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Abstract. This paper formally defines multimodality in multiobjective
optimization (MO). We introduce a test-bed in which multimodal MO
problems with known properties can be constructed as well as numeri-
cal characteristics of the resulting landscape. Gradient- and local search
based strategies are compared on exemplary problems together with spe-
cific performance indicators in the multimodal MO setting. By this means
the foundation for Exploratory Landscape Analysis in MO is provided.
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1 Introduction

In multiobjective optimization, respective algorithms are particularly challenged
by multimodality of the underlying landscape caused by the interaction of objec-
tive functions. Thus, sophisticated Exploratory Landscape Analysis (ELA, [7])
features which are able to assess the level and type of multimodality based on an
initial problem sample have huge potential for understanding algorithm behav-
iour, automated algorithm selection and algorithm design. Despite the success
of ELA in single-objective continuous black-box optimization (e.g. [1,4]) multi-
objective optimization has not been appropriately addressed apart from limited
approaches in the combinatorial context (e.g. [6,9]) or expert-based character-
istics such as the Pareto front shape, the dimensionality and some intuitions
on multimodality. We here lay the groundwork for constructing such experi-
mental features systematically by providing formal definitions of multimodality
in terms of distinguishing between local and global efficient sets. A versatile
problem generator is introduced for designing multimodal mixed sphere prob-
lems with predefined characteristics. Bringing together theoretical analysis and
experiments, and contrasting gradient and local search based methods, highly
increases understanding of the problem domain multimodality in multiobjective
optimization as well as the explorative algorithm.
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Section 2 introduces topological definitions, Sect. 3 details the problem gener-
ator and theoretically analyzes the resp. multimodal structures, Sect. 4 discusses
the exploration algorithms, Sect. 5 presents algorithm and problem characteris-
tics, and Sect. 6 provides experimental results. Conclusions are drawn in Sect. 7.

2 Multimodality

We present an approach of defining multimodality in that we distinguish between
global and local efficient sets in R

d (the decision space). We are aware that most
parts can be generalized to other spaces. We first recall some topological notions:

1. Let A ⊆ R
n. The set A is called connected if and only if there do not exist two

open, disjoint subsets U1 and U2 of Rn such that A ⊆ U1 ∪ U2, U1 ∩ A �= ∅,
and U2 ∩ A �= ∅.

2. Let B ⊆ R
n. A subset C ⊆ B is a connected component of B iff C is connected,

and any subset of B which is a strict superset of C is not connected, and C
is non-empty.

Pareto concepts are given next: Let f : X → R
m be a multiobjective function

where X ⊆ R
d is the decision space. We will denote the component functions

of f by fi : X → R, i = 1, . . . , m. Given a totally ordered set (T,≤) where ≤
denotes the total order, we can define as usual the Pareto order, denoted by ≺,
on T k for any k ∈ N as follows. Let t(1) = (t(1)1 , . . . , t

(1)
k ), t(2) = (t(2)1 , . . . , t

(2)
k )

be elements of T k. We say t(1) ≺ t(2) iff t
(1)
i ≤ t

(2)
i , i = 1, . . . , k and t(1) �= t(2).

Specializing this to the reals with their natural, total order we obtain the Pareto
order on R

m. A point x ∈ X is called Pareto efficient or global efficient or for
short efficient iff there does not exist x̃ ∈ X such that f(x̃) ≺ f(x). The subset
of X consisting of all the efficient points of X is denoted by XE and is called the
efficient subset of X (or the efficient set of f). The image of XE under f is called
the Pareto front of f . To define local efficient points in X and local efficient sets
in the multiobjective case, we propose the following definitions:

Definition 1 (Efficiency of Points/Sets). A point x ∈ X is called a
locally efficient point of X (or of f) if there is an open set U ⊆ R

d with x ∈ U
such that there is no point x̃ ∈ U ∩ X such that f(x̃) ≺ f(x). The subset of all
the local efficient points of X is denoted by XLE.

A point x ∈ X is called a global efficient point of X (or of f) if there is no
point x̃ ∈ R

d ∩ X such that f(x̃) ≺ f(x). The subset of all the global efficient
points of X is termed efficient set of f and denoted by XE.

A subset A ⊆ X is a local efficient set of f if A is a connected component of
XLE (= the subset of X which consists of the local efficient points of X ).

Definition 2 (Local Pareto Front). A subset P of the image of f is a local
Pareto front of f , if there exists a local efficient set E such that P = f(E).
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The (global) Pareto front (PF) of f is obtained by taking the image under f of
the union of the connected components of the set of global efficient points of X .
If XE is connected, then the (global) Pareto front of f is also connected, provided
f is continuous on XE . One might also consider definitions related to connected
components in the objective space [8]. However, we will omit this for brevity.

3 Analytics on Simple Mixed Sphere Problems

We use a sophisticated problem generator based on the Multiple Peaks Model
2 (MPM2, [10]) to illustrate the proposed topological definitions and further
analyse the behavior of explorative algorithms.

f(x) = 1 − max
1≤i≤N

{gi(x)} , x ∈ R
d (1)

gi(x) = Hi

(
1 +

(√
(x − ci)T D(x − ci)

)si

/Ri

)−1

, i = 1, . . . , N (2)

Note that the gi functions define peaks with center ci, depth Hi, radius Ri and
shape si. D is the inverse of the covariance matrix while we concentrate on
spherical peaks with isotropic level curves (mixed spheres), i.e. D = cI, c ∈ R�=0.

A bi-objective optimization problem (f1(x|gi), f2(x|g′
i)) → min results in

choosing two different parameter sets – parameters of f2 are labeled by the
prime symbol. Exemplary problems are illustrated in Figs. 1, 2 and 3.

In order to evaluate and compare the Pareto fronts obtained by the opti-
mization algorithms used in this paper, the analytical Pareto front (and efficient
set) is derived in the following. First, we focus on the simplest case where each
objective function consists of only one peak. In this case the Pareto efficient set
PE is the line segment connecting c to c′: PE : {αc + (1 − α)c′ | 0 ≤ α ≤ 1}.

Then the parametric form of the Pareto front can be derived by mapping an
arbitrary point in the efficient set x̂ = αc+(1−α)c′ through the objective func-
tions, which – using the Mahalanobis distance d(c, c′;D) =

√
(c′ − c)T D(c′ − c)

– finally results after algebraic transformation in f2 as a function of f1, for c �= c′:

f2 = 1 − H ′

⎛
⎝1 +

(
d(c, c′;D′)

(
1 − R1/s

d(c, c′;D)

(
H

1 − f1
− 1

)1/s
))s′

/R′

⎞
⎠

−1

The range of f1 is [min{f1(c), f1(c′)},max{f1(c), f1(c′)}].
Using the expression above, we could calculate the red part of the global

Pareto front in Fig. 1. For multiple peaks the (local) efficient sets still settle on
line segments connecting each pair of peaks. It is difficult to derive the analytical
expression because the effective peak might change when traversing along the line
segment connecting peaks and multiple local efficient sets could exit on the same
line segment (check Fig. 3 for example). However, it is possible to approximate
the local efficient sets numerically by uniformly sampling on the line segments
and taking the maximal non-dominated subset of the samples.



Towards Analyzing Multimodality of Multiobjective Landscapes 965

Fig. 1. Example of a simple mixed sphere problem in the decision (left figure) and
objective space (right). Objectives are visualized in the decision space by pink (objec-
tive 1) and blue (objective 2) contour lines. The connections between peaks from the
two objectives are shown as grey lines and the corresponding local efficient sets (or
fronts) are colored. Here, the red and green parts form the disconnected global PF,
whereas the cyan and purple parts show the remaining disconnected local PFs. The
given scenario represents three disconnected local efficient sets (green/purple, cyan,
red), two domination layers (red/green vs. cyan/purple) and four local Pareto fronts.
(Color figure online)

Fig. 2. Local Pareto fronts in the decision (left) and objective space (right) for a rather
simple mixed sphere problem consisting of one peak in the first objective (pink contour
lines) and three peaks in the second objective (blue contour lines). The red area is
caused by the fact that it belongs to the same local efficient set as the cyan area, and
at the same time to the global dominance layer. (Color figure online)
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Fig. 3. Local Pareto fronts for a complex mixed sphere problem consisting of five peaks
per objective, resulting in a total of 30 disconnected local efficient sets, 19 domination
layers and 167 local Pareto fronts.

4 Explorative Algorithms

Hypervolume Indicator Gradient Ascent (HIGA-MO). Taking the advantage of
the analytically computable gradient information of the mixed sphere problems,
we choose the Hypervolume Indicator Gradient Ascent [2,3], because it is capable
of generating well-distributed PF approximations and is almost free of control
parameters. The corresponding pseudo-code is given in Algorithm 1. The basic
idea is to maximize the Hypervolume indicator H of an approximation set of
the true PF by using the gradient of H. We denote the set of search points as
{x1, . . . ,xμ},xi ∈ R

d and X = [xT
1 , . . . ,xT

μ ]T ∈ R
μd. As H can also be expressed

as a function of the input vectors, one can calculate the Hypervolume indica-
tor gradient ∂H(X)/∂X. By applying the chain rule the so-called subgradients
∂H(X)/∂xi = [∂H(X)/∂yi] · [∂yi/∂xi] [2] can be computed for i = 1, . . . , μ.
In practice, a step-size control is used to adapt the step-size for each decision
vector.1

HIGA-MO performs a fast local search and some individuals might get stuck
in a local efficient set. However, in mixed sphere problems local efficient sets
might be connected to the global one and the Hypervolume indicator gradient
will steer the local efficient points towards the global one.

Stochastic Local Search (SLS). A simple local search strategy based on paral-
lel perturbation and elitist selection is implemented. Essentially, each individ-
ual candidate solution of the current solution set is perturbed once per round.
According to a simple (1+1)-selection scheme, for each pair of original and
related perturbed solution the original solution is replaced when dominated by

1 The HIGA-MO source code is available on moda.liacs.nl/index.php?page=code.
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Algorithm 1. Hypervolume Indicator Gradient Ascent
1 initialize the search points X uniformly in the search space
2 while the termination criteria are not satisfied do
3 Y ← evaluation of search points X
4 layers {Li}q

i=1 ← non-dominated-sorting of population R

5 for i = 1 to q do
6 for every element sj in layer Li do
7 compute the subgradient ∂H(X)/∂xj

8 xj ← xj + σ · [∂H(X)/∂xj ]
9 end for

10 end for
11 end while
12 return {Li}q

i=1,X,Y with yi = [f1(xi), f2(xi)]
T , i = 1, . . . , μ

the perturbed one. Initially, μ independently random solutions are generated
using a Latin hypercube design. In every iteration, each solution is modified by
an upper bounded normal distributed perturbation with maximum step size of
σ. Here the step-size is fixed. After the elitist and parallel selection process based
on domination, μ solutions are available for the next round until the maximum
number of iterations is reached.

The rational of using this simple approach is to contrast the HIGA-MO search
approach with a local search representative that is unable to traverse along local
Pareto fronts. We expect this approach to get stuck in local efficient solutions.

5 Problem and Algorithm Characteristics

Problem Characteristics. In contrast to sophisticated ELA features [4,7], we
know the underlying objective functions and solely intend to quantify some
obvious differences in landscapes. The count ratio describes the problems by
ratios related to the number of all local fronts or sets: count ratio.global
computes the percentage of fronts that are global PFs, count ratio.conn ps
the percentage of sets connected to any of the global efficient sets, while
count ratio.conn pf denotes the analogous percentage for PFs. The length
ratio characteristics compute ratios of the lengths of the fronts and sets:
length ratio.global ps computes the ratio of the lengths of all global Pareto
sets and all local sets, whereas length ratio.global pf denotes the analogous
ratio of global and local PFs. While length ratio.conn ps captures the ratio
of the total length of all sets connected to any of the global efficient sets and the
length of all local sets, length ratio.conn pf measures the analogous ratio in
objective space.

Algorithm Characteristics. We propose characteristics in order to capture dif-
ferences in local search behavior of the considered explorative algorithms.

The population characteristics describe the distribution of the final set of
individuals of an algorithm run. They measure the percentage of individuals that
are located in the ε-environment of any of the global PFs (pop.global front),
a front that is connected to any of the global PFs (pop.conn global front),
and any local front in general (pop.local front). The coverage characteristics
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addresses the percentage of fronts that are reached by the final “population”,
i.e. at least one individual of that population is located in the ε-environment of
the respective front.

We use the coverage of global fronts (cover.global front), fronts connected
to any of the global fronts (cover.conn global front), connected local fronts
(cover.conn local front) and local fronts in general (cover.local front). As
the number of fronts might be larger than the population size (i.e. the number
of considered individuals), we standardize each characteristic by its maximum.

6 Experiments

Experimental Setup. Two exemplary instances with different levels of multi-
modality (low, very high) were generated using the MPM-2 generator [5,10],
which is e.g. available in the R-package smoof. For our experiments, we used
the settings shown in Table 1. Our explorative algorithms (cf. Sect. 4), were run
with a population size μ = 50 and an initial step size of 0.01 (SLS) and 0.001
(HIGA-MO). Note that the step-size is adaptive in HIGA-MO and will increase
largely during the optimization while it remains unchanged in SLS.

Experimental Results. As stated in the previous sections, we applied different
algorithms (HIGA-MO and SLS) on two opposing multimodal, multiobjective
problems. The analyzed problems can in fact be divided into a simple (cf. Fig. 2)
and a complex scenario (cf. Fig. 3) as the corresponding problem characteristics
show. The red line (representing the simple scenario) within the parallel coor-
dinate plot (cf. Fig. 4) is always above the blue line of the complex scenario,
which means that a higher ratio of the local fronts (or sets) are part of the
global non-dominated front (set). These findings are supported by some count
characteristics, which are listed in Table 2. As each of the peaks of one objective
is connected to each peak of the other objective (and each of those connections
can contain multiple connected components), there exist 30 connected compo-
nents within the complex scenario. Given the fact that the points of a connected
component often belong to multiple domination layers, the components can be

Table 1. Parameter configuration for the setup of the MPM2-generator.

Name of parameter Simple scenario Complex scenario

in general in R Obj. 1 Obj. 2 Obj. 1 Obj. 2

Number of peaks n.peaks 1 3 5 5

Dimensions dimensions 2 2 2 2

Topology topology "random" "random" "random" "random"

Seed seed 1 3 2 5

Rotated peaks rotated FALSE FALSE FALSE FALSE

Shape of peaks peak.shape "sphere" "sphere" "sphere" "sphere"
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Fig. 4. The parallel coordinate plot on the left side distinguishes the two analyzed mul-
tiobjective, multimodal optimization problems from each other by means of rather sim-
ple problem characteristics, whereas the right figure visualizes the differences between
HIGA-MO and SLS (Section 4) on these two problem instances. (Color figure online)

Table 2. Overview of the count chararacteristics of the problems.

Count characteristic Scenario

Simple Complex

Optima (obj. 1 vs. obj. 2) 1 vs. 3 5 vs. 5

Domination layers 3 19

Connected components 3 30

Sets connected to global efficient set 2 66

Fronts connected to global efficient front 2 12

Local (global) efficient sets 4 (2) 167 (7)

split into numerous local efficient sets, resulting in 167 local sets – seven of them
being non-dominated.

In addition, the mixed-sphere problems come with a nice property: all local
efficient sets are located on connections of two peaks and thus many of them
are connected. For instance, almost 40% of all local efficient sets (66 out of
167) in the complex scenario are connected to (at least) one of the seven non-
dominated sets. In consequence, smarter optimization algorithms only need to
find one of those sets and can then “travel” along the connected sets until they
converge in one of the non-dominated sets. As shown in Fig. 5, HIGA-MO is able
to exploit that property. At the beginning, it performs similar to SLS and tries
to find any of the aforementioned local efficient sets. Once it finds one of them,
it travels along the connections – the so-called channels – and afterwards often
converges in one of the non-dominated sets. The channels are visible (as strong
black lines) in Fig. 5. In contrast to HIGA-MO, a “regular” algorithm (such as
SLS) likely stops, once it hits one of the local efficient sets. These findings can
also be detected by our measures as the right plot of Fig. 4 shows. While both
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algorithms find the majority of the local efficient sets in either scenario (SLS
finds more fronts in both scenarios), the individuals of HIGA-MO also often find
the global Pareto sets, while the ones from SLS are often stuck in the local sets.

7 Discussion and Outlook

This paper provides a thorough definition of multimodality in the context
of multiobjective optimization problems (MOPs). Moreover, analytical and

Fig. 5. Population of HIGA-MO (top) and SLS (bottom), respectively. The grey arrows
visualize the trace of each individual and the colored points represent the elements from
the final population. The different colors indicate the different domination layers – red
points belong to the global PF, green points to the second layer, etc. (Color figure
online)
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experimental approaches are presented which derive or approximate the global
and local Pareto fronts of a MOP. Specifically, mixed sphere test problems of
different dimensionality are designed and the behavior of a sophisticated Hyper-
volume gradient ascent approach and a stochastic local search variant are con-
trasted on problems consisting of different levels of multimodality. It is reflected
that multimodality is a crucial factor determining the difficulty of a problem,
especially in case the optimization algorithm relies on local search techniques.

Moreover, indicators are derived which allow to assess algorithm behavior
w.r.t. the detection of global and local Pareto fronts which can further be used
for performance assessment. In combination with specific indicators for problem
characteristics, the basis for systematically constructing respective Exploratory
Landscape Features is formed which has huge potential w.r.t. algorithm bench-
marking, selection and design, also for higher dimensional problems.
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