac
probability measure R concentrated in {0} . Thus, the generator of the HSDJ model
is given by

A f (x1, x2) =
(

−λ0a0 −
(
1

2
α2 + λ1a1

)
x2

)
∂x1 f + κ (θ − x2) ∂x2 f

+ 1

2
α2x2∂x1x1 f + ασρx2∂x1x2 f + 1

2
σ2x2∂x2x2 f

+
∫
R

[
f (x1 + z1, x2) − f (x1, x2) − z1∂x1 f

]
(λ0μ0(z1)dz1 + x2λ1μ1(z1)dz1) .

Since we are dealing with jump probability densities rather than infinite jump mea-
sures, as in the case of infinite activity processes, the generator may be written as

A f (x1, x2) =
(

−λ0 (m0 + a0) −
(
1

2
α2 + λ1 (m1 + a1)

)
x2

)
∂x1 f

+κ (θ − x2) ∂x2 f + 1

2
α2x2∂x1x1 f + ασρx2∂x1x2 f + 1

2
σ2x2∂x2x2 f

+λ0

∫
R

[ f (x1 + y, x2) − f (x1, x2)]μ0(y)dy

+ x2λ1

∫
R

[ f (x1 + y, x2) − f (x1, x2)]μ1(y)dy,

using (29).
With fu(x) = eiu

�x we so obtain,

A fu(x)

fu(x)
=

(
−λ0 (m0 + a0) −

(
1

2
α2 + λ1 (m1 + a1)

)
x2

)
iu1

+κ (θ − x2) iu2 − 1

2
α2x2u

2
1 − ασρx2u1u2 − 1

2
σ2x2u

2
2

+λ0ψ0(u1) + x2λ1ψ1(u1)

with

ψi (ξ) :=
∫
R

(
eiξy − 1

)
μi (y)dy, i = 0, 1. (33)

Note that we have
mi + ai = ψi (−i), i = 0, 1. (34)
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The first order derivatives w.r.t. u are,

∂u1
A fu(x)

fu(x)
= −λ0 (m0 + a0) i −

(
1

2
α2 + λ1 (m1 + a1)

)
ix2

− α2x2u1 − ασρx2u2 + λ0∂u1ψ0(u1) + x2λ1∂u1ψ1(u1)

∂u2
A fu(x)

fu(x)
= κ (θ − x2) i − ασρx2u1 − σ2x2u2.

For the second order derivatives we have

∂u1u1
A fu(x)

fu(x)
= −α2x2 + λ0∂u1u1ψ0(u1) + x2λ1∂u1u1ψ1(u1)

∂u1u2
A fu(x)

fu(x)
= −ασρx2, ∂u2u2

A fu(x)

fu(x)
= −σ2x2,

and for multi-indices β with |β| ≥ 3, i.e. the higher order ones,

∂uβ

A fu(x)

fu(x)
=

{
λ0∂u|β|

1
ψ0(u1) + x2λ1∂u|β|

1
ψ1(u1) for β = (|β| , 0),

0 if β �= (|β| , 0). (35)

Hence the ingredients (14) of the recursion (15) are inmulti-index notation as follows.
|β| = 0 :

b0(x, u) = −λ0 (m0 + a0) iu1 + κθiu2 + λ0ψ0(u1)

+x2

(
λ1ψ1(u1) −

(
1

2
α2 + λ1 (m1 + a1)

)
iu1 − κiu2 − 1

2
α2u21 − ασρu1u2 − 1

2
σ2u22

)
,

whence

b00(u) = −λ0 (m0 + a0) iu1 + κθiu2 + λ0ψ0(u1),

b10,e1(u) = 0, b10,e2(u) = λ1ψ1(u1) −
(
1

2
α2 + λ1 (m1 + a1)

)
iu1

− κiu2 − 1

2
α2u21 − ασρu1u2 − 1

2
σ2u22.

For |β| = 1, (14) yields

b(1,0)(x, u) = −λ0 (m0 + a0) − λ0∂u1ψ0(u1)i −
(
1

2
α2 + λ1 (m1 + a1)

)
x2

+ α2x2u1i + ασρx2u2i − x2λ1∂u1ψ1(u1)i

b(0,1)(x, u) = κ (θ − x2) + ασρx2u1i + σ2x2u2i,
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whence

b0(1,0)(u) = −λ0 (m0 + a0) − λ0∂u1ψ0(u1)i, b
1
(1,0),e1(u) = 0,

b1(1,0),e2(u) = −
(
1

2
α2 + λ1 (m1 + a1)

)
+ α2u1i + ασρu2i − λ1∂u1ψ1(u1)i

and

b0(0,1)(u) = κθ, b1(0,1),e1(u) = 0,

b1(0,1),e2(u) = −κ + ασρu1i + σ2u2i.

Next, for |β| = 2, (14) yields

b(2,0)(x, u) = α2x2 − λ0∂u1u1ψ0(u1) − x2λ1∂u1u1ψ1(u1),

b(1,1)(x, u) = ασρx2,

b(0,2)(x, u) = σ2x2,

whence

b0(2,0)(u) = −λ0∂u1u1ψ0(u1), b1(2,0),e1(u) = 0,

b1(2,0),e2(u) = α2 − λ1∂u1u1ψ1(u1),

b0(1,1)(u) = b1(1,1),e1(u) = 0, b1(1,1),e2(u) = ασρ,

b0(0,2)(u) = b1(0,2),e1(u) = 0, b1(0,2),e2(u) = σ2.

For multi-indices β with |β| ≥ 3 we get

bβ(x, u) =
{

λ0i
−|β|∂u|β|

1
ψ0(u1) + x2λ1i

−|β|∂u|β|
1

ψ1(u1) for β = (|β| , 0),
0 if β �= (|β| , 0),

whence

b0β(u) =
{

λ0i
−|β|∂u|β|

1
ψ0(u1) for β = (|β| , 0),

0 if β �= (|β| , 0),

and

b1β,e1(u) = 0,

b1β,e2(u) =
{

λ1i
−|β|∂u|β|

1
ψ1(u1) for β = (|β| , 0),

0 if β �= (|β| , 0).
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Approximate Pricing of Call Options
on the Quadratic Variation in Lévy Models

Giso Jahncke and Jan Kallsen

Abstract In this note we consider approximate pricing of volatility options on an
underlying which follows an exponential Lévy process. More specifically, we study
call options on the realized variance. The key idea of our approach is to interpret
the compensated quadratic variation of the Lévy process as a perturbed Brownian
motion. The approximation involves even cumulants of the Lévy process and option
price sensitivities (greeks) in the limiting Bachelier model. We illustrate numerically
that our formulas work well if the cumulants of the Lévy process are not too large.

Keywords Realized variance · Option pricing · Lévy processes · Approximation

MSC subject classification (2010): 91G20 · 60G51

1 Introduction

The valuation of options written on the realized variance

N∑
n=1

log(Stn /Stn−1)
2 =

N∑
n=1

(Xtn − Xtn−1)
2, 0 = t0 < . . . < tN = T (1)

of a stock S = exp (X) has received some attention in theMathematical Finance liter-
ature. For better mathematical tractability, most work focuses on using the quadratic
variation [X, X ] of the logarithmic price X as a continuous time approximation for
(1). This is justified by the well known fact that
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N∑
n=1

(Xtn − Xtn−1)
2 → [X, X ]T as sup

n=1,...,N
|tn − tn−1| → 0,

cf. e.g. [13, I.4.7]. This approximation works quite well for daily fixings and longer
maturities, as is confirmed by [4, 21]. We refer to [15, 23] for results on discretely
sampled realized variance.

The pricing of options written on the quadratic variation [X, X ] is widely studied
in the literature. If the underlying stock process is modelled as a continuous semi-
martingale, [8, 11] provide model-free valuation approaches based on a replicating
portfolio of European options. [3] deals with the Barndorff-Nielsen-Shephard [1]
model without leverage, whereas [21, 22] focuses on a Heston-type model [12] with
jumps in stock price and volatility. In [7] the pricing problem is discussed for expo-
nential Lévy models, whereas [14] deals with affine stochastic volatility models.
Recent studies on pricing options on discretely sampled variance in models with
jumps and stochastic volatility include [15, 23].

In this note we focus on European call options written on the quadratic variation
[X, X ] of a Lévy process representing a logarithmic stock price. For such options
semi-explicit formulas are known, using a suitable integral transform of the payoff,
cf. e.g. [14, Lemma6.3] usingLaplace transform.However, these formulas depend on
the characteristic function of [X, X ], which is not known in closed form formost Lévy
processes. The key idea of this paper is to apply the perturbation approach of [9] to
the present setup. More specifically, we connect the compensated quadratic variation
process via a curve in the space of Lévy processes with a Brownian motion. This
leads to a formal series resembling an Edgeworth expansion. We obtain approximate
pricing formulas involving cumulants of the Lévy process X and sensitivities of call
option prices in a Bachelier model. For numerical illustration we consider a Merton
jump-diffusion model with Gaussian jumps, showing that our approximation works
quite well if the even cumulants of X are not too large.

The paper is organized as follows. We introduce the mathematical setup in Sect. 2
and state our main results in Sect. 3. Subsequently, we provide some numerical illus-
tration. Section5 contains proofs.

2 Mathematical Setup

2.1 Market Model

Weconsider amarket with two traded assets, a bond and a non-dividend paying stock.
The price process B of the bond is given by Bt = ert for a deterministic interest rate
r ≥ 0. In what follows, we work with discounted quantities, using B as numéraire.
We assume absence of arbitrage and model directly under a martingale measure P .
Relative to this measure, the discounted price process S of the stock is assumed to
be of the form
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St = S0eXt , t ∈ R+ (2)

with S0 > 0 and some real-valued Lévy process X satisfying E(eX1) = 1. Moreover,
we make the following

Assumption 2.1 1. E
(
e2R[X,X ]1) < ∞ for some R > 0,

2. there exists γ > 0 such that lim infr→0 rγ−2
∫ r
−r x4νX (dx) > 0,where νX denotes

the Lévy measure of X .

The second assumption is slightly stronger than to assume that the Lévy process
has infinitely many jumps on time intervals of positive length.

2.2 Option Payoff Function

We focus on pricing a call option on the quadratic variation of X with strike K > 0
and maturity T > 0, which has payoff

f ([X, X ]T ) := ([X, X ]T − K )+.

We write f ([X, X ]T ) = g(LT ) with g(x) := (x − K̃ )+,

Lt := [X, X ]t − E([X, X ]t ) , t ∈ R
+,

and K̃ := K − E([X, X ]T ). Note that the compensated quadratic variation L is a
Lévy process as well with E(L1) = 0 und Var (L1) =: σ̃2 > 0. Since L is of finite
variation, it does not have a Brownian motion part. Its Lévy measure, on the other
hand, is given by

νL(B) =
∫

1B(x2)νX (dx), B ∈ B.

Thegoal of this paper is to comeupwith anumerical approximationof E( f ([X, X ]T ))

= E(g(LT )).

2.3 Perturbation Approach

Our goal is to obtain an explicit approximate formula for E(g(LT )). The idea is to
view the compensated quadratic variation L as a perturbed Brownian motion. To this
end, we connect the process L through a curve in the space of Lévy processes with a
Brownian motion. This is inspired by a parallel approach in [9], where L represents
the logarithmic stock price X itself rather than its compensated quadratic variation.
For λ ∈ (0, 1] we define the process Lλ via
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Lλ
t := λL t

λ2
, t ∈ R

+. (3)

Observe that Lλ is again a Lévy process, satisfying E
(
Lλ

t

) = 0 and Var
(
Lλ

t

) = t σ̃2.
Definition (3) does not make sense for λ = 0 but we obtain Brownian motion in the
limit:

Lemma 2.2 For λ → 0 the family of Lévy processes (Lλ)λ∈(0,1] converges in law
with respect to the Skorokhod topology (cf. [13] for details) to a Brownian motion
with the same drift and volatility, i.e.

Lλ D→ σ̃W as λ → 0,

where W denotes standard Brownian motion.

We denote the limiting process by L0
t := σ̃Wt , t ∈ R

+.

2.4 nth Order Approximation

We define a function q : [0, 1] → R
+ by

q(λ) := E
(
g(Lλ

T )
)
, λ ∈ [0, 1]. (4)

Then

• q(1) = E(g(LT )) is our original option price of interest,
• q(0) = E(g(σ̃WT )) is the price of a European call option in a Bachelier model
with volatility σ̃,

• q(λ) corresponds to an interpolation between the upper two cases.

In order for (5) below to make sense we remark that:

Lemma 2.3 Function q is infinitely often differentiable on [0, 1].
Lemma 2.3 implies that the nth order Taylor polynomial qn(λ) := ∑n

k=0
q(k)(0)

k! λk is
formally defined for any n ∈ N. The idea now is to approximate q(1) by the Taylor
polynomial of q in 0:

Definition 2.4 We call

qn(1) := q(0) +
n∑

k=1

q(k)(0)

k! (5)

the nth order approximation to q(1).

The goal in this note is to compute qn(1) explicitly. In this context two questions
naturally come to mind. Firstly, one may wonder whether the Taylor series converges
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for n → ∞ to the true value q(1). We chose not to study this desirable property in
detail because it seems to require even strongermoment conditions on [X, X ]1, which
are satisfied in hardly any model of practical relevance. Alternatively, one may come
up with remainder terms o(λn) similarly as in [17]. We do not pursue this direction
either because the artificial parameter λ of interest is not small in our case; it equals
1 by construction. Explicit estimates of the remainder term, however, are of use only
if they can be computed more easily than the unknown quantity q(1) itself. We leave
this discussion for future research.

3 Computation of the Approximation

In order to compute the nth order approximation, we consider two ingredients.

3.1 Cumulants of a Lévy Process

Definition 3.1 TheLaplace exponent ψY : U → C of a Lévy processY is the unique
continuous logarithm of its Laplace transform that vanishes in 0. By Laplace trans-
form we refer to

E(ezYt ) = exp(ψY (z)t)

for t ≥ 0 and z ∈ U := {a + ib ∈ C : E(eaY1) < ∞}. We denote the Laplace expo-
nent of Lλ by ψλ.

Definition 3.2 For n ∈ N, the nth cumulant of a Lévy process Y is defined as

κY
n := ψ(n)

Y (0),

where ψY denotes the Laplace exponent of Y .

Note that κL
n = κ[X,X ]

n for n > 1. Recall that κY
n = ∫

xnνY (dx), n > 2 for the Lévy
measure νY of Y . This also holds for n = 2 if Y has no Brownian motion part. Since
the jumps of [X, X ] and X are related via�[X, X ]t = �X2

t , the cumulants of [X, X ]
are obtained from the cumulants of X as κ[X,X ]

n = κX
2n for n ≥ 1.

3.2 Bachelier Greeks

The option with payoff g(L0
T ) is in fact a call option with strike K̃ and maturity T in

a corresponding Bachelier model, where the discounted stock price moves according
to S̃ := σ̃W with standard Brownian motion W . Its initial fair price is given by C(0),
where function C : R+ → R

+ is defined as
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C(s) :=
∫

g(s +
√

σ̃2T x)ϕ(x)dx,

and ϕ(x) := (2π)−1/2 exp(−x2/2) denotes the probability density function (pdf) of
the standard normal distribution. A simple calculation shows that

C(s) =
√

σ̃2T α

(
s − K̃√

σ̃2T

)
(6)

with σ̃2 = Var (L1) = ∫
x2νL(dx) = κX

4 ,

α(x) := x�(x) + ϕ(x) (7)

and �(x) := ∫ x
−∞ ϕ(y)dy denoting the cumulative distribution function (cdf) of the

standard normal distribution, cf. e.g. [20].

Definition 3.3 We call the nth derivative

Dn(s) := C (n)(s), s ∈ R
+ (8)

the nth Bachelier greek for n ∈ N.

Dn(s) represents the nth order sensitivity of the option price with respect to
changes of the stock price at time 0. Such sensitivities are often referred to as greeks,
which is why we call them Bachelier greeks here.

The summands in our approximation are expressed in terms of Bell polynomials,
named after [2].

Definition 3.4 For k, n ∈ N with k ≤ n and (xi )i=1,...,n−k+1 ∈ R
n−k+1, the incom-

plete Bell polynomials Bn,k are defined as

Bn,k((xi )i=1,...,n−k+1) :=
∑ n!

j1! · · · jn−k+1!
n−k+1∏

i=1

( xi

i !
) ji

,

where the sum is taken over all ( j1, . . . , jn−k+1) ∈ N
n−k+1 such that

∑n−k+1
i=1 ji = k

and
∑n−k+1

i=1 i ji = n.

Remark 3.5 These polynomials come into play here because they appear in Faà di
Bruno’s formula on higher order derivatives:

dn

dxn
f (g(x)) =

n∑
k=1

f (k)(g(x))Bn,k
(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
, (9)

cf. e.g. [5].
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The Bachelier greeks can be expressed explicitly in terms of Bell polynomials.

Lemma 3.6 For n ≥ 1 we have

Dn(s) = C (n)(s) = (√
σ̃2T

)1−n
ϕ(n−2)

(
s − K̃√

σ̃2T

)
, (10)

ϕ(n)(x) = ϕ(x)

n∑
k=1

Bn,k(−x,−1, 0, . . . , 0), (11)

where we set ϕ(0) := ϕ and ϕ(−1) := �.

3.3 Main Result

We can now express qn(1) in terms of the above quantities.

Theorem 3.7 The nth order approximation qn(1) of the price function q(1) has the
representation

qn(0) = C(0) +
n∑

k=1

k∑
j=1

T j

k! Dk+2 j (0)Bk, j

(( κX
2i+4

(i + 1)(i + 2)

)
i=1,...,k− j+1

)
.

Similarly as in [9] our approximation contains only cumulants of [X, X ] resp. X
and Bachelier greeks.

4 Numerical Illustration

4.1 Merton Model

Wewant to assess the accuracy of our approximation numerically in a case study.We
consider the Merton model [16], where the Lévy process X is given by a Brownian
motionwith drift plus an independent compoundPoissonprocess exhibitingGaussian
jumps. Besides being popular in the literature, this model allows for semi-explicit
computation of the option price under consideration. Specifically, we have

Xt = γt + σWt +
Nt∑

k=1

Jk, t ∈ R
+

where σ > 0, W is a standard Brownian motion, J1, J2, . . . are i.i.d. N (ν, τ 2)-
distributed random variables, and N is a Poisson process with intensity α > 0 such
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Table 1 Merton model parameters

γ σ α ν τ

−0.0548 0.280 39.0 −0.00165 0.0457

that W, N , J1, J2, . . . are all independent. The parameters are chosen such that

Var (X1) = 0.42,

Skew (X1) := E
(
(X1 − E(X1))

3
)

Var (X1)
3/2 = 0.1√

250
,

ExKurt (X1) := E
(
(X1 − E(X1))

4
)

Var (X1)
2 − 3 = 5

250
,

which is in the range of empirical plausible values (cf. e.g. [6, Table4]), at least if one
agrees that risk neutral parameters should not deviate too strongly from statistical
ones. Thefirstmoment is determined by themartingale requirement E(exp (X1)) = 1
and amounts to E(X1) = −0.08 in our case. As we have five model parameters, we
eliminate the additional degree of freedom by setting the variance arising from the
jump component as 49% of the overall variance of X , following the choice in [9,
10]. The Merton parameters corresponding to this choice are listed in Table1. The
Laplace exponent of X is given by

ψ(z) = γz + σ2

2
z2 + α

(
exp

(
νz + τ 2

2
z2

)
− 1

)
.

The quadratic variation of X amounts to

[X, X ]t = σ2t +
Nt∑

k=1

J 2
k , t ∈ R

+.

Since J 2
1 /τ 2 is a non-central χ2

1-distributed random variable, the Laplace transform
of J 2

1 equals

ϕJ 2
1
(z) = exp( zν2

1−2zτ 2 )√
1 − 2zτ 2

.

The Laplace transform of [X, X ] is given by

ϕ[X,X ](z) = exp(σ2z + α(ϕJ 2
1
(z) − 1)) (12)

because [X, X ] is a compound Poisson process whose jumps are distributed as J 2
1 .

The desired option price equals
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E
(
([X, X ]T − K )+

) = 1

π

∫ ∞

0
Re

(
ϕ[X,X ]T (−R − iy)

e−K (R+iy)

(R + iy)2

)
dy.

This follows as in (Lemma 6.3 [14]) with R > 0 in order to obtain the call rather
than the put. The Laplace transform (12) allows for an analytic extension to U :=
(−∞, 1/(2τ 2)) + iR, which we denote by ϕ[X,X ] as well. Therefore, the moment
condition Assumption 2.1(1) holds for R < 1/(4τ 2). However, Assumption 2.1(2)
is not satisfied for this model because X has finite jump activity. Nevertheless, the
right-hand side of (5) still makes sense for this model. Therefore we examine it in
our small numerical study in the subsequent section.

4.2 Discussion of the Numerical Results

We consider maturities T = 1/48, 1/12, 1/4, 1/2, and 1, measured in years. Our
choice of strikes K = 0.14T, 0.16T, 0.18T is motivated by the fact that E([X, X ]T )

= 0.16T for our parameters. Table2 shows exact and approximate prices of a call
option on the quadratic variation in the above Merton model. We observe that the
zeroth-order approximation corresponding to a call option in a suitable parametrized
Bachelier model has an average relative error of 8.3% over all strikes and maturities,

Table 2 Exact and approximate prices of a call option on the quadratic variation in aMerton model
with normal jumps for E(X1) = −0.08, Var (X1) = 0.42, Skew(X1) = 0.1/

√
250 excess kurtosis

Exkurt(X1) = 5/250, for varying strike K and maturity T

T K q(1) q0(1) q1(1) q2(1) q5(1)
1
48 0.00292 0.00120 0.00152 0.00143 0.00121 0.00116

0.00333 0.00107 0.00130 0.00130 0.00107 0.00105

0.00375 0.00097 0.00110 0.00119 0.00097 0.00095
1
12 0.01167 0.00322 0.00352 0.00335 0.00323 0.00322

0.01333 0.00249 0.00261 0.00261 0.00249 0.00249

0.015 0.00191 0.00186 0.00203 0.00191 0.00191
1
4 0.035 0.00708 0.00745 0.00717 0.00709 0.00709

0.04 0.00444 0.00451 0.00451 0.00445 0.00445

0.045 0.00265 0.00245 0.00272 0.00265 0.00265
1
2 0.07 0.01216 0.01259 0.01223 0.01218 0.01217

0.08 0.00633 0.00638 0.00638 0.00634 0.00634

0.09 0.00289 0.00259 0.00295 0.00289 0.00289

1 0.14 0.02185 0.02234 0.02192 0.02189 0.02189

0.16 0.00897 0.00902 0.00902 0.00899 0.00899

0.18 0.00271 0.00234 0.00275 0.00272 0.00272
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Table 3 Exact and approximate prices of a call option on the quadratic variation in a Merton
model with normal jumps for E(X1) = −0.08, Var (X1) = 0.42, Skew(X1) = 0, excess kurtosis
Exkurt(X1) = 15/250, for varying strike K and maturity T

T K q(1) q0(1) q1(1) q2(1) q5(1)
1
48 0.00292 0.00146 0.00247 0.00232 0.00115 0.00054

0.00333 0.00139 0.00226 0.00226 0.00110 0.00060

0.00375 0.00133 0.00205 0.00221 0.00104 0.00064
1
12 0.01167 0.00445 0.00540 0.00510 0.00450 0.00440

0.01333 0.00391 0.00451 0.00451 0.00394 0.00387

0.015 0.00344 0.00373 0.00403 0.00344 0.00341
1
4 0.035 0.00967 0.01057 0.01006 0.00970 0.00967

0.04 0.00747 0.00782 0.00782 0.00748 0.00747

0.045 0.00574 0.00557 0.00608 0.00573 0.00574
1
2 0.07 0.01578 0.01677 0.01606 0.01580 0.01578

0.08 0.01082 0.01106 0.01106 0.01082 0.01082

0.09 0.0722 0.00677 0.00747 0.00721 0.00722

1 0.14 0.02649 0.02763 0.02670 0.02650 0.02649

0.16 0.01547 0.01564 0.01564 0.01547 0.01547

0.18 0.00837 0.00763 0.00856 0.00837 0.00837

whereas the second order approximation with an average relative error of 0.2% turns
out to be quite accurate. The error stays approximately the same for the fifth-order
and higher approximations. So the approximation q2(1) seems to be good enough
for practical purposes.

One should note, however, that the excellent precision of our approximation is due
to the fact that the compensated quadratic variation process L = [X, X ] − E([X, X ])
is reasonably close to a Brownian motion in the sense that its higher-order cumulants
are rather small. Table3 contains the values for higher excess curtosis. We observe
that the accuracy decreases in particular for short time to maturity, to the point that
it does not provide reasonable values for a time horizon of one week. A thorough
comparative study is beyond the scope of this paper. In another direction, one could
consider a similar approximation for the effect of time discretization, using a suitably
parametrizedχ2-distribution, cf. [15] for leading-order asymptotics. These topics are
left for future research.

5 Proofs

The key idea in order to compute qn(1) is to represent q(λ) as

q(λ) =
∫ R+i∞

R−i∞
h(λ, z)dz
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with a suitable function h : [0, 1] × (R + iR) → C. Then we interchange differen-
tiation with respect to λ and integration with respect to z and calculate

∫ R+i∞

R−i∞
∂n

∂λn
h(λ, z)dz

explicitly.

Lemma 5.1 We have the integral representation

g(x) = (x − K̃ )+ =
∫ R+i∞

R−i∞
ezx p(z)dz

with

p(z) := e−K̃ z

2πi z2
.

Proof A straightforward calculation shows that

L[g; z] :=
∫ ∞

−∞
e−zxg(x)dx = 2πi p(z)

for z ∈ R + iR. The Bromwich inversion theorem for the bilateral Laplace transform
(cf. [18, Theorem 9.11]) yields

g(x) = 1

2πi

∫ R+i∞

R−i∞
L[g; z]ezx dz

and hence the claim. �

Lemma 5.2 For the Lévy measure νL of L we have

∫
[1,∞)

e2RxνL(dx) < ∞

and ∫
(0,1)

xνL(dx) < ∞.

Proof The first statement is equivalent to Assumption 2.1(1), cf. [19, Theorem 25.3
and Proposition 25.4]. The second holds because L is of finite variation, cf. [19,
Theorem 21.9]. �

Lemma 5.3 There are constants c1, c2 > 0 such that Re(ψλ)(z) ≤ c1 − c2|z|γ for
any λ ∈ [0, 1], z ∈ R + iR.
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Proof This follows from [10, Lemma 5.7.5] and its proof. �

Lemma 5.4 For any c > 0, n ∈ N, the function z 	→ |znecz2 | is bounded on R + iR.

Proof This follows directly from Re(z2) = R2 − Im(z)2. �

Lemma 5.5 For any c > 0, n ∈ N, we have that z 	→ |zneψλ(z)T | is uniformly
bounded for λ ∈ [0, 1] and z ∈ R + iR.

Proof This follows from Lemma 5.3. �

Lemma 5.6 The Bachelier greeks Dn(s) can be written as

Dn(s) =
∫ R+i∞

R−i∞
znezs+ 1

2 σ̃2T z2 p(z)dz.

Proof Note that

C(s) =
∫

g(s +
√

σ̃2T x)ϕ(x)dx

=
∫ ∫ R+i∞

R−i∞
ez(s+√

σ̃2T x) p(z)dzϕ(x)dx

=
∫ R+i∞

R−i∞

∫
ez(s+√

σ̃2T x)ϕ(x)dxp(z)dz

=
∫ R+i∞

R−i∞
ezs+ 1

2 σ̃2T z2 p(z)dz.

Taking the nth derivative yields

Dn(s) = ∂n

∂sn

∫ R+i∞

R−i∞
ezs+ 1

2 σ̃2T z2 p(z)dz

=
∫ R+i∞

R−i∞
∂n

∂sn
ezs+ 1

2 σ̃2T z2 p(z)dz

=
∫ R+i∞

R−i∞
znezs+ 1

2 σ̃2T z2 p(z)dz.

The application of Fubini’s theorem and interchanging differentiation and integration
is possible due to Lemma 5.4. �

Lemma 5.7 For any n ≥ 1 we have

∫
xneRxνL(dx) < ∞.
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Proof This follows from Lemma 5.2 because
∫
[1,∞)

e2RxνL(dx) < ∞ implies that
also

∫
[1,∞)

xneRxνL(dx) < ∞ and
∫
(0,1) xνL(dx) < ∞ yields

∫
(0,1) xneRxνL(dx) <

∞. �

Lemma 5.8 λ → ψλ(z) is infinitely often differentiable with

∂n

∂λn
ψλ(z) = 1

2
zn+2

∫ ∫ 1

0
xn+2esλxzsn−1(1 − s)2(n + λzxs)dsνL(dx).

In particular,
∂n

∂λn
ψλ(z)

∣∣∣∣
λ=0

= κL
n+2

(n + 1)(n + 2)
zn+2.

Proof From the definition of Lλ in (3) it follows immediately that its Laplace expo-
nent ψλ is given in terms of ψ1 by

ψλ(z) = 1

λ2
ψ1(λz).

Since L is a martingale without Brownian motion part, the Laplace exponent of L
equals

ψ1(z) =
∫

(ezx − 1 − zx)νL(dx),

which implies

ψλ(z) =
∫

1

λ2

(
eλzx − 1 − λzx

)
νL(dx).

From the Taylor expansion with integral remainder term

eλzx = 1 + λzx + 1

2
(λzx)2 + 1

2
(λzx)3

∫ 1

0
esλzx (1 − s)2ds

it follows that

ψλ(z) = 1

2
z2

∫
x2νL(dx) + 1

2
z3

∫ ∫ 1

0
λx3esλzx (1 − s)2dsνL(dx) (13)

forλ ∈ (0, 1]. Since σ̃2 = Var (L1) = ∫
x2νL(dx), (13) holds forλ = 0 aswell. The

integrand in (13) is obviously infinitely often partially differentiable with respect to
λ. The previous lemma and iterated differentiation under the integral sign yield after
straightforward calculation
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∂n

∂λn
ψλ(z) = 1

2
zn+2

∫ ∫ 1

0
xn+2esλxzsn−1(1 − s)2(n + λzxs)dsνL(dx)

for λ ∈ [0, 1], z ∈ R + iR, n ∈ N and in particular

∂n

∂λn
ψλ(z)

∣∣∣
λ=0

= zn+2

(n + 1)(n + 2)

∫
xn+2νL(dx) = zn+2

(n + 1)(n + 2)
κL

n+2.

�

Lemma 5.9 ∣∣∣∣ ∂n

∂λn
ψλ(z)

∣∣∣∣ ≤ c(1 + |z|n+3), z ∈ R + iR

with some constant c < ∞ that may depend on n but not on λ ∈ [0, 1] and z.

Proof This follows from the explicit representation in the previous lemma. �

Lemma 5.10 λ → eψλ(z)T is infinitely often differentiable with

∣∣∣∣ ∂n

∂λn
eψλ(z)T

∣∣∣∣ ≤ ceRe(ψ
λ(z)T )(1 + |z|n+3)n, z ∈ R + iR

for some constant c < ∞ that may depend on n but not on λ and z. Moreover, we
have

∂n

∂λn
eψλ(z)T

∣∣∣∣
λ=0

= eψ0(z)T
n∑

k=1

zn+2k T k Bn,k

(( κX
2i+4

(i + 1)(i + 2)

)
i=1,...,n−k+1

)
.

Proof The statement follows from Lemmas 5.8, 5.9 and Faà di Bruno’s
formula (9). �

Lemma 5.11 ∫ R+i∞

R−i∞
sup

λ∈[0,1]

∣∣∣∣ ∂n

∂λn
eψλ(z)T p(z)

∣∣∣∣ dz < ∞

Proof Lemma 5.10 and E
(
exp(zLλ

T )
)

< ∞ yield that z 	→ supλ∈[0,1]
∣∣ ∂n

∂λn exp(ψλ

(z)T )| is bounded, which yields the claim because
∫ R+i∞

R−i∞ |p(z)|dz < ∞. �

Lemma 5.12 q is infinitely often differentiable on [0, 1] with

q(n)(0) =
n∑

k=1

T k Dn+2k(0)Bn,k

(( κX
2i+4

(i + 1)(i + 2)

)
i=1,...,n−k+1

)
.

Proof Lemma 5.1 together with Fubini’s theorem and Lemma 5.5 yield
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q(λ) = E

(∫ R+i∞

R−i∞
ezLλ

T p(z)dz

)

=
∫ R+i∞

R−i∞
E

(
ezLλ

T

)
p(z)dz

=
∫ R+i∞

R−i∞
eψλ(z)T p(z)dz.

Lemma 5.11 ensures that we can interchange differentiation and integration. Hence

q(n)(λ) =
∫ R+i∞

R−i∞
∂n

∂λn
eψλ(z)T p(z)dz

which, using Lemma 5.10, yields

q(n)(0) =
∫ R+i∞

R−i∞
∂n

∂λn
eψλ(z)T

∣∣∣∣
λ=0

p(z)dz

=
∫ R+i∞

R−i∞
eψ0(z)T

(
n∑

k=1

zn+2k T k Bn,k

(( κX
2i+4

(i + 1)(i + 2)

)
i=1,...,n−k+1

))
p(z)dz.

Since ∫ R+i∞

R−i∞
zn+2keψ0(z)T p(z)dz = Dn+2k(0)

by Lemma 5.6, we are done. �

Proof (Proof of Lemma 2.2) From (13) it follows that limλ→0 eψλ(iu) = e− 1
2 σ2u2

for
any u ∈ R. Using Lévy’s continuity theorem (e.g. [19, Proposition 2.5(vii)]) we
conclude that the univariate marginals of Lλ converge to the univariate marginals
of σ̃W as λ → 0. By [13, Corollary VII.3.6] this implies convergence of the whole
process. �

Proof (Proof of Lemma 2.3) This is stated in Lemma 5.12. �

Proof (Proof of Lemma 3.6) (10) follows from (6) andα′(x) = �(x). Faá di Bruno’s
formula (9) yields (11). �

Proof (Proof of Theorem 3.7) This follows from Lemma 5.12. �
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Discrete-Time Quadratic Hedging of Barrier
Options in Exponential Lévy Model

Aleš Černý

Abstract We examine optimal quadratic hedging of barrier options in a discretely
sampled exponential Lévy model that has been realistically calibrated to reflect the
leptokurtic nature of equity returns. Our main finding is that the impact of hedging
errors on prices is several times higher than the impact of other pricing biases studied
in the literature.

Keywords Barrier option · Quadratic hedging · Lévy model

1 Introduction

We study quadratic hedging and pricing of European barrier options with a particular
focus on the magnitude of risk of optimal hedging strategies. In a discretely sampled
exponential Lévy model, calibrated to reflect the leptokurtic nature of equity returns,
we compute the hedging error of the optimal strategy and evaluate prices that yield
reasonable risk-adjusted performance for the hedger. We also confirm what traders
already know empirically, namely that the hedging risk of barrier options substan-
tially outstrips that of plain vanilla options.

European barrier options are derivative contracts based on standard European
calls or puts with the exception that the option becomes active (or inactive) when
the stock price hits a prespecified barrier before the maturity of the option. Options
activated in this way are called knock-ins; those deactivated are called knock-outs.

Under the assumptions of the Black–Scholes model barrier options have been
valuedfirst by [32] and inmore detail by [33]. Early literature on numerical evaluation
of barrier option prices concentrates on slow convergence of binomial method, which
is due to the difference between the nominal barrier specified in the option contract
and the effective barrier impliedby thepositionof nodes in the stockprice lattice. This
discrepancy, if not properly controlled, may lead to sizeable mispricing, especially
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for options whose barrier is close to the initial stock price. [4, 34] suggest better
positioning of nodes in binomial and trinomial lattices to minimize the discrepancy
between nominal and effective barrier, whereas [14] propose interpolation between
two adjacent values of the effective barrier. [21] devise an adaptive mesh allowing
for more nodes (and shorter time steps) around the barrier.

The papers above are concerned with continuously-monitored barriers in the
Black-Scholesmodel.Discretemonitoring, too, can have significant impact on option
valuation, and, unlike the continuous monitoring case, does not allow for a simple
closed form pricing formula, cf. [22]. A simple asymptotic correction, which works
well for barriers not too close to initial stock price, was developed by [5]. For bar-
riers in close proximity of the stock price the Markov chain representation of stock
prices developed by [15] is more appropriate. Other papers dealing with discrete
monitoring in the log-normal framework include [23, 25, 28, 29, 38]. [1] describe
a systematic way of handling discretization errors by means of quadrature. There
is also an extensive literature on barrier option pricing by Monte Carlo simulation
which we will not touch upon in this paper.

The models discussed above are complete in the sense that one can devise a
self-financing trading strategy that perfectly replicates the barrier option. In prac-
tice, however, one encounters considerable difficulties in maintaining a delta-neutral
position when close to the barrier. This has motivated study of static replication
of barrier options with plain vanilla options. [8] use the reflection principle known
from barrier option pricing combined with so-called put–call symmetry to write a
down-and-out call as a sum of a long call and a short put. Their methodology is to
some extent model-free but it only works if the market is complete and if the afore-
mentioned symmetry holds, requiring that risk-free rate be equal to the dividend rate
in addition to a certain symmetry of local volatilities. [6] analyze static super- and
sub-replication. The latter results are completely model-free at the cost of generating
price bounds that are potentially very wide. Other papers on static replication include
[2, 7, 12, 13].

Several studies allow for parametric departures from the Black–Scholes model.
[16, 26] use Bates’ stochastic volatility jump-diffusion model while [30] allows for
IID jumps. Several numerical approaches now exist for dealing with a wide class of
(possibly infinite variation) Lévy models, see [19, 20].

The paper is organized as follows. In Sect. 2 we specify the theoretical model,
describe its calibration and computation of optimal strategies. Section3 provides eco-
nomic analysis of the numerical results and Sect. 4 explains the relationship between
barrier option prices and hedger’s risk-adjusted performance.

2 The Model

We have at our disposal nominal log returns on FT100 equity index in the period
January 1st, 1993 to December 31st, 2002, sampled at a 1 min interval. Eventually
we wish to say something about optimal hedging of barrier options in a model with
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rebalancing frequency Δ ∈ [5 min, 1 day] and a daily monitoring of the barrier. We
will assume independence and time homogoneity of underlying asset returns at any
given rebalancing frequency. This is not to say that stochastic volatility is unimportant
in practice, insteadwemay think of the IID assumption as a useful limiting casewhen
the (unobserved) volatility state changes either very slowly or very quickly. In this
view of the world the leptokurtic nature of returns is a source of risk that does not
vanish even after stochastic volatility has been factored in appropriately.

The analysis is performed under two self-imposed constraints. The first is to use
the available data in a non-parametric way and the second is to perform all numerical
analysis in a multinomial lattice.

In these circumstances there are essentially two strategies for calibrating the stock
price process. One option is to simply take the data series sampled at time intervalΔ,

generate a discretized distribution of returns and construct amultinomial lattice using
this distribution. An alternative is to consider an underlying continuous-time model
from which the daily or hourly returns are extracted. [17] argue that equity return
data display sufficient amount of time consistency for such an approach to make
sense. The underlying model is then necessarily a geometric Lévy model, cf. Lemma
4.1 in [9]. Such approach also offers an alternative avenue to obtaining asymptotics
as Δ tends to zero by studying quadratic hedging for barrier options directly in the
underlying Lévy model—a task which at present is still outstanding and well beyond
the scope of this paper.

2.1 Calibration

We take the original log return data sampled at Δ0 = 1 min intervals and construct
an equidistantly spaced sequence m0 < m1 < . . . < mN+1 with spacing δ, such that
mN is the highest and m1 the lowest log return in the sample. We set N = 1000. We
then identify the frequency of log returns in each interval of length δ centred on mj,
j = 0, . . . ,N + 1 and store this information in the vector {fj}N+1

j=0 . We construct an
empirical Lévy measure Fraw as an absolutely continuous measure with respect to
the Lebesgue measure on R

Fraw (dx) = f̂ (x)

Δ0
dx,

where f̂ = f at the points mj, f̂ = 0 outside (m0,mN+1) and elsewhere f̂ is obtained
as a linear interpolation of f . This construction is motivated by an asymptotic result
that links transition probability measure of a Lévy process to its Lévy measure over
short time horizons, see [35], Corollary 8.9.
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In the next stepwe normalize the empirical characteristic function of log returns to
achieve a pre-specified annualized mean μ and volatility σ . Since the raw empirical
Lévy process is square-integrable and therefore a special semimartingale we will use
the (otherwise forbidden) truncation function h(x) = x. We will construct the log
return process by setting

ln S = ln S0 + μt + σx

σraw
∗ (JLraw − νLraw),

σ 2
raw =

∫
R

x2Fraw (dx) ,

where JLraw is the jump measure of a Lévy process with Lévy measure Fraw, νLraw is
its predictable compensator and ∗ denotes a certain stochastic integral as defined in
[27]. II.1.27. This yields

κ(u) := μu +
∫
R

(eux − 1 − ux)F(dx), (1)

F (G) :=
∫
R

1G

(
σx

σraw

)
Fraw (dx) . (2)

We fix the annualized volatility of log returns at σ = 0.2, but to check the robustness
of our results we allow themean log return to take 2 different valuesμ ∈ {−0.1, 0.1},
the first representing a bear market and the second representing a bull market.

Instead of the non-parametric calibration procedure above one could instead esti-
mate a model from a convenient parametric family, such as the generalized hyper-
bolic family, as outlined in [18]. The parametric route offers in some special cases
an explicit expression for the log return density at all time horizons which avoids the
need for numerical inversion of the characteristic function employed below.

2.2 Multinomial Lattice

If Z denotes the log return on time horizonΔ its characteristic function is of the form

E
[
exp (ivZ)

] = eκ(iv)Δ,

where the cumulant generating function κ is given by Eqs. (1) and (2). Provided that
Z has no atom at z the cumulative distribution is given by the inverse Fourier formula,
see [35], 2.5xi,

P (Z ≤ z) = H (c) − 1

2π
lim
l→∞

∫ l

−l

eκ(iλ−c)Δ−z(iλ−c)

iλ − c
dλ,
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where c is an arbitrarily chosen real number1 and H is a step function,

H (x) =
⎧⎨
⎩
0 for x > 0
1
2 for x = 0
1 for x < 0

.

We now define a discretized distribution of log returns to populate our lattice. The
discretized random variable Ẑ will take values

ẑj = jη with j ∈ [−ndown, nup] ∩ Z,

where ndown, nup are the smallest numbers in N such that P(Z ≤ −ndownη) ≤ α and
FZ(Z ≤ nupη) ≥ 1 − α, respectively. We use the values η = 0.0005 and α = 10−5.

For comparison, the corresponding value of η in [15]with 1001 price nodes is 0.0089.
Table5 shows the number of standard deviations.

The transition probabilities corresponding to different values of log return are
defined by

p̂j := P(Z ≤ (j + 1/2) η) − P(Z ≤ (j − 1/2) η) for j ∈ (−ndown, nup
) ∩ Z,

p̂j := P(Z ≤ (j + 1/2) η) for j = −ndown,

p̂j := 1 − P(Z ≤ (j − 1/2) η) for j = nup.

To limit the effect of the discretization errors arising from an arbitrary position
of the barrier we limit computations to barrier levels that satisfy ln B − ln S ∈ (Z +
1/2)η and use interpolation otherwise.

2.3 Optimal Hedging

In themultinomial lattice constructed abovewe compute the optimal hedging strategy
and the minimal hedging error according to the following theorem.

Theorem 1 Suppose that there is an Fn-measurable contingent claim H such that
E[H2] < ∞. In the absence of transaction costs the dynamically optimal hedging
strategy ϕ solving

inf
ϑ
E[(Gx,ϑ

n − H
)2],

1In numerical calculations with a fixed value of z we choose c so as to minimize the value of the
integrand at λ = 0, see [36], Eq. (3).
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subject toϑi beingFi-measurablewithG being the value of a self-financingportfolio,

Gx,ϑ
i = RGx,ϑ

i−1 + ϑi−1(Si − RSi−1),

Gx,ϑ
0 = x,

is given by

ϕi = ξi + aR
Vi − Gx,ϕ

i

Si
,

Vi := Ei[(1 − aXi+1)Vi+1]/(bR), (3)

Vn := H,

ξi := Covi (Vi+1, Si+1) /Vari (Si+1)

= Ei
[
(Vi+1 − RVi)Xi+1

]
/
(
SiEi

[
X2
i+1

])
,

Xi := exp(Zi) − R,

a := Ei
[
Xi+1

]
/Ei

[
X2
i+1

]
,

b := 1 − (
Ei

[
Xi+1

])2
/Ei

[
X2
i+1

]
. (4)

The hedging performance of the dynamically optimal strategy ϕ and of the locally
optimal strategy ξ is given by

E
[(
Gx,ϕ

n − H
)2] = (

R2b
)n

(x − V0)
2 + ε20(ϕ),

E
[(
Gx,ξ

n − H
)2] = (

R2
)n−j

(x − V0)
2 + ε20(ξ),

ε20(ϕ) =
n−1∑
j=0

(
R2b

)n−j−1
E

[
ψj

]
,

ε20(ξ) =
n−1∑
j=0

R2(n−j−1)E
[
ψj

]
,

ψj := Ej

[(
RVj + ξjSjXj+1 − Vj+1

)2]

= Varj
(
V 2
j+1

) −
(
Covj

(
Sj+1,Vj+1

))2
Varj

(
Sj+1

) . (5)

Proof See [9], Theorem 3.3. �
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3 Numerical Results

Wefirst fix the rebalancingperiod toΔ = 1day and examine the behaviour of hedging
errors across maturities, strikes and barrier levels.We then analyze the asymptotics of
the hedging error as the rebalancing intervalΔ approaches 0, keeping the monitoring
frequency of the barrier constant. We do so initially for a range of strikes and barrier
levels with rebalancing interval Δ = 1 h and then with fixed strike and barrier level
we examine asymptotics going down to Δ = 5 min.

3.1 Effect of Barrier Position, Maturity and Drift

We consider an up-and-out European call and two maturity dates: 1 and 6 months.
During a detailed preliminary analysis we have found that changes in risk-free rate
have a very small impact upon hedging errors and therefore we fix the risk-free
rate in all computations to r = 0. Volatility is normalized to σ = 0.2 as explained
in Sect. 2.1, while the drift takes two values μ ∈ {−0.1, 0.1}. The time units reflect
trading time; specifically we assume there are 8 h in a day and 250 days in a year.
To be able to compare the size of hedging error across maturities we measure the
position of the barrier and of the striking price relative to the initial stock price in
terms of their Black–Scholes delta.

For each set of parameters we report five quantities: (i) the Black–Scholes price
of a continuously monitored option C, (ii) the Black–Scholes price of a daily mon-
itored option2 V̂ , (iii) the standard deviation of the hedging error in a discretely
rebalanced Black-Scholes model ε̂0 obtained from (5) using multinomial approxi-
mation of Black-Scholes normal transition probabilities3 with daily monitoring and
daily or hourly rebalancing; (iv) the mean value process V obtained from (3) and
(4) using multinomial approximation of Lévy transition probabilities; and (v) the
standard deviation of the unconditional expected squared hedging error ε0 obtained
from (5) using multinomial Lévy transition probabilities. The barrier of an up-and-
out call has to be above the stock price for the option to be still alive, we therefore
parametrize the delta of the barrier by values starting at4 10−100 and going up to 0.49.
The deltas of the striking price range between 0.01 and 0.99. Numerical results for
different values of Δ, T and μ are shown in Tables1, 2, 3 and 4.

2Computation of the discretelymonitored option price in Black–Scholes model follows themethod-
ology of [15]. Effectively, the calculation is the same as for V in the empirical model, but
the multinomial transition probabilities approximate the Black-Scholes risk-neutral distribution
N

((
r − σ 2/2

)
Δ, σ 2Δ

)
.

3Objective probability distribution of log returns in the Black-Scholes model is
N

((
μ − σ 2/2

)
Δ, σ 2Δ

)
.

4The barrier with delta of 10−100 is so high that the corresponding results are, for all intents and
purposes, indistinguishable from a plain vanilla option.
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Table 1 Mean value and hedging error for a daily monitored up-and-out call option. T = 1 month,
Δ = 1 day, μ = 0.1, r = 0. For each strike and barrier level we report 5 values: (i) Black–Scholes
value of continuously monitored option, (ii) mean value for normally distributed log returns and
discretely (daily) monitored option, (iii) hedging error corresponding to (ii); (iv) the mean value
process V0 for the empirical distribution of log returns(discrete monitoring); (v) standard deviation
of the unconditional hedging error corresponding to (iv). Strike and barrier levels are parametrized
by the Black–Scholes delta of their position

Barrier (delta/level)

Strike 1E-100 0.01 0.10 0.30 0.45 0.49

Delta Level 343.8 114.6 107.9 103.3 100.9 100.3

0.01 114.6 0.019

0.019

0.104

0.020
0.122

0.1 107.9 0.268 0.151

0.268 0.172

0.286 0.417

0.267 0.170
0.326 0.443

0.3 103.3 1.071 0.874 0.182

1.071 0.916 0.255

0.408 0.734 0.521

1.066 0.910 0.257
0.469 0.809 0.545

0.45 100.9 1.900 1.663 0.608 0.023

1.900 1.716 0.752 0.052

0.430 0.889 0.839 0.212

1.894 1.709 0.759 0.053
0.491 0.960 0.912 0.223

0.49 100.3 2.162 1.915 0.767 0.044 0.000

2.162 1.971 0.930 0.089 0.001

0.427 0.913 0.931 0.290 0.020

2.156 1.964 0.938 0.092 0.001
0.491 1.007 0.991 0.300 0.020

0.75 96.3 4.563 4.247 2.447 0.515 0.054 0.013

4.563 4.321 2.750 0.754 0.141 0.071

0.348 1.135 1.471 0.836 0.357 0.252

4.560 4.317 2.770 0.773 0.146 0.073
0.397 1.222 1.610 0.915 0.379 0.265

0.99 87.5 12.488 12.020 8.764 3.512 0.808 0.262

12.488 12.134 9.385 4.427 1.598 1.037

0.065 1.607 2.671 2.138 1.318 1.092

12.489 12.134 9.429 4.491 1.632 1.050
0.077 1.761 2.874 2.316 1.452 1.193
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Table 2 Mean value and hedging error for a daily monitored up-and-out call option. T = 6 month,
Δ = 1 day, μ = 0.1, r = 0. For each strike and barrier level we report 5 values: (i) Black–Scholes
value of continuously monitored option, (ii) mean value for normally distributed log returns and
discretely (daily) monitored option, (iii) hedging error corresponding to (ii); (iv) the mean value
process V0 for the empirical distribution of log returns(discrete monitoring); (v) standard deviation
of the unconditional hedging error corresponding to (iv). Strike and barrier levels are parametrized
by the Black–Scholes delta of their position

Barrier (delta/level)

Strike 1E-100 0.01 0.10 0.30 0.45 0.49

Delta Level 2071.0 140.5 121.2 108.8 102.8 101.4

0.01 140.5 0.046

0.046

0.152

0.046
0.176

0.1 121.2 0.635 0.364

0.635 0.387

0.329 0.674

0.631 0.386
0.381 0.740

0.3 108.8 2.514 2.073 0.447

2.514 2.118 0.522

0.437 1.238 0.711

2.506 2.115 0.526
0.506 1.364 0.778

0.45 102.8 4.434 3.910 1.475 0.059

4.435 3.966 1.622 0.087

0.425 1.366 1.214 0.293

4.426 3.963 1.632 0.088
0.493 1.505 1.335 0.316

0.49 101.4 5.038 4.493 1.854 0.114 0.000

5.039 4.552 2.020 0.157 0.001

0.428 1.526 1.226 0.350 0.029

5.030 4.549 2.032 0.160 0.001
0.496 1.679 1.351 0.380 0.030

0.75 91.8 10.490 9.812 5.793 1.296 0.163 0.055

10.491 9.888 6.094 1.525 0.240 0.102

0.314 1.746 2.040 1.013 0.361 0.234

10.485 9.890 6.120 1.543 0.246 0.105
0.364 1.921 2.251 1.118 0.398 0.258

0.99 72.6 27.452 26.507 19.689 8.316 2.280 1.036

27.452 26.618 20.272 9.155 2.972 1.659

0.048 2.605 3.244 2.244 1.307 0.989

27.452 26.628 20.326 9.217 3.012 1.689
0.056 2.858 3.589 2.494 1.455 1.104
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Table 3 Mean value and hedging error for a daily monitored up-and-out call option. T = 6months,
Δ = 1 day,μ = −0.1, r = 0. For each strike and barrier level we report 5 values: (i) Black–Scholes
value of continuously monitored option, (ii) mean value for normally distributed log returns and
discretely (daily) monitored option, (iii) hedging error corresponding to (ii); (iv) the mean value
process V0 for the empirical distribution of log returns(discrete monitoring); (v) standard deviation
of the unconditional hedging error corresponding to (iv). Strike and barrier levels are parametrized
by the Black–Scholes delta of their position

Barrier (delta/level)

Strike 1E-100 0.01 0.10 0.30 0.45 0.49

Delta Level 2070.99 140.55 121.17 108.82 102.83 101.37

0.01 140.55 0.046

0.046

0.071

0.047
0.084

0.1 121.17 0.635 0.364

0.635 0.387

0.236 0.351

0.637 0.387
0.270 0.377

0.3 108.82 2.514 2.073 0.447

2.514 2.118 0.522

0.374 0.612 0.515

2.514 2.116 0.524
0.438 0.705 0.546

0.45 102.83 4.434 3.910 1.475 0.059

4.435 3.966 1.622 0.087

0.419 0.755 0.798 0.239

4.434 3.962 1.626 0.088
0.481 0.822 0.913 0.268

0.49 101.37 5.038 4.493 1.854 0.114 0.000

5.039 4.552 2.020 0.157 0.001

0.419 0.761 0.901 0.326 0.026

5.037 4.548 2.024 0.159 0.001
0.490 0.876 0.968 0.342 0.028

0.75 91.79 10.490 9.812 5.793 1.296 0.163 0.055

10.491 9.888 6.094 1.525 0.240 0.102

0.380 0.939 1.367 0.866 0.391 0.262

10.489 9.883 6.104 1.538 0.245 0.105
0.435 1.019 1.564 0.992 0.419 0.281

0.99 72.60 27.452 26.507 19.689 8.316 2.280 1.036

27.452 26.618 20.272 9.155 2.972 1.659

0.094 1.199 2.382 2.109 1.300 1.019

27.452 26.613 20.294 9.205 3.014 1.694
0.111 1.371 2.591 2.306 1.487 1.165
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Table 4 Mean value and hedging error for a daily monitored up-and-out call option. T = 1 month,
Δ = 1 h, μ = 0.1, r = 0. For each strike and barrier level we report 5 values: (i) Black–Scholes
value of continuously monitored option, (ii) mean value for normally distributed log returns and
discretely (daily) monitored option, (iii) hedging error corresponding to (ii); (v) the mean value
process V0 for the empirical distribution of log returns(discrete monitoring); (v) standard deviation
of the unconditional hedging error corresponding to (iv). Strike and barrier levels are parametrized
by the Black–Scholes delta of their position

Barrier (delta/level)

Strike 1E-100 0.01 0.10 0.30 0.45 0.49

Delta Level 342.09 114.57 107.86 103.25 100.90 100.31

0.01 114.63 0.019

0.019

0.039

0.020
0.074

0.1 107.89 0.268 0.151

0.268 0.172

0.104 0.214

0.268 0.171
0.197 0.303

0.3 103.26 1.071 0.874 0.182

1.071 0.916 0.255

0.149 0.380 0.279

1.068 0.912 0.257
0.282 0.547 0.381

0.45 100.90 1.900 1.663 0.608 0.023

1.900 1.716 0.752 0.052

0.155 0.453 0.451 0.129

1.897 1.710 0.758 0.053
0.295 0.651 0.628 0.165

0.49 100.31 2.162 1.915 0.767 0.044 0.000

2.162 1.971 0.930 0.089 0.001

0.155 0.478 0.487 0.164 0.017

2.159 1.965 0.937 0.092 0.001
0.295 0.684 0.681 0.216 0.018

0.75 96.33 4.563 4.247 2.447 0.515 0.054 0.013

4.563 4.321 2.750 0.754 0.141 0.071

0.126 0.595 0.784 0.451 0.193 0.137

4.562 4.317 2.767 0.771 0.145 0.073
0.240 0.839 1.103 0.631 0.265 0.186

0.99 87.53 12.488 12.020 8.764 3.512 0.808 0.262

12.488 12.134 9.385 4.427 1.598 1.037

0.024 0.883 1.409 1.144 0.734 0.606

12.489 12.132 9.420 4.484 1.630 1.049
0.047 1.224 1.975 1.604 1.020 0.837
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We commence with the base case parameters Δ = 1 day, μ = 0.1 in Tables1
and 2. The mean value process V coincides to a large extent with the Black-Scholes
value of a discretely monitored option. This is a striking result, since the model in
which V is computed is substantially incomplete, whereas the reasoning behind V̂
relies on continuous rebalancing and perfect replication. For T = 1 month (Table1)
the difference between V and V̂ is always less than 6.4 cents in absolute value, and
in relative terms it is less than 3.6% across all strikes and barrier levels.

The difference between V and V̂ tends to diminish with increasing maturity. For
T = 6 months (Table2) the difference between V and V̂ is less than 6.1 cents in
absolute value, and less than 2.7% in relative terms. The signs of V − V̂ follow a
pattern across strikes and barrier levels whereby the difference tends to be negative
for very high barrier levels in combination with high strike prices, and to be positive
elsewhere.

Let us now turn to the hedging errors. Hedging errors of barrier options (columns
4–8) behave differently to those of plain vanilla options (column 3). The hedging
error of plain vanilla options are the largest at the money and become smaller for
deep-in and deep-out-of-the-money options. In contrast, the hedging error of an up-
and-out barrier option increases with decreasing strike price. This happens because
for vanilla options the only source of the hedging error is the non-linearity of option
pay-off around the strike price, whereas for barriers the main source of the hedging
errors is the barrier itself. The lower the strike the higher the pay-off near the barrier
and the higher the hedging errors.

Consider an (at-the-money) plain vanilla option with T = 1 month to maturity
and strike at 100.3 (see Table1, column 3). The Black-Scholes value of this option
is 2.162, and the standard deviation of the unconditional hedging error is 0.427, due
to daily rebalancing. If we consider the empirical distribution of log returns, which
exhibits excess kurtosis, the hedging error increases to 0.491. Take now a barrier
option with the same strike, and barrier at 107.9. The Black–Scholes price of the
barrier option is less than a half at 0.930 but the standard deviation of the hedging
error is more than double at 0.931. Thus if selling a plain vanilla option at the Black–
Scholes price based on historical volatility is not a profitable enterprise, doing the
same for barrier options is positively counterproductive. This conclusion is more
pronounced for longer maturities and lower strikes, see Table2 (T = 6 months).

Next we examine the effect of the change in the market direction, by contrast-
ing Table2 (μ = 0.1) with Table3 (μ = −0.1). The difference between the Black–
Scholes no-arbitrage price of a daily monitored barrier option V̂ and the mean value
processV remains small. Themean value is higher in the bearmarket for plain vanilla
options (column 3) but it is generally marginally lower for barrier options, with the
exception of very low strikes in combination with very low barrier levels. The dif-
ference in absolute value is less than two cents and less than 1% in relative terms
(with the exception of the two vanilla option with highest strikes). We conclude that
V is largely insensitive to the changes in μ and that the Black–Scholes price V̂ is a
very good proxy for V .
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The change in the market direction has a more dramatic effect on the size of
unconditional hedging errors. Recall that the standard deviation of the unconditional
error is given as a weighted average of one-period hedging errors,

ε20(ϕ) =
n−1∑
j=0

(
R2b

)n−j−1
E

[
ψj

]
,

ψj = Varj
(
V 2
j+1

) −
(
Covj

(
Sj+1,Vj+1

))2
Varj

(
Sj+1

) ,

whereR and b are close to 1. SinceV is largely insensitive to the value ofμ the values
of ψ (as a function of time, stock price and option status) will very much coincide
between the bull and the bear market. What will be different is the expectation of ψ .

The instantaneous hedging error ψ arises from two non-linearities in the option
pay-off—one around the strike price and one along the barrier. The hedging error
along the barrier tends to be more significant unless the barrier is either very far away
from the stock price or the option is just about to be knocked out. In a bull market
prices rise on average and the barrier, being above the initial stock price, contributes
more significantly to E

[
ψj

]
. E

[
ψj

]
will also contain more significant contribution

from the strike region if the option is initially out of the money. In contrast, in a bear
market price falls on average and E

[
ψj

]
will put less weight on the barrier region. It

will contain a more significant contribution from the strike price, if the option is in
the money to begin with. For barrier deltas equal to 10−100 and 0.49 we expect the
strike region to dominate and therefore the hedging errors in the bear market to be
larger for in-the-money options. This intuition is borne out by the numerical results
shown in Tables2 and 3.

3.2 Asymptotics

Let us now examine the effect of more frequent rebalancing by considering Δ = 1
h (Table4). Although hedging now occurs hourly we maintain the daily monitoring
frequency of the barrier to make the results comparable with those in Table1.

In the Black–Scholes model the standard deviation of the hedging error for plain
vanilla options decreases with the square root of rebalancing interval, see [3] and
[37]. With hourly rebalancing this implies standard deviation equal to

√
1/8 ≈ 35%

of the daily figure (with 8-h trading day). The theoretical prediction turns out to be
accurate, as can be seen by comparing entries marked ii) in each row of column 3 of
Tables1 and 4 which yields the range 36–38% across all strikes.

In the empirical Lévy model the standard deviation of the unconditional hedging
error of plain vanilla options is seen to decay more slowly, see entries marked (v) in
each row of column 3 of Tables1 and 4. With hourly rebalancing it is in the range
60–62% of the daily rebalancing figures across all strikes. In this instance the higher
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Table 5 Kurtosis as a function of rebalancing interval

Kurtosis lattice Kurtosis Lévy

Δ log Level log Level ndownη
σ

nupη
σ

5 min 69.11 69.05 72.54 72.51 27 25

15 min 25.77 25.76 26.18 26.17 17 16

30 min 14.42 14.42 14.59 14.59 12.75 12

1 h 8.73 8.73 8.79 8.80 10 9.5

2 h 5.86 5.87 5.90 5.90 8 7.75

4 h 4.44 4.44 4.45 4.45 6.75 6.75

1 day (8 h) 3.72 3.72 3.72 3.73 5.75 5.75

frequency of hedging is (partially) offset by higher kurtosis of hourly returns. [10],
Sect. 13.7, derives an approximation of the hedging error for leptokurtic returns and
shows that rebalancing interval must be multiplied by kurtosis minus one to obtain
the correct scaling of hedging errors. In our case Table5 shows the kurtosis of daily
returns is 3.72 and the kurtosis of hourly returns is 8.73, thus we should expect
hourly errors to equal

√
1/8 × 7.73/2.72 ≈ 60%of the daily errors which matches

the actual range of 60–62% mentioned earlier.
Table5 compares the kurtosis of returns and log returns in the calibrated Lévy

model with the kurtosis achieved in its multinomial lattice approximation. The
last two columns show the number of standard deviations of one-period log return
(rounded up to the nearest quarter) corresponding to the 10−5 and 1 − 10−5 quan-
tiles of the one-period log return distribution. This is the range represented by the
lattice approximation of the Lévy process. As an aside, we observe that the lattice
begins to struggle to approximate the kurtosis of the Lévy process well at the 5-min
rebalancing interval.

For barrier options (columns 4–8 of Tables1 and 4) the Black-Scholes situation
is more complicated because part of the error is caused by the barrier itself and this
part has different Δ-asymptotics. Conjecturing that the barrier contributes an error
whose variance is proportional to the square root of rebalancing interval, see [24],
and assuming that fraction α of the error is generated by the strike region and the
rest by the barrier, the approximate expression for the hourly total error as a fraction
of daily error would read

√
0.35α + √

0.35(1 − α). (6)

For barrier options in columns 4 and 5 of Tables1 and 4 the percentage reduction in
hedging error in the Black-Scholes model stands between 51 and 54%which implies
α values in formula (6) between 0.25 and 0.4. Variability of α is to be expected since
the relative importance of the two types of errors will depend on barrier and strike
levels.
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Table 6 Mean value V0 and unconditional standard deviation of the hedging error ε0 for parameter
values T = 1, S0 = 100,B = 107.9,K = 103.3

Black-Scholes Empirical Lévy

� V̂0 ε̂0 V0 ε0

5 min 0.2525 0.142 0.2548 0.330

15 min 0.2535 0.191 0.2556 0.345

30 min 0.2535 0.231 0.2558 0.360

1 h 0.2536 0.282 0.2559 0.380

2 h 0.2537 0.345 0.2560 0.421

4 h 0.2537 0.424 0.2560 0.470

8 h 0.2538 0.519 0.2561 0.548

One can conjecture that for barrier options in the presence of excess kurtosis the
formula (6) will remain the same, only the time scaling factor will be adjusted for
excess kurtosis from 0.35 to 0.6 as in the case of plain vanilla options.We thus expect
the ratio of hourly to daily errors in the Lévy model to be

√
0.6α + √

0.6(1 − α). (7)

With α in the range 0.25–0.4 heuristic (7) predicts error reduction in the range 71–
74% while the actual figures from columns 4 and 5 of Tables1 and 4 yield the range
68–70%, which for practical purposes is a perfectly adequate approximation.

Table6 provides 5-min error data for one specific strike/barrier combination cor-
responding to α = 0.25. It reports the hedging error ε0 obtained from (5) and the
mean value V0 obtained from (3) and (4) using the multinomial approximation of
the empirical Lévy process and analogous quantitities ε̂0 and V̂0 obtained from a
multinomial approximation of the Black-Scholes model.

The Black-Scholes 5-min time scaling factor is 1/(8 × 12) = 1/96 = 0.0104 and
the heuristic (6) yields error reduction ratio of

√
0.0104 × 0.25 + √

0.0104(1 − 0.25) ≈ 28%,

while in Table6 we find this ratio to be 0.142/0.519 ≈ 27%. The leptokurtic empiri-
cal 5-min distribution leads to the time scaling factor of 68.05/2.72/96 ≈ 0.26 hence
the 5-min empirical error is predicted to be

√
0.26 × 0.25 + √

0.26(1 − 0.25) ≈ 67%

of the daily error. The actual figure in Table6 is 0.33/0.548 ≈ 60%. For practical
purposes this is again an acceptable approximation.
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Our exploratory analysis above points to two open questions in this area of
research: (1) calculation of explicit asymptotic expression for hedging error of bar-
rier options in discretely rebalanced Black-Scholes model analogous to the formula
of [24] for path-independent options; (2) asymptotic formula for hedging error of
barrier options in a continuously rebalanced Lévy model with small jumps. There is
a good reason to believe that (1) and (2) are closely linked because similar link has
already been established for plain vanilla options, see [11].

4 Sharpe Ratio Price Bounds

In this model, as in reality, the sale of an option and subsequent hedging is a risky
activity. If one sells an option at its Black-Scholes value corresponding to historical
volatility one effectively enters into an investment with zero mean and non-zero
variance. In addition this investment is by construction uncorrelated with the stock
returns. To make option trading profitable the trader must aim for a certain level of
risk-adjusted returns, which implies selling derivatives above their Black–Scholes
value. The question then arises as to what is a sensible measure of risk-adjusted
returns and what is a sensible level of compensation for the residual risk.

[10] proposes to measure profitability of investment by its certainty equivalent
growth rate adjusted for investor’s risk aversion. When this measure is applied to
mean-variancepreferences, it yields a one-to-one relationshipwith the ex-anteSharpe
ratio of the investment strategy. Thus, in the present context, the unconditional Sharpe
ratio appears as a natural measure of risk-adjusted returns.

It is well known that the square of maximal Sharpe ratio available by trading in
two uncorrelated assets equals the sum of squared Sharpe ratios of the individual
assets. Since the hedged option position is uncorrelated with the stock we can regard
the Sharpe ratio of the hedged position as a meaningful measure of incremental
performance (i.e. performance over and above optimal investment in the stock).

Suppose that the trader targets a certain level of annualized incremental Sharpe
ratio h (say h = 0.5). Assuming that he or she can sell the option at price C̃ above
the mean value V0 the resulting Sharpe ratio of the hedged option position equals

erT (C̃ − V0)

ε0
.

If T is maturity in years the trader should look for a price C̃ such that

erT (C̃ − V0)

ε0
= h

√
T ,

which yields
C̃ = V0 + e−rT h

√
Tε0. (8)
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For plain vanilla options the price adjustment corresponding to annualized incre-
mental Sharpe ratio of 1 gives rise to a gap between implied volatility and historical
volatility of about 150 basis points, robustly across maturities and strikes. If the same
price adjustment is performed for barrier options its magnitude is as important as,
and often several times dominates, the price adjustment due to discrete monitoring.
The fraction

√
Tε0
V0

is reported in Tables7 and 8.
One obvious conclusion to draw from formula (8) is that prices in an incomplete

market are likely to contain both a linear (V0) and a non-linear (ε0) component. The
prevailing market practice is to use just the linear part V0 for calibration which often
requires distorting the historical distribution of returns to match observed market
prices across strikes and maturities. For example, in their calibration of plain vanilla
option prices [31] report historical annualized excess kurtosis at 0.002 but risk-neutral
excess kurtosis at 0.18 which is a level that the variance-optimal martingale measure

Table 7 Risk premium as a percentage of mean value for up-and-out call. T = 1 month, Δ = 1
day, μ = 0.1, r = 0. Strike and barrier levels are parametrized by the Black–Scholes delta of their
position

Barrier (delta/level)

Strike 1E-100 0.01 0.10 0.30 0.45 0.49

Delta Level 343.8 (%) 114.6 (%) 107.9 (%) 103.3 (%) 100.9 (%) 100.3 (%)

0.01 114.6 177

0.10 107.9 35 75

0.30 103.3 13 26 61

0.45 100.9 7 16 35 121

0.49 100.3 7 15 30 94 491

0.75 96.3 3 8 17 34 75 104

0.99 87.5 0.2 4 9 15 26 33

Table 8 Risk premium as a percentage of mean value for up-and-out call. T = 6 months, Δ = 1
day, μ = 0.1, r = 0. Strike and barrier levels are parametrized by the Black–Scholes delta of their
position

Barrier (delta/level)

Strike 1E-100 0.01 0.10 0.30 0.45 0.49

Delta Level 2071.0 (%) 140.5 (%) 121.2 (%) 108.8 (%) 102.8 (%) 101.4 (%)

0.01 114.6 111

0.10 107.9 17 55

0.30 103.3 6 19 43

0.45 100.9 3 11 24 103

0.49 100.3 3 11 19 69 665

0.75 96.3 1 6 11 21 47 71

0.99 87.5 0 3 5 8 14 19
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that generates V0 simply cannot reach. This phenomenon gets worse in the presence
of exotic options. Formula (8) offers a flexible alternative that may offer better fit of
model dynamics to historical return distributions and at the same time provide closer
calibration to market prices thanks to the non-linear term ε0 which has very different
characteristics for different types of exotic options, as we have seen in the previous
section.

5 Conclusions

In place of conclusions a personal confession. At around 2002 I was performing
numerical experiments somewhat similar to the ones presented here, but without
the underlying Lévy structure, just purely driven by empirical data and with plain
vanilla options. In the process of doing so I convinced myself that Lévy models,
which emerge as continuous-time limits of multinomial lattices, are the key math-
ematical tool to describe market incompleteness. I wrote to Ernst Eberlein, out of
the blue, to ask whether I might join his group for a few months to learn properly
about this exciting and for me completely new and difficult theory. The result were
two stimulating months in Freiburg in early 2004 and a lifetime of mathematical
inspiration. Thank you Ernst!
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Forward Exponential Indifference Valuation
in an Incomplete Binomial Model

M. Musiela, E. Sokolova and T. Zariphopoulou

Abstract We introduce and construct indifference prices under exponential forward
performance criteria in an incomplete binomial model. We propose a pricing algo-
rithm, which is iterative and yields the price in two sub-steps, locally in time. At the
beginning of each period, an intermediate payoff is produced which is non-linear and
replicable, and, in turn, it is priced by arbitrage in the second sub-step. The indiffer-
ence price is thus constructed via an iterative non-linear pricing operator, which also
involves a martingale measure. The latter turns out to minimize the reverse relative
entropy. Properties of the forward prices are discussed as well as differences with
their classical counterparts.

Keywords Forward performance processes · Indifference pricing ·Reverse relative
entropy

1 Introduction

We introduce, construct and study indifference prices in an incomplete binomial
model under forward performance criteria. Such criteria, proposed by two of the
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authors (see, among others, [12, 15]), complement the traditional expected utility
ones by allowing for dynamic adaptation of risk preferences as the market evolves.
We refer the reader to, among others, [15–17, 19] for an overview on the forward
performance approach.

The binomial model we consider is more general than the ones studied in the
traditional exponential indifference valuation literature, for it includes a non-traded
stochastic factor that affects not only the claim’s payoff (as it is the case, among
others, in [1, 4, 10, 11, 23, 24]) but, also, the transition probability and/or the values
of the traded stock. This extension is crucial in incorporating models with stochastic
investment opportunity sets. Binomial models of this kind were analyzed in the
classical setting in [9, 18] for power and exponential utilities, respectively.

We first construct a forward performance process for the incomplete model herein
and, in turn, analyze the associated indifference prices. We focus on a criterion of
exponential type (cf. (13)) since exponential risk preferences have been predomi-
nantly used in indifference valuation.

The main contribution is the construction of a valuation algorithm for the forward
indifference prices. We show that, for a claim written at time 0 and maturing at t, its
price νs (Ct ), s = 0, 1, . . . , t, satisfies

νs (Ct ) = E (s.s+1)
Q∗ (νs+1 (Ct )) := EQ∗

(
1
γ
ln EQ∗

(
eγ νs+1(Ct )

∣∣Fs ∨ F S
s+1

)∣∣∣∣Fs

)
,

where Fs and F S
s are the filtrations generated by both the stock and the stochas-

tic factor, and the stock, respectively, and Q
∗ an appropriately chosen martingale

measure.
Therefore, the price is constructed iteratively,

νs (Ct ) = E (s,t)
Q∗ (Ct ) := E (s,s+1)

Q∗

(
E (s+1,s+2)
Q∗ . . . E (t−1,t)

Q∗ (Ct )
)

.

Each price iteration has two sub-steps. In the first, the intermediate payoff

C(s,s+1) (νs+1 (Ct )) := 1
γ
ln EQ∗

(
eγ νs+1(Ct )

∣∣Fs ∨ F S
s+1

)
(1)

is produced, which is non-linear and replicable. In turn, its arbitrage-free price yields,
in the second sub-step, the indifference price,

νs (Ct ) = EQ∗
(C(s,s+1) (νs+1 (Ct ))

∣∣Fs
)
. (2)

Central role plays the emerging pricing measureQ∗, which turns out to be a mar-
tingale one that minimizes the reverse relative entropy (see Proposition 7).Moreover,
it has the property that the conditional distribution of the stochastic factor, given the
information on the traded stock, remains the same as the one under the historical
measure (see (36)), in that, for s = 1, 2, . . . , t,

Q
∗ (

Ys

∣∣Fs−1 ∨ F S
s

) = P
(
Ys

∣∣Fs−1 ∨ F S
s

)
.
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The forward indifference prices have intuitively pleasing properties. Among oth-
ers, we show that the above intermediate payoff C(s,s+1) (νs+1 (Ct )) provides a direct
analogue of the traditional certainty equivalent (cf. (51)). Namely, consider the non-
linear payoff of certainty equivalent type

C E (s,s+1) (νs+1 (Ct )) := −U (−1)
s+1

(
EP

(
Us+1 (−νs+1 (Ct ))|Fs ∨ F S

s+1

))
, (3)

where P is the historical measure, Us+1 the forward performance process and U (−1)
s+1

its spatial inverse. We establish that it coincides with the above payoff,

C E (s,s+1) (νs+1 (Ct )) = C(s,s+1) (νs+1 (Ct )) .

As a result, the forward indifference price can be represented as the arbitrage-free
price of an appropriately chosen conditional certainty equivalent for each valuation
period.

We also show that the single-period conditional distribution of the pricing mea-
sureQ∗ depends exclusively on the associated single-period conditional risk neutral
and historical probabilities (see (32), (33)). This, together with the form of E (s.s+1)

Q∗
above, highlight the essential features of the indifference valuation under forward
exponential criteria: the price is constructed by “single-period” operations—both in
terms of the pricing functional and the involved pricingmeasure—which are repeated
from one-period to the next with single-period adjustments of the conditional risk
neutral and historical probabilities. Furthermore, all three pricing ingredients, Q∗,
E (s.s+1)
Q∗ and E (s.t)

Q∗ , are independent of the maturity of the claim. Finally, because
forward performance criteria are defined for all times, sequentially from one period
to the next as the market moves (cf. (17)), one can price claims that arrive at later
times with arbitrary maturities (see discussion below Corollary 13).

Note that most of these properties fail in the classical setting, where prices are
defined in terms of expected utility from terminal wealth in a chosen horizon, say
[0, T ]. Indeed, while the forms of the corresponding single- and multi-step pricing
functionals E (s.s+1)

Qme
T

and E (s.t)
Qme

T
are similar to the ones herein (see, [10, 23, 24] for

complete markets and a claim written only on the nontraded asset, and [18] for a
model like the one herein), the choice of the horizon strongly affects the pricing
measure Q

me
T , which is the minimal relative entropy one [2, 5, 21]. Moreover, its

conditional distribution does not have the aforementioned local features that Q∗
has. From the indifference valuation perspective, once the investment horizon is
(pre)chosen, no new claim arriving at a future time, that was not known a priori
when the original investment horizon was set up, and maturing beyond T can be
priced.

The paper is organized as follows. In Sect. 2, we present the model and its forward
investment performance process, and propose an example of exponential type. In
Sect. 3, we introduce the forward indifference price and in Sect. 4 we construct the
associated pricing algorithm. In Sect. 5, we present various properties of the prices
and discuss differences with their classical counterparts.
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2 The Model and Its Forward Performance Criteria

We start with the probabilistic setup of the incomplete multi-period binomial model.
There are two traded assets, a riskless bond and a stock. The bond is assumed to offer
zero interest rate.

The values of the stock are denoted by St , t = 1, 2, . . . with S0 > 0. We define
the random variables

ξt = St

St−1
, ξt = ξ d

t , ξ u
t with 0 < ξ d

t < 1 < ξ u
t . (4)

Incompleteness comes from a non-traded stochastic factor. Its levels, denoted by
Yt , t = 0, 1, . . . , satisfy Yt �= 0. We introduce the random variables

ηt = Yt

Yt−1
, ηt = ηd

t , ηu
t with 0 < ηd

t < ηu
t . (5)

We then view {(St , Yt ) : t = 0, 1, . . .} as a two-dimensional stochastic process
defined on a probability space (�,F , (Ft ) ,P). The filtration Ft is generated by
Si and Yi , or, equivalently, by the random variables ξi and ηi , for i = 0, 1, . . . , t .
We also consider the filtration F S

t generated only by Si , i = 0, 1, . . . , t . The real
(historical) probability measure on � and F is denoted by P.

We introduce the sets

At = {
ω : ξt (ω) = ξ u

t

}
and Bt = {

ω : ηt (ω) = ηu
t

}
, (6)

and assign the single-period conditional probabilities P ( At Bt |Ft−1),

P
(

At Bc
t

∣∣Ft−1
)
,P

(
Ac

t Bt

∣∣Ft−1
)
,P

(
Ac

t Bc
t

∣∣Ft−1
)
, for t = 1, 2, . . . .

Throughout, we will be using the notation AB to denote the intersection A ∩ B
of sets A and B. We will be also using the notations “Z ∈ Ft” or “Z is Ft -mble”
interchangeably to state that a generic random variable Z is Ft -measurable.

An investor starts at t = 0 with endowment X0 = x, x ∈ R, and trades between
the stock and the bond, following self-financing strategies. The number of shares of
stock held in his portfolio over the time interval [t − 1, t), t = 1, 2, . . . , is denoted
by αt . The set of admissible policies is denoted by A and consists of all sequences
α = {α1, α2, . . . , αt , . . .} , where each term αt is a real-valued Ft−1-mble random
variable.

The investor’s wealth is, then, given, for t = 1, 2, . . ., by

Xα
t = x +

t∑
i=1

αi �Si , (7)

where the price increment �Si = Si − Si−1.
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The performance of the various investment strategies is measured via a stochastic
criterion, the so-called forward performance process, which measures the output of
admissible portfolios and gives a selection criterion as follows: a strategy is deemed
optimal if it generates a wealth process whose average performance is maintained
over time. Specifically, the average performance of this strategy, at any future date,
conditionally on today’s information preserves the performance of this strategy up
until today. Any strategy that fails to maintain the average performance over time is,
then, sub-optimal. We formalize this more rigorously below.

Definition 1 An Ft -adapted process Ut (x) is a forward performance process if, for
t = 0, 1, . . . ,

(i) the mapping x → Ut (x), x ∈ R, is strictly increasing and strictly concave,
(ii) for each α ∈ A,

Ut
(
Xα

t

) ≥ EP

(
Ut+1

(
Xα

t+1

)∣∣Ft
)
, (8)

(iii) there exists α∗ ∈ A for which

Ut
(
Xα∗

t

) = EP

(
Ut+1

(
Xα∗

t+1

)∣∣Ft
)
. (9)

The concept of forward performance process was introduced by two of the authors
in [12] for the binomial model at hand in a single-period setting. It was subsequently
extended to Itô-diffusion markets, and we refer the reader, among others, to [14, 15,
17, 19], and references therein.

Characterizing the entire family of forward performance processes remains an
open question and is being currently investigated by the authors and others. In the
case of Itô-diffusion markets, a stochastic PDE was derived in [16] for the forward
performance process. The novel element therein is the forward performance volatil-
ity process, which is an investor-specific input. As a result, forward performance
processes are not in general unique.

Special classes of volatilities were proposed in [15], which can be interpreted
as zero-volatility cases for alternative market settings under a different numeraire
and/or market views. More recent works on the forward SPDE include [3, 8, 19, 20,
22]. For a complete study of the zero-volatility case see [17].

Herein, we study discrete-time forward processes and focus on analyzing the
associated indifference prices. Because in the classical expected utility framework
such prices have been constructed primarily for exponential risk preferences, we are
interested in a similar class of criteria as well.

2.1 An Exponential Forward Performance Process

We look for a forward performance process of the form

Ut (x) = −e− γ x+H0,t , x ∈ R and γ > 0,
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for an appropriately chosen process H0,t , satisfying H0,0 = 0 and H0,t ∈ Ft , t =
1, 2, . . . .

As mentioned earlier, forward performance processes are not unique, for they
depend critically on the choice of their volatility process. Herein, we focus on a
forward process of the above form which, as we show below, turns out to also
be decreasing in time, for each x . We choose to start with this class of discrete-
time forward criteria because they provide the simplest direct extension of the zero-
volatility case in Itô-diffusion markets, which also turn out to be time-monotone
processes (see [17]).

For general semimartingale markets, exponential forward processes were ana-
lyzed in [27], and subsequently used for the construction of maturity-independent
entropic risk measures in [26].

We proceed with some auxiliary results. For t = 1, 2, . . . , we denote by Qt the
set of equivalent martingale measures defined on Ft . We also denote (with a slight
abuse of notation) by Q its generic element and recall the conditional risk neutral
probabilities

qt = Q ( At |Ft−1) = 1 − ξ d
t

ξ u
t − ξ d

t

, (10)

with At and ξ d
t , ξ u

t as in (6) and (4).

Definition 2 The process ht , t = 1, 2, . . . , is defined by

ht = qt ln
qt

P ( At |Ft−1)
+ (1 − qt ) ln

1 − qt

P ( Ac
t |Ft−1)

, (11)

with qt and At as in (10) and (6), respectively.

Note that actually ht ∈ Ft−1 and, moreover,

e−ht =
(
P ( At |Ft−1)

qt

)qt
(
P

(
Ac

t

∣∣Ft−1
)

1 − qt

)1−qt

. (12)

We present one of the main results next.

Theorem 3 Let h as in (11) and γ > 0. Then, for t = 1, 2, . . . and x ∈ R, the process

Ut (x) = −e− γ x+�t
i=1hi , (13)

with U0 (x) = −e− γ x , is a forward performance.
The policy given, for i = 1, 2, . . . , t, by

α∗
i = 1

γ Si−1
(
ξ u

i − ξ d
i

) ln
(
ξ u

i − 1
)
P ( Ai |Fi−1)(

1 − ξ d
i

)
P

(
Ac

i

∣∣Fi−1
) (14)
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is optimal and generates the optimal wealth process

X∗
t = x + 1

γ

t∑
i=1

ξi − 1(
ξ u

i − ξ d
i

) ln
(
ξ u

i − 1
)
P ( Ai |Fi−1)(

1 − ξ d
i

)
P

(
Ac

i

∣∣Fi−1
) . (15)

We first present the following auxiliary result.

Lemma 4 For i = 1, 2, . . . , and hi as in (11), we have

sup
αi ∈Fi−1

EP

(−e− γ αi 	Si |Fi−1
) = −e−hi , (16)

with the maximum occurring at α∗
i given in (14).

Proof We have, with Ai as in (6),

EP

(−e− γ αi 	Si
∣∣Fi−1

)

= EP

(
−e− γ αi Si−1(ξ u

i −1)1Ai

∣∣∣Fi−1

)
+ EP

(
−e− γ αi Si−1(ξ d

i −1)1Ac
i

∣∣∣Fi−1

)

= −
(

e− γ αi Si−1(ξ u
i −1)P ( Ai |Fi−1) + e− γ αi Si−1(ξ d

i −1)P
(

Ac
i

∣∣Fi−1
))

,

where we used the measurability properties of the involved quantities. Direct differ-
entiation yields that the optimum occurs at (14). Then, the first term above becomes

−e− γ α∗
i Si−1(ξ u

i −1)P ( Ai |Fi−1) = −
(

eγ α∗
i Si−1(ξ u

i −ξ d
i )

)− ξu
i −1

ξu
i −ξd

i P ( Ai |Fi−1)

= −
( (

ξ u
i − 1

)
P ( Ai |Fi−1)(

1 − ξ d
i

)
P

(
Ac

i

∣∣Fi−1
)
)− ξu

i −1

ξu
i −ξd

i

P ( Ai |Fi−1)

= −
(
1 − qi

qi

)−(1−qi )
(
P ( Ai |Fi−1)

P
(

Ac
i

∣∣Fi−1
)
)−(1−qi )

P ( Ai |Fi−1)

= −
(

qi

1 − qi

)1−qi

(P ( Ai |Fi−1))
qt

(
P

(
Ac

i

∣∣Fi−1
))1−qi

,

where we used (10). Similarly,

−e− γ α∗
i Si−1(ξ d

i −1)P
(

Ac
i

∣∣Fi−1
)
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= −
(
1 − qi

qi

)qi

(P ( Ai |Fi−1))
qi

(
P

(
Ac

i

∣∣Fi−1
))1−qi

.

Therefore,
EP

(−e− γ α∗
i 	Si

∣∣Fi−1
)

= −(P ( Ai |Fi−1))
qi

(
P

(
Ac

i

∣∣Fi−1
))1−qi

((
qi

1 − qi

)1−qi

+
(
1 − qi

qi

)qi
)

= −
(
P ( Ai |Fi−1)

qi

)qi
(
P

(
Ac

i

∣∣Fi−1
)

qi

)1−qi

(qi + (1 − qi )) = −e−hi ,

where we used (12). �

We continue with the proof of Theorem 3.

Proof Requirement (i) in Definition 1 follows directly. Next, we establish (8). Using
(7) and (13), we need to show that, for t ≥ 0 and αi ∈ Fi−1, i = 1, . . . , t + 1, and
x ∈ R,

−e− γ(x+�t
i=1αi 	Si)+�t

i=1hi ≥ EP

(
−e− γ(x+�t+1

i=1αi 	Si)+�t+1
i=1hi |Ft

)
.

The above inequality reduces to

EP

(−e− γ αt+1	St+1 |Ft
) ≤ −e−ht+1 ,

and we easily conclude using Lemma 4.
To show (9) we work as follows. Let X∗

t , t = 0, 1, . . . , given by (15). We need
to establish

−e− γ X∗
t +�t

i=1hi = EP

(
−e− γ X∗

t+1+�t+1
i=1hi |Ft

)
.

Using that X∗
t+1 = X∗

t + α∗
t+1 �St+1 and themeasurability of the involved quantities,

the above equality simplifies to EP

(
e− γ α∗

t+1�St+1+ht+1 |Ft
) = 1, and we conclude

using Lemma 4 once more.

We note how Ut (x) is constructed from one period to the next: at each time t,

Ut (x) = Ut−1 (x) eht

= Ut−1 (x)

(
qt

P ( At |Ft−1)

)qt
(

1 − qt

P ( Ac
t |Ft−1)

)1−qt

, (17)

(cf. (13) and (11)). In other words, to construct Ut (x), we need Ut−1 (x) and the
single-period conditional risk neutral and historical probabilities qt andP ( At |Ft−1),
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measuring the movement of the traded asset for the next upcoming period only, con-
ditionally on today’s information. In other words, the forward process is constructed
by progressive, forward in time, “single-period” model updates. Moreover, the for-
ward performance process incorporates the market information from initial time 0
up to current time t, “path-by-path”, as the term H0,t = e�t

i=1hi indicates. Thus,Ut (x)

evolves in perfect alignment with the market, forward in time.
This is not the case in the classical expected utility framework. For a trading

horizon, say [0, T ] , the classical value process is of the form Vt,T (x) = −e− γ x+Ht,T ,

withHt,T being the aggregate minimal entropy conditionally onFt , till the end of the
investment horizon [t, T ] (see, for example, [21]). Therefore, for any time t ∈ [0, T ] ,
its construction requires the model specification for the entire remaining investment
time [t, T ] , and incorporates the market information in a much coarser manner,
through the termHt,T associated with the average aggregate relative entropy from t
to T, conditionally on Ft .

3 Forward Exponential Indifference Valuation

In this section, we recall the notion of the writer’s forward exponential indifference
price and provide an iterative algorithm for its construction. Such prices were first
introduced in [12] (see, also, [11]) for European claims in a single periodmodel. They
were subsequently studied in diffusion models with stochastic volatility in [13], and
for American-type claims in [7].

Herein, we consider a generic claim, written on both the traded stock and the
non-traded factor, say at time t0, taken for simplicity to be t0 = 0. The claim matures
at t > 0 yielding payoff Ct , represented as an Ft -mble random variable.

For convenience, we eliminate the “exponential” terminology and also occasion-
ally rewrite some quantities for the reader’s convenience.

Definition 5 Consider a claim, written at time t0 = 0 and yielding at t > 0 payoff
Ct ∈ Ft . Let Us, s = 0, 1, . . . , t, be the forward performance process given by

Us (x) = −e− γ x+�s
i=1hi

and h as in Definition 1 (cf. (13) and (11)).
For s = 0, 1, . . . , t − 1, the writer’s forward indifference price is defined as the

amount νs(Ct ) ∈ Fs such that, for all wealth levels x ∈ R,

Us (x) = sup
αs+1,...,αt

EP

(
Ut

(
x + νs(Ct ) + �t

i=s+1αi	Si − Ct
)∣∣Fs

)
, (18)

with αi ∈ Fi−1, i = s + 1, . . . , t, and νt (Ct ) = Ct .

Similarly to the classical setting, the above indifference pricing condition reflects
the indifference of the writer between two scenaria: start at s with wealth x and
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trade optimally till t without taking the claim in consideration, or start at s with
wealth x and also accept the liability νs(Ct ), then trade optimally (with initial wealth
x + νs(Ct )) till t and also fulfill the liability Ct , at time t .

For the reader’s convenience, we start with the construction of the indifference
price νt−1 (Ct ), just one period before maturity. Its form will motivate the upcoming
choices of the pricing functionals as well as the specification of the emerging pricing
measure, for all previous times.

Lemma 6 At time t − 1, the indifference price νt−1 (Ct ) is given by

νt−1 (Ct ) = qt
1
γ
ln

(
EP

(
eγ Ct1At

∣∣Ft−1
)

P ( At |Ft−1)

)
+ (1 − qt )

1
γ
ln

EP

(
eγ Ct1Ac

t

∣∣Ft−1
)

P ( Ac
t |Ft−1)

,

(19)
with qt and At as in (10) and (6).

Proof We need to show that for x ∈ R,

Ut−1 (x) = sup
αt ∈Ft−1

EP

(
−e− γ(x+νt−1(Ct )+αt 	St −Ct )+�t

i=1hi

∣∣∣Ft−1

)
,

with νt−1 (Ct ) as in (19). Using (13) and the measurability of the involved quantities,
the above reduces to showing

sup
αt ∈Ft−1

EP

(−e− γ(νt−1(Ct )+αt 	St −Ct )+ht
∣∣Ft−1

) = 1. (20)

We have,
EP

(−e− γ(αt 	St −Ct )
∣∣Ft−1

)

= EP

(
−e− γ αt St−1(ξ u

t −1)eγ Ct1At

∣∣∣Ft−1

)
+ EP

(
−e− γ αt St−1(ξ d

t −1)eγ Z1Ac
t

∣∣∣Ft−1

)

= −
(

e− γ αt St−1(ξ u
t −1)EP

(
eγ Ct1At

∣∣Ft−1
) + e− γ αt St−1(ξ d

t −1)EP

(
eγ Ct1Ac

t

∣∣Ft−1
))

= −
(

e− γ αt St−1(ξ u
t −1)Z1

t−1 + e− γ αt St−1(ξ d
t −1)Z2

t−1

)
,

with the random variables Z1
t−1, Z2

t−1 defined as

Z1
t−1 := EP

(
eγ Ct1At

∣∣Ft−1
)

and Z2
t−1 := EP

(
eγ Ct1Ac

t

∣∣Ft−1
)
. (21)

The optimum above occurs at

α
∗,Ct
t = 1

γ St−1
(
ξ u

t − ξ d
t

) ln
(
ξ u

t − 1
)

Z1
t−1(

1 − ξ d
t

)
Z2

t−1

= 1
γ St−1

(
ξ u

t − ξ d
t

) ln (1 − qt ) Z1
t−1

qt Z2
t−1

.
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In turn,

EP

(
−e

− γ
(
α

∗,Ct
t 	St −Ct

)∣∣∣∣Ft−1

)

= −
((

1 − qt

qt

Z1
t−1

Z2
t−1

)−(1−qt )

Z1
t−1 +

(
1 − qt

qt

Z1
t−1

Z2
t−1

)qt

Z2
t−1

)

= −
(

Z1
t−1

qt

)qt (
Z2

t−1

1 − qt

)1−qt

.

Therefore,

EP

(
−e

− γ
(
α

∗,Ct
t 	St −Ct

)∣∣∣∣Ft−1

)
= − exp

(
ln

((
Z1

t−1

qt

)qt (
Z2

t−1

1 − qt

)1−qt
))

= − exp

(
qt ln

Z1
t−1

qt
+ (1 − qt ) ln

Z2
t−1

1 − qt

)
.

Next, observe that

qt ln
Z1

t−1

qt
+ (1 − qt ) ln

Z2
t−1

1 − qt

= qt ln
EP

(
eγ Ct1At

∣∣Ft−1
)

qt
+ (1 − qt ) ln

EP

(
eγ Ct1Ac

t

∣∣Ft−1
)

1 − qt

= qt ln

(
EP

(
eγ Ct1At

∣∣Ft−1
)

P ( At |Ft−1)

)
+ (1 − qt ) ln

EP

(
eγ Ct1Ac

t

∣∣Ft−1
)

P ( Ac
t |Ft−1)

−
(

qt ln
P ( At |Ft−1)

qt
+ (1 − qt ) ln

P
(

Ac
t

∣∣Ft−1
)

1 − qt

)

= γ νt−1 (Ct ) − ht .

Therefore,

sup
αt ∈Ft−1

EP

(
−e

− γ
(
α

∗,Ct
t 	St −Ct

)∣∣∣∣Ft−1

)
= −eγ νt−1(Ct )−ht ,

and (20) follows. �

Next, we make the following key observations. First, let us define the random
variable
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C(t−1,t) (Ct ) := 1
γ
ln

EP

(
eγ Ct

∣∣Ft−1
)

P ( At |Ft−1)
1At + 1

γ
ln

EP

(
eγ Ct

∣∣Ft−1
)

P ( Ac
t |Ft−1)

1Ac
t
, (22)

and observe that C(t−1,t) (Ct ) ∈ F S
t . In particular, it can be expressed as

C(t−1,t) (Ct ) = 1
γ
ln EP

(
eγ Ct

∣∣Ft−1 ∨ F S
t

)
. (23)

In turn, observe that (19) yields that the indifference price is the conditional expec-
tation of C(t−1,t) (Ct ) under any martingale measure, namely, for all Q ∈Qt ,

νt−1 (Ct ) = EQ

(C(t−1,t) (Ct )
∣∣Ft−1

)
. (24)

What the above tells us is that the indifference price νt−1 (Ct ) is constructed via
a two-step pricing procedure. In the first step, the claim’s payoff Ct is “distorted”,
conditionally on Ft−1 ∨ F S

t , and the intermediate payoff C(t−1,t) (Ct ) is created.
This payoff is nonlinear and F S

t -mble. In the second step, the indifference price is
produced as the arbitrage-free price of this intermediate payoff C(t−1,t) (Ct ).

Note that if Ct ∈ F S
t , then, C(t−1,t) (Ct ) = Ct and, naturally, νt−1 (Ct ) =

EQ (Ct |Ft−1). In general, the price at t − 1 can be represented as the non-linear
expression

νt−1 (Ct ) = EQ

(
1
γ
ln EP

(
eγ Ct

∣∣Ft−1 ∨ F S
t

)∣∣∣∣Ft−1

)
,

which involves an inner non-linear expression under the historical measure, and an
outer conditional expectation under any martingale measure.

Next, we pose the question whether we can actually express the price νt−1 (Ct ) as

νt−1 (Ct ) = E (t−1,t)
Q∗ (Ct ) ,

for an appropriate indifference pricing non-linear functional and a specific mar-
tingale measure (not necessarily unique) Q∗ ∈ Qt . This will provide an intuitively
pleasing non-linear analogue of forward indifference prices to their arbitrage-free
counterparts.

To this end, observe that the values of the payoff C(t−1,t) (Ct ) suggest that we
should seek a martingale measure Q∗ ∈ Qt such that

EP

(
eγ Ct1At

∣∣Ft−1
)

P ( At |Ft−1)
= EQ∗

(
eγ Ct1At

∣∣Ft−1
)

Q∗ ( At |Ft−1)

and
EP

(
eγ Ct1Ac

t

∣∣Ft−1
)

P ( Ac
t |Ft−1)

= EQ∗
(

eγ Ct1Ac
t

∣∣Ft−1
)

Q∗ ( Ac
t |Ft−1)

.
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We, then, see that it suffices for the candidate measure Q∗ to satisfy

Q
∗ ( At Bt |Ft−1)

qt
= P ( At Bt |Ft−1)

P ( At |Ft−1)
,
Q

∗ (
At Bc

t

∣∣Ft−1
)

qt
= P

(
At Bc

t

∣∣Ft−1
)

P ( At |Ft−1)
(25)

Q
∗ (

Ac
t Bt

∣∣Ft−1
)

1 − qt
= P

(
Ac

t Bt

∣∣Ft−1
)

P ( Ac
t |Ft−1)

,
Q

∗ (
Ac

t Bc
t

∣∣Ft−1
)

1 − qt
= P

(
Ac

t Bc
t

∣∣Ft−1
)

P ( Ac
t |Ft−1)

.

(26)
In turn, we observe that, under suchQ∗, the intermediate payoff C(t−1,t) (Ct ) retains
its form, in that under both P and Q

∗,

C(t−1,t) (Ct ) = 1
γ
ln EQ∗

(
eγ Ct

∣∣Ft−1 ∨ F S
t

) = 1
γ
ln EP

(
eγ Ct

∣∣Ft−1 ∨ F S
t

)
.

We then see that if we define the non-linear pricing functional

E (t−1,t)
Q∗ (Z) := EQ∗

(C(t−1,t) (Z)
∣∣Ft

) = EQ∗

(
1
γ
ln EQ∗

(
eγ Z

∣∣Ft−1 ∨ F S
t

)∣∣∣∣Ft−1

)
,

(27)
for a generic random variable Z ∈ Ft , we can actually express the indifference price
at t − 1 in the desired concise form

νt−1 (Ct ) = E (t−1,t)
Q∗ (Ct ) . (28)

Observe that the measureQ∗ is used in both expectations in (27) since the outer one
is applied to an F S

t −mble random variable.
Notice that despite the fact that both forward random functionals Ut and Ut−1,

entering in the derivation of νt−1 (Ct ), are path-dependent through the terms �t
i=1hi

and �t−1
i=1hi appearing in their exponents (cf. (13)), the indifference price νt−1 (Ct )

takes a substantially simplified “single-period” form.
Furthermore, the involved conditional probabilities of the emerging pricing mea-

sureQ∗ have also “single-period” dependence, since they are determined exclusively
by qt and P ( At |Ft−1) (cf. (25), (26)).

A natural question arises, given the nonlinearity of C(t−1,t) (Ct ), whether it can
be interpreted as a certainty equivalent of some form. In Sect. 4, we show that this is
indeed the case. Specifically, we establish that

C(t−1,t) (Ct ) = −U (−1)
t

(
E

P

(
Ut (−Ct )

∣∣Ft−1 ∨ F S
t

))
.

This also yields a natural interpretation of νt−1 (Ct ) as the arbitrage-free price of a
payoff with certainty equivalent characteristics.

In the next section, we show how to extend the above constructions and interpreta-
tions to all previous periods t − 2, t − 3, . . . , define analogous to (23), (24) pricing
functionals and specify a pricingmeasure from themartingale ones satisfying similar
to (25), (26) properties.
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4 The (Writer’s) Forward Indifference Pricing Algorithm

Motivatedby the formof the indifferencepriceνt−1 (Ct ) in (28),we seek an analogous
price representation,

νs (Ct ) = E (s,t)
Q∗ (Ct ) ,

for an appropriate chosen multi-period valuation functional E (s,t)
Q∗ and a pricing mea-

sureQ∗, for s = 0, 1, . . . , t. As for the case s = t − 1, the main challenge is how to
incorporate the path dependence of the forward functionals Us and Ut (appearing in
Definition 5) coming from the terms �s

i=1hi and �t
i=1hi (cf. (13)).

We propose such amulti-period pricing functional of an iterative form, E (s,t)
Q∗ (·) =

E (s,s+1)
Q∗

(
E (s+1,s+2)
Q∗ . . . E (t−1,t)

Q∗ (·)
)
, with the single-period pricing functionals resem-

bling (27). We also show that the appropriate pricing measureQ∗ is a martingale one
that has similar to (25), (26) local properties. Furthermore, we prove that it actually
minimizes the reverse relative entropy in [0, t] over all martingale measures defined
on Ft .

4.1 The Forward Indifference Pricing Measure,
and the Single- and Multi-step Valuation Functionals

We start with some introductory results and notation. For t = 1, 2, . . . , recall that
Qt is the set of equivalent martingale measures and Q its generic element.

For s = 1, 2, . . . , t, we have

Q
(
ξs ∈ {

ξ d
s , ξ u

s

}
, ηs ∈ {

ηd
s , ηu

s

} |Fs−1
) = Q ( As Bs |Fs−1) 1As Bs

+Q
(

As Bc
s

∣∣Fs−1
)
1As Bc

s
+ Q

(
Ac

s Bs

∣∣Fs−1
)
1Ac

s Bs + Q
(

Ac
s Bc

s

∣∣Fs−1
)
1Ac

s Bc
s
,

and, similarly, for the historical measure,

P
(
ξs ∈ {

ξ d
s , ξ u

s

}
, ηs ∈ {

ηd
s , ηu

s

} |Fs−1
) = P ( As Bs |Fs−1) 1As Bs

+P
(

As Bc
s

∣∣Fs−1
)
1As Bc

s
+ P

(
Ac

s Bs

∣∣Fs−1
)
1Ac

s Bs + P
(

Ac
s Bc

s

∣∣Fs−1
)
1Ac

s Bc
s
,

with ξs, ηs, As, Bs as in (4), (5) and (6).
We will be using the condensed notation for the conditional distributions

Q (ξs, ηs |Fs−1 ) � Q
(
ξs ∈ {

ξ d
s , ξ u

s

}
, ηs ∈ {

ηd
s , ηu

s

} |Fs−1
)

(29)

and
P (ξs, ηs |Fs−1 ) � P

(
ξs ∈ {

ξ d
s , ξ u

s

}
, ηs ∈ {

ηd
s , ηu

s

} |Fs−1
)
. (30)
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Next, we seek a martingale measure that minimizes, for s = 1, 2, . . . , t, the con-
ditional expectation

− EP

(
ln

Q (ξs, ηs |Fs−1 )

P (ξs, ηs |Fs−1 )

∣∣∣∣Fs−1

)
. (31)

For this, we need to find the minimizers of

−
(
P (As Bs |Fs−1 ) ln

Q (As, Bs |Fs−1 )

P (As, Bs |Fs−1 )
+P

(
As Bc

s |Fs−1
)
ln

Q
(

As Bc
s |Fs−1

)
P

(
As Bc

s |Fs−1
)

+P
(

Ac
s Bs |Fs−1

)
ln

Q
(

Ac
s Bs |Fs−1

)
P

(
Ac

s Bs |Fs−1
) +P

(
Ac

s Bc
s |Fs−1

)
ln

Q
(

Ac
s Bc

s |Fs−1
)

P
(

Ac
s Bc

s |Fs−1
)
)

.

Direct calculations yield the above quantity is minimized if one chooses

Q
∗ (

As Bs |Fs−1
)

qs
= P

(
As Bs |Fs−1

)
P

(
As |Fs−1

) ,
Q

∗ (
As Bc

s
∣∣Fs−1

)
qs

= P
(

As Bc
s
∣∣Fs−1

)
P

(
As |Fs−1

) , (32)

Q
∗ (

Ac
s Bs

∣∣Fs−1
)

1 − qs
= P

(
Ac

s Bc
s
∣∣Fs−1

)
P

(
Ac

s
∣∣Fs−1

) ,
Q

∗ (
Ac

s Bc
s
∣∣Fs−1

)
1 − qs

= P
(

Ac
s Bc

s
∣∣Fs−1

)
P

(
Ac

s
∣∣Fs−1

) . (33)

Indeed, observe that the function f (z) = −
((
ln z

α

)
α +

(
ln c−z

β

)
β
)
, with α, β,

c ∈ (0, 1) achieves for z ∈ [0, c] a minimum at the point z∗ = α
α+β

c. Applying this

for the triplets (α, β, c) = (
P ( As Bs |Fs−1) ,P

(
As Bc

s

∣∣Fs−1
)
, qs

)
and (α, β, c) =(

P
(

Ac
s Bs

∣∣Fs−1
)
,P

(
Ac

s Bc
s

∣∣Fs−1
)
, 1 − qs

)
, respectively, we conclude.

We then consider a martingale measure Q
∗, defined on Ft , satisfying, for t =

1, 2, . . . , the conditional properties (32) and (33), andwe claim that it is well defined.
Indeed, for t = 1, 2, . . . , we have

Q
∗ (

ξ1 ∈ {
ξ d
1 , ξ u

1

}
, . . . , ξt ∈ {

ξ d
t , ξ u

t

}
, η1 ∈ {

ηd
1 , η

u
1

}
, . . . , ηt ∈ {

ηd
t , ηu

t

})
(34)

=
t∏

s=1

Q
∗ (

ξs ∈ {
ξ d

s , ξ u
s

}
, ηs

{
ηd

s , ηu
s

}∣∣Fs−1
) =

t∏
s=1

Q
∗ ( ξs, ηs |Fs−1) ,

with each term being well defined from (32) and (33).
Next, we derive the following characterization result in terms of the reverse rel-

ative entropy measure, in which we use the self-evident condensed expressions
Q (ξ1, . . . , ξt , η1, . . . , ηt ) and P (ξ1, . . . , ξt , η1, . . . , ηt ) to denote the joint distrib-
utions of (ξ1, . . . , ξt , η1, . . . , ηt ) under Q and P, respectively.

Proposition 7 For t = 1, 2, . . . , letQt be the set of equivalent martingale measures
and Q

∗ ∈ Qt defined as in (34). Then, the measure Q∗ minimizes the reverse relative
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entropy Ht , defined as

Ht = −EP

(
ln

Q (ξ1, . . . , ξt , η1, . . . , ηt )

P (ξ1, . . . , ξt , η1, . . . , ηt )

)
, (35)

for Q ∈Qt .

Proof First, observe that (35) can be written as

Ht = −
t∑

s=1

EP

(
ln

Q (ξs, ηs |Fs−1 )

P (ξs, ηs |Fs−1 )

)
,

and, in turn,

Ht = −
t∑

s=1

EP

(
EP

(
ln

Q (ξs, ηs |Fs−1 )

P (ξs, ηs |Fs−1 )

)∣∣∣∣Fs−1

)
,

and we easily conclude. �

The next result shows a key property of the measureQ∗. It also provides equalities
(37), (38) which will play a main role in the construction of the forward indifference
prices. Its proof follows easily.

Proposition 8 (i) The martingale measure Q
∗ defined as in (34) satisfies, for t =

1, 2, . . . , and s = 1, 2, . . . , t,

Q
∗ (

Ys

∣∣Fs−1 ∨ F S
s

) = P
(
Ys

∣∣Fs−1 ∨ F S
s

)
, (36)

with the stochastic factor Ys given in (5).
(ii) Moreover, if Z is an Fs -mble random variable and As as in (6), we have

EP

(
Z1As |Fs−1

)
P (As |Fs−1 )

= EQ∗
(
Z1As |Fs−1

)
Q∗ (As |Fs−1 )

(37)

and
EP

(
Z1Ac

s
|Fs−1

)
P

(
Ac

s |Fs−1
) = EQ∗

(
Z1Ac

t
|Fs−1

)
Q∗ (

Ac
s |Fs−1

) . (38)

We introduce the following single- and multi-period forward pricing functionals.

Definition 9 For t > 0, let Q∗ be the martingale measure as in (36) and, for s =
0, 1, . . . , t − 1, let Z be an Fs+1 -mble random variable in (�,F ,P). We define
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(i) the single-step forward price functional

E (s,s+1)
Q∗ (Z) = EQ∗

(
1
γ
ln EQ∗

(
eγ Z

∣∣Fs ∨ F S
s+1

) |Fs

)
(39)

and,
(ii) the multi-step forward price functional, 0 ≤ s < s ′ ≤ t,

E (s,s ′)
Q∗ (Z) = E (s,s+1)

Q∗ (E (s+1,s+2)
Q∗ (. . . E (s ′−1,s ′)

Q∗ (Z))). (40)

Remark 10 We caution the reader that, in general, for s ′ > s + 1 and Z ∈ Fs ′ ,

E (s,s ′)
Q∗ (Z) �= EQ∗

(
1
γ
ln EQ∗

(
eγ Z

∣∣Fs ∨ F S
s ′

) |Fs

)
. (41)

The reader familiar with existing indifference pricing algorithms (see, among
others, [1, 10, 11, 23, 24]), might find the form of E (s,s+1)

Q∗ and of E (s,s ′)
Q∗ identical

to the ones appearing in these references. This is not, however, the case. The results
herein are, not only, derived for entirely different risk preference criteria but, also,
for more general incomplete market environments, since the nested market model
(bond and stock) is incomplete. Moreover, the involved measure is not the minimal
entropy one but, rather, the minimal reverse entropy measure.

Another difference, as we show in Proposition 16, is that E (s,s+1)
Q∗ provides an intu-

itively pleasing direct analogue of the arbitrage-free price of a conditional certainty
equivalent, while in the classical exponential utility such analogy fails.

The following auxiliary result will be used repeatedly in the construction of the
forward pricing algorithm.

Lemma 11 Let t > 0, s = 0, 1, . . . , t − 1, and E (s,s+1)
Q∗ be as in (39). Then, if Z is

an Fs+1-mble random variable,

sup
αs+1∈Fs

EP

(−e− γ(αs+1	Ss+1−Z)+hs+1
∣∣Fs

) = −eγE (s,s+1)
Q∗ (Z),

with hs as in (11).

Proof The proof follows by analogous arguments as the ones used to show Lemma
6. For this, we only highlight the main steps. We have

EP

(−e− γ(αs+1	Ss+1−Z)
∣∣Fs

) = −
(

e− γ αs+1Ss(ξ u
s+1−1)Z1

s + e− γ αs+1Ss(ξ d
s+1−1)Z2

s

)
,

with Z1
s := EP

(
eγ Z1As+1

∣∣Fs
)
and Z2

s := EP

(
eγ Z1Ac

s+1

∣∣Fs
)
. The optimum occurs

at the point

α
∗,Z
s+1 = 1

γ Ss
(
ξ u

s+1 − ξ d
s+1

) ln (1 − qs+1) Z1
s

qs+1Z2
s

,
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at which we have

EP

(
−e− γ(α∗

s+1	Ss+1−Z)
∣∣∣Fs

)
= −

(
Z1

s

qs+1

)qs+1 (
Z2

s

1 − qs+1

)1−qs+1

= − exp

(
qs+1 ln

Z1
s

qs+1
+ (1 − qs+1) ln

Z2
s

1 − qs+1

)
.

Working as in the proof of Lemma 6, we express the above quantity with respect to
the Q∗ measure,

qs+1 ln
Z1

s

qs+1
+ (1 − qs+1) ln

Z2
s

1 − qs+1

= qs+1 ln
EQ∗

(
eγ Z1As+1

∣∣Fs
)

Q∗ ( As+1|Fs)
+ (1 − qs+1) ln

EQ∗
(

eγ Z1Ac
s+1

∣∣Fs
)

Q∗ (
Ac

s+1

∣∣Fs
) − hs+1, (42)

where, we used the definition of hs+1, the measurability of Z and the second part of
Proposition 4, and the definition of E (s,s+1)

Q∗ . We easily conclude. �

We are now ready to present the forward indifference pricing algorithm.

Theorem 12 Consider a claim, introduced at time t0 = 0, yielding at time t > 0,
payoff Ct ∈ Ft , and νs (Ct ) be defined as in (18). Let, also, Q∗ be as in (36), and
E (s,s+1)
Q∗ and E (s,s ′)

Q∗ as in (39) and (40), respectively. The following statements hold:
(i) The forward indifference price, νs(Ct ), is given, for s = 0, 1, . . . , t − 1, by the

iterative algorithm
νt (Ct ) = Ct ,

νs(Ct ) = E (s,s+1)
Q∗ (νs+1(Ct )) (43)

= EQ∗

(
1
γ
ln EQ∗

(
eγ νs+1(Ct )

∣∣Fs ∨ F S
s+1

) |Fs

)
.

(ii) The forward indifference price process νs(Ct ) is Fs -mble and satisfies, for
s = 0, 1, . . . , t − 1,

νs(Ct ) = E (s,t)
Q∗ (Ct ). (44)

(iii) The forward indifference price algorithm is consistent across time in that, for
0 ≤ s ≤ s ′ < t , the semigroup property

νs(Ct ) = E (s,s ′)
Q∗ (E (s ′,t)

Q∗ (Ct )) (45)

= E (s,s ′)
Q∗ (νs ′(Ct )) = νs(E (s ′,t)

Q∗ (Ct ))

holds.
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Proof Assertions (43) and (44) were proved in Lemma 6 for s = t − 1.
To show (43) for s = t − 2, we first observe that representation (13) yields with

repeated use of Lemma 11 and (13), and of αt−1 ∈ Ft−2, αt ∈ Ft−1,

sup
αt−1,αt

EP (Ut (Xt − Ct )|Ft−2) = sup
αt−1

EP

(
sup
αt

EP (Ut (Xt − Ct )|Ft−1) |Ft−2

)

= sup
αt−1

EP

(
e− γ(x+αt−1	St−1)+�t−1

i=1hi sup
αt

EP

(−e− γ(αt 	St −Ct )+ht |Ft−1
) |Ft−2

)

= sup
αt−1

EP

(
e− γ(x+αt−1�St−1)+�t−1

i=1hi

(
−eγE (t−1,t)

Q∗ (Ct )
)

|Ft−2

)

= e�t−2
i=1hi sup

αt−1

EP

(
−e− γ(x+αt−1	St−1−E (t−1,t)

Q∗ (Ct ))+ht−1 |Ft−2

)

= −e
− γ

(
x−E (t−2,t−1)

Q∗
(
E (t−1,t)
Q∗ (Ct )

))
+�t−2

i=1hi = Ut−2

(
x − E (t−2,t−1)

Q∗

(
E (t−1,t)
Q∗ (Ct )

))

= Ut−2

(
x − E (t−2,t)

Q∗ (Ct )
)

.

The rest of the assertions follows along similar albeit tedious arguments. �

We conclude with the case of multiple claims. Before we present the general
result, let us consider the simple case of two claims, written at t = 0 and maturing
at t − 1 and t, yielding payoffs Ct−1 ∈ Ft−1 and Ct ∈ Ft , respectively.

Then, since Ct−1 ∈ Ft , we have

νt−1(Ct−1 + Ct ) = E (t−1,t)
Q∗ (Ct−1 + Ct )

= EQ∗

(
1
γ
ln EQ∗

(
eγ(Ct−1+Ct )

∣∣Ft−1 ∨ F S
t

) |Ft−1

)
= Ct−1 + νt−1(Ct ).

Trivially, one may view Ct−1 + νt−1(Ct ) as a new claim maturing at time t − 1, and,
in turn, price it iteratively for s = t − 2, t − 3, . . . , 0. The assumption that all claims
are written at time t = 0 can be easily removed. Note, however, what in both cases
(i.e. common or varying inscription times), the market model needs to be specified
at time 0 till the longest a priori known maturity.

Corollary 13 Let t = 1, 2, . . . and s = 0, 1, . . . , t − 1. Consider claims Cs, . . . ,

C j , . . .Ct with C j ∈ F j , j = s, . . . , t, written at t = 0. The forward indifference
price, νs(�

t
j=sC j ), is given, for s = 0, 1, . . . , t − 1, by the iterative algorithm

νt (Ct ) = Ct ,
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νs(�
t
j=sC j ) = Cs + E (s,s+1)

Q∗ (Cs+1 + νs+1(�
t
j=s+2C j ))

= Cs + EQ∗

(
1
γ
ln EQ∗

(
e
γ
(

Cs+1+νs+1(�
t
j=s+2C j )

) ∣∣Fs ∨ F S
s+1

)
|Fs

)
.

(ii) The forward indifference price process νs(�
t
j=sC j ) is Fs -mble and satisfies,

for s = 0, 1, . . . , t,
νs(�

t
j=sC j )

= Cs + E (s,s+1)
Q∗

(
Cs+1 + E (s+1,s+2)

Q∗

(
Cs+2 + . . . E (t−1,t)

Q∗ (Ct )
))

.

An interesting case arises when there is no a priori knowledge at initial time 0
about all incoming claims and their maturities.

For example, consider the case that a single claim, Ct , is written at time 0 that
matures at time t, but it is not known whether additional claims will arrive. Then,
at time s ∈ (0, t] , a new claim, say C̃t ′ , arrives with expiration t ′. If t ′ < t, then its
valuation is easily accommodated by the above Corollary.

If, however, t ′ > t, then one first needs to specify at time s the market model for
the period

(
t, t ′], and, in turn, employ the forward exponential criterion for times

t + 1, t + 2, . . . , t ′, and price by indifference. This can be readily done, however,
since the forward process can be defined for all times, sequentially forward in time.

Note that in the traditional expected utility framework, such flexibility does not
exist. Indeed, once the investment horizon [0, t] is prespecified at time 0, only claims
maturing at times up to t can be priced. Any claim arriving later and with maturity
beyond t cannot be priced, because the expected utility problem cannot be extended
beyond t unless time-consistency is violated.

5 Properties of Forward Exponential Indifference Prices

The forward indifference pries is constructed via the optimal behavior of the investor
with and without the claim in consideration. As such, it incorporates and reflects the
individual risk preferences. Due to the exponential choice, it is independent of the
investor’s wealth.

• Time consistency
The forward pricing operator E (s,t)

Q∗ is time consistent, in that the price at any
intermediate time, say s, can be thought as the price of a claim equal to the
corresponding indifference price at a future time s ′, namely,

νs(Ct ) = νs(νs ′(Ct )), 0 ≤ s ≤ s ′ ≤ t.

This property is reflected in (45).
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• Scaling and monotonicity properties
The following properties of E (s,s+1)

Q∗ (Z), Z , Z ′ ∈ Fs+1 hold:

(i) The mapping γ → E (s,s+1)
Q∗ (Z; γ) is increasing and continuous, and

lim
γ→0+

E (s,s+1)
Q∗ (Z; γ) = EQ∗ (Z) and lim

γ→∞ E (s,s+1)
Q∗ (Z; γ) = EQ∗ ‖Z‖L∞

Q∗{·|Ss } .

Moreover,

lim
γ→0

∂

∂ γ
E (s,s+1)
Q∗ (Z; γ) = 1

2
EQ∗

(
V arQ∗ (Z |Ss )

)
,

and, thus,

E (s,s+1)
Q∗ (Z; γ) = EQ∗ (Z) + 1

2
γ EQ∗

(
V arQ∗ (Z |Ss )

) + o (γ) .

The assertions follow by routine arguments, and their proof is omitted.
(iii) For α ∈ (0, 1), Hölder’s inequality gives

E (s,s+1)
Q∗ (αZ + (1 − α)Z

′
) ≤ αE (s,s+1)

Q∗ (Z) + (1 − α)E (s,s+1)
Q∗ (Z

′
).

(iv) For α > 1, Jensen’s inequality yields

αE (s,s+1)
Q∗ (Z) ≤ E (s,s+1)

Q∗ (αZ) ,

and the reverse inequality for α ∈ (0, 1).
(v) Let Z = Z̃ + Z̄ , such that Z̃ ∈ Fs+1 and Z̄ ∈ F S

s+1. Then,

E (s,s+1)
Q∗ (Z) = E (s,t)

Q∗

(
Z̃
)

+ EQ∗
(

Z̄
∣∣Fs

)
.

• A two-step iterative construction

The forward indifference price is constructed via an iterative pricing schemewhich
starts at the claim’s maturity and is applied backwards in time in (43). The scheme
has local and dynamic properties.

Dynamically, at each time interval, say (s, s + 1), the price νs(Ct ) is computed
via the single-step forward price functional E (s,s+1)

Q∗ , applied to the end of the period
payoff. The latter turns out to be the indifference price νs+1(Ct ), as discussed earlier.
The functional E (s,s+1)

Q∗ is independent of the specific payoff.

Locally, the pricing role of E (s,s+1)
Q∗ is similar to its single-period counterpart,

developed in [10], in that it is non-linear and produces the price in two sub-steps.
In the first sub-step, the end of the period payoff C(s,s+1) (νs+1(Ct )) is distorted and
produces an intermediate payoff, say C(s,s+1) (νs+1(Ct )) , given by
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C(s,s+1) (νs+1(Ct )) = 1
γ
ln EQ∗

(
eγ νs+1(Ct )

∣∣Fs ∨ F S
s+1

)
. (46)

This payoff is replicable and is, in turn, priced by expectation, yielding

νs(Ct ) = EQ∗(C(s,s+1) (νs+1(Ct )) |Fs ). (47)

In the first step, the conditioning is with regards toFs ∨ F S
s+1 while, in the second,

it is only with respect to Fs .

• Analogies with the static certainty equivalent

The classical certainty equivalent is a static pricing rule, yielding the price of a
generic claim, say Z , as

C E (Z) = −u(−1) (EP (u (−Z))) , (48)

for a concave and increasing utility function u (see, for example, [6]). Notice that,
in contrast to the indifference prices, the above price is derived in the absence of
any trading activity. Notice, also, that the measure appearing above is the historical
probability measure and not any martingale one.

Given that the forward price is constructed taking into account the investor’s risk
preferences, shall one expect that they would provide multi-period analogues of the
static certainty equivalent rule? This is not obvious and, as a matter of fact, such
analogy fails in the classical setting.

In seeking a multi-period analogue of (48), it is natural to assume that the role
of u and u(−1) will be played by the process Ut (x) and its spatial inverse U (−1)

t (x),

with the latter given, for t = 1, 2, . . . , by

U (−1)
t (x) = −1

γ
ln (−x) + 1

γ

t∑
i=1

hi , (49)

and U (−1)
0 (x) = − 1

γ ln (−x), for x ∈ R
− and h as in (11).

We now consider an analogue of the certainty equivalent, defined, for Z ∈ Fs+1,
as

C E (s,s+1) (Z) := −U (−1)
s+1

(
E

P

(
Us+1 (−Z)

∣∣Fs ∨ F S
s+1

))
. (50)

We remind the reader of C(s,s+1) (νs+1(Ct )) introduced in (1).

Lemma 14 Let t > 0 and s = 0, 1, . . . , t, and Q
∗ be the forward indifference pric-

ing measure. Then, for any Z ∈ Fs+1, the following assertions hold:
(i) The dynamic certainty equivalent C E (s,s+1) (Z) satisfies

C E (s,s+1) (Z) = 1
γ
ln EQ∗

(
eγ Z

∣∣Fs ∨ F S
s+1

)
. (51)
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(ii) Moreover, C E (s,s+1) (Z) is invariant under P and Q
∗, namely,

−U (−1)
s+1

(
E

P

(
Us+1 (−Z)

∣∣Fs ∨ F S
s+1

)) = −U (−1)
s+1

(
E

Q∗
(
Us+1 (−Z)

∣∣Fs ∨ F S
s+1

))
.

Proof To establish (51), we first observe that, under the measure Q∗,

EQ∗
(
Us+1 (−Z)

∣∣Fs ∨ F S
s+1

) = EQ∗
(
−eγ Z+�s+1

i=1 hi

∣∣∣Fs ∨ F S
s+1

)

= −e�s+1
i=1 hi EQ∗

(
eγ Z

∣∣Fs ∨ F S
s+1

)
,

where we used that �s+1
i=1 hi is Fs-mble. In turn, the forms of (13) and (49) yield

−U (−1)
s+1

(
EQ∗

(
Us+1 (−Z)

∣∣Fs ∨ F S
s+1

))

= 1
γ
ln

(
e�s+1

i=1 hi EQ∗
(

eγ Z
∣∣Fs ∨ F S

s+1

)) − 1
γ

s+1∑
i=1

hi

= 1
γ
ln EQ∗

(
eγ Z

∣∣Fs ∨ F S
s+1

)
.

Using property (36), however, we have that

1
γ
ln EQ∗

(
eγ Z

∣∣Fs ∨ F S
s+1

) = 1
γ
ln EP

(
eγ Z

∣∣Fs ∨ F S
s+1

)
,

and the rest of the proof follows easily. �

The above results yield the following representation of the forward indifference
price.

Proposition 15 Consider a claim Ct at time 0 and yielding payoff Ct at time t > 0.
For s = 0, 1, . . . , t, its forward indifference price νs (Ct ) is given as the arbitrage-
free price of the conditional certainty equivalent (cf. (50)) of the indifference price
at the end of the period, namely,

νs (Ct ) = EQ∗
(

C E (s,s+1) (νs+1 (Ct ))
∣∣Fs

)
.

• The pricing measure

As we have already established, the pricing measureQ∗ is the one that minimizes
the reverse relative entropy (cf. Proposition 7). It has the intuitively pleasing property
(36), in that, for each period [s − 1, s), the conditional on Fs−1 ∨ F S

s distribution of
the stochastic factor Ys is the same under both P and Q

∗.
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• Dependence on the maturity of the claim

The forward pricing functionals E (s,s+1)
Q∗ and E (s,t)

Q∗ are independent of the claim’s
maturity. Indeed, neither their form nor the involved measure depend on the time
t that the claim matures. This does not mean that the price is independent of the
claim’smaturity, an obviouswrong conclusion.Rather, it says that the forwardpricing
operator per se does not depend on the specific maturity.

This setting is very much aligned with the one in complete markets where the
pricing operator, given by the conditional expectation of the (discounted) payoff, is
independent of the claim’s maturity.

• Comparison with the traditional exponential utility valuation

We conclude commenting on some distinct features of the forward and classical
exponential indifference prices. To make the notation more familiar with the tra-
ditional setting, we assume that the claim matures at time T and that we consider
the classical expected utility problem in [0, T ] with utilityUT (x) = −e− γ x , x ∈ R,
γ > 0.

We recall that the case of a binomial model with exponential preferences in which
a claim iswritten exclusively on a non-traded asset but in a complete nested (stock and
bond) market model was studied in [10, 11, 23, 24]. These results were subsequently
generalized by the authors in [18] for a setting like the one herein. Similar results for
power utilities were analyzed in [9].

Let us denote byμs,T (CT ), s = 1, 2, . . . , T − 1, the traditional exponential indif-
ference price of the claim CT and by Vs,T (x) the associated value function process.
There are several differences between the prices μs,T (CT ) and νt (CT ). As it was
shown in [18], the classical price is also computed iteratively,

μs,T (CT ) = EQme
T

(
1
γ
ln EQme

T

(
eγ μs+1,T (CT )

∣∣Fs ∨ F S
s+1

)∣∣∣∣Fs

)
,

where μs+1,T (CT ) is the indifference price of the claim at the end of the period
(s, s + 1].

The measure Q
me
T is the minimal relative entropy one and its density depends

crucially on the horizon choice T, while this not the case with Q
∗. As a result, the

form ofμs,T (·) also depends on the horizon choice, while the form of νt (·) does not.
Another difference, is that the classical price has no natural interpretation as the

arbitrage-free price of a dynamic conditional certainty equivalent. Indeed, it can be
shown1 that, if Z is Fs+1-mble, then

1
γ
ln EQme

T

(
eγ Z

∣∣Fs ∨ F S
s+1

) �= −V (−1)
s+1,T

(
E

P

(
Vs+1,T (−Z)

∣∣Fs ∨ F S
s+1

))
.

1 The technical arguments are rather tedious and are available upon request. They will also appear
in [25].
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Finally, as discussed at the end of Sect. 4, the forward indifference valuation
mechanism is applicable for claims arriving at arbitrary future times, known or not
a priori. This is because the forward criterion can be defined sequentially as time
progresses and the market evolves. This is not the case, however, in the classical
setting.

A detailed comparative study between the traditional and forward exponential
indifference prices, and their respective measures is being carried out by two of the
authors in [25].
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Almost Surely Optimal Portfolios
Under Proportional Transaction Costs

Mark-Roman Feodoria and Jan Kallsen

Abstract In frictionless markets there typically exists a portfolio whose long-term
growth rate of wealth almost surely dominates that of any other portfolio. In this note
we show that this continues to hold in a Black-Scholes-typemarket with proportional
transaction costs.We heavily rely on results from Gerhold et al. (Financ Stochast
17:325–354 2013 [7]), who determine a portfolio maximizing the expected long-
term growth rate of wealth in the same setup.

Keywords Portfolio optimization · Proportional transactions costs · Shadow prices
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1 Introduction

Portfolio optimization is one of the oldest problems in Mathematical Finance and it
has been considered in manifold contexts and variations. A striking classical result
states that in generic frictionless markets there exists a self-financing dynamic port-
folio ϕ whose long-term growth rate of wealth

lim sup
T→∞

1

T
log(VT (ϕ))

almost surely dominates that of any competing investment strategy, cf. e.g.
[17, Theorem 3.10.1] or [8, Lemma 5.3] for markets with jumps. Here, Vt (ϕ) =
v0 + ∫ t

0 ϕsdSs represents the value at time t of a portfolio ϕ which has initial value
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v0 and trades assets S = (S0, . . . , Sd). This optimal portfolio can be obtained by
solving the Merton problem for logarithmic utility or, more specifically, by com-
puting the portfolio maximizing the expected logarithmic utility of terminal wealth.
This numeraire portfolio is known not to depend on the time horizon and it shares a
number of other interesting properties, cf. e.g. [15, 18] and the references therein.

In the presence of proportional transaction costs the solution to the Merton prob-
lem with logarithmic utility does depend on the time horizon T . It may therefore
be less obvious whether there exists a portfolio dominating any other in the long
run. Nevertheless, a natural candidate is provided by the portfolio maximizing the
expected long-term growth rate of wealth. The latter has been determined by [7, 21]
for a Black-Scholes type market with two assets. Based on the results in [7] we show
that this portfolio dominates any other’s long-term growth rate almost surely and not
just in expectation. It turns out that the optimal growth rate is deterministic and can
be computed explicitly, again based on the results of [7].

The proof of almost-sure optimality relies on the concept of shadow prices, intro-
duced by [4, 11] and applied inmany papers involving proportional transaction costs.
It relates the market with transaction costs to a fictitious frictionless market with the
same optimal portfolio. For our purposes, this concept turns out to be particularly
powerful. Indeed, it allows to reduce the present problem of almost-sure optimality
to the classical statement for frictionless markets.

The paper is organized as follows. In Sect. 2 we summarize main results of [7].
Subsequently, we prove the almost sure optimality of the strategy put forward in [7].
In Sect. 4 we verify that the almost surely optimal growth rate coincides with the
optimal expected growth rate of [7], in parallel to the frictionless case.

2 Trading with Proportional Transaction Costs

We consider a market consisting of a bond with constant interest rate and a stock S
following geometric Brownian motion. By switching to discounted prices we may
assume the bond price to be constant and equal to 1. The ask price of the stock is
modelled as

St = S0 exp
((

μ − σ

2

)
t + σWt

)
(1)

with constants S0,μ,σ > 0 and standard Brownian motionW . The bid price, on the
other hand, is assumed to equal (1 − λ)S for some constant λ ∈ (0, 1) representing
transaction costs. We set θ := μ/σ2.

The investor is assumed to enter the market with an initial endowment of v0 bonds
and no shares of stock. Dynamic trading is represented by R

2-valued predictable
processes (ϕ0,ϕ) of finite variation. Here ϕ0

t ,ϕt denote the number of bonds resp.
shares of stock at time t . A trading strategy (ϕ0,ϕ) is naturally called self-financing
if

ϕ0
t = v0 +

∫ t

0
(1 − λ)Ssdϕ↓

s −
∫ t

0
Ssdϕ↑

s , t ∈ R+, (2)
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where we write ϕ = ϕ↑ − ϕ↓ with increasing predictable processes ϕ↑,ϕ↓ which
do not grow at the same time. A self-financing strategy (ϕ0,ϕ) is admissible if its
liquidation wealth process

Vt (ϕ
0,ϕ) := ϕ0

t + ϕ+
t (1 − λ)St − ϕ−

t St , t ≥ 0

is almost surely nonnegative. By setting ϕ0 as in (2) we can and will identify any
predictable process ϕ of finite variation with the corresponding self-financing strat-
egy (ϕ0,ϕ). Accordingly, we call ϕ admissible if Vt (ϕ) := Vt (ϕ

0,ϕ), t ∈ R+ is
nonnegative.

An admissible strategy ϕ is called log-optimal for time horizon T ∈ R+ if it
maximizes

ψ �→ E (log(VT (ψ)))

over all admissible strategies ψ. As a natural counterpart for T → ∞, an admissible
strategy ϕ is expected growth-optimal if it maximizes

ψ �→ lim sup
T→∞

1

T
E (log(VT (ψ)))

over all admissible ψ. The factor 1/T is motivated by the fact that wealth typically
grows exponentially in time.

In the following, the corresponding concepts for frictionless markets with some
semimartingale price process S̃ will play a role as well. We call a predictable S̃-
integrable process ϕ S̃-admissible if its wealth process

Ṽt (ϕ) := v0 +
∫ t

0
ϕsd S̃s, t ∈ R+

stays nonnegative. An S̃-admissible strategy is log-optimal for the frictionlessmarket
S̃ if, for any time horizon T ∈ R+, it maximizes

ψ �→ E

(
log

(
v0 +

∫ T

0
ψt d S̃t

))
(3)

over all S̃-admissible strategies ψ. It is well known that such a strategy typically
exists for frictionless markets, i.e. the optimizer of (3) does not depend on the time
horizon T . If S̃ coincides with the above geometric Brownian motion S, the optimal
fraction of wealth to be invested in the stock equals the Merton ratio θ.

Let us turn back to the market S with transaction costs. As in related studies
[2, 5–7, 9, 10, 12–14, 19], a key role in the analysis will be played by shadow
prices. For the present problem the following version from [7] is needed.
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Definition 2.1 (Shadowprice)A shadowprice for the bid-ask processes (1 − λ)S, S
is a continuous semimartingale S̃ with (1 − λ)S ≤ S̃ ≤ S such that the log-optimal
portfolioϕ for the frictionless market with price process S̃ exists, is of finite variation
and the number of shares ϕ increases (resp. decreases) only on the set {S̃ = S}
(resp. {S̃ = (1 − λ)S}). Put differently, the corresponding bond investment ϕ̃0 :=
Ṽ (ϕ) − ϕS̃ satisfies (2).

We summarize a few results from [7]. In that paper, a shadow price process is
constructed explicitly. The log-optimal portfolio corresponding to this shadow asset
turns out to be expected growth-optimal for the originalmarketwith bid-ask processes
(1 − λ)S, S.

Proposition 2.2 There exists a shadow price S̃.

Proof [7, Corollary 5.2] �

Corollary 2.3 Let S̃ be a shadow price such that both the corresponding log-optimal
portfolio ϕ and its bond investment ϕ0 := Ṽ (ϕ) − ϕS̃ are nonnegative. Then

E (log(VT (ϕ))) ≥ E (log(VT (ψ))) + log(1 − λ)

for any admissible strategyψ. Moreover,ϕ is expected growth-optimal for the bid-ask
processes (1 − λ)S, S.

Proof [7, Corollary 1.9] �

Corollary 2.4 Let S̃ be a shadow price with corresponding log-optimal portfolio ϕ.

1. If θ ∈ (0, 1], then ϕ is expected growth-optimal for the bid-ask processes
(1 − λ)S, S.

2. If θ ∈ (1,∞), there exists λ0 > 0 such that for all λ ∈ (0,λ0) strategy ϕ is
expected growth-optimal for the bid-ask processes (1 − λ)S, S.

Proof 1. By [7, Theorem 5.1] (resp. the proof of [7, Corollary 5.2] for θ = 1) we
have ϕ,ϕ0 ≥ 0. Now we can apply Corollary 2.3.

2. [7, Lemma 5.3]

�
As is known from related maximization problems under proportional transaction

costs, the optimal portfolio remains untouched most of the time and is adjusted
infinitesimally whenever it deviates too strongly from the frictionless target. In the
present setup, this can be expressed in terms of the fraction of wealth invested in the
stock. More specifically, let

πt := ϕt St
ϕ0
t + ϕt St

denote the fraction of book wealth held in the risky asset, where ϕ0
t denotes the

riskless investment from (2). According to [7, Section5], the optimal strategy from
Corollary 2.4 is to keep this fraction in the interval
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[π,π] :=
[

1

1 + c
,

1

1 + c/s̄

]
, (4)

where c denotes the unique root of the function

f (c) =

⎧⎪⎨
⎪⎩

(
c

(2θ−1+2cθ)(2−2θ−c(2θ−1))

) 1−θ
θ−1/2 − 1

1−λ (2θ − 1 + 2cθ)2 if θ ∈ (0,∞) \ { 12 , 1},
exp

(
c2−1
c

)
− 1

1−λ c
2 if θ = 1

2

in the interval ( 1−θ
θ
,∞) if θ ∈ (0, 1

2 ], in the interval ( 1−θ
θ
, 1−θ

θ−1/2 ) if θ ∈ ( 12 , 1), resp.

in the interval ( 1−θ
θ
, 0) if θ > 1, and s̄ is defined as

s̄ :=
⎧⎨
⎩

(
c

(2θ−1+2cθ)(2−2θ−c(2θ−1))

) 1
2θ−1

if θ ∈ (0,∞) \ { 12 , 1},
exp

(
c2−1
c

)
if θ = 1

2 .

One could also consider the fraction of liquidation wealth held in the risky asset,
i.e.

πL
t := ϕt (1 − λ)St

Vt (ϕ)

for positive ϕ(t). A straightforward computation yields that (4) turns into the corre-
sponding interval [

1

1 + c/(1 − λ)
,

1

1 + c/((1 − λ)s̄)

]

for πL .
In [7] we can find a statement on the optimal expected growth rate as well:

Proposition 2.5 (Optimal expected growth rate) The optimal expected long-term
growth rate equals

δ := lim sup
T→∞

1

T
E

(
log(VT (ϕ))

)

= lim sup
T→∞

1

T
E

(
log(ṼT (ϕ))

)

=

⎧⎪⎨
⎪⎩

(2θ−1)σ2 s̄
2(1+c)(s̄+(−2−c+2θ(1+c))s̄2θ) for θ ∈ (0,∞) \ { 12 , 1},

σ2

2(1+c)(1+c−log(s̄)) for θ = 1
2 ,

σ2

2 for θ = 1.

Proof [7, Proposition 5.4 and Remark 5.5] �

In the limit of small transaction costs, the bounds (4) and the expected growth
rate δ simplify considerably:
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Proposition 2.6 (Asymptotics) Let θ ∈ (0,∞) \ {1}. In the limit λ → 0 we have

π = θ −
(
3

4
θ2(1 − θ)2λ

)1/3

+ O(λ),

π = θ +
(
3

4
θ2(1 − θ)2λ

)1/3

+ O(λ)

for the bounds in (4) and

δ = μ2

2σ2
−

(
3σ3

√
128

θ2(1 − θ)2λ

)2/3

+ O(λ4/3) (5)

for the optimal expected long-term growth rate.

Proof [7, Corollary 6.2 and Proposition 6.3] �

Remark 2.7 For later use we remark that, unless θ = 1, the shadow price in Propo-
sition 2.2 is of the form

d S̃t = S̃t (μ̃(Yt )dt + σ̃(Yt )dWt ) , S̃0 = S0, (6)

where

1. Y is a positively recurrent one-dimensional diffusion with state space I := [1 ∧
s̄, 1 ∨ s̄],

2. μ̃ and σ̃ are positive continuous functions on I ,
3. δ = ∫

μ̃(s)2

2σ̃(s)2 dν(s), where ν denotes the stationary distribution of Y .

For θ = 1 the process S̃ = S is a shadow price.

Proof [7, Section5] �

3 Almost Sure Growth Optimality

Our first main result concerns almost sure growth optimality in the following sense.

Definition 3.1 An admissible strategy ϕ is called almost surely growth-optimal if

lim sup
T→∞

1

T
log(VT (ψ)) ≤ lim sup

T→∞
1

T
log(VT (ϕ))

almost surely for any admissible ψ.

Similarly to [7, Corollary 1.9] we have the following results, which do not use the
specific model (1) for the stock S.
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Proposition 3.2 Let S̃ be a shadow price with corresponding log-optimal portfolio
ϕ. If V (ϕ) is nonnegative and

lim
T→∞

1

T
log

(
VT (ϕ)

ṼT (ϕ)

)
= 0 almost surely, (7)

then ϕ is almost surely growth-optimal.

Proof Due to (1 − λ)S ≤ S̃ ≤ S we have Ṽ (ϕ) ≥ V (ϕ). This yields

1

T
log(ṼT (ϕ)) ≥ 1

T
log(VT (ϕ)) = 1

T
log(ṼT (ϕ)) + 1

T
log

(
VT (ϕ)

ṼT (ϕ)

)

and hence

lim sup
T→∞

1

T
log(ṼT (ϕ)) = lim sup

T→∞
1

T
log(VT (ϕ)) a.s. (8)

Letψ be an admissible strategy. Since Ṽ (ψ) ≥ V (ψ), we have thatψ is S̃-admissible
as well (cf. the proof of [7, Proposition 1.8]). From the log-optimality of ϕ in the
frictionless market S̃ we obtain with [17, Theorem 3.10.1] resp. [8, Lemma 5.3]

lim sup
T→∞

1

T
log(ṼT (ϕ)) ≥ lim sup

T→∞
1

T
log(ṼT (ψ)) ≥ lim sup

T→∞
1

T
log(VT (ψ)).

Together with (8) the assertion follows. �

Corollary 3.7 Let S̃ be a shadow price with corresponding log-optimal portfolio ϕ.
If ϕ and ϕ0 from (2) are nonnegative, then ϕ is almost surely growth-optimal.

Proof Since
Ṽt (ϕ) ≥ Vt (ϕ) ≥ (1 − λ)Ṽt (ϕ) (9)

(cf. the proof of [7, Corollary 1.9]), the statement follows from Proposition 3.2 �

Coming back to the Black-Scholes price processes and using the shadow price from
Proposition 2.2 we obtain the following corollaries.

Corollary 3.8 Assume λ < λ0 if θ > 1, with λ0 as in the proof of [7, Lemma 5.3].
Let S̃ be the shadow price from Proposition 2.2 with corresponding log-optimal
portfolio ϕ. Then ϕ is almost surely growth-optimal.

Proof Case θ ≤ 1: By [7, Theorem 5.1] (resp. the proof of [7, Corollary 5.2] for
θ = 1) we have ϕ0,ϕ ≥ 0. The assertion follows from Corollary 3.7.

Case θ > 1: From the proof of [7, Lemma 5.3] it follows that

Ṽt (ϕ) ≥ Vt (ϕ) ≥ K Ṽt (ϕ) (10)

for some K > 0, which yields the claim by Proposition 3.2. �



310 M.-R. Feodoria and J. Kallsen

4 Optimal Growth Rate

As our second main result we want to show that the long-term growth rate of wealth
is actually deterministic and hence coincides with the expected long-term growth
rate δ of Proposition 2.5. As may be expected, ergodicity plays a key role in this
context. For a related statement in the frictionless case, cf. [17, Corollary 3.10.2].

Theorem 4.1 Suppose that λ < λ0 if θ > 1. The optimal growth rate in Corollary
3.8 coincides with the optimal expected growth rate in Proposition 2.5, i.e.

lim
T→∞

1

T
log(VT (ϕ)) = δ.

Proof Suppose that θ = 1. As a first step, we show the assertion for the shadow
wealth process Ṽ (ϕ). Since the shadow price is of the form (6), the log-optimal
fraction of wealth equals

π̃t := μ̃(Yt )

σ̃2(Yt )
, t ≥ 0

by [16, Example 6.4], i.e. the corresponding log-optimal portfolio satisfies ϕt =
π̃t Ṽt (ϕ)/S̃t . This implies

ṼT (ϕ) = v0E

(∫ ·

0

π̃t

S̃t
d S̃t

)
T

= v0 exp

(∫ T

0

1

2

(
μ̃(Yt )

σ̃(Yt )

)2

dt +
∫ T

0

μ̃(Yt )

σ̃(Yt )
dWt

)

and hence

1

T
log(ṼT (ϕ)) = 1

T
log(v0) + 1

T

∫ T

0

1

2

(
μ̃(Yt )

σ̃(Yt )

)2

dt + 1

T

∫ T

0

μ̃(Yt )

σ̃(Yt )
dWt . (11)

Since the function f := μ̃2/(2σ̃2) is bounded on I , the ergodic theorem [1, II.35]
and Remark 2.7 yield

lim
T→∞

1

T

∫ T

0
f (Ys)ds =

∫
f (y)dν(y) = δ a.s. (12)

The process

Mt :=
∫ t

0

μ̃(Ys)

σ̃(Ys)
dWs, t ≥ 0

is a continuous local martingale with quadratic variation [M]t = ∫ t
0 2 f (Ys)

2ds, t ≥
0. Since f is bounded away from zero, we have aT ≤ [M]T ≤ bT , T ≥ 0 for some
a, b ∈ (0,∞). From the law of large numbers for continuous local martingales [20,
Exercise V.1.16] we obtain MT /[M]T → 0 and hence MT /T → 0 almost surely for
T → ∞. Together with (11, 12) we conclude that
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lim
T→∞

1

T
log(ṼT (ϕ)) = δ.

The assertion follows now from the fact that VT (ϕ) and ṼT (ϕ) differ at most by a
constant factor, cf. (9) resp. (10).

The case θ = 1 is of course similar to [7, Remark 5.5]. Since the entire wealth is
invested in stock, we have

log(VT (ϕ)) = log(v0) + σ2

2
T + σWT ,

which yields the long-term growth rate σ2/2 by the strong law of large numbers for
standard Brownian motion. �

From Theorem 4.1 and Proposition 2.6 we immediately obtain an asymptotic
expansion of the almost sure long-term growth rate for small transaction costs.

The existence of an explicitly computable portfolio which surely dominates any
other in the long run may be viewed as a both beautiful and extremely useful math-
ematical result. But as is well known, it faces severe obstacles in practice. Firstly,
the excess drift rate μ is typically small compared to the standard deviation σ. This
means that it may take a long time even to beat the bond-only investment strategy
with, say, 95% probability. Put differently, long term should rather be interpreted as
centuries rather than years. In addition, the frictionless target θ depends linearly on μ
which, again since it is small compared to σ, is very hard to estimate in any reliable
way. In the presence of limited past data or instationary parameters, it may even be
debatable whether the stock’s excess drift rate μ is positive at all.

Leaving these disenchanting facts aside, let us finish with a simple numerical
example in order to illustrate the results in this paper.We consider a stock with yearly
volatility σ = 20% and excess drift rate μ = 2%. The frictionless optimal excess
growth rate μ2/(2σ2) = 0.5% seems surprisingly small but should be contrasted
with the fact that the stock’s long-term growth rate (namely μ − σ2/2) vanishes—in
spite of its positive drift rate μ = 2%. The optimal fraction of wealth invested in the
stock equals θ = 1/2, which, due to the factor θ2(1 − θ)2 in (5), seems to be a rather
unpleasant parameter value if we introduce transaction costs or taxes.

If we consider transaction costs of λ = 1%, the asymptotic no-trade region from
Proposition 2.6 equals [0.42, 0.58], i.e. the investor tries to keep the fraction ofwealth
invested in stock between 42% and 58%. According to the asymptotic formula (5),
the frictionless optimal excess growth rate of 0.5% is lowered by the presence of
transaction costs to approximately 0.49%. In other words, even in the unfavourable
caseμ = 2%, θ = 1/2 the effect of transaction costs on the optimal long-termgrowth
rate appears to be rather small. For an early reference to related observations cf. [3].

Acknowledgements The authors thank Johannes Muhle-Karbe for fruitful comments and discus-
sions. Moreover, they acknowledge financial support through DFG-Sachbeihilfe KA 1682/4-1.



312 M.-R. Feodoria and J. Kallsen

References

1. Borodin,A., Salminen, P.:Handbook ofBrownianmotion: Facts andFormulae. Springer (2002)
2. Choi, J., Sirbu, M., Zitkovic, G.: Shadow prices and well-posedness in the problem of optimal

investment and consumption with transaction costs. SIAM J. Control Optim. 51, 4414–4449
(2013)

3. Constantinides, G.: Capital market equilibrium with transaction costs. J. Political Econ. 842–
862 (1986)
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Abstract In 1988 Dybvig introduced the payoff distribution pricing model (PDPM)
as an alternative to the capital asset pricingmodel (CAPM). Under this new paradigm
agents preferences depend on the probability distribution of the payoff and for the
same distribution agents prefer the payoff that requires less investment. In this context
he gave the notion of efficient payoff. Both approaches run parallel to the theory of
choice of vonNeumann andMorgenstern [17], known as the ExpectedUtility Theory
and posterior axiomatic alternatives. In this paper we consider the notion of optimal
payoff as thatmaximizing the terminal position for a chosenpreference functional and
we investigate the relationship between both concepts, optimal and efficient payoffs,
as well as the behavior of the efficient payoffs under different market dynamics. We
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1 Introduction

The capital asset pricing model (CAPM) can be seeing as an approach to investment
analysis based on the following simple assumptions:

Agents preferences depend only on the mean and variance of the payoff.
Between two payoffs with equal variance an agent will choose the one with higher

return.
In 1988 Dybvig introduced the payoff distribution pricing model (PDPM) as an

alternative to CAPM. His goal was to find another alternative to evaluate investment
performance. He assumed that agents preferences depend on the probability distrib-
ution of the payoff and for the same distribution agents prefer the payoff that requires
less investment.

Both approaches run parallel to the axiomatic theory of choice of Neumann-
Morgenstern [17] and the posterior axiomatic alternatives; see for example Föllmer
and Schied [11].

The Neumann-Morgenstern [17] axiomatic theory together with the inclusion of
risk aversion lead us to the expected utility theory (EUT).

The optimal payoff consists in choosing a payoff in such a way that we obtain the
largest expected utility of the payoff for a fixed investment.

Alternatives toEUTare based onmodifications or elimination of the independence
axiom. The independence axiom of the EUT says the following:

A preference relation � on a set of probability distributions X satisfies the inde-
pendence axiom if for all μ, ν ∈ X , μ � ν implies

αμ + (1 − α)τ � αν + (1 − α)τ

for all τ ∈ X and α ∈ (0, 1].
Many examples or paradoxes show that this axiom or principle is not followed by

real agents. The following example is a well known paradox where the independence
axiom is violated.

Example 1 (Allais’ paradox) You have to choose between:

μ1 = 0.33δ2500 + 0.66δ2400 + 0.01δ0,

μ2 = δ2400

and later between

ν1 = 0.33δ2500 + 0.67δ0,

ν2 = 0.34δ2400 + 0.66δ0.

Allais showed that for 66% of people μ2 � μ1 and ν1 � ν2. However 1
2 (μ2 + ν1) =

1
2 (μ1 + ν2) and this violates the independence axiom. In fact if the independence is
true and μ2 � μ1 and ν1 � ν2 we have
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αμ2 + (1 − α)ν1 � αμ1 + (1 − α)ν1 � αμ1 + (1 − α)ν2,

and taking α = 1/2 we obtain

μ2 + ν1

2
� μ1 + ν2

2
.

The Dual Theory of Choice (DTC) [24] or the Cumulative Prospect Theory (CPT)
(see Kahneman-Tverski [14] and Tverski-Kahneman [22]) are some of the alterna-
tives to EUT. Both propose that the optimality of a payoff is a functional of its law.
For instance Yaari proposed a preference functional of the form

V (X) =
∫ 1

0
h(1 − t)F−1

X (t)dt,

where h: [0, 1] �−→ R+ (distortion function). In the CPT

V (X) =
∫ 1

0
h1(1 − t)u1

((
F−1

X (t) − x0
)
+
)
dt

−
∫ 1

0
h2(t)u2

((
F−1

X (t) − x0
)
−
)
dt,

with h1, h2 distortion functions and u1 concave and u2 convex, x0 ∈ R is a reference
level where consumers pass from being risk adverse to being risk takers. These
functionals are particular cases of

V (X) =
∫ 1

0
L(t, F−1

X (t))dt.

The EUT is included in the previous framework with

V (X) = E (u(X)) =
∫ 1

0
u(F−1

X (t))dt.

In this work we investigate the relationship between the concepts of efficient
and optimal payoffs. In addition we study the behavior of the efficient portfolio for
various derivatives and different assets’ price dynamics.

The paper is organised as follows: Sect. 2 contains preliminary results on expected
utility theory and payoff distribution pricingmodel. Section3 studies efficient payoffs
and law invariant preferences. Section4 is devoted to efficient payoffs in a dynamic
setting while Sect. 5 investigates conditional efficient payoffs.
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2 EUT and PDPM

We start this section by recalling the definition of a utility function.

Definition 1 Autility function ismap u : R → R ∪ {−∞}, which is strictly increas-
ing and continuous on {u > −∞}, of class C

2 and strictly concave in the interior of
{u > −∞}, and such that marginal utility tends to zero when wealth tends to infinity,
i.e.,

u′(∞) := lim
x→∞ u′(x) = 0.

Let us denote the interior of {u > −∞} by dom(u). We will only consider the two
following cases:

Case 1 dom(u) = (0,∞) and u satisfies

u′(0) := lim
x→0+

u′(x) = ∞.

Case 2 dom(u) = R and u satisfies

u′(−∞) := lim
x→−∞ u′(x) = ∞.

The HARA utility functions u(x) = x1−p

1−p for p ∈ R+\{0, 1} and the logarithmic
utility u(x) = log(x) are important examples of Case 1 and the exponential utility
function u(x) = − 1

α
e−αx is a typical example of Case 2.

Let us fix a pricing measure Q. Given w0 > 0 and a utility function u, we want to
find a payoff X , with initial value w0, that maximizes E(u(X)) that is we consider
the following optimization problem

max
{
E(u(X)) : EQ (X) = w0

}
. (1)

Such X ifsimplicity we consider that interest rates are zero.

Proposition 1 The optimal payoff is a decreasing function of dQ

dP
.

Proof The corresponding Lagrangian for (1) is

E(u(X)) − λEQ (X − w0) = E

(
u(X) − λ

(
X
dQ

dP
− w0

))
.

Then, the obvious candidate to be the optimal terminal wealth is

X∗ := (
u′)−1

(
λ
dQ

dP

)
, (2)
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whereλ is the solution of the equationEQ

[(
u′)−1

(
λ dQ

dP

)]
= w0. The existence of X∗

follows from the fact that u is strictly concave, so
(
u′)−1

(·) is a strictly decreasing,
and λ is positive and u′ takes values on R+ (in both cases 1 and 2). To see the
optimality of X∗ we can consider another payoff X and we obtain that

E(u(X)) − λEQ (X − w0) − (
E(u(X∗)) − λEQ

(
X∗ − w0

))

= E

(
u(X) − u(X∗)) − λ

(
X − X∗) dQ

dP

)

= 1

2
E

(
u′′(X̃)

(
X − X∗)2) ≤ 0,

where X̃ is in between X and X∗. Since u is strictly concave, (a.s.) uniqueness
follows. �

Suppose that Y = (
u′)−1

(
λ dQ

dP

)
is the payoff of certain contract, then this payoff

is better than any other payoff X with the same law as Y if the risk neutral measure
used to price derivatives is Q and the utility function that we choose is u. Then a
fortiori

EQ (X) ≥ EQ (Y ) .

In fact we have that
E (u(Y )) = E (u(X)) ,

so if EQ (Y ) − EQ (X) = h > 0, we will have that EQ (X + h) = w0 and
E (u(X + h)) > E (u(Y )) contradicting the optimality of Y . So among the payoffs
with the same law as Y , Y is the payoff with the lowest price. This is the idea of effi-
cient payoff introduced by Dybvig [8] and further developed in Dybvig [9]. Recently
a systematic study of efficient payoffs in different contexts has been done by Bernard
et al. [2] and Von Hammerstein et al. [13] under the name of cost-efficient payoffs.
Here we shall use the term efficient payoff for brevity.

Definition 2 A payoff Y is said to be an efficient payoff if any other payoff X with
the same law is more expensive.

Therefore, we have proved, in the previous paragraph, the following proposition.

Proposition 2 The optimal payoff w.r.t. the utility function u is an efficient payoff.

Suppose Y = (
u′)−1

(
λ dQ

dP

)
, and that u is as in Case 1 (a similar discussion can

be done for Case2), let h : R+→R be a non decreasing C
1 function with h(0) = 0

and define Z := h
((

u′)−1
(
λ dQ

dP

))
. Then we wonder if Z is an optimal payoff w.r.t.

another utility function. Let V be such utility function, that is, it must satisfy

(
V ′)−1

(
λ
dQ

dP

)
= h

((
u′)−1

(
λ
dQ

dP

))
.
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Therefore it is sufficient to have that V (·) is a primitive function of u′(h−1(·)).Hence
h(Y ) is an efficient payoff by the argument in the paragraph before Definition 2. As a
consequence, if we want to create efficient payoffs with a fixed distribution function
F : R+→[0, 1) and we assume that dQ

dP
is a continuous random variable, then this

efficient payoff is given by

F−1

(
1 − FdQ

dP

(
1

λ
u′(Y )

))
= F−1

(
1 − FdQ

dP

(
dQ

dP

))
,

where it is assumed that F−1 ∈ C
1, and FdQ

dP
(·) denotes the distribution function

of dQ

dP
. This efficient payoff is also an optimal payoff w.r.t. a utility function V (·)

(belonging to Case 1) which is a primitive function of λF−1
dQ
dP

(1 − F(·)). The factor
λ can obviously be omitted. We have derived the following result:

Proposition 3 Assume that dQ

dP
has a continuous distribution and that F is a smooth

distribution function, such that F−1 ∈ C
1. Then

X := F−1

(
1 − FdQ

dP

(
dQ

dP

))

is an efficient payoff. X is also an optimal payoff w.r.t. a utility function (belonging
to Case 1 or Case 2) V (·) which is a primitive function of F−1

dQ
dP

(1 − F(·)).

Example 2 It is easy to see that when F and Flog dQ
dP

are Gaussian the correspond-

ing utility funcion is the exponential utility. In fact, if Flog dQ
dP

(z) = �
( z−μ

σ

)
and

F(u) = �
(

u−α
γ

)
, where �(·) cumulative distribution function of the standard nor-

mal distribution, then

F−1
dQ
dP

(1 − F(u)) = exp

{
μ − σ

γ
(u − α)

}
,

and a primitive function, up to multiplicative constants, is given by

V (u) := −γ

σ
exp

{
−σ

γ
u

}
, u ∈ R.

As we shall see later this smoothness condition on F can be relaxed. The relation-
ship between efficient and optimal payoffs has also been studied in a recent paper by
Bernard et al. [5].
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2.1 Inefficiency of Path Dependent Options

In 1988 Dybvig wrote a paper entitled: Inefficient Dynamic Portfolio or How to
Throw Away a Million Dollars in the Stock Market [9]. The title suggests a general
or universal result about investment in stockmarkets. His claim is that path dependent
options are inefficient in the sense that we can have a payoff depending only of the
final price of the stock, say ST , with higher terminal utility and the same initial
price. Vanduffel et al. [23] obtained the same inneficiency result in a Lévy market
model and Kassberger-Liebmann [15] explained when this phenomenon happens.
The following simple lemma and theorem clarify the situation.

Lemma 1 Let X ≥ 0 be a payoff. Consider a model in which the risk neutral prob-
ability Q satisfies

dQ

dP
∈ σ(ST ).

Then
EQ(X |ST ) = E(X |ST ).

Proof First, set Z := EQ(X |ST ), by definition of the conditional expectation:

EQ(Y Z) = EQ(Y X) for all Y ≥ 0, Y ∈ σ(ST ),

then

EQ(Y Z) =
∫

�

Y ZdQ =
∫

�

Y
dQ

dP
ZdP =

∫
�

Ȳ ZdP =
∫

�

Ȳ XdP,

with Ȳ ≥ 0 and Ȳ ∈ σ(ST ) arbitrary, so Z = E(X |ST ). �
Theorem 1 If the risk neutral probability satisfies dQ

dP
∈ σ(ST ), and the savings

account is deterministic, path-dependent payoffs are dominated, in the sense that
there is another payoff with the same initial price and more terminal utility.

Proof Given a payoff X , define X̄ by X̄ := EQ(X |ST ). Then, the price is the same,
since the savings account (Bt )t≥0 is deterministic,

EQ

(
X

BT

)
= EQ

(
1

BT
EQ(X |ST )

)
.

Now, by Lemma 1
X̄ = EQ(X |ST ) = E(X |ST ),

and given a utility function u

E(u(X̄)) = E(u(E(X |ST ))) ≥ E(E(u (X) |ST )) = E(u (X)),

where the inequality follows from Jensen’s inequality since u is concave. �
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However, as shown in Example 4, the condition dQ

dP
∈ σ(ST ) is not satisfied in

some simple models and the claim of Dybvig is not true in such cases. In the next
section we consider a more general frame that includes EUT.

3 Efficient Payoffs and Law Invariant Preferences

Definition 3 A preference functional V (X) : L∞ → R is called

1. monotone if X ≥ Y a.s. implies V (X) ≥ V (Y ),

2. law invariant if V (X) = V (Y ) whenever X
d
∼ Y.

EUT, DTC and CPT use monotone and law invariant functionals and this law
invariance is in agreement with the Dybvig approach.

Here we follow Carlier-Dana [6]. Choose an agent with preference functional V
(strictlymonotone and law invariant) and initial wealthw0. Consider the optimization
problem

sup
{

V (X), EQ(X) = w0, X ∈ L∞
+

}
, (3)

where Q is the pricing measure and let the interest rate be zero. Further, assume that
ψ := dQ

dP
has continuous distribution function Fψ.

Set
A := {x : (0, 1) → R+, x is increasing and right continuous} ,

and define v(x) := V (x(U )) where U is a uniform distribution on (0, 1). Note that
V (X) = v(F−1

X ). Consider now X of the form

X = F−1
X (1 − Fψ(ψ)) = x(1 − Fψ(ψ)), x ∈ A. (4)

Then the optimisation problem (3) is equivalent to

sup

{
v(x), x ∈ A, x bounded,

∫ 1

0
F−1

ψ (1 − t)x(t)dt = w0

}
. (5)

The condition (4) is not a restriction. In fact the solution to the optimal investment
has to be in the set of efficient payoffs.

Theorem 2 Given two random variables X, Y we have

E(F−1
X (1 − U )F−1

Y (U )) ≤ E(XY ) ≤ E(F−1
X (U )F−1

Y (U )),

where U is a uniform distribution on (0, 1).
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So

EQ(X) = E

(
dQ

dP
X

)
= E (ψX) = E(F−1

ψ (1 − U )F−1
X (U )).

Proof By the formula of Hoeffding (see Lemma 2 in Lehmann [16])

Cov (X, Y ) = E (XY ) − E (X)E(Y )

=
∫

R

∫
R

(
FX,Y (x, y) − FX (x)FY (y)

)
dxdy.

So, theminimum ofE (XY ), for fixed FX and FY , is obtainedwhen FX,Y is minimum
and this minimum is given by the Fréchet lower bound for FX,Y fixed FX and FY

(see Fréchet [12]):

min
FX (·)=g(·),FY (·)=h(·)

FX,Y (x, y) = max(g(x) + h(y) − 1, 0),

and this bound is reached if we take

(X, Y ) = (F−1
X (1 − U ), F−1

Y (U )).

This is the approach in Bernard et al. [2] to prove the result. Another way of proving
it is by using the Hardy-Littlewood inequalities directly (see for instance Theorem
A.24 in Föllmer and Schied [11]). �

Note that if Y is continuous, we can choose U = FY (Y ) and we can write the
random variable

X̄ := F−1
X (1 − U ) = F−1

X (1 − FY (Y )) = x̄(1 − FY (Y )), x̄ ∈ A.

Note that we have solved the problem

min
{
EQ (X) : X ∼ F

}
,

and its solution is given by X = F−1(1 − Fψ(ψ)) = F−1
(
1 − FdQ

dP

(
dQ

dP

))
. Hence

we have the following proposition.

Proposition 4 The optimal payoff w.r.t. a law invariant and monotone functional
V (X) and initial wealth w0, is the efficient payoff with distribution function F that
satisfies

F−1 = argmax
x∈I

V (x(U )),

where I =
{

x : (0, 1) → R+, x increasing, right continuous and bounded,
∫ 1
0 F−1

ψ

(1 − t)x(t)dt = w0} and U is a uniform distribution on (0, 1).
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It is interesting to notice that we have not assumed any additional condition on
the preference functional except the monotonicity and the law invariance. Then we
cannot in general guarantee the existence of the solution to the problem (3). In the
case that

v(x) =
∫ 1

0
h(1 − t)u(x(t))dt,

where u is a utility function. We also have the following theorem:

Theorem 3 (Carlier-Dana [6]) The optimal payoff is an efficient payoff with an
inverse distribution function F−1 that is strictly decreasing iff F−1

ψ /h is strictly

increasing. If F−1
ψ /h is not increasing there are ranges of values of the pricing

density for which F−1 is constant. If F−1
ψ /h is decreasing then F−1 is constant.

Let us stress that the problem

min
{
EQ (X) : X ∼ F

}
,

is exactly what Dybvig considered. That is, for a given distribution of the payoffs;
what is the cheapest one? This payoff is the efficient payoff that we defined in the
previous section. We have seen that they have the form

X = F−1

(
1 − FdQ

dP

(
dQ

dP

))
.

Theorem 4 A payoff X is efficient iff it is a decreasing function of dQ

dP
.

Proof If X is efficient then X = h
(
dQ

dP

)
with h = F−1

(
1 − FdQ

dP
(·)

)
that is decreas-

ing, on the other hand if X = h
(
dQ

dP

)
with h decreasing then

FX (x) = 1 − P (X > x) = 1 − P

(
h

(
dQ

dP

)
> x

)

= 1 − P

(
dQ

dP
< h−1(x)

)
= 1 − FdQ

dP

(
h−1(x)

)
,

so
FX (h(y)) = 1 − FdQ

dP

(
h−1(h(y))

) = 1 − FdQ
dP

(y)

and

X = F−1
X

(
1 − FdQ

dP

(
dQ

dP

))
.

�
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In the following examples, that can be found in Bernard et al. [2], we illustrate
the efficiency or not of the payoff of certain derivatives and the case they are not, we
find their corresponding efficient payoff.

Example 3 Consider the Black-Scholes market model, dSt = St (μdt + σdWt ) and

dBt = r Btdt .

Then
dQ

dP
= exp

{
r − μ

σ
WT − 1

2

(
r − μ

σ

)2

T

}
,

and

ST = S0 exp

{(
μ − 1

2
σ2

)
T + σWT

}
.

Hence
dQ

dP
= C S

r−μ

σ2

T ,

where C is a constant that depends on T . Then if we assume a bullish market: μ >

r, dQ

dP
is a decreasing function of ST . So, any efficient payoff has to be an increasing

function of ST . In this context, the payoffs

X1 = (K − ST )+, X2 = K − ST

are not efficient since they are decreasing functions of ST . Now

log
1

ST

d= − log S0 −
(

μ − 1

2
σ2

)
T + σWT

= log ST − 2 log S0 − 2

(
μ − 1

2
σ2

)
T .

That is
ST

d= c

ST
,

with c = S2
0e(2μ−σ2)T . As a consequence the corresponding efficient payoffs of a put

option and a short forward are respectively,

X̄1 =
(

K − c

ST

)
+

= K

ST

(
ST − c

K

)
+

, X̄2 = K − c

ST
.

and the corresponding prices of the original and efficient payoffs are:

Short forward contract: K e−rT − S0; efficient: K e−rT − S0e(μ−r)T
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Put option : K e−rT �(d−) − S0�(d+);
Efficient:

K e−rT �

(
d− − 2(μ − r)

√
T

σ

)
− S0e(μ−r)T �

(
d+ − 2(μ − r)

√
T

σ

)
,

with d± := log K
S0

− (r ± 1
2σ

2)T

σ
√

T
.

Note that efficient prices depend on μ, so their estimation can be difficult.

Example 4 Consider the path-dependent payoff

X3 =
(

e
1
T

∫ T
0 log(St )dt − K

)
+

.

It can be shown that, under a Black-Scholes model, the efficient payoff is

X̄3 = c

(
S1/

√
3

T − K

c

)
+

, c = S
1− 1√

3

0 e
(

1
2 − 1√

3

)
(μ− 1

2 σ2)T
.

This is in agreement with Theorem 1: path dependent options have inefficient payoffs

if dQ

dP
= C S

r−μ

σ2

T . However if we a assume that the stock S evolves as

dSt = St (μtdt + σtdWt ) ,

and the savings bank account as

dBt = rt Btdt ,

with μt ,σt , rt deterministic and càdlàg, then

dQ

dP
= exp

{∫ T

0

rt − μt

σt
dWt − 1

2

∫ T

0

(
rt − μt

σt

)2

dt

}
,

so

dQ

dP
= exp

{∫ T

0

rt − μt

σt
dWt − 1

2

∫ T

0

(
rt − μt

σt

)2

dt

}

= exp

{∫ T

0

rt − μt

σ2
t

dSt

St
− 1

2

∫ T

0

r2t − μ2
t

σ2
t

dt

}

= CT exp

{∫ T

0

rt − μt

σ2
t

dSt

St

}
.
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Then, any payoff that is a decreasing function of

VT = exp

{∫ T

0

rt − μt

σ2
t

dSt

St

}

will be efficient. Consider for instance a put option

(K − ST )+

log ST ∼ N

(∫ T

0

(
μt − 1

2
σ2

t

)
dt,

∫ T

0
σ2

t dt

)
:= N

(
mT , v2

T

)

and

log VT ∼ N

(∫ T

0

μt (rt − μt )

σ2
t

dt,
∫ T

0

(
rt − μt

σt

)2

dt

)
:= N

(
aT , b2

T

)
,

in such a way that an optimal payoff is

(
K − V

vT
bT

T e
vT
bT

(mT −aT )

)
+

,

since

V
vT
bT

T e
vT
bT

(mT −aT ) d= ST

and K − V
vT
bT

T e
vT
bT

(mT −aT ) is a decreasing function of VT . In this situation a path depen-
dent option is better than a vanilla option! contrarily to what the title of Dybvig [9]
suggests, as explained in Sect. 2.1.

4 Efficient Payoffs in a Dynamic Setting

Here we follow Becherer [1]. Consider the set of strictly positive self-financing
portfolios with initial value one:

N :=
{

N > 0 : Nt = 1 +
∫ t

0
ϕudSu

}
.

N ∈ N is said to be the numeraire portfolio (NP) if, for all V ∈ N , V/N is a
supermartingale (w.r.t. the probability measure P). We say that an element of N is
the growth-optimal portfolio (GOP) if it solves the maximization problem
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u := sup
V ∈N

E (log VT ) .

We have the following important results.

Theorem 5 Assume u < ∞. Then the numeraire portfolio and the growth-optimal
portfolio are the same.

Proof See Proposition 4.3 in Becherer [1]. �

Theorem 6 If the market is complete the numeraire portfolio is given by

Nt = E

(
dP

dQ

∣∣∣∣Ft

)
, 0 ≤ t ≤ T,

with Ft := σ(Su, 0 ≤ u ≤ t).

Proof See Example 1 in Becherer [1]. �

In the Black-Scholes model

Nt = exp

{
−r − μ

σ
Wt + 1

2

(
r − μ

σ

)2

t

}

= exp

{
−r − μ

σ
W̃t − 1

2

(
r − μ

σ

)2

t

}
,

where W̃ isQ-Brownianmotion.We have seen that any efficient payoff can bewritten
as a decreasing function of dQ

dP
and consequently as an increasing function of the final

value of the numeraire portfolio NT , say X̃ = h(NT ).

Then the (discounted) value of the replicating portfolio is given by

Ṽt = E

(
X̃ |Ft

)
= E (h(NT )|Ft ) = E

(
h

(
NT

Nt
x

))∣∣∣∣
x=Nt

=: g(t, Nt ),

from which (under smoothness assumptions on g), we get

dṼt = ∂2g(t, Nt )dNt .

Hence V is a locally optimal portfolio in the sense that it has the largest discounted
drift given a diffusion coefficient (Platen [18]) and

∂2g(t, Nt )Nt

Ṽt

can be interpreted as a risk aversion coefficient.
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If the market is incomplete, one uses the numeraire portfolio to get arbitrage free
prices of a payoff X by

E

(
X

NT

)
.

The latter is referred as the benchmark approach where the numeraire is chosen in
such a way that the corresponding risk-neutral measure coincides with the historical
one (see Platen and Heath [19]). In this case a payoff X is efficient iff X is an
increasing function of NT as above, but if we use a pricing measure Q a payoff
X will be efficient iff it is a decreasing function of dQ

dP
. In the continuous case both

approaches coincide if we use the minimal martingale measure (see Schweizer [20]).
If we consider an exponential Lévy model for S:

dSt = St−dZt , S0 > 0,

where Z is a Lévy process with characteristics (d, c2, ν) (with jumps strictly greater
than−1) and the pricing measure Q is such that Z is a Q-Lévy process it can be seen
(see Corcuera et al. [7]) that

dQ

dP
= aSb

T eVT , a > 0, b ∈ R (that depends on Q),

and

VT =
∫ ∞

−∞
(log H(x) − b log(1 + x)) M̃((0, t], dx).

with H(x) = dν̃
dν (x) and where M̃((0, t], dx) is the compensated Poisson random

measure associated with Z . Tilde indicates the characteristics w.r.t. Q (see Corcuera
et al. [7] for more details).

In such cases an efficient payoff is an increasing function of Sb
T eVT and only in

the case that VT ≡ 0 efficient payoffs are a monotone function of ST . It corresponds
to the case that Q is the Esscher measure, see von Hammerstein et al. [13].

The benchmark approach coincides with the pricing measure approach when

H(x) = 1

1 − bx
, and

c2b + d − r + b
∫ ∞

−∞
x2

1 − bx
dν(x) = 0,

since in this case the optimal terminal wealth corresponding to the log-utility can be
replicated by using stocks and bonds (see Corcuera et al. [7], Example 4.1).

It will be also interesting to include optimal consumption problem in this context,
as for example it is done in Fajardo [10].
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5 Conditional Efficient Payoffs

Reducing the importance of a payoff to its law is quite controversial. For instance
whenonebuys aCall optionhe/she is buying a right to buy a stock at a certain price and
this is lost if he/she takes another payoff with the same law but with different values.
There are many other examples that suggest that, if there is no perfect correlation,
the investor would like a fixed dependency w.r.t. some special payoff.

This approach was introduced by Takahashi-Yamamoto [21]. See also Bernard
et al. [3] and Bernard et al. [4].

Suppose a benchmark payoff Y is given, and that the investor wishes to invest in
another payoff X with a joint distribution (X, Y ) fixed. In other words two payoffs
X and � are equivalent if (X, Y ) ∼ (�, Y ) , or, equivalently, if X |Y = y ∼ �|Y = y
for all y. So, one wants to solve the problem

min
(X,Y )∼FX,Y

EQ (X) . (6)

Firstly, given Z , we can find a function g(Z , Y ) such that (X, Y ) ∼ (g(Z , Y ), Y ).
In fact, if we assume that FZ |Y (z|y) is continuous, then, conditionally on Y = y,
FZ |Y (Z |y) ∼ U (0, 1) (note that the random variable FZ |Y (Z |Y ) is, therefore, inde-
pendent of Y ) and F−1

X |Y (FZ |Y (Z |y)|y) (where F−1
X |Y (·|y) is the pseudo-inverse of

FX |Y (·|y)) will be a random variable such that conditionally on Y = y has the same
law as X , then

(F−1
X |Y (FZ |Y (Z |Y )|Y ), Y ) ∼ (X, Y )

and the function we are looking for is g(z, y) = F−1
X |Y (FZ |Y (z|y)|y).

Now we can solve the optimization problem (6). We know that

EQ (X) = E

(
dQ

dP
X

)
,

so, since the law of X and dQ

dP
are fixed, if X ∼ h

(
dQ

dP

)
for some decreasing function

h, we reach the lower bound for E

(
dQ

dP
X

)
. But we have to fix the conditional law,

that is, we need that (X, Y ) ∼

(
h

(
dQ

dP

)
, Y

)
. Then, according to the previous step,

we can take h
(
dQ

dP

)
= g

(
dQ

dP
, Y

)
.

In fact we are solving the conditional problem: in the set of random variables X
such that X |Y = y is fixed, we solve the problem

min
X |Y=y∼FX |Y

E

(
dQ

dP
X

∣∣∣∣ Y = y

)

and the solution is F−1
X |Y

(
FdQ

dP |Y
(

dQ

dP

∣∣∣ y
)∣∣∣ y

)
= g

(
dQ

dP
, y

)
. Consequently



On the Optimal Investment 329

min
X |Y=y∼FX |Y

E

(
dQ

dP
X

)
= E

(
dQ

dP
�

)
,

with � = g
(
dQ

dP
, Y

)
. Three elements interact in the expression: the conditional law

of X given Y, the price state density dQ

dP
and Y.

An additional reason to consider conditional efficient payoffs could be the exis-
tence of privileged information about a certain payoff Y. This might be object for
future research.
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Construction and Hedging of Optimal
Payoffs in Lévy Models

Ludger Rüschendorf and Viktor Wolf

Abstract The construction of lowest cost strategies for a given payoff has found
considerable interest in recent literature and it has been shown in applications to real
market data, that cost savings associated with these cost-efficient strategies can be
quite substantial. In this paper we provide for a variety of options in the frame of
Lévymodels cost-efficient counterparts and determine the efficiency loss (resp. gain)
in applications to several sets of market data. We discuss specific effects of the cost-
efficient payoffs for a series of standard options like puts, calls, self-quanto puts and
straddles and butterfly spread options, and develop their pricing. We obtain several
new results on dependence of the magnitude of the efficiency loss on various model
and option parameters. We show that the cost-efficient payoffs behave improved
compared to the standard payoffs concerning hedging properties. We provide con-
crete hedging simulation schemes for various cost-efficient options. The results of
the paper show that cost-efficient payoffs may lead to considerable reduction of cost
in markets with pronounced trend.

Keywords Cost efficient payoffs · Levy model · Delta hedging · Esscher measure

1 Introduction to Cost-Efficient Payoffs

The concept of distributional analysis of portfolio choice has been introduced by
Dybvig [8]. In a market model (Ω,F , (Ft)0≤t≤T ,P) with finite time horizon [0,T ]
let S = (St)0≤t≤T ∈ Rd be a price model for d stocks and (Zt)0≤t≤T a pricing den-
sity rendering the discounted process (e−rtStZt)0≤t≤T a P-martingale. The cost of a
strategy with terminal payoff XT then is given by the discounted expected payoff

c(XT ) = E[e−rTZTXT ]. (1)
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For a given payoff distribution G a strategy with terminal payoff XT with distributed
payoff G (i.e. XT ∼ G) is called cost-efficient if it minimizes the cost i.e.

c(XT ) = min
XT∼G

c(XT ). (2)

A strategy with payoff XT ∼ G is called most-expensive if

c(XT ) = max
XT∼G

c(XT ). (3)

The difference of the costs �(XT ) = c(XT ) − c(XT ) is called the efficiency loss of
XT .

The following characterization of cost-efficient payoffs has been stated in various
generality in a series of papers including Dybvig [8, 9], Jouini and Kallal [13], Dana
[7], Schied [17], Burgert and Rüschendorf [6], Bernard and Boyle [1], Bernard et al.
[2], Vanduffel et al. [19, 20], and Rüschendorf [14].

Theorem 1 (cost-efficient payoffs)

(a) For a given payoff distribution G it holds that

c(XT ) = e−rT
∫ 1

0
G−1(u)F−1

ZT
(1 − u)du. (4)

(b) A payoff XT ∼ G is cost-efficient if and only if XT and ZT are antimonotonic.
XT ∼ G is most expensive if and only if XT and ZT are comonotonic.

(c) If FZT is continuous then the cost-efficient resp. most expensive payoffs are given
by

XT = G−1(1 − FZT (ZT )) resp. XT = G−1(FZT (ZT )). (5)

Theorem 1 has been applied in several papers to determine cost-efficient payoffs
in particular in the context of the Samuelson model as well as in some classes of
exponential Lévy processes (seeBernard et al. [2], Vanduffel et al. [19], Hammerstein
et al. [11]) and has been applied to real market data. In the context of Lévy models
St = S0eLt with driving Lévy process L = (Lt) the results have been mainly based
on the Esscher measure defined by the pricing density

Zθ
t = eθLt

MLt(θ)

(6)

whereMLt denotes themoment generating functionofLt and θ, theEsscher parameter,
is a solution to the equation

er = ML1(θ + 1)

ML1(θ)
. (7)
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Condition 7 implies that the Esscher measure Qθ = Zθ
TP is a risk neutral measure

for the discounted stock price process (e−rtSt)0≤t≤T . It has the pleasant property that
w.r.t. Qθ L remains a Lévy process with modified parameters.

For exponential Lévy models one gets a simpler representation of efficient strate-
gies and for the cost bounds.

Proposition 2 (cost-efficient payoffs in Lévy models) Let (Lt)t≥0 be a Lévy process
with continuous distribution function FLT at maturity T > 0, and assume that a solu-
tion θ of (7) exists.
If θ < 0, the cost-efficient payoff XT and the most-expensive payoff XT with distrib-
ution function G are given by

XT = G−1(FLT (LT )) and XT = G−1(1 − FLT (LT )) and

E[e−rTZθ
TXT ] ≥ E[e−rTZθ

TXT ] = 1

MLT (θ)

∫ 1

0
eθF−1

LT
(1−y)−rTG−1(1 − y) dy.

If θ > 0, the cost-efficient and the most-expensive payoffs are given by

XT = G−1(1 − FLT (LT )) and XT = G−1(FLT (LT )) and

E[e−rTZθ
TXT ] ≥ E[e−rTZθ

TXT ] = 1

MLT (θ)

∫ 1

0
eθF−1

LT
(y)−rTG−1(y) dy.

XT and XT are almost surely unique.

In Lévy models the market is bullish i.e. E St
S0

> ert iff θ < 0 and the market is

bearish iff θ > 0 (see Proposition 2.2 in Hammerstein et al. [11]). Furthermore, for
θ < 0 a payoff XT is cost-efficient iff XT is an increasing function in LT and for
θ > 0, XT is cost-efficient iff XT is a decreasing function of LT . In particular a put is
inefficient in increasing markets where θ < 0 and a call is inefficient in decreasing
markets (θ > 0). It is shown (for some examples) that the magnitude of efficiency
loss is increasing in the magnitude of the trend in the market described by |θ|. As a
consequence one gets that path dependent options are not cost-efficient and thus can
be improved by cost-efficient options.

Themain aim in this paper is to determine cost-efficient payoffs for several classes
of monotone and nonmonotone options in Lévy models and thus to present a set of
examples showing that the method of cost-efficiency can be used in a great variety
of applications. We also extend the known results to describe the magnitude of the
efficiency loss in dependence on the model parameters and on the hedging costs
for the efficient payoff in comparison to the underlying payoffs. We apply and test
the results for several real market data modeled by Lévy processes; in particular we
consider the normal inverse Gaussian (NIG), the variance Gaussian (VG) and the
normal model and consider two increasing and two decreasing markets. As a result
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we find that cost-efficient payoffs may lead to considerable reduction of costs. The
magnitude of the efficiency loss depends essentially on the magnitude of trend in the
market described by the absolute value of the Esscher parameter |θ|. Cost efficient
payoffs like all other payoffs are typically not attainable in the incomplete Lévy
models. We show however in several examples that cost-efficient payoffs have an
improved behaviour concerning hedging compared to the basic payoffs. In particular
cost-efficient payoffs do not need extra hedging costs compared to the basic payoffs.
The results in this paper are given in the case of real markets and for the case of
pricing by the Esscher martingale measure. Some extensions to the multivariate case
and to further pricing principles are given in Rüschendorf andWolf [15, 16]. Puts are
inefficient in increasing markets when ϑ < 0. Nevertheless investors buy puts, not
for their distributional characteristics but for the fact that they provide value when
the markets fall. This observation shows that some investors have state-dependent
constraints. In recent literature the cost-efficient approach has been extended to deal
with such state-dependent constraints (see Bernard et al. [3, 4]). For several details
in this paper we refer to the dissertation Wolf [21].

2 Lévy Models and Some Classes of Markets Data

As in Hammerstein et al. [11] we focus in this paper on the modeling of market data
by three types of Lévy processes, the NIG, the VG and the normal model. We apply
this modeling to market data of 4 stocks (Volkswagen, Allianz, ThyssenKrupp and
E.ON). Two of the stock prices are increasing, two of them are decreasing in the
observed period. In spite of the fact that the first two models lead to a better fit of
the market data it turns out in the examples that the form of the efficient payoffs is
largely independent of the chosen model and the magnitude of the efficiency loss is
of similar size in all models and examples of options considered.

2.1 Lévy Models

In this subsection we give a short description of the Lévy models used in the appli-
cations in this paper. For a detailed introduction to these models and their role in
financial modeling we refer to Eberlein [10], Schoutens [18].

NIG-Model

The NIG model is obtained as a special case of the generalized hyperbolic model
GH(λ,α,β, δ,μ) by choosing λ = − 1

2 and can be obtained as a normal mean-
variance mixture with an inverse Gaussian mixing distribution. More specifically, if
X ∼ NIG(α,β, δ,μ), then X can be represented as
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X
d= μ + βZ + √

ZW, (8)

where μ ∈ R, W ∼ N(0, 1), and Z ∼ IG(δ,
√

α2 − β2) is an inverse Gaussian dis-
tributed random variable with δ > 0 and 0 ≤ |β| < α that is independent ofW . This
representation also entails that the infinite divisibility of the mixing inverse Gaussian
distribution transfers to theNIGmixture distribution, thus there exists a Lévy process
(Lt)t≥0 with L (L1) = NIG(α,β, δ,μ). The Lebesgue density dNIG(α,β,δ,μ) is given
by

dNIG(α,β,δ,μ)(x) =
∫ ∞

0
dN(μ+βy)(x)dIG(δ,

√
α2−β2)

(y) dy

= n(α,β, δ)
K1(α

√
δ2 + (x − μ)2)√

δ2 + (x − μ)2
eβ(x−μ), (9)

where K1 is the modified Bessel function of third kind with index 1, and the norming
constant n(α,β, δ) is given by

n(α,β, δ) = αδ

π
eδ

√
α2−β2

.

The corresponding moment generating function MNIG(α,β,δ,μ) is of the form

MNIG(α,β,δ,μ)(u) = euμ+δ
(√

α2−β2−
√

α2−(β+u)2
)

(10)

which is defined for all u ∈ (−α − β,α − β). The Esscher parameter θ of the risk
neutral Esscher measure Qθ, i.e. the solution of (7) (if it exists) is given by

θNIG = −1

2
− β + r − μ

δ

√
α2

1 + (
r−μ

δ
)2

− 1

4
.

Note that (Lt) remains a NIG Lévy process under Qθ with parameter β replaced by

β + θ, θ = θNIG, i.e. w.r.t. Qθ holds: L1
d= NIG(α,β + θ, δ,μ).

Variance-Gamma Model

A Variance-Gamma distributed random variable X ∼ VG(λ,α,β,μ) can be repre-
sented as a normal mean-variance mixture as in Eq. (8), but in this case the mix-
ing variable Z ∼ Γ (λ,

α2−β2

2 ) is Gamma distributed with shape parameter λ > 0

and scale parameter α2−β2

2 where 0 ≤ |β| < α. Again, the infinite divisibility of

Γ (λ,
α2−β2

2 ) transfers to VG(λ,α,β,μ). Analogously as above the corresponding
Lebesgue density dVG(λ,α,β,μ) is given by
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dVG(λ,α,β,μ)(x) = m(λ,α,β)|x − μ|λ− 1
2Kλ(α|x − μ|)eβ(x−μ) (11)

with the norming constant

m(λ,α,β) = (α2 − β2)λ√
π(2α)λ− 1

2 Γ (λ)
,

and the moment generating function is of the form

MVG(λ,α,β,μ)(u) = euμ
m(λ,α,β)

m(λ,α,β + u)
= euμ

( α2 − β2

α2 − (β + u)2

)λ

(12)

which is defined for all u ∈ (−α − β,α − β). Here we have

lim
u→±α−β

MVG(λ,α,β,μ)(u) = ∞,

and as consequence the condition 2α > 1 is sufficient to guarantee a unique solution
θ of Eq. (7) in the VG case. Some lengthy calculations (see Wolf [21]) show that the
Esscher parameter θ, i.e. the solution of (7), is given by

θVG =

⎧⎪⎨
⎪⎩

− 1

1−e− r−μ
λ

− β + sign(r − μ)

√
e− r−μ

λ(
1−e− r−μ

λ

)2 + α2, r 	= μ,

− 1
2 − β, r = μ.

(13)

For Lt ∼ VG(λt,α,β,μt) the law of Lt under the Esscher martingale measure is
again Variance-Gamma distributed Lt ∼ VG(λt,α,β + θVG,μt).

Samuelson Model

The classical benchmarkmodel which also is at the basis of the Black–Scholes theory
is to assume that the stock price process (S0eLt )t≥0 follows a geometric Brownian
motion. In this case, the driving Lévy process is given by

Lt = (
μ − σ2

2

)
t + σBt, t > 0

where (Bt)t≥0 is a standard Brownian motion under the physical measure P, μ is the
drift and σ the volatility parameter. Here we have L (Lt) = N((μ − σ2

2 )t,σ2t), its
Lebesgue density is given by
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Fig. 1 Daily closing prices
of Allianz and Volkswagen
used for parameter
estimation

40
60

80
10

0
12

0
14

0

Allianz and VW stock prices 28.05.2010 − 28.09.2012

st
oc

k 
pr

ic
e 

in
 E

ur
o

10.06.2010 23.11.2010 12.05.2011 25.10.2011 11.04.2011 24.09.2012

Allianz
VW

dLt (x) = 1√
2πσ2t

e− 1
2

(x−(μ− σ2
2 )t)2

σ2 t ,

and the moment generating function of L1 equals M
N(μ− σ2

2 ,σ2)
(u) = eu(μ− σ2

2 )+ σ2u2

2 .

The Esscher parameter θ is a solution of er = ML1 (θN+1)

ML1 (θN )
= eμ+θNσ2

and is given by

θN = r−μ
σ2 .

Under the Esscher martingale measure Qθ holds Lt ∼ N((r − σ2

2 )t,σ2t).

2.2 Modeling of Market Data

We apply the Lévy models from Sect. 2.1 to model German stock price data for
Allianz and Volkswagen and for E.ON and ThyssenKrupp from May 28, 2010, to
September 28, 2012, which are shown in Fig. 1 and in Fig. 2 respectively. The esti-
matedparameters and the correspondingEsscher parameter from thedaily log-returns
of Allianz and Volkswagen are given in Table1 and of E.ON and ThyssenKrupp in
Table2.

The fitted densities in the three Lévy models are displayed in Fig. 3 for Allianz
and Volkswagen and in Fig. 4 for E.ON and ThyssenKrupp. It stands out that the
normal density curve fits worse than the NIG and VG density. The interest rate used
to calculate the Esscher parameter θ is r = 4.2027 × 10−6 which corresponds to the
continuously compounded daily-Euribor rate ofOctober 1, 2012. From the estimated
Esscher parameter we find that the Allianz and Volkswagen data have a positive trend
while the ThyssenKrupp and E.ON data have a slight negative trend.
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Fig. 2 Daily closing prices
of E.ON and ThyssenKrupp
used for parameter
estimation
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Table 1 Estimated parameters from daily log-returns of Allianz and Volkswagen for the NIG, the
VG, and the Samuelson model

Allianz λ α β δ μ θ

NIG −0.5 35.01998 −0.36857 0.01478 0.000376 −1.01266

VG 1.03086 72.01061 0.55168 0.0 1.941 ×
10−8

−1.04116

Normal μ = 4.2757 × 10−4, σ = 0.02026 −1.03143

Volkswagen λ α β δ μ θ

NIG −0.5 48.85903 −0.84151 0.02313 0.001451 −2.70867

VG 1.60198 82.94782 −2.16537 0.0 0.00206 −2.73948

Normal μ = 0.00129, σ = 0.02162 −2.74475

Table 2 Estimated parameters from daily log-returns of E.ON and ThyssenKrupp for the NIG, the
VG, and the Samuelson model

E.ON λ α β δ μ θ

NIG −0.5 44.831 −0.639 0.016 −5.25 ×
10−5

0.297816

VG 1.276 86.399 −0.63 0.0 −6.17 ×
10−5

0.322992

Normal μ = −0.0001, σ = 0.018878 0.293082

ThyssenKrupp λ α β δ μ θ

NIG −0.5 42.01665 −2.08815 0.02554 0.000846 0.203533

VG 1.43896 69.05434 −0.92983 0.0 0.000137 0.210135

Normal μ = −0.000128, σ = 0.02447 0.220797
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Fig. 3 Fitted density curves for Allianz and Volkswagen

Fitted density curve for E.ON

D
en

si
ty

−0.10 −0.05 0.00 0.05

0
5

10
15

20
25

30
35

Normal

NIG

VG

Fitted density curve for ThyssenKrupp

D
en

si
ty

−0.10 −0.05 0.00 0.05

0
5

10
15

20
25

Normal

VG

NIG

Fig. 4 Fitted density curves for E.ON and ThyssenKrupp

3 Cost-Efficient Payoffs for Monotone and Nonmonotone
Options

In this section we apply the results on cost-efficiency to a series of options in the class
of Lévy models in Sect. 2 and apply them to the market data introduced and modeled
in Sect. 2.2. The examples give an impression on the magnitude of efficiency loss in
terms of the parameters and shows that this methodology is also applicable to the
improvement of nonmonotone options where calculations typically have to be done
numerically.
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3.1 Put Options

(Long) put options are inefficient in increasing markets where θ < 0 (see Hammer-
stein et al. [11]). Thus calculation of cost-efficient options is only of interest in the
Volkswagen (VW), Allianz (Al) examples. We start with an example which was
already analyzed in Hammerstein et al. [11]. We give a short presentation of these
results, extend them in various respects and compare with the following options.

For a put option with strike K and maturity T > 0, i.e.

XPut
T = (K − ST )+ = (K − S0e

LT )+ (14)

the payoff distribution is given by

GPut(x) = P
(
XPut
T ≤ x

) =

⎧⎪⎨
⎪⎩
1, if x ≥ K,

1 − FLT

(
ln

(
K−x
S0

))
, if 0 ≤ x < K,

0, if x < 0.

(15)

Applying Proposition 2 for θ < 0 the cost-efficient payoff that generates the same
distribution GPut as the long put is given by

XPut
T = G−1

Put(FLT (LT )) = (
K − S0e

F−1
LT

(1−FLT (LT ))
)
+ (16)

with payoff function ωPut(y) := (
K − S0e

F−1
LT

(1−FLT (ln( y
S0

))))
+.

Fig. 5 displays the payoff XPut
T of a long put option on one Allianz stock with strike

K = 98andmaturityT = 23days, and its cost-efficient counterpartsXPut
T for the three

Lévy models under consideration. Although the payoff profiles look quite similar,
a closer look reveals that the optimal payoff is model-dependent and slightly varies
between the different models.

Fig. 5 Classical put and its
cost-efficient counterparts
for Allianz. S0 = 93.42,
closing price October 1,
2012, ϑ < 0
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Table 3 Comparison of the cost of a long put option on Allianz and Volkswagen, resp., and the
corresponding cost-efficient payoffs in different Lévy models. S0 = 93.42, K = 98, T = 23 for
Allianz and S0 = 130.55, K = 135, T = 23 for Volkswagen

Allianz c(XPut
T ) c(XPut

T ) Efficiency loss in %

NIG 6.4495 5.2825 18.09

VG 6.3681 5.2270 17.92

Normal 6.4324 5.2683 18.10

Volkswagen c(XPut
T ) c(XPut

T ) Efficiency loss in %

NIG 8.0064 4.0871 48.95

VG 7.9765 4.0603 49.10

Normal 7.9909 4.0749 49.01

Note that the cost-efficient long put payoff is increasing and is bounded by K as
is its vanilla counterpart, as follows from

lim
ST→∞

XPut
T = lim

ST→∞
(
K − S0e

F−1
LT

(1−FLT (ln( ST
S0

))))
+ = K .

In Table3 we compare the cost of a long put option on Allianz and Volkswagen
with their cost-efficient counterparts for the Lévy models discussed in Sect. 2. All
computations are based on the estimated parameters given in Table1 above. The
initial stock prices S0 of Allianz resp. Volkswagen are the closing prices at October 1,
2012, and the time to maturity is chosen to be T = 23 trading days, meaning that
the put options mature on November 1, 2012. According to Proposition 2, the cost
of the efficient put can be calculated by

c
(
XPut
T

) = E
[
e−rTZθ

TX
Put
T

] = 1

Mdist(θ)

∫ 1

0
eθF−1

dist(1−y)−rT
(
K − S0e

F−1
dist(y)

)
+ dy (17)

where dist is NIG(α,β, δT ,μT), VG(λT ,α,β,μT), or N((μ − σ2

2 )T ,σ2T).
The cost c(XPut

T ) of the vanilla put in the NIG model is given by

c(XPut
T ) = Eθ

[
e−rT (K − ST )+

]

= e−rT
∫ ln(K/S0)

−∞
(K − S0e

x)Zθ,x
T dNIG(α,β,δT ,μT)(x) dx (18)

= e−rTKFNIG(α,β+θ,δT ,μT)

(
ln

(
K
S0

)) − S0FNIG(α,β+θ+1,δT ,μT)

(
ln

(
K
S0

))
,

where Zθ,x
T = eθx

MNIG(α,β,δT ,μT)(θ)
. For the VG model one analogously obtains

c(XPut
T ) = e−rTKFVG(λT ,α,β+θ,μT)

(
ln

(
K
S0

)) − S0FVG(λT ,α,β+θ+1,μT)

(
ln

(
K
S0

))
. (19)
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In the Samuelson model, c(XPut
T ) is calculated by the well-known Black–Scholes put

price formula.

In an exponential Lévy model with Lévy process LT
d= NIG(α,β, δT ,μT) or

LT
d= VG(λT ,α,β,μT) and with Esscher parameter θ we have

c(XPut
T ) = e−rTKFLθ

T

(
ln

(K

S0

))
− S0FLθ+1

T

(
ln

(K

S0

))
, (20)

since Lθ+k
T

d= NIG(α,β + θ + k, δT ,μT) or VG(λT ,α,β + θ + k,μT), k = 0, 1.

If LT
d= N((μ − σ2

2 )T ,σ2T), then we have

c(XPut
T ) = e−rTKΦ(h) − S0Φ(h − σ

√
T), (21)

where h = 1
σ
√
T
(ln( K

S0
) − (r − σ2

2 )T).

For symmetric Lévy processes which fulfill LT
d= vT − LT , where v ∈ R, the cost

of the cost-efficient put (17) can be evaluated without any integration. This symmetry
holds true in particular in the normal case. Numerical computations of prices, then,
become a lot easier. The price formula for the cost-efficient put in the Samuelson
model is given in Bernard et al. [2, Sect. 5.2]. Some similar calculations yield in the
Lévy case the following result (for details see Wolf [21, Proposition 5.25]).

Proposition 3 (Price of efficient puts in symmetric Lévy models) Let XPut
T be the

payoff of a vanilla put option with strike K, maturity T > 0. Suppose (Lt)t≥0 is a

Lévy process such that LT
d= vT − LT . If θ is an Esscher parameter, then the cost of

the cost-efficient put XPut
T w.r.t. the Esscher measure is given by c(XPut

T ) if θ > 0 and
by

c(XPut
T ) = e−rTK

(
1 − FLθ

T

(
ln

(S0
K

)
+ vT

))

− e−(r−v)TS0
MLT (θ − 1)

MLT (θ)

(
1 − F

Lθ−1
T

(
ln

(S0
K

)
+ vT

))
(22)

if θ < 0. Here Lθ
T denotes the Lévy process at maturity under the Esscher measure

Qθ. In particular, in the Samuelson model we have that LT
d= 2(μ − σ2

2 )T − LT . Thus

for θ < 0
c(XPut

T ) = e−rTKΦ(h) − e2(μ−r)TS0Φ(h − σ
√
T) (23)

where h = 1
σ
√
T

(
ln( K

S0
) − (μ − σ2

2 )T + (r − μ)T
)
.

The results from Table3 show that the savings from choosing the cost-efficient
strategies can be quite large: For Allianz, the cost of the efficient put is less than
83% of the price of the plain vanilla put, and in case of Volkswagen the vanilla put is
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almost twice as expensive as the efficient put. The great differences in the efficiency
losses of the Allianz and Volkswagen puts may seem somewhat surprising at first
glance because the stock price to strike ratio S0

K is roughly the same in both cases
(0.953 for Allianz and 0.967 for Volkswagen). But the difference is induced by the
greater magnitude of positive trend in the VW data compared to Allianz as seen from
Table2. The value of |θ| for Volkswagen is more than 2.5 times as large as that of
Allianz. For each stock itself the efficiency losses obtained under the different Lévy
models are of almost the same size and thus seem to be widely model-independent.

In contrast to the latter static formulas and results we also consider time dynamic
behaviour of the cost of the cost-efficient payoff. Therefore, we keep the payoff

function ωPut(y) = (
K − S0e

F−1
LT

(1−FLT (ln( y
S0

))))
+ of the cost-efficient long put fixed

within the trading period [0,T ]. The payoff function ωPut depends on S0 which
becomes a location parameter in this context. In consequence, the price at time
t < T of a cost-efficient long put with maturity T is given by

ct(X
Put
T ) = e−r(T−t)E

[
Zθ
T−t

(
K − S0e

F−1
LT

(1−FLT

(
ln( y

S0
)+LT−t)

))
+
] ∣∣

y=St
. (24)

In Fig. 6 we notice that during some time in the trading period [0,T ] the cost of
the cost-efficient long put exceeds the cost of the plain vanilla long put. For the case
of the Allianz stock this is even beneficial for writers of the cost-efficient long put
XPut
T since at maturity, November 1, 2012, the higher price corresponds to a higher

payout. However, we could also have the reverse situation. In other words, an initially
optimal strategy may become less profitable as its vanilla counterpart if the market
scenario significantly changes in between.

Although, the cost-efficient put behaves like a modified call, i.e. it is increasing
in LT , both XPut

T and XPut
T end up in the money, whereas a plain vanilla call would

expire worthless. But besides this abnormal behaviour the progression of the cost of
the long put and its cost-efficient counterpart exhibit similar price behaviour as one
would expect from vanilla long call and put options.

Fig. 6 Stock and put prices
along the period [0,T ] for
Allianz strike K = 98,
maturity T = 23 days
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Remark 4 (Short put option) Similarly for the short put X−Put
T = −(K − S0eLT )+

which is inefficient for θ > 0 the cost-efficient version is given by

X−Put
T = G−1

−Put(1 − FLT (LT )) = (
S0e

F−1
LT

(1−FLT (LT )) − K
)
−. (25)

and we obtain by simple arguments the following duality relation.
For θ < 0 holds

XPut
T = −X

−Put
T and c

(
XPut
T

) = −c
(
X

−Put
T

)
. (26)

Similarly, if θ > 0 we have

X−Put
T = −X

Put
T as well as c

(
X−Put
T

) = −c
(
X
Put
T

)
.

3.2 Call Options

Call options are inefficient in decreasingmarkets i.e. when θ > 0. For the callXCall
T =

(ST − K)+ = (S0eLT − K)+ with payoff functionωCall(y) := (y − K)+ weobtain the
payoff distribution function GCall = FXCall

T
by

GCall(x) = P
(
XCall
T ≤ x

) =
{
FLT

(
ln

(
K+x
S0

))
, if x ≥ 0,

0, if x < 0.
(27)

Applying Proposition 2 for θ > 0 the cost-efficient payoff that generates the same
distribution GCall as the long call option is given by

XCall
T = G−1

Call(1 − FLT (LT )) =
(
S0e

F−1
LT

(1−FLT (LT )) − K
)

+
(28)

with payoff function ωCall(y) := (S0e
F−1
LT

(1−FLT (ln( y
S0

))) − K)+.
Figure7 displays the payoff XCall

T of a long call option on one ThyssenKrupp stock
with strike K = 16.5 and maturity T = 23days, and its cost-efficient counterparts
XCall
T for the three Lévy models under consideration. As seen before the optimal

payoff is model-dependent and slightly varies between the different models.
Next, we state formulas for the cost of the standard call in the three Lévy models.

Let (Lt)t≥0 be a Lévy process, with L (LT ) = NIG(α,β, δT ,μT) or VG(λT ,α,

β,μT). If θ is a Esscher parameter for L, then we have

c(XCall
T ) = S0

(
1 − F

Lθ+1
T

(
ln

(K

S0

)))
− e−rTK

(
1 − FLθ

T

(
ln

(K

S0

)))
, (29)



Construction and Hedging of Optimal Payoffs in Lévy Models 345

Fig. 7 Classical call and its
cost-efficient counterparts
for ThyssenKrupp.
S0 = 16.73, closing price
October 1, 2012, ϑ > 0
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where L (Lθ+k
T ) is NIG(α,β + θ + k, δT ,μT) or VG(λT ,α,β + θ + k,μT), k =

0, 1. IfL (LT ) = N((μ − σ2

2 )T ,σ2T), then we have

c(XCall
T ) = S0Φ(−h + σ

√
T) − e−rTKΦ(−h), (30)

where h = 1
σ
√
T
(ln( K

S0
) − (r − σ2

2 )T).
Similarly to the case of a put in (14) also for a call a simple formula can be given for

cost-efficient calls for symmetric Lévy models which fulfill LT
d= vT − LT , v ∈ R.

Proposition 5 (Price of efficient calls in symmetric Lévy models)

Suppose (Lt)t≥0 is a Lévy process such thatL (LT ) = L (vT − LT ). If θ is a Esscher
parameter, then the cost of the cost-efficient call XCall

T equals

c(XCall
T ) = e−(r−v)TS0

MLT (θ − 1)

MLT (θ)
F
Lθ−1
T

(
ln

(S0
K

)
+ vT

)

− e−rTKFLθ
T

(
ln

(S0
K

)
+ vT

)
(31)

if θ > 0, where Lθ
T denotes the Lévy process at maturity under the Esscher measure

Qθ. In particular, in the Samuelson model we have that LT
d= 2(μ − σ2

2 )T − LT , thus

c(XCall
T ) = e2(μ−r)TS0Φ(−h + σ

√
T ) − e−rTKΦ(−h) (32)

if θ > 0, where h = 1
σ
√
T

(
ln( K

S0
) − (μ − σ2

2 )T + (r − μ)T
)
.

In Table4 we compare the cost of a long call option on E.ON and ThyssenKrupp
with their cost-efficient counterparts for the Lévy models discussed in Sect. 2. The
results from Table4 show that the savings from choosing the cost-efficient strategies
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Table 4 Comparison of the cost of a long call option on E.ON and ThyssenKrupp, resp., and the
corresponding cost-efficient payoffs in different Lévy models. S0 = 17.48, K = 17.24, T = 23 for
E.ON and S0 = 16.73, K = 16.5, T = 23 for ThyssenKrupp

E.ON c(XCall
T ) c(XCall

T ) Efficiency loss in %

NIG 0.7502 0.7018 6.45

VG 0.7398 0.6893 6.83

Normal 0.7550 0.7073 6.32

Thyssen c(XCall
T ) c(XCall

T ) Efficiency loss in %

NIG 0.9016 0.8484 5.90

VG 0.8989 0.8443 6.07

Normal 0.8987 0.8418 6.33

Fig. 8 Stock and call prices
along the period [0,T ] for
ThyssenKrupp, strike
K = 16.5, maturity T = 23
days

14
15

16
17

18
19

stock and call prices of ThyssenKrupp (NIG model)

st
oc

k 
pr

ic
e

03.10.2012 11.10.2012 19.10.2012 29.10.2012

0
1

2
3

4
5

ca
ll 

pr
ic

e

K

stock price
vanilla call
efficient call

are close to each other as is the magnitude of |θ| for ThyssenKrupp and E.ON
(compare Table2). The time dynamic behaviour of the cost-efficient call compared
to the standard call is displayed in Fig. 8. There we notice that the formerly bearish
market setting of the ThyssenKrupp changed to a bullish market setting, since the
drift of the stock price altered its direction from negative to positive (cf. Fig. 2).
Moreover, the stock price remains above the strike during the entire trading period
[0,T ]. As the cost-efficient long call behaves like a modified put, it decreases over
[0,T ] and expires worthless. Indeed, this is an unpropitious example for writers of
the cost-efficient long call XCall

T .
Again as in the put case we get the following symmetry relation between long

and short calls: If θ > 0, it holds that

XCall
T = −X

−Call
T and c

(
XCall
T

) = −c
(
X

−Call
T

)
.

Similarly, if θ < 0 we have X−Call
T = −X

Call
T as well as c

(
X−Call
T

) = −c
(
X
Call
T

)
.
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3.3 Self-quanto Calls and Puts

A quanto option is a (typically European) option whose payoff is converted into a
different currency or numeraire at maturity at a pre-specified rate, called the quanto-
factor. Such products are attractive for speculators and investors who wish to have
exposure to a foreign asset, but without the corresponding exchange rate risk. Quanto
options are attractive because they shield the purchaser from exchange rate fluctu-
ations. In the special case of a self-quanto option the numeraire is the underlying
asset price at maturity itself. The payoff of a long self-quanto call with maturity T
and strike price K is

XsqC
T = ST · (ST − K)+ = S0e

LT (S0e
LT − K)+

which ismonotonically increasing inLT and thus not cost-efficient if θ > 0. Its payoff
function is then given by ωsqC(y) := y(y − K)+. To derive the corresponding distri-
bution function GsqC = FXsqC

T
, observe that the positive solution S∗

T of the quadratic

equation S2T − KST = x, x > 0, is given by

S∗
T = K

2
+

√
K2

4
+ x,

then {S2T − KST − x ≤ 0} = {ST ≤ S∗
T }, hence

GsqC(x) = P
(
XsqC
T ≤ x

) =

⎧⎪⎨
⎪⎩
FLT

(
ln

( K
2 +

√
K2
4 +x

S0

))
, if x ≥ 0,

0, if x < 0.

The generalized inverse is given by

G−1
sqC(y) = S0e

F−1
LT

(y)(S0eF−1
LT

(y) − K
)
+, y ∈ (0, 1). (33)

Consequently according to Proposition 2 the cost-efficient strategy for a long self-
quanto call in the case θ > 0 is,

XsqC
T = G−1

sqC(1 − FLT (LT )) = S0e
F−1
LT

(1−FLT (LT ))
(
S0e

F−1
LT

(1−FLT (LT )) − K
)
+ (34)

with payoff function ωsqC(y) := S0e
F−1
LT

(
1−FLT (ln( y

S0
))

)(
S0e

F−1
LT

(
1−FLT (ln( y

S0
))

)
− K

)
+
.

Figure9 displays the payoff XsqC
T of a long self-quanto call option on one ThyssenK-

rupp stock with strike K = 16.5 and maturity T = 23days, and its cost-efficient
counterparts XsqC

T for the three Lévy models under consideration.
The cost of the efficient self-quanto call can be calculated using (33),
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Fig. 9 Classical self-quanto
call and its cost-efficient
counterparts for
ThyssenKrupp. S0 = 16.73
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c(XsqC
T ) = 1

Mdist(θ)

∫ 1

0
eθF−1

dist(y)−rT S0e
F−1
dist(1−y)

(
S0e

F−1
dist(1−y) − K

)
+ dy (35)

where dist is NIG(α,β, δT ,μT), VG(λT ,α,β,μT), or N((μ − σ2

2 )T ,σ2T).
If θ is an Esscher parameter and MLT (θ + 2) < ∞, then

c(XsqC
T ) ≤ e−rTEθ[S2T ] = e−rT S20

MLT (θ + 2)

MLT (θ)
< ∞. (36)

In general this holds true for the Samuelson model, since the moment generating
function of L1,MN((μ− σ2

2 ),σ2)
(u) is defined for all u ∈ R. For the NIG resp. VGmodel

θ + 2 ∈ (−α − β,α − β) and θ ∈ (−α − β,α − β) (37)

which implies that θ ∈ (−α − β,α − β − 2). All estimated parameters from the
daily log returns of E.ON and ThyssenKrupp from Table2 fulfill this condition as
well as Eq. (37). We get the following pricing formula.

Proposition 6 (Price of a vanilla self-quanto call)

Let (Lt)t≥0 beaLévyprocess, such that LT
d= NIG(α,β, δT ,μT)orVG(λT ,α,β,μT).

If MLT (θ + 2) < ∞, where θ is an Esscher parameter, then we have

c(XsqC
T ) = MLT (θ + 2)

MLT (θ + 1)
S20

(
1 − F

Lθ+2
T

(
ln

(K

S0

)))
− S0K

(
1 − F

Lθ+1
T

(
ln

(K

S0

)))

(38)

where Lθ+k
T

d= NIG(α,β + θ + k, δT ,μT) or VG(λT ,α,β + θ + k,μT), k = 0,
1, 2.

If LT
d= N((μ − σ2

2 )T ,σ2T), then we have
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c(XsqC
T ) = e(r+σ2)TS20Φ

(−h′ + σ
√
T
) − S0KΦ

(−h′), (39)

where h′ = 1
σ
√
T
(ln( K

S0
) − (r + σ2

2 )T).

For details of the proof we refer to Wolf [21].

Remark 7 (symmetric Lévy case) In the case of symmetric Lévy processes where

LT
d= vT − LT for some v ∈ R the formulas for the cost of efficient self-quanto calls

simplify to

c(XsqC
T ) = evTS0

(
e−(r−v)TS0

MLT (θ − 2)

MLT (θ)
F
Lθ−2
T

(
ln

(S0
K

)
+ vT

)

− e−rTK
MLT (θ − 1)

MLT (θ)
F
Lθ−1
T

(
ln

(S0
K

)
+ vT

))
(40)

where Lθ
T denotes the Lévy process at maturity under the Esscher measure Qθ.

In particular, in the Samuelson model we have that LT
d= 2(μ − σ2

2 )T − LT , thus

c(XsqC
T ) = e2(μ−r)TS0

(
e−rT e2(μ+ σ2

2 )TS0Φ(−h + σ
√
T) − KΦ(−h)

)
(41)

where h = 1
σ
√
T

(
ln( K

S0
) − (μ + σ2

2 )T + (r − μ)T
)
.

We display the cost of a long self-quanto call option on E.ON and ThyssenKrupp
with their cost-efficient counterparts for the three Lévy models under consideration
in Table5. Again, we emphasize that the relative efficiency loss of the self-quanto
option on E.ON and ThyssenKrupp has almost the same size. The same is true for
the corresponding Esscher parameter θ.

Utilizing Proposition 2 and the explicit formula of the payoff function ωsqC the
price at time t < T of a cost-efficient long call with maturity T can be computed as

Table 5 Comparison of the cost of a long self-quanto call option on E.ON and ThyssenKrupp,
resp., and the corresponding cost-efficient payoffs. S0 = 17.48, K = 17.24, T = 23 for E.ON and
S0 = 16.73, K = 16.5, T = 23 for ThyssenKrupp

E.ON c(XsqC
T ) c(XsqC

T ) Efficiency loss in %

NIG 14.6161 13.6394 6.68

VG 14.3741 13.3613 7.05

Normal 14.6988 13.7397 6.53

Thyssen c(XsqC
T ) c(XsqC

T ) Efficiency loss in %

NIG 17.4182 16.3441 6.17

VG 17.3619 16.2628 6.50

Normal 17.3394 16.1980 6.58
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Fig. 10 Cost of a classical
self-quanto call and its
cost-efficient counterpart for
ThyssenKrupp. S0 = 16.73
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ct(X
sqC
T ) = e−r(T−t)E
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Zθ
T−t S0e

F−1
LT

(
1−FLT

(
ln( y

S0
)+LT−t

))
·

(
S0e

F−1
LT

(
1−FLT

(
ln( y

S0
)+LT−t

))
− K

)
+
] ∣∣

y=St

From Fig. 10 the leverage effect of the self-quanto call payoff is clearly recogniz-
able in comparison to the standard long call payoff. The peaks and lows are more
pronounced then in the vanilla call case (compare Fig. 8).

Again, we have the symmetry relation G−1
sqC(y) = −G−1

−sqC(1 − y) and conclude:

If θ > 0, then XsqC
T = −X

−sqC
T and c

(
XsqC
T

) = −c
(
X

−sqC
T

)
.

If θ < 0 then X−sqC
T = −X

sqC
T as well as c

(
X−sqC
T

) = −c
(
X
sqC
T

)
.

3.4 Self-quanto Put Options

A long self-quanto put XsqP
T = ST (K − ST )+ with payoff function ωsqP(y) := y(K −

y)+ and strike K > 0 is designed to profit from moderate decreasing prices of the
underlying security. It provides highest outcomes when the price is at K

2 . Its distribu-
tion function can be calculated and is presented in the following formula (42). Since
the payoff function ωsqP is not monotone self-quanto puts are not efficient for θ 	= 0.
The payoff distribution function GsqP can be calculated as

GsqP(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, x ≥ K2

4 ,

1 −
(
FLT

(
ln

( K
2 +

√
K2
4 −x

S0

))
− FLT

(
ln

( K
2 −

√
K2
4 −x

S0

)))
, 0 < x < K2

4 ,

1 − FLT

(
ln( K

S0
)
)
, x = 0,

0, x < 0 .

(42)
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Figure11 displays the payoff XsqP
T of a long self-quanto put option on one Allianz

stockwith strikeK = 98 andmaturity T = 23days and its cost-efficient counterparts
XsqP
T for the three Lévy models under consideration. The bearish market counterpart

is illustrated in Fig. 12 which shows the payoff XsqP
T of a cost-efficient long self-

quanto put option on one ThyssenKrupp stock with strike K = 16.5 and maturity
T = 23 days. Note, that all three Lévy models generate fairly equal plots.

For the price of a standard and optimal self-quanto put we have similarly as in the
call case the following simplified formula.

Proposition 8 (Price of a vanilla self-quanto put) Let (Lt)t≥0 be a Lévy process, such

that LT
d= NIG(α,β, δT ,μT) or VG(λT ,α,β,μT). If θ is a Esscher parameter, then

we have

c(XsqP
T ) = S0KFLθ+1

T

(
ln

(K

S0

))
− S20E

[ e(θ+2)LT

MLT (θ + 1)
1{

LT<ln( K
S0

)

}]

Fig. 11 Classical
self-quanto put and its
cost-efficient counterparts
for Allianz. S0 = 93.42
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Fig. 12 Classical
self-quanto put and its
cost-efficient counterparts
for ThyssenKrupp.
S0 = 16.73
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Table 6 Comparison of the cost of a long self-quanto put option on Allianz and ThyssenKrupp
resp., and the corresponding cost-efficient payoffs. S0 = 93.42, K = 98, T = 23 for Allianz and
S0 = 16.73, K = 16.5 for ThyssenKrupp

Allianz c(XsqP
T ) c(XsqP

T ) Efficiency loss in %

NIG 547.2179 452.8534 17.24

VG 542.4431 449.5875 17.12

Normal 546.3491 452.2157 17.23

ThyssenKrupp c(XsqP
T ) c(XsqP

T ) Efficiency loss in %

NIG 9.5988 9.5987 0.001041

VG 9.5737 9.5736 0.001044

Normal 9.5826 9.5825 0.001043

where Lθ+k
T

d= NIG(α,β + θ + k, δT ,μT) or VG(λT ,α,β + θ + k,μT), k = 0,
1, 2. If in addition MLT (θ + 2) < ∞, then

c(XsqP
T ) = S0KFLθ+1

T

(
ln

(K

S0

))
− MLT (θ + 2)

MLT (θ + 1)
S20FLθ+2

T

(
ln

(K

S0

))
. (43)

For LT
d= N((μ − σ2

2 )T ,σ2T) we have

c(XsqP
T ) = S0KΦ

(
h
) − e(r+σ2)TS20Φ

(
h − σ

√
T
)

(44)

where h = 1
σ
√
T
(ln( K

S0
) − (r + σ2

2 )T).

Table6 gives the cost of a long self-quanto put option on Allianz with their cost-
efficient counterparts for the three Lévy models under consideration. To cover the
bearish markets the analogous results for the cost of a long self-quanto put option
on ThyssenKrupp are included in Table6. One observes that for the ThyssenKrupp
stock the efficiency loss is insignificantly small. This is due to the fact that equality
of the payoff functions on sets with high probability (under the Esscher martingale
measure) plus boundedness on the complementary set implies nearly equal cost and,
thus small efficiency loss. This is quantified in the next remark in the NIG case.

Remark 9 Assume that LT
d= NIG(α,β, δT ,μT), then the payoff functions of the

long self-quanto put XsqP
T and of the cost-efficient counterpart XsqP

T are both bounded
by C = (K2 )2 = 68.0625 and are identical on the interval I = [ln( 8.25S0

),

ln( 30S0 )] with probability (w.r.t. Esscher martingale measure) nearly one, FLθ
T
(I) =

FLθ
T
(ln(30/S0)) − FLθ

T
(ln(8.25/S0)) = 99.9999%. Hence
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�(XsqP
T ) = e−rTEQθ [XsqP

T − XsqP
T ]

=
∫
I
(XsqP,x

T − XsqP,x
T )dFLθ

T
(x) +

∫
Ic
(XsqP,x

T − XsqP,x
T )dFLθ

T
(x)

=
∫
Ic
(XsqP,x

T − XsqP,x
T )dFLθ

T
(x)

≤ sup
x∈Ic

(XsqP,x
T − XsqP,x

T ) · FLθ
T
(Ic) ≤ C · 0.00001 = 0.0001089,

where XsqP,x
T = ωsqP(S0ex) = S0ex(K − S0ex)+ and XsqP,x

T = ωsqP(x) = G−1
sqP

(1 − FLT (ln(
x
S0

))).

Figure13 illustrates the nearly equal payoff function of the standard and optimal
self-quanto put in the bearish market situation. This leads to almost identical prices
during the entire trading period [0,T ] in October 2012. Figure14, shows distinctive
similarities to Fig. 6 with more pronounced peaks and lows which is due to the design
of the long self-quanto put option. The prices of the efficient options always roughly
move in the direction opposite to that of the standard options which reflects the
reversed monotonicity properties of the underlying payoff profiles in Fig. 11.

Fig. 13 Evolution of prices
of standard and cost-efficient
self-quanto put with strike
K = 16.5 for ThyssenKrupp
in the VG model
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Fig. 14 Evolution of prices
of standard and cost-efficient
self-quanto put with strike
K = 98 for Allianz in the
NIG model
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3.5 Long Straddle Options

A long straddle investment strategy allows the holder to profit based on howmuch the
price of the underlying securitymoves, regardless of the direction of pricemovement.
A long straddle option Xstrdl

T is realized by going long in both a call option and a put
option on some stock, index or other underlying, i.e. Xstrdl

T = XCall
T + XPut

T . It involves
buying the put and call options at the same strike K > 0 with the same maturity T . A
profit is gained if the underlying price moves a long way from the strike price, either
above or below. The payoff distribution function is given in the following lemma.

Lemma 10 Let (Lt)t≥0 be a Lévy process with continuous distribution function FLT
at maturity T > 0. The distribution function Gstrdl of the payoff of the long straddle
Xstrdl
T with strike K > 0 at maturity T is given by

Gstrdl(x) =

⎧⎪⎨
⎪⎩
FLT (ln(

K+x
S0

)), x ≥ K,

FLT (ln(
K+x
S0

)) − FLT (ln(
K−x
S0

)), 0 ≤ x < K,

0, x < 0 .

(45)

The cost of the cost-efficient long straddle is compared with its vanilla counterpart
in Table7, while in Fig. 15 we contrast the payoffs Xstrdl

T of a long straddle option on
one Volkswagen stock with strike K = 135 and maturity T = 23days, and its cost-
efficient counterparts Xstrdl

T for the three Lévy models under consideration. For the
bearishmarkets we present in Fig. 17, the payoffXstrdl

T of a cost-efficient long straddle
option on one ThyssenKrupp stock with strike K = 16.5 and maturity T = 23 days.

Regarding Fig. 15 we notice that with increasing stock price at maturity of the Volk-
swagen the payoff of the cost-efficient long straddle dominates that of the standard
long straddle. This difference becomes more and more irrelevant with increasing
stock price and takes the greatest value if the stock prices moves around the exercise

Table 7 Comparison of the cost of a long straddle option on Volkswagen and ThyssenKrupp resp.,
and the corresponding cost-efficient payoffs. S0 = 130.55, K = 135, T = 23 for Volkswagen and
S0 = 16.73, K = 16.5 for ThyssenKrupp

Volkswagen c(Xstrdl
T ) c(Xstrdl

T ) Efficiency loss in %

NIG 11.5759 8.9844 22.39

VG 11.5161 8.9239 22.51

Normal 11.5448 8.9722 22.28

ThyssenKrupp c(Xstrdl
T ) c(Xstrdl

T ) Efficiency loss in %

NIG 1.5717 1.5377 2.17

VG 1.5662 1.5312 2.23

Normal 1.5657 1.5293 2.32
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Fig. 15 Payoff functions of
a classical straddle option
and its cost-efficient
counterparts for Volkswagen
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Fig. 16 Evolution of prices
of standard and cost-efficient
long straddle with strike
K = 135 for Volkswagen in
the NIG model
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price. A reverse pattern is depicted in Fig. 17. Thus, the evolution of the prices of
standard and cost-efficient long straddle for Volkswagen, Fig. 16, shows that close to
maturity, where the stock price rapidly increases, the costs are increasing too, and the
cost-efficient long straddle is more expensive than the standard long straddle option.
For the ThyssenKrupp stock we have a more complex situation. Here, the trend alters
from bearish to bullish within the trading period, thus the stock price increases close
to maturity. Hence, the payoff of the cost-efficient long straddle becomes less worthy
which is illustrated in Fig. 18.

3.6 Long Call Butterfly Spread Options

A long (call) butterfly option strategy is created to earn substantial but limited profits
with great probability. It is a limited risk and non-directional financial investment
strategy, and due to its design it is a suitable neutral option strategy for low volatility
markets. A long butterfly spread is the combination of two long calls C3 and C1 with
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Fig. 17 Payoff functions of
a classical straddle option
and its cost-efficient
counterparts for
ThyssenKrupp
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Fig. 18 Evolution of prices
of standard and cost-efficient
long straddle with strike
K = 16.5 for ThyssenKrupp
in the VG model
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strikes K3 > K1 > 0, and two short calls −C2 with strike K2 = K1+K3
2 . The payoff

Xbfly
T of a butterfly spread is given by

Xbfly
T = (ST − K1)+ + (ST − K3)+ − 2(ST − K2)+.

An investor may take a long butterfly position if he expects that the market is mildly
volatile, thus profiting the most if the stock price is at K2. The payoff distribution
function can be calculated and is given by:

Gbfly(x) =

⎧⎪⎨
⎪⎩
1, x > K2 − K1,

1 − FLT (ln(
K3−x
S0

)) + FLT (ln(
K1+x
S0

)), 0 ≤ x ≤ K2 − K1,

0, x < 0 .

(46)

In Fig. 19 and 21 the payoffs and the prices of of a butterfly spread and its efficient
counterpart of one Allianz stock with strikes K1 = 94 and K3 = 104 are presented.
For the bearishmarkets, Fig. 20 shows the payoffXbfly

T of a cost-efficient long butterfly
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Fig. 19 Payoff functions of
a classical long butterfly
option and its cost-efficient
counterparts for Allianz.
S0 = 93.42, K1 = 94 and
K3 = 104
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Fig. 20 Payoff functions of
a classical long butterfly
option and its cost-efficient
counterparts for
ThyssenKrupp. S0 = 16.73,
K1 = 12 and K3 = 20
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spread option on one ThyssenKrupp stock with strikes K1 = 12 and K3 = 20. The
cost of a long butterfly spread option on Allianz and ThyssenKrupp with their cost-
efficient counterparts for the three Lévymodels under consideration are considered in
Table8. Again, in case of the ThyssenKrupp stockwe notice that themore the payoffs
functions resemble on sets with greater mass the smaller becomes the efficiency loss
(cf. Figs. 20, 21 and also Remark 9). We see from Fig. 20 that the payoff of the
cost-efficient version of the long butterfly spread is dominated if the stock price
of the underlying is greater than approximately 15.5. Since the stock price of the
ThyssenKrupp is above 15.5 during the entire trading period 0 < t ≤ T the cost of
the standard butterfly spread dominates the cost of the efficient counterpart which
can be seen in Fig. 22.
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Table 8 Comparison of the cost of a long butterfly spread option on Allianz and ThyssenKrupp
resp., and the corresponding cost-efficient payoffs. S0 = 93.42, K1 = 94, K3 = 104, for Volkswa-
gen and S0 = 16.73, K1 = 12, K3 = 20 for ThyssenKrupp

Allianz c(Xbfly
T ) c(Xbfly

T ) Efficiency loss in %

NIG 0.8398 0.7739 7.84

VG 0.8475 0.7825 7.67

Normal 0.8349 0.7691 7.87

ThyssenKrupp c(Xbfly
T ) c(Xbfly

T ) Efficiency loss in %

NIG 2.4153 2.4008 0.60

VG 2.4210 2.4064 0.60

Normal 2.4196 2.4044 0.63

Fig. 21 Evolution of prices
of standard and cost-efficient
long call butterfly spread
with strikes K1 = 94 and
K3 = 104 for Allianz in the
VG model in October 2012,
T = 23 days
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Fig. 22 Evolution of prices
of standard and cost-efficient
long call butterfly spread
with strikes K1 = 12 and
K3 = 20 for ThyssenKrupp
in the NIG model in October
2012, T = 23 days
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4 Efficiency Loss for Monotone Payoff Functions

The efficiency loss �(θ) = �(θ, η) = e−rTEθ(XT − XT ) depends on the Esscher
parameter θ = θ(η) and in particular on the model parameter η = (η1, . . . , ηk).
In Hammerstein et al. [11] it has been shown that �(θ, η) is an increasing function in
|θ| which leads in particular in the examples of put and call options to the result that
the magnitude |θ| of market trend determines the magnitude of the efficiency loss.

In the previous sections we typically reported the relative efficiency loss �(θ)
c(XT )

=
�r(θ) which might be more relevant for applications. In this section we study the
efficiency loss for plain vanilla puts and calls as well as for self-quanto calls. For
vanilla puts as for its cost-efficient counterparts the cost rises with increasing strike
price. Hence, it would be interesting to know how the efficiency loss resp. relative
efficiency loss behaves when changing the strike. The next theorem confirms that
the efficiency loss �(K) in case of the put option is increasing in the strike while
the relative efficiency loss �r(K) shows an opposite behaviour. This has noticeable
consequences for trading put options, when investors are seeking to maximize their
(relative) efficiency loss. Related results for the call resp. self-quanto call option are
given too.

Theorem 11 (Efficiency loss vs. relative efficiency loss for XPut
T , influence of strike)

Let (Lt)t≥0 be a Lévy process with continuous and strictly increasing distribution
function FLT at maturity T > 0. Suppose XPut

T is the payoff of a long put option with
strike K > 0 and let θ be an Esscher parameter.

1. The efficiency loss, �(K) := c(XPut
T ) − c(XPut

T ) is increasing in K.
2. ∂

∂K c(X
Put
T ) ≤ ∂

∂K c(X
Put
T ) and the costs of the standard and efficient put are increas-

ing in K.
3. The relative efficiency loss �r(K) := �(K)

c(XPut
T )

decreases in K.

Proof 1. If θ > 0 then XPut
T = XPut

T and �(K) ≡ 0, thus w.l.g., let θ < 0. By
definition �(K) ≥ 0 for all K ∈ R+, thus � : R+ → R+. Define C := e−rT

Eθ[S0eF
−1
LT

(1−FLT (LT )) − ST ] and observe that the pair (X+
1 ,X+

2 ) := (Zθ
T ,

S0e
F−1
LT

(1−FLT (LT ))
) is comonotonicwhereas the pair (X−

1 ,X−
2 ) := (Zθ

T , ST ) is coun-
termonotonic. ThemarginalsFX+

1
= FX−

1
andFX+

2
= FX−

2
are equal, thus,Hoeffd-

ings inequality implies

erTC = Cov(Zθ
T , S0e

F−1
LT

(1−FLT (LT ))
) − Cov(Zθ

T , ST ) ≥ 0

and thusC ≥ 0. Since the first term is non-negative and the second is non-positive

it holds thatC = 0 if and only if Cov(Zθ
T , S0e

F−1
LT

(1−FLT (LT ))
) = Cov(Zθ

T , ST ) = 0.

Since Zθ
T = h(ST ) for some decreasing function h : R+ → R+, this can only be

true if and only if LT respectively L1 is degenerate. By our general assumption
this case is excluded and thusC > 0. Further, we easily obtain that �(0) = 0 and
we also have
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Eθ[(K − a)+ − (K − b)+] = Eθ[min(K, b) − min(K, a)]
≤ Eθ[min(K, b)]
≤ Eθ[b].

Hence, with the identity (K − a)+ = K − min(K, a) for allK , a ∈ R+, the dom-
inated convergence theorem yields

lim
K→∞Eθ[min(K, b) − min(K, a)] = Eθ[ lim

K→∞min(K, b)] − Eθ[ lim
K→∞min(K, a)]

= Eθ[b − a]

for all a, b ∈ R+, such that Eθ[b],Eθ[a] < ∞. Putting a = ST and b = S0
eF

−1
LT

(1−FLT (LT )) we have shown that

lim
K→∞ �(K) = C > 0.

For the proof of 1. it is sufficient to show the existence of a K∗ ∈ R+ such that
� is convex on [0,K∗) and concave on [K∗,∞). For θ < 0 the plain vanilla put
is most-expensive. By Proposition 2 the efficiency loss is given by

�(K) = 1

MLT (θ)

∫ 1

0
e
θF−1

LT
(1−y)−rT (

(K − S0e
F−1
LT

(1−y)
)+ − (K − S0e

F−1
LT

(y)
)+

)
dy.

Note that �(K) is bounded from above by the price c(XPut
T ) of the original long

put which obviously is finite for all K ∈ R+. Moreover, the functions

f1(K, y) = eθF−1
LT

(1−y)−rT
(K − S0e

F−1
LT

(1−y)
)+ and

f2(K, y) = eθF−1
LT

(1−y)−rT
(K − S0e

F−1
LT

(y)
)+

are differentiable inK for all y ∈ [0, 1]. ThepointsK = S0e
F−1
LT

(1−y)
,K = S0e

F−1
LT

(y)

can be neglected since the left- and right-hand derivatives are bounded. The par-
tial derivatives are

∂

∂K
f1(K, y) = eθF−1

LT
(1−y)−rT

1[0,FLT (ln( K
S0

)))(1 − y) and

∂

∂K
f2(K, y) = eθF−1

LT
(1−y)−rT

1[0,FLT (ln( K
S0

)))(y).

It holds that | ∂
∂K fi(K, y)| ≤ eθF−1

LT
(1−y)−rT , i = 1, 2. For establishing the integra-

bility of eθF−1
LT

(1−y)−rT observe that
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∫ 1

0
eθF−1

LT
(1−y)−rT dy =

∫ 1

0
eθF−1

LT
(z)−rT dz

=
∫ ∞

−∞
eθx−rT fLT (x) dx = e−rTMLT (θ) < ∞,

where fLT denotes the density of LT which exists and is strictly positive on R

due to our assumptions on FLT . Hence, we can interchange differentiation and
integration and obtain

∂�

∂K
(K) = e−rT

MLT (θ)

∫ FLT (ln( K
S0

))

0
eθF−1

LT
(y) − eθF−1

LT
(1−y) dy. (47)

Differentiating w.r.t. K once again yields

∂2

∂2K
�(K) = e−rT

MLT (θ)

(
fLT

(
ln

( K

S0

))) 1

K

[
e
θF−1

LT

(
FLT (ln( K

S0
))
)

− e
θF−1

LT

(
1−FLT (ln( K

S0
))
)]

.

Thus, ∂2

∂2K �(K) > 0 if and only if

θF−1
LT

(
FLT

(
ln

(K

S0

)))
> θF−1

LT

(
1 − FLT

(
ln

(K

S0

)))
,

or equivalently, FLT (ln(
K
S0

)) < 1 − FLT (ln(
K
S0

)), since θ < 0.

For K∗ := S0e
F−1
LT

(0.5) we obtain K < K∗ if and only if FLT (ln(
K
S0

)) < 1 −
FLT (ln(

K
S0

)). Thus, � is convex on [0,K∗). Analogously, we get ∂2

∂2K �(K) ≤ 0
if and only if K ≥ K∗. Thus, � is concave on [K∗,∞) as consequence we there-
fore get that � is increasing.

2. This follows directly from the fact that ∂
∂K �(K) ≥ 0, thus ∂

∂K c(X
Put
T ) ≤ ∂

∂K
c(XPut

T ) and

∂

∂K
c(XPut

T ) = e−rT

MLT (θ)

∫ FLT (ln( K
S0

))

0
eθF−1

LT
(1−y) dy ≥ 0

as can be seen from Eq. (47).
3. Note that the function �r(K) is decreasing in K if and only if for all compact

intervals [K1,K2] with K1 < K2 ∈ R+ we have maxK∈[K1,K2] �r(K) = �r(K1), or
equivalentlyK1 ∈ argmaxK∈[K1,K2] �r(K). Since c(XPut

T ) is an increasing function
of K it holds that for all K1 < K2 ∈ R+ the cost of the efficient put c(XPut

T ) is
minimal at K1, or equivalently for all K1 < K2 ∈ R+ we have
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K1 ∈ argmin
K∈[K1,K2]

c(XPut
T ) = argmin

K∈[K1,K2]

(
c(XPut

T ) − �(K)
)

= argmax
K∈[K1,K2]

( �(K)

c(XPut
T )

) = argmax
K∈[K1,K2]

�r(K).

Also, for K1 < K2 ∈ R+ it yields that maxK∈[K1,K2] �r(K) = �r(K1), since �r is
decreasing in K . Thus, the assertion is proven.

The latter result reveals that potential greater savings in buying an efficient option
with higher strike could be annihilated by the higher cost one has to pay for. The
reverse holds true for the relative efficiency loss.

Remark 12 (a) Total savings vs. higher distribution w.r.t. ≤st

Consider an investor with budget B ∈ R+ who aims to buy a put option which
generates a payoff XPut

T at maturity T > 0. Further, consider put options XPut,i
T

with strikeKi > 0, i = 1, 2 and the efficient counterpartsXPut,i
T with cost denoted

by ci respectively ci. We compute that

B = B

ci
· ci = B

ci

(
ci + (ci − ci)

) = B

ci
· ci +

B

ci
(ci − ci), i = 1, 2,

that is, B
ci
(ci − ci) = B · �r(Ki) denotes the total savings when buying B

ci
shares

of the efficient put option. By Theorem 11 we see that B�r(K2) ≤ B�r(K1) if
K1 < K2, i.e. the total savings decrease in the strike, when buying the associated
efficient put option. In other words, when choosing the put optionwith the higher
strike K2 which generates a stochastically larger distribution one has to pass on
the amount of B · (�r(K1) − �r(K2)) ≥ 0 of potential savings.

(b) Bounds for efficiency loss
The proof of Theorem 11 also establishes the following bound for the efficiency
loss of a long put option in bullish markets.

0 ≤ �(XPut
T ) ≤ S0Eθ[eF

−1
LT

(1−FLT (LT ))−rT − 1]. (48)

Some concrete results on the relative efficiency loss for put options with different
strikes on the Allianz and Volkswagen stock can be found in Table9. These show the
decrease of the relative efficiency loss in the strike K for Allianz and Volkswagen.
We give analogous results for the long call and the self-quanto call option. The results
confirm that the efficiency loss in case of the plain call and self-quanto call option
is decreasing and the relative efficiency loss is increasing in the strike, thus, has
a reverse behaviour as for the put option. For these examples comparisons of the
relative efficiency loss are given in Tables10 and 11. Although the payoff profile of
a plain vanilla call considerably differs from the profile of the self-quanto option, the
monotonicity of the relative efficiency loss does not exhibit substantial differences.
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Table 9 Relative efficiency loss for a long put option on Allianz and Volkswagen S0 = 93.42,
T = 23 for Allianz and S0 = 130.55, T = 23 for Volkswagen; from Table1

Efficiency loss in %

Allianz K1 = 92 K2 = 95 K3 = 98

NIG 24.01 20.89 18.09

VG 23.86 20.73 17.92

Normal 23.84 20.83 18.10

Volkswagen K1 = 130 K2 = 133 K3 = 135

NIG 54.94 51.33 48.95

VG 55.09 51.48 49.10

Normal 54.92 51.35 49.01

Table 10 Relative efficiency loss for a long call option on E.ON and ThyssenKrupp S0 = 17.48,
T = 23 for E.ON and S0 = 16.73, T = 23 for ThyssenKrupp

Efficiency loss in %

E.ON K1 = 17.24 K2 = 19.48 K3 = 20.72

NIG 6.45 11.04 13.75

VG 6.83 11.66 14.53

Normal 6.32 10.61 13.15

ThyssenKrupp K1 = 16.5 K2 = 18.5 K3 = 20.5

NIG 5.90 8.74 11.74

VG 6.07 8.96 11.99

Normal 6.33 9.27 12.35

Table 11 Relative efficiency loss for a long self-quanto call option on E.ON and ThyssenKrupp.
S0 = 17.48, T = 23 for E.ON and S0 = 16.73, T = 23 for ThyssenKrupp

Efficiency loss in %

E.ON K1 = 17.24 K2 = 19.48 K3 = 20.72

NIG 6.68 11.17 13.85

VG 7.05 11.80 14.67

Normal 6.53 10.72 13.20

ThyssenKrupp K1 = 16.5 K2 = 18.5 K3 = 20.5

NIG 6.17 8.91 11.86

VG 6.33 9.13 12.11

Normal 6.58 9.43 12.46
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Proposition 13 (Efficiency loss vs. relative efficiency loss for XCall
T ) Let (Lt)t≥0 be

a Lévy process with continuous and strictly increasing distribution function FLT at
maturity T > 0. Let XCall

T be the payoff of a long call option with strike K > 0 and
let θ be an Esscher parameter.

1. The efficiency loss, as a function of the strike, �(K) := c(XCall
T ) − c(XCall

T ) is
decreasing in K.

2. ∂
∂K c(X

Call
T ) ≤ ∂

∂K c(X
Call
T ) and the cost of the standard and efficient call are

decreasing in K.
3. The relative efficiency loss �r(K) := �(K)

c(XCall
T )

increases in K.

As for the put option, the latter findings immediately implies the following bound
for the efficiency loss of a long call option in bearish markets.

0 ≤ �(XCall
T ) ≤ S0Eθ[1 − eF

−1
LT

(1−FLT (LT ))−rT ]. (49)

Remark 14 (monotonicity for self-quanto calls) The monotonicity results in The-
orem 11 and Proposition 13 also hold true in the same way for the efficiency loss of
self-quanto calls. For details see Wolf [21].

5 Delta Hedging of Cost-Efficient Strategies in Lévy Models

In the following we discuss the delta hedge, i.e. the derivative of the cost of a strategy
with respect to the underlying for the cost-efficient payoff. Furthermore, concrete
hedging simulation schemes are provided for the standard and the cost-efficient put,
long call butterfly spread and self-quanto put in the NIG model. Our delta hedging
simulation schemes are inspired by the approach of Hull [12, Sect. 14.5]. Moreover,
we demonstrate that delta hedging of cost-efficient puts can be efficiently applied
in practice and that the obtained hedge errors are usually not greater, but often even
smaller that those of the corresponding vanilla puts. Also an alternative delta hedging
approach based on a rollover strategy is introduced. The delta hedging strategies
obtained by this alternative hedging technique have the potential to outperform the
classical ones in this context.

5.1 Introduction to Delta Hedging

The Greek delta measures the exposure of a derivative to changes in the value of
the underlying. By delta hedging we mean the process of keeping the delta of a
portfolio which consists of related financial securities as close to zero as possible.
Thus, by delta hedging investors attempt to make their portfolio immune to small
changes in the price of the underlying asset in the next small interval of time. If the
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underlying asset is traded sufficiently liquid in the market, delta hedging is a simple,
but nevertheless fairly effective way to cover a risky position and is therefore widely
used in practice.

For puts XPut
T = (K − ST )+ and calls XCall

T = (ST − K)+ with strike K hedging of
cost-efficient options with maturity T has already been investigated in Hammerstein
et al. [11]. We first restate the main findings in this paper. Recall that the payoff

function ωPut(y) = (K − S0e
F−1
LT

(1−FLT (ln( y
S0

)))
)+ of the cost-efficient long put (and

call as well) is kept fixed within the trading period [0,T ]. For θ < 0 the price at time
t < T of a cost-efficient long put with maturity T is given by

ct(X
Put
T ) = e−r(T−t)E

[
Zθ
T−t

(
K − S0e

F−1
LT

(
1−FLT

(
ln( y

S0
)+LT−t

)))
+
] ∣∣∣

y=St
. (50)

For θ > 0 the price of the cost-efficient call option is given by

ct(X
Call
T ) = e−r(T−t)E

[
Zθ
T−t

(
S0e

F−1
LT

(
1−FLT

(
ln( y

S0
)+LT−t

))
− K

)
+
] ∣∣∣

y=St
. (51)

Assuming strictly increasing distribution functions FLt the Greek delta of a cost-

efficient payoff XT with differentiable payoff-function wX such that ∂wX

∂St

(
SteLT−t

) ∈
L 1(Zθ+1

T−t P), where θ is an Esscher parameter, then is given for t < T by

ΔX
t = ∂

∂St
ct(ω

X(ST )) = Eθ+1

[
∂ωX

∂St
(Ste

LT−t )

]
. (52)

For the basic vanilla payoffs the assumptions on wXT are fulfilled and lead to more
concrete formulas in the Lévy models considered in this paper; for example for
cost-efficient puts one gets

ΔPut
t = S∗

∫ ∞

K∗
eθx+F−1

LT
(1−FLT (ln( St

S0
)+x)) dLT (ln(

St
S0

) + x)

dLT (1 − FLT (ln(
St
S0

) + x))
dLT−t (x) dx, (53)

where K∗ := ln( S0St ) + F−1
LT

(1 − FLT (ln(
K
S0

))) and S∗ := S0
St ·MLT−t (θ+1)

. In cases where

the payoff function ωX of the cost-efficient payoff XT is not explicitly given, as for all
optionsXT with non-monotone payoff function, the latter result becomes impractical.
In such circumstances we utilize the standard approximationΔX = Δc

ΔS for the Greek
delta associated to a payoff XT , where ΔS indicates a small change in the stock
price and Δc expresses the corresponding change in the option price. In Fig. 23 the
relationship between the cost-efficient self-quanto put price and the underlying stock
price is illustrated for Volkswagen in the NIG model at time t = 0. The Greek delta
Δ

sqP
0 of the cost-efficient self-quanto put is the slope of the dotted line.
Using the representation of the NIG density we obtain from the formula for the

cost of the vanilla put option in (18):
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Fig. 23 The relationship between the cost-efficient long self-quanto put price with strike K = 135,
and the underlying stock price at initial time t = 0 for the Volkswagen stock in the NIG model,
T = 23 days. The vertical dotted line marks the actual initial value S0 = 130.55

ΔPut
t = ∂c(XPut

T−t)

∂St
= −Ke−r(T−t)

St
dNIG(α,β+θ,δ(T−t),μ(T−t))

(
ln

(
K
St

))
(54)

− FNIG(α,β+θ+1,δ(T−t),μ(T−t))

(
ln

(
K
St

))
+ dNIG(α,β+θ+1,δ(T−t),μ(T−t))

(
ln

(
K
St

))

= −Ke−r(T−t)

St
dNIG(α,β+θ,δ(T−t),μ(T−t))

(
ln

(
K
St

))

− FNIG(α,β+θ+1,δ(T−t),μ(T−t))

(
ln

(
K
St

))

+ Ke−r(T−t)

St
dNIG(α,β+θ,δ(T−t),μ(T−t))

(
ln

(
K
St

))

= −FNIG(α,β+θ+1,δ(T−t),μ(T−t))

(
ln

(
K
St

))
.

Example 15 (Simulation of Delta hedging) We investigate the following example:
A financial institution has sold for 40,871 e a cost-efficient long put option on
10,000 shares of Volkswagen (cf. Table3 for prices of a cost-efficient put). We
assume that this is a non-dividend paying stock. The trading period is October 2012,
thus S0 = 130.55eand T = 23 days. Further, the exercising price isK = 135eand
the riskless interest rate equals the continuously compounded daily Euribor rate at
October1, 2012, r = 4.2027 × 10−6. The hedge is supposed to be adjusted every
three trading days, i.e. at October 1st, 4th, 8th, 11th and so on. Table12 provides a
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Table 12 Simulation of delta hedging for a cost-efficient long put on 10,000 Volkswagen shares
in the NIG model

Days Stock
price

ΔPut
t Shares pur-

chased/sold
Cost of shares
pur-
chased/sold

Cumulative cost
(interest cost)

t = 1 130.55 0.4082 (+)4082 +532,905.10 +532,905.10 (0.00)

t = 4 133.55 0.4765 (+) 683 + 91,009.75 + 623,921.57 (6.72)

t = 7 133.58 0.4913 (+) 148 + 19,769.25 + 643,698.70 (7.87)

t = 10 133.50 0.4971 (+) 58 + 7,743.00 + 651,449.82 (8.21)

t = 13 134.60 0.545 (+) 479 + 64,473.40 + 715,931.41 (9.03)

t = 16 138.00 0.6829 (+)1379 +190,302.00 + 906,242.44 (11.43)

t = 19 143.00 0.8197 (+)1368 +195,624.00 +1,101,877.87 (13.89)

t = 22 149.84 0.8020 (−) 177 − 26,521.68 +1,075,370.08 (9.04)

delta hedging scheme for a cost-efficient long put. Initially, the delta equals ΔPut
0 =

0.4082. This means that as soon as the option is written, 532,905.10 e must be
borrowed to buy 4,082 shares at a price of S0. The financial institution encounters
interest cost of 6.72e for the first three trading days. If the delta declines, shares are
sold to maintain the hedge implying a reduced cumulative and interest cost. Note,
towards the end of the life of the option it is not necessary that the delta of a cost-
efficient long put approaches 1.0 when it is apparent that the option will be exercised,
since this is typically the case for a standard call only. The optimal long put behaves
like amodified call and its corresponding payoff function strongly distinguishes from
its vanilla counterpart (compare Fig. 5).

Hedging cost: Total cost at maturity = 1,075,379.00e
Long position = −1,227,060.00e
Payoff at maturity ωPut(ST ) = 181,069.50e
Cost of hedging = 29,388.50e

On one hand, at maturity the total cost for the hedger adds up to 1,075,379e plus
the payoff ωPut(ST ) = 181,069.50 e for the buyer of the optimal put. On the other
hand, by selling the long position on the Volkswagen stock the hedger earns 8,020 ×
153e = 1,227,060e, thus the cost of the option to the writer equals 29,388.50 e
which is 11,482.50 e below the actual price of the option. The performance of the
delta hedging gets steadily better as the hedge is monitored more frequently.

The analogous simulation of delta hedging of a standard long put on 10,000
Volkswagen stocks is presented in Table13. Note that the option closes out of the
money. The cost of hedging of the standard long put sums up to 65,108.74 e which
is 14955.26e below the actual price (80,064e) of the option.
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Table 13 Simulation of delta hedging for a long put on 10,000 Volkswagen shares in the NIG
model

Days Stock
price

ΔPut
t Shares

purchased/
sold

Cost of shares
purchased/
sold

Cumulative cost
(interest cost)

t = 1 130.55 −0.6050 (−) 6050 −789,827.50 −789,827.50 (0.00)

t = 4 133.55 −0.5320 (+) 730 + 97,272.50 −692,545.04 (9.96)

t = 7 133.58 −0.5270 (+) 50 + 6,678.80 −685,857.51 (8.73)

t = 10 133.50 −0.5363 (−) 93 − 12,415.50 −698,264.36 (8.65)

t = 13 134.60 −0.4988 (+) 375 + 50,475.00 −647,780.56 (8.80)

t = 16 138.00 −0.3411 (+)1577 +217,626.00 −430,146.39 (8.17)

t = 19 143.00 −0.1081 (+)2330 +333,190.00 − 96,950.97 (5.42)

t = 22 149.84 −0.0026 (+)1055 +158,081.20 + 61,130.23 (1.22)

Hedging cost: Total cost at maturity = 61,130.74e
Short position = 3,978.00e
Payoff at maturity ωPut(ST ) = 0.00e
Cost of hedging = 65,108.74e

We see that delta hedging of cost-efficient options is as complex as for standard
options if the numerical techniques are present. From the hedgers point of view it
is surely beneficial to provide several (differently priced) delta-hedgeable options
with identical payoff distributions to its customers. Further hedging simulations of
a long call butterfly spread and its cost-efficient counterpart for ThyssenKrupp and
a delta hedging simulation of a self-quanto put and its cost-efficient counterpart for
Volkswagen in the NIG model are given in Wolf [21].

5.2 Alternative Delta Hedging Using Cost-Efficient Strategies

While in Sect. 5.1 we used cost-efficient strategies at time t = 0 and kept the payoff
profile fixed up to time T an alternative rollover strategy has been introduced in
Hammerstein et al. [11]. In this strategy the cost-efficient payoffs XT−t at time t are
hedged by a rollover strategy, i.e. an Δ-hedge which reproduces the evolution of the
efficient option prices c(XT−t). This can be regarded as an alternative way to hedge
the final payoff XT . We denote the corresponding hedging deltas by Δro

t .
For a cost-efficient put at time t with time to maturity T -t we have

XPut
T−t =

(
K − Ste

F−1
LT−t

(1−FLT−t (LT−t))
)

+
. (55)

We find
XPut
T−t → XPut

T and c
(
XPut
T−t

) − c
(
XPut
T−t

) → 0 as t → T .
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For θ < 0 we have for the alternative delta ΔroP
t of the long vanilla put XPut

T at time t

ΔroP
t = − 1

MLT−t (θ)

∫ FLT−t

(
ln
(

K
St

))

0
eθF−1

LT−t
(1−y)+F−1

LT−t
(y)−r(T−t) dy. (56)

For θ > 0, the alternative delta ΔroC
t of the long vanilla call XCall

T at time t is

ΔroC
t = 1

MLT−t (θ)

∫ 1−FLT−t

(
ln
(

K
St

))

0
eθF−1

LT−t
(y)+F−1

LT−t
(1−y)−r(T−t) dy. (57)

Equations (56) and (57) imply that the alternative deltas ΔroP
t ,ΔroC

t for the vanilla
puts and calls have the same sign as their classical counterparts ΔPut

t ,ΔCall
t , which

is in line with the intuition. The absolute values of the rollover deltas for calls are
smaller than the classical deltas of calls while this is also the case typically for puts.

Comparison of deltas:

(1) For a vanilla call and if θ > 0, then for each

t ∈ [0,T): 0 ≤ ΔroC
t ≤ ΔCall

t . (58)

(2) In the put case if θ < 0 and FLT−t

(
ln

(
K
St

)) ≤ q∗ where q∗ ∈ (
1
2 , 1

]
is the unique

positive root of

DP(q) = 1

MLT−t (θ)

∫ q

0
eθF−1

LT−t
(y)+F−1

LT−t
(y) − eθF−1

LT−t
(1−y)+F−1

LT−t
(y) dy (59)

in [0, 1], then ΔPut
t ≤ ΔroP

t ≤ 0.

For details see Hammerstein et al. [11]. The proof makes use of monotonicity prop-
erties of

DC(q) = 1

MLT−t (θ)

∫ q

0
eθF−1

LT−t
(1−y)+F−1

LT−t
(1−y) − eθF−1

LT−t
(y)+F−1

LT−t
(1−y) dy

and

DP(q) = 1

MLT−t (θ)

∫ q

0
eθF−1

LT−t
(y)+F−1

LT−t
(y) − eθF−1

LT−t
(1−y)+F−1

LT−t
(y) dy.

More precisely it holds under the conditions specified above

(1) For θ > 0, DC ≥ 0 in [0, 1], DC is increasing on
[
0, 1

2

]
and decreasing on

[
1
2 , 1

]
.

(2) For θ < 0,DP ≥ 0 in [0, q∗],DP is increasing on
[
0, 1

2

]
and decreasing on

[
1
2 , 1

]
.

As consequence we obtain for cost-efficient bull resp. bear spread options.
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Corollary 16 Under the assumptions above we have:

(a) For cost-efficient and vanilla bull spreads with strikes 0 < K1 < K2, holds:
If θ > 0, then 0 ≤ Δro-bull

t ≤ Δbull
t for FLT−t (ln(

K1
St

)) > 1
2 and

0 ≤ Δbull
t ≤ Δro-bull

t for FLT−t (ln(
K2
St

)) < 1
2 .

For θ < 0 we have Δro-bull
t = Δbull

t .
(b) In the bear spread case, we have Δro-bear

t = Δbear
t for θ > 0.

If θ < 0, then Δro-bear
t ≤ Δbear

t ≤ 0 for FLT−t (ln(
K1
St

)) > 1
2 and

Δbear
t ≤ Δro-bear

t ≤ 0 for FLT−t (ln(
K2
St

)) < 1
2 .

Proof (a) Since the vanilla and cost-efficient bull spread coincide for θ < 0, the
equation Δro-bull

t = Δbull
t is obvious. Let θ > 0 and denote by Ci a call option

with strike Ki, i = 1, 2, then from the definition of a bull spread we easily arrive
at

c(Xbull
T−t) = c(XC1

T−t) − c(XC2
T−t) and c(Xbull

T−t) = c(XC1
T−t) − c(XC2

T−t).

The corresponding deltas are known and equal

Δbull
t = ΔC1

t − ΔC2
t and Δro-bull

t = ΔroC1
t − ΔroC2

t .

From Eqs. (50) and (51) for T − t it is easily seen that both Δ
Ci
t and Δ

roCi
t are

decreasing functions in the strike Ki, i.e. Δ
C1
t ≥ Δ

C2
t and Δ

roC1
t ≥ Δ

roC2
t . Thus,

we have Δbull
t ≥ 0 and Δro-bull

t ≥ 0. Now, consider the difference of the deltas
for cost-efficient and vanilla bull spread which equals

Δbull
t − Δro-bull

t = (ΔC1
t − ΔC2

t ) − (ΔroC1
t − ΔroC2

t )

= (ΔC1
t − ΔroC1

t ) − (ΔC2
t − ΔroC2

t )

= DC1(q1) − DC2(q2)

where qi = 1 − FLT−t (ln(
Ki
St

)). Since q1 > q2 we obtain, using the above stated
monotonicity properties of DC , DP,

Δbull
t − Δro-bull

t ≥ 0 for q1 <
1

2
and Δbull

t − Δro-bull
t ≤ 0 for q2 >

1

2
.

This proves the assertion.
(b) Again, the vanilla and cost-efficient bear spread coincide for θ > 0, the equation

Δro-bear
t = Δbear

t is clear. Let θ < 0 and denote Pi a put option with strike Ki, i =
1, 2, then we obtain from the Eqs. (50) and (51) that both Δ

Pi
t and Δ

roPi
t are

decreasing functions in the strike Ki. This implies completely analogous to the
bull spread case that Δbear

t = Δ
P2
t − Δ

P1
t ≤ 0 and Δro-bear

t = Δ
roP2
t − Δ

roP1
t ≤ 0.

Moreover, rearranging the difference yields
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Δro-bear
t − Δbear

t = (ΔroP2
t − ΔroP1

t ) − (ΔP2
t − ΔP1

t )

= (ΔroP2
t − ΔP2

t ) − (ΔroP1
t − ΔP1

t )

= DP1(q2) − DP2(q1)

where qi = FLT−t (ln(
K
St

)). Since q2 > q1 we obtain, as above that,

Δro-bear
t − Δbear

t ≥ 0 for q2 < 1
2 and Δro-bear

t − Δbear
t ≤ 0 for q1 > 1

2 .

Thus, the statement is proven.

5.3 Application to Real Market Data

In the following we illustrate the hedging results by some examples for the put
case. We first consider the price evolution (c(XPut

T−t))0≤t≤T of a vanilla put and a
cost-efficient put ct(XPut

T )0≤t≤T on the Allianz and the Volkswagen stock which are
assumed to be issued on October 1, 2012, and to mature on November 1, 2012.

Figure24 shows the prices of the Allianz stock and the corresponding puts with
strike K = 98 within the aforementioned time period, as well as the values of the
deltas (ΔPut

t )0≤t≤T resp. (ΔPut
t )0≤t≤T associated to both puts. Here, all calculations

are based on the NIGmodel; the NIG parameters for Allianz can be found in Table1.
As is obvious from Fig. 24, the price of the cost-efficient put evolves almost exactly
in the opposite way as that of the vanilla put. This reflects the fact that the payoff
profiles of both puts are, in some sense, reversed to each other (see Fig. 5); the
efficient put roughly behaves like a vanilla call. However, the efficient put ends in
the money although the price of the Allianz stock remains below the strike price at
maturity because its payoff function already takes positive values for some ST < K .
The opposite behaviour of the efficient and the vanilla put is also mirrored in the
values of the associated deltas. Because the values of the deltas at maturity are not
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relevant for hedging purposes any more, Fig. 24 only shows the deltas up to one day
to maturity, that is, from October 1, 2012, to October 31, 2012. The results obtained
for the other two Lévy models (normal and VG) look quite similar and therefore are
not plotted here separately. Since the risk-neutral Esscher parameter roughly are of
the same size for all three models (see Table1) and also the put prices and efficiency
losses in Table3 are almost identical, one should not expect greater differences here.

Figure25 shows the evolution of the prices of the Volkswagen stock and the cost-
efficient and vanilla puts on it with strike K = 135 as well as the corresponding
deltas. Again, the results do not differ much between all three Lévy models under
consideration, thus we only show the plots for the VG case. The delta of the vanilla
put in this model can be derived analogously as above to be

ΔPut
t = ∂c(XPut

T−t)

∂St
= −FVG(λ(T−t),α,β+θ+1,μ(T−t))

(
ln

(
K
St

))
.

Note that in this examplewe have ST > K , therefore the vanilla put expiresworthless,
and the corresponding delta converges to zero, whereas the efficient put ends deep
in the money.

However, computing the put deltas is only one side of the coin, market participants
will surely be more interested in howwell the hedging strategies based on themwork
in practice. The NIG and VG models are incomplete, so one cannot expect perfect
hedging there, but also the Samuelson model is only complete in theory. Since in
reality just discrete hedging is feasible, one will encounter hedge errors within this
framework, too. The magnitude of these errors is, of course, relevant for practical
applications. Therefore, we also calculate and compare the hedge errors that occur in
delta hedging of the vanilla and efficient puts on Allianz and Volkswagen considered
before.
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Delta Hedging Strategy

The hedge portfolios are rebalanced daily, hence the portfolio weights δt (amount of
stock at time t) and bt (amount of money on the savings account at t) just have to be
calculated at the discrete times t = 0, 1, . . . ,T − 1. For the vanilla puts δt = ΔPut

t ,
and in case of the efficient puts we have δt = ΔPut

t . Depending on the put type
under consideration, we analogously set ct = c(XPut

T−t) or ct = ct(XPut
T ), respectively.

At the initial time t = 0, the hedge portfolio is set up with the weights δ0 and b0 =
−δ0S0 + c0 since thewriter of the put obtains c0 from the buyer, shorts |δ0| stocks and
deposits all income on his savings account. At time t > 0, the value of the portfolio
before rebalancing is δt−1St + erbt−1, and we define the corresponding hedge error
by

et := ct − δt−1St − erbt−1,

so positive hedge errors mean losses. At the end of the trading day, the new weights
δt and bt = ct − δtSt are chosen to ensure that the value of the portfolio again exactly
coincides with the present put price. Using the above definition of et , we can alter-
natively represent bt in the form

bt = et + erbt−1 + St(δt−1 − δt).

This means that the hedge error is nothing but the amount of money one has to
additionally inject in or withdraw from the savings account after adapting the stock
position tomake the value of the hedge portfolio congruent with the current put price.

Remark 17 In general, the size of the hedge error also depends on the rebalancing
frequency and the continuity properties of the payoff function. Our empirical results
below show that for standard and efficient puts a daily rebalancing of the portfolio
already is sufficient to get a fairly precise approximation to the current option prices.
A thorough theoretical analysis of the behaviour of hedge errors resulting from delta
and quadratic hedging strategies in exponential Lévy models can be found in Brodén
and Tankov [5].

The upper graphs of Fig. 26 display the hedge errors obtained from delta hedging
of the different puts on Allianz and Volkswagen. At the beginning, the hedge errors
of the efficient and the vanilla puts behave fairly similarly, but with time passing the
distinctions increase. This might again be explained by the different shapes of the
payoff profiles and the different signs of the corresponding deltas which lead to more
pronounced differences in the hedge errors as the time to maturity becomes smaller.
The sums

∑22
t=0 |et| of the absolute hedge errors for Allianz are 1.296 (efficient

put) and 1.798 (vanilla put), for Volkswagen we obtain 1.794 (efficient put) resp.
2.252 (vanilla put). This indicates that cost-efficient options can be hedged at least
as efficiently as standard options. However, since the prices of vanilla and efficient
puts can differ significantly over time, one should not only look at the absolute
hedge errors to confirm this assertion, but also take the relative or percentage hedge
errors ẽt := et

ct
into account. The values of ẽt for the Allianz puts are shown in the
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Fig. 26 Delta hedge errors of the efficient and vanilla puts on Allianz with strike K = 98 and
Volkswagen with strike K = 135

lower graph of Fig. 26. For the efficient put, we obtain
∑22

t=0 |ẽt| = 0.299, and the
corresponding value for the vanilla put is 0.438. Analogous computations for the
Volkswagen puts would not make much sense here because there the vanilla put ends
up deep out of the money, therefore the ẽt would tend to infinity as t approaches T .

In the last part of this section, we compare the alternative hedging strategy for
vanilla puts based on the rollover-deltasΔroP

t with its classical counterpart and inves-
tigate if it can provide an efficient and more robust way to hedge the final put payoff
(K − ST )+ as expected from our comparison result. For this purpose, we again con-
sider the vanilla puts on Allianz and Volkswagen with the same strikes and maturity
as before, but now contrast the corresponding price processes (c(XPut

T−t))0≤t≤T with
the series (c(XPut

T−t))0≤t≤T of prices of efficient puts which are newly initiated at each
day t. Figures27 and 28 show the stock and put price processes for Allianz in the
NIGmodel and for Volkswagen in the VGmodel, respectively, as well as a graphical
comparison of the associated classical put deltas ΔPut

t and rollover-deltas ΔroP
t . The

condition of the comparison results in (58), (59) is fulfilled for all 0 ≤ t ≤ T , the
absolute values of the rollover-deltas are always smaller than those of the classical
deltas for both stocks.

This indicates that the hedging strategies based on the rollover-deltas may indeed
allow for a less expensive way to replicate the final put payoff. The advantage of
lower hedging costs might be annihilated by larger hedging errors though. Therefore
one has to take these into account before coming to a conclusion. Using some of the
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notations from above, we define the hedge error for the alternative hedging strategy
by

et := c(XPut
T−t) − ΔroP

t St − erbt−1.

Observe that we do not use the price c(XPut
T−t) of the vanilla put at time t in the above

definition although we want to hedge its final payoff. Since the rollover-deltas ΔroP
t

are intended to replicate the prices c(XPut
T−t), and c(X

Put
T−t) < c(XPut

T−t) for all 0 ≤ t < T
because θ < 0 here, a comparison of the value of the hedge portfolio at time t with
c(XPut

T−t) would lead to a systematic overestimation of the hedge error. Moreover, we
only consider options of European type here. Therefore it is more important to look
at the hedge error at maturity which tells us how precise the hedging strategies can
reproduce the final obligation of the writer of the option. At time T , however, we have
c(XPut

T−T ) = c(XPut
T−T ) = (K − ST )+ as pointed out before, so there the hedge error is

defined without ambiguity.
We finally take a look at the hedge errors obtained from the two delta hedging

strategies for the vanilla puts on Allianz and Volkswagen which are visualized in
Fig. 29. For Allianz, the hedge errors eT at maturity are−0.149 for the classical delta
hedge and −0.085 for the alternative rollover-delta hedge, and the sum

∑22
t=0 |et| of
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Right Delta hedge errors of the vanilla put on Volkswagen with strike K = 135 in the VG model

the absolute hedge errors is 1.789 for the classical and 0.802 for the rollover hedge.
The final hedge errors eT for the Volkswagen put are zero for both hedging strategies
(which is not so surprising because the vanilla put expires worthless here), and the
sums of the absolute hedge errors are 2.252 for the classical and 0.983 for the rollover
hedge. This shows that the latter can yield at least comparable and often even more
accurate results than the classical delta hedging strategy. In case of the Allianz put,
the classical delta hedge tends to superhedge the option, that is, the value of the hedge
portfolio is always greater than the option price. The rollover hedge does the same
on most days, but produces smaller absolute hedge errors. In view of the comparison
results in (58) and (59), we suppose that analogous assertions will also hold for calls
and probably also for more complex options.
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Term-Structure Modelling



No Arbitrage Theory for Bond Markets

Irene Klein, Thorsten Schmidt and Josef Teichmann

Abstract We investigate default-free bond markets and relax assumptions on the
numéraire, which is typically chosen to be the bank account. Considering numéraires
different from the bank account allows us to study bond markets where the bank
account process is not a valid numéraire or does not exist at all. We argue that this
feature is not the exception, but rather the rule in bond markets when starting with,
e.g., terminal bonds as numéraires. Our setting are general càdlàg processes as bond
prices, where we employ directly methods from large financial markets. Moreover,
we do not restrict price processes to be semimartingales, which allows for example
to consider markets driven by fractional Brownian motion. In the core of the article
we relate the appropriate no arbitrage assumptions (NAFL), i.e. no asymptotic free
lunch, to the existence of an equivalent local martingale measure with respect to the
terminal bond as numéraire, and no arbitrage opportunities of the first kind (NAA1)
to the existence of a supermartingale deflator, respectively. In all settings we obtain
existence of a generalized bank account as a limit of convex combinations of roll-over
bonds. The theory is illustrated by several examples.
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1 Introduction

Most of the term structure models in the literature are based on the fundamental
assumption that bond prices P(t, T ) together with a numéraire bank account process
B(t) of finite total variation form an arbitrage-free market. Formally speaking this
means that we can find an equivalent local martingale measure for the collection of
stochastic processes (B(t)−1P(t, T ))0≤t≤T representing bond prices discounted by
the bank account’s current value. If we assume additionally that those local martin-
gales are indeed martingales, then we arrive at the famous relationship

P(t, T ) = EQ

[
Bt

BT

∣∣∣∣Ft

]
(1)

for 0 ≤ t ≤ T with respect to a pricing measure Q. For a comprehensive treatment
of this special case see [13]. If we assume alternatively the existence of forward
rates, we arrive at the Heath-Jarrow-Morton (HJM) drift condition for the stochastic
forward rate process encoding the previous local martingale property (see [3, 20]).

On the other hand, bank account processes are limits of roll-over constructions and
therefore only approximately given in real markets. Even if there is a bank account
process it is not innocent to take it as numéraire. Therefore we avoid assumptions
on even the existence of a bank account process and—in case of existence—we do
not assume that it can be chosen as numéraire. This can be compared to the famous
BGM market model approach, see [4].

It might appear that this relaxation of assumptions leads to more general but
possibly less interesting term structuremodels. However, we show that term structure
models, where the bank account process is not a numéraire, are of some interest and
importance.

Let us demonstrate our setting with an example: we generate an arbitrage-free
market of zero coupon bonds by the formula

P(t, T ) = E

[
S∗

t

S∗
T

∣∣∣∣Ft

]
(2)

for 0 ≤ t ≤ T ≤ T ∗, where S∗ denotes a strictly positive process under some appro-
priate integrability assumptions. The market is indeed free of arbitrage since the
(appropriately normalized) density process

( P(t,T ∗)
S∗

t

)
0≤t≤T ∗ yields an equivalent

measure Q∗, the T ∗-forward measure, such that the discounted price processes(
P(t, T ∗)−1P(t, T )

)
0≤t≤T with respect to the terminal bond P(., T ∗) are Q∗-

martingales.
Consider now the case where 1

S∗ is a strict local martingale and where the bank
account process obtained as a limit of roll-over portfolios is identically equal to 1,
see Sect. 7.1 for a natural example. Apparently there is no equivalent pricingmeasure
Q such that the pricing formula (1) holds true with the bank account process B = 1,
since the term structure is non-trivial by strict local martingality. In the appendix



No Arbitrage Theory for Bond Markets 383

section this example is further analyzed from a change of numéraire perspective, see
Appendix 8, in particular a dichotomy between numéraires and bubbles is outlined
there.

It is now the aim of this article to understand bond market dynamics under the
weaker assumption that there are no arbitrages with respect to a terminal bond
numéraire. This is a minimal assumption, which appears to us—in light of the pre-
vious example—more appropriate.

Fromamathematical point of viewwebelieve that the technologyof largefinancial
markets is the right tool to understand the nature of arbitrage in the considered
(infinite-dimensional) bond market, since we want to avoid artificially introduced
trading strategies. More precisely, we fix a terminal maturity T ∗ and consider the
bondmarket (formaturities T ≤ T ∗)with respect to the terminal bond as a numéraire.
We can only trade a finite number of assets, but we can take more and more of
them and so approximate a portfolio with an infinite number of assets. In contrast
to, e.g., [3, 8, 14] we do not introduce infinite–dimensional trading strategies but
only approximate by finite portfolios, an idea which stems from the theory of large
financial markets. As a direct consequence, we avoid pitfalls for measure-valued
strategies pointed out in [40]. A second advantage is that we are able to consider
markets driven by general càdlàg processes with only a weak regularity in maturity.
This extends beyond semimartingale models as considered in the above mentioned
articles and in [13].

The structure of the article is as follows: in Sect. 2 and 3 we introduce our model
for a bond market with an appropriate interpretation as a large financial market and
characterize notions of no arbitrage.

In Sect. 4 we relate the appropriate no arbitrage assumption, which is no free lunch
(NFL) on the bond market, to the global existence of an equivalent local martingale
measure. Indeed, we can prove the existence of an equivalent local martingale mea-
sure for all bonds with maturity T ≤ T ∗ in terms of the bond P(t, T ∗) as numéraire.
This is in contrast to common bond market models in the literature which often
start with the assumption of existence of an equivalent (local) martingale measure,
whereas we directly define a notion of no arbitrage and then the existence of a local
martingale measure follows.

In Sect. 5 we prove by a Komlós-type argument that under the assumption of
NAFL there exists a candidate process for the bank account as a limit of convex
combinations of roll-over bonds. This bank account is a supermartingale in terms of
the terminal bond.

In Sect. 6 wewill see that it is possible to further relax the assumptions on the bond
market. If we only assume that the bond market does not allow asymptotic arbitrage
opportunities of first kind (AA1) in the sense of large financial markets as in [23],
we cannot guarantee the global existence of an equivalent local martingale measure.
However, we can prove that there exists a strictly positive supermartingale deflator
for each sequence of bonds with maturities that do not induce an AA1. If there exists
a dense sequence of maturities in [0, T ∗], such that the induced large financial market
is free of AA1, then there exists a supermartingale deflator for the bond market with
all maturities in [0, T ∗]. In this relaxed setting we can still show the existence of
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a generalized bank account as a limit of convex combinations of roll-over bonds,
which is a supermartingale in terms of the terminal bond. This section is related to
results of Kardaras, see, e.g., [26]

In Sect. 7 we illustrate the setupwith four examples: first, we consider the example
with optimal growth portfolio being a strict local martingale. Second, a bond market
model driven by fractional Brownian motion is studied, where bond prices are not
semimartingales, but bond prices in terms of the numéraire are. Third, we consider an
extension of the Heath-Jarrow-Morton approach where the bond prices as functions
of the maturity are continuous but of unbounded variation such that a short rate does
not exist. Fourth, we give an example illustrating possible pitfalls when considering
limits of roll-overs as numéraire: in a setting of not uniformly integrable bond prices,
the limit of roll-overs does not qualify as numéraire because it reaches zero with
probability one.

2 Market Models for Bond Markets

We consider the following model for a bond market. Let (Ω,F , (Ft )t≥0, P) be a
filtered probability space where the filtration satisfies the usual conditions. For each
T ∈ [0,∞) we denote by (P(t, T ))0≤t≤T the price process of a bond with maturity
T . For all T , (P(t, T ))0≤t≤T is a strictly positive càdlàg stochastic process adapted to
(Ft )0≤t≤T with P(T, T ) = 1.We assume that the price process is almost surely right
continuous in the second variable, where the nullset does not depend on t , indeed we
make

Assumption 1 There is N ∈ F with P(N ) = 0 such that

N ⊇
⋃

t∈[0,∞)

{ω : T → P(t, T )(ω) is not right continuous}.

For a generic process X and a stopping time τ we denote by (X τ
t ) = (Xt∧τ ) the

process stopped at τ .

Assumption 2 We make the following assumption on uniform local boundedness
for P(., T ) and local boundedness for P(., T )−1:

(1) For any T there is ε > 0, an increasing sequence of stopping times τn → ∞ and
κn ∈ [0,∞) such that

P(t, U )τn ≤ κn,

for all U ∈ [T, T + ε) and all t ≤ T .

(2) There exists a nonempty set T ⊂ [0,∞) such that
(

1
P(t,T ∗)

)
0≤t≤T ∗

is locally

bounded for all T ∗ ∈ T .

The setT denotes thematurities of those bonds whichwe shall consider as candidate
numéraires.
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Remark 1 Note that Assumption 2 is fulfilled in the reasonable special case, where
P(., T ) and P(., T )−1 are locally bounded for any T and, for any fixed t , the function
T �→ P(t, T ) is non–increasing. This, for example, holds, if there exists a non-
negative short-rate.

In the following assumption we consider a numéraire related to a terminal maturity
T ∗ ∈ T .

Assumption 3 For all finite collections of maturities T1 < T2 < · · · < Tn ≤ T ∗

with T ∗ ∈ T there exists a measure Q ∼ P|FT ∗ such that
(

P(t,Ti )

P(t,T ∗)

)
0≤t≤Ti

is a local

Q-martingale, i = 1, . . . , n.

The measure Q from Assumption 3 is called the T ∗-forward-measure for the finite
market consisting of bonds P(., Ti ), i = 1, . . . , n and the numéraire P(., T ∗).

Remark 2 Note that we do not assume the existence of a short-rate or even a bank
account. Moreover, we do not assume that P(., T ) is a semimartingale. However,
Assumption 3 implies that, for a finite collection of maturities, only bonds in terms of
the numéraire P(., T ∗) are semimartingales under the objective measure P , because
they are local martingales under the equivalent measure Q. Moreover, they are
locally bounded because we assumed that P(., T ) is locally bounded, for any T ,
and P(., T ∗)−1 is locally bounded for T ∗ ∈ T .

If there exists a short-rate and an equivalent martingale measure for all discounted
bond processes, then Assumption 3 follows immediately.

Lemma 1 Assume that there exists the locally integrable short-rate process (rt )t≥0

and let Bt := e
∫ t
0 rs ds for t ≥ 0. Assume that there exists a measure Q such that

Q|Ft ∼ P|Ft for t ≥ 0 and such that
(
B−1

t P(t, T )
)
0≤t≤T is a Q–martingale, for all

T ∈ [0,∞). Then, for any finite collection of maturities T1 < · · · < Tn, the measure
QTn with

Zn := d QTn

d Q|FTn

= (BTn )
−1

EQ[B−1
Tn

]

fulfills Assumption 3.

Proof Let QTn be defined as above. We have to show that
(

P(t,Ti )

P(t,Tn)

)
0≤t≤Ti

is a (local)

QTn -martingale, which is the case iff
(

P(t,Ti )

P(t,Tn)
· EQ[Zn|Ft ]

)
0≤t≤Ti

is a (local) Q-

martingale. As P(Tn, Tn) = 1 we have that Zn = 1
EQ [B−1

Tn
]

P(Tn ,Tn)

BTn
. Hence we get by

the martingale property of B−1P(., Tn) that

P(t, Ti )

P(t, Tn)
EQ[Zn|Ft ] = P(t, Ti )

P(t, Tn)

P(t, Tn)

EQ[B−1
Tn

]Bt
= 1

EQ[B−1
Tn

]
P(t, Ti )

Bt
,

which is a Q-martingale. �
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3 Bond Markets as Large Financial Markets

Assumption 3 means that for a finite selection of bonds considered with respect to a
certain numéraire (the bond with the largest maturity) there exists an equivalent local
martingale measure. Our aim will be the following: for a fixed maturity T ∗ ∈ T ,
we aim at finding a measure Q∗ such that all bonds with maturity T ≤ T ∗ are local
martingales under Q∗ in terms of the numéraire P(t, T ∗). In Sect. 4 we will present
a general theorem.

We introduce a large financial market connected to the bond market. We choose
a finite time horizon T > 0 as this will be sufficient for our purpose. We start with
a short overview of the facts on large financial markets that we will need. Note that
we do not present large financial in the full generality of the literature but only in the
following nested setting. Let (Sn

t )t∈[0,T ], n = 1, 2, . . . , be a sequence of R-valued
semimartingales based on a filtered probability space (Ω,F , (Ft )t∈[0,T ], P) where
the filtration satisfies the usual assumptions. Moreover let an additional asset S0

t ≡ 1
be given (this means we assume that all assets are already discounted with respect
to some numéraire, so we have that one of the assets, i.e. S0, equals 1). For each
n ≥ 1 we define a classical market model (referred to as finite market n) given by
theRn+1–valued semimartingale Sn

t = (S0
t , S1

t , . . . , Sn
t ), t ∈ [0, T ], which describes

the price processes of the first n + 1 tradable assets.
Let H be a predictable Sn-integrable process and (H · Sn)t the stochastic integral

of H with respect to Sn . The process H is an admissible trading strategy if H0 = 0
and there is a > 0 such that (H · Sn)t ≥ −a, 0 ≤ t ≤ T . If the bound from below is
−a then H is called a-admissible. Define

Kn = {(H · Sn)T : H admissible} and Cn = (Kn − L0
+) ∩ L∞. (3)

Here L0 = L0(Ω,F , P) denotes all random variables with values in R and L∞ =
L∞(Ω,F , P) is the Banach space of essentially bounded random variables.Kn can
be interpreted as the cone of all replicable claims in the finite market n, and Cn is
the cone of all claims in L∞ that can be super replicated in this market.

In all the following we will use the notation E[·] for expectation with respect
to the original measure P and ER[·] for expectation with respect to a probability
measure R different from P . Define the set Mn

e of equivalent separating measures
for the finite market n as

Mn
e = {Q ∼ P : EQ[ f ] ≤ 0 for all f ∈ Cn} (4)

= {Q ∼ P : EQ[ f ] ≤ 0 for all f ∈ Kn}.

If Sn is (locally) bounded then Mn
e consists of all equivalent probability measures

such that Sn is a (local) martingale.
A large financial market is the sequence of the finite market models, i.e. the

sequence of the market models induced by the d(n)-dimensional semimartingales
Sn . As a consequence, we cannot trade with an actually infinite number of securities
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(so that we avoid artificially introduced infinite-dimensional trading strategies), but
we can trade inmore andmore assets and in this way approximate something infinite-
dimensional.

We impose the following assumption, which is standard in the theory of large
financial markets:

Mn
e �= ∅, for all n ∈ N. (5)

This implies that any no arbitrage condition (such as no arbitrage, no free lunch with
vanishing risk, no free lunch) holds for each finite market n.

However, there is still the possibility of various approximations of an arbitrage
profit by trading on the sequence of market models. We will need the notions no
asymptotic free lunch and no asymptotic free lunch with bounded risk and later on
no asymptotic arbitrage of first kind, see Sect. 6.

No asymptotic free lunch (NAFL) is the large financial markets analogue of the
classical no free lunch condition (NFL) of Kreps [32].Wewill first recall the classical
NFL condition here for a finite market n. Let Cn be defined as in (3).

Definition 1 The condition NFL holds on the finite market n if

Cn∗ ∩ L∞
+ = {0}, (6)

where Cn∗
denotes the weak-star-closure of Cn .

This means by super replicating claims in an admissible way with a finite number
of assets we cannot approximate in a weak-star sense a strictly positive gain.

Now NAFL can be defined in analogous way as the condition NFL but for the
whole sequence of sets Cn:

Definition 2 A given large financial market satisfies NAFL if

∞⋃
n=1

Cn

∗

∩ L∞
+ = {0}.

If NAFL holds then it is not possible to approximate a strictly positive profit in a
weak-star sense by trading in any finite number of the given assets (although we can
use more and more of them).

Remark 3 Note that in the literature the term large financial market is used for a
more general concept where each market n is based on a different filtered probability
space. When based on one fixed filtered probability space, it is moreover crucial in
Definition 2, that in our nested setting we have that, for all n ≥ 1, Cn ⊆ Cn+1 and
hence

⋃∞
n=1 C

n is a convex cone. In a more general situation the condition NAFL
cannot be reduced to the above rather easy form but the general definition that was
introduced in [27] has to be used, see also [29]. In our nested setting, we will not
have to deal with these technicalities which are common in large financial markets.
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Let us now introduce a large financial markets’ structure for the bond market intro-
duced in Sect. 2.

Definition 3 Let T ∗ ∈ T where T is the set from Assumption 2. Fix a
sequence (Ti )i∈N in [0, T ∗]. Define the n + 1-dimensional stochastic process (Sn) =
(S0, . . . , Sn) on [0, T ∗] as follows:

Si
t =

{
P(t,Ti )

P(t,T ∗) for 0 ≤ t ≤ Ti
1

P(Ti ,T ∗) for Ti < t ≤ T ∗ , (7)

for i = 1, . . . , n and S0
t = P(t,T ∗)

P(t,T ∗) ≡ 1.
The large financial market consists of the sequence of classical market models

given by the (n + 1)-dimensional stochastic processes (Sn)t∈[0,T ∗] based on the fil-
tered probability space

(
Ω,F , (Ft )t∈[0,T ∗], P|FT ∗

)
.

Definition 4 The bond market (P(t, T ))0≤t≤T for 0 ≤ T ≤ T ∗ satisfies NAFL if
there exists a dense sequence (Ti )i∈N in [0, T ∗], such that the large financial market
of Definition 3 satisfies the condition NAFL.

Since all involved semimartingales Sn are locally bounded due to Assumption 2,
it is sufficient to deal with equivalent local martingale measures. Hence, the set Mn

e
from (4) is given as follows:

Mn
e = {Qn ∼ P|FT ∗ : Sn localQn − martingale}.

By Assumption 3 we have thatMn
e �= ∅ for all n ∈ N, so the standard assumption

(5) for large financial markets holds. Note that this also implies that each Sn is a
semimartingale, so this is not a problem in Definition 3.

Remark 4 Obviously Assumption 3 can be weakened if the bond market satisfies
condition NAFL. Indeed it is sufficient to assume that all the processes from Def-
inition 4 (Sn

t )0≤t≤T ∗ , n ∈ N, are semimartingales. Then the stochastic integrals and
therefore the sets Cn make sense. In this case, the existence of a local martingale

measure for a finite number of assets follows by NAFL as
⋃∞

n=1 Cn
∗ ∩ L∞+ = {0}

implies that Cn∗ ∩ L∞+ = {0}, for all n. Hence NFL holds for all (S0, . . . , Sn), all n
and so Assumption 3 follows.

Remark 5 Note that, in the general case of processes with non-continuous paths, the
condition NAFL cannot be replaced by a less technical and more intuitive condition,
such as, for example a no asymptotic free lunch condition involving a bounded or
vanishing risk, see the examples in [28, 30]. However, after the present paper was
finished, it turned out in recent results, that in the nested setting (as also used in the
present paper) the condition NAFL is in fact equivalent to a newly defined condition
of no asymptotic free lunch with vanishing risk, see [7]. It only became clear later
on and very recently that the crucial fact here is the nestedness of the large financial
market (i.e., Cn ⊆ Cn+1, for all n). The examples of [28, 30] cannot be extended to
the nested setting.
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4 Global Existence of an Equivalent Local Martingale
Measure

The large financial market induced by the bond market provides an adequate frame-
work to analyze existence of an equivalent local martingale measure. For each
T ∗ ∈ T with the set T from Assumption 2, we will find a measure Q∗ such that all
bond prices with maturity T ≤ T ∗ discounted by the numéraire P(., T ∗), are local
martingales under Q∗.

In fact, we immediately obtain a measure Q∗ ∼ P|FT ∗ such that
(

P(t,Ti )

P(t,T ∗)

)
0≤t≤Ti

is a local Q∗-martingale for all Ti in the dense subset of maturities of Definition 4.
This is just the classical Kreps-Yan result which we state in an abstract version below,
for a proof see [38]. It remains to show that the local martingale-property holds for
all maturities T ∈ [0, T ∗].
Theorem 4 (Kreps, Yan) Let C be a convex cone in L∞ such that −L∞+ ⊆ C, C
is weak-star-closed and C ∩ L∞+ = {0}. Then there exists g in L1 such that g > 0
a.s. and E[ f g] ≤ 0 for all f ∈ C.

Theorem 5 Fix any T ∗ ∈ T and let Assumptions 1, 2 and 3 hold. Then, the bond
market satisfies NAFL (see Definition 4), if and only if there exists a measure Q∗ ∼
P|FT ∗ such that

(
P(t,T )

P(t,T ∗)

)
0≤t≤T

is a local Q∗-martingale for all T ∈ [0, T ∗].

Remark 6 In Theorem 5 we consider the NAFL condition for the large financial
market as in Definition 3 with respect to one fixed, dense sequence of Ti in [0, T ∗].
However, Theorem 5 shows that there is an equivalent measure Q∗ such that bond
prices for all maturities in [0, T ∗] discounted by the numéraire are local martingales
with respect to Q∗. Hence the choice of the dense sequence in Definition 3 does not
play a role, in fact, the general theorem about NAFL by Klein [27] implies that for
any such sequence of maturities the corresponding large financial market (induced
by the bond market with these maturities) satisfies NAFL.

Proof (Proof of Theorem 5) We denote by (Ti )i∈N the dense sequence from Defin-
ition 4. Consider the large financial market of Definition 3. By Theorem 4 we get

for C = ⋃∞
n=1 Cn

∗
a g ∈ L1(Ω,FT ∗ , P), g > 0 such that E[ f g] ≤ 0 for all f ∈ C .

Take g
E[g] as the density of a probability measure Q∗ ∼ P|FT ∗ . As all Si = P(t,Ti )

P(t,T ∗)
are locally bounded this gives that Si is a local Q∗-martingale. Indeed, choose τ

such that (Si
t∧τ )0≤t≤Ti is bounded, and let s < t ≤ Ti , A ∈ Fs . Then we have that

±(1]]0,τ ]]1A1]s,t] · Si )T = ±1A(Si
t∧τ − Si

s∧τ ) ∈ Ci . This gives the local martingale
property under Q∗.

It remains to show that for any T < T ∗ which is not an element of the sequence

(Ti ) we get the local martingale property of
(

P(t,T )

P(t,T ∗)

)
0≤t≤T

with respect to Q∗ as

well. As the sequence (Ti ) is dense in [0, T ∗] there exists a subsequence denoted by
(T̃i ) with T̃i → T for i → ∞ (w.l.o.g. assume that T̃i ≥ T for all i).
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Let P(t,T )

P(t,T ∗) := Xt and
P(t,T̃i )

P(t,T ∗) := Xi
t for each i . As a consequence of Assumption 2

there exists ε > 0, an increasing sequence of stopping times σn → ∞ and constants
κn > 0 such that for all U ∈ [T, T + ε) and all t ∈ [0, T ] we have that

(
P(t, U )

P(t, T ∗)

)σn

≤ κn.

Hence for i large enough, such that T̃i ∈ [T, T + ε), say i ≥ iε, we have that

Xi
t∧σn

≤ κn for all t ∈ [0, T ]. (8)

By the first part of the proof, for any i , Xi is a local Q∗-martingale. So, (8) gives
that, for i ≥ iε, (Xi )σn is a Q∗-martingale (as it is a bounded local martingale).

Fix σ = σn . W.l.o.g. we can replace σ by σ ∧ T as we will use it only on [0, T ].
We will now show that, for all t ∈ [0, T ], we have that, for i → ∞

Xi
t∧σ → Xt∧σ a.s. (9)

This holds iff P(t ∧ σ, T̃i ) → P(t ∧ σ, T ) a.s. By right-continuity of U →
P(t, U ) it is clear that P(t, T̃i )1{t<σ } → P(t, T )1{t<σ } a.s.

So it remains to show that P(σ, T̃i )1{t≥σ } → P(σ, T )1{t≥σ } a.s. Take anyω ∈ Ω \
N , where N is the nullset of Assumption 1, then we have that σ(ω) = s for some s ∈
[0, T ] and as T̃i ↓ T we get P(s, T̃i )(ω) → P(s, T )(ω), and hence P(σ, T̃i )(ω) →
P(σ, T )(ω), so (9) holds.

Let s < t ≤ T . By (9) we have that Xi
t∧σ → Xt∧σ a.s. for all t ∈ [0, T ]. Hence

EQ∗ [Xt∧σ |Fs] = EQ∗ [ lim
i→∞ Xi

t∧σ |Fs] = lim
i→∞ EQ∗ [Xi

t∧σ |Fs] = lim
i→∞ Xi

s∧σ = Xs∧σ ,

where the second equality follows by dominated convergence as by (8) we have that
0 < Xi

t∧σ ≤ κ for all i ≥ iε . The third equality is the martingale property of (Xi )σ

for i ≥ iε . This gives that (Xσ
t )0≤t≤T is a Q∗-martingale. As this holds for each σ in

the localizing sequence, (Xt )0≤t≤T is a local Q∗-martingale. �

5 Existence of a Bank Account

It is possible to obtain a candidate process for the bank account by a limit of rolled over
bonds as we show now. Throughout this section we assume that all the assumptions
of Theorem 5 hold.

Definition 5 Let 0 = tn
0 < tn

1 < · · · < tn
kn

= T ∗ be a sequence of refining partitions
of [0, T ∗]. Define, for each n, the roll-over Bn as follows: Bn

0 = 1 and
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Bn
t =

{∏ j
i=1

1
P(tn

i−1,t
n
i )

for t = tn
j , j = 1, . . . , kn

Bn
tn

j
P(t, tn

j ) for tn
j−1 < t ≤ tn

j , j = 1, . . . , kn

The sequence of these roll-overs can be viewed as a replacement of a bank account
even without passing to a limit. This is in the spirit of large financial markets, where
one often approximates in a finite way for larger and larger n but one does not actually
pass to the limit.

We shall see that one can still pass to the limit by taking convex combinations,
which will provide us with the notion of a generalized bank account. First we shall
observe some properties of the sequence of roll-overs.

Lemma 2 There exists a self-financing strategy Ĥn
t = (Ĥ 1

t , . . . , Ĥ kn
t ) on the market

containing the kn-dimensional asset Ŝn(·) = (P(., tn
1 ), . . . , P(., tn

kn
)) such that Bn

t =
〈Ĥt , Ŝt 〉. Discounted by the numéraire P(t, tn

kn
) = P(t, T ∗) this gives an admissible

strategy Hn such that Bn
t

P(t,T ∗) = 1
P(0,T ∗) + (Hn · Sn)t > 0, where Sn is the process

Ŝn discounted by the numéraire P(t, T ∗). In particular,
( Bn

t
P(t,T ∗)

)
0≤t≤T ∗ is a positive

local martingale and hence a supermartingale with respect to the measure Q∗ of
Theorem 5.

Proof The strategy Ĥn
t is given as follows. Fix j and let tn

j−1 < t ≤ tn
j , then

Ĥ i
t =

{∏ j
l=1

1
P(tn

l−1,t
n
l )

for i = j

0 for i �= j,

which is equivalent to

Ĥ i
t =

kn∑
j=1

Bn
tn

j
1(tn

j−1,t
n
j ](t)δi j ,

which is predictable since Bn
tn

j
∈ Ftn

j−1
.

So we get for tn
j−1 < t ≤ tn

j

Bn
t = 〈Ĥn

t , Ŝ
n
t 〉

=
kn∑

i=1

Ĥ i
t Ŝi

t =
j∏

l=1

1

P(tn
l−1, tn

l )
· P(t, tn

j )

= Bn
tn

j
P(t, tn

j ).

This is self-financing as
〈Ĥn

tn
j−1

, Ŝn
tn

j−1
〉 = 〈Ĥn

t , Ŝ
n
tn

j−1
〉

for tn
j−1 < t ≤ tn

j . Indeed the left hand side equals Bn
tn

j−1
P(tn

j−1, tn
j−1) = Bn

tn
j−1

and the

right hand side equals Bn
tn

j
P(tn

j−1, tn
j ) = Bn

tn
j−1
.
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After discounting by the numéraire P(t, T ∗) we have the initial investment
〈Ĥ1,S0〉 = 1

P(0,tn
1 )

P(0,tn
1 )

P(0,T ∗) = 1
P(0,T ∗) . For tn

j−1 < t ≤ tn
j as Bn

tn
j−1

= 〈Ĥtn
j−1

, Ŝtn
j−1

〉 =
〈Ĥt , Ŝtn

j−1
〉 the increment equals

Bn
t

P(t, T ∗)
−

Bn
tn

j−1

P(tn
j−1, T ∗)

=
kn∑

i=1

Ĥ i
t

P(t, tn
i )

P(t, T ∗)
−

kn∑
i=1

Ĥ i
t

P(tn
j−1, tn

i )

P(tn
j−1, T ∗)

= Ĥ kn
t (1 − 1) +

kn−1∑
i=1

Ĥ i
t

(
P(t, tn

i )

P(t, T ∗)
− P(tn

j−1, tn
i )

P(tn
j−1, T ∗)

)

= Bn
tn

j

(
P(t, tn

j )

P(t, T ∗)
− P(tn

j−1, tn
j )

P(tn
j−1, T ∗)

)
.

Summing the increments up we arrive at the stochastic integral

Bn
t

P(t, T ∗)
= 1

P(0, T ∗)
+

kn∑
j=1

Bn
tn

j

(
P(t ∧ tn

j , tn
j )

P(t ∧ tn
j , T ∗)

− P(t ∧ tn
j−1, tn

j )

P(t ∧ tn
j−1, T ∗)

)
.

As Bn
t

P(t,T ∗) = 1
P(0,T ∗) + (Hn · Sn)t is bounded from below and Sn is a local Q∗-

martingale the discounted roll-over is a Q∗-supermartingale.

The existence of limits for refined roll-overs is apparently delicate. The following
theorem is proved by a Komlós-type argument as in [18, Lemma 5.2] and provides
us with a generalized bank account, that always exists (under the assumptions of
Theorem 5) and which is always a supermartingale with respect to the measure Q∗
of Theorem 5.

Theorem 6 Let ((Bn
t )0≤t≤T ∗) be the sequence of roll-overs given as in Definition 5.

There exists a sequence of convex combinations B̃n ∈ conv(Bn, Bn+1, . . . ) and
a càdlàg stochastic process (Bt )0≤t≤T ∗ , in the following called generalized bank
account, such that

Bt = lim
q↓t

lim
n→∞ B̃n

q ,

with B0 ≤ 1 and 0 ≤ Bt < ∞, for all t ≤ T ∗. The generalized bank account has the
following properties.

1. The process (Vt )0≤t≤T ∗ , where Vt = Bt
P(t,T ∗) , is a supermartingale with respect

to the measure Q∗ of Theorem 5.
2. If 0 < P(t, T ) ≤ 1, for all T ≤ T ∗, then P(Bt ≥ 1) = 1, for all t ≤ T ∗.

Remark 7 In general, we can only say that the process (Vt )0≤t≤T is a supermartingale
with respect to Q∗ (and not a local martingale), see Sect. 7.4 for an example.
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Proof Consider the sequence of roll-overs Mn
t := Bn

t
P(t,T ∗) discounted by the num-

éraire P(., T ∗). By Lemma 2 these processes are supermartingales (and bounded
from below by 0) with respect to the measure Q∗ of Theorem 5. The existence
of a limit of convex combinations of the Mn follows by Lemma 5.2 of [18], we
recall the proof here. Let D = ([0, T ∗] ∩ Q) ∪ {T ∗}. This is a dense countable sub-
set of [0, T ∗]. By Lemma A.1.1 of [9] and a diagonalization procedure we find a

sequence of processes M̃n ∈ conv
(

Bn

P(.,T ∗) ,
Bn+1

P(.,T ∗) , . . .
)
such that, for all q ∈ D , M̃n

q

a.s. converges to a random variable V ′
q with values in [0,∞]. For each q, we have

that conv(Mn
q , Mn+1

q , . . . ) is bounded in L0, as all Mn are positive supermartingales

with starting value 1
P(0,T ∗) . Hence for each M̃ ∈ conv(Mn

q , Mn+1
q , . . . ) we have that

EQ∗ [|M̃|] = EQ∗ [M̃] ≤ 1
P(0,T ∗) , so the set of convex combinations is bounded in

L1(Q∗) hence in L0. Lemma A.1.1 of [9] gives then that V ′
q < ∞ a.s.

Moreover, for r < q, r, q ∈ D , by Fatou and the supermartingale property of M̃n

we have that

EQ∗ [V ′
q |Fr ] = EQ∗ [ lim

n→∞ M̃n
q |Fr ] ≤ lim inf

n→∞ EQ∗ [M̃n
q |Fr ] ≤ lim

n→∞ M̃n
r = V ′

r .

Therefore (V ′
q)q∈D is a discrete Q∗-supermartingale. By standard arguments

(using Doob’s Upcrossing Lemma) we get that (Vt )0≤t≤T ∗ is a càdlàg supermartin-
gale, where, for all t ∈ [0, T ∗[,

Vt := lim
q↓t

V ′
q ,

and VT ∗ := V ′
T ∗ (recall that T ∗ ∈ D). Note that V0 ≤ 1

P(0,T ∗) as

V0 = lim
q↓0 V ′

q = EQ∗ [lim
q↓0 V ′

q |F0] ≤ V ′
0 = 1

P(0, T ∗)
. �

Define now Bt := Vt P(t, T ∗), this is a càdlàg process as Vt and P(t, T ∗) are
càdlàg. As the process P(t, T ∗) is right-continuous in t easy computations show
that Bt = limq↓t limn→∞ B̃n

q , where B̃n
q = ∑kn

i=1 λn
i Bi

q = P(q, T ∗)M̃n
q . By defini-

tion B0 = P(0, T ∗)V0 ≤ 1.
Let now P(t, T ) ≤ 1, for all T ≤ T ∗, t ≤ T . Then we see from the definition of

the roll-over as product of terms of the form 1
P(ti ,ti+1)

≥ 1 that Bn
t ≥ 1 for all n,t . The

same holds for all convex combinations and therefore for the limits as above.

Remark 8 With a view to what it means to be a numéraire (see [10]) we can ask why
just terminal bonds qualify as numéraires by default in our setting: the answer is that
we could take any other reasonably behaved stochastic process (the inverse has to
be locally bounded) and plug it into Assumption 3 instead of P(., T ∗). Conclusions
would remain the same, of course with respect to the chosen numéraire. For instance
we could think of taking discrete roll-over bonds as numéraires.
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6 On the Existence of a Supermartingale Deflator
and a Generalized Bank Account

In this section, we relax the assumptions on the bond market and investigate under
which conditions there is a supermartingale deflator. This is motivated by the fact
that we are lead to supermartingale deflators by the very structure of bond market
models. Indeed if we have a non-vanishing generalized bank account and decide to
choose it as market numéraire, see Theorem 6, then our theory only provides us with
a supermartingale deflator structure.

The results about supermartingale deflators in this section are related to results
of Kostas Kardaras, see, e.g., [26]. Consider a large financial market induced
by a sequence of semimartingales Si , i = 0, 1, . . . on a fixed filtered probability
space, where the filtration satisfies the usual conditions, such that (Sn

t )t∈[0,T ∗] =
(S0

t , S1
t , . . . , Sn

t )t∈[0,T ∗]. Recall that S0
t ≡ 1, i.e. the numéraire has been fixed and

prices are discounted by the chosen numéraire. The sets Kn , Cn , Mn
e are defined as

previously. We assume that each finite market satisfies (NFLVR), i.e. (5) holds for
all n. In contrast to the previous sections, we do not assume here that the semimartin-
gales are locally bounded. In this case, the setMn

e as in (4) consists of all equivalent
probability measures Q such that stochastic integrals (Hn · Sn)t , 0 ≤ t ≤ T ∗, with
admissible integrands Hn (i.e. (Hn · Sn)T ∗ ∈ Kn) are Q-supermartingales. It was
shown in [12] that under the condition no free lunch with vanishing risk the set of
equivalent sigma-martingale measures for Sn is dense in the set Mn

e .
The notion no asymptotic arbitrage of first kind (NAA1) was introduced in [23].

Definition 6 A large financial market admits an asymptotic arbitrage opportunity
of first kind if there exists a subsequence, again denoted by n, and trading strategies
Hn with

1. (Hn · Sn)t ≥ −εn for all t ∈ [0, T ∗],
2. P((Hn · Sn)T ∗ ≥ Cn) ≥ α,

for all n, where α > 0, εn → 0 and Cn → ∞.
We say that the large financial market satisfies the condition NAA1 if there are

no asymptotic arbitrage opportunities of first kind.

The following result for large financial markets provides us with supermartingale
deflators for bond markets.

Theorem 7 Consider the large financial market induced by the sequence of semi-
martingales (Sn

t )0≤t≤T ∗ = (S0
t , S1

t , . . . , Sn
t )t∈[0,T ∗], n = 1, 2, . . . and assume that (5)

holds for all n. Then NAA1 holds, if and only if there exists a strictly positive super-
martingale (Zt )0≤t≤T ∗ with Z0 ≤ 1, such that (Zt (Xt + a))0≤t≤T ∗ is a supermartin-
gale for all processes X with XT ∗ ∈ ⋃∞

n=1 K
n where X is a-admissible.

Moreover, if NAA1 holds, then: if Si
t ≥ −a, 0 < t ≤ T ∗, for some i ∈ N and some

a ≥ 0, then
(
Zt (Si

t + a)
)
0≤t≤T ∗ is a supermartingale.
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The supermartingale Z is called supermartingale deflator for the large financial
market.

In order to prove Theorem 7 we will use a result from the theory of large financial
markets. In this aspect our proof differs from Kardaras’ proofs of similar results.

Under the assumption of NAA1Kabanov and Kramkov proved Theorem 8 in [23]
in the complete setting, the most general result can be found in [24]. Note that the
general theorem in [30] was only proved under local boundedness assumptions on
all processes, but it holds in the general case as well and is equivalent to the result of
[24]. We choose to take the setting of [30] as the formulation of NAA1 given there
is more convenient for our presentation (and anyway completely equivalent to the
formulation in [24]).

We will formulate Theorem 8 for the special case of our nested setting on one
fixes probability space (Ω,F , P).

Theorem 8 A large financial market as defined in Sect. 3 satisfies NAA1 if and only
if there exists a sequence of probability measures Qn ∈ Mn

e such that P � (Qn).

P � (Qn) means that the measure P is contiguous with respect to the sequence
of measures (Qn), i.e., whenever for a sequence of measurable sets An we have that
Qn(An) → 0 then P(An) → 0. In our case where, for each n, P � Qn , the notion of
contiguity can be interpreted as a uniform absolute continuity in the following sense:
for each ε > 0 there is δ > 0 such that, for all n and An ∈ F with Qn(An) < δ we
have that P(An) < ε.

Let us now proceed with the proof of Theorem 7. In order to apply Theorem 8 we
need the following useful lemma.

Lemma 3 Let Qn, n ≥ 1, be a sequence of probability measures and P a prob-
ability measure on (Ω,FT ∗) such that Qn ∼ P, for all n, and P � (Qn). Let
Zn

t = E
[ d Qn

d P |Ft
]
. Then there exists a càdlàg supermartingale (Zt )0≤t≤T ∗ with

Z0 ≤ 1 and a sequence of Z̃ n ∈ conv(Zn, Zn+1, . . . ) such that, for all t ∈ [0, T ∗],

Zt = lim
q↓t

lim
n→∞ Z̃ n

q . (10)

Moreover P(Zt > 0) = 1, for all t .

Proof Let D = ([0, T ∗] ∩ Q) ∪ {T ∗}. The processes (Zn
t )0≤t≤T ∗ are positive mar-

tingales with Zn
0 = 1. As in the proof of Theorem 6 there exists a sequence

Z̃ n ∈ conv(Zn, Zn+1, . . . ) such that Z as in (10) is a càdlàg supermartingale, with
0 ≤ Zt < ∞ for t ∈ [0, T ∗]. As Z̃ n

0 = 1, for all n, we have that Z0 ≤ 1.
It remains to show that, for all t , P(Zt > 0) = 1. We will show that this holds

for T ∗, which implies the statement for all t ≤ T ∗. Indeed ZT ∗ > 0 a.s. implies
E[ZT ∗ |Ft ] > 0 a.s. By the supermartingale property,

Zt ≥ E[ZT ∗ |Ft ] > 0 a.s.
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Assume now that for A = {ZT ∗ = 0} we have that P(A) = α > 0. As T ∗ ∈ D ,
we have that 1A Z̃n

T ∗ → 1A ZT ∗ = 0 a.s. This implies that, for all ε > 0,

P(1A Z̃n
T ∗ > ε) → 0. (11)

Hence, for ε = 2−N , there ism N ↑ ∞ such that, for alln ≥ m N , P(1A Z̃n
T ∗ > 2−N ) <

2−N . Define

An := A ∩ {1A Z̃n
T ∗ ≤ 2−N } for m N ≤ n < m N+1.

For n ≥ m N0 , such that 2−N0 ≤ α
2 we have that

P(An) ≥ P(A) − P(1A Z̃n
T ∗ > 2−N0) ≥ α

2
. (12)

Define the probability measure Q̃n by d Q̃n

d P := Z̃ n
T ∗ . Then, Q̃n ∈ Mn

e as the density
Zn

T ∗ is a convex combination of densities of equivalent probability measures Qk ∈
Mk

e , k ≥ n. For m N ≤ n ≤ m N+1, we have that

Q̃n(An) = E[Z̃ n
T ∗1A1{1A Z̃n

T ∗ ≤2−N }] ≤ 2−N . �

This shows that Q̃n(An) → 0. As Q̃n ∈ conv(Qn, Qn+1, . . . ), there is kn ≥ n
with kn → ∞ such that Qkn (An) → 0, for n → ∞. As P � (Qn) it is contiguous
with respect to any subsequence of (Qkn ) as well, so we should have P(An) → 0
which is a contradiction to (12). Hence ZT ∗ > 0 a.s.

Proof (Proof of Theorem 7) Assume that NAA1 holds. Then by Theorem 8 there
exists a sequence of probability measures Qn ∈ Mn

e such that P � (Qn). Take a
strictly positive supermartingale Z which is induced by (Qn) and D =
([0, T ∗] ∩ Q) ∪ {T ∗} as in Lemma 3. For all q ∈ D , denote Z ′

q := limn→∞ Z̃ n
q where

Z̃ n are the convex combinations as in the proof of Lemma 3. Let X be such that
XT ∗ ∈ Kn for some n and Xt ≥ −a for all 0 ≤ t ≤ T ∗, i.e., X is a-admissible. Let
Xa

t = Xt + a. We will show that (Zt Xa
t )0≤t≤T ∗ is a supermartingale. Indeed, let

r < q, r, q ∈ D . Define, Q̃n by d Q̃n

d P := Z̃ n
T ∗ . As shown in the proof of Lemma 3,

Q̃n ∈ Mn
e . This implies that (Z̃ n

t Xa
t )0≤t≤T ∗ is a supermartingale. Then, by Fatou, we

get

E[Z ′
q Xa

q |Fr ] = E[ lim
n→∞ Z̃ n

q Xa
q |Fr ]

≤ lim inf
n→∞ E[Z̃ n

q Xa
q |Fr ]

≤ lim
n→∞ Z̃ n

r Xa
r = Z ′

r Xa
r .

So (Z ′
q Xa

q )q∈D is a discrete supermartingale. Let now s < t < T ∗ and sk ↓ s, t j ↓ t
for rational sk , t j (for t = T ∗ take t j ≡ T ∗). Then we have that
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E[Zt Xa
t |Fsk ] = E[ lim

j→∞ Z ′
t j

Xa
t j
|Fsk ]

≤ lim inf
j→∞ E[Z ′

t j
Xa

t j
|Fsk ]

≤ Z ′
sk

Xa
sk
,

where the equality holds by the definition of Z and by the right continuity of Xa ,
the first inequality is Fatou, the second inequality is the discrete supermartingale
property. The right-continuity of the filtration together with the definition of Z and
the right continuity of Xa gives

E[Zt Xa
t |Fs] = lim

k→∞ E[Zt Xa
t |Fsk ] ≤ lim

k→∞ Z ′
sk

Xa
sk

= Zs Xa
s .

Hence, Z Xa is a supermartingale.
For the converse, assume that there is a supermartingale deflator for the large

financial market. Suppose there exists an asymptotic arbitrage of first kind, that is,
there exists a sequence Xk

T ∗ ∈ Knk such that Xk
t ≥ −εk , 0 ≤ t ≤ T ∗, and P(Xk

T ∗ ≥
Ck) ≥ α with εk → 0 and Ck → ∞. We have that Xk Z are supermartingales, for all
k. Hence, as Xk

0 = 0 and Xk is εk-admissible,

E[Xk
T ZT ] ≤ E[(Xk

T + εk)ZT ] ≤ (Xk
0 + εk)Z0 ≤ εk . (13)

On the other hand, let Ak := {Xk
T ∗ ≥ Ck}. As Z0 ≤ 1 and by the properties of Xk ,

E[Xk
T ∗ ZT ∗ ] ≥ Ck E[ZT ∗1Ak ] − εk E[ZT ∗ ] ≥ Ck E[ZT ∗1Ak ] − εk . (14)

By assumption P(Ak) ≥ α, for all k. We claim that there exists β > 0 such that,
P({ZT ∗ > β} ∩ Ak) ≥ α

2 for all k. Suppose not, then for each j ≥ 1 and β = 1
j ,

there is k j such that P({ZT ∗ > 1
j } ∩ Ak j ) < α

2 and hence P({ZT ∗ ≤ 1
j } ∩ Ak j ) ≥

P(Ak j ) − α
2 ≥ α

2 . Therefore

P(ZT ∗ = 0) = lim
j→∞ P(ZT ∗ ≤ 1

j
) ≥ lim inf

j→∞ P({ZT ∗ ≤ 1

j
} ∩ Ak j ) ≥ α

2
,

a contradiction to the integrability of ZT ∗ and ZT ∗ > 0 a.s. Equation (14) then implies
that

E[Xk
T ∗ ZT ∗ ] ≥ Ck E[ZT ∗1Ak∩{ZT ∗ >β}] − εk ≥ Ckβ

α

2
− εk > εk,

for k large enough. This gives a contradiction to (13).
We still have to prove the second statement of the theorem. Assume that Si

t ≥
−a, 0 ≤ t ≤ T ∗ for some i . Define the trivial predictable Ht = 1]0,T ∗](t), then, for
t ≤ T ∗,

Xt = (H · Si )t = Si
t − Si

0 ≥ −a − Si
0.
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Hence XT ∗ ∈ Kn , for n ≥ i . Therefore ((Xt + a + Si
0)Zt )0≤t≤T ∗ is a supermartin-

gale. This immediately gives that (Si
t + a)Zt is a supermartingale as Si

t + a =
Xt + a + Si

0. �

In the sequel we apply the results to bond markets: again, for each T ∈ [0, T ∗],
(P(t, T ))0≤t≤T is a strictly positive càdlàg stochastic process adapted to (Ft )0≤t≤T

with P(T, T ) = 1. We assume that, for fixed t , the function T �→ P(t, T ) is almost
surely right-continuous. Note, that in this section, we do not have any local bounded-
ness assumptions on P(t, T ) or 1

P(t,T )
. We will again have to assume that in the case

of a finite number of assets discounted with the numéraire P(t, T ∗) we will not have
any arbitrage opportunities. This is again a consequence of the following assumption
on existence of the T ∗-forward measure. Consider any 0 < T1 < · · · < Tn ≤ T ∗ and
define the cone C(T1, . . . , Tn, T ∗) as in (3) where Si is defined as in (7). Note that
we do not assume here that T ∗ ∈ T .

Assumption 9 For all finite collections of maturities T1 < T2 < · · · < Tn ≤ T ∗
there exists a measure Q ∼ P|FT ∗ such that for all f ∈ C(T1, . . . , Tn, T ∗) we have
that EQ[ f ] ≤ 0.

The condition EQ[ f ] ≤ 0 means that the measure Q ∈ Me(T1, . . . , Tn, T ∗), where
the definition of the set of separating measures is analogous as in (4). Note that
Assumption 9 implies the existence of an equivalent sigma-martingale measure for
S1, . . . , Sn given as in (7), and therefore these processes are semimartingales, see
[12]. As in Definition 3, any sequence (Ti )i∈N in [0, T ∗] induces a large financial
market.

Definition 7 The bond market satisfies NAA1 w.r.t. a sequence (Ti )i∈N in [0, T ∗] if
for the large financial market induced by (Ti )i∈N there does not exist an asymptotic
arbitrage of first kind.

Theorem 10 Fix a sequence (Ti )i∈N in [0, T ∗]. The bond market satisfies NAA1
w.r.t. (Ti )i∈N if and only if there exists a strictly positive supermartingale deflator
(Zt )0≤t≤T ∗ for the large financial market induced by (Ti )i∈N. If (Ti )i∈N is dense in

[0, T ∗], then
(

Zt
P(t,T )

P(t,T ∗)

)
0≤t≤T

is a supermartingale for all T ≤ T ∗.

Proof (Proof of Theorem 10) Everything follows by Theorem 7. In particular, as
P(t,Ti )

P(t,T ∗) > 0, we have that ( P(t,Ti )

P(t,T ∗) Zt )0≤t≤Ti is a supermartingale for each Ti . It only

remains to show, that P(t,T )

P(t,T ∗) Zt is a supermartingale for each T ≤ T ∗ which is not an
element of the dense sequence.Note that forT ∗ the statement holds, as P(t,T ∗)

P(t,T ∗) Zt = Zt

is a supermartingale. Let T < T ∗. Choose T̃i ↓ T with T̃i elements of the dense

sequence in [0, T ∗]. Let Xt := P(t,T )

P(t,T ∗) and Xi
t := P(t,T̃i )

P(t,T ∗) . As, for each i , Xi
t > 0 a.s.,

for all t , we get by Theorem 7 that Zt Xi
t is a supermartingale. Hence

E[Xt Zt |Fs] = E[ lim
i→∞ Xi

t Zt |Fs] ≤ lim inf
i→∞ E[Xi

t Zt |Fs] ≤ lim
i→∞ Xi

s Zs = Xs Zs,
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asU �→ P(v, U ) is right-continuous, for each v (and therefore Xi
v → Xv for v = s, t)

and by Fatou.

Finally we will show that under the weaker assumptions of this section we will
still be able to define a generalized bank account.

Theorem 11 Let (Ti ) be a dense sequence in [0, T ∗] such that NAA1 holds. Let
(Bn

t )t∈[0,T ∗] be the sequence of roll-overs as in Definition 5, where the refining
partition {tn

1 , . . . , tn
kn

} is chosen such
⋃

n∈N{tn
1 , . . . , tn

kn
} ⊆ (Ti ). Then there exists a

sequence of convex combinations B̃n ∈ conv(Bn, Bn+1, . . . ) and a càdlàg stochastic
process (Bt )0≤t≤T ∗ (the generalized bank account) such that

Bt = lim
q↓t

lim
n→∞ B̃n

q ,

with B0 ≤ 1 and 0 ≤ Bt < ∞, for all t ≤ T ∗. The generalized bank account has the
following properties.

1. The process
(

Zt Bt
P(t,T ∗)

)
0≤t≤T ∗

is a supermartingale.

2. If 0 < P(t, T ) ≤ 1, for all T ≤ T ∗, then P(Bt ≥ 1) = 1, for all t ≤ T ∗.

The interpretation of this Theorem is, that for any refining sequence of parti-
tions, which does not produce an asymptotic arbitrage opportunity of first kind in
the induced large financial market, there does exist a generalized bank account. In
particular, if the bond market does not allow an asymptotic arbitrage opportunity
of first kind for any sequence of maturities in [0, T ∗] (for the respective induced
large financial market as in Definition 3), then any refining sequence of partitions
gives a generalized bank account in the sense of Theorem 11. If, moreover, the bond
P(t, T ) ≤ 1, 0 ≤ t ≤ T ≤ T ∗, then we can say that Bt is bounded from below by 1
a.s. This corresponds to the case, where a non-negative short-rate exists.

Proof By Lemma 2 we have that Xn
T ∗ := Bn

T ∗
P(t,T ∗) − 1

P(0,T ∗) ∈ Kmn for some mn large

enough and (Xt )0≤t≤T ∗ is 1
P(0,T ∗) -admissible. By NAA1 and Theorem 10 there exists

a strictly positive càdlàg supermartingale Z such that, for all n, (V n
t )t∈[0,T ∗] is a

supermartingale, where V n
t := Zt

Bn
t

P(t,T ∗) = Zt (Xn
t + 1

P(0,T ∗) ), since all points of the
partition defining the roll-over bond are contained in the dense sequence instrumental
for the definition of Z . As in the proof of Theorem6we get a sequence of convex com-
bination Ṽ n

t ∈ conv(V n, V n+1, . . . ) and a càdlàg supermartingale 0 ≤ Vt < ∞ such
that Vt = limq↓t limn→∞ Ṽ n

q . Moreover, V0 ≤ 0 as V0 ≤ limn→∞ Ṽ n
0 = 0. Define

Bt = Vt

Zt
P(t, T ∗). �

Similarly as in the proof of Theorem6,we see that Bt = limq↓t limn→∞ B̃n
q , where

B̃n
q are the corresponding convex combinations of Bn

q , i.e., B̃n
q = Ṽ n

q

Zq
P(q, T ∗). (Use

the right continuity of t �→ P(t, T ) and t �→ Zt .) Clearly B0 = V0
Z0

P(0, T ∗) ≤ 1.
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7 Examples

7.1 A Strict Local Martingale Deflator

In this section we consider the example touched upon in the introduction in more
detail. We follow [21] and place ourselves in the so-called benchmark approach.
The fundamental principle in this approach is that pricing is performed under the
real-world measure with the growth optimal portfolio, denoted by S∗, chosen as
numéraire. A well diversified index such as the S&P 500 can be chosen as proxy for
the growth optimal portfolio. As in [5] it will not be necessary to describe the market
in detail, as the essential ingredient for term structure modelling is the numéraire S∗.

Let Q denote the objective probability measure. In the benchmark approach fair
prices of a payoff X at time T > 0 are given by

πt (X) = S∗
t EQ[ X

S∗
T

|Ft ],

and, as a consequence, one obtains bond prices of the form

P(t, T ) = EQ
[ S∗

t

S∗
T

|Ft
]
. (15)

In reality, the inverse of the S&P 500 accumulation index appears to follow a strict
supermartingale rather than a martingale, see [21]. Motivated by this, we give an
example where the inverse of the growth optimal portfolio is related to a positive,
strict local martingale. Consider the case where

1

S∗
t

= A(t)

‖ x + Wt ‖2 =: ξt

with a positive, deterministic, càdlàg function A: [0,∞) �→ (0,∞), a four-dimen-
sional standard Brownian motion W and 0 �= x ∈ R

4. Then (‖ x + Wt ‖2)t≥0 is a
squared Bessel process of dimension four and its inverse is a strict local martingale.
Surprisingly, it turns out that the benchmark approach for term structure modelling
can be linked to risk-neutral pricing when the bond with longest available maturity in
the market is chosen as numéraire: let T ∗ > 0 denote the longest maturity of bonds
available in the market. As we will show, there exists an equivalent probability mea-
sure Q∗ such that all bond prices with maturity T ≤ T ∗ discounted by the numéraire
P(., T ∗) are even martingales under Q∗ and we arrive in the situation of Theorem 5.
Indeed, let α = 1

EQ [ξT ∗ ] and define

d Q∗

d Q
= αξT ∗ .
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The density process Z∗
t , 0 ≤ t ≤ T ∗, satisfies

Z∗
t = αEQ[ξT ∗ |Ft ] = αξt P(t, T ∗).

Therefore

Z∗
t

P(t, T )

P(t, T ∗)
= αEQ[ξT |Ft ],

hence P(t,T )

P(t,T ∗) , 0 ≤ t ≤ T , is a martingale with respect to Q∗.
Using Markovianity of W and integrating over the transition density of squared

Bessel processes one obtains the following explicit expression for P(t, T ).

P(t, T ) = A(T )

A(t)
EQ

[ ‖ x + Wt ‖2
‖ x + WT ‖2

∣∣∣Ft

]
= A(T )

A(t)

(
1 − e− ‖x+Wt ‖−2

2(T −t)

)
, (16)

see Eq.8.7.17 in [21].
Up to now, there does not exist a bank account in the market. The limit of rolled

over bonds is a natural candidate for a bank account which we study in detail now.
Consider Bn

t as defined in Definition 5, where we additionally assume that there
exists a constant K ≥ 1 such that, for all n, max1≤i≤kn |tn

i − tn
i−1| ≤ K T ∗

kn
. The limit

of the rolled over bonds is computed in the following result.

Lemma 4 The almost sure limit of the roll-over portfolios can be calculated, i.e.

lim
n→∞ Bn

t = Bt := A(0)

A(t)

for each t ≥ 0.

Proof Let 0 = tn
0 < tn

1 · · · < tn
kn

= T ∗ and δn := max1≤i≤kn (t
n
i − tn

i−1). By assump-
tion δn ≤ K T ∗

kn
→ 0 for n → ∞. Fix t , then for each n there is jn ≤ kn such that

tn
jn−1 < t ≤ tn

jn
. We have that

Bn
t =

jn∏
i=1

1

P(tn
i−1, tn

i )
P(t, tn

jn ) = A(0)

A(tn
jn
)

jn∏
i=1

(
1 − e

−
‖x+Wtni−1

‖−2

2(tni −tni−1)
)−1

P(t, tn
jn ).

By the right continuity of A we have that A(tn
jn
) → A(t) for n → ∞ and it is clear

that P(t, tn
jn
) → 1 for n → ∞. Moreover, as 0 < 1 − e

−
‖x+Wtni−1

‖−2

2(tni −tni−1) ≤ 1, for all i , we
get

jn∏
i=1

(
1 − e

−
‖x+Wtni−1

‖−2

2(tni −tni−1)
)−1 ≥ 1.

We will now show that



402 I. Klein et al.

lim
n→∞

jn∏
i=1

(
1 − e

−
‖x+Wtni−1

‖−2

2(tni −tni−1)
)−1 ≤ 1 a.s.,

which then implies that Bn
t → Bt = A(0)

A(t) . Let mt := mins≤t ‖x + Ws‖−2 be the run-
ning minimum of the inverse of the squared Bessel process of dimension 4. We have
that mt > 0 a.s. By assumption δn ≤ K T ∗

kn
. Hence

jn∏
i=1

(
1 − e

−
‖x+Wtni−1

‖−2

2(tni −tni−1)
)−1 ≤

jn∏
i=1

(
1 − e− kn mt

2K T ∗
)−1

= (
1 − e− kn mt

2K T ∗
)− jn ≤ (

1 − e− kn mt
2K T ∗

)−kn
,

as, clearly, 0 < 1 − e− kn mt
2K T ∗ ≤ 1. But as for almost all ω we have that mt (ω) > 0 and

as (1 − e−akn )−kn → 1 for n → ∞ and a > 0 we get that

lim
n→∞

(
1 − e− kn mt

2K T ∗
)−kn = 1 a.s.

By Theorem 6, (Bt )0≤t≤T ∗ discounted with respect to the numéraire P(., T ∗) is a
Q∗–supermartingale. Lemma 4 and the definition of the measure Q∗ moreover gives
that

( Bt
P(t,T ∗)

)
0≤t≤T ∗ is a strict local martingale under Q∗ as

Z∗
t

Bt

P(t, T ∗)
= αξt Bt = α

A(0)

‖x + Wt‖2 ;

hence we cannot choose B as numéraire in this market.
In Fig. 1 we consider the case where At ≡ 1 and show the term structure given

by (16) in comparison to the constant term structure. In Sect. 7.4 we will meet an
example where investing in the roll-over account may even lead to a total loss of
invested money.

7.2 Bond Markets Driven by Fractional Brownian Motion

The purpose of this section is to illustrate the applicability of our approach beyond
semimartingale models. The semimartingale assumption is standard in the literature
on bondmarkets (see for example [13] and the referenced literature therein), whilewe
were able to show that this is in general not necessary. In this regard, we study some
models for bond markets driven by fractional Brownian motion. In these models, the
bank account, the forward rates or even the bond prices themselves may no longer
be semimartingales. However, discounted bond prices are martingales, such that an
appropriate no-arbitrage condition still holds.
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Fig. 1 This figure illustrates
the two term structures: the
term structure from Eq. (16)
with At ≡ 1, is shown by the
lines T �→ P(0, T ) for
different ‖ x ‖−2∈
{0.2, 0.4, 0.7, 1.3, 2}. The
constant term structure
T �→ P̃(0, T ) ≡ 1 is
represented by the dashed
line
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More precisely, we first consider a locally integrable short-rate process which is
given by a time-inhomogeneous variant of fractional Brownianmotion and show that
discounted bond prices turn out to be martingales. Forward rates, however, are not
semimartingales in this case which is in contrast to typical forward rate approaches
as in [20]. In Remark 9 we consider a bank account directly driven by a fractional
Brownianmotion. In this case a short-rate does not exist and neither the bank account
nor bond prices are semimartingales.

Regarding (1)we need to obtain the conditional distribution of a fractional Brown-
ian motion, which we establish following [36]; see also [17] for related results. A
fractional Brownian motion (FBM) with Hurst parameter H ∈ (0, 1) is a zero-mean
stationary Gaussian process Z = Z H with covariance function

E[Zs Zt ] = 1

2

(|s|2H + |t |2H − |s − t |2H
)
.

For H = 1
2 , Z is a standard Brownian motion. If H > 1

2 the fractional Brownian
motion has long-range dependence. Moreover, for H �= 1

2 , Z is no longer a semi-
martingale.

To ease the exposition we consider H > 1
2 only. Define the right-sided fractional

Riemann-Liouville integral of order α > 0 by

(
I α
t− f

)
(s) := 1

Γ (α)

∫ t

s
f (u)(u − s)α−1du, s ∈ (0, t).

I 0 is the identity. The fractional derivative of order 0 < α < 1 is denoted by I −α , i.e.
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(
I −α
t− f

)
(s) := − 1

Γ (1 − α)

d

ds

∫ t

s
f (u)(u − s)−αdu, s ∈ (0, t).

For the further analysis it will be useful to consider κ := H − 1
2 instead of H itself.

Fix a finite time horizon T ∗ > 0. Let1

(Kκ f )(s) := cκs−κ
(

I κ
T ∗−(·κ f (·))

)
(s),

with constant cκ =
√

πκ(2κ+1)
Γ (1−2κ) sin(πκ)

. The adjoint operator of Kκ is

(K ∗
κ f )(s) := cκs−κ

(
I −κ

T ∗−(·κ f (·))
)
(s).

It turns out that for H > 1
2 the proper space of deterministic integrands to consider

is, see [36],

�κ
T ∗ := {

f : ∃ ϕ f ∈ L2[0, T ∗], s.t. f (s) = (K ∗
κ ϕ f )(s)

}
.

Then �κ
T ∗ is a Hilbert space with corresponding norm

‖ f ‖�κ
T ∗ :=‖ Kκ f ‖L2([0,T ∗]) .

The integral of f ∈ �κ
T ∗ w.r.t. the fractional Brownian motion Z is obtained as the

limit of
∫

fnd Z with elementary fn s.t. ‖ fn − f ‖�κ
T ∗ → 0. Of course, for elemen-

tary f , say f = ∑
ai1(si ,ti ) the integral equals

∫
f d Z = ∑

ai (Zti − Zsi ). Letting
kκ(t, s) := (K κ1[0,t])(s) the covariance function of Z has the following representa-
tion

Rκ(t, s) := E[Zs Zt ] =
∫ t

0
kκ(t, w)kκ(s, w)dw. (17)

For κ = 0 we obtain Kκ = id, i.e. Rκ(t, s) = s ∧ t which is the covariance function
of a Brownian motion. From the representation in (17) it is immediate that

Zt
L=

∫ t

0
kκ(t, w)d Bw (18)

where B is a standard Brownian motion. This result was already discovered in the
seminal work of [33] and leads to the following representation of conditional expec-
tations (Theorem 7.1 in [36]): let F Z

t := σ(Zs : 0 ≤ s ≤ t). For 0 < s < t

1We write ·−κ f (·) short for the function u �→ u−κ f (s).
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E
[
Zu |F Z

t

] = Zt +
∫ t

0
ψu(t, w)d Zw (19)

with

ψu(t, w) = ψκ
u (t, w) := sin(πκ)

π
w−κ(t − w)−κ

∫ u

t

zκ(z − t)κ

z − w
dz.

Note that
ψu(t, w) = w−κ(I −κ

t− (I κ
u−(·κ1[t,u))))(w).

Proceeding similarly, we are able to compute the conditional covariance of Z .

Lemma 5 For 0 < t < u, v,

E[Zu Zv|F Z
t ] = E[Zu |F Z

t ] · E[Zv|F Z
t ] +

∫ u∧v

t
kκ(u, w)kκ(v, w)dw.

Proof The proof mainly relies on (18). We have that

E
[ ∫ u

0
kκ(u, w)d Bw

∫ v

0
kκ(v, w)d Bw|F B

t

]

=
∫ t

0
kκ(u, w)d Bw

∫ t

0
kκ(v, w)d Bw (20)

+ E
[ ∫ u

t
kκ(u, w)d Bw

∫ v

t
kκ(v, w)d Bw|F B

t

]
.

As standard Brownian motion has independent increments, the last expectation is
easily computed, leading to the last term in our result. It remains to represent the first
addend in terms of Z . Using (18) we obtain

E[Zu |F Z
t ] =

∫ t

0
kκ(u, w)d Bw

and we conclude.

With these results at hand we are ready to consider bond markets where the short-
rate is driven by fractional Brownian motion. Fix a measure Q ∼ P and assume that
Z is a FBM with parameter κ under Q. As numéraire we consider the bank account
B(t) = exp(

∫ t
0 rudu) where the short-rate is given by

rt = μ(t) + σ(t)Zt , 0 ≤ t ≤ T ∗, (21)

withμ : [0, T ∗] �→ R
+ in L1[0, T ∗] and σ : [0, T ∗] �→ R

+ being an element of�κ
T ∗ .

Bond prices are given by
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P(t, T ) = EQ[ Bt

BT
|Ft ] = EQ

[
exp

(
−

∫ T

t
rudu

)
|Ft

]
, 0 ≤ t ≤ T ≤ T ∗.

(22)

For 0 ≤ t ≤ T ≤ T ∗, we denote by μ∗(t, T ) := ∫ T
t μ(u)du, σ ∗(t, T ) :=∫ T

t σ(u)du, and

γ ∗(t, T ) := 1

2

∫ T

t

∫ T

t

∫ u∧v

0
σ(u)σ (v)kκ(u, w)kκ(v, w) dw du dv.

The following result gives bond prices and forward rates when the short-rate satisfies
(21).

Proposition 1 Under (21) and for 0 ≤ t ≤ T ≤ T ∗, the bond prices equal

P(t, T ) = exp

[
− μ∗(t, T ) − σ ∗(t, T )Zt −

∫ T

t

∫ t

0
σ(u)ψu(t, w)d Zw du

+ γ ∗(t, T )

]
,

and associated forward rates are given by

f (t, T ) = μ(T ) + σ(T )
(

Zt +
∫ t

0
ψT (t, w)d Zw

)
− ∂T γ ∗(t, T ). (23)

Proof First, note that J (t, T ) := ∫ T
t rudu is a Gaussian process with

EQ[J (t, T )|Ft ] =
∫ T

t

(
μ(u) + σ(u)EQ[Zu |Ft ]

)
du

= μ∗(t, T ) +
∫ T

t
σ(u)(Zt +

∫ t

0
ψu(t, w)d Zw)du

= μ∗(t, T ) + σ ∗(t, T )Zt +
∫ T

t
σ(u)

∫ t

0
ψu(t, w)d Zw du,

using (19). For the conditional variance of J (t, T ) note that

Var[J (t, T )|Ft ] = EQ

[(∫ T

t
σ(u)

(
Zu − EQ[Zu |Ft ]

)
du

)2∣∣Ft

]
. (24)

By Lemma 5 we obtain

EQ[Zu Zv|Ft ] − EQ[Zu |Ft ]EQ[Zv|Ft ] =
∫ u∧v

t
kκ(u, w)kκ(v, w)dw.
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Inserting this into (24) gives that

Var[J (t, T )|Ft ] =
∫ T

t

∫ T

t
σ(u)σ (v)

∫ u∧v

t
kκ(u, w)kκ(v, w)dw dv du.

Finally, note that J (t, T ) is, conditional on Ft , a Gaussian random variable. Using
its Laplace-Stieltjes transformwe obtain the claim on bond prices. Observe that bond
prices are absolutely continuous in maturity T . Then the expression on forward rates,
(23), follows directly from

f (t, T ) = −∂T log P(t, T )

and we conclude.

By (22), discounted bond prices are Q-martingales. Moreover, from Lemma 1 it
follows that Assumption (3) holds. Hence Q is an ELMM such that by Theorem 5
NAFL holds.

Remark 9 In [13] semimartingalemodels are coveredwhile we drop this assumption
in our setup. Consider for example the case where Bt = exp(μ(t) + σ(t)Zt) with
càdlàg functionsμ : [0, T ∗] → R andσ : [0, T ∗] → R>0.Then, for H �= 1

2 the bank
account is not a semimartingale. Analogously to Proposition 1, bond prices can be
computed. A short calculation yields that

P(t, T ) = EQ [ Bt

BT
|Ft ] = exp

(
μ(t) + σ(t)Zt − μ(T ) − σ(T )(Zt +

∫ t

0
ψT (t, w)d Zw)

+ 1

2

∫ T

t
(kκ (T, w))2dw

)
.

Furthermore, ((Bt )
−1P(t, T ))0≤t≤T is a Q-martingale for all T ∈ [0, T ∗]while bond

prices themselves are no semimartingales if H �= 1
2 . Again, by Lemma 1 this case is

included in our setup.

7.3 An Extension of the HJM Setup

In this section we extend the HJM setup by an additional component which is not
absolutely continuous in terms of maturity, such that, in general, a short-rate does
not exist in this framework. We point out in Remark 11 that in credit risk a number of
examples exist in the literature where the term structure is not even continuous. Note
that all these models, however, satisfy our assumption on right-continuity formulated
in Assumption 1.

Using Theorem 5 we classify those models which satisfy NAFL by means of a
generalised drift condition. The HJM-model is contained as special case.
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Fix a finite time horizon T ∗ and a measure Q ∼ P|T ∗ . There are two independent
Q-Brownianmotions W and V where W is d-dimensional and V is one-dimensional.
We consider the filtration (Ft )t≥0 given by

Ft = σ(Ws : 0 ≤ s ≤ t, Vu : u ≥ 0) ∨ N

which is the initial enlargement of the natural filtration of W with the full path of V
and all P-nullsets N . We assume that bond prices are given by

P(t, T ) = exp
(

−
∫ T

t
f (t, u)dV (u) −

∫ T

t
g(t, u)du

)
, 0 ≤ t ≤ T ≤ T ∗ (25)

with families of Itô-processes f and g to be specified below. This includes the HJM-
framework if f ≡ 0. In the following we characterize when the considered measure
Q is an (equivalent) local martingale measure in the sense used in Theorem 5. All
models which satisfy NAFL are given by an equivalent change to such a local mar-
tingale measure.

For given initial curves T �→ f (0, T ) and T �→ g(0, T ) we assume that f and g
satisfy

f (t, T ) = f (0, T ) +
∫ t

0
a(s, T )ds +

∫ t

0
b(s, T )dWs, (26)

g(t, T ) = g(0, T ) +
∫ t

0
c(s, T )ds +

∫ t

0
d(s, T )dWs, (27)

for 0 ≤ t ≤ T ≤ T ∗. Denote by O the optional sigma-algebra on Ω × R+. We
assume the following regularity conditions:

a, b, c and d are O ⊗ B(R+) − measurable, (HJM1)

∫ T ∗

0

∫ T ∗

0
(|a(s, t)| + |c(s, t)|)ds dt < ∞, (HJM2)

sup
0≤s≤t≤T ∗

(‖ b(s, t) ‖ + ‖ d(s, t) ‖) < ∞. (HJM3)

Recall that Q is an equivalent local martingale measure (ELMM) if

(
P(t, T )

P(t, T ∗)

)
0≤t≤T

is a local martingale for all T ∈ [0, T ∗].

For any T ≤ T ∗ we set

A(t, T ) :=
∫ T ∗

T
a(t, u)dVu, C(t, T ) :=

∫ T ∗

T
c(t, u)du,
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and similar for b (as for a) and d (as for c).

Proposition 2 Under (HJM1)–(HJM3), Q is an ELMM iff

0 = A(t, T ) + C(t, T ) + 1

2
(‖ B(t, T ) ‖2 + ‖ D(t, T ) ‖2), for t ≤ T ≤ T ∗,

d Q ⊗ dt − a.s. (28)

Proof The formulation in terms of forward rates in (25) directly gives that

Z(t, T ) := P(t, T )

P(t, T ∗)
= exp

( ∫ T ∗

T
f (t, u)dV (u) +

∫ T ∗

T
g(t, u)du

)
.

The dynamics of f , given in (26), implies

∫ T ∗

T
f (t, u)dV (u) =

∫ T ∗

T
f (0, u)dV (u)

+
∫ T ∗

T

∫ t

0
a(s, u)ds dV (u) +

∫ T ∗

T

∫ t

0
b(s, u)dWs dV (u)

=
∫ T ∗

T
f (0, u)dV (u) +

∫ t

0
A(s, T )ds +

∫ t

0
B(s, T )dWs

by the stochastic Fubini theorem (see, e.g., Theorem 6.2 in [16]). We obtain a similar
expression for the second integral. Hence, by the Itô formula,

d Z(t, T ) = Z(t, T )
(

A(t, T )dt + B(t, T )dWt + 1

2
‖ B(t, T ) ‖2 dt

+C(t, T )dt + D(t, T )dWt + 1

2
‖ D(t, T ) ‖2 dt

)
,

for 0 ≤ t ≤ T ≤ T ∗. These processes are local martingales if and only if their drifts
vanish. This is equivalent to (28) and we conclude.

Remark 10 The classical HJM-drift condition, i.e. the drift condition for the case
f ≡ 0, can be obtained as follows: if the limit of the roll-overs
B(t) = exp(

∫ t
0 g(s, s)ds) qualifies as numéraire, which is equivalent to the assump-

tion that

B(t)P(0, T ∗)
P(t, T ∗)

, 0 ≤ t ≤ T ∗
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is a true Q-martingale, one can change to the equivalent measure Q̃ where B is taken
as numéraire. Considering the dynamics of g, as in (27), under Q̃ then gives the
well-known drift condition as in [20].

Example 1 Consider the simple case where f (t, u) = ∫ t
0 a(s, u)du + W (t). We

assume that a(t, u) and g(t, u) are F0-measurable functions which are bounded
and continuous. Moreover, g is differentiable in the first coordinate. The initial term
structure is flat, i.e. a(0, T ) = g(0, T ) = 0 for all T ≥ 0. We have that b(t, T ) = 1,
c(t, T ) = g′(t, T ) and d(t, T ) = 0. The drift condition (28) in this setup reads

0 =
∫ T ∗

T
a(t, u)dV (u) +

∫ T ∗

T
g′(t, u)du + 1

2
(VT ∗ − VT )2. (29)

We consider (VT ∗ − VT )2 as pathwise stochastic integral and an application of Itô’s
formula reversely in time gives

(VT − VT ∗)2 =
∫ T

T ∗
2(V (u) − V (T ∗)) dV (u) +

∫ T

T ∗
du.

We conclude that (28) holds if and only if a(t, u) = (V (u) − V (T ∗)) and g′(t, u) =
1/2.

Remark 11 (Discontinuous term structures) In somemodels in credit risk, discontin-
uous term structures appear in a natural way: consider a company subject to default
risk. Amodel which encompasses both the reduced-form approach and the structural
approach was proposed in [2]. The authors model the default time as

τ = inf{t ≥ 0 : Γt ≥ ξ}

with a non-decreasing process Γ and an independent, positive random variable ξ .
If, for example, Γt = t and ξ is equal to 1 with a probability of 1/2 and equal to a
standard exponential random variable with probability 1/2, then

Q(τ > T ) = 1

2
(1{T <1} + e−T ),

and as a consequence, for 0 ≤ t ≤ T,

Q(τ > T |τ > t) = 1{T <1} + e−T

1{t<1} + e−t
, (30)

where Q can either be an equivalent martingale measure or, in the benchmark
approach considered in Sect. 7.1, the objective probability measure. Consider a
numéraire S∗ which is independent of τ . Then, defaultable bond prices are given
by
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Pd(t, T ) = EQ[ S∗
t

S∗
T

1{τ>T }|Ft ]
= 1{τ>t} P(t, T )Q(τ > T |τ > t).

From (30) it follows that the defaultable term structure T �→ P(t, T ) has a discon-
tinuity at 1, for 0 ≤ t < 1. A detailed study of a general approach to credit risk in
extended HJM models can be found in [19].

7.4 On the Supermartingale Property of the Generalized
Bank Account

In this section we elaborate on properties of the generalized bank account introduced
as a limit of rolled over bonds in Theorem 6. In general, we can only state that the
generalized bank account in terms of the terminal numéraire is a supermartingale (not
necessarily a local martingale), see Remark 7.We shall illustrate this in the following
by a concrete example where, by means of not uniformly integrable martingales, the
generalized bank account reaches zero almost surely in finite time, see Lemma 7. As
it starts from 1 it is a supermartingale which is not a local martingale.

Besides the technical interest in this example it also has an interesting economic
interpretation: it answers the question raised in Sect. 7.1, namely how much money
can be lost by investing in the roll-over strategy.

We consider a market with NAFL and denote by Q∗ the measure in Theorem 5.
Our starting point are bond prices of the form

P(t, T ) = EQ∗
[ Nt

NT
|Ft

]
(31)

with a finite time horizon T ∗ = 2 and the numéraire N , chosen as follows: let
τ : [0, 1) → R≥0 be an increasing, differentiable time transformation with τ(0) = 0
and τ(t) → ∞ as t → 1. The numéraire N is given by

N (t) := P(t, T ∗) =
{
exp(W 2

τ(t) − τ(t)2) 0 ≤ t < 1

1 t ∈ [1, 2].

with Q∗-Brownian motion W . Note that N is càdlàg: for any ε > 0

Q∗(N (t) ≤ ε) = Q∗(τ (t)ξ 2 ≤ log ε + τ(t)2)

= 2Φ(
√

τ(t) + τ(t)−1 log ε) − 1

for a standard normal random variable ξ . The last expression converges to 1 as
τ(t) → ∞ and existence of left limits of N follows. However, N is not uniformly
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integrable. The filtration is given by Ft := σ(Wτ(s) : 0 ≤ s ≤ t), t ∈ [0, 2], with
the usual augmentation by null sets.

We compute the bond prices with the following lemma.

Lemma 6 For a standard normal random variable ξ , and a < 1
2 we have that

E[exp(aξ 2 + bξ)] = e
b2

2(1−2a) (1 − 2a)−
1
2 .

Proof We start by observing that

E[exp(aξ 2 + bξ)] =
∫

1√
2π

e− x2(1−2a)

2 +bx dx . (32)

Let s := (1 − 2a)−1. Then

(1.32) =
∫

1√
2π

e− x2−2sbx+s2b2

2s + sb2

2 dx

= e
sb2

2 s
1
2

∫
1√
2πs

e− (x−sb)2

2s dx

= e
b2

2(1−2a) (1 − 2a)−
1
2 .

�

Bond prices now can be computed from (31): Note that

EQ∗ [e−W 2
T +W 2

t |Ft ] = EQ∗ [e−(WT −Wt )
2−2Wt (WT −Wt )|Wt ]

= EQ∗ [e−(T −t)ξ 2−2Wt
√

T −t ξ |Wt ]
=: exp(W 2

t f (t, T ) − g(t, T ))

where ξ is standard normal, independent of Wt ; we obtain f (t, T ) = 2(T − t) (1 +
2(T − t))−1 and g(t, T ) = 1

2 log(1 + 2(T − t)) using Lemma 6. Hence,

P(t, T ) = exp(W 2
τ(t) fτ (t, T ) − gτ (t, T ) + τ 2(T ) − τ 2(t)),

0 ≤ t ≤ T < 1, where we set fτ (t, T ) := f (τ (t), τ (T ))) and similarly for gτ . For
t ≥ 1 the term structure is flat, i.e. P(t, T ) = 1.

Now we turn to the limit of the roll-over account. Fix T < 1 and consider tn
i :=

ti = τ−1(iT/n). Then

Bn
tn = exp(−

n∑
i=1

fτ (ti−1, ti )W 2
τ(ti−1)

+
n∑

i=1

gτ (ti−1, ti ) − τ 2(tn)).

We have that
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exp(
n∑

i=1

gτ (ti−1, ti )) = exp(
1

2

n∑
i=1

log(1 + 2(τ (ti ) − τ(ti−1))))

→ eτ(T )

by Taylor expansion and continuity of τ . Moreover,

n∑
i=1

fτ (ti−1, ti )W 2
τ(ti−1)

= 2
n∑

i=1

W 2
τ(ti−1)

1 + 2(τ (ti ) − τ(ti−1))
(τ (ti ) − τ(ti−1))

→ 2
∫ T

0
W 2

τ(s)dτ(s) = 2
∫ τ(T )

0
W 2

s ds.

Hence,

Bn(T ) = exp(−
n∑

i=1

W 2
τ(ti−1)

fτ (ti−1, ti ) +
n∑

i=1

gτ (ti−1, ti ) − τ 2(tn))

→ exp(−2
∫ τ(T )

0
W 2

s ds + τ(T ) − τ 2(T )).

The discounted limit of the roll-over account turns out to be

V (T ) = P(T, T ∗)−1B(T ) = exp(−W 2
τ(T ) − 2

∫ τ(T )

0
W 2

s ds + τ(T ))

= Z(τ (T )),

letting

Z(T ) := exp(T − 2
∫ T

0
W 2

s ds − W 2
T ). (33)

We are interested in

V (1) = lim
T →1

Z(τ (T )) = lim
T →∞ Z(T ).

The following lemma shows that limT →∞ Z(T ) = 0, hence B(1) = 0. It turns out
that investing in the roll-over strategy leads to the total loss of invested money such
that the classical risk-free investment strategy becomes highly risky in this example.

Lemma 7 Consider Z as in Eq. (7.19). Then Z converges to 0 Q∗-almost surely as
T → ∞.

Proof Note that Z is a non-negative local martingale and hence by the supermartin-
gale convergence theorem2 the limit Z∞ exists and is in L1. Moreover, we have

2See Theorem 1.3.15 in [25].

http://dx.doi.org/10.1007/978-3-319-45875-5_7
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that

Zt ≤ Xt := exp(t − 2
∫ t

0
W 2

s ds), t ≥ 0.

We compute the distribution of Xt by P. Lévy’s diagonalization procedure. Fix
T > 0. Using N. Wiener’s construction of Brownian motion we obtain

Wt =
∑
k≥1

sin(kπ t/T )

k
ξk

√
T , t ∈ [0, T ]

with i.i.d. standard normal ξ1, ξ2, . . . Then

∫ T

0
W 2

t dt =
∫ T

0

[ ∑
k≥1

sin(kπ t/T )

k
ξk

√
T

]2
dt

=
∑

k, j≥1

T ξkξ j

k j

∫ T

0
sin(kπ t/T ) sin( jπ t/T )dt

=
∑
k≥1

T 2ξ 2
k

2k2
,

by orthogonality of the trigonometric functions, i.e.

∫ T

0
sin(kπ t/T ) sin( jπ t/T )dt = 1{k= j}

T

2
.

Hence, for u ≥ 0, we obtain with Lemma 6 that

E

[
e−u

∫ T
0 W 2

t dt

]
=

∏
k≥1

E[e−u T 2

2k2
ξ 2

k ]

=
[ ∏

k≥1

(1 + uT 2

k2
)

]−1/2

=
[ sinh(π√

uT 2)

π
√

uT 2

]−1/2
.

Next, by Fatou’s lemma,

E[(X∞)u] ≤ limT →∞euT
[ sinh(π√

2uT 2)

π
√
2uT 2

]−1/2
.

Note that, for 0 < u < π2/2,
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[
T −1e2uT (eπ

√
2uT − e−π

√
2uT )

]−1 = T

eT (π
√
2u−2u) − e−T (π

√
2u+2u)

→ 0

as T → ∞. This shows that for the non-negative random variable X∞ and 0 <

u < π2/2, E[(X∞)u] = 0. By the generalized Markov inequality, for ε > 0 and
0 < u < π2/2,

P(X∞ ≥ ε) = P((X∞)u ≥ εu) ≤ ε−u E[(X∞)u] = 0

such that X∞ = 0 almost surely and we conclude.

8 Appendix: Change of Numéraire and Bubbles

In this appendix section we outline some basic definitions and conclusions on
numéraires and bubbles, since changes of numéraire are used frequently. The goal
of this section is to add some possibly new definition to the large literature on these
issues, however, no deep results are proved.

In seminal works on the absence of arbitrage in financial markets the numéraire
(portfolio) plays a distinguished rôle, see [9]. Additionally in markets with stochas-
tic interest rates, or foreign exchange markets, change of numéraire is an important
technique. It turns out that the question which portfolios do qualify as numéraire is
surprisingly subtle and often only indirectly solved: usually one characterizes possi-
ble changes of numéraire mathematically but no economically reasonable properties
of numéraire portfolios are laid down (see for instance the seminal work [10], where
numéraire portfolios are characterized as maximal, admissible, strictly positive port-
folios).Wewould like to close this small gap in the following paragraphs by providing
a simple definition of numéraire portfolios, which can be also mirrored in the world
of bubbles and liquidity, and which still makes sense in discrete time and under
trading constraints.

Intuitively, a portfolio can be used as numéraire if it is strictly positive and allows
for short-selling, i.e. the investor is able to find a reasonable counterparty fromwhom
the portfolio can be borrowed and she sells it then on the market. Short-selling
might require arbitrarily high credit lines when the portfolio is to be returned, so the
counterparty faces the risk of the investor’s bankruptcy. Mathematically speaking
this might lead to arbitrages in the virtual world after a change of numéraire (see
[10]). Hence some conditions on the behaviour of the short-sold portfolio from below
must be imposed. On the other hand we do not want to bound the short-sold portfolio
from below by some number, hence the usual admissibility condition is too strong.
Instead of admissibility of the short-sold portfolio we require a uniform integrability
condition with respect to some equivalent local martingale measure. In other words:
we extend the notion of traded portfolios a bit beyond admissibility and call a strictly
positive portfolio N a numéraire if N and−N are traded in this extended sense. Such
approaches have been successfully investigated in [11] in the context of workable
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claims, or in [39] via a re-formulation of the Ansel-Stricker framework [1]. We
consider here the second approach which seems to us slightly more descriptive, but
we could also simply formulate everything in the context of workable claims. Notice
that the second definition also makes sense under trading constraints.

We give a precise definition which reflects this insight and which leads to the well
known change of numéraire formulas, see [10]. Furthermore we relate this intuitive
and economically meaningful definition with the notion of bubbles: a positive port-
folio is modelled in a bubble state if it does not qualify as numéraire. Both concepts
will play an important role when it comes to the notion of liquidity in bond markets.

Consider a filtered probability space (Ω,F , (Ft )t∈[0,T ], P), where the filtra-
tion satisfies the usual conditions. The price process of traded assets (Xt )t∈[0,T ] =
(X0

t , . . . , Xd
t )t∈[0,T ] is a d + 1-dimensional adapted process with càdlàg trajectories,

where at least one process, say X0, is positive, i.e. X0 > 0. We introduce the process
of discounted assets,

S :=
(
1,

X1

X0
, . . . ,

Xd

X0

)

and assume without loss of generality that we are dealing from now on with a semi-
martingale S. Let H be a predictable S-integrable process and denote by (H · S) the
stochastic integral process of H with respect to S, the (portfolio) wealth process.
The process H is called an a-admissible trading strategy if there is a ≥ 0 such that
(H · S)t ≥ −a for all t ∈ [0, T ]. A strategy is called admissible if it is a-admissible
for some a ≥ 0. Define

K = {(H · S)T : H admissible} and C = {g ∈ L∞(P) : g ≤ f for some f ∈ K }.

Then K and C form convex cones in L0(Ω,F , P).
The condition no free lunch with vanishing risk (NFLVR) is the right concept

of no arbitrage, since it combines mathematically minimal assumptions with an
economically reasonable interpretation, see [9, 12].

Definition 8 The market S satisfies (NFLVR) if

C̄ ∩ L∞
+ (P) = {0},

where C̄ denotes the closure of C with respect to the norm topology of L∞(P).

This means that a free lunch with vanishing risk exists, if there exists a free lunch
f ∈ L∞+ (P), which can be approximated by a sequence of portfolio wealth processes
( fn) = ((Hn · S)) ∈ K with 1

n -admissible integrands Hn , such that

lim
n→∞ ‖ f − fn ‖∞= 0

with respect to the norm topology of L∞(P). Define the set Me of equivalent sepa-
rating measures as
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Me = {Q ∼ P|FT : EQ[ f ] ≤ 0 for all f ∈ K}.

If S is (locally) bounded thenMe consists of all equivalent probability measures such
that S is a (local) martingale.

Having a general change of numéraire theorem inmind it turns out that the concept
of admissibility is too strong, since wewant to talk about unbounded portfolio wealth
processes and their negative to be admissible. Also we want to consider market
extensions of the market S by assets Y. We assume from now on (NFLVR) for the
market S. We call assetsY a market extension of S if S′ := (S,Y) satisfies (NFLVR).
Wedefine in the sequel a larger class of trading strategieswhichwe call Q-admissible.
This is a generalization of admissibility as introduced above, i.e. every admissible
strategy is Q-admissible. The definition is in spirit of the results of Strasser in [39].

Definition 9 Fix Q ∈ Me. Consider an extension of the original market S′ := (S,Y)

by finitely many assets Y such that the process S′ is a Q-local martingale. Consider
furthermore a predictable, S′-integrable process ϕ and the sequence of hitting times

σn := inf{t ≥ 0 : (ϕ · S′)t ≤ −n}, n ≥ 1.

The trading strategy ϕ is called Q-admissible (such as the corresponding stochastic
integral, the wealth process), if

lim inf
n→∞ EQ[(ϕ · S′)−σn

1{σn<∞}] = 0.

Define

LQ = {x + (ϕ · S′) : x ∈ R, ϕ is Q-admissible}.

and

L = ∪Q∈MeL
Q .

Remark 12 We extend the set of admissible portfolios but due to Theorem 3 in [39]
we do not introduce arbitrages, since everywealth process (ϕ · S′) for a Q-admissible
strategy is a supermartingale. We also do not introduce free lunches, since this notion
only depends on a-admissible strategies.

Remark 13 We could use a less general but more appealing definition of L Q when
we do not allow for a market extension S′. Then numéraires are traded portfolios
in the original market S. In our definition all possible price processes for payoffs at
time T are added. Notice that we should consider L Q as set of trading strategies of
our market, but not their union, since the union might contain contradictory pricing
structures for one payoff.

Nowwe are in the position to make our intuitive definition of numéraire portfolios
precise: a numéraire portfolio is a strictly positive portfolio which allows for short-
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selling, i.e. the negative of its wealth process is still given by a Q-admissible trading
strategy for some Q ∈ Me, and hence is an element of L.

Definition 10 A strictly positive process N ∈ L with N0 = 1 is called a strong
numéraire (in discounted terms with respect to S0), if

N ∈ LQ and − N ∈ LQ (34)

for all Q ∈ Me. It is called weak numéraire (in discounted terms with respect to S0),
if (34) holds for at least one Q ∈ Me, i.e. N and −N are elements of L.

This definition has a clear economic meaning and easy consequences: as it should
be, a weak numéraire qualifies as an accounting unit, where the classical change of
numéraire technique is possible: there exist an equivalent measure Q ∈ Me under
which N = (1 + (ϕ · S′)) is a true Q-martingale.

Theorem 12 The following statements are equivalent:

(i) A strictly positive process N with N0 = 1 is a weak numéraire.
(ii) There exists Q ∈ Me such that N is a Q-martingale.

Proof Both directions are easy: if there exists Q ∈ Me such that N is a true Q-
martingale, then by adding N to the market S we obtain an element of LQ , but due
to its uniform integrability −N ∈ LQ : hence N is a weak numéraire. If, on the other
hand, N ∈ LQ for some Q ∈ Me, then N is a Q-supermartingale together with −N ,
which in turn means that N is a Q-martingale.

Our definition of a numéraire has a clear relation to bubbles: a portfolio or an asset
which does not qualify as numéraire is in a bubble state. Again this very intuitive
definition leads to the meanwhile classical definition of a bubble, see [6]. In other
words: if an asset Si is a strict local martingale under any Q ∈ Me, −Si is not
Q-admissible and hence it does not qualify as weak numéraire.

Definition 11 A strictly positive process B ∈ L is (modelled) in a strong bubble
state if −B /∈ L, i.e. for all Q ∈ Me the wealth process B is a strict local martingale.
It is (modelled) in a weak bubble state if −B /∈ LQ for some Q ∈ Me, i.e. for this
Q ∈ Me the wealth process B is a strict local martingale.

Theorem 13 A strictly positive portfolio B ∈ L with B0 = 1 is in a strong bubble
state if and only if B does not qualify as weak numéraire portfolio. A strictly positive
portfolio B ∈ Lwith B0 = 1 is in a weak bubble state if and only if B does not qualify
as strong numéraire.

Remark 14 Notice that this notion of bubble, such as the notion of numéraire,
depends crucially on the set of trading strategies, which in turn under constraints
also leads to notions of bubbles in discrete time. Conditions classifying certain strict
local martingales and the relation to bubbles may be found in [34].
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Example 2 Consider now again as in the introduction the case where the growth
optimal portfolio is exogenously given such that 1

S∗ is a strict local martingale. Fur-
thermore we assume that the roll-over portfolio leads to the bank account process B
equal to 1 even though the term structure will be non-trivial due to the strict local
martingale property, see Sect. 7.1 for an example of these properties. In contrast
the bank account process 1 does not qualify as numéraire, since 1

S∗ , or equivalently
1

P(.,T ∗) is a strict local martingale. The bond market with respect to the numéraire
P(., T ∗) is free of (asymptotic) arbitrage in the classical sense, even if one adds the
bank account process as additional traded asset, but we cannot perform a change of
numéraire towards the numéraire B = 1.

An interesting aspect of the previous example stems from the introduction of
virtual term structures related to bank account processes Bn . We think here of the
(finite) roll-over processes, i.e., for a sequence of refining partitions 0 = tn

0 < tn
1 <

· · · < tn
kn

= T ∗ of [0, T ∗] define, for each n,

Bn
t =

{∏ j
i=1

1
P(tn

i−1,t
n
i )

for t = tn
j , j = 1, . . . , kn,

Bn
tn

j
for tn

j−1 < t ≤ tn
j , j = 1, . . . , kn.

Notice the difference to Definition 5. We have limn→∞ Bn = B∞ = B = 1 as
announced before, see Sect. 7.1 for a concrete example. These virtual term struc-
tures can be interpreted as high-liquidity term structures, which one would actually
expect in the market if there was enough liquidity in the respective numéraire: this
amounts to pricing with the corresponding supermartingale deflator

1

EQ∗ [ Bn
T

P(T,T ∗) ]
Bn

T

P(T, T ∗)
1

Bn
T

,

which is derived from changing measure by the local martingale density Bn
T

P(T,T ∗) .
When pricing 1 at time T with respect to this deflator we obtain an alternative term
structure P̃n(t, T )

EQ∗
[ Bn

T

P(T, T ∗)
1

EQ∗ [ Bn
T

P(T,T ∗) ]
1

Bn
T

] =EQ∗
[ 1

P(T, T ∗)
1

EQ∗ [ Bn
T

P(T,T ∗) ]
]

= 1

Bn
0

P̃n(0, T ),

which yields

P̃n(0, T ) = Bn
0 P(0, T )

P(0, T ∗)EQ∗ [ Bn
T

P(T,T ∗) ]
> P(0, T ), (35)
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for each n, i.e., the virtual term structures show lower interest rates (due to higher
liquidity) than P(t, T ). In case of B∞ we apparently obtain the virtual term structure
P̃∞(0, T ) = 1, which corresponds to the highest liquidity virtual term structure, with
overnight borrowing at no cost available.
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A Unified View of LIBOR Models

Kathrin Glau, Zorana Grbac and Antonis Papapantoleon

Abstract We provide a unified framework for modeling LIBOR rates using gen-
eral semimartingales as driving processes and generic functional forms to describe
the evolution of the dynamics. We derive sufficient conditions for the model to be
arbitrage-free which are easily verifiable, and for the LIBOR rates to be true mar-
tingales under the respective forward measures. We discuss when the conditions are
also necessary and comment on further desirable properties such as those leading
to analytical tractability and positivity of rates. This framework allows to consider
several popular models in the literature, such as LIBOR market models driven by
Brownian motion or jump processes, the Lévy forward price model as well as the
affine LIBOR model, under one umbrella. Moreover, we derive structural results
about LIBOR models and show, in particular, that only models where the forward
price is an exponentially affine function of the driving process preserve their structure
under different forward measures.
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1 Introduction

The LIBOR and EURIBOR interest rates rank among the most important interest
rates worldwide. They are determined on a daily basis by a panel of banks for
a number of maturities, while LIBOR is also determined for several currencies.
LIBOR andEURIBOR serve as underlying rates for an enormous amount of financial
transactions. In 2012, the outstanding values of contracts with LIBOR as reference
were estimated at roughly summing up to 300 trillion USD; see Wheatley [32].
Therefore, the development of suitable policies and regulations for the fair calculation
of LIBOR and EURIBOR, as well as of mathematical models for the fair evaluation
of interest rate products, is essential for the financial industry and also serves the
general public interest.

The modeling of the dynamics of LIBOR and EURIBOR rates is a challenging
task due to the high dimensionality of the modeled objects. The major difference,
from a modeling point of view, between interest rates and stock prices lies in the
fact that stock prices are observed at each time point as a single value, once the
difference between bid and ask prices is ignored, while interest rates are observed
at each time point for several maturities. Moreover, these different rates (for the dif-
ferent maturities) are interdependent. Their joint modeling is indispensable because
they jointly enter already the basic interest rate derivatives as underlying rates. In
addition, the rates for different period lengths can no longer be derived from simple
no-arbitrage relations. Indeed, the financial crisis of 2007–2009 has fundamentally
changed the attitude of market participants towards risks in the interbank sector,
regarding in particular counterparty and liquidity risk, which have a direct effect on
the LIBOR rates for different lending periods; see, for example, Filipović and Trolle
[11]. Summarizing, LIBOR modeling presents a challenge to jointly model the rates
for differentmaturities and periods in an arbitrage-freeway and such that the resulting
pricing formulas are fast and accurately computable for all liquid derivatives, such
as caps and swaptions. In this work, we provide a unified mathematical foundation
for some of the most important of the existing LIBOR models in the literature. On
this basis we gain valuable structural insight in modeling LIBOR rates. In particular
we derive sufficient conditions for the validity of mandatory model features such as
arbitrage-freeness and investigate those that typically support computational ease.

The seminal articles by Brace et al. [4] and Miltersen et al. [26] introduced the
LIBOR Market Model (LMM), that became known also as the BGM model. The
celebrity of the model certainly is, at least partly, owed to the fact that the BGM
model reproduces the market standard Black’s formula for caps. Moreover, the back-
ward construction of LIBOR rates in Musiela and Rutkowski [27] has proven to be
extendible beyond models driven by Brownian motion. The article by Eberlein and
Özkan [10] introduced one of the first LIBOR models driven by jump processes and
also proposed the Lévy-driven forward price model. In Jamshidian [16, 17] LIBOR
models driven by general semimartingales were presented. In interest rate model-
ing, jump processes have several advantages. Firstly, just as in stock price modeling,
their distributional flexibility allows to better capture the empirical distributions of
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logarithmic returns, see for instance Eberlein and Kluge [8, 9]. Secondly, the tra-
ditional way to jointly model the rates for different maturities would suggest to
introduce one component of a multi-dimensional Brownian motion for each matu-
rity, so as to introduce one stochastic factor for each source of risk. A Lévy process
with an infinite jump activity, in contrast, introduces infinitely many sources of risk,
already as a one-dimensional process. In this regard, jump processes show their
potential to reduce the dimension of the related computational problems for pricing
and hedging. However, they also bring along a new level of technical challenges, in
particular the measure changes between forward measures become more involved
and the backward construction typically requires a more sophisticated justification.
Additionally, various extensions of the LIBOR market model to stochastic volatility
have also appeared in the literature, cf. Wu and Zhang [33], Belomestny et al. [2]
and Ladkau et al. [25]. Recently, a modeling approach under one single forward
measure, the terminal measure, has been proposed in Keller-Ressel et al. [21], which
is based on affine processes. We refer to Schoenmakers [31] and Papapantoleon [29]
for an overview of the modeling approaches and the existing literature. Regarding
the post-crisis LIBOR models we refer to Bianchetti and Morini [3] and Grbac and
Runggaldier [14].

In view of the high level of technical sophistication that LIBOR models have
reached in today’s literature and also of the new demands they are faced with, we
propose an abstract perspective on LIBOR modeling in order to obtain:

• a unified view on different modeling approaches, such as the LIBORmarket mod-
els, the Lévy forward price models and the affine LIBOR models;

• transparent conditions that guarantee:

– positivity of bondprices and arbitrage-freeness—the fundamentalmodel require-
ments;

– martingality of the forward prices under their corresponding forward measures,
which paves the way for change of numeraire techniques and tractable pricing
formulas;

– structure preservation under different forward measures, a feature that is bene-
ficial in connection with change of numeraire techniques;

• the validity of further desirable model properties that lead to analytically tractable
models.

This article is structured as follows: in Sect. 2 we introduce the main modeling
objects and formalize model axioms as well as desirable model properties that entail
computational tractability. In Sect. 3, we provide two general modeling approaches
based on general semimartingales and generic functional forms for the evolution
of rates, and derive sufficient conditions for the arbitrage-freeness of the models
and for the forward price processes to be uniformly integrable martingales under
their corresponding forward measures; positivity of bond prices holds by construc-
tion. On this basis we derive conditions that imply positivity of LIBOR rates and
ensure computational tractability. As an interesting additional insight we show that



426 K. Glau et al.

essentially only models in which the forward price processes are exponentials of an
affine function of a semimartingale are structure preserving under different forward
measures. In Sect. 4, we present several LIBOR models in the guise of the general
modeling framework and investigate sufficient conditions that lead to further essen-
tial model features. Finally, required results from semimartingale theory are derived
in the appendix.

2 Axioms and Desirable Properties

Let (�,F = FT∗ ,F = (Ft )t∈[0,T∗],PN ) denote a complete stochastic basis in the
sense of Jacod and Shiryaev [15, Def. I.1.3], where T∗ denotes a finite time
horizon. Consider a discrete tenor structure T := {0 = T0 < . . . < TN ≤ T∗} with
δk = Tk − Tk−1 for k ∈ K := {1, . . . , N }, and define K̄ := K \ {N }. We assume that
zero-coupon bonds withmaturities T1, . . . , TN are traded in themarket and denote by
B(t, Tk) the time-t price of the zero-coupon bond with maturity Tk , for all k ∈ K. We
associate to each date Tk the numeraire pair (B(·, Tk),Pk), meaning that bond prices
discounted by the numeraire B(·, Tk) are Pk-local martingales, for all k ∈ K. The
measures Pk are then called forward (martingale) measures. Moreover, letMloc(P)

denote the set of local martingales with respect to the measure P.
The forward LIBOR rate, denoted by L(t, Tk), is a discretely compounded interest

rate determined at time t for the future accrual interval [Tk, Tk+1]. It is related to bond
prices via

L(t, Tk) = 1

δk

(
B(t, Tk)

B(t, Tk+1)
− 1

)
, t ∈ [0, Tk], (1)

for k ∈ K̄. The forward price process F(·, Tk, Tn) is defined as follows

F(t, Tk, Tn) = B(t, Tk)

B(t, Tn)
, t ∈ [0, Tk ∧ Tn], (2)

for all k, n ∈ K. The forward LIBOR rate L(t, Tk) and the forward price F(t, Tk,
Tk+1) are connected via

F(t, Tk, Tk+1) = 1 + δk L(t, Tk). (3)

We will describe in the sequel several axioms and properties that LIBOR models
should possess in order to be economically meaningful on the one hand, and applica-
ble in practice on the other. In particular, we will distinguish between three different
groups of attributes. The first group consists of necessary axioms, which are needed
to build a sound financial model. These are:

(A1) Bond prices are positive, i.e. B(·, Tk) > 0 for all k ∈ K;
(A2) The model is arbitrage-free, i.e. B(·,Tk )

B(·,TN )
∈ Mloc(PN ) for all k ∈ K.
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The first axiom is justified since bond prices are traded assets with a positive pay-
off, thus should have a positive price. The second axiom precludes the existence
of arbitrage opportunities and could be equivalently formulated under any forward
measure, i.e. the model is arbitrage-free if B(·,Tk )

B(·,Tn) ∈ Mloc(Pn) for all k ∈ K and some
n ∈ K; see also Musiela and Rutkowski [28, §14.1.3] and Klein et al. [22].

The second group consists of tractability properties, which simplify computations
in the model. Out of several possible choices, we will concentrate on the following:

(B1) Forward prices are true martingales, i.e. B(·,Tk )
B(·,TN )

∈ M(PN ) for all k ∈ K.
(B2) The model is structure preserving, i.e. the semimartingale characteristics of

the driving process are transformed in a deterministic way under forward mea-
sures.

(B3) Each LIBOR rate is a Markov process under its corresponding forward mea-
sure.

(B4) The initial LIBOR rates are direct model inputs.

These properties are not necessary to build an arbitrage-free model, but are very
convenient in several aspects. The first property allows to compute option prices as
conditional expectations and to relate the forward measures via a density process.
Hence, several option pricing formulas can be simplified considerably by changing
to a more convenient forward measure. The second property yields that the processes
driving each LIBOR rate remain in the same class of processes under each forward
measure. Moreover, (B1) combined with (B2) typically allows to derive closed-form
or semi-analytical pricing formulas for liquid products such as caps and swaptions.
(B3) also allows to simplify certain option pricing problems and to use PDEmethods.
Additionally, if the initial term structure is a direct input in the model, i.e. (B4) holds,
then we avoid using a numerical procedure to fit the currently observed bond prices.

Finally, we shall also discuss the following model property:

(C) LIBOR rates are always non-negative.

Until the recent financial crisis, LIBOR rates were always non-negative, hence the
possibility of rates becoming negative has been considered as a drawback of a model.
As a consequence, several LIBOR models have been designed to produce non-
negative LIBOR rates. Nowadays, the quoted LIBOR rates are at extremely low
levels and even negative LIBOR rates for several tenors have been reported over
longer time periods, which prompts us to take this into account in the modeling.
Therefore, it is important to know which models allow for negative rates as well as
which of the existingmodels for positive rates can easily be adapted to allow the rates
to go below zero. Moreover, the techniques used to construct non-negative LIBOR
rates can often be adapted to model other related non-negative quantities such as
spreads in multiple curve models.
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3 A Unified Construction of LIBOR Models

Models for the evolution of LIBOR rates are constructed in the literature either
using a backward induction approach, where rates are specified successively under
different forward measures, or by modeling all rates simultaneously under one mea-
sure, typically the terminal forward measure. The former approach has been used
for the construction of LIBOR market models and forward price models, while the
latter is used for affine LIBOR models and Markov functional models. The aim of
this section is to offer a unified construction of LIBOR models by emphasizing the
common features in both approaches.

3.1 Modeling Rates via Backward Induction

The aim of this section is to formulate sufficient conditions and to present a generic
construction of LIBOR (market)models using the backward induction approach. The
driving process is a general semimartingale and the functional form of the dynamics
is also generic.

The following key observations of Musiela and Rutkowski [27] lie at the heart of
the constructions via backward induction:

• A model for the LIBOR rates (L(·, Tk))k∈K̄ is arbitrage-free if L(·, Tk) is a Pk+1-
local martingale for all k ∈ K̄.

• The forward measures (Pk)k∈K̄ are related via the Radon-Nikodym derivatives

dPk

dPk+1
= 1 + δk L(Tk, Tk)

1 + δk L(0, Tk)
, for all k ∈ K̄. (4)

Therefore, in order to construct a LIBOR model it suffices to specify the dynamics
either of theLIBORrate L(·, Tk) itself or of the forwardprice process F(·, Tk, Tk+1) =
1 + δL(·, Tk) for all k ∈ K̄, and both choices determine the densities in (4) as well.

Our construction is based on specifying an exponential semimartingale for the
dynamics of the forward price process with the following functional form:

F(·, Tk, Tk+1) = e f k (·,X), (5)

where f k are functions for each k ∈ K̄ and X is a semimartingale. This approach
unifies the construction of the LIBOR market models and the forward price models
by appropriate choices of f k and X that will be discussed in Sect. 4.

Consider an R
d -valued semimartingale X = (Xt )0≤t≤TN on (�,F ,F,PN ) and

a collection of functions f k : [0, TN ] × R
d → R for all k ∈ K̄, which satisfy the

following assumptions:

(LIP) The function f k belongs to C1,2([0, TN ] × R
d) and is globally Lipschitz, i.e.

| f k(t, x) − f k(t, y)| ≤ Kk |x − y|,
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for every t ∈ [0, TN ] and any x, y ∈ R
d , where Kk > 0 is a constant.

(INT) The process X is an R
d -valued semimartingale with absolutely continuous

characteristics (bN , cN , FN ) under PN , such that the following conditions
hold

TN∫

0

∫

Rd

{
|x |21{|x |≤1} + |x |eK |x |1{|x |>1}

}
FN
t (dx)dt < C1 (6)

and
TN∫

0

‖cNt ‖dt < C2, (7)

for some constants C1,C2 > 0 and K = ∑N−1
k=1 Kk .

We denote by ‖ · ‖ the Euclidean norm on R
d and by 〈·, ·〉 the associated scalar

product.

Remark 3.1 The characteristic triplet of the semimartingale X under the forward
measure Pk is denoted by (bk, ck, Fk), while the truncation function can always
be chosen the identity (i.e. h(x) = x) due to (6). Moreover, we use the standard
conventions

∑
∅ = 0 and

∏
∅ = 1.

Theorem 3.2 Consider anRd -valued semimartingale X and functions f k such that
Assumptions (LIP) and (INT) are satisfied for each k ∈ K̄. Assume that the forward
price processes are modeled via

F(t, Tk, Tk+1) = e f k (t,Xt ), t ∈ [0, Tk], (8)

and the following drift condition is satisfied

〈D f k(t, Xt−), bNt 〉 = − d

dt
f k(t, Xt−) − 1

2

d∑
i, j=1

D2
i j f

k(t, Xt−)(cNt )i j

− 1

2
〈D f k(t, Xt−), cNt D f k(t, Xt−)〉

−
N−1∑
j=k+1

〈D f k(t, Xt−), cNt D f j (t, Xt−)〉 (DRIFT)

−
∫

Rd

{(
e f

k (t,Xt−+x)− f k (t,Xt−) − 1
)

×
N−1∏
j=k+1

e f
j (t,Xt−+x)− f j (t,Xt−) − 〈D f k(t, Xt−), x〉

}
FN
t (dx)
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for each k ∈ K̄. Then, the measures (Pk)k∈K̄ defined via

dPk

dPk+1
= e f k (Tk ,XTk )

e f k (0,X0)
(9)

are equivalent forward measures and the forward prices processes F(·, Tk, Tk+1) are
uniformly integrable martingales with respect to Pk+1, for each k ∈ K̄. In particular,
the model (F(·, Tk, Tk+1))k∈K̄ is arbitrage-free and satisfies Axioms (A1) and (A2),
as well as Property (B1).

Proof The statement is proved via backward induction, motivated by the backward
construction of LIBOR and forward price models.

First step:We start from the forward price process F(·, TN−1, TN )whose dynam-
ics are

F(t, TN−1, TN ) = e f N−1(t,Xt ), t ∈ [0, TN−1],

and examine its properties under the measure PN . The function f N−1 satisfies (LIP)
and the process X satisfies (INT), hence the process f N−1(·, X) is an exponentially
special semimartingale by Proposition A.2. Using Proposition A.1, we have that
F(·, TN−1, TN ) is a PN -local martingale if the following condition holds:

〈D f N−1(t, Xt−), bN
t 〉

= − d

dt
f N−1(t, Xt−) − 1

2

d∑
i, j=1

D2
i j f

N−1(t, Xt−)(cNt )i j

− 1

2
〈D f N−1(t, Xt−), cND f N−1(t, Xt−)〉 (10)

−
∫

Rd

(
e f N−1(t,Xt−+x)− f N−1(t,Xt−) − 1 − 〈D f N−1(t, Xt−), x〉

)
FN
t (dx),

which is actually (DRIFT) for k = N − 1. Moreover, Proposition A.2 yields that
F(·, TN−1, TN ) is even a PN -uniformly integrable martingale. Therefore, we can use
F(·, TN−1, TN ) as a density process to define the measure PN−1 via

dPN−1

dPN

∣∣∣
F·

= F(·, TN−1, TN )

F(0, TN−1, TN )
= e f N−1(·,X)

e f N−1(0,X0)
,

and the characteristics of the process X under the measure PN−1 are provided by
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bN−1
t = bN

t + cNt D f N−1(t, Xt−)

+
∫

Rd

(
e f N−1(t,Xt−+x)− f N−1(t,Xt−) − 1

)
xFN

t (dx)

cN−1
t = cNt

FN−1
t (dx) = e f N−1(t,Xt−+x)− f N−1(t,Xt−)FN

t (dx);

cf. Lemma A.4.
Then, we proceed backwards by considering the ‘next’ forward price process

F(·, TN−2, TN−1) with dynamics

F(t, TN−2, TN−1) = e f N−2(t,Xt ), t ∈ [0, TN−2], (11)

and verifying that subject to (LIP), (INT) and (DRIFT) it is a PN−1-uniformly
integrable martingale. Thus, it can be used as a density process to define the measure
PN−2.

Next, we provide the general step of the backward induction.
General step: Let k ∈ {1, . . . , N − 1} be fixed and consider the process X , the

functions f k+1, . . . , f N−1 and the measures Pk+1, . . . ,PN which are defined recur-
sively via

dPk+1

dPk+2

∣∣∣
F·

= F(·, Tk+1, Tk+2)

F(0, Tk+1, Tk+2)
= e f k+1(·,X)

e f k+1(0,X0)
.

Assume that the forward price processes F(·, Tl, Tl+1) have been modeled as expo-
nential semimartingales according to (8) and are Pl+1-uniformly integrable martin-
gales, for all l ∈ {k + 1, . . . , N − 1}. By repeatedly applying Lemma A.4, we derive
the Pk+1-characteristics of X , which have the form

bk+1
t = bN

t + cNt

N−1∑
j=k+1

D f j (t, Xt−)

+
∫

Rd

⎛
⎝ N−1∏

j=k+1

e f j (t,Xt−+x)− f j (t,Xt−) − 1

⎞
⎠ xFN

t (dx)

ck+1
t = cNt (12)

Fk+1
t (dx) =

N−1∏
j=k+1

e f j (t,Xt−+x)− f j (t,Xt−)FN
t (dx).

Now, the forward price process F(·, Tk, Tk+1) with dynamics

F(t, Tk, Tk+1) = e f k (t,Xt ), t ∈ [0, Tk−1],
is a Pk+1-local martingale if the following condition holds
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〈D f k(t, Xt−), bk+1
t 〉

= − d

dt
f k(t, Xt−) − 1

2

d∑
i, j=1

D2
i j f

k(t, Xt−)(ck+1
t )i j

−1

2
〈D f k(t, Xt−), ck+1D f k(t, Xt−)〉 (13)

−
∫

Rd

(
e f k (t,Xt−+x)− f k (t,Xt−) − 1 − 〈D f k(t, Xt−), x〉

)
Fk+1
t (dx);

cf. Proposition A.1. By replacing (12) into (13) we see, after some straightforward
calculations, that the latter is equivalent to the (DRIFT) condition.We can also verify
that conditions (A.4) and (A.5) from Proposition A.2 hold for the function f k that
satisfies (LIP) and the process X that satisfies (INT). Indeed, we have

TN∫

0

‖ck+1
t ‖dt =

TN∫

0

‖cNt ‖dt < C2,

hence condition (A.5) holds. Moreover, using (LIP) and (INT) we get that

TN∫

0

∫

Rd

(|x |2 ∧ 1)Fk+1
t (dx)dt +

TN∫

0

∫

|x |>1

|x |eKk |x |Fk+1
t (dx)dt

=
TN∫

0

∫

Rd

(|x |2 ∧ 1)
N−1∏
j=k+1

e f j (t,Xt−+x)− f j (t,Xt−)FN
t (dx)dt

+
TN∫

0

∫

|x |>1

|x |eKk |x |
N−1∏
j=k+1

e f j (t,Xt−+x)− f j (t,Xt−)FN
t (dx)dt

≤
TN∫

0

∫

Rd

{
(|x |2 ∧ 1)e

∑N−1
j=k+1 K

j |x | + 1{|x |>1}|x |e
∑N−1

j=k K j |x |
}
FN
t (dx)dt

≤ const ·
TN∫

0

∫

Rd

{
|x |21{|x |≤1} + |x |eK |x |1{|x |>1}

}
FN
t (dx)dt

< C1,

where the second to last inequality holds because the exponential function is bounded
in the unit hypercube and the Lipschitz constants are positive. Hence, condition (A.4)
holds as well. Thus, Proposition A.2 yields that the process f k(·, X) is exponentially
special and the forward price process F(·, Tk, Tk+1) is a Pk+1-uniformly integrable
martingale.
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Therefore, exactly as in the previous steps we can use the Pk+1-uniformly inte-
grable martingale f k(·, X) to define the measure Pk via

dPk

dPk+1

∣∣∣
F·

= F(·, Tk, Tk+1)

F(0, Tk, Tk+1)
= e f k (·,X)

e f k (0,X0)
.

Then, we can compute the Pk-characteristics of X using Lemma A.4 and consider
the ‘next’ forward price process with dynamics

F(·, Tk−1, Tk) = e f k−1(·,Xk−1).

This procedure produces an arbitrage-free semimartingale model for the forward
price process, and thus also for the LIBOR rate, if the (DRIFT) condition holds for
each k ∈ K̄.

Finally, we can easily show that the measures Pk are indeed forwardmeasures, i.e.
that B(·, Tl)/B(·, Tk) is a Pk-martingale for all 1 ≤ k, l ≤ N . This follows directly
from Proposition III.3.8 in Jacod and Shiryaev [15], using that

B(·, Tl)
B(·, Tk)

dPk

dPl+1
= e f l (·,X)

which is a Pl+1-martingale. �
Remark 3.3 Let us point out that, although the true martingale property of the for-
ward price process is not necessary to guarantee the absence of arbitrage, it is required
in order to define the forward measures and to construct the model via backward
induction. Aside from this, forward measures play a crucial role in term structure
models since they allow to derive tractable formulas for interest rate derivatives.
Indeed, the major advantage of forward measures for derivative pricing is that we
can avoid the numerical computation of multidimensional integrals over joint distri-
butions.

Remark 3.4 We may assume, if desired, that d ≥ N − 1 in order to ensure there are
at least as many driving factors as the number of forward price processes. Moreover,
by suitable choices of the functions f k we may select the components of X driving
a certain forward price process. See, for example, Sect. 4.1, where we work with an
N − 1-dimensional process X and set f k(x) = f̂ k(xk), for x = (x1, . . . , xN−1) and
f̂ k : R → R, i.e. each forward price process is driven by a different component of
the process X .

3.2 Modeling Rates Under the Terminal Measure

Another possibility for constructing a model for the forward LIBOR rates, or equiva-
lently the forwardprice processes, is to startwith the family of forwardprice processes
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with respect to the terminal bond price B(·, TN ) in the tenor structure, i.e.

F(·, Tk, TN ) = B(·, Tk)
B(·, TN )

for all k ∈ K̄, and to model them simultaneously under the same measure, typically
the terminal forward measure PN . Similarly to the previous section, the construction
is based on specifying exponential semimartingale dynamics for the forward price
process of the following functional form

F(·, Tk, TN ) = eg
k (·,Xk ), (14)

where gk are suitable functions and Xk are d-dimensional semimartingales, for
k ∈ K̄.

Consider a collection ofRd -valued semimartingales Xk = (Xk
t )0≤t≤TN on (�,F ,

F,PN ) and a collection of functions gk : [0, TN ] × R
d → R for all k ∈ K̄, which

satisfy the following assumptions:

(LIP′) The function gk belongs to C1,2([0, TN ] × R
d) and is globally Lipschitz, i.e.

|gk(t, x) − gk(t, y)| ≤ K̃ k |x − y|,

for every t ≥ 0 and any x, y ∈ R
d , where K̃ k > 0 is a constant.

(INT′) The process Xk is an Rd -valued semimartingale with absolutely continuous
characteristics (bk,N , ck,N , Fk,N ) under PN , such that the following condi-
tions hold

TN∫

0

∫

Rd

{
|x |21{|x |≤1} + |x |eK̃ k |x |1{|x |>1}

}
Fk,N
t (dx)dt < C̃k

1 (15)

and
TN∫

0

‖ck,Nt ‖dt < C̃k
2 , (16)

for some constants C̃k
1 , C̃

k
2 > 0. Recall that the truncation can be chosen the

identity.

Theorem 3.5 Consider Rd -valued semimartingales Xk and functions gk such that
Assumptions (LIP′) and (INT′) are satisfied for each k ∈ K̄. Assume that the forward
price processes are modeled via

F(t, Tk, TN ) = eg
k (t,Xk

t ), t ∈ [0, Tk], (17)

and the following drift condition is satisfied
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〈Dgk(t, Xk
t−), bk,Nt 〉

= − d

dt
gk(t, Xk

t−) − 1

2

d∑
i, j=1

D2
i j g

k(t, Xk
t−)(ck,Nt )i j

− 1

2
〈Dgk(t, Xk

t−), ck,Nt Dgk(t, Xk
t−)〉 (DRIFT′)

−
∫

Rd

(
eg

k (t,Xk
t−+x)−gk (t,Xk

t−) − 1 − 〈Dgk(t, Xk
t−), x〉

)
Fk,N
t (dx),

for all k ∈ K̄. Then, the forward price processes are uniformly integrablemartingales
with respect to the terminal forward measure PN , for all k ∈ K̄. In particular, the
model is arbitrage-free and satisfies Axioms (A1) and (A2), as well as Property
(B1).

Proof The proof is simpler compared to the proof of Theorem 3.2 because we work
only under the terminal measure PN . Furthermore, we can work simultaneously
with all forward price processes F(·, Tk, TN ) for each k ∈ K̄. More precisely, for
all k ∈ K̄ the function gk satisfies (LIP′) and the process Xk satisfies (INT′), hence
the process gk(·, Xk) is an exponentially special semimartingale by Proposition A.2.
UsingPropositionA.1,weget by virtue of the (DRIFT′) condition that F(·, Tk, TN ) is
a PN -local martingale. Moreover, Proposition A.2 yields that F(·, Tk, TN ) is actually
a PN -uniformly integrable martingale. �

Remark 3.6 In this construction we can use a family of semimartingales Xk , k ∈ K̄,
where each forward price process is driven by a different semimartingale. This is
possible because we do not have to perform measure changes as we did in the back-
ward construction, since all forward price processes are modeled under a common
measure. Hence, at this stage, we do not need to know the dependence structure
between the processes Xk which is necessary when applying Girsanov’s theorem.
However, for pricing purposes and also for linking the backward and the terminal
measure constructions, we revert to a common R

d -valued driving process X for
which the dependence structure between its components is obviously fully known.
Naturally, the dimension of the process X can be chosen such that each rate is driven
by a different component of the process; compare with Remark 3.4.

Remark 3.7 Based on (14), we can immediately deduce the dynamics of the forward
price process F(·, Tk, Tk+1) and the forwardLIBORrate L(·, Tk), for all k ∈ K̄.Using
that

1 + δL(·, Tk) = F(·, Tk, Tk+1) = F(·, Tk, TN )

F(·, Tk+1, TN )
,

we obtain that

1 + δL(·, Tk) = F(·, Tk, Tk+1) = eg
k (·,Xk )−gk+1(·,Xk+1). (18)
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Remark 3.8 Assumptions (LIP′) and (INT′) are sufficient to produce an arbitrage-
free family of LIBOR rates, but they are by no means necessary. Indeed, we can
weaken them slightly by assuming that the functions gk satisfy (LIP′) and the
processes Xk have finite exponential moments. Then the previous theorem yields
an arbitrage-free model that satisfies Axioms (A1) and (A2), but not necessarily
(B1). However, as pointed out also in Remark 3.3, the latter is needed to define for-
ward measures, which are very useful because they typically lead to tractable pricing
formulas.

Remark 3.9 Let us consider the casewhere all semimartigales Xk coincide, i.e. Xk ≡
X for all k ∈ K̄. Then, we can easily link the approach using backward induction
presented in Sect. 3.1 and the approach under the terminal measure presented in
this section. More precisely, starting from a family of functions gk , k ∈ K̄, and a
semimartingale X satisfying (LIP′), (INT′) and (DRIFT′), we define

f k(t, x) := gk(t, x) − gk+1(t, x). (19)

The functions f k obviously satisfy (LIP) with the constants Kk := K̃ k + K̃ k+1.
Assume moreover that the semimartingale X satisfies (INT) with Kk as above. Then
the model for the terminal forward prices given by (14) can be equivalently written
as

F(·, Tk, Tk+1) = e f k (·,X), k ∈ K̄,

with f k given by (19) and all assertions of Theorem 3.2 remain valid.
Conversely, assuming that amodel for the forwardprices (8) is givenvia a family of

functions f k , k ∈ K̄, and a semimartingale X satisfying (LIP), (INT) and (DRIFT),
we define

gk(t, x) :=
N−1∑
j=k

f j (t, x). (20)

The functions gk satisfy condition (LIP) with the constants K̃ k := ∑N−1
j=k K j .

Assuming furthermore that the semimartingale X satisfies (INT′) with K̃ k as above,
the model for the forward prices (8) can be equivalently written as

F(·, Tk, TN ) = eg
k (·,X), k ∈ K̄,

with gk defined in (20). This easily follows from the following telescopic product

F(·, Tk, TN ) = B(·, Tk)
B(·, TN )

=
N−1∏
j=k

B(·, Tj )

B(·, Tj+1)
=

N−1∏
j=k

F(·, Tj , Tj+1). (21)
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Thus, we conclude that Theorem 3.5 is valid for the semimartingale X and the
functions gk , k ∈ K̄.

3.3 Observations and Ramifications

Next, we discuss further properties of the models constructed in the previous two
sections. In particular, we derive conditions such that a LIBOR model is structure
preserving and produces non-negative rates. In order to provide a unified treatment
of both modeling approaches, we assume that Xk ≡ X in Sect. 3.2, for all k ∈ K̄.

Lemma 3.10 (i) If the functions f k are non-negative for all k ∈ K̄, then the LIBOR
rates in the model (8) are non-negative, i.e. Property (C) is satisfied.

(ii) If the functions gk are non-negative and such that gk(t, x) ≥ gk+1(t, x) for
all k ∈ K̄ and all (t, x) ∈ [0, TN ] × R

d , then the LIBOR rates in the model (17) are
non-negative, i.e. Property (C) is satisfied.

Proof This follows directly from the relation between forward prices and LIBOR
rates, see (3) and (18). �

The second tractability property (B2) states that a LIBOR model is structure
preserving if the characteristics of the driving process are transformed in a determin-
istic way under different forward measures, which ensures that the driving processes
remain in the same class under all forward measures. In order to formalize the state-
ment, we consider the following assumption.

(E) LetU := R
d (respectivelyU := R

d+). ThemeasurePXt−
N is absolutely continuous

with positive Lebesgue density on U , for all t ∈ [0, TN ].
We say that a LIBOR model is structure preserving if the tuple (βl ,Y l) defining
the change of measure from the forward measure Pl to Pl−1, for l = N , . . . , 1, via
Girsanov’s theorem as in Lemma A.4, is deterministic.

Notice that underAssumption (E),βl is deterministic if and only ifY l is so; indeed,
if Y l(t, x) = e f l (t,Xt−+x)− f l (t,Xt−) is assumed to be deterministic, the function f l must
satisfy

f l(t, y + x) − f l(t, y) = hl(t, x) (22)

for every x, y ∈ U , for some function hl . Taking derivatives with respect to y, we
get that

D f l(t, y + x) = D f l(t, y)

for every x, y ∈ U , hence D f l(·, y) is constant, and thus f l(t, ·)|U is an affine func-
tion. This implies that βl

t = D f l(t, Xt−) is deterministic.
Conversely, assume that the variable βl

t = D f l(t, Xt−) is deterministic. Since the
support of PXt−

N is U , D f l is continuous and P
Xt−
N has a positive Lebesgue measure
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on U , we obtain that D f l is constant and hence f l is affine in the second variable.
Thus, we conclude that Y l(t, x) is deterministic.

The next result provides necessary and sufficient conditions for (B2) to be satis-
fied.

Proposition 3.11 If the functions f k and gk are affine in the second variable for
every k ∈ K̄, then the LIBOR models in (8) and (17) are structure preserving. Con-
versely, assume (E). If the LIBOR models in (8) and (17) are structure preserving,
then the functions f k |[0,TN ]×U and gk |[0,TN ]×U are affine in the second variable for
every k ∈ K̄.

Proof We will concentrate on the model constructed by backward induction, while
the other one follows analogously. Following the argumentation in the proof of The-
orem 3.2, the characteristics of X under Pl have the following form

blt = bN
t + cNt

N−1∑
j=l+1

D f j (t, Xt−)

+
∫

Rd

⎛
⎝ N−1∏

j=l+1

e f j (t,Xt−+x)− f j (t,Xt−) − 1

⎞
⎠ xFN

t (dx)

clt = cNt (23)

Fl
t (dx) =

N−1∏
j=l+1

e f j (t,Xt−+x)− f j (t,Xt−)FN
t (dx).

Assume that the function f k(t, x) is affine in x , i.e. there exist αk(t) and βk(t) such
that f k(t, x) = αk(t) + 〈βk(t), x〉, then we can easily deduce that (bl , cl , Fl) in (23)
is only a deterministic transformation of (bN , cN , FN ).

The converse statement is already implied by the arguments preceding this Propo-
sition. �

The statement of Proposition 3.11 can be generalized to allow for more general
driving processes. Assumption (E), for instance, can be formulated for more general
sets U . As an example, X could be a process that is positive in some coordinate and
real or negative in another. On the other hand, processes with fixed jump sizes, such
as the Poisson process, require a slightly different approach than in the proof above,
taking care of the state space of the process and the support of the jump measure.

The following remark summarizes further interesting properties of LIBOR rates
that can be easily deduced from this general modeling framework.

Remark 3.12 If the function f k is affine in the second argument, i.e.

f k(t, x) = αk(t) + 〈βk(t), x〉 , (24)

with functions αk,βk ∈ C1(R+) and the process is required to satisfy
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F(·, Tk, Tk+1) ≥ 1,

i.e. to produce non-negative LIBOR rates, then the process X has to be bounded from
below.

4 Examples

4.1 LIBOR Market Models

We start by revisiting the class of LIBORmarketmodels in view of the general frame-
work developed in the previous section. We will concentrate on the Lévy LIBOR
model of Eberlein and Özkan [10] in order to fix ideas and processes, and as a rep-
resentative of other LIBOR market models which fit in this framework as well, such
as models with local volatility, stochastic volatility or driven by jump-diffusions.
See, among many other references, Brigo and Mercurio [5], Schoenmakers [31],
Glasserman [12], and Andersen and Piterbarg [1].

We assume that the driving process X is an R
N−1-valued semimartingale of the

form

X = B + � · L , (25)

where L is an R
n-valued time-inhomogeneous Lévy process with characteristic

triplet (0, cL , FL) under the terminal measure PN with respect to the truncation
function h(x) = x , and � = [λ(·, T1), . . . ,λ(·, TN−1)] is an (N − 1) × n volatility
matrix where, for every k ∈ K̄, λ(·, Tk) is a deterministic, n-dimensional function.
Moreover, � · L denotes the Itô stochastic integral of � with respect to L , while
the drift term B = ∫ ·

0 b(s)ds = (∫ ·
0 b(s, T1)ds, . . . ,

∫ ·
0 b(s, TN−1)ds

)
is an (N − 1)-

dimensional stochastic process. We further assume that the following exponential
moment condition is satisfied:

(EM) Let ε > 0 and M > 0, then

TN∫

0

∫

|x |>1

e〈u,x〉FL
s (dx)ds < ∞ for all u ∈ [−(1 + ε)M, (1 + ε)M]n;

while the volatility functions satisfy:

(VOL) The volatility λ(·, Tk) : [0, TN ] → R
n+ is a deterministic, bounded function

such that for s > Tk , λ(s, Tk) = 0, for every k ∈ K̄. Moreover,

N−1∑
k=1

λ j (s, Tk) ≤ M, (26)
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for every s ∈ [0, TN−1] and every coordinate j ∈ {1, . . . , n}.
The construction of the Lévy LIBOR model will follow the backward induction

approach of Sect. 3.1. Define, for all k ∈ K̄ and x = (x1, . . . , xN−1) ∈ R
N−1, the

functions

f k(t, x) := log
(
1 + δk L(0, Tk)e

xk
)

(27)

and set

F(t, Tk, Tk+1) = e f k (t,Xt ), k ∈ K̄. (28)

Then, it follows easily that

F(t, Tk, Tk+1) = 1 + δk L(0, Tk)e
Xk
t ,

which coincides with the dynamics of the Lévy LIBORmodel of Eberlein and Özkan
[10], that are provided by

L(t, Tk) = L(0, Tk) exp

⎛
⎝

t∫

0

b(s, Tk)ds +
t∫

0

λ(s, Tk)dLs

⎞
⎠ . (29)

The function f k is Lipschitz continuous with constant 1, hence condition (LIP) is
satisfied with Kk = 1 for each k ∈ K̄. Moreover, thanks to Assumptions (EM) and
(VOL), condition (INT) is also satisfied for every k ∈ K̄. Therefore, an application

of Theorem 3.2 yields the drift Bk =
·∫
0
b(s, Tk)ds of this model under the terminal

measure. More precisely, we have that

∂xk f
k(t, x) = δk L(0, Tk)exk

1 + δk L(0, Tk)exk
=: �k(xk),

and ∂x j f
k(t, x) = 0, for j �= k, while also d

dt f
k(t, x) = 0. Moreover,

∂xk xk f
k(t, x) = δk L(0, Tk)exk

(1 + δk L(0, Tk)exk )2
,

and ∂xi x j f
k(t, x) = 0, for all (i, j) �= (k, k). According to Proposition 2.4 in Kallsen

[18], the PN -characteristics (bN , cN , FN ) of X are given by
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bN
t = b(t)

cNt = 〈
�(t), cLt �(t)

〉
(30)

FN
t (A) =

∫

Rn

1A(�(t)x)FL
t (dx), A ∈ B(RN−1) \ {0},

hence the (DRIFT) condition from Theorem 3.2 becomes

�k(Xk
t−)b(t, Tk) = −1

2

�k(Xk
t−)

1 + δk L(0, Tk)eX
k
t−

〈λ(t, Tk), c
L
t λ(t, Tk)〉

− 1

2
(�k(Xk

t−))2〈λ(t, Tk), c
L
t λ(t, Tk)〉

−
N−1∑
j=k+1

�k(Xk
t−)� j (X j

t−)〈λ(t, Tk), c
L
t λ(t, Tj )〉 (31)

−
∫

RN−1

[ (
e f k (Xk

t−+xk )− f k (Xk
t−) − 1

) N−1∏
j=k+1

(
e f j (X j

t−+x j )− f j (Xk
t−)
)

− �k(Xk
t−1)xk

]
FX
t (dx).

Notice that

�k(Xk
t−)

1 + δk L(0, Tk)eX
k
t−

+ (�k(Xk
t−))2 = δk L(0, Tk)eX

k
t− + (δk L(0, Tk)eX

k
t−)2

(1 + δk L(0, Tk)eX
k
t−)2

= δk L(0, Tk)eX
k
t−

1 + δk L(0, Tk)eX
k
t−

= �(Xk
t−)

and that, for all j = k, . . . , N − 1,

e f j (X j
t−+x j )− f j (Xk

t−) = 1 + δ j L(0, Tj )eX
j
t−+x j

1 + δ j L(0, Tj )eX
j
t−

= 1 + δ j L(0, Tj )eX
j
t− + δ j L(0, Tj )eX

j
t−(ex j − 1)

1 + δ j L(0, Tj )eX
j
t−

= 1 + � j (X j
t−)(ex j − 1).

Inserting the above simplifications into (31) yields
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b(t, Tk) = −1

2
〈λ(t, Tk), c

L
t λ(t, Tk)〉 −

N−1∑
j=k+1

� j (X j
t−)〈λ(t, Tk), c

L
t λ(t, Tj )〉

−
∫

RN

[
(exk − 1)

N−1∏
j=k+1

(
1 + � j (X j

t−)(ex j − 1)
)

− xk
]
FX
t (dx)

= −1

2
〈λ(t, Tk), c

L
t λ(t, Tk)〉 −

N−1∑
j=k+1

� j (X j
t−)〈λ(t, Tk), c

L
t λ(t, Tj )〉

−
∫

Rn

[
(e〈λ(t,Tk ),y〉 − 1)

N−1∏
j=k+1

(
1 + � j (X j

t−)(e〈λ(t,Tj ),y〉 − 1)
)

(32)

− 〈λ(t, Tk), y〉
]
FL
t (dy),

where the second equality follows by (30). The equation above now can be recog-
nized as the drift condition of the Lévy LIBOR model; cf. Papapantoleon et al. [30,
Eq. (2.7)].

Remark 4.1 The LIBOR market models satisfy Axioms (A1) and (A2), as well as
Properties (B1) and (B4) by construction. On the other hand, Properties (B2) and
(B3) are not satisfied. Regarding (B2), this follows immediately by Proposition 3.11
(at least for driving processes satisfying (E), which is typically the case), since the
functions f k , k ∈ K̄, are not affine in the second argument. Moreover, the drift term
(32) which contains the random terms δ j L(t, Tj )/(1 + δ j L(t, Tj )) implies that the
vector of LIBOR rates (L(·, Tk))k∈K̄ considered as a whole is Markovian, but not
the single LIBOR rates, because their dynamics depend on the other rates as well.
Hence, (B3) does not hold. Finally, Property (C) is obviously satisfied in this model.

4.2 Lévy Forward Price Models

Next, we show that the Lévy forward price models can be easily embedded in our
general framework starting from the terminal measure construction; starting from
the backward induction approach is even easier. The Lévy forward price models
were introduced by Eberlein and Özkan [10, pp. 342–343]; see also Kluge [23] for a
detailed construction and Kluge and Papapantoleon [24] for a concise presentation.

We will model the dynamics of the forward price relative to the terminal bond
price under the terminal measure PN , via

F(t, Tk, TN ) = eg
k (t,Xk

t ), (33)

where the function gk is of the following affine form

gk(t, x) := log F(0, Tk, TN ) + x, (34)
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while the process Xk has the following dynamics

Xk :=
·∫

0

bk,Ns ds +
N−1∑
i=k

·∫

0

λ(s, Ti )dLs . (35)

The driving process L and the volatility functions λ(·, Ti ) are specified, while the
drift term bk,N is determined by the no-arbitrage (DRIFT′) condition. In particular,
L is an R

n-valued time-inhomogeneous Lévy process with PN -local characteristics
(0, cL , FL) satisfying condition (EM) and the volatility functions satisfy condi-
tion (VOL). The function gk trivially satisfies the (LIP′) condition with constant 1,
while the process Xk satisfies the (INT′) condition by virtue of (EM) and (VOL).
Therefore, we can apply Theorem 3.5 and, after some computations, the (DRIFT′)
condition yields that

bk,Nt = −1

2
ck,Nt −

∫

R

(ex − 1 − x)Fk,N
t (dx). (36)

Moreover, using Kallsen and Shiryaev [20, Lemma 3], the PN -local characteristics
of the stochastic integral process Xk are

ck,Nt =
〈
N−1∑
i=k

λ(t, Ti ), c
L
t

N−1∑
i=k

λ(t, Ti )

〉
(37)

and

Fk,N
t (A) =

∫

Rn

1A

(
N−1∑
i=k

〈λ(t, Ti ), x〉
)
FL
t (dx), A ∈ B(R). (38)

Now, using (33)–(35), we get that the dynamics of the forward price process
F(·, Tk, Tk+1) are provided by

F(t, Tk, Tk+1) = F(t, Tk, TN )

F(t, Tk+1, TN )
= F(0, Tk, Tk+1)e

Xk
t −Xk+1

t

= F(0, Tk, Tk+1) exp

⎛
⎝

t∫

0

(
bk,Ns − bk+1,N

s

)
ds +

t∫

0

λ(s, Tk)dLs

⎞
⎠ ,

hence the forward price process is driven by its corresponding volatility function
and the time-inhomogeneous Lévy process, as specified in the Lévy forward process
models. We just have to check that the drift terms coincide as well. Indeed, using
(36)–(38), after some straightforward calculations we get that
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bk,Ns − bk+1,N
s = −1

2

〈
λ(s, Tk), c

L
s λ(s, Tk)

〉 −
N−1∑
i=k+1

〈
λ(s, Tk), c

L
s λ(s, Ti )

〉

−
∫

Rn

{(
e〈λ(s,Tk ),x〉 − 1

)
e
∑N−1

i=k+1〈λ(s,Ti ),x〉 − 〈λ(s, Tk), x〉
}
FL
s (dx),

which is exactly the PN -drift of the forward price process; compare with Kluge and
Papapantoleon [24, Eqs. (19)–(21)].

Remark 4.2 The Lévy forward price model satisfies Axioms (A1) and (A2) as well
as Properties (B1) and (B4) by construction. Moreover, it satisfies Properties (B2)
and (B3); cf. Proposition 3.11. Property (C) is not satisfied however, i.e. the LIBOR
rates can become negative; cf. Remark 3.12.

4.3 Affine LIBOR Models

Finally, we examine a class of LIBOR models driven by affine processes, and in
particular the affine LIBOR models proposed by Keller-Ressel et al. [21]. Our main
reference for the definition and properties of affine processes is Duffie et al. [7].

Let X = (Xt )0≤t≤TN be a conservative affine process according to Definitions 2.1
and 2.5 in Duffie et al. [7] with state space D = R+. We consider a one-dimensional
process here only for notational simplicity; the d-dimensional case can be treated
in exactly the same manner. Moreover, the state space is restricted to the positive
half-line following Keller-Ressel et al. [21], which is necessary in order to produce
a model satisfying (C); see also Remark 3.12. We can equally well choose the state
space D = R, and then interest rates in the model will also take negative values.

The process X is a semimartingale with absolutely continuous characteristics, and
the local characteristics (bX , cX , FX ) of X with respect to the truncation function
h(x) := 1 ∧ x , for x ∈ D, are given as

bX
t = b̃ + βXt−
cXt = 2αXt−

FX
t (dξ) = F1(dξ) + Xt− F

2(dξ)

for some b̃ > 0, β ∈ R,α > 0 and Lévymeasures F1 and F2 on D\{0} (cf. Theorem
2.12 in Duffie et al. [7]), with

b̃ := b +
∫

ξ>0

h(ξ)F1(dξ) .

Affine processes are characterized by the following property of their moment gen-
erating function:
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Ex
[
exp(uXt )

] = exp
(
φ(t, u) + ψ(t, u)x

)
, (39)

for all (t, u, x) ∈ [0, TN ] × IT × D, where Ex denotes the expectation with respect
to Px—a probability measure such that X0 = x ∈ D, Px-a.s. Moreover, the set IT is
defined by

IT := {
u ∈ R : Ex

[
euXTN

]
< ∞, for all x ∈ D

}
, (40)

while (φ,ψ) is a pair of deterministic functions φ,ψ : [0, TN ] × IT → R. The func-
tions φ and ψ are given as solutions to generalized Riccati equations (cf. Theorem
2.7 in Duffie et al. [7]), that is

∂tφ(t, u) = F
(
ψ(t, u)

)
, φ(0, u) = 0

∂tψ(t, u) = R
(
ψ(t, u)

)
, ψ(0, u) = u,

(41)

where

F(u) = bu +
∫

ξ>0

(
euξ − 1

)
F1(dξ),

R(u) = αu2 + βu +
∫

ξ>0

(
euξ − 1 − uh(ξ)

)
F2(dξ) . (42)

We introduce next the class of affine forward price models, where the forward
price is an exponentially-affine function of the driving affine process X . In particular,
we consider the setting of the terminal measure construction of Sect. 3.2 with

gk(t, x) = θk(t) + ϑk(t)x and Xk ≡ X. (43)

The next result shows that the functions θk,ϑk are solutions to generalized Riccati
equations themselves.

Proposition 4.3 Let X be an affine process with values in D, X0 = 1 and satisfying
(INT′), and gk, k ∈ K̄, be a collection of functions given by (43) where θk,ϑk :
[0, TN ] → R are deterministic functions of class C1. Then, the forward price process
given by

F(t, Tk, TN ) = eθk (t)+ϑk (t)Xt , t ∈ [0, Tk], (44)

is a uniformly integrable martingale, for all k ∈ K̄, if the functions θk and ϑk satisfy

∂tθ
k(t) = −F

(
ϑk(t)

)
,

∂tϑ
k(t) = −R

(
ϑk(t)

)
,

(45)
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with F and R given by (42).

Proof The process X satisfies (INT′) by assumption, while the functions gk satisfy
(LIP′). Therefore, we can apply Theorem 3.5 and the result follows after straightfor-
ward calculations, by inserting the characteristics of X into the (DRIFT′) condition
and using that

∂t g
k(t, x) = ∂tθ

k(t) + ∂tϑ
k(t)x, ∂x g

k(t, x) = ϑk(t), ∂xx g
k(t, x) = 0. �

Remark 4.4 The affine forward price models given by (44) satisfy Axioms (A1) and
(A2) aswell as Properties (B1)–(B3). Property (B4) is not satisfied and themodel has
to be calibrated to the initial term structure, similarly to short rate models. Indeed,
notice that the initial forward price F(0, Tk, TN ) does not appear in the function
gk(t, x), contrary to the previous two examples.1 Moreover, these models satisfy
Property (C) if and only if the functions θk and ϑk are non-negative; compare also
with Remark 3.12.

The affine LIBOR models introduced by Keller-Ressel et al. [21] can naturally
be embedded in this construction. More precisely, we have the following.

Corollary 4.5 The affine LIBOR models whose dynamics are provided by

F(t, Tk, TN ) = EN
[
euk XTN |Ft

] = eφ(TN−t,uk )+ψ(TN−t,uk )Xt ,

with parameters uk ∈ R+ for k ∈ K̄, is a special case of the affine forward price
models with

θk(t) := φ(TN − t, uk) and ϑk(t) := ψ(TN − t, uk),

where φ(·, uk) and ψ(·, uk) are solutions to (41).

Appendix A: Semimartingale Characteristics and
Martingales

Let (�,F , (Ft )t∈[0,T∗],P) denote a complete stochastic basis and T∗ denote a finite
time horizon. Let X be an Rd -valued semimartingale on this basis whose character-
istics are absolutely continuous, i.e. its local characteristics are given by (b, c, F; A)

with At = t , for some truncation function h; cf. Jacod and Shiryaev [15, Proposi-
tion II.2.9]. Moreover, let f : R+ × R

d → R be a function of class C1,2(R+ × R
d).

1We could, of course, use the following affine function gk(t, x) = log F(0, Tk , TN ) + θk(t) +
ϑk(t)x and the model fits automatically the initial term structure. However, it becomes then difficult
to provide models that produce non-negative LIBOR rates.
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The process f (·, X) is a real-valued semimartingale which has again absolutely
continuous characteristics. Let us denote its local characteristics by (b f , c f , F f )

for a truncation function h f . Then, noting that Itô’s formula holds for the function
f ∈ C1,2(R+ × R

d) and reasoning as in the proof of Corollary A.6 from Goll and
Kallsen [13], we have that

b f
t = d

dt
f (t, Xt−) + 〈D f (t, Xt−), bt 〉 + 1

2

d∑
i, j=1

D2
i j f (t, Xt−)ci jt

+
∫

Rd

(
h f

(
f (t, Xt− + x) − f (t, Xt−)

) − 〈D f (t, Xt−), h(x)〉) Ft (dx)

c f
t = 〈

D f (t, Xt−), ctD f (t, Xt−)
〉

(A.1)

F f
t (G) =

∫

Rd

1G
(
f (t, Xt− + x) − f (t, Xt−)

)
Ft (dx), G ∈ B(R \ {0}).

Proposition A.1 Let X be anRd -valued semimartingale with absolutely continuous
characteristics (b, c, F) and let f : R+ × R

d → R be a function of class C1,2 such
that the process Y defined by

Yt := e f (t,Xt ) (A.2)

is exponentially special. If the following condition holds

〈D f (t, Xt−), bt 〉 = − d

dt
f (t, Xt−) − 1

2

d∑
i, j=1

D2
i j f (t, Xt−)ci jt

− 1

2

〈
D f (t, Xt−), ctD f (t, Xt−)

〉
(A.3)

−
∫

Rd

(
e f (t,Xt−+x)− f (t,Xt−) − 1 − 〈D f (t, Xt−), h(x)〉

)
Ft (dx),

then Y is a local martingale.

Proof The proof follows from Theorem 2.18 in Kallsen and Shiryaev [19]: set θ = 1
and apply the theorem to the semimartingale f (·, X). Indeed, since f (·, X) has
absolutely continuous characteristics it is also quasi-left continuous, hence assertions
(6) and (1) of Theorem 2.18. yield

K f (·,X)(1) = K̃ f (·,X)(1) =
·∫

0

(
b f
t + 1

2
c f
t +

∫

R

(
ex − 1 − h f (x)

)
F f
t (dx)

)
dt.
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By definition of the exponential compensator and Theorem 2.19 in Kallsen and
Shiryaev [19] it follows that

e f (·,X)−K f (·,X)(1) ∈ Mloc.

Therefore, e f (·,X) ∈ Mloc if and only if K f (·,X)(1) = 0 up to indistinguishability.
Equivalently,

b f
t + 1

2
c f
t +

∫

R

(
ex − 1 − h f (x)

)
F f
t (dx) = 0

for every t . Inserting the expressions for b f , c f and F f , cf. (A.1), into the above
equality yields condition (A.3). �

Proposition A.2 Let X be anRd -valued semimartingale with absolutely continuous
characteristics (b, c, F) such that

T∗∫

0

∫

Rd

(|x |2 ∧ 1)Ft (dx)dt +
T∗∫

0

∫

|x |>1

|x |eK |x |Ft (dx)dt < C1 (A.4)

and
T∗∫

0

‖ct‖dt < C2, (A.5)

for some deterministic constants C1,C2 > 0. Moreover, let f : R+ × R
d → R be a

function of class C1,2 and globally Lipschitz with constant K > 0 such that

| f (t, x) − f (t, y)| ≤ K |x − y|, t ≥ 0, x, y ∈ R
d .

Then, the process f (·, X) is exponentially special, while the process Y defined by
(A.2) and satisfying (A.3) is a uniformly integrable martingale.

Proof The process f (·, X) is exponentially special if and only if

1{|x |>1}ex ∗ ν f ∈ V.

Hence, it suffices to show that 1{|x |>1}ex ∗ ν
f
T∗ < ∞, as the integrand is positive. Since

f is globally Lipschitz, we have
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1{|x |>1}ex ∗ ν
f
T∗ =

T∗∫

0

∫

|x |>1

ex F f
t (dx)dt

(A.1)=
T∗∫

0

∫

Rd

1{| f (t,Xt−+x)− f (t,Xt−)|>1}e f (t,Xt−+x)− f (t,Xt−)Ft (dx)dt

≤
T∗∫

0

∫

K |x |>1

eK |x |Ft (dx)dt < ∞,

which holds by the Lipschitz property and (A.4).
Moreover, if F = e f (·,X) ∈ Mloc, applying Proposition 3.1 in Criens et al. [6] it

is also a uniformly integrable martingale if the following condition holds:

T∗∫

0

(
c f
t +

∫

Rd

[
(|x |2 ∧ 1) + |x |ex1{|x |>1}

]
F f
t (dx)

)
dt < C f , (A.6)

for some constant C f > 0. We first check the condition for the diffusion coefficient

T∗∫

0

c f
t dt =

T∗∫

0

〈D f (t, Xt−), ctD f (t, Xt−)〉dt ≤
T∗∫

0

‖ct‖|D f (t, Xt−)|2dt < C f
1 ,

which follows from (A.5) and the fact that D f (·, X−) is bounded as a consequence
of f being globally Lipschitz. As for the jump part, we have that

T∗∫

0

∫

R

(|x |2 ∧ 1)F f
t (dx)dt +

T∗∫

0

∫

|x |>1

|x |ex F f
t (dx)dt

(A.1)=
T∗∫

0

∫

Rd

(| f (t, Xt− + x) − f (t, Xt−)|2 ∧ 1)Ft (dx)dt

+
T∗∫

0

∫

Rd

1{| f (t,Xt−+x)− f (t,Xt−)|>1}

× | f (t, Xt− + x) − f (t, Xt−)| e f (t,Xt−+x)− f (t,Xt−)Ft (dx)dt

≤
T∗∫

0

∫

Rd

(K 2|x |2 ∧ 1)F(dx)dt +
T∗∫

0

∫

K |x |>1

K |x |eK |x |F f (dx)dt < C f
2 ,
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using again the Lipschitz property and (A.4). �

Next, we provide the representation of Y as a stochastic exponential.

Lemma A.3 Let X be an R
d -valued semimartingale with absolutely continu-

ous characteristics (B,C, ν) and let f : R+ × R
d → R+ be a function of class

C1,2(R+ × R
d). Define a real-valued semimartingale Y via (A.2). If Y ∈ Mloc, then

it can be written as

Y = E(D f (·, X−) · Xc + W (·, x) ∗ (μX − ν)
)
,

where Xc is the continuous martingale part of X, μX is the randommeasure of jumps
of X with compensator ν and

W (·, x) := e f (·,X−+x)− f (·,X−) − 1.

Proof Theorem 2.19 in Kallsen and Shiryaev [19] yields that

e f (·,X) = E (
f (·, X)c + (ex − 1) ∗ (μ f − ν f )

)
,

using that f (·, X) is quasi-left continuous since X is also quasi-left continuous.
Here f (·, X)c denotes the continuous martingale part of f (·, X) and μ f its random
measure of jumps. The result now follows using the form of the local characteristics
c f , F f of the process f (·, X) in (A.1); see also the proof of Corollary A.6 in Goll
and Kallsen [13].

Lemma A.4 Let X be an R
d -valued semimartingale with absolutely continuous

characteristics (b, c, F) with respect to the truncation function h. Let f : R+ ×
R

d → R+ be a function of class C1,2(R+ × R
d) and globally Lipschitz. Assume that

conditions (A.3), (A.4) and (A.5) are satisfied.
Define the probability measure P′ ∼ P via

dP′

dP

∣∣∣
F·

:= e f (·,X) .

Then, the P′-characteristics of the semimartingale X are absolutely continuous and
provided by (b′, c′, F ′), where

b′
t = bt + ctβt +

∫

Rd

(Yt (x) − 1)h(x)Ft (dx)

c′
t = ct

F ′
t (dx) = Yt (x)Ft (dx),

with βt = D f (t, Xt−) and Yt (x) = e f (t,Xt−+x)− f (t,Xt−), for t ∈ R+ and x ∈ R
d .
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Proof The result follows directly from the previous lemma and Proposition 2.6 in
Kallsen [18]. �
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Approximate Option Pricing in the Lévy
Libor Model

Zorana Grbac, David Krief and Peter Tankov

Abstract In this paper we consider the pricing of options on interest rates such as
caplets and swaptions in the Lévy Libor model developed by Eberlein and Özkan
(Financ. Stochast. 9:327-348 (2005) [9]). This model is an extension to Lévy driving
processes of the classical log-normal Libormarketmodel (LMM) driven by aBrown-
ianmotion.Optionpricing is significantly less tractable in thismodel than in theLMM
due to the appearance of stochastic terms in the jump part of the driving process
when performing the measure changes which are standard in pricing of interest rate
derivatives. To obtain explicit approximation for option prices, we propose to treat
a given Lévy Libor model as a suitable perturbation of the log-normal LMM. The
method is inspired by recent works by Černý, Denkl, and Kallsen (Preprint (2013)
[6]) and Ménassé and Tankov (Preprint (2015) [14]). The approximate option prices
in the Lévy Libor model are given as the corresponding LMM prices plus correction
terms which depend on the characteristics of the underlying Lévy process and some
additional terms obtained from the LMM model.

Keywords Libor market model · Caplet · Swaption · Lévy Libor model · Asymp-
totic approximation

1 Introduction

The goal of this paper is to develop explicit approximations for option prices in the
Lévy Libor model introduced by Eberlein and Özkan [9]. In particular, we shall be
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interested in price approximations for caplets, whose pay-off is a function of only
one underlying Libor rate and swaptions, which can be regarded as options on a
“basket” of multiple Libor rates of different maturities.

A full-fledgedmodel of Libor rates such as the Lévy Libor model is typically used
for the purposes of pricing and risk management of exotic interest rate products. The
prices and hedge ratios must be consistent with the market-quoted prices of liquid
options, which means that the model must be calibrated to the available prices /
implied volatilities of caplets and swaptions. To perform such a calibration efficiently,
one therefore needs explicit formulas or fast numerical algorithms for caplet and
swaption prices.

Computation of option prices in theLévyLibormodel to arbitrary precision is only
possible via Monte Carlo. Efficient simulation algorithms suitable for pricing exotic
options have been proposed in Kohatsu-Higa and Tankov [13] and Papapantoleon
et al. [16], however, these Monte Carlo algorithms are probably not an option for the
purposes of calibration because the computation is still too slow due to the presence
of both discretization and statistical error.

Eberlein and Özkan [9], Kluge [12] and Belomestny and Schoenmakers [1] pro-
pose fast methods for computing caplet prices which are based on Fourier transform
inversion and use the fact that the characteristic function of many parametric Lévy
processes is known explicitly. Since in the Lévy Libor model, the Libor rate Lk is not
a geometric Lévy process under the corresponding probability measure QTk , unless
k = n (see Remark 2 below for details), using these methods for k < n requires an
additional approximation (some random terms appearing in the compensator of the
jumpmeasure of Lk are approximated by their values at time t = 0, a method known
as freezing).

In this paper we take an alternative route and develop approximate formu-
las for caplets and swaptions using asymptotic expansion techniques. Inspired
by methods used in Černý et al. [6] and Ménassé and Tankov [14] (see also
Benhamouet al. [2, 3] for related expansions “around aBlack-Scholes proxy” in other
models), we consider a given Lévy Libor model as a perturbation of the log-normal
LMM. Starting from the driving Lévy process (Xt )t≥0 of the Lévy Libor model,
assumed to have zero expectation, we introduce a family of processes Xα

t = αXt/α2

parameterized by α ∈ (0, 1], together with the corresponding family of Lévy Libor
models. For α = 1 one recovers the original Lévy Libor model. When α → 0, the
family Xα converges weakly in Skorokhod topology to a Brownian motion, and the
option prices in the Lévy Libor model corresponding to the process Xα converge
to the prices in the log-normal LMM. The option prices in the original Lévy Libor
model can then be approximated by their second-order expansions in the parameter
α, around the value α = 0. This leads to an asymptotic approximation formula for a
derivative price expressed as a linear combination of the derivative price stemming
from the LMM and correction terms depending on the characteristics of the driving
Lévy process. The terms of this expansion are often much easier to compute than
the option prices in the Lévy Libor model. In particular, we shall see the expansion
for caplets is expressed in terms of the derivatives of the standard Black’s formula,
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and the various terms of the expansion for swaptions can be approximated using
one of the many swaption approximations for the log-normal LMM available in the
literature.

This paper is structured as follows. In Sect. 2 we briefly review the Lévy Libor
model. In Sect. 3we showhow the prices of European-style optionsmay be expressed
as solutions of partial integro-differential equations (PIDE). These PIDEs form the
basis of our asymptotic method, presented in detail in Sect. 4. Finally, numerical
illustrations are provided in Sect. 5.

2 Presentation of the Model

In this section we present a slight modification of the Lévy Libor model by Eberlein
and Özkan [9], which is a generalization, based on Lévy processes, of the Libor
market model driven by a Brownian motion, introduced by Sandmann et al. [17],
Brace et al. [4] and Miltersen et al. [15].

Let a discrete tenor structure 0 ≤ T0 < T1 < . . . < Tn = T ∗ be given, and set
δk := Tk − Tk−1, for k = 1, . . . , n. We assume that zero-coupon bonds with matu-
rities Tk , k = 0, . . . , n, are traded in the market. The time-t price of a bond with
maturity Tk is denoted by Bt (Tk) with BTk (Tk) = 1.

For every tenor date Tk , k = 1, . . . , n, the forward Libor rate Lk
t at time t ≤ Tk−1

for the accrual period [Tk−1, Tk] is a discretely compounded interest rate defined as

Lk
t := 1

δk

(
Bt (Tk−1)

Bt (Tk)
− 1

)
. (1)

For all t > Tk−1, we set Lk
t := Lk

Tk−1
.

To set up the Libor model, one needs to specify the forward Libor rates Lk
t , k =

1, . . . , n, such that eachLibor rate Lk is amartingalewith respect to the corresponding
forward measure QTk using the bond with maturity Tk as numéraire. We recall that
the forward measures are interconnected via the Libor rates themselves and hence
each Libor rate depends also on some other Libor rates as we shall see below. More
precisely, assuming that the forward measure QTn for the most distant maturity Tn
(i.e. with numéraire B(Tn)) is given, the link between the forward measure QTk and
Q

Tn is provided by

dQTk

dQTn

∣∣∣
Ft

= Bt (Tk)

Bt (Tn)

B0(Tn)

B0(Tk)
=

n∏
j=k+1

1 + δ j L
j
t

1 + δ j L
j
0

, (2)

for every k = 1, . . . , n − 1. The forward measure QTn is referred to as the terminal
forward measure.
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2.1 The Driving Process

Let us denote by (�,F ,F = (Ft )0≤t≤T ∗ ,QTn ) a complete stochastic basis and let X
be anRd -valued Lévy process (Xt )0≤t≤T ∗ on this stochastic basis with Lévy measure
F and diffusion matrix c. The filtration F is generated by X and Q

Tn is the forward
measure associated with the date Tn , i.e. with the numeraire Bt (Tn). The process X
is assumed without loss of generality to be driftless under QTn .

Moreover, we assume that
∫
|z|>1 |z|F(dz) < ∞. This implies in addition that X

is a special semimartingale and allows to choose the truncation function h(z) = z,
for z ∈ R

d . The canonical representation of X is given by

Xt = √
cWTn

t +
t∫

0

∫

Rd

z(μ − νTn )(ds, dz), (3)

whereWTn = (WTn
t )0≤t≤Tn denotes a standard d-dimensional Brownian motion with

respect to themeasureQTn ,μ is the randommeasure of jumps of X and νTn (ds, dz) =
F(dz)ds is the QTn -compensator of μ.

2.2 The Model

Denote by L = (L1, . . . , Ln)	 the column vector of forward Libor rates. We assume
that under the terminal measure Q

Tn , the dynamics of L is given by the following
SDE

dLt = Lt−(b(t, Lt )dt + �(t)dXt ), (4)

where b(t, Lt ) is the drift term and �(t) a deterministic n × d volatility matrix. We
write �(t) = (λ1(t), . . . ,λn(t))	, where λk(t) denotes the d-dimensional volatility
vector of the Libor rate Lk and assume that λk(t) = 0, for t > Tk−1.

One typically assumes that the jumps of X are bounded frombelow, i.e.�Xt > C ,
for all t ∈ [0, T ∗] and for some strictly negative constant C , which is chosen such
that it ensures the positivity of the Libor rates given by (4).

The drift b(t, Lt ) = (b1(t, Lt ), . . . , bn(t, Lt )) is determined by the no-arbitrage
requirement that Lk has to be amartingalewith respect toQTk , for every k = 1, . . . , n.
This yields

bk(t, Lt ) = −
n∑

j=k+1

δ j L
j
t

1 + δ j L
j
t

〈λk(t), c λ j (t)〉 (5)

+
∫

Rd

〈λk(t), z〉
⎛
⎝1 −

n∏
j=k+1

(
1 + δ j L

j
t 〈λ j (t), z〉

1 + δ j L
j
t

)⎞
⎠ F(dz).
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The above drift condition follows from (2) and Girsanov’s theorem for semimartin-
gales noticing that

dLk
t = Lk

t−(bk(t, Lt )dt + λk(t)dXt )

= Lk
t−λk(t)dXTk

t ,

where

XTk
t = √

cWTk
t +

t∫

0

∫
Rd

z(μ − νTk )(ds, dz) (6)

is a special semimartingale with a d-dimensional QTk -Brownian motion WTk given
by

dWTk
t := dWTn

t − √
c

⎛
⎝ n∑

j=k+1

δ j L
j
t

1 + δ j L
j
t

λ j (t)

⎞
⎠ dt (7)

and the QTk -compensator νTk of μ given by

νTk (dt, dz) :=
n∏

j=k+1

(
1 + δ j L

j
t−

1 + δ j L
j
t−

〈λ j (t), z〉
)

νTn (dt, dz) (8)

=
n∏

j=k+1

(
1 + δ j L

j
t

1 + δ j L
j
t

〈λ j (t), z〉
)
F(dz)dt

= FTk
t (dz)dt

with

FTk
t (dz) :=

n∏
j=k+1

(
1 + δ j L

j
t

1 + δ j L
j
t

〈λ j (t), z〉
)
F(dz). (9)

Equalities (7) and (8), and consequently also the drift condition (5), are implied
by Girsanov’s theorem for semimartingales applied first to the measure change from
Q

Tn to Q
Tn−1 and then proceeding backwards. We refer to Kallsen [11, Proposition

2.6] for a version of Girsanov’s theorem that can be directly applied in this case.

Note that the random terms δ j L
j
t

1+δ j L
j
t
appear in the measure change due to the fact that

for each j = n, n − 1, . . . , 1 we have

d(1 + δ j L
j
t ) = (1 + δ j L

j
t−)

(
δ j L

j
t−

1 + δ j L
j
t−
b j (t, Lt )dt + δ j L

j
t−

1 + δ j L
j
t−

λ j (t)dXt

)
,

(10)

We point out that the predictable random terms δ j L
j
t−

1+δ j L
j
t−
can be replaced with δ j L

j
t

1+δ j L
j
t

in equalities (5), (7) and (8) due to absolute continuity of the characteristics of X .
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Therefore, the vector process of Libor rates L , given in (4) with the drift (5), is
a time-inhomogeneous Markov process and its infinitesimal generator under QTn is
given by

At f (x) =
n∑

i=1

xib
i (t, x)

∂ f (x)

∂xi
+ 1

2

n∑
i, j=1

xi x j (�(t)c�(t)	)i j
∂ f (x)

∂xi∂x j
(11)

+
∫

Rd

⎛
⎝ f (diag(x)(1 + �(t)z)) − f (x) −

n∑
j=1

x j (�(t)z) j
∂ f (x)

∂x j

⎞
⎠ F(dz),

for a function f ∈ C2
0 (R

n,R) and with the function bi (t, x), for i = 1, . . . , n and
x = (x1, . . . , xn) ∈ R

n , given by

bi (t, x) = −
n∑

j=i+1

δ j x j

1 + δ j x j
〈λi (t), c λ j (t)〉

+
∫

Rd

〈λi (t), z〉
⎛
⎝1 −

n∏
j=k+1

(
1 + δ j x j 〈λ j (t), z〉

1 + δ j x j

)⎞
⎠ F(dz).

Remark 1 (Connection to the Lévy Libor model of Eberlein and Özkan [9])
The dynamics of the forward Libor rate Lk , for all k = 1, . . . , n, in the Lévy Libor
model of Eberlein and Özkan [9] (compare also Eberlein and Kluge [8]) is given as
an ordinary exponential of the following form

Lk
t = Lk

0 exp

⎛
⎝

t∫

0

b̃k(s, Ls)ds +
t∫

0

λ̃k(s)dỸs

⎞
⎠ , (12)

for some deterministic volatility vector λ̃k and the drift b̃k(t, Lt ) which has to be
chosen such that the Libor rate Lk is a martingale under the forward measure QTk .
Here Ỹ is a d-dimensional Lévy process given by

Ỹt = √
cWTn

t +
t∫

0

∫

Rd

z(μ̃ − ν̃Tn )(ds, dz),

with theQTn -characteristics (0, c, F̃), where ν̃Tn (ds, dz) = F̃(dz)ds. TheLévymea-
sure F̃ has to satisfy the usual integrability conditions ensuring the finiteness of the
exponential moments. The dynamics of Lk is thus given by the following SDE

dLk
t = Lk

t−
(
bk(t, Lt )dt + √

cλ̃k(t)dWTn
t + (e〈λ̃k (t),z〉 − 1)(μ̃ − ν̃Tn )(dt, dz)

)

= Lk
t−

(
bk(t, Lt )dt + dY k

t

)
,
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for all k, where Y k is a time-inhomogeneous Lévy process given by

Y k
t =

t∫

0

√
cλ̃k(s)dWTn

s +
t∫

0

∫

Rd

(e〈λ̃k (s),z〉 − 1)(μ̃ − ν̃Tn )(ds, dz)

and the drift bk(t, Lt ) is given by

bk(t, Lt ) = b̃k(t, Lt ) + 1

2
〈λ̃k(t), cλ̃k(t)〉

+
∫

Rd

(e〈λ̃k (t),z〉 − 1 − 〈λ̃k(t), z〉)F̃(dz).

3 Option Pricing via PIDEs

Below we present the pricing PIDEs related to general option payoffs and then more
specifically to caplets and swaptions. We price all options under the given terminal
measure QTn .

3.1 General Payoff

Consider a European-type payoff with maturity Tk given by ξ = g(LTk ), for some
tenor date Tk . Its time-t price Pt is given by the following risk-neutral pricing formula

Pt = Bt (Tk)IE
QTk [g(LTk ) | Ft ]

= Bt (Tn)IE
QTn

[
BTk (Tk)

BTk (Tn)
g(LTk )

∣∣∣∣Ft

]

= Bt (Tn)IE
QTn

⎡
⎣ n∏

j=k+1

(1 + δ j L
j
Tk

)g(LTk )

∣∣∣∣∣∣Ft

⎤
⎦

= Bt (Tn)u(t, Lt ),

where u is the solution of the following PIDE1

1A detailed proof of this statement is out of scope of this note. Here we simply assume that Eq. (13)
admits a unique solution which is sufficiently regular and is of polynomial growth. The existence
of such a solution may be established first by Fourier methods for the case when there is no drift
and then by a fixed-point theorem in Sobolev spaces using the regularizing properties of the Lévy
kernel for the general case (see De Franco [7, Chap.7] for similar arguments). Once the existence of
a regular solution has been established, the expression for the option price follows by the standard
Feynman-Kac formula.



460 Z. Grbac et al.

∂t u + At u = 0 (13)

u(Tk, x) = g̃(x)

and g̃ denotes the transformed payoff function given by

g̃(x) := g̃(x1, . . . , xn) =
n∏

j=k+1

(1 + δ j x j )g(x1, . . . , xn).

Inwhat followswe shall in particular focus on twomost liquid interest rate options:
caps (caplets) and swaptions.

3.2 Caplet

Consider a caplet with strike K and payoff ξ = δk(Lk
Tk−1

− K )+ at time Tk . Note that
here the payoff is in fact aFTk−1 -measurable random variable and it is paid at time Tk .
This is known as payment in arrears. There exist also other conventions for caplet
payoffs, but this one is the one typically used.

The time-t price of the caplet, denoted by PCpl
t is thus given by

PCpl
t = Bt (Tk)δkIE

QTk [(Lk
Tk−1

− K )+ | Ft ] (14)

= Bt (Tn)δkIE
QTn

⎡
⎣ n∏

j=k+1

(1 + δ j L
j
Tk−1

)(Lk
Tk−1

− K )+

∣∣∣∣∣∣Ft

⎤
⎦

= Bt (Tn)δku(t, Lt )

where u is the solution to

∂t u + At u = 0 (15)

u(Tk−1, x) = g̃(x)

with

g̃(x) := (xk − K )+
n∏

j=k+1

(1 + δ j x j ).

For the second equality in (14) we have used the measure change from Q
Tk to Q

Tn

given in (2).

Remark 2 Noting that the payoff of the caplet depends on one single underlying
forward Libor rate Lk , it is often more convenient to price it directly under the
corresponding forward measure QTk , using the first equality in (14). Thus, one has
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PCpl
t = Bt (Tk)δku(t, Lt ),

where u is the solution to

∂t u + ATk
t u = 0 (16)

u(Tk−1, x) = g̃(x)

with g̃(x) := (xk − K )+ and where ATk is the generator of L under the forward
measure QTk . In the log-normal LMM this leads directly to the Black’s formula for
caplet prices. However, in the Lévy Libor model the driving process X under the
forward measure Q

Tk is not a Lévy process anymore since its compensator of the
random measure of jumps becomes stochastic (see (9)). Therefore, passing to the
forward measure in this case does not lead to a closed-form pricing formula and does
not bring any particular advantage. This is why in the forthcoming section we shall
work directly under the terminal measure QTn .

3.3 Swaptions

Let us consider a swaption, written on a fixed-for-floating (payer) interest rate swap
with inception date T0, payment dates T1, . . . , Tn and nominal N = 1. We denote by
K the swaption strike rate and assume for simplicity that the maturity T of the swap-
tion coincides with the inception date of the underlying swap, i.e. we assume T = T0.
Therefore, the payoff of the swaption at maturity is given by

(
PSw(T0; T0, Tn, K )

)+
,

where PSw(T0; T0, Tn, K ) denotes the value of the swap with fixed rate K at time
T0 given by

PSw(T0; T0, Tn, K ) =
n∑
j=1

δ j BT0(Tj )IE
Q

Tj
[
L j
Tj−1

− K
∣∣∣FT0

]

=
n∑
j=1

δ j BT0(Tj )
(
L j
T0

− K
)

=
⎛
⎝ n∑

j=1

δ j BT0(Tj )

⎞
⎠ (R(T0; T0, Tn) − K )

where

R(t; T0, Tn) =
∑n

j=1 δ j Bt (Tj )L
j
t∑n

j=1 δ j Bt (Tj )
=:

n∑
j=1

w j L
j
t (17)

is the swap rate i.e. the fixed rate such that the time-t price of the swap is equal to
zero. Here we denote
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w j (t) := δ j Bt
(
Tj

)
∑n

k=1 δk Bt (Tk)
(18)

Note that
∑n

j=1 w j (t) = 1.Dividing the numerator and the denominator in (17) by
Bt (Tn) and using the telescopic products togetherwith (1)we see thatw j (t) = f j (Lt )

for a function f j given by

f j (x) = δ j
∏n

i= j+1(1 + δi xi )∑n
k=1 δk

∏n
i=k+1(1 + δi xi )

(19)

for j = 1, . . . , n.
Therefore, the swaption price at time t ≤ T0 is given by

PSwn(t; T0, Tn, K )

= Bt (T0)IE
QT0

[(
PSw(T0; T0, Tn, K )

)+ ∣∣∣Ft

]
(20)

= Bt (T0)IE
QT0

⎡
⎣

⎛
⎝ n∑

j=1

δ j BT0(Tj )

⎞
⎠ (R(T0; T0, Tn) − K )+

∣∣∣∣∣∣Ft

⎤
⎦

= Bt (Tn)IE
QTn

[ ∑n
j=1 δ j BT0(Tj )

BT0(Tn)
(R(T0; T0, Tn) − K )+

∣∣∣∣∣Ft

]

= Bt (Tn)u(t, Lt )

where u is the solution to

∂t u + At u = 0 (21)

u(T0, x) = g̃(x)

with g̃(x) := δn fn(x)−1
(∑n

j=1 f j (x)x j − K
)+

.

4 Approximate Pricing

4.1 Approximate Pricing for General Payoffs Under
the Terminal Measure

Following an approach introduced by Černý et al. [6], we introduce a small parameter
into the model by defining the rescaled Lévy process Xα

t := αXt/α2 with α ∈ (0, 1).
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The process Xα is a martingale Lévy process under the terminal measure QTn with
characteristic triplet (0, c, Fα)with respect to the truncation function h(z) = z, where

Fα(A) = 1

α2
F({z ∈ R

d : zα ∈ A}, for A ∈ B(Rd).

We now consider a family of Lévy Libor models driven by the processes Xα, α ∈
(0, 1), and defined by

dLα
t = Lα

t−(bα(t, Lα
t )dt + �(t)dXα

t ), (22)

where the drift bα is given by (5) with F replaced by Fα. Substituting the explicit
form of Fα, we obtain

bkα(t, Lt ) = −
n∑

j=k+1

δ j L
j
t

1 + δ j L
j
t

〈λk(t), c λ j (t)〉

+ 1

α

∫

Rd

〈λk(t), z〉
⎛
⎝1 −

n∏
j=k+1

(
1 + αδ j L

j
t 〈λ j (t), z〉

1 + δ j L
j
t

)⎞
⎠ F(dz)

= −
n∑

j0=k+1

�k j0 (t)
δ j0 L

j0
t

1 + δ j0 L
j0
t

−
n−k−1∑
p=1

αp
n∑

j0=k+1

n∑
j1= j0+1

· · ·
n∑

jp= jp−1+1

Mp+2
t (λk ,λ j0 , . . . ,λ jp )

p∏
l=0

δ jl L
jl
t

1 + δ jl L
jl
t

=: −
n−k−1∑
p=0

αpbkp(t, Lt )

where we define

�i j (t) := (�(t)c�(t)	)i j +
∫

Rd

〈λi (t), z〉〈λ j (t), z〉F(dz), (23)

for all i, j = 1, . . . , n, and

Mk
t (λ

1, . . . ,λk) :=
∫

Rd

k∏
p=1

〈λp(t), z〉F(dz) (24)

for all k = 1, . . . , n.We denote the infinitesimal generator of Lα byAα
t . For a smooth

function f : Rd → R, the infinitesimal generator Aα
t f can be expanded in powers

of α as follows:
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Aα
t f (x) =

n∑
i=1

biα(t, x)xi
∂ f (x)

∂xi
+ 1

2

n∑
i, j=1

�i j (t)xi x j
∂2 f (x)

∂xi∂x j

+
∞∑
k=3

n∑
i1,...,ik=1

αk−2

k! xi1 . . . xik
∂k f (x)

∂xi1 . . . ∂xik
Mk

t (λ
i1, . . . ,λik ).

Consider now a financial product whose price is given by a generic PIDE of the form
(13) with At replaced by Aα

t . Assuming sufficient regularity,2 one may expand the
solution uα in powers of α:

uα(t, x) =
∞∑
p=0

αpu p(t, x). (25)

Substituting the expansions for Aα
t and bα into this equation, and gathering terms

with the same power of α, we obtain an ‘open-ended’ system of PIDE for the terms
in the expansion of uα.

The zero-order term u0 satisfies

∂t u0 + A0
t u0 = 0, u0(Tk, x) = g̃(x)

with

A0
t u0(t, x) =

n∑
i=1

bi0(t, x)xi
∂u0(t, x)

∂xi
+ 1

2

n∑
i, j=1

�i j (t)xi x j
∂2u0(t, x)

∂xi∂x j
(26)

bi0(t, x) = −
n∑

j=i+1

�i j (t)
δ j x j

1 + δ j x j
. (27)

Hence, by the Feynman-Kac formula

u0(t, x) = EQTn [
g̃(Xt,x

Tk
)
]

(28)

where the process Xt,x = (Xi,t,x )ni=1 satisfies the stochastic differential equation

dXi,t,x
s = Xi,t,x

s {bi0(s, Xi,t,x
s )ds + σi dWs}, Xi,t,x

t = xi , (29)

with W a d-dimensional standard Brownian motion with respect to Q
Tn and σ an

n × d-dimensional matrix such that σσ	 = (�i, j )
n
i, j=1.

To obtain an explicit approximation for the higher order terms u1(t, x) and u2(t, x)
given above, we consider the following proposition.

2See Ménassé and Tankov [14] for rigorous arguments in a simplified but similar setting.
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Proposition 3 Let Y be an n-dimensional log-normal process whose components
follow the dynamics

dY i
t = Y i

t (μi (t)dt + σi (t)dWt ),

where μ and σ are measurable functions such that

T∫

0

(‖μ(t)‖ + ‖σ(t)‖2)dt < ∞

and for all y ∈ R
n and some ε > 0,

inf
0≤t≤T

yσ(t)σ(t)T yT ≥ ε‖y‖2.

We denote by Y t,y the process starting from y at time t, and by Y t,y,i the i-th com-
ponent of this process. Let f be a bounded measurable function and define

v(t, y) = E[ f (Y t,y
T )].

Then, for all i1, . . . , im, the process

Y t,y,i1
s . . . Y t,y,im

s

∂mv(Y t,y
s )

∂yi1 . . . ∂yim
, s ≥ t,

is a martingale.

The proof can be carried out by direct differentiation for smooth f together with a
standard approximation argument for a general measurable f .

Furthermore, we assume the following simplification for the drift terms:

For all i = 1, . . . , n − 1 and p = 1, . . . , n − k − 1, the random quantities in the
terms bip(t, Lt ) in the expansion of the drift of the Libor rates under the terminal
measure are constant and equal to their value at time t , i.e. for all j = 1, . . . , n:

δ j L
j
s

1 + δ j L
j
s

= δ j L
j
t

1 + δ j L
j
t

, for all s ≥ t. (30)

This simplification is known as freezing of the drift and is often used for pricing
in the Libor market models.

Coming back now to the first-order term u1, we see that it is the solution of

∂t u1 + A0
t u1 + A1

t u0 = 0, u1(Tk, x) = 0 (31)
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with

A1
t u0(t, x) =

n∑
j=1

b j
1(t, x)x j

∂u0(t, x)

∂x j
(32)

+ 1

6

n∑
i1,i2,i3=1

xi1xi2xi3
∂3u0(t, x)

∂xi1∂xi2∂xi3
M3

t (λ
i1,λi2 ,λi3)

and the drift term

b j
1(t, x) = −

n∑
j0= j+1

n∑
j1= j0+1

M3
t (λ

j ,λ j0 ,λ j1)
δ j0x j0

1 + δ j0x j0

δ j1x j1

1 + δ j1x j1

. (33)

Moreover,

A0
t u1(t, x) =

n∑
i=1

bi0(t, x)xi
∂u1(t, x)

∂xi
+ 1

2

n∑
i, j=1

�i j (t)xi x j
∂2u1(t, x)

∂xi∂x j
.

We have

Lemma 4 Consider the model (22). Under the simplification (30), the first-order
term u1(t, x) in the expansion (25) can be approximated by

u1(t, x) ≈ 1

6

n∑
i1,i2,i3=1

xi1 xi2 xi3
∂3u0(t, x)

∂xi1∂xi2∂xi3

Tk∫

t

M3
s (λi1 ,λi2 ,λi3 )ds

−
n∑
j=1

n∑
j0= j+1

n∑
j1= j0+1

δ j0 x j0
1 + δ j0 x j0

δ j1 x j1
1 + δ j1 x j1

x j
∂u0(t, x)

∂x j

Tk∫

t

M3
s (λ j ,λ j0 ,λ j1 )ds

=: ũ1(t, x). (34)

Proof Applying the Feynman-Kac formula to (31), we have,

u1(t, x) = 1

6

Tk∫

t

ds
n∑

i1,i2,i3=1

M3
s (λi1 ,λi2 ,λi3 )EQTn

[
Xt,x,i1
s X t,x,i2

s X t,x,i3
s

∂3u0(s, X
t,x
s )

∂xi1∂xi2∂xi3

]

+
Tk∫

t

ds
n∑
j=1

EQTn

[
b j
1(s, X

t,x
s )Xt,x, j

s
∂u0(s, X

t,x
s )

∂x j

]
, (35)

with the process (Xt,x
s ) defined by (29). Under the simplification (30), we can apply

Proposition3 to obtain (34). �

Similarly, the second-order term u2 is the solution of

∂t u2 + A0
t u2 + A1

t u1 + A2
t u0 = 0, u2(Tk, x) = 0 (36)
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with

A2
t u0(t, x) =

n∑
j=1

b j
2(t, x)x j

∂u0(t, x)

∂x j
(37)

+ 1

24

n∑
i1,i2,i3,i4=1

xi1xi2xi3xi4
∂4u0(t, x)

∂xi1∂xi2∂xi3xi4
M4

t (λ
i1 ,λi2 ,λi3 ,λi4)

and the drift

b j
2(t, x) = −

n∑
j0= j+1

n∑
j1= j0+1

n∑
j2= j1+1

M4
t (λ

j ,λ j0 ,λ j1 ,λ j2)
δ j0x j0

1 + δ j0x j0

· δ j1x j1

1 + δ j1x j1

δ j2x j2

1 + δ j2x j2

. (38)

Lemma 5 Consider the model (22). Under the simplification (30), the second-order
term u2(t, x) in the expansion (25) can be approximated by

u2(t, x) ≈ ũ2(t, x) := Ẽ1 + Ẽ2 + Ẽ3 + Ẽ4, (39)

with

Ẽ1 := 1

6

n∑
i1,i2,i3=1

xi1 xi2 xi3

Tk∫

t

dsM3
s (λi1 ,λi2 , λi3)

·
⎡
⎢⎣1

6

n∑
i4,i5,i6=1

⎛
⎜⎝

Tk∫

s

M3
v (λi4 , λi5 , λi6)dv

⎞
⎟⎠ ∂3vi4,i5,i6(t, x)

∂xi1∂xi2∂xi3
(40)

−
n∑

j4=1

n∑
j5= j4+1

n∑
j6= j5+1

⎛
⎜⎝

Tk∫

s

M3
v (λ j4 , λ j5 ,λ j6)dv

⎞
⎟⎠ ∂3v̄ j4, j5, j6(t, x)

∂xi1∂xi2∂xi3

⎤
⎥⎦

Ẽ2 := −
n∑
j=1

n∑
j0= j+1

n∑
j1= j0+1

δ j0 x j0
1 + δ j0 x j0

δ j1 x j1
1 + δ j1 x j1

x j

Tk∫

t

dsMs(λ
j , λ j0 , λ j1)

·
⎡
⎢⎣1

6

n∑
i4,i5,i6=1

⎛
⎜⎝

Tk∫

s

M3
v (λi4 , λi5 , λi6)dv

⎞
⎟⎠ ∂vi4,i5,i6(t, x)

∂x j
(41)

−
n∑

j4=1

n∑
j5= j4+1

n∑
j6= j5+1

⎛
⎜⎝

Tk∫

s

M3
v (λ j4 ,λ j5 , λ j6)dv

⎞
⎟⎠ ∂3v̄ j4, j5, j6(t, x)

∂x j

⎤
⎥⎦

Ẽ3 := 1

24

n∑
i1,i2,i3,i4=1

xi1 xi2 xi3 xi4
∂4u0(t, x)

∂xi1∂xi2∂xi3∂xi4

Tk∫

t

dsM4
s (λi1 , λi2 ,λi3 , λi4 ) (42)
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and

Ẽ4 := −
n∑
j=1

n∑
j0= j+1

n∑
j1= j0+1

n∑
j2= j1+1

δ j0x j0

1 + δ j0x j0

δ j1x j1

1 + δ j1x j1

δ j2x j2

1 + δ j2x j2

x j
∂u0(t, x)

∂x j

·
Tk∫

t

M4
s (λ

j ,λ j0 ,λ j1 ,λ j2)ds (43)

where we define

vi, j,l(t, x) := xi x j xl
∂3u0(t, x)

∂xi∂x j∂xl
(44)

for all i, j, l = 1, . . . , n and

v̄i, j,l(t, x) := xi
δ j x j

1 + δ j x j

δl xl
1 + δl xl

∂u0(t, x)

∂xi
(45)

for all i = 1, . . . , n, j = i + 1, . . . , n and l = j + 1, . . . , n.

Proof Once again by the Feynman-Kac formula applied to (36) we have

u2(t, x) = 1

6

Tk∫

t

ds
n∑

i1,i2,i3=1

M3
s (λi1 ,λi2 ,λi3 )EQTn

[
Xt,x,i1
s X t,x,i2

s X t,x,i3
s

∂3u1(s, X
t,x
s )

∂xi1∂xi2∂xi3

]

+
Tk∫

t

ds
n∑
j=1

EQTn

[
b j
1(s, X

t,x
s )Xt,x, j

s
∂u1(s, X

t,x
s )

∂x j

]

+ 1

24

Tk∫

t

ds
n∑

i1,i2,i3,i4=1

M4
s (λi1 ,λi2 ,λi3 ,λi4 ) (46)

· EQTn

[
Xt,x,i1
s X t,x,i2

s X t,x,i3
s X t,x,i4

s
∂4u0(s, X

t,x
s )

∂xi1∂xi2∂xi3∂xi4

]

+
Tk∫

t

ds
n∑
j=1

EQTn

[
b j
2(s, X

t,x
s )Xt,x, j

s
∂u0(s, X

t,x
s )

∂x j

]

=: E1 + E2 + E3 + E4

with the process (Xt,x
s ) given by (29), b j

1(s, x) by (33) and b j
2(s, x) by (38).

In order to obtain an explicit expression for u2(t, x), we apply Proposition 3
combined with the simplification (30) for the drift terms b j

1 and b j
2 above. More

precisely, the expressions for the third and the fourth expectation, which are present
in the terms E3 and E4, follow by a straightforward application of Proposition 3 after
using the simplification for b j

2 . We get
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E3 ≈ Ẽ3 and E4 ≈ Ẽ4

with Ẽ3 and Ẽ4 given by (42) and (43), respectively.
To obtain explicit expressions for E1 and E2, firstly we insert the expression for

u1(s, Xt,x
s ) as given by (35). After some straightforward calculations, based again

on the application of Proposition 3 and the simplification (30) for b j
1 , which yields

E1 ≈ Ẽ1 and E2 ≈ Ẽ2

with Ẽ1 and Ẽ2 given by (40) and (41), respectively.
Collecting the terms above concludes the proof. �

Summarizing, we get the following expansion for the time-t price Pα(t; g) of the
payoff g(LTk ) when α → 0.

Proposition 6 Consider the model (22) and a European-type payoff with maturity
Tk given by ξ = g(LTk ). Assuming (30), its time-t price P

α(t; g) for α → 0 satisfies

Pα(t; g) = P0(t; g) + αP1(t; g) + α2P2(t; g) + O(α3), (47)

with

P0(t; g) := Bt (Tn)u0(t, Lt ) =: PLMM(t; g)

P1(t; g) := Bt (Tn)u1(t, Lt ) ≈ Bt (Tn)ũ1(t, Lt )

P2(t; g) := Bt (Tn)u2(t, Lt ) ≈ Bt (Tn)ũ2(t, Lt )

where PLMM(t; g) denotes the time-t price of the payoff g(LTk ) in the log-normal
LMM with covariance matrix � and the drift given by (27), u0(t, x) is given by (28)
and ũ1(t, x) and ũ2(t, x) by (34) and (39), respectively.

4.2 Approximate Pricing of Caplets

Recalling that the caplet price is given by (14), where u is the solution of the PIDE
(15), we can approximate this price using the development

uα(t, x) = u0(t, x) + αu1(t, x) + α2u2(t, x) + O(α3)

where the zero-order term u0 satisfies
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∂t u0 + A0
t u0 = 0, u0(Tk−1, x) = (xk − K )+

n∏
j=k+1

(1 + δ j x j )

with A0
t u0 =

n∑
i=1

bi0(t, x)xi
∂u0(t, x)

∂xi
+ 1

2

n∑
i, j=1

�i j (t)xi x j
∂2u0(t, x)

∂xi∂x j

and bi0(t, x) = −
n∑

j=i+1

�i j (t)
δ j x j

1 + δ j x j
.

The solution to the above PDE can be found via the Feynman-Kac formula,
where the conditional expectation is computed in the log-normal LMM model with
covariation matrix (�i j )

n
i, j=1 as in Sect. 4.1. Performing a measure change fromQ

Tn

to Q
Tk and denoting by PBS(V, S, K ) the Black-Scholes price of a call option with

variance V ,

PBS(V, S, K ) = IE

[(
Se− V

2 +√
V Z − K

)+]
, Z ∼ N (0, 1),

we see that the zero-order term is given by

u0(t, x) = PBS(V
Cpl
t,Tk−1

, xk, K )

n∏
j=k+1

(1 + δ j x j ), (48)

where

VCpl
t,T :=

T∫

t

�kk(s)ds. (49)

Now, in complete analogy to the case of a general payoff, the first-order term
u1(t, x) and the second-order term u2(t, x) are given by (35) and (46), respectively,
with u0(t, x) as in (48). Noting that u0(t, x) depends only on xk, xk+1, . . . , xn , the
derivatives of u0(t, x) with respect to x1, . . . , xk−1 are zero and the sums in (35) and
(46) in fact start from the index k. An application of Proposition 3 and simplification
(30) thus yields the following proposition, which provides an approximation of the
caplet price PCpl,α(t; Tk−1, Tk, K ) when α → 0.

Proposition 7 Consider the model (22) and a caplet with strike K and maturity
Tk−1. Assuming (30), its time-t price PCpl,α(t; Tk−1, Tk, K ) for α → 0 satisfies

PCpl,α(t; Tk−1, Tk, K ) = PCpl
0 (t; Tk−1, Tk, K ) + αPCpl

1 (t; Tk−1, Tk, K ) (50)

+ α2PCpl
2 (t; Tk−1, Tk, K ) + O(α3),

with
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PCpl
0 (t; Tk−1, Tk , K ) := Bt (Tn )δku0(t, Lt )

= Bt (Tn )δk PBS (VCpl
t,Tk−1

, Lkt , K )

n∏
j=k+1

(1 + δ j L
j
t )

PCpl
1 (t; Tk−1, Tk , K )

:= Bt (Tn )δk

⎧⎪⎨
⎪⎩
1

6

n∑
i1,i2,i3=k

L
i1
t L

i2
t L

i3
t

∂3u0(t, x)

∂xi1∂xi2∂xi3

∣∣∣
x=Lt

Tk−1∫

t

M3
s (λi1 , λi2 ,λi3 )ds

−
n∑
j=k

n∑
j0= j+1

n∑
j1= j0+1

δ j0 L
j0
t

1 + δ j0 L
j0
t

δ j1 L
j1
t

1 + δ j1 L
j1
t

L j
t

∂u0(t, x)

∂x j

∣∣∣
x=Lt

·
Tk−1∫

t

M3
s (λ j , λ j0 , λ j1 )ds

⎫⎪⎬
⎪⎭

PCpl
2 (t; Tk−1, Tk , K )

:= Bt (Tn )δk

⎧⎪⎨
⎪⎩
1

6

n∑
i1,i2,i3=k

L
i1
t L

i2
t L

i3
t

Tk−1∫

t

dsM3
s (λi1 , λi2 ,λi3 )

·
⎡
⎢⎣ 1

6

n∑
i4,i5,i6=k

⎛
⎜⎝

Tk−1∫

s

M3
v (λi4 , λi5 , λi6 )dv

⎞
⎟⎠ ∂3vi4,i5,i6 (t, x)

∂xi1∂xi2∂xi3

∣∣∣
x=Lt

−
n∑

j4=k

n∑
j5= j4+1

n∑
j6= j5+1

⎛
⎜⎝

Tk−1∫

s

M3
v (λ j4 , λ j5 , λ j6 )dv

⎞
⎟⎠ ∂3v̄ j4, j5, j6 (t, x)

∂xi1∂xi2∂xi3

∣∣∣
x=Lt

⎤
⎥⎦

−
n∑
j=k

n∑
j0= j+1

n∑
j1= j0+1

δ j0 L
j0
t

(1 + δ j0 L
j0
t

δ j1 L
j1
t

(1 + δ j1 L
j1
t

L j
t

Tk−1∫

t

dsMs (λ
j , λ j0 , λ j1 )

·
⎡
⎢⎣ 1

6

n∑
i4,i5,i6=k

⎛
⎜⎝

Tk−1∫

s

M3
v (λi4 ,λi5 ,λi6 )dv

⎞
⎟⎠ ∂vi4,i5,i6 (t, x)

∂x j

∣∣∣
x=Lt

−
n∑

j4=k

n∑
j5= j4+1

n∑
j6= j5+1

⎛
⎜⎝

Tk−1∫

s

M3
v (λ j4 ,λ j5 ,λ j6 )dv

⎞
⎟⎠ ∂3v̄ j4, j5, j6 (t, x)

∂x j

∣∣∣
x=Lt

⎤
⎥⎦

+ 1

24

n∑
i1,i2,i3,i4=k

L
i1
t L

i2
t L

i3
t L

i4
t

∂4u0(t, x)

∂xi1∂xi2∂xi3∂xi4

∣∣∣
x=Lt

Tk−1∫

t

M4
s (λi1 , λi2 , λi3 , λi4 )ds

−
n∑
j=k

n∑
j0= j+1

n∑
j1= j0+1

n∑
j2= j1+1

δ j0 L
j0
t

1 + δ j0 L
j0
t

δ j1 L
j1
t

1 + δ j1 L
j1
t

δ j2 L
j2
t

1 + δ j2 L
j2
t

L j
t

∂u0(t, x)

∂x j

∣∣∣
x=Lt

·
Tk−1∫

t

M4
s (λ j ,λ j0 ,λ j1 ,λ j )ds

⎫⎪⎬
⎪⎭
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with V Cpl
t,Tk−1

given by (49), u0(t, x) by (48), the terms M3
s (·) and M4

s (·) by (24) and
vi4,i5,i6(t, x) and v̄ j4, j5, j6(t, x) by (44) and (45), respectively.

Remark 8 Recalling that

u0(t, x) = PBS(V
Cpl
t,T , xk, K )

n∏
j=k+1

(1 + δ j x j )

we see that the functions v and v̄ given by

vi, j,l(t, x) := xi x j xl
∂3u0(t, x)

∂xi∂x j∂xl

for all i, j, l = k, . . . , n and

v̄i, j,l(t, x) := xi
δ j x j

1 + δ j x j

δl xl
1 + δl xl

∂u0(t, x)

∂xi

for all i = k, . . . , n, j = i + 1, . . . , n and l = j + 1, . . . , n, become in fact linear
combinations of the terms which are polynomials in x multiplied by derivatives of
PBS(·) up to order three.

4.3 Approximate Pricing of Swaptions

Let us consider a swaption defined in Sect. 3.3. For swaption pricing we again use
the general result under the terminal measure QTn given in Proposition 6. The price
of the swaption PSwn(t; T0, Tn, K ) then satisfies

PSwn(t; T0, Tn, K ) = Bt (Tn)(u0(t, Lt ) + αu1(t, Lt ) + α2u2(t, Lt )) + O(α3)

=: PSwn
0 (t; T0, Tn, K ) + αPSwn

1 (t; T0, Tn, K )

+ α2PSwn
2 (t; T0, Tn, K ) + O(α3),

where the function u0 satisfies the equation

∂t u0 + A0
t u0 = 0, u0(T0, x) = g̃(x)

with g̃(x) = δn fn(x)−1
(∑n

j=1 f j (x)x j − K
)+

. We see that the zero-order term

PSwn
0 (t; T0, Tn, K ) corresponds to the price of the swaption in the log-normal LMM

model with volatility matrix �(t).
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The function u0 related to the swaption price in the log-normal LMM is of course
not known in explicit form but one can use various approximations developed in the
literature (Jäckel and Rebonato [10], Schoenmakers [18]). To introduce the approx-
imation of Jäckel and Rebonato [10], we compute the quadratic variation of the log
swap rate expressed as function of Libor rates:

R(t; T0, Tn) = R(L1
t , . . . , L

n
t ) =

∑n
j=1 δ j L

j
t
∏ j

k=1(1 + δk Lk
t )∑n

j=1 δ j
∏ j

k=1(1 + δk Lk
t )

.

〈log R(·; T0, Tn)〉T =
T∫

0

d〈R(·; T0, Tn)〉t
R(t; T0, Tn)2 =

T∫

0

n∑
i, j=1

∂R(Lt )

∂Li

∂R(Lt )

∂L j

d〈Li , L j 〉t
R(t; T0, Tn)2

=
T∫

0

n∑
i, j=1

∂R(Lt )

∂Li

∂R(Lt )

∂L j

Li
t L

j
t �i j (t)dt

R(t; T0, Tn)2 .

The approximation of Jäckel and Rebonato [10] consists in replacing all stochastic
processes in the above integral by their values at time 0; in other words, the swap
rate becomes a log-normal random variable such that log R(t; T0, Tn) has variance

V swap
T =

n∑
i, j=1

∂R(L0)

∂Li

∂R(L0)

∂L j

Li
0L

j
0

R(0; T0, Tn)2
T∫

0

�i j (t)dt.

The function u0(0, x) can then be approximated by applying the Black-Scholes
formula (for simplicity t = 0):

u0(0, x) ≈ PBS(V
swap
T , R(0; T0, Tn), K ).

5 Numerical Examples

In this section, we test the performance of our approximation at pricing caplets on
Libor rates in the model (4), where Xt is a unidimensional CGMY process (Carr
et al. [5]). The CGMY process is a pure jump process, so that c = 0, with Lévy
measure

F(dz) = C

|z|1+Y

(
e−λ−z1{x<0} + e−λ+z1{x>0}

)
dz .

The jumps of this process are not bouded from below but the parameters we choose
ensure that the probability of having a negative Libor rate value is negligible. We
choose the time grid T0 = 5, T1 = 6, ... T5 = 10, the volatility parameters λi = 1,
i = 1, ..., 5, the initial forward Libor rates Li

0 = 0.06, i = 1, ..., 5 and the bond price
for the first maturity B0(T0) = 1.06−5. The CGMY model parameters are chosen
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Table 1 Price of ATM caplet computed using the analytic approximation together with the 95%
confidence bounds computed by Monte Carlo over 106 trajectories

Case 1 Case 2 Case 3 Case 4

Order 0 0.008684 0.006392 0.003281 0.007112

Order 1 0.008677 0.006361 0.003241 0.006799

Order 2 0.008677 0.006351 0.003172 0.006556

MC lower bound 0.008626 0.006306 0.003178 0.006493

MC upper bound 0.008712 0.006361 0.003204 0.006578

according to four different cases described in the following table, which also gives
the standard deviation and excess kurtosis of X1 for each case. Case 1 corresponds
to a Lévy process that is close to the Brownian motion (Y close to 2 and λ+ and λ−
large) and Case 4 is a Lévy process that is very far from Brownian motion:

Case C λ+ λ− Y Volatility (%) Excess kurtosis
1 0.01 10 20 1.8 23.2 0.028
2 0.1 10 20 1.2 17 0.36
3 0.2 10 20 0.5 8.7 3.97
4 0.2 3 5 0.2 18.9 12.7

We first calculate the price of the ATM caplet with maturity T1 written on the
Libor rate L1 with the zero-order, first-order and second-order approximation, using
as benchmark the jump-adapted Euler scheme ofKohatsu-Higa and Tankov [13]. The
first Libor rate is chosen to maximize the nonlinear effects related to the drift of the
Libor rates, since the first maturity is the farthest from the terminal date. The results
are shown in Table1. We see that for all four cases, the price computed by second-
order approximation is within or at the boundary of the Monte Carlo confidence
interval, which is itself quite narrow (computed with 106 trajectories).

Secondly, we evaluate the prices of caplets with strikes ranging from 3 to 9%
and explore the performance of our analytic approximation for estimating the caplet
implied volatility smile. The results are shown in Fig. 1. We see that in Cases 1, 2
and 3, which correspond to the parameter values most relevant in practice given the
value of the excess kurtosis, the second order approximation reproduces the volatility
smile quite well (in Case 1 there is actually no smile, see the scale on the Y axis
of the graph). In Case 4, which corresponds to very violent jumps and pronounced
smile, the qualitative shape of the smile is correctly reproduced, but the actual values
are often outside the Monte Carlo interval. This means that in this extreme case the
model is too far from the Gaussian LMM for our approximation to be precise. We
also note that the algorithm runs in O(n6), for the second order approximation, due
to the number of partial derivatives that one has to calculate. The algorithm may
therefore run slowly, should n become too large.
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Fig. 1 Implied volatilities of caplets with different strikes computed using the analytic approxi-
mation together with the Monte Carlo bound. Top graphs Case 1 (left) and Case 2 (right). Bottom
graphs Case 3 (left) and Case 4 (right)
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Cointegrated Commodity Markets
and Pricing of Derivatives
in a Non-Gaussian Framework

Fred Espen Benth

Abstract We analyse cointegration in commodity markets based on continuous-
time non-Gaussian stochastic processes. Using simple Lévy-based processes, we
propose a cointegrated spot price model in two commodity markets, and derive the
implied futures price dynamics using the Esscher transform to introduce a pric-
ing measure. A simple Heath-Jarrow-Morton cointegrated futures price dynamics is
introduced motivated from these considerations. We study the question of pricing
spread and quanto options in commodity markets, based on a Fourier approach.

Keywords Cointegration · Heath-Jarrow-Morton modeling · Ornstein-Uhlenbeck
processes · Lévy processes · Fourier transform · Spread options · Quanto options

1 Introduction

Eberlein and co-authors have, in a series of papers, developed an extensive the-
ory for non-Gaussian interest-rate modelling (see Eberlein et al. [21], Eberlein and
Kluge [23], Eberlein and Özkan [24] and Eberlein and Raible [26]). Using Lévy
processes, short rate models, Heath-Jarrow-Morton (HJM) dynamics for forward
rates as well as LIBOR models have been proposed and analysed in these papers.
Moreover, in Eberlein et al. [19, 20], Fourier methods have been studied and applied
to price various derivatives (see also the recent survey paper by Eberlein [18]).

In this paper we will look at cointegration in a non-Gaussian framework for com-
modity futuresmarkets. There are close relationships betweenfixed-incomeand com-
modity markets when it comes to modelling and analysis of derivatives (see Clewlow
and Strickland [16], Benth and Koekebakker [9], Eydeland and Wolyniec [28] and
Benth et al. [7]). Hence, we adopt the ideas of Lévy-based modelling from fixed-
income markets to commodities, and propose an approach where the concept of

F.E. Benth (B)
Department of Mathematics, University of Oslo,
P.O. Box 1053, 0316 Blindern, Oslo, Norway
e-mail: fredb@math.uio.no

© Springer International Publishing Switzerland 2016
J. Kallsen and A. Papapantoleon (eds.), Advanced Modelling in Mathematical Finance,
Springer Proceedings in Mathematics & Statistics 189,
DOI 10.1007/978-3-319-45875-5_20

477



478 F.E. Benth

cointegration can be included. As it turns out, our bivariate spot and futures price
dynamics are tailor-made for pricing spread and quanto options, financial derivatives
which are important in commodity markets.

Cointegration is a popular concept in econometrics tomodel the joint price dynam-
ics of two or more assets. Individually, the asset prices may be non-stationary, while
a linear combination of them are stationary. Duan and Pliska [17] suggested to model
two asset prices by a bivariate exponential Gaussian process, with logarithmic prices
consisting of a common non-stationary (drifted Brownian motion) dynamics and,
possibly dependent, stationary processes (Ornstein-Uhlenbeck processes). Although
the assets are cointegrated under the market probability, Duan and Pliska [17] argued
that the equivalent martingale measure will remove the cointegration effect, as this
enters into the drift. Hence, in their context the price of a spread option, say, will not
be affected by cointegration.

In Benth and Koekebakker [10], the view of Duan and Pliska [17] is questioned
in the context of commodity markets, and more specifically in energy markets. The
spot is in some markets not tradeable in the classical financial sense (electricity,
weather, and freight), and in other markets it may be very illiquid (gas). Hence, the
pricing measure Q does not necessarily need to be a martingale measure for the
spot. Indeed, for example in electricity markets, any equivalent measure Q can serve
as a pricing measure for derivatives contracts (like for example futures), since the
spot cannot be traded financially. This opens for the possibility that cointegration
may be preserved when going from the market probability to the pricing probability.
Benth and Koekebakker [10] demonstrate in a Gaussian modelling framework that
this is indeed the case, and in fact the futures price dynamics become cointegrated as
well when looking at two contracts with the same time-to-maturity (e.g., using the
Musiela parametrization). As a side-remark, a pricing measure Q can be seen as a
model of the risk premium in the market.

In this paper we generalize the cointegration analysis in Benth and Koeke-
bakker [10] to Lévy models. In particular, we consider the common non-stationary
factor to be a general Lévy process, whereas the stationary factors are assumed to be
Volterra-type process which can be represented as stochastic integrals of determin-
istic kernel functions with respect to Lévy processes. Such models are significantly
generalizing Ornstein-Uhlenbeck processes, which are the typical choice for mod-
elling stationary price behaviour in commodity markets (see Benth et al. [7]). After
proposing a cointegrated Lévy based spot price model (specified under the market
probability), we introduce a pricing measure by the Esscher transform. Next, we
derive the futures price dynamics by computing the conditional expected spot price
at maturity andwe obtain that cointegration is preserved for futures with a fixed time-
to-maturity. We remark here that we focus on dynamics which are cointegrated in
the sense that the difference of logarithmic prices are stationary, after removing pos-
sible seasonality effects. Seasonality is an important ingredient in many commodity
markets, for example weather and power markets.

Motivated from the cointegrated spot model and the related futures prices, we
discuss the HJM approach (see Heath et al. [31] for their seminal paper on direct
forward rate modelling). A no-arbitrage condition is derived, which essentially states



Cointegrated Commodity Markets and Pricing of Derivatives … 479

a relationship between the initial futures curve, the stationary “volatility” functions
and the driving Lévy processes.

As an application of our cointegration analysis, we price two classes of options
with some interest in energy markets. Spread options are popular in energy and
commodity markets as a tool to hedge price differentials, for example to hedge the
difference between the power price and a price of a fuel like coal or gas. Another
recently emerged class of derivatives is the so-called energy quanto options. Such
options are intended to provide a hedge towards price and volume risk in the power
market, say. The payoff function from an energy quanto option is typically given as
a product of a European option (put, say) on the energy price and a European option
(put, say) on a temperature index.

In this paper we derive integral expressions for the price of spread and energy
quanto options in the context of cointegrated futures price dynamics. Using Fourier
methods, we can conveniently express the price in terms of the characteristics of the
involved Lévy processes along with the Fourier transforms of the payoff functions.
In the spread option case, we can reduce the bivariate feature of the option to the
problem of pricing a standard call option using a convenient change of probabilities.
For the quanto option we show by conditioning that the price can be reduced into
that of two univariate options.

Our results are presented as follows: in the next section we propose a cointegrated
bivariate spot price dynamics, with factors driven by Lévy processes. The implied
futures price dynamics is derived based on Esscher transform. Section3 contains
a discussion on the HJM approach, inspired by the results from Sect. 2. Pricing of
spread and quanto options are presented in Sect. 4.

2 Cointegrated Spot Price Dynamics and the Relation
to Futures Prices

Let (Ω,F , P) be a complete probability space equippedwith a filtration {Ft }t≥0 and
L = (L ,U1,U2) be a trivariate Lévy process. We denote the cumulant function, that
is the distinguished logarithm of the characteristic function (see Sato [37, Sect. 7]),
of L by ψL(z) for z ∈ R

3. The marginal cumulants are denoted ψ(z) := ψL(z, 0, 0),
ψ1(z) = ψL(0, z, 0) and ψ2(z) = ψL(0, 0, z) for z ∈ R, being the cumulants of L ,
U1 and U2, resp. The joint cumulant of U1 and U2, ψ1,2(z1, z2) := ψL(0, z1, z2),
z1, z2 ∈ R, will be important. We assume that L has finite exponential moments of
all orders θ ∈ [−K , K ]3, where K > 0 is a constant. Furthermore, for convenience
we suppose that the real-valued Lévy processes U1 and U2 have zero drift.

Consider two commodities with spot price dynamics S1, S2 defined by

ln Sk(t) = sk + Λk(t) + L(t) + Yk(t), k = 1, 2. (1)

Here, for k = 1, 2, Λk(t) is a deterministic seasonality function assumed to be
bounded and measurable, and



480 F.E. Benth

Yk(t) =
∫ t

0
gk(t − s) dUk(s), (2)

for gk ∈ L2(R+). Furthermore, sk := ln Sk(0) − Λk(0) ∈ R is the deviation of the
initial (logarithmic) spot price from its current seasonal mean.

We note that Yk is a stationary process in the sense of having a limiting distribution
when time approaches infinity. Indeed, for z ∈ R (and log denoting the distinguished
logarithm),

lim
t→∞ logE

[
eiz

∫ t
0 gk (t−s) dUk (s)

]
= lim

t→∞

∫ t

0
ψk(zgk(s)) ds =

∫ ∞

0
ψk(zgk(s)) ds.

The latter equality holds by dominated convergence, noting that ψk is of quadratic
growth as Uk is integrable (in fact, exponentially integrable of orders in the interval
[−K , K ]) and driftless and gk is square integrable on R+. Defining for k = 1, 2

Ỹk(t) :=
∫ t

−∞
gk(t − s) dUk(s), (3)

we readily see that this is a stationary process in the strict sense (e.g., in the sense of
having a distribution independent of t for all times) with cumulant

∫ ∞
0 ψk(zgk(s)) ds.

Hence, Yk(t) converges to Ỹk(0) in distribution when t → ∞. Sometimes Ỹk(t) is
referred to as a Lévy stationary (LS) process. Note that we have used a two-sided
Lévy process Uk in the definition of Ỹk in (3).

As an example, assume that L(t) = μt + σ B(t) for μ, σ ∈ R, (B,U1,U2) :=
(B,W1,W2), a trivariate Brownian motion and gk(x) = σk exp(−αk x), σk, αi ∈
R+, k = 1, 2. The choice of gk implies that Yk follows an Ornstein-Uhlenbeck
process with speed of mean reversion αk and volatility σk . Under this specification,
the spot dynamics in (1) coincide with the cointegration model proposed by Duan
and Pliska [17]. Moreover, marginally, the spot prices follow a two-factor dynam-
ics with L modeling the long-term variations while Yk represents the short term
fluctuations. This is a typical commodity spot price model, see for example Lucia
and Schwartz [34] for an application to the NordPool electricity market. Remark
that one may have cross-dependencies between the short and long term factors (that
is, between B and Wk), and between the short term factors (that is, between W1

and W2). Benth and Koekebakker [10] proposed a cointegrated spot price model of
this class. Indeed, our spot model in (1) extends the Gaussian set-up in Benth and
Koekebakker [10] to general Lévy processes.

An extension of the Gaussian two-factor model was proposed in Benth et al. [8]
as a model for the EEX spot prices, where the long-term factor L was supposed to
be a normal inverse Gaussian (NIG) Lévy process. The short term factor was driven
by a stable Lévy process with kernel function g(x) coming from a continuous-time
autoregressive moving average process. This is a two-factor extension of the expo-
nential hyperbolic Lévy process suggested by Eberlein and Stahl [27] for German
power spot prices. Barndorff-Nielsen et al. [2] propose a related model for energy
spot markets, namely a volatility modulated Volterra dynamics.
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We observe from (1) that S1 and S2 are cointegrated since

ln S1(t) − ln S2(t) = Λ1(t) − Λ2(t) + s1 − s2 + Y1(t) − Y2(t),

which is stationary around the difference of the seasonal means Λ1(t) − Λ2(t).
We remark that the notion of cointegration is slightly modified here to take sea-
sonality into account. Strictly speaking, in view of Duan and Pliska [17], it is
the de-seasonalized logarithmic spot prices which are cointegrated, being equal to
Y1(t) − Y2(t) which has a limiting distribution. Indeed, we find the cumulant of the
last difference to be

lim
t→∞ logE

[
exp

(
iz(

∫ t

0
g1(t − s) dU1(s) −

∫ t

0
g2(t − s) dU2(s))

)]

= lim
t→∞

∫ t

0
ψ1,2(zg1(s),−zg2(s)) ds

=
∫ ∞

0
ψ1,2(zg1(s),−zg2(s)) ds.

This limit is the cumulant of the random variable Ỹ1(t) − Ỹ2(t), with Ỹk defined in
(3), k = 1, 2.

To derive the futures price dynamics from the cointegrated spot model we need
a pricing measure Q. Due to market frictions like storage costs (for gas, oil and
agriculture, say) or non-tradability (for power, weather and freight, say), the spot
dynamics does not need to be a martingale under the pricing measure (see Benth et
al. [7] for an argument of this). In this paper we apply a simple Esscher transform
to introduce an equivalent pricing measure Q (see Gerber and Shiu [30] and Kallsen
and Shiryaev [33] for the Esscher transform in insurance and mathematical finance
applications, and Benth et al. [7] for the Esscher transform in energy markets).

Let a ∈ [−K , K ]3 and note that ψL(−ia) is finite by the exponential integrability
condition on L. Consider the stochastic process

M(t) = exp
(
a′L(t) − ψL(−ia) t

)
, t ≥ 0, (4)

which is a martingale due to the exponential moment condition. For a given
time horizon T < ∞, we define a probability Q with Radon-Nikodym derivative
dQ/dP|FT = M(T ). This will be our pricing measure.

Following Benth et al. [7] or Kallsen and Shiryaev [33], we find have that L is
a Lévy process with respect to the probability Q, where the cumulant, denoted by
ψL,Q , becomes,

ψL,Q(z) = ψL(z − ia) − ψL(−ia), (5)

for z ∈ R
3. Indeed, the effect of the probability Q is an exponential tilting of the

Lévy measure of L and a change of drift, which can be related back to the notion of
market price of risk and eventually the risk premium (see Benth et al. [7]).
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For k = 1, 2, we define the futures price Fk(t, T ) at time t ≥ 0 for a contract
delivering commodity k = 1, 2 at time T ≥ t by

Fk(t, T ) = EQ [Sk(T ) |Ft ] , (6)

if Sk is Q-integrable. Here, we have assumed that the risk-free interest rate is a
constant, from now on denoted by r . In order to have that Sk is Q-integrable, we
must make sure that the exponential integrability condition of L is verified. For this
purpose, we assume from now on that gk(s), k = 1, 2, are bounded functions onR+,
and that a in the Esscher transform satisfies the condition that a + e1 + gk(s)ek+1 ∈
[−K , K ]3 for s ≥ 0 and k = 1, 2.

In the next Proposition we compute the futures price dynamics:

Proposition 1 For 0 ≤ t ≤ T and k = 1, 2 it holds that

Fk(t, T ) = exp

(
Λk(T ) + hk(T − t) + L(t) +

∫ t

0
gk(T − s) dUk(s)

)

where

hk(x) = sk +
∫ x

0
ψL,Q(−i(e1 + gk(s)ek+1)) ds

for x ≥ 0 and e j , j = 1, 2, 3 are the canonical basis vectors in R
3

Proof We show the result for k = 1. It holds that

F1(t, T ) = EQ

[
exp

(
Λ(T ) + s + L(T ) +

∫ T

0
g1(T − v) dU1(v)

)
|Ft

]

= exp(Λ(T ) + s + L(t) +
∫ t

0
g1(T − v) dU1(v))

× EQ

[
exp

(
L(T ) − L(t) +

∫ T

t
g1(T − v) dU1(v)

)
|Ft

]
,

from Ft -measurability. As L and U1 are Lévy processes under Q, with finite expo-
nential moments of sufficient orders, we find by the independent increment property

EQ

[
exp

(
L(T ) − L(t) +

∫ T

t
g1(T − v) dU1(v)

)
|Ft

]

= EQ

[
exp

(
L(T ) − L(t) +

∫ T

t
g1(T − v) dU1(v)

)]

= exp

(∫ T−t

0
ψL,Q(−i,−ig1(v), 0) dv

)
,

where we have used that dQ/dP|Ft = M(t). �
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We remark that the above result is a special case of Proposition 3.1 in Benth et al. [5]
(with n = 2 and the limiting specification T1 = T2 in their notation).

Note that using the Musiela parametrization x = T − t , that is, expressing the
futures prices in termsof time-to-maturity, wefind thatwithGk(t, x) := Fk(t, t + x),

lnG1(t, x) − lnG2(t, x) = Λ1(t, x) − Λ2(t, x) + h1(x) − h2(x)

+
∫ t

0
g1(t + x − s) dU1(s) −

∫ t

0
g2(t + x − s) dU2(s).

(7)

For fixed x ≥ 0, the last two terms are stationary in the sense of having a limiting
distribution. Indeed, we find

lim
t→∞ logE

[
exp

(
iz(

∫ t

0
g1(t + x − s) dU1(s) −

∫ t

0
g2(t + x − s) dU2(s))

)]

= lim
t→∞

∫ t+x

x
ψ1,2(zg1(s),−zg2(s)) ds

=
∫ ∞

x
ψ1,2(zg1(s),−zg2(s)) ds.

The difference of the h-functions

h1(x) − h2(x) =
∫ x

0
ψL,Q(−i(e1 + g1(s)e2)) − ψL,Q(−i(e1 + g2(s)e3)) ds,

is, of course, constant over time t , and therefore we can conclude that G1 and G2 are
cointegrated (around the seasonal function). Cointegration holds both under Q and
under P . Note that F1 and F2 are not cointegrated, as the integral involving themarket
price of risk will vary with t . Hence, for roll-over futures we have cointegration,
whereas for futures with fixed maturity this property does not hold.

3 A Cointegrated HJM Futures Price Dynamics

Motivated by the analysis of cointegrated spot prices and their futures price dynamics,
we discuss the HJM approach. As our goal is pricing of derivatives (on futures), it
is reasonable to follow the HJM framework and model the futures price dynamics
directly under a pricing measure Q. Thus, we assume that we have given a complete
probability space (Ω,F , Q) equipped with a filtration {Ft }t≥0.

We preserve the notation from the previous Section, and let Fk(t, T ), k = 1, 2
denote the futures price at time 0 ≤ t ≤ T for two contracts delivering com-
modity 1 and 2, respectively, at time T . In the Musiela parametrization, we let
Gk(t, x) := Fk(t, t + x), k = 1, 2, with x = T − t ≥ 0 being the time-to-maturity
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of the futures contracts. We define the dynamics of the two futures prices under the
Musiela parametrization as follows: for k = 1, 2,

Gk(t, x) = exp

(
Λk(t + x) + hk(x) + L(t) +

∫ t

0
gk(t + x − s) dUk(s)

)
, (8)

where Λk :R+ → R is a measurable function, modelling the seasonal variations in
the futures prices. Furthermore, L = (L ,U1,U2) is a trivariate Q-Lévy process with
finite exponential moments of all orders θ ∈ [−K , K ]3 for a constant K > 0, where
the cumulant is denoted byψL,Q(z), z ∈ R

3. The functions gk :R+ → R are assumed
square integrable, that is, gk ∈ L2(R+). Moreover, assume that hk : R+ → R are
measurable functions. Observe that Gk(0, x) = exp(Λk(x) + hk(x)), or, hk(x) =
lnGk(0, x) − Λk(x). Hence, hk(x) is the initial futures curve (on a logarithmic
scale) less the seasonality function. In particular, after choosing x = 0, we find that
hk(0) = lnGk(0, 0) − Λk(0) = ln Sk(0) − Λk(0). It is therefore natural to assume
that hk(0) = sk , where we recall sk from (1). Remark also that the functions Λk

are measuring the seasonality effect on the futures prices, and therefore we use the
argument t + x as this will refer to the actual date of delivery.

In order to have an arbitrage-free model, the futures prices t �→ Fk(t, T ), t ≤ T,

for k = 1, 2must be Q-martingales.With our specificmodel, we can easily formulate
a no-arbitrage condition on the involved parameters:

Proposition 2 Suppose that the functions gk(s) are such that e1 + gk(s)ek+1 ∈
[−K , K ]3 for s ≥ 0 and k = 1, 2. The processes t �→ Fk(t, T ), k = 1, 2, are Q-
martingales if and only if

hk(x) = sk +
∫ x

0
ψL,Q(−i(e1 + gk(v)ek+1)) dv. (9)

Proof It follows from the exponential moment condition ofL and the assumption on
gk that t �→ Fk(t, T ), t ≤ T, are integrable processes. By the independent increment
property and adaptedness of the Q-Lévy process L, we find for s ≤ t ≤ T ,

EQ
[
Fk(t, T ) |Fs

] = exp (Λk(T ) + hk(T − t))EQ

[
exp

(
L(t) +

∫ t

0
gk(T − v) dUk(v)

)
|Fs

]

= exp

(
Λk(T ) + hk(T − t) + L(s) +

∫ s

0
gk(T − v) dUk(s)

)

× EQ

[
exp

(
L(t) − L(s) +

∫ t

s
gk(T − v) dUk(v)

)]

= Fk(s, T ) exp

(
hk(T − t) − hk(T − s) +

∫ t

s
ψL,Q(−i(e1 + gk(T − v)ek)) dv

)
.

Hence, after a change of variables, we have that Fk are Q-martingales if and only if

hk(T − t) − hk(T − s) +
∫ T−t

T−s
ψL,Q(−i(e1 + gk(v)ek)) dv = 0,
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for all s ≤ t ≤ T . The claim follows. �

Condition (9) in the Proposition above gives a precise relationship between hk and gk ,
and the Lévy processL, that ensures an arbitrage-free dynamics. If we have specified
the initial futures curves from data, say, thenwe have implicitly specified hk(x), since
hk(x) = lnGk(0, x) − Λk(x). Then the no-arbitrage condition puts restrictions on
the freedom to model gk and L. On the other hand, if we have specified L and gk ,
then there is no flexibility in the modelling of hk . Note also that the assumption on
gk implies that it is bounded by K , and furthermore that L must have an exponential
moment of order 1 and thus K ≥ 1.

Observe that we have specified Gk(t, x) in (8) directly as an exponential Lévy
driven process, and not as a solution to a stochastic differential equation. In the
original HJM approach (see Heath et al. [31]), the forward rate dynamics is modelled
as a stochastic differential equation, whereas under the Musiela parametrization the
forward rates will follow a particular stochastic partial differential equation (see
Carmona and Tehranchi [14] for an analysis of such stochastic partial differential
equations in the Gaussian framework and Peszat and Zabczyk [36] for the extension
to the Lévy case). In particular, the no-arbitrage condition for such forward rate
models links the drift of the dynamics to the noise. For example, in a simple linear
Lévy-based forward rate dynamics, Eq. (3.83) in Eberlein [18] states the HJM drift
condition in terms of the cumulant of the Lévy process and the volatility. In our
exponential model, the function hk plays the role of the drift, and the no-arbitrage
condition becomes slightly simpler in our context as it is the futures prices that must
be martingales and not the discounted zero-coupon bond prices implied from the
forward rate dynamics.

A direct modelling approach as we propose here was advocated in equity markets
by Eberlein and Keller [23] and Barndorff-Nielsen [1] as a statistically convenient
way to specify a Lévy-driven stochastic dynamics. One avoids ad-hoc hypothesis on
the jumps of the Lévy process to ensure positivity of the prices, which comes for
free in (8). Moreover, a simple stochastic model for the logarithmic returns is readily
available from the direct model, given in terms of increments of Lévy processes.

Consider the case of L being a trivariate Brownian motion. Then, ψL,Q(z) =
− 1

2z
′Cz for z ∈ R

3 with C being a symmetric, positive definite 3 × 3-matrix with
1’s on the diagonal (C is the correlation matrix). The no-arbitrage condition now
becomes

hk(x) = sk + 1

2

∫ x

0
(e1 + gk(v)ek)′C(e1 + gk(v)ek) dv

= sk + 1

2

(
x(e′

1Ce1) + 2(e′
1Cek)

∫ x

0
gk(v) dv + (e′

kCek)
∫ x

0
g2k (v) dv

)

= sk + 1

2
x + corr(L ,Uk)

∫ x

0
gk(v) dv + 1

2

∫ x

0
g2k (v) dv,

as expected.
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In the bivariate futures price model in (8), L plays the role of a common non-
stationary factor, while Yk(t, x) := ∫ t

0 gk(t + x − s) dUk(s) is the stationary factor.
A simple specification of L is L(t) = μt + σ B(t), a drifted Brownian motion (here
μ, σ ∈ R and B is a standard Brownian motion). Letting gk(x) = σk exp(−αk x) for
x ≥ 0 and parameters σk, αk ∈ R+ yields that Yk becomes an Ornstein-Uhlenbeck
process. Further assuming Uk to be a Brownian motion leads us back to Benth and
Koekebakker [10]. There, a cointegrated HJM dynamics is proposed stated as a
simple stochastic differential equation. In our proposed futures price dynamics we
have used only two factors for the sake of simplicity. Observe that one can easily
incorporate more factors to explain the price dynamics.

We have that

lnG1(t, x) − lnG2(t, x) − (Λ1(t + x) − Λ2(t + x))

= h1(x) − h2(x) +
∫ t

0
g1(t + x − s) dU1(s) −

∫ t

0
g2(t + x − s) dU2(s).

(10)

The cumulant of the difference of the two stochastic integrals on the right hand side
is (with z ∈ R)

ψQ(t, z) : = logEQ

[
exp

(
iz

(∫ t

0
g1(t + x − s) dU1(s) −

∫ t

0
g2(t + x − s) dU2(s)

))]

=
∫ t+x

x
ψL,Q(z(g1(s)e2 − g2(s)e3)) ds.

Since, ψQ(t, z) → ∫ ∞
x ψL,Q(z(g1(s)e2 − g2(s)e3)) ds when t → ∞, we have that

the HJM futures pricemodel is cointegrated in the sense that the futures price dynam-
ics for fixed time to maturity x is cointegrated.

Note that we do not need to have the same time to maturity in order for two
futures contracts to be cointegrated. Indeed, consider lnG1(t, x) − lnG2(t, y) for
x, y ∈ R+. We have

lnG1(t, x) − lnG2(t, y) − (Λ1(t + x) − Λ2(t + y))

= h1(x) − h2(y) +
∫ t

0
g1(t + x − s) dU1(s) −

∫ t

0
g2(t + y − s) dU2(s).

We find, with obvious modification of the notation,

lim
t→∞ ψQ(t, z) =

∫ ∞

0
ψL,Q(z(g1(x + s)e2 − g2(y + s)e3)) ds,

which shows stationarity of the last difference of stochastic integrals, and thus coin-
tegration. In particular, choosing x = 0, any futures with fixed time to maturity will
be cointegrated with the spot. If x = y = 0, we find the spot dynamics as
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Sk(t) = Gk(t, 0) = exp

(
Λk(t) + sk + L(t) +

∫ t

0
gk(t − s) dUk(s)

)

which leads us back to the dynamics considered in the previous Section. Hence, not
unexpectedly, the HJM model produces a cointegrated (under Q) spot price model
as well.

4 Pricing of Spread and Quanto Options Using Fourier
Methods

In this Section we will analyse the price of spread and quanto options, two classes
of derivatives which are popular for risk management in energy markets. Spread
and quanto options are examples of options where the payoff is a function of two
underlying assets, in our case being two futures contracts. Throughout the Section
we consider the futures prices Fk(t, T ), t ≤ T under a pricing measure Q defined by
the cointegrated dynamics (8) in Sect. 3 (or, essentially equivalently, the one derived
from the cointegrated spot model in Sect. 2):

Fk(t, T ) = exp

(
Λk(T ) + hk(T − t) + L(t) +

∫ t

0
gk(T − s) dUk(s)

)
.

We recall that L = (L ,U1,U2) is a trivariate Q-Lévy processes, with cumulant
denoted byψL,Q(z), z ∈ R

3, which satisfies an exponential integrability condition of
orders θ ∈ [−K , K ]3. From here onwe invoke the assumption on gk of Proposition 2.

In our study of the price of spread and quanto options, we shall apply the Fourier
approach. Recall that for a function f ∈ L1(R), we define its Fourier transform
(following Folland [29]) by

f̂ (y) =
∫
R

f (x)e−ixy dx, y ∈ R. (11)

Further, if f̂ ∈ L1(R), the Fourier inversion formula tells that (see Folland [29])

f (x) = 1

2π

∫
R

f̂ (y)eixy dy, a.e. x ∈ R. (12)

We now study the price of spread and quanto options.



488 F.E. Benth

4.1 Spread Options

We consider a spread option with exercise time τ > 0 written on two cointegrated
forward contracts F1 and F2 with delivery at time T ≥ τ , that is, an option with
payoff

max (F1(τ, T ) − F2(τ, T ), 0) ,

at the exercise time τ . This is indeed an exchange-option first analysed by Mar-
grabe [35] in the case of a bivariate geometric Brownian motion dynamics for the
two underlying assets. In energy markets, spread options are written on the differ-
ence between the energy price and the price of fuel, for example gas (called the
spark spread) or coal (called the dark spread). Such options provide a protection for
power generators against too high fuel prices. There are also geographical spread
options traded, which are written on the price differential across different power
markets, for example between the Nordic NordPool and the German EEX market.
On the NYMEX market, options on price differences between various blends of oil
are traded (so-called crack spreads). We refer to Carmona and Durrleman [13] for
an extensive discussion of various spread options and their use.

Spread option pricing formulas using Fourier methods have been derived by sev-
eral authors under various model assumptions (see Eberlein et al. [19], Benth et
al. [4], Barndorff-Nielsen et al. [3] and Benth and Zdanowicz [12]). Here we will
derive the spread option price for the cointegrated futures price dynamics.

From the no-arbitrage theory, the price of the spread is defined as

Vspread = e−rτ
EQ [max (F1(τ, T ) − F2(τ, T ), 0)] . (13)

Introduce the notation Hk(τ, T ) := exp(Λk(T ) + hk(T − τ)) and we see that

Vspread = e−rτ
EQ

[
eL(τ ) max

(
H1(τ, T ) exp

(∫ τ

0
g1(T − s) dU1(s)

)

−H2(τ, T ) exp

(∫ τ

0
g2(T − s) dU2(s)

)
, 0

)]
. (14)

We apply a combination of Esscher transform and Fourier methods, along the lines
of the abovementioned papers, to derive an expression for Vspread (see also Eber-
lein et al. [25, Theorem. 5.1] for spread option pricing in a general semimartingale
framework).

First, we show that L(τ ) can be factorized out in the spread option price:

Proposition 3 Define the probability QL ∼ Q with density

dQL

dQ
|Ft = exp(L(t) − ψL,Q(−i, 0, 0) t)
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for t ≤ τ . Then (U1,U2) is a QL-Lévy process on t ≤ τ with cumulantψ L
1,2(x, y) :=

ψL,Q(−i, x, y) − ψL,Q(−i, 0, 0) for x, y ∈ R, and it holds that

Vspread = e−(r−ψL,Q(−i,0,0))τ
EQL

[
max

(
H1(τ, T ) exp

(∫ τ

0
g1(T − s) dU1(s)

)

−H2(τ, T ) exp

(∫ τ

0
g2(T − s) dU2(s)

)
, 0

)]
.

Proof As L has an exponential moment of order 1 by assumption, t �→ exp(L(t) −
ψL,Q(−i, 0, 0)t) is a martingale with expectation 1, and thus QL is an equivalent
probability to Q with the given density process. Indeed, this is an Esscher transform
which preserves the independent and stationary increment properties of (U1,U2)

(see Benth et al. [7]) A straightforward calculation shows for x, y ∈ R,

EQL

[
exp (i(xU1(1) + yU2(1)))

]
= EQ

[
exp (i(−i)L(1) + xU1(1) + yU2(1)))

]
e−ψL,Q(−i,0,0)

= exp
(
ψL,Q(−i, x, y) − ψL,Q(−i, 0, 0)

)
.

Hence, (U1,U2) is a QL -Lévy process with ψ L
1,2(x, y) as cumulant. By changing

probability from Q to QL in the expectation expressing Vspread, the result follows. �

By the Lévy-Khintchine representation we can represent ψL,Q(z), z ∈ R
3 as

ψL,Q(z) = iz′b − 1

2
z′Cz +

∫
R3

(eiz
′u − 1 − iz′u1|u|≤1) 
Q(du)

where b ∈ R
3 is the drift, C ∈ R

3×3 is a symmetric positive definite matrix and

Q(du) is the Lévy measure. Then, after a little algebra (using x = (0, x, y) ∈ R

3)

ψ L
1,2(x, y) = ix′

(
b + Ce1 +

∫
R3

(ee
′
1u − 1)u1|u|≤1 
Q(du)

)
− 1

2
x′Cx

+
∫
R3

(eix
′u − 1 − ix′u1|u|≤1) e

e′
1u 
Q(du). (15)

We see that the Esscher transform exponentially tilts the Lévy measure by exp(u1),
while the covariance operator is unchanged. The drift of (U1,U2) will be altered by
a contribution from both the Lévy measure and the covariance operator when going
from Q to QL .

Consider the expectation operator in the price Vspread in Proposition 3. We find
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EQL

[
max

(
H1(τ, T )e

∫ τ

0 g1(T−s) dU1(s) − H2(τ, T )e
∫ τ

0 g2(T−s) dU2(s), 0
)]

= H2(τ, T )EQL

[
exp(

∫ τ

0
g2(T − s) dU2(s))

× max

(
H1(τ, T )

H2(τ, T )
e
∫ τ

0 g1(T−s) dU1(s)−
∫ τ

0 g2(T−s) dU2(s) − 1, 0

)]

= H2(τ, T ) exp

(∫ τ

0
ψ L

1,2(0,−ig2(T − s)) ds

)

× EQ2

[
max

(
H1(τ, T )

H2(τ, T )
e
∫ τ

0 g1(T−s) dU1(s)−
∫ τ

0 g2(T−s) dU2(s) − 1, 0

)]
,

where the probability Q2 ∼ QL has density process

dQ2

dQL
|Ft = exp

(∫ t

0
g2(T − s) dU2(s) −

∫ t

0
ψ L

1,2(0,−ig2(T − s)) ds

)
,

for t ≤ τ . Note that by the boundedness of g2 and the exponential integrability
assumption onU2, this is a martingale. Again, we have applied an Esscher transform
to simplify the expectation functional for the spread option price. This time, the
Esscher transform is not time-homogeneous, and hence the Lévy property ofU1 and
U2 is not preserved. However, we can still compute an expression for the cumulant
of the involved random variables, which is exactly what we need in order to exploit
Fourier techniques, as we investigate next.

So far, we have found that

Vspread = e
∫ τ

0 (ψ L
1,2(0,−ig2(T−s))+ψL,Q (−i,0,0)−r) ds H2(τ, T )

× EQ2

[
max

(
H1(τ, T )

H2(τ, T )
e
∫ τ

0 g1(T−s) dU1(s)−
∫ τ

0 g2(T−s) dU2(s) − 1, 0

)]
. (16)

Thus, what remains to compute Vspread is effectively to price a call option. We have
the following Lemma, which is a version of a result that can be traced back to the
seminal paper by Carr andMadan [15] on Fourier methods applied to option pricing.

Lemma 1 Let C be some positive constant. If X is a random variable with cumulant
ψX where E[exp(αX)] < ∞ for a given α > 1. Then

E[max(C exp(X) − 1, 0)] = 1

2π

∫
R

Cα+iy

((α − 1) + iy)(α + iy)
exp(ψX (y − iα)) dy.

Proof Define fα(x) := e−αx max(Cex − 1, 0). Thus, fα(x) = 0 whenever x < −
lnC and fα(x) = C exp(−(α − 1)x) − exp(−αx) for x ≥ − lnC . Hence, fα ∈
L1(R), and its Fourier transform becomes
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f̂α(y) = Cα+iy

(α − 1 + iy)(α + iy)
.

Since | f̂α(y)| ∼ y−2 for |y| large, f̂α ∈ L1(R), and from the Fourier inversion for-
mula we find

max(Cex − 1, 0) = 1

2π

∫
R

f̂α(y)ei(y−iα)x dy.

Since E[| exp((α + iy)X)|] = E[exp(αX)] < ∞ by assumption, we find from
Fubini’s Theorem the assertion of the Lemma. �

To price our spread option, choose now C = H1(τ, T )/H2(τ, T ) and define X =∫ τ

0 g1(T − s) dU1(s) − ∫ τ

0 g2(T − s) dU2(s).Wefind the cumulant of X with respect
to Q2 to be

ψX (x) = logEQ2

[
exp

(
ix(

∫ τ

0
g1(Ts ) dU1(s) −

∫ τ

0
g2(T − s) dUs (s))

)]

= logEQL

[
exp

(
ix

∫ τ

0
g1(T − s) dU1(s) + i(−i − x)

∫ τ

0
g2(T − s) dU2(s)

)]

−
∫ τ

0
ψL
1,2(0, −ig2(T − s)) ds

=
∫ τ

0
ψL
1,2(xg1(T − τ + s), −(i + x)g2(T − τ + s))

− ψL
1,2(0, −ig2(T − τ + s)) ds.

We wrap up to conclude with the following:

Proposition 4 Let ψL,Q be the cumulant of the Q-Lévy process L = (L ,U1,U2)

and suppose that there exists a constant α > 1 such that e1 + αg1(s)e2 + (1 −
α)g2(s)e3 ∈ [−K , K ]3 for all s ≥ 0. Then

Vspread = exp

(∫ τ

0
ψL,Q(−i, 0,−ig2(T − τ + s)) − r ds

)
H2(τ, T )

× 1

2π

∫
R

(H1(τ, T )/H2(τ, T ))α+iy

((α − 1) + iy)(α + iy)
exp(ψX (y − iα)) dy,

with

ψX (x) =
∫ τ

0
ψL,Q(−i, xg1(T − τ + s),−(i + x)g2(T − τ + s))

− ψL,Q(−i, 0,−ig2(T − τ + s)) ds,

for x ∈ R and Hk(τ, T ) = exp(Λk(T ) + hk(T − τ)), k = 1, 2.

Proof From the definition of ψ L
1,2 in Proposition 3, we find that

ψ L
1,2(0,−ig2(T + τ − s)) = ψL,Q(−i, 0,−ig2(T + τ − s)) − ψL,Q(−i, 0, 0),
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which implies the expression forψX . Recalling the formula in (16), the result follows
fromLemma1 after noting that the condition on g1 and g2 implies thatE[exp(αX)] <

∞ for the given definition of X . �

Observe that since Λk(T ) = Λk(τ + (T − τ)), we have that Hk becomes a function
of τ and T − τ . Therefore, the spread option price is indeed depending on the exercise
time τ and time left until delivery from exercise, T − τ . On the other hand, after a
simple change of variables,

∫ τ

0
ψL,Q(−i, 0,−ig2(T − τ + s)) − r ds =

∫ T

T−τ

ψL,Q(−i, 0,−ig2(s)) − r ds,

and likewise for the integral expressing ψX . Hence, the option price Vspread can also
be viewed as a function which depends on T − τ and T , i.e., time left to delivery
from exercise and the delivery date.

In order to compute the price Vspread in practice, we must evaluate two integrals
over a time segment where the integrands are linear combinations of ψL,Q with
arguments involving g1(s) and g2(s). Additionally, there is a third integration of the
cumulants and the Fourier transform of a dampened call payoff function over the real
line. Note that this latter inverse Fourier transform consists of only a one-dimensional
integral, although we have two underlying futures contracts involved in the spread
option, which depend on altogether three processes. We pay for this reduction of
dimension by a complex structure of ψX , which is an integral that is hardly possible
to compute analytically in most interesting cases. Thus, numerical integration must
be performed to compute ψX . We remark in passing that Hurd and Zhou [32] has
developped a Fourier approach to pricing spread options with non-zero strikes.

4.2 Energy Quanto Options

Producers and retailers operating in the energy market face both price and volume
risk. The demand for power varies with temperature, and hence a producer may
experience losses incurred by both low demand and low prices in a period of cold
summer weather and little use of air-conditioning. In the German market, say, power
generators based on fossil fuels will need to reduce their production in periods with
a lot of wind. Wind mills will then cover the demand, as well as lower the prices.
Both these examples show the need for risk management tools where one can hedge
both price and volume risk. Energy quanto options offer such a tool.

Quanto options in energy typically have a payoff which is a product of two Euro-
pean options, for example a product of two put options. As discussed in Benth et
al. [11], most energy quanto options are written on an energy price like gas or power
and an index of temperature in a given location. Temperature determines to a large
extent demand, and is used as a measure for the volume risk. The index can be
heating-degree days (HDD) or cooling-degree days (CDD) over a given time period,



Cointegrated Commodity Markets and Pricing of Derivatives … 493

to indicate the demand for power to heat or cool, resp. As shown by Benth et al. [11],
many energy quanto options can be re-phrased as options written on two futures
contracts, a futures on energy and a futures on a weather factor. For example, an
energy quanto option can have the payoff

max(K1 − Fpower(τ, T ), 0) × max(K2 − FCDD-temp(τ, T ), 0),

i.e., paying the product of two put options on power and CDD temperature futures
at exercise time τ ≤ T , where the futures “deliver” at time T . Such a quanto option
gives a protection against too low prices combined with too low CDD, the latter
meaning little demand for air-conditioning cooling. We note that there is a market
forweather futures (temperature, precipitation, hurricanes) at theChicagoMercantile
Exchange (CME) (see Benth and Šaltytė Benth [6] for a discussion andmathematical
analysis of this market). Hence, one can actually trade in CDD temperature futures.

In Benth et al. [11], a “Black-Scholes” -type of formula is derived for the price of
an energy quanto option (call-call payoff) when the two underlying futures follow
a bivariate geometric Brownian motion. Further, they present an empirical analysis
of various energy quanto options applied to gas and temperatures in New York and
Chicago areas.

We now proceed with an analysis of the price of energy quanto options based on
the cointegration model presented in the previous Section. This extends the analysis
in Benth et al. [11] in two directions. Firstly, we allow for more realistic Lévy-based
pricing models, and secondly, dependency between the two futures are not only
modelled by correlation, but also by a common non-stationary factor. It is reasonable
to assume that energy prices co-move with temperature index futures, as the demand
for energy is directly linked to temperature, and temperature futures are traded to
hedge energy price and volume risk.

We have the following general result, which will be useful when pricing a general
quanto option:

Proposition 5 Let X,Y and Z be three random variables where Z is independent
of X and Y . Assume f, g ∈ L1(R) with f (X + Z)g(Y ) being integrable. If f̂ , ĝ ∈
L1(R), then

E[ f (X + Z)g(Y )] = 1

4π2

∫
R

∫
R

f̂ (x)ĝ(y) exp
(
ψZ (x) + ψX,Y (x, y)

)
dx dy

where ψZ and ψX,Y are the cumulants of Z and (X,Y ), resp.

Proof By the tower property of conditional expectation,

E[ f (X + Z)g(Y )] = E [E[ f (X + Z)g(Y ) | X,Y ]]
= E [g(Y )E[ f (X + Z) | X,Y ]] .

We find from the Fourier inversion formula (12) and Fubini’s Theorem that
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E[ f (X + Z) | X,Y ] = 1

2π

∫
R

f̂ (x)E[eix(X+Z) | X,Y ] dx

= 1

2π

∫
R

f̂ (x)E[eix Z ]eix X dx

= 1

2π

∫
R

f̂ (x) exp(ψZ (x))eix X dx,

where we have used the independence of Z in the second equality. Again appealing
to Fubini’s Theorem and the Fourier inversion formula (12), we get

E[ f (X + Z)g(Y )] = 1

2π

∫
R

f̂ (x) exp(ψZ (x))E[g(Y )eix X ] dx

= 1

4π2

∫
R

∫
R

f̂ (x) exp(ψZ (x))ĝ(y)E[eix X+iyY ] dx dy

= 1

4π2

∫
R

∫
R

f̂ (x)ĝ(y) exp(ψZ (x) + ψX,Y (x, y)) dx dy.

This concludes the proof. �

Let for k = 1, 2, pk : R+ → R+ be two measurable functions. Suppose we want
to price an energy quanto option with payoff p1(F1(τ, T ))p2(F2(τ, T )) at exercise
time τ ≤ T < ∞. We suppose that p1(F1(τ, T ))p2(F2(τ, T )) ∈ L1(Q) and the no-
arbitrage price is

Vquanto = e−rτ
EQ [p1(F1(τ, T ))p2(F2(τ, T ))] . (17)

To this end, introduce the measurable functions f, g : R → R

f (u) = p1 (exp (Λ1(T ) + h1(T − τ) + u)) ,

g(v) = p2 (exp (Λ2(T ) + h2(T − τ) + v)) ,

where we assume that p1 and p2 are such that f, g, f̂ , ĝ ∈ L1(R). Set X = L(τ ),
Z = ∫ τ

0 g1(T − s) dU1(s) and Y = L(τ ) + ∫ τ

0 g2(T − s) dU2(s). In order to have
Z independent of (X,Y ), we assume that the Lévy process U1 is independent of
(L ,U2). From a practical perspective, this means that the short-term stationary fac-
tor of the energy futures is independent of its long-term factor, and of the short-term
stationary factor of the temperature index futures. This is admittedly a rather restric-
tive assumption. However, one may alternatively consider a factorization of the Lévy
processes in terms of dependent and independent processes which opens for more
general models. To avoid technicalities, we refrain from following this path further.

It follows that ψZ (x) = ∫ τ

0 ψL,Q(0, xg1(T − τ + s), 0) ds, where x ∈ R. Fur-
thermore,
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ψX,Y (x, y) = logEQ

[
exp

(
ixL(τ ) + iy(L(τ ) +

∫ τ

0
g2(T − s) dU2(s))

)]

=
∫ τ

0
ψL,Q(x + y, 0, yg2(T − τ + s)) ds.

By Proposition 5 we then obtain a Fourier expression for Vquanto in terms of the
Fourier transforms of the payoff functions given by f and g, and the cumulants ψZ

and ψX,Y .
If the payoff functions p1 and p2 are of call or put type, we do not have that f and g

are integrable. In this case we do an exponential dampening of f and g as described
in the proof of Lemma 1. This leads to some simple modifications of the pricing
formula above.We also remark that Eberlein et al. [19] state neat sufficient conditions
on the payoff function and the cumulant (or the distribution) of the involved random
variables, allowing for a Fourier representation of the expectation operator.
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