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Abstract. In this paper, we propose an interactive version of the Borda
method for collective decision-making (social choice) when the alterna-
tives are described with respect to multiple attributes and the individual
preferences are unknown. More precisely, assuming that individual pref-
erences are representable by linear multi-attribute utility functions, we
propose an incremental elicitation method aiming to determine the Borda
winner while minimizing the communication effort with the agents. This
approach follows the recent work of Lu and Boutilier [8] relying on the
minimax regret as a criterion for dealing with uncertainty in the prefer-
ences. We show that, when preferences are expressed on a multi-attribute
domain and are additively separable over attributes, regret-based incre-
mental elicitation methods can be made more efficient to determine or
approximate the Borda winner. Our approach relies on the representation
of incomplete preferences using convex polyhedra of possible utilities and
is based on linear programming both for minimizing regrets and select-
ing informative preference queries. It enables to incrementally collect
preference judgements from the agents until the Borda winner can be
identified. Moreover, we provide an incremental technique for eliciting a
collective ranking instead of a single winner.

1 Introduction

Voting is an effective method for collective decision-making, used in political
elections, technical committees, academic institutions. Recently, interest in vot-
ing has increased in computer science, given the possibility offered by online web
systems to support voting protocols, or protocols inspired by voting, for group
decision-making (for example, for scheduling a meeting). In many real situations,
however, it may be necessary to reason with partial preferences, as some prefer-
ences are not available and too expensive to obtain (with respect to a cognitive
or economic cost). This observation has motivated a number of recent works on
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social choice with partial preferences, e.g., [2–6,8,9,12]. In this research stream,
typical questions concern the determination of possible and necessary winners,
the selection of preference queries to ask to the agents for further eliciting pref-
erences, the approximation of optimal solutions or the determination of robust
recommendations based on the available preference information.

Acquiring agents’ preferences is expensive (with respect to time and cogni-
tive cost). It is therefore essential to provide techniques that allow to reason
with partial preference information, and that can effectively elicit the most rele-
vant part of preferences to make a decision. Adaptive utility elicitation [1,10,11]
tackles the challenges posed by preference elicitation by representing the sys-
tem knowledge about the agents’ preferences in the form of a set of admissible
utility functions. This set includes all functions compatible with the preferences
collected so far, and is updated following agents’ responses. In this way, one can
often make good (or even optimal) recommendations with sparse knowledge of
the users’ utility functions.

The aim of this paper is to introduce an adaptive utility elicitation proce-
dure in the context of voting, for the fast determination of a Borda winner or a
social ranking based on the Borda score, and to test the practical efficiency of
this procedure. In particular, we extend the work of [8] to the multi-attribute
case. Multiple attributes may appear in well-known collective decision prob-
lems such as committee elections or voting in multi-issue domains [7]. In these
cases, attributes are boolean and represent elementary decisions on candidates
or issues. More generally, the multi-attribute case occurs when the alternatives of
a collective decision problem are described by different features, non-necessarily
boolean. Individual preferences are assumed here to be representable by a linear
function of the attribute values. Since utilities are decomposable over attributes,
a set of preference statements formulated by an agent on some pairs of alter-
natives will possibly allow to infer other preference statements with respect to
other pairs, without asking them explicitly. We show in the paper how this type
of inference mechanism can be implemented using mathematical programming
to reduce the number of queries and speed-up the determination of a necessary
Borda winner.

The paper is organized as follows: in Sect. 2, we introduce the basic frame-
work for voting on multi-attribute domains. Then, we present the minimax regret
decision criterion as a useful tool for decision under uncertainty and prefer-
ence elicitation. In Sect. 3, we introduce a new method based on mathematical
programming to minimize regrets based on the Borda count. Section 4 deals
with preference elicitation for the Borda count; we introduce different strategies
for generating preference queries and compare them experimentally. Finally, in
Sect. 5, we extend the approach to ranking problems based on the Borda score
and provide additional numerical tests to evaluate the efficiency of our approach
in ranking.
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2 Social Choice in Multi-attribute Domains
with Incomplete Preferences

We consider a set of n voters or agents and a set X of m alternatives (candi-
dates, options, items), characterized by a finite set of q attributes or criteria; an
alternative is associated to a vector x = (x1, . . . , xq) where each xk represents
the value of an attribute k or a performance with respect to a given point of
view.

Individual preferences are assumed here to be represented by linear utilities
of the form ui(x) =

∑q
k=1 ωi

kxk, where ωi = (ωi
1, . . . , ω

i
q) is a vector of weights

characterizing the preferences of agent i. Hence, an alternative x is as least as
good as y for agent i whenever

∑q
k=1 ωi

kxk ≥ ∑q
k=1 ωi

kyk. Our framework can be
used to address two different cases: a multi-criteria decision setting or a multi-
attribute utility where the utility is defined as the weighted sum of attribute
values. Formally, these preferences are defined by the following relation �i:

x �i y iff
q∑

k=1

ωi
k(xk − yk) ≥ 0

A preference profile 〈�1, . . . ,�n〉 of an election is therefore completely charac-
terized by the weight vectors ω1, . . . , ωn (each associated with an agent). We can
now define the Borda score in our multi-attribute settings, where preferences are
defined by the utility weights. Given ω = 〈ω1, . . . , ωn〉, the Borda score s(x, ω)
of an alternative x is

s(x, ω) =
n∑

i=1

si(x, ωi)

where si(x, ωi) = |{y ∈ X |x �i y}| counts the number of alternatives that are
strictly beaten by x according to the preference relation induced from ωi, where
�i is the asymmetric part of �i: x �i y iff �i and ¬(y �i x). Our definition
allows for ties in each ranking. When using only linear orders (i.e. the ωis are
such that there are no ties) we get the usual Borda count.

When the weights of the agents are not known to the system with certainty,
we need to reason about partially specified preferences. This is done by assuming
a vector Ω = 〈Ω1, . . . , Ωn〉 where each Ωi is the set of feasible ωi that are
consistent with the available preference information on agent i. Later, we will
use Ω (that represents our uncertainty about the weights associated with the
agents) in order to provide a recommendation based on minimax regret. At the
level of a single agent i, we can check whether pairs of alternatives are in a
necessary preference relation given Ωi.

Definition 1. Alternative x is necessarily weakly preferred to y for agent i,
written x �N

i y, iff ∀ωi ∈ Ωi,
∑q

k=1 ωi
k(xk − yk) ≥ 0. Similarly, x is necessarily

strictly preferred to y for agent i, written x �N
i y, iff ∀ωi ∈ Ωi,

∑q
k=1 ωi

k(xk −
yk) > 0.



84 N. Benabbou et al.

The necessarily strictly preferred relation �N
i should not be confused with the

asymmetric part1 of the necessarily weakly preferred relation �N
i .

At the level of the community of the agents, a possible Borda winner is an
alternative such that there exists a feasible instantiation of the weights that
makes it a Borda winner; a necessary Borda winner is a Borda winner for all
feasible instantiations of the weights.

In general the sets Ω1, . . . , Ωn are not given directly but are inferred by
available preference statements. Any preference statement of type x �i y for
agent i is indeed interpreted as a linear constraint ωi · (x − y) ≥ 0. Therefore,
after collecting several preferences of this type, Ωi is a convex polyhedron in the
space of weights.

When the utility weights are known and characterized by ω = 〈ω1, . . . , ωn〉,
the actual loss or real regret of an alternative x is the shortfall in Borda score
that occurs by choosing x instead of the optimal choice x∗

ω; more formally:

Regret(x, ω) = max
y∈X

{s(y, ω)} − s(x, ω) = s(x∗
ω, ω) − s(x, ω).

Instead, when the actual weights ω = 〈ω1, . . . , ωn〉 are not known, but some
preferences are available, we are interested in quantifying how “bad” a choice
can be with respect to the current uncertainty about the weights, encoded by
Ω = 〈Ω1, . . . , Ωn〉. To this end, we first define pairwise max regret, then max
regret and finally minimax regret as proposed in [8,10]. The pairwise max regret
PMR(x, y,Ω) of alternative x relative to y under Ω is the worst-case loss, in
terms of Borda score, of selecting the alternative x instead of y. The max regret
MR(x,Ω) is the worst-case loss of choosing x: this can be viewed as an adversarial
selection of the instantiation of the weights ω to maximize the loss between x
and the true winner under ω. We want to choose the alternative x minimizing
max regret: the minimax regret MMR(Ω) represents the smallest max regret
under Ω. These concepts are formalized below:

PMR(x, y,Ω) = max
ω∈Ω

[
s(y, ω) − s(x, ω)

]
,

MR(x,Ω) = max
y∈X

PMR(x, y,Ω), (1)

MMR(Ω) = min
x∈X

MR(x,Ω). (2)

Finally the minimax optimal alternative x∗
Ω is any alternative x minimizing

regret MR over Ω (i.e. x∗
Ω ∈ arg minx∈X MR(x,Ω)). Solution x∗

Ω is an approx-
imate winner of the current election according to the minimax regret criterion;
it gives us the safest choice with respect to the uncertainty on the preference
weights attached to the agents; this will be suggested as a recommendation for
the social choice problem given the available preference information. We recall
from [8] the observation that the regret-minimizing alternative may not be a
possible winner. Another important property is that, if MMR(Ω) = 0, then x∗

Ω

is a necessary winner.
1 The asymmetric part �N

i of �N
i is defined as x �N

i y iff (x �N
i y) ∧ ¬(y �N

i x).
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3 Minimax Regret Computation for Borda

We are now interested in the computation of minimax regret, given the uncer-
tainty sets 〈Ω1, . . . , Ωn〉, when using Borda count as voting rule on a multi-
attribute domain. Note that the computation of the pairwise max-regret values
PMR is the cornerstone of the problem: once we have computed PMR(x, y,Ω) for
all x, y ∈ X, max regret MR(x,Ω) for all x and then minimax regret MMR(Ω)
can be computed directly from the definitions (Eqs. 1 and 2).

The main intuition for computing minimax regrets comes from [8]; however,
in our multi-attribute settings, computing PMR is more involved as we need to
deal with the multi-attribute structure of the domain. The key idea is to exploit
the decomposition of PMR with respect to the different agents:

PMR(x, y,Ω) =
n∑

i=1

max
ωi∈Ωi

[
si(y, ωi)−si(x, ωi)

]

This decomposition allows to decompose the PMR maximization problem into
a series of simpler maximization problems. For each agent i, we maximise the
contribution to PMR separately, which is defined as follows:

PMRi(x, y,Ωi) = max
ωi∈Ωi

[
si(y, ωi) − si(x, ωi)

]

This optimization problem gives the maximal difference between the number of
alternatives strictly less preferred than y and the number of alternatives strictly
less preferred than x (according to the ith-agent’s preferences); note that, if there
is no tie, this corresponds to maximizing the difference between their rank. Let ωi

be the weighted vector maximizing this value and �i be the preference relation
induced by ωi. From the definition of the scores, we have:

si(y, ωi) − si(x, ωi) =
{− |{z ∈ X, x �i z �i y}| if x �i y

|{z ∈ X, y �i z �i x}| otherwise

However, since we do not know in which case we are (ωi is not known), we make
use of the necessarily preferred relation �N

i in order to check whether some
conclusions can be drawn from the available information about the preference
between x and y. More precisely, we distinguish whether it is known that x is
necessarily weakly preferred to y or not. Then, we deduce the weighting vector
that maximizes the contribution to regret of agent i. Note that checking whether
x �N

i y can be simply performed using a linear program, by testing the condition
minωi∈Ωi{(x− y) ·ωi} ≥ 0}. We now express two mutually exclusive cases using
the necessary preference relation.

(1) case x �N
i y: in that case, we have si(y, ωi) − si(x, ωi) ≤ 0 for all ωi ∈ Ωi

by definition of �N
i . This induces that the contribution to PMR(x, y,Ω) is non-

positive and more precisely, we have PMRi(x, y,Ωi) = −minωi∈Ωi |{z ∈ X, x �i

z �i y}|. Hence, to maximize the pairwise max regret PMR(x, y,Ω), we need to
minimize over Ωi the cardinality of the set {z ∈ X, x �i z �i y} as much as
possible.
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(2) case ¬(x �N
i y): there exists ωi ∈ Ωi such that si(y, ωi) − si(x, ωi) ≥ 0 by

definition of �N
i . Therefore, we know that the contribution to PMR(x, y,Ω) is

non-negative here. More precisely, we have PMRi(x, y,Ωi) = maxωi∈Ωi |{z ∈
X, y �i z �i x}|. Hence, we need to maximize the cardinality of the set {z ∈
X, y �i z �i x} to maximize the pairwise max regret PMR(x, y,Ω).

In the following, we consider the problem of computing PMRi(x, y,Ωi) for
any x, y and i. First of all, we need to define the following sets for any a ∈ {x, y}:

Ua ={z∈X \ {a}, z�N
i a}, La ={z∈X, a�N

i z}, V a =X \ ({a} ∪ Ua ∪ La)

and for any pair of alternatives (a, b) ∈ {(x, y), (y, x)}:

Ma,b = La ∩ U b, Za,b
1 = La ∩ V b, Zb,a

2 = U b ∩ V a, Za,b
3 = V a ∩ V b

These sets are computed for each user i using linear programming (repeatedly
testing �N

i or �N
i on pairs of alternatives) and allow us to partition the set

X for the computation of PMRi(x, y,Ωi). We refer the reader to Fig. 1 where
the different cases are visualized; for simplicity, we only show the transitive
reduction of the preference relation and we distinguish whether it is known that
y is necessarily weakly preferred to x or not (if not, set My,x is empty). Note
that, in the following, we may write Z1, Z2 and Z3 (dropping the superscripts)
when the case considered is clear from the context.

Fig. 1. Partition of set X with respect to the value of �N
i with x and y for agent i.

The solid (resp. dashed) arcs represent necessary strict (resp. weak) preferences.

(1) case x �N
i y (Fig. 1a): We want to compute PMRi(x, y,Ωi). Recall that, in

this case, PMRi(x, y,Ωi) = −minωi∈Ωi |{z ∈ X, x �i z �i y}|. Hence, we want
to find a feasible ωi ∈ Ωi such that as few of the alternatives z ∈ X are such
that x �i z �i y. First, let us note that none of the alternatives z in Ux ∪ Ly

verify x �i z �i y for some ωi ∈ Ωi (by definition of Ux and Ly). Moreover,
x �i z �i y for all alternatives z ∈ Mx,y and all ωi ∈ Ωi (by definition of Mx,y).
Therefore, we have:
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PMRi(x, y,Ωi) = −|Mx,y| − min
ωi∈Ωi

|{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x �i z �i y}|

Thus, we need to compute minωi∈Ωi |{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x �i z �i y}|
to determine PMRi(x, y,Ωi). We propose now a mixed-integer programming
formulation (named MIPx,y) to solve the latter optimization problem:

(MIPx,y): min b0 +
∑

z∈Z1

bz
1 +

∑

z∈Z2

bz
2 +

∑

z∈Z3

bz
3

s.t.
q∑

j=1

ωi
j = 1 (3)

ωi · (a − b) ≥ 0, ∀(a, b) ∈ Pi
≥ (4)

ωi · (a − b) ≥ ε, ∀(a, b) ∈ Pi
> (5)

ωi · (y − x) + Cb0 ≥ 0 (6)

ωi · (y − z) + Cbz
1 ≥ ε, ∀z ∈ Z1 ∪ Z3 (7)

ωi · (z − x) + Cbz
2 ≥ 0, ∀z ∈ Z2 ∪ Z3 (8)

bz
3 ≥ bz

1 + bz
2 − 1, ∀z ∈ Z3 (9)

ωi
j ≥ 0, ∀j ∈{1, . . . , q}; b0∈{0, 1}; bz

3 ∈{0, 1}, ∀z∈Z3

bz
1 ∈ {0, 1}, ∀z ∈ Z1 ∪ Z3; bz

2 ∈ {0, 1}, ∀z ∈ Z2 ∪ Z3

In this program, the variables are ωi = (ωi
1, . . . , ω

i
q), a vector of q positive real

numbers, binary variable b0 and binary variables bz
1 for each z ∈ Z1 ∪ Z3, bz

2 for
each z ∈ Z2∪Z3, and bz

3 for each z ∈ Z3 (we therefore have q+|Z1|+|Z2|+3|Z3|+1
variables). C is an arbitrary large constant value and ε is an arbitrary small and
positive constant modelling strict inequalities. Constraint 3 simply states that
the weights should be normalized to add up to 1. Constraints 4 and 5 model the
fact that weight ωi should satisfy both the weak preference statements in Pi

≥
and the strict preference statements in Pi

> obtained from agent i; indeed, set Ωi

is defined by these preference statements.

Proposition 1. If x �N
i y, then PMRi(x, y,Ωi) = −|Mx,y|−OPT , where OPT

is the optimum of mixed-integer program MIPx,y.

Proof. We want to prove that minωi∈Ωi |{z ∈ Z1∪Z2∪Z3∪{y}, x �i z �i y}| is
the optimum of MIPx,y, i.e. we want to show that the objective function counts
the cardinality of {z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x �i z �i y}. In this program, we
use a set of binary variables bz

1, bz
2 and bz

3 to represent the condition x �i z �i y
for alternatives z in Z1, Z2 and Z3 respectively. Binary variable b0 represents
whether x is strictly preferred to y (otherwise the contribution to PMR is null).
The objective function sums up over all variables b0, bz

1, bz
2 and bz

3, so that we
count the cardinality of {z ∈ Z1∪Z2∪Z3∪{y}, x �i z �i y}. We now prove that
each binary variable is equal to one iff the corresponding constraint is satisfied.
Since the objective is a minimization, the values of the binary variables b0, bz

1,
bz
2 and bz

3 (that appear in the objective function), will be 0 unless forced to 1.
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The binary variable bz
1, for z ∈ Z1, represents whether alternative z verifies

x �i z �i y. Equation 7 indeed enforces bz
1 = 1 when ωi · (z − y) ≥ 0, i.e.

when z �i y; otherwise, variable bz
1 is set to zero since we are minimizing the

objective function. Then, since x �i z (by definition of Z1), we have that bz
1 = 1

iff x �i z �i y.
For all alternatives z ∈ Z2, we know that z �i y by definition. Therefore, z

will be such that x �i z �i y iff x �i z. The binary variable bz
2 will take value

1 in this case. This is indeed guaranteed by Constraint 8 enforcing bz
2 = 1 when

ωi · (z − x) < 0, i.e. if x is strictly preferred to z. If instead z is preferred to x,
then the value ωi · (z − x) is positive and Constraint 8 is vacuous; in this case,
bz
2 will take value 0, as desired, because we are minimizing.

For all alternatives z ∈ Z3, the two previous conditions need to be satisfied
in order for z to contribute to the score difference. Constraint 9 implements an
and between these two conditions (bz

3 = 1 iff x �i z and z �i y).
Finally, while we know that y cannot be strictly preferred to x (since x �N

i

y), it might be the case that they are equally preferred. The binary variable
b0 represents whether x is strictly preferred to y; more precisely, Constraint 6
enforces that b0 = 1 whenever ωi · (y − x) < 0. �

(2) case ¬(x �N

i y) (Figs. 1b and c): Recall that, in this case, PMRi(x, y,Ωi) =
maxωi∈Ωi |{z ∈ X, y �i z �i x}|. Therefore, we aim to find a feasible ωi ∈ Ωi

so that as many of the alternatives z ∈ X are such that y �i z �i x. Since we
are maximizing, the optimal ωi ∈ Ωi will be such that y �i x; thus, the case
represented in Fig. 1c reduces to the one depicted in Fig. 1b. We now focus on
the optimization of PMRi(x, y,Ωi) for Fig. 1b. Similarly to the first case, note
that none of the alternatives z in Uy ∪ Lx verifies y �i z �i x for some ωi ∈ Ωi.
Moreover, all alternatives z ∈ My,x are such that y �i z �i x for all ωi ∈ Ωi.
Therefore:

PMRi(x, y,Ωi) = |My,x| + max
ωi∈Ωi

|{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {x}, y �i z �i x}|

Thus, we need to compute maxωi∈Ωi |{z ∈ Z1∪Z2∪Z3∪{x}, y �i z �i x}|. This
can be performed by solving the following program (named MIPy,x hereafter):

(MIPy,x): max b0 +
∑

z∈Z1

bz
1 +

∑

z∈Z2

bz
2 +

∑

z∈Z3

bz
3

s.t.
q∑

j=1

ωi
j = 1

ωi · (a − b) ≥ 0, ∀(a, b) ∈ Pi
≥

ωi · (a − b) ≥ ε, ∀(a, b) ∈ Pi
>

ωi · (y − x) + (1 − b0)C ≥ ε (10)

ωi · (z − x) + (1 − bz
1)C ≥ 0, ∀z ∈ Z1 ∪ Z3 (11)

ωi · (y − z) + (1 − bz
2)C ≥ ε, ∀z ∈ Z2 ∪ Z3 (12)
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bz
3 ≤ bz

1, ∀z ∈ Z3 (13)
bz
3 ≤ bz

2, ∀z ∈ Z3 (14)

ωi
j ≥ 0, ∀j ∈{1, . . . , q}; b0∈{0, 1}; bz

3 ∈{0, 1}, ∀z∈Z3

bz
1 ∈ {0, 1}, ∀z ∈ Z1 ∪ Z3; bz

2 ∈ {0, 1}, ∀z ∈ Z2 ∪ Z3

Proposition 2. If ¬(x �N
i y), then PMRi(x, y,Ωi) = |My,x| + OPT , where

OPT is the optimum of mixed-integer program MIPy,x.

The proof is similar to that of the previous condition, however since the objective
is a maximization, the values of the binary variables b0, bz

1 (for z ∈ Z1), bz
2 (for

z ∈ Z2) and bz
3 (for z ∈ Z3) will be 1 unless forced to be 0. Constraints 10–14

formalize the required behaviour: the value of each binary variable, relative to a
specific z, will be set to 1 unless ωi is chosen in a way such that y �i z �i x.

Note that the MIP formulations might be too computationally demanding for
problems involving a large number of alternatives (since there are one or more
integer variables per alternative). For this reason, we will consider the linear
programming relaxation of these programs, i.e., the linear programs obtained by
replacing boolean variables b0, bz

1, bz
2, bz

3 by continuous variables belonging to
the unit interval. The resulting optimization problems are solvable in polynomial
time using linear programming; however the solution gives an upper bound on
pairwise max regret values (instead of the exact value). The relaxed values for
PMR are then aggregated giving a relaxed MMR value. Note that, since opti-
mizing the relaxed problem gives an upper bound, the result can still be used in
order to provide a robust recommendation with worst-case guarantees; the guar-
antee is less strong than if pairwise max regret values were computed exactly,
but computation times are significantly improved as shown in Subsect. 4.2.

4 Incremental Elicitation

Given the available preference information, the worst-case loss ensured by the
minimax regret might be at unacceptable level. In order to approximate the
Borda winner with the desired guarantee (expressed by the minimax regret
value), we may ask additional preference information to the agents. By incorpo-
rating the responses to additional questions, we can indeed refine the uncertainty
sets and therefore reduce this loss.

4.1 Elicitation Strategies

We adopt an incremental setting where preference queries are selected incremen-
tally according to the current available information until the minimax regret is
zero; at that point, we know that alternative x∗

Ω is a necessary Borda winner. We
allow asking queries that may induce either weak or strict preference statements.
In order to limit the cognitive effort of the agents, it is important to ask queries
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that are informative (roughly, a query is informative if it significantly reduces
regrets whatever the answer); in particular, the computation of minimax regret
can suggest queries that may be able to impose a significant reduction of regrets.
One common technique, also known as the Current Solution Strategy (CSS), is
to consider one of the current “best challenger” y∗

Ω of the approximate winner:
y∗

Ω ∈ arg maxy∈X PMR(x∗
Ω , y, Ω). New preference information involving the pair

(x∗
Ω , y∗

Ω) is indeed often useful to reduce the minimax regret efficiently, which is
equal to PMR(x∗

Ω , y∗
Ω , Ω). We propose now two elicitation strategies of different

complexity, that are aimed to reduce PMR(x∗
Ω , y∗

Ω , Ω).

Multi-attribute-CSS0 (MA-CSS0). This strategy selects a pair (agent, query)
such that the answer may reduce the agent’s contribution to PMR(x∗

Ω , y∗
Ω , Ω).

More precisely, an agent i is selected at random and the strategy proceeds as
follows:

(1) case x∗
Ω �N

i y∗
Ω: recall that, in this case, PMRi(x∗

Ω , y∗
Ω , Ωi) = −|Mx∗

Ω ,y∗
Ω | −

minωi∈Ωi |{z ∈ Z1 ∪ Z2 ∪ Z3 ∪ {y}, x∗
Ω �i z �i y∗

Ω}|. We distinguish two cases:

– case Z1 ∪ Z2 ∪ Z3 = ∅: if ¬(x∗
Ω �N

i y∗
Ω), then we ask the agent whether

x∗
Ω is strictly preferred to y∗

Ω . If, instead, x∗
Ω �N

i y∗
Ω , we know precisely the

difference of scores between x∗
Ω and y∗

Ω for agent i, that is −|Mx∗
Ω ,y∗

Ω | − 1.
In this case, asking a query to agent i is useless (since his/her contribution
to PMR(x∗

Ω , y∗
Ω , Ω) cannot be decreased) and so the strategy selects another

agent at random.
– case ¬(Z1 ∪ Z2 ∪ Z3 = ∅): an alternative z in Z1 ∪ Z2 ∪ Z3 is selected at

random. For each z ∈ Z1 ∪ Z2 ∪ Z3, our current knowledge about the agent’s
preferences is not sufficient to conclude on whether x∗

Ω �i z �i y∗
Ω is satisfied

or not. More precisely, if z ∈ Z1, then we know that x∗
Ω is strictly preferred

to z by definition, but there exists ωi ∈ Ωi such that ¬(z �i y∗
Ω). Therefore,

we ask the agent whether z is (weakly) preferred to y∗
Ω so as to obtain the

missing information. Similarly, if z ∈ Z2, then we know that z is preferred to
y∗

Ω , and so the agent is asked whether x∗
Ω is strictly preferred to z. Finally, if

z ∈ Z3, then we ask one of the two previous questions, the choice between the
two questions being randomly made.

(2) case ¬(x∗
Ω �N

i y∗
Ω): recall that, in this case, PMRi(x∗

Ω , y∗
Ω , Ωi) = |My∗

Ω ,x∗
Ω |+

maxωi∈Ωi |{z ∈ Z1 ∪Z2 ∪Z3 ∪{x}, y∗
Ω �i z �i x∗

Ω}|. We distinguish three cases:

– case ¬(y∗
Ω �N

i x∗
Ω): in this case, x∗

Ω and y∗
Ω are incomparable for the system,

and so we ask the agent to compare them directly.
– case (y∗

Ω �N
i x∗

Ω) ∧ (Z1 ∪ Z2 ∪ Z3 = ∅): if ¬(y∗
Ω �N

i x∗
Ω), then the agent is

asked whether y∗
Ω is strictly preferred to x∗

Ω. If, instead, y∗
Ω �N

i x∗
Ω , then the

difference of scores between x∗
Ω and y∗

Ω for this agent is equal to |My∗
Ω ,x∗

Ω |+1.
In this case, asking a query to agent i is useless and another agent is selected
at random.

– case (y∗
Ω �N

i x∗
Ω) ∧ ¬(Z1 ∪ Z2 ∪ Z3 = ∅): an alternative z in Z1 ∪ Z2 ∪ Z3

is selected at random and we want to know whether y∗
Ω �i z �i x∗

Ω . More
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precisely, if z ∈ Z1, then we ask the agent whether z is (weakly) preferred to
x∗

Ω. Instead, if z ∈ Z2, then we ask the agent if y∗
Ω is strictly preferred to z.

Finally, if z ∈ Z3, then we ask one of the two previous questions.

Multi-attribute-CSS1 (MA-CSS1). This strategy is based on the heuristics
proposed by Lu and Boutilier [8] but adapted to our multi-attribute setting. The
aim is to choose the query with the highest potential of reducing PMR(x∗, y∗, Ω).
More precisely, instead of choosing the agent and the alternative z ∈ Z1∪Z2∪Z3

at random (as in MA-CSS0), strategy MA-CSS1 selects the pair (agent, query)
that maximizes the minimax regret reduction in the most optimistic scenario; it
therefore requires the computation of the resulting minimax regret for each pair
(agent, query).

4.2 Numerical Tests

We performed a number of numerical experiments in order to evaluate the pro-
posed elicitation procedures for determining the Borda winner in an incremental
process. In these experiments, the attribute values for each alternative are ran-
domly sampled in [0, 1]q. Starting from an empty set of preference statements,
we repeatedly compute minimax regret and we ask a new question to one of
the agent according to an elicitation strategy. We simulate answers to queries
according to randomly generated vectors ω1, . . . , ωn (one vector per agent). Opti-
mizations are performed using the Gurobi solver; the simulation environment is
implemented in Java.

In the first experiment, we evaluate the impact of exploiting the fact that the
domain is multi-attribute. We implemented the elicitation procedure proposed
in [8] (named CSS1 hereafter) where no assumption is made about the “struc-
ture” of the agents preferences, and compare it with our strategies MA-CSS0 and
MA-CSS1.2 In Fig. 2a, we report the minimax regret, computed at each step of
the incremental elicitation procedure. Regret values are expressed on a normal-
ized scale, with 1 corresponding to the initial MMR (computed before acquiring
any preference information). Note that a value of 0 for MMR implies identifica-
tion of a Borda winner. We observe that the MMR reduces much more slowly
with CSS1 than with its multi-attribute version MA-CSS1; after 20 queries, the
MMR is still above 40 % of the initial value with CSS1, while it is under 10 %
with MA-CSS1. Moreover, after 30 queries per agent on average, the MMR is
still around 40 % of the initial regret with CSS1 while MA-CSS1 has identified
the Borda winner. Then, we observe (somewhat surprisingly) that the heuristics
used by MA-CSS1 is less effective than MA-CSS0. Since MA-CSS1 is much more
computational demanding than MA-CSS0, in the following experiments, we use
MA-CSS0.

2 Note that CSS1 and MA-CSS1 adopt the same heuristics for choosing the pair (agent,
query); the difference is that MA-CSS1 makes use of the multi-attribute structure
(using linear programming) for identifying the sets Z1, Z2, etc., and computing
regrets, while CSS1 does not.
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(a) (b)

Fig. 2. Evaluation of the elicitation strategies; regret reduction is plotted as a function
of the average number of queries per agent (30 alternatives, 5 criteria and 10 agents;
results averaged over 30 runs). In (a) we plot the reduction of minimax regret obtained
by different elicitation strategies; in (b) we compare the upper bound of MMR obtained
with the relaxed optimization, the exact computation of MMR and the real regret.

The second experiment evaluates the quality of the upper bound obtained
when using the linear programming relaxation of the MMR optimization.
Figure 2b shows the minimax regret, the upper bound obtained by linear pro-
gramming relaxation and the real regret (the actual loss in terms of Borda score)
at each iteration step of the elicitation procedure. We can see that the linear
programming relaxation gives us a relatively tight upper bound on the mini-
max regret and its quality improves with the number of preference statements.
Recall that the relaxed version is significantly faster than the exact version, as
the former solves linear programming problems instead of mixed integer linear
problems. For instance, when no preferences are given, the relaxed optimization
takes about 1s on average while the exact method needs 30s to compute the value
of initial minimax regret. The determination of the next query is also faster
when using the relaxed optimization (2s againts 12s). Even if, by optimizing
the relaxed problem, we are potentially ignoring some valuable information, the
experiment shows that the elicitation performs well. The recommended choice is
the alternative whose “relaxed” MMR is lowest; the real regret associated to this
choice is small and quickly decreases to zero. Note that the fact that real regret
is much smaller than minimax regret in practice has already been observed [10].

The third experiment aims to evaluate the performance of MA-CSS0, using
the relaxed optimization of regrets, when increasing the size of the problem
(number of agents, number of alternatives and number of criteria). Figure 3
shows that, with 5 attributes, our incremental elicitation procedure determines
a necessary Borda winner in about 30–35 queries asked to each agent; however,
with 7 attributes, slightly more than 50 queries are needed. In all cases, the real
regret is low even after a few queries.
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(a) 10 agents, 50 alt. and 5 attributes. (b) 50 agents, 50 alt. and 5 attributes.

(c) 10 agents, 100 alt. and 5 attributes. (d) 10 agents, 50 alt. and 7 attributes.

Fig. 3. Performance of MA-CSS0 with the relaxed version of minimax regret (30 runs).

5 Determination of the Social Ranking Induced by Borda
Scores

There are many decision situations where knowing the top-k alternatives is the
desirable output. When the preference profile is fully known, ranking alternatives
with a scoring rule is straightforward. However, when preferences are incomplete,
incremental elicitation methods need to be adapted to efficiently focus the elic-
itation effort on the determination of the top-k alternatives. We address here
the problem of ranking as one of repeated choices, assuming that we want to
incrementally rank alternatives from best to worst; we can generate preference
queries until the minimax regret drops to 0, meaning that the Borda winner has
been identified. Then, this alternative is put aside3 and the selection process
is iterated on the remaining set of alternatives. The alternative selected in the
second stage will be the second best alternative in the ranking induced by Borda
scores and so forth.

Numerical Tests. We perform an experiment that evaluates the performance
of our incremental assessment of ranking (when used with MA-CSS0) in com-
parison to approaches that are more systematic. We consider the following two

3 It may still be associated with a binary variable bz in the optimization problems for
computing regrets (as it can impact the Borda score of other alternatives).
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elicitation procedures: strategy S1 determines the preference order of each agent
by adapting a standard sorting algorithm (it requires O(m log2(m)) comparison
queries per agent); the ranking is then obtained by straightforward computa-
tion of the Borda scores. Instead, strategy S2 iteratively applies a regret-based
incremental elicitation procedure for the determination of the best alternative
in terms of a linear utility model for a single agent. The procedure is repeated
in order to find the second item, the third, and so on; this is done for all agents
and finally Borda scores are computed. In Table 1, we report the average num-
ber of comparison queries per agent required to identify the top-10 alternatives,
varying n the number of agents, m the number of alternatives and q the number
of criteria. Our incremental ranking procedure based on Borda scores is referred
to as Incremental Ranking Elicitation (IRE); overall, IRE outperforms both S1
and S2.

Table 1. Average number of queries per agent for determining the top-10 (30 runs)

n m q IRE S1 S2

10 30 5 43.3 147.2 58.7

10 50 5 43.7 282.2 67.4

100 30 5 51.1 147.2 87.2

10 30 10 93.3 147.2 178.2

We now present some experimental results about our incremental ranking
method (when used with MA-CSS0). Figure 4 shows the average number of
queries needed to determine the top-k alternatives in domains with 20 agents
and 5 criteria. We observe that the marginal amount of queries needed to deter-
mine the next best alternative decreases as the rank of the alternatives increases.
Actually, most of the elicitation “cost” in terms of queries occurs when deter-
mining the top alternative.

Fig. 4. Performance of top-k elicitation with MA-CSS0 (30 runs).
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6 Conclusions

This paper dealt with social choice in a context where preferences are dictated
by a latent (linear) utility function. We provided algorithms for the compu-
tation of an approximate winner and elicitation strategies based on minimax
regret, extending previous work [8] to multi-attribute domains. We also pro-
vided an iterative procedure for top-k ranking and compared our results with
full elicitation procedures. Possible directions for future research include: dealing
with other voting rules in multi-attribute domains, considering different kinds
of queries, and addressing combinatorial domains.
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