
Combinatorial Games: From Theoretical Solving
to AI Algorithms

Eric Duchêne(B)

Université de Lyon, CNRS Université Lyon 1, LIRIS, UMR5205, 69622 Lyon, France
eric.duchene@univ-lyon1.fr

Abstract. Combinatorial game solving is a research field that is fre-
quently highlighted each time a program defeats the best human player:
Deep Blue (IBM) vs Kasparov for Chess in 1997, and Alpha Go (Google)
vs Lee Sedol for the game of Go in 2016. But what is hidden behind these
success stories? First of all, I will consider combinatorial games from a
theoretical point of view. We will see how to proceed to properly define
and deal with the concepts of outcome, value, and winning strategy. Are
there some games for which an exact winning strategy can be expected?
Unfortunately, the answer is no in many cases (including some of the
most famous ones like Go, Othello, Chess or Checkers), as exact game
solving belongs to the problems of highest complexity. Therefore, finding
out an effective approximate strategy has highly motivated the commu-
nity of AI researchers. In the current survey, the basics of the best AI
programs will be presented, and in particular the well-known Minimax
and Monte-Carlo Tree Search approaches.

1 Combinatorial Games

1.1 Introduction

Playing combinatorial games is a common activity for the general public. Indeed,
the games of Go, Chess or Checkers are rather familiar to all of us. However, the
underlying mathematical theory that enables to compute the winner of a given
game, or more generally, to build a sequence of winning moves, is rather recent.
It was settled by Berlekamp, Conway and Guy only in the late 70s [2,8]. The
current section will present the highlights of this beautiful theory.

In order to avoid any confusion, first note that combinatorial game theory
(here shortened as CGT) is very different from the so-called “economic” game
theory introduced by Von Neumann and Morgenstern. I often consider that a
preliminary activity to tackle CGT issues is the reading of Siegel’s book [31]
which gives a strong and formal background on CGT. Strictly speaking, a com-
binatorial game must satisfy the following criteria:

Definition 1 (Combinatorial Game). In a combinatorial game, the following
constraints are satisfied:

Supported by the ANR-14-CE25-0006 project of the French National Research
Agency and the CNRS PICS-07315 project.

c© Springer International Publishing Switzerland 2016
S. Schockaert and P. Senellart (Eds.): SUM 2016, LNAI 9858, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-45856-4 1



4 E. Duchêne

– There are exactly two players, called “Left” and “Right”, who alternate moves.
Nobody can miss his turn.

– There is no hidden information: all possible moves are known to both players.
– There are no chance moves such as rolling dice or shuffling cards.
– The rules are defined in such a way that play will always come to an end.
– The last move determines the winner: in the normal play convention, the first

player unable to move loses. In the misère play convention, the last player to
move loses.

Examples of such games are Nim [6] or Domineering [20]. In the first one,
game positions are tuples of non-negative integers (a1, . . . , an). A move consists
in strictly decreasing exactly one of the values ai for some 1 ≤ i ≤ n, provided
the resulting position remains valid. The first player unable to move loses. In
other words, reaching the position (0, . . . , 0) is a winning move. The game Dom-
ineering is played on a rectangular grid. The two players alternately place a
domino on the grid under the following condition: Left must place his dominoes
vertically and Right horizontally. Once again, the first player unable to place
a domino loses. Figure 1 illustrates a position for this game, where Left started
and wins, since Right cannot place any additional horizontal domino.

Fig. 1. Playing Domineering: right cannot play and loses

A useful property derived from Definition 1 is that any combinatorial game
can be played indifferently on a particular (finite) tree. This tree is built as
described in Definition 2.

Definition 2 (Game Tree). Given a game G with starting position S, the
game tree associated to (G, S) is a semi-ordered rooted tree defined as follows:

– The vertex root correspond to the starting position S.
– All the game positions reachable for Left (resp. Right) in a single move from

S are set as left (resp. right) children of the root.
– Apply the previous rule recursively for each child.

Figure 2 gives an example of such a game tree for Domineering with starting

position . For more convenience, note that only the top three levels of the
tree are depicted (there is one additional level when fully expanded).



Combinatorial Games: From Theoretical Solving to AI Algorithms 5

Fig. 2. Game tree of a Domineering position

Now, playing any game on its game tree consists is moving alternately a
token from the root to a leaf. Each player must follow an edge corresponding to
his direction (i.e., full edges for Left and dashed ones for Right). In the normal
play convention, the first player who moves the token on a leaf of the tree is the
winner. We will see later on that this tree representation is very useful, both to
compute exact and approximate strategies.

In view of Definition 1, one can remark that the specified conditions are
too strong to cover some of the well-known abstract 2-player games. For exam-
ple, Chess and Checkers may have draw outcomes, which is not allowed in a
combinatorial game. This is due to the fact that some game positions can be
visited several times during the play. Such games are called loopy. In games like
Go, Dots and Boxes or Othello, the winner is determined with a score and not
according to the player making the last move. However, such games remain very
close to combinatorial games. Some keys can be found in the literature to deal
with their resolution ([31], chap. 6 for loopy games, and [24] for an overview on
scoring game theory). In addition, first attempts to built an “absolute” theory
that would cover normal and misère play conventions, loopy and scoring games
have been recently made [23]. Note that the concepts and issues that will be
introduced in the current survey make also sense in this extended framework.

1.2 Main Issues in CGT

Given a game, researchers in CGT are generally concerned with the following
three issues:

– Who is the winner?
– What is the value of a game (in the sense of Conway)?
– Can one provide a winning strategy, i.e., a sequence of optimal moves for the

winner whatever his opponent’s moves are?

For each of the above questions, I will give some parts of answer relative to
the known theory.

The first problem is the determination of the winner of a given game, also
called outcome. In a strict combinatorial game (i.e., a game satisfying the con-
ditions of Definition 1), there are only four possible outcomes [31]:



6 E. Duchêne

– L if Left has a winning strategy independently of who starts the game,
– R if Right has a winning strategy independently of who starts the game,
– N if the first player has a winning strategy,
– P if the second player has a winning strategy.

This property can be easily deduced from the game tree, by labeling the
vertices from the leaves to the root. Consequently, such an algorithm allows to
compute the outcome of a game in polynomial time in the size of the tree. Yet,
a game position has often a smaller input size than the size of its correspond-
ing game tree. For example, a position (a1, . . . , an) of Nim has an input size
O(

∑n
i=1 log2(ai)), which is far smaller than the number of positions in the game

tree. Hence, computing the whole game tree is generally not the good key to
determine effectively the answer to Problem 1 below.

Problem 1 (Outcome). Given a game G with a starting position S, compute the
complexity of deciding whether (G, S) is P, N , L or R?

Note that for loopy games, the outcome Draw is added to the list of the
possible outcomes.

Example 1. The game Domineering played on a 3 × 1 grid is clearly L since
there is no available (horizontal) move for Right. On a 3 × 2 and 3 × 3 grids,
one can quickly check that the first player has a winning strategy. Such positions
are thus N . When n > 3, it can also be easily proved that 3 × n grids are R,
since placing an horizontal domino in the middle row allows two free moves for
Right, whereas a vertical move do not constraint further moves of Left.

We now present a second major issue in CGT that can be considered as a
refinement of the previous one.

Problem 2 (Value). Given a game G with a starting position S, compute its
Conway’s value.

The concept of game value was first defined by Conway in [8]. In his theory,
each game position is assigned a numeric value among the set of surreal numbers.
Roughly speaking, it corresponds to the number of moves ahead that Left has
towards his opponent. For instance, position of Domineering has value
−2 since Right can place two more dominoes than Left before being blocked. A
more formal definition can be found in [31]. Just note that Conway’s values are
defined recursively and can also be computed from the game tree.

Knowing the value of a game allows to deduce its outcome. For example, all
games having a strictly positive value are L and all games having a zero value
are P. Moreover, its knowledge is even more paramount when the game splits
in sums: it means that a game G can be considered as a set of independent
smaller games whose values allows to compute the overall value of G. Consider
the example depicted by Fig. 3. This game position can be considered as a sum

of the three components , and of respective outcomes L, L and R,
and respective Conway’s values 1/2, 1/2 and −1. From this decomposition, there



Combinatorial Games: From Theoretical Solving to AI Algorithms 7

is no way to compute the outcome of the general position from the outcomes of
each component. Indeed, the sum of three components having outcomes L, L,
and Rcan either be L, R, P or N . However, the sum of the three values can be
easily computed and equals 0: we can conclude that the overall position of Fig. 3
is P.

Fig. 3. Sum of Domineering positions

Example 2. Computing Conway’s values of Domineering is not easy even for
small grids and there is no known formula to get them. On the other hand, the
case of the game of Nim is better known. Indeed, Conway’s value of any position
(a1, . . . , an) is an infinitesimal surreal number equal to a1 ⊕ . . .⊕ an, where ⊕ is
the bitwise XOR operator.

The last problem is generally considered once (at least) the first one is solved.

Problem 3 (Winning Strategy). Given a game G and a starting position S, give a
winning move from S for the player having a winning strategy. Do it recursively
whatever the answer of the other player is.

There are really few games for which this question can be solved with a
polynomial time algorithm. The game of Nim is one of them.

Example 3. A winning strategy is known for the game of Nim: from any posi-
tion (a1, . . . , an) of outcome N , there always exists a greedy algorithm that yields
to a position (a′

1, . . . , a
′
n) whose bitwise sum a′

1 ⊕ . . .⊕a′
n equals 0 (meaning that

it will be losing for the other player).

2 Complexity of Combinatorial Games

The complexity of combinatorial games is correlated to the computational com-
plexity of the above problems. First of all, one can notice that all these problems
are decidable, since it suffices to consider a simple algorithm on the game tree
to have an answer. Of course, the size of the game tree remains an obstacle
compared with the size of a game position. In [18], Fraenkel claims a game G is
polynomial if:



8 E. Duchêne

– Problems 1 and 3 can be solved in polynomial time for any starting position
S of G.

– Winning strategies in G can be consumed in at most an exponential number
of moves.

– These two properties remain valid for any sum of two game positions of G.

If this definition is not always considered as a standard by the CGT com-
munity, there is a general agreement to say that the computational complexities
of Problems 1 and 3 are the main criteria to evaluate the overall complexity of
a game. Of course, this question makes sense only for games whose positions
depends on some parameters such as the size of a grid, the values in a tuple...
This explains why many famous games have been defined in the literature in a
generalized version (e.g. Chess, Go, Checkers on a n×n board...). For almost all
of them, even the computational complexity of Problem 1 is very high, as shown
by Table 1 (extracted from [5,21]). Note that the belonging to class PSPACE or
EXPTIME depends on the length of the play (exponential for EXPTIME and
polynomial for PSPACE).

Table 1. Complexity of well-known games in their generalized versions

Game Complexity

Tic Tac Toe PSPACE-complete

Othello PSPACE-complete

Hex PSPACE-complete

Amazons PSPACE-complete

Checkers EXPTIME-complete

Chess EXPTIME-complete

Go EXPTIME-complete

In addition to these well-known games, there are many other combinator-
ial games that have been proved to be at least PSPACE-hard: Node-Kayles
and Snort [28], many variations on Geography [25] or many other games on
graphs. In 2009, Demaine and Hearn wrote a rich book about the complexity
of many combinatorial games and puzzles [16]. If this list confirms that games
belong to decision problems of highest complexity, some of them admit a lower
one. The game of Nim is one of them and is luckily not the only one. For example,
many games played on tuples of integers admit a polynomial winning strategy
derived from tools arising from arithmetic, algebra or combinatorics on words.
See the recent survey [11] which summarizes some of these games. Moreover,
some games on graphs proved to be PSPACE-complete have a more afford-
able complexity on particular families of graphs. For example, Node Kayles
is proved to be polynomial on paths and cographs [4]. This is also the case for
Geography played on undirected graphs [19]. Finally, note that the complexity
of Domineering is still an open problem.



Combinatorial Games: From Theoretical Solving to AI Algorithms 9

If the computational complexity of many games is often very high, it makes
no sense to consider it when the game positions have a constant size. It is in
particular the case for well-known board games such as Chess on a 8 × 8 board,
the game of Go on a 19 × 19 board, or standard Hex. Solving them is often
a question a computational performance and algorithmic optimization on the
game tree. In this context, these games can be classified according to the status
of their resolution. For that purpose, Allis [1] defined three levels of resolution
for a game:

– ultra-weakly solved: the answer of Problem 1 is known, but Problem3 remains
open. This is for instance the case of Hex, that is winning for the first player,
but no winning strategy has been computed yet.

– weakly solved: Problems 1 and 3 are solved for the standard starting position
(e.g., standard initial position of Checkers, empty board of Tic Tac Toe). As
a consequence, the known winning strategy is not improved if the opponent
does not play optimally.

– strongly solved: Problems 1 and 3 are solved for any starting position.

According to this definition, Table 2 summarizes the current knowledge about
the resolution of some games.

Table 2. Status of the resolutions of several well-known games

Game Size of the board Resolution status

Tic Tac Toe 3 × 3 Strong

Connect Four 6 × 7 Strong

Checkers 8 × 8 Weak

Hex 11 × 11 Ultra-Weak

Go 19 × 19 Open

Chess 8 × 8 Open

Othello 8 × 8 Open

A natural question arises when reading the above table. What makes a game
harder than another one? If there is obviously no universal answer, Fraenkel
suggests several relevant criteria in [17].

– The average branching factor, i.e., the average number of available moves from
a position (around 35 for Chess and 250 for the game of Go).

– The total number of game positions (1018 for Checkers, 10171 for the game of
Go).

– The existence of cycles. In other words, loopy games are harder than non loopy
ones.



10 E. Duchêne

– Impartial or Partizan. A game is said impartial if both players always have
the same available moves. It implies the game tree to be symmetric. Nim is
an example of an impartial game, whereas Domineering and all the games
mentioned in Table 2 are not. Such games are called partizan. Impartial games
are in general easier to solve since their Conway’s values are more “controlled”.

– The fact that the game can be decomposed into sums of smaller independent
games (as it is the case for Domineering).

– The number of final positions.

Based on these considerations, how to deal with games whose complexity
is too high - either theoretically, or simply in view of their empirical hardness?
Approximate resolutions (especially for Problem 3) must be considered and arti-
ficial intelligence algorithms were introduced to this end.

3 AI Algorithms to Deal with the Hardest Games

In the previous section, we have seen that Problem 1 remains unsolved for games
having a huge number of positions. If the recent work of Schaeffer et al. [29] on
Checkers was a real breakthrough (they found the exact outcome, which is a
Draw), getting a similar result for games like Chess, Othello or Go seems cur-
rently out of reach. Moreover, researchers generally feel more concerned by find-
ing a good way to play these games rather than computing the exact outcome.
In the 50s, this interest led to the beginnings of artificial intelligence [30] and the
construction of the first programs to play Chess [3]. For more information about
computer game history, see [27]. Before going into more details on AI programs
for games, note that in general, these algorithms work on a slight variation of
the game tree given in Definition 2, where Left is always supposed to be the
first player, and only the moves of one player are represented on a level of the
tree. For example, the children of the root correspond exclusively to the moves
available for Left, their children to the possible answers for Right...

3.1 MiniMax Algorithms

The first steps in combinatorial game programming were made for Chess. The
so-called MiniMax approach is due to Shannon and Turing in the 50 s and has
been widely considered in many other AI programs. Its main objective is to
minimize the maximum loss of each player. This algorithm requires some expert
knowledge of the game, as it uses an evaluation function of the values of game
positions.

Roughly speaking, in a MiniMax algorithm, the game tree is built up to a
certain depth. Then each leaf of this partial game tree is evaluated thanks to an
evaluation function. This function is the key of the algorithm and is based on
heuristic considerations. For example, the Chess computer Deep Blue (who first
defeated a human world champion in 1996) had an evaluation function based on
hundreds of parameters (e.g. compare the power of a non-blocked tower versus



Combinatorial Games: From Theoretical Solving to AI Algorithms 11

a protected king). These parameters were tuned after an fine analyze of 700,000
master games. Each parent node of a leaf is then assigned a value equals to the
minimum value of its children (wlog, we here assume that the depth is even -
then the last moves correspond to moves for Right, whose goal is to minimize
the game value). The next parent nodes are evaluated by taking the maximum
value among their children (it corresponds to moves for Left). Then recursively
each parent node is evaluate according to the values of its children, by taking
alternately the minimum or the maximum according to whether it is Left or
Right’s turn. Figure 4 illustrates this algorithm on a tree of depth 4. In this
example, assume an evaluation function provides the values located on the leaves
of the tree. Then MiniMax ensures that Left can force a win with a score equals
to 4. Red nodes are those for which the maximum of the children is taken, i.e.,
positions from which Left has to play.

4

34

7 4 12 3

7 -5 4 -2 12 3

10 7 -5 4 3 -2 12 3 8

Fig. 4. MinMax algorithm on a tree of depth 4

In addition to an expert tuning of the evaluation function, another significant
enhancement was made with the introduction of Alpha-Beta pruning [12]. It
consists in a very effective selective cut-off of the Minimax algorithm without loss
of information. Indeed, if after having computed the values of the first branches,
it turns out that the overall value of the root is at least v, then one can prune
all the unexplored branches whose values are guaranteed to be less than v. The
ordering of the branches in the game tree then turns out to be paramount,
as it can considerably increase the efficiency of the algorithm. In addition to
this technique, one can also mention the use of transposition tables (adjoined to
alpha-beta pruning) to speed up the search in the game tree.

Nowadays, the MiniMax algorithm (together with its improving techniques)
is still used by the best algorithms to solve games admitting a relevant evaluation
function. This is for example the case for Chess, Checkers, Connect Four or
Othello. Yet, we will see that for other games, some probabilistic approaches
turn out to be more efficient.



12 E. Duchêne

3.2 Monte-Carlo Approaches

In 2006, Coulom [9] suggested to combine the principle of the MiniMax algorithm
with Monte Carlo methods. These methods were formalized in the 40 s to deal
with hard problems by taking a random sampling. For example, they can be used
to estimate the value of π. Of course, the quality of the approximated solution
partially depends on the size of the sample. In our case, their application will
consist in simulating many random games.

The combination of both MiniMax and Monte Carlo methods is called MCTS,
which stands for Monte Carlo Tree Search. Since its introduction, it has been
considered by much research on AI for games. This success is mainly explained
by the significant improvements made by computer Go programs that are using
this technique. Moreover, it has also shown very good performances for problems
for which other techniques had poor ones (e.g. some problems in combinator-
ial optimization, puzzles, multi-player games, scheduling, operation research...).
Another great advantage of MCTS is that there is no need of a strong expert
knowledge to implement a good algorithm. Hence it can be considered for prob-
lems for which humans do not have a strong background. In addition, MCTS
can be stopped at any time to provide the current best solution and the tree
built so far can be reused for the next step.

In what follows, we will give the necessary information to understand the
essence of MCTS applied to games. For additional material, the reader could
refer to the more exhaustive survey [7].

The basic MCTS algorithm consists in building progressively the game tree,
guided by the results of the previous explorations of it. Unlike the standard Min-
iMax algorithm, the tree is built in an asymmetric manner. The in-depth search
is considered only for the most promising branches that are chosen according
to a tuned selection policy. This policy relies on the values of each node of the
tree. Roughly speaking, the value of a node vi corresponds to the percentage
of winning random simulations when vi is played. Of course this value become
more and more accurate when the tree grows.

Description. As illustrated in Fig. 5, each iteration of MCTS is organized
around 4 steps called descent, growth, roll-out and update. Numbers in grey
correspond to the estimate values of each node (a function of the pourcentage
of win). Here are their main description:

– Descent: starting from the root of the game tree, a child is recursively selected
according to the selection policy. As seen on the figure, a MiniMax selection is
used to descend the tree, according to the values of each node (here, B1 is the
most promising move for Left, then E1 for Right). This descent stops when it
lands on a node that needs to be expanded (also given by the policy). In our
example, the node E1 is such a node.

– Growth: Add one or more children to this expandable node in the tree. On
Fig. 5, Node B4 is added to the tree.



Combinatorial Games: From Theoretical Solving to AI Algorithms 13

– Rollout: From an added node, make a simulation by playing random moves
until the end of the game. In our example, the random simulation from B4
leads to a loss for Left.

– Update: the result of the simulation is backpropagated to the moves of the
tree that have been selected. Their values are thus updated.

Fig. 5. The four stages of the MCTS algorithm

Improvements. In general, MCTS is not used in a raw version and is frequently
combined with additional features. As detailed in [36], there is a very rich liter-
ature on the improvements brought to MCTS. They can be organized according
to the stage they impact. Table 3 summarizes the most important enhancements
brought to MCTS.

One of the most important feature of the algorithm is the node selection
policy during the descent. At each step of this stage, MCTS chooses the node
that maximizes (or minimizes, according to whether it is Left or Right’s turn)
some quantity. A formula that is frequently used is called Upper Confidence
Bounds (UCB). It associates to each node vi of the tree the following value:

V (vi) + C ×
√

ln N

ni
,

where V (vi) is the percentage of winning simulations involving vi, ni is the total
number of simulations involving vi, N is the number of times its parent has
been visited, and C is a tunable parameter. This formula is well-known in the
context of bandit problems (choose sequentially amongst n actions the best one



14 E. Duchêne

Table 3. Main improvements brought to MCTS

Stage Improvement

Descent UCT (2006) [22]

Descent RAVE (2007) [15]

Descent Criticality (2009) [10]

Growth FPU (2007) [35]

Rollout Pool-RAVE (2011), [26]

Rollout NST (2012) [33]

Rollout BHRF (2016) [14]

Update Fuego reward (2010) [13]

in order to maximize the cumulative reward). It allows in particular to deal with
the exploration-exploitation dilemma, i.e., to find a balance between exploring
unvisited nodes and reinforce the statistics of the best ones. The combination of
MCTS and UCB is called UCT [22].

A second common enhancement for MCTS during the descent is the RAVE
estimator (Rapide Action-Value Estimator [15]). It consists in considering each
move of the rollout as important as the first move. In other words, the moves
visited during the rollout stage will also affect the values of the same moves in
the tree. On Fig. 5, imagine the move E3 is played during the simulation depicted
with dashed line. Then RAVE will thus modify the UCB value of the node E3
of the tree (the RAVE formula will not be given here).

MCTS has also been widely studied in order to increase the quality of the
random simulations. A first way to mimic the strategy of a good player is to
consider evaluations functions based on expert knowledge. In [34], moves are
categorized according to several criteria: location on the board, capturing or
blocking potential and proximity to the last move. Then the approach is to
evaluate the probability that a move belonging to a category will be played by
a real player. This probability is determined by analyzing a huge sample of real
games played by either humans or computers. Of course this strategy is fully
specific to the game on which MCTS is applied. More generic approaches were
considered such as NST [33], BHRF [14] or Pool RAVE [26]. In the first two
ones, good sequences of moves are kept in memory. Indeed, it is rather frequent
that given successive attacking moves of a player, there is an usual sequence of
answers of the opponent to defend himself. In the second one, the random rollout
policy is biased by the values in the game tree, i.e., good moves visited in the
tree are likely to be played during a simulation.

In addition to the enhancements applied to the different stages of MCTS,
one can also mention several studies to parallelize the algorithm that perform
very good results [36].

We cannot conclude this survey without mentioning the outstanding perfor-
mances of Google’s program Alpha Go [32]. Like Deep Blue for Chess, Alpha



Combinatorial Games: From Theoretical Solving to AI Algorithms 15

Go is the first AI to defeat the best human player in Go. This program runs
an MCTS algorithm combined with two deep neural networks. The first one is
called the Policy network and is used during the descent phase to find out the
most promising moves. It was bootstrapped from many games of human experts
(around 30 million moves analyzed during three weeks on 50 GPU). The rein-
forcement learning was then enhanced by many games of self-play. The second
neural network is called Value network and can be considered as the first pow-
erful evaluation function for Go that is used to bias the rollout policy. If Alpha
Go’s performances show a real breakthrough in AI programs for games, the last
day of this research field has not yet come. In particular, the need of expert
knowledge to bootstrap the networks cannot be considered when dealing with
problems for which humans have a poor expertise.

4 Perspectives

Working on problems as hard as combinatorial games is a real challenge, both
for CGT and AI researchers. The major results obtained in the past years are
very stimulating and encourage many people to strengthen the overall effort on
the topic. Hence, from a theoretical point of view, the next step for CGT is the
construction of a general framework to cope with scoring games. In particular,
the question of the sum of two scoring games is paramount, as it is radically
different from the sum games in normal play convention (one cannot simply add
the values of each game). First attempts have been recently made in that sense
to consider Conway’s values as waiting moves in scoring games.

Concerning AI algorithms for games, as said in the above paragraph, Alpha
Go has been a breakthrough for the area but very exciting issues remain. More
precisely, the neural network approach proposed by Google requires a wide set
of expert knowledge and needs computer power for a long time. However, there
are some games for which both are not available. In particular, the example of
General Game Playing is a real challenge for AI algorithms, as the rules of the
game are given at the latest 20 minutes before running the program. Supervised
learning techniques like those of Alpha Go are thus almost impossible to set up,
and standard MCTS enhancements are currently the most effective ones for this
kind of problem. In addition, one can also look for adapting MCTS to problems
of higher uncertainty such as multi-player games or games having randomness
in their rules (use of dices for example). First results have already been made in
that direction [36].

References

1. Allis, L.V.: Searching for solutions in games an artificial intelligence. Ph.D. Maas-
tricht, Limburg University, Netherland (1994)

2. Berlekamp, E., Conway, J.H., Guy, R.K.: Winning ways for your mathematical
plays, vol. 1, 2nd edn. A K Peters Ltd., Natick (2001)

3. Bernstein, A., Roberts, M.: Computer V. Chess player. Sci. Am. 198, 96–105 (1958)



16 E. Duchêne

4. Bodlaender, H.L., Kratsch, D.: Kayles and numbers. J. Algorithms 43, 106–119
(2002)

5. Bonnet, E., Saffidine, A.: Complexit des Jeux (in french). Bulletin de la ROADEF
31, 9–12 (2014)

6. Bouton, C.L.: Nim, a game with a complete mathematical theory. Ann. Math. 3,
35–39 (1905)

7. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree
search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

8. Conway, J.H.: On Number and Games. Academic Press Inc., Cambridge (1976)
9. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.

In: Proceedings of the 5th International Conference on Computers and Games,
Turin, Italy, pp. 72–83 (2006)

10. Coulom, R.: Criticality: a Monte-Carlo Heuristic for Go Programs. Invited talk in
University of Electro-Communication, Tokyo (2009)

11. Duchêne, E., Fraenkel, A.S., Gurvich, V., Ho, N.B., Kimberling, C., Larsson, U.:
Wythoff Wisdom (preprint)

12. Edwards, D.J., Hart, T.P.: The α − β heuristic. In: Artificial intelligence project
RLE and MIT Computation Centre, Memo 30 (1963)

13. Enzenberger, M., Muller, M., Arneson, B., Segal, R.: Fuego an open-source frame-
work for board games and Go engine based on Monte Carlo tree search. IEEE
Trans. Comput. Intell. AI Games 2(4), 259–270 (2010)

14. Fabbri, A., Armetta, F., Duchne, E., Hassas, S.: A self-acquiring knowledge process
for MCTS. Int. J. Artif. Intell. Tools 25(1), 1660007 (2016)

15. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Ghahra-
mani, Z. (ed.) Proceedings of the International Conference on Machine Learning
(ICML), pp. 273–280. ACM, New York (2007)

16. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K Peters
(2009)

17. Fraenkel, A.S.: Nim is easy, chess is hard - but why? J. Int. Comput. Games Assoc.
29, 203–206 (2006)

18. Fraenkel, A.S.: Complexity, appeal and challenges of combinatorial games. Theor.
Comput. Sci. 313, 393–415 (2004)

19. Fraenkel, A.S., Simonson, S.: Geography. Theor. Comput. Sci. 110, 197–214 (1993)
20. Gardner, M.: Mathematical games: cram, crosscram and quadraphage: new games

having elusive winning strategies. Sci. Am. 230, 106–108 (1974)
21. Junghanns, A., Schaeffer, J.: Sokoban: enhancing general single-agent search meth-

ods using domain knowledge. Artif. Intell. 129(1), 219–251 (2001)
22. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,

Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

23. Larsson, U., Nowakowski, R.J., Santos, C.: Theory, Absolute Combinatorial Game.
arXiv:1606.01975 (2016)

24. Larsson, U., Nowakowski, R.J., Santos, C.: When waiting moves you in scoring
combinatorial games. arXiv:1505.01907 (2015)

25. Renault, G., Schmidt, S.: On the complexity of the misre version of three games
played on graphs (preprint)

26. Rimmel, A., Teytaud, F., Teytaud, O.: Biasing Monte-Carlo simulations through
RAVE values. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS,
vol. 6515, pp. 59–68. Springer, Heidelberg (2011)

http://arxiv.org/abs/1606.01975
http://arXiv.org/abs/1606.01975
http://arxiv.org/abs/1505.01907


Combinatorial Games: From Theoretical Solving to AI Algorithms 17

27. Rougetet, L.: Combinatorial games and machines. In: Pisano, R. (ed.) A Bridge
between Conceptual Frameworks, Sciences, Society and Technology Studies,
Pisano, vol. 27, pp. 475–494. Springer, Dordrecht (2015)

28. Schaeffer, T.J.: On the complexity of some two-person perfect-information games.
J. Comput. Syst. Sci. 16, 185–225 (1978)

29. Schaeffer, J., Burch, N., Bjrnsson, Y., Kishimoto, A., Mller, M., Lake, R., Lu, P.,
Sutphen, S.: Checkers is solved. Science 317(5844), 1518–1522 (2007)

30. Shannon, C.: Programming a computer for playing chess. Philos. Mag. Ser. 7
41(314), 256–275 (1950)

31. Siegel, A.N.: Combinatorial Game Theory. American Mathematical Society, San
Francisco (2013)

32. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of Go with deep neural networks and tree search. Nature 529(7587),
484–489 (2016)

33. Tak, M.J.W., Winands, M.H.M., Bjornsson, Y.: N-grams and the last-good-reply
policy applied in general game playing. IEEE Trans. Comput. Intell. AI Games
4(2), 73–83 (2012)

34. Tsuruoka, Y., Yokoyama, D., Chikayama, T.: Game-tree search algorithm based
on realization probability. ICGA J. 25(3), 132–144 (2002)

35. Wang, Y., Gelly, S.: Modifications of UCT and sequence-like simulations for Monte-
Carlo Go. In: IEEE Symposium on Computational Intelligence and Games, Hon-
olulu, Hawai, pp. 175–182 (2007)

36. Winands, M.: Monte-Carlo tree search in board games. In: Nakatsu, R., Rauter-
berg, M., Ciancarini, P. (eds.) Handbook of Digital Games and Entertainment
Technologies, pp. 1–30. Springer, Heidelberg (2015)


	Combinatorial Games: From Theoretical Solving to AI Algorithms
	1 Combinatorial Games
	1.1 Introduction
	1.2 Main Issues in CGT

	2 Complexity of Combinatorial Games
	3 AI Algorithms to Deal with the Hardest Games
	3.1 MiniMax Algorithms
	3.2 Monte-Carlo Approaches

	4 Perspectives
	References


