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1 Introduction

AI is quickly developing. Every year, the boundaries of what is possible are being
pushed further and further. Since 2015, computers can play our video games
from the 80’s at a level comparable to that of an experienced gamer [20]. In
2016, they first beat the world champion of Go, the holy grail of board games,
pulling moves that are inhuman, but “so beautiful” (dixit Fan Hui, reigning
European champion). Fully self-driving cars have been around for at least a
couple of years [15], and in a few more years Amazon drones will be whizzing
around delivering packages to anybody and everybody [2].

One of the strengths of many of these systems is their ability to learn from
data. The rules they follow, the behaviour they exhibit, is not exclusively pro-
grammed by some smart engineer. Rather, the engineer implements a learning
algorithm, which is then fed data relevant for the task at hand. The learning
algorithm then finds patterns in the data, discovers what are ‘good’ decisions
for which situations, and an ‘intelligent’ system emerges.

This is Machine Learning.

2 Reinforcement Learning

Some of the examples cited above use a specific Machine Learning approach
called reinforcement learning. This approach to learning is inspired by behav-
iourist psychology, where human and animal behaviour is studied from a reward
and punishment perspective. A small illustrative example conveys the main prin-
ciple of this learning theory:

Example 1. Say you want to train your dog to sit.
You take your dog outside and shout ‘sit’.
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The dog realizes it needs to do something (you shouting and pointing to the
ground is a definite clue), but it doesn’t know what to do.
It barks, but nothing happens...
It gives a paw (something it learned before), but nothing happens...
It sits on the ground, and lo and behold, a dog cookie appears!

If you repeat this process many times, your dog will probably learn to asso-
ciate the situation (you shouting ‘sit’) and its own action (sitting down), with
the positive stimulus (a tasty cookie) and will repeat this behaviour on future
occasions.

In essence, the learner is considered to crave ‘something’ that it receives
depending on its behaviour; it receives more of it when it exhibits desirable
behaviour, and less (or even something opposite) when it does not. Whether this
‘something’ be cookies for a dog, or dopamine in the human brain, or a simple
numerical value, an increase of it tells the learner that it has done something
right, and an intelligent learner will repeat that behaviour when it encounters a
similar situation in the future.

This same principle was successfully used in the examples cited above to
train AIs to play video games and play Go.1 The former using the score in the
game as reward, the latter the win or loss as reward or punishment.

3 The Reinforcement Learning Problem

In this section, we describe reinforcement learning (RL) more formally. We set
the stage with the classic RL diagram, displayed in Fig. 1. It shows how an RL
agent interacts with its environment. First, to say what an agent exactly is, is
surprisingly difficult; definitions abound in AI literature. In this article, we adopt
the following simple definition [25]:

Agent

Environment

action astate s
reward r

Fig. 1. The reinforcement learning agent-environment interaction loop.

1 Do not dismiss these results as only academically interesting due to the ‘game’
nature of the problems: the complexity of these problems approaches and surpasses
that of many more useful applications [28]. Furthermore, the past has shown that
breakthrough advances in games have lead to breakthroughs in other fields. Monte
Carlo Tree Search, initially developed for Go, is one example [8].
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Definition 1 (An Agent.) An agent is just something that perceives and acts.

What the agent perceives and acts upon, we call the environment. This envi-
ronment typically changes due to the agent’s actions and possibly other factors
outside the agent’s influence. The agent perceives the state (s) of the environ-
ment (a potentially incomplete observation), and must decide which action (a)
to take based on that information, such that the accumulation of rewards (r) it
receives from the environment is maximized.

This agent-environment interaction process is most commonly formulated as
a Markov Decision Process (MDP):

Definition 2 (Markov Decision Process). A Markov Decision Process is a
tuple 〈S,A, T, γ,R〉.
– S = {s1, s2, . . .} is the possibly infinite set of states the environment can be

in.
– A = {a1, a2, . . .} is the possibly infinite set of actions the agent can take.
– T (s′|s, a) defines the probability of ending up in environment state s′ after

taking action a in state s.
– γ ∈ [0, 1] is the discount factor, which defines how important future rewards

are.
– R(s, a, s′) is the possibly stochastic reward given for a state transition from s

to s′ through taking action a. It defines the goal of an agent interacting with
the MDP, as it indicates the immediate quality of what the agent is doing.

It is called a Markov Decision Process, since the state signal is assumed to
have the Markov property:

Definition 3 (Markov Property). A stochastic process has the Markov prop-
erty if the conditional probability distribution of future states of the process (con-
ditional on both past and present states) depends only upon the present state, not
on the sequence of events that preceded it [6].

In other words, the state signal should contain enough information to reliably
predict future states.

The way an agent acts based on its perceptions, i.e., its behaviour, is com-
monly referred to as a policy, denoted as π : S ×A → [0, 1]. It formally describes
how likely an agent is to do something (action) in a given situation (state), by
mapping state-action pairs to action selection probabilities. In this article, we use
this notation for policies interchangeably with the following notation π : S → A,
which is a reformulation where not the action selection probabilities are out-
put for a given state-action pair, but given a state and these probabilities, π(s)
outputs a probabilistically selected action.

The goal of an agent interacting with an MDP is to learn behaviour, a pol-
icy, that maximizes the discounted accumulation of rewards collected during its
lifetime in the environment. This accumulation of reward up to a given time
horizon or into infinity is called the return:
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Rt = R(st, at, st+1) + γR(st+1, at+1, st+2) + γ2R(st+2, at+2, st+3) + . . .

=
∞∑

k=0

γkR(st+k, at+k, st+k+1)

The discount factor γ determines the current value of future rewards. As γ → 1,
the agent becomes more farsighted, and will prefer large future rewards over
smaller short-term rewards.

Given a state s and a policy π, we can express the return an agent can expect
when starting from that state and following that policy as follows:

V π(s) = E

{ ∞∑

k=0

γkR(st+k, at+k, st+k+1)|st = s

}

This value function expresses the quality of being in state s when following policy
π, given the MDP to-be-solved that generates state transitions and rewards for
these transitions. The expectation E {} accounts for the stochasticity in these
transition and reward functions, as well as in the policy that generates the action
sequence.

Similarly, we can define the quality of being in state s, taking action a, and
subsequently following policy π. This is called the action-value function:

Qπ(s, a) = E

{ ∞∑

k=0

γkR(st+k, at+k, st+k+1)|st = s, at = a

}

The expected returns encoded in these value functions yield a way to evaluate
the quality of policies. A policy π is better than another policy π′ if it has higher
expected returns. A reinforcement learning agent needs to learn a policy that
maximizes the expected return ∀s ∈ S, a ∈ A:

π∗ = arg max
π

Qπ(s, a)

π∗ is called an optimal policy,2 as it represents the behaviour that gets the highest
return in expectation, thus solving the task encoded in the reward function.

4 Reinforcement Learning Algorithms

If the MDP’s transition and reward functions are known, Dynamic Programming
techniques can be used to optimally solve the problem [5]. Yet, it is uncommon
to have a full specification of a system’s dynamics or the reward function, and
thus the use of techniques that can work with only knowledge of state and
action spaces is necessary. These techniques must generate policies that max-
imize the expected return in environments with unknown dynamics and goals
through trial-and-error. Learning a model of the environment may be part of
2 There may be many, although their (action-)value functions will all be the same.
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this process, but it is not necessary and many techniques are successful without
this component.

As is the case in Dynamic Programming, there are basically two paradigms
for reinforcement learning: policy iteration and value iteration. Both methods
can be considered as on-line versions of their dynamic programming counter-
parts. In policy iteration, the learning agent contains two units, the evaluation
unit and the action unit. The former is the internal evaluator, while the latter is
responsible for determining the actions which look most promising according to
the internal evaluator [4]. Policy gradient (PG) methods [34] are closely related
to this policy iteration approach, with the internal evaluator usually replaced
by sampled returns. These methods assume a parametric representation of the
policy and the parameters are updated following a gradient in policy space. As
they make assumptions on smoothness, these reinforcement learning techniques
can naturally cope with continuous states and actions and uncertain state infor-
mation. Exploration is typically achieved the same way as in policy iteration,
i.e. by applying some noise on the action proposed by the current policy. Alter-
natively, exploration can also be realised by assuming a probability distribution
(typically a Gaussian distribution) over the parameters involved in the policy.
This approach is named Policy Gradients with Parameter-based Exploration
(PGPE) [27]. Each time an action needs to be sampled, the parameters of the
policy are drawn according to the distribution, resulting a policy instantiation
that prescribes the action. The parameters of the policy are then updated based
on the reward received using again a gradient approach. More advanced methods
allow this idea to be applied to non-differential policies and also reduce the risk
of getting stuck in a local optimum through a multi-modal approach [26].

In contrast, value iteration methods do not store a policy explicitly, but learn
a value function from which they derive a policy. In the remainder of this section,
we introduce and elaborate on temporal difference (TD) learning algorithms, a
popular type of value iteration algorithms.

Definition 4 (TD Learning). Temporal difference learning is an approach to
reinforcement learning that keeps estimates of expected return and updates these
estimates based on experiences and differences in estimates over successive time-
steps.

In other words, in TD learning, the agent incrementally updates estimates
of a value function, using observed rewards and the previous estimates of that
value function. One of the best known and simplest temporal difference learn-
ing algorithms is Q-learning [44]. It estimates the optimal Q-function Q∗ by
iteratively updating its estimates Q̂ after each state-action-reward-next state
(s, a, r, s′) interaction with the environment:

Q̂(s, a) ← Q̂(s, a) + αδ

0 ≤ α ≤ 1 is the stepsize, controlling how much the value function is updated in
the direction of the temporal difference error δ. The temporal difference error δ
is the difference between the previous estimate and the observed sample:
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δ = r + γ max
a′

Q̂(s′, a′) − Q̂(s, a)

Q-learning performs off-policy learning. This means that it learns about a
different policy than the one generating the interactions with the environment,
which is called the behaviour policy. In the case of Q-learning, the policy being
learned about is the optimal policy. The on-policy variant of Q-learning is called
SARSA. It modifies the temporal difference error in such a way that the algo-
rithm learns about the behaviour policy, using the action a′ actually executed in
next state s′, instead of using the action with the highest estimate in that state:

δ = r + γQ̂(s′, a′) − Q̂(s, a)

If all state-action pairs are visited infinitely often, given some boundary con-
ditions, Q-learning and SARSA are guaranteed to converge to the true Q-
values [29,37]. In practice, a finite number of experiences is usually sufficient
to generate near-optimal behaviour.

From an estimated Q-function, an agent can easily derive a greedy determin-
istic policy π:

π(s) = arg max
a

Q̂(s, a)

If the estimates have converged to the optimal Q-values Q∗, then this formula
generates an optimal policy.

Since an agent typically needs to sufficiently explore the state-action space in
order to find optimal behaviour (infinitely often in the case of Q-learning), it is
in most cases insufficient to just use the greedy policy derived from the agent’s
estimates to generate interactions with the environment. That is because initial
underestimation of the quality of actions might lead the agent to always select the
first action it tries, because it yielded a higher return than expected and than
estimated for the other actions. This results in the agent ceasing exploration
prematurely, and the value function converging to a local optimum. Instead of
always using the greedy policy with respect to the estimates to select actions,
it is therefore often advisable to inject stochasticity into the policy to generate
the necessary exploration. One way is to take a random action at every time-
step with probability ε. This ensures that every reachable state-action pair has
a non-zero visitation probability, irrespective of the estimated Q-values at that
time. Let ξ ∈ [0, 1] be a randomly drawn real number:

π(s) =
{

a random action if ξ < ε

arg maxa Q̂(s, a) otherwise

This is called ε-greedy action selection.
Another popular approach is softmax action selection, which determines the

probability of every action based on the relative magnitude of the actions’ esti-
mates:

π(s, a) =
e

Q(s,a)
τ

∑
a′ e

Q(s,a′)
τ
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The ‘temperature’ parameter τ determines how random (high τ) or greedy (low
τ) action selection is. Actions with higher estimated Q-values will have relatively
higher probabilities of being selected, and actions with lower estimated Q-values
will have proportionally lower probabilities.

Defining a reward function requires some experience, however coming up with
a reward function is often quite straightforward. Consider for example the case
where we want an RL agent to find its way in unknown maze. Then we can
give a reward of say +100 when it reaches its goal and 0 otherwise. Similarly,
it we want the agent to learn to play chess, then we reward it with, e.g. +100
when it enters a winning state, −100 when it losses and 0 for all other states.
Reward functions are not unique, consider for example the well known cart-pole
problem. We can give the agent a reward of +1 at each time step it keeps the
system under control, as such the agent will try to keep the system under control
as long as possible, in order to collect as many +1’s as possible. Another way to
express the same goals, is to reward the agent with a 0 and only when it fails,
punishing it with a −1, combined with a discount factor γ strictly smaller than
1, this results in a reward of −1 × γt, with t the time step of failure.

5 Function Approximation and Eligibility Traces

The basic versions of the algorithms described above are defined for discrete
state-action spaces. They use a simple table to store the Q estimates: one entry
for every possible state-action pair. Since many practical reinforcement learn-
ing problems have very large and/or continuous state spaces,3 basic tabular
learning methods are impractical, due to the sheer size of storage required, or
even unusable, due to a table’s inherent inability to faithfully represent continu-
ous spaces. Therefore, function approximation techniques are required to render
the learning problem tractable. Many different approximators exist, with deep
neural networks being currently very much in vogue [20,28]. We introduce here a
more basic and common function approximator, called tile-coding [1]. It is a lin-
ear approximator which overlays the state space with multiple randomly-offset,
axis-parallel tilings. See Fig. 2 for an illustration. This allows for a discretization
of the state-space, while the overlapping tilings guarantee a certain degree of
generalization. The Q-function can be approximated by learning weights that
map the tiles activated by the current state s and action a to an estimated
Q-value:

Q̂(s, a) = θT φ(s, a)

φ(s, a) is the feature vector representing state-action pair (s, a), i.e., a binary
vector indicating the tiles activated by this state and the action, and θ is the
parameter vector that needs to be learned to approximate the actual Q-function.
This weight vector is updated using an update-rule similar to the one used in
the tabular case:

θ ← θ + αδ

3 Not to speak of continuous action spaces. That is not considered in this paper.
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Fig. 2. An illustration of tile-coding function approximation on a two-dimensional state
space, with two tilings. Figure taken from [35].

Alternatively, instead of discrete tilings, concepts from fuzzy set theory can be
used, with fuzzy sets defined over the state space, and the membership operator
μ(s) used as follows [14,22]:

θ ← θ + αμ(s)δ

This update rule expresses that the more the state belongs to the fuzzy region
described the fuzzy set, the more that sample is relevant for updating the Q-
value associated to that region. Action selection techniques as described above
can still be applied by combining the selected actions for each of the regions by
weighting them according to the state membership.

A last commonly used mechanism in temporal difference reinforcement learn-
ing is called eligibility traces. Eligibility traces [17] are records of past occurrences
of state-action pairs. These give a sense of how ‘long ago’ a given action was
taken in a given state. They can be used to propagate reward further into the
past (n-step) than the algorithms discussed until now do (one step). Using eli-
gibility traces, not only the Q-value of the currently observed state-action pair
is updated, but also those of past state-action pairs, inversely proportional to
the time since they were experienced. Concretely, a (replacing) eligibility trace
e(s, a) for state s and action a is updated as follows [30]:

e(s, a) ←
{

1 s = st, a = at

γλe(s, a) otherwise

It is set to 1 if (s, a) is currently observed, and otherwise it is decayed by γλ, with
0 ≤ λ ≤ 1 the eligibility trace decay parameter. Higher λ results in rewards being
propagated further into the past. This eligibility trace update is performed at
every step, thus making traces decay over time. The eligibility traces are included
as a vector e in the Q update rule as follows:

θ ← θ + αeδ



26 A. Nowé and T. Brys

6 Sample Complexity

As in general machine learning, sample complexity is important in reinforcement
learning. Sample complexity represents the number of environment (s, a, s′, r)
samples an agent requires to perform a task well. Obtaining samples usually
carries a cost, often greater than just the computational cost associated with
processing the sample. Making a robot spend hours, days and weeks to learn a
task is very costly. It takes a lot of electricity, several engineers to attend to the
robot, and physical space for the robot to execute the task, none of which are
cheap to obtain.

Therefore, one of the primary goals of reinforcement learning algorithms,
besides convergence and (near-) optimality, is an efficient use of samples. The less
samples an algorithm requires to achieve some desirable level of behaviour, the
better. In general, there is an interplay between, setting of the learning rate, the
value of the discount factor, the exploration strategy and the initialisation of e.g.
the Q-values. Also the state description and the kind of function approximator
plays a role in the learning performance. While the theoretical frame work for
RL is the Markov decision processes, one can state that there is a graceful
degradation, meaning the less Markovian the problem is (as perceived by the
agent), the more carefully the exploration needs to be. This is especially the
case in Multi-agent settings see Sect. 9.

Broadly speaking, researchers take either one of two approaches to reduce
the number of samples an agent requires. They either build algorithms and
techniques that inherently require less samples (one of the first algorithms of
this kind was Dyna-Q [33]4, or they use some prior/external knowledge to bias
the agent. Some argue that the former is superior to the latter, as it is the more
general approach [32]. Yet, we believe that both will always be intertwined. One
can see this for example in the success of AlphaGo [28], which definitely is a
great example of new algorithms using their samples in a better way, yet still it
required a great deal of human demonstrations to work well. One of the popular
ways to include such external knowledge is through reward shaping.

7 Reward Shaping

The modern version of reward shaping, a technique with roots in behavioural
psychology [31], provides a learning agent with extra intermediate rewards, much
like a dog trainer would reward a dog for completing part of a task. This extra
reward can enrich a sparse base reward signal (for example a signal that only
gives a non-zero feedback when the agent reaches the goal), providing the agent
with useful gradient information. This shaping reward F is added to the envi-
ronment’s reward R to create a new composite reward signal that the agent uses
for learning:
4 Dyna-Q combines Q-learning with learning a transition model. This (approximate)

model is then used generated simulated samples for the Q-learner. Real life sample
and simulated samples can be arbitrarily inter-twined. This principled is also referred
to as planning in an RL context.
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RF (s, a, s′) = R(s, a, s′) + F (s, a, s′)

Of course, since the reward function defines the task, modifying the reward
function may modify the total order over policies, and make the agent converge
to suboptimal policies (with respect to the environment’s original reward).

If we define a potential function Φ : S → R over the state space, and take F
as the difference between the new and old states’ potential, Ng et al. proved that
the total order over policies remains unchanged, and convergence guarantees are
preserved [21]:

F (s, a, s′) = γΦ(s′) − Φ(s) (1)

Prior knowledge can be incorporated by defining the potential function Φ
accordingly.

The definition of F and Φ was extended by [11,16,46] to include actions and
timesteps, allowing for the incorporation of behavioural knowledge that reflects
the quality of actions as well as states, and allowing the shaping to change over
time:

F (s, a, t, s′, a′, t′) = γΦ(s′, a′, t′) − Φ(s, a, t)

This extension also preserves the total order over policies and therefore does
not change the task, given Ng’s original assumptions. Harutyunyan et al. [16]
use this result to show how any reward function R† can be transformed into
a potential-based shaping function, by learning a secondary Q-function Φ† in
parallel on the negation of R†, and using that to perform dynamic shaping on
the main reward R.

Many different types of knowledge can be used to bias a learning agent,
ranging from expert knowledge [12] and human demonstrations [9] to knowledge
transferred from a previous task [36] and on-line teacher advice [18].

How this different techniques relate to each other is discussed in the Ph.D.
of Tim Brys5

8 Multi-objective Reinforcement Learning

Multi-objective reinforcement learning [24] (MORL) is a generalization of stan-
dard single-objective reinforcement learning, with the environment formulated
as a multi-objective MDP, or MOMDP 〈S,A, T, γ,R〉. The difference with the
single-objective case is the reward function. Instead of returning a scalar value,
it returns a vector of scalars, one for each of the m objectives:

R(s, a, s′) = [R1(s, a, s′), . . . , Rm(s, a, s′)]

Policies are in this case evaluated by their expected vector returns Qπ:

Qπ(s, a) = [Qπ
1 (s, a), . . . , Qπ

m(s, a)]

=

[
E

{∑∞
k=0 γkR1(st+k, at+k, st+k+1)|st = s, at = a

}
, . . . ,

E
{∑∞

k=0 γkRm(st+k, at+k, st+k+1)|st = s, at = a
}

]

5 To appear, will be available online at ai.vub.ac.be.
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Since there are multiple (possibly conflicting) signals to optimize, there is typi-
cally no total order over policies. Policies may be incomparable, i.e., the first is
better on one objective while the second is better according to another objec-
tive, and thus the notion of optimality has to be redefined. A policy π1 is said
to strictly Pareto dominate another policy π2, i.e., π1 	 π2, if for each objective,
π1 performs at least as well as π2, and it performs strictly better on at least
one objective. The set of non-dominated policies is referred to as the Pareto
optimal set or Pareto front. The goal in multi-objective reinforcement learning,
and multi-objective optimization in general, is either to find a Pareto optimal
solution, or to approximate the whole set of Pareto optimal solutions.

With a multi-objective variant of Q-learning, Q-values for each objective can
be learned in parallel, stored as Q-vectors [13,41]:

Q̂(s, a) ← Q̂(s, a) + αδ

δi = Ri(s, a, s′) + γ max
a′

Q̂i(s′, a′) − Q̂i(s, a)

The most common approach to derive a policy from these estimates is to
calculate a linear scalarization, or weighted sum based on the estimated Q-
vectors and a weight vector w [24,38,41]:

π(s) = arg max
a

wT Q̂(s, a)

The weight vector determines which trade-off solutions are preferred, although
setting these weights a priori to achieve a particular trade-off is hard and non-
intuitive [10], often requiring significant amounts of parameter tuning. Further-
more, because linear scalarization is a convex combination method, only solutions
on convex parts of the Pareto-front can be found [39].

Algorithms that learn multiple trade-offs at the same time (multi-policy),
and use operators that ensure access to both convex and concave parts of the
Pareto-front are therefore very important. Only a restricted number of multi-
policy MORL algorithms have been proposed so far. For instance, Barrett and
Narayanan [3] propose the Convex Hull Value Iteration (CHVI) algorithm. From
batch data, CHVI extracts and computes every linear combination of the objec-
tives in order to obtain all deterministic optimal policies. As the algorithm relies
on linear combinations, only policies on the convex hull are learned. The most
computationally expensive operator is the procedure to compute and combine
the convex hulls in the convex-hull version of the Bellman equation. Lizotte et
al. [19] reduce the asymptotic space and time complexity of the bootstrapping
rule by learning several value functions corresponding to different weight vectors
using a piecewise linear spline representation. Wang and Sebag [43] propose a
multi-objective Monte Carlo Tree Search (MO-MCTS) method to learn a set of
solutions. The algorithm performs tree traversals by selecting the most promising
actions. The upper confidence bounds of these actions are scalarized by apply-
ing the hypervolume indicator on the combination of their estimates and the set
of Pareto optimal policies computed so far. Hence, a scalarized multi-objective
value function is constructed that eases the process of selecting an action with
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vectorial estimates. Finally, Pareto Q-Learning is to the best of our knowledge
the only temporal-difference based multi-policy MORL algorithm [42]. It uses the
Pareto dominance operator to selection actions, thus allowing for policies in con-
cave areas of the Pareto front, and learns sets of Q-values by separately learning
immediate rewards and expected future discounted rewards. It has been shown
to be more sample efficient compared to for example MO-MCTS on a typical
benchmark problem [40].

9 Multi-agent Reinforcement Learning

So far we have discussed approaches for single agent settings. However, when
multiple learners simultaneously apply reinforcement learning in a shared envi-
ronment, the traditional approaches often fail.

In a multi-agent setting, the assumptions that are needed to guarantee con-
vergence, are often violated. Already in the most basic case where agents share
a stationary environment and need to learn a strategy for a single interaction,
many new complexities arise. These are mainly due to the fact that the agents
are learning simultaneously and therefore the non-determinism in the reward
signal might not only be due to the stochasticity of the environment, but also
due to the actions taken by the other agents. Despite the added complexity, a
real need for multi-agent systems exists. Often systems are inherently decentral-
ized, and a central, single agent learning approach is not feasible because that
would require too many resources or communication overhead. Examples of such
systems are multi-robot set-ups, decentralized network routing, distributed load-
balancing, electronic auctions, smart grids and traffic control. Depending on the
characteristics of the system different multi-agent RL techniques might be more
appropriate. The settings characteristics are for instance, whether the agents
can observe each others actions or whether these actions are not observable by
the other agents or only partially, whether the agents take their actions synchro-
nously at fixed time steps or if they act asynchronously, whether the interactions
are frequent or sparse, whether the rewards follow the actions instantaneously or
are delayed (as for instance in queueing systems) and whether the agents have
common or conflicting interests. In general, one can state that in a multi-agent
setting, exploration is a very crucial aspect to make the reinforcement learning
approach perform well. More precisely, exploration should be limited to allow
the agent to differ some how between noise due to the environment and noise
due the presence of other agents. Because of this, policy iteration techniques are
interesting candidates in a Multi-agent Reinforcement Learning (MARL) set-
ting, however value-iteration methods with specific exploration strategies have
also been successfully applied. In case the agents have conflicting interests, the
additional problem of the solution concept arises. As the agents have conflicting
goals, it is no longer obvious what the solution of the system should be and
where Game Theory becomes relevant. We refer the reader to [23] for a more in
depth discussion on MARL. A recent paper by Bloembergen et al. [7], provides
an overview of the dynamics of MORL techniques based on evolutionary game
theory.
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10 Conclusion

This paper gave a brief introduction to reinforcement learning basics, and some
more recent extensions such as Multi-agent reinforcement learning and Multi-
criteria reinforcement learning. We also gave some pointers to approaches to
reduce the sample complexity, where reward shaping is a safe way to incorporated
domain knowledge which recently received quite a lot of attention. We refer the
reader to [33] for learning more about the basics of reinforcement learning and
to [45] for an overview of some more advanced reinforcement learning algorithms.
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