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Abstract. In this paper, we present a new possibilistic multivariate
fuzzy c-means (PMFCM) clustering algorithm. PMFCM is a combination
of multivariate fuzzy c-means (MFCM) and possibilistic fuzzy c-means
(PFCM) that produces membership degrees of data objects to each clus-
ter according to each feature and typicality values of data objects to each
cluster. In this way, PMFCM produces a multivariate partitioning of a
data set detecting clusters with unevenly distributed data over different
features. It also reduces the influence of noise and outliers to computation
of cluster centers.
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1 Introduction

Clustering is an unsupervised learning technique for identifying groups of similar
data objects within a data set. It is used in many fields, including image process-
ing, bioinformatics, text mining where high dimensional data objects have to be
grouped. Clustering high dimensional data bears several challenges that can be
explained on the example of text clustering where a document is represented by
a vector of tf-idf s of terms in the collection [1]. Due to the documents related to
several topics, there are usually overlapping clusters in the data set. Depending
on the range of topics, only few feature values in data vectors are significantly
greater than zero. This implies that only few dimensions determine clusters. The
information about the belonging of data objects to clusters in each dimension
might be of great use. Finally, documents in the collection that do not belong
to any cluster have to be recognized as noise and outliers. In this paper, we pro-
pose a new objective function based possibilistic multivariate fuzzy clustering
algorithm that aims at satisfying these requirements.

The rest of the paper is organized as follows: in Sect. 2 we give a short
overview over the different fuzzy clustering algorithms that we used as a basis
for our approach. The possibilistic multivariate fuzzy c-means algorithm is pre-
sented in Sect. 3. The evaluation results of our method and the comparison with
the basic approach are presented in Sect. 4. Section 5 closes the paper with a
short summary and the discussion of future research.
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2 Related Works

The first problem described in introduction can be solved by using the fuzzy
c-means (FCM) [2] clustering algorithm that assigns each data object to each
cluster with a membership degree. The objective function of the fuzzy c-means
algorithm is defined as follows:

Jm(U, V ;X) =
n∑

k=1

c∑

i=1

um
ikd2(vi, xk), (1)

where c is the number of clusters, uik ∈ [0, 1] is the membership degree of data
object xk to cluster i, m > 1 is the fuzzification parameter, d(vi, xk) is the
distance between cluster center vi and data object xk. The objective function of
FCM has to be minimized under constraint (2) to obtain a good partitioning of
the data set.

c∑

i=1

uik = 1 ∀k ∈ {1, ..., n} and
n∑

k=1

uik > 0 ∀i ∈ {1, ..., c}. (2)

FCM is able to model the soft transitions between clusters. The information
about the clustering structure, especially about the overlaps between clusters
can be derived from the partitioning results.

The problem about FCM is that due to constraint (2) it assigns outliers
and noise points to clusters in the same way as data objects within clusters.
On the one hand, the information about whether a data object is a typical
representative of the data structure or whether it is an outlier or noise point
cannot be derived from the membership degrees. On the other hand, the outliers
affect the computation of cluster centers. This problem can be solved by using
the possibilistic fuzzy c-means (PFCM) [3] clustering algorithm that additionally
produces the typicality values of data objects to clusters which express a relative
degree of typicality of a data object to the overall structure of data. The objective
function of PFCM is defined as follows:

Jm,η(U, T, V ;X) =
n∑

k=1

c∑

i=1

(aum
ik + btηik)d2(vi, xk) +

c∑

i=1

γi

n∑

k=1

(1 − tik)η, (3)

where tik ≤ 1 is the typicality value of data object xk to cluster i, m > 0 and
η > 0 are user defined constants. The first term in the objective function of
PFCM has the same meaning as in FCM, where constants a > 0 and b > 0
control the relative influence of fuzzy memberships and typicality values. The
second term ensures that the typicality values are determined as large as possible.
The second summand is weighted by the parameter γi > 0 that the authors in
[4] recommend to choose by computing:

γi = K

n∑
k=1

um
ikd2(vi, xk)

n∑
k=1

um
ik

1 ≤ i ≤ c, (4)
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where the {uik} are the terminal membership degrees computed by FCM and
K > 0 (usually K = 1). The objective function of PFCM has to be minimized
under constraint (2) and

∑n
k=1 tik > 0, ∀i ∈ {1, ..., c}.

The possibilistic fuzzy c-means algorithm solves the first and the third prob-
lems described above but it assumes that all features are equally important
for all clusters. Since few features usually determine particular clusters in high
dimensional data sets, using either the attribute weighting fuzzy clustering algo-
rithm [5] or the multivariate fuzzy c-means (MFCM) [6] method might be a
better choice in such domains. We abstain from using the subspace clustering
algorithms because they determine clusters in subspaces disregarding values of
data objects in other features. In our case we aim for finding clusters where data
objects have similar values in all features. Since MFCM produces the member-
ship degrees of data objects to each cluster according to each feature which is
beneficial for subsequent use of clustering results, we use it as a basis for our
approach. The objective function of MFCM is defined as follows:

Jm(U, V ;X) =
n∑

k=1

c∑

i=1

p∑

j=1

um
ikj(vij − xkj)2, (5)

where p is the number of features and uikj ∈ [0, 1] is the membership degree of
data object xk to cluster i on feature j. Similarly to FCM, the objective function
of MFCM has to be minimized under constraint (6).

c∑

i=1

p∑

j=1

uikj = 1 ∀k ∈ {1, ..., n} and
p∑

j=1

n∑

k=1

uikj > 0 ∀i ∈ {1, ..., c}. (6)

In order to obtain the membership degrees of data objects to clusters, the authors
propose to sum up the multivariate membership degrees over the dimensions [6].
Like FCM, its multivariate version does not recognize outliers and noise points as
such assigning them to clusters in the same way as data objects within clusters.

3 A Possibilistic Multivariate Fuzzy c-Means Clustering
Algorithm

The possibilistic FCM algorithm simultaneously produces membership degrees
and the typicality values of data objects to clusters which makes it possible to
derive the information about the overlaps between clusters and the noise points
from the partitioning results. Unfortunately, it does not provide the informa-
tion about the dimensions in which clusters overlap. This information might be
valuable for subsequent use. Therefore, in our new approach called possibilis-
tic multivariate fuzzy c-means (PMFCM) we combine the ideas of PFCM and
MFCM algorithms. We define the objective function of PMFCM as follows:

Jm,η(U, T, V ;X) =
n∑

k=1

c∑

i=1

p∑

j=1

(aum
ikj + btηik)(vij − xkj)2 + p

c∑

i=1

γi

n∑

k=1

(1 − tik)η.

(7)
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In (7) the typicality values of data objects to clusters are included in the weight-
ing of the dimension-wise distances between data objects and cluster centers. We
do not compute the typicality values of data objects to clusters at each feature
because we consider the noise points as data objects that have a large overall
distance (here, the Euclidean distance) to cluster centers. Unlike MFCM, we do
not constrain the sum over all clusters and variables to a particular data object
to be 1. In order to keep the equal weighting of distances by the membership
degrees and the typicality values, we only constrain the sum over all clusters to
a particular data object in each feature to be 1. Thus, the objective function of
PMFCM has to be minimized under constraint (8).

c∑

i=1

uikj = 1 ∀k, j ∧
n∑

k=1

uikj > 0 ∀i, j ∧
n∑

k=1

tik > 0 ∀i. (8)

In PMFCM, the membership degrees, the typicality values, and the cluster cen-
ters are updated according to formulae (9), (10), and (11).

uikj =
1

c∑
l=1

(
(xkj−vij)2

(xkj−vlj)2

) 1
m−1

1 ≤ i ≤ c, 1 ≤ k ≤ n, 1 ≤ j ≤ p. (9)

tik =
1

1 +
(

b
∑p

j=1(xkj−vij)2

γip

) 1
η−1

1 ≤ i ≤ c, 1 ≤ k ≤ n. (10)

vij =

n∑
k=1

(aum
ikj + btηik)xkj

n∑
k=1

(aum
ikj + btηik)

1 ≤ i ≤ c, 1 ≤ j ≤ p. (11)

The membership degrees of data objects to clusters can be computed in our
model as the average of the multivariate membership degrees over all variables,
uik = 1

p

∑p
j=1 uikj .

The working principle of PMFCM is basically the same as of PFCM. So,
due to the lack of space we omit the details and refer to [3]. As in [4] we also
recommend using terminal outputs of FCM for the initialization of our algorithm.

4 Data Experiments

The proposed algorithm PMFCM is tested on artificial data in order to exam-
ine its ability to correctly determine the centers of clusters that have different
extends in different dimensions in presence of noise and outliers. Unfortunately,
we could not test its ability to distinguish between the data objects belonging to
clusters and the noise points because the transitions between the data objects
on the border of clusters and noise points are rather soft. Therefore, we could
not find any meaningful threshold for typicality values to differentiate between
cluster objects and noise.
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Figure 1(a) shows the data set 4-clusters with 1245 data objects unequally
distributed on one spherical cluster and three clusters that have a low variance
in one dimension. The sum of the distances between the means of clusters in this
data set is 31.5785. We generated the data set 4-clusters-noise by adding 150
noise points to the data set 4-clusters. The data set 4-clusters-noise is depicted
in Figure 1(b).
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Fig. 1. Test data: (a) 4-clusters, (b) 4-clusters-noise.

Table 1 shows the comparison results between the algorithms MFCM and
PMFCM for a = 0.5 and different values of b on the data set with four clusters
without noise. We computed the Frobenius distance dorig between the original
means of clusters and the cluster centers produced by the clustering algorithms.
We also computed the sum of the distances between the cluster centers dmeans

produced by the clustering algorithms. For a small values of b our approach pro-
duced less accurate cluster prototypes than MFCM. It determined cluster centers
too close to each other, while MFCM produced cluster centers that were farther
from each other than the original means of clusters. However, our approach
produced much more accurate cluster centers for b = 12 than MFCM. With the
increasing weight of the typicality values, our algorithm produced cluster centers
that were slightly farther from each other than the original means of clusters.
Unfortunately, we did not manage to find the golden mean where the sum of

Table 1. Comparison between MFCM and PMFCM on data set 4-clusters.

MFCM: m = 2 PMFCM: m = 2, PMFCM: m = 2, PMFCM: m = 2,

η = 2 a = 0.5, b = 4 η = 2 a = 0.5, b = 12 η = 2 a = 0.5, b = 20

dorig 2.49 2.92 1.12 1.17

dmeans 33.73 27.87 31.52 31.65
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the distances between the cluster centers produced by PMFCM corresponded to
the sum of the distances between the original means of clusters in order to test
whether or not our algorithm could produce the cluster centers which met the
original means of clusters.

Table 2 shows the comparison results between MFCM and our algorithm on
the data set 4-clusters-noise. Unsurprisingly, the MFCM algorithm produced
less accurate cluster centers than on the data set 4-clusters. This is due to
the fact that MFCM does not deemphasize the noise points while clustering.
Consequently, it adjusted the cluster centers according to the distribution of
all data objects in the data set. In contrast, PMFCM did not sustain a loss
of performance in comparison to the data set without noise points. The fact
that our approach produced more accurate cluster centers than on the data
set 4-clusters is due to the presence of noise points located close to the cluster
borders. Apparently, such noise points advantageously completed the clusters so
that PMFCM was able to produce more accurate cluster centers. As on the data
set 4-clusters, PMFCM produced cluster centers farther from each other with
the increasing b and achieved the best results for a = 0.5 and b = 12.

Table 2. Comparison between MFCM and PMFCM on data set 4-clusters-noise.

MFCM: m = 2 PMFCM: m = 2, PMFCM: m = 2, PMFCM: m = 2,

η = 2 a = 0.5, b = 4 η = 2 a = 0.5, b = 12 η = 2 a = 0.5, b = 20

dorig 8.82 2.43 0.93 0.94

dmeans 41.14 27.38 31.27 31.89

5 Conclusion and Future Works

In this paper, we proposed a possibilistic multivariate fuzzy c-means (PMFCM)
algorithm that produces a multivariate partitioning of a data set detecting clus-
ters with unevenly distributed data over different features in presence of noise
points and outliers. In experiments, we showed that our algorithm is able to pro-
duce more accurate cluster centers than the MFCM algorithm on data sets with
and without noise. Like the PFCM algorithm, the performance of the proposed
method depends on the choice of the parameters that control the influence of the
membership degrees and the typicality values. Therefore, in the future we plan
to adapt MFCM to other possibilistic clustering models to test if the role of the
right choice of user defined parameters can be minimized. Furthermore, we aim
to apply our method for the text clustering to find out whether the subsequent
text retrieval can be improved by the multivariate membership degrees. In this
context it would be very helpful to find a heuristic for a distinction between the
data objects belonging to clusters and noise points.
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