
Comparing Asynchronous and Synchronous
Parallelization of the SMS-EMOA

Simon Wessing1(B), Günter Rudolph1, and Dino A. Menges2

1 Computer Science Department, Technische Universität Dortmund,
Otto-Hahn-Str. 14, 44221 Dortmund, Germany

{simon.wessing,guenter.rudolph}@tu-dortmund.de
2 Adept Technology GmbH, Revierstr. 5, 44379 Dortmund, Germany

dino.menges@adept.com

Abstract. We experimentally compare synchronous and asynchronous
parallelization of the SMS-EMOA. We find that asynchronous paral-
lelization usually obtains a better speed-up and is more robust to fluctu-
ations in the evaluation time of objective functions. Simultaneously, the
solution quality of both methods only degrades slightly as against the
sequential variant. We even consider it possible for the parallelization to
improve the quality of the solution set on some multimodal problems.

Keywords: Asynchronous · Synchronous · Parallel · Multiobjective ·
Evolutionary · Optimization

1 Introduction

With the rise of multi-core systems in all device classes from smartphones to
desktops, parallel algorithms become more and more important. Parallelization
is especially beneficial in optimization, where a high number of objective func-
tion evaluations should be enabled. An asynchronous parallelization appears
preferable as it gets around the inevitable idle times caused by synchronous
parallelization, but it must be precluded that this advantage is bought at the
expense of solution quality.

Formerly, sophisticated algorithms containing message passing, master/slave
concepts, or island models were often necessary to distribute execution on a
cluster of nodes [3,5,6]. On present-day integrated multi-core architectures, sim-
ple shared memory communication may already be sufficient, especially for the
application area of population-based optimization. Here, we focus on an evo-
lutionary algorithm (EA) for multiobjective optimization, namely the S-metric
selection evolutionary multiobjective optimization algorithm (SMS-EMOA) [1].
In its original form, the algorithm follows a steady-state scheme, which means
that only one offspring solution is created per generation. This approach is in a
sense optimal with regard to the exploitation of information in the current pop-
ulation, but unsuitable to synchronous parallelization. With synchronous paral-
lelization, we mean the creation of λ > 1 offspring per generation, evaluating
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 558–567, 2016.
DOI: 10.1007/978-3-319-45823-6 52



Asynchronous and Synchronous Parallelization of the SMS-EMOA 559

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Generation 0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Fig. 1. Illustration of synchronous (left) and asynchronous parallelization (right). Idle
times are visualized as dotted lines. In the asynchronous case, three time steps can be
saved by giving up the generation concept.

them in parallel, and carrying out selection after all evaluations have finished.
This approach requires an extension of the selection scheme, to be able to select
μ individuals from μ + λ. This (μ + λ)-selection may have been avoided for
SMS-EMOA to some extent, because the exact calculation of the hypervolume
contributions probably requires algorithmically more complex code, or will take
longer than the conventional (μ + 1)-selection. Alternatively, one could sidestep
the problem by taking a greedy approach of λ selections in the (μ + 1)-scheme,
removing one individual after another. However, Bringmann and Friedrich advise
against this approach [2].

Unfortunately, the synchronization is unfavorable in case of fluctuating eval-
uation times, because it creates idle times (see Fig. 1). An alternative is asyn-
chronous parallelization, which allows us to keep using (μ + 1)-selection, but
means giving up the concept of generations. Klinkenberg et al. [5] were the first
to propose asynchronous parallelization of the SMS-EMOA. Their implementa-
tion was a master/slave approach using message passing on a cluster with twelve
nodes. They combined it with metamodeling to save expensive function evalu-
ations and applied it to a molecular control problem. The results indicated a
nearly linear speed-up and only a slight decrease of solution quality between one
and twelve processors. However, the analysis was not taken further because the
parallelization was not the sole topic of the work. Another successful real-world
application of the asynchronous SMS-EMOA is due to Menges et al. [7], who
optimized the motion planning of a mobile robot.

Depolli et al. [3] investigate the asynchronous parallelization of a multiobjec-
tive differential evolution algorithm (AMS-DEMO) on a steel casting problem
and benchmarks. They identify the selection lag as an important measure for
the performance of asynchronous EMOAs. It is defined as “the number of solu-
tions that undergo selection in the time between the observed solution’s creation
and selection” [3]. In their experiments, a linear speed-up with four processors
could already be observed for evaluation times of only 0.01 seconds. While these
results are encouraging, the question arises if the SMS-EMOA with its rela-
tively expensive survivor selection achieves similar values. We try to answer this
question with our experiment in Sect. 3. Before, we present the asynchronous
SMS-EMOA in detail (Sect. 2), and afterwards we draw conclusions in Sect. 4.



560 S. Wessing et al.

Algorithm 1. Asynchronous SMS-EMOA
Input: mutex, population P0

1: t ← 0
2: while stopping criterion not fulfilled do
3: x ← createOffspring(Pt, mutex) // create 1 offspring
4: evaluate(x) // calculate objective values
5: enter(mutex ) // lock out other processes
6: Qt ← Pt ∪ {x}
7: {F1, . . . , Fw} ← nondominatedSort(Qt) // sort in w fronts
8: r ← createReferencePoint(Fw) // calculate reference point for last front
9: x∗ ← argminx∈Fw (Δs(x, Fw, r)) // determine x∗ with smallest contribution

10: Pt+1 ← Qt \ {x∗} // remove worst individual
11: t ← t + 1
12: leave(mutex ) // release lock for other processes
13: end while

2 The Asynchronous SMS-EMOA

Large differences in the evaluation times of individuals result in idle times in
synchronously parallelized algorithms, because selection cannot start before all
objective values are available. These idle times are of course a waste of resources.
Figure 1 (left) shows an example of such a generational approach with a (μ+6)-
EA. The six offspring are evaluated in parallel. The time during which a process
calculates a function value is indicated by a horizontal solid line. Dotted lines
mark idle times. The vertical lines mark the synchronization points between the
generations. In this example, 29 of the 84 time steps are unused, so the system
is idle 35 % of the time. The asynchronous approach is more efficient, finishing
the execution three time steps earlier and idling only 11 time steps at the end
(Fig. 1, right).

Thus, we implement the SMS-EMOA as an asynchronous algorithm to mini-
mize the idle time. The pseudocode is shown in Algorithm 1. The idea is to have
several processes working on a shared population, with the additional benefit
that the selection scheme can stay a (μ + 1). To make this work, all read and
write operations involving the population must be protected by a lock, allowing
only one process to access at a time. Entering and leaving the critical section is
illustrated in lines 5 and 12. As the required functionality is provided by virtually
all modern programming languages, these modifications are extremely simple.
The objective function evaluation, where the most time is spent according to
the common black-box optimization assumptions, may happen in parallel. After
the process finishes an evaluation, it waits until it can enter the critical section
to carry out the survivor selection. Naturally, the new individual may either
replace another one or be rejected. Then, the section is left and the next gener-
ation starts with creating the next individual by variation. This loop continues
until a stopping criterion is fulfilled. So, every single process executes all tasks
of an SMS-EMOA, not only a subset as in a master/slave scenario.



Asynchronous and Synchronous Parallelization of the SMS-EMOA 561

Table 1. Experimental factors

Factor Type Symbol Levels

Problem instances Non-observable {WFG1, . . . , WFG9}
#Objective functions Observable m {2, 3}
Evaluation base time Observable tb {0.01, 0.1, 1}
Evaluation time behavior Observable {fixed, random, proportional}
Parallelization Control {sync, async}
Parallelization degree Control p {1, 4, 16, 64}
Population size Control μ {10, 100}

Also the function createOffspring does a read access to the population for
parent selection. It has to protect it by a critical section to avoid modifications
of the population during this time.

3 Experiment

Research Question. How do the properties of multiobjective problems and
parallelization settings of the SMS-EMOA influence performance?

Pre-experimental Planning. When the overhead of the SMS-EMOA is neg-
ligible in comparison to the evaluation time, an almost linear speed-up can be
expected for the asynchronous variant [3,5]. The synchronous variant should
only achieve the same run time with constant evaluation times, and is expected
to suffer from fluctuations, as explained in Sect. 2. The hypervolume calculations
of the SMS-EMOA become a bottleneck with increasing number of objectives m
and increasing population size μ. Thus, it is expected that the speed-up dete-
riorates when m and μ are large and evaluation time is low. The experimental
setup is chosen to enable quantification of this behavior.

Selection lag is recorded for both synchronous and asynchronous variants.
Depolli et al. [3] identify the selection lag of the asynchronous variant (without
queues) as p − 1 for p processors. We presume that in the synchronous case,
a value of 1

p

∑p−1
i=0 i = (p − 1)/2 would be the expected value for the selection

lag, because only individuals in the same generation can be selected during one
individual’s evaluation.

Task. We calculate the dominated hypervolume and the averaged Hausdorff
distance (AHD, [8]) of the final population with respect to a Pareto-optimal ref-
erence set, after running the SMS-EMOA for a fixed number of function evalua-
tions. The reference set contains 500 points for two objectives and 1000 for three.
The reference points for the hypervolume are (3, 5)� and (3, 5, 7)�. To assess run-
ning time, wall-clock time is measured and the weak speed-up in comparison to
the sequential variant is computed [3]. The term weak speed-up means that we
divide the sequential time by the parallel time without taking into account the
potential quality differences of the results, which are regarded separately.



562 S. Wessing et al.

Setup. We implemented the algorithm described in Sect. 2 and the synchronous
variant in the language Python (version 3.4). The code is publicly available in
the packages evoalgos1 and optproblems [9,10]. As variation operators, simulated
binary crossover and polynomial mutation are used. The parameters of these
operators are set to ηm = 20, ηc = 20, pm = 0.1, and pc = 0.7.

Table 1 contains the experimental factors for this experiment, which are com-
bined in a full-factorial design. We carry out five stochastic replications per con-
figuration. As test problems, the set from the walking fish group (WFG, [4]) is
used with two and three objectives. The number of decision variables is set to 24,
with k = 4 position-related parameters. The feasible region of the problems is
normalized to the unit hypercube. The evaluation time of the objective functions
is determined as follows. We assume a base value of tb seconds and define three
different ways to obtain the actual evaluation time te. The first alternative is to
use the tb value as it is, te = tb. The second variant takes two random uniform
numbers u1, u2 ∼ U [0, 1] and sets te = (u1 + u2) · tb. This way, te has a trian-
gular distribution between zero and 2tb. The last approach uses te = tb · f1(x ),
where f1 is the first objective function of the WFG problems, whose image is
always [0, 2]. This setup is motivated by different real-world scenarios. The fixed
evaluation time corresponds to homogeneous hardware and constant simulation
time. Random fluctuations will appear if the optimization is running on a het-
erogeneous cluster. Simulation time may also be solution-dependent, leading to
correlated evaluation times, as in [7].

The number of function evaluations is set to 10000 for each algorithm run.
We exclude the population initialization and only measure the time spent in
the optimization loop. By using sleep system calls to spend the te seconds, we
can simulate a parallelized SMS-EMOA run on a single core, because the other
algorithm parts are in critical sections anyway. The experiment is run on AMD
Opteron 6276 processors with 2.3 GHz; operating system is Ubuntu Linux.

Results and Observations. Figs. 2 and 3 show the weak speed-up. The solid
and dashed lines depict median values of the 45 runs on the nine WFG problems.
Error bars mark 95 % confidence intervals for the median. The grey diagonal rep-
resents the maximally possible linear speed-up. In most cases, the asynchronous
variant obtains a better speed-up than the synchronous one, with a few excep-
tions for high parallelization degrees and low evaluation times on two objectives.
The speed-up of the synchronous variant sometimes even drops below one for
three objectives. Figure 4 illustrates the selection lag values for the different con-
figurations. For this figure, we first calculated the mean selection lag for each run.
The lines in the figure are the median of 135 runs, due to the number of remain-
ing configurations per panel. Generally, the predicted values seem to be accurate,
except that the selection lag of the asynchronous variant drops off when evalu-
ation times are small compared to selection times. Figure 5 shows some selected
indicator values for hypervolume and averaged Hausdorff distance. The random
noise in these values is much higher than for the run times. However, in Fig. 5a
1 With a runnable example in the documentation at https://ls11-www.cs.

tu-dortmund.de/people/swessing/evoalgos/doc/algo.html.

https://ls11-www.cs.tu-dortmund.de/people/swessing/evoalgos/doc/algo.html
https://ls11-www.cs.tu-dortmund.de/people/swessing/evoalgos/doc/algo.html


Asynchronous and Synchronous Parallelization of the SMS-EMOA 563

Fig. 2. Weak speed-up versus parallelization degree for μ = 10.

there seems to be a positive effect on both indicators, while in Fig. 5b and c the
results seem mixed.

Discussion. The cases where the synchronous beats the asynchronous variant
regarding speed-up may be caused by differences in the overhead of the imple-
mentations. The asynchronous one especially makes more function calls, because
each solution is processed individually. On the other hand, the decline of the syn-
chronous variant for m = 3 may be because it has to compute hypervolume for



564 S. Wessing et al.

Fig. 3. Weak speed-up versus parallelization degree for μ = 100.

μ+p solutions, while the asynchronous only ever does μ+1. Generally, the mea-
sured speed-ups should be seen as rather conservative estimates, if we consider
that the SMS-EMOA, including the hypervolume computation, was implemented
in pure Python. The speed-up could be further improved by implementing it in
a lower-level language such as C++.

We are not entirely sure why the selection lag of the asynchronous variant is
sometimes lower than expected. One explanation could be that the distribution
of the budget on the worker processes becomes uneven with decreasing tb. This



Asynchronous and Synchronous Parallelization of the SMS-EMOA 565

Fig. 4. Measured selection lag versus parallelization degree. The upper triangles (�)
mark p − 1, the lower ones (�) (p − 1)/2.

hypothesis stems from the observation that the scheduler only ran a single thread
when we switched off the delay completely. If it is true, then the selection lag
could also drop below (p−1)/2. To look into this issue, we recorded the partition
of the budget and calculated its standard deviation. However, the effect could
only be observed for fixed evaluation times, and the standard deviation did not
exceed the values of the two fluctuating cases. In any case, we recommend to
record this data on the actual parallelization also in future experiments.

The results in Fig. 5 can be explained by the fact that for multimodal prob-
lems it is usually beneficial to spend a larger part of the budget on exploration



566 S. Wessing et al.

Fig. 5. AHD and hypervolume values of the final populations for configurations with
m = 2 and μ = 10. All three test problems are multimodal.

than for unimodal problems. The asynchronous variant additionally can sam-
ple objective space regions with lower evaluation times with a higher density
than expensive regions, due to the missing synchronization. Thus, proportional
evaluation times may cause a drift of the population towards a small part of
the Pareto-front. This may either be beneficial, if simulation time is to be mini-
mized [7], or detrimental, if we want to simulate interesting solutions with higher
fidelity. Naturally, the assessments of AHD and hypervolume do not necessarily
have to agree.

4 Conclusion

Both the synchronous variant with greedy selection and the asynchronous variant
obtain an almost linear speed-up in a scenario of expensive function evaluations
and moderate parallelization. The synchronous variant falls off more sharply



Asynchronous and Synchronous Parallelization of the SMS-EMOA 567

under less favorable circumstances. The experiments have shown that the quality
of solutions may even increase with more parallelism for multimodal problems
whereas it may decrease for unimodal problems. We conjecture that this behavior
is caused by a higher selection lag preventing a rapid movement to local optima.
In theory, selection lag should only depend on the parallelization degree (and
the queue size, if queues are used). However, our experiment discovered that
for asynchronous parallelization, reality can somewhat deviate from theory. It
is our impression that the measured selection lag especially deviates from the
expectation in the cases where speed-up is low and parallelization does not work
well. Thus, it might be used as a tool to assess the usefulness of asynchronous
parallelization even when speed-up cannot be computed due to missing data on
sequential performance.

References

1. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

2. Bringmann, K., Friedrich, T.: Don’t be greedy when calculating hypervolume con-
tributions. In: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations
of Genetic Algorithms, FOGA 2009, pp. 103–112. ACM (2009)

3. Depolli, M., Trobec, R., Filipič, B.: Asynchronous master-slave parallelization of
differential evolution for multi-objective optimization. Evol. Comput. 21(2), 261–
291 (2012)

4. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006)

5. Klinkenberg, J.W., Emmerich, M.T.M., Deutz, A.H., Shir, O.M., Bäck, T.: A
reduced-cost SMS-EMOA using kriging, self-adaptation, and parallelization. In:
Ehrgott, M., Naujoks, B., Stewart, J.T., Wallenius, J. (eds.) Multiple Criteria Deci-
sion Making for Sustainable Energy and Transportation Systems. Lecture Notes in
Economics and Mathematical Systems, vol. 634, pp. 301–311. Springer, Heidelberg
(2010)

6. Märtens, M., Izzo, D.: The asynchronous island model and NSGA-II: study of a
new migration operator and its performance. In: Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation, GECCO 2013, pp. 1173–
1180. ACM (2013)

7. Menges, D.A., Wessing, S., Rudolph, G.: Asynchrone Parallelisierung des SMS-
EMOA zur Parameteroptimierung von mobilen Robotern. In: Hoffmann, F.,
Hüllermeier, E. (eds.) Proceedings 25, Workshop Computational Intelligence.
Schriftenreihe des Instituts für Angewandte Informatik/Automatisierungstechnik,
vol. 54, pp. 47–65. KIT Scientific Publishing (2015). (in German)

8. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged
Hausdorff distance as a performance measure in evolutionary multiobjective opti-
mization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

9. Wessing, S.: evoalgos: modular evolutionary algorithms (2016). Python package
version 0.3. https://pypi.python.org/pypi/evoalgos

10. Wessing, S.: optproblems: infrastructure to define optimization problems and some
test problems for black-box optimization (2016). Python package version 0.8.
https://pypi.python.org/pypi/optproblems

https://pypi.python.org/pypi/evoalgos
https://pypi.python.org/pypi/optproblems

	Comparing Asynchronous and Synchronous Parallelization of the SMS-EMOA
	1 Introduction
	2 The Asynchronous SMS-EMOA
	3 Experiment
	4 Conclusion
	References


