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Abstract. The challenges of solving problems naturally represented as
permutations by Estimation of Distribution Algorithms (EDAs) have
been a recent focus of interest in the evolutionary computation commu-
nity. One of the most common alternative representations for permuta-
tion based problems is the Random Key (RK), which enables the use of
continuous approaches for this problem domain. However, the use of RK
in EDAs have not produced competitive results to date and more recent
research on permutation based EDAs have focused on creating supe-
rior algorithms with specially adapted representations. In this paper, we
present RK-EDA; a novel RK based EDA that uses a cooling scheme to
balance the exploration and exploitation of a search space by controlling
the variance in its probabilistic model. Unlike the general performance of
RK based EDAs, RK-EDA is actually competitive with the best EDAs
on common permutation test problems: Flow Shop Scheduling, Linear
Ordering, Quadratic Assignment, and Travelling Salesman Problems.

Keywords: Estimation of distribution algorithm · Random key ·
Permutation problems · Cooling scheme · Univariate model

1 Introduction

Estimation of Distribution Algorithms (EDAs) are Evolutionary Algorithms
(EAs) that generate solutions by sampling a Probabilistic Model (PM) of promis-
ing solutions. The ability to model the features of more promising solutions is
a major attribute that differentiates them from most other EAs [7]. They ben-
efit from the use of machine learning techniques, which makes them better at
solving certain categories of larger and more difficult problems [12]. Problems
naturally represented as permutations have however been identified as challeng-
ing for EDAs. This is attributed to the fact that EDAs have not been extensively
explored to solve this class of problems [3]. EDAs for permutation spaces have
therefore been a focus of research in recent years.

EDAs applied to permutations have been categorised into ad hoc approaches
with varying strategies, integer space based and continuous space based [3]. One
of the common continuous representations for solving permutations in EAs is the
well-known Random Key (RK). RKs have an advantage over most other per-
mutation representations as they always produce permutation feasible solutions.
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This is particularly not the case for integer based EDAs as they often require a
procedure to handle the mutual exclusivity constraint.

RK based EDAs have however been considered the poorest [3] of the EDAs
designed for permutation problems. RK representation has not been sufficiently
adapted to benefit from the operation of EDA. It contains some inherent redun-
dancy as a result of several RKs producing the same ordering thereby intro-
ducing plateaux to the search space [2,3,13]. Also, variability in the values that
capture the same priority across solutions of a population limits the information
captured by the probabilistic model. They therefore struggle to produce compet-
itive results [7]. Models that are more specific to permutations such as histogram
models [16,17], permutation distribution models [4–6] and factoradics [14] have
shown better performances.

Some classical examples of RK based EDAs are REDA [15], EGNAee

&UMDAc [10]. REDA uses the triangulation of Bayesian network approach and
focuses on model efficiency by modelling subset nodes of a problem. EGNAee

builds a Gaussian network where the structure of a problem is learnt using
edge exclusion tests [10]. The UMDAc which is also a structure identification
algorithm based on Gaussian network performs hypothesis tests to identify the
density of its model’s components. In addition, IDEA-ICE [2] can also be clas-
sified as a RK based EDA, although it uses a crossover operator to preserve
building blocks in addition to its probabilistic model. Also, RKs associated with
the building blocks are rescaled to improve the likelihood of them being properly
combined. The IDEA-ICE shows better performance compared to the classical
RK based EDAs.

The proposed Random Key Estimation of Distribution Algorithm (RK-EDA)
attempts to capture some of the identified limitations of RKs as well as exploit
their advantages.

The rest of this paper is described as follows. Section 2 motivates and
describes the novel algorithm, RK-EDA. A discussion of problem sets and exper-
imental design is presented in Sect. 3. Section 4 presents and discusses results
while conclusions are presented in Sect. 5.

2 RK-EDA

The proposed RK-EDA is a univariate EDA whose probabilistic model, similar
to UMDAc, is based on mean values of genes in more promising solutions of a
population. It exploits already found good genes by sampling a Gaussian distri-
bution based on mean and variance values. Unlike UMDAc, RK-EDA imposes a
user defined variance parameter rather than a population generated one. This is
because we achieved better performance using a controlled variance value. Fur-
thermore, we propose to use a cooling rate parameter to control exploration and
exploitation. This controls the level of variance in solutions of a population such
that there is more exploration at the start of the algorithm, which automatically
cools as the search progresses.

In this section, we present the algorithmic details of RK-EDA.
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Algorithm 1. RK-EDA
1: Initialise σ, ts and ps

2: Generate initial population P of size ps

3: for g = 1 to MaxGen do
4: Evaluate and rescale individuals in P
5: Select best ts < ps solutions to form S
6: Calculate μS

7: c = 1 − g
MaxGen

8: σg = σ ∗ c
9: M = N(μS , σg)

10: Pnew = ∅
11: repeat
12: Sample M to generate offspring off
13: Add off to Pnew

14: until |Pnew| = ps

15: P = Pnew

16: end for

As shown in Algorithm 1, RK-EDA requires the initialisation of three para-
meters which are initial variance σ, truncation size ts and population size ps.
Since the stopping criteria is based on the number of fitness evaluations allowed
(FEs), the maximum number of generations MaxGen is estimated by dividing
FEs by ps.

A population P of RKs is randomly generated, evaluated and rescaled. The
rescaling procedure requires the conversion of RKs to ranks e.g. [0.12, 0.57, 0.23,
0.25, 0.99] becomes [1, 4, 2, 3, 5]. The ranks are then rescaled to values between
0 and 1. This is done by setting rescaledRKi = ranki−1

n−1 where rescaledRKi and
ranki are respectively the rescaled RK and rank of gene i, and n is the problem
size. The RK in the previous example therefore becomes [0.00, 0.75, 0.25, 0.50,
1.00]. With this approach, another set of RKs [0.01, 0.06, 0.03, 0.04, 0.2] which
is the same solution as the previous example will have the same rescaled RK
value [0.00, 0.75, 0.25, 0.50, 1.00]. With this approach, we are able to minimise
redundancy and improve the information captured by the probabilistic model.

The best ts solutions of the population are selected to generate a population
S. Also, μS in ln. (6) is an array μS1 , ..., μSn

that saves the mean of all RKs at
indexes {1 · · · n} in the selected population S. Note that μSn

refers to the mean
of all RKs in the nth index of each solution of S.

Cooling Rate c is calculated with respect to the particular generation such
that its value is higher for the first few iterations and lower at the last set of
iterations. As shown in ln. (8), c is used to generate generational variance σg.
Multiplying c with σ to form σg makes it possible to achieve higher exploration
at the start of the algorithm and more exploitation as g increases.

Furthermore, M is defined as a normal distribution N(μS , σg) and is updated
for each generation g. Unlike μS which is an array of values, σg is not an array
but a single value. An offspring solution off is generated by sampling M . Each
gene i (1 ≤ i ≤ n) of off is generated based on σg and μSi

, off is repeatedly
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added to the offspring population Pnew until its size equals ps. At the end of
each generation, Pnew completely replaces the parent population P .

3 Experimental Settings

In this section we present the permutation problem instances as well as the
parameter settings.

3.1 Permutation Problems

To assess the performance of RK-EDA, we apply it to a range of permuta-
tion benchmark problems. These problems include Flow Shop Scheduling Prob-
lem (FSSP), Linear Ordering Problem (LOP), Quadratic Assignment Problem
(QAP) and Travelling Salesman Problem (TSP). These are formerly defined in
[3], we have used the same objective functions as presented in the review paper
and is summarised in Table 1. Note that we also consider the more recently used
Total Flow Time (TFT) criteria for further experiments on the FSSP.

Table 1. Definition of the permutation problems

PPs Objective functions Definition of symbols

TSP min
{∑n

i=2 dci−1,ci + dcn,c1

}
ci - ith city

dci−1,ci - distance between ci−1

and ci

FSSP min {cjn,m} cji,m =
max(cji,m−1, cji−1,m) + pji,m

ji - ith job

m - machine m

cji,m - completion time for ji on m

pji,m - processing time for ji on m

QAP min
{∑n

i=1

∑n
j=1 ha,b × dla,lb

}
li - ith location

ha,b - flow between facilities a and b

dla,lb - distance between la and lb

LOP max
{∑n

i=1

∑n
j=1 dωiωj

}
ωi - index of row and column at

position i

Matrix D = [dij ]

3.2 Problem Sets

We evaluate RK-EDA using the selected permutation problems in [14]. We
acknowledge that many of the problems are small instances especially the FSSP.
Also, results from running RK-EDA on the FSSP problem instances gives an
intuition that the algorithm is more competitive on the FSSP. We therefore
added four larger FSSP problems.
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The problem sets used in this paper are listed below.

1. TSP: bays29, berlin52, dantzig42 and fri26
2. FSSP: tai20-5-0, tai20-5-1, tai20-10-0 and tai20-10-1 (smaller instances)

tai50-10-0, tai50-10-1, tai100-20-0 and tai100-20-1 (larger instances)
3. QAP: tai15a, tai15b, tai40a and tai40b
4. LOP: t65b11, be75np and be75oi

These are commonly used problems and we consider them useful for compar-
ing with other EDAs for permutation problems.

3.3 Parameter Setting

To be able to understand the parameter settings that suit RK-EDA, we explored
a range of values and found different parameters suitable for different problem
classes and sizes. To be able to make a fair comparison between RK-EDA and
the considered algorithms, we use a set of parameters across all problems as done
in the review [3]. The set of parameters used for RK-EDA is shown in Table 2.
Based on preliminary tests, these parameters produce relatively good quality
solutions across all problem classes and instances.

Table 2. Parameter values for RK-EDA

Parameter Values

Population Size (ps) 50

Truncation Size (ts) 0.1*ps

Variance (σ) 1/(3.14 ∗ log10n)

Stopping Criteria 1000n2 FEs

Maximum Number of Generations (MaxGen) 20n2

Number of Runs 10

4 Results and Discussion

In this section, we present the results of running RK-EDA on the aforementioned
permutation problem sets. Table 3 shows the minimum, maximum, average and
standard deviation based on 10 runs of RK-EDA using the parameters presented
in Table 2. Results are compared based on averages and standard deviations. We
have highlighted results where optimal solution was found (appended *). We also
highlight results that are significantly better (appended �) or not significantly
different (appended **) from the best of the reviewed algorithms. We used the
student t-test to measure statistical significance with a 0.05 significance level.

The results in Table 3 are presented according to problem classes. Note that
FSSPs and FSSPl respectively denote the smaller and larger instances of the
FSSP.
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Table 3. Average performance of RK-EDA on benchmark problems

Groups Problems Minimum Maximum Mean Stdev

TSP bays29 2020.0 2091.0 2041.5 21.3*

berlin52 8207.0 8742.0 8404.6 164.0

dantzig42 729.0 824.0 771.2 35.6

fri26 937.0 968.0 949.5 11.9*

FSSPs tai20-5-0 1278.0 1279.0 1278.1 0.3* �
tai20-5-1 1359.0 1360.0 1359.5 0.5**

tai20-10-0 1586.0 1618.0 1602.9 11.1

tai20-10-1 1680.0 1691.0 1685.2 3.2

FSSPl tai50-10-0 3046.0 3119.0 3090.7 24.2**

tai50-10-1 2923.0 2964.0 2937.6 14.9 �
tai100-20-0 6344.0 6424.0 6386.4 21.0 �
tai100-10-1 6291.0 6381.0 6338.6 27.2 �

QAP tai15a 393496.0 412072.0 404616.6 5350.2

tai15b 51968294.0 52238818.0 52088443.6 72876.7

tai40a 3353650.0 3418792.0 3391139.0 20951.9

tai40b 642257062.0 659424886.0 652079961.9 4690584.3

LOP t65b11 355180.0 356311.0 356028.2 295.6

be75np 716221.0 716930.0 716644.3 249.8**

be75oi 110928.0 111156.0 111012.3 77.8

Table 4 shows the performance of each algorithm on the considered problems.
The table is ordered according to the overall ranks shown in column “ALL”.
Columns TSP, FSSPs, QAP, LOP and FSSPl show the average ranks of algo-
rithms on instances of their respective problem classes. Column ALL is the aver-
age rank of algorithms on all instances of TSP, FSSPs, QAP and LOP. Since
one of the motivations for selecting the additional problems (FSSPl) is that we
ranked relatively high on FSSPs, FSSPl was not used to create the overall rank
so as to eliminate bias towards performance on FSSP. Also, since one of the
reviewed algorithms was not applied to instances of FSSPl, it will be impossible
to generate an overall rank for the algorithm. To generate the ranks shown in the
table, we use the average fitness recorded by each algorithm as reported in [3]
and [14] as well as that of RK-EDA shown in Table 3. All algorithms are ranked
from best to worst for each problem.

We used “-” to denote missing results where authors have not applied their
algorithm to the given problem class.

According to the review presented in [3], EHBSAWT and NHBSAWT were
recognised as the best performing algorithms. A similar result is depicted by the
overall rank of these algorithms in Table 4. EHBSAWT ranks 1st while RK-EDA
ranks 2nd with NHBSAWT .
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Table 4. Average ranks of algorithms

Algorithms TSP FSSPs QAP LOP ALL FSSPl

EHBSAWT [16] 1.00 1.75 4.00 2.00 2.13 3.25

RK-EDA 3.75 2.50 7.00 2.25 4.00 1.00

NHBSAWT [17] 8.50 3.00 2.00 1.75 4.00 3.00

NHBSAWO [17] 6.00 4.50 2.50 4.25 4.27 4.75

Factoradics [14] 6.50 6.25 6.75 7.00 6.47 -

UMDA [9] 8.25 6.75 4.75 6.25 6.53 7.00

EBNABIC [1] 8.25 7.50 3.75 6.50 6.67 7.00

EHBSAWO [16] 2.25 6.00 10.00 10.75 7.27 9.75

MIMIC [1] 10.50 8.00 6.25 6.50 7.80 3.50

TREE [13] 12.25 10.50 8.75 9.75 10.33 7.00

IDEA-ICE [2] 11.25 10.75 10.50 9.75 10.53 8.75

REDAUMDA [15] 14.50 11.00 12.00 11.50 12.27 12.25

REDAMIMIC [15] 8.50 14.25 14.00 13.25 12.47 12.25

EGNAee [11] 9.00 14.75 13.25 15.00 12.93 12.25

omeGA [8] 14.25 12.00 14.75 14.50 13.80 14.75

UMDAc [11] 10.25 16.00 15.75 15.00 14.13 13.50

We observed that the RK based EDAs such as REDAUMDA, REDAMIMIC ,
EGNAee, UMDAc as well as the RK based GA (OmeGA) are ranked least in
Table 4 which is similar to the conclusion in the review Ceberio et al. [3]. OmeGA
had been introduced in the review to compare with the performance of the EDAs
in general. RK-EDA however shows a different trait outperforming all other RK
based algorithms.

Furthermore, the performance of RK-EDA varies with different classes of
problems. It produced competitive results on the FSSP, ranking 2nd on FSSPs

and 1st on FSSPl. RK-EDA produced statistically better results than the best of
the reviewed algorithms on three FSSPl instances. It also produced competitive
results for the TSP and LOP but much less competitive performance on the
QAP. This may be attributed to the fact that parameters that suit other problem
classes are not particularly suitable for the search space presented by the QAP.

In addition to the reviewed algorithms, other permutation based EDAs exist
but were not included in the previous comparison because their results are not
reported on the selected problems. GM-EDA [4] exhibits the best results on FSSP
when hybridised with local search procedures such as variable neighbourhood
search (VNS). We therefore compare RK-EDA with GM-EDA on a selected set
of FSSP instances. In order to compare the two EDAs in a fair way, we use the
reported results of GM-EDA without VNS.

We use the same set of parameters presented by the authors in [4] except that
we do not consider elitism. This is because preliminary experiments show that
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Table 5. Parameter values and stopping criteria for experiments on FSSP based on
TFT

Parameter settings: Parameter Values

Population size (ps) 10n

Truncation size (ts) 0.1*ps

Variance (σ) 0.15

MaxGen FEs/ps

Number of runs 20

Stopping criteria: Problem sizes FEs

20 × 05 182224100

20 × 10 224784800

50 × 10 256208100

100 × 20 283040000

Table 6. Average TFT for FSSP

Problems Algorithm Average Stdev

tai20-5-0 RK-EDA 14085 14

GM-EDA 14058 13

tai20-5-1 RK-EDA 15223 20

GM-EDA 15224 46

tai20-10-0 RK-EDA 21003 14

GM-EDA 21006 46

tai20-10-1 RK-EDA 22660 81

GM-EDA 22561 135

tai50-10-0 RK-EDA 89233 292

GM-EDA 89041 400

tai50-10-1 RK-EDA 84858 138

GM-EDA 84849 326

tai100-20-0 RK-EDA 373607 523

GM-EDA 374708 1388

tai100-20-1 RK-EDA 379947 501

GM-EDA 380750 868

elitism does not improve the performance of RK-EDA. In addition, 0.15 initial
variance value particularly produced competitive results for FSSP instances.
Table 5 shows the parameters of RK-EDA, which are adapted for solving the
FSSP.

In Table 6, we present the average fitness over 20 runs for RK-EDA as well as
GM-EDA. The results are based on the Total Flow Time (TFT) objective function
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and we compare using instances of FSSPs and FSSPl. The results for GM-EDA
have been extracted from [4]. Values that are significantly better are presented
in bold. The results show that the GM-EDA is significantly better on two of the
smallest problems (tai20-5-0 and tai20-10-1 ) while RK-EDA shows significant
improvement on the largest problems (tai100-20-0 and tai100-20-1 ). There are
however no significant difference between the performance of the algorithms on
other instances.

Results from comparing RK-EDA with GM-EDA as shown in Table 6 also
indicate that RK-EDA is competitive and should be further explored to solve
bigger and more complex problems.

5 Conclusions

EDAs based on RKs have previously been considered the poorest of permuta-
tion based EDAs [3]. One of the problems posed by RKs is attributed to the
variety of ways of representing an ordering [13]. In this paper, we introduce a
novel RK based EDA (RK-EDA) which addresses this by rescaling the RKs uni-
formly. This approach improves the information captured by the probabilistic
model. Furthermore, RK-EDA uses a cooling scheme to manage the rate of explo-
ration/exploitation of the search space such that there is better exploration at
the start of the algorithm and better exploitation of already found good pattern
as the search progresses.

Furthermore, learning a probability structure is considered the most expen-
sive operation in EDAs [2], we present a simple model, which only saves the mean
of solutions in a selected population. This is relatively computationally efficient.
RK-EDA whose procedure is comparatively simple produces very competitive
results. It outperforms other reviewed continuous EDAs. It is also competitive
with the best permutation EDAs in general.

RK-EDA’s most competitive performance is seen on FSSP and the least
on QAP. It’s performance on FSSP gets more competitive as the problem
size increases presenting the best results on the largest of the considered
FSSP instances. The performance of RK-EDA on larger problems is therefore
recommended for further investigation.

In addition, the use of local search has been reported to improve the per-
formance of the GM-EDA, hybridisation of the RK-EDA may also improve its
performance.
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