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Abstract. For persuasion dialogues between a software system and
user, a user should be able to present arguments. Unfortunately, this
would involve natural language processing which is not viable for this
task in the short-term. A compromise is to allow the system to present
potential counterarguments to the user, and the user expresses his/her
degree of belief in each of them. In this paper, we present a protocol for
persuasion that supports this type of move, and show how the system
can use the epistemic approach to probabilistic argumentation to model
the user, and thereby optimize the choice of moves.

1 Introduction

Computational models of argument can potentially be used for systems to per-
suade users to change their behavior (e.g. to eat less, to exercise more, to use
less electricity, to vote, to not text while driving, etc.) [14]. A system (the per-
suader running for example as an app) enters into a dialogue with a user (the
persuadee using the app) to persuade them to believe a specific argument called
the persuasion goal (e.g. eat more fruit because it is healthy for you).

By choosing appropriate arguments to present to the user, the system may
raise the user’s belief in the persuasion goal. However, for the system, there is
a problem of how to get arguments from the user in order to support a fair
and frank persuasion dialogue. We assume the system cannot understand argu-
ments presented in natural language given the complexity of processing argu-
ments in free text. Hence, the interface with the user is restricted. Our solution
is for the system to give a menu of arguments, and the user presents agree-
ment/disagreement in each argument by giving it a score (as in a Likert scale
[20]). This score is in the unit interval and denotes the belief that the user has
in the argument (i.e. the degree to which the user thinks the premises are true
and the claim follows from the premises).

Example 1. Suppose the system gives argument A in Fig. 1 as its persuasion goal.
It is aware of two potential counterarguments B and C. So it presents these in a
menu, and asks the user for his/her degree of belief in them. If the user declares
belief greater than 0.5 in B (resp. C), then the system presents D (resp. E) with
the aim of lowering the user’s belief in B (resp. C) and increasing the user’s belief
in A.
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A = Giving up
smoking will be

good for your health

B = My appetite will increase and
so I will put on too much weight

C = My anxiety will increase and
so I will lose too much weight

D = You can join a healthy eating
course to help you manage your weight

E = You can join a yoga class to help you
relax, and thereby manage your anxiety

Fig. 1. Example of argument graph for persuasion. It contains the arguments known
(but not necessarily believed) by the system. Argument A could be a persuasion goal
and so B and C are potential counterarguments for the user.

The above example is a kind of asymmetric dialogue where the moves avail-
able to the persuader are different to those available to the persuadee. There is a
recent proposal for asymmetric persuasion dialogues with a general definition for
probabilistic user models, and a general definition for updating user models in
terms of mass redistributions [16]. However, [16] does not consider the following
issues: how a menu of potential counterarguments could be presented to the user,
how the user could express his/her belief in each of them, or how these moves
can be used in a protocol that is fair to the user. We address these issues by
making the following contributions in this paper: (1) A dialogue protocol that
incorporates the menu move and that is fair to the persuadee; (2) A probabilistic
model of the persuadee that can be updated through the dialogue and used by
the persuader to predict whether the persuasion is successful; and (3) A method
for simulation of the persuadee by the persuader when deciding on which moves
to make in the dialogue.

2 Dialogues via Restricted Interfaces

We base our paper on abstract argumentation [6]. We assume our dialogues
concern an argument graph G where Args(G) is the set of arguments in G,
and Attacks(G) is the set of attack relations in G. Also Γ ⊆ Args(G) is conflict-
free iff there is no A,B ∈ Γ s.t. (A,B) ∈ Attacks(G). We assume that G contains
the arguments known (but not necessarily believed) by the system.

A dialogue is a sequence of moves D = [m1, . . . ,mk]. Equivalently, we use
D as a function with an index position i to return the move at that index
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(i.e. D(i) = mi). A move is one of the following: (1) A posit A where
A ∈ Args(G); (2) A menu [A1/X1, . . . , An/Xn] where for each A/X ∈
[A1/X1, . . . , An/Xn], A ∈ Args(G) and X ∈ [0, 1] is the belief of the user in
A; and (3) A system termination ⊥.

A protocol specifies what moves should/can follow each move in a dialogue.
For this paper, the protocol assumes that: (1) the first move is a posit called the
persuasion goal which is the argument that the persuader wants the persuadee
to believe (with a probability greater than 0.5); (2) a dialogue does not continue
after the system has terminated (i.e. if 1 ≤ i < k, then D(i) �= ⊥); (3) each
argument in a menu is a counterargument to the posit given immediately before
the menu (i.e. if D(i) = A, and D(i + 1) = [A1/X1, . . . , An/Xn], then for each
Aj/Xj ∈ D(i + 1), (Aj , A) ∈ Attacks(G)); and (4) the user gives the same belief
to an argument if it is repeated (i.e. If ∃i, j s.t. A/X ∈ D(i) and A/X ′ ∈ D(j)
then X = X ′). A dialogue D is finite iff D = [m1, . . . ,mk] and k is finite.

We assume that the system controls the dialogue. At each point in the dia-
logue, the system makes a posit, or menu, or termination move. If it is a menu
move, then the user provides his/her belief in each argument in the menu.

Example 2. For Fig. 1, if the system gives the persuasion goal A, then
[B/0.9, C/0.2] is a menu move where B and C are from the system, and 0.9 and
0.2 are from the user.

For a dialogue D = [m1, . . . ,mk], let Steps(D) = {1, . . . , k}. For dialogues
D′ and D, the subsequence relation, denoted D′ � D, holds iff for all
i′, j′ ∈ Steps(D′), if i′ < j′, then there are i, j ∈ Steps(D) such that i < j
and D′(i′) = D(i) and D′(j′) = D(j). For example, [[F/0.9, G/0.2], D] �
[A, [F/0.9, G/0.2], C, D, E,⊥]. Also D′ � D is defined as D′ � D and not D � D′.

3 Fair Dialogues

In this section, we ensure dialogues are fair by allowing the persuadee to express
belief in potential counterarguments.

Definition 1. For A,B ∈ Args(G), A indirectly attacks B iff (1) A �= B and
(2) either (A,B) ∈ Attacks(G) or there are (A,A′), (A′, A′′) ∈ Attacks(G) s.t.
A �= A′ and A′ �= A′′ and A′′ indirectly attacks B.

Example 3. Let � denote the “indirectly attacks” relationship. So for the fol-
lowing graph A � B, A � D, B � A, B � C, B � E, C � D, C � B, D � A, D � E,
D � C, E � B, and E � D.

A B C D E

Proposition 1. Let X ⊆ Args(G) be s.t. there is no A ∈ X where (A,A) ∈
Attacks(G). X is conflict-free iff for all A,B ∈ X, it is not the case that A
indirectly attacks B.
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Definition 2. For A,B ∈ Args(G), A defends B iff (1) A �= B and (2) either
there is a (A,C), (C,B) ∈ Attacks(G) s.t. A �= C and C �= B, or there is a C
s.t. A defends C and C defends B.

Proposition 2. For B,A ∈ Args(G), if B indirectly attacks A, then there is a
(B,C) ∈ Attacks(G) s.t. C = A or C defends A.

To compose the menus, we assume in Definition 4 that each posit is followed
by a menu of arguments that attack the posit according to the argument graph,
and that have not already appeared in a menu and indirectly attacked by the
posit. As we cover in Sect. 5, we will aim for belief in the posit and disbelief in
the counterargument, and so informally, if a posit indirectly attacks a counter-
argument in an earlier menu, then we do not need to present it to the user in a
menu again.

Definition 3. For a dialogue D, a graph G, an argument A, and a step i. The
fair attacks, FairAttacks(G,D,A, i), is {B | (B,A) ∈ Attacks(G) and there is
no j < i s.t. B/Y ∈ D(j) and A indirectly attacks B}.
Definition 4. A dialogue D is fair for G iff for each i,

if D(i) = A and FairAttacks(G,D,A, i) �= ∅
then D(i + 1) = [B1/X1, . . . , Bn/Xn]

where FairAttacks(G,D,A, i) = {B1, . . . , Bn}.
Example 4. The dialogue [A, [B/0.9], C,⊥] is fair for both the following graphs.

A B C A B C

Example 5. For Fig. 1, [A, [B/1, C/0], D,⊥], [A, [B/0, C/0.7], E,⊥], [A, [B/0, C/0],⊥],
[A, [B/0.9, C/1], C, [B/0.9],⊥], and [A, [B/0.9, C/0.65], D, E,⊥], are fair.

Example 6. The dialogue [A, [B/0.9, C/0.7], C,⊥] is fair for the left graph and the
dialogues [A, [B/0.5],⊥] and [A, [B/1], C, [A/0.9], B, [C/0.9], A, [B/1], . . .] are fair for
the right graph.

A B C A B C

Example 7. For the following graph, C does not indirectly attack C and so the self-
attacks causes the fair dialogue [A, [B/1, C/1], C, [C/1], C, [C/1], . . .] to be infinite.

A B C

An odd cycle is a sequence of arguments A1, . . . , Am s.t. each Ai+1 attacks
Ai and A1 attacks Am where m is odd.
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Proposition 3. If argument graph G contains no odd cycles, and D is a fair
dialogue, then D is finite.

We can assign responsibility of arguments to the persuadee and persuader as
follows.

Definition 5. Let D be a dialogue, the persuader arguments are Persuader
(D) = {A | ∃i ∈ Steps(D) s.t. D(i) = A} and the persuadee arguments, are
Persuadee(D) = {B | ∃i ∈ Steps(D) s.t. B/X ∈ D(i)}.
Example 8. For D = [A, [B/0.9], C,⊥], Persuader(D) = {A, C} and Persuadee
(D) = {B}.

From the perspective of the user, if the dialogue is fair, then s/he has been
able to express his/her belief/disbelief in the potential counterarguments known
by the system.

4 Probabilistic User Models

We use the epistemic approach to probabilistic argumentation [1,13,17,25].

Definition 6. A mass distribution P over Args(G) is such that
∑

Γ⊆Args(G)

P (Γ ) = 1. Let Dist(G) be the set of mass distributions over G. The probability
of an argument A is P (A) =

∑
Γ⊆Args(G) s.t. A∈Γ P (Γ ).

For a mass distribution P , and A ∈ Args(G), P (A) is the belief that an
agent has in A (i.e. the degree to which the agent believes the premises and
the conclusion drawn from those premises). When P (A) > 0.5, then the agent
believes the argument to some degree, whereas when P (A) ≤ 0.5, then the agent
disbelieves the argument to some degree.

Definition 7. The epistemic extension for mass distribution P is Extension
(P ) = {A ∈ Args(G) | P (A) > 0.5}.
Example 9. Consider the graph in Fig. 1. If P (A) = 0.2, P (B) = 0.9, P (C) = 0.4,
P (D) = 0.2, and P (E) = 0.8, then Extension(P ) = {B, E}.

The epistemic approach provides a finer grained assessment of an argument
graph than given by Dung’s definition of extensions. By adopting constraints
on the distribution, the epistemic approach subsumes Dung’s approach [25].
However, there is also a need for a non-standard view [17] where we adopt
weaker constraints on the distribution. For instance, an important aspect of the
epistemic approach is the representation of disbelief in arguments even when
they are unattacked. In this case, a key constraint for the non-standard view is
the following which ensures that the mass distribution respects the structure of
the graph, without forcing an unattacked argument to be believed [13].

Definition 8. A mass distribution P is rational for G iff ∀(A,B) ∈
Attacks(G), if P (A) > 0.5, then P (B) ≤ 0.5.
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A B C D E Rational

P1 0.6 0.9 0.4 0.6 0.7 No

P2 0.3 0.9 0.3 0.1 0.8 Yes

P3 0.9 0.1 0.2 0.8 0.2 Yes

Example 10. Examples of mass distribution for Fig. 1.

The system (the persuader) uses a mass distribution as a model of the user
(the persuadee). It can update the model at each stage of the dialogue. This
is useful for asymmetric dialogues where the user is not allowed to posit argu-
ments/counterarguments. So the only way the user can treat arguments that
s/he does not accept is by disbelieving them (and the user model is intended to
reflect this). In contrast, in symmetric dialogues, the user can posit counterar-
guments to an argument that s/he does not accept.

5 Winning Dialogues

In this paper, we consider two mass distributions for a dialogue. The first is
the initial distribution, denoted P0, which is the model of the user before the
dialogue starts, and the second is the final distribution, denoted Pk which is
the model of the user once the dialogue of k steps has terminated. In this section,
we assume we have the final distribution, and in Sect. 7 we discuss how the final
distribution can be obtained from the initial distribution using the moves in the
dialogue.

The next definition ensures that every menu item that is changed from
believed (when the user presents belief in the menu item) to disbelieved (by
the end of the dialogue) has an attacker that is posited later in the dialogue and
is believed.

Definition 9. A dialogue D is frank for final distribution Pk iff for 1 ≤ i ≤ k,
for each B/X ∈ D(i), if X > 0.5, and Pk(B) ≤ 0.5, then there is an index j
and argument C such that i < j and D(j) = C and (C,B) ∈ Attacks(G) and
Pk(C) > 0.5 and C �= B.

Example 11. The dialogue [A, [B/1, C/0.8], D, E,⊥] is fair and frank for the fol-
lowing argument graph G and rational final distribution Pk where Pk(A) = 0.8,
Pk(B) = 0.2, Pk(C) = 0.2, Pk(D) = 0.9, and Pk(E) = 0.9.

D B A C E

From the perspective of the persuader, if s/he wants to persuade the per-
suadee of the persuasion goal A, then the aim is for Pk(A) > 0.5 where Pk is
the final distribution, and so the persuader can regard the dialogue as a winning
dialogue, whereas if Pk(A) ≤ 0.5, then the persuader can regard the dialogue as
a losing dialogue. We formalize this next.
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Definition 10. Let Pk be a rational final distribution, and let D be a fair, finite,
and frank, dialogue w.r.t. Pk and G s.t. D(1) = A and D(k) = ⊥. If Pk(A) > 0.5,
then D is a winning dialogue, otherwise D is a losing dialogue.

Example 12. For the following argument graph G and rational mass distribution
Pk where Pk(A) = 0.9, Pk(B) = 0, Pk(C) = 1, Pk(D) = 0, and Pk(E) = 0.6.

A B C D E

Let D = [A, [B/0.9], C, [D/0.6], E,⊥]. So D is fair, finite, and frank for Pk, and D
is a winning dialogue. Also Persuader(D) = {A, C, E} and Persuadee(D) = {B, D}.

Example 13. For the following argument graph G and rational final distribution
Pk where Pk(A) = 0, Pk(B) = 0, and Pk(C) = 1.

A B C

Let D = [A, [B/0, C/1], C,⊥]. So D is fair, finite, and frank for Pk, and D is a
losing dialogue. Also Persuader(D) = {A, C} and Persuadee(D) = {B, C}.

Example 14. For the graph in Fig. 1 and rational distribution Pk where Pk(A) =
0.7, Pk(B) = 0, Pk(C) = 0, Pk(D) = 1, and Pk(E) = 1. Let D = [A, [B/0.9,
C/0.8], D, E,⊥]. So D is fair, finite, and frank for Pk, and D is a winning dialogue.
Also Persuader(D) = {A, D, E} and Persuadee(D) = {B, C}.

We now introduce the notion of minimality of a dialogue to remove superflu-
ous moves.

Definition 11. Let D be a winning dialogue w.r.t. Pk and G. D is minimal iff
for all D′ � D, D′ is not a winning dialogue w.r.t. Pk and G.

Example 15. Fair dialogues for the graph include D1 = [A, [B/0.8], C, [E/0.9], F,
⊥], D2 = [A, [B/0.8], D, [F/0.9],⊥], and D3 = [A, [B/0.8], C, [E/0.9], F, G,⊥]. Let
Pk(A) = 0.8, Pk(B) = 0, Pk(C) = 0.8, Pk(D) = 0, Pk(E) = 0, Pk(F) = 0.8, and
Pk(G) = 0.8. So D1 and D3 are winning. D2 is not frank and so losing. Also D1

is minimal but D3 is not minimal.

A B

C

D

E

F

G

The following results show that minimal winning dialogues are well-behaved
in that (1) the persuader arguments are conflict-free, (2) each persuadee argu-
ment is either not believed by the persuadee (as indicated in the menu) or is
countered by the persuader, (3) the persuader and persuadee arguments are dis-
joint, and (4) all persuader arguments are believed and no persuadee argument
is believed.
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Proposition 4. Let G be an argument graph and Pk be a rational final distri-
bution. If D is a minimal winning dialogue w.r.t. Pk and G, then Persuader(D)
is conflict-free.

Proposition 5. Let G be an argument graph and Pk be a rational final dis-
tribution. Also let D be a minimal winning dialogue w.r.t. Pk and G. For all
(B,A) ∈ Attacks(G), if A ∈ Persuader(D), then either B/X ∈ D(i) for some i
and X ≤ 0.5 or there is C ∈ Persuader(D) s.t. (C,B) ∈ Attacks(G).

Note, we do not assume that the user is always consistent. For example, in
Fig. 1, the final distribution could be s.t. Pk(B) = 0.9 and Pk(C) = 0.8. This
would give Extension(Pk) = {B, C} which is not conflict-free. Of course, this
would mean that the dialogue is not a winning dialogue for the persuader.

Proposition 6. Let G be an argument graph and P be a rational final distribu-
tion. If D is a minimal winning dialogue w.r.t. Pk and G, then Persuader(D) ∩
Persuadee(D) = ∅.
Proposition 7. Let G be an argument graph and Pk be a rational final dis-
tribution. If D is a minimal winning dialogue w.r.t. Pk and G, then for all
A ∈ Persuader(D), Pk(A) > 0.5 and for all B ∈ Persuadee(D), Pk(B) ≤ 0.5.

The following example shows that a winning dialogue does not necessarily
have all its persuader arguments being in the epistemic extension.

Example 16. Consider the following graph with final distribution Pk(A) = 1,
Pk(B) = 0, Pk(C) = 0, Pk(D) = 1, and Pk(E) = 1. So Extension(Pk) = {A, D, E}.
The dialogue D = [A, [B/1], C, [D/1], E,⊥] is winning w.r.t. Pk and G. Also
Persuader(D) = {A, C, E}. So the persuader arguments are not a subset of
the epistemic extension. However, D′ = [A, [B/1], E,⊥] is a subdialogue where
Persuader(D′) ⊆ Extension(Pk) and it is winning w.r.t. Pk and G.

A B C D E

Proposition 8. If Pk is a rational final distribution, and D is a minimal win-
ning dialogue w.r.t. Pk and G, then Persuader(D) ⊆ Extension(Pk) holds.

So a minimal dialogue uses arguments in the epistemic extension of Pk to
present a winning position for the goal.

6 Delineated Subgraphs

The aim of this section is to better understand the proposal so far. For this, we
consider properties of the subgraph of the argument graph as delineated by the
dialogue.
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Definition 12. Let D be a dialogue and let G′ be a subgraph of G. D delineates
G′ iff Args(G′) = {A | ∃i s.t. D(i) = A or A/X ∈ D(i)} and Attacks(G′) =
{(A,B) ∈ Attacks(G) | A,B ∈ Args(G′)}.
Example 17. For the following graph (left), D1 = [A, [B/1], C, [B/1], C, . . .] delin-
eates the graph (left), whereas D2 = [A, [B/1],⊥] delineates the subgraph (right).

A B C A B

So when a dialogue D delineates a graph G, the nodes in G are exactly the
arguments that appear in the posits and menus of D, and the arcs are just the
arcs from the argument graph that involve those arguments.

A user declaration is what a user initially believes in an argument in a menu.
Only some arguments have a user declaration, and the aim of the dialogue is to
change the user’s beliefs in some of these user declarations in order to have a
winning dialogue.

Definition 13. For a dialogue D, let Declarations(D) = {B/X | ∃i s.t. B/X ∈
D(i)} be the arguments in a menu, let Declared(D) = {B | B/X ∈
Declarations(D)} and let Undeclared(D) = {A ∈ Args(G) | A �∈ Declared(D)}.
Example 18. Consider the graph in Fig. 1. For the dialogue [A, [B/0.9,
C/0.1], D,⊥], we get Declared(D) = {B, C} and Undeclared(D) = {A, D, E}.

The next definition retrieves the belief that the user assigns to each argument
in a menu, and assigns belief of 0 to any argument that does not appear in a
menu.

Definition 14. The declared belief, denoted QD, of the persuadee in dialogue
D is

QD(B) =
{

X for each B/X ∈ Declarations(D)
0 for each B ∈ Undeclared(D)

Example 19. Continuing Example 18, QD(A) = 0, QD(B) = 0.9, QD(C) = 0.1,
QD(D) = 0, and QD(E) = 0.

The following definition captures the subgraph of argument graph G that con-
tains all the relevant arguments given the user beliefs. It is based on a partition
of the nodes in the subgraph. One partition denotes the persuader arguments
and the other partition denotes the persuadee arguments. Essentially, for each
persuader argument in the subgraph, all the attackers of the argument are also
in the subgraph, whereas for each persuadee argument in the subgraph, all the
attackers of the argument are also in the subgraph, or the persuadee argument
is not believed by the persuadee.

Definition 15. Let QD be the declared belief in D. G′ � G is a good subgraph
of G for D iff there is a partition of Args(G′) into sets Φ and Ψ (i.e. Φ ∩ Ψ = ∅
and Φ ∪ Ψ = Args(G′)), such that the persuasion goal is in Φ, and for each
A ∈ Φ ∪ Ψ ,
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– if A ∈ Ψ , then QD(A) ≤ 0.5 or ∃(B,A) ∈ Attacks(G) s.t. (B ∈ Φ and
(B,A) ∈ Attacks(G′))

– if A ∈ Φ, then ∀(B,A) ∈ Attacks(G), (B ∈ Ψ and (B,A) ∈ Attacks(G′))

We call (Φ, Ψ) the partition of the good subgraph.

So a good subgraph is identified just by the declared beliefs expressed by the
user in the menu moves. As shown below, not every fair dialogue has a good
subgraph.

Example 20. The dialogue [A, [B/1, C/1], D, E,⊥] is winning for Fig. 1 and the final
distribution Pk where Pk(A) = 1, Pk(B) = 0, Pk(C) = 0, Pk(D) = 1, and Pk(E) =
1. The graph is the good subgraph for D with partition Φ = {A, D, E} and Ψ =
{B, C}.

Example 21. The dialogue [A, [B/1], C,⊥] is winning for the following graph and
the final distribution Pk where Pk(A) = 1, Pk(B) = 0, and Pk(C) = 1. The graph
is the good subgraph for D with partition Φ = {A, C} and Ψ = {B}.

A B C

Example 22. Dialogues [A, [B/1, C/1], C,⊥] and [A, [B/1, C/0], C,⊥] are losing for
the graph and any final rational distribution. There is no good subgraph for
the above dialogues, whereas the dialogue [A, [B/0.3, C/0.1],⊥] is winning for the
graph and a good subgraph (which is the graph itself) has the partition Φ = {A}
and Ψ = {B, C}.

A B C

Example 23. [A, [B/1], C, [A/1], B, [C/1], A, [B/1], . . .] is a losing dialogue for the
graph (left), and any rational final distribution. There is no good subgraph for
the above dialogue, whereas the dialogue [A, [B/0],⊥] is winning for the graph
and its good subgraph (right) has the partition Φ = {A} and Ψ = {B}.

A B C A B

Next we show that the partition of a good subgraph splits the arguments
between persuader and persuadee.

Proposition 9. If D is a winning dialogue w.r.t. Pk and G and (Φ, Ψ) is the
partition of the good subgraph of G for D, then Φ = Persuader(D) and Ψ =
Persuadee(D).

The following result shows that if the persuasion goal of dialogue D is believed
(according to the final distribution Pk), and G′ is a good subgraph of G for D,
then G′ does not contain any odd cycles.
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Proposition 10. If G′ is a good subgraph of G for D, then G′ contains no odd
cycles.

We now consider how the declarative notion of a good subgraph corresponds
to winning dialogues (and the associated delineated subgraph). We show that
we get a good subgraph from a minimal winning dialogue, and then we show
that we can construct a winning dialogue from a good subgraph.

Proposition 11. Let D(1) = A. If D is a minimal winning dialogue w.r.t. Pk

and G, then there is a G′ s.t. G′ is a good subgraph of G for D where D delineates
G′ and Pk is rational for G′ and Pk(A) > 0.5.

Proposition 12. If G′ is a good subgraph of G for D, where (Φ, Ψ) is the par-
tition of G′, and Pk is a mass distribution s.t. Pk(B) > 0.5 for each B ∈ Φ, and
Pk(C) ≤ 0.5 for each C ∈ Ψ , then there is a dialogue D, where D is a winning
dialogue w.r.t. Pk and G, and D delineates G′.

So the notion of the good subgraph provides a declarative perspective on
winning dialogues.

7 Updating Mass

Given an initial distribution P0, representing the system’s model of the user’s
beliefs at the start of the dialogue, we update the model to give the final distrib-
ution Pk. For this, we introduce the notion of an update method which generates
a mass distribution Pk from P0 based on the moves in D.

Definition 16. Let P0 be an initial distribution and let D be a dialogue. An
update function, Update(P0,D), returns a final distribution Pk such that if
D = [⊥], then P0 = Pk.

There are many possibilities for defining an update function. Here we give a
basic update function (below) as an example. It updates the belief in an argument
based on the belief in the arguments appearing after it in the dialogue. For
D(i) = A, belief in the arguments in the menu D(i + 1) = [B1/X1, . . . , Bn/Xn]
determines the belief in A. Similarly, for D(i) = [B1/X1, . . . , Bn/Xn], and each
Bj in the menu, belief in the posits that occur after move D(i) (i.e. moves that
occur from i + 1 to k) determine the belief in Bj .

Definition 17. For initial distribution P0 and dialogue D, a basic update
function is Update(P0,D) = Pk s.t. for each A ∈ {B | ∃i s.t. D(i) =
B or B/X ∈ D(i)}:

Pk(A) =

⎧
⎪⎪⎨

⎪⎪⎩

0.2 if A ∈ Persuader(D) and ∃B ∈ Opp(D,A) s.t. Pk(B) > 0.5
0.2 if A ∈ Persuadee(D) and ∃B ∈ Pro(D,A) s.t. Pk(B) > 0.5
0.8 if A ∈ Persuader(D) and ∀B ∈ Opp(D,A), Pk(B) ≤ 0.5
QD(A) if A ∈ Persuadee(D) and ∀B ∈ Pro(D,A), Pk(B) ≤ 0.5

where Opp(D,A) = {B | ∃i s.t. D(i) = A and B/X ∈ D(i+1)} and Pro(D,A) =
{B | ∃i, j s.t. i < j and A/X ∈ D(i) and D(j) = B and (B,A) ∈ Attacks(G)}.
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Example 24. Consider the graph in Fig. 1. For D = [A, [B/0.9, C/0.4], D,⊥], with
P0(A) = 0.1, P0(B) = 0.7, P0(C) = 0.5, P0(D) = 0.1, and P0(E) = 0.1. For the
basic update function, Update(P0,D) = Pk where Pk(A) = 0.8, Pk(B) = 0.2,
Pk(C) = 0.4, Pk(D) = 0.8, and Pk(E) = 0.1.

The values 0.2 and 0.8 in the basic update definition are indicative of possible
assignments. More sophisticated modelling of users allows for the calculation of
the value as a function of the value assigned to the counterarguments.

Proposition 13. If Update(P0,D) = Pk is basic, and D delineates G′, then Pk

is rational for G′.

There is a range of alternatives to the basic update in [16] that allow for
a range of different kinds of user to be modelled. These include options for
modelling more credulous and more skeptical users.

8 Using a User Model to Optimize Dialogues

The system wants a final distribution Pk s.t. Pk(A) > 0.5 for persuasion goal A.
This is done in one of two modes.

In interaction mode, the system gives posit and menu moves, and the user
gives belief in each argument in each menu (as in Example 24). At the end of
the dialogue, the final mass Pk is obtained using an update function, and Pk(A)
is used as a prediction of the degree to which the user believes the persuasion
goal D(1) = A.

In simulation mode, the system simulates a dialogue with the user in order
to predict the outcome. For this, the initial mass P0 is used for the user responses
(and so P0 is a proxy for the user answers). If this simulation is run with each
possible dialogue, a dialogue can be chosen that maximizes Pk(A) where A is
the persuasion goal.

In this section, we focus on simulation mode. For optimization, we consider
the fair and finite dialogues for a particular persuasion goal A and initial mass
P0. We denote this set Fair(G,A, P0). The set of simulated dialogues is the subset
where each user response is specified by the initial distribution. We use the sim-
ulated dialogues when we consider what would be the optimal choice of dialogue
before undertaking the actual dialogue.

Definition 18. The set of simulated dialogues, denoted Simulate(G,A, P0),
is {D ∈ Fair(G,A, P0) | for each i, if B/X ∈ D(i), then P0(B) = X}.
Example 25. Consider Fig. 1 with the initial distribution P0 where P0(A) = 0.2,
P0(B) = 0.9, P0(C) = 0.7, P0(D) = 0.1, and P0(E) = 0.5. So the fair dialogue
[A, [B/0.9, C/0.7], D, E,⊥] is a simulated dialogue.

Definition 19. For a dialogue D, with the initial distribution P0, a basic update
function Update(P0,D) = Pk, and persuasion goal D(i) = A, the score func-
tion is defined as Score(D,P0) = Pk(A).
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Example 26. For a basic update function with Example 25, Score(D,P0) = 0.8.

We define the locally optimal dialogues as dialogues for which all subdialogues
have a lower score, and all superdialogues do not have a higher score. So a
locally optimal dialogue is minimal in the sense that every move in the dialogue
is required in order to get the score, and it is minimal in the sense that adding
further moves will not improve the score.

Definition 20. The locally optimal dialogues are the dialogues Local
(G,A, P0) = {D ∈ Simulate(G,A, P0) | ∀D′ ∈ Simulate(G,A, P0), if D′ �
D, then Score(D′, P0) < Score(D,P0) and if D � D′, then Score(D′, P0) ≤
Score(D,P0)}.

A globally optimal dialogue is a locally optimal dialogue that has the maxi-
mum score of locally optimal dialogues.

Definition 21. The globally optimal dialogues are the dialogues Global
(G,A, P0) = {D ∈ Local(G,A, P0) | ∀D′ ∈ Local(G,A, P0) Score(D′, P0) ≤
Score(D,P0)}.
Example 27. For the following graph, let P0(A) = 0.6, P0(B) = 0.3, P0(C) = 0.3,
and P0(D) = 0.9.

A B C D

The final distribution Pk for each dialogue is given below. So D1 and D2 are
winning dialogues for Pk, but only D2 is locally optimal (and therefore globally
optimal).

A B C D

D1 = [⊥] 0.6 0.3 0.3 0.9

D2 = [A, [B/0.3],⊥] 0.8 0.3 0.3 0.9

Proposition 14. If there is a winning dialogue D for G and Pk, where
Update(P0,D) = Pk, then there is a D′ ∈ Global(G,A, P0) s.t. Score(D′,
P0) > 0.5.

So if there is a winning dialogue, then there is a globally optimal dialogue
with the same outcome.

9 Discussion

In this paper, we have made the following contributions: (1) Introduced the menu
move to get the user’s belief in potential counterarguments; (2) Presented a fair
and frank protocol for persuasion dialogues; and (3) Used the user model to
optimize the choice of moves in the persuasion dialogues. For this, we have used
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the epistemic approach to probabilistic argumentation. This contrasts with the
constellations approach (e.g. [7,12,19]) which is concerned with the uncertainty
about the structure of the graph rather than belief in arguments.

The proposal in this paper relies on a user model. This can be generated by
querying the user, or by learning from previous interactions with similar users.
Some recent studies indicate the potential viability of an empirical approach [5,24].

Most proposals for dialogical argumentation focus on protocols (e.g. [4,8,21,
22]). Some strategies have been investigated (e.g. [3,9,18,26]) but the important
issue of uncertainty is under-developed. A probabilistic model of the opponent
has been used in a dialogue strategy allowing the selection of moves for an agent
based on what it believes the other agent is aware of [23]. The history of previous
dialogues is used to predict the arguments that an opponent might put forward
[10]. For modelling dialogues, a probabilistic finite state machine can represent
the possible moves that each agent can make in each state of the dialogue [15].
This has been generalized to POMDPs when there is uncertainty about what an
opponent is aware of [11]. However, none of these proposals consider the beliefs
of the opposing agent or asymmetric dialogues. In [2], a probabilistic model
of persuadee beliefs is used by the persuader to optimize choice of beliefs to
present, but there is no consideration of how to get beliefs from the persuadee or
how to update the model based on the dialogue. Therefore, the proposal in this
paper is an important contribution towards the theoretical foundations for using
argumentation in apps for helping persuade users to change behaviour (e.g. eat
less, exercise more, drive more carefully, etc.).
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N008294/1 for the Framework for Computational Persuasion project.
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