
Fuzzy Quantified Structural Queries to Fuzzy
Graph Databases

Olivier Pivert(B), Olfa Slama, and Virginie Thion

University of Rennes 1 – Irisa, Lannion, France
{olivier.pivert,olfa.slama,virginie.thion}@irisa.fr

Abstract. This paper deals with fuzzy quantified queries in a graph
database context. We study a particular type of structural quantified
query and show how it can be expressed in the language FUDGE that
we previously proposed. A processing strategy based on a compilation
mechanism that derives regular (nonfuzzy) queries for accessing the rel-
evant data is also described.

Keywords: Graph databases · Fuzzy quantified queries

1 Introduction

Even though the concept of a graph database is not exactly new [2], it is only
recently that the database community has started to show a strong interest in
it, due in particular to the rise of linked data on the Web and the profusion of
domains where networked objects have to be handled: social networks, genomics,
cartographic databases, etc.

Simultaneously, the need for flexible querying has been acknowledged by
database researchers, and many approaches to relational database preference
queries have been proposed in the last decade, see e.g. [14]. However, the pio-
neering work in this domain dates back to the 70’s and is based on fuzzy set
theory [15]. Since then, much effort has been made to come up with expressive
and efficient flexible querying tools based on fuzzy logic, see e.g. [9]. In particu-
lar, fuzzy quantified queries have proved useful in a relational database context
for expressing different types of imprecise information needs [4]. In a graph data-
base context, such queries have an even higher potential since they can exploit
the structure of the graph, beside the attribute values attached to the nodes or
edges. Nevertheless, only one approach from the literature, described in [5], con-
sidered fuzzy quantified queries so far, and only in a limited way. In the present
paper, we intend to integrate fuzzy quantified queries in a framework that we
defined previously in [10,11].

The remainder of the paper is organized as follows. Section 2 presents the
different elements that constitute the context of the work. Section 3 is a refresher
about fuzzy quantified statements. Section 4 discusses related work. In Sect. 5,
we consider a specific type of fuzzy quantified structural query, we propose a
syntactic format for expressing it in the FUDGE language defined in [10], and
c© Springer International Publishing Switzerland 2016
S. Schockaert and P. Senellart (Eds.): SUM 2016, LNAI 9858, pp. 260–273, 2016.
DOI: 10.1007/978-3-319-45856-4 18

Fuzzy Quantified Structural Queries to Fuzzy Graph Databases 261

we describe its interpretation. Section 6 deals with query processing. Finally,
Sect. 7 recalls the main contributions and outlines research perspectives.

2 Background Notions

In this section, we recall important notions about graph databases, fuzzy graph
theory, fuzzy graph databases, and the query language FUDGE.

2.1 Graph Databases

A graph database management system enables managing data for which the
structure of the schema is modeled as a graph (nodes are entities and edges are
relations between entities), and data is handled through graph-oriented opera-
tions and type constructors. Different models of graph databases have been pro-
posed in the literature (see [2] for an overview), including the attributed graph
(aka. property graph) aimed to model a network of entities with embedded data.
In this model, nodes and edges may contain data in attributes (aka. properties).

2.2 Fuzzy Graphs

A graph G is a pair (V, R), where V is a set and R is a relation on V . The
elements of V (resp. R) correspond to the vertices (resp. edges) of the graph.
Similarly, any fuzzy relation ρ on a set V can be regarded as defining a weighted
graph, or fuzzy graph [13], where the edge (x, y) ∈ V ×V has weight or strength
ρ(x, y) ∈ [0, 1].

An important operation on fuzzy relations is composition. Assume ρ1 and ρ2
are two fuzzy relations on V . Thus, composition ρ = ρ1◦ρ2 is also a fuzzy relation
on V s.t. ρ(x, z) = maxy min(ρ1(x, y), ρ2(y, z)). The composition operation
can be shown to be associative: (ρ1 ◦ ρ2) ◦ ρ3 = ρ1 ◦ (ρ2 ◦ ρ3). The associativity
property allows us to use the notation ρk = ρ ◦ ρ ◦ . . . ◦ ρ for the composition
of ρ with itself k − 1 times. In addition, following [16], we define ρ0 to be s. t.
ρ0(x, y) = 0, ∀(x, y).

Useful notions related to fuzzy graphs are those of strength and length of a
path. Their definition, drawn from [13], is given hereafter.

Strength of a path. — A path p in G is a sequence x0 → x1 → . . . → xn

(n ≥ 0) such that ρ(xi−1, xi) > 0, 1 ≤ i ≤ n and where n is the number of links
in the path. The strength of the path is defined as

ST (p) = min
i=1..n

ρ(xi−1, xi). (1)

In other words, the strength of a path is defined to be the weight of the weakest
edge of the path. Two nodes for which there exists a path p with ST (p) > 0
between them are called connected. We call p a cycle if n ≥ 2 and x0 = xn. It is
possible to show that ρk(x, y) is the strength of the strongest path from x to y

262 O. Pivert et al.

containing at most k links. Thus, the strength of the strongest path joining any
two vertices x and y (using any number of links) may be denoted by ρ∞(x, y).

Length and distance. — The length of a path p = x0 → x1 → . . . → xn in the
sense of ρ is defined as follows:

Length(p) =
n∑

i=1

1
ρ(xi−1, xi)

. (2)

Clearly Length(p) ≥ n (it is equal to n if ρ is Boolean, i.e., if G is a nonfuzzy
graph). We can then define the distance between two nodes x and y in G as

Distance(x, y) = min
all paths x to y

Length(p). (3)

It is the length of the shortest path from x to y. It can be shown that Distance
is a metric [13], i.e., Distance(x, x) = 0, Distance(x, y) = Distance(y, x), and
Distance(x, z) ≤ Distance(x, y) + Distance(y, z) ∀z.

2.3 Fuzzy Graph Databases

We are interested in fuzzy graph databases where nodes and edges can carry
data (e.g. key-value pairs in attributed graphs). So, we consider an extension of
the notion of a fuzzy graph: the fuzzy data graph as defined in [11].

Definition 1 (Fuzzy data graph). Let E be a set of labels. A fuzzy data graph
G is a quadruple (V, R, κ, ζ), where V is a finite set of nodes (each node n is
identified by n.id), R =

⋃
e∈E{ρe : V × V → [0, 1]} is a set of labeled fuzzy

edges between nodes of V , and κ (resp. ζ) is a function assigning a (possibly
structured) value to nodes (resp. edges) of G.

In the following, a graph database is meant to be a fuzzy data graph. Figure 1
is an example of a fuzzy data graph in which the degree associated with A

-contributor-> B is the proportion of journal papers co-written by A and B,
over the total number of journal papers written by B. The degree associated
with J -domain-> D is the extent to which the journal J belongs to the research
domain D.

Nodes are assumed to be typed. If n is a node of V , then Type(n) denotes
its type. In Fig. 1, the nodes IJWS12, IJAR14, IJIS16, IJIS10 and IJUFK15 are of
type journal, the nodes IJWS12-p, IJAR14-p, IJIS16-p, IJIS10-p, IJIS10-p1 and
IJUFK15-p of type paper, and the nodes Andreas, Peter, Maria, Claudio, Michel,
Bazil and Susan are of type author, the nodes named Database are of type domain
and the other nodes are of type impact factor. For nodes of type journal, paper,
author and domain, a property, called name, contains the identifier of the node
and for nodes of type impact factor, a property, called value, contains the value
of the node. In Fig. 1, the value of the property name or value for a node appears
inside the node.

Fuzzy Quantified Structural Queries to Fuzzy Graph Databases 263

Fig. 1. Fuzzy data graph DB

2.4 The FUDGE Query Language

FUDGE, based on the algebra described in [10], is an extension of the Cypher
language [8], used in the Neo4j graph DBMS [1]. These languages are based on
graph pattern matching, meaning that a query Q over a fuzzy data graph DB
defines a graph pattern and answers to Q are its isomorphic subgraphs that can
be found in DB. More concretely, a pattern has the form of a subgraph where
variables can occur. An answer maps the variables in elements of DB.

A fuzzy graph pattern expressed à la Cypher consists of a set of expres-
sions (n1:Type1)-[exp]->(n2:Type2) or (n1:Type1)-[e:label]->(n2:Type2) where
n1 and n2 are node variables, e is an edge variable, label is a label of E, exp is a
fuzzy regular expression, and Type1 and Type2 are node types. Such an expres-
sion denotes a path satisfying a fuzzy regular expression exp (that is simple in the
second form e) going from a node of type Type1 to a node of type Type2. All its
arguments are optional, so the simplest form of an expression is ()-[]->() denot-
ing a path made of two nodes connected by any edge. Conditions on attributes are
expressed on nodes and edges variables in a where clause.

264 O. Pivert et al.

Example 1. We denote by P the fuzzy graph pattern:

1 match

2 (au2)-[:contributor+]->(au1:author),

3 (au1)-[:author_of]->(ar1:paper), (ar1)-[:published]->(j1),

4 (au1)-[:author_of]->(ar2:paper), (ar2)-[:published]->(j2)

5 where j1.name="IJWS12"

Listing 1.1. Pattern expressed à la Cypher

This pattern “models” information concerning authors (au2) who have,
among their close contributors, an author (au1) who published a paper (ar1)
in IJWS12 and also published a paper (ar2) in a journal (j2). �
Let us illustrate the way a selection query can be expressed in FUDGE, that
embarks fuzzy preferences over the data and the structure specified in the graph
pattern. Given a graph database DB, a selection query expressed in FUDGE is
composed of:

1. A list of define clauses for fuzzy term declarations. If a fuzzy term fterm

corresponds to a trapezoidal function defined by the quadruple (A-a, A, B and
B+b), then the clause has the form define fterm as (A-a,A,B,B+b). If fterm

is a decreasing function, then the clause has the form defineDesc fterm as

(δ,γ) meaning that the support of the term is [0, γ] and its core [0, δ] (there
is the corresponding defineAsc clause for increasing functions).

2. A match clause, which has the form match pattern where conditions that
expresses the fuzzy graph pattern.

Example 2. Listing 1.2 is an example of a FUDGE query.

1 defineDesc short as (3,5), defineAsc high as (0.5,2) in

2 match

3 (au2)-[(contributor+)|Length is short]->(au1:author),

4 (au1)-[:author_of]->(ar1:paper), (ar1)-[:published]->(j1),

5 (au1)-[:author_of]->(ar2:paper), (ar2)-[:published]->(j2),

6 (j2)-[:impact_factor]->(i)

7 where j1.name="IJWS12" and i.value is high

Listing 1.2. A FUDGE query

This pattern “models” information concerning authors (au2) who have, among
their close contributors (connected by a short path — Length is short — made
of contributor edges), an author (au1) who published a paper (ar1) in IJWS12

and also published a paper (ar2) in a journal (j2) which has a high impact factor
(i.value is high). The fuzzy terms short and high are defined on line 1. �

3 Refresher on Fuzzy Quantified Statements

In this section, we recall important notions about fuzzy quantifiers and present
one of the approaches that have been proposed in the literature for interpreting
fuzzy quantified statements.

Fuzzy Quantified Structural Queries to Fuzzy Graph Databases 265

3.1 Fuzzy Quantifiers

Zadeh [17] distinguishes between absolute and relative fuzzy quantifiers.
Absolute quantifiers refer to a number while relative ones refer to a propor-
tion. Quantifiers may also be increasing, as “at least half”, or decreasing, as “at
most three”. An absolute quantifier Q is represented by a function μQ from an
integer range to [0, 1] whereas a relative quantifier is a mapping μQ from [0, 1]
to [0, 1]. In both cases, the value μQ(j) is defined as the truth value of the state-
ment “Q X are A” when exactly j elements from X fully satisfy A (whereas it
is assumed that A is fully unsatisfied for the other elements). Figure 2 gives two
examples of monotonous decreasing and increasing quantifiers respectively.

1 2 3 40

1
µat most 2

number of
satisfied criteria

1 2 3 40

1
µat least 3

number of
satisfied criteria

Fig. 2. Quantifiers “at most 2” (left) and “at least 3” (right)

Calculating the truth degree of the statement “QX are A” raises the problem
of determining the cardinality of the set of elements from X which satisfy A. If A
is a Boolean predicate, this cardinality is a precise integer (k), and then, the truth
value of “Q X are A” is μQ(k). If A is a fuzzy predicate, this cardinality cannot
be established precisely and then, computing the quantification corresponds to
establishing the value of function μQ for an imprecise argument.

3.2 Zadeh’s Interpretation

Let X be the usual (crisp) set {x1, x2, . . ., xn}. Zadeh [17] defines the cardinality
of the set of elements of X which satisfy A, denoted by Σcount(A), as:

Σcount(A) =
n∑

i=1

μA(xi) (4)

The truth degree of the statement “Q X are A” is then given by

μ(Q X are A) =

⎧
⎪⎨

⎪⎩

μQ(Σcount(A)) (absolute),

μQ

(
Σcount(A)

n

)
(relative)

(5)

where n denotes the cardinality of X.

266 O. Pivert et al.

As for quantified statements of the form “Q B X are A” (with Q relative),
their interpretation is as follows:

μ(QBXareA) = μQ

(
Σcount(A ∩ B)

Σcount(B)

)
= μQ

(∑
x∈X
(μA(x), μB(x))∑

x∈X μB(x)

)
(6)

where
 denotes a triangular norm (for instance the minimum).

4 Related Work

Fuzzy quantified queries have been thoroughly studied in a relational database
context, see e.g. [4,7] where they serve to express conditions about data values.
In a graph database context, a new dimension can be exploited that concerns
the structure of the graph. In [16], Yager briefly mentions the possibility of
using fuzzy quantified queries in a social network database context, such as the
question of whether “most of the people residing in western countries have strong
connections with each other” and suggests to interpret it using an OWA operator.
However, the author does not propose any formal language for expressing such
queries.

A first attempt to extend Cypher with fuzzy quantified queries — in the con-
text of a regular (crisp) graph database — is described in [5,6]. In [5], the authors
take as an example a graph database representing hotels and their customers and
consider the following fuzzy quantified query:

1 match (c1:customer)-[:knows**almost3]->(c2:customer) return c1,c2

looking for pairs of customers linked through almost 3 hops. The syntax ** is
used for indicating what the authors call a fuzzy linker. However, the interpre-
tation of such queries is not formally given. The authors give a second example
that involves the fuzzy concept popular applied to hotels. They assume that a
hotel is popular if a large proportion of customers visited it. First, they consider
a crisp interpretation of this concept (large being seen as equivalent to at least
n) and recall how the corresponding query can be expressed in Cypher:

1 match (c:customer)-[:visit]->(h:hotel) with h, count(*) as cpt

2 where cpt > n − 1 return h

Then, the authors switch to a fuzzy interpretation of the term popular and
propose the expression:

1 match (c:customer)-[:visit]->(h:hotel) with h, count(*) as cpt

2 where popular(cpt) > 0 return h

In [6], the same authors propose an approach aimed to summarize a (crisp)
graph database by means of fuzzy quantified statements of the form Q X are A,
in the same spirit as what Rasmussen and Yager did for relational databases [12].
Again, they consider that the degree of truth of such a statement is obtained by a
sigma-count (according to Zadeh’s interpretation) and show how the correspond-
ing queries can be expressed in Cypher. More precisely, given a graph database

Fuzzy Quantified Structural Queries to Fuzzy Graph Databases 267

G and a summary S = a–[r]–>b, Q, the authors consider two degrees of truth
of S in G defined by truth1(S) = μQ (count(distinct S)/count(distinct a)) and
truth2(S) = μQ (count(distinct S)/count(distinct a–[r]–>(?))). They illustrate
these notions using a database representing students who rent or own a house
or an apartment. The degree of truth (in the sense of the second formula above)
of the summary “S = student–[rent]–>apartment, most” — meaning “most of
the students rent an apartment” (as opposed to a house) — is given by the
membership degree to the fuzzy quantifier most of the ratio: (number of times
a relationship of type rents appears between a student and an apartment) over
(number of relations of type rents starting from a student node).

A limitation of this approach is that only the quantifier is fuzzy (whereas
in general, in a fuzzy quantified statement of the form “Q B X are A”, the
predicates A and B may be fuzzy too).

5 Fuzzy Quantified Queries in the FUDGE Language

In the following, we consider fuzzy quantified queries involving fuzzy predicates
(beside the quantifier) over fuzzy graph databases. The fuzzy quantified state-
ments considered are of the form “Q nodes, that are connected according to a
certain pattern to a node x, satisfy a fuzzy condition ϕ”. An example of such
a statement is: “most of the papers of which x is a main author, have been
published in a renowned database journal”.

This type of statement rewrites “Q YP (x) are ϕ” where the quantifier Q is
represented by a fuzzy set and denotes either a relative quantifier (e.g., most)
or an absolute one (e.g., at least three), YP (x) designates the fuzzy set of nodes
connected, according to the pattern P (x), to a node x in the graph, and ϕ, is
represented also by a fuzzy set and denotes fuzzy (possibly compound) condi-
tions. In a general setting, we have a statement of the form “Q B X are A”
where B is the fuzzy condition “to be connected (according to the pattern P (x))
to a node x”, X is the set of nodes in the graph, and A is the fuzzy condition ϕ.
In the particular case where the graph is crisp, we get a statement of the form
“Q X are A” where the referential X is the (crisp) set of nodes connected to x.

Example 3. The query that consists in finding “most of the papers of which x
is a main author, have been published in a renowned database journal” may be
expressed in FUDGE as follows:
1 defineQrelativeAsc most as (0.3,0.8),

2 defineAsc strong as (0,1), defineAsc high as (0.5,2) in

3 match

4 (x:author)-[author_of|ST IS strong]->(p:paper),

5 (p:paper)-[:published]->(j:journal)-[:impact_factor]->(i:impact_factor),

6 (j:journal)-[:domain]->(d)

7 with x having most(p) are (i.value is high and d.name="database")

8 return x

where the defineQrelativeAsc clause defines the fuzzy relative increasing
quantifier most of Fig. 3(c), and the next defineAsc clauses define the ascending
fuzzy terms strong and high of Fig. 3(d) and (a).

268 O. Pivert et al.

20.50

1

Impact factor

µhigh

2013 20160

1
µrecent

year

(a) Membership function of high (b) Membership function of recent

0.80.30

1
µmost

proportion of
satisfied criteria

0

1
µstrong

strength1

(c) Membership function of most (d) Membership function of strong

Fig. 3. Membership functions

We now consider a slightly more complex version of the above example by
adding a fuzzy condition on the papers’ publication date: “most of the recent
papers written by an important author x have been published in a renowned
database journal”. The syntactic form of this query, denoted by QmostAuthors in
the following, is given in Listing 1.3. �
1 defineQrelativeAsc most as (0.3,0.8), defineAsc recent as (2013,2016),

2 defineAsc strong as (0,1), defineAsc high as (0.5,2) in

3 match

4 (x:author)-[author_of|ST IS strong]->(p:paper),

5 (p:paper)-[:published]->(j:journal)-[:impact_factor]->(i:impact_factor),

6 (j:journal)-[:domain]->(d)

7 where p.year is recent

8 with x having most(p) are (i.value is high and d.name="database")

9 return x

Listing 1.3. Syntax of the fuzzy quantified query QmostAuthors

The general syntactic form of fuzzy quantified queries is given in the Listing 1.4.

1 define... in

2 match P(x,y) where fc1(y)
3 with x having Quant(y) are fc2
4 return x

Listing 1.4. Syntax of a fuzzy quantified query

It contains a list of define clauses for the fuzzy quantifiers and the fuzzy
terms declarations, a match clause for fuzzy graph pattern selection, a where

clause for expressing the (possibly fuzzy) conditions on values, a having clause
for the fuzzy quantified statement definition, and a return clause for specifying
which elements should be returned in the resultset. P(x,y) denotes the fuzzy
graph pattern involving the nodes x and y. fc1 and fc2 are fuzzy conditions.

Fuzzy Quantified Structural Queries to Fuzzy Graph Databases 269

Interpretation: From a conceptual point of view, its interpretation involves three
derived queries (hereafter, the define clauses are been omitted for the sake of
simplicity). The first one, Q1 (given in Listing 1.5), aims to retrieve the elements
matching the variable x, for which we will then need to calculate a satisfaction
degree. Query Q1 is obtained by removing the with and having clauses from the
initial query (one may also remove some useless parts of P(x,y), as illustrated
in Example 4 below).

1 match P(x,y) where fc1(y)
2 return x

Listing 1.5. Derived query Q1

The second derived query, denoted by Q2(e) (given in Listing 1.6), where e is
an element returned by Q1, is obtained by removing the with and having clauses
from the initial query, integrating the fuzzy condition fc2 and the condition
x.name=e in the where clause and adding the clause return y. According to the
semantics of a FUDGE query, its result, denoted by AQ2(x), is a set of elements
{(μ1/y1), ..., (μn/yn)}, where μi is the satisfaction degree associated with the
element yi.

1 match P(x,y) where fc1(y) and fc2 and x.name=e

2 return y

Listing 1.6. Derived queries Q2(e) for each e retrieved by Q1

The third derived query, denoted by Q3(e) (given in Listing 1.7), is the initial
fuzzy query from the match to the where clause, adding the condition x.name=e

in the where clause and the clause return y as follows:

1 match P(x,y) WHERE fc1(y) and x.name=e

2 RETURN y

Listing 1.7. Derived queries Q3(e) for each e retrieved by Q1

The result of this query, denoted by AQ3(x), takes the form of a set of elements
{(μ′

1/y1), ..., (μ′
m/ym)}, where μ′

i is the satisfaction degree associated with the
element yi. Note that Q3 only differs from Q2 by its where clause.

In accordance with the semantics of the projection, if the same value of yi
appears in several instances in the resultset of Q2(x) or Q3(x), duplicates are
eliminated and the final degree associated with yi in AQ2(x) and AQ3(x) is equal
to the maximum degree associated with these occurrences.

Then, the results of the initial fuzzy relative quantified query Q (involving
the fuzzy quantifier Q) are results of the query Q1 derived from Q, and the final
satisfaction degree associated with each element e of these results is

μ(e) = μQ

(∑
(µi/yi)∈AQ2(e)

μi
∑

(µ′
i/yi)∈AQ3(e)

μ′
i

)
(7)

270 O. Pivert et al.

In case of a fuzzy absolute quantified query, the final satisfaction degree associ-
ated with each element e is μ(e) = μQ

(∑
(µi/yi)∈AQ2(e)

μi

)
.

Example 4. Let us consider the query QmostAuthors of Listing 1.3. We evalu-
ate this query according to the fuzzy data graph DB of Fig. 1. In order to
interpret QmostAuthors, we first evaluate the following query Q1, derived from
QmostAuthors, that retrieves “the authors (x) who highly contributed to at least
one recent paper (p) published in a journal”.

1 match (x:author)-[author_of|ST IS strong]->(p:paper),

2 (p:paper)-[:published]->(j:journal)

3 where p.year is recent

4 return x

Listing 1.8. Query Q1 derived from QmostAuthors

Q1 returns four results X = {Peter, Maria, Claudio, Michel}. The authors
Andreas, Susan and Bazil do not belong to the resultset of Q1 because Susan

has not written a journal paper yet and Andreas and Bazil do not have a recent
paper.

For each element x from the resultset X of Q1, we process two queries
Q2(x) and Q3(x). The query Q2(x), derived from QmostAuthors, aims to retrieve
“the recent papers of which x is a main author, that have been published in
a renowned database journal”. For instance, for the element Maria, the query
Q2(Maria) is expressed as follows:
1 match (x:author)-[author_of|ST IS strong]->(p:paper),

2 (p:paper)-[:published]->(j:journal)-[:impact_factor]->(i:impact_factor),

3 (j:journal)-[:domain]->(d)

4 where p.year is recent and i.value is high

5 and d.name="database" and x.name="Maria"

6 return p

Listing 1.9. Query Q2(Maria) derived from QmostAuthors

For a given x, we get a list of papers with their respective sat-
isfaction degrees: μ(p) = min(μstrong(ρauthor(x, p)), μrecent(p), μhigh(i)).
For the running example, we then have AQ2(Peter) = {(min(0.5, 0,
0.92)/IJWS12 p), (min(0.2, 0.33, 1)/IJAR14 p)} = {(0/IJWS12 p), (0.2/IJAR14 p)},
AQ2(Maria) = {(0.33/IJAR14 p), (0.33/IJIS16 p), (0/IJIS10p1)}, AQ2(Claudio) =
{(0.33/IJAR14 p), (0/IJIS10 p1), (0.07/IJUFK15 p)},
AQ2(Michel) = {(0.07/IJUFK15 p)}.

Query Q3(x), derived from QmostAuthors, aims to retrieve “the recent papers
of which x is a main author, that have been published in a journal”. For instance,
for the element Maria, the query Q3(Maria) is expressed as follows:
1 match (x:author)-[author_of|ST IS strong]->(p:paper),

2 (p:paper)-[:published]->(j:journal)-[:impact_factor]->(i:impact_factor),

3 (j:journal)-[:domain]->(d)

4 where p.year is recent and x.name="Maria"

5 return p

Listing 1.10. Query Q3(Maria) derived from QmostAuthors

Fuzzy Quantified Structural Queries to Fuzzy Graph Databases 271

For a given x, we get a set of papers written by x satisfying the condi-
tions of query Q3(x) with their respective satisfaction degrees as follows: μ(p) =
min(μstrong(ρauthor(x, p)), μrecent(p)). For the running example, we then have
AQ3(Peter) = {(0/IJWS12 p), (0.2/IJAR14 p)}, AQ3(Maria) = {(0.33/IJAR14 p),
(0.6/IJIS16 p), (0/IJIS10 p1)}, AQ3(Claudio) = {(0.33/IJAR14 p), (0/IJIS10 p1),
(0.3/IJUFK15 p)}, AQ3(Michel) = {(0.3/IJUFK15 p)}.

Lastly, the final result of the query QmostAuthors evaluated on DB, given
by Formula 7, is {μ(Peter) = μmost(0.20.2) = 1, μ(Maria) = μmost(0.660.93) = 0.82,
μ(Claudio) = μmost(0.4

0.63) = 0.67, μ(Michel) = μmost(0.070.3) = 0}. �

6 About Query Processing

The evaluation strategy we propose for these queries consists of a software add-
on layer over the Neo4j graph DBMS. This software, called SUGAR, efficiently
evaluates FUDGE queries that contain fuzzy preferences, but its initial ver-
sion, described in [10,11], does not support fuzzy quantified statements. We now
consider the implementation of this functionality, based on the theoretical foun-
dations defined in the previous section. The SUGAR software implements two
modules, which interact with the embedded Neo4j crisp engine (see Fig. 4): The
Transcriptor module, aimed to translate a FUDGE query requested by a user
into a (crisp) cypher one (using the derivation principle presented in [9] in the
context of relational databases), which is then sent to the crisp Neo4j engine, and
The Score Calculator module, which calculates the satisfaction degree associated
with each answer returned by the crisp engine, and ranks the answers.

Fig. 4. SUGAR software architecture

The main process in our work is the quantified statement evaluation step
which is described in Algorithm 1. For quantified queries of the type introduced
in the previous section (i.e. using relative quantifiers), the principle is to first
evaluate the fuzzy query Q1. For each tuple x from the resulset of Q1, we evaluate
with SUGAR the fuzzy queries Q2(x) and Q3(x). The final satisfaction degree
is given by Formula 7 according to Q2(x) and Q3(x) resultsets. Finally, we get
as an output answers ranked by decreasing order of the satisfaction degree.

272 O. Pivert et al.

Algorithm 1. Algorithm for the evaluation of a fuzzy quantified query
Input : A query Q containing a fuzzy quantifier Quant
Output: Results X of Q with associated satisfaction degrees {µ(x)|x ∈ X}

1 begin
2 Derive queries Q1, Q2 and Q3 from Q;
3 X=evaluate(Q1);
4 foreach element x from the result of X do
5 evaluate(Q2(x));
6 evaluate(Q3(x));
7 μ(x) = μQuant(μAQ2(x)(y)/μAQ3(x)(y));

8 Rank answers of X by decreasing satisfaction degree (μ)

For a given x, queries Q2(x) and Q3(e) embed the same graph pattern (they
only differ by their where clause that is more restrictive for Q2). This means
that these queries could be processed together at evaluation time. Then one can
see on Algorithm 1 that evaluating a fuzzy quantified query implies processing
x+1 FUDGE queries where x is the number of elements that match the pattern
declared in the match clause of the initial query (without the quantified state-
ment). The cost of the evaluation of a graph pattern query depends on the form
of its pattern [3] and it has already been showed in [10] that a FUDGE query
does not significantly increase the cost with respect to a crisp query in the case
of selection graph pattern queries.

As a proof-of-concept of the proposed approach, the FUDGE prototype is
available and downloadable at http://www-shaman.irisa.fr/fudge-prototype/.

7 Conclusion and Perspectives

In this paper, we have dealt with a specific type of fuzzy quantified queries,
addressed to fuzzy graph databases. We have defined the syntax and semantics
of an extension of the query language Cypher that makes it possible to express
and interpret such queries. A query processing strategy based on the derivation
of non-quantified fuzzy queries has also been proposed. As a future work, we first
intend to carry out some experimentations in order to assess the performances
of the evaluation method outlined here. We then plan to study other types of
fuzzy quantified queries. An example of a fuzzy quantified statement that is out
of the scope of the present approach is “find the authors x that had a paper
published in most of the renowned database journals”. More generally, it would
be interesting to study fuzzy quantified queries that aim to find the nodes x such
that x is connected (by a path) to Q nodes reachable by a given pattern and
satisfying a given condition C.

Acknowledgement. This work has been partially funded by the French DGE (Direc-
tion Générale des Entreprises) under the project ODIN.

http://www-shaman.irisa.fr/fudge-prototype/

Fuzzy Quantified Structural Queries to Fuzzy Graph Databases 273

References

1. Neo4j web site. www.neo4j.org
2. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.

40(1), 1–39 (2008)
3. Barceló, P., Libkin, L., Reutter, J.L.: Querying regular graph patterns. J. ACM

61(1), 8:1–8:54 (2014)
4. Bosc, P., Liétard, L., Pivert, O.: Quantified statements and database fuzzy query-

ing. In: Bosc, P., Kacprzyk, J. (eds.) Fuzziness in Database Management Systems,
pp. 275–308. Physica Verlag, Heidelberg (1995)

5. Castelltort, A., Laurent, A.: Fuzzy queries over noSQL graph databases: perspec-
tives for extending the cypher language. In: Laurent, A., Strauss, O., Bouchon-
Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part III. CCIS, vol. 444, pp. 384–395.
Springer, Heidelberg (2014)

6. Castelltort, A., Laurent, A.: Extracting fuzzy summaries from NoSQL graph data-
bases. In: Andreasen, T., et al. (eds.) FQAS’15. AISC, vol. 400, pp. 189–200.
Springer, Switzerland (2015)

7. Kacprzyk, J., Zadrożny, S., Ziólkowski, A.: FQUERY III +: a “human-consistent”
database querying system based on fuzzy logic with linguistic quantifiers. Inf. Syst.
14(6), 443–453 (1989)

8. Neo Technology: The Neo4j Manual v2.0.0, part III (2013)
9. Pivert, O., Bosc, P.: Fuzzy Preference Queries to Relational Databases. Imperial

College Press, London (2012)
10. Pivert, O., Smits, G., Thion, V.: Expression and efficient processing of fuzzy queries

in a graph database context. In: Proceedings of the 24th IEEE International Con-
ference on Fuzzy Systems (Fuzz-IEEE 2015), Istanbul, Turkey (2015)

11. Pivert, O., Thion, V., Jaudoin, H., Smits, G.: On a fuzzy algebra for querying
graph databases. In: Proceedings of the IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 2014), pp. 748–755, Limassol, Cyprus (2014)

12. Rasmussen, D., Yager, R.R.: Summary SQL - a fuzzy tool for data mining. Intell.
Data Anal. 1(1–4), 49–58 (1997)

13. Rosenfeld, A.: Fuzzy graphs. In: Fuzzy Sets and their Applications to Cognitive
and Decision Processes, pp. 77–97. Academic Press, London (1975)

14. Stefanidis, K., Koutrika, G., Pitoura, E.: A survey on representation, composition
and application of preferences in database systems. ACM Trans. Database Syst.
36(3), 19 (2011). http://doi.acm.org/10.1145/2000824.2000829

15. Tahani, V.: A conceptual framework for fuzzy query processing - a step toward
very intelligent database systems. Inf. Process. Manag. 13(5), 289–303 (1977)

16. Yager, R.R.: Social network database querying based on computing with words.
In: Pivert, O., Zadrożny, S. (eds.) Flexible Approaches in Data, Information and
Knowledge Management. SCI, vol. 497, pp. 241–257. Springer, Switzerland (2013)

17. Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages.
Computi. Math. Appl. 9, 149–183 (1983)

www.neo4j.org
http://doi.acm.org/10.1145/2000824.2000829

	Fuzzy Quantified Structural Queries to Fuzzy Graph Databases
	1 Introduction
	2 Background Notions
	2.1 Graph Databases
	2.2 Fuzzy Graphs
	2.3 Fuzzy Graph Databases
	2.4 The FUDGE Query Language

	3 Refresher on Fuzzy Quantified Statements
	3.1 Fuzzy Quantifiers
	3.2 Zadeh's Interpretation

	4 Related Work
	5 Fuzzy Quantified Queries in the FUDGE Language
	6 About Query Processing
	7 Conclusion and Perspectives
	References

