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Abstract. Theoretical analysis of all kinds of randomised search heuris-
tics has been and keeps being supported and facilitated by the use of sim-
ple example functions. Such functions help us understand the working
principles of complicated heuristics. If the function represents some prop-
erties of practical problem landscapes these results become practically
relevant. While this has been very successful in the past for optimisation
in unimodal landscapes there is a need for generally accepted useful sim-
ple example functions for situations where unimodal objective functions
are insufficient: multimodal optimisation and investigation of diversity
preserving mechanisms are examples. A family of example landscapes is
defined that comes with a limited number of parameters that allow to
control important features of the landscape while all being still simple in
some sense. Different expressions of these landscapes are presented and
fundamental properties are explored.

1 Introduction

Most real-world optimisation problems do not have a single best solution but
many locally or globally optimal ones. The field of multimodal optimisation deals
with tackling such problems and nature-inspired techniques have proven to be
very popular and powerful to tackle these types of problems [17].

Over the last decade a rich set of benchmarks for the systematic and sound
comparison of different optimisation methods has been developed1. Many prob-
lems in these benchmarks are multimodal. However, they are usually restricted to
real-parameter optimisation problems and not accessible to theoretical analysis.
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There has been some debate on appropriate optimisation goals in multimodal
optimisation [2]. On one hand, one could be interested in the global perspective
of locating a single (local or global) optimum. On the other hand, practition-
ers are often aiming at a multi-local perspective, i.e., they want to identify a
multitude of different optima, either in a simultaneous or sequential fashion2.
When considering such a multi-local perspective, niching techniques [19] are
very common, i.e., techniques that prevent the algorithm from converging to a
single solution and thus, enable it to explore multiple peaks of the search space
in parallel. Some previous theoretical work consider Ising model problems [5,21]
or simple bi-modal example function [6,16] exist. However, no common set of
benchmarks suitable for theoretical analysis is available to date.

This lack of suitable benchmark functions is a serious impediment for the
development of a theory of multimodal optimisation. In the area of classical
optimisation where one is ‘only’ interested in finding an optimal search point
simple example functions have been at the heart of the development of a powerful
and useful theoretical framework and a multitude of strong theoretical results.
Consider for example the well-known example function OneMax, used as early
as 1992 to derive run time results for a simple evolutionary algorithm [15]. It has
given rise to a natural generalisation, the class of linear functions [4] which in turn
has motivated the introduction of a powerful proof technique: drift analysis [7].
And still today it is the function to consider when introducing novel perspectives
[9] or expanding the horizon of theoretical analysis [12]. Clearly, OneMax is not
the only useful and important example function but it is one of a relatively small
number of example functions, most of which are unimodal (see [8] for a broad
overview). Multimodal example functions are rarely considered–one noteworthy
exception being TwoMax, a simple bi-model problem that can be seen as the
maximum of OneMax and ZeroMax [6].

We address this need by introducing a family of landscapes with a limited
number of parameters. We want to allow for the control of important features of
problems that are simple enough for theoretical analysis. We explore properties
of these ‘theoretical’ landscapes in the spirit of fitness landscape analysis that
usually considers landscapes underlying real-world problems such as satisfiabil-
ity [18] or are inspired by biology [20].

It is important to note that there has been some debate on appropriate
example functions and optimisation goals in multimodal optimisation [2]. While
the research in this paper is inspired by this discussion it goes beyond the initial
ideas presented in [2] by introducing three different ways of implementation.
One might want to argue that our example functions are inspired by and a
generalisation of TwoMax, similar to linear functions being inspired by and a
generalisation of OneMax. We think that the set of example functions presented
here is a richer and more interesting generalisation. It bears resemblance with
‘older’ problem classes (e. g., [10,11]) but allows for more control. It is similar to
the moving peaks benchmark [1] but it is static, of course.

2 see, e.g., www.epitropakis.co.uk/ppsn2016-niching.
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In the next section we present our main ideas behind our example functions.
We describe the properties of some interesting landscapes in Sect. 3. We hint at
the richness of the different example functions in Sect. 4.

2 Defining Landscapes and Objective Functions

We define our example functions based on an abstract idea of a landscape. It is
important to note that we use landscape in a general, colloquial sense that does
not coincide with the technical meaning of a fitness landscape as something that
is defined by a neighbourhood graph and function values. We will be considering
this latter kind of landscape (calling them fitness landscape to emphasise the
difference) when we have defined objective functions.

We fix the set of bit strings of length n (equivalently, the Boolean hypercube
of dimension n) as our search space. This is a complex, high-dimensional search
space. Nevertheless, we think of it as a flat landscape where we introduce peaks
that are defined by their position, their slope and their height (where we will give
the height in an indirect way). The objective of an optimisation algorithm oper-
ating in this landscape is to identify peaks: a highest peak in exact optimisation,
a collection of peaks in multimodal optimisation.

The kind of search heuristics we consider usually conduct search by modifying
one or several bit strings they have explored already to get to another, yet
unexplored bit string. The modifications tend to change only a limited number
of bits and, therefore, it makes sense to use the Hamming distance between two
bit strings as metric in our search space. The Hamming distance of x and y,
H(x, y), equals the number of bits that have different values in x and y. Clearly,
it is a value between 0 and n. If x is a point in our landscape we currently
have and y is a point we want to reach then H(x, y) = 0 indicates that we have
reached the target point y. Since we will be considering maximisation it is more
convenient to consider n − H(x, y) instead.

Definition 1. For x, y ∈ {0, 1}n let H(x, y) :=
n−1∑

i=0

|x[i] − y[i]| denote the Ham-

ming distance of x and y. We also define G(x, y) := n − H(x, y).

We now introduce our notion of a landscape that is defined by some number
of peaks with their parameters that are introduced to the search space. We want
to find these peaks and therefore consider the distance to a nearest peak.

Definition 2. A landscape is defined by the number of peaks k ∈ N and the
definition of the k peaks (numbered 1, 2, . . . , k) where the i-th peak is defined by
its position pi ∈ {0, 1}n, its slope ai ∈ R

+, and its offset bi ∈ R
+
0 .

For a search point x ∈ {0, 1}n we define its closest peak (given by its index i)
as cp(x) := arg min

i∈{1,2,...,k}
H(x, pi). In cases where there are multiple i that minimise

H(x, pi) we define as tie breaking rule that i should additionally maximise ai ·
G(x, pi)+bi. If this is still not unique an arbitrary i that minimises H(x, pi) and
among those maximises ai · G(x, pi) + bi can be selected.
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The tie breaking rule we introduce is tailored towards the way we calculate
fitness (which we define in Definition 3). Since we are interested in finding peaks
it makes sense to concentrate on a higher one if there are multiple nearest peaks.
Since we only care about distance and height we do not care about any tertiary
criterion.

The general idea of our landscape is that the fitness value of a search point
depends on peaks in its vicinity. For the sake of clarification, let us consider the
situation for a landscape with only a single peak, i. e., k = 1 and the parameters
of the peak are p1, a1, b1. The fitness of x ∈ {0, 1}n is given as a1 · G(x, p1) + b1.
We see that the peak itself has fitness a1 · G(p1, p1) + b1 = a1 · n + b1. We call
a1n + b1 the height of the peak p1.

It remains to be determined how we deal with multiple peaks. There are
different ways this can be handled and there is no correct or incorrect way of
doing it. It depends on what you want to achieve. We consider three different
options and briefly discuss what we have in mind for the different versions.

Definition 3. Let k ∈ N and k peaks (p1, a1, b1), (p2, a2, b2), . . . , (pk, ak, bk) be
given. We define the following three objective functions (also called fitness func-
tions).

– f1(x) := acp(x) · G
(
x, pcp(x)

)
+ bcp(x), called the nearest peak function

– f2(x) := max
i∈{1,2,...,k}

ai · G(x, pi) + bi, called the weighted nearest peak function

– f3(x) :=
∑

i∈{1,2,...,k}
ai · G(x, pi) + bi, called the all peaks function

The nearest peak function, f1, has the fitness of a search point x determined
by the closest peak. The fitness is given as discussed above, ai · G(x, pi) + bi,
and the peak i that determines the slope ai and offset bi is the closest peak,
i = cp(x). It implements a very local point of view where the height of other
peaks is ignored even if their height is very much higher and they are only a
little farther.

The weighted nearest peak function, f2, takes the height of peaks into
account. It considers ai · G(x, pi) + bi for all k peaks and uses the peak that
yields the largest value to determine the function value. This implies that peaks
with bigger height determine the function value in a larger area of the search
space in comparison to smaller peaks.

The all peaks function, f3, takes into account ai · G(x, pi) + bi for all peaks
simultaneously and simply adds them up. Note that f3(x)/k yields the average
influence of all peaks and in this sense we can view f3 as an ‘averaged’ fitness
landscape. Since many randomised search heuristics are rank-based [3] the dif-
ference between f3(x) and f3(k)/k is inconsequential.

We use the following visualisation of fitness landscapes resulting from the
above definitions: We project the n-dimensional Boolean hypercube onto a
2-dimensional plane and connect direct Hamming neighbours by edges. We use
a third dimension for the resulting fitness values, indicated by both height and
colour (where blue indicates low fitness and red high fitness). An example for f1
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Fig. 1. Visualisation of fitness landscapes: f1 with n = 5, k = 1, p1 = 1n, a1 = 1 and
b1 = 0 (left) and f3 with p1 = 11111, p2 = 11001, p3 = 10101, a1 = a2 = a3 = 5 and
b1 = b2 = b3 = 0 (right) (Color figure online)

with n = 5, k = 1, p1 = 1n (the all-ones bit string), a1 = 1 and b1 = 0, which is
identical to the well-known OneMax function, is shown in Fig. 1 (left).

We will discuss the differences between the three different fitness functions
in more detail in the next two sections. We will also discuss which properties of
the different fitness functions are of particular interest.

3 Properties

All three objective functions yield the same fitness landscapes for k = 1. They
are all OneMax-like, i.e., p1 is the single local and global optimum, fitness
strictly decreases with increasing Hamming distance to p1 and all points with
equal Hamming distance to p1 have the same fitness value. Consequently, we
restrict ourselves to the more interesting case of k > 1.

When analysing fitness landscapes a variety of criteria can be considered (see,
e.g., [20] for an overview). In this paper, we are particularly interested in the
number of local and global optima and their locations in the search space. We
additionally consider the so-called basin of attraction of a local optimum, i.e.,
the set of search points that are guaranteed to lead to it when using a simple hill-
climber such as Random Local Search (RLS, Algorithm 1), and use as a measure
for its size the probability that this happens when starting from a search point
selected uniformly at random (u.a.r.).

Algorithm 1. Random Local Search (RLS)

1 Choose x ∈ {0, 1}n u.a.r.
2 repeat
3 Create offspring y := x. Select i ∈ {0, . . . , n − 1} u.a.r. and flip bit y[i].
4 if f(y) ≥ f(x) then x := y

5 until forever
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Additionally, we are interested in the influence of different parameters of
landscapes (see Definition 2). This includes particularly the number of peaks
k, their positions and heights (as defined by their slope and offset). Note, the
peaks that we use to define a landscape do not necessarily correspond to a local
optimum of the resulting fitness landscape (see Sect. 4.2).

4 Results

We provide some first insights into properties of our proposed set of example
functions by considering a number of properties that are similar to properties of
known example functions and are, we hope, of some general interest. The results
in these sections hint at properties of different instantiations of our families of
example functions that could be starting point for useful analysis of different
randomised search heuristics. We examine a generalisation of the well-known
TwoMax function [6] for all three fitness functions from Definition 3 in Sect. 4.1.
Section 4.2 is dedicated to the comparison of f1 and f2. Looking at randomly
distributed peaks we compare the influence of the slope as it manifests itself
in f1 and f2. Looking at f3 in Sect. 4.3 we consider an important property by
means of a specific configuration of peaks.

4.1 Generalisation of TwoMax

As a starting point, we consider a landscape with two peaks p1 = 0n and
p2 = 1n and see that for f1 with offsets b1 = b2 = 0 and slopes a1 = a2 = 1
this is identical to the well-known bi-modal example function TwoMax(x) :=
max {∑n

i=1 x[i], n − ∑n
i=1 x[i]}. We examine all three fitness functions and dif-

ferent settings for the two offsets and slopes. In the following, let |x|1 denote the
number of 1-bits in x and |x|0 the number of 0-bits.

It is easy to see that f1 has exactly the two local maxima p1 and p2. Offsets
and slopes influence only the fitness values but not the basins of attractions.

Theorem 1. Let p1 = 0n and p2 = 1n with arbitrary a1, a2 ∈ R
+, b1, b2 ∈ R

+
0 .

The fitness landscape defined by f1 has exactly two local maxima, p1 and p2, with
fitness a1 · |x|0+b1 and a2 · |x|1+b2, respectively. RLS reaches p1 with probability
1/2 and p2 otherwise.

Proof. As discussed in Sect. 2, the fitness is only determined by the closest peak.
It follows immediately, that the two peaks are both locally optimal and that each
search point is in the basin of attraction of its closest peak. Plugging all parameters
into Definition 3 yields the first statement. Let Bi denote the basin of attraction
of pi. For the second statement we need to prove that the RLS starts in B1 or B2

with equal probability. From the above, we see that all x with |x|0 > n/2 are in
B1 while all x with |x|1 > n/2 are in B2. As both sets of points are of equal size
RLS starts in either of them with equal probability. Points with |x|1 = |x|0 = n/2
have equal distance to p1 and p2 and belong to neither basis of attraction. Given
such a point x, we know that RLS flips a 1-bit with probability 1/2 and a 0-bit
otherwise. Thus, after one step, we are in one of the two previous cases. ��
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Things are different for f2 as larger peaks have influence in a larger area of
the search space in comparison to smaller peaks and thus will have a larger basin
of attraction. We remark that our choice of p1 and p2 implies that two search
points with the same number of 0-bits have equal fitness value. Thus, we can
derive a bound on |x|0 that determines the boundary of the basins of attractions
of p1 and p2.

Theorem 2. Let p1 = 0n and p2 = 1n with arbitrary a1, a2 ∈ R
+, b1, b2 ∈ R

+
0

and consider the fitness landscape defined by f2. The basin of attraction of p1
contains all search points x with |x|0 > a2/(a1 + a2) · n + (b2 − b1)/(a1 + a2).

Proof. According to Definition 3, the fitness of a search point x is determined by
p1 if a1 · (n−H(x, 0n))+b1 > a2 · (n−H(x, 1n))+b2. We see that |x|1 = H(x, 0n)
and thus, |x|0 = n − H(x, 0n). Similarly, we have |x|1 = n − H(x, 1n). We get
a1 · |x|0 + b1 > a2 · (n − |x|0) + b2 which is equivalent to |x|0 > a2/(a1 + a2) ·
n + (b2 − b1)/(a1 + a2) and see that all x with this property are in the basin of
attraction of p1. ��

We see that RLS is initialised in the basin of attraction of p1 with probability
1 − o(1) if (a2n + b2 − b1) / (a1 + a2) = n/2 − ω(

√
n).

For f3 all peaks have an influence on a search point’s fitness. This leads to a
very different structure of the fitness landscape.

Theorem 3. Let p1 = 0n and p2 = 1n with arbitrary a1, a2 ∈ R
+, b1, b2 ∈ R

+
0 .

If a1 �= a2, the fitness landscape defined by f3 has a unique global optimum. If
a1 > a2, this global optimum is p1. Otherwise it is p2.

If a1 = a2, all search points have the same fitness a2 · n + b1 + b2.

Proof. According to Definition 3, the fitness of a search point x is

f3(x) = (a1G(x, 0n) + b1) + (a2G(x, 1n) + b2) = (a1 − a2) · |x|0 + a2 · n + b1 + b2.

We see that a1 = a2 implies f3(x) = a2 · n + b1 + b2, which is independent of x,
proving the second statement. For a1 > a2 the fitness increases with increasing
number of zeros and thus, p1 is the unique global optimum. Similarly, it decreases
with increasing number of zeros if a1 < a2. ��

4.2 Comparing f1 and f2

The fitness landscapes defined as f1 and f2 are similar in nature. For both fitness
landscapes the fitness is defined by only one of the peaks: for f1 it is always the
nearest peak; for f2 the slope and offset of the peaks are taken into account so
that ‘higher’ peaks can ‘overrule’ closer but smaller peaks. We formalise this by
considering the set of local optima.

Theorem 4. For f1 and f2 the set of local maxima is a subset of the peak
locations {p1, p2, . . . , pk}. If the minimum Hamming distance between two peaks
is at least 3 then the set of local maxima for f1 is the set of peaks and, for f2,
the set of local maxima is a subset of the set of local maxima of f1.
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Proof. If a point x is not a peak it has a Hamming neighbour with smaller
Hamming distance to the peak that defines the function value of x. This proves
that x cannot be a local maximum. Now, consider f1 for a set of peaks that have
minimum Hamming distance 3. Each Hamming neighbour y of a peak p has p as
its nearest neighbour because the other peaks have Hamming distance at least 2
from y. This implies that f1(y) < f1(p) and since this holds for each Hamming
neighbour y we have that p is a local optimum. Finally, consider a peak pi that is
local maximum for f2. We want to prove that pi is also a local maximum for f1.
If the nearest other peak has Hamming distance at least 3 we are done. Consider
a peak pj with Hamming distance 1. We have that pi is not a local optimum for
f1 if f1(pj) > f1(pi) holds. But in this case f2(pj) > f2(pi), too, so pi is not a
local maximum for f2, either. Finally, consider a peak pj with Hamming distance
2. Again, we have that pi is not a local optimum if f1(pj) > f1(pi) holds. But in
the same way this implies f2(pj) > f2(pi) and pi is a local maximum for f1. ��

Clearly, the question if the set of local optima for f1 and f2 differ for a given
set of peaks depends on the parameters of the peaks. We consider the case of
peaks with random positions to show a remarkable phase transition with respect
to the other parameters, slope and offset. While the relative slope difference ai/aj

can be arbitrarily large (measured in n) it turns out that constant bounds on the
smallest and largest relative difference determine if f1 and f2 have completely
equal or almost completely different local optima.

Theorem 5. Let an at most polynomial number k = nO(1) of peaks (p1, a1, a2),
(p2, a2, b2), . . . , (pk, ak, bk) with a1, a2, . . . , ak ∈ R

+, b1, b2, . . . , bk ∈ R
+
0 and

bi ≤ ai for all i ∈ {1, 2, . . . , k} be given where the peak positions p1, p2, . . . , pk

are chosen independently, uniformly at random from {0, 1}n. Let the minimum
and maximum relative slope differences be m := min

i�=j∈{1,2,...,k}
ai/aj and M :=

max
i�=j∈{1,2,...,k}

ai/aj. There exist constants 0 < c1 < c2 < 1 such that if m > c2

the set of local optima of f1 and f2 are equal to {p1, p2, . . . , pk} with probability
1 − o(1) and if M < c1 there are peak parameters with this value of M such
that the set of local optima of f1 and f2 have only one element in common with
probability 1 − o(1).

Proof. We first show that the peaks are all in linear Hamming distance of each
other with overwhelming probability. Consider two arbitrary peaks pi and pj .
Considering pi fixed, the expected number of bits equal in pi and pj when choos-
ing pj ∈ {0, 1}n uniformly at random equals n/2. Application of Chernoff bounds
[14] and application of a simply union bound yields that for all pairs of peak
positions pi, pj with i �= j we have Pr(H(pi, pj) ∈ [(1 − ε)n/2, (1 + ε)n/2]) =
1 − e−Ω(n). We consider only the situation where this is the case.

We have f1(pi) = ai · n + bi and f2(y) = ai · (n − 1) + bi for any Hamming
neighbour y of pi. We want to show that f2(pi) = f1(pi) and f2(y) = f1(y) holds
which implies that pi is a local optimum of f2. We consider only pi since the case
y is very similar. We have f2(pi) = max

j∈{1,...,k}\{i}
{ai ·n+bi, aj ·(n−H(pi, pj))+bj}.
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Thus, we want to prove that ai ·n+bi > aj ·(n−H(pi, pj))+bj holds. Remember
that we have bj ≤ aj and H(pi, pj) ≥ ((1 − ε)/2)n. Thus, it suffices if ai · n >
aj · n · (((1 + ε)/2) + (1/n)) holds. With ai/aj > ((1 + ε)/2) + (1/n) this is the
case so that choosing any c2 > (1 + ε)/2 suffices (because ai/aj ≥ m).

On the other hand, we are also in the situation where H(pi, pj) < (1+ ε)n/2.
We have ain+ bi ≤ (1+1/n)ain and aj · (n−H(pi, pj))+ bj ≥ aj ·n · ((1− ε)/2).
Thus, if ai/aj < ((1 − ε)/2)/(1 + 1/n) we have that f2(pi) is determined by the
peak (pj , aj , bj). Clearly, any constant c1 < (1 − ε)/2 suffices (because ai/aj <
M). It is not hard to see that we can set the peak slopes in a way that f2 is
defined by the same peak (pj , aj , bj) making pj the only local (and thus also
global) optimum. ��

4.3 Considering Properties of f3

As a third example we consider an important property of f3. For this we look
at a landscape on n = 5d bits with three clustered peaks p1 = 1n, p2 = 12d02d1d

and p3 = 1d0d1d0d1d, a1 = a2 = a3 and arbitrary b1, b2 and b3. Note, that
the three peaks have pairwise equal Hamming distance H(pi, pj) = 2d. We first
observe that the fitness landscape based on f3 has a unique global optimum that
coincides with the centre of mass of the three peaks. An example for d = 1 is
shown in Fig. 1 (right).

Theorem 6. Let p1 = 1n, p2 = 12d02d1d and p3 = 1d0d1d0d1d, a1, a2, a3 ∈ R
+

with a1 = a2 = a3 and arbitrary b1, b2, b3 ∈ R
+
0 . The centre of mass of the three

peaks, i.e., 13d0d1d, is the unique global optimum of the fitness landscape defined
by f3.

Proof. Recall that f3(x) :=
∑

i∈{1,2,...,k} ai · (n − H(x, pi)) + bi. We first observe
that the offsets bi do not have an influence on the ranking of search points as
b1 + b2 + b3 is added to the fitness of all search points. Thus, we can ignore the
bi in the following. As a1 = a2 = a3, search points maximising

∑
i∈{1,2,...,k} n −

H(x, pi) will be assigned the maximal fitness value. It is easy to see that these
are exactly the points that minimise the average Hamming distance to the given
peaks. Using this, the first statement follows directly from the proof of Theorem 1
in [13] and we obtain the centre of mass by performing a simple majority vote
for each bit position. ��

We remark that the above approach can be used to determine the set of
global maxima for arbitrary sets of peaks. If a1 = a2 = a3, we first obtain the
set of search points with maximal fitness value by performing a simple majority
vote for each bit position. Note, that in case of ties, search points with both
bit values are assigned maximal fitness. For example, let us consider the above
peaks with d = 1, i.e., p1 = 11111, p2 = 11001 and p3 = 10101, and p4 = 00000.
We see that we have a tie for the 2nd and 3rd bits. Thus, we have four search
points with maximal fitness value: 11101, 11001, 10101 and 10001. Given the set
of search points with maximal fitness values we can then easily determine the
set of global maxima.
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The approach can also be generalised to peaks with different slopes by using
a weighted majority vote where each a bit in pi is assigned weight ai. Let W0 =∑

i with pi[j]=0 ai and W1 =
∑

i with pi[j]=1 ai. We set the j-th bit to 0 if W0 > W1

and to 1 if W1 > W0. Ties are handled as discussed above.
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