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Abstract. We propose an evolutionary approach to constrained opti-
mization where the objective function is considered a black box, but
the constraint functions are assumed to be known. The approach can
be considered a stochastic active-set method. It labels constraints as
either active or inactive and projects candidate solutions onto the sub-
space of the feasible region that is implied by rendering active inequality
constraints equalities. We implement the approach in a (1 + 1)-ES and
evaluate its performance using a commonly used set of test problems.

1 Introduction

Evolutionary algorithms are stochastic black box optimization strategies. They
are commonly used in connection with optimization problems that do not admit
a convenient mathematical representation of the objective, or if gradient esti-
mates can be obtained only at a high cost or are necessarily inaccurate. Exam-
ples include scenarios where the evaluation of the quality of a candidate solution
requires running a simulation model. In the context of constrained optimization
with evolutionary algorithms, the constraint functions are often considered as
black boxes as well. However, in many cases, including the case of bound con-
straints, it is not uncommon that the constraint functions are known and rela-
tively inexpensive to evaluate. The objective of this paper is to develop a simple
evolutionary algorithm for constrained optimization with known constraints.

Active-set methods are a common approach to solving constrained optimiza-
tion problems [12]. They maintain a set of active inequality constraints and
perform optimization in the subspace of the feasible region that is implied by
rendering the active inequality constraints equalities. The algorithm we introduce
in this paper can be considered a stochastic active-set approach implemented in
a (1 + 1)-ES1. The step size of the (1 + 1)-ES is commonly controlled using
the 1/5th rule [13]. That rule can fail in the presence of small constraint angles
(i.e., small angles between the gradient of the objective function and the normal
vector of the constraint function) in cases as simple as a linear objective with a
single linear constraint [2,15]. Small constraint angles result in low success rates

1 See Hansen et al. [7] for an introduction to evolution strategy terminology.
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and thus a systematic reduction of the step size. Projection of infeasible candi-
date solutions onto the feasible region in connection with an active-set approach
can potentially circumvent unwarranted decreases of the step size.

The remainder of this paper is organized as follows. In Sect. 2 we outline the
class of optimization problems we strive to solve, formalize notation, and propose
an active-set (1+1)-ES for optimization with known constraints. In Sect. 3, that
algorithm is applied to commonly used test problems and its performance is
discussed. Section 4 concludes.

2 Problem and Algorithm

We consider the problem of minimizing objective function f : Rn → R subject
to constraints

gi(x) ≤ 0 for i ∈ {1, . . . , l}
hj(x) = 0 for j ∈ {1, . . . , m}. (1)

The active set A(x) of a (feasible) candidate solution x is the set of indices of all
those inequality constraints with gi(x) = 0. Assuming a single globally optimal
solution x∗ to the optimization problem, we refer to the active set A(x∗) of that
solution as the optimal active set A∗. We refer to the subspace of the search
space where all equality constraints and active inequality constraints in A(x)
are satisfied as equalities as the reduced search space at x. We write n∗ for the
dimension of the reduced search space at the optimal solution x∗.

Our active-set (1 + 1)-ES evolves a feasible candidate solution x ∈ R
n to the

optimization problem at hand, adapting the step size σ ∈ R+ using the 1/5th
rule. Offspring candidate solutions are usually projected onto the reduced search
space at the parent. However, with a certain probability the use of the active set
is suspended, allowing to break out of the reduced search space. Adapting the
step size of the algorithm only in those steps where the active inequalities are
enforced as equalities prevents unwarranted decreases of the step size. A single
iteration of the algorithm is described in Fig. 1.

Boolean flag κ determines whether or not the active set of x is enforced
for offspring candidate solution y. If κ is false, then the search proceeds in
the reduced search space. If it is true, then the inequality constraints active
at the parental candidate solution will be enforced as inequalities rather than
as equalities. If the dimension of the reduced search space at x is zero, then
there is no use in enforcing the active constraints as they would repeatedly yield
the same solution, and κ is thus set to true. Otherwise, the active inequality
constraints are enforced as equality constraints with probability 1 − p. Larger
values of p decrease the likelihood that the algorithm will spend unproductive
time in non-optimal reduced subspaces. However, once the optimal active set A∗

has been found, smaller values of p are useful as unproductive steps beyond the
optimal reduced search space are avoided. We use p = 0.2 throughout.
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1. Compute the dimension n′ = n − rank(N) of the reduced search space at x,
where N is the matrix whose columns are the normal vectors at x of the
equality constraints and the inequality constraints in A(x).

2. Repeat

(a) Generate standard normally distributed z ∈ R
n and let

y = x + σz .

(b) If n′ = 0, let κ be true. If n′ > 0, let κ be true with probability p and
false otherwise.

(c) If κ is true, project y onto the feasible region; otherwise, project y onto
the intersection of the feasible region with the reduced search space at x.

until offspring candidate solution y ∈ R
n is feasible.

3. If f(y) < f(x), then

(a) Let
x ← y .

(b) If κ is false, let

σ ← σ21/n′
.

Otherwise, if κ is false, let

σ ← σ2−1/(4n′) .

Fig. 1. Single iteration of the active-set (1 + 1)-ES.

Projection of y onto the intersection of the feasible region with the reduced
search space at x is accomplished by minimizing function d(w) = ‖w − y‖2
subject to constraints

gi(w) ≤ 0 for i ∈ {1, . . . , l} \ A(x)
gi(w) = 0 for i ∈ A(x)
hj(w) = 0 for j ∈ {1, . . . , m}.

When the use of the active set is suspended, projection onto the feasible region
is accomplished by minimizing that some function, but subject to the original
set of constraints from Eq. (1). Notice that minimization does not make use
of the objective f of the original optimization problem and that thus the algo-
rithm performs only a single evaluation of f per iteration. Minimization of d can
be accomplished using any algorithm for constrained optimization. We use the
active-set method implemented in fmincon in Matlab’s optimization toolbox.
Step 2 involves a loop as minimization of d may fail to yield a feasible solution.

The update of σ in Step 3 of the algorithm employs the implementation of the
1/5th rule due to Kern et al. [9]. The step size is updated only in those iterations
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Fig. 2. Traces from runs of the active-set (1+1)-ES and a (1+1)-ES that projects infea-
sible candidate solutions onto the feasible region but does not enforce active inequalities
as equalities applied to a 10-dimensional sphere with five mutually orthogonal linear
inequality constraints active at the optimal solution. Shown are the evolution of the
difference between f(x) and the optimal objective function value f∗ and the step size
σ normalized by division by R = ‖x − x∗‖.

where the search proceeds in the reduced search space, thus avoiding the issue
of systematically decreasing σ when the use of the active set is suspended.

Throughout a run of the algorithm, we store the current active set. Con-
straints are added to the active set whenever a candidate solution is accepted
for which those constraints are tight. Notice that it is straightforward from the
output of fmincon to determine which constraints are tight by identifying those
inequality constraints that have positive Lagrange multipliers. The active set is
replaced in those iterations where a candidate solution replaces its parent that
is generated with use of the active set suspended.

Figure 2 illustrates the advantage of the active-set based approach over a
(1 + 1)-ES that simply projects infeasible candidate solutions onto the feasible
region, without enforcing active inequality constraints as equalities, and that
updates the step size in every iteration. We have conducted 21 runs of both
strategies for objective function f(x) = xTx with n = 10 and constraints xTei ≥
1 for i ∈ {1, . . . , 5}, where ei is the unit vector in the direction of the ith
coordinate axis. All runs are initialized to start at x = (9, . . . , 9)T and with
step size σ = 1. The active-set (1 + 1)-ES attained an objective function value
within a factor of (1 + 10−8) of the optimal objective function value f∗ = f(x∗)
in each of the runs; the run that required the median number of iterations is
shown in the figure. It can be seen that the strategy converges linearly, and
that after an initial increase, the step size σ is controlled to be approximately
proportional to the distance R from the optimal solution x∗. Not shown, in the
run depicted, the five constraints become active between the 66th and the 100th
iteration and remain active until the algorithm terminates. Without the use of
the active set, none of the 21 runs obtained a solution with an objective function
value within a factor of (1+10−8) of f∗ before terminating after 1,200 iterations.
The corresponding trace shown in the figure is that of a random run. It can be
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seen that not enforcing active inequalities as equalities and updating σ in every
iteration eventually results in very small step sizes and slow progress.

3 Evaluation and Discussion

We evaluate the active-set (1 + 1)-ES by applying it to the test problems
g01 through g11 gathered by Michalewicz and Schoenauer [11] and summa-
rized by Liang et al. [10]. We initialize the parental candidate solution by
uniformly randomly sampling a point in the bound constrained search space
and then projecting it onto the feasible region using the same approach as
described for offspring candidate solutions in Sect. 2. The initial step size is
set to σ = 0.2 min{ui − li | i = 1, . . . , n}, where the li and ui are the lower and
upper bounds of the search space in dimension i for the respective problem.
A run of the algorithm is terminated and considered a success if a candidate
solution x with an objective function value f(x) < (1 + ε)f∗ is found, where
f∗ is the objective function value of the optimal solution to the problem. It is
considered unsuccessful if after 1,200 iterations (and thus as many evaluations of
the objective function) no solution satisfying the termination criterion has been
found. We refer to ε as the target accuracy.

Table 1. Test function properties and results.

g01 g02 g03 g04 g05 g06 g07 g08 g09 g10 g11

Dimension n 13 20 10 5 4 2 10 2 7 8 2

Reduced dimension n∗ 0 19 9 0 1 0 4 2 5 2 1

Success rate:

ε = 10−4 1.0 0.0 1.0 1.0 1.0 1.0 0.98 0.52 1.0 1.0 1.0

ε = 10−8 1.0 0.0 1.0 1.0 1.0 1.0 0.99 0.53 1.0 1.0 1.0

Median number of function evaluations:

ε = 10−4 49 — 458 22 36 3 411 123 302 117 27

ε = 10−8 46 — 865 24 84 4 684 229 616 243 106

We have conducted 100 runs of the algorithm for each test problem and
target accuracies ε ∈ {10−4, 10−8}2. Table 1 summarizes the results. For eight of
the eleven test problems, the globally optimal solution was found to the desired
accuracy in all 100 runs conducted. The three exceptions are as follows:

2 The ConstraintTolerance parameter of fmincon is set to its default value of 10−6

for the runs with target accuracy ε = 10−4. For target accuracy ε = 10−8 we used
ConstraintTolerance 10−9 instead as some runs for problem g03 terminate unsuc-
cessfully if the default accuracy is used.
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– For g02 not a single run successfully located the globally optimal solution.
Problem g02 has a very large number of local minima, and the search space
is such that the likelihood of starting in the basin of attraction of the global
optimum is near zero. A stochastic hill climber, such as the (1 + 1)-ES, will
almost always converge toward a merely local minimum.

– A small number of unsuccessful runs are observed for problem g07, even
though the problem is unimodal. The search space is ten-dimensional, with six
inequality constraints active at the optimal solution. In some runs, the upper
bound constraint for variable x8 is included in the active set of the algorithm
at some point during the run. The likelihood of escaping the point that is
optimal for this active set in one of the steps where the use of the active set is
suspended can be observed to be no higher than 5 % for a large range of val-
ues of the step size. It may thus take hundreds of iterations before the upper
bound constraint is rendered inactive, and either reaching the iteration limit
or the step size becoming so small that the limits of numerical accuracy are
reached prevents successfully escaping the non-optimal reduced search space.

– Problem g08 has four locally optimal solutions. No constraints are active at the
globally optimal one of those. The (1 + 1)-ES converges to one of the merely
locally optimal solutions with a likelihood of just under one half. Conduct-
ing multiple runs of the algorithm would allow locating the globally optimal
solution with high probability.

Figure 3 shows histograms of the number of objective function evaluations
required to solve problems g01 and g03 through g11 to both target accuracies.
The ranges of the histograms are such that all successful runs are included. No
data are shown for g02 as no successful runs were observed for that problem. It
can be seen that the histograms for g01, g04, and g06 differ fundamentally from
those for the other problems in that there is little difference between the data
for ε = 10−4 and ε = 10−8. This is due to the dimension of the optimal reduced
search space being zero. In that case, solving for the solution at the intersection
of the active constraints yields the optimal solution (up to the limits of numerical
accuracy). For the remaining problems, the gap between the histograms for ε =
10−4 and ε = 10−8 is due to the need for the (1 + 1)-ES to search a non-
zero reduced search space, with a larger discrepancy for those cases where the
dimension of that space is large.

Figure 4 shows traces from runs requiring the median number of iterations to
reach target accuracy ε = 10−8 for test problems g04 and g10. The former is an
example of a problem where the dimension of the optimal reduced search space
is zero; for the latter, that dimension is n∗ = 2. Plotted against the iteration
number are the difference between the objective function value f(x) and the
optimal objective function value f∗ as well as the step size σ of the algorithm.
Those iterations where the algorithm suspends the use of the active set (i.e., κ
is true) are marked with small circles.

In the run on g04, the evolution strategy generates the optimal active set A∗

in iteration 24, at which point it terminates. Between iterations 18 and 21, the use
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Fig. 3. Histograms showing the number of objective function evaluations required to
solve problems g01 and g03 through g11.
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Fig. 4. Traces from runs requiring the median number of iterations to reach target
accuracy ε = 10−8 for problems g04 and g10. The evolution of both the difference
between f(x) and the optimal objective function value f∗ and the step size σ are shown.
The small circles mark those iterations where the use of the active set is suspended.
The thin dotted line in the plot for g10 shows the evolution of the step size in a typical
run of the (1 + 1)-ES on an unconstrained, two-dimensional sphere function.

of the active set is suspended in each step as it is such that the dimension of the
reduced search space is zero. The step size σ largely increases through most of
the run.

In the run on g10, the algorithm arrives at the optimal active set A∗, which
consists of the six constraints active at the global optimum of the problem, at
iteration 70. The active set remains stable after this, and optimization effectively
proceeds in a reduced subspace of dimension n∗ = 2, with the exception of those
steps where the use of the active set is suspended, but which have no further effect
on the sequence of successful candidate solution generated. It can be seen that
the step size σ largely decreases as the search in the two-dimensional subspace
progresses. Comparison with the thin dotted curve, which shows the rate of
decrease of the step size of a (1 + 1)-ES on an unconstrained, two-dimensional
sphere function, shows a similar rate of linear convergence.

A comparison of the performance of the active-set (1 + 1)-ES with that of
other approaches to constrained evolutionary optimization is not straightfor-
ward as both initialization conditions and termination criteria often differ for
approaches found in the literature. More significantly, most other approaches
consider the constraint functions as black boxes and are thus not easily able to
project candidate solutions onto the feasible region (or subspaces thereof). That
said, some useful points of comparison do exist:

– The numbers of objective function evaluations required by the active covari-
ance matrix adaptation based approach by Arnold and Hansen [3] to solve
four of the problems3 to target accuracy 10−8 range from 308 for g06 to 3,976
for g10. The corresponding figures from Table 1 range from 4 for g06 to 684

3 Multimodal problems and those with equality constraints were not considered in
that paper, leaving only problems g06, g07, g09, and g10.
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for g07. It is important to keep in mind though that the active-set approach
introduced here assumes knowledge of the constraint functions, whereas the
algorithm from [3] considers the constraint functions as black boxes.

– The algorithm by Takahama and Sakai [16], which performed best among
all entries submitted to the CEC 2006 Special Session on Constrained Real-
Parameter Optimization, assumes knowledge of gradient vectors and thus does
not treat the constraint functions as black boxes. It requires median numbers
of objective function evaluations ranging from 1,182 for g08 to 105,799 for
g10. The algorithm does successfully solve g02.

– Bagheri et al. [6] propose SACOBRA, a self-adaptive variant of the surro-
gate based COBRA algorithm by Regis [14], which solves most of the eleven
problems (though not g02, and others only with limited accuracy) with fewer
than 500 objective function evaluations. SACOBRA considers the constraint
functions as black boxes and is thus applicable when the constraints are not
known. It requires more function evaluations than the active-set (1 + 1)-ES
for a number of those problems where the dimension of the optimal reduced
search space is low. However, it appears to often converge faster where that
dimension is not very small. This latter advantage is a consequence of the
smooth nature of the test problems, which admit polynomial surrogate mod-
els that make it possible to converge superlinearly. As shown by Teytaud and
Gelly [17], as a comparison-based algorithm that does not use objective func-
tion values other than in comparisons, the active-set (1+1)-ES cannot exhibit
super-linear convergence.

4 Conclusions

To conclude, we have proposed an active-set (1+1)-ES for constrained numerical
optimization with known constraints. The algorithm usually generates offspring
candidate solutions constrained to the reduced subspace at their parents, but
with a fixed probability samples offspring that do not necessarily fall into that
space, thus allowing it to render active constraints inactive. Key to the func-
tioning of the algorithm is to adapt the step size only in those iterations where
the offspring are constrained to the reduced search space. The algorithm can
be implemented in a few lines of Matlab code and performs very well when
compared with related work.

It is of interest to apply the proposed active-set approach in evolutionary
algorithms other than the (1 + 1)-ES. The (μ/μ, λ)-ES is an evolutionary algo-
rithm less sensitive to noise and ruggedness of the objective than the (1 + 1)-ES
as it is capable of proceeding with larger steps. Restart variants of that algo-
rithm [5] are commonly used for multimodal optimization problems and may
exhibit improved performance for problems g02 and g08. However, using the
active-set approach with cumulative step size adaptation is less than straightfor-
ward, and it has been seen that care has to be taken when integrating constraint
handling techniques with step size adaptation [1,8]. Also of interest is the prob-
lem of employing the active-set approach in combination with other constraint
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handling techniques, such as augmented Lagrangian methods [4], in case only
a proper subset of the constraints is known explicitly. Finally, it is of interest
to employ the active-set approach in evolutionary algorithms that use surrogate
models of the objective function in order to reduce the time spent on optimiza-
tion in reduced search spaces.
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than 500 iterations: improved efficient constrained optimization by surrogate mod-
eling and adaptive parameter control (2015). arXiv:1512.09251

7. Hansen, N., Arnold, D.V., Auger, A.: Evolution strategies. In: Kacprzyk, J.,
Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 871–
898. Springer, Berlin (2015)

8. Hellwig, M., Arnold, D.V.: Comparison of constraint handling mechanisms for the
(1, λ)-ES on a simple constrained problem. Evol. Comput. 24(1), 1–23 (2016)

9. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.:
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