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Abstract. Recursive functions are an attractive target for genetic
programming because they can express complex computation compactly.
However, the need to simultaneously discover correct recursive and base
cases in these functions is a major obstacle in the evolutionary search
process. To overcome these obstacles two recent remedies have been pro-
posed. The first is Scaffolding which permits the recursive case of a func-
tion to be evaluated independently of the base case. The second is Call-
Tree-Guided Genetic Programming (CTGGP) which uses a partial call
tree, supplied by the user, to separately evolve the parameter expressions
for recursive calls. Used in isolation, both of these approaches have been
shown to offer significant advantages in terms of search performance.
In this work we investigate the impact of different combinations of these
approaches. We find that, on our benchmarks, CTGGP significantly out-
performs Scaffolding and that a combination CTGGP and Scaffolding
appears to produce further improvements in worst-case performance.
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1 Introduction

Recursive functions solve challenging problems by defining larger solutions in
terms of sub-solutions. Recursive functions are often compact and expressive,
which has made the evolution of recursive functions a popular target for genetic
programming (GP) [5,6,9]. Unfortunately, the evolution of non-trivial recursive
functions through GP has proven difficult in practice [1,6]. One cause of this dif-
ficulty is that fitness functions based solely on test cases are very sensitive to the
correctness of the candidate code for the base case. Thus, when the base case’s
code is wrong, the fitness function will often give very low fitness to candidate
solutions even when the major part of the code – the recursive case – is entirely
correct [6]. This dependence results in the need to simultaneously evolve correct
code for both the base and recursive cases [1,7] before a high fitness score is
achieved.

Several approaches to improve search for recursive functions have been imple-
mented. These have included: the use of niches to preserve diversity during search
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[7] and narrowing search-spaces using templates that express common patterns
of recurrence [10,11]. Moraglio et al. [6] defined a simple and general approach,
called Scaffolding, which employed existing test cases to always return a correct
result for recursive calls. This allowed the fitness of the recursive case to be
gauged independently of the base case. Later, Alexander and Zacher [2] defined
Call-Tree-Guided Genetic Programming (CTGGP), which used information in
user-defined partial call trees to separately deduce recursive calls. More recently,
Chennupati et al. [4] implemented Multi-core Grammatical Evolution on par-
allel platforms to speed up the evolution of parallel recursive integer and list
functions.

In this paper we benchmark both Scaffolding and CTGGP alone and in
combination. The question of which configuration of these frameworks gives the
most benefit is interesting, because both Scaffolding and CTGGP showed sig-
nificant improvement over unassisted GP search on their respective recursive
benchmarks. A-priori, Scaffolding and CTGGP have a complementary focus:
Scaffolding allows the base case to be evolved without impacting the search for
the recursive case and, in contrast, CTGGP separately evolves the parameter to
recursive calls. To date, there has been no research that has compared the two
approaches either in isolation or in combination. In this paper we compare the
performance of Scaffolding and CTGGP on a range of recursive benchmarks. We
show that CTGGP performs better than Scaffolding in isolation and the com-
bination of the two approaches marginally improves average performance, but
consistently improves worst-case performance. We also describe improvements
to the CTGGP system and briefly examine their impact.

The remainder of this paper is structured as follows. In the next section
we describe the conceptual frameworks for Scaffolding and CTGGP. In Sect. 3
we describe an implementation of our framework combining Scaffolding and
CTGGP. In Sect. 4 we describe our experimental parameters and results and,
finally, in Sect. 5 we present our conclusions and ideas for future work.

2 Conceptual Frameworks

In this section we describe the concepts of Scaffolding and CTGGP. Both con-
cepts are enhancements to Genetic Programming (GP). Here we define a GP
search framework as a function GPSearch which attempts to discover a target
code fragment f . To define f ’s behaviour, GPSearch requires test-cases in the
form of a list of inputs to f : in = [i1, . . . , ın] and a corresponding list of desired
outputs from f : out = [o1, . . . , on]. Given these definitions, the GPSearch can
be defined:

GPSearch(in, out) = f = argmin
fx∈Genset

Error(fx, in, out)

where Genset is the set of candidate functions that is generated by GPSearch
and Error is an error function that returns a measure of how much the outputs
of fx deviate from the desired outputs in out. In GP, Genset is generated dynam-
ically by an evolutionary process guided by the values of Error. In order to make
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search tractable, the elements of Genset are usually constrained to belong to a
grammar relevant to the problem domain of interest.

In this paper, all of our target benchmarks f are recursive integer functions
of one argument that return one value. We constrain the members of Genset to
this form using Grammatical Evolution (GE) [8] – a form of GP which maps a
binary string genotype to code via a BNF grammar provided by the user. In the
following, we define Error as:

Error(fx, in, out) = Σn
k=1|fx(ink) − outk|

The aim of our search is to converge to target f such that Error(f, in, out) = 0.
Both Scaffolding and CTGGP extend the framework just described. We describe
these extensions in turn.

2.1 Scaffolding

The motivation for Scaffolding stems from the observation that any candidate
recursive function fx applied to test cases in and out will receive a very poor
fitness evaluation unless the base case is correct. For example, in the fib function
shown in Algorithm1 a change of the base case guard on line 2 to x < 1 will
cause the program to fail on most foreseeable test cases. Likewise a change of
the base case body on line 3 to return 1 also causes most test cases to fail. This
happens despite the remaining code being entirely correct.

Algorithm 1. Correct C implementation of the Fibonacci function

1 int correctRecurse(int x) {

2 if (x >= orig_x) {

3 return recurse(x);

4 }

5 for (int i = 0; i < n; i++) {

6 if (inp[i] == x) return out[i];

7 }

8 return recurse(x);

9 }

This sensitivity to errors in the base case has a significant impact on search.
Moraglio proposed Scaffolding [6] to help address this problem. Under Scaffolding,
every recursive call is replaced by a call to a non-recursive function that returns the
correct value for that call. The correct value for each call is mined from the origi-
nal test cases in in and out. Thus, for example, Scaffolding would replace the call
fib(2), where in = [0, 1, 2, 4, 6] and out = [0, 1, 1, 3, 8], with the call correct-fib(2)
which would then return out2 = 1. If the input to the call for the recursive func-
tion doesn’t correspond to a value in in, then recursion is allowed to progress as
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normal until a call with a value in in is encountered. After evolution has completed
Scaffolding replaces all calls with the original function name.

The above scheme makes it possible to evaluate the correctness of the recur-
sive case somewhat independently of the base case. The correctness of the base
case still contributes to fitness to the extent that it is directly or indirectly
exercised by in.

A final detail that must be addressed in Scaffolding is avoiding cases where
the parameter of the recursive call matches the original parameter to the func-
tion. Without intervention, Scaffolding would find these cases to be correct while
the actual program when run would make no progress. Scaffolding handles these
cases by explicitly detecting them and avoiding replacement with the correct
version of the call. This leads to infinite recursion and, thus, poor fitness.

2.2 CTGGP

CTGGP speeds up the GP search process by conducting a separate search for
the parameters of the recursive call. Thus, if the target function is fib in Fig. 1,
CTGGP would conduct a search for parameter expressions x-1 and x-2 sepa-
rately from the rest of the code.

Fig. 1. An example partial call tree for a fib function

This search is guided by information embedded in a user-provided partial
call tree. An example of a call for the fib function is shown in Fig. 1. The nodes
of the call tree can contain up to two numbers. The top number is the parameter
of the recursive call. The bottom number, in brackets, is the value returned by
that call. Note that this return value is not required for every node in the tree.
In addition, the user doesn’t have to provide every call starting from the call
at the root node. Moreover, the tree is allowed to be disjoint and overlapping
calls from parent nodes can be shared, forming a directed-acyclic graph. The
premise underpinning CTGGP is that in order to create the input and output
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values required to drive a GP process the user will often sketch an approximation
of a call tree in order to obtain these input and output values. Thus, by using
CTGGP we are merely exploiting information that the user already has in hand.

The partial call tree can be mined for information to guide CTGGP. The
values in in are the top values in each node. The values in out are the bottom
values in each node. In addition, CTGGP uses the structure of the tree to create
a list of tree-segments: segs which contains a list of entries [s1, . . . , sm] where
each si is a pair (pnti, [ci1, . . . , cimi

]) which defines the relationship between the
parent: pnti and its child nodes in the call tree. As an example of the correspon-
dence between the call tree and the values above the values extracted from the
call tree shown in Fig. 1 are shown in Fig. 2

Fig. 2. Values extracted by CTGGP from the call tree in Fig. 1

The search process in CTGGP starts when the user specifies the call tree via a
GUI interface. The interface application infers from the arity of tree fragments,
with confirmation from the user, details of the grammars to be used. These
details include the number of base cases and the inferred number of recursive
calls [2]. From this step two grammars are produced. The first grammar, called
grammar1, is used for searching for the parameters of the recursive calls. An
example of this grammar for the call tree in Fig. 1, is shown in Fig. 3(a). A
second grammar, called grammar2, is used for searching for the remainder of
the function. The corresponding grammar2 is shown in Fig. 3(b). The candidate
expressions generated from grammar1 are referenced in part (b) by the expres-
sions param1 and param2. The recursive calls in grammar2 are always denoted
by the generic name “recurse”.

Once the grammars have been defined, evolution in CTGGP proceeds in
two concurrent phases of GE. Phase 1 produces individual expressions from
grammar1 in order to produce parameter expressions for the recursive call(s).
Phase 2 uses grammar2 to evolve the rest of the recursive function. During
phase 2 evolution, the current best expressions from phase 1 are integrated into
the candidate solutions. This simultaneous evolution is an improvement on our
previous work [2] which ran phase 1 and phase 2 in sequence and thus required
us to make an a-priori estimate of the amount of time phase 1 would require to
find an acceptable solution.

In phase 2, individual candidate solutions fx are evaluated by calling the
Error(fx, in, out) function defined at the beginning of this section. In phase 1
the parameter expressions produced are evaluated by comparing the results of
the candidate parameter expressions to the corresponding entries in segs. As an
example of how this is done for the call tree in Fig. 1, consider a phase 1 search
process for fib that produces the (correct) expressions: param1 = x − 1 and
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Fig. 3. Grammar1 (a) and grammar2 (b) generated by the call tree in Fig. 1.

param2 = x − 2. To test these we extract the first entry from segs from Fig. 2:
(5, [4, 3]). This entry consists of the parent parameter 5 and the child parameters
[4, 3]. We substitute the parent parameter 5 into each of param1 and param2.
These produce, respectively, the values 4 and 3. These are eliminated from the
child parameter list leaving an empty list. The matching process then progresses
other elements of segs. If all child parameter entries in segs are eliminated,
then perfect fitness is given. If some items fail to match then fitness is penalised
according to the distance between the output of the phase 1 expression and the
closest match in the children of the relevant entry in segs.

The whole evolution progresses until either phase 2 evolution finishes with a
perfect score or the maximum number of generations for phase 2 is reached.

3 Implementation and Experimental Setup

In this section we outline how Scaffolding is combined with CTGGP and how
the experiments we use to measure their performance are set up.

To implement Scaffolding we need to embed code to access the correct answer
to each recursive call in each candidate solution fx. In our system this is done
by implementing a function called correctRecurse that takes the place of the
recursive calls: recurse in the phase 2 grammar. correctRecurse is imple-
mented as part of the library code accessed by the candidate solution. The code
for correctRecurse is shown in Algorithm 2. The variable orig x is a global
variable containing the value of the original call to recurse. The variables in
and out are arrays representing in and out respectively. The variable n repre-
sents the length of both in and out. The if-statement on lines 2 to 4 checks to
see if the parameter is the same as that of the original call. If so, it forces a call
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Algorithm 2. Implementation of correctRecurse

1 int correctRecurse(int x) {

2 if (x >= orig_x) {

3 return recurse(x);

4 }

5 for (int i = 0; i < n; i++) {

6 if (inp[i] == x) return out[i];

7 }

8 return recurse(x);

9 }

back to recurse which, in this case, will usually result in infinite recursion and
timeout thus giving a low fitness. The for-loop on lines 5 to 7 checks to see if x
is part of in, if so, it will return the corresponding element of out. Otherwise the
recurse function is called on line 8 with the possibility that it will, eventually,
call correctRecurse again with a parameter that is in in.

The rest of the CTGGP framework remains the same as previously described.
The framework itself is implemented in C++ and uses libGE version 0.261 to
generate individuals and carry out search. Candidate functions are generated
using C grammars and these are compiled into scaffold libraries using the Tiny-
C-Compiler [3] (TCC). In phase 1 evolution, the test harness compares the out-
put of the evolved parameter expressions with the elements of segs. In phase 2
evolution, which runs in a separate thread, the whole function is tested against
the values in in and out. The phase 1 and phase 2 threads communicate via a C
source file containing the parameter expressions generated by phase 1. This file
is locked while being accessed so that our code remains thread-safe.

In our experiments we compare four different configurations on a range of
target benchmarks. The four experiments are Plain - GE run against a gram-
mar for each problem without Scaffolding or CTGGP; Scaffolding - GE run
with Scaffolding but without separate evolution of parameters to recursive calls;
CTGGP - GE running with CTGGP; and Combined combining CTGGP with
Scaffolding as described above.

The target benchmarks are, for an integer parameter (n): factorial returns
the factorial of n; odd-evens returns 0 if nmod 2 = 0 and 1 otherwise; log2 finds
�log2 n�; fib and fib3 calculates the Fibonacci and Fibonacci-3 number for n;
lucas calculates the nth Lucas number (this requires two base cases); and pell
calculates the nth Pell number.

For the CTGGP runs, we use small call trees which provide information
on the first five to six elements of the sequence. With our GUI these cases
take less than 5 min each to draw. To enable a fair comparison for the non-
CTGGP runs we simply integrate the phase1 grammar into the phase 2 grammar
which defines a set of valid target programs. This setup allows the non-CTGGP

1 This framework can be downloaded http://bds.ul.ie/libGE/.

http://bds.ul.ie/libGE/
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experiments to take advantage of the specialised grammars generated with infor-
mation from the structure of the call tree. This specialisation will positively
influence their performance, making our relative estimates of the performance
of CTGGP conservative.

In all experiments we use GE running on an underlying steady-state GA
with tournament selection. The GE parameters remain same as the hand-tuned
parameters from phase 2 from [2]. The replacement probability use is 0.25 and
probabilities for crossover and mutation are, respectively, 0.9 and 0.01. In all
experiments and both phases in the CTGGP experiments we use a population
of 1000 running for 300 generations. The phases are set up to terminate early
if an individual with perfect fitness is encountered. In all experiments using
CTGGP phase 1 terminated faster than phase 2 so phase 2 statistics serve as
the best indicator of the time the algorithm takes.

We ran our experiments on an AMD Opteron 6348 machine with 48 proces-
sors running at 2.8 GHz. When the load on the machine was light the average
evaluation time per individual ranged from 2 ms to 20 ms depending on the com-
plexity of the benchmark. All experiments were run for 50 trials.

4 Results and Discussion

Table 1 shows the results of our experiments. The columns show, respectively, the
data for each experiment. The rows show the results for each benchmark – broken
down into mean number of phase 2 evaluations (x), number of correct answers
(nc) and worst case number of evaluations (max). Where not all runs in an
experiment resulted in success the value of max simply indicates the time when
the longest run terminated rather than maximum time-to-success. These cases
are marked with an asterisk. We also mark bold an entry for x if it is significantly
better than corresponding value in the previous column (according to a log-rank
test). As can be seen, on most benchmarks Scaffolding significantly outperforms
plain GE. CTGGP significantly outperforms Scaffolding on all benchmarks –
pointing to the advantage of utilising call tree information when it is available.
In the last column Combined, only significantly outperforms CTGGP alone on
the lucas benchmark. Exploring further, it can be seen that the value for x is
at least marginally better for combined than for CTGGP for all benchmarks.
Moreover, the value of max is substantially lower for Combined and for CTGGP
indicating that the combination may be a strategy for moderating worst-case
performance.

As previously mentioned, in the latest implementation of CTGGP phase 1
and 2 evolution run concurrently. This means that on machines with spare
processing capacity there is insignificant time overhead incurred from running
phase 1. However, it is still interesting to observe how phase 1 and 2 interact over
time. Figure 4 plots the best phase 1 fitness, best phase 2 fitness and and average
phase 2 fitness against time for a long (75th percentile) run of the Combined
framework on the fib3 benchmark.
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Table 1. Mean number of evaluations (x), number of correct answers (nc) and worst
case number of evaluations (max) for the four experimental configurations.

Problem Plain Scaffolding CTGGP Combined

factorial x 4109 2542 219 157

nc 50 50 50 50

max 8942 7032 1403 366

oddeven x 539 478 269 255

nc 50 50 50 50

max 2069 1845 1201 885

log2 x 21524 9049 1404 1206

nc 50 50 50 50

max 103783 22489 11527 3845

fib x 53168 31733 1189 1081

nc 40 49 50 50

max 130923* 130107* 3698 3617

fib3 x 117875 94818 12614 10347

nc 3 18 50 50

max 125723* 124448* 84271 40771

lucas x 105663 35820 3081 1622

nc 8 49 50 50

max 123455* 127936* 12288 7070

pell x 56240 28887 2127 1879

nc 41 49 50 50

max 129823* 128358* 6186 4904

Fig. 4. Plot of fitness against time for the best individual in phase 1 and the best and
average individual in phase 2 for the fib3 benchmark. (Color figure online)

As can be seen, phase 2 is able to make some progress, particularly in aver-
age fitness, while phase 1 is below perfect fitness - this indicates that even
with incorrect parameter expressions search can progress. The speed of phase 2
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search improves once phase 1 has produced the required parameters and termi-
nated. This pattern of behavior is similar to that observed in other runs we have
inspected.

5 Conclusions and Future Work

In this paper we have explored the effect of Scaffolding, CTGGP and a combina-
tion of these on GP search on a range of recursive benchmarks. We have shown
that both Scaffolding and CTGGP significantly improve GP performance and
there are indications that combining these is beneficial in terms of improving
worst case performance. We have also shown that it is productive to run phase
1 and phase 2 evolution of CTGGP concurrently.

This work can be extended in several ways. We could further exploit the rela-
tionships between calling values and return values in the tree to help induct code
that combines return values. We can extend the benchmarks for these experi-
ments to include recurrences in loops. Finally we can conduct a more extensive
study to confirm the effectiveness of the combined framework in reducing worst
case times.
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(eds.) EuroGP 2006. LNCS, vol. 3905, pp. 166–177. Springer, Heidelberg (2006)

2. Alexander, B., Zacher, B.: Boosting search for recursive functions using partial
call-trees. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN
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