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Abstract. We present novel algorithmic schemes for dealing with large
scale continuous problems. They are based on the recently proposed
population-based meta-heuristics Migrating Birds Optimisation (mbo)
and Multi-leader Migrating Birds Optimisation (mmbo), that have shown
to be effective for solving combinatorial problems. The main objective
of the current paper is twofold. First, we introduce a novel neighbour
generating operator based on Differential Evolution (de) that allows to
produce new individuals in the continuous decision space starting from
those belonging to the current population. Second, we evaluate the per-
formance of mbo and mmbo by incorporating our novel operator to them.
Hence, mbo and mmbo are enabled for solving continuous problems. A set
of well-known large scale functions is used for comparison purposes.

Keywords: Continuous neighbourhood search · Migrating Birds
Optimisation · Large scale continuous problems · Global optimisation

1 Introduction

Nature-inspired computing counts with an extensive variety of algorithms mim-
icking natural processes and events from the universe that are frequently used
for tackling real-world optimisation problems. Along these algorithms, those
inspired by the collective living and travelling of animals have attracted a con-
siderable interest from the related research community [11]. In this regard, the
collective behaviour and swarm intelligence of migratory birds and its algorith-
mic translation have been recently studied by Duman et al. [2], and Lalla-Ruiz
et al. [4]. Authors exploit, by means of their corresponding proposed algorith-
mic approaches, the advantage of sharing information and cooperating among
a group of individuals. While Migrating Birds Optimisation (mbo), which is
inspired by the V-flight formation of migratory birds with one leader, was pro-
posed in [2], in [4], based on field studies, Multi-leader Migrating Birds Optimi-
sation (mmbo) was introduced, which allows different types of flight formation
shapes, as well as several leading individuals, to be managed.
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Recently, mbo has shown its good performance for combinatorial problems,
such as the Quadratic Assignment Problem (qap) [2], the Dynamic Berth Alloca-
tion Problem (dbap) [5], and Hybrid Flow-shop Scheduling [8], among others. In
regard to continuous optimisation, an initial adaptation to low-dimensional prob-
lems, which uses sphere-shaped neighbourhoods, was developed in [1]. Results
provided by said scheme, however, did not show a high performance. Regarding
mmbo, it showed to provide better quality results than those achieved by mbo
for the qap [4]. Concerning its performance for continuous optimisation, as far
as we know, this is the first time that mmbo is enabled for dealing with these
types of problems, as well as the first time that mbo is assessed when solving
large scale continuous problems.

The main goal of this work is to propose suitable adaptations of mbo and
mmbo for tackling continuous optimisation problems. For doing that, we propose
a novel neighbourhood structure based on the well-known Differential Evolution
(de) [10], which is able to generate solutions in a continuous decision space.
The computational experimentation provided in this work, which involves the
use of a set of well-known large scale continuous problems [7], indicates that our
proposals are able to improve, for some cases, the results obtained by one of the
best performing variants of de considering that set of large scale functions [3].

The remainder of this paper is organised as follows. Section 2 describes our
proposed mbo and mmbo approaches. Afterwards, in Sect. 3, the experimental
evaluation carried out in this paper is exposed. Finally, Sect. 4 draws the main
conclusions extracted from this work and provides some lines for further research.

2 Schemes Based on Migrating Birds Optimisation for
Continuous Problems

This section focuses on describing our algorithmic proposals. Section 2.1 is
devoted to describe the scheme mbo, while the approach mmbo is depicted
in Sect. 2.2. Finally, in Sect. 2.3 we introduce our novel neighbour generating
operator based on de.

2.1 Migrating Birds Optimisation

Migrating Birds Optimisation (mbo) is a population-based algorithm based on
the V-formation flight of migrating birds. It considers a population or flock,
of individuals or birds, that are aligned in a V-flight formation. Following that
formation, the first individual corresponds to the leader of the flock and the other
ones define the rest of the flock. The birds maintain a cooperative relationship
among them by means of sharing information. The way the flow of information
is shared is unidirectional. Namely, one individual sends information and the
other receives it. The direction of the information shared starts from the leader
bird and goes to the rest of the flock by following the V-shape flight formation.

Algorithm 1 depicts the pseudocode of mbo. The input parameters are: (i)
the number of birds in the flock (n), (ii) the maximum number of neighbours
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Algorithm 1. Migrating Birds Optimisation pseudocode ([2])

Require: n, K, m, k, and x
1: Generate n initial birds in a random manner and place them on an hypothetical

V-formation arbitrarily
2: g = 0
3: while (g < K) do
4: for (j = 1 : m) do
5: Try to improve the leader bird by generating k neighbours
6: g = g + k
7: for all (non-leader bird s in the flock) do
8: Try to improve non-leader bird s by using k − x generated neighbours

and x unused best neighbours from those birds in the front of it
9: g = g + (k − x)
10: end for
11: end for
12: Move the leader bird to the end of the V-formation and forward one of the birds

following it to the leader position
13: end while
14: Return the best bird in the flock

generated by the flock of birds (K), (iii) the number of iterations performed
before changing the leader bird (m), (iv) the number of neighbours generated
by each bird (k), and (v) the number of best discarded neighbours to be shared
among birds (x). The first step consists of generating n individuals or birds
(line 1). The current number of neighbours generated by the flock of birds, i.e.
g, is initially set to zero (line 2). During the search process, firstly, k neighbours
are generated starting from the leader bird. In case the best neighbour leads to
an improvement of the leader in terms of the objective function value, the latter
is replaced by the former (line 5). Secondly, for each non-leader bird s, k − x
neighbours are generated. Additionally, the neighbourhood of s receives x unused
best neighbours from those birds in front of it (lines 7–10). If s is improved
by its best neighbour, then the former is replaced by the latter (line 8). The
V-formation is maintained until a prefixed number of iterations m > 0 is reached.
Once that, the leader bird becomes the last bird in the V-formation and one of
its immediate successors becomes the new leader (line 12). The above steps are
executed until a maximum number of neighbours, i.e. K, is generated (line 3).
Finally, we should mention that, in our case, neighbours are created (lines 5 and
8) by using the operator described in Sect. 2.3.

2.2 Multi-leader Migrating Birds Optimisation

Multi-leader Migrating Birds Optimisation (mmbo) is a novel population-based
meta-heuristic inspired by the flight formation of migratory birds which tries
to improve its predecessor mbo. In mmbo, birds are distributed in a line for-
mation mimicking the flight formation of migratory birds, which is determined
according to given relationship criteria, e.g. by means of the objective function
of the problem at hand. Depending on those criteria, we can have birds located
at positions that are closer than others regarding the front of the migratory
formation during the flight. Starting from each bird, a given number of fea-
sible neighbours are generated through a predefined neighbourhood structure.
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Algorithm 2. Multi-leader Migrating Birds Optimisation pseudocode ([4])

Require: n, K, k, and x
1: Create the initial flock P by randomly generating n birds
2: while (K neighbours have not been generated) do
3: Determine the interaction among birds of P and establish the formation
4: while (stopping formation criterion is not met) do
5: Generate k neighbours starting from each bird b ∈ PL ∪ PI

6: Replace each bird included into PL by its best neighbour if
the latter improves the former

7: Replace each bird included into PI by its best neighbour
8: for all (bird f ∈ PF ) do
9: Generate k − x neighbours starting from f
10: Get the best unused x neighbours from the previous birds of f in the group
11: Replace f by its best neighbour if the latter improves the former
12: end for
13: end while
14: end while
15: Return the best bird in P

The neighbourhoods reflect the particular points of view about the solution space
of each individual. As mentioned above, depending on the relationship criteria
and how information is shared among individuals, different roles arise in mmbo:

– Leader. It is that bird with the best objective value when compared to the
adjacent ones. Therefore, it does not receive information from any bird, but
shares x neighbours with each adjacent one. Moreover, starting from a leader,
k neighbours are generated. Since the objective value determines the position
within the formation, a leader is the best performing bird, and consequently,
the most advanced one in its corresponding group within the formation. The
set of leaders is denoted as PL.

– Follower. It is that bird which explores the search space considering its own
information and the information received from the birds in front of it within
the formation. It generates k − x neighbours and receives x neighbours from
the adjacent birds. The set of followers is denoted as PF .

– Independent. It is that bird which is not included into any other of the above
categories. It does not exchange information with any other individual, but
generates k neighbours. The set of independent birds is denoted as PI .

The pseudocode of mmbo is depicted in Algorithm 2. The first step is to
obtain the initial flock P which consists of n birds generated at random (line 1).
While the stopping criterion is not met, mmbo iterates (line 2). In this work, we
consider a stopping criterion based upon a maximum number of neighbours to be
generated (K). The relationship criteria among birds are based on the objective
function value. This allows to recognise groups, as well as the formation (line 3).
Then, the search process starts (lines 4–13) and it is executed until a stopping
formation criterion is met. In case said criterion is satisfied, the search process is
stopped in order to establish a new formation. During the search process, firstly,
k neighbours are obtained starting from each bird b ∈ PL ∪ PI (line 5). Then,
sets PL and PI are updated (lines 6–7). Secondly, for each follower f ∈ PF , k−x
neighbours are generated (line 9), and it receives x neighbours from the adjacent
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birds according to the formation (line 10). Afterwards, if f is improved by its
best neighbour, the former is replaced by the latter (line 11). The unused best
neighbours of f are shared with the adjacent birds. In this work, neighbours are
obtained (lines 5 and 9) by applying the operator introduced in Sect. 2.3.

2.3 Neighbour Generating Operator Based on Differential
Evolution

This work presents a novel neighbour generating operator to be used with mbo
and mmbo in order to enable their operation with continuous optimisation prob-
lems. This operator is based on the well-known Differential Evolution (de), a
search algorithm which was specifically proposed for global optimisation [10].

For encoding individuals, a vector of D real-valued decision variables or
dimensions xi is used, i.e. X = [x1, x2, . . . , xi, . . . , xD]. The objective function
f(X)(f : Ω ⊆ R

D → R) determines the quality of every vector X. Hence, find-
ing a vector X∗ ∈ Ω, where f(X∗) ≤ f(X) is satisfied for all X ∈ Ω, is the
goal in a global optimisation problem. Considering box-constrained problems,
the feasible region Ω is defined by Ω =

∏D
i=1[ai, bi], where ai and bi represents

the lower and upper bounds of variable i.
Regarding the most widely used nomenclature for de [10], i.e. de/x/y/z,

where x is the vector to be mutated, y defines the number of difference vectors
used, and z indicates the crossover approach, our neighbour generating operator
is inspired by the scheme de/rand/1/bin. We selected this variant due to its sim-
plicity and popularity and because it was able to provide the best performance
in previous work with the set of large scale problems we consider herein [3].

Given a particular individual Xj=1...NP (target vector) from a flock of either
mbo or mmbo with size NP , a neighbour is obtained as follows. First, the mutant
generation strategy rand/1 is applied for obtaining a mutant vector (V j). Thus,
the mutant vector is generated as Eq. 1 shows. We should note that r1, r2, and
r3 are mutually exclusive integers randomly selected from the range [1, NP ], all
of them different from the index j. Finally, F denotes the mutation scale factor.

V j = Xr3 + F × (Xr1 − Xr2) (1)

After obtaining the mutant vector, it is combined with the target vector to
produce the trial vector (U j) through a crossover operator. The combination
of the mutant vector generation strategy and the crossover operator is usually
referred to as the trial vector generation strategy. One of the most commonly
applied crossover operators, which is considered in this work, is the binomial
crossover (bin). The crossover is controlled by means of the crossover rate CR,
and uses Eq. 2 for producing a trial vector, where xj,i represents decision variable
i belonging to individual Xj . A random number uniformly distributed in the
range [0, 1] is given by randj,i, and irand ∈ [1, 2, ...,D] is an index selected at
random that ensures that at least one variable belonging to the mutant vector is
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inherited by the trial one. Variables are thus inherited from the mutant vector
with probability CR. Otherwise, variables are inherited from the target vector.

uj,i =
{

vj,i if (randj,i ≤ CR or i = irand)
xj,i otherwise

(2)

It can be observed that the trial vector generation strategy may generate
vectors outside the feasible region Ω. In this work, unfeasible values are reini-
tialised at random in their corresponding feasible ranges, being this approach
one of the most frequently used in the related literature. Finally, we should note
that the trial vector becomes the newly generated neighbour.

3 Experimental Evaluation

In this section we describe the experiments carried out with both algorithms
depicted in Sect. 2. In addition to those schemes, we also considered the variant
de/rand/1/bin as an independent approach for comparison purposes.

Experimental Method. mbo and mmbo, as well as de/rand/1/bin, were
implemented by using the Meta-heuristic-based Extensible Tool for Cooperative
Optimisation (metco) [6]. Experiments were run on a debian gnu/linux com-
puter with four amd R© opteronTM processors (model number 6164 he) at 1.7ghz
and 64gb ram. Every execution was repeated 30 times, since all experiments
used stochastic algorithms. Bearing the above in mind, comparisons were car-
ried out by applying the following statistical analysis [9]. First, a Shapiro-Wilk
test was performed to check whether the values of the results followed a normal
(Gaussian) distribution or not. If so, the Levene test checked for the homogene-
ity of the variances. If the samples had equal variance, an anova test was done.
Otherwise, a Welch test was performed. For non-Gaussian distributions, the
non-parametric Kruskal-Wallis test was used. For all tests, a significance level
α = 0.05 was considered.

Problem Set. A set of scalable continuous optimisation functions proposed in
the 2013 ieee Congress on Evolutionary Computation (cec’13) for its Large
Scale Global Optimization (lsgo) competition [7] was considered as the prob-
lem set. We should note that this suite is the latest proposed for large scale
global optimisation in the field of the cec, and therefore, it was also used for
the lsgo competitions organised in cec’14 and cec’15. The suite consists of
15 different problems (f1–f15) with different features: fully-separable functions
(f1–f3), partially additively separable functions (f4–f11), overlapping functions
(f12–f14), and non-separable functions (f15). By following the suggestions given
for different editions of the lsgo competition, we fixed the number of decision
variables D to 1000 for all the above functions, with the exception of functions
f13 and f14, where 905 decision variables were considered due to overlapping
subcomponents.

Parameters. Table 1 shows parameter values considered in this work for mbo
and mmbo. They were selected by carrying out a previous parameter setting
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Table 1. Configuration of the approaches mbo, mmbo, and de/rand/1/bin

Parameter values for mbo and mmbo

Parameter Value Parameter Value

Stopping criterion (K) 3 × 106 Number of neighbors (k) 4

Flock size (n) 150 Number of flights (x) 1

Number of flights (m) 10

Parameter values for de/rand/1/bin

Stopping criterion 3 × 106 Mutation scale factor (F ) 0.5

Population Size (NP ) 150 Crossover rate (CR) 0.9

study. As it can be observed in Sect. 2, parameter m is only considered by mbo.
In past research, a configuration of the scheme de/rand/1/bin, from among a
candidate pool with more than 80 different parameterisations of said approach,
was able to provide the best overall results for problems f1–f15 [3]. This is the
main reason why our neighbour generating operator is based on de/rand/1/bin.
Moreover, that best performing configuration, whose parameter values (NP ,
F , and CR) are also shown in Table 1, is considered herein as an independent
method for measuring the performance attained by mbo and mmbo. Our opera-
tor also makes use of those parameter values. Finally, the stopping criterion was
fixed to a maximum amount of 3 × 106 evaluations, following the recommenda-
tions provided by the lsgo competition.

Results. Figure 1 shows box-plots reflecting the results obtained by the consid-
ered schemes. It can be observed that, for some problems (f2, f3, f5, f9, and
f11) mbo and/or mmbo were able to obtain better solutions than those provided
by the best performing variant of de/rand/1/bin found for the large scale prob-
lems we consider in this work, thus showing the benefits that can be obtained
from our hybridisation between mbo/mmbo and our novel neighbour generat-
ing operator based on de. Since our neighbour generating operator is based on
de/rand/1/bin, it was expected that results obtained by mbo and mmbo were
very similar to those provided by the former scheme executed independently.
However, the features of mbo and mmbo for sharing information among indi-
viduals, as well as for establishing a structure among them, combined with the
the exploration and exploitation abilities of our neighbour generating operator
based on de/rand/1/bin, were able to obtain even better results in 5 out of 15
problems. Taking into account the remaining functions, we should note that mbo
and/or mmbo were able to achieve similar solutions than those attained by the
best performing variant of de, with except to some cases, such as f1, where de
provided better solutions.

In order to give the aforementioned conclusions with statistical confidence,
Table 2 shows, for each problem, the p-values obtained from the statistical com-
parison between the approach mbo and the rest of schemes, by following the
statistical procedure explained at the beginning of the current section. It also
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Fig. 1. Box-plots showing the results obtained by different schemes for functions f1–f15

shows cases for which mbo was able to statistically outperform other strategy
(↑), cases where other strategy outperformed mbo (↓), and cases where statis-
tically significant differences between mbo and the corresponding method did
not arise (↔). Scheme A statistically outperforms method B if there exist sta-
tistically significant differences between them, i.e. if the p-value is lower than
α = 0.05, and if at the same time, A provides a lower mean and median of
the objective value than B, since we are dealing with minimisation problems.
Finally, Table 3 shows the same information, but regarding mmbo.

With respect to mbo, it is worth mentioning that it was able to outperform de
in 4 out of 15 problems (f2, f3, f5, and f9). Additionally, it was not outperformed
by de in any test case. For remaining problems, mbo and de did not present
statistically significant differences. Concerning mmbo, we should note that it



142 E. Lalla-Ruiz et al.

Table 2. Statistical comparison between mbo and remaining schemes considering prob-
lems f1–f15

f Alg p-value Dif f Alg p-value Dif f Alg p-value Dif

f1 de 2.739e-01 ↔ f2 de 3.331e-02 ↑ f3 de 4.665e-40 ↑
mmbo 9.674e-03 ↑ mmbo 3.821e-01 ↔ mmbo 5.700e-43 ↑

f4 de 2.550e-01 ↔ f5 de 1.415e-07 ↑ f6 de 5.946e-01 ↔
mmbo 6.361e-01 ↔ mmbo 1.229e-09 ↑ mmbo 9.101e-01 ↔

f7 de 1.882e-01 ↔ f8 de 3.912e-01 ↔ f9 de 1.794e-06 ↑
mmbo 7.227e-01 ↔ mmbo 8.130e-01 ↔ mmbo 8.701e-08 ↑

f10 de 5.742e-01 ↔ f11 de 4.333e-01 ↔ f12 de 5.277e-02 ↔
mmbo 9.053e-01 ↔ mmbo 2.089e-01 ↔ mmbo 1.433e-01 ↔

f13 de 5.946e-01 ↔ f14 de 8.367e-02 ↔ f15 de 6.249e-02 ↔
mmbo 7.325e-01 ↔ mmbo 5.809e-02 ↔ mmbo 2.428e-01 ↔

Table 3. Statistical comparison between mmbo and remaining schemes considering
problems f1–f15

f Alg p-value Dif f Alg p-value Dif f Alg p-value Dif

f1 de 8.401e-05 ↓ f2 de 1.402e-03 ↑ f3 de 8.786e-01 ↔
mbo 9.674e-03 ↓ mbo 3.821e-01 ↔ mbo 5.700e-43 ↓

f4 de 4.965e-01 ↔ f5 de 6.671e-02 ↔ f6 de 8.130e-01 ↔
mbo 6.361e-01 ↔ mbo 1.229e-09 ↓ mbo 9.101e-01 ↔

f7 de 5.742e-01 ↔ f8 de 5.543e-01 ↔ f9 de 2.739e-01 ↔
mbo 7.227e-01 ↔ mbo 8.130e-01 ↔ mbo 8.701e-08 ↓

f10 de 9.176e-01 ↔ f11 de 2.713e-02 ↑ f12 de 2.962e-03 ↓
mbo 9.053e-01 ↔ mbo 2.089e-01 ↔ mbo 1.433e-01 ↔

f13 de 7.901e-01 ↔ f14 de 9.176e-01 ↔ f15 de 3.912e-01 ↔
mbo 7.325e-01 ↔ mbo 5.809e-02 ↔ mbo 2.428e-01 ↔

was able to beat de in problems f2 and f11, it was beaten by de considering
functions f1 and f12, and both approaches did not show statistically significant
differences when dealing with remaining test cases. Bearing the above in mind,
mbo/mmbo were able to provide better solutions than those achieved by de in
5 out of 15 problems. However, de was able to outperform mbo/mmbo in 2 out
of 15 functions. This means that mbo/mmbo were able to attain similar or even
better solutions than de in 13 out of 15 problems.

If we compare mbo with respect to mmbo we can make the following obser-
vations. mbo provided statistically better results than mmbo in 4 problems (f1,
f3, f5, and f9), while the latter was not statistically better than the former in
any case. Taking into account the remaining problems, statistically significant
differences did not appear between both schemes.
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4 Conclusions and Future Work

Algorithms inspired by the nature comprise an important type of solution
approaches used for solving practical problems. Some of these approaches have
been successfully applied to combinatorial problems, such as mbo and mmbo.
Nevertheless, to our best knowledge, they had not been used for tackling large
scale continuous problems. Hence, in this work we propose novel adaptations
of both population-based meta-heuristics for solving relevant problems in this
research area. For doing that, we developed a novel neighbour generating oper-
ator based on de that allows new individuals to be generated in the continuous
decision space. The experimental evaluation carried out indicates that our pro-
posals are suitable and competitive for performing the optimisation of large scale
continuous problems. In this regard, results demonstrate that mbo and mmbo
are able to obtain similar solutions, and even better for some cases, than those
provided by one of the best performing variants of de considering the set of large
scale continuous problems at hand.

Bearing in mind the contributions of this work, our research agenda will be
focused on the assessment of the influence that the different parameters of mbo
and mmbo have over their performance when solving continuous problems. Addi-
tionally, an analysis about the impact that different neighbourhood structures
have over the behaviour of mbo and mmbo might also be of great interest.
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