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Abstract. Public bus service plays an indispensable role in modern
urban traffic system. With the bus running data, the detection of the
statistically significant aggregations of bus delay is useful for optimizing
the bus timetable, so that the service quality can be improved. However,
previous studies have not considered how to detect bus delay aggre-
gation using statistical hypothesis testing. To fill that gap, this paper
considers the detection of bus delay aggregation from bus running data.
We present RSTV-Miner, a mining method using statistical hypothesis
testing, for detecting statistically significant bus delay aggregation. Our
empirical study on real data demonstrates that RSTV-Miner is effective
and efficient.

Keywords: Bus delay aggregation · Spatial-temporal analysis · Traffic
data mining

1 Introduction

Public bus, which is one of the most widely used transportation tools for most
people, plays an important role in the modern urban traffic system. The on-
time performance is a critical factor affecting people’s willingness to take buses.
Naturally, people prefer to take the buses that have high on-time rate, i.e., the
buses run in accordance with the timetable, since people can avoid unnecessary
waiting time and estimate the exact time to the destination. Intuitively, the bus
drivers can avoid the situation of ahead of schedule by slowing down. However,
there are many causes of bus delay [1], for the case of behind schedule, the bus
drivers cannot simply catch up time by speeding up due to some limitations such
as maximum speed limit and road condition. Thus, the detection of bus delay
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Table 1. Samples of Tampere bus data

Stop code Latitude Longitude Delay Arrival Line Date Stop name

1500 61.49855 23.73550 60 00:31:31 4Y 2015-9-27 Ammattikoulu

3084 61.47992 23.80464 15 19:21:52 102 2015-10-23 Kuoppamaentie

0098 61.50003 23.73738 −34 00:09:48 3Y 2015-8-27 Savilinna

aggregations, which is the basis for optimizing the bus timetable, can improve
the bus service quality.

Recently, the city of Tampere, Finland, released as open data [2] the locations
of its buses at every second. In particular, the bus data includes information on,
for each bus and each bus stop, whether a bus was on schedule and how much
was the delay if it was not on time. Table 1 lists several samples of Tampere
bus data. Each record contains the information of a bus arriving at a bus stop.
For example, by the first record in Table 1, we can see that a bus of Line 4Y
arrives at Stop Ammattikoulu (code: 1500, location: 61.49855”N, 23.73550”E)
at 00:31:31 AM on September 27, 2015 with 60 s behind schedule. As shown in
the last record in Table 1, the value of “Delay” is minus if the bus arrives ahead
of schedule, there are also other details not mentioned.

Motivated by the real-world requirement shown above, we try to detect the
aggregation of bus delay from the bus running data in this work. Intuitively,
it is hard to avoid all bus delays, since the real-world is complex and uncer-
tain. Instead of finding all frequent bus delay cases, we focus on detecting the
statistically significant aggregations of delay. Specifically, we apply the spatial-
temporal scanning method, which has been verified effective in the early warning
of infection diseases outbreak, to the bus running monitoring data, and test the
significance level of each aggregation of bus delay in both temporal dimension
and spatial dimension. To the best of our knowledge, there is no previous work
on detecting the bus delay aggregation using statistical hypothesis testing. We
will review the related work systematically in Sect. 3.

To tackle the detection of bus delay aggregation, we need to address two
technical challenges. First, how to perform spatial-temporal scanning on the bus
running data efficiently. Second, how to perform statistical hypothesis testing
for a pair of a given zone and a time interval.

The main contributions of this paper include: (1) introducing a novel data
mining problem of bus delay aggregation detection; (2) designing an efficient and
effective algorithm for detecting statistically significant bus delay aggregations;
(3) conducting extensive experiments using real data to evaluate our proposed
algorithm, and demonstrating visually that some interesting results can be found
by our algorithm.

The rest of the paper is organized as follows. We formulate the problem of
bus delay aggregation mining in Sect. 2, and review related work in Sect. 3. In
Sect. 4, we present the critical techniques of our method. We report experiment
and case study in Sect. 5, and conclude the paper in Sect. 6.
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2 Problem Definition

In this section, we give a formal definition for statistically significant bus delay
event aggregation. To that end, we will also need to define several concepts
concerning spatial-temporal scanning with respect to “time interval” and “zone”.

We start with some preliminaries. We use a series of continuous non-negative
integers starting from 0 to denote the time points; we use tmax to denote the
maximum time point. Without loss of generality, we assume that the smaller
the value, the earlier the time point, and that the interval between any two
consecutive time points is a constant.

For brevity, we denote [0, tmax] by ˜T . A time interval T is a sub-interval of
˜T (denoted by T � ˜T ) of the form T = [T.ts, T.te] satisfying 0 ≤ T.ts < T.te ≤
tmax. The time span of T , denoted by ||T ||, is the number of time points in T ,
that is, ||T || = T.te − T.ts + 1.

For a given bus, we use AT (u) and ET (u) to denote the real arrival time
point and the expected arrival time point at Stop u, respectively. The delay time
at Stop u, denoted by Δ(u), is AT (u) − ET (u). Let θ be the time threshold. If
Δ(u) ≥ θ, we say that a bus delay event happens at Stop u.

We denote the position of bus stop u by its geographic coordinates of the
form of P (u) = (u.lng, u.lat). For two bus stops u1 and u2, the geographical
distance between them, denoted by Dis(u1, u2), is

Dis(u1, u2) =

2 × R × sin−1
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R = 6.37130

Please note that Eq. 1 is an approximate function to calculate the distance
between two objects on the earth.

Let ˜S be the study area that we take into consideration. A zone S is a sub-
area of ˜S (denoted by S � ˜S), such that at least one bus stop locates within
S. As all observations happen at bus stops, interchangeably, S will be used to
denote a set of bus stops within the zone.

Given zone S and time interval T , we define N (S, T ) to be the number of
bus arrival events happened, and D(S, T ) to be the number of bus delay events
observed. Intuitively, D(S, T ) � N (S, T ).

Without loss of generality, we apply log-likelihood ratio statistic to measure
the significance of the spatial-temporal aggregation of bus delay events. Specif-
ically, given zone S and time interval T , the likelihood of the happening of bus
delay aggregation within S during T , denoted by L(S, T ), is
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L(S, T ) =
⎧

⎪

⎪

⎨

⎪

⎪

⎩

D(S, T ) × log(r1) + (D(˜S, ˜T ) − D(S, T )) × log(r2)

−D(˜S, ˜T ) × log D(˜S,˜T )

N (˜S,˜T )
, r1 > r2

0 , r1 ≤ r2

(2)

where,

r1 =
D(S, T )
N (S, T )

r2 =
D(˜S, ˜T ) − D(S, T )

N (˜S, ˜T ) − N (S, T )

Given a set of bus running records within area ˜S during time interval ˜T ,
the problem of detecting statistically significant bus delay aggregation is to find
the pair of (S, T ), such that L(S, T ) = max {L(S′, T ′) | S′ � ˜S, T ′ � ˜T}, and
L(S, T ) is statistically significant.

Table 2 lists the frequently used notations of this paper.

Table 2. Summary of notations

Notation Description

θ Time threshold

˜T The maximum time interval

˜S The study area

(S, T ) A pair of a zone and a time interval

D(S, T ) The number of bus delay events happened within S during T

N (S, T ) The number of bus arrival events happened within S during T

L(S, T ) The likelihood of bus delay aggregation happened within S during T

3 Related Work

Urban traffic analysis is an important and valuable problem in daily life. Some
applications have been applied to help government or company to improve the
public transportation service and provide a more convenient traffic experience.
For example, bus travel time prediction [3–6] can assist people to get a better
schedule when they go out; bus delays prediction [7] can improve the traffic
operation. According to our review, there do not exist any works about bus
delay aggregation detection.

Aggregation detection is widely studied in disease outbreak monitoring and
has attracted extensive attentions from both research and industry. There are
large number of studies about the spatial aggregation [8] and temporal-spatial
aggregation [9] on the disease detection such as cancer [10], diabetes [11], and
sclerosis [12], which is an important method for us to control and prevent the
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Algorithm 1. Framework of RSTV-Miner
Input: bus data D, study spatial-temporal area ( ˜T , ˜S), delay threshold θ, maximum

size of zone α, Monte Carlo times M .
Output: a spatial-temporal area (S′, T ′) with maximum log-likelihood L(S′, T ′)max.
1: index Rtree(α, θ, D); //refer to Section 4.1

2: {(S, T )}real ← ST Scan(˜S, ˜T ); //refer to Algorithm 2
3: for each pair (S, T ) in {(S, T )}real do
4: {(S, T )}monte ← MonteCarol((S, T ), M); //refer to Section 4.3
5: end for
6: (S′, T ′) ← {(S, T )}monte ; //get a zone has maximum log-likelihood
7: return (S′, T ′);

disease outbreaks. Especially, more and more applications are adapting clus-
ter detection to deal with some problems, such as terrorism outbreaks [13], air
pollution [14], and crime location [15].

Some typical methods are used to deal with aggregation detection problems.
Scan statistics are effective tools in these methods [16,17]. Some works focus
on detecting the change in the spatial pattern of a disease [18]. Wallenstein [19]
proposed the method to cluster in time by scan statistic. Kulldorff et al. [20,21]
proposed a temporal-spatial scanning statistic method to find a time periodic
geographical disease.

4 Design of RSTV-Miner

In this section, we present our method, RSVT-Miner, for mining bus delay aggre-
gation from bus dataset. In general, the framework of RSTV-Miner includes: R-
tree index structure, spatial-temporal scan, and statistical test. Technically, the
key issues of RSTV-Miner are generation and effective scan of index. Algorithm 1
presents the procedure of our method.

4.1 R-Tree Index Structure and Representation

In this study, we partition a spatial study area into m × n 2-dimensional grids.
Each grid covering a set of bus stops within a zone and we get a set of zones
˜S = {S1, S2, . . . , Si}. We generate R-tree index using these zones. Then we use
these zones as a minimal unit of space in the following study. In this paper, we
need to measure the size of a zone when detecting bus delay aggregation. To
address this issue, in our method, each zone is a rectangle and the side length
of it is equal to the distance between two nearest bus stops.

To detect the aggregation of bus delay, we need to structure an index for
zones. At this moment, using each zone to structure the index and searching
for its neighbors is a time-consuming process. In addition, the computation cost
is very high. This does not allow us to search all sub-areas of ˜S. To address
this issue, we use R-tree to structure index that will help us to group nearby
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Fig. 1. R-tree index structure demonstrate

zones and retrieve data quickly according to their spatial locations. And to be
more statistical significance, when generating an R-tree, we just use zones which
overcast at least one bus stop. As demonstrated in Fig. 1, we give an example
of R-tree structure in which red rectangles represent the zones overcasting bus
stops. We start to build R-tree by using the zones which have partitioned. As
illustrate Fig. 1(c), we use R-tree structure, so that a spatial search requires to
visit only a small number of nodes.

4.2 Spatial-Temporal Scan

Spatial-temporal clustering is a process of grouping objects based on their spa-
tial and temporal similarity. We need a statistical data to express clustering
degree for detecting bus delay aggregation. To address this issue, we use log-
likelihood ratio to test the spatial and temporal similarity in Tampere. We pro-
pose a approach to analyze spatial-temporal data at a higher level of abstraction
by grouping the data according to its similarity into meaningful clusters. Given
a spatial-temporal study area (S, T ), we can calculate log-likelihood ratio for a
zone L(S, T ).

Example 1. Given a spatial-temporal study area (˜S, ˜T ). Figure 2 presents an
example to illustrate the problem definition. As shown, we build the spatial-
temporal area as the 3D space C. Given two spatial-temporal area (S1, T1),
(S2, T2) in C. To calculate L(S1, T1) and L(S2, T2) for spatial-temporal area
(S1, T1),(S2, T2) by Eq. 2, and if the result is L(S1, T1) > L(S2, T2), (S1, T1) can
be considered it has a higher clustering degree than (S2, T2). If we check all the
subspace in C, we can find the largest outlier space cluster which has a biggest
log-likelihood ratio. We can consider it has the bus delay aggregation on this
spatial-temporal area.
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Fig. 2. Illustration of bus delay aggregation

We apply spatial-temporal scan to Tampere bus data by R-tree index, as illus-
trated in Fig. 1 (b). In this method, we use R-tree to retrieve the spatial dimen-
sion. To attach temporal dimension with spatial dimension, we divide temporal
area into time slots. There are many combinations of spatial-temporal entries
(S, T ). It is time consuming to retrieve all the combinations, so we just retrieve
the spatial data attached consecutive time slots in rush hour at Tampere. We
only scan the region indexed by R-tree that side length is no more than max-
imum pre-set value, so that we never retrieve more than 50 % of total testing
area at risk. Algorithm 2 gives an implementation of spatial-temporal scanning.
We propose this method as following: (1) retrieve R-tree to find every space
dimension zone; (2) attach all time slots with each zone, and use log-likelihood
to test this spatial-temporal area clustering degree; (3) repeat the two steps for
each zone and generate a collection set of spatial-temporal clusters.

Algorithm 2. Spatial-temporal scanning
Input: R-tree index for ˜S, temporal area ˜T
Output: spatial-temporal set {S, T} has maximum log-likelihood

1: for each Si in ˜S do
2: for each T in ˜T do
3: calculate L(Si, T );
4: end for
5: (Si, T ) ← max({L(Si, T )});
6: {(S, T )}max ← addToList((Si, T ));
7: end for
8: return {(S, T )}max;
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4.3 Statistical Test

To ensure our model is statistic significance, we use Monte Carol model to sim-
ulate the result. Poisson distribution [22] is widely used to model underlying
distribution of spatial-temporal data. We use it to simulate spatial-temporal
data of bus delay.

We can get the clustering spatial-temporal area (S, T ) with maximum L(S, T )
by our spacial-temporal scan method, written as L(S, T )real. In order to validate
that the result can not be simulated, we must test the significance of the result.
For every zone, we calculate the expectation of bus delay. And then we gener-
ate the simulated delay of each zone by poisson distribution with delay expec-
tation. Then we use our spacial-temporal scan method to get all the L(S, T )
values in this simulate data, denoted as L(S, T )simu. We conduct this test and
get the result {L(S, T )}simu. If the test is significant at 5 percent level, which
means L(S, T )real ranks top 5 percent of {L(S, T )}simu, we can conclude that
L(S, T )real satisfies the statistic significant.

5 Experiments

In this section, we report a systematic empirical study using Tampere bus data
set to verify the bus delay aggregation result by RSTV-Miner. All experiments
were conducted on a PC computer with an Intel Core i7-3770 3.40 GHz CPU,
and 16 GB main memory, running Windows 7 operating system. All algorithms
were implemented in C++.

To mine bus delay aggregation of Tampere, we scan every working day of
data set. When travel the R-tree, we abandon the grid whose area is more than
half of testing space. Using R-tree index to reduce the time of traverse can make
an efficient way to spatial-temporal scanning. We use Monte Carol method to
validate the output of model with simulation times M = 100. By comparison, if
the real result area larger than the top-5 simulated result, the result is statistic
significance.

At the beginning of our experiment, we need to confirm the threshold θ which
estimates whether a bus delay event happened. In our experiment, we find when
we change θ, spatial-temporal clustering degree change. To set θ, Fig. 3 presents
some results on the Tampere map. When θ = 270, we can get maximum log-
likelihood at the same spatial-temporal testing area.

When traveling R-tree index for each zone, we set a maximum value of side
length as α to avoid travel the zone which is more than half of Tampere at risk.
As listed in Table 3, Spatial area changes with α when we fixed other parameters,
study on 14th August, 9:00∼13:00. When α > 120, the result zone area is nearly
half of the Tampere area and the finding zone area does not change.

As listed on Table 4, we list results on consecutive days, from 26th August to
28th August, these results have been checked by Monte Carol simulation. The
bus delay aggregation of specify spatial-temporal area has a larger degree. To
mine the bus delay aggregation, the most clustering spatial-temporal area, listed
in Table 4, has the higher log-likelihood compared to other spatial-temporal area
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Fig. 3. Threshold θ variation with log-likelihood ratio test

Table 3. Result zone area variation with α

α Side length of zone Result zone area L
30 3 km 3.75 km2 14.8657

60 6 km 14.28 km2 29.0666

90 9 km 62.15 km2 11.9916

120 12 km 62.15 km2 14.1069

150 15 km 167.50 km2 18.3807

180 180 km 167.50 km2 17.6174

210 210 km 167.50 km2 45.2287

240 240 km 167.50 km2 35.8306

on the same day. We can find that these zones attached to spatial-temporal area
are nearby the center square, a bridge, some traffic hubs and narrow places of
Tampere, as illustrated in Fig. 4 which presents the results from 26th August to
28th August. These results are in accordance with the previous studies [1] and
our general knowledge of Tampere traffic.

Table 4. Spatial-temporal scanning result

Fig Date Time interval (lat1, lng1, lat2, lng2) L
(a) 26th Oct, 2015 10:30∼11:00 (61.5192, 23.6172, 61.5747, 23.6797) 13.8912

(b) 26th Oct, 2015 16:30∼17:30 (61.4987, 23.6092, 61.5327, 23.6997) 29.0666

(c) 27th Oct, 2015 10:30∼12:00 (61.4977, 23.7022, 61.5197, 23.8457) 11.9916

(d) 27th Oct, 2015 18:00∼18:30 (61.4987, 23.6092, 61.5327, 23.6997) 14.1069

(e) 28th Oct, 2015 10:30∼11:00 (61.5137, 23.6127, 61.5747, 23.7037) 18.3807

(f) 28th Oct, 2015 16:00∼19:00 (61.4957, 23.5957, 61.5227, 23.6457) 17.6174
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(a) 26th Oct, 2015, AM (b) 27th Oct, 2015, AM (c) 28th Oct, 2015, AM

(d) 26th Oct, 2015, PM (e) 27th Oct, 2015, PM (f) 28th Oct, 2015, PM

Fig. 4. Spatial-temporal area detection

6 Conclusions

In this paper, we study a problem of mining bus delay aggregation which is useful
for optimizing the bus delay timetable. To mine these clusters of bus delay and
present the result sets concisely, we propose an algorithm called RSTV-Miner.
RSTV-Miner has three components:R-tree index structure, spatial-temporal
scan and statistical test. We evaluate our method using the open data set released
by city of Tampere, Finland recently. Our experiment verifies the bus delay
aggregation in spatial-temporal area by RSTV-Miner. And it is useful for traffic
schedule structure to find the traffic congestion place in Tampere.

In our work, we apply spatial-temporal scanning in our algorithm that help
us to learn the aggregation of bus delay which is useful for traffic schedule con-
struction. We use statistical hypothesis test to detect the clustering degree of
bus delay. Mining this interest problem in our work, we find the aggregation
of bus delay in both temporal dimension and spatial dimension. After finding
the aggregation, we obtain many clusters of bus delay on spatial-temporal area
using RSTV-Miner. When scanning area, we partition study area into zones,
which omits some details about bus stops and affects the efficiency of algorithm.
This lead us to do more future work on mining bus delay. In the future, we could
also do more data mining on experiment results to predict bus delay and traffic
congestion.
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