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Preface

This LNCS volume contains the proceedings of the 14th International Conference on
Parallel Problem Solving from Nature (PPSN XIV). This biennial event constitutes one
of the most important and highly regarded international conferences in nature-inspired
computation, ranging from evolutionary computation and robotics to artificial life and
metaheuristics. Continuing with a tradition that started in Dortmund in 1990, PPSN
XIV was held during September 17–21, 2016, in Edinburgh, Scotland, UK.

PPSN XIV received 224 submissions from 50 countries – an increase in both figures
from the previous conference, demonstrating the continued and widening interest in the
field. After an extensive peer-review process, where most papers were evaluated by at
least four reviewers, the Program Committee Chairs examined all of the reports and
ranked the papers. Where there was disagreement amongst the reviewers, the Chairs
evaluated the papers themselves in order to ensure fair and accurate decisions. The top
93 manuscripts were finally selected for inclusion in this LNCS volume and for pre-
sentation at the conference. This represents an acceptance rate of 41.5 %, which
guarantees that PPSN will continue to be one of the most respected conferences for
researchers working in nature-inspired computation around the world.

PPSN XIV was enhanced by the inclusion of three distinguished keynote speakers
representing facets of the field’s future and the interfaces with other disciplines: Susan
Stepney (University of York, UK), Josh Bongard (University of Vermont, USA), and
Katie Bentley (Harvard Medical School, USA).

The meeting began with four workshops bringing together work in specialized
areas: “Intelligent Transportation Workshop” (Neil Urquhart), “Landscape-Aware
Heuristic Search” (Nadarajen Veerapen and Gabriela Ochoa), “Natural Computing in
Scheduling and Timetabling (Ahmed Kheiri, Rhyd Lewis, and Ender Özcan), and
“Advances in Multi-modal Optimization” (Mike Preuss, Michael G. Epitropakis, and
Xiaodong Li). These workshops allowed researchers with similar interests to discuss
and explore ideas in an informal and friendly setting.

PPSN XIV also included 16 free tutorials to give us all the opportunity to learn about
new aspects of our field: “Gray Box Optimization in Theory” (Darrell Whitley), “Theory
of evolutionary computation” (Benjamin Doerr), “Graph-Based and Cartesian Genetic
Programming” (Julian Miller and Patricia Ryser-Welch), “Theory of Parallel
Evolutionary Algorithms” (Dirk Sudholt), “Promoting Diversity in Evolutionary
Optimization: Why and How” (Giovanni Squillero and Alberto Tonda), “Evolutionary
Multiobjective Optimization” (Dimo Brockhoff), “Intelligent Systems for Smart Cities”
(Enrique Alba), “Advances on Multi-modal optimization” (Mike Preuss and Michael G.
Epitropakis), “Evolutionary Computation in Cryptography” (Stjepan Picek), “Evolu-
tionary Robotics – A Practical Guide to Experimenting with Real Hardware” (Jacque-
line Heinerman, Agoston E. Eiben, Evert Haasdijk, and Julien Hubert), “Evolutionary
Algorithms and Hyper-heuristics”(Nelishia Pillay), “A Bridge between Optimization
over Manifolds and Evolutionary Computation” (Luigi Malagò), “Implementing



Evolutionary Algorithms in the Cloud” (J.J. Merelo), “The Attainment Function
Approach to Performance Evaluation in EMO” (Carlos Fonseca and Andreia Guerreiro),
“Runtime Analysis of Evolutionary Algorithms: Basic Introduction” (Per Kristian Lehre
and Pietro Oliveto), “Meta-model Assisted (Evolutionary) Optimization” (Boris Nau-
joks, Jörg Stork, Martin Zaefferer, and Thomas Bartz-Beielstein).

We wish to express our gratitude in particular to the Program Committee members
and external reviewers who provided thorough evaluations of all 224 submissions. We
would also express our profound thanks to all the members of the Organizing Com-
mittee and the local organizers for their outstanding efforts in preparing for and running
the conference. Thanks to all the keynote, workshop, and tutorial speakers for their
participation, which greatly enhanced the quality of the conference. Finally, we also
express our gratitude to the sponsoring institutions, including Edinburgh Napier
University, for their financial support, and the conference partners for participating in
the organization of this event.

September 2016 Julia Handl
Emma Hart

Peter R. Lewis
Manuel López-Ibáñez

Gabriela Ochoa
Ben Paechter
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nikolaus.hansen@lri.fr

Abstract. We focus on a variant of covariance matrix adaptation evo-
lution strategy (CMA-ES) with a restricted covariance matrix model,
namely VkD-CMA, which is aimed at reducing the internal time com-
plexity and the adaptation time in terms of function evaluations. We
tackle the shortage of the VkD-CMA—the model of the restricted covari-
ance matrices needs to be selected beforehand. We propose a novel mech-
anism to adapt the model online in the VkD-CMA. It eliminates the need
for advance model selection and leads to a performance competitive with
or even better than the algorithm with a nearly optimal but fixed model.

1 Introduction

The covariance matrix adaptation evolution strategy (CMA-ES) [6] is a stochas-
tic search algorithm for continuous optimization. It is considered a state-of-the-
art algorithm for black-box scenarios. In the CMA-ES, candidate solutions are
generated from a normal (Gaussian) distribution N (m, σ2C) with mean vector
m, step-size σ, and covariance matrix C. Thanks to the adaptation of positive
definite symmetric covariance matrix C, the CMA-ES is known as an efficient
optimizer for ill-conditioned and non-separable functions. On a quadratic func-
tion, it is empirically known [6] and theoretically supported [1] that the covari-
ance matrix approximates the inverse Hessian, which turns the problem into a
spherical function.

In the references [2,3,10,11], variants of CMA-ES with a restricted covari-
ance matrix model are proposed. All of these approaches have common advan-
tages and disadvantages over the standard CMA-ES. The advantages are mainly
twofold. One is the internal complexity. As the covariance matrix is represented
with a fewer number of parameters, its space complexity is improved. Moreover,
computationally efficient update formulas for these restricted covariance matri-
ces are employed, leading to an improvement in the internal time complexity.
Therefore, they are promising when solving an optimization problem in a high
dimension. The other advantage is the speedup in terms of the number of func-
tion evaluations required to adapt the covariance matrix. Since they have fewer
parameters to be adapted, the update in one iteration is more reliable, allowing a

c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 3–13, 2016.
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greater learning rate. The disadvantage is that the restricted covariance matrix
may not be rich enough to approximate the inverse Hessian of the objective
function. If this is the case, the convergence rate will be very low. The mean
vector will not approach to the optimum within a reasonable run-time.

The VkD-CMA [3] is a variant of the CMA-ES with a restricted covariance
matrix mode. It parameterizes the covariance matrix with a diagonal matrix D
and k vectors V = [v1, . . . ,vk], i.e., C = D(I + VVT)D. It is proved that the
algorithm is equivalent to sep-CMA-ES [11] if k = 0 and is equivalent to CMA-
ES if k = d − 1. Therefore, the VkD-CMA is considered as a generalization of
these variants of the CMA-ES and allows us to control the model complexity
by tuning the number of vectors, i.e., k, between diagonal and positive definite
symmetric. However, k needs to be tuned in advance to exploit the structure of
a function. Without a strong prior knowledge, it can be prohibitively expensive.

In this paper, we propose an online adaptation of the model complexity for
the restricted covariance model used in the VkD-CMA, i.e., online k adaptation.
The idea to increase k is to detect the condition that we observe when the covari-
ance matrix model is not rich enough to approximate the inverse Hessian. The
idea to decrease k is to check if the current covariance matrix is well approxi-
mated with a smaller k. We expect two advantages of the online k adaptation.
First, it obviates the need for tuning of k, leading to a speedup in the pre-
processing of optimization and turning the algorithm more user-friendly. Second,
online adaptation of the model complexity may lead to a faster adaptation of
the covariance matrix than the optimal but fixed k.

The rest of the paper is organized as follows. Section 2 is devoted to the intro-
duction to the VkD-CMA. The proposed k adaptation mechanism is presented
in Sect. 3. We conduct experiments in Sect. 4 to check how efficiently the pro-
posed mechanism adapts k and to compare with variants of CMA-ES. In Sect. 5
we summarize our contributions and discuss a possible line of future work.

2 VkD-CMA

The VkD-CMA [3] is a variant of the covariance matrix adaptation evolution
strategy (CMA-ES) [6–8] with a restricted covariance matrix model. As well as
the other variants of CMA-ES, multiple candidate solutions are sampled from the
multivariate normal distribution N (m, σ2C), they are evaluated on the objective
function f : Rd → R, and the distribution parameters, m, σ, and C, are updated
using the candidate solutions and their fitness ranking. In the VkD-CMA, the
covariance matrix C is parameterized with a d dimensional positive-definite diag-
onal matrix D and k orthogonal vectors V = [v1, . . . ,vk], the latter of which is
decomposed into a k dimensional nonnegative definite diagonal matrix Λ and a
d × k dimensional matrix Ṽ with orthogonal columns of unit length. Then,

C = D(I + VVT)D, or equivalently, C = D(I + ṼΛṼT)D. (1)

The parameter, k, determines the richness of the covariance matrix mode. Let
Mk be the set of matrices in the form (1). The set M0 with k = 0 is the set of
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diagonal matrices and Md−1 with k = d−1 is the set of arbitrary positive-definite
symmetric matrices. The covariance matrix adaptation, i.e., update of D, Λ, and
Ṽ, is based on the projection of the covariance matrix from Md−1 onto its subset
Mk. The algorithm employing the two-point step-size adaptation (TPA) [5] is
described below, followed by the description of the parameters appearing in the
algorithm and their default values.

Algorithm. We initialize m(0), σ(0) and D(0) according to the initial search
interval of a given problem. Let Ṽ(0) = 0, Λ(0) = diag(0, . . . , 0), p(0)

c = 0,
and s(0) = 0. Let t = 0 and r = k + μ + 1. Repeat the following steps until a
termination criterion is satisfied.

1. If t � 1, generate a pair of symmetric points y± along the previous mean
shift dm(t−1) according to

y± = ±(‖N (0, I)‖/‖dm(t−1)‖C(t))dm(t−1), (2)

where the Mahalanobis norm ‖dm(t−1)‖2
C(t) = (dm(t−1))T(C(t))−1dm(t−1) is

computed with the following formula: Let u1 = D−1dm and u2 = ṼTu1, then

(dm)TC−1dm = ‖u1‖2 + uT
2 ((I + Λ)−1 − I)u2. (3)

Let y1 = y+, y2 = y−. If t = 0, generate y1 and y2 in the same way as the next
step.

2. Sample λ − 2 independent random vectors zi ∼ N (0, I), for i = 3, . . . , λ,
and compute yi according to

yi ← ṼTzi, yi ← ((Λ + I)1/2 − I)yi, and yi ← D(zi + Ṽyi). (4)

Let xi = m(t) + σ(t)yi for i = 1, . . . , λ.
3. Evaluate xi on the given objective function f , and let the index of the ith

best point among them be denoted by i : λ.
4. Compute the weighted average dm(t) of the steps yi:λ and update the

mean vector m(t+1) according to

dm(t) =
∑μ

i=1 wiyi:λ , m(t+1) = m(t) + cmσ(t)dm(t). (5)

5. If t � 1, we update s(t+1) and update the step-size according to

s(t+1) = (1 − cσ)s(t) + cσ(rank(x2) − rank(x1))/(λ − 1) , (6)

σ(t+1) = σ(t) exp(s(t+1)/dσ). (7)

Let hσ = I{s(t+1) < 0.5}. Otherwise, let s(1) = s(0), σ(1) = σ(0) and hσ = 1.
6. Update the evolution path

p(t+1)
c = (1 − cc)p(t)

c + hσ(cc(2 − cc)μeff)1/2dm(t). (8)

7. Let W = [α1/2
c Ṽ(t)(Λ(t))1/2, (D(t))−1Y], where αc = 1 − cμ − c1 + (1 −

hσ)c1cc(2−cc) and Y is a d×(μ+1) dimensional matrix whose first μ columns are
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given by (cμwi)1/2yi:λ for i = 1, . . . , μ and the last column is c
1/2
1 p(t+1)

c . Let r =
min(k + μ + 1, d). Compute the thin singular value decomposition (SVD) of W,
denoted by LSRT, where S is a r×r dimensional diagonal matrix whose diagonal
elements are the singular values of W aligned in descending order, L and R are
matrices of dimension d×r and r×r, respectively, whose columns are the left and
right singular vectors with unit length. Compute β = αc+(d−k)−1

∑r
i=k+1[S]2i,i

and update Ṽ(t+1), Λ(t+1), and D(t+1) as

Ṽ(t+1) = L:,:k , Λ(t+1) =
(αc−β)I+S2

:k,:k
β , [D(t+1)]i,i =

[D(t)]i,i(αc+
∑r

j=1[W]2i,j)1/2

(1+
∑k

j=1[Λ(t+1)]j,j [Ṽ(t+1)]2
i,j

)1/2 .

(9)

Here, for any matrix A, [A]i,j denotes the (i,j)th element of A and A:i,:i denotes
the i × i upper left block of A, A:,:i denotes the first i columns of A.

8. Compute the 2dth root of the determinant of the new covariance matrix
as γ = exp

(
1
d

∑d
i=1 ln([D(t+1)]i,i) + 1

2d

∑k
j=1 ln(1 + [Λ(t+1)]j,j)

)
and D(t+1) ←

D(t+1)/γ and p(t+1)
c ← p(t+1)

c /γ. Then, we have det(C(t+1)) = 1.

Default Parameter Values. The default parameter values are summarized as
follows. The population size λ = �4+3 ln(d)�, the number of parents μ = �λ/2�,
and the weights

wi = ln((λ+1)/2)−ln(i)∑μ
i=1(ln((λ+1)/2)−ln(i))

(i = 1, . . . , μ) , wi = 0 (i > μ). (10)

Let μeff = 1/(
∑μ

i=1 w2
i ). The learning rate for m-update cm = 1, the learning

rate for s in TPA cσ = 0.3, the damping parameter for TPA dσ = d1/2. The
cumulation factor cc, the learning rate for the rank-one update c1 and the learn-
ing rate for the rank-μ update cμ are as follows1 (letting a ∧ b = min(a, b) for
any real a and b)

cc =
4+µeff/d

(d+2(k+1))/3+4+2µeff/d
, c1 = 2

d(k+2)+2(k+2)+µeff
, cµ = (1 − c1) ∧ 2(µeff−2+1/µeff )

d(k+1)+4(k+2)+µeff
.

(11)

Properties. With the restricted covariance matrix model, we achieve cheaper
computational time and space complexity and faster adaptation of the covariance
matrix than the CMA-ES. Its space complexity is O(dr), where r = min(d, k +
μ+1), and its time complexity is O(dr2+dkλ) per iteration. If r 	 d, it is cheaper
than the CMA-ES, which requires Θ(d2 +dμ) space and Θ(d2λ) time complexity
per iteration. Moreover, since there are fewer parameters to be adapted if k is
smaller, it accepts relatively higher learning rates (11) than the default values
used in the CMA-ES, resulting in faster adaptation of the covariance matrix.
Therefore, we want to keep k as small as possible.

1 The default c1 is slightly different from the original setting in [3]. The value presented
in the paper is slightly more stable for k close to zero.
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On the other hand, if k is too small to approximate the inverse Hessian of
the objective function, the VkD-CMA is not able to solve the problem efficiently.
Empirically, we know that the convergence rate, defined as the slope of the step-
size in log-scale, is proportional to Cond(AC) on a quadratic objective function
f(x) = xTAx. Therefore, we need to set k large enough to approximate the
inverse Hessian of the objective function. However, since a prior knowledge on
the problem is limited in the black-box scenario, it is hard to choose a reasonable
k in advance. In the next section, we propose a mechanism to adapt k, i.e., the
model richness of the covariance matrix, during the optimization process.

3 Adaptive Covariance Model Selection

Ideas. Let us consider solving a quadratic function with a positive definite sym-
metric Hessian A. If C ∝ A−1, the quadratic function is identified with Sphere
function f(x) = ‖x‖2. In this case, we can deduce that the optimal convergence
rate (i.e., the slope of ln(σ)) is approximately 0.5λ/d using the result given in
[4]2. We also empirically know that the convergence rate is approximately pro-
portional to 1/Cond(CA) if Cond(CA) � 1.

Consider the cases where the covariance matrix is richer than sufficient. It
means that the inverse Hessian of the objective function can be approximated
by the covariance matrix in Mk with a smaller k. Let us consider that we
drop the ith vector vi, i.e., drop the ith column of Ṽ and ith column and
row of Λ, and let C̃ be the resulting covariance matrix. Then, we have that
Cond(AC̃) � Cond(C̃C−1)Cond(AC) = (1 + [Λ]i,i)Cond(AC). It means that
by dropping the ith component from the covariance matrix, we may increase the
condition number at most by the factor of 1 + [Λ]i,i. If 1 + [Λ]i,i is smaller than
a given threshold βdec, it is safe to remove vi. However, if the covariance matrix
is in the middle of adaptation and [Λ]i,i is still increasing, there is a chance that
1 + [Λ]i,i will grow up above the threshold. Therefore, we want to decrease k
and drop some components from the covariance matrix only when 1 + [Λ]i,i is
small enough and is regarded as not increasing.

Consider the cases where the covariance matrix is not rich enough. In this
case we observe that C is kept roughly constant and σ converges very slowly.
If we observe C not significantly changing (except the scaling factor), it implies
that C is close to the optimal approximation of the inverse Hessian in the current
covariance model. If the covariance model is rich enough, Cond(CA) will be close
to 1 and the convergence rate will not be very small compared with the optimal
convergence rate. If the covariance model is not rich enough, Cond(CA) � 1 and
we will observe a slow convergence of σ with the convergence rate proportional
to Cond(CA). Based on this observation, we detect insignificant change of C
and slow convergence of σ. If all of 1 + [Λ]i,i are greater than a given threshold
βinc and both of the conditions are satisfied, we increase k.

2 If we use only nonnegative weights as we do in this paper, the possible convergence
rate halves.
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Algorithm. Let tada = 0 be the number of iterations after the last k increase or
the initialization. Initialize the exponential moving average M∗ of the slopes of
ln(σ), ln([C]i,i) and ln(1 + [Λ]i,i) by zero, where ∗ is either ln(σ), ln([C]i,i) or
ln(1 + [Λ]i,i). The following steps are performed after Step 8 of the VkD-CMA
algorithm.

1. Update the exponential moving averages according to

M
(t+1)
ln(σ) = (1 − α(σ)

exp)M (t)
ln(σ) + α(σ)

exp

(
ln(σ(t+1)) − ln(σ(t))

)
. (12)

The exponential moving averages for ln([C]i,i) and ln(1 + [Λ]i,i) are updated
analogously with the decay factor α

(C)
exp . Note that ln([C]i,i) = 2 ln([D]i,i) +

ln(1 +
∑k

j=1[Λ]j,j [Ṽ]2i,j).
2. If tada > Texp and 1+[Λ]i,i > βinc for all i ∈ �1, k�, we additionally check if

(1)
∣∣M (t+1)

ln(σ)

∣∣ < γσmin(0.5, 0.5λ/d)/max(1, βinc/10) and if (2) maxi

∣∣M (t+1)
ln([C]i,i)

∣∣ <

γC(c1 + cμ). If all the above conditions are satisfied, update k as

k = min(max(�κinck�, k + 1), kmax) (13)

and set [Ṽ]:,i = (0, . . . , 0) and [Λ]i,i = 0 for all i ∈ �kold +1, k�, where kold is the
value for k before updated. Let tada = 0.

3. If tada > kTexp and there is at least one index i ∈ �1, k� such that 1 +
[Λ]i,i < βdec, let J be the set of such indices. If there exist indices in J satisfying
M

(t+1)
ln(1+[Λ]i,i)

< 0, drop ith column from Ṽ and drop ith column and row from
Λ for all such indices i and update k accordingly. Then, re-normalize D and pc

(perform Step 8 in the VkD-CMA algorithm again).
4. Let tada = tada + 1. If k is updated, update c1, cμ, cc according to (11).

Default Parameter Values. The parameters appearing in the k-adaptation algo-
rithm are described below, together with their default values.

– α
(σ)
exp = 0.5 min(1, λ/d)/max(1, βinc/10), α

(C)
exp = 1/d; The discount rate for the

exponential moving average, 0 < αexp < 1.
– γσ = 0.1, γC = 0.3; The threshold to detect insignificant change of the step-

size and the covariance matrix, γσ > 0 and γC > 0.
– Texp = 2

min(α
(σ)
exp,α

(C)
exp )

− 1; The number of iterations to wait for k adaptation

after the last k increase, Texp � 0. It is introduced to prevent k from oscil-
lating. The sum of the weights for last Texp + 1 iterations, i.e., αexp, αexp(1 −
αexp), . . . , αexp(1−αexp)Texp , is 1− (1−αexp)Texp+1 ≈ 1− exp(−2). It implies
that the last 2

αexp
− 1 iterations contain about 86% of the information in the

exponential moving average and the information in the exponential moving
average is considered refreshed.

– kmin = 0, kmax = d − 1, kinit = kmin; The minimum, maximum and initial
number of vectors, 0 � kmin � kinit � kmax � d − 1. The maximum value
should be set smaller if the available memory and cpu time are limited.

– κinc = 1.414; The factor for increment of k.
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– βinc = βdec = 30; This corresponds to the condition number Cond(C−1/2C̃
C−1/2) we accept, where C and C̃ are the covariance matrix before and after
k-decrease. The greater βinc is, k tends to be smaller.

4 Experiments

We first test the performance of the proposed k-adaptation mechanism on the
quadratic function f(x) = 1

2xTAx with the inverse Hessian

A−1 = (10−6/2)D−1
ell (I + (106 − 1)UUT)D−1

ell , (14)

where Dell is a diagonal matrix whose ith diagonal component is 103 i−1
d−1 , and U

is a d × kcig matrix whose columns are orthogonal to each other and of length
one. Ten instances of U are generated by applying the same procedure to create
R with m = kcig in Table 1. The inverse Hessian is then in Mkcig . In this exper-
iment, the dimension is d = 100 and σ(0) = 2, D(0) = I, and m(0) is generated
from N (3 · 1, 22I) for each run. All the other parameters for the VkD-CMA and
for the k adaptation mechanism are set to the default values described in this
paper.
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nc
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Fig. 1. Average and standard deviation of the number of function evaluations to reach
ftarget. VkD-CMA with fixed k = 0, 1, 3, 6, 12 and with the adaptive k are compared
on the quadratic with the inverse Hessian (14) with kcig = 0, 1, 3, 6, 12.

Figure 1 shows the average and standard deviation of the number of function
evaluations till the target function value ftarget = 10−8 is reached over 10 inde-
pendent runs. If k < kcig, the target value was not reached within 107 function
evaluations. If k � kcig, the smaller the value of k is, the smaller the number of
function evaluations to reach the target value is. Comparing to the fixed optimal
k = kcig, the adaptive strategy requires even fewer function evaluations except
for the case kcig = 0. Figure 2 reveals an advantage of the adaptive strategy.
The VkD-CMA first adapts D on this quadratic function, then learns Ṽ and Λ.
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Fig. 2. A typical behavior of the VkD-CMA with fixed optimal k = kcig (top) and with
adaptive k (bottom) on a 100-D quadratic with the inverse Hessian (14) with kcig = 3.

At the beginning, the proposed k adaptation strategy keeps k to zero, result-
ing in the faster adaptation of D than the algorithm with the fixed k. Then, it
increases k and finally learns the nearly optimal k.

Next, we compare the different variants of CMA-ES, namely, the VkD-
CMA with the proposed k adaptation, the VkD-CMA with fixed k = 1, μ,
the sep-CMA-ES (SEP) [11], the CMA-ES with cumulative step-size adaptation
(CMA-CSA) and the CMA-ES with TPA (CMA-TPA). The parameter val-
ues described in Sect. 2 are used for the VkD-CMA. The parameter values
for the CMA-CSA and CMA-TPA are taken from the reference [3], and the
parameter values for the SEP are taken from [11]. The comparison is done
on the test functions summarized in Table 1. For all the functions, the tar-
get function value is ftarget = 10−8. Each run is considered successful if and
only if the algorithm evaluates a candidate solution having a better function
value than ftarget before spending 105d function evaluations. We conduct ten
independent runs for each setting. The initial mean vector and step-size are
m(0) = 3 · 1 + N (0, 22I) and σ(0) = 2 for all but fros and frosrot, where they are
initialized as m(0) = 0 + N (0, 0.12I) and σ(0) = 0.1.

Figure 3 shows the average number of f -calls. As reported in the references
[2,3,11], the sep-CMA-ES and the VkD-CMA with k = 1 and k = μ can solve
the functions with inverse Hessian in M0, M1, Mμ, respectively, and can not
efficiently solve the functions with highly ill-conditioned inverse Hessian outside
them. On fsph, fcig, fcigrot, we do not observe a significant difference between
variants compared to the other cases. See [2] for the detail. On the others, a
variant with smaller covariance matrix model tends to solve the functions with
inverse Hessian inside the model more efficiently.

The VkD-CMA with the proposed k adaptation mechanism succeeded to
find the target value within the given budget for all scenarios. Moreover,
its efficiency is competitive with or better than the other variants including
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Table 1. Benchmark function suite. The d dimensional orthogonal matrix Q is con-
structed as follows. First all the elements are generated from the standard normal
distribution and apply Gram-Schmidt procedure to orthonormalize its columns. The
block diagonal orthogonal matrix B = diag(Q1,Q2) is constructed from two orthogo-
nal matrices Q1 and Q2 of dimension d/2 that are generated analogously to Q. The
d × m dimensional matrix R, where m = �2 ln (d)�, is the first m columns of Q. For
fellrotsub, the inverse Hessian does not live in M�2 ln (d)�, but in its closure.

Name Definition (pseudo)
inverse
Hessian

Sphere fsph(x) =
∑d

i=1 x
2
i M0

Cigar fcig(x) = x2
1 + 106

∑d
i=2 x

2
i M0

Ellipsoid fell(x) = fsph(Dellx) M0

Discus fdis(x) = 106x2
1 +
∑d

i=2 x
2
i M0

TwoAxes ftwoax(x) =
∑�d/2�

i=1 x2
i + 106

∑d
i=�d/2� x

2
i M0

Ellipsoid-Cigar(kcig = 1) fellcig(x) = fcigrot(Dellx) M1

rotated Cigar fcigrot(x) = fcig(Qx) M1

Ellipsoid-Cigar(kcig = �ln(d)�) fellciglog(x) =
1
2
xTAx with A in (14) M�ln(d)�

subspace rotated Ellipsoid fellrotsub(x) = fell(R
Tx) M�2 ln (d)�

(semi-
positive)

rotated TwoAxes ftwoaxrot(x) = ftwoax(Qx) M�d/2�
2-blocks rotated Ellipsoid fellrot(2-blocks)(x) = fell(Bx) Md−1

rotated Ellipsoid fellrot(x) = fell(Qx) Md−1

rotated Discus fdisrot(x) = fdisrot(Qx) Md−1

Rosenbrock fros(x) =
∑d−1

i=1 102(x2
i − xi+1)

2+(xi − 1)2 Md−1

(non-
quadratic)

rotated Rosenbrock frosrot(x) = fros(Qx) Md−1

(non-
quadratic)

CMA-ES on all but fellrot, fdisrot, and fellrot(2-blocks) functions. To approximate
the inverse Hessian of these functions, k needs to be increased nearly to d − 1.
Then the proposed algorithm spends more function evaluations to adapt the
covariance matrix than the CMA-ES does. The function fellrot(2-blocks) has the
inverse Hessian in Md−1\Md−2 but we have minC∈M0 Cond(AC) � 103, which
is relatively small. Even though the convergence speed of the sep-CMA-ES is
slower than the CMA-ES due to this condition number, the adaptation time for
the covariance matrix for the sep-CMA-ES is shorter and it requires fewer func-
tion evaluations to reach the finite target value of ftarget = 10−8. The proposed
algorithm, however, tends to increase k as well as on the fully rotated Ellipsoid
function.
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Fig. 3. Average and standard deviation of the number of function evaluations over ten
independent runs v.s. dimension d. The data points displayed in the figures correspond
to the setting for which the target function values are reached within the given budged
(105d) in all the ten runs. Note that the experiments have been done up to d = 200
for the CMA-CSA and CMA-TPA, whereas the maximum d is 1000 for the other
algorithms except for ftwoaxrot, fellrot, fdisrot where the maximum d is 200.

5 Discussion

The proposed mechanism adapts the number k of vectors, i.e., the model com-
plexity of the restricted covariance matrix, online for VkD-CMA. The proposed
approach removes the need for pre-selection of the restricted covariance matrix
model, which is the main shortage of VkD-CMA. The experimental results reveal
that the proposed algorithm is competitive with a variant of the CMA-ES with a
nearly optimal model of the restricted covariance matrices on most of the prob-
lems with limited variable dependencies, importantly without any tuning of the
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model in advance. On the fully non-separable functions we observe slowdown
compared to the CMA-ES; it takes about 7.5 times more function evaluations at
the worst case (fdisrot, d = 200). On fdisrot, the inverse Hessian has one smaller
eigenvalue than the others, meaning that there is one direction in which the
function value is sensitive. For such a function, the active covariance matrix
update [9], i.e., assigning negative weights for unsuccessful candidates, is known
to accelerate the covariance matrix adaptation in the standard CMA-ES. We
expect that it improves the performance of the proposed algorithm. This is one
of the main future work.
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Abstract. A novel method for regulation of gene expression for arti-
ficial cellular systems is introduced. It is based on an instructon-based
representation which allows self-modification of genotype programs, as
to be able to control the expression of different genes at different stages
of development, e.g., environmental adaptation. Coding and non-coding
genome analogies can be drawn in our cellular system, where coding
genes are in the form of developmental actions while non-coding genes
are represented as modifying instructions that can change other genes.
This technique was tested successfully on the morphogenesis of cellular
structures from a seed, self-replication of structures, growth and replica-
tion combined, as well as reuse of an evolved genotype for development
or replication of different structures than initially targeted by evolution.

1 Introduction

In biological systems, the process that produces phenotypes from genotypes,
i.e., genotype-to-phenotype mapping, is a complex and intricate combination of
interactions between the genotype and the environment. As a result, intermediate
phenotypic stages emerge, which themselves influence the decoding/regulation
of the genotype for the next phenotypic stage. It may be argued that geno-
types possess the ability to self-modify [8]. As such, the development process
is influenced not only by the instructions encoded in the genome, but also by
the mutual interaction between genotype and phenotype, and with the envi-
ronment. Biological genomes possess an intrinsic ability to evolve and adapt to
novel environments, i.e., evolvability [2]. Modularity [5] is a key factor that con-
tributes to evolvability. In fact, many biological networks are modular [1], e.g.,
brain networks, gene regulatory networks, metabolic networks. It turns out that
it is easier to rewire a modular network with independent substructures than
an unstructured network [9]. Kovitz [12] introduced the concept of “cascading
design”, a form of genotype coordination that allows to preserve the relationship
between separate traits. He describes such coordination as “a good house design,
where the plumbing and electrical wiring connect water and electricity to the
devices that need them. If you change the architectural plans for a house to move
the bathroom from the northwest corner to the middle of the east wall, moving
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 14–25, 2016.
DOI: 10.1007/978-3-319-45823-6 2
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Table 1. IBD instruction set. L, C, R, U, D represent Left, Center, Right, Up, and
Down neighbors. n represents the number of CA cell states

Instr. Operation Description Instr. Operation Description

AND N [i1] = N [i1] ∧ N [i2] Bitwise AND INC N [i1] = N [i1] + 1 Increment

OR N [i1] = N [i1] ∨ N [i2] Bitwise OR DEC N [i1] = N [i1] − 1 Decrement

XOR N [i1] = N [i1] ⊕ N [i2] Bitwise XOR SWAP N [i1] ⇔ N [i2] Swapping

NOT N [i1] = ¬N [i1] Bitwise NOT ROR LCR ⇒ RLC Rotate right

INV N [i1] = n − N [i1] Inverse ROL LCR ⇒ CRL Rotate left

MIN N [i1] = min(N [i1], N [i2]) Minimum ROU UCD ⇒ CDU Rotate up

MAX N [i1] = max(N [i1], N [i2]) Maximum ROD UCD ⇒ DUC Rotate down

SET N [i1] = N [i2] Replace NOOP No Operation

the walls and fixtures is not enough. You must also reroute all the pipes and
electrical connections”. If an evolutionary algorithm was to design such a house
plan, “then moving the bathroom across the house requires that many mutations
occur simultaneously: one mutation for each segment of pipe that needs to move,
one mutation for each doorway, etc. As coordination becomes more complex,
the probability of making all the needed mutations simultaneously gets lower and
lower”. Biological evolution seems to possess some kind on intrinsic coordina-
tion. Lee Altenberg describes genes that affect the probability of mutation of
other genes and subroutines in genetic programming [2].

In this paper, cellular automata (CA) are used as a test-bed model of devel-
opment. Traditional CA transition tables are replaced by an algorithmic rep-
resentation, i.e. program, which includes instructions that can modify the code
itself. Such representation may allow the emergence of genotype coordination
mechanisms that may encode different sub-processes. As such, different parts of
the genome may be active at different stages of phenotypic development. The
problems targeted include the morphogenesis of structures from a zygote, the
replication of given shapes, both development and replication achieved by the
same genotype, and the reuse of evolved genotypes for development and replica-
tion of different structures than those initially targeted by evolution.

2 Background

In nature, phenotypes are not determined only by their genotypes. Genes
“behave” in relation to each other and in relation to the environment. Genes
may even suppress other genes, i.e., methylation [18]. In fact, not all genes are
active at all times and methylation is one of the factors that control gene expres-
sion. In the context of artificial evolutionary and developmental (evo-devo) sys-
tems, different models of gene regulation mechanism exist. Some models aim
to be true to biology [15] whether other are more abstract models of develop-
ment [10,11,13]. In this paper, the used model can be placed within abstract
computational models of development based on CA [27]. Therefore, we do not
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aim at a truly biological model of development. The used two-dimensional CA
evo-devo model includes the interplay between genotype, developing phenotype,
and evolutionary developmental effects. Traditionally, CA rules are in the form
of transition tables. One of the implications of such representation is that rules
grow exponentially with the increase in cells neighborhood and number of cell
states. As such, transition tables do not scale well.

2.1 Instruction Based Development

The idea of evolving instruction-based representations is a rather old approach
[14]. Cartesian Genetic Programming (CGP) has been introduced by Miller and
Thompson [17] for the evolution of programs as a directed graph. Sipper [22] pro-
posed the evolution of non-uniform cellular automata with cellular programming.
Bidlo and Skarvada [3] introduced the Instruction-Based Development (IBD)
for the evolutionary design of digital circuits. Bidlo and Vasicek [4] exploited
IBD for the development and replication of cellular automata structures. Even
though their approach has been shown to improve the overall success rate, the
number of available instructions was experimentally chosen. IBD allows rep-
resenting CA transition functions by means of a sequence of instructions exe-
cuted on local neighborhoods in parallel and deterministically update the state
of each cell. Evolutionary growth of genomes has been used to evolve local tran-
sition functions starting from a single neighborhood configuration [19]. Using an
instruction-based approach removes the problem of specifying all combinations
in the transition table. The initial ruleset of IBD is presented in Table 1.

2.2 Scalability and Modularity

Biological organisms are the best example of scalability, ranging from simple
unicellular organisms to multicellular organisms, where trillions of cells develop
from a single cell holding the genome. The genomes of different species have
variable lengths, as result of biological complexification mechanisms [16] through
gene duplications [25] and continuous elaborations. In artificial evo-devo systems,
complexification mechanisms have been used to allow variable length genomes.
Stanley and Miikkulainen [23,24] introduced NeuroEvolution of Augmenting
Topologies (NEAT), a method for the incremental evolution of neural networks.
Nichele and Tufte [19] presented a framework for the evolutionary growth of
genomes using indirect encodings. Trefzer et al. [26] investigated the advantages
of variable length gene regulatory networks in artificial delelopmental systems.

One of the characteristics that allow variable length genomes to evolve and
adapt to new environments is their modularity. Clune et al. [5] showed that a
key driver for evolvability is the modularity of biological networks. Modular arti-
ficial evo-devo systems have been shown to have increased evolvability. Kovitz
[12] has investigated the evolution of coordination mechanisms using a modular
cascading design based on graph representation inspired by CGP [17]. Hard-
ing et al. introduced Self-modifying Cartesian Genetic Programming (SMCGP)
[7], a form of CGP where genotype programs are allowed to modify themselves.
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Taking inspiration from IBD and SMCGP, we propose a cellular automata devel-
opmental system based on self-modifying cellular programs.

2.3 Self-modifying Instrucion Based Developement

We propose Self-modifying Instruction Based Development (SMIBD) for cellular
automata, where the instruction set in Table 1 is extended with the instructions
in Table 2. As such, genomes have the ability to perform different functions
during different developmental stages. Each cell executes the same program in
parallel on local neighborhoods in order to update their state. Since the program
can change, genomes have the ability to duplicate or even to destroy themselves.

3 Experimental Setup

A genetic algorithm (GA) is designed to evolve solutions to 4 different problems:

� Development of given structure from a seed;
� Replication of given structures (minimum 3 replicas);
� Development of given structure from a seed followed by replication of developed

structure (minimum 3 replicas);
� Re-evolution of solutions found for a given structure for the development and

replication of a different structure.

The used morphologies are shown in Fig. 1, where different colors identify
different cellular states. Structures of different sizes, complexities and number

Table 2. Instructions added to IBA instruction-set in order to allow Self Modification
(SM).

Instruction Parameters Description

SKIP N [i1] = Nskips Skip next N [i1] instructions.

Not a SM instruction

MOVE N [i3] = Start Move instruction at line

N [i4] = Insert N [i3] just before N [i4]

DUPE N [i3] = Start Copy instruction at line

N [i4] = Insert N [i3] just before N [i4]

DEL N [i3] = Start Delete instruction at line

N [i3]

CHF N [i3] = Start Change instruction at

N [i4] = Instr N [i3] to instruction at N [i4]

CHP N [i1] = Param Change N [i1] parameter at

N [i3] = Start N [i3] with value in N [i2] or

N [i2|4] = V alue N [i4] depending on N [i1]
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0a, 0b: 1a, 1b: 2a, 2b: 3a, 3b: 4a, 4b: 5a, 5b: 6a, 6b:

Fig. 1. Left to right; 0: simple square (2 states), 1: four squares (2 states),
2: three stripes flag (3 states), 3: generic four colors flag (4 states), 4: small
Norwegian flag (3 states), 5: big Norwegian flag (4 states), 6: creeper (3 states).
Note that two versions of each structure are used: (a) structure with the
necessary number states, (b) structure with an additional support state
that is not required in the final structure, but evolution is free to explore it.
The different structures are referred in the text as structure 1a, structure
1b, etc. (Color figure online)

of states are used. The four problems are tested with two different CA geno-
type representations: traditional CA transition tables and CA using SMIBD.
All the experiments are performed on 2-dimensional CA with von Neumann
neighborhood (5 neighbors) with cyclic boundary conditions. The GA used a
population of size 50, single point mutation with 2 % probability per genotype
symbol, multi-point crossover with 10 % probability per genotype symbol, and
fitness proportionate selection. Genotypes in the form of transition tables have a
size of NK , where N is the number of cell states and K is the neighborhood size
(5 with von Neumann neighborhood). In case of SMIBD, the genotypes are com-
posed by 10 instructions in the form rule, op1, op2, op3, op4, where rule identifies
the rule number, op1 and op2 represent two neighbors, op3 and op4 are in the
range [0, number of instructions in program]. CA development is executed for 40
steps. The fitness function for the development problem and for the replication
problem is searching for matching structures, one in the case of development and
three in the case of replication. For more information on similar fitness functions
see [4,21]. For the developement and replication problem, the individual fitness
functions are used, the one for development in the first 20 development steps and
the one for replication in the 20 steps following the best developmental stage.
Note that whether for the development problem the lattice size is the same as
the wanted structure size, for the development and replication the lattice size is
bigger as to guarantee enough space for the wanted replicas to emerge. As such,
the initial development is considered to be a much harder problem because struc-
tures cannot rely on border conditions. For the re-evolution problem, the fitness
function is modified by the different target structure. The same population is
used as for the evolution of the first wanted structure.

4 Results and Analysis

4.1 Development

Results obtained for the morphogenesis of structures are summarized in Table 3.
In particular, it is possible to notice that for structures 2a and 3a, the genomes
that allow self-modification produce higher success rate in fewer generations on
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Table 3. General results on the development problem using TT and SMIBD. Avg.
over 100 runs.

Transition table Self modifying IBD

Problem 2a 3a 4a 4b 2a 3a 4a 4b

Success rate % 86 34 0 0 100 96 5 5

Average (numGen) 13139 30676 x x 1912 13309 57224 47042

StDev. (numGen) 18835 27660 x x 9416 22687 42635 12950

average. For structures 4a and 4b, working solutions are found which were not
achievable by transition table genomes. A general observation that emerged while
inspecting the evolved solutions is that transition table representation tends to
develop structures that quickly degenerate after few development steps and never
recover. Self-modifying genomes often produce more stable solutions that retain
the final structure, i.e., point attractors, or cycle a few steps before reaching the
wanted structure again, i.e., short cyclic attractors. Another observation (see [6]
for detailed results, not included here due to space limitations) is that a genotype
representation that allows the program to modify itself, may allow a degree of
control in developmental speed. As such, it may be able to evolve solutions that
grow in different developmental times. This is of particular interest if one aims
at developing given structures at specific points of the developmental time.

4.2 Replication

Table 4 presents the results for the replication problem on the tested structures.
It is clearly visible that the proposed method outperforms the traditional CA
transition table, both in terms of success rate and average number of generations
needed to evolve a solution.

Table 4. Results on the replication problem using TT and SMIBD. Avg. over 100
runs.

Transition table Self modifying IBD

Pattern 1a 2a 3a 4b 5a 6a 6b 1a 2a 3a 4b 5a 6a 6b

Success % 62 5 0 0 0 0 0 100 100 100 100 100 22 100

Avg. Gen 2116 4909 x x x x x 38 279 54 37 94 4737 54

StDev. Gen 2533 2009 x x x x x 24 344 53 25 72 2745 42

Continued Replication. It was observed that self-modifying genomes allowed
solution to continue replication after the wanted number of replicas was achieved,
whether transition tables often degenerated their behavior into a randomized
pattern. As side experiment, solutions obtained with self-modification were re-
developed in a bigger lattice of size 75× 75 cells for a longer developmental
time of 120 steps. In some cases, not only the replication process continued, but
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it produced a “massive” replication effect. Two examples are shown in Fig. 2,
for structures 3a and 1a, respectively. Note: the original GA fitness required a
perfect solution to produce at least 3 replicas (no additional award beyond 3).

Fig. 2. Two examples of mass replications.

General Replicators. One of the
aspects that we investigated was the
“universality” of the evolved replica-
tors, or in other words, whether the
obtained solutions were able to gener-
alize to other structures. As such, the
evolved solutions obtained with self-
modifying genomes were reused, i.e.,
once the solution was found for the
replication of a structure, the struc-

ture in the lattice was replaced and the CA executed again. Quite surprisingly, in
many cases the evolved programs could replicate any of the structures. Examples
are shown in Figs. 3(a), (b), (c), and (d). In Fig. 3(a), a solution for structure 3a
(4 states) is used on structure 2a (3 states). In this case, the supposedly unused
state (yellow) is actually used as a support state. The two available support
states are not used in Fig. 3(b), where structure 1a (2 states) is replicated with a
solution for structure 3a (4 states). Figure 3(c) replicates structure 4a (4 states)
using a solution for 3a (4 states), where the number of necessary states is the
same. In Fig. 3(d), the spatial topology is preserved, whether the actual states
(colors) are incorrect. Finally, Fig. 3(e) shows the replication of the Norwegian
flag (4 states) using a solution for the French flag (4 states). Note that both
solutions use a support state as in the final structures only 3 states are actually
required. A transition table representation, on the other hand, would require
an exponential scaling in the table size to encode for the neighborhood configu-
rations resulting from the additional state. Also, solution evolved for a specific
number of states are not practically usable with a different number of states,
i.e., scale up or down. Self-modifying programs scale well in this regard.

4.3 Development and Replication

In this section, the described experiments target the development of a given
structure first, followed by the replication of the grown structures. As such, the
same genotype must encode both processes. This is a very interesting property
that might be present in systems that target the development of self-replicating
machines. In Table 5 numerical results are given for the tested problems, with
a comparison of genotypes using transition tables and self-modification. For a
simple structure as 0a (3 × 3 cells and 2 states), the results are fairly similar.
More complex structures, as 2a and 3a did not produce any valid solution using
transition tables. Self-modification allowed to produce some working solutions,
able to both develop and replicate further. Solutions found by the two methods
are inspected in Figs. 4 and 5. It is possible to notice that even if both examples
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(a)

(b)

(c)

(d)

(e)

Fig. 3. Example of solution to the replication problem for (a) 3a used on 2a, (b) 3a
used on 1a, (c) 3a used on 4a (4 state), (d) 3a used on 4a (3 state, it can no longer
replicate the image, but the structure is perfectly replicated), (e) 3a used on the larger
structure 5a (note that the lattice size had to be increased to accomodate the larger
structure). (Color figure online)

Table 5. Results on development and replication problem using TT and SMIBD. Avg.
over 100 runs.

Transition table Self modifying IBD

Pattern 0a 2a 3a 0a 2a 3a

Success rate % 96 0 0 94 2 8

Avg. (NumGen) 877 x x 1913 7652 5818

StDev. (NumGen) 1228 x x 1944 2047 2973

produce valid solutions, there are clear differences. Using transition tables, the
structure is replicated at step 3 and at step 7 four replicas of the given shape
emerge. After, the genotype is not able to keep up the replication process and
patterns soon disappear. The self-modifying genome example shows a different
scenario (note that in Fig. 5, a bigger lattice is used to demonstrate the replica-
tion abilities, whether the original solution was evolved on a smaller lattice). At
step 3 the wanted structure emerges and at step 7 five replicas have appeared.
This process of replication never stops. In fact, at step 11, the 5 replicas are still
present but with some additional space to allow new replicas to emerge, which
finally appear at step 15. This process of making space and replicating continues
indefinitely (at least for the observed developmental time).
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4.4 Re-evolution

Taking inspiration from [12], we want to investigate the ability of the self-
modifying representation to evolve solutions to a problem and then re-evolve to
a different problem, i.e., adaptation to new fitness requirements/environmental
change. We first evolve solutions for the morphogenesis of a given structure
and then we use the same evolved population targeting a different morphol-
ogy. This task is particularly difficult if transition tables are used, as evolution
would require a totally different strategy, i.e., moving in a totally different area
of the fitness landscape. On the other hand, we expect that a certain struc-
ture and modularity will be retained in the self-modifying program solutions.
In addition, since both targeted structures are initialized from the same initial
seed, i.e. zygote, developmental trajectories [20] may be visualized and shared
developmental paths may be identified. Note that re-evolution of solutions for
the replication task is considered a much easier task, as shown in the previous
section where the evolved replicators presented a certain degree of generalization.

In Fig. 6 (Left) the structure 3a is evolved first, then structure 2b (2a with
one additional available state) is used as a new target structure. A new solution
is found in only 9 generations. Note that 2b is used as it has the same number
of states but different arrangement of colors in the stripes pattern. The first five
states in the trajectory are shared, then the paths split but retain the same “algo-
rithmic” structure to reach the different solutions. In general, 100 evolutionary
runs were performed. The GA using transition tables evolved the first solution
27 times. Out of those 27 times, 24 were re-evolved successfully to the second
solution. On the other hand, with the usage of self-modification, 89 solutions
were found to the first structure, which ended up in 84 successful re-evolution of
the second structure. Note that with self-modifying genomes, loops (attractors)
can be escaped as the regulation mechanism allows different parts of genomes to
change or be active at different phenotypic stages.

In Fig. 6 (Right) the structure 4b (Norwegian flag with 4 states) was evolved
first and then the structure 2b (French flag with 4 states) is targeted. The
selected morphologies have different properties, e.g. horizontal symmetry vs.
shifted symmetry. Using transition tables did not produce any result for the
re-evolved structure. Self-modifying genomes allowed the 5 solutions found for
the first structure to be successfully re-evolved to the second structure. In the
shown example, some degree of trajectory modularity is present, indicating that
the underlying “algorithmic” structure is retained.

Fig. 4. TT solution to development and replication 0a. States 1 to 7 and 30.
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Fig. 5. SMIBD solution to the development and replication problem 0a, using a 75× 75
lattice. At step nr. 31 a total of 61 replicas are present.

Fig. 6. Left: Developmental trajectories of a solution to problem 3a (black) and a re-
evolved solution to 2b (blue), successfully found after 9 generations. The first 5 states
are identical, then trajectories split but maintain similar topology. Right: Develop-
mental trajectories of a solution to problem 4b (black) and a re-evolved solution to 2b
(blue), with intertwined developmental trajectory. (Color figure online)

5 Conclusions and Future Work

In this paper we presented a novel method for regulation of gene expression for arti-
ficial evo-devo systems, namely Self-modifying Instruction Based Development.
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Cellular automata have been used as experimental platform. Traditional CA tran-
sition tables have been compared to CA genotypes in the format of programs with
self-modifying instructions, which allowed the emergence of a genome coordination
mechanism. In fact, genomes have the ability to self-modify and activate different
genes at different stages of the developmental process. Several problems have been
solved successfully, as the development of structures, replication, development and
replication combined, and reuse of an evolved genotype for development or repli-
cation of different structures than those initially targeted by evolution. SMIBD
outperformed traditional transition tables, providing the possibility of evolving
regulation mechanisms that are more modular. In the future we would like to ana-
lyze the scalability aspects of the proposed technique and, in particular, measure
the evolvability of solutions with self-modifying genomes. In addition, we want to
investigate reuse and re-evolution of solutions towards adaptivity to changing envi-
ronments of lower and higher complexity.
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Abstract. According to a theorem by Astete-Morales, Cauwet, and
Teytaud, “simple Evolution Strategies (ES)” that optimize quadratic
functions disturbed by additive Gaussian noise of constant variance can
only reach a simple regret log-log convergence slope ≥ −1/2 (lower
bound). In this paper a population size controlled ES is presented that
is able to perform better than the −1/2 limit. It is shown experimentally
that the pcCMSA-ES is able to reach a slope of −1 being the theoretical
lower bound of all comparison-based direct search algorithms.

1 Introduction

In many real-world applications the problem complexity is increased by noise.
Noise can stem from different sources such as randomized simulations or sensory
disturbances. Evolutionary Algorithms (EAs) proved to be successful for opti-
mization in the presence of noise [1,2]. However, the performance of the EAs
degrades under strong noise and can even prevent the EA from converging to
the optimizer.

Performance of EAs is usually measured by the amount of objective func-
tion evaluations n needed to reach a certain expected fitness compared to the
non-noisy objective function value at the optimizer. This quantity is sometimes
referred to as simple regret SR(n). It is defined in the case of minimization of
the noisy function f̃(y),y ∈ R

N as

SR(n) := E[f̃(yn)] − f(ŷ), (1)

where the noisy fitness f̃(y) is given by f̃(y) = f(y)+δ and yn is the object vec-
tor recommended by the EA after n f̃(y) evaluations. f(y) is the deterministic
objective function to be optimized which is disturbed by unbiased noise δ. The
minimizer of f(y) is denoted as ŷ. The random variate δ describes the noise,
which may or may not scale with the objective function value

(a): δ ∼ σεr
f(y)N (0, 1) and (b): δ ∼ σεN (0, 1), (2)
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and is assumed to be normally distributed with standard deviation σεr
|f(y)| and

σε, respectively. The quantity σε is referred to as noise strength.
There are different options to tackle the performance degradation of EAs

that can be basically subdivided into two classes:

(i) reducing the noise observed by the EA by use of resampling, i.e. averaging
over a number of κ objective function values (for a fixed y), and

(ii) handling the noise by successively increasing the population size.

However, both methods implicate an increase of the required number n of fitness
evaluations. In order to avoid a unnecessary excess of function evaluations, the
question arises at which point to take the countermeasures (ii) or (i), i.e. to
increase the population size or to use the f̃ -averaging. As far as option (a) is
concerned, there is a definite answer regarding the (μ/μI , λ)-Evolution Strategy
(ES) on quadratic functions [3,4]: It is better to increase the population size
than to perform resampling.

No matter whether one uses option (i) or (ii), in both cases techniques are
required to detect the presence of noise. This can be easily done by resampling
a candidate solution (κ = 2) because noise is reflected in changes of a candidate
solution’s measured fitness of two consecutive evaluations (for fixed y). However,
small noise strengths are usually well tolerated by the ES. That is, the ES can
still approach the optimizer. In such cases there is no need to handle this noise.
Another approach introduced in the UH-CMA-ES [5] considers the rank changes
within the offspring individuals after resampling the population with κ = 2. If
there are no or only a few rank changes, one can assume that the noise does not
severely disturb the selection process. This approach is interesting, but seems
still to be too pessimistic, i.e., even if there is a lot of rank changes, there may be
still progress towards the optimizer due to the genetic repair effect taking place
by the intermediate recombination operator. In [4] a population size control rule
was proposed which is based on the residual error. The dynamics of the (μ/μI , λ)-
ES in a noisy environment with constant noise strength σε will usually approach
a steady state in a certain distance to the optimizer. At that point, fluctuations
of the parental fitness values around their mean value can be observed. The
population size is then increased if the fitness dynamics on average does not
exhibit further progress.

This paper presents a new detection method which is based on a linear regres-
sion analysis of the noisy fitness dynamics. Estimating the slope of the linear
regression line, the direction of the trend can be determined. However, the esti-
mated slope is a random variate. Therefore, a hypothesis test must be used to
check the significance of the observed trend. If there is not a significant fitness
decrease tendency, the population size will be increased. In the opposite case the
population size can be decreased (up to a predefined limit). This approach is inte-
grated into the covariance matrix self-adaptation evolution strategy (CMSA-ES)
[6] yielding the population controlled (pc)CMSA-ES.

The applicability of the proposed algorithm is demonstrated on the noisy
ellipsoid model. Investigating the SR(n) performance dynamics of the pcCMSA-
ES in the strong noise scenario σε = const. (i.e., the noise does not vanish at the
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optimizer), a remarkable observation can be made: SR(n) ≈ c/n. That is, the
slope of the log-log plot reaches −1 approximately for sufficiently large number
n of function evaluations. This is in contrast to a Theorem derived in [7]. There
it is stated that simple ES can only reach a slope ≥ −1/2, no matter whether
one uses resampling or population upgrading. Remarkably, the −1 slope actually
observed already represents the lower performance bound that cannot be beaten
by any direct search algorithm as has been proven in [8].

The rest of this paper is organized as follows. The proposed noise detection
technique by linear regression analysis is presented in Sect. 2. This technique is
used to extend the CMSA-ES with a population control rule in Sect. 3 yielding
the pcCMSA-ES. Empirical investigations are provided and discussed in Sect. 4.
The paper closes with a summary and a outlook at future research questions.

2 Stagnation Detection by Use of Linear Regression
Analysis

Stagnation or divergence behavior coincides with a non-negative trend within the
observed fitness value dynamics of the ES (minimization considered). For trend
analysis a regression model of the parental centroid fitness sequence of length L
is used. If the slope of this model is significantly negative, the ES converges. In
the opposite case, the population size must be increased. The decision will be
based on statistical hypothesis testing.

Considering a not too long series of observed parental centroid fitness values,
the observed time series can be approximated piecewise by a linear regression
model. That is, a straight line is fitted through a set of L data points {(xi, fi), i =
1, . . . , L} in such a manner that the sum of squared residuals of the model

fi = axi + b + εi (3)

is minimal. Here εi models the random fluctuations. Determining the optimal a
and b is a standard task yielding [9]

â =
∑L

i=1 (xi − x̄)(fi − f̄)
∑L

i=1 (xi − x̄)2
and b̂ = f̄ − âx̄, (4)

where x̄ and f̄ represent the sample means of the observations. Due to the εi

random fluctuations the estimate â itself is a random variate. Therefore, the real
(but unknown) a value can only be bracketed in a confidence interval. Assuming
L sufficiently large, the central limit theorem guarantees that the estimator â of
a is asymptotically normally distributed with mean a. Thus, the sum of squared
residuals

∑L
i=1(fi − b − axi)2 is distributed proportionally to χ2

L−2 with L − 2
degrees of freedom and is independent of â, cf. [9]. This allows to construct a
test statistic

TL−2 =
â − a

sâ
with sâ =

√√√√
∑L

i=1(fi − b − axi)2

(L − 2)
∑L

i=1(xi − x̄)2
, (5)

where TL−2 is a t-distributed random variate with L − 2 degrees of freedom [9].
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Since â is a random variate, an observed â < 0 does not guarantee conver-
gence. Therefore, a hypothesis test will be used to put the decision on a statistical
basis. Let H0 : a ≥ 0 be the hypothesis that the ES increases the population size
(because of non-convergence). We will only reject H0 if there is significant evi-
dence for the alternative H1 : a < 0. (In the latter case, the population size will
not be increased.) That is, a left tailed test is to be performed with a significance
level α (probability of wrongly rejecting H0), i.e. Pr[â < c|H0] = α, where c is the
threshold (to be determined) below which the correct H0 is rejected with error
probability α. Resolving the left equation in (5) for â yields â = a + sâTL−2

and therefore Pr[a + sâTL−2 < c|H0] = α. This is equivalent to Pr[TL−2 <
(c−a)/sâ|H0] = α. Noting that Pr[TL−2 < (c−a)/sâ] = FTL−2((c−a)/sâ) is the
cdf of TL−2, one can apply the quantile function yielding (c − a)/sâ = tα;L−2,
where tα;L−2 is the α quantile of the t-distribution with L−2 degrees of freedom.
Solving for c one obtains c = a + sâtα;L−2. Thus, c ≥ sâtα;L−2 and as threshold
(a = 0) one gets c = sâtα;L−2. That is, if

â < sâtα;L−2 (6)

H0 is rejected indicating a significant negative trend (i.e., convergence towards
the optimizer, no population size increase needed).

3 The pcCMSA-ES Algorithm

Combining the convergence hypothesis test of Sect. 2 with the basic (μ/μI , λ)-
CMSA-ES introduced in [6] an ES with adaptive population size control, the
population control (pc)CMSA-ES, is presented in Algorithm1. Until the algo-
rithm has generated a list F of L parental centroid function values an ordinary
CMSA-ES run with truncation ratio ϑ is performed over L generations: In each
generation the (μ/μI , λ)-CMSA-ES generates λ offspring with individual muta-
tion strengths σl, see lines 4 to 10. The mutation strength σl can be interpreted
as an individual scaling factor that is self-adaptively evolved using the learning
parameter τσ = 1√

2N
(N – search space dimension). The mutation vector zl

of each offspring depends on the covariance matrix C which corresponds to the
distribution of previously generated successful candidate solutions. The update
rule can be found in line 30 where τc = 1 + N(N+1)

2μ is used. After creation of
the offspring, the objective function (fitness) values are calculated. Having com-
pleted the offspring population, the algorithm selects those μ of the λ offspring
with the best (noisy) fitness values f̃m;λ, m = 1, . . . , λ. Notice, m;λ denotes
the mth best out of λ individuals. Accordingly, the notation 〈.〉 refers to the
construction of the centroid of the respective values corresponding to the μ
best offspring solutions. For example, the centroid of the mutation strengths is
〈σ〉 = 1

μ

∑μ
m=1 σm;λ. Subsequently, the pcCMSA-ES examines the list F using

the linear regression approach. The hypothesis test (6) is implemented within
the program detection(F int, α), line 19. Analyzing the fitness interval F int, it
returns the decision variable td = 1 if (6) is fulfilled, else td = 0. The parameter
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Algorithm 1. pcCMSA-ES
1: Initialization: g ← 0; wait ← 0; 〈σ〉 ← σ(init); 〈y〉 ← y(init);
2: μ ← μ(init); μmin ← μ(init); C ← I ; adjC ← 1
3: repeat
4: λ ← �μ/ϑ�
5: for l ← 1 to λ do
6: σl ← 〈σ〉eτσN (0,1)

7: sl ← √
CN (0, I)

8: zl ← σlsl

9: yl ← 〈y〉 + zl

10: f̃l ← f̃(yl)
11: end for
12: g ← g + 1
13: 〈z〉 ←∑μ

m=1 zm;λ

14: 〈σ〉 ←∑μ
m=1 σm;λ

15: 〈y〉 ← 〈y〉 + 〈z〉
16: add f̃(〈y〉) to F
17: if g > L ∧ wait = 0 then
18: F int ← F (g − L : g)
19: td ← detection(F int, α)
20: if td = 0 then
21: μ ← μcμ

22: adjC ← 0
23: else
24: μ ← max (μmin, �μ/bμ)�)
25: end if
26: wait ← L
27: else if wait > 0 then
28: wait ← wait − 1
29: end if

30: C ←
(
1 − 1

τc

)adjC

C + adjC
τc

〈ss�〉
31: until termination condition
32: return 〈y〉

α refers to the significance level of the hypothesis test. As long as a negative
trend is detected the algorithm acts like the original CMSA-ES. Indication of
a non-negative trend (td = 0) leads to an increase of the population size μ
by multiplication with the factor cμ > 1, line 21, keeping the truncation ratio
ϑ = μ/λ constant by line 4. In order to prevent the next hypothesis test from
being biased by old fitness values, the detection procedure is interrupted for L
generations (line 26). Additionally the covariance matrix adaptation in line 30
is turned off, once the algorithm has encountered significant noise impact. For
this purpose the parameter adjC is set to zero in line 22. Stalling the covariance
matrix update is necessary to avoid a random matrix process resulting in a rise
of the condition number of C without gaining any useful information from the
noisy environment.
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In the case the hypothesis test returned td = 1, i.e. (6) is fulfilled, there is
a significant convergence trend. In such a situation one can try to minimize the
efforts and reduce the population size in line 24. Such a reduction can make sense
in the distance dependent noise case (2a) where there is a minimal population
size above which the ES converges without further population size increase.
That is, the pcCMSA-ES increases first the population size aggressively and
after reaching convergence, the population size is slowly decreased to its nearly
optimal value. That is, the reduction factor bμ should be related to that of cμ,
e.g. bμ = k

√
cμ (k = 2, or 3), or can be chosen independently, but should fulfill

bμ < cμ.
Regarding fitness environments where the ES has to deal temporarily with

noisy regions, it might be beneficial to turn the covariance matrix adaptation
on again once the ES has left the noisy region. That is, if a significant negative
trend is present again the parameter adjC should be reset to one in order to gain
additional information about advantageous search directions. This can easily
be obtained by inserting adjC ← 1 after line 24. However, as for the noisy
fitness environments considered here, this adjustment is not able to provide
significant improvements in terms of the ES’s progress and therefore has not
been implemented. It remains to be investigated in further studies.

4 Experimental Investigations and Discussion

The behavior of the proposed pcCMSA-ES algorithm is investigated on the ellip-
soid model

f(y) =
∑N

i=1
qiy

2
i (7)

with noise types (2b) and (2a). Especially, the cases qi = 1 (sphere model) and
qi = i, i2 have been considered. In the simulations the pcCMSA-ES is initialized
with standard parameter settings and σ(init) = 1 at y(init) = 1 in search space
dimension N = 30. The initial population sizes are set to μ = 3 and λ = 9
resulting in a truncation ratio ϑ = μ

λ = 1
3 during the runs. The population size

factors are cμ = 2 and bμ = √
cμ. The significance level of the hypothesis test in

line 19 of Algorithm1 is α = 0.05. The length L of the f̃ -data collection phases
must be chosen long enough to ensure a sufficient f improvement. As shown
in [10], the effort to get an expected relative f improvement is proportional
to the quotient of the trace of the Hessian of f and its minimal eigenvalue.
Hence, for the sphere the effort is proportional to N and for the qi = i2 ellipsoid
proportional to Σq :=

∑N
i=1 qi. In the experiments L = 5N and L = Σq are

used.
Figure 1 shows the pcCMSA-ES dynamics for the (2b) case of constant σε = 1

noise. Considering the simple regret curves (blue), after a transient phase one
observes that the ES on average continuously approaches the optimizer at a linear
order in the log-log-plot. That means that SR(n) ∝ na with a < 0. The parallelly
descending dashed (magenta) lines h(n) ∝ n−1 indicate that the pcCMSA-ES
actually realizes an a ≈ −1. Fitting linear curves (solid magenta) to those SR(n)
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Fig. 1. The dynamical behavior of the pcCMSA-ES subject to additive fitness noise of
strength σε = 1. Considering the sphere model as well as the ellipsoid model qi = i2

and search space dimensionality N = 30, four dynamics are plotted against the number
of function evaluations n: the noise-free fitness of the parental centroid SR(n) = f(〈y〉)
(blue), the corresponding weighted residual distance Rq(n) = Rq(〈y〉) (red), and the
mutation strength 〈σ〉 (green). The solid black step function predicts the residual steady
state distance according to Eq. (8). In both cases, it is steadily reduced with each μ
elevation. (Color figure online)

graphs, using the technique described by Eqs. (3)–(5), one can calculate the
confidence intervals for a given confidence level, e.g. 95 %, which is displayed in
Fig. 1. The observed a ≈ −1 is remarkable since it apparently seems to violate a
theorem by Astete-Morales, Cauwet, and Teytaud [7] that states that “Simple
ES” can only reach an a > − 1

2 . The authors even supported their theorem with
experiments regarding a tailored (1 + 1)-ES with resampling that came close
to − 1

2 and the UH-CMA-ES [5] that produced only a-values in the range of
−0.1 to −0.3. Having a look at the assumptions made to prove the theorem,
one finds the reason in the definition of “Simple ES”. It contains a common
assumption regarding the operation of ES – the scale invariance of the mutations.
Roughly speaking, the expected value of the mutation strength should scale with
the distance to the optimizer. That is, if one gets closer to the optimizer, the
mutation strength should shrink. Looking at the (green) 〈σ〉 dynamics in Fig. 1
one sees that this assumption does not hold for the pcCMSA-ES. Remarkably,
〈σ〉 reaches a constant steady state value. Since theorems cannot be wrong, unlike
the (1 + 1)-ES and the UH-CMA-ES, the pcCMSA-ES is not a “Simple ES”.

While the pcCMSA-ES approaches a fixed mutation strength, on average
it approaches the optimizer continuously as can be seen in Fig. 1 where the
dynamics of the weighted residual distance Rq to the optimizer is displayed (red

curves). This distance measure is defined as Rq(y) :=
√∑N

i=1 q2i y2
i . According

to formula (22) in [3] the steady state expected value of Rq(y) can be estimated
for fixed population sizes

Rss
q =

√
σεΣq

4μcμ/μ,λ
, (8)
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where cμ/μ,λ is the well-known progress coefficient [11]. This distance is reached
by the CMSA-ES after a sufficiently long generation period (keeping μ and λ
constant). Since the pcCMSA-ES changes the population size successively, the
theoretical estimate (8) can be used to check whether the population size dynam-
ics of the pcCMSA-ES works satisfactorily. The Rq dynamics follows closely the
prediction of (8), which are displayed as (black) staircase curves.

As a second example, the case of distance dependent noise is considered in
Fig. 2. The noise variance vanishes when approaching the optimizer. According
to the progress rate theory for the noisy ellipsoid [12], one can derive an evolution
condition

4μ2c2μ/μ,λ > σ∗2 + σ∗
ε
2 (9)

that states that given upper values of normalized normalized noise and muta-
tion strengths there is a parental population size μ (μ/λ = const.) above which
the ES converges to the optimizer. Here the normalized quantities are defined
as σ∗ := σΣq/Rq and σ∗

ε := σεΣq/(2R2
q). Figure 2 shows the dynamics of the

pcCMSA-ES on sphere and ellipsoid (qi = i2) model with normalized noise
strengths σ∗

ε = 10 and σ∗
ε = 4, respectively. Taking a look at the solid blue lines

representing the simple regret (being the noise-free fitness dynamics f(〈y〉)), one
observes initially an increase of the parental simple regret. That is, the pcCMSA-
ES departs from the optimizer. This is due to the choice of the initial population
size of μ = 3, λ = 9 being too small. However, after the first L generations, the
first hypothesis test indicates divergence and the population size μ is increased
by a factor cμ = 2. This increase repeats two or three times, as can be seen
considering the (black) staircase curves displaying λ in Fig. 2, until a population
size has been reached where the hypothesis test in line 19 of Algorithm 1 returns
1 indicating convergence, the SR-curves start to descend. This behavior is also
reflected by the dynamics of the residual distance to the optimizer Rq(〈y〉) (red).
This attests that the pcCMSA-ES is able to adapt an appropriate population
size needed to comply with Eq. (9) rather than simply increasing it arbitrarily. In
contrast to the previous case of additive noise the mutation strength dynamics
in Fig. 2 indicate a successive reduction of the noise strength σ. This is due to
the decreasing influence of the distance dependent noise as the ES approaches
the optimizer. In such cases the behavior of a “Simple ES” is desirable. The
pcCMSA-ES behaves as such and demonstrates its ability to exhibit a linear
convergence order similar to the non-noisy case. However, it has to be pointed
out that the current population size reduction rule can result in interrupted
convergence behavior in cases of very strong distance dependent noise. This can
be inferred from the peaks in the right graph of Fig. 2. An attempt to address
this disruption would be shortening both the test interval length L as well as
the waiting time wait of the algorithm after each population size reduction and
enlarging them again after a population size escalation, respectively. Also switch-
ing off the population size reduction might be a reasonable approach. Eventually,
the population size control configuration under severe fitness proportional noise
should be examined more closely in future investigations.
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Fig. 2. The dynamical behavior of the pcCMSA-ES subject to distance dependent
noise of normalized noise strength σ∗

ε . Considering the sphere model as well as the
ellipsoid model qi = i2 with search space dimensionality N = 30, four dynamics are
plotted against the number of function evaluations n: the simple regret of the parental
centroid 〈y〉 (blue), the corresponding residual distance Rq(〈y〉) (red), and the mutation
strength 〈σ〉 (green). The solid black staircase presents the offspring population size
λ = �μ/ϑ�. According to Eq. (9), it will be increased up to a value where the strategy is
able to establish continuous progress towards the optimizer. Afterwards the population
size fluctuates around that specific value. (Color figure online)

5 Summary and Outlook

This paper presented an EA for the treatment of noisy optimization problems
that is based on the CMSA-ES. Within its concept a mechanism for identification
of noise-related stagnations or divergence behavior is integrated. Consequently,
having identified noise related behavior the algorithm increases the size of the
parental as well as the offspring population. This way it improves the likelihood
to approach closer residual distances to the optimizer. Significant noise distur-
bances become noticeable by the absence of a clearly negative trend (minimiza-
tion considered) within the noisy fitness dynamics. The slope of the respective
trend can be deduced from the corresponding linear regression line. The esti-
mated trend is used in a hypothesis test to decide whether there is convergence
to the optimizer. If no further significant noise influences are discovered in sub-
sequent tests the population size is again gradually reduced to avoid unnecessary
function evaluations. This way the algorithm is capable to adapt the appropri-
ate populations size. Accordingly, the adjusted CMSA-ES is denoted population
control covariance matrix self-adaptation evolution strategy – pcCMSA-ES.

As a proof of concept, the pcCMSA-ES was tested on the noisy ellipsoid
model considering two noise models, which obey different characteristics. The
additive fitness noise case with constant noise strength σε requires a permanent
increase of the population size. On the other hand, the distance dependent noise
case (which is equivalent to fitness proportionate noise in the case of the sphere
model) requires only a limited population size increase. A well-crafted EA should
be able to handle both cases (and of course, non-noisy optimization problems as
well).
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The empirical investigation of the strong noise case σε = const. revealed
a remarkable behavior of the pcCMSA-ES. The dynamics by which this ES
approaches the optimizer seems to be already the fastest one can expect from a
direct search algorithm on quadratic functions. The simple regret obeys an na

dynamics with a ≈ −1. This is remarkable since “Simple ES” should only allow
for an a ≥ −1/2 no matter how the noise is handled. The reason for this behavior
is that unlike “Simple ES” the pcCMSA-ES does not scale the mutation strength
σ in proportion to the distance to the optimizer in case of strong noise. This is
different to other ESs such as (1+1) or UH-CMA. However, if there is no strong
noise, pcCMSA-ES behaves like a “Simple ES”.

The pcCMSA-ES requires the fixing of additional exogenous strategy para-
meters. Particularly, the length L of the interval of observed fitness values that
are considered in a single test decision has to be examined more closely. L should
be large enough to ensure a sufficient evolution (convergence) of the fitness val-
ues. From the progress rate theory it is known that the number of generations
needed for a certain fitness improvement scale with the quotient of the trace
of the Hessian of f and its smallest eigenvalue. Therefore, L should be chosen
proportional to N (search space dimensionality) in the sphere model case and
to N

6 (N + 1)(2N + 1) in the case of the ellipsoid model qi = i2. However, in the
black-box scenario the Hessian is not known. However, as long as the initial noise
influence is small, the pcCMSA-ES transforms the optimization problem grad-
ually into a local sphere model. In such cases, the L ∝ N choice should suffice.
If, however, the noise is already strong in the initial phase, there is no defini-
tive choice and the user has to make a guess regarding the trace vs. minimum
eigenvalue ratio. Choosing L too large has a negative influence on the efficiency
of the ES. It effects the lead time of the algorithm needed to establish an initial
interval of fitness observations Fint as well as the waiting time wait. The para-
meter wait governs the length of the waiting period after a single population
adjustment. After a transient phase of wait generations the algorithm starts
again with the analysis of the fitness dynamics. It is not evident whether the
parameter wait should depend on the length L of the fitness interval. The wait-
ing time is essential to prevent wrong test decisions based on fitness dynamics
resulting from different population specifications. A beneficial parameter setting
has to be determined in future empirical investigations. There are also open
questions regarding a profound choice of the population size change parameters
cμ and bμ and the significance level α = 0.05 used. These question should be also
tackled by extended empirical investigations considering different test functions
and noise scenarios.

Regarding theory, the analysis of certain aspects of the pcCMSA-ES seems
to be possible using and extending the results presented in [12]. For example, the
observed steady state σ in the strong noise case should be deducible from the
self-adaptation response theory. Deriving the remarkable empirically observed
SR(n) ∝ n−1 law is clearly another task for future research.
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Abstract. Software project scheduling plays an important role in reducing the
cost and duration of software projects. It is an NP-hard combinatorial opti-
mization problem that has been addressed based on single and multi-objective
algorithms. However, such algorithms have always used fixed genetic operators,
and it is unclear which operators would be more appropriate across the search
process. In this paper, we propose an evolutionary hyper-heuristic to solve the
software project scheduling problem. Our novelties include the following:
(1) this is the first work to adopt an evolutionary hyper-heuristic for the software
project scheduling problem; (2) this is the first work for adaptive selection of
both crossover and mutation operators; (3) we design different credit assignment
methods for mutation and crossover; and (4) we use a sliding multi-armed bandit
strategy to adaptively choose both crossover and mutation operators. The
experimental results show that the proposed algorithm can solve the software
project scheduling problem effectively.

Keywords: Software project scheduling � Hyper-heuristics � Adaptive operator
selection � Sliding multi-armed bandit

1 Introduction

The Software Project Scheduling Problem (SPSP) relates to the decision of who does
what task during a software project lifetime [1]. It plays an important role in reducing
the duration and the cost of a software project [1, 15]. In China alone, it was reported
that more than 40 % of unsuccessful software projects failed because of the inefficient
planning of project tasks and human resources [8]. The SPSP, hence, is an important
issue for IT companies.

However, the SPSP is particularly challenging when the project is large. The space of
possible allocations of employees to tasks is enormous, and providing an optimal
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allocation of employees to tasks becomes a very difficult task [14]. It is impractical to use
exact methods to solve medium or large SPSP instances. Evolutionary algorithms have
been employed to solve the SPSP [1, 5, 12, 14, 16, 17]. Other metaheuristics have also
been used, such as ant colony optimization and its variants [4, 6, 15]. A column gen-
eration approach was presented in [12], embedded within a branch-and-price procedure.

In those algorithms, different search operators (e.g., different types of crossover and
mutation) may be good for different problem instances. However, little is known about
which operators are most adequate for which types of instances. This motivates us to
design an evolutionary algorithm capable of choosing the most effective operator
automatically. Moreover, given a single problem instance, different search operators
may be good at different stages of the search. As a result, it is very difficult to
choose/design the operators to be used beforehand. Ideally, we would like an algorithm
that can automatically choose which operators to use during the evolutionary process,
and thus liberate practitioners from this difficult task [7]. This motivates our study of
adaptive operator selection for the SPSP.

As a recent trend in optimization, hyper-heuristics search the space of heuristics
rather than the space of solutions of the given problem, and use limited problem
specific information to control the search process [9]. A hyper-heuristic is an automated
methodology for selecting or generating heuristics to solve computational search
problems [2]. We propose an evolutionary hyper-heuristic to solve the SPSP. Different
from previous work on hyper-heuristics, our approach can be used to select both
mutation and crossover operators, rather than being used to select only crossover or
only mutation. We design different credit assignment methods for these two types of
operators because mutation is typically used to exploit the solution space while
crossover is typically used to explore it.

In summary, our novelty lies in the following: (1) this is the first work to adopt an
evolutionary hyper-heuristic for SPSP; (2) this is the first work for adaptive selection of
both crossover and mutation operators; (3) we design different credit assignment
methods for the two types of operators: mutation and crossover; and (4) we use a sliding
multi-armed bandit strategy to adaptively choose both crossover and mutation operators.
We use a 3-sized crossover pool and a 3-sized mutation pool. Our experiments show that
our approach is effective in selecting crossover and mutation operators for the SPSP.

The rest of this paper is organized as follows. Section 2 formulates the problem.
Section 3 proposes an evolutionary hyper-heuristic for the SPSP. Section 4 reports the
experimental results. Section 5 concludes the paper.

2 Formulation of SPSP

In this section, we explain the formulation of the SPSP [1, 11]. The notations adopted
in the definitions are summarized in Table 1. A software project is composed of
N tasks. A Task Precedence Graph (TPG) describes the precedence relations among
tasks. It is used together with the decision variable and the task required efforts in order
to determine the start and finishing time of each task (stj and edjÞ. This is done by
creating a Gantt chart based on Algorithm 1 described in [11], which is omitted here
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due to space constraints. Each task tj requires a set of skills reqj and has an estimated
effort effj. There are M employees involved in the project. Each employee ei can be
described as a three-tuple array (eskilli ; emaxi ; enorm sal

i ). A project requires a total of
s skills. Each skillk (k = 1, 2, …, s) represents a kind of software development skill in
the project, such as system analysis, designing, coding, algorithm, database, quality
check, testing, etc.

Employees can work on several tasks simultaneously, as indicated by their dedi-
cation to certain tasks. The dedication xij 2 f0=k; 1=k; . . .; k=kg of employee ei to task
tj is the fraction of the employee’s time devoted to that particular task. k 2 N represents
the granularity of the problem. A dedication of xij ¼ 1 indicates that the employee ei
spends all his or her working time on task tj. xij ¼ 0 indicates that ei does not spend any
time on tj.0\xij\1 indicates that ei spends part of his or her working time on tj. The
matrix X ¼ ðxijÞ of M � N, where xij � 0, is the decision variable and represents a
solution to the problem. This problem formulation [1, 11] assumes a static environment
where employees will always be available during the lifetime of a project, i.e., they will
not leave or be absent from work, and the task effort is fixed. As in [1, 11], we will also
assume that emaxi ¼ 1 for all employees.

The SPSP is the problem of assigning employees to tasks in a software project so as to
minimize the completing time (i.e., duration of the project as defined by Eq. (2)), and the
cost (i.e., the total amount of salaries paid as defined byEq. (3)). Equation (1) is themixed
objective, where w1 and w2 are the weights for the completing time and the cost,
respectively. The assignment of employees to tasks is to determine the decision variable x.

Table 1. SPSP notations

Description

M The number of the employees involved in the project
ei The i-th employee

eskilli eskilli ¼ fpro1i ; pro2i ; . . .; prosig, proki (k = 1, 2, …, s) is a binary variable indicating
whether the employee ei possesses the skill skillk

emaxi The max dedication of ei to the project indicating the percentage of a full time
employee ei is able to dedicate to the project.

enorm sal
i

The monthly salary for an employee ei for his or her full normal working time

N The software project is composed of N tasks
tj The j-th task
effj The estimated effort for the task tj
reqj The required skills for the task tj
TPG The task precedence graph is an acyclic directed graph with tasks as nodes and

task precedence as edges
xij The decision variable to determine the degree of dedication of employee ei to task

tj.
stj The starting time of task tj
edj The finishing time of task tj
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The problem is subject to the aforementioned assumptions and the following two
constraints: employees can only work on a task tj if all employees working together
have all the skills to perform the task (Eq. (4)); and employees should not exceed their
maximum dedication to the tasks that are active at any given time moment t (Eq. (5)).

Minimizex f ðxÞ ¼ w1f1ðxÞþw2f2ðxÞ ð1Þ

f1ðxÞ ¼ maxjðedjÞ; ð2Þ

where edj, 8j, is obtained with Algorithm 1 from [11].

f2ðxÞ ¼
XM

i¼1

XN

j¼1
effj
.PM

k¼1 xkj

� �
xij e

norm sal
i ; ð3Þ

s.t.

reqj�
[n

i¼1
skillijxij [ 0
� � ð4Þ

X
j2active tasksðsÞ xij � emaxi ; 8i; s; ð5Þ

where active tasksðsÞ are all tasks active at time s according to the Gantt chart gen-
erated using Algorithm 1 from [11]

xij 2 ½0; 1� ð6Þ

It is worth noting that the SPSP is related to the Resource-Constrained Project
Scheduling problem (RCPS), but there are some key differences [1]: (1) the SPSP has a
cost associated to each employee; (2) SPSP has only one type of resource (employee);
and (3) each activity in RCPS requires different quantities of different resources,
whereas the SPSP requires different skills, which are not quantifiable entities.

3 The Evolutionary Hyper-heuristic

3.1 Hyper-heuristic Framework

The evolutionary hyper-heuristic (Fig. 1) chooses an operator to apply at each search
stage. The high level algorithm is based on a (μ + λ)-EA, i.e. it maintains a population of
μ candidate solutions and λ parents are selected at each generation. Before each evo-
lutionary cycle, the adaptive operator selection function is called twice (lines 3 and 4) to
choose the crossover and the mutation operator, respectively. At the end of each iter-
ation, the two credit assignment functions: diversity-credit and improvement-credit, are
called (lines 12 and 13) to assign a credit to the currently chosen crossover and mutation
operator, respectively.
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3.2 Adaptive Operator Selection

Adaptive operator selection (AOS) performs on-line selection of evolutionary operators
to produce each new offspring, based on the recent known performance of each of the
available operators. An adaptive operator selection is typically composed of a credit
assignment and an operator selection rule. The former assigns a reward to an operator
and the latter determines the operator to be chosen at each step. In the AOS framework,
the performance of an operator in a very early stage may be irrelevant to its current
performance [10]. More attention should be paid on the recent performance. We
propose a sliding multi-armed bandit (SMAB) following the approach in [10]. The
credit assignment and the operator selection rules adopted are as follows.

Credit Assignment of SMAB. To determine the credit assignment, one needs to make
a decision on how to measure the impact in the search process caused by the appli-
cation of an operator. We propose two credit assignment methods according to the
main role each operator plays during the search process.

Considering that the main role of crossover is to explore the solution space, we
employ the population diversity to evaluate the performance of one on-duty crossover
operator. The diversity of the population is measured by the “population diversity”,
inspired by the entropy concept. It is calculated in Eq. (7) by computing the standard
deviation of the same amount of dedication among solutions in the population.

ent ¼
XM

i¼1

XN

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Xl

k¼1
ðxðkÞij � 1

l

Xl

k¼1
xðkÞij Þ2

s
ð7Þ

Considering that one mutation operator plays the role to guide a local search, we
use the fitness improvements caused by the recent application of the operator under
assessment. The fitness improvement is defined in Eq. (8).

Fig. 1. The evolutionary hyper-heuristic for SPSP
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r ¼ fold � fnewð Þ=fold ð8Þ

Where fold and fnew is the fitness of the individual before and after the application of
the operator respectively.

A sliding window with a fixed size W is used to store the fitness improvement
values of the recently used operators. The sliding window is a two-dimensional list of 2
rows and W columns. The first row records the operator index number and the second
row records the corresponding fitness improvement. It is organized as a first-in-first-out
(FIFO) queue.

Selection Rule of SMAB. Based on the received credit values, the operator selection
scheme selects one operator for generating new solutions. This paper uses a
bandit-based operator selection scheme. Our scheme is similar to that in [10]. The
major difference is that we use the entropy ent for the crossover operator and the fitness
improvement value r as the quality q̂i;t�1 instead of the average of all the rewards
received so far for an operator. The operator that maximizes Eq. (9) will be chosen as
the on-duty operator.

argmaxi¼1;...k q̂i;t�1 þC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log

P
k nk;t

ni;t

s !
ð9Þ

where q̂i;t�1 is the empirical reward (the best result achieved by the operator in last
W iterations) of the i-th arm (operator), C is a scale parameter, ni;t is the times that the i-
th arm has been tried till the t-th iteration during the recent W applications.

3.3 The Low-Level Heuristics Pool

Crossover Operator Pool. There are 3 operators in the crossover operator pool.

Crossover 1: Swap-Row Crossover. For each employee, select its corresponding
dedications to tasks from one randomly chosen parent to generate an offspring. This
can be seen as changing some employees’ dedication to tasks [11].

Crossover 2: Swap-Column Crossover. For each task, select its corresponding
employees’ dedications from one randomly chosen parent to compose an offspring.
This can be seen as exchanging some tasks’ resource assignment [11].

Crossover 3: Swap-Block Crossover. The Swap-Block Crossover [1] is a 2-D single
point crossover applied to matrices. It randomly selects a row and a column (the same
in the two parents) and then swaps the elements in the upper left quadrant and the lower
right quadrant in both solutions.

Mutation Operator Pool. There are 3 operators in the mutation operator pool.

Mutation 1: Mutate-Position [11]. An individual is mutated by changing each entry xij
of the dedication matrix to a random times of 1/7 with mutation probability, inde-
pendently from other entries.
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Mutation 2: Mutate-Row. An individual is mutated by swapping randomly dedications
in each row. The selected positions to swap must be the nonzero dedication to keep the
balance.

Mutation 3: Mutate-Column. An individual is mutated by swapping randomly dedi-
cations in each column.

4 Experimental Study

We run a number of experiments to determine whether the use of the proposed AOS
technique is beneficial with respect to the adoption of a simple random selection of the
crossover and mutation operators. We also compare the results of these algorithms with
those achieved by a state-of-the-art approach [11]. We label the three algorithms for
convenience GA-SMAB, GA-randAOS and GA.

We performed our experiments on a benchmark dataset of 48 instances used in [1].
For each instance, we provide the average results from 30 independent runs of the
algorithms. In order to reduce the impact of different parameter settings on the results,
we adopt the same parameter settings as those used in literature [1, 11] (Table 2) except
for the mutation probability, which was set to a value that guaranteed the application of
the mutation operator, necessary to observe its performance.

Table 3 reports the average results achieved by the GA-SMAB, GA-randAOS and
GA algorithms on the 48 instances of the benchmark set. For every algorithm we report
the average fitness, its standard deviation, the best result, the average cost and the
average completion time. The results indicate how the fitness achieved by GA-SMAB
is the lowest of the three. In particular, the average fitness of GA-SMAB is slightly
lower than the best of GA. Similarly, GA-randAOS also shows a comparable
improvement with respect to the GA. It is also worth noting that the cost has increased,
while the average completing time has improved considerably. This is likely to be a
result of the weights w1 and w2 used in the fitness function.

Table 2. Parameters setting

Parameter Value Description

μ 64 The size of the population
λ 64 The size of the offspring
Pc 0.75 The crossover probability
Pm 0.1 The mutation probability
maxg 200 The number of generations
w1 10−1 The weight of the duration
w2 10−6 The weight of the cost
winsize 7 The sliding window size
ScalingC 60 The scaling factor for crossover operators
ScalingM 110 The scaling factor for mutation operators
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Table 4 summarizes the results of the Wilcoxon Rank-Sum (significance level of
0.05) test performed for each instance to determine the number of instances for which
each algorithm yields statistically better (column W) results, comparable results
(column T) and statistically worse results (column L). We also provide the p-values
relative to the Wilcoxon Signed-Rank (significance = 0.05) test performed on the
average fitness achieved by the three algorithms across the 48 instances of the
benchmark set where instances with comparable results (according to the Wilcoxon
Rank-Sum test) are treated as ties.

The three algorithms produce statistically significantly different results across
problem instances, as shown by the Wilcoxon Sign-Rank tests. The average Cohen’s d
effect sizes vary from 0.6368 (medium) to 1.5688 (large). Together with the
win-tie-losses, this shows that it is beneficial to adopt GA-SMAB instead of
GA-randAOS or GA. GA-SMAB achieved similar or better fitness than GA-randAOS
and GA on all problem instances. In particular, GA-SMAB achieved statistically better
fitness on 25 instances when compared to GA-randAOS, and similar fitness on 23
instances. This suggests that there are instances which do not require an AOS strategy,
where GA-SMAB performs similarly to GA-randAOS. The improvement obtained
through the use of GA-SMAB is also confirmed by the Cohen’s d Effect size included
in Table 4. However, an AOS strategy is needed for other problem instances.

Table 3. Average results achieved by GA-SMAB, GA-randAOS and GA algorithms

GA-SMAB GA-RANDAOS GA

Average fitness 4.5351 4.5552 4.6369
Standard dev of fitness 0.0856 0.1009 0.0509
Best fitness 4.3617 4.3709 4.5534
Average cost 1,830,377.1444 1,830,223.0918 1,830,037.0659
Average completing time 27.0460 27.2475 28.0686

Table 4. Win/tie/losses obtained based on Wilcoxon Rank-Sum tests for each instance, p-values
of the Wilcoxon Signed-Rank test across instances and average Cohen’s d effect size

GA-SMAB GA-randAOS GA
w t l w t l w t l

GA-SMAB 25 23 0 44 4 0
1.23E-05 7.62E-09
0.6368 1.5688

GA-randAOS 0 23 25 37 11 0
1.23E-05 1.14E-07
0.6368 0.9814

GA 0 4 44 0 11 37
7.62E-09 1.14E-07
1.5688 0.9814
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When compared to the results achieved by GA, GA-SMAB outperforms its results on
44 instances. This difference can be explained by the interaction between the random
parent selection and the SMAB strategy, as the increased exploration ability of the
algorithm created more favorable conditions for the GA-SMAB.

In order to show the behavior of the algorithm, we provide the selection rates of the
crossover and mutation operators for the instance inst-employees20 respectively in
Fig. 2. It is possible to notice trends in the search as one operator is preferred to the
others during different periods of the search. This is particularly clear in the selection
rates of the mutation operator, where operator Mutate-Column has a higher selection
rate for most of the search, with the exception of some periods where the other two
operators are preferred. In the plot relative to the crossover operator, on the other hand,
it is possible to notice shorter trends over the course of the search, although Operator
Swap-Block seems to be the one selected most of the times. This might be explained by
the fact that the algorithm favors a frequent alternation of the crossover operators, as
the repeated use of a single operator might cause a decrease of the population diversity.

5 Conclusions

This paper proposes an evolutionary hyper-heuristic to address the SPSP. The
hyper-heuristic uses an EA as a high level strategy and adapt automatically both
mutation and crossover operators during evolution. A sliding window MAB strategy is
used to adaptively select both operators during the search. The experiments performed
on a set of 48 benchmark instances showed that the proposed algorithm can solve the
SPSP effectively and outperform a strategy based on a simple random selection of the
operators as well as a state-of-the-art approach from the literature. Future work includes
a detailed analysis of the behavior of the proposed algorithm and the reasons for its
ability to generate better solutions; an extension of the proposed algorithm in order to
deal with the dynamic SPSP [13]; the use of alternative AOS strategies; and the
inclusion of more aspects that could affect software projects into the problem
formulation.

Fig. 2. Selection rates of the crossover (left) and selection rates of the mutation (right)
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Abstract. The Parameter-less Population Pyramid (P3) uses a novel
population scheme, called the population pyramid. This population
scheme does not require a fixed population size, instead it keeps adding
new solutions to an ever growing set of layered populations. P3 is very
efficient in terms of number of fitness function evaluations but its run-
time is significantly higher than that of the Gene-pool Optimal Mix-
ing Evolutionary Algorithm (GOMEA) which uses the same method of
exploration. This higher run-time is caused by the need to rebuild the
linkage tree every time a single new solution is added to the population
pyramid. We propose a new population scheme, called the multiple inser-
tion pyramid that results in a faster variant of P3 by inserting multiple
solutions at the same time and operating on populations instead of on
single solutions.

1 Introduction

The recently introduced Parameter-less Population Pyramid evolutionary algo-
rithm uses a novel population scheme, called the population pyramid [2,3]. A big
advantage of the population pyramid is that there is no need for the user to set a
fixed population size. Instead, P3 keeps adding new solutions to an ever growing
set of layered populations. To explore new solutions, P3 uses the model-building
technique and the Gene-pool Optimal Mixing operator from GOMEA [5]. The
way it exploits these solutions however, is very different from the classical fixed
size population method. P3 is very efficient in terms of number of fitness func-
tion evaluations but its run-time is significantly higher than that of GOMEA,
this is because P3 rebuilds the linkage tree every time a single new solution
is added to the population pyramid, while GOMEA only rebuilds the linkage
tree every single generation. A typical GOMEA run only needs about 10 gen-
erations, so the difference between the number of linkage trees generated by P3
and GOMEA is huge. We propose a new population scheme, called the multiple
insertion pyramid that results in a faster variant of P3 by significantly reduc-
ing the number of linkage trees built. Multiple insertion is a population scheme
which basically combines P3 with ideas from the Exponential Population Scheme
c© Springer International Publishing AG 2016
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(EPS) by inserting growing populations instead of single solutions. The multiple
insertion pyramid scheme drastically reduces the run-time overhead caused by
maintaining a population pyramid. It also requires a lesser number of fitness
evaluations than required by EPS [4]. Finally, the multiple insertion pyramid
scheme yields a robust GOMEA that performs better in the number of fitness
evaluations and on par with the run-time of the original GOMEA on the major-
ity of the test problems. In the next Section, we discuss background information
about the Gene-pool Optimal Mixing Evolutionary Algorithm, the Exponential
Population Scheme, and the Parameter-less Population Pyramid. Section 3 intro-
duces the Multiple Insertion Pyramid. Section 4 discusses experimental results,
followed by our Conclusion.

2 Background

2.1 Gene-Pool Optimal Mixing Evolutionary Algorithm

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is designed
for detecting and optimally mixing partial solutions into new solutions [5]. It uses
a model, called the family of subsets (FOS), for representing problem variables
whose values should be copied together during crossover. Each subset in the
FOS is a set of problem variable indices. Each generation GOMEA learns a
FOS from the population. Then each solution is subjected to the Gene-pool
Optimal Mixing (GOM) crossover operator. First the solution is cloned into an
offspring population and for each subset in the FOS, GOM will randomly select
a donor from the population and copy the bits indicated by the subset into the
current solution. If the donor and the parent solution have the same bits for
the problem variables, then the offspring solution is equal to the parent solution
and no fitness evaluation is performed. If the donation resulted in an offspring
solution with a greater or equal fitness to its parent solution, then the changes
are kept, otherwise the changes are undone. All algorithms in this paper use the
linkage tree from the Linkage Tree GA as their FOS model [5].

2.2 Exponential Population Scheme

A simple parameter-less population scheme is to keep restarting a GA with
an increased population size until the solution quality has become acceptable.
The growth function determines the rate at which the population size grows in
the number of converged runs. The scheme for doubling the population size is
called the Exponential Population Scheme (EPS) [4]. EPS is comparable to the
behavior of a user, who will often keep doubling the population size until the
results are satisfying. Although there is only a constant overhead, EPS inevitably
throws away several populations worth of fitness evaluations.
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2.3 Parameter-Less Population Pyramid

The Parameter-less Population Pyramid (P3) uses a novel population scheme,
called the population pyramid [3]. The population pyramid is a set of populations
with two specific methods for inserting new solutions and performing crossover
with the existing solutions. The set of populations expands slowly and forms a
pyramid-like structure where the populations are arranged in increasing fitness
and decreasing size. Each layer represents a population. Initially there is only one
empty population P0. Every iteration, a new random solution undergoes local
search by a first-improvement hill climber and is then added to the bottom layer
of the pyramid P0. Whenever a population has changed due to the insertion of
a solution, the linkage tree of that layer is rebuilt. Then the solution undergoes
crossover with the layers of the population pyramid, starting with the bottom
layer and working its way up. The crossover operator is the GOM operator from
GOMEA. If crossover at layer Pi results in a fitness improvement, then the
solution is added to the next population Pi+1 (or a new population is created
if there was none existing). The linkage tree at layer Pi+1 is rebuilt and the
solution is GOM crossed over with population Pi+1. This process is repeated
until the top of the pyramid has been reached. To ensure diversity is preserved
duplicate solutions are not added to the pyramid.

P3 selects the donor for the GOM crossover operator differently than
GOMEA. GOMEA continues with the next FOS cluster when the solution and
donor have equal values for the problem variables. P3 alters this procedure by
searching the entire population in a random order until a donor with non-equal
values has been found. The upper-bound on the run-time of the crossover oper-
ator increases by a factor linear in the population size. Another difference is
that P3 sorts the clusters in smallest-first order instead of the randomized order
used by GOMEA. However, this has only a minor, problem-dependent, effect on
performance.

3 Multiple Insertion Pyramid

The exponential population scheme (EPS) is characterized by its efficiency in
model-building, while the parameter-less population pyramid (P3) is character-
ized by its efficiency in fitness evaluations. From an algorithmic perspective the
two algorithms look very different and share only the GOM operator and link-
age tree model learning. We now show how to combine the two approaches into
a new population scheme. A visual interpretation of the population schemes is
given to more easily explain how they are similar and how they can be combined.

3.1 Visualizing Population Schemes

Deriving a generic representation for either population scheme requires a more
careful look at how GOMEA works. Each of the schemes relies on the GOM
operator for performing crossover between a solution and a population. Two key
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properties describe a call to GOM: the set of solutions that are available for
donation, and what happens with the solution after crossover.

GOMEA. The grid in Fig. 1a represents GOMEA running for 5 generations
(vertical axis) with a population size of 7 (horizontal axis). Each cell of the
grid represents the state of solution x at generation y. Each row represents the
state of the population at generation y, and each column is the progression
of solution x over the generations. The solid arrows show whether the solu-
tion changed by GOM was accepted into the next generation. Because GOMEA
always accepts the offspring solution into the new population, the progression is
a chain of arrows in the visualization. GOMEA traverses the grid in left-to-right
first (applying GOM to the population), bottom-to-top second order (initial gen-
eration until termination). Lastly, the dashed lines show which solutions from
the previous generation have successfully donated bits to a solution.

The probability of a successful donation decreases over time, and this is seen
in the uppermost row where the donations are more sparse. If a cell has no
dashed line with the previous row, then there was no successful donation during
crossover, hence the solution indicated by the cell was not even improved. As seen
by the mess of dashed lines in the grid, each solution has the remainder of the
population at its disposal for mixing. Let the age of a solution x be the number
generations y it has existed, in other words the row index y of column x in
the visualization. Two solutions live in the same population if they are improved
under the same circumstances, meaning they are improved using the same linkage
tree and have access to the same donor solutions. If two solutions live in the same
population and are of the same age, then applying GOM crossover to them
should be optimal as their fitness should be similar due the competition with
each other over the span of multiple generations. This is automatically true for
GOMEA, and together with the high availability of donors, the GOM operator
is able to optimally mix solutions. GOMEA learns the model, namely the linkage
tree, from the entire population (i.e. row) of generation y. Whenever a model is
learned before GOM crossover is applied, the corresponding cell is colored gray.
For GOMEA this is the start of the generation, i.e. the first column. Clearly
GOMEA is minimal in the number of times a model is learned, because otherwise
a model would have to be used over multiple generations. No parameter-less
population scheme can learn only one model on a row, because then it would
have perfectly predicted the population size. Only oracles can tell beforehand
what the population size necessary to solve the problem instance is.

The visualization highlights the strengths and weaknesses of a population
scheme. Given that the global optimum resides amongst solutions of similar
fitness in the final generation, GOMEA has the weakness that it must fully eval-
uate every generation until the final generation has been reached. However, the
sparsity of gray squares shows that relatively few linkage trees are constructed
during a single run. The dashed arrows show how optimal mixing allows every
solution to donate to every other solution over the entirety of the run.

EPS. Figure 1b shows the visualization of the exponential population scheme
(EPS). EPS starts with a run of GOMEA of size one, and continuously restarts
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the population on convergence with a doubled population size. Each of the pink
squares denotes one run of GOMEA and is traversed exactly as explained in
the previous section. The pink squares illustrate how EPS is a rather simplistic
wrapper around GOMEA for doubling the population size. An iteration of EPS
is the complete evaluation of one run of GOMEA, traversed from left-to-right
in the grid. Note that the horizontal axis no longer corresponds to a single
population. Learning a linkage tree only uses the solutions of generation y inside
the pink square instead of the entire row. The visualization shows the two major
weaknesses of the EPS scheme. First, there is no optimal mixing between the runs
of GOMEA as indicated by the lack of dashed arrows between the runs. Second,
the gray squares are more abundant and show the wasted effort in building
linkage trees for the previous generations. But it has already been shown that
no parameter-less population scheme can get away with learning only one model
per row, hence there being an additional cost of model learning is inevitable.

P3. Figure 1c shows the visualization of the parameter-less population pyramid.
With P3 comes a slightly different interpretation which mostly changes how the
grid traversed. Green squares indicate that a solution was already present in the
population pyramid, hence it was not accepted into the next layer of the pyramid.
There is no solid arrow leading into a green square for this very reason. There is
a direct correspondence between a population and the layer of a pyramid. Both
contain a set of solutions, but the latter cannot contain duplicates by definition.
Almost every cell is colored gray to show just how often P3 learns a new model,
with the only exception being when a solution is not accepted into the next
population. That only occurs when the solution is a duplicate already present
in the pyramid, or the solution did not improve in fitness after GOM crossover
with the population. The latter happens more often for the higher layers of the
pyramid, because improving the fitness of an already optimized solution is more
difficult. The linkage tree must be updated every time a new solution is inserted
into the corresponding pyramid layer. Each iteration of P3 a solution is drawn
from the population generator, and is then improved until GOM crossover has
been performed with each layer of the pyramid. A column x is then equivalent
to xth iteration of P3. Whereas GOMEA traverses the grid from the left-to-right
first, P3 traverses the grid from bottom-to-top first. This behavior is the exact
opposite of each other, as is illustrated further in the next subsection. Looking at
the dashed lines in the visualization, the solutions receive only donations from the
previously evaluated solutions. The mixing that occurs in P3 is unidirectional
over the horizontal axis, in contrast to the bi-directional mixing in GOMEA
and EPS. Not only that, a solution x at generation y only has access to other
solutions that also reached generation y. Hence the number of donors available to
a solution (x, y) is lower than the number of donors available to a similarly placed
solution (x, y) in GOMEA. Age becomes an even more important factor when
GOM is applied to solutions that were improved using different populations.
How many the layers the solution has passed (the row) is equivalent to the age
of the solution in GOMEA. The linkage trees learned by P3 become more precise
as more solutions are added to the pyramid. However, a solution x was improved
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with a different linkage tree and population from any other solution. Thus when
a solution is donated to, the age of the donor and the receiving solution will
be the same, but they were raised in different populations. Hence there is a
possible discrepancy in fitness and structure between the solution and the donor,
which may lead to lesser performance when performing GOM crossover. The
entropy in a population grows slower as more solutions are added, hence the
linkage trees will change less over time. As a result, the discrepancy between
solutions and donors is reduced over time, but is never truly eliminated. Again,
the visualization helps in understanding the strengths and weaknesses of P3. The
scheme is over-saturated with model learning at every step of the algorithm, even
though the entropy in the populations changes increasingly slower over time.
Crossover uses donors of equal age to the receiving solution, but the donors were
constructed under different circumstances. This may lead to fitness discrepancies
in the early stages of the algorithm, because the model and populations are
changing significantly with the addition of a single solution. In exchange for
these weaknesses, the population pyramid requires no population size parameter
and it gains access to the older generations earlier on than GOMEA.

(a) GOMEA (b) EPS

(c) P3 (d) Multiple Insertion

Fig. 1. Visual representation of the four population schemes.

3.2 Multiple Insertion

Multiple Insertion is a new population scheme designed to combine the efficiency
in amount of linkage trees built of EPS with the efficiency in fitness evaluations
of P3. The goal is to enhance EPS by using the population pyramid as a way
to reuse the solutions from the previously converged populations. Similarly, the
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goal can be stated as using the strictly growing populations of EPS with P3
instead of one solution per iteration.

As in EPS, Multiple Insertion generates a new, larger population at each
iteration. A growth function determines the size of the population generated
at the start of iteration, this could be the exponential growth function or the
linear growth function. Let Pi be the ith layer (or population) of the pyramid at
the start of an iteration. First a population X is randomly generated with the
population size determined by the growth function. Optionally the hill climber
is invoked on each of the solutions in population X. The entire population X
is checked for duplicates already in the pyramid, and the unique solutions are
inserted into the bottom layer of the pyramid P0 and a linkage tree model is
learnt. Then GOM crossover is applied to the population X using the pyramid
layer P0. Those solutions whose fitnesses were improved by the GOM crossover
are inserted into the set of accepted solutions. Solutions that are already present
in the pyramid are filtered from the set of accepted solutions. Finally, the set
of accepted solutions is inserted into the next pyramid layer Pi+1. This process
repeats itself with X and the next pyramid layer Pi+1 until the top of the
pyramid has been reached. Note that the entire population X transitions to the
next pyramid layer for GOM crossover, not just the solutions accepted into the
next pyramid layer. As with P3, GOM crossover with the top layer may result
in a new layer Pt. The new top layer Pt contains every solution from the set of
accepted solutions at layer Pt−1. Unlike P3, the new layer may contain enough
information for GOM crossover to improve the solutions, which would lead to the
construction of a new top layer Pt+1. This process repeats itself until no fitness
improvement is found in the top layer of the pyramid. If none of the solutions
were improved by the GOM crossover, then nothing happens to the pyramid.

Visualization. Figure 1d shows the visualization of the multiple insertion pop-
ulation scheme. The density of the gray squares has been significantly reduced in
contrast to P3, indicating that there should be a drastic gain in run-time because
much less linkage trees are learned. The dashed lines show that solutions can
receive donations from either the previous populations or the current population
under construction. There is the constraint that a solution is only a donor if it
was accepted in the previous generation, because otherwise it would not be in
the population. The receiving solution has more available donors during GOM
crossover than it would have in either EPS or P3. More importantly, the solutions
in the current population are improved using the same model, hence they are of
the same age and live in the same population. As mentioned for GOMEA, these
conditions allow for optimal mixing between the solutions. When mixing occurs
with a donor from a previous population, there may still be a fitness discrep-
ancy as shown for P3. The linkage tree is no longer relearned for every solution
inserted into the pyramid, so the population pyramid loses some of its immedi-
ate adaptiveness to a change in the pyramid. As more solutions are inserted into
the pyramid layer at once, namely a subset of the population currently being
improved, the entropy in the pyramid layer changes more significantly than it
would have if one solution were inserted. This means that even though the model
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is relearned less frequently, the changes to the model are more substantial. The
termination criterion for population convergence is a mix between EPS and P3,
namely when the population has not been improved during an entire generation
and when there are no more layers of the pyramid to perform crossover with.

4 Experimental Results

We have tested five, binary encoded, benchmark problems of increasing length.

1. Deceptive Trap Function: we consider the randomly linked DFT which
tests the ability to detect and combine good building blocks (k = 5).

2. Hierarchical If and Only If: we consider the HIFF version where problem
variables appear in randomized order.

3. Ising Spin Glass: the variables interact with neighboring vertices in a lat-
tice graph. The problem instances are from the public repository hosting the
source of the P3 algorithm [2].

4. Nearest Neighbor NK Landscapes: each variable depends on the k =
4 subsequent variables in the bit-string. The order of the variables in the
representation are again assumed to be completely randomized.

5. MaxCut: find a maximum cut on a given graph. The instances are taken
from [1], and were solved to optimality on the BIQMAC server.

Multiple insertion requires the specification of a growth function to determine
how fast the population increases in size per iteration of the algorithm. Let S(i)
be the size of the population inserted into the population pyramid at iteration i.
Three growth functions are tested: the linear function Sl(i) = i, the quadratic
function Sq(i) = i2, and the exponential function Se(i) = 2i−1. P3 uses the
parameter configuration of the original P3 algorithm. The population pyramid
scheme (PT) removes from P3 the hill climber, exhaustive donor searching, and
it randomizes the FOS ordering. This way, PT is better comparable with the
results from GOMEA. Multiple insertion is added to both population schemes.
One can interpret both PT and P3 as a form of multiple insertion with a constant
growth function S(i) = 1.

Figure 2 shows the relative average number of fitness evaluations for the P3,
PT, and its multiple insertion variants. The labels in the legend follow a spe-
cific format: {Scheme} – MI – {Growth}, where Scheme is either PT or P3 and
Growth is either the constant, linear, quadratic, or exponential growth func-
tion. The results are normalized using the results of the original P3 to better
highlight the differences in the performance. As seen in Fig. 2 the quadratic and
exponential growth functions diverge significantly from PT at several occasions.
In contrast, the linear growth function is less prone to this erratic behavior.
Especially the exponential growth function tends to have outliers in the number
of fitness evaluations, to the point of exceeding EPS. For EPS it makes sense to
scale exponentially, as a slower growth leads to more population being converged
and rejected, which is terribly expensive. PT with multiple insertion is an exten-
sion of EPS that reuses every solution whereas EPS cannot do that. Because PT
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Fig. 2. Relative comparison to P3 of the median number of fitness evaluations for the
multiple insertion variants of PT and P3.

Fig. 3. Relative comparison to P3 of the average running time for the multiple insertion
variants of PT and P3.
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with multiple insertion is less prone to outliers with a slower growth function,
there is little reason to use an exponential growth function.

Figure 3 shows the relative average run-time in milliseconds for P3, PT, and
the multiple insertion variants. Using multiple insertion with PT reduces the
run-time to the level of the original P3 which uses the hill climber. However,
increasing the growth function beyond linear has no significant effect on the
run-time, as seen by the tightly grouped lines per population scheme. Applying
multiple insertion to the original P3 algorithm greatly speeds up the run-time.
On any of the test problems the run-time of P3 matches or outperforms EPS,
which is something it rarely achieved without multiple insertion. The excep-
tion to the rule are the NK-S1 problem instances, but that is due to the poor
performance caused by the hill climber. The effectiveness of multiple insertion
shows that P3 wastes a liberal amount of processing time on rebuilding linkage
trees to little effect. The results also indicate that the performance of the linear
growth function is on par with the quadratic function and more reliable than the
exponential function, hence we recommend the use of the linear growth function.

5 Conclusion

We have proposed a novel parameter-less population scheme, called the Mul-
tiple Insertion Pyramid. We have discussed two populations schemes that do
not require the user to set a fixed population size: the Exponential Population
Scheme (EPS) and the Parameter-less Population Pyramid (P3). P3 is a model-
based evolutionary algorithm that applies the linkage tree model building and
the Gene-pool Optimal Mixing crossover operator from the Gene-pool Optimal
Mixing Evolutionary Algorithm (GOMEA), but uses a novel population scheme
as exploitation mechanism. P3’s population pyramid scheme outperforms the
linkage tree based GOMEA in terms of number of fitness evaluations at the cost
of a significantly increased run-time. It is noted that P3’s method to rebuilt the
linkage tree whenever a single new solution is added to the population pyramid is
too costly. By changing the population scheme to the Multiple Insertion Pyramid
scheme the run-time is significantly reduced. The Multiple Insertion Pyramid
combines EPS with the population pyramid, which allows solutions from pre-
viously converged populations to contribute to the current population. Because
previous populations are retained for donation, the growth rate is reduced from
exponential to a linear function. Multiple insertion can be applied to P3 to
greatly reduce the time spent on relearning linkage trees.
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Abstract. This paper presents a new variant of surrogate-model utiliza-
tion in expensive continuous evolutionary black-box optimization. This
algorithm is based on the surrogate version of the CMA-ES, the Sur-
rogate Covariance Matrix Adaptation Evolution Strategy (S-CMA-ES).
Similarly to the original S-CMA-ES, expensive function evaluations are
saved through a surrogate model. However, the model is retrained after
the points in which its prediction was most uncertain have been evalu-
ated by the true fitness in each generation. We demonstrate that within
small budget of evaluations, the new variant of S-CMA-ES improves the
original algorithm and outperforms two state-of-the-art surrogate opti-
mizers, except a few evaluations at the beginning of the optimization
process.

Keywords: Black-box optimization · Surrogate model · Evolution
control · Gaussian process

1 Introduction

In many research and engineering tasks, optimization of real-world black-box
functions that are costly to evaluate is a challenging problem of great impor-
tance. A single evaluation of the expensive function may require a great amount
of resources in terms of time and performed experiments, measurements or sim-
ulations. In order to decrease the number of evaluations of the costly black-box
function and still produce reasonably good solutions, a surrogate model can be
employed [15]. Such models are built using the previous evaluations of the black-
box function, and then are used to predict the values of new points instead of
the original function.
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Nowadays, the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [5] is one of the most robust algorithms on real-world problems and is con-
sidered to be the state-of-the-art of continuous black-box optimization. In recent
years, several surrogate-model approaches have been developed to increase the
performance of the CMA-ES.

The s∗ACM-ES [12] employs ordinal regression models based on SVM to
estimate the ordering of the fitness function values. Furthermore, the parameters
of the ordinal model are themselves optimized utilizing the CMA-ES algorithm
during the optimization of the black-box function. In order to avoid premature
convergence to local optima, the strategies s∗ACM-ES-k [11] and BIPOP-s∗ACM-
ES-k [13] improving s∗ACM-ES by increasing the population size in generations
evaluated by the model have been developed.

Another surrogate-assisted approach using continuous regression models to
estimate the function values, called the Surrogate CMA-ES (S-CMA-ES), has
been proposed in [1]. This approach employs models capable to predict the whole
distribution of values of the objective function; however, the S-CMA-ES does
not make use of that capacity of the models, and exploits only the means of
the distribution of its values. On the other hand, several authors [10,14] have
demonstrated the effective utilization of various criteria using the variances of
predictions (e.g. expected improvement, probability of improvement) in opti-
mization.

Different usage of surrogate modelling presents Sequential Model-based Algo-
rithm Configuration method (SMAC) [8]. It fits surrogate models of algorithm
settings in a parameter space and utilizes those models to make decisions about
which settings to investigate. To make SMAC more useful in continuous opti-
mization, random forest were replaced by Gaussian processes as a surrogate
model in SMAC-BBOB [7].

The main contribution of this paper is to introduce Doubly Trained S-CMA-
ES, the extension of the S-CMA-ES, using not only the means of the distributions
predicted by the surrogate model, but also variances of those distributions. We
experimentally evaluate different settings of this approach on the BBOB/COCO
testing set [3,4] and compare it with the original version of the S-CMA-ES, the
surrogate-assisted s∗ACM-ES-k, and the SMAC method.

The remainder of the paper is structured as follows. Section 2 describes
the S-CMA-ES and its model-training method. Section 3 defines its proposed
extension, Doubly Trained S-CMA-ES. Section 4 contains the experimental part.
Section 5 summarizes the results and draws conclusions.

2 Surrogate CMA-ES and Generation Evolution Control

The S-CMA-ES, introduced in [1], is a surrogate-model-based modification of the
CMA-ES. After the initialization step, the following steps shown in Algorithm 1
are proceeded by the S-CMA-ES until the target fitness value is found: First, the
population of one generation is sampled using the CMA-ES. Then, the evolution
control is employed to evaluate sampled points. Finally, the CMA-ES strategy
parameters (σ, m, C, etc.) are calculated using the original CMA-ES algorithm.
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Algorithm 1. S-CMA-ES
Input: λ (population-size), ytarget (target value), f (original fitness function), r (max-

imal distance between training points and m), nMIN, nMAX (minimal and maximal
number of points for model training), norig (number of original-evaluated points),
C (uncertainty criterion), gm (number of model generations)

1: σ,m,C, g ← CMA-ES initialize
2: A ← ∅
3: while mink∈{1,...,λ} yk > ytarget do
4: xk ∼ N (m, σ2C

)
k ∈ {1, . . . , λ} {CMA-ES sampling}

5: ({yk}λ
k=1, A) ← evolutionControl(λ, f, A, {xk}λ

k=1, σ,m,C, . . .)
6: σ,m,C, g ← CMA-ES update
7: end while
8: xres ← xk where yk is minimal
Output: xres

Algorithm 2. Generation evolutionControl in S-CMA-ES
Input: λ, σ, m, C, f , A, {xk}λ

k=1 (CMA-ES sampled population), g (generation),
gm (number of model generations), r, nMIN, nMAX

1: if g is original-evaluated then
2: yk ← f(xk) k = 1, . . . , λ {fitness evaluation}
3: A = A ∪ {(xk, yk)}λ

k=1

4: fM ← trainModel(A, σ,m,C, r, nMIN, nMAX)
5: else
6: yk ← fM(xk) k = 1, . . . , λ {model evaluation}
7: if gm model generations passed then mark (g + 1) as original-evaluated
8: end if
Output: (yk)λ

k=1, A

The generation-based evolution control (following Jin’s terminology [9]) is
used in S-CMA-ES as the evolution control step (Step 5 in Algorithm 1). This
step is presented in more detail in Algorithm 2. At first, the population of one
generation sampled using CMA-ES is evaluated by the original fitness function.
Then, a surrogate model is constructed using the original-evaluated data. How-
ever, if the model has not enough training points, the original fitness function
is utilized to evaluate sampled points. In the few subsequent generations, the
function values of the samples are computed using the surrogate model; they
are, consequently, used to calculate new CMA-ES parameters.

The phase of training the surrogate model is shown in Algorithm 3. In order
to increase the accuracy of surrogate-model predictions (e.g. Gaussian process
predictions), the points that have the Mahalanobis distance from the current
CMA-ES mean m less than or equal to a specific bound r are selected for training.
If the size of the training set is sufficient, k-NN clustering chooses nMAX training
points which are transformed to the basis defined by eigenvectors of CMA-ES’
covariance matrix C through multiplication by ((σ2C)−1/2)�). Finally, the sur-
rogate model is build using these transformed points. Naturally, the points for
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prediction of the model are transformed in the same way to ensure prediction
with respect to the same base vectors.

3 Doubly Trained Evolution Control for the S-CMA-ES

In this section, an alternative to S-CMA-ES, called the Doubly Trained S-CMA-
ES (DTS-CMA-ES), will be described. It uses not only model-predicted values
of sampled points, but also their variances. Therefore, models capable to pro-
vide both values for each point have to be employed, in particular Gaussian
processes [17] or random forests [2].

The DTS-CMA-ES differs from the S-CMA-ES through using doubly trained
evolution control instead of the generation evolution control in Step 5 of Algo-
rithm 1. The doubly trained evolution control is described in Algorithm 4 as
follows: First, the values ŷ and variances s2 of CMA-ES sampled points are
predicted by the surrogate model which is previously trained using the points
evaluated by the original fitness function from previous generations. Second, the
points are sorted according to the values of some uncertainty criterion C based
on predicted ŷ and s2. Third, the norig most uncertain points are evaluated by
the original fitness function. Next, the model is retrained using the points (cho-
sen similarly to S-CMA-ES) evaluated by the original fitness function including
the norig points from the previous step. Eventually, denoting λ as the population
size, the λ − norig points function values are predicted by the retrained model,
and returned to the original S-CMA-ES to compute new parameters. Note that
training the new model in step 1 differs from using the model from the previous
generation since it uses updated CMA-ES state variables σ, m and C.

3.1 Uncertainty Criteria

The following criteria C, which determine the points for evaluation by the original
fitness function, can be used in the DTS-CMA-ES (Algorithm 4).

Algorithm 3. S-CMA-ES trainModel
Input: σ, m, C, A, r (maximal distance between training points and m),

nMIN, nMAX (min. and max. number of points for training)
1: (Xtr,ytr) ← {(x, y)∈A | (m−x)�(σ2C)−1/2(m−x) ≤ r}
2: if |Xtr| ≥ nMIN then
3: (Xtr,ytr) ← choose nMAX points by k-NN if |Xtr| > nMAX

4: Xtr ← {((σ2C)−1/2)�xtr|xtr ∈ Xtr}
5: fM ← buildModel(Xtr,ytr)
6: else
7: fM ← ∅
8: end if
Output: fM
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Algorithm 4. Doubly Trained evolutionControl in DTS-CMA-ES
Input: λ, σ, m, C, f , A, {xk}λ

k=1 (CMA-ES sampled population), C (uncertainty
criterion), norig (number of original-evaluated points), r, nMIN, nMAX

1: fM ← trainModel(A)
2: (ŷk, s2k) ← fM(xk) k ∈ I := {1, . . . , λ} {model evaluation}
3: ck ← C(ŷk, s2k) k ∈ I {criterion evaluation}
4: {cki}λ

i=1 ← sort{ck}λ
k=1

5: Iorig = {ki ∈ I | {cki}norig
i=1 }

6: yk ← f(xk) k ∈ Iorig {fitness evaluation}
7: A = A ∪ {(xk, yk)}k∈Iorig

8: fM ← trainModel(A, σ,m,C, r, nMIN, nMAX)
9: yk ← fM(xk) k ∈ I \ Iorig {model evaluation}
Output: (yk)k∈I , A

Variance. The variance s2 of model-predicted function values ŷ:

Cs2 = s2. (1)

The larger the variance, the higher the uncertainty of the predicted fitness.

Lower Confidence Bound (LCB). The lower confidence bound has been
proposed in [14]:

CLCB = ŷ − 2s2. (2)

The points with lower values of the LCB criterion are considered more interesting
for evaluation by the original fitness function than the points with higher values.

Probability of Improvement (PoI). The probability of improvement with
respect to a given target T ≤ ymin can be expressed as follows:

CPoI = P (f(x) ≤ T |y1, . . . , yn) = φ

(
T − ŷ

s

)
, (3)

where φ denotes the distribution function of N (0, 1) and ymin is the minimum
value found so far.

Expected Improvement (EI). The expected improvement is described
by [10]:

CEI = E((ymin − f(x))I(f(x) < ymin)|y1, . . . , yn), (4)

where

I(f(x) < ymin) =
{

1 f(x) < ymin

0 f(x) ≥ ymin.
(5)

Similarly, CEI can be expressed as [10]:

CEI = (ymin − ŷ) φ

(
ymin − ŷ

s

)
+ sϕ

(
ymin − ŷ

s

)
, (6)

where ϕ denotes the density of N (0, 1).
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4 Experimental Evaluation

We compared the performance of the DTS-CMA-ES to the original CMA-ES [5],
two surrogate-model-based CMA-ES algorithms, the S-CMA-ES [1] and the
BIPOP-s∗ACM-ES-k [13], and the SMAC algorithm [8] on the set of all 24 noise-
less functions from the COCO/BBOB framework [3,4].

4.1 Experimental Setup

The considered algorithms were compared in dimensions D = 2, 3, 5, 10, and
20 using the standard BBOB settings, i.e. on 15 different function instances.
The BBOB stopping criteria were reaching the distance from the function opti-
mum ΔfT = 10−8 and expending maximal number of evaluations per dimension
(FE/D) which we have set to 100 due to our interest in expensive optimization
where very few evaluations are available [6]. The parameters of the compared
algorithms are summarized in the following paragraphs.

We have employed the original CMA-ES in its IPOP-CMA-ES version (Mat-
lab code v. 3.61) with the following parameters: number of restarts = 4, IncPop-
Size = 2, σstart = 8

3 , λ = 4 + �3 log D�. The remaining parameters were left
default.

Loshchilov’s s∗ACM-ES-k was used in its bi-population version published
in [13]. The BIPOP-s∗ACM-ES-k results have been downloaded from the BBOB
results data archive1 in its GECCO 2013 settings.

Gaussian processes (GP) have been employed in the S-CMA-ES as surro-
gate models for gm = 5 model-evaluated generations. The distance r (see Algo-
rithm 1) has been set to 10. The covariance function K

ν=5/2
Matérn with starting values

(σ2
n, l, σ2

f ) = log(0.01, 2, 0.5) were used for the GP model (see [1] for the details).
As opposed to [16], all the function values were normalized to zero mean

and unit variance before training surrogate models in order to increase numer-
ical accuracy. The CMA-ES parameter values have been set the same as in the
original CMA-ES. All other settings were left default [1].

GP have been also employed in SMAC-BBOB [7], the continuous optimiza-
tion version of the SMAC. The SMAC results were downloaded from the BBOB
results data archive2.

The DTS-CMA-ES was tested with multiple settings of parameters. First,
all the uncertainty criteria from Sect. 3.1 (s2, LCB, EI, PoI) were compared
using λ = 4 + �3 log D� and norig = �0.1λ� (see Algorithm 4) to find the most
suitable one. For the remaining investigations, two different population sizes
λ1pop = 4 + �3 log D� and λ2pop = 8 + �6 log D� and four norig values �0.05λ�,
�0.1λ�, �0.2λ�, �0.4λ� were used for comparison. The CMA-ES parameters, the
distance r, and the GP model have been taken over from the S-CMA-ES.

1 http://coco.gforge.inria.fr/data-archive/2013/BIPOP-saACM-k loshchilov noisele
ss.tgz.

2 http://coco.gforge.inria.fr/data-archive/2013/SMAC-BBOB hutter noiseless.tgz.

http://coco.gforge.inria.fr/data-archive/2013/BIPOP-saACM-k_loshchilov_noiseless.tgz
http://coco.gforge.inria.fr/data-archive/2013/BIPOP-saACM-k_loshchilov_noiseless.tgz
http://coco.gforge.inria.fr/data-archive/2013/SMAC-BBOB_hutter_noiseless.tgz
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4.2 Results

We have compared the performances of DTS-CMA-ES for four different uncer-
tainty criteria described in Sect. 3.1. The results aggregated through the full set
of benchmark functions show that the different criteria exhibit very similar con-
vergence rate. However, the usage of Cs2 leads to a slightly better performances
on most of BBOB functions, especially in 20D, and CEI performs the best on
f16, f22, and f23 (if aggregated through dimensions).

Figure 1 presents comparison of DTS-CMA-ES employing criteria Cs2 , CLCB,
CEI, CPoI with norig = �0.1λ� in 5D and 20D. Let Δf be the minimal distance
found from the function optimum for the considered number of fitness function
evaluations. The graphs depict a scaled logarithm of Δf depending on FE/D.
Since all the algorithms ran for each function and dimension on 15 independent
instances, only the empirical medians Δmed

f over those 15 runs of Δf were taken
for further processing. The scaled logarithms of Δmed

f are calculated as

Δlog
f =

log Δmed
f − ΔMIN

f

ΔMAX
f − ΔMIN

f

log10
(
1/10−8

)
+ log10 10−8

where ΔMIN
f (ΔMAX

f ) is the minimum (maximum) log Δmed
f found among all the

compared algorithms for the particular function f and dimension D between 0
and 100 FE/D. Afterwards, graphs of Δlog

f can be aggregated across arbitrary
number of functions and dimensions. Values in presented graphs are averages
of Δlog

f across all 24 functions. More detailed results can be found on authors’
webpage3.

The graphs in Fig. 2 summarize the performance of four different norig values
and two population sizes λ1pop and λ2pop. This and all the following experiments
use the criterion Cs2 which performed best in the first set of experiments. We
found that the lower the norig, the better the performance is observed. Moreover,
testing showed overall best performance of norig = �0.05λ2pop�, which is in 2D,
3D, 5D equal to 1, and in 10D and 20D is equal to 2.

Table 1 illustrates the counts of the 1st ranks of the compared algorithms
according to the lowest achieved Δmed

f for 20, 40, and 80 FE/D respectively.
These counts are for different dimensions summed across all 24 functions.

As can be seen in Fig. 3, DTS-CMA-ES provides the best average results
among the tested algorithms during the middle part of the optimization process,
i.e. between 30 and 80 FE/D. The SMAC excels at the very beginning of opti-
mization progress (up to ca. 15 FE/D), and starting from ca. 80–130 FE/D
(depending on dimension), the fastest converging algorithm is the s∗ACM-ES-k.

The new algorithm demonstrates speed-up compared to the S-CMA-ES with
the exception of f1; however, it still has problem with few multimodal functions
(f17–f20). It can be interpreted as premature convergence in local optima.

3 http://bajeluk.matfyz.cz/scmaes/ppsn2016/.

http://bajeluk.matfyz.cz/scmaes/ppsn2016/
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Table 1. Counts of the 1st ranks from 24 benchmark functions according to the lowest
achieved Δmed

f for different FE/D = {20, 40, 80} and dimensions D = {2, 3, 5, 10, 20}.
Ties of the 1st ranks are counted for all respective algorithms. The ties often occure
when ΔfT = 10−8 is reached (mostly on f1 and f5).

FE/D 2D 3D 5D 10D 20D
∑

20 40 80 20 40 80 20 40 80 20 40 80 20 40 80 20 40 80

DTS 0.1 1pop 6 3 2 13 6 3 10 4 3 10 7 3 2 4 5 41 24 16

DTS 0.05 2pop 8 17 13 7 11 11 9 14 13 6 13 11 11 10 8 41 65 56

S-CMA-ES 5 4 3 1 4 5 5 4 2 7 3 2 9 6 3 27 21 15

BIPOP-s∗ACM-ES-k 2 1 7 3 3 6 1 2 4 1 2 8 2 4 9 9 12 34

SMAC 5 4 4 4 4 5 3 4 5 4 2 2 3 4 3 19 18 19

CMA-ES 1 2 3 1 3 2 0 3 5 0 1 6 0 0 4 2 9 20

5 Conclusion and Future Work

This article presents a new version of the surrogate-based optimization algorithm
S-CMA-ES. It further investigates the possibility to use surrogate models based
on Gaussian processes in connection with the state-of-the-art black-box opti-
mization algorithm CMA-ES. This improved algorithm introduces an additional
model training within one generation, which shows a faster convergence to the
global optima on many benchmark functions, independently of dimensions.

The choice of uncertainty criteria was not found as crucial in the speed of
DTS-CMA-ES convergence. Furthermore, the comparison shows that the lower
numbers of reevaluated points in each generation can lead to higher performance
of the algorithm. We found that new approach usually reduces the number
of necessary evaluations in expensive optimization more than other compared
surrogate-model-based versions of the CMA-ES, namely BIPOP-s∗ACM-ES-k
and S-CMA-ES, and except very early stages of the exploitation even more than
SMAC-BBOB algorithm.

The main perspective of improving DTS-CMA-ES is to make the number of
reevaluated points online adjustable, which should lead to more precise control of
exploitation and facilitate escaping from the local optima. Another perspective
is to additionally investigate different properties of surrogate models for better
utilization of uncertainty criteria.

Acknowledgements. This work was supported by the Grant Agency of the Czech
Technical University in Prague with its grant No. SGS14/205/OHK4/3T/14 by the
Czech Health Research Council project NV15-33250A, by the project “National Insti-
tute of Mental Health (NIMH-CZ)”, grant number ED2.1.00/03.0078 and the European
Regional Development Fund, and by the project Nr.LO1611 with a financial support
from the MEYS under the NPU I program. Further, access to computing and storage
facilities owned by parties and projects contributing to the National Grid Infrastruc-
ture MetaCentrum, provided under the programme “Projects of Large Infrastructure
for Research, Development, and Innovations” (LM2010005), is greatly appreciated.



68 Z. Pitra et al.

References
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16. Pitra, Z., Bajer, L., Holeňa, M.: Comparing SVM, Gaussian process and random
forest surrogate models for the CMA-ES. In: ITAT 2015: Information Technolo-
gies - Applications and Theory, pp. 186–193. CreateSpace Independent Publishing
Platform, North Charleston (2015)

17. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning.
Adaptative Computation and Machine Learning Series. MIT Press, Cambridge
(2006)



Efficient Global Optimization
with Indefinite Kernels

Martin Zaefferer(B) and Thomas Bartz-Beielstein

Faculty of Computer Science and Engineering Science,
Cologne University of Applied Sciences (TH Köln), Steinmüllerallee 1,
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Abstract. Kernel based surrogate models like Kriging are a popular
remedy for costly objective function evaluations in optimization. Often,
kernels are required to be definite. Highly customized kernels, or kernels
for combinatorial representations, may be indefinite. This study investi-
gates this issue in the context of Kriging. It is shown that approaches
from the field of Support Vector Machines are useful starting points, but
require further modifications to work with Kriging. This study compares
a broad selection of methods for dealing with indefinite kernels in Krig-
ing and Kriging-based Efficient Global Optimization, including spectrum
transformation, feature embedding and computation of the nearest defi-
nite matrix. Model quality and optimization performance are tested. The
standard, without explicitly correcting indefinite matrices, yields func-
tional results, which are further improved by spectrum transformations.

1 Introduction

When optimization requires time-consuming experiments, surrogate models are a
well established approach to reduce the load of objective function evaluations [9].
Kernel-based models are a popular choice, e.g., Support Vector Machines (SVM)
and especially Kriging. Often, kernels are required to be positive semi-definite
(PSD), e.g., to allow for the existence of a map to a higher dimensional fea-
ture space (kernel trick) or to allow for interpretation of kernel matrices as a
correlation matrices [5,21]. While ordinary kernels are PSD, users may have
to apply uncommon kernels [20]. One example are distance-based kernels for
combinatorial optimization problems, that may not be definite [18,26,27]. Even
in real-valued search spaces, prior knowledge can be used to design promising,
custom, indefinite kernels. While research on indefinite kernels with Kriging is
sparse, the SVM field provides an useful starting point [20].

This study outlines existing techniques for dealing with indefinite distances
and kernels. The issues of their application to Kriging are elaborated and possible
solutions are explained. A comparative test-study with transparent, artificial
test-functions is presented, with the goal of determining the benefit of different
indefiniteness correction methods.

c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 69–79, 2016.
DOI: 10.1007/978-3-319-45823-6 7
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2 Terms and Definitions

This study makes use of the following concepts.

Input space: The input space is a non-empty set X .

Sample: A sample x ∈ X can be a vector (continuous or discrete), string, tree
or some other object.

Kernel function: A symmetric function k(x, x′) with k : X × X → R.

Distance function: A symmetric function d(x, x′) with d : X × X → R,
d(x, x′) ≥ 0 and d(x, x′) = 0 if x = x′.

Distance metric: A distance function d(x, x′) which a) is zero iff x = x′ and
b) fulfills the triangle inequality d(x, x′) + d(x′, x′′) ≥ d(x, x′′).

Kernel matrix: A matrix K with element kij = k(xi, xj).

Distance matrix: A matrix D with element dij = d(xi, xj).

Ill-conditioning: A symmetric matrix is ill-conditioned if |λn|/|λ1| is large. λn

is the largest and λ1 the smallest eigenvalue. Ill-conditioning is not in the focus
of this paper, but may require related methods.

Definiteness: A symmetric n×n matrix A is positive definite (PD) iff cAcT > 0
for all c ∈ R

n. This is equivalent to all eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn of A
being positive. Respectively, a matrix is negative definite (ND) iff all eigenvalues
are negative. The matrix is Positive or Negative Semi-Definite (PSD, NSD), iff
all eigenvalues are non-negative (i.e., some are zero) or non-positive. A kernel
matrix is usually required to be PSD. A broader class are Conditionally PSD
or NSD (CPSD, CNSD) matrices, with the condition

∑n
i=1 ci = 0. If a matrix

matches none of these criteria, it is indefinite.
A function k is PSD (NSD) iff

∑n
i=1

∑n
j=1 cicjk(xi, xj) ≥ (≤) 0, for all n ∈ N

and x ∈ X . It is conditionally definite if
∑n

i=1 ci = 0. A distance measure
d(x, x′) is CNSD iff the Gaussian kernel k(x, x′) = exp(−θd(x, x′)) is PSD for all
θ > 0 [21, Proposition 2.28]. Also, the triangle inequality is a necessary condition
for CNSDness [7, Corollary 1]. In case of SVM, PSD kernels guarantee that the
mapping into some higher dimensional feature space exists (kernel trick) [21].

Correlation function: A special case of PSD kernels are correlation functions.
Their values should be −1 ≤ k(x, x′) ≤ 1, and k(x, x′) = 1 if x = x′. Correlation
matrices are required for statistical models like Kriging. The PSD requirement
becomes clear when considering a linear combination of random variables. Indef-
inite matrices would imply negative variances of such combinations.

Kriging: This definition is based on [5] and some adaptations in [27]. Given
a set of n samples X = {xi}, observations y = {yi} and i = 1 . . . n, Kriging
interprets the observed responses y as realizations of a stochastic process. The
set of random vectors Y = {Y (xi)} is used to define this stochastic process.
Correlations can, e.g., be modeled by the kernel

cor [Y (x), Y (x′)] = k(x, x′) = exp(−θd(x, x′)). (1)
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with θ ∈ R+. Both k(x, x′) and d(x, x′) can be chosen depending on the problem.
For example, in case of combinatorial optimization d(x, x′) can be a distance
measures for binary strings, permutations, or trees [17,27].

Kriging predictor: The correlation matrix K is used in the predictor function

ŷ(x) = μ̂ + kT K−1(y − 1μ̂), (2)

where ŷ(x) is the predicted function value of a new sample x, μ̂ is the Maximum
Likelihood Estimate (MLE) of the process mean, 1 is a vector of ones and k
is the column vector of correlations between training samples X and the new
sample x. Kernel parameters (e.g., θ) are determined by MLE. The MLE based
on uncorrected, indefinite correlation matrices can be very misleading, producing
unusable models. As an indefinite matrix can not be a correlation matrix, a basic
assumption of the model is violated. Hence, indefiniteness requires correction.

Uncertainty estimate: The uncertainty of the prediction is estimated with

ŝ2(x) = σ̂2(1 − kT K−1k), (3)

where σ̂2 is an estimate of the process variance, also determined by MLE.

Efficient Global Optimization: The uncertainty estimate ŝ(x) is used in the
Efficient Global Optimization (EGO) algorithm [11]. In EGO, a Kriging model
is first built based on an initial set of observations y with elements yi = f(xi).
Here, f : X → R is an objective function to be minimized. It is assumed to be
very expensive to evaluate (due to consumption of time or other resources). If
ŝ(x) > 0, the Expected Improvement (EI) [15] of a sample is

EI(x) = (min(y) − ŷ(x))Φ
(

min(y) − ŷ(x)
ŝ(x)

)
+ ŝ(x)φ

(
min(y) − ŷ(x)

ŝ(x)

)
,

else EI(x) = 0, where Φ is the normal cumulative distribution function, and φ
the normal probability density function. The sample x that maximizes EI(x) is
evaluated with f(x). The resulting data is used to update the model. This repeats
until a termination criterion is fulfilled (e.g., function evaluation budget).

3 Handling Indefinite Kernels

Several recent studies on SVMs (and related methods) dealt with indefinite ker-
nels, cf. the survey in [20]. This topic has seen less attention in connection to
Kriging [2,3,13]. Four types of methods can be identified. Spectrum transforma-
tions attempt to transform the matrix such that all eigenvalues have the desired
sign. They have been used for SVMs [20] and, to some extend, for Gaussian
Processes [2]. They are outlined and extended by repair methods in Sects. 3.1 to
3.3. Nearest matrix algorithms (Sect. 3.4) try to find matrices that are definite as
well as close to the original matrices. Feature embedding (Sect. 3.5) understands
the indefinite similarities (or distances) as features, and uses a standard, definite
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kernel to compute a surrogate similarity based on these features. Method modi-
fications have been introduced to remove the necessity of definiteness in SVMs,
e.g., by converting the quadratic programming problem to a linear one (LP-SVM
or 1-norm SVM [12,14,28]). Method modifications are usually not transferable
to Kriging and hence not considered here.

In the following, K̃ denotes the definiteness-corrected variant of K. Respec-
tively, k̃ will be the modified variant of k (cf. Eq. (2)). For distances, D̃ and d̃
are employed equivalently.

3.1 Spectrum Transformation: Kernel

The basis for the spectrum transformation is the decomposition of the kernel
matrix K = UΛUT , where U is the matrix of eigenvectors of K, Λ = diag(λ)
the diagonal matrix containing the eigenvalues of K. Following Chen et al. [4],
the spectrum transformation can be written as a linear transformation based on
some vector a ∈ R

n:

K̃ = AK with A = Udiag(a)UT . (4)

Several choices for a are available [20,24].

(I) Spectrum flip transforms the eigenvalues to their absolute values, with λ̃i =
|λi| and aflip = sign(λ). With Eq. (6) and using aflip, the resulting approach is
very similar to the one described by Loosli et al. [12] for SVMs in Krein spaces.

(II) Spectrum clip removes negative eigenvalues by setting them to zero, with
λ̃i = max(λi, 0) and aclip = {I(λ1), . . . , I(λn)}, where I(λi) = 1 if λi ≥ 0 else
I(λi) = 0. Spectrum clip relates to the Moore–Penrose pseudoinverse [16], which
is sometimes used in case of ill-conditioned K.

(III) Spectrum shift uses λ̃i = λi +η with η ∈ R+ and K̃ = K +ηIn. Shifting is
the same as the nugget effect that may be used in the Kriging model, where η is
an additional parameter determined by MLE. It may be reasonable to combine
it with some of the other transformations, e.g., to deal with numerical issues or
noise. The nugget effect is often used to regularize ill-conditioned K [16].

(IV) Spectrum square uses λ̃i = (λi)2 and asqr = λ. Also: K̃ = KK.

(V) Spectrum diffusion uses λ̃i = exp(λi) and adiff = exp(λ)/λ. This leads to
the diffusion Kernel, with K̃ = exp(K) [24].
Of all these transformations, only shift (cf. nugget effect [5,16]) and clip (cf.
pseudo-inverse [16] or multi dimensional scaling [3]) have been used with Kriging,
although mostly for the purpose of dealing with noise or ill-conditioning.

The same transformation A has to be applied to k for prediction (see Eq. (2)):

k̃ = Ak. (5)

In case of spectrum shift, Eq. (5) is not required since the spectrum shift only
affects self-similarities k(x, x). While computing k̃ is a consistent way to treat
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new test samples [4], it has been noted as a drawback due to the effort of (5)
for each single prediction [12]. This issue can be remedied as follows. In the
Kriging predictor given in Eq. (2), kT K−1 is computed. With the respective
transformations we can prove that:

k̃T K̃−1 = (Ak)T K̃−1 = kT AT K̃−1. (6)

The computation of AT K̃−1 has to be performed only once after training, since
it does not depend on the new sample. Afterwards, prediction requires only the
usual computational effort of the Kriging predictor. Using Eq. (4) and UT =
U−1 we can also prove that

k̃T K̃−1 = kT K−1. (7)

Similarly, the uncertainty estimate in Eq. (3) uses kT K−1k. With Eqs. (4)–(6)
this becomes:

k̃T K̃−1k̃ = kT AT K̃−1Ak. (8)

Hence, AT K̃−1A needs to be computed only once. In the following, PSD-
correction refers to all methods that transform the spectrum of the kernel matrix,
with K̃ = SPECPSD(K).

3.2 Spectrum Transformation: Distance

Spectrum transformations can also be applied to distances. PSD-correction can
be applied directly via D̃ = SPECNSD(D) = −SPECPSD(−D). New data is
handled accordingly, i.e., d̃ = Ad. Equations (6)–(8) are not useful in this case.
Thus, effort increases for prediction but decreases for MLE.

Alternatively, spectrum transformations can be used to generate CNSD
matrices as described by Glunt et al. [6]. First, Q = I − (2vvT )/(vT v) with
v = 1, 1, . . . , 1,

√
n is computed and used to yield D̂ = Q(−D)Q. Then,

D̂(−n,−n) is extracted, which is D̂ without last row and column. The matrix
Ď is then constructed using SPECPSD(D̂−n,−n) and the unchanged last row
and column of D̂. Finally, the matrix in the original form is D̃ = −QĎQ. With
spectrum clip, this approach is similar to Multi Dimensional Scaling, as used by
Boisvert et al. [3] to correct indefiniteness in a Kriging model.

Due to the more complex transformations in the CNSD case, d̃ = Ad is no
longer valid. Instead, the augmented distance matrix Daug is computed, which
includes distances between all training and new data. Then,

Daug =
[
D d
dT 0

]
and (after transformation)

[
D̃ d̃

d̃T δ̃

]
= D̃aug, (9)

where δ̃ is the potentially non-zero self-distance of the transformed new data.
The resulting d̃ can be used in Eqs. (1) and (2). In the following, spectrum trans-
formations of the distance matrix are denoted with NSD- or CNSD-correction.
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3.3 Spectrum Transformations: Condition-Repair

The spectrum transformations may yield definite matrices that do not fulfill the
additional conditions required for distance and correlation functions (cf. Sect. 2).
One consequence is, that uncertainty estimates for observed samples (training
data) become non-zero. This may stall the optimization progress (cf. a similar
issue with the nugget effect described in [5]). Methods that mend this issue are
referred to as condition-repair.

A correlation matrix can be repaired with k̃∗
ij = k̃ij/sqrt(k̃iik̃jj) [19].

A CNSD distance matrix D̃ can be repaired with d̃∗
ij = 2d̃ij −d̃ii−d̃jj . The result

is CNSD, non-negative and has zero diagonal [22]. In case of condition-repair,
correlations k̃ and distances d̃ between training data and new samples have to
be derived as outlined in Eq. (9). Spectrum shift only changes the diagonal of K.
Its influence on the uncertainty estimate can be remedied by re-interpolation [5].

3.4 Nearest Matrix Approach

Finding the nearest correlation matrix [8] or nearest euclidean distance matrix [6]
is closely related to spectrum transformation. An alternating projections app-
roach can be used to compute the nearest matrices. The first projection employs
the spectrum clip. The second projection sets diagonals to one (correlation) or
zero (distance). Thus, further condition-repair is not required. Unfortunately,
these methods lack an efficient way of handling new data. Similarly to the
condition-repair procedures, Eq. (9) can be used to derive d̃ (or k̃ analogously).

3.5 Feature Embedding

In feature embedding [12], non-CNSD distances can be used as input features for
a CNSD distance function: d̃ij = ddef(di·,dj·), where di· and dj· are the ith and
jth rows of D, and ddef (x, x′) is a CNSD distance function (here: Euclidean). Dis-
tances d between training and new data have to be subject to d̃i = ddef (d,di·).

4 Experimental Setup

Test-Problems: The samples x were restricted to be permutations, to enable
a well understandable and controllable test case. Other object types are possi-
ble but were omitted for the sake of brevity. Different numbers of permutation
elements were tested: m = 5, 7, 10. The experiments were performed with sim-
ple test-functions f(x) = mini d(x, γi), where x is a sample (permutation), and
the respective function value f(x) is the minimum distance to randomly chosen
centers γi ∈ X , with i = 1, . . . , w. For the sake of this test, the function f(x) was
assumed to be expensive. The number of centers w control the multi-modality of
the function. In case of w = 1, f(x) is unimodal (as used in [18]). For the experi-
ments, w = 1, 3 and 5 was tested. Two distance measures for permutations were
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used: The Interchange Distance is the minimal number of transpositions of arbi-
trary elements required to transform one permutation into another. It is metric,
but not CNSD. As a more pathological (yet admittedly quite artificial) test-case,
we chose the non-metric, non-CNSD distance dLp(x, x′) = (

∑n
i=1 |xi − x′

i|p)1/p

with p = 1/2. Here, the permutations are interpreted as a vector of integers.

Performance Measures: Two sets of experiments were performed, (1) testing
for modeling performance (including the quality of the uncertainty estimate)
and (2) for optimization performance. The Root Mean Squared Error (RMSE)
was used to estimate prediction accuracy. To assess the uncertainty estimate,
standardized residuals r = (y − ŷ)/ŝ were computed, cf. [11,23]. These are used
to calculate the Cramèr-von Mises (CVM) test statistic [1] (comparing against a
normal distribution with zero mean and unit variance). 10-fold cross validation
is used to receive statistically sound results. For the modeling experiments, the
number of samples is n = 20, 40 and 60. For the optimization performance, best
values found after 20 and 100 objective function evaluations are reported.

Model Settings: The Dividing Rectangles algorithm [10] was chosen to opti-
mize the model parameters (θ, η) during MLE. For each parameter, 200 likeli-
hood evaluations were allowed. A relative tolerance of 1e−6 was used to detect
earlier convergence. For (uncorrected) indefinite matrices, the logarithmic likeli-
hood evaluation was set to return a penalty of −1e4+λ1, to drive the search into
the direction of PSD matrices. In all cases, PSD matrices could be established.
However, the resulting matrix was sometimes numerically intractable in case of
spectrum diffusion, which was hence excluded from further analysis (see Sect. 5).
Re-interpolation [5] was employed to correct the uncertainty estimates in case of
spectrum shift. Note, that η was always added to the diagonal of K̃, i.e., after
applying other correction methods. The models always used the same distance
functions that were employed in the test function, combined with the kernel in
Eq. (1). This simulates the case where an adequate distance is chosen by prior
knowledge. All experiments were repeated 20 times.

Optimization Settings: For optimization, most settings remain unchanged.
The budget of evaluations of f(x) was set to 100. Ten initial samples were chosen
at random and evaluated with f(x). In each following step, the candidate that
maximized EI (cf. Sect. 2) was determined by a Genetic Algorithm (GA). The
GA had a budget of 2000 model evaluations for each step, except for m =
5, where brute force was used (m! = 120 model evaluations). The GA used
interchange mutation (transposition of arbitrary elements) and cycle crossover.
The population size was 20, the permutation rate 1/m and the recombination
rate 0.5. As a baseline-comparison, a simple and model-free random search with
100 objective function evaluations was performed. All experiments were repeated
20 times.

5 Observations and Discussion

To summarize overall performance, statistical multiple-comparison tests were
used. Since the data were non-normal and the variances inhomogeneous, a rank
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Table 1. Ranks for RMSE (R), CVM values (C), best value after 20 evaluations (Fa)
and 100 evaluations (Fb). Ranks are based on Tukey’s HSD test, small values are better.
P indicates percentage of cases where the optimum was found within 100 evaluations,
large values are better. Table is sorted by Fa + Fb, with tie-breaker P . Color indicates
a rank of 1, or P ≥ 0.9. In the names columns, the leading boolean denotes whether
condition-repair was used (T) or not (F). CNSD/NSD/PSD : the correction type, fea-
ture: feature embedding, near : nearest matrix approach, standard : no specific correction
and random: random search. Other terms refer to the spectrum transformations.

names R C Fa Fb P names R C Fa Fb P

T.flip.PSD 6 4 1 1 1 T.square.PSD.shift 6 5 2 2 0.91
F.clip.CNSD 1 6 1 1 0.99 standard.shift 7 4 2 2 0.91
F.clip.CNSD.shift 1 8 1 1 0.98 T.square.NSD 3 2 2 2 0.89
T.clip.NSD 1 2 1 1 0.96 T.square.CNSD 3 2 2 2 0.89
T.clip.CNSD 1 2 1 1 0.96 T.square.CNSD.shift 3 4 3 2 0.92
F.flip.CNSD.shift 1 10 1 1 0.95 F.square.PSD 4 4 2 3 0.86
near.CNSD 3 4 1 1 0.94 T.square.PSD 5 3 2 3 0.85
F.flip.CNSD 1 7 1 1 0.94 T.clip.PSD 4 3 2 3 0.84
T.flip.PSD.shift 3 5 2 1 0.98 F.clip.PSD 4 3 2 3 0.84
T.clip.CNSD.shift 2 3 2 1 0.98 standard 4 3 2 3 0.84
near.CNSD.shift 3 5 2 1 0.98 near.PSD 5 3 2 3 0.83
F.clip.PSD.shift 3 5 2 1 0.97 F.clip.NSD.shift 2 9 3 3 0.84
T.clip.PSD.shift 3 7 2 1 0.97 F.clip.NSD 2 9 3 3 0.84
T.clip.NSD.shift 2 3 2 1 0.97 F.flip.NSD.shift 4 8 3 3 0.83
F.flip.PSD 7 4 2 1 0.96 F.flip.NSD 4 6 3 3 0.82
F.flip.PSD.shift 6 4 2 1 0.95 near.PSD.shift 3 8 3 4 0.8
T.flip.NSD.shift 2 2 2 1 0.94 F.square.PSD.shift 3 6 3 4 0.76
feature 3 1 2 1 0.94 F.square.CNSD 4 8 3 5 0.7
T.flip.NSD 1 1 1 2 0.92 F.square.CNSD.shift 3 9 4 5 0.73
feature.shift 3 2 3 1 0.94 F.square.NSD.shift 2 9 4 5 0.69
T.flip.CNSD.shift 2 2 2 2 0.93 F.square.NSD 4 10 3 6 0.67
T.square.NSD.shift 3 4 2 2 0.92 random 5 7 0.35
T.flip.CNSD 1 1 2 2 0.92

transformation was performed for each combination of n, w, m and distance func-
tion. Then, Tukey’s Honest Significant Differences (HSD) test [25] was used with
a significance level α = 0.05. Results were largely confirmed by a non-parametric
test, which disagreed in about 2 % of the cases. With the resulting pair-wise com-
parison, a ranking was computed. All methods that were not significantly worse
than any other received rank 1 and were removed. From the remainder, every
method that was not significantly worse than any other received rank 2, and so
on. Results from the spectrum diffusion approach were excluded as it performed
poorly and failed several times, due to numerical issues with excessively large
numbers. Table 1 reports the respective ranks. Interestingly, the ranks for model
accuracy and optimization performance disagree often. One reason may be, that
optimization only requires a locally accurate model.
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It could be observed, that usable models were achieved by the standard
approach, as it outperformed the random search. That is because even a non-
CNSD distance matrix may yield a PSD kernel matrix if θ is chosen large enough,
but not too large. This becomes obvious with limθ→∞ K = I, which is of course
PD. However, if θ → ∞, Eq. (2) will just yield the mean of observations y.

Enhancing the standard approach by spectrum shift improved optimization
performance, but received the worst RMSE ranks. In general, a clear benefit of
shift could not be observed. In combination with other indefiniteness-correcting
methods, it either improved or deteriorated results. Due to the additional cost
of fitting η, it may be undesirable for non-noisy data.

The simple feature embedding performed robustly, but not for smaller data
sets. The performance after 20 evaluations (Fa in Table 1) was suboptimal. Fea-
ture embedding seemed to require larger data-sets to learn the embedding.

Spectrum transformations were among the best performers. Their main draw-
back is the difficulty of deciding on (a) usage of condition-repair (b) type of trans-
formation and (c) whether NSD-, CNSD- or PSD-correction should be used. For
a), the results are not quite conclusive, but a large block of the worse performing
methods (Fb > 2 in Table 1) does not employ condition-repair. CVM statistic
values are often better if condition-repair is used. For (b), spectrum square is
clearly worse than clip or flip, yet it may provide good results in combination with
spectrum shift. Spectrum flip was not significantly different from spectrum clip.
For (c), the results were mixed, but RMSE ranks seemed to better with NSD-
and CNSD-correction compared to PSD-correction. Intuitively, this makes sense:
NSD- and CNSD-correction correct the distance matrix, which was the source
of the indefiniteness. If the kernel function is the source, only PSD-correction is
applicable. Despite very similar performance, NSD- may be preferred to CNSD-
correction due to higher computational complexity of the latter.

The nearest matrix approaches required the most computational effort, with
tenfold run-times or more. This is due to the necessity of solving an optimization
problem for each correction. Since they performed no better than the related
spectrum clip methods, the nearest matrix approaches can be disregarded.

6 Conclusions and Outlook

This study dealt with indefinite kernels in the Kriging-based EGO algorithm.
Working Kriging models could be derived, even when indefiniteness was not
explicitly corrected (besides the penalty described in Sect. 4). Methods based
on spectrum transformations improved the performance. The spectrum trans-
formations were compared to feature embedding and computations of the near-
est definite matrix. As some of the resulting matrices were no proper correla-
tion matrices, further condition-repair mechanisms were included. In some cases,
this additional condition-repair was beneficial. From the set of spectrum trans-
formations, spectrum flip and clip performed best, while square and diffusion
performed poorly, in the latter case producing numerically intractable results.

Overall, the results indicate that choosing an adequate method automatically
may be problematic. Cross-validation is an option, but not ideal, due to the lack
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of agreement between model accuracy and optimization performance. Also, some
of the worst performing models reported large likelihoods, hence disqualifying a
selection based on likelihood. More extensive experiments or a theoretical analy-
sis of the various approaches could help dealing with this issue. For theoretical
considerations, it is promising to see that spectrum flip works so well, since it
is theoretically well-founded for SVMs [12]. Furthermore, these results may also
be of interest in the context of regularization or ill-conditioning, especially with
respect to condition-repairing procedures and handling of new data samples.
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Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 373–383. Springer,
Heidelberg (2014)

27. Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein,
T.: Efficient global optimization for combinatorial problems. In: Genetic and Evo-
lutionary Computation Conference, GECCO 2014, pp. 871–878. ACM (2014)

28. Zhu, J., Rosset, S., Hastie, T., Tibshirani, R.: 1-norm support vector machines.
Adv. Neural Inf. Process. Syst. 16(1), 49–56 (2004)



A Fitness Cloud Model for Adaptive
Metaheuristic Selection Methods
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Abstract. Designing portfolio adaptive selection strategies is a promis-
ing approach to gain in generality when tackling a given optimization
problem. However, we still lack much understanding of what makes
a strategy effective, even if different benchmarks have been already
designed for these issues. In this paper, we propose a new model based
on fitness cloud allowing us to provide theoretical and empirical insights
on when an on-line adaptive strategy can be beneficial to the search. In
particular, we investigate the relative performance and behavior of two
representative and commonly used selection strategies with respect to
static (off-line) and purely random approaches, in a simple, yet sound
realistic, setting of the proposed model.

1 Introduction

Context and Motivation. In the last decades, the optimization community
has gained much expertise in the design of general purpose randomized heuristics
to tackle hard optimization problems. Nonetheless, there cannot exist a universal
solving method; which partially explains the plethora of available algorithms. We
argue that the automatic choice of an effective algorithm, the smart combination
of low level components and the proper tuning of their underlying parameters
is one of the most challenging questions that the optimization community has
to face in the next coming years. This issue is of interest both for its practical
importance and also for the new research opportunities it opens for the design
of novel high level techniques.

Two main approaches can be reported [3]: (i) off-line tuning (static choice
of parameters before optimization) and (ii) on-line tuning (dynamic tuning of
parameters). It is still an open issue to understand what makes these approaches
act differently both at the practical level, and also at a more fundamental level
with respect to the performance of solvers as a function of problem features.
Generally speaking, this research aims at enhancing our understanding of such
an issue by abstracting from a specific problem and instead proposing a high
level model allowing us to provide both theoretical and empirical evidence on
the expected behavior of algorithm configuration methods.

Background on Models for Adaptive Selection Strategies. In this article,
we focus on on-line adaptive algorithm selection. From a portfolio of algorithms
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 80–90, 2016.
DOI: 10.1007/978-3-319-45823-6 8
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at each iteration of the search, a selection strategy aims at choosing the hopefully
“best” algorithm to execute on the current set of solutions according to the pre-
viously observed performance of available algorithms in the portfolio. In [1,2],
the authors use some specific benchmarks to study novel selection strategies
and improving the underlying reward metrics. For instance, in [1], continuous
benchmarks are experimented using a portfolio of variants of the well-established
differential evolution operator. Alternatively, other works considered to directly
define the rewards associated with the algorithms using particular stochastic dis-
tributions [4,11]. The purpose is to be able to study some specific properties of
a given adaptive selection strategy such as its ability to detect and to learn the
best algorithm from the portfolio. In [11], the set of possible rewards is defined by
different uniform random distributions that are reassigned randomly to the port-
folio at different time intervals. For instance, in [4], the so-called “Two-Values
benchmarks” is used where two possible reward values and a probability of win-
ing the highest is defined depending on pre-computed time intervals. Recently,
a benchmark was proposed in [6] where the rewards depend on the number of
times that an operator is applied during a time window in order to study a sce-
nario where a number of operators providing different exploration/exploitation
trade-offs are available. Several properties should be fulfilled by a relevant bench-
mark depending on the target issue to be studied. First, one has to take into
account the stochasticity of most heuristic algorithms. Hence, the reward of each
algorithm in the portfolio should typically be defined by choosing a relevant
probability distribution. In order to appreciate the relative quality of the target
selection strategies, the so-called “oracle”, that is the optimal selection strategy,
should be known. At last, since the performance of an algorithm in the portfolio
could evolve during the optimization process, the reward distribution has to be
tightly coupled with the state of the search. This aims at increasing generality
and abstracting away specific algorithmic design issues. For instance, in [11] and
related benchmarks, the reward depends on time, and not directly on the state
of search; in [6] and related benchmarks, the state of the search is defined by
the number of times an operator is used independently of the quality of current
solutions. We argue that despite their skillful design, the existing benchmarks
are not sufficient by their own to allow for a global fundamental understanding
of the design of adaptive methods and the setting of relevant theory for them.

Contribution. In this work, we propose a new model called Fitness Cloud (FC)
model inspired by fitness cloud [12]. The proposed model is to be viewed in a
complementary manner to existing benchmarks. In the FC model, the state of
the search is naturally defined by the fitness of the current solution, and the
performance of a given metaheuristic is function of the current fitness value.
The reward distribution is hence not controlled explicitly; but instead, kept as
an implicit feature implied by the considered adaptive mechanisms or approaches
to be designed independently and studied subsequently.

As a preliminary step we consider in this work a simple usage of the FC
model with a portfolio composed by two metaheuristics having fixed performance
qualities across two configurable fitness ranges. This setting allows however to
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Algorithm 1. A single-solution single-operator basic metaheuristic.
1: x0 ← initialization()
2: repeat
3: for i = 1 . . . λt do
4: yi ← operator(xt)
5: end for
6: xt+1 ← selection(xt, y1, . . . , yλt )

7: until stopping criterion is true

study two main issues. First, it allows us to provide theoretical evidence on when
a static (off-line) selection strategy is more beneficial upon an adaptive (on-line)
strategy. Second, through an empirical analysis, and by considering two widely
used on-line adaptive strategies based on multi-armed bandits, we gain a more
deep understanding on when and why such approaches could be effective with
respect to baseline static or purely random strategies [5,9].

The rest of the paper is organized as follows. In Sect. 2, the fitness cloud model
is defined with a simple theoretical analysis. In Sect. 3, different instantiations of
the proposed scenario are considered and the relative performance and behavior
of different selection strategies are elicited by a throughout empirical study. In
Sect. 4, we conclude the paper and discuss future research directions.

2 Fitness Cloud Model and Theoretical Analysis

Before going into more details, and although the proposed model is independent
of a particular metaheuristic, let us consider for the sake of clarity the template of
Algorithm 1 rendering the design of a basic single-solution single-operator meta-
heuristic. The considered iterative algorithm has two parts. First, a stochastic
local operator is applied to the current solution xt to produce a set of λt candi-
date solutions yi. Such an operator could be the random bit-flip mutation when
the search space is the set of binary strings. Second, a new current solution xt+1

is selected. This is typically performed according to the fitness values, given by
the fitness function f , of the newly generated solutions yi, and the current solu-
tion xt. A classical example of selection is the (1 + λ)-EA which selects the best
solutions so far. Notice that despite its simplicity such a template encompasses
a wide range of algorithms.

2.1 Model Definition

The Fitness Cloud (FC) model informs about the fitness value of solutions after
one iteration according to the fitness of the current solution. To make it simple,
the FC model supposes that the state of the search is only given by the fit-
ness ft = f(xt) of the current solution xt (see Algorithm 1). Assuming that the
selection rule only takes into account the fitness values (which is a common prac-
tice for a wide range of metaheuristics), no particular model is required for the
selection step. But a specific model is needed to capture the stochastic behav-
ior of most evolutionary operators when generating new candidate solutions.
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The basic idea behind the FC model is to assume that the fitness after applying
a stochastic operator is given by a conditional probability distribution:

Pr(f(y) = z′ | ft = z) (1)

Being said, different choices of this probability distribution can be made such
as discrete distributions (binomial, Poisson, etc.), or continuous distributions
(normal, Weibull, etc.). Given its properties of convergence, we choose the use
a normal distribution in this paper:

Pr(f(y) = z′ | ft = z) ∼ N (μ(z), σ2(z)) (2)

where μ(z) and σ2(z) are respectively the mean and the variance of the normal
distribution which can depend on the fitness z of the solution and which are to
be set to map a target setting. As a consequence, the evolution of the fitness
during one iteration follows a conditional probability distribution which embeds
the previous distribution. One important feature of the probability distribution
is the expected improvement of one metaheuristic iteration, denoted by E+(z),
which is the expected progress of the fitness given the current fitness value is z:

E+(z) =
∫ ∞

z

Pr(ft+1 = z′ | ft = z) z′ dz′ (3)

2.2 Definition of a Simple Scenario with Two Fitness Ranges

The previous considerations are broad enough to allow us to define a more con-
crete and relevant simple scenario, where we are given a portfolio of two elitist
metaheuristics (see Fig. 1). More precisely, we first assume that the possible fit-
ness values are normalized in the range [0,1]. The search is assumed to start with
fitness value 0 and stops when the fitness value 1 is reached. The whole range
[0,1] is then divided into two fitness ranges: the first one from fitness 0 to r � 1,
and the second range from r to 1. We then consider a portfolio of two heuris-
tic algorithms having different relative performance in these two ranges. For
this purpose, the relative behavior of each algorithm in the portfolio is modeled
accordingly in each fitness range using the fitness cloud model. More precisely, at
each fitness range, we shall fix the mean and variance of the conditional normal
distribution in Eq. 2 as follows: μi(z) = z +Kμi

and σ2
i (z) = Kσi

where for each
metaheuristic Mi, i ∈ {1, 2}, parameters Kμi

and Kσi
are different constant

numbers at each fitness range. Therefore, we end up with 9 parameters to be
fixed in this scenario: r, and the 8 parameters for the normal distributions for
each metaheuristic and at each fitness range. However, as it will be shown in
Sect. 2.3, the expected running time to reach the optimal value 1 depends on the
expected improvement of each metaheuristic. Hence, only 5 parameters are free
as illustrated by Fig. 1; where E+

i,j denotes the expected fitness improvement of
metaheuristic Mi, i ∈ {1, 2}, for the fitness range j ∈ {1, 2}. Additionally, we
assume that the best metaheuristic for the first fitness range is M1, whereas it
switches to M2 in the second fitness range, i.e., E+

2,1 < E+
1,1, and E+

1,2 < E+
2,2.
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Finally, like in many optimization problems, we assume that the expected
improvement decreases when the fitness value increases: E+

1,2 < E+
1,1, and

E+
2,2 < E+

2,1. It is important to notice that the relative performance of algo-
rithms in the portfolio does not depend explicitly neither on time (number of
iterations), nor on the number of times a metaheuristic is applied; but solely on
the state of the search which is assumed to be implied by the current fitness value.

Fig. 1. Fitness cloud model: scenario with two metaheuristics and two fitness ranges.

2.3 Theoretical Insights

In this section, we assume an off-line static strategy that selects arbitrary one
metaheuristic, denoted M , in the portfolio and executes it on the previously
described scenario until reaching the target fitness value 1. We shall assume
that the considered metaheuristic follows the template of Algorithm 1 initialized
with a solution having fitness value 0 and implementing an elitist selection when
deciding on the next solution, i.e. the best solution is retained for the next
iteration. Notice that the expected improvement of the considered metaheuristic
M at each iteration is by definition constant within each of the two fitness
ranges defined in the considered scenario. We shall denote by E+

1 (resp. E+
2 ),

the expected improvement within the first (resp. second) fitness range. Let us
consider the running time of metaheuristic M , that is, the first hitting time
(number of iterations) to reach the final fitness value: T = min{t |Ft � 1} where
Ft is the random variable which gives the fitness value of the best solution found
at iteration t. Notice that the total number of evaluations depends on λt and
the number of evaluation in each operators. We then can prove the following:

Theorem 1. The expected running time verifies: Tup − δ
E+

2
� E[T ] � Tup with

Tup =
r

E+
1

+
1 − r

E+
2

and δ =
{

1 − r if1 − r � E+
1 ,

E+
1 ifE+

1 < 1 − r

Proof. Let T1 = min{t |Ft � r} and T2 = min{t − T1 |Ft � 1}. By definition
and by the linearity of expectation, we have that E[T ] = E[T1] +E[T2]. Now we
prove the following lemma:
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Lemma 1. Let (k, �) ∈ [0, 1]2 such that either r � k � � or k � � � r. Let
T

′
= min{t |Ft � �} and F0 = k. Let E+ is the expected improvement in the

fitness range [k, �]. Then, E[T
′
] = (� − k)/E+.

The proof of the Lemma is an application of theorem 1 in [8] which can be
stated in short by: if E[Xt − Xt+1|Xt] = δ, then E[T0|X0] = X0/δ. In fact, by
considering the random variable Xt = �−Ft, we have by definition of the fitness
cloud model E[Xt − Xt+1 |Xt] = E+ which gives the necessary additive drift
condition and the proof of the lemma follows immediately.

Since the expected improvement in the first fitness range is E+
1 , applying

the previous lemma with F0 = 0 provides: E[T1] = r/E+
1 . Similarly, let k � r

the fitness of the (best) current solution just after a solution xt with fitness
greater than r is found for the first time. Since the expected improvement in
the second fitness range is E+

2 , applying the previous lemma with F0 = k � r
provides: E[T2] = (1 − k)/E+

2 � (1 − r)/E+
2 . The stated upper bound is hence

proved. Let’s now define Yt′ = 1 − Ft′ where t
′

= t − T1. Hence, E[T2|Y0] =
Y0/E+

2 . By applying the law of total expectation, we get E[T2] = E[Y0]/E+
2 .

Let FT1 = FT1−1 + ΔT1−1 where ΔT1−1 is the random variable of the fitness
difference between the iterations T1 − 1 and T1. By definition of T1, FT1−1 < r,
and from the fitness cloud model we have that E[Δt′ −1] = E+

1 > 0. It follows
that: E[Y0] � 1 − r − E+

1 . When 1 − r − E+
1 � 0, the algorithm is able to reach

final fitness without any iteration in the second fitness range. Otherwise, for
1 − r − E+

1 > 0, the algorithm spends at least (1 − r − E+
1 )/E+

2 iterations in the
second fitness range 2. �
For example, with the (1 + 1)-EA which generates a single candidate solution
and keeps it if it is better than the current one, the expected improvement E+(z)
at fitness value z is given by: E+(z) =

∫ ∞
z

t
σ

√
2π

exp(−(t−μ)2

2σ2 )dt = (μ − z) · (1 −
Φ(−(μ−z)

σ )) + σ√
2π

exp(−(μ−z)2

2σ2 ) where Φ is the cumulative distribution function
of the standard normal distribution. Accordingly, the evolution of the expected
running time for the two possible metaheuristics M1 and M2 as a function of
the length r of the first fitness range, is illustrated in the right side of Fig. 2.

3 Experimental Analysis of Adaptive Selection Strategies

3.1 Experimental Design

From the scenario defined previously (see Fig. 1) where a portfolio of two meta-
heuristics are given; with the metaheuristic M1 (resp. M2) being better on the
fitness range 1 (resp. 2), we were able to experiment several possible settings of
the underlying FC model. Overall, and considering that M1 and M2 are imple-
mented as an elitist (1 + 1)-EA, we only retain 3 cases corresponding to typical
different instantiations that were found to be the most representative of the dif-
ferent challenges that this scenario allows to consider. In Fig. 2, we summarize
these 3 experimental cases while providing the parameters used in the FC model.
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Actually, as shown in the theoretical analysis, the expected improvement (EI for
short) is crucially important in each fitness range. Hence, the mean and the
standard deviation of the normal distributions are chosen to obtain the desired
EI. By choosing Kμ negative, we emulate the behavior of a typical stochastic
operator that decreases on average the fitness of current solution as it is the case
very often in practice. In all the 3 cases, the EIs of M1 and M2 are the same in
the first fitness range, while being different by a factor of 2. This actually does
not penalize much metaheuristics when moving from one range to the other,
which makes Case 2 a reference case with respect to the other cases. In fact, in
Case 1, the EI values are much more closer in the second range, i.e.an oracle
would act as in Case 2, but the performance of a static selection strategy that
would always choose M1 becomes much closer to the oracle than in Case 2. As
for Case 3, the same factor of 2 is kept between the EIs in the second range; but
the EIs has been reduced by a huge factor of 15, hence making the progress in
the second range relatively much more difficult than in the first range compared
to Case 2.

Values are given with a factor of 10−3.

Cases Meta.
Fitness range 1 Fitness range 2

E+
i,1 Kμi

Kσi
E+

i,2 Kμi
Kσi

Case 1
M1 6 −1 16.27 1.8 −2 6.72
M2 3 −1 8.72 2 −2 7.24

Case 2
M1 6 −1 16.27 1 −2 4.59
M2 3 −1 8.72 2 −2 7.25

Case 3
M1 6 −1 16.27 0.2 −2 2.14
M2 3 −1 8.72 0.4 −2 2.84

Static(M1)
Static(M2)

Length of the Fitness Range 1 (r)

gvA
. 

noit a ula ve fo reb
muN

Uniform

Oracle

0 1

-1E 2,2

-1E 1,2

-1E1,1

-1E2,1

+

+

+

+

Fig. 2. Parameters values of the 3 cases with its corresponding sketch (upper bounds of
expected running time): exp. impr. (E+

i,j), mean difference (Kμi), and std. dev. (Kσi).

For our experimental investigations, we consider two selection strategies used
in multi-armed bandits framework. Due to the lack of space, we only detail the
experimented parameters without going into a technical discussion; the reader
is referred to [6] for a review and a detailed description of the following adap-
tive selection strategies, namely Upper Confidence Bound (UCB) and Adaptive
Pursuit (AP). The UCB strategy [4] estimates the upper confidence bound of
the expected reward of each arm and selects the one with the higher bound.
A parameter C tunes the exploitation/exploration trade-off. The AP selection
strategy [10] uses exponential recency weighted average to estimate the average,
tuned by an adaption rate α, and selects a metaheuristic according to proba-
bilities updated by a learning rate β. For UCB, the set of studied parameters
C is {0.0008, 0.01, 0.1, 0.75, 2, 4, 10, 20, 25, 50}, and for AP, both adaptation and
learning rate parameters are in the set {0.1, 0.3, 0.5, 0.7, 0.9}. Additionally, we
include three other strategies in our analysis. The oracle strategy selects the
best metaheuristic in each fitness range, i.e. M1 in the first range and M2 in the
second range. The uniform strategy selects at each iteration one metaheuristic
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uniformly at random among M1 and M2. Notice that in this case the expected
improvement is the mean of expected improvements of M1 and M2. The static
strategy selects always the same metaheuristic, that is either M1 or M2 before
the execution is started. All results are averaged over 100 independent runs.

3.2 Empirical Analysis

In this section, we analyze the relative performance and the behavior of the con-
sidered strategies. The performance measure is the average number of evaluations
to reach the target fitness value 1. For fairness, we consider the best parameter
setting for each strategy. For each case, we compute the average rank of a set-
ting over all values of r, and the best ranked setting is selected. The performance
comparison is based on the Mann-Whitney test with a confidence level of 0.05.
In Fig. 3, we show the performance obtained in the three test cases as a function
of the length r of the first fitness range. Notice that for the considered Cases
1, 2, and 3, the average difference over the r-values of the performance between
the oracle and the best static strategy (either with M1 or M2) is respectively
20, 57, and 100 evaluations. This is the maximum performance gap between an
optimal adaptive method and an optimal off-line static strategy tuned for each
value of r.

Adaptive Strategies vs. Uniform. As suggested by Theorem 1, the expected
performance of static, oracle, and uniform selection strategies decreases linearly
with the length of the first fitness range. The performance of UCB and AP
strategies are also linear from our empirical data (Pearson correlation coefficients
are very close to −1). For all test cases, and for any length r of the first range,
UCB and AP strategies perform significantly better than the uniform random
selection strategy (except for few values of r where no significant difference with
AP is found). Interestingly, the average gap between UCB and uniform strategy
in test cases 1, 2, and 3 is respectively around 26, 87, and 263 evaluations,
which is much higher than the difference between the oracle and the best static
strategy.

Adaptive Strategies vs. Static. The performance of adaptive strategies can
be worse than a static strategy. For example, in the test case 2, UCB is better
than any static strategy for r ∈ [0.11, 0.99]. Otherwise, when the length of the
fitness range where the expected improvement of M1 is the best, is short (r <
0.11), the static strategy choosing M2 is better than UCB. At the opposite, for
r > 0.99, the static strategy choosing M1 is better than UCB. The performance
of the adaptive selection strategies also depends on the expected improvements
in the second range. Respectively for the cases 1 and 3, the r-values intervals
where UCB strategy outperforms static strategies are [0.09, 0.81] and [0.61, 1.00].
On average over the r-values, in test case 1 and 2, UCB outperforms the static
strategy by 10 and 49 evaluations respectively. However, in the test case 3, when
the expected improvements of algorithms in the portfolio in the second range
are very small compared to the first one, a static strategy is preferred, indeed
UCB requires 71 additional evaluations on average than static.
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Fig. 3. Comparison of selection methods with the best parameters settings for UCB
C = 4, and for AP α = 0.1, β = 0.1. From left to right: test cases 1, 2, and 3.

UCB vs. AP Strategies. Overall, the AP strategy never outperforms UCB
strategy significantly except in 3 minor exceptions for the lowest values of r in
the case 3. In the case 1, UCB is better than AP for r > 0.35, and the difference
between UCB and AP is 10 evaluations in average, which is half of the difference
between best static strategy and oracle. In test case 2, UCB strategy is better
than AP except for the 3 largest values of r, while being very close to the
oracle, i.e. the average difference for UCB is only 8 evaluations compared to
the 32 evaluations for AP, and 57 evaluations for a static strategy. In case 3,
the performance difference between of UCB and AP is much closer (only 15
evaluations on average). Although UCB outperforms AP for r-values larger than
0.37, both strategies are on average worst than the optimal static strategy by a
factor of 1.8. The Fig. 4 shows the selection frequency of the best metaheuristic
according to the current fitness value for UCB and AP in Case 2 and when the
expected improvement of metaheuristics is changed at fitness value r = 0.5. The
UCB strategy converges at fitness 0.3 for C = 0.004, and AP around fitness 0.5
for α = 0.1. In addition, when the best metaheuristic changes at fitness value
0.5, the UCB strategy recovers more quickly the best metaheuristic than AP.
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Fig. 4. Frequency of the best metaheuristic selection according to the fitness value for
different parameter settings. Case 2 with r = 0.5 AP (left) with β = 0.1 UCB (right).
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Uniform vs. Static. It is shown several times that random selection of parame-
ters could outperformed a tuning method with static value of parameters [5,9].
The model with two fitness ranges scenario helps us to understand why and
when random selection can be advantageous. The uniform strategy is better
than the best static strategy when the length r belongs to the intervals [0.14, 0.4],
[0.56, 0.88], and [0.6, 1] respectively for cases 1, 2, and 3. Roughly speaking, a
random uniform selection, and moreover an adaptive strategy, is more efficient
when the performances of each metaheuristic in the portfolio are close.

Discussion. This two-fitness-range scenario allows us to fine-tune the perfor-
mance of each metaheuristic at the two stages of the search. The comparison of
case 2 and 3 shows that when the average expected improvements at the second
stage is much lower than in the first stage, an adaptive method becomes less
efficient except when the length of the first stage is very large. Indeed, the time
that can be gained in the first stage becomes negligible and the main difficulty
then turns out to be the final convergence to the optimum value. When the
scale of the average expected improvements between the two stages is moderate
like in test case 2, an adaptive method like UCB strategy is very effective. How-
ever, when the performance difference between metaheuristics at one stage of the
search becomes small, like in test case 1, the problem is equally difficult for all
metaheuristics in the portfolio, and the adaptive selection becomes rather use-
less besides the fact that it becomes more difficult to detect the best performing
metaheuristic at a given iteration.

4 Conclusion

It is our hope that the fitness cloud model opens new research paths allowing
to understand, to test and to design new adaptive portfolio methods in different
settings. In this work, using a simple scenario, we provide properties of when
and why an (on-line) adaptive selection strategy, or random selection could out-
perform an (off-line) static strategy. Indeed, the fitness cloud model goes beyond
the intuition and allows to give a formal framework in order to analyze selection
strategies in portfolio and to understand their behavior in different settings.

Following the natural question of Baudǐs et al. in his conclusion [1] on
“the influence of portfolio size and composition on performance of various strate-
gies”, it would be possible to design relevant scenarios to deeply study those
questions. It would also be possible to conduct a fine grained analysis of other
selection strategies in a sequential as well as in parallel context [7]. It will also
be interesting to extend the fitness cloud model to multi-objective optimiza-
tion where the design of adaptive portfolio method is relatively in its infancy
beginning.
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Abstract. We consider the deployment of island-based memetic algo-
rithms (MAs) endowed with self-� properties on unstable computational
environments composed of a collection of computing nodes whose avail-
ability fluctuates. In this context, these properties refer to the ability of
the MA to work autonomously in order to optimize its performance and
to react to the instability of computational resources. The main focus of
this work is analyzing the performance of such MAs when the underly-
ing computational substrate is not only volatile but also heterogeneous
in terms of the computational power of each of its constituent nodes.
We use for this purpose a simulated environment subject to different
volatility rates, whose topology is modeled as scale-free networks and
whose computing power is distributed among nodes following different
distributions. We observe that in general computational homogeneity is
preferable in scenarios with low instability; in case of high instability,
MAs without self-scaling and self-healing perform better when the com-
putational power follows a power law, but performance seems to be less
sensitive to the distribution when these self-� properties are used.

1 Introduction

Population-based optimization algorithms are very well suited to parallel envi-
ronments thanks to their flexibility and decentralized nature. This has been
known and exploited since the late 80s. In contrast to the dedicated networks
of computational resources that were typical in the past, recent years have wit-
nessed the emergence of other kind of environments of a much more dynamic and
unsteady nature though. This is the case of peer-to-peer (P2P) networks and vol-
unteer computing networks, composed of volatile nodes whose availability usually
responds to uncontrollable external factors. Such environments are particularly
interesting in light of the increasingly pervasive abundance of computational
devices which are permanently networked (think for example of smartphones,
wearables, and any other kind of handheld devices) and whose computing power
is often unused or at least under-exploited [6]. Capitalizing on such power can be
a practical solution for solving many complex computational tasks but tackling
the underlying dynamic computational landscape is not exempt of difficulties.
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 91–100, 2016.
DOI: 10.1007/978-3-319-45823-6 9
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Of course, intermediate layers can be constructed to hide the transient nature
of computational nodes but it is not easy to have such an abstract layer mak-
ing effective use of brief, ephemeral bursts of computing availability. While this
direction is in any case interesting and valid, we consider here a much more
direct approach in which the optimization algorithm is cognizant of the volatile
environment.

Algorithms consciously running on computational environments with the fea-
tures mentioned above must be resilient in order to withstand sudden node fail-
ures. In the case of evolutionary algorithms this resilience is partly provided by
their inherent features [13,15], and can be further boosted by exploiting their
capacity for adaptiveness and self-control [8,11]. This latter feature is essential to
have the algorithm readjusting its behavior in response (or even in anticipation)
to the fluctuations of the environment. Indeed, much work has been done in the
area of self-adaptation in evolutionary algorithms, e.g., [5,24,25] in general, and
in connection with unstable environments in particular. In this work we build
on previous research [19–22] in order to tackle the potential heterogeneity of the
environment [1] in terms of the computational power of individual nodes (which
in a setting such as the one described before could range from tiny devices to
desktop computers for example) and ascertain to which extent this can exert
an influence in the performance of the algorithm. The underlying rationale for
examining this matter lies in the potentially different impact than the failure
of a node can have on the system as a whole depending on its computational
power, and determining whether or in which conditions the system is sensitive to
this environmental heterogeneity. To this end we consider island-based memetic
algorithms (MAs) endowed with self-� properties [2] and use a simulated com-
putational environment that allows experimenting with different scenarios both
in terms of the volatility of computing nodes and the distribution of comput-
ing power of constituent nodes. A broad experimentation is done to assess the
performance of the MA in these different scenarios.

2 Materials and Methods

2.1 Basic Algorithmic Setting

As stated in the introduction, the basic algorithm considered is an island-based
MA. Let there be nι panmictic islands, each of them running a simple MA (using
tournament selection, one-point crossover, bit-flip mutation, and replacement of
the worst parent) on a different computing node. Such nodes are interconnected
among them according to a certain topology N – see Sect. 2.3. In addition to
standard selection, variation and local improvement, each island perform asyn-
chronous migration: at the beginning of each cycle the island checks if migrants
were received from any neighboring nodes and are stored in the input buffer.
Were this the case, they would be inserted in the population following a cer-
tain migrant replacement policy. Later, at the end of each cycle, each island
decides stochastically whether to send individuals to neighboring islands. If done,
migrants are selected using a given migrant selection policy and sent to the
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neighbors. Following previous analysis of migration strategies in island-based
MAs [18], we use random selection of migrants and deterministic replacement of
the worst individuals in the receiving island.

2.2 Self-�Properties

Self-� properties [2] are those that enable a computational system to exert
advanced control on its own functioning and/or structure. This goes beyond
parameter control (its practical importance notwithstanding) and encompasses
advanced capabilities such as, e.g., self-maintaining in proper state, self-healing
externally infringed damage, or self-optimizing its behavior, just to cite a few.
In the following we will describe the particular self-� properties with which the
MA considered is endowed.

Self-Generation. According to [4], a system is self-optimized if starting from an
arbitrary initial configuration it is capable of improving a certain objective func-
tion of its global state. In the case of bioinspired optimization algorithms, this
objective function does not directly refer to the fitness function to be optimized,
but to the capability of the algorithm to optimize the latter. Such capability
can be improved for example by tuning some parameters (self-parameterization)
or even by adjusting qualitatively the way the search is done (self-generation).
The latter approach amounts to have the algorithm adjusting the search strat-
egy during runtime [12], and is related to the notion of memetic computing [23]
whereby memes (understood as representations of problem solving strategies)
are explicitly represented and evolved [17].

In the MA considered we follow the model by Smith [24] in which memes are
attached to individuals and evolve alongside them. More precisely, these memes
take the form of pattern-based rewriting rules A → B, where A,B are variable-
length strings taken from the same alphabet used to encode solutions plus a
wildcard symbol. The action of the meme is finding an occurrence of pattern A
in the solution and changing it by pattern B if it leads to a fitness improvement
(otherwise the solution is left unchanged). Self-generation is attained due to the
fact that memes are subject to mutation and are transferred from parent to
offspring via local selection (offspring inherit the meme of the best parent).

Self-Scaling. This property involves the ability of the system to react efficiently
to changes in its scale parameters, that is, changing its size or its structure
in response to modifications in the size of the problem being solved, in the
amount of computational resources available, or in any other circumstance of the
computation, e.g., [9,28]. In this case, the main factor to be taken into account is
the volatility of the environment that results in certain islands getting lost when
the supporting node goes down. This implies that the overall size of the system
will fluctuate, affecting genetic diversity and resulting in the loss of information.
To cope with this, a self-balancing policy has been proposed [22]. This strategy
is aimed to resize dynamically islands so that some of them increase their sizes



94 R. Nogueras and C. Cotta

when they detect a neighboring island has gone down, and analogously decrease
their sizes when a new neighbor appears. This is done by communicating with
neighbors at the beginning of each evolutionary cycle exchanging information on
the size of their populations and the number of active neighbors, and performing
a local balancing procedure [27] by transferring individuals. New islands can
absorb this way a part of the existing population in neighboring nodes and,
likewise, nodes detecting that a previously active neighbor is no longer available
try to compensate this loss by increasing their own population sizes (using the
recorded information on the size and number of active neighbors the lost island
had in order to calculate the required increase). While simultaneous failures
of neighboring nodes can still produce fluctuations, this strategy promotes the
stabilization of the overall population size.

Self-Healing. This property focuses on the maintenance and restoration of sys-
tem attributes that may have been affected by internal or external actions. In the
context of evolutionary algorithms this property is not new since the use of ad-
hoc procedures for repairing infeasible solutions produced by variation operators
in constrained problems [16] can be regarded as a simple form of self-healing.
More particularly for the case of ephemeral computational environments, the
volatility of the system can be the source of at least two issues the algorithm
needs to deal with: (i) node failures disrupt the connectivity of the network, lim-
iting the flow of information and hindering the progress of the search, and (ii)
forcing an island to increase its size can perturb the convergence of the search if
the new information is simply random. To tackle the first issue, a self-rewiring
strategy [19] is used: whenever an island detects that its number of active neigh-
bors has fallen below a predefined threshold, it looks for additional neighbors to
reach this minimum level, hence aiming to maintain a rich connectivity at all
times. As to the second issue, it is dealt with by means of self-sampling [20], that
is, the island keeps a probabilistic model of the current population and samples
it (much like it is done in EDAs) when new individuals are required. This way,
the latter are representative of the current state of the population. We consider
here a tree-based bivariate probabilistic model.

2.3 Environmental Model

This island-based model runs on a simulated distributed system composed of
nι nodes. These nodes are interconnected following a scale-free topology. This
connectivity pattern is commonly observed in many real-world systems, particu-
larly in P2P systems. To generate this topology we consider the Barabási-Albert
(BA) model [3]: starting with a clique of m + 1 nodes (m being a parameter
of the model), new nodes are added one at a time, selecting for each of them
m neighbors among previous nodes; neighbor selection is driven by preferential
attachment, whereby the probability of picking a certain node is proportional to
the number of neighbors it already has.

To model the volatility of the nodes, we consider that failures/recoveries are
Weibull distributed [14]. This distribution is described by a shape parameter η
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and a scale parameter β: the probability of a node being available up to time
t is p(t, η, β) = exp(−(t/β)η). Thus, for shape parameters larger than 1 (as we
use in the experiments), failure/recovery probabilities increase with time.

Network heterogeneity is modeled by assuming each node i has a certain
computing power wi ∈ N

+. These coefficients represent for simplicity a relative
performance index and hence each node’s power can be understood to be pro-
portional to its coefficient. From the point of view of the MA, this computational
power determines the number of evolutionary cycles (and hence the number of
fitness function evaluations) each node can perform per unit of time. We have
considered several scenarios regarding the distribution of values for these coeffi-
cients but in all cases, the overall computing power of the network W =

∑
i wi

is the same so as to not introduce any bias towards any particular configuration:

– uniform: the overall computing power W is evenly distributed among nodes,
meaning that �W/nι� � wi � �W/nι�.

– random: each coefficient wi can have a uniformly random value in {1, . . . , W −
nι + 1}, subject to W =

∑
i wi as mentioned before. This is accomplished by

having wi = 1 initially, attributing random values in (0, 1) to each node and
then using D’Hondt’s method to distribute W − nι additional units among
nodes according to these values.

– binomial: coefficients can take values in {1, . . . , W −nι +1} and the probability
of a certain value w is p(w) = C(W − nι, w − 1)qw−1(1 − q)W−nι−w+1 where
q = 1/nι. As in the previous case, the boundary conditions ensure that each
node has at least unit power.

– power law: coefficients are grouped in r levels, where r ∈ {0, . . . , rmax} with
rmax = �log2 nι� − 1, so that there is a single node with power �nι/2� in the
highest level, and in subsequent levels there are twice as many nodes, each
with half as much power as in the previous upper level (although depending
on the value of nι the lowest level can have additional nodes if these are not
enough to create a new level).

The value W implied for the last configuration (power law) is used for the remain-
ing distributions. Notice that depending on the configuration a node failure will
have a different impact on the overall capacity of the system. For example, under
the power law distribution around half of node failures will have a low impact in
this overall capacity but larger disruptions are possible (albeit with a increas-
ingly lower probability). On the opposite side of the spectrum, all failures have
a priori the same moderate impact under a uniform distribution. Next section
describes the experimentation conducted with these distributions to determine
more quantitatively the effect they exert on performance.

3 Experimental Analysis

We consider nι = 32 islands whose initial size is μ = 16 individuals and a
total number of evaluations maxevals = 50000. Meme lengths evolve within
lmin = 3 and lmax = 9, mutating their length with probability pr = 1/9.
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Fig. 1. Average deviation from the optimal solution across all problems. (a) According
to algorithmic variant. (b) According to power distribution.

Table 1. Results of Holm test (α = 0.05) using LBQr
comit as control algorithm.

i strategy z-statistic p-value α/i

1 LBQcomit 2.934e+00 1.670e−03 5.000e−02

2 noB 6.293e+00 1.554e−10 2.500e−02

3 noBr 9.298e+00 7.125e−21 1.667e−02

We use crossover probability pX = 1.0, mutation probability pM = 1/�, where
� is the genotype length, and migration probability pmig = 1/80. Regarding
network topology, we use m = 2 in the Barabási-Albert model. This model
is also used for self-rewiring when a node has less than m active neighbors.
Regarding node deactivation/reactivation, we use the shape parameter η = 1.5
to have an increasing hazard rate, and scale parameters β = −1/ log(p) for
p = 1 − (knι)−1, k ∈ {1, 2, 5, 10, 20}. These parameters can be interpreted as
corresponding to an average of one island going down/up every k cycles if the
failure rate was constant (it is not since η > 1 but this serves as a first approx-
imation). This provides different scenarios ranging from low volatility (k = 20)
to very high volatility (k = 1). We perform 25 simulations for each algorithm
and volatility scenario. We consider four algorithmic variants (in parentheses
the self-� properties involved – all variants use self-generation): LBQr

comit (self-
rewiring, self-sampling, self-scaling), LBQcomit (self-sampling, self-scaling), noBr

(self-rewiring) and noB. The experimental benchmark comprises three test func-
tions, namely Deb’s trap function [7] (concatenating 32 four-bit traps), Watson
et al.’s Hierarchical-if-and-only-if function [26] (using 128 bits) and Goldberg
et al.’s Massively Multimodal Deceptive Problem [10] (using 24 six-bit blocks).



Self-� MAs in Heterogeneous Ephemeral Environments 97

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

1/k

de
vi

at
io

n 
fro

m
 o

pt
im

um
 (%

)
power law
uniform
binomial
random

(a)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

1/k

de
vi

at
io

n 
fro

m
 o

pt
im

um
 (%

)

power law
uniform
binomial
random

(b)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

1/k

de
vi

at
io

n 
fro

m
 o

pt
im

um
 (%

)

power law
uniform
binomial
random

(c)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

1/k

de
vi

at
io

n 
fro

m
 o

pt
im

um
 (%

)

power law
uniform
binomial
random

(d)

Fig. 2. Average deviation from the optimal solution across all problems and power
distributions for each algorithmic variant. (a) noB (b) noBr (c) LBQcomit (d) LBQr

comit.

Figure 1a shows the average deviation from the optimal for each of the four
algorithmic variants across all problems and power distributions. The variants
with self-scaling and self-sampling outperform variants without them, even in
the presence of self-rewiring. This confirms the robustness of the former across
different the scenarios considered. In fact, LBQr

comit is significantly better than
the remaining algorithms (Quade test p-value ≈ 0, Holm test passed at α =
0.05 as shown in Table 1). Thus, from a global point of view endowing the MA
with self-� properties appears to be a advantageous option. If we now turn our
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attention to the overall results obtained under each different configuration by
all four variants, the differences are not always large (Fig. 1b), although this
is understandable in light of the great performance diversity of the algorithms
involved that diminishes and conceals dissimilitudes among configurations. For
this reason, it is more convenient to factorize the analysis and observe the impact
that configurations have on each algorithm separately. This is shown in Fig. 2.

Comparing the behavior of the different algorithms, there is a common fea-
ture: in scenarios of low to moderate volatility (k � 5) the uniform distribution
(corresponding to near-homogeneous nodes) provides better results. The differ-
ences are not always significant considering individual algorithms, but the trend
is clear and yields a global significant difference (Quade test p-value ≈ 7.022e−4,
Holm test passed for all distributions except random at α = 0.05 and for the lat-
ter as well at α = 0.1). We interpret this result as indicating that in scenarios in
which the environmental instability is not strong enough to pose a great handi-
cap to the search process, device homogeneity contributes to balance the search,
having all islands progressing at about the same rate. This is further vindi-
cated by the comparatively worse results of the power law distribution in this
range, suggesting that the decompensation of computational power (and thus
the unbalance of search progress among islands) is not a cost-effective solution.
It is also interesting to note the different behavior of noB and LBQr

comit on the
other part of the spectrum, that is, for moderate to high volatility (k � 5). In
this case, it seems that noB benefits from heterogeneity. This can be due to
the fact that having nodes with high computational power can push forward
the search significantly during their short availability stint in a much more cost-
effective way than less powerful nodes. The situation is different in the presence of
self-healing and/or self-scaling, particularly for LBQr

comit. These self-� properties
help to absorb the impact of the environment instability and hence LBQr

comit is
not in a so-markedly different scenario as before. In fact, power law is significantly
worse than uniform for LBQr

comit globally considering all values of k (although
the performance is in that case still superior to the remaining algorithms).

4 Conclusions

Deploying population-based optimization algorithms on unstable environments
require resilience to deal with the fluctuating computational landscape. Such
fluctuations respond to the volatility of computing nodes but can also encompass
the heterogeneity of the system and the corresponding variations in the computa-
tional power of nodes available at a certain moment. In this sense, endowing MAs
with self-� properties has been shown as an effective solution. The combined use
of self-scaling and self-healing seems robust under different configurations of the
system, even in scenarios with extreme heterogeneity in which its performance is
comparatively less favorable. Future work will be directed to confirm these find-
ings, extending the range of scenarios considered both in terms of heterogeneity
and of the volatility patterns of the system.
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Abstract. A simple success-based step-size adaptation rule for single-
parent Evolution Strategies is formulated, and the setting of the cor-
responding parameters is considered. Theoretical convergence on the
class of strictly unimodal functions of one variable that are symmetric
around the optimum is investigated using a stochastic Lyapunov function
method developed by Semenov and Terkel [5] in the context of martingale
theory. General expressions for the conditional expectations of the next
values of step size and distance to the optimum under (1 +, λ)-selection
are analytically derived, and an appropriate Lyapunov function is con-
structed. Convergence rate upper bounds, as well as adaptation parame-
ter values, are obtained through numerical optimization for increasing
values of λ. By selecting the number of offspring that minimizes the
bound on the convergence rate with respect to the number of function
evaluations, all strategy parameter values result from the analysis.

Keywords: Step-size adaptation · Evolution strategy · Lyapunov
function theory · Convergence rate

1 Introduction

Evolution strategies (ESs) are a particular class of Evolutionary Algorithms
(EAs) that have attracted a significant amount of attention in the last decades.
ESs traditionally emphasize the use of selection and mutation as search oper-
ators, where the mutation operator consists in creating an offspring by adding
a random vector to the current solution, or individual. Adaptive methods that
dynamically rescale mutation step-length parameters have proved to be rather
effective [1–3].

Convergence analysis of ESs with step-size adaptation has deserved due
attention in the research community, but it has proved to be a difficult task.
c© Springer International Publishing AG 2016
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The present work extends the methodology proposed in [4] to the analysis of
both (1, λ)-ESs and (1 + λ)-ESs with an arbitrary number of offspring, λ, and a
success-based step-size adaptation rule. Based on the theoretical results devel-
oped in [4,5], general expressions for the expectation of the next individual’s
step size and distance to the optimum are analytically derived for both types
of selection and, using a Lyapunov function, upper bounds on the convergence
rate on the class of strictly unimodal functions of one variable that are sym-
metric around the optimum are determined. Moreover, the number of offspring
that minimizes the bound on the convergence rate with respect to the number
of function evaluations can be easily determined as a by-product, providing a
useful guideline for the selection of this remaining strategy parameter.

2 Literature Review

Convergence analysis is a major topic of research in evolutionary algorithms,
which has been addressed mostly separately depending on whether the optimiza-
tion problems of interest are continuous or discrete. Drift analysis is a state-of-art
technique for the study of the expected hitting time of randomized search heuris-
tics on discrete problems. The use of drift analysis combined with Markov chain
theory in order to obtain lower and upper bounds on the expected hitting time
on discrete search spaces is presented, for example, in [6–10]. Proofs of conver-
gence of the (1+1)-EA applied to pseudo-Boolean linear functions can be found
in [6,9,10]. In [6], the author combines drift analysis and Markov-chains for the
first time to state bounds on the expected optimization time. The upper bound
on the expected runtime of the algorithm was improved in [9], using multiplica-
tive drift analysis. Later, in [10], the author improves the upper bound further,
also using multiplicative drift analysis.

For continuous optimization problems, works dealing with convergence analy-
sis of self-adaptive (1, λ)-ES applied to sphere functions using martingale theory
include [4,5,11]. In [5], a stochastic Lyapunov function method is developed in
the context of martingale theory, but Monte Carlo simulations are used to verify
the convergence of a mutative self-adaptive (1, λ)-ES. Based on [5], a Lyapunov
synthesis procedure for the adaptation parameters of a simple derandomized
self-adaptive (1, 2)-ES is proposed in [4]. The methodology is based on partic-
ular candidate functions which become stochastic Lyapunov functions through
suitable choices of the algorithm adaptation parameters. Considering the class
of strictly unimodal functions of one variable which are symmetric around the
optimum, and through the appropriate setting of the algorithm parameters, it
is proved that both the decision variable and the mutation step-size converge
almost surely to the optimum and to zero, respectively. Moreover, an upper
bound on the rate of convergence is derived, and suitable values for the ES
parameters are determined numerically.

The parallel between the drift analysis used in [9] and the method used in
[5] and [4] is worth noting. With both methods, the behavior of an evolutionary
algorithm is analyzed through an auxiliary function, which must be chosen in
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such a way that convergence of the algorithm on the true objective function
can be proved by verifying conditions on the auxiliary function only. In the case
of drift analysis, the auxiliary function, also known as a potential function, is
used to derive bounds on the expected runtime of the algorithm with respect to
problem size. On the other hand, in [4,5], continuous optimization is considered
and bounds on the convergence rate are provided instead.

3 The Proposed ES

The aim of the (1 +, λ)-ES analyzed here is to minimize a real-valued function
f : R → R. A vector (xt, dt) describes an individual, the fitness of which depends
on the value of the decision variable xt ∈ R. The step size which controls the
variation is given by dt ∈ R+\{0}. The evolution cycle consists of two steps: the
mutation step, which creates λ offspring, xi,t, i = 1, . . . , λ, and the selection step,
which selects the next parent, xt+1, from the offspring (and possibly the current
parent, xt, depending on the selection scheme), and determines the associated
step size, dt+1.

Consider the following (1, λ)-ES, where μi,t, i = 1, . . . , λ, are random vari-
ables uniformly distributed in [−1, 1], 0 < αf ≤ 1, and αs ≥ 1:

xt+1 = F (xt, dt, μ1,t, . . . , μλ,t)
= arg min

x∈{xi,t=xt+μi,tdt, i=1,...,λ}
f(x)

dt+1 = G(xt, dt, μ1,t, . . . , μλ,t)

=

{
αf · dt if f(xt+1) > f(xt)
αs · dt if f(xt+1) ≤ f(xt)

(1)

Note that, if f is any strictly unimodal function of one variable that is sym-
metric around the minimum, xt+1 is selected as the offspring xi,t, i = 1, . . . , λ,
that is closest to the minimum point of f , even if that minimum point is not
known. In fact, the selection process is translation invariant, meaning that the
minimum of f can be considered to be located at zero after an appropriate
translation, without loss of generality. Therefore, any even function with such
properties could be chosen. Moreover, observe that dt+1 depends indirectly on
(μ1,t, μ2,t, . . . , μλ,t)T through a direct dependence on xt+1. The search space R

is equipped with the Borel σ-algebra.
The mutation step-size adaptation process can be described as follows: (i) if

any offspring is at least as good as the parent, then the step size is increased, and
(ii) if all offspring are worse than the parent, then the step-size is decreased. The
only difference between this (1, λ)-ES and the corresponding (1 + λ)-ES is the
selection scheme: in the latter, the best among the λ offspring and the parent
itself, xt, is selected to become xt+1. As a consequence, the parent represents
the all-time best individual at each iteration.
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4 Theoretical Background

Consider a deterministic discrete dynamic system represented by xt+1 = F (xt)
where t ∈ N is the time index, xt ∈ R

n is the system state vector at time t, n
is the number of system state variables, and F : Rn → R

n is a function in class
Cp, with p ≥ 1. An equilibrium point, x∗, of such a system is a point such that
F (x∗) = x∗. A discrete version of the direct method of Lyapunov [12] essentially
states that, if there is a function V ∈ C1 such that V (x∗) = 0 and V (x) > 0
∀x �= x∗, and, in addition, V (xt+1) < V (xt) ∀xt �= x∗, then the equilibrium
is uniformly asymptotically stable [13]. Function V is known as a Lyapunov
function.1

Since the proposed (1 +, λ)-ESs are stochastic processes, the above result is
not directly applicable, but convergence may still be studied through the con-
ditional expectation EAt [V (xt+1, dt+1)] � E[V (xt+1, dt+1)|x1, . . . , xt, d1, . . . , dt]
of a suitable Lyapunov function V (xt, dt) of the stochastic process (xt, dt). The-
oretical results presented in [5] allow the convergence rate to be studied as well.

Consider that the inequality

|xt| ≤ exp(−at), (2)

holds asymptotically almost surely2 for some scalar a > 0. Then, the convergence
rate of xt to the point of equilibrium x∗ = 0 is e−ā, where ā is the supremum
of the set of values of a for which (2) holds asymptotically almost surely. If only
a lower bound a on the exponential decay constant ā can be determined, with
0 < a ≤ ā, then |xt| ≤ exp(−āt) ≤ exp(−at).

In [5], the asymptotic behavior of a supermartingale3 Vt is analyzed under
the following conditions: at each time step, Vt decreases on average by at least a
constant a > 0, and the conditional variance of Vt is at most b > 0. The following
result is proved therein:

Proposition 1. Let Vt be a supermartingale and V0 = 0. If the following con-
ditions hold

EAt(Vt+1) ≤ Vt − a (3)

EAt([Vt+1 − EAt(Vt+1)]2) ≤ b (4)

where a > 0, b > 0, then ∀ ε > 0 the following inequality holds almost surely:

Vt ≤ −at + o(t0.5+ε). (5)

Proposition 1 is employed in the following result to establish the exponential
convergence of the proposed (1, λ)-ES algorithm.
1 Equivalently to V (x∗) = 0 and V (x) > 0 ∀ x �= x∗, one may require that V (x) → −∞

only when x → x∗.
2 An event holds asymptotically almost surely if it holds with probability 1−o(1), i.e.

the probability of success goes to 1 in the limit as n → ∞ [14].
3 A stochastic process Vt is said to be a supermartingale if EAt(Vt+1) ≤ Vt.
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Proposition 2. Consider the stochastic process (xt, dt) defined in Eq. (1). If
f is a strictly unimodal function of one variable that is symmetric around its
minimum, then this process converges to (0, 0) almost surely, and the following
inequalities

|xt| ≤ exp(−at) and dt ≤ exp(−at) (6)

hold asymptotically almost surely for some αf , αs, and a > 0.

Convergence of the corresponding (1 + λ)-ES can be stated (and proved) in the
same way.

5 Convergence Rate Analysis

The following Lyapunov function is used in this work:

Vt = V (xt, dt) = ln(|xt| + wdt) − k ln(dt) (7)

where w, k ∈ R, w > 0, and 0 ≤ k < 1. Observe that Vt → −∞ only when
xt → 0 and dt → 0.

The proof of Proposition 2 consists of three steps:

1. Determining values for αs, αf , w, k and a such that inequality (3) is verified.
2. Proving that the conditional variance of Vt is bounded (inequality (4)).
3. Proving that, under Proposition 1, inequalities (6) hold asymptotically almost

surely.

Since steps 2 and 3 depend only on the structure of the Lyapunov function and/or
on the type of mutation and form of step-size adaptation considered, but not
on whether step-size adaptation is based on success or on the length of the
selected step, the corresponding proofs are identical to those presented in [4],
where the same Lyapunov function and type of mutation are used together with
a different two-point adaptation rule. Moreover, they apply to both (1, λ) and
(1 + λ) selection.

In particular, step 2 can be accomplished by showing that Vt+1 has support
of bounded length for all xt and dt. By noting that the next value of the step
size must satisfy dtαf ≤ dt+1 ≤ dtαs, is possible to show that both ln(dt+1) and
ln(|xt+1| + wdt+1) have supports of bounded length, and so does Vt+1.

Having this in mind, only step 1 is considered here for the proposed (1 +, λ)-
ESs. In order to derive (an upper bound on) EAt(Vt+1) for an arbitrary number
of offspring, λ, expectations EAt(|xt+1|) and EAt(dt+1) are calculated first for
each type of selection. Actually, since the step-size adaptation scheme is exactly
the same for (1, λ) and (1 + λ) selection, EAt(dt+1) is the same in both cases.
However, depending of the type of selection, EAt(|xt+1|) will result in different
expressions.

The (1, λ)-ES is considered first. In determining EAt(|xt+1|), two cases must
be considered: 0 ≤ xt

dt
< 1, meaning that xt is close to the origin, and xt

dt
≥ 1,

meaning that xt is far from the origin.
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In the case where xt is close to the origin,

EAt(|xt+1|) = λ
(2dt)λ

[∫ 0

xt−dt
−z(2z + 2dt)λ−1dz

]

+ λ
(2dt)λ

[∫ −xt+dt

0
z(2dt − 2z)λ−1dz

]

+ λ
(2dt)λ

[∫ xt+dt

−xt+dt
z(xt + dt − z)λ−1dz

]

=
(

1
λ+1

) [
xλ+1

t

dλ+1
t

+ 1
]
dt

(8)

and in the case where xt is far from the origin,

EAt(|xt+1|) = λ
(2dt)λ

[∫ xt+dt

xt−dt
z(xt + dt − z)λ−1dz

]

=
[

xt

dt
−

(
λ−1
λ+1

)]
dt.

(9)

Considering (1+λ)-ES, three cases arise: 0 ≤ xt

dt
< 1

2 , 1
2 ≤ xt

dt
< 1 and xt

dt
≥ 1.

In the case where 0 ≤ xt

dt
< 1

2 ,

EAt(|xt+1|) = λ
(2dt)λ

[∫ −xt

xt−dt
xt(2z + 2dt)λ−1dz

]

+ λ
(2dt)λ

[∫ 0

−xt
−z(2dt + 2z)λ−1dz

]

+ λ
(2dt)λ

[∫ xt

0
z(2dt − 2z)λ−1dz

]

+ λ
(2dt)λ

[∫ −xt+dt

xt
xt(2dt − 2z)λ−1dz

]

+ λ
(2dt)λ

[∫ xt+dt

−xt+dt
xt(xt + dt − z)λ−1dz

]

= dt

λ+1 −
(
1 − xt

dt

)λ (
dt−xt

λ+1

)
.

(10)

For 1
2 ≤ xt

dt
< 1,

EAt(|xt+1|) = λ
(2dt)λ

[∫ 0

xt−dt
−z(2z + 2dt)λ−1dz

]

+ λ
(2dt)λ

[∫ −xt+dt

0
z(2dt − 2z)λ−1dz

]

+ λ
(2dt)λ

[∫ xt

−xt+dt
z(xt + dt − z)λ−1dz

]

+ λ
(2dt)λ

[∫ xt+dt

xt
xt(xt + dt − z)λ−1dz

]

=
(

xt

λ+1

) (
xt

dt

)λ

+ dt

λ+1 − dt

2λ(λ+1)
.

(11)

Finally, for xt

dt
≥ 1,

EAt(|xt+1|) = λ
(2dt)λ

[∫ xt

xt−dt
z(xt + dt − z)λ−1dz

]

+ λ
(2dt)λ

[∫ xt+dt

xt
xt(xt + dt − z)λ−1dz

]

= xt + dt

(
1−λ
λ+1

)
− dt

2λ(λ+1)
.

(12)

Regarding the expected step size, EAt(dt+1) = dt [αfPF + αsPS ], and all
that is required is to derive expressions for the failure and success probabilities,
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PF and PS = 1 − PF , respectively. The probability of failure is simply PF =
[P (|xi,t| > |xt|)]λ = [P (xi,t > xt) + P (xi,t < −xt)]λ, leading to two distinct
cases.

If 0 ≤ xt

dt
< 1

2 , then −xt > xt − dt, and thus P (xi,t < −xt) �= 0. Therefore,

PF =
(
1 − xt

dt

)λ

and

EAt(dt+1) = dt

[(
1 − xt

dt

)λ

(αf − αs) + αs

]
. (13)

If xt

dt
≥ 1

2 , then −xt ≤ xt − dt and P (xi,t < −xt) = 0. Thus, PF = 1
2λ and

EAt(dt+1) = dt

[
1
2λ

(αf − αs) + αs

]
. (14)

To complete step 1, inequality (3) can be rewritten as:

EAt [ln(|xt+1| + wdt+1)] − kEAt [ln(dt+1)] − ln(|xt| + wdt) + k ln(dt) ≤ −a. (15)

Since ln(·) is a concave function, using Jensen’s inequality,

EAt [ln(|xt+1| + wdt+1)] ≤ ln[EAt(|xt+1| + wdt+1)] (16)

and it is sufficient to prove that there exist αf , αs, w, k and a such that the
following inequality holds:

ln[EAt(|xt+1|) + wEAt(dt+1)] − kEAt [ln(dt+1)] − ln(|xt| + wdt) + k ln(dt) ≤ −a.
(17)

Due to the particular form of its left-hand side, inequality (17) may be rewritten
as:

Ψ

( |xt|
dt

)
= ln

[
EAt(|xt+1|) + wEAt(dt+1)

|xt| + wdt

]
− k(EAt [ln(dt+1)] − ln(dt)) ≤ −a.

(18)
Analytical expressions for function Ψ(r), r = |xt|/dt, can be obtained analyt-
ically by considering the intervals (A) 0 ≤ xt

dt
< 1

2 , (B) 1
2 ≤ xt

dt
< 1, and (C)

xt

dt
≥ 1, and combining expressions (8) to (14) as appropriate for each interval

and each type of selection.
Then, it is necessary to show that, for all r ≥ 0, Ψ(r) ≤ −a for some a > 0,

particularly at the ends of each interval (r = 0, 1/2, 1 and r → +∞) and at any
critical points inside those intervals (r = r∗ such that Ψ ′(r∗) = 0).

Note that, regardless of the selection scheme, Ψ(r) is represented in each
interval by a sum of logarithms of rational fractions, and that Ψ ′(r) is repre-
sented by a rational fraction, in variable r. Therefore, the critical points within
each interval, and the corresponding values of Ψ , can be determined numerically
for given values of αf , αs, w and k, and the following constrained nonlinear
optimization problem can be formulated:
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(α∗
s , α

∗
f , w∗, k∗, a∗) = arg max

αs,αf ,w,k,a
a

subject to:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αs ≥ 1
0 < αf ≤ 1
w > 0
0 ≤ k < 1
Ψ(r) + a ≤ 0, r = 0, 1/2, 1,+∞
Ψ(r∗) + a ≤ 0, r∗ : Ψ ′(r∗) = 0

(19)

Problem (19) can be solved numerically for either (1 +, λ)-ES and any selected
value of λ. To prove this statement, the principle of finite induction is used.
Firstly, it is shown that Problem (19) can be solved both for the (1 + 1)-ES and
for the (1, 2)-ES (see Table 1). Then, it must also be shown that, if it can be
solved for a generic λ, then it can also be solved for λ + 1.

In order to highlight the dependence of function Ψ on the number of offspring
λ, the following notation is introduced:

Ψλ(r) = ln

[
EAt

λ (|xt+1|) + wEAt

λ (dt+1)
|xt| + wdt

]

− k{EAt

λ [ln(dt+1)] − ln(dt)} (20)

Clearly, ∀λ ∈ N,

− k{EAt

λ+1[ln(dt+1)] − ln(dt)} ≤ −k{EAt

λ [ln(dt+1)] − ln(dt)}, (21)

so it is sufficient to show that ∀λ ∈ N, ∃w′ > 0 :

EAt

λ+1(|xt+1|) + w′EAt

λ+1(dt+1) ≤ EAt

λ (|xt+1|) + wEAt

λ (dt+1), (22)

where EAt

λ+1(|xt+1|) ≤ EAt

λ (|xt+1|) and EAt

λ+1(dt+1) ≥ EAt

λ (dt+1).
Suppose that there exist 0 < αf ≤ 1, αs ≥ 1, w > 0, 0 ≤ k < 1, and a > 0

such that Ψλ(r) ≤ −a for all r ≥ 0, and let w1 > 0 and w2 > 0 be defined as
follows:

w1 = w
2λ+1αf

αf + αs(2λ+1 − 1)
< w

(1 − r)λ(αf − αs) + αs

(1 − r)λ+1(αf − αs) + αs
= w

EAt

λ (dt+1)
EAt

λ+1(dt+1)
(23)

where 0 ≤ xt

dt
< 1

2 , and

w2 = 2w
αf + αs(2λ − 1)

αf + αs(2λ+1 − 1)
= w

EAt

λ (dt+1)
EAt

λ+1(dt+1)
where

xt

dt
≥ 1

2
. (24)

Letting w′ = min{w1, w2}, inequality (22) is shown to hold true, and there are
indeed 0 < αf ≤ 1, αs ≥ 1, w = w′ > 0, 0 ≤ k < 1 and a > 0 such that
Ψλ+1(r) ≤ −a for all r ≥ 0, concluding the induction step.

By solving Problem (19) numerically for each type of selection and number
of offspring, suitable step-size adaptation parameters αf and αs are obtained,
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and inequality (3) is shown to hold true, completing step 1 of the proof of
Proposition 2. An upper bound e−a on the convergence rate of such an ES on
any strictly unimodal, symmetric function of one variable is also obtained as a
by-product.

Table 1 shows the parameter and auxiliary values, as well as the convergence
bounds, obtained for (1, λ) and (1 + λ) selection and several values of λ. The
results were obtained using the sequential quadratic programming solver in the
GNU Octave numerical package. From the table, it is possible to select the
number of offspring λ which minimizes the convergence rate bound for each
(1 +, λ)-ES with respect to the number of function evaluations. For the (1, λ)-
ES, λ = 4 can be seen to lead to the highest value of a/λ, whereas for the
(1 + λ)-ES, the best number of offspring appears to be λ = 1.

Table 1. Values for αs, αf , w, k, a and a/λ obtained by solving optimization problem
(19) for (1, λ) and (1 + λ)-ESs and different numbers of offspring (λ).

(1, λ)-ES λ = 2 λ = 3 λ = 4 λ = 5 λ = 6 λ = 7

αs 1.15180 1.19847 1.19591 1.18729 1.18036 1.17567

αf 0.72873 0.52779 0.42236 0.36531 0.33489 0.31895

w 2.51320 1.44610 1.09380 0.90415 0.77973 0.68860

k 0.31395 0.30306 0.29601 0.29158 0.28901 0.28761

a 0.00843 0.02379 0.03370 0.03932 0.04223 0.04362

a/λ 0.00422 0.00793 0.00842 0.00786 0.00704 0.00623

(1 + λ)-ES λ = 1 λ = 2 λ = 3 λ = 4 λ = 5 λ = 6 λ = 7

αs 1.89274 1.73948 1.64704 1.59411 1.56531 1.55027 1.54260

αf 0.75675 0.60518 0.51496 0.46382 0.43603 0.42133 0.41370

w 0.11219 0.10567 0.09626 0.08560 0.07521 0.06598 0.05819

k 0.23988 0.24304 0.24488 0.24591 0.24648 0.24681 0.24701

a 0.04309 0.07039 0.08660 0.09569 0.10060 0.10318 0.10453

a/λ 0.04309 0.03518 0.02887 0.02392 0.02012 0.01720 0.01493

6 Conclusions

In this paper, a simple success-based (1 +, λ)-ES with uniformly-distributed
mutations for functions of one variable was proposed. Following the theoretical
approach proposed in [5], the convergence of the ES was studied on the class of
unimodal functions symmetric around the optimum using stochastic Lyapunov
function and martingale theory. General expressions for the expectation of |xt+1|
and dt+1 were derived considering both (1 +, λ) selection. Using an appropriate
Lyapunov function, upper bounds on the convergence rate and specific ES para-
meter values were obtained via numerical optimization, for growing values of λ.
The number of offspring that minimizes the bound on the convergence rate with
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respect to the number of function evaluations was also determined in this way.
Future work includes an experimental study of the actual convergence rates
achieved with the proposed parameter settings as well as extending the theoret-
ical results to other function classes, other mutation distributions, and multiple
decision variables.
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Abstract. Differential Evolution (DE) is a simple and effective evolu-
tionary algorithm to solve optimization problems. The existing DE vari-
ants always maintain or increase the randomness of the differential vector
when considering the trade-off of randomness and certainty among three
components of the mutation operator. This paper considers the possi-
bility to achieve a better trade-off and more accurate result by reducing
the randomness of the differential vector, and designs a tight adaptive
DE variant called TADE. In TADE, the population is divided into a
major subpopulation adopting the general “current-to-pbest” strategy
and a minor subpopulation utilizing our proposed strategy of sharing
the same base vector but reducing the randomness in differential vector.
Based on success-history parameter adaptation, TADE designs a simple
information exchange scheme to avoid the homogeneity of parameters.
The extensive experiments on CEC2014 suite show that TADE achieves
better or equivalent performance on at least 76.7 % functions compar-
ing with five state-of-the-art DE variants. Additional experiments are
conducted to verify the rationality of this tight design.

Keywords: Differential evolution · Differential vector · Adaptive

1 Introduction

Differential Evolution (DE), proposed in [1], is a simple and effective evolution-
ary algorithm to solve complex optimization problems. It has been shown to
outperform some nature-inspired metaheuristics, such as genetic algorithm and
particle swarm optimization over several benchmark functions [2], and has been
adopted to various applications according to [3,4]. However, due to its stochastic
nature, it suffers from long computing period and has the potential to improve
the accuracy further. Since the mutation operator is the main engine that drives
the population toward improvement, to achieve a more accurate and efficient DE
algorithm, plenty of researches have been done based on its three components,
the base vector, scaling factor and differential vector(s).
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The basic DE variants make the performance improvement mainly by reduc-
ing the randomness of base vector, such as DE/best/1, increasing the random-
ness of differential vector(s), such as DE/rand/2, or performing on both aspects,
such as DE/best/2. The control parameters remain unchanged throughout the
process. However, this certainty of the unchanged parameters makes it impracti-
cal due to high time cost of the required parameter tuning step, and this certainty
somehow does harm to the performance since different parameter settings are fit
for different stages. Therefore, many existing methods turned to introducing the
randomness into the parameters and making them alterable and adaptable to
different stages, such as jDE [6], NSDE [7], JADE [8] and SHADE [9] on a single
mutation strategy, and CoDE [11], SaDE [10] and EPSDE [12] further combin-
ing multiple strategies. These adaptive (or self-adaptive) variants achieved more
accurate result via increasing the randomness of search length, but still did not
reduce the randomness of the differential vector.

These existing variants maintained the wide randomness on differential vec-
tor, which seems sensible since the randomness can ensure the possibility of
reaching global optimum. However, it may waste time in the computation on
the unpromising area, which results in its slow convergence. Introducing the
certainty may result in a more accurate result in limited function evaluation
times. Recently, our previous work [5] took the first step to reduce the diver-
sity of the differential vector, and achieved a better result against DE/rand/1
and DE/best/1 on several benchmark functions. This shows the possibility of
reducing the randomness of differential vector to achieve a more accurate result.
However, although that work obtained a trade-off among the base vector and the
differential vector, it maintained the certain scaling factor. As far as we know,
there has not been any work considering the trade-off among all the three aspects
while reducing the randomness of differential vector to get a competitive result.

In this paper, we firstly propose a novel DE mutation strategy. It takes
current-to-pbest as the base vector, maintains the random choice of the starting
point of differential vector and adopts the current (target) vector as the ending
point. Due to the reduced randomness in the search direction, this greedy muta-
tion may lead to premature and is unfit to drive the whole population. Therefore,
it is then utilized as the engine of a minor subpopulation. The major subpopu-
lation is evolved via current-to-pbest [8] which has the same base vector and can
share the exploration information in time with the minor subpopulation. Both
subpopulations adopt the success history based parameter adaption [9], and the
exchange of the two subpopulations is designed to further enhance the diversity
of the scaling factor. Extensive experiments are conducted to compare this Tight
Adaptive DE (TADE) with five state-of-the-art DE variants (SHADE, JADE,
CoDE, EPSDE and SaDE) on the CEC2014 benchmark suite.

The contributions of this paper can be summarized as follows:

– This paper designs a tight adaptive DE scheme, which includes a proposed
mutation reducing the randomness in differential vector, the information
exchange on mutation strategies to get out of the local optima, and the infor-
mation exchange on control parameters to enhance the randomness
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– TADE achieves better or equivalent performance on at least 76.7 % functions
comparing with five state-of-the-art DE variants

– Verification for the rationality of our tight design is conducted by the experi-
ments varying partition and parameter exchange rate

Organization of the rest paper is as follows. The brief introduction of Differ-
ential Evolution and an insight view are shown in Sect. 2. Section 3 discusses the
motivation and detail of the proposed method. Extensive experiments and analy-
sis are conducted on Sect. 4. Finally, Sect. 5 concludes the paper and discusses
the future work.

2 Differential Evolution

This section briefly describes the framework and an insight view of DE algorithm.
DE undergoes mutation, crossover and selection operators iteratively until satis-
fying the accuracy condition or reaching a predefined function evaluation times
FESmax. The random change happens in mutation so that every candidate has
the opportunity to enter the next generation and get itself inherited. Crossover
operator generates the trial vector ug

i that exchanges the information of the
mutant vector vgi with the target vector xg

i and further widen the diversity.
Then the selection operator is employed to preserve the most promising vector
entering the next generation, ensuring the non-degeneration evolution process.
Obviously, mutation is the main engine to pull the population to improvement.

All mutation operators are composed of three parts: the base vector, differ-
ential vector(s) and the search length (scaling factor). Taking “current-to-pbest”
in JADE [8] as an example:

vgi = xg
i + Fi(x

g
pbest − xg

i ) + Fi(xg
r1 − x̃g

r2) (1)

The mutation happens around the neighborhood of the base vector xg
i +

Fi(x
g
pbest − xg

i ), giving a rough guess on where the promising search area is.
Then the differential vector xg

r1 − x̃g
r2 determines the search direction, and the

scaling factor Fi controls how far it will search along the direction.
Throughout the DE developing history, many existing methods can be

regarded as looking for a more accurate result via achieving a better trade-
off between the randomness and the certainty. Randomness represents the huge
diversity of the offspring candidates that can ensure the possibility of reaching
the global minimum, while certainty carries the information which leads to a
strategy or belief on where the promising area is. Therefore, although random-
ness maintains the possibility, the huge area to search may cause inefficiency,
and although certainty provides relatively smaller area and processes faster, it
may cause premature due to its myopia or greediness.

Specifically, as for the base vector, differential vector(s) and the search length
(scaling factor) in mutation, the classical operators discuss the first two compo-
sitions but fix the scaling factor. DE/rand/1 maximizes the randomness of both



116 W. Zheng et al.

Algorithm 1. General framework of TADE
– Initialization

1: g = 0, partition = 8/10, exR = 0.3, Archive A = ∅;
2: Index counter k1 = k2 = 1;, N1 = partition ∗ N , N2 = N − N1;
3: M1 = {(0.5, 0.5)i|i = 1, ..., N1}, M2 = {(0.5, 0.5)i|i = 1, ..., N2}
4: E1 = {N1 − N2 ∗ exR + 1, ..., N1}, E2 = {N1 + 1, ..., N1 + N1 ∗ exR)};
5: Initialize population P 0 = {x0

1, ..., x
0
N}, evaluating P 0, FES = N

6: where major subpop P 0
1 = {x0

1, ..., x
0
N1}; minor subpop P 0

2 = {x0
N1+1, ..., xN};

– Evolution

1: while FES < FESmax do
2: S1 = S2 = ∅;
3: for i = 1,2 do
4: for j in P g

i do
5: generate (F g

j , CRg
j ) from Mi;

6: generate pbest from P g;
7: generate mutator vgj by (eq.i);
8: generate trial vector ug

j

9: if f(xg
j ) > f(ug

j ) then

10: xg+1
j = ug

j ; x
g
i → A;

11: (F g
j , CRg

j ) → Si;
12: else
13: xg+1

j = xg
j ;

14: end if
15: end for
16: end for
17: for i = 1, 2 do
18: if Si �= ∅ then
19: AS = {(F g

j , CRg
j ) ∈ S3−i|j ∈

E3−i}
20: Update Mi based on Si ∪ AS
21: ki = (ki + 1)modNi

22: end if
23: end for
24: g = g + 1, FES = FES + N
25: end while

parts, making it a most robust one, and DE/best/1 believes that the promis-
ing offsprings may be more likely to surround the best vector, and utilizes this
certainty to design the best vector as the base vector and achieves a greedy but
more rapid process that helps to reach a more accurate result in a limited time.
Recently, our previous work further reduced the uncertainty of the differential
vector, and get a competitive performance over DE/rand/1 and DE/best/1 on
several functions. The basic operators hold the certainty that the control para-
meter is constant in the whole period. However, some randomness adding into
this certainty indeed improves the performance, like jDE, JADE, SHADE and
other adaptive methods.

3 TADE

Special attentions are given to JADE and SHADE. JADE increased the random-
ness to overcome the premature caused by greedy base vector. Firstly, JADE
utilized a random vector from top p% best individuals to replace the greedy
best vector in “current-to-best”, which introduced the uncertainty of base vec-
tor. Moreover, JADE added an archive A to the population when generating the
differential vector, which increased the randomness of candidate search direc-
tions. Besides, JADE used the current succeed parameters to partly influence
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the new ones, and added more uncertainty like Gaussian or Cauchy distribution.
These strategies well alleviated the greediness of the base vector and enlarged
the diversity. SHADE, the work based on JADE, further increased the diversity
of the parameter. Instead of the current succeed parameters, SHADE maintained
a historical succeed parameters, which can bring a wider randomness.

Since our previous work [5] found the possibility of reducing the randomness
of the differential vector, this paper discussed whether it can be combined with
the trade-off of other two aspects to achieve a more accurate result. We firstly
propose a novel mutation strategy reducing the randomness of the differential
vector. Different from [5] that selected the target vector as the starting point of
the differential vector and maintained the randomness of the ending point, this
mutation maintains the uncertainty of the starting point and takes the target
vector as the ending. For the base vector, we adopt “current-to-pbest” vector
to increase the diversity and avoid the myopia of best vector. This mutation
strategy is noted as “current-to-pbest(half-rand)”, and can be written as

vgi = xg
i + Fi(x

g
pbest − xg

i ) + Fi(x
g
i − x̃g

r2) = xg
i + Fi(x

g
pbest − x̃g

r2) (2)

The proposed mutation strategy largely reduces the number of possible candi-
date directions from (N−1)(N+|A|−2) to N+|A|−1 for the current population.
It is unfit to drive all or even the majority of the population to evolve since too
much searching area has been cut. Therefore, this mutation strategy could act
on a small part of the population as a pioneer soldier to rapidly explore on a nar-
row area. The majority of the population is controlled by a relatively farsighted
“current-to-pbest(rand)” (that is the “current-to-pbest” in JADE and (rand)
represents both randomness in differential vector). The reason of this choice is
that “current-to-pbest(rand)” and “current-to-pbest(half-rand)” have the same
base vector, the explored information from the pioneer soldier can easily feed-
back to the farsighted commanding officer in the next generation, and the officer
can give a real-time and global-view new command with no extra cost to change
the local search area the pioneer will explore in the next generation.

As for the parameter adaption, both parts adopt the way in SHADE due
to its larger diversity. The basic thought of SHADE maintained the historical
succeed parameters of several generations. Simply, the major and minor sub-
population update the success history merely by their own success parameters.
However, with the iterative evolution, each element in the memory may become
homoplastic, which hurts the diversity of search length and becomes harder to
jump out. If the homoplasty can be postponed, larger area may be explored
and a more accurate result may be achieved. Therefore, an exchange on the
subpopulation to update the success memory is designed due to the inherently
different mechanism of two mutation strategies. Specifically, an exchange rate
exR is designed to determine the proportion of one subpopulation that will be
used for the other subpopulation when updating the success memory.

The framework of this tight adaptive DE, called TADE, is shown in
Algorithm 1. In Evolution phase, Lines 2–16 undergo the general process of
DE for major and minor subpopulations. In line 6, the mutation information
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exchange happens since pbest for each subpopultion is generated from the whole
population P g. Lines 17–23 update the success memory for both subpopulations.
The success parameter exchange happens in Lines 19–20. Taking updating M1

for major subpopulation as an example, the set AS is from minor success para-
meters and there are at most |E2| = N1 ∗ exR success parameters in the minor
subpopulation that will join in the success memory update for the major sub-
population.

The Tight in TADE reflects on two aspects: the real-time information
exchange on generating base vector, and the influence of success parameters in
one subpopulation to the other. Next section shows the performance and ratio-
nality of this tight trade-off among base vector, scaling factor and differential
vector.

4 Experiments

4.1 Settings

CEC2014 [13] benchmark suite is employed to demonstrate the performance
comparison. Functions in this suite are all single objective optimization prob-
lems, containing both unimodal (F1-F3) and multimodal functions (F4-F30).
More specifically, F4-F16 are simple multimodal functions, F17-F22 are hybrid
functions and F23-F30 are composition functions. For each problem, 51 indepen-
dent runs are conducted to obtain a reliable result. The dimension D is all set
to be 30. The evolution process ends when the function evaluation time reaches
FESmax = 10000 ∗ D, and the error value smaller than 10−8 is taken as 0 [13].

4.2 Comparison and Analysis

Five state-of-the-art DEs, SHADE [9], JADE [8], CoDE [11], EPSDE [12] and
SaDE [10], are utilized to compare with TADE. The settings of comparing meth-
ods are configured the same as the related papers. In TADE, the total population
size N=100, the population partition is set to 8:2 for the major and minor sub-
population, and the success memory updating exchange rate exR = 0.3.

Wilcoxon’s rank sum test at 5% significance level is conducted between
TADE and the comparing methods to measure whether TADE can obtain a sig-
nificantly superior result or not. When TADE performs significantly better, “−”
is marked, and “+” when TADE performs significantly poorer. “=” is marked
when there is no significant difference. Due to the limited space, the detailed
mean error value and the standard deviation of 51 independent runs are pro-
vided in http://thuhpgc.org/images/8/8e/Sup.jpg, but the number of cases on
different function categories that TADE achieves better “−”, equivalent “=” and
worse “+” results against the comparing method are summarized in Table 1.

(a) Comparison with SHADE and JADE. From Table 1, TADE shows a quite
competitive performance over SHADE, and it achieves better results on 12 func-
tions and loses 7 functions. The attention should be paid to the unimodal as well

http://thuhpgc.org/images/8/8e/Sup.jpg
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Table 1. Experimental results over 51 independent runs on unimodal functions of 30
variables with 300 000 FES

Function type SHADE JADE CoDE EPSDE SaDE

Unimodal (F1-3) 1−2=0+ 2−1=0+ 1−2=0+ 1−2=0+ 2−1=0+

Simple multimodal (F4-16) 3−6=4+ 9−3=1+ 5−5=3+ 11−2=0+ 11−1=1+

Hybrid (F17-22) 3−2=1+ 5−1=0+ 3−1=2+ 6−0=0+ 5−1=0+

Composition (F23-30) 5−1=2+ 3−4=1+ 5−2=1+ 3−0=5+ 6−1=1+

Total 12−11=7+ 19−9=2+ 14−10=6+ 21−4=5+ 24−4=2+

as the hybrid and composition functions. Indeed on the unimodal function F1,
the mean error of SHADE is around E+02 and that value is E−07 for TADE,
which demonstrates TADE’s superior performance. For the hybrid and compo-
sition functions, the better cases TADE achieves are quite more than the better
cases SHADE achieves. The difference between TADE and SHADE lies on the
proposed mutation strategy for subpopulation and the mechanism preventing
from homogeneity of the success memory. The real-time information exchange
of two different mutations can prevent the whole population from being stuck
in a local area, and the parameter information exchange prolongs the coming
time of homogeneity, ensuring more time for exploration. These are the essential
reasons why TADE performs better than SHADE. Also from Table 1, TADE
shows an overwhelming superiority over JADE on every category. This advan-
tage comes partly from the success history inherited from SHADE that widens
the diversity, and partly from the tight major-minor scheme that makes a clear
division of labour and improves the whole generation more effectively.

(b) Comparison with CoDE, EPSDE and SaDE. This comparison shows the
performance against some state-of-the-art variants that combined the strengths
of several mutation strategies. These methods employed a wide diversity of muta-
tion strategies but with no tight information exchange. From Table 1, we see an
overwhelming superiority of TADE over these methods, especially EPSDE and
SaDE. A major contribution comes from the real-time information exchange in
TADE, and the clear division and role of different methods help to achieve a
win-win situation that pulls the generation towards improvement.

(c) Overall Comparison. From Table 1, TADE performs better or equiva-
lently on at least 23(76.7%) functions when compared with these five methods,
and that number can reach 28(93.3%) when compared with JADE and SaDE.
The strength of the tight and cooperative scheme can be seen especially in the
unimodal and the hybrid functions. The unimodal functions are relatively simple
and the greedy “current-to-pbest(half-rand)” can rapidly explore the promising
simple area. For hybrid functions that are usually the sum of several functions,
two different mutations work for different components and search areas, and
are tightly cooperated as well, thus resulting in the fast searching ability and
enabling the possibility of reaching more promising area.



120 W. Zheng et al.

0.5 1 1.5 2 2.5 3
Function Evaluations (FES) × 105

5

10

15

20

25

Lo
g2

(F
itn

es
s 

Er
ro

r V
al

ue
s+

1)
TADE
JADE
SHADE
CoDE
EPSDE
SaDE

(a)

0.5 1 1.5 2 2.5 3
Function Evaluations (FES) × 105

1

2

3

4

5

6

7

8

9

10

Lo
g2

(F
itn

es
s 

Er
ro

r V
al

ue
s+

1)

TADE
JADE
SHADE
CoDE
EPSDE
SaDE

(b)

0.5 1 1.5 2 2.5 3
Function Evaluations (FES) × 105

10

12

14

16

18

20

22

24

Lo
g2

(F
itn

es
s 

Er
ro

r V
al

ue
s+

1)

TADE
JADE
SHADE
CoDE
EPSDE
SaDE

(c)

0.5 1 1.5 2 2.5 3
Function Evaluations (FES) × 105

7.85

7.9

7.95

8

8.05

8.1

8.15

8.2

Lo
g2

(F
itn

es
s 

Er
ro

r V
al

ue
s+

1)
TADE
JADE
SHADE
CoDE
EPSDE
SaDE

(d)

Fig. 1. Convergence curves of six DE variants on (a) F1, (b) F4, (c) F17, (d) F24.

More visually, Fig. 1 plots the convergence curves of these six methods on four
functions selected from four categories. We can see the overwhelming superiority
of TADE on Fig. 1(a), where TADE reaches several-magnitude better result with
much rapid convergence speed than other methods. From Fig. 1(b), TADE and
SHADE outperform the others, but TADE has a rapid speed and achieves the
minimum ahead of SHADE. In Fig. 1(c), all six methods have almost the same
speed at the early phase of the process, but TADE can reach a further accurate
result due to the tight cooperative scheme that prevents the whole population
from being all trapped into the local minima. TADE reaches competitive results
in Fig. 1(d) against SHADE and CoDE. In a word, the strength of TADE is
further shown from these curves.

4.3 Rationality of Our Tight Design

The experiments on different subpopulation partitions as well as different
exchange rates are conducted to demonstrate the rationality of the tight designed
scheme. Table 2 shows the results of 51 independent runs on different partitions
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Table 2. Different partitions

Part 1:9 3:7 5:5 7:3 8:2 9:1

21 18 13 4 − 7
6 6 12 25 = 21
3 6 5 1 + 2

Table 3. Different exchange rates

exR 0.0 0.1 0.2 0.3 0.4

8 3 0 − 0
20 27 30 = 30
2 0 0 + 0

from 1:9 to 9:1 with fixed exR = 0.3, and Table 3 shows the comparison results
on different exchange rates from 0.0 to 0.4 with 8:2 population partition.

From Table 2, when the proportion of the proposed “current-to-pbest (half
rand)” becomes larger (Part from 5:5 to 1:9), the performance becomes worse,
showing the greediness of this mutation. Therefore, the design is reasonable that
this greedy mutation is assigned with a smaller subpopulation. The effect of
this greedy but fast pioneer is to get a fast feedback of its exploring area to
the dominant role, “current-to-pbest (rand)”. This design can prevent the whole
population from being trapped in the local place, and can improve the efficiency
as well. The comparison result against 10:0 partition, that is the comparison
with SHADE in Table 1, 12−11= and 7+, shows the actual effect of the pioneer
discussed before and shows a win-win performance of both mutation strategies.

From Table 3, when exR = 0.0, which means no exchange between two sub-
populations, this setting achieves 8 worse cases and only 2 better cases, which
verifies TADE’s parameter exchange can delay the homogeneity to some degree
and results in the exploration of larger promising area. When the rate is from
0.2 to 0.4, there is no significant difference because almost every success set-
ting of the minor subpopulation will join in the success history updating of the
major one since there are only 20 individuals of minor subpopulation in this 8:2
partition.

5 Conclusion and Future Work

Generally, DEs maintain both randomness of the vectors that generate the dif-
ferential vector to ensure the wide range of the candidate search directions. The
competitive performance of our previous work on reducing the randomness of dif-
ferential vector leads to a new thought on existing variants. The engine muta-
tion operator of DE has three aspects, base vector, scaling factor and differen-
tial vector(s). The competitive performance and the behavior of existing vari-
ants can be explained by the trade-off of the randomness and certainty among
these three components. However, existing methods only considered the trade-off
without reducing the randomness of differential vector. This paper designed tight
adaptive DE (TADE) that took the randomness-reduced differential vector into
account. This proposed half-rand mutation was used to guide a minor subpopu-
lation while the majority was leaded by the general “current-to-pbest”. The same
base vector in both mutation helped to share the exploration information timely,
and difference prevented from all being trapped in the local area. Moreover, based
on success-memory parameter adaption, this paper designed a parameter informa-
tion exchange scheme to delay the homogeneity and premature.
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The extensive experiments in this paper were conducted on 30 CEC2014
benchmark functions. Firstly, TADE was compared with five state-of-the-art DE
variants, SHADE, JADE, CoDE, EPSDE and SaDE. TADE showed a competi-
tive performance against SHADE, and a superior performance against other four
methods. Secondly, for the two tightness in this design, the different partitions
and exchange rates were conducted. The results demonstrated the rationality of
this design and reflected the characteristics of the proposed mutation strategy.

In the future, other basic designs and adaptive schemes on the randomness-
reduced differential vector are encouraged to achieve a better performance.
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Foundation of China (Grant Nos. 61303003, 41374113), by Tsinghua University Ini-
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Abstract. In this paper we propose an extension to the algebraic
differential evolution approach for permutation based problems (DEP).
Conversely from classical differential evolution, DEP is fully combina-
torial and it is extended in two directions: new generating sets based
on exchange and insertion moves are considered, and the case F > 1 is
now allowed for the differential mutation operator. Moreover, also the
crossover and selection operators of the original DEP have been modi-
fied in order to address the linear ordering problem with cumulative costs
(LOPCC). The new DEP schemes are compared with the state-of-the-art
LOPCC algorithms using a widely adopted benchmark suite. The exper-
imental results show that DEP reaches competitive performances and,
most remarkably, found 21 new best known solutions on the 50 largest
LOPCC instances.

Keywords: Algebraic differential evolution · Linear ordering problem
with cumulative costs · Permutations neighborhoods

1 Introduction and Related Work

Algebraic Differential Evolution (ADE) [13] is a recently proposed effective meta-
heuristic for combinatorial optimization. ADE works on discrete search spaces
by mimicking the behavior of the numerical Differential Evolution (DE) [16].

In the past, the numerical DE has been applied to combinatorial problems
by adopting transformation techniques to decode a numerical vector (genotype)
in the corresponding discrete solution (phenotype) in the evaluation step (see
for example [2]). However, a single discrete solution can be represented by a
potentially infinite number of continuous individuals, thus introducing a one-to-
many mapping from the phenotypic to the genotypic space. As a consequence,
large plateaus are very likely to be introduced in the search landscape and this
is probably the main reason of the poor performances of these combinatorial
applications of DE. Conversely, ADE allows to implement a discrete differential
mutation operator (the key component of DE) that directly handles the discrete
solutions of combinatorial problems.
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 123–133, 2016.
DOI: 10.1007/978-3-319-45823-6 12
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The only requirement of ADE is that the combinatorial search space at hand
must be representable by means of a finitely generated group. This requirement
is met in most of the combinatorial search spaces, e.g.: binary strings with the
XOR and permutations with the usual composition operator. This algebraic
structure cleanly establishes connections with the common solutions neighbor-
hoods usually considered in combinatorial problems. In the case of permutations,
the abstract differential mutation has been implemented using a generating set
based on the adjacent swap moves [15]. The algebraic Differential Evolution for
Permutations (DEP) has been applied to flowshop scheduling problems [12,13]
and to the linear ordering problem [1,14] where, respectively, state-of-the-art
and competitive results have been obtained.

In this paper, we extend our previous works on DEP in four directions:
(i) we propose two new implementations of DEP by using generating sets based
on exchange and insertion moves [15]; (ii) we extend the definition of the discrete
differential mutation by allowing a scale factor parameter larger than 1; (iii) we
apply DEP to a popular problem in the field of wireless communications systems,
i.e., the Linear Ordering Problem with Cumulative Costs (LOPCC) [3]; (iv) we
select other secondary components of DEP in order to tackle LOPCC.

LOPCC has been introduced in [3] as a cumulative variant of the linear
ordering problem. Given a complete digraph of n nodes with node weights di ≥ 0
and arc weights cij ≥ 0, LOPCC aims to find a permutation of nodes π =
〈π1, . . . , πn〉 that minimizes

f(π) =
n∑

i=1

απi
(1)

where the α-costs are backward recursively calculated as

απi
= dπi

+
∑n

j=i+1
cπiπj

απj
for i = n, n − 1, . . . , 1. (2)

In [3], LOPCC has been proven to be NP-hard. Therefore, the exact algo-
rithms available in literature [3,11] are effective only when n ≤ 16. For larger
instances, meta-heuristic approaches have been proposed. A Tabu Search (TS)
scheme is described in [7]. EvPR is introduced in [8] and mainly consists in a
GRASP procedure hybridized with an evolutionary path relinking technique.
Finally, [17] proposes the so called Heterogeneous Cellular Processing Algorithm
(HetCPA), a pseudo-parallel hybridization of a GRASP procedure with a scatter
search scheme. As recently reported in [17], HetCPA and EvPR looks to be the
state-of-the-art algorithms so far for LOPCC.

2 Algebraic Differential Evolution for Permutations

As described in [13], the design of the Algebraic Differential Evolution (ADE)
mimics that of the classical DE. A population of N candidate solutions
{x1, . . . , xN} is iteratively evolved by means of the three operators of differential
mutation, crossover and selection. Differently from numerical DE, ADE addresses
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combinatorial optimization problems whose search space is representable by
finitely generated groups. Since crossover and selection schemes for combina-
torial spaces are widely available in literature, our proposal mainly focuses on
the Differential Mutation (DM) operator. DM is widely recognized as the key
component of DE [16] and, in its most common variant, generates a mutant v
according to

v ← xr0 ⊕ F � (xr1 	 xr2) (3)

where xr0 , xr1 , xr2 are three randomly selected population individuals, while F >
0 is the scale factor parameter. In numerical DE, the operators ⊕,	,� are the
usual vectorial operations of R

n, while, in ADE, their definitions are formally
derived using the algebraic structure of the search space.

The triplet (X, ◦, G) is a finitely generated group representing a combinatorial
search space if: (i) X is the discrete set of solutions; (ii) ◦ is a binary operation
on X with the group properties, i.e., closure, associativity, identity (e), and
invertibility (x−1); and (iii) G ⊆ X is a finite generating set of the group,
i.e., any x ∈ X has a (not necessarily unique) minimal-length decomposition
〈g1, . . . , gl〉, with gi ∈ G, and whose evaluation is x, i.e., x = g1 ◦ · · · ◦ gl. For the
sake of clarity, the length of a (minimal) decomposition of x is denoted with |x|.
Using (X, ◦, G) we can provide the formal definitions of the operators ⊕,	,�
for ADE. Let x, y ∈ X and 〈g1, . . . , gk, . . . , g|x|〉 be a decomposition of x, then

x ⊕ y := x ◦ y (4)

x 	 y := y−1 ◦ x (5)

F � x := g1 ◦ · · · ◦ gk with k = F · |x|� and F ∈ [0, 1]. (6)

The algebraic structure on the search space naturally defines neighborhood
relations among the solutions. Indeed, it induces a colored digraph whose nodes
represent the solutions in X and two generic solutions x, y ∈ X are linked by an
arc with color g ∈ G if and only if y = x ◦ g. Hence, a one-step search move is
directly encoded by a generator, while a composite move can be synthesized as
the evaluation of a sequence of generators (a path on the graph). Analogously
to what happens in R

n, the elements of X can be dichotomously interpreted
both as solutions (nodes on the graph) and as displacements between solutions
(path colors on the graph). As detailed in [13], this allows to provide a rational
interpretation to the discrete DM of definition (3). The key idea is that the
difference x 	 y is the evaluation of the colors/generators on a shortest path
from y to x. This geometric interpretation brings also to some connections with
the Geometric DE proposed in [10].

Clearly, the definitions (4) and (5) do not depend on the generating set, thus
they are uniquely defined. Conversely, the definition (6) requires a decomposition
of x that is not unique in general, therefore a fair stochastic decomposition
scheme has been suggested in [13].

The algebraic Differential Evolution for Permutations (DEP) [13] is an imple-
mentation of ADE for the search space of permutations. Indeed, permutations of
the set {1, . . . , n}, together with the usual composition operator, form the widely



126 M. Baioletti et al.

known symmetric group S(n), whose neutral element is the identity permutation
e. In the previous series of works [1,12–14], the generating set ASW based on
adjacent swap moves has been adopted. Formally, ASW = {σi : 1 ≤ i < n}
where σi is the identity permutation with the items i and i + 1 exchanged.
The randomized decomposer for ASW , namely RandBS, has been devised by
generalizing the classical bubble sort algorithm.

3 Exchange and Insertion Based Generating Sets

The generating sets based on exchange and insertion moves are respectively
defined as EXC = {εij : 1 ≤ i < j ≤ n} and INS = {ιij : 1 ≤ i, j ≤ n}. εij is the
identity permutation with the items i and j exchanged, while ιij is the identity
where the item i is shifted to position j. Their cardinalities are |EXC| =

(
n
2

)
and

|INS| = (n − 1)2 and both are proper supersets of ASW . The implementation
of DM based on EXC and INS requires a stochastic decomposition algorithm
for both the generating sets. Following the same idea used for ASW , we propose
the two randomized decomposer for EXC and INS, respectively RandSS and
RandIS.

3.1 RandSS

Any permutation π can be decomposed in a sequence of generators in EXC
by sorting π through successive exchange moves. Then, the decomposition is
obtained by reversing the sequence of exchanges.

In order to identify the minimal sequence of exchange moves that sorts
π ∈ S(n) we have to consider the cycle representation of π. Indeed, any
permutation can be uniquely represented as a product of disjoint cycles [9].
A k-cycle of π is a sequence of k items (πi0 , . . . , πik−1) such that, for any
0 ≤ j < k, the item πij

appears at position πi(j−1) mod k
in π. For example,

〈26745831〉 = (1268)(37)(4)(5). It is important to note that: (i) e is the only
permutation with exactly n cycles, and (ii) an exchange of items belonging to
the same cycle breaks the cycle into two new cycles, thus increasing the num-
ber of cycles by one. Therefore, a minimal decomposition can be obtained by
iteratively choosing an exchange move that breaks a cycle.

The randomized decomposer for EXC, namely RandSS, is formally defined
in Algorithm 1. The cycle weights wi have been introduced in order to uniformly
sample εij among all the suitable exchanges (lines 7–8). Indeed, any k-length
cycle can be broken with

(
k
2

)
= k(k−1)/2 different exchanges (line 5). The cycle

representation (line 2) can be computed in Θ(n). The loop at lines 6–11 performs
no more than n − 1 iterations. The operations inside the loop can be performed
in Θ(n). Therefore, the worst-case time complexity of RandSS is Θ(n2).

Finally, note that RandSS generalizes the classical selection sort algorithm.
Indeed, it can be shown that selection sort works similarly to RandSS but with
some limitations: it always breaks the cycle containing the smallest out-of-place
item, and it divides the chosen k-length cycle in two cycles of lengths 1 and k−1,
respectively.
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Algorithm 1. RandSS - Randomized Decomposer for EXC
1: function RandSS(π ∈ S(n))
2: s := 〈 〉 � decomposition sequence of π incrementally built
3: c := getCycles(π) � ci is the ith cycle of π; cij is the jth item of cycle ci

4: for i := 1, len(c) do
5: wi := len(ci)(len(ci) − 1)/2 � weight of cycle ci

6: while len(c) < n do
7: cr := randomly choose a cycle through a roulette wheel basing on the weights wi

8: i, j := uniformly choose a pair of indexes from the cycle cr

9: π := π ◦ εij

10: append εij to s
11: update the cycles in c and their weights in w
12: reverse the sequence s return s

3.2 RandIS

The INS decomposition of a permutation π ∈ S(n) can be obtained by sorting
π using only insertion moves. Indeed, the decomposition is the sorting sequence
of insertions reversed and inverted, i.e., every ιij is replaced with its inverse ιji.1

In order to compute the minimal sequence of insertions that sorts π we have
to consider the longest increasing subsequence (LIS) of π. A LIS of π is not
generally unique and it is defined as one of the longest monotonically increasing
subsequence of (not necessarily consecutive) items of π [4]. It is important to
note that: (i) e is the only permutation with exactly one LIS of maximal length
n, and (ii) an insertion of a new item into a LIS increases the LIS length by one.
Therefore, a minimal decomposition can be obtained by iteratively choosing an
insertion that moves a new item in a LIS.

The randomized decomposer for INS, namely RandIS, is formally defined
in Algorithm 2. At line 3 a random LIS L is obtained by modifying the LIS
computation algorithm presented in [4]2. The set U contains the items not in L
(line 4). In order to uniformly sample ιij among all the suitable insertions (lines
9–11), any item in U is weighted by the number of suitable insertions in which it
is involved (lines 5–7). The loop at lines 8–14 stops when len(L) = n, U = ∅ and
π = e, therefore no more than n − 1 iterations are performed. The operations
inside the loop have been implemented in Θ(n), thus the loop complexity is
Θ(n2). Moreover, since it is possible to show that the loop complexity dominates
the rest, RandIS requires time Θ(n2) in the worst-case.

Finally, note that RandIS generalizes the classical insertion sort algorithm.
Indeed, classical insertion sort iteratively increases a sorted subsequence main-
tained at consecutive indexes on the left side of the permutation. Conversely,
RandIS allows to spread the sorted subsequence anywhere in the permutation.

4 Extended Differential Mutation

A limit of the discrete differential mutation previously introduced is that the
definition of the multiplication operator does not allow to use a scale factor
1 The inverting step is not considered in Sect. 3.1 because the exchange generators are

self-invertible.
2 For the sake of space, its description is not reported here.
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Algorithm 2. RandIS - Randomized Decomposer for INS
1: function RandIS(π ∈ S(n))

2: s := 〈 〉 � decomposition sequence of π incrementally built

3: L := get a random LIS of π

4: U := {1, . . . , n} \ L � set of unassigned items

5: for all k ∈ U do

6: P L
π,k := set of positions in π where it is possible to shift item k in order to increase len(L)

7: wk := |P L
π,k| � weight of item k

8: while len(L) < n do

9: r := randomly choose an item in U through a roulette wheel basing on the weights wk

10: i := position of r in π � formally, π−1(r)

11: j := uniformly choose a position from P L
π,r

12: π := π ◦ ιij

13: append ιij to s

14: update L, U and, for any k ∈ U , update P L
π,k and wk

15: reverse the sequence s

16: invert the generators in s return s

parameter F > 1. Here, the abstract definition (6) is generalized by defining the
properties that z := F � x with any F ≥ 0 has to respect, i.e.:

P1 |z| = F · |x|�,
P2 either a decomposition of x is a prefix of a decomposition of z (case F ∈ [0, 1])

or vice versa (case F > 1).

Clearly, when F ∈ [0, 1], definition (6) meets both P1 and P2. For F > 1,
P1 and P2 mean that, given the decomposition 〈g1, . . . , g|x|〉 of x, a possible
decomposition for F � x is 〈g1, . . . , g|x|, g|x|+1, . . . , g�F ·|x|�〉 for a suitable choice
of the generators g|x|+1, . . . , g�F ·|x|�. Note that F � x = x ◦ g|x|+1 ◦ · · · ◦ g�F ·|x|�.
When the search space is finite, its diameter D constrains the maximum value
allowed for F to Fmax

x = D/|x|. Anyway, it is possible to extend the definition
of � by setting F � x := Fmax

x � x for any F > Fmax
x . Geometrically, given two

generic solutions x, y and F > 1, a decomposition of F�(x	y) can be interpreted
in the search space graph as the sequence of arc colors in a shortest path starting
from y, passing for x and extending beyond x. Unfortunately, when F > 1 there
exist search spaces for which the multiplication operator is not always defined.
An example is provided later on.

It is important to observe that, since S(n) has a finite diameter, the extended
case of F � x can be implemented by moving x away from e, i.e., towards a
diametrically opposite permutation with respect to the identity.

For ASW , given π ∈ S(n), the extended multiplication operator F � π can
be implemented by sorting π in descending order, and composing π with the first
F · |π|� − |π| adjacent swap generators encountered during the sort. Denoting
with r the “reverse” permutation 〈n, . . . , 1〉, the sorting step can be performed
as RandBS(r ◦ π), thus reusing the randomized bubble sort proposed in [13].
Therefore, the worst-case complexity is Θ(n2) as for F ∈ [0, 1].

For EXC, an algorithm similar to RandSS is employed to compute F � π
with F > 1. We call it MergeCycles and it works by iteratively merging two
cycles into one. Indeed, MergeCycles iteratively exchanges two items belonging
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to different cycles in order to merge the two cycles. The iteration stops when
F · |π|�−|π| exchanges have been performed. Then, the corresponding exchange
generators are composed to the right of π to obtain F �π. Again, the worst-case
complexity is Θ(n2).

Finally, S(n) with the INS generating set is an example of a search space
where the extended multiplication is not well defined. In order to satisfy the
properties P1–P2 above, a necessary condition is that, for all π ∈ S(n) there
must exist at least an insertion ι ∈ INS such that LIS length(π ◦ ι) =
LIS length(π) − 1. However, an example can be used to show that this con-
dition is not verified. Indeed, none of the 9 insertions of S(4) reduces the LIS
length of 〈2413〉. Hence, in this paper, we do not consider the case F > 1 for the
permutations search space generated by insertion moves.

5 Other Algorithmic Components

Though differential mutation is the core operator of DEP, its main scheme
requires also a crossover and a selection operator.

In this work we have experimented two popular crossovers for permutation
representations, namely, the two point crossover TPII adopted in [13] and the
order based crossover OBX used in [1]. Given the parents ρ′, ρ′′ ∈ S(n), both
TPII and OBX select a random subset of positions P ⊆ {1, . . . , n} and build
the offspring υ ∈ S(n) by setting υi ← ρ′

i for any i ∈ P , and inserting the
remaining items starting from the leftmost free place of υ and following the
order of appearance in ρ′′. The difference between TPII and OBX is that TPII
uses an interval of positions, while, in OBX, P can be any subset. Furthermore,
TPII and OBX have been modified in order to consider the parameter CR ∈
[0, 1]. The modified variants, TPIICR and OBXCR, constrain the size of P to
|P | = CR · n�. Therefore, for each pair of population and mutant individuals
xi, vi, DEP generates an offspring ui by applying TPIICR/OBXCR to vi and xi

respectively.
Regarding selection, the crowding scheme proposed in [18] is adopted. Each

offspring uj has a closest population individual closest(uj). Therefore, every pop-
ulation individual xi is associated to the set of offsprings Ui = {uj : closest(uj) =
xi}. Then, for 1 ≤ i ≤ N , the new population individual x′

i is selected to be the
fittest among the solutions in Ui ∪ {xi}. Finally, the computation of the closest
population individual has been implemented using the “position based distance”
[15] because it is computed in Θ(n).

6 Experiments

Experiments have been held using the benchmark suites adopted in [7,8,17] (and
available at http://www.optsicom.es/lopcc): UMTS (100 instances with n = 16),
LOLIB (42 selected instances with 44 ≤ n ≤ 60), RND (three sets of 25 instances
of size, respectively, 35, 100 and 150).

http://www.optsicom.es/lopcc
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DEP population size has been preliminarily set to N = 80, while F and
CR are self-adapted using the popular jDE scheme [5] modified by introducing
F̂ , i.e., a cap value for F . In order to test also the extended differential muta-
tion, two choices have been considered for F̂ , i.e., F̂ ∈ {1, 1.2}. Hence, every
possible combination of F̂ , generating set and crossover have been tested. Each
DEP setting has been run ten times per instance and a run terminates if the
best solution so far has not been updated during the last m evaluations3. m is
set to 5 000, 100 000, 10 000 000 for, respectively, UMTS, LOLIB/RND35 and
RND100/RND150 instances.

As in [7,8,17], the best result of every DEP setting on every instance has been
used to analyze the performances and to compare DEP with the state-of-the-art
algorithms HetCPA [17], EvPR [8] and TS [7]. The results of the competitors
have been obtained from their respective papers. However, since the full results
of EvPR are not available, we have considered optimistic lower bounds for EvPR
as done in [17].

Table 1 provides a comparative analysis among the various DEP settings. The
average ranks reported for every set of instances show that DEP/INS/1/TPIICR

is the best setting for DEP. Therefore, it has been selected for a further com-
parison with the state-of-the-art algorithms.

Table 1. Average Ranks among the DEP settings

Bench ASW

F̂ = 1

OBXCR

ASW

F̂ = 1

TPIICR

ASW

F̂ = 1.2

OBXCR

ASW

F̂ = 1.2

TPIICR

EXC

F̂ = 1

OBXCR

EXC

F̂ = 1

TPIICR

EXC

F̂ = 1.2

OBXCR

EXC

F̂ = 1.2

TPIICR

INS

F̂ = 1

OBXCR

INS

F̂ = 1

TPIICR

UMTS 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50

LOLIB 5.33 5.55 5.45 6.23 5.33 5.44 5.56 5.44 5.33 5.33

RND35 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50

RND100 5.92 7.04 5.86 5.72 6.62 5.92 4.52 4.80 5.72 2.88

RND150 8.32 5.44 9.24 5.76 5.40 2.80 5.04 3.72 7.16 2.12

AVG 8.32 5.44 9.24 5.76 5.40 2.80 5.04 3.72 7.16 2.12

For each instance set and every algorithm, Table 2, provides both the average
rank (Ravg) and the average relative percentage deviation (ARPD) from the best
solution. By noting that Ravg values are more trustful than the ARPDs because
they do not depend on the particular fitness distribution of the instance at hand,
Table 2 clearly shows that DEP outperforms the state-of-the-art algorithms on
most cases. Moreover, a Friedman+Finner statistical test [6] (with α = 0.05) has
been conducted. The Ravg values of the algorithms significantly outperformed
by DEP are marked with a minus in Table 2. Interestingly, DEP significantly
outperforms TS on every instance set except on the small UMTS instances,
while the only competitor with similar performances is the hypothetic EvPR.
However, since its results are an optimistic assumption, there are good chances
that DEP significantly outperforms also EvPR.
3 Additionally, a run terminates also if its CPU time exceeds one hour. However, this

criterion has been sporadically met only on the RND150 instances.
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Table 2. Average ranks and ARPDs among DEP and the state-of-the-art algorithms

Benchmark HetCPA Hyp EvPR TS DEP

Ravg ARPD Ravg ARPD Ravg ARPD Ravg ARPD

UMTS 2.50 0.00 2.50 0.00 2.50 0.00 2.50 0.00

LOLIB 2.29 9.00 2.24 14.20 3.24– 12.59 2.24 14.20

RND35 2.44 0.37 2.22 0.00 3.12– 0.49 2.22 0.00

RND100 1.98 2.27 2.10 2.42 4.00– 15.00 1.92 2.12

RND150 2.64– 10.28 1.90 4.28 3.66– 27.13 1.80 5.56

OVERALL 2.41 4.38 2.30 4.18 3.02– 11.04 2.27 4.38

Most importantly, DEP found 21 new best known solutions (according to
[7,8,17]) on the 50 largest instances with n ∈ {100, 150}. These new upper
bounds are provided in Table 3 together with the DEP setting that has obtained
the corresponding result. Note that, though DEP/INS/1/TPIICR obtained 10
new best known solutions, also many other DEP settings are present in Table 3.
Therefore, another Friedman+Finner test has been conducted by considering a
hypothetical DEPH algorithm that produces, for every instance, the best result
among all the settings. This test has shown that DEPH would significantly out-
perform all the competitor algorithms.

Table 3. New best known solutions found by DEP

Instance DEP setting Obj.V al. Instance DEP setting Obj.V al.

t1d100.1 DEP/ASW/1/OBXCR 252.885 t1d100.25 DEP/INS/1/TPIICR 632.586

t1d100.2 DEP/EXC/1.2/TPIICR 286.888 t1d150.2 DEP/EXC/1/TPIICR 163 274.856

t1d100.3 DEP/EXC/1.2/TPIICR 1 288.298 t1d150.6 DEP/INS/1/TPIICR 44 961.697

t1d100.8 DEP/EXC/1.2/OBXCR 2 755.536 t1d150.7 DEP/EXC/1/TPIICR 156 480.244

t1d100.9 DEP/INS/1/TPIICR 61.772 t1d150.10 DEP/INS/1/TPIICR 108 000.853

t1d100.10 DEP/ASW/1.2/TPIICR 155.892 t1d150.12 DEP/INS/1/TPIICR 65 708.550

t1d100.12 DEP/ASW/1.2/OBXCR 231.347 t1d150.13 DEP/INS/1/TPIICR 91 988.932

t1d100.17 DEP/ASW/1.2/TPIICR 715.613 t1d150.16 DEP/INS/1/TPIICR 16 231 674.691

t1d100.20 DEP/ASW/1.2/OBXCR 236.088 t1d150.21 DEP/INS/1/TPIICR 39 663.393

t1d100.22 DEP/ASW/1/OBXCR 144.344 t1d150.22 DEP/INS/1/TPIICR 683 618.275

t1d100.24 DEP/INS/1/TPIICR 464.961

7 Conclusion and Future Work

The algebraic differential evolution for permutations (DEP) has been extended
by introducing the algorithmic implementations for two new generating sets
based on exchange and insertion moves, and also by allowing a scale factor
parameter larger than one. Moreover, two crossover operators and a crowding
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selection scheme have been adopted in order to tackle the linear ordering problem
with cumulative costs (LOPCC). The proposed approach has been tested on
a standard benchmark suite for LOPCC. The experimental results show that
DEP reaches state-of-the-art performances by also producing 21 new best known
solutions on the 50 largest instances. The notable results obtained by different
DEP settings suggest that there is room for further improvement. Therefore, a
future line of research will be the design of a meta-DEP scheme that considers
all the different settings altogether, for example by using a self-adaptive scheme.
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Abstract. We present novel algorithmic schemes for dealing with large
scale continuous problems. They are based on the recently proposed
population-based meta-heuristics Migrating Birds Optimisation (mbo)
and Multi-leader Migrating Birds Optimisation (mmbo), that have shown
to be effective for solving combinatorial problems. The main objective
of the current paper is twofold. First, we introduce a novel neighbour
generating operator based on Differential Evolution (de) that allows to
produce new individuals in the continuous decision space starting from
those belonging to the current population. Second, we evaluate the per-
formance of mbo and mmbo by incorporating our novel operator to them.
Hence, mbo and mmbo are enabled for solving continuous problems. A set
of well-known large scale functions is used for comparison purposes.

Keywords: Continuous neighbourhood search · Migrating Birds
Optimisation · Large scale continuous problems · Global optimisation

1 Introduction

Nature-inspired computing counts with an extensive variety of algorithms mim-
icking natural processes and events from the universe that are frequently used
for tackling real-world optimisation problems. Along these algorithms, those
inspired by the collective living and travelling of animals have attracted a con-
siderable interest from the related research community [11]. In this regard, the
collective behaviour and swarm intelligence of migratory birds and its algorith-
mic translation have been recently studied by Duman et al. [2], and Lalla-Ruiz
et al. [4]. Authors exploit, by means of their corresponding proposed algorith-
mic approaches, the advantage of sharing information and cooperating among
a group of individuals. While Migrating Birds Optimisation (mbo), which is
inspired by the V-flight formation of migratory birds with one leader, was pro-
posed in [2], in [4], based on field studies, Multi-leader Migrating Birds Optimi-
sation (mmbo) was introduced, which allows different types of flight formation
shapes, as well as several leading individuals, to be managed.
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 134–144, 2016.
DOI: 10.1007/978-3-319-45823-6 13
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Recently, mbo has shown its good performance for combinatorial problems,
such as the Quadratic Assignment Problem (qap) [2], the Dynamic Berth Alloca-
tion Problem (dbap) [5], and Hybrid Flow-shop Scheduling [8], among others. In
regard to continuous optimisation, an initial adaptation to low-dimensional prob-
lems, which uses sphere-shaped neighbourhoods, was developed in [1]. Results
provided by said scheme, however, did not show a high performance. Regarding
mmbo, it showed to provide better quality results than those achieved by mbo
for the qap [4]. Concerning its performance for continuous optimisation, as far
as we know, this is the first time that mmbo is enabled for dealing with these
types of problems, as well as the first time that mbo is assessed when solving
large scale continuous problems.

The main goal of this work is to propose suitable adaptations of mbo and
mmbo for tackling continuous optimisation problems. For doing that, we propose
a novel neighbourhood structure based on the well-known Differential Evolution
(de) [10], which is able to generate solutions in a continuous decision space.
The computational experimentation provided in this work, which involves the
use of a set of well-known large scale continuous problems [7], indicates that our
proposals are able to improve, for some cases, the results obtained by one of the
best performing variants of de considering that set of large scale functions [3].

The remainder of this paper is organised as follows. Section 2 describes our
proposed mbo and mmbo approaches. Afterwards, in Sect. 3, the experimental
evaluation carried out in this paper is exposed. Finally, Sect. 4 draws the main
conclusions extracted from this work and provides some lines for further research.

2 Schemes Based on Migrating Birds Optimisation for
Continuous Problems

This section focuses on describing our algorithmic proposals. Section 2.1 is
devoted to describe the scheme mbo, while the approach mmbo is depicted
in Sect. 2.2. Finally, in Sect. 2.3 we introduce our novel neighbour generating
operator based on de.

2.1 Migrating Birds Optimisation

Migrating Birds Optimisation (mbo) is a population-based algorithm based on
the V-formation flight of migrating birds. It considers a population or flock,
of individuals or birds, that are aligned in a V-flight formation. Following that
formation, the first individual corresponds to the leader of the flock and the other
ones define the rest of the flock. The birds maintain a cooperative relationship
among them by means of sharing information. The way the flow of information
is shared is unidirectional. Namely, one individual sends information and the
other receives it. The direction of the information shared starts from the leader
bird and goes to the rest of the flock by following the V-shape flight formation.

Algorithm 1 depicts the pseudocode of mbo. The input parameters are: (i)
the number of birds in the flock (n), (ii) the maximum number of neighbours
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Algorithm 1. Migrating Birds Optimisation pseudocode ([2])

Require: n, K, m, k, and x
1: Generate n initial birds in a random manner and place them on an hypothetical

V-formation arbitrarily
2: g = 0
3: while (g < K) do
4: for (j = 1 : m) do
5: Try to improve the leader bird by generating k neighbours
6: g = g + k
7: for all (non-leader bird s in the flock) do
8: Try to improve non-leader bird s by using k − x generated neighbours

and x unused best neighbours from those birds in the front of it
9: g = g + (k − x)
10: end for
11: end for
12: Move the leader bird to the end of the V-formation and forward one of the birds

following it to the leader position
13: end while
14: Return the best bird in the flock

generated by the flock of birds (K), (iii) the number of iterations performed
before changing the leader bird (m), (iv) the number of neighbours generated
by each bird (k), and (v) the number of best discarded neighbours to be shared
among birds (x). The first step consists of generating n individuals or birds
(line 1). The current number of neighbours generated by the flock of birds, i.e.
g, is initially set to zero (line 2). During the search process, firstly, k neighbours
are generated starting from the leader bird. In case the best neighbour leads to
an improvement of the leader in terms of the objective function value, the latter
is replaced by the former (line 5). Secondly, for each non-leader bird s, k − x
neighbours are generated. Additionally, the neighbourhood of s receives x unused
best neighbours from those birds in front of it (lines 7–10). If s is improved
by its best neighbour, then the former is replaced by the latter (line 8). The
V-formation is maintained until a prefixed number of iterations m > 0 is reached.
Once that, the leader bird becomes the last bird in the V-formation and one of
its immediate successors becomes the new leader (line 12). The above steps are
executed until a maximum number of neighbours, i.e. K, is generated (line 3).
Finally, we should mention that, in our case, neighbours are created (lines 5 and
8) by using the operator described in Sect. 2.3.

2.2 Multi-leader Migrating Birds Optimisation

Multi-leader Migrating Birds Optimisation (mmbo) is a novel population-based
meta-heuristic inspired by the flight formation of migratory birds which tries
to improve its predecessor mbo. In mmbo, birds are distributed in a line for-
mation mimicking the flight formation of migratory birds, which is determined
according to given relationship criteria, e.g. by means of the objective function
of the problem at hand. Depending on those criteria, we can have birds located
at positions that are closer than others regarding the front of the migratory
formation during the flight. Starting from each bird, a given number of fea-
sible neighbours are generated through a predefined neighbourhood structure.
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Algorithm 2. Multi-leader Migrating Birds Optimisation pseudocode ([4])

Require: n, K, k, and x
1: Create the initial flock P by randomly generating n birds
2: while (K neighbours have not been generated) do
3: Determine the interaction among birds of P and establish the formation
4: while (stopping formation criterion is not met) do
5: Generate k neighbours starting from each bird b ∈ PL ∪ PI

6: Replace each bird included into PL by its best neighbour if
the latter improves the former

7: Replace each bird included into PI by its best neighbour
8: for all (bird f ∈ PF ) do
9: Generate k − x neighbours starting from f
10: Get the best unused x neighbours from the previous birds of f in the group
11: Replace f by its best neighbour if the latter improves the former
12: end for
13: end while
14: end while
15: Return the best bird in P

The neighbourhoods reflect the particular points of view about the solution space
of each individual. As mentioned above, depending on the relationship criteria
and how information is shared among individuals, different roles arise in mmbo:

– Leader. It is that bird with the best objective value when compared to the
adjacent ones. Therefore, it does not receive information from any bird, but
shares x neighbours with each adjacent one. Moreover, starting from a leader,
k neighbours are generated. Since the objective value determines the position
within the formation, a leader is the best performing bird, and consequently,
the most advanced one in its corresponding group within the formation. The
set of leaders is denoted as PL.

– Follower. It is that bird which explores the search space considering its own
information and the information received from the birds in front of it within
the formation. It generates k − x neighbours and receives x neighbours from
the adjacent birds. The set of followers is denoted as PF .

– Independent. It is that bird which is not included into any other of the above
categories. It does not exchange information with any other individual, but
generates k neighbours. The set of independent birds is denoted as PI .

The pseudocode of mmbo is depicted in Algorithm 2. The first step is to
obtain the initial flock P which consists of n birds generated at random (line 1).
While the stopping criterion is not met, mmbo iterates (line 2). In this work, we
consider a stopping criterion based upon a maximum number of neighbours to be
generated (K). The relationship criteria among birds are based on the objective
function value. This allows to recognise groups, as well as the formation (line 3).
Then, the search process starts (lines 4–13) and it is executed until a stopping
formation criterion is met. In case said criterion is satisfied, the search process is
stopped in order to establish a new formation. During the search process, firstly,
k neighbours are obtained starting from each bird b ∈ PL ∪ PI (line 5). Then,
sets PL and PI are updated (lines 6–7). Secondly, for each follower f ∈ PF , k−x
neighbours are generated (line 9), and it receives x neighbours from the adjacent
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birds according to the formation (line 10). Afterwards, if f is improved by its
best neighbour, the former is replaced by the latter (line 11). The unused best
neighbours of f are shared with the adjacent birds. In this work, neighbours are
obtained (lines 5 and 9) by applying the operator introduced in Sect. 2.3.

2.3 Neighbour Generating Operator Based on Differential
Evolution

This work presents a novel neighbour generating operator to be used with mbo
and mmbo in order to enable their operation with continuous optimisation prob-
lems. This operator is based on the well-known Differential Evolution (de), a
search algorithm which was specifically proposed for global optimisation [10].

For encoding individuals, a vector of D real-valued decision variables or
dimensions xi is used, i.e. X = [x1, x2, . . . , xi, . . . , xD]. The objective function
f(X)(f : Ω ⊆ R

D → R) determines the quality of every vector X. Hence, find-
ing a vector X∗ ∈ Ω, where f(X∗) ≤ f(X) is satisfied for all X ∈ Ω, is the
goal in a global optimisation problem. Considering box-constrained problems,
the feasible region Ω is defined by Ω =

∏D
i=1[ai, bi], where ai and bi represents

the lower and upper bounds of variable i.
Regarding the most widely used nomenclature for de [10], i.e. de/x/y/z,

where x is the vector to be mutated, y defines the number of difference vectors
used, and z indicates the crossover approach, our neighbour generating operator
is inspired by the scheme de/rand/1/bin. We selected this variant due to its sim-
plicity and popularity and because it was able to provide the best performance
in previous work with the set of large scale problems we consider herein [3].

Given a particular individual Xj=1...NP (target vector) from a flock of either
mbo or mmbo with size NP , a neighbour is obtained as follows. First, the mutant
generation strategy rand/1 is applied for obtaining a mutant vector (V j). Thus,
the mutant vector is generated as Eq. 1 shows. We should note that r1, r2, and
r3 are mutually exclusive integers randomly selected from the range [1, NP ], all
of them different from the index j. Finally, F denotes the mutation scale factor.

V j = Xr3 + F × (Xr1 − Xr2) (1)

After obtaining the mutant vector, it is combined with the target vector to
produce the trial vector (U j) through a crossover operator. The combination
of the mutant vector generation strategy and the crossover operator is usually
referred to as the trial vector generation strategy. One of the most commonly
applied crossover operators, which is considered in this work, is the binomial
crossover (bin). The crossover is controlled by means of the crossover rate CR,
and uses Eq. 2 for producing a trial vector, where xj,i represents decision variable
i belonging to individual Xj . A random number uniformly distributed in the
range [0, 1] is given by randj,i, and irand ∈ [1, 2, ...,D] is an index selected at
random that ensures that at least one variable belonging to the mutant vector is
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inherited by the trial one. Variables are thus inherited from the mutant vector
with probability CR. Otherwise, variables are inherited from the target vector.

uj,i =
{

vj,i if (randj,i ≤ CR or i = irand)
xj,i otherwise

(2)

It can be observed that the trial vector generation strategy may generate
vectors outside the feasible region Ω. In this work, unfeasible values are reini-
tialised at random in their corresponding feasible ranges, being this approach
one of the most frequently used in the related literature. Finally, we should note
that the trial vector becomes the newly generated neighbour.

3 Experimental Evaluation

In this section we describe the experiments carried out with both algorithms
depicted in Sect. 2. In addition to those schemes, we also considered the variant
de/rand/1/bin as an independent approach for comparison purposes.

Experimental Method. mbo and mmbo, as well as de/rand/1/bin, were
implemented by using the Meta-heuristic-based Extensible Tool for Cooperative
Optimisation (metco) [6]. Experiments were run on a debian gnu/linux com-
puter with four amd R© opteronTM processors (model number 6164 he) at 1.7ghz
and 64gb ram. Every execution was repeated 30 times, since all experiments
used stochastic algorithms. Bearing the above in mind, comparisons were car-
ried out by applying the following statistical analysis [9]. First, a Shapiro-Wilk
test was performed to check whether the values of the results followed a normal
(Gaussian) distribution or not. If so, the Levene test checked for the homogene-
ity of the variances. If the samples had equal variance, an anova test was done.
Otherwise, a Welch test was performed. For non-Gaussian distributions, the
non-parametric Kruskal-Wallis test was used. For all tests, a significance level
α = 0.05 was considered.

Problem Set. A set of scalable continuous optimisation functions proposed in
the 2013 ieee Congress on Evolutionary Computation (cec’13) for its Large
Scale Global Optimization (lsgo) competition [7] was considered as the prob-
lem set. We should note that this suite is the latest proposed for large scale
global optimisation in the field of the cec, and therefore, it was also used for
the lsgo competitions organised in cec’14 and cec’15. The suite consists of
15 different problems (f1–f15) with different features: fully-separable functions
(f1–f3), partially additively separable functions (f4–f11), overlapping functions
(f12–f14), and non-separable functions (f15). By following the suggestions given
for different editions of the lsgo competition, we fixed the number of decision
variables D to 1000 for all the above functions, with the exception of functions
f13 and f14, where 905 decision variables were considered due to overlapping
subcomponents.

Parameters. Table 1 shows parameter values considered in this work for mbo
and mmbo. They were selected by carrying out a previous parameter setting
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Table 1. Configuration of the approaches mbo, mmbo, and de/rand/1/bin

Parameter values for mbo and mmbo

Parameter Value Parameter Value

Stopping criterion (K) 3 × 106 Number of neighbors (k) 4

Flock size (n) 150 Number of flights (x) 1

Number of flights (m) 10

Parameter values for de/rand/1/bin

Stopping criterion 3 × 106 Mutation scale factor (F ) 0.5

Population Size (NP ) 150 Crossover rate (CR) 0.9

study. As it can be observed in Sect. 2, parameter m is only considered by mbo.
In past research, a configuration of the scheme de/rand/1/bin, from among a
candidate pool with more than 80 different parameterisations of said approach,
was able to provide the best overall results for problems f1–f15 [3]. This is the
main reason why our neighbour generating operator is based on de/rand/1/bin.
Moreover, that best performing configuration, whose parameter values (NP ,
F , and CR) are also shown in Table 1, is considered herein as an independent
method for measuring the performance attained by mbo and mmbo. Our opera-
tor also makes use of those parameter values. Finally, the stopping criterion was
fixed to a maximum amount of 3 × 106 evaluations, following the recommenda-
tions provided by the lsgo competition.

Results. Figure 1 shows box-plots reflecting the results obtained by the consid-
ered schemes. It can be observed that, for some problems (f2, f3, f5, f9, and
f11) mbo and/or mmbo were able to obtain better solutions than those provided
by the best performing variant of de/rand/1/bin found for the large scale prob-
lems we consider in this work, thus showing the benefits that can be obtained
from our hybridisation between mbo/mmbo and our novel neighbour generat-
ing operator based on de. Since our neighbour generating operator is based on
de/rand/1/bin, it was expected that results obtained by mbo and mmbo were
very similar to those provided by the former scheme executed independently.
However, the features of mbo and mmbo for sharing information among indi-
viduals, as well as for establishing a structure among them, combined with the
the exploration and exploitation abilities of our neighbour generating operator
based on de/rand/1/bin, were able to obtain even better results in 5 out of 15
problems. Taking into account the remaining functions, we should note that mbo
and/or mmbo were able to achieve similar solutions than those attained by the
best performing variant of de, with except to some cases, such as f1, where de
provided better solutions.

In order to give the aforementioned conclusions with statistical confidence,
Table 2 shows, for each problem, the p-values obtained from the statistical com-
parison between the approach mbo and the rest of schemes, by following the
statistical procedure explained at the beginning of the current section. It also
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Fig. 1. Box-plots showing the results obtained by different schemes for functions f1–f15

shows cases for which mbo was able to statistically outperform other strategy
(↑), cases where other strategy outperformed mbo (↓), and cases where statis-
tically significant differences between mbo and the corresponding method did
not arise (↔). Scheme A statistically outperforms method B if there exist sta-
tistically significant differences between them, i.e. if the p-value is lower than
α = 0.05, and if at the same time, A provides a lower mean and median of
the objective value than B, since we are dealing with minimisation problems.
Finally, Table 3 shows the same information, but regarding mmbo.

With respect to mbo, it is worth mentioning that it was able to outperform de
in 4 out of 15 problems (f2, f3, f5, and f9). Additionally, it was not outperformed
by de in any test case. For remaining problems, mbo and de did not present
statistically significant differences. Concerning mmbo, we should note that it
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Table 2. Statistical comparison between mbo and remaining schemes considering prob-
lems f1–f15

f Alg p-value Dif f Alg p-value Dif f Alg p-value Dif

f1 de 2.739e-01 ↔ f2 de 3.331e-02 ↑ f3 de 4.665e-40 ↑
mmbo 9.674e-03 ↑ mmbo 3.821e-01 ↔ mmbo 5.700e-43 ↑

f4 de 2.550e-01 ↔ f5 de 1.415e-07 ↑ f6 de 5.946e-01 ↔
mmbo 6.361e-01 ↔ mmbo 1.229e-09 ↑ mmbo 9.101e-01 ↔

f7 de 1.882e-01 ↔ f8 de 3.912e-01 ↔ f9 de 1.794e-06 ↑
mmbo 7.227e-01 ↔ mmbo 8.130e-01 ↔ mmbo 8.701e-08 ↑

f10 de 5.742e-01 ↔ f11 de 4.333e-01 ↔ f12 de 5.277e-02 ↔
mmbo 9.053e-01 ↔ mmbo 2.089e-01 ↔ mmbo 1.433e-01 ↔

f13 de 5.946e-01 ↔ f14 de 8.367e-02 ↔ f15 de 6.249e-02 ↔
mmbo 7.325e-01 ↔ mmbo 5.809e-02 ↔ mmbo 2.428e-01 ↔

Table 3. Statistical comparison between mmbo and remaining schemes considering
problems f1–f15

f Alg p-value Dif f Alg p-value Dif f Alg p-value Dif

f1 de 8.401e-05 ↓ f2 de 1.402e-03 ↑ f3 de 8.786e-01 ↔
mbo 9.674e-03 ↓ mbo 3.821e-01 ↔ mbo 5.700e-43 ↓

f4 de 4.965e-01 ↔ f5 de 6.671e-02 ↔ f6 de 8.130e-01 ↔
mbo 6.361e-01 ↔ mbo 1.229e-09 ↓ mbo 9.101e-01 ↔

f7 de 5.742e-01 ↔ f8 de 5.543e-01 ↔ f9 de 2.739e-01 ↔
mbo 7.227e-01 ↔ mbo 8.130e-01 ↔ mbo 8.701e-08 ↓

f10 de 9.176e-01 ↔ f11 de 2.713e-02 ↑ f12 de 2.962e-03 ↓
mbo 9.053e-01 ↔ mbo 2.089e-01 ↔ mbo 1.433e-01 ↔

f13 de 7.901e-01 ↔ f14 de 9.176e-01 ↔ f15 de 3.912e-01 ↔
mbo 7.325e-01 ↔ mbo 5.809e-02 ↔ mbo 2.428e-01 ↔

was able to beat de in problems f2 and f11, it was beaten by de considering
functions f1 and f12, and both approaches did not show statistically significant
differences when dealing with remaining test cases. Bearing the above in mind,
mbo/mmbo were able to provide better solutions than those achieved by de in
5 out of 15 problems. However, de was able to outperform mbo/mmbo in 2 out
of 15 functions. This means that mbo/mmbo were able to attain similar or even
better solutions than de in 13 out of 15 problems.

If we compare mbo with respect to mmbo we can make the following obser-
vations. mbo provided statistically better results than mmbo in 4 problems (f1,
f3, f5, and f9), while the latter was not statistically better than the former in
any case. Taking into account the remaining problems, statistically significant
differences did not appear between both schemes.
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4 Conclusions and Future Work

Algorithms inspired by the nature comprise an important type of solution
approaches used for solving practical problems. Some of these approaches have
been successfully applied to combinatorial problems, such as mbo and mmbo.
Nevertheless, to our best knowledge, they had not been used for tackling large
scale continuous problems. Hence, in this work we propose novel adaptations
of both population-based meta-heuristics for solving relevant problems in this
research area. For doing that, we developed a novel neighbour generating oper-
ator based on de that allows new individuals to be generated in the continuous
decision space. The experimental evaluation carried out indicates that our pro-
posals are suitable and competitive for performing the optimisation of large scale
continuous problems. In this regard, results demonstrate that mbo and mmbo
are able to obtain similar solutions, and even better for some cases, than those
provided by one of the best performing variants of de considering the set of large
scale continuous problems at hand.

Bearing in mind the contributions of this work, our research agenda will be
focused on the assessment of the influence that the different parameters of mbo
and mmbo have over their performance when solving continuous problems. Addi-
tionally, an analysis about the impact that different neighbourhood structures
have over the behaviour of mbo and mmbo might also be of great interest.
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Abstract. We consider how an (almost) optimal parameter adaptation
process for an adaptive DE might behave, and compare the behavior and
performance of this approximately optimal process to that of existing,
adaptive mechanisms for DE. An optimal parameter adaptation process
is an useful notion for analyzing the parameter adaptation methods in
adaptive DE as well as other adaptive evolutionary algorithms, but it
cannot be known generally. Thus, we propose a Greedy Approximate
Oracle method (GAO) which approximates an optimal parameter adap-
tation process. We compare the behavior of GAODE, a DE algorithm
with GAO, to typical adaptive DEs on six benchmark functions and the
BBOB benchmarks, and show that GAO can be used to (1) explore how
much room for improvement there is in the performance of the adap-
tive DEs, and (2) obtain hints for developing future, effective parameter
adaptation methods for adaptive DEs.

1 Introduction

Differential Evolution (DE) is an Evolutionary Algorithm (EA) that was pri-
marily designed for continuous optimization [17], and has been applied to many
real-world problems [4]. A DE population P = {x 1, ...,xN} is represented as a
set of real parameter vector x i = (xi

1, ..., x
i
D)T, i ∈ {1, ..., N}, where D is the

dimensionality of the target problem and N is the population size.
After initialization of the population, for each generation t, for each x i,t,

a mutant vector v i,t is generated from the individuals in P t by applying a
mutation strategy. The most commonly used mutation strategy is the rand/1
strategy: v i,t = x r1,t + Fi,t (x r2,t − x r3,t). The indices r1, r2, r3 are randomly
selected from {1, ..., N} such that they differ from each other as well as i. The
scale factor Fi,t ∈ (0, 1] controls the magnitude of the differential mutation
operator. Then, the mutant vector v i,t is crossed with the parent x i,t in order
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to generate a trial vector u i,t. Binomial crossover, the most commonly used
crossover method in DE, is implemented as follows: For each j ∈ {1, ...,D},
if rand[0, 1] ≤ Ci,t or j = jr (where, rand[0, 1] denotes a uniformly generated
random number from [0, 1], and jr is a decision variable index which is uniformly
randomly selected from {1, ...,D}), then ui,t

j = vi,t
j . Otherwise, ui,t

j = xi,t
j . Ci,t ∈

[0, 1] is the crossover rate. After all of the trial vectors u i,t, i ∈ {1, ..., N} have
been generated, each individual x i,t is compared with its corresponding trial
vector u i,t, keeping the better vector in the population, i.e., if f(u i,t) ≤ f(x i,t),
x i,t+1 = u i,t for minimization problems. Otherwise, x i,t+1 = x i,t.

It is well-known that the performance of EAs is significantly influenced by
control parameter settings [6,11], and DE is no exception [4]. Since identifying
optimal control parameter values a priori is impractical, adaptive DE algorithms,
which automatically adjust their control parameters online during the search
process, have been studied by many researchers. Most of the well-known adap-
tive DEs [3,10,13,18,20] automatically adjust the F and C parameters. However,
while many adaptive DEs have been proposed, their parameter adaptation meth-
ods are poorly understood. Previous work such as [3,10,13,18,20] only proposed
a novel adaptive DE variant and evaluated its performance on some benchmark
functions, but analysis of their adaptation methods have been minimal. The situ-
ation is not unique to the DE community – Karafotias et al. [11] have pointed out
the lack of the analysis of adaptation mechanisms in EA. There are several pre-
vious work that try to analyze the parameter adaptation method in adaptive DE
[3,5,13,16,20]. However, almost all merely visualized how F and C values change
during a typical run on functions, and the analysis is limited to qualitative descrip-
tions such as “a meta-parameter of C in adaptive DE quickly drops down to [0, 0.2]
after several generations on the Rastrigin function”.

In this paper, we consider how an (almost) optimal parameter adaptation
process might behave, and compare the behavior and performance of this approx-
imately optimal process to that of existing, adaptive mechanisms for DE. We
first define what we mean by an optimal parameter adaptation process, and pro-
pose a simulation process which can be used in order to greedily approximate
the behavior of such an optimal process. We propose GAODE, which applies this
methodology to DE and simulates an approximately optimal parameter adap-
tation process for a specific adaptive DE framework. We compare the behavior
of GAODE to typical adaptive DE algorithms on six benchmark functions and
the BBOB benchmarks [8], and discuss (1) the performance of current adaptive
DE algorithms compared to GAODE, and (2) the implications of these results
for developing more effective parameter adaptation method for adaptive DEs.

2 The Proposed GAO Framework for Adaptive DEs

First, note that this paper focuses on parameter adaptation methods for F and
C in adaptive DEs such as jDE [3], EPSDE [13], JADE [20], MDE [10], SHADE
[18]. In general, the term “adaptive DE” denotes a complex algorithm composed
of multiple algorithm components. For example, “JADE” consists of three key
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components: (a) current-to-pbest/1 mutation strategy, (b) binomial crossover,
(c) JADE’s parameter adaptation method of F and C. In this paper we want
to focus on analyzing (c) only, rather than “JADE”, the complex DE algorithm
composed of (a), (b) and (c). Therefore, we extracted only (c) from each adaptive
DE variant, and generalized it so that it can be combined with arbitrary mutation
and crossover methods. This approach is taken in recent work [5,16].

Due to space limitations, the parameter adaptation methods in jDE, EPSDE,
JADE, MDE, and SHADE cannot be described here (see Section A in the sup-
plemental materials [1]), but the general framework can be described as follows:
(i) At the beginning of each generation t, the Fi,t and Ci,t values are assigned
to each individual x i,t. (ii) For each x i,t, a trial vector u i,t is generated using a
mutation strategy with Fi,t and crossover method with Ci,t. (iii) At the end of
each generation t, the F and C values used by successful individuals influence
the parameter adaptation on the next generation t + 1, where we say that an
individual i is successful if f(u i,t) ≤ f(x i,t).

2.1 Optimal Parameter Adaptation Process θ∗

We define the notion of an optimal parameter adaptation process in an adaptive
DE. Below, DE-(a,m) denotes an adaptive DE algorithm using a and m, where
a is a parameter adaptation method, and m is a DE mutation operator. Let L
be the number of function evaluations (FEvals) until the search finds an optimal
solution. An adaptation process θa

m = ({F1, C1}, ..., {FL, CL})T is defined as the
series of the F and C parameters generated when DE-(a,m) is executed with
some adaptation mechanism a and some DE mutation operator m.

For some fixed m, an optimal parameter adaptation process θ∗
m = ({F ∗

1 , C∗
1},

..., {F ∗
L, C∗

L})T is defined as an adaptation process which minimizes the expected
value of L, i.e., there exists no a′ such that E[|θa′

m|] < E[|θ∗
m|]. In the rest of the

paper, we abbreviate this as θ∗. An optimal parameter adaptation method a∗ is
an adaptation method such that θa∗

m = θ∗.
a∗ and θ∗ are useful notions for analyzing the parameter adaptation methods

in adaptive DE. If θ∗ is known for some problem instance I, this by definition
is a lower bound on the performance of DE-(a,m) (no other adaptation process
can have a shorter expected length). This allows quantitative discussions regard-
ing the performance of DE-(a,m) relative to the lower bound, e.g., “DE-(jDE,
best/1) is 12.34 times slower than DE-(a∗, best/1)”. We can also use such bounds
in order to assess whether further improvements to a certain class of methods
are worthwhile, e.g., “DE-(JADE, rand/2) performs worse than CMA-ES [9],
but the performance of DE-(a∗, rand/2) is better than CMA-ES. Therefore, fur-
ther improvements to the adaptation method a may result in a version of DE-(a,
rand/2) which could outperform CMA-ES.”

Besides providing a bound on the performance of DE-(a,m), θ∗ might be
useful in guiding the development of more efficient parameter adaptation meth-
ods. For example, if for some problem instance I, the F values in θ∗ are rela-
tively high at the beginning of the search while they are low at the end of the
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Algorithm 1. GAODE (the DE with GAO)
1 t ← 1, initialize Pt = {x1,t, ..., xN,t}, l ← 1, θGAO ← ∅;
2 while The termination criteria are not met do
3 for i = 1 to N do

4 U l ← ∅;
5 for j = 1 to λ do

6 Fl,j = rand(Fmin, Fmax], Cl,j = rand[Cmin, Cmax];

7 The (virtual) trial vector ul,j is generated using an arbitrary mutation

strategy with Fl,j and crossover method with Cl,j , then ul,j → U l;

8 Evaluates the (virtual) trial vectors in U l by f , and select ul,best;

9 ui,t = ul,best, θGAO ← {Fl,best, Cl,best}, l ← l + 1;

10 If f(ui,t) ≤ f(x i,t), x i,t+1 = ui,t. Otherwise, x i,t+1 = x i,t;

11 t ← t + 1;

search, then this suggests that we might be able to improve the performance of
DE-(a,m) on problems similar to I by designing a so that the adaptation process
of DE-(a,m) more closely resembles of θ∗ for I.

However, in practice, it is generally not possible to know θ∗. It is well-known
that the appropriate parameter settings depend on the current search situation,
and are not fixed values such as F = 0.5 and C = 0.9, i.e., there are dif-
ferent optimal parameter values as ({F ∗

1 , C∗
1}, {F ∗

2 , C∗
2}, {F ∗

3 , C∗
3}, ...) for each

FEvals (1, 2, 3, ...). {F ∗
l , C∗

l } are also context-dependent, so we can not compute
{F ∗

l , C∗
l } for some time step l in isolation – the search state at l depends on the

control parameter settings used in steps 1, ..., l − 1.

2.2 Approximating an Optimal Adaptation Process θ∗

As discussed above, θ∗ would be very useful for analyzing the parameter adapta-
tion methods, but it cannot be obtained in practice. Thus, we propose a Greedy
Approximate Oracle method (GAO) in order to approximate θ∗, and apply the
proposed GAO method to DE.

The basic idea is as follows: suppose that in step (i) of the adaptive DE
framework described in the beginning of Sect. 2, we could enumerate all possible
parameter settings {F,C}, and then retroactively select the {F,C} pair which
results in the best child – this would give us the optimal, 1-step adaptation
process. Similarly, the optimal k-step adaptation process can be obtained by
recursively simulating the execution of the DE for all possible k-step adaptation
processes and then selecting the best k-step process. Of course, the number of
possible adaptation processes grows exponentially in the number of steps, so in
general, the k-step process can not be obtained, and in fact, fully enumerating all
possible 1-step processes is impractical. We therefore obtain an approximation
to the 1-step optimal process by randomly sampling {F,C} values.

This is implemented as GAODE, shown in Algorithm 1. For each current
FEvals l, let us consider that the individual x l (=x i,t) generates the trial vec-
tor u l (=u i,t) using parameter settings θl = {Fl, Cl} (=θi,t). The optimal 1-step
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greedy parameter settings for step l is θg∗,l = {F g∗
l , Cg∗

l }, and GAO seeks θGAO,l,
which approximates values of θg∗,l, by random sampling of {F,C} values.

For each x l, λ trial vectors U l = {u l,1, . . . ,u l,λ} are generated (Algorithm 1,
lines 4∼7). Parameter values θl,j = {Fl,j , Cl,j}, j ∈ {1, . . . , λ} used for generating
u l,j are uniformly randomly selected from (Fmin, Fmax] and [Cmin, Cmax] respec-
tively (Algorithm 1, line 6). In DE, pseudo-random numbers are used for (a) parent
selection in the mutation operator, and (b) the crossover operator. If two differ-
ent virtual DE configurations which have different {F,C} parameter values also
use different random numbers for (a) and (b), it complicates the analysis because
we cannot determine whether the configuration which generates the better trial
vector did so because of its {F,C} values or because of the random numbers used
in (a) and (b). Therefore, in our experiments, we synchronized the pseudorandom
generators for all of the virtual DE configurations so that they all used the same
random numbers at both (a) and (b) for generating all trial vectors in U l – this
eliminates the possibility that a virtual DE configuration outperforms another due
to fortunate random numbers used for (a) and (b).

The trial vectors in U l are evaluated according to the function f , and the
u l,best with the best (lowest) function value in U l is selected (Algorithm 1,
line 8). The selected u l,best is treated as u l (=u i,t) of x l (=x i,t). Note that,
λ times evaluations according to f which are used to select u l,best in U l (Algo-
rithm1, line 8), are not counted as the FEvals used in the search – this simulates a
powerful oracle which “guesses” u l,best in one try. θl,best = {Fl,best, Cl,best} used
for generating u l,best can be considered a approximation to θg∗,l = {F g∗

l , Cg∗
l },

and is stored in θGAO (Algorithm 1, line 9).
Previous work has investigated optimal parameter values in adaptive EAs,

especially in Evolution Strategies (ES) community [2,6,7]. For example, the opti-
mal step size σ∗ in (1 + 1)-ES on the Sphere function is σ∗ = 1.224 ‖x ∗ − x‖/D
[7], where ‖x ∗ − x‖ is the Euclidean distance between the optimal solution
x ∗ and the current search point x . The optimal mutation rate pm schedule of
(1 + 1)-GA on the one-max problem is also studied by Bäck [2]. While theoret-
ically well-founded, these results are limited to a specific algorithm running on
a specific problem, and have also been limited to one parameter value, e.g., σ
and pm. In contrast, the proposed GAO framework is more general. While we
focus on applying GAO to DE for black-box optimization benchmarks in this
paper, we believe the GAO approach can be straightforwardly generalized and
applied to combinations of various problem domains (e.g., combinatorial prob-
lems, single/multi-objective problems, etc.), algorithms (e.g., GA, ES, MOEA,
etc.), and parameters (e.g., crossover and mutation rate, crossover method, etc.).

3 Evaluating the Proposed GAO Framework

We compare GAODE, the DE with GAO, to the parameter adaptation methods
used by representative adaptive DEs on six benchmark functions. We show that
GAO can be used to (1) explore how much room for improvement there is in the



150 R. Tanabe and A. Fukunaga

performance of the adaptive DEs (Sect. 3.1), and (2) obtain hints for developing
future, effective parameter adaptation methods (Sect. 3.2).

We used six benchmark functions: Sphere, Ellipsoid, Rotated-Ellipsoid,
Rosenbrock, Ackley, Rastrigin functions. The first three are unimodal, and the
last three are multimodal (the Rosenbrock function is unimodal for D ≤ 3). The
Rotated-Ellipsoid and Rosenbrock functions are nonseparable, and the (Rotated-)
Ellipsoid functions are ill-conditioned functions. For details, see Table A.1 in [1].

The dimensionality D of each function was set to 2, 3, 5, 10, and 20. The
number of runs per problem was 51. Random number seeds for parts of the
DE are synchronized as explained in Sect. 2.2. Each run continues until either
(i) |f(xbsf) − f(x ∗)| ≤ 10−8, in which case we treat the run as a “success”, or
(ii) the number of fitness evaluations (FEvals) exceeds D × 105, in which case
the run is treated as a “failure”. xbsf is the best-so-far solution found during the
search process, and x ∗ is the optimal solution of the target problem. Following
[9], we used the Success Performance 1 (SP1) metric, which is the average FEvals
in successful runs divided by the number of successes, as a performance metric
of the DE algorithms. SP1 represents the expected FEvals to reach the optimal
solution, i.e., a small SP1 value indicates a fast and stable search.

We used five parameter adaptation methods in the representative adaptive
DE variants: jDE [3], EPSDE [13], JADE [20], MDE [10], and SHADE [18]. For
details, see Section A in [1]. The most basic rand/1/bin operator [17], described
in Sect. 1, was used for all DEs. Following [14], the population size N was set to
5 × D for D > 5, and N = 20 for D = 2 and 3. For each algorithm, we used the
control parameter values that were suggested in the original papers as follows:
τF = 0.1 and τC = 0.1 for jDE, F -pool = {0.4, ..., 0.9} and C-pool = {0.1, ..., 0.9}
for EPSDE, c = 0.1 for JADE, and H = 10 for SHADE.

In the GAO framework, the parameter generation ranges (Fmin, Fmax] and
[Cmin, Cmax] have to be set. In preliminary experiments, GAODE failed on some
nonseparable functions when these ranges were set to (0, 1] and [0, 1] respectively.
We believe this failure is due to small F values, so we also evaluated GAODE
with Fmin = 0.4, where 0.4 is a lowest F value suggested by Rönkkönen et al. [15].
Unless explicitly noted, we denote GAODE with the former and later settings
as GAODE00 and GAODE04 respectively, and a virtual DE algorithm that is
a composition of GAODE00 and GAODE04 as GAODE (GAODE returns the
best result obtained by running both GAODE00 and GAODE04). λ, the number
of configurations sampled by GAODE at each individual, was set to 200.

3.1 Experiment 1: How Much Room Is There for Improvement
with Adaptive DE Algorithms with the rand/1/bin Operator?

Figure 1 shows the results of GAODE, jDE, EPSDE, JADE, MDE, and SHADE
on the six functions. For GAODE, instead of SP1, we show the lowest FEvals
for reaching the optimal solution in the composed results of GAODE00 and
GAODE04. The data of GAODE indicates an approximate bound on the per-
formance that can be obtained by an adaptive DE using the rand/1/bin operator.
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Fig. 1. Comparison of GAODE with the parameter adaptation methods in the adaptive
DEs on each function. The horizontal axis represents the dimensionality D, and the
vertical axis represents the SP1 values. Data with success rate = 0 is not shown.

As shown in Fig. 1, all runs of EPSDE fail on the Rotated-Ellipsoid function
for D = 20. JADE also fails on all runs on the Rosenbrock function when D ≥ 10.
MDE can reach the optimal solution on the both functions, but its SP1 values
are significantly worse than other methods. Consistent with the results in [16,20],
adaptation methods tend to perform poorly when used with operators that are
different from the operators used in the original papers where the adaptation
methods were proposed. Although the performance rank among the methods
depends on the functions and the dimensionality D, jDE and SHADE perform
better than other compared methods in almost all cases. However, as shown
in Fig. 1, jDE and SHADE converge to the optimal solution 4∼20 times slower
than GAODE. This shows that even the best current adaptive methods perform
poorly compared to an approximation of a 1-step greedy optimal process (and
are therefore even worse compared to a k-step optimal process). Thus, it appears
that despite significant progress in recent years, there is still significant room for
improvement in parameter adaptation methods for DE.

3.2 Experiment 2: How Should We Adapt the Control Parameters?

Let us consider how the behavior of GAODE differs from existing adaptation
methods. Figure 2 shows the frequency of appearance of {F,C} value pairs during
the search process for SHADE and GAODE on the 10-dimensional Rosenbrock
and Rastrigin functions. Data from the best run out of 51 runs is shown. The
results of jDE, EPSDE, JADE, and MDE can be seen in Fig. A.1 in [1].

As shown in Fig. 2, SHADE frequently generates F and C values in the range
[0.5, 0.7] and [0.9, 1.0] on the Rosenbrock function, and [0.9, 1.0] and [0.1, 0.4] on
the Rastrigin function respectively. These results are consistent with previous
studies for DE [3,4] and adaptive DEs [3,20]. On the other hand, GAODE mainly
generates F values in the range [0.0, 0.1] on both functions. The C values fre-
quently appear in [0.0, 0.2] and [0.8, 1.0] on the Rastrigin function, and GAODE
mainly generates C values in both [0.9, 1.0], and [0.0, 0.1] on the Rosenbrock
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Fig. 2. Frequency of appearance of {F,C} value pairs during the search process for
SHADE and GAODE on the 10-dimensional (a) Rosenbrock and (b) Rastrigin func-
tions. Darker colors indicate more frequent generation of the corresponding values by
the parameter adaptation method.

function, i.e., the C values are bimodal. Interestingly, for the both functions,
GAODE occasionally generates F and C values in the extreme regions [0.9, 1.0]
and [0.0, 0.1] respectively (see bottom right in the figures).

In summary, GAODE frequently generates small F values, and C values
in the range [0, 0.2] and [0.8, 1]. Although CoBiDE [19], a recently proposed
non-adaptive DE, generates the Fi,t and Ci,t values for each x i,t according to a
bimodal (two Cauchy) distribution, we are not aware of such a bimodal sampling
approach in any previously proposed adaptive method. An adaptive DE algo-
rithm using such sampling method may also perform better than the existing
methods [3,10,13,18,20]. Thus, analysis of the approximate optimal parameter
adaptation process obtained by GAO suggests that instead of unimodal sampling
procedures implemented in previous adaptation methods, adaptive mechanisms
using multimodal sampling may be a promising direction for future work.

4 Comparing GAODE with State-of-the-Art EAs

GAODE, which is an approximate simulation of an optimal, 1-step adaptation
process, significantly performs better than the current state-of-the-art parame-
ter adaptation methods for DE using the rand/1/bin operator, as described
in Sect. 3.1 (again, we reemphasize that GAODE is not a practical algorithm
and is for analysis only – the “performance” of GAODE ignores the λ − 1
samples which are discarded by GAODE at each iteration). It is interesting
to compare GAODE with other state-of-the-art EAs. Here, we compare the
adaptive DE variants including GAODE1 with HCMA [12] and best-2009 on
the BBOB benchmarks, consisting of 24 various functions [8]. HCMA, an effi-
cient surrogate-assisted algorithm portfolio, represents the state-of-the-art on the
BBOB benchmarks. Best-2009 is a virtual algorithm portfolio that is retrospec-
tively constructed from the performance data of 31 algorithms participating in
1 The BBOB benchmarks provide 15 instances for each function, i.e., there are 24 ×

15 = 360 function instances. In this study, we applied GAODE00 and GAODE04
three times for each instance, and only the best result among them is used for
GAODE.
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Fig. 3. Comparisons of GAODE with the adaptive DE variants, HCMA, and best-2009
on BBOB benchmarks (D ∈ {5, 10, 20}). These figures show the bootstrapped Empir-
ical Cumulative Distribution Function (ECDF) of the FEvals divided by dimension
for 50 targets in 10[−8..2] for 5, 10, 20 dimensional all functions (higher is better). For
details of the ECDF, see a manual of COCO software (http://coco.gforge.inria.fr/).

the GECCO BBOB 2009 workshop. Is it possible for an adaptive DE algorithm
using the classical rand/1/bin operator to be competitive with these methods?

Figure 3 shows the Empirical Cumulative Distribution Function (ECDF) for
each algorithm for 24 BBOB benchmark problems (D = 5, 10, 20) when maxi-
mum FEvals = D × 104. The results for each function class and for D = 2, 3 can
be found in Figs. A.2∼A.6 in [1]. As shown in Fig. 3, GAODE clearly outper-
forms jDE, EPSDE, JADE, MDE, and SHADE for all dimensions, in terms of
both the quality of the best-so-far solution obtained during the search process
and the anytime performance. GAODE also performs significantly better than
HCMA and best-2009 for D ≤ 5. This result suggests that if we can find a
parameter adaptation method which performs similarly to the GAODE model,
then an adaptive DE algorithm using the classical rand/1/bin could possibly
outperform state-of-the-art algorithm portfolios such as HCMA for D ≤ 5.

On the other hand, when the dimensionality increases, the performance of
GAODE degrades compared to HCMA and best-2009. For D = 20, GAODE
is outperformed by HCMA and best-2009. This may indicate that for high-
dimensionality problems, it may not be possible to develop an adaptive DE using
the rand/1/bin operator which is competitive with methods such as HCMA.
However, this result may be due to the fact that GAODE only simulates an
approximately optimal 1-step adaptation process – increasing the number of
steps (i.e., a k-step optimal process) may result in better results, and is a direc-
tion for future work. In addition, different mutation operators (e.g., best/2,
current-to-pbest/1, etc.) may enable significantly better performance for adap-
tive DEs.

5 Conclusion

We proposed a Greedy Approximate Oracle method (GAO) which approximates
an optimal parameter adaptation process θ∗. In GAO, λ parameter sets are ran-
domly generated for each individual in the population, and the best parameter
set with respect to the objective function value is used as a greedily approxi-
mated optimal parameter set (the other λ − 1 sets are discarded and are not

http://coco.gforge.inria.fr/
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counted). We evaluated GAODE, a DE algorithm with GAO, on 6 standard
benchmark functions and the BBOB benchmarks [8], and compared it with the
parameter adaptation methods in 5 adaptive DE variants. We showed that (1)
current adaptive DEs are significantly worse than even an approximate, 1-step
optimal adaptation, suggesting that there is still much work to be done in the
development of adaptive mechanisms (Sect. 3.1), and (2) GAO can be used to
identify promising directions for developing an efficient parameter adaptation
method in adaptive DE (Sect. 3.2). We also compared GAODE with HCMA [12]
and best-2009 on the BBOB benchmarks [8] in Sect. 4, and showed that a better
adaptive mechanism may enable a DE using the classical rand/1/bin operator
to achieve state-of-the-art performance.

The proposed GAO framework is a first attempt to approximate the optimal
parameter adaptation process, and there is much room for improvement, as dis-
cussed in Sect. 2. In this paper, we applied GAO to the DE with the rand/1/bin
operator, and evaluated its performance on single-objective continuous optimiza-
tion problems. Future work will explore GAO as a general framework that can
be applied to analyze the behavior of any adaptive EA (independent of specific
operators and problem domains).
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3. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control

parameters in differential evolution: a comparative study on numerical benchmark
problems. IEEE TEVC 10(6), 646–657 (2006)

4. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution -
an updated survey. Swarm Evol. Comput. (2016, in press)

5. Drozdik, M., Aguirre, H., Akimoto, Y., Tanaka, K.: Comparison of parame-
ter control mechanisms in multi-objective differential evolution. In: Jourdan, L.,
Dhaenens, C., Marmion, M.-E. (eds.) LION 9 2015. LNCS, vol. 8994, pp. 89–103.
Springer, Heidelberg (2015)

6. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE TEVC 3(2), 124–141 (1999)

7. Hansen, N., Arnold, D.V., Auger, A.: Evolution Strategies. Springer, Heidelberg
(2015)

8. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization
benchmarking 2009: noiseless functions definitions. Technical report, INRIA (2009)

9. Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test
functions. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291.
Springer, Heidelberg (2004)

10. Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive differen-
tial evolution algorithm with novel mutation and crossover strategies for global
numerical optimization. IEEE Trans. SMC B 42(2), 482–500 (2012)

11. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary
algorithms: trends and challenges. IEEE TEVC 19(2), 167–187 (2015)

12. Loshchilov, I., Schoenauer, M., Sebag, M.: Bi-population CMA-ES agorithms with
surrogate models and line searches. In: GECCO Com, pp. 1177–1184 (2013)

https://sites.google.com/site/tanaberyoji/home/tf-ppsn16-sup.pdf


How Far Are We from an Optimal, Adaptive DE? 155

13. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evo-
lution algorithm with ensemble of parameters and mutation strategies. ASC 11,
1679–1696 (2011)
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Abstract. Algorithm Configuration is still an intricate problem espe-
cially in the continuous black box optimization domain. This paper
empirically investigates the relationship between continuous problem fea-
tures (measuring different problem characteristics) and the best parame-
ter configuration of a given stochastic algorithm over a bench of test
functions — namely here, the original version of Differential Evolution
over the BBOB test bench. This is achieved by learning an empirical
performance model from the problem features and the algorithm para-
meters. This performance model can then be used to compute an empir-
ical optimal parameter configuration from features values. The results
show that reasonable performance models can indeed be learned, result-
ing in a better parameter configuration than a static parameter setting
optimized for robustness over the test bench.

Keywords: Empirical study · Black-box continuous optimization ·
Problem features · Algorithm configuration · Empirical Performance
Model · Differential Evolution

1 Introduction

Today, it is widely acknowledged that the quest of a universal black box opti-
mization algorithm is vain, even if the No Free Lunch Theorem [17] has been
questioned in the continuous framework [1]. However, many algorithms exist,
more or less specific to different classes of optimization problems, and the new
grail of optimizers has now turned toward Algorithm Selection, as formulated
by Rice [15], or Algorithm Configuration, that can be considered as yet another
(meta-)optimization problem [6]. In both cases, the choice (of an algorithm, or
of the parameters of a given algorithm) is made w.r.t. the user’s preference, aka
a performance criterion (e.g., quality of the solution obtained in a given CPU
cost, the smallest CPU cost to reach a given solution quality, the probability to
reach a given quality, with given thresholds, etc.).

A first approach to Algorithm Configuration is to optimize this performance
criterion once and for all using a specific algorithm, e.g., SMAC [8]. But this
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results in a single configuration, and even if several problems are used to compute
the performance criterion, the generalization of the results to other problems
might be problematic.

More recent approaches are based on a description of the objective function
in some feature space, and try to learn a mapping from this feature space onto the
space of parameter configurations of the algorithm at hand, based on examples
of the behavior of several configurations on a training set of objective functions.
And the most successful approach for learning such a mapping is to first learn
an empirical model of the algorithm performance (that predicts the performance
criterion for a given set of features and an algorithm configuration). When a new
problem arises (i.e. a new set of features), finding the algorithm configuration
that is predicted to have the best performance is then straightforward. This app-
roach, initially proposed in [10], has demonstrated successful results in different
combinatorial optimization domains [7,9,18].

In continuous domains, however, though several feature sets have been pro-
posed [12,13], and successfully demonstrated to accurately classify problem
instances [3,13], only Algorithm Selection problems have actually been tackled
[3,12–14].

The present work addresses the Algorithm Configuration problem for contin-
uous domains, building an Empirical Performance Model (EPM) based on the
problem features in continuous search spaces cited above. The approach is exper-
imentally validated with the original version of Differential Evolution [16], that
has few hyper-parameters, but is known to be highly sensitive to their setting.
The set of objective functions used for this validation is the well-known BBOB
test bench [5].

The paper is organized as follows. Section 2 presents the general idea of
feature-based Empirical Performance Model and subsequent algorithm config-
uration. Section 3 surveys the problem features in the case of continuous opti-
mization. Section 4 then details the DE case study and the BBOB testbench used
in this work. Section 5 describes the different experiments, and the corresponding
results are detailed and discussed in Sect. 6, before the concluding Sect. 7.

2 Algorithm Configuration with an Empirical
Performance Model

Context and Notations. The general context is the Black Box Optimization of
objective functions f : Ω �→ IR. An algorithm A is given together with its control
parameters θ ∈ Θ. We assume that the objective functions can be described by
some features ψ ∈ Ψ. The goal of Instance-based Algorithm Configuration is to
find automatically, for a given objective function f described by its features ψf ,
the best possible configuration of A, i.e., values θ∗

f ∈ Θ such that running A with
parameters θ∗

f on f leads to optimal performances w.r.t. a given performance
measure ϕ.

Empirical Performance Model. The first step is to build an Empirical Per-
formance Model (EPM) ϕ̂ that approximate ϕ on Ψ × Θ. A is run to optimize
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different functions fi (described by their features ψfi
) using different parameter

configurations θj . This allows to compute the exact values ϕ(ψfi
, θj) for different

pairs (i, j)1. The set of all ((ψfi
, θj), ϕ(ψfi

, θj)) is a training set that can be used
as input to any standard regression method to learn a model ϕ̂ for ϕ. Note that
building such a model is done once, and hence its computer cost is not a critical
issue.

Empirical Optimal Configuration. When a new objective function g is to
be optimized with A, its features ψg are computed, and the optimization of
ϕ̂(ψg, θg) on parameter space Θ leads to the empirical optimal parameters of A
for g. Here, the cost of computing the features ψg, in terms of number of calls to
g, is here of utter importance. In particular, it should be compared to the cost
of running a full ’ad hoc’ meta-optimization of A parameters for g (using e.g.,
SMAC [8]).

The remaining of the paper is concerned with objective functions defined
on some continuous domain D ⊂ IRd for a given dimension d ∈ IN. Different
features, taken from the literature, will first be discussed, before the case study
is detailed.

3 Features for Continuous Optimization

In this section, a single objective function f : IRd �→ IR is considered, and
the feature space Ψ is a vector space of p real-valued features. The black-box
context implies that features should be computed from samples of f2, i.e. n pairs
(xi, f(xi))), specifically gathered for that purpose. The set of values {f(xi)|i =
1, . . . , n} is denoted Y.

A first set of 55 features is taken from [12]. These features are grouped into
six classes: the 3 y−Distribution features are related to the distribution of the
values in Y, the 18 Levelset features to the relative position of Y w.r.t a given
threshold, the 9 Meta-Model features rely on meta-modeling of the sample set
w.r.t linear and quadratic regression models, the 14 Curvature features on some
numerical estimation of the Hessian and gradient of the problem, the 4 Convexity
features on the empirical probability of convexity, and the 7 Local Search features
on the ratio of local optima and global optima, estimated using some iterated
local search procedure.

The y−Distribution, the Levelset and the Meta-Model features can all be
evaluated on the same sample dataset, hence their cost altogether is n, the num-
ber of samples. However, some additional evaluations are required for the other
feature classes, that depend on the previous samples. The orders of magnitudes
are about 103 × d for the Convexity features, around 104 × d for the Curvature
and the Local Search features.

1 The same θj need not have been tried for all fi.
2 d, the dimension of the search space, can be considered as the only external feature

— or the Algorithm Configuration can be conducted anew for each dimension (more
in Sect. 5).
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A set of 16 Dispersion features was originally proposed in [11]. They are
based on comparisons of the distances between best samples from different per-
centiles of the overall sample (in terms of solution quality) to the mean or median
distance between all samples. Finally, 5 Information Content features were pro-
posed in [13], giving information about the global structure of the landscape.

Recent works [3,12,13] successfully demonstrated that these features could
be used in order to classify the optimization problems w.r.t their classes in
BBOB (that will be introduced in Sect. 5) for the Algorithm Selection Problem.
More recently, in [4] a subset of these features were used in order to improve the
process of a parameter tuning algorithm, relying on the SMBO method [8].

4 A Case Study in Continuous Domain: DE on BBOB

Differential Evolution and its Parameters. Differential Evolution [16] is a
popular continuous optimization algorithm that encountered many successes. It
is also known for its simplicity, at least in its original version, that comes at
the price of a large sensitivity to its parameter setting: this is the reason why
it has been chosen here, making it easier to see big differences of results for
different parameter settings. Several advanced versions of DE exist, that clearly
outperform the original version, but comparing our results with theirs is left for
further work.

DE generates new individuals from the current population by adding to each
individual in turn a difference vector between two other individuals, and recom-
bining the result with another individual from the population. The original ver-
sion of DE has only four static parameters:

• the population size NP ∈ IN;
• the strategy S ∈ {best1bin, randtobest1bin,best2bin, rand2bin, rand1bin}

controls how to choose the endpoints of the difference vector;
• F ∈ [0, 2] controls the intensity of the difference vector;
• the crossover rate CR ∈ [0, 1].

In this work the population size NP is kept to the default value 15 × d
recommended by the authors3. Note that the recommendation for the other
parameters is S = best1bin, F = 0.8, and CR = 0.9, and will be used as one of
the baseline (Sect. 6).

Test Bench. The following experiments consider the noiseless test functions
from the Black Box Optimization Benchmark (BBOB4) [5]. The BBOB test
bench is made of 24 analytically defined functions defined on [−5, 5]d, with known
global optima and known difficulties (e.g., non-separability, multi-modality, etc.).
They have been manually classified in five classes of problems. In this work, only
three of the BBOB classes are considered: 5 separable functions, 4 uni-modal
functions with low or moderate conditioning, and 5 uni-modal functions with
3 http://www1.icsi.berkeley.edu/∼storn/code.html.
4 http://coco.gforge.inria.fr.

http://www1.icsi.berkeley.edu/~storn/code.html
http://coco.gforge.inria.fr
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high conditioning (functions F1 to F14). Dimensions 2, 3, 5, 10 are considered for
all functions. As advocated in the original framework, any independent run on a
function is actually done on a variant, in order to get over a possible algorithm
bias. Variants are obtained from the original function by a translation of the
position of the optimum and — for the non-separable functions — a rotation of
the coordinate system.

Performance Measure. Following the COCO/BBOB framework, the perfor-
mance measure used here is the Expected Run Time5 (ERT) needed to reach the
optimal objective value with a given precision. Let RTs be the average running
time of successful runs, and ps the empirical probability of success (out of the
15 independent runs). The ERT is defined as ERT = ERT (f, θ) = RTs/ps if
the results were obtained with DE configuration θ optimizing test function f .

Features. From the features briefly introduced in Sect. 3, different set of problem
features are considered. All features have been computed using the R package
kindly publicly provided by Pascal Kerschke6. Features are distinguished by their
costs:

– ψ� includes all features from Sect. 3, with an initial sample of size k = 2000×
d. However, as discussed in Sect. 3, the actual cost is much larger because of
features requiring additional evaluations.

– ψ•
k: k × d is the size of the initial sample, and only features not requiring

any additional function evaluation beyond those of the initial sample are
considered (i.e., Meta-Model, Information Content, Levelset, y−Distribution
and Dispersion). Results with k = 500 or k = 2000 are presented in the
following.

Regression Model. Preliminary experiments, not discussed here, lead to con-
sider a Random Forests regression model (in accordance with [9]). A grid search
with ten-fold cross-validation has been run on the meta-parameters of the Ran-
dom Forest. The implementation of the scikit-learn python library has been used
throughout this work7, using 10 trees of maximal depth 200.

5 Experiments

Dataset. A 40-steps discretization is used for F ∈ [0, 2[ and CR ∈ [0, 1], result-
ing in 5 × 40 × 40 different configurations. For each of the 14 functions of the
test bench and for each dimension d ∈ {2, 3, 5, 10}, each one of its 15 variants
is optimized with these 8000 DE configurations, and the ERT is computed. The
initial dataset is hence made of 14 × 8000 entries per dimension, or 440 000
entries in total, considering all dimensions.

5 Measured as the number of function evaluations.
6 http://github.com/flacco.
7 http://scikit-learn.org/.

http://github.com/flacco
http://scikit-learn.org/
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Dimensions. As discussed, the dimension d can be considered as a particular
feature, available “for free” (without any function evaluation), or as part of the
problem definition — and there are as many problems as dimensions. These two
points of view will be compared here: the EPM will be learned either using only
the entries of the dataset of the same dimension, or all entries, and the dimension
will then be used as an additional feature in the feature vector.

Cross-validation. All experiments are based on a leave-one-out procedure: one
of the 14 functions in the test bench is completely removed from the dataset (all
dimensions and, of course, all variants). An EPM is then learned, and the left-
out function considered a “unknown”. The only exception is the robust baseline
described below.

Baselines. Different DE configurations are computed for each function, and
used as a baseline for comparison with the results of the proposed approach. The
default configuration recommended by DE authors (Sect. 4) is the first obvious
baseline. However, it is likely to perform poorly across the whole test bench.

At the other extreme, the specific configuration found by some meta-
optimizers for a given problem is likely to give the best overall results: two
such meta-optimization were performed for each function: on the one hand, the
best configuration encountered while computing the full dataset using the grid
described above is saved; on the other hand, SMAC [8] is applied to each function,
using the ERT performance measure as fitness. The best of both configurations
is reported as adhoc configuration.

Finally, one single SMAC optimization is performed using the average ERT
over all 14 functions as performance: the idea behind this is to try to find some
robust configuration that would give good results on all functions simultaneously.
The resulting configuration is termed robust and considered as the reference
(Sect. 6).

Experiment Costs. All DE runs were allowed a maximum budget of 104 × d
function evaluations — though of course some runs did stop earlier, having
reached the target precision. And all results have been averaged over 15 inde-
pendent variants for each function and dimension.

Furthermore, both adhoc baseline configurations have the same cost, because
the budget given to SMAC was purposely chosen to match that of the grid search,
i.e., 8000 × 15 runs of at most ×104 × dim evaluations each.

On the other hand, the robust configuration did cost 14 times more, as each
of its iterations required to evaluate all the 14 functions — but has to be done
only once.

Compared to that, the cost of finding the best empirical configuration using
an EPM is the cost of the features: 500 or 2000 in the case of ψ•

500 and ψ•
2000

features, or around 2.104 × d for the full set of features ψ∗.

6 Results

The series of experiments described above are presented in this section from two
points of view: first, the different EPM are analyzed and compared to the ground
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truth — and the Empirical Optimal Configuration is compared to the true opti-
mal configuration in parameter space. Then, the actual results of DE optimiza-
tion using the Empirical Optimal Configuration are compared to those of the
different baselines, keeping in mind the actual costs of the different approaches
(see last paragraph above).

6.1 EPM Analyses

Due to space constraints, only few typical figures are displayed8 (Fig. 1) and
will be discussed here. There are indeed some strong similarities between top
and bottom colormaps for Figs. 1a, c, and d, even though they correspond to
different functions, dimensions, feature sets, and dimension handling modes. On
the other hand, the two plots for F4 (Fig. 1b) are very different, and here the
EPM fails to capture even an approximate shape of the true ERT landscape.

But beyond such comparisons, the optimal configurations of both plots are
shown (on both plots too, to ease the comparison), displaying very different
situations: in Fig. 1a and c, both optima are rather close (1c), or at least are
both in the same color area of the true ERT; on the opposite, in Fig. 1b and d,
both optima are far from one another, and the Empirical Optimal Configuration

(a) g = F1, d = 5 (b) g = F4, d = 5 (c) g = F11, d = 10 (d) g = F5, d = 10

Fig. 1. Examples of comparisons between the true ERT (top) and the EPM (bottom)
for 4 different functions and dimensions. Both EPMs of F1 (a) and F4 (b) have been
learned only on samples from dimension 5, with features ψ•

k=2000 while those of F11 (c)
and F5 (d) have been learned on samples of all dimensions, and with ψ•

k=500. Each sub-
plot shows performances colormaps (without interpolation) of log10(ERT/d), for one
DE strategy, with the 2 other DE parameters F and CR on the axes. The true optimal
configurations are plotted as white stars and the Empirical Optimal Configurations
as white small circles ◦.

8 Additional plots are available at https://drive.google.com/open?id=0B9GuQcCjvwt
FdkotR1h1N3dlOG8.

https://drive.google.com/open?id=0B9GuQcCjvwtFdkotR1h1N3dlOG8
https://drive.google.com/open?id=0B9GuQcCjvwtFdkotR1h1N3dlOG8
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lies in a region of very poor true ERT: the performance of these configurations
used within DE for the corresponding function will be poor too (see forthcoming
Sect. 6.2).

6.2 Empirical Optimal Configurations at Work

For each computed EPM (described in Sect. 5), an Empirical Optimal Config-
uration is obtained by optimization on the parameter space, and the ERT of
this configuration is obtained by running DE on each of the 15 variants of the
target function. Table 1 shows, for each function, the ratios of the ERTs of these
different configurations against the robust configuration defined in Sect. 5 (the
smaller the better). The first two columns are the other baselines, θd are the
parameters values recommended by DE authors, and θL the adhoc configura-
tion with best results (see Sect. 5). The two series of 3 columns correspond to
the 3 different feature sets ψ•

500, ψ•
2000, and ψ� (as defined in Sect. 4) and the two

types of dimension handling (learning performed only on the same dimension as
testing, or on all dimensions at once — see Sect. 5).

As it could be expected, the adhoc configuration is a clear winner, and the
default values recommended by DE authors a clear loser. The results of dimen-
sion 5 (as well as those in dimensions 2 and 3, not shown due to space constraints)

Table 1. Percentages of the ERTs of different Empirical Optimal Configurations w.r.t.
that of the robust configuration defined in Sect. 5, for dimensions 5 and 10. See text
for details. Best results are printed in blue bold face when smaller than 100, in red
italic when larger than 100; Worst results are printed in light gray; the � symbol
indicates that the robust configuration never reached the target, and was artificially
attributed an ERT of 15 times the maximum budget of one run, and ∞ indicates that
the corresponding Empirical Optimal Configuration never reached the target.
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bring several good news: most proposed approaches perform better than the robust
configuration, and at least one does, for all functions but F3. For some functions
(F11, and also F8 and F10), some feature-based approaches even get close to the
best adhoc configurations, never being worse than twice that best performance,
except for F4 — as could be foreseen on Fig. 1b. When it comes to compare the
different EPM settings, learning only from the single target dimension gives bet-
ter results than learning for all dimensions together — and in the former case, using
all available features does improve over only using the cheap features.

The situation is not so clear in dimension 10: in several cases, the Empirical
Optimal Configuration cannot even reach the target in the allocated budget — a
situation for which an example was given in Fig. 1d. However, when an optimum
can be found, similar conclusions to the dimension 5 case can be drawn, though
not as contrasted.

6.3 Discussion

Our results suggest that the learned EPM can be similar to the actual perfor-
mance map, at least in a large part of the parameter space. Nonetheless, when a
particular feature is not included in the learning set, it can be very hard for the
EPM to achieve good accuracy and performance prediction, as witnessed with
function F4 (Fig. 1b): only F3 and F4 are multi-modal functions, and they have
very different structures (apart from being separable, and hence belong to the
first BBOB class).

This was clear, too, with the F5 function (Fig. 1d): F5 is the only linear func-
tion of the test bench, hence the EPM was learned without any linear function
in the training set. However, the global accuracy of the EPM for F5 is rather
good — not worse than F1 for instance (Fig. 1a). But unfortunately, the small
region of the parameter space where the EPM differs from the true ERT is the
region that contains the optimal configuration.

This clearly demonstrates that a good accuracy over the parameter space of
the EPM w.r.t. the true performances, such as the one being optimized by the
learning algorithm (Random Forests here), is not required to reach the ultimate
goal of the Algorithm Configuration process — find a quasi-optimal configuration
for unknown instances. The only important property of the EPM is to be able
to robustly identify good-performing regions of the parameter space. This opens
several new possible research paths. At the level of the learning algorithm, the
best regions of the parameter space could be weighted more than other parts
of the space; at the extreme, rank-based learning could be used rather than
regression of ERT values. At the level of the sampling, only good configurations
could be used — e.g., the configurations encountered while running SMAC to
find the true optimal configuration.

No clear differences can be seen between EPM learned using ψ•
500 or ψ•

2000,
except for some functions, in dimension 10, where EPMs learned with ψ•

2000

solve the function while those learned from ψ•
500 don’t. On the other hand, using
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the full set of features ψ∗ does help, both in dimension 5 for the dimension-
specific models, and in dimension 10 where it succeeds in reaching the target
precision where the other models fail (e.g., F3 and F4, the only multi-modal
functions of the test bench). While not surprising, this demonstrates that both
the training set and the set of features should cover all the foreseeable difficulties
of the unknown forthcoming instances. Any limited test bench (including BBOB)
might hence be insufficient to learn a general-purpose configurator.

Finally, the fact that learning the EPM for a specific dimension leads to better
results was to be expected. While this makes difficult to build an universal EPM,
it does not prevent from any practical use of this approach, as the dimension is
usually known (and constant) in most real world applications.

7 Conclusion

This paper has investigated the computation and use of an Empirical Perfor-
mance Model (EPM) in the context of continuous black box optimization and
has demonstrated that it is possible to learn a reasonable approximation of the
real performance. More importantly, it was demonstrated that an efficient para-
meter configuration can be extracted from the learned EPM by optimizing the
predicted performance, given a set of features on a new unknown function. In
particular, it was possible to obtain empirical configurations that outperform a
static parameter setting optimized for an average performance, over the whole
test bench at the same overall cost. However, some open issues remain related
to the robustness of the results, and deeper analyses are necessary to better
understand (and avoid) some rare cases where the approach fails.

Several paths for further research are suggested by this work, both at the
level of the learning algorithm and of the sampling of the parameter search
space, as discussed in Sect. 6.3. A promising direction is to embed the EPM as
a parameter control mechanism within the optimization process itself, assuming
that the features can be efficiently approximated using a rather small number of
samples, (e.g., w.r.t. an approximation of the objective function, as proposed in
[2]). This would open a new perspective on the on-line parameter tuning grail.
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Abstract. This paper proposes an asynchronous and steady state update
strategy for the Particle Swarm Optimization (PSO) inspired by the
Bak-Sneppen model of co-evolution. The model consists of a set of fitness
values (representing species) arranged in a network. By replacing iteratively the
least fit species and its neighbors with random values (simulating extinction), the
average fitness of the population tends to grow while the system is driven to a
critical state. Based on these rules, we implement a PSO in which only the worst
particle and its neighbors are updated and evaluated in each time-step. The other
particles remain steady during one or more iterations, until they eventually meet
the update criterion. The steady state PSO (SS-PSO) was tested on a set of
benchmark functions, with three different population structures: lbest ring and
lattice with von Neumann and Moore neighborhood. The experiments demon-
strate that the strategy significantly improves the quality of results and con-
vergence speed with Moore neighborhood. Further tests show that the major
factor of enhancement is the selective pressure on the worst, since replacing the
best or a random particle (and neighbors) yields inferior results.

1 Introduction

The Particle Swarm Optimization (PSO) is a population-based metaheuristics inspired
by the social behavior of bird flocks and fish schools [8]. The search is carried out by a
swarm of candidate solutions (called particles) that move around the fitness landscape
of the target-problem, guided by mathematical rules that define their velocity at each
time step. The most common configurations of PSO are synchronous: the fitness values
of all particles are first computed and only then the particles update their velocity.
Carlisle and Dozier [5] proposed a variant in which the velocity vector is updated
immediately after computing the fitness of the corresponding particle. In this case, each
particle is updated knowing the current best position found by half of its neighbors and
the previous best found by the other half: the population of the asynchronous PSO
(A-PSO) interacts with imperfect information about the global search. Asynchronous
PSOs have been compared to the synchronous configuration (S-PSO) with contradic-
tory results. While Carlisle and Dozier [5] suggested that A-PSO yields better results
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than S-PSO, Rada-Vilela et al. [13] reported that S-PSO is better than A-PSO in terms
of the quality of the solutions and convergence speed.

One of the main motivations for investigating asynchronous update strategies for
PSO is the possibility of parallelization [14]. Standard PSOs are easily parallelized (by
assigning a particle or a set of particles to each processor, for instance) but due to load
imbalances, synchronous update does not make an efficient use of the computational
resource. For parallel PSO, asynchronicity is the logical approach. In addition, asyn-
chronicity can also be useful in diversity maintenance and prevention of premature
convergence [1], or to speed up convergence by skipping function evaluations [13]. In
this paper, we follow an alternative approach. The goal is to design an asynchronous
PSO that, unlike the standard A-PSO, significantly improves S-PSO in a wide range of
problems. With that objective in mind, we propose a steady state PSO (SS-PSO).
A system is said to be in steady state when some of its parts do not change for a period
of time. In the SS-PSO, only a fraction of the population is updated and evaluated in
each iteration.

The strategy is inspired by the Bak-Sneppen model of co-evolution between
interacting species [3]. In order to investigate the dynamics of species extinction and
coupled selection, Bak and Sneppen arrange a set of random fitness values (repre-
senting species) in a ring structure. Then, they replace the worst species and its
neighbors by random values (extinction event), repeating the procedure during several
iterations. After a long run, the system is driven to a critical state where most species
have reached a fitness above a certain threshold and avalanches of extinction events
produce non-equilibrium fluctuations in the configuration of the fitness values.

SS-PSO uses a similar scheme. However, here the worst particle and its neighbors
are updated, instead of being replaced by random solutions. Like in the Bak-Sneppen
model, the other particles remain steady until an update event hits them. For a proof of
concept, the algorithm was tested on ten benchmark functions and compared to S-
PSOs. The results show that SS-PSO significantly improves the performance of the
S-PSO structured in a 2-dimensional square lattice with Moore neighborhood.

The remaining of the paper is structured as follows. Section 2 gives a background
review on synchronous and asynchronous update strategies for the PSO. Section 3
describes the Bak-Sneppen model of co-evolution and introduces the proposed update
strategy. Section 4 describes the experiments and discusses the results. Finally, Sect. 5
concludes the paper and outlines futures lines of research.

2 Synchronous and Asynchronous Particle Swarms

PSO is a population-based algorithm in which a group of solutions travels through a
fitness landscape according to a set of rules that drives it towards optimal regions of the
space. The algorithm is described by a simple set of equations that define the velocity
and position of each particle. The position vector of the i-th particle is given by
~Xi ¼ ðxi;1; xi;2; . . .x1;D), where D is the dimension of the search space. Velocity is given
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by ~Vi ¼ ðvi;1; vi;2; . . .v1;D). The particles are evaluated with a fitness function f ð~XiÞ in
each time step and then their positions and velocities are updated by:

vi;d tð Þ ¼ xvi;d t � 1ð Þþ c1r1 pi;d � xi;dðt � 1Þ� �þ c2r2 pg;d � xi;dðt � 1Þ� � ð1Þ

xi;d tð Þ ¼ xi;d t � 1ð Þþ vi;d tð Þ ð2Þ

where pi is the best solution found so far by particle i and pg is the best solution found
so far by the neighborhood. Parameters r1 and r2 are vectors of random numbers
uniformly distributed in the range ½0; 1� and c1 and c2 are acceleration coefficients that
tune the relative influence of each term of the formula. In order to prevent particles
from stepping out of the limits of the search space, positions xi;d tð Þ of the particles are
limited by constants that in general correspond to the domain of the problem: xi;d tð Þ 2
�Xmax;Xmax½ �: Velocity may also be limited within a range in order to prevent the
explosion of the velocity vector: vi;d tð Þ 2 �Vmax;Vmax½ �. Usually, Xmax ¼ Vmax.
Parameter x is the inertia weight, proposed by Shi and Eberhart [17] to help fine-tuning
the balance between local and global search, and it is widely used in PSO
implementations.

The neighborhood of the particle defines the value of pg and is a key factor in the
performance of PSO. Most of the PSOs use one of two simple sociometric principles
for defining the neighborhood network. One connects all the members of the swarm to
one another, and it is called gbest (or star), where g stands for global. The degree of
connectivity of gbest is k ¼ n, where n is the number of particles. The other typical
configuration, called lbest (where l stands for local), creates a neighborhood that
comprises the particle itself and its k nearest neighbors. The most common lbest
topology is the ring structure, in which the particles are arranged in a ring (resulting in
a degree of connectivity k ¼ 3, including the particle).

Between the k ¼ 3 connectivity of lbest ring and k ¼ n of gbest, there are several
possibilities. Two of the most used are the 2-dimensional square lattices with von
Neumann and Moore neighborhood. In [9], Kennedy and Mendes tested several social
structures and concluded that when they are ranked by the quality of solutions the
structures with k ¼ 5 (like the von Neumann lattice) perform better, but when ranked
according to the number of iterations needed to meet the criteria, configurations with
higher degree of connectivity (like Moore neighborhood, with k ¼ 9) perform better.
These results are consistent with the premise that low connectivity favors robustness,
while higher connectivity favors convergence speed (at the expense of reliability).

In the standard PSO, all particles are evaluated before updating their velocity.
Therefore, they move with complete information about the state of the search. In the
asynchronous variant, each particle is evaluated immediately after being updated.
Independently of the social structure (assuming it is regular), A-PSO particles use the
current best position found by half of its neighbors and the previous best found by the
other half: the particles are guided by partial or imperfect information.

A-PSO was first discussed by Carlisle and Dozier [5]. Several reports claim that
A-PSO outperforms S-PSO. Luo and Zhang [12], for instance, compared the algo-
rithms and concluded that A-PSO is more accurate and faster. However, they tested the
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algorithms in only two functions and no statistical test is given. Perez and Basterrechea
[15] tested the algorithm on six problems and concluded that A-PSO is faster and as
accurate as S-PSO. Rada-Vilela et al. [16] compared S-PSO and A-PSO with ten
functions, using a ring structure with number of neighbors k ranging from 2 to 30 and a
population of 30 particles. They measured the quality of the solutions and speed of
convergence and performed statistical tests on the results, concluding that S-PSO yields
better results than A-PSO in unimodal functions. As for the multimodal, S-PSO yields
similar or better results. These findings contradict the results of Carlisle and Dozier [5],
Luo and Zhang [12] and Perez and Basterrechea [15].

As stated above, parallelization is one of the main motivations for investigating
asynchronous PSOs, mainly because synchronous parallel implementations do not
make an efficient use of computational resources when load imbalance exists. In this
line of work, Koh et al. [10] compared parallel asynchronous and synchronous PSOs in
homogeneous and heterogeneous environments. They concluded that the parallel
performance of the asynchronous version is significantly better than that of asyn-
chronous PSO for heterogeneous environments or heterogeneous computational tasks.
Venter and Sobieszczanski-Sobieski [18] also studied and compared parallel syn-
chronous and asynchronous PSOs. Their results indicate that the asynchronous PSO
significantly outperforms the synchronous in terms of parallel efficiency.

In this paper, we are not yet concerned with parallelization. We follow a different
approach from the works based on Carlisle and Dozier’s seminal proposal. Our main
objective is to evaluate the numerical results of the algorithm and validate it as an
alternative to the standard synchronous approach. The strategy is based on a model of
co-evolution that is described in the next section.

3 From a Model of Co-evolution to the Steady State PSO

Natural species in the same eco-system are related through several features (like food
chains or symbiosis, for instance) and the extinction of one species affects the species
that are related to them, in a chain reaction that can reach large proportions. Fossil
records suggest that the size of extinctions events is in power-law proportion to its
frequency. It is also known that the biological history of life on Earth is punctuated by
catastrophic extinction events. The Bak-Sneppen model [3] was conceived with the
objective of understanding the mechanisms underlying these mass extinctions. It
consists of a number of species, each one with a fitness value assigned and connected to
other species (neighbors). Every time step, the least fit species and its neighbors are
eliminated from the system and replaced by individuals with random fitness.

This description may be translated to a mathematical model. The system is defined
by nd fitness numbers fi arranged on a d-dimensional lattice (ecosystem) with n cells.
At each time step, the smallest f value and its 2� d neighbours are replaced by
uncorrelated random values drawn from a uniform distribution. With this simple rule
applied iteratively, the system is driven to a critical state where most species have a
fitness above a certain threshold. Complex behavior is observed even in the
1-dimensional case, where species are arranged in a ring and each one has two
neighbors.
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The Bak-Sneppen model is an example of a system with self-organized criticality
(SOC) [2], a critical state formed by self-organization in a long transient period at the
border of order and chaos. While order means that the system is working in a pre-
dictable regime where small disturbances have only local impact, chaos is an unpre-
dictable state very sensitive to initial conditions or small disturbances. In complex
adaptive systems, complexity and self-organization usually arise at that transition
region between order and chaos, or edge of chaos, as it is sometimes stated. SOC
systems are dynamical with a critical point at the region between order and chaos as an
attractor. However, and unlike many physical systems, which have a parameter that
needs to be tuned in order to obtain the critical state, SOC systems are able to self-tune
to the critical point.

SOC and the Bak-Sneppen model inspired, for instance, a metaheuristic called
extremal optimization (EO) [4]. In EO, a single solution to a problem is modified by
local search. The algorithm removes the worst components of the solution and replaces
them with randomly generated material. By plotting the fitness of the solution, distinct
stages of evolution are observed, where improvement is disturbed by brief periods of
dramatic decrease in the quality of the solution. Chen et al. [6] used EO to enhance the
search abilities of PSO and prevent premature convergence to local optima. They tested
the hybrid algorithm on a set of benchmark functions and compared it favorably with
other metaheuristics.

Løvbjerg and Krink [11] applied SOC to PSO in order to control the convergence
of the algorithm and maintain diversity. The authors introduce a critical value asso-
ciated with each particle and define a rule that increments it when two particles are
closer than a threshold distance. When the critical value of a particle exceeds a globally
set criticality limit, the algorithm responds by dispersing the criticality of the particle
within a certain surrounding neighborhood. In addition, the algorithm uses the critical
value to control the inertia weight. The authors claim that their method is faster and
attains better solutions than the standard PSO. However, the algorithm introduces five
parameters that must be tuned or set to constant ad hoc values.

More recently, Fernandes et al. [7] used the Bak-Sneppen model to control the
inertia weight and acceleration coefficients of each particle. An experimental setup
demonstrates the validity of the algorithm and shows that the incorporation of each
control mechanism improves its performance or at least reduces the tuning effort.

Like the Bak-Sneppen model, the population of PSO is structured by a network.
With this likeness in mind, we devised an asynchronous and steady state update
strategy for PSO in which only the least fit particle and its neighbors are updated and
evaluated in each time step. The neighborhood is defined by the network: if the par-
ticles are connected by lbest with k ¼ 3, only the worst particle and its two nearest
neighbors are updated and evaluated; if a lattice with Moore neighborhood is used
(k ¼ 9), the least fit and its eight nearest neighbors are updated. Please note that local
synchronicity is used here: the fitness values of the worst and its neighbors are first
computed and only then their velocity is updated. For the remaining working mech-
anisms and parameters, the algorithm is exactly as standard PSO. Since part of the
population remains steady in each time step, we named the algorithm steady state PSO
(SS-PSO). SS-PSO is summarized in Algorithm 1.
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1.Initialize velocity and position of each particle.
2.For (each particle j):Compute fitness.
3. For (each particle j):Compute piand pg.
4. For (each particle j):if jis the least fit particle, update velocity and position of jand neighbors
5. Compute fitness of particles jand neighbors.
6. If (stop criteria not met) return to 3; else, end.

Algorithm 1: SS-PSO 

4 Experiments and Results

The experimental setup was constructed with ten benchmark problems (Table 1).
Functions f1, -f3 are unimodal; f4, -f8 are multimodal; f9 is the shifted f2 with noise and
f10 is the rotated f5 (f9 global optimum and f10 matrix were taken from the CEC2005
benchmark). The dimension of the search space is D ¼ 30 (except f6, with D ¼ 2). In
order to construct square lattices with von Neumann and Moore neighborhood, pop-
ulation size l is set to 49, a value that lies within the typical range [8]. Following [16],
c1 and c2 were set to 1.4962 and x to 0.7298. Xmax is defined as usual by the domain’s
upper limit and Vmax ¼ Xmax. A total of 50 runs for each test were performed.
Asymmetrical initialization is used (initialization ranges are in Table 1).

In order to assess the quality of solutions and convergence speed of the algorithms,
two sets of experiments were conducted. First, the algorithms were run for a limited
amount of iterations (3000 for f1, f3 and f6, 20000 for the remaining) and the fitness of
the best solutions found were recorded over the 50 runs. In the second set of experi-
ments the algorithms were all run for 20000 iterations or until reaching a
function-specific stop criterion (given in Table 1). The number of iterations required to
meet the criterion was recorded and statistical measures were taken over the 50 runs.
A success measure was defined as the number of runs in which an algorithm attains the
stop criterion. The experimental setup is similar to those in [9, 16].

SS-PSO and S-PSO were implemented with three topologies: lbest with k ¼ 3 and
2-dimensional square lattices with von Neumann (k ¼ 5) and Moore neighborhood
(k ¼ 9). Gbest was not tested for two reasons. Firstly, it is fast but converges often to
local optima. We have performed some tests with gbest and the success rates were very
poor. Furthermore, SS-PSO uses the neighborhood structure to decide which particles
to update, i.e., in the von Neumann (k ¼ 5), five particles are updated. Since gbest has
k ¼ n, the proposed strategy would update the entire population and be equivalent to
the S-PSO. Hence, we have restricted the tests to lbest, von Neumann and Moore.
Please note that at this point of the research we are not primarily concerned in com-
paring the update strategy with state of the art PSOs. First, it is necessary to investigate
in which situations the proposed algorithm is able to improve the convergence speed
and accuracy of standard PSO and understand its underlying mechanisms. Only after
the proof of concept we can compare it against other PSOs.

With lbest, the steady state strategy could not improve the standard synchronous
update: SS-PSOlbest yields worse results than S-PSOlbest in most of the functions. As for
the von Neumann neighborhood, the results are dual: SS-PSOVN yields better results in
multimodal functions but it is outperformed in the unimodal by the S-PSOVN.
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Due to space restrictions, we omit the numerical results of the PSOs with lbest and von
Neumann network and proceed to the PSOs with Moore neighborhood.

S-PSOMoore attained the best results in most of the functions when compared to
lbest and it is faster (considering both mean and median values of the evaluations
required to meet the criteria) in every function. When compared to S-PSOVN,
S-PSOMoore is also faster in every function and attains better mean and median fitness
values in unimodal functions. These results are consistent with the ones in Kennedy
and Mendes [9]. Therefore, we believe that the Moore neighborhood structure is well
suited for assessing the validity and relevance of our proposal.

Table 2 shows mean, standard deviation and statistical measures of the empirical
distributions of best fitness values attained by S-PSOMoore and SS-PSOMoore. The later
yields better results in most of the functions: it attains lower mean and median fitness
values in every unimodal function and in the multimodal f4, f6 and f7. Mann-Whitney U
tests were performed to compare the distribution of fitness values of each algorithm in
each function. Results of the tests are significant at p� 0:05 for f1, f2, f3, f4, f6, f7, f9,
i.e., the null hypothesis that the two samples come from the same population is
rejected. For the remaining functions (f5, f8, f10), the null hypothesis is not rejected.

In terms of function evaluations (Table 3), SS-PSOMoore is faster in the entire set of
unimodal problems. In the multimodal problems, SS-PSOMoore needs less evaluations
in f5, f6, f6 and f8. Results of Mann-Whitney U tests are significant at p� 0:05 for
functions f1, f2, f3, f5, f7, f8, f10. Although S-PSOMoore requires less evaluations in f4, the
result of the statistical test is not significant. Finally, the success rates (Table 3) are
similar, except for f7, in which SS-PSO clearly outperforms the synchronous version,
and f9. In conclusion: the empirical results, together with the statistical tests, show that
SS-PSOMoore outperforms S-PSOMoore in most of the functions according to accuracy,
speed and reliability, while not being outperformed in any case.

The previous tests demonstrate that the steady state update strategy in a PSO
structured with Moore neighborhood significantly improves its performance. However,
at this point, a question arises: what is the major factor for the performance
enhancement, the steady state approach, or the set of particles that are updated? In order
to shed light on this issue, a final test was conducted. Two variants of SS-PSO were
implemented: one updates the best particle and its neighbors (replace-best); the second
updates a randomly selected particle and its neighbors (replace-random). The algo-
rithms were tested on the set of benchmark functions (see Table 4) and compared to
results of the proposed SS-PSOMoore (or replace-worst) given in Tables 2 and 3.

Replace-best update strategy is clearly inferior to replace-worst. With the exception
of f1 and f3, the quality of solutions is degraded when compared to the proposed
SS-PSO and even to S-PSO. Success rates are considerably lower in most functions.
As for replace-random, it improves S-PSO in some functions, but in general it is not
better than replace-worst: replace-random strategy is less accurate and slower in most
of the functions. The test shows that selective pressure on the least fit individuals is a
major factor in the performance SS-PSO.
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Table 1. Benchmark functions.

Mathematical representation Range of
search/initialization

Stop
criterion

Sphere f1
f1 ~xð Þ ¼PD

i¼1
x2i

ð�100; 100ÞD
ð50; 100ÞD

0.01

Quadric f2
f2 ~xð Þ ¼PD

i¼1

Pi
j¼1

xj

 !2 ð�100; 100ÞD
ð50; 100ÞD

0.01

Hyper
Ellipsoid

f3

f1 ~xð Þ ¼PD
i¼1

ix2i
ð�100; 100ÞD
ð50; 100ÞD

0.01

Rastrigin f4
f4 ~xð Þ ¼PD

i¼1
x2i � 10 cos 2pxið Þþ 10
� � ð�10; 10ÞD

ð2:56; 5:12ÞD
100

Griewank f5
f5 ~xð Þ ¼ 1þ 1

4000

PD
i¼1

x2i �
QD
i¼1

cos xiffi
i

p
� � ð�600; 600ÞD

ð300; 600ÞD
0.05

Schaffer f6
f6 ~xð Þ ¼ 0:5þ sin

ffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �2
�0:5

1:0þ 0:001 x2 þ y2ð Þð Þ2
ð�100; 100Þ2
ð15; 30Þ2

0.00001

Weierstrass
f7 f7 ~xð Þ ¼PD

i¼1

Pkmax
k¼0

akcos 2pbk xi þ 0:5ð Þ� �� �	 


�D
Xkmax
k¼0

akcos 2pbk � 0:5� �� �
;

a ¼ 0:5; b ¼ 3; kmax ¼ 20

ð�0:5; 0:5ÞD
ð�0:5; 0:2ÞD

0.01

Ackley f8
f8 ~xð Þ ¼ �20exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

PD
i¼1

x2i

s !

�exp
1
D

XD
i¼1

cos 2pxið Þ
 !

þ 20þ e

ð�32:768; 32:768ÞD
ð2:56; 5:12ÞD

0.01

Shifted
Quadric
with noise
f9

f9 ~zð Þ ¼PD
i¼1

Pi
j¼1

xj

 !2

� 1þ 0:4 N 0:1ð Þj jð Þ;

~z ¼~x�~o,
~o ¼ o1; ::oD½ � : shifted global optimum

ð�100; 100ÞD
ð50; 100ÞD

0.01

Rotated
Griewank
f10

f10 ~zð Þ ¼ 1þ 1
4000

PD
i¼1 z

2
i �

QD
i¼1 cos

ziffi
i

p
� �

,

~z ¼ M~x, M:ortoghonal matrix

ð�600; 600ÞD
ð300; 600ÞD

0.05
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Table 2. Best fitness: mean, standard deviation, median, minimum and maximum.

S-PSOMoore SS-PSOMoore

Mean St.dev Median Min Max Mean St.dev. Median Min Max

f1 1.31e−11 1.12e−11 1.04e−11 1.39e−12 4.93e−11 1.14e−14 1.16e−14 7.83e−15 2.06e−16 6.33e−14

f2 1.38e−29 6.36e−29 5.88e−31 4.71e−34 4.42e−28 1.40e−46 9.90e−46 0.00e00 0.00e00 7.00e−45

f3 3.61e−11 3.50e−11 2.76e−11 2.64e−12 1.65e−10 3.57e−14 5.32e−14 1.58e−14 9.43e−16 2.56e−13

f4 6.36e+01 1.73e+01 6.17e+01 3.78e+01 1.13e+02 5.25e+01 1.45e+01 5.12e+01 2.19e+01 1.04e+02

f5 5.86e−03 7.22e−03 1.08e−19 0.00e00 2.95e−02 1.28e−02 2.06e−02 9.86e−03 0.00e00 1.20e−01

f6 1.94e−04 1.37e−03 0.00e00 0.00e00 9.72e−03 0.00e00 0.00e00 0.00e00 0.00e00 0.00e00

f7 1.94e−01 5.27e−01 2.27e−02 2.86e−05 3.16e00 1.73e−02 8.17e−02 2.86e−05 2.86e−05 5.19e−01

f8 1.01e−15 2.01e−16 8.88e−16 8.88e−16 1.33e−15 1.07e−15 2.20e−16 8.88e−16 8.88e−16 1.33e−15

f9 3.60e+01 2.32e+02 9.8e−05 6.44e−07 1.64e+03 7.20e−05 1.54e−04 1.01e−05 1.73e−08 7.11e−04

f10 6.70e−03 9.20e−03 1.08e−19 0.00e00 3.68e−02 8.37e−03 1.01e−02 1.08e−19 0.00e00 3.70e−02

Table 3. Evaluations: mean, standard deviation, median, minimum and maximum.

S-PSOMoore SS-PSOMoore

Mean St.dev. Median Min Max SR Mean St.dev. Median Min Max SR

f1 20434.0 840.8 20433. 0 18326 22099 50 17241.3 716.2 17320.5 14526 18594 50

f2 168599.0 12721.1 168119.0 140630 193501 50 133140.6 16854.2 135828.0 105399 171702 50

f3 22987.9 1075.4 22956.5 20972 26019 50 19519.6 788.0 19561.5 18045 21600 50

f4 15635.0 7771.5 13524.0 7448 49392 49 15902.8 8047.7 14256.0 7659 58248 49

f5 18671.0 986.8 18595.5 16366 21952 50 16419.2 1300.7 16060.5 14607 19683 50

f6 11443.0 9439.1 7105.0 3822 39788 49 8049.0 4852.6 6381.0 2727 21744 50

f7 37272.7 1590.1 36970.5 34790 41846 24 33192.0 1184.8 33340.5 30645 35685 46

f8 21029.8 1164.7 20923.0 19012 24794 50 17723.6 957.0 17752.5 15750 19809 50

f9 704144.6 96262.6 706972 453201 922327 47 653808.8 95860.3 671175 425655 852786 50

f10 18876.8 901.7 18963 16954 20727 50 16140.8 1122.9 15975 13995 18612 50

Table 4. Results of SS-PSO variants: median, min, max and success rates (SR)

SS-PSOMoore (replace-best) SS-PSOMoore (replace-random)

Fitness Evaluations Fitness Evaluations

Median Min Max Median Min Max SR Median Min Max Median Min Max SR

f1 4.09e−29 2.50e−33 2.00e
+04

9468 6714 24669 45 6.04e−14 7.86e−14 6.59e−12 18972 16425 20781 50

f2 1.50e+04 0.00e00 4.50e

+04

66717 65844 79443 3 8.33e−32 4.59e−34 5.00e+03 170091 136062 195498 47

f3 3.01e−27 9.54e−34 1.00e

+05

11718 8208 36000 35 1.66e−12 1.30e−13 2.25e−11 21118 19548 23283 50

f4 1.30e+02 7.46e+01 2.00e

+02

15192 8964 108495 9 5.62e+01 2.39e+01 8.76e+01 11052 5679 23571 50

f5 4.17e−02 1.08e−19 9.05e
+01

8014.5 6570 21186 28 7.40e−03 0.00e00 4.18e−02 17190 15570 19989 50

f6 3.59e−04 0.00e00 9.72e
−03

39811.5 1242 140247 38 0.00e00 0.00e00 9.72e−03 8460 3276 62091 50

f7 7.35e00 2.51e00 1.38e
+01

- - - 0 7.57e−04 2.86e−05 2.02e00 34168,5 31041 42507 32

f8 2.28e00 8.86e−16 3.84e00 20898 13158 28764 6 1.11e−15 8,86e−16 1.33e−15 19822.5 18252 25416 50

f9 1.06e−01 1.98e−03 1.53e
+04

902407 812736 949590 12 1.64e−04 1.44e−06 6.01e+01 736713 546858 891432 49

f10 4.17e−02 1.08e−19 9.05e

+01

8014.5 6570 21186 27 7.40e−03 0.00e00 4.18e−02 17190

(50)

15570 19989 50
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5 Conclusions and Future Work

This paper proposes an asynchronous and steady state update strategy for the PSO
based on a model of co-evolution. Instead of the whole population, like in standard
particle swarms (either synchronous or asynchronous), only the worst solution and its
neighbors are updated and evaluated in each time step. The remaining particles are kept
in a steady state. Accordingly, we have named it steady state PSO (SS-PSO).

The strategy was implemented with three social network structures (lbest and
square lattices with von Neumann and Moore neighborhood) and tested on a set of ten
unimodal, multimodal, shifted, noisy and rotated benchmark problems. Quality of
solutions, convergence speed and success rates were compared. SS-PSO significantly
improved the performance of S-PSO on a lattice with Moore neighborhood in every
function. Since S-PSOMoore has been found to be the more accurate and faster POS in
the set of benchmark functions, we believe that these results validate the proposal.

The strategy was tested with standard PSOs. In the future, and in order to assess the
contribution of our proposal to the state of the art, we intend to test it with (efficient
variants of the standard PSO and even compare it to other metaheuristics. Scalability of
the steady state PSO regarding population size and problem dimension will also be
studied. Finally, the emergent patterns of the algorithm (extension of events, stasis,
critical values) will be compared to those of the Bak-Sneppen model.
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Abstract. We consider the problem of minimizing a function f subject
to a single inequality constraint g(x) ≤ 0, in a black-box scenario. We
present a covariance matrix adaptation evolution strategy using an adap-
tive augmented Lagrangian method to handle the constraint. We show
that our algorithm is an instance of a general framework that allows to
build an adaptive constraint handling algorithm from a general random-
ized adaptive algorithm for unconstrained optimization. We assess the
performance of our algorithm on a set of linearly constrained functions,
including convex quadratic and ill-conditioned functions, and observe
linear convergence to the optimum.

1 Introduction

Evolution strategies (ESs) are derivative-free continuous optimization algorithms
that are now well-established to solve unconstrained optimization problems of
the form minx f(x), f : Rn → R, where n is the dimension of the search space.
The state-of-the-art ES, the covariance matrix adaptation evolution strategy
(CMA-ES) [7], is especially powerful at solving a wide range of problems and
particularly ill-conditioned problems [5,8]. It typically exhibits linear conver-
gence. The default CMA-ES algorithm implements comma selection where the
best solution is not preserved from one iteration to the next one (contrary to
plus selection). Comma selection is an important feature of CMA-ES that entails
robustness of the algorithm to various types of ruggedness including noise.

Linear convergence being a central aspect of an ES in the unconstrained case,
a (1 + 1)-ES using an adaptive augmented Lagrangian constraint handing—to
deal with a single inequality constraint—has been introduced in [3] with the
motivation to obtain a linearly converging algorithm. Empirical results show the
linear convergence of the algorithm on the sphere and moderately ill-conditioned
ellipsoid functions, subject to one linear constraint. In [4], the authors present a
variant of the previous (1 + 1)-ES with augmented Lagrangian constraint han-
dling and study theoretically its linear convergence using a Markov chain app-
roach. In both mentioned works, the step-size is adapted using the 1/5th success
rule [10] while the covariance matrix is fixed to the identity. On ill-conditioned
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 181–191, 2016.
DOI: 10.1007/978-3-319-45823-6 17
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problems, however, adapting the covariance matrix is crucial. It is hence natural
to wonder whether it is possible to design a CMA-ES variant with augmented
Lagrangian constraint handling. The algorithms presented in [3,4], however, use
plus selection and can thus a priori not be used directly to design such a variant.

In this context, we consider the constrained problem of minimizing f : Rn →
R subject to a single inequality constraint g(x) ≤ 0, g : Rn → R. More formally,
we write

min
x

f(x) subject to g(x) ≤ 0. (1)

We bring to light that the algorithms previously presented in [3,4] derive from a
more general framework that seamlessly allows to build an adaptive constraint
handling algorithm from a general adaptive stochastic search method. We then
naturally apply this finding to build a (μ/μw, λ)-CMA-ES variant with adaptive
augmented Lagrangian constraint handling. We opted for using the median suc-
cess rule step-size adaptation (MSR) [2] because it is an extension of the 1/5th
success rule algorithm used in [3,4]. We then test the resulting algorithm—the
(μ/μw, λ)-MSR-CMA-ES with augmented Lagrangian constraint handling—on
a set of functions, including convex quadratic as well as ill-conditioned functions,
subject to one linear inequality constraint.

The rest of this paper is organized as follows: we introduce some basics about
augmented Lagrangian in Sect. 2. Then, we define the general framework and
apply it to the (μ/μw, λ)-MSR-CMA-ES in Sect. 3. We present our empirical
results in Sect. 4 and conclude with a discussion in Sect. 5.

Notations. We introduce here the notations that are not explicitly defined in
the rest of the paper. We denote R

+ the set of positive real numbers and R
+
> the

set of strictly positive real numbers. N> is the set of natural numbers without
0. x ∈ R

n is a column vector, xᵀ is its transpose, and 0 ∈ R
n is the zero vector.

‖x‖ denotes the Euclidean norm of x and ∼ equality in distribution. (μ/μw, λ)
denotes comma selection with weighted recombination and (1 + 1) denotes plus
selection with one parent and one offspring. In×n ∈ Rn×n is the identity matrix.
xi is the ith component of vector x. The derivative with respect to x is denoted
∇x. Finally, 1{A} returns 1 if A is true and 0 otherwise.

2 Augmented Lagrangian Methods

Augmented Lagrangian methods are constraint handling approaches that trans-
form the constrained optimization problem into an unconstrained one where an
augmented Lagrangian is optimized [9,12].

The augmented Lagrangian consists of a Lagrangian L and a penalty func-
tion, with L : Rn+1 → R defined as

L(x, γ) = f(x) + γg(x) (2)

for the objective function f subject to one constraint g(x) ≤ 0, where γ ∈ R is
the Lagrange factor. The Lagrangian encodes the KKT stationarity condition
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which states that, given some regularity conditions are satisfied (constraint qual-
ifications), if x∗ ∈ R

n is a local minimum of the constrained problem, then there
exists a constant γ∗ ∈ R

+, called the Lagrange multiplier, such that

∇xf(x∗) + γ∗∇xg(x∗)
︸ ︷︷ ︸

∇xL(x∗,γ∗)

= 0,

where we assume here that f and g are differentiable at x∗.
A penalty function is combined with the Lagrangian L to create the aug-

mented Lagrangian h. There exist different ways to construct the augmented
Lagrangian and we refer to [11] for a deeper discussion about this topic. In this
work, we use the following augmented Lagrangian

h(x, γ, ω) = f(x) +

{
γg(x) + ω

2 g2(x) if γ + ωg(x) ≥ 0
− γ2

2ω otherwise
, (3)

where ω > 0 is a penalty factor. The same augmented Lagrangian was used
for the first time within an ES in [3]. The function h is minimized successively
with respect to x, and γ and ω are updated so that γ approaches the Lagrange
multiplier γ∗ and ω favors feasible solutions. By adapting γ, the penalty factor
ω does not have to grow to infinity to achieve convergence, unlike with quadratic
penalty function methods [11].

Let xopt be the optimum of the constrained problem in (1) and let γopt be
the corresponding Lagrange multiplier. If f and g are differentiable at xopt, then
for all ω > 0,

∇xh(xopt, γopt, ω) = ∇xf(xopt) + max(0, γopt + ωg(xopt))∇xg(xopt) = 0.

3 A General Framework for Adaptive Augmented
Lagrangian Constraint Handling

In [3,4], the authors present two (1 + 1)-ESs with an augmented Lagrangian
constraint handling approach for the optimization problem in (1). The algo-
rithms derive from a general framework for building a constraint handling adap-
tive algorithm. This framework starts with a randomized adaptive algorithm for
minimizing an unconstrained function f : R

n → R: the randomized adaptive
algorithm can be identified by the sequence of its states st at iteration t that are
iteratively computed from an update function F such that

st+1 = Ff (st,Ut+1), (4)

where the superscript indicates the function being minimized and where
(Ut)t∈N>

is a sequence of independent identically distributed (i.i.d.) random
vectors. For instance, in the case of a (1 + 1)-ES in [3,4], the state is a vector of
the search space (current estimate of the optimum) and a step-size.
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We assume that the state st of the algorithm includes a vector Xt ∈ R
n which

typically encodes the current estimate of the optimum at iteration t. Note that
the transition function F above includes a step where candidate solutions are
sampled from the current state st and the random vector Ut+1, and evaluated
on the objective function f .

From the adaptive algorithm above, we construct an algorithm with adaptive
constraint handling to take into account a single constraint in the following way:
we add to the state of the algorithm two scalars γt and ωt that correspond
respectively to the Lagrange factor and the penalty factor of the augmented
Lagrangian h at iteration t. Therefore, the state at iteration t is st

′ = [st, γt, ωt].
The objective function used at each iteration to evaluate a candidate solution
Xi

t+1 is now
h(γt,ωt)(X

i
t+1) := h(Xi

t+1, γt, ωt), (5)

where h is the augmented Lagrangian defined in (3). Finally, the update of
the state st

′ of the adaptive algorithm with augmented Lagrangian constraint
handling takes place in two steps: first, st is updated via

st+1 = Fh(γt,ωt)(st,Ut+1), (6)

where candidate solutions are now evaluated on h(γt,ωt) instead of f . Then, the
parameters γt and ωt of h are updated. In [3], γt is updated according to

γt+1 = max(0, γt + ωtg(Xt+1)), (7)

while in [4], the authors use the following update

γt+1 = γt + ωtg(Xt+1). (8)

For ωt, the following update is used in both [3,4]

ωt+1 =

⎧
⎪⎨

⎪⎩

ωtχ
1/4 if ωtg

2(Xt+1) < k1
|h(Xt+1,γt,ωt)−h(Xt,γt,ωt)|

n

or k2|g(Xt+1) − g(Xt)| < |g(Xt)|
ωtχ

−1 otherwise
, (9)

for some constants χ > 1, k1, k2 ∈ R
+.

Based on these examples, we introduce some general update functions Gγ

and Gω for the updates of γt and ωt defined implicitly via

γt+1 = Gg
γ((γt, ωt),Xt+1) (10)

ωt+1 = G(f,g)
ω ((Xt, γt, ωt),Xt+1). (11)

The superscript in Gγ and Gω indicates that the function value is used in the
update.
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3.1 The (μ/μw, λ)-MSR-CMA-ES with Adaptive Augmented
Lagrangian

We now apply the general framework sketched above to the covariance matrix
adaptation evolution strategy (CMA-ES) with median success rule step-size
adaptation (MSR). We start by presenting the algorithm for the unconstrained
case then we give the updates of the augmented Lagrangian parameters γt

and ωt.

The (Unconstrained) CMA-ES with MSR. The original CMA-ES with MSR is
given in Algorithm 1, without the highlighted parts. The algorithm proceeds iter-
atively: at each iteration t, λ candidate solutions (offspring) Xi

t+1, i = 1, . . . , λ,
are sampled according to Line 5, where Xt ∈ R

n is the current estimate of the
optimum (mean vector), σt ∈ R

+ is the step-size, and Ui
t+1 ∈ R

n, i = 1, . . . , λ,
are i.i.d. random vectors sampled from the normal distribution N (0,Ct), with
mean 0 ∈ R

n and covariance matrix Ct ∈ R
n×n. The offspring are ordered

according to their fitness (f -value in the unconstrained case) in Line 6, where
i : λ is the index of the ith best offspring. The μ best offspring (parents) are
then recombined (Line 7) to create the new mean vector Xt+1, where the weights
wi > 0, i = 1, . . . , μ, satisfy w1 > . . . > wμ and

∑μ
i=1 wi = 1.

The step-sized σt is adapted in Lines 8 to 11 using the MSR step-size adapta-
tion [2]. MSR is a success-based step-size adaptation method which extends the
well-known 1/5th success rule step-size adaptation [10], used with plus selection,
to comma selection. The step-size is adapted depending on “success”, where the
success is defined as the median offspring Xm(λ)

t+1 (fitness-wise) of the current
population being better than the jth best offspring Xj:λ

t of the previous popu-
lation. In practice, we choose j to be the 30th percentile–the value for which the
median success probability is roughly 1/2 on the sphere function with optimal
step-size [2]. The number Ksucc of offspring better than Xj:λ

t is computed in
Line 8. Note that Ksucc ≥ λ/2 is equivalent to h(Xm(λ)

t+1 , γt, ωt) ≤ h(Xj:λ
t , γt, ωt).

Therefore, we define the success measure zt in Line 9 such that zt ≥ 0 if and
only if Xm(λ)

t+1 is successful. zt is cumulated in qt+1 (Line 10) and, finally, σt

is updated in Line 11: it increases in the presence of success (qt+1 > 0) and
decreases otherwise in order to increase the probability of success.

The covariance matrix Ct is adapted with CMA [7] in Lines 12 and 13. The
update is a combination of the so-called rank-one-update and rank-μ-update. A
detailed discussion on CMA can be found in [6].

Finally, the jth best offspring is updated in Line 17. Therefore, the state of
the algorithm in the unconstrained case is

st = (Xt, σt, qt, pt,Ct,X
j:λ
t ).

The constrained (μ/μw, λ)-MSR-CMA-ES with adaptive augmented Lagrangian.
As explained in the general framework, the fitness f is replaced with the aug-
mented Lagrangian h in the constrained case. The parameters γt and ωt are
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adapted in Lines 15 and 16 in Algorithm 1, where changes in comparison to the
unconstrained case are highlighted in gray.

The Lagrange factor γt is adapted in Line 15. It is increased when the new
solution Xt+1 is unfeasible and decreased otherwise, unless it is zero. The deriva-
tion of this update is discussed in details in [11].

For the penalty parameter ωt, we use the original update proposed in [3] for
the (1+1)-ES with augmented Lagrangian. The update rule is given in Line 16.
ωt is increased either when (i) the augmented Lagrangian h does not change
“enough” after γt and ωt are updated to avoid stagnation. This is translated by
the first inequality where

ωtg
2(Xt+1) ≈ |h(Xt+1, γt + Δγt, ωt + Δωt) − h(Xt+1, γt, ωt)|

is compared to the change in h due to the change in Xt, |h(Xt+1, γt, ωt) −
h(Xt, γt, ωt)|. ωt is also increased when (ii) the change in the value of the con-
straint function is not large enough (second inequality in Line 16). To prevent an
unnecessary ill-conditioning of the problem, ωt is decreased whenever conditions
(i) and (ii) are not satisfied.

4 Empirical Results

We evaluate Algorithm 1 on the sphere function (fsphere), two ellipsoid func-
tions (felli) with condition numbers α = 102, 106, f2

sphere, f0.5
sphere, the different

powers function (fdiff pow), and the Rosenbrock function (frosen), with one linear
inequality constraint. The functions are defined in Table 1. We consider the case
where the constraint is active at the optimum xopt, i.e. g(xopt) = 0. We choose
the optimum to be at xopt = (10, . . . , 10)ᵀ and construct the constraint function,
g(x) = bᵀx+ c, so that the KKT stationarity condition is satisfied at xopt with
γopt = 1. Therefore,

b = −∇xf·(xopt)ᵀ and c = ∇xf·(xopt)xopt,

for each function. Note that all considered functions are differentiable at xopt =
(10, . . . , 10)ᵀ.

For the step-size and the covariance matrix adaptation, we use the Python
implementation of CMA-ES whose source code can be found at [1], with the
default parameter setting detailed in [6]. We run the algorithm 11 times in
n = 10, with X0 sampled uniformly in [−5, 5]n, σ0 = 1, γ0 = 5, and ω0 = 1. The
results are presented for one run in Figs. 1 (fsphere, f2

sphere, and f0.5
sphere) and 2

(felli with α = 102, 106, fdiff pow, and frosen). On the left column of each figure
are graphs of the evolution of the distance to the optimum ‖Xt − xopt‖, the
step-size σt, the distance to the Lagrange multiplier ‖γt −γopt‖, and the penalty
factor ωt in log-scale. On the right column of the figures are graphs representing
the evolution of the coordinates of the mean vector Xt.

Graphs on the right column of Figs. 1 and 2 show the overall convergence of
the algorithm to xopt. We also observe linear convergence of Xt to xopt, as well
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Algorithm 1. (μ/μw, λ)-MSR-CMA-ES with Augmented Lagrangian Con-
straint Handling

0 given n ∈ N>, χ = 2
1/n

, k1 = 3, k2 = 5, μ, λ ∈ N>, j = 0.3λ, 0 ≤ wi < 1,

μ∑

i=1

wi = 1,

μeff = 1/

μ∑

i=1

w
2
i , cσ = 0.3, dσ = 2 − 2/n, cc =

4 + μeff/n

n + 4 + 2μeff/n

c1 =
2

(n + 1.3)2 + μeff
, cμ = min

(

1 − c1, 2
μeff − 2 + 1/μeff

(n + 2)2 + μeff

)

1 initialize X0 ∈ R
n

, σ0 ∈ R
+
>, C0 = In×n, t = 0, q0 = 0, p0 = 0,

constrained problem // true if the problem is constrained, false otherwise

2 if constrained problem

3 initialize γ0 ∈ R, ω0 ∈ R
+
>

4 while stopping criteria not met

5 X
i
t+1 = Xt + σtU

i
t+1, U

i
t+1 ∼ N (0, Ct), i = 1, . . . , λ // sample candidate solutions

6 Extract indices {1 : λ, . . . , λ : λ} of ordered candidate solutions such that
⎧
⎨

⎩

h(X1:λ
t+1, γt, ωt) ≤ . . . ≤ h(Xλ:λ

t+1, γt, ωt) if constrained problem

f(X1:λ
t+1) ≤ . . . ≤ f(Xλ:λ

t+1) otherwise

7 Xt+1 =

μ∑

i=1

wiX
i:λ
t+1 = Xt + σt

μ∑

i=1

wiU
i:λ
t+1 // recombine μ best candidate solutions

8 Ksucc =

⎧
⎪⎪⎨

⎪⎪⎩

∑λ
i=1 1{h(Xi

t+1,γt,ωt)≤h(Xj:λ
t ,γt,ωt)} if constrained problem

∑λ
i=1 1{f(Xi

t+1)≤f(Xj:λ
t )} otherwise

9 zt =
2

λ

(

Ksucc − λ

2

)

// compute success measure

10 qt+1 = (1 − cσ)qt + cσzt

11 σt+1 = σt exp

(
qt+1

dσ

)

// update step-size

12 pt+1 = (1 − cc)pt +
√

cc(2 − cc)μeff

(
Xt+1 − Xt

σt

)

// cumulation path for CMA

13 Ct+1 = (1 − c1 − cμ)Ct + c1pt+1p
ᵀ
t+1 + cμ

μ∑

i=1

wi

(
Xi

t+1 − Xt

σt

)(
Xi

t+1 − Xt

σt

)ᵀ

// update covariance matrix

14 if constrained problem

15 γt+1 = max(0, γt + ωtg(Xt+1)) // update Lagrange factor

16 ωt+1 =

⎧
⎪⎪⎨

⎪⎪⎩

ωtχ1/4 if ωtg2(Xt+1) < k1
|h(Xt+1,γt,ωt)−h(Xt,γt,ωt)|

n

or k2|g(Xt+1) − g(Xt)| < |g(Xt)|
ωtχ−1 otherwise

// update penalty factor

17 X
j:λ
t+1 = Xt + σtU

j:λ
t+1 // update jth best solution

18 t = t + 1

as linear convergence of γt to γopt and σt to 0 (left column of Figs. 1 and 2).
Moreover, ‖Xt−xopt‖, ‖γt−γopt‖, and σt decrease at the same rate. On the other
hand, the penalty factor ωt is observed to converge to a stationary value after
a certain number of iterations. We sometimes observe a stagnation in graphs of
‖Xt − xopt‖ due to numerical precision.

The largest convergence rate (when excluding the initial adaptation phase)
is observed on fsphere and the smallest one on f0.5

sphere, where there is a factor of
approximately 1.5 between the two convergence rates. However, there is some
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Table 1. Definitions of the tested functions, where fsphere := f1
sphere.

variance in the empirical convergence rate. In particular, on 11 performed runs
we observe the highest variance in the empirical convergence rate for felli with
α = 106, fdiff pow, and frosen.

On felli with α = 106, fdiff pow, and frosen, we observe a stagnation of Xt

in the early stages of the algorithm (left column in Fig. 2). The reason is that
the adaptation of the covariance matrix takes longer on ill-conditioned problems.

Fig. 1. Single runs of (μ/μw, λ)-MSR-CMA-ES with augmented Lagrangian on fsphere

(top row), f2
sphere (middle row), and f0.5

sphere (bottom row) in n = 10. The optimum
xopt = (10, . . . , 10)ᵀ . Left: evolution of the distance to the optimum, the distance
to the Lagrange multiplier, the penalty factor, and the step-size in log-scale. Right:
evolution of the coordinates of Xt.
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This explains the slow convergence of some coordinates of Xt to 10 (right column
in Fig. 2). Once the covariance matrix is adapted, the convergence occurs.

When comparing 11 single runs of Algorithm 1 to the (1 + 1)-ESs with aug-
mented Lagrangian in [3,4] (not shown for space reasons) on constrained fsphere,
felli (in n = 10), it appears that on fsphere, Algorithm 1 needs approximately

Fig. 2. Single runs of (μ/μw, λ)-MSR-CMA-ES with augmented Lagrangian on felli

with α = 102 (first row), felli with α = 106 (second row), fdiff pow (third row), and
frosen (fourth row) in n = 10. The optimum xopt = (10, . . . , 10)ᵀ . Left: evolution of the
distance to the optimum, the distance to the Lagrange multiplier, the penalty factor,
and the step-size in log-scale. Right: evolution of the coordinates of Xt.
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up to 1.5 times more function evaluations than algorithms in [3,4] to reach a
distance to the optimum of 10−4. On felli with α = 102, however, Algorithm 1 is
faster and needs approximately 1.3 times less function evaluations to reach the
same distance, with α = 106, Algorithm 1 is around 167 times faster to reach
a target of 15 (this large difference is due to the adaptation of the covariance
matrix).

5 Discussion

Linear convergence is a key aspect of ESs in both unconstrained and constrained
optimization scenarios. As stated in [3], the minimum requirement for a con-
straint handling ES is to converge linearly on convex quadratic functions with
a single linear constraint. On the other hand, an algorithm for constrained
optimization should be able to tackle ill-conditioned problems. Having that in
mind, we proposed a (μ/μw, λ)-CMA-ES with an augmented Lagrangian app-
roach for handling one inequality constraint, where the choice of the augmented
Lagrangian constraint handling was motivated by the promising results of its
implementation for the (1 + 1)-ESs with 1/5th success rule in [3,4]. Moreover,
we showed that our algorithm–as well as (1+1)-ESs with augmented Lagrangian
constraint handling in [3,4]–is an instance of a more general framework for build-
ing an adaptive constraint handling algorithm from a general adaptive algorithm
for unconstrained optimization.

Experiments on linearly constrained convex quadratic functions, as well as ill-
conditioned functions (including the ellipsoid and Rosenbrock functions), showed
linear convergence of our algorithm to the unique optimum of the constrained
problem.

Acknowledgments. This work was supported by the grant ANR-2012-MONU-0009
(NumBBO) of the French National Research Agency.
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Abstract. We propose an evolutionary approach to constrained opti-
mization where the objective function is considered a black box, but
the constraint functions are assumed to be known. The approach can
be considered a stochastic active-set method. It labels constraints as
either active or inactive and projects candidate solutions onto the sub-
space of the feasible region that is implied by rendering active inequality
constraints equalities. We implement the approach in a (1 + 1)-ES and
evaluate its performance using a commonly used set of test problems.

1 Introduction

Evolutionary algorithms are stochastic black box optimization strategies. They
are commonly used in connection with optimization problems that do not admit
a convenient mathematical representation of the objective, or if gradient esti-
mates can be obtained only at a high cost or are necessarily inaccurate. Exam-
ples include scenarios where the evaluation of the quality of a candidate solution
requires running a simulation model. In the context of constrained optimization
with evolutionary algorithms, the constraint functions are often considered as
black boxes as well. However, in many cases, including the case of bound con-
straints, it is not uncommon that the constraint functions are known and rela-
tively inexpensive to evaluate. The objective of this paper is to develop a simple
evolutionary algorithm for constrained optimization with known constraints.

Active-set methods are a common approach to solving constrained optimiza-
tion problems [12]. They maintain a set of active inequality constraints and
perform optimization in the subspace of the feasible region that is implied by
rendering the active inequality constraints equalities. The algorithm we introduce
in this paper can be considered a stochastic active-set approach implemented in
a (1 + 1)-ES1. The step size of the (1 + 1)-ES is commonly controlled using
the 1/5th rule [13]. That rule can fail in the presence of small constraint angles
(i.e., small angles between the gradient of the objective function and the normal
vector of the constraint function) in cases as simple as a linear objective with a
single linear constraint [2,15]. Small constraint angles result in low success rates

1 See Hansen et al. [7] for an introduction to evolution strategy terminology.
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and thus a systematic reduction of the step size. Projection of infeasible candi-
date solutions onto the feasible region in connection with an active-set approach
can potentially circumvent unwarranted decreases of the step size.

The remainder of this paper is organized as follows. In Sect. 2 we outline the
class of optimization problems we strive to solve, formalize notation, and propose
an active-set (1+1)-ES for optimization with known constraints. In Sect. 3, that
algorithm is applied to commonly used test problems and its performance is
discussed. Section 4 concludes.

2 Problem and Algorithm

We consider the problem of minimizing objective function f : Rn → R subject
to constraints

gi(x) ≤ 0 for i ∈ {1, . . . , l}
hj(x) = 0 for j ∈ {1, . . . , m}. (1)

The active set A(x) of a (feasible) candidate solution x is the set of indices of all
those inequality constraints with gi(x) = 0. Assuming a single globally optimal
solution x∗ to the optimization problem, we refer to the active set A(x∗) of that
solution as the optimal active set A∗. We refer to the subspace of the search
space where all equality constraints and active inequality constraints in A(x)
are satisfied as equalities as the reduced search space at x. We write n∗ for the
dimension of the reduced search space at the optimal solution x∗.

Our active-set (1 + 1)-ES evolves a feasible candidate solution x ∈ R
n to the

optimization problem at hand, adapting the step size σ ∈ R+ using the 1/5th
rule. Offspring candidate solutions are usually projected onto the reduced search
space at the parent. However, with a certain probability the use of the active set
is suspended, allowing to break out of the reduced search space. Adapting the
step size of the algorithm only in those steps where the active inequalities are
enforced as equalities prevents unwarranted decreases of the step size. A single
iteration of the algorithm is described in Fig. 1.

Boolean flag κ determines whether or not the active set of x is enforced
for offspring candidate solution y. If κ is false, then the search proceeds in
the reduced search space. If it is true, then the inequality constraints active
at the parental candidate solution will be enforced as inequalities rather than
as equalities. If the dimension of the reduced search space at x is zero, then
there is no use in enforcing the active constraints as they would repeatedly yield
the same solution, and κ is thus set to true. Otherwise, the active inequality
constraints are enforced as equality constraints with probability 1 − p. Larger
values of p decrease the likelihood that the algorithm will spend unproductive
time in non-optimal reduced subspaces. However, once the optimal active set A∗

has been found, smaller values of p are useful as unproductive steps beyond the
optimal reduced search space are avoided. We use p = 0.2 throughout.
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1. Compute the dimension n′ = n − rank(N) of the reduced search space at x,
where N is the matrix whose columns are the normal vectors at x of the
equality constraints and the inequality constraints in A(x).

2. Repeat

(a) Generate standard normally distributed z ∈ R
n and let

y = x + σz .

(b) If n′ = 0, let κ be true. If n′ > 0, let κ be true with probability p and
false otherwise.

(c) If κ is true, project y onto the feasible region; otherwise, project y onto
the intersection of the feasible region with the reduced search space at x.

until offspring candidate solution y ∈ R
n is feasible.

3. If f(y) < f(x), then

(a) Let
x ← y .

(b) If κ is false, let

σ ← σ21/n′
.

Otherwise, if κ is false, let

σ ← σ2−1/(4n′) .

Fig. 1. Single iteration of the active-set (1 + 1)-ES.

Projection of y onto the intersection of the feasible region with the reduced
search space at x is accomplished by minimizing function d(w) = ‖w − y‖2
subject to constraints

gi(w) ≤ 0 for i ∈ {1, . . . , l} \ A(x)
gi(w) = 0 for i ∈ A(x)
hj(w) = 0 for j ∈ {1, . . . , m}.

When the use of the active set is suspended, projection onto the feasible region
is accomplished by minimizing that some function, but subject to the original
set of constraints from Eq. (1). Notice that minimization does not make use
of the objective f of the original optimization problem and that thus the algo-
rithm performs only a single evaluation of f per iteration. Minimization of d can
be accomplished using any algorithm for constrained optimization. We use the
active-set method implemented in fmincon in Matlab’s optimization toolbox.
Step 2 involves a loop as minimization of d may fail to yield a feasible solution.

The update of σ in Step 3 of the algorithm employs the implementation of the
1/5th rule due to Kern et al. [9]. The step size is updated only in those iterations
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Fig. 2. Traces from runs of the active-set (1+1)-ES and a (1+1)-ES that projects infea-
sible candidate solutions onto the feasible region but does not enforce active inequalities
as equalities applied to a 10-dimensional sphere with five mutually orthogonal linear
inequality constraints active at the optimal solution. Shown are the evolution of the
difference between f(x) and the optimal objective function value f∗ and the step size
σ normalized by division by R = ‖x − x∗‖.

where the search proceeds in the reduced search space, thus avoiding the issue
of systematically decreasing σ when the use of the active set is suspended.

Throughout a run of the algorithm, we store the current active set. Con-
straints are added to the active set whenever a candidate solution is accepted
for which those constraints are tight. Notice that it is straightforward from the
output of fmincon to determine which constraints are tight by identifying those
inequality constraints that have positive Lagrange multipliers. The active set is
replaced in those iterations where a candidate solution replaces its parent that
is generated with use of the active set suspended.

Figure 2 illustrates the advantage of the active-set based approach over a
(1 + 1)-ES that simply projects infeasible candidate solutions onto the feasible
region, without enforcing active inequality constraints as equalities, and that
updates the step size in every iteration. We have conducted 21 runs of both
strategies for objective function f(x) = xTx with n = 10 and constraints xTei ≥
1 for i ∈ {1, . . . , 5}, where ei is the unit vector in the direction of the ith
coordinate axis. All runs are initialized to start at x = (9, . . . , 9)T and with
step size σ = 1. The active-set (1 + 1)-ES attained an objective function value
within a factor of (1 + 10−8) of the optimal objective function value f∗ = f(x∗)
in each of the runs; the run that required the median number of iterations is
shown in the figure. It can be seen that the strategy converges linearly, and
that after an initial increase, the step size σ is controlled to be approximately
proportional to the distance R from the optimal solution x∗. Not shown, in the
run depicted, the five constraints become active between the 66th and the 100th
iteration and remain active until the algorithm terminates. Without the use of
the active set, none of the 21 runs obtained a solution with an objective function
value within a factor of (1+10−8) of f∗ before terminating after 1,200 iterations.
The corresponding trace shown in the figure is that of a random run. It can be
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seen that not enforcing active inequalities as equalities and updating σ in every
iteration eventually results in very small step sizes and slow progress.

3 Evaluation and Discussion

We evaluate the active-set (1 + 1)-ES by applying it to the test problems
g01 through g11 gathered by Michalewicz and Schoenauer [11] and summa-
rized by Liang et al. [10]. We initialize the parental candidate solution by
uniformly randomly sampling a point in the bound constrained search space
and then projecting it onto the feasible region using the same approach as
described for offspring candidate solutions in Sect. 2. The initial step size is
set to σ = 0.2 min{ui − li | i = 1, . . . , n}, where the li and ui are the lower and
upper bounds of the search space in dimension i for the respective problem.
A run of the algorithm is terminated and considered a success if a candidate
solution x with an objective function value f(x) < (1 + ε)f∗ is found, where
f∗ is the objective function value of the optimal solution to the problem. It is
considered unsuccessful if after 1,200 iterations (and thus as many evaluations of
the objective function) no solution satisfying the termination criterion has been
found. We refer to ε as the target accuracy.

Table 1. Test function properties and results.

g01 g02 g03 g04 g05 g06 g07 g08 g09 g10 g11

Dimension n 13 20 10 5 4 2 10 2 7 8 2

Reduced dimension n∗ 0 19 9 0 1 0 4 2 5 2 1

Success rate:

ε = 10−4 1.0 0.0 1.0 1.0 1.0 1.0 0.98 0.52 1.0 1.0 1.0

ε = 10−8 1.0 0.0 1.0 1.0 1.0 1.0 0.99 0.53 1.0 1.0 1.0

Median number of function evaluations:

ε = 10−4 49 — 458 22 36 3 411 123 302 117 27

ε = 10−8 46 — 865 24 84 4 684 229 616 243 106

We have conducted 100 runs of the algorithm for each test problem and
target accuracies ε ∈ {10−4, 10−8}2. Table 1 summarizes the results. For eight of
the eleven test problems, the globally optimal solution was found to the desired
accuracy in all 100 runs conducted. The three exceptions are as follows:

2 The ConstraintTolerance parameter of fmincon is set to its default value of 10−6

for the runs with target accuracy ε = 10−4. For target accuracy ε = 10−8 we used
ConstraintTolerance 10−9 instead as some runs for problem g03 terminate unsuc-
cessfully if the default accuracy is used.
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– For g02 not a single run successfully located the globally optimal solution.
Problem g02 has a very large number of local minima, and the search space
is such that the likelihood of starting in the basin of attraction of the global
optimum is near zero. A stochastic hill climber, such as the (1 + 1)-ES, will
almost always converge toward a merely local minimum.

– A small number of unsuccessful runs are observed for problem g07, even
though the problem is unimodal. The search space is ten-dimensional, with six
inequality constraints active at the optimal solution. In some runs, the upper
bound constraint for variable x8 is included in the active set of the algorithm
at some point during the run. The likelihood of escaping the point that is
optimal for this active set in one of the steps where the use of the active set is
suspended can be observed to be no higher than 5 % for a large range of val-
ues of the step size. It may thus take hundreds of iterations before the upper
bound constraint is rendered inactive, and either reaching the iteration limit
or the step size becoming so small that the limits of numerical accuracy are
reached prevents successfully escaping the non-optimal reduced search space.

– Problem g08 has four locally optimal solutions. No constraints are active at the
globally optimal one of those. The (1 + 1)-ES converges to one of the merely
locally optimal solutions with a likelihood of just under one half. Conduct-
ing multiple runs of the algorithm would allow locating the globally optimal
solution with high probability.

Figure 3 shows histograms of the number of objective function evaluations
required to solve problems g01 and g03 through g11 to both target accuracies.
The ranges of the histograms are such that all successful runs are included. No
data are shown for g02 as no successful runs were observed for that problem. It
can be seen that the histograms for g01, g04, and g06 differ fundamentally from
those for the other problems in that there is little difference between the data
for ε = 10−4 and ε = 10−8. This is due to the dimension of the optimal reduced
search space being zero. In that case, solving for the solution at the intersection
of the active constraints yields the optimal solution (up to the limits of numerical
accuracy). For the remaining problems, the gap between the histograms for ε =
10−4 and ε = 10−8 is due to the need for the (1 + 1)-ES to search a non-
zero reduced search space, with a larger discrepancy for those cases where the
dimension of that space is large.

Figure 4 shows traces from runs requiring the median number of iterations to
reach target accuracy ε = 10−8 for test problems g04 and g10. The former is an
example of a problem where the dimension of the optimal reduced search space
is zero; for the latter, that dimension is n∗ = 2. Plotted against the iteration
number are the difference between the objective function value f(x) and the
optimal objective function value f∗ as well as the step size σ of the algorithm.
Those iterations where the algorithm suspends the use of the active set (i.e., κ
is true) are marked with small circles.

In the run on g04, the evolution strategy generates the optimal active set A∗

in iteration 24, at which point it terminates. Between iterations 18 and 21, the use
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Fig. 3. Histograms showing the number of objective function evaluations required to
solve problems g01 and g03 through g11.
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Fig. 4. Traces from runs requiring the median number of iterations to reach target
accuracy ε = 10−8 for problems g04 and g10. The evolution of both the difference
between f(x) and the optimal objective function value f∗ and the step size σ are shown.
The small circles mark those iterations where the use of the active set is suspended.
The thin dotted line in the plot for g10 shows the evolution of the step size in a typical
run of the (1 + 1)-ES on an unconstrained, two-dimensional sphere function.

of the active set is suspended in each step as it is such that the dimension of the
reduced search space is zero. The step size σ largely increases through most of
the run.

In the run on g10, the algorithm arrives at the optimal active set A∗, which
consists of the six constraints active at the global optimum of the problem, at
iteration 70. The active set remains stable after this, and optimization effectively
proceeds in a reduced subspace of dimension n∗ = 2, with the exception of those
steps where the use of the active set is suspended, but which have no further effect
on the sequence of successful candidate solution generated. It can be seen that
the step size σ largely decreases as the search in the two-dimensional subspace
progresses. Comparison with the thin dotted curve, which shows the rate of
decrease of the step size of a (1 + 1)-ES on an unconstrained, two-dimensional
sphere function, shows a similar rate of linear convergence.

A comparison of the performance of the active-set (1 + 1)-ES with that of
other approaches to constrained evolutionary optimization is not straightfor-
ward as both initialization conditions and termination criteria often differ for
approaches found in the literature. More significantly, most other approaches
consider the constraint functions as black boxes and are thus not easily able to
project candidate solutions onto the feasible region (or subspaces thereof). That
said, some useful points of comparison do exist:

– The numbers of objective function evaluations required by the active covari-
ance matrix adaptation based approach by Arnold and Hansen [3] to solve
four of the problems3 to target accuracy 10−8 range from 308 for g06 to 3,976
for g10. The corresponding figures from Table 1 range from 4 for g06 to 684

3 Multimodal problems and those with equality constraints were not considered in
that paper, leaving only problems g06, g07, g09, and g10.
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for g07. It is important to keep in mind though that the active-set approach
introduced here assumes knowledge of the constraint functions, whereas the
algorithm from [3] considers the constraint functions as black boxes.

– The algorithm by Takahama and Sakai [16], which performed best among
all entries submitted to the CEC 2006 Special Session on Constrained Real-
Parameter Optimization, assumes knowledge of gradient vectors and thus does
not treat the constraint functions as black boxes. It requires median numbers
of objective function evaluations ranging from 1,182 for g08 to 105,799 for
g10. The algorithm does successfully solve g02.

– Bagheri et al. [6] propose SACOBRA, a self-adaptive variant of the surro-
gate based COBRA algorithm by Regis [14], which solves most of the eleven
problems (though not g02, and others only with limited accuracy) with fewer
than 500 objective function evaluations. SACOBRA considers the constraint
functions as black boxes and is thus applicable when the constraints are not
known. It requires more function evaluations than the active-set (1 + 1)-ES
for a number of those problems where the dimension of the optimal reduced
search space is low. However, it appears to often converge faster where that
dimension is not very small. This latter advantage is a consequence of the
smooth nature of the test problems, which admit polynomial surrogate mod-
els that make it possible to converge superlinearly. As shown by Teytaud and
Gelly [17], as a comparison-based algorithm that does not use objective func-
tion values other than in comparisons, the active-set (1+1)-ES cannot exhibit
super-linear convergence.

4 Conclusions

To conclude, we have proposed an active-set (1+1)-ES for constrained numerical
optimization with known constraints. The algorithm usually generates offspring
candidate solutions constrained to the reduced subspace at their parents, but
with a fixed probability samples offspring that do not necessarily fall into that
space, thus allowing it to render active constraints inactive. Key to the func-
tioning of the algorithm is to adapt the step size only in those iterations where
the offspring are constrained to the reduced search space. The algorithm can
be implemented in a few lines of Matlab code and performs very well when
compared with related work.

It is of interest to apply the proposed active-set approach in evolutionary
algorithms other than the (1 + 1)-ES. The (μ/μ, λ)-ES is an evolutionary algo-
rithm less sensitive to noise and ruggedness of the objective than the (1 + 1)-ES
as it is capable of proceeding with larger steps. Restart variants of that algo-
rithm [5] are commonly used for multimodal optimization problems and may
exhibit improved performance for problems g02 and g08. However, using the
active-set approach with cumulative step size adaptation is less than straightfor-
ward, and it has been seen that care has to be taken when integrating constraint
handling techniques with step size adaptation [1,8]. Also of interest is the prob-
lem of employing the active-set approach in combination with other constraint
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handling techniques, such as augmented Lagrangian methods [4], in case only
a proper subset of the constraints is known explicitly. Finally, it is of interest
to employ the active-set approach in evolutionary algorithms that use surrogate
models of the objective function in order to reduce the time spent on optimiza-
tion in reduced search spaces.
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Abstract. Dynamic constrained optimisation problems (DCOPs) have
specific characteristics that do not exist in dynamic optimisation prob-
lems with bounded constraints or without constraints. This poses diffi-
culties for some existing dynamic optimisation strategies. The maintain-
ing/introducing diversity approaches might become less effective due to
the presence of infeasible areas, and thus might not well handle with the
switch of global optima between disconnected feasible regions. In this
paper, a speciation-based approach was firstly proposed to overcome this,
which utilizes deterministic crowding to maintain diversity, assortative
mating and local search to promote exploitation, as well as feasibility
rules to deal with constraints. The experimental studies demonstrate
that the newly proposed method generally outperforms the state-of-the-
art algorithms on a benchmark set of DCOPs.

Keywords: Evolutionary algorithm · Speciation · Deterministic crowd-
ing · Local search · Dynamic constrained optimisation problem

1 Introduction

In the real world, many optimisation problems are changing over time due to the
dynamic environments [6,19]. These problems require an optimisation algorithm
to quickly find the new optimum once the problem changes [20]. As a class of
nature-inspired optimisation methods, evolutionary algorithms (EAs) can have
good adaptation to the changing environments, and thus have been widely stud-
ied in the field of dynamic optimisation (DO). Many evolutionary DO approaches
have been developed, which include maintaining/introducing diversity strategies,
memory approaches, prediction approaches, multi-population approaches and so
on [20]. As revealed in [20,23], most existing studies of DO focus on uncon-
strained or bounded constrained dynamic optimisation problems (DOPs), and
few consider dynamic constrained optimisation problems (DCOPs) despite their
high popularity in real-world applications. In a DCOP, a change may occur
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 203–213, 2016.
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in either constraints or objective functions or both. Therefore, DCOPs have
some specific characteristics compared to unconstrained or bounded constrained
DOPs. For a DCOP, the distribution of infeasible/feasible solution might change,
and the global optima might move to another disconnected feasible region, or
appear in a new region without changing the current optima due to the dynamics
of environments [19,23].

Addressing DCOPs poses difficulties for some existing DO strategies and
constraint handling (CH) techniques due to their characteristics. As discussed in
[19,23], maintaining/introducing diversity methods such as random-immigrants
(RI) [12] and hyper-mutation (HyperM) [5] become less effective on DCOPs than
on DOPs, when combined with penalty function that prefers feasible solutions
to infeasible ones. This is because that they cannot maintain enough diversity
to adapt to the new problem as the introduced random solutions are likely to
be rejected by the penalty function if they are infeasible. Furthermore, without
enough diversity, they may not deal well with the switch of the global opti-
mum between disconnected feasible regions, as it needs to go through an infea-
sible path from the previous optimum to the current optimum. Moreover, some
adaptive/self-adaptive CH techniques also face challenges in solving DCOPs as
they need the knowledge of problem that is unavailable in a dynamic environment
or historical information that might be outdated once the problem changes [23].

Researchers have recently carried out some studies trying to solve the chal-
lenges of DCOPs. To allow diversified infeasible solutions distributed in the
whole search space, the authors in [19,25], and [2] applied the repair method
[27] to handle constraints along with RI/HyperM to deal with dynamics. How-
ever, these methods need a lot of feasibility checkings, and thus cannot be applied
to DCOPs in which the ratio of feasible solutions is very low and a feasibility
checking is computationally costly. The authors in [1] employed simple feasibil-
ity rules [17] as the CH strategy along with RI and combined DE variants to
introduce diversity after each change. However, this method may not maintain
diversity well during the run as infeasible solutions are still likely abandoned by
feasibility rules. Furthermore, it might be ineffective to make the partially con-
verged population to re-diversify to track the switched global optima. Similarly,
the proposed approach in [4] to deal with DCOPs might not quickly find the
switched optima as the population tends to converge during the run.

In this paper, a speciation-based method, called speciated evolution with
local search (SELS), is suggested to address the challenges of DCOPs. Specia-
tion allows an EA to find multiple optima through making comparisons among
similar individuals [7]. Thus, newly generated and promising infeasible solutions
can be accepted in the new method. Furthermore, good solutions can be main-
tained in different feasible regions, and thus SELS should react quickly when
the global optimal solution switches to another feasible region. In the literature,
speciation has been utilized to solve dynamic unconstrained or bounded con-
strained optimisation problems [14,15], but no studies apply them to DCOPs.
In addition to speciation, a local search strategy is employed in SELS to pro-
mote exploitation of the promising regions to quickly find the changed optimum.
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SELS also uses a change detection method, and adds some random immigrants
into the population to introduce diversity once a change is detected. Finally,
to deal with constraints, the simple and parameter-free feasibility rules [17] are
employed.

The remaining part of this paper is organized as follows. Section 2 summa-
rizes the existing related work, and Sect. 3 details the new method. In Sect. 4,
experimental results are presented, and conclusions and future work will be given
in Sect. 5.

2 Related Work

Solving DCOPs does not only need DO strategies to deal with dynamics but
also requires CH techniques to handle constraints. This section will introduce the
efforts that researchers have done in combining DO strategies and CH techniques
to solve DCOPs.

The RI and HyperM methods were combined in [23] with a penalty func-
tion proposed in [18]. When using RI, a fraction of the population is replaced
by random solutions at every generation to maintain diversity. In hybrid with
HyperM, the original mutation rate will change to a higher one to introduce
diversity once change is detected. However, as most of the added random solu-
tions are infeasible and they are likely rejected by the used penalty function,
these combination methods can not maintain enough diversity to adapt to the
new problem. Therefore, the authors suggested that a CH technique that can
maintain diversified infeasible solutions is needed, when combined with RI and
HyperM to solve DCOPs.

To maintain diversified infeasible solutions in solving DCOPs, the authors in
[22] combined the repair method with RI and HyperM, respectively. By using
the repair method, an infeasible solution was evaluated by the repaired feasible
solution. Thus, the infeasible solutions that can make good feasible solutions
are reserved. Other studies using the repair methods exist in [2,24]. The former
work used an improved repair method, and the latter applied the repair method
and RI together in a DE context. However, using the repair method has a big
disadvantage. That is, it requires a considerable number of feasibility checking
during the repair process, and thus not suitable for problems with very small
feasible area or expensive feasibility checking.

A simple ranking scheme in [13] was applied to handling constraints in [3]. To
maintain population diversity, the method monitored the population diversity
and switched between a global search and a local search operator according to
whether the diversity degree is larger than a threshold. As a result, this method
will highly depends on the setting of the threshold. To avoid the setting of the
threshold, the authors in [4] used the Shannon’s index of diversity as a factor to
balance the influence of the global-best and local-best search directions. However,
the population tends to converge in this method, and it might be ineffective to
make the partially converged population to re-diversify to track the switched
global optimum.
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The authors in [1] employed simple feasibility rules in [17] as the CH strat-
egy, and considered RI and combined DE variants to maintain and introduce
diversity, respectively. However, this method may not well maintain diversity as
infeasible solutions are likely abandoned according to feasibility rules, and thus
might not effectively solve the switching global optima between disconnected
feasible regions.

Except DO strategies to introduce/maintain diversity were considered, other
DO strategies such as memory and prediction methods were also combined with
CH techniques to deal with DCOPs. The study in [26] adapted abstract mem-
ory method, and the infeasibility driven evolutionary algorithm (IDEA) was
combined with prediction method (to predict the future optima) in [10] and
[11] to solve DCOPs. However, both memory and prediction methods are only
applicable to particular dynamic problems (i.e., cyclic and predictable dynamic
problems, respectively).

3 The Proposed Method

The proposed SELS method considers simple feasibility rules to handle con-
straints, which do not need to repair infeasible solutions. However, as feasibil-
ity rules prefer feasible solutions to infeasible ones, the diversity will decrease
quickly. To avoid this, the speciation is employed, which makes comparison
among similar individuals. Thus, SELS should maintain good diversity and
respond quickly once the change happens. As speciation focuses on exploration,
the new optima might not be found quickly as promising regions are not exploited
sufficiently. Therefore, SELS uses a local search strategy to promote exploitation
of the promising regions. In the following part of this section, the elements of
SELS will be first described, and then the pseudo-code is given.

Speciation Method. This work uses deterministic crowding (DC) as the spe-
ciation method. Algorithm 1 gives the pseudo-code of DC. The DC method pairs
all population elements randomly and generates two offspring for each pair based
on EA operators. Selection is then operated on these four individuals, and a sim-
ilarity measure is used to decide which offspring competes against which parent.
The offspring will replace the compared parent and enter next generation if it is
fitter.

In addition to DC, SELS employs an assortative mating (AM) [8] to induce
speciation in the population. As DC can maintain good solutions on different
peaks or in different feasible regions, intuitively, we would not like to operate
crossover between solutions on different peaks or in different feasible regions
as doing this will likely generate solutions in the valley or infeasible regions.
To avoid this, assortative mating is used, which mates individuals with the
most similar non-identical partner in the population. Through doing crossover
between individuals in proximity, species will be automatically generated, and
the exploitation of the corresponding search area will also be enhanced. In this
work, Euclidean distance is used as the similarity measure.
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Algorithm 1. Deterministic Crowding [16]
1: Randomly pair all individuals in the population
2: for each pair of individuals, p1 and p2, do
3: Generate two offspring, o1 and o2, based on EA operators
4: if dist(p1, o1) + dist(p2, o2) ≤ dist(p1, o2) + dist(p2, o1) then
5: p1 = fitter(p1, o1)
6: p2 = fitter(p2, o2)
7: else
8: p1 = fitter(p1, o2)
9: p2 = fitter(p2, o1)

10: end if
11: end for

Feasibility Rules. Feasibility rules have been commonly used to solve con-
strained optimisation problems due to its simple and parameter-free character-
istics, which make comparison between individuals through the following three
selection criteria:

1. If both are feasible solutions, the one with the highest fitness value is selected.
2. Between a feasible solution and an infeasible solution, the feasible one is

preferred.
3. If both are infeasible, the one with the lowest sum of constraint violation

wins.

In the proposed SELS, feasibility rules are employed to determine the fitter one
in each pair of parent and offspring in the deterministic crowding.

Local Search (LS). In this work, the local evolutionary search enhancement
by random memorizing (LESRM) [28] is applied to the best solution (xbest) at
each generation. The LESRM uses an EA that has a step size control and adjusts
the search direction based on individuals encountered before, and thus can do
efficient exploitation in the area that the best solution is located in. In this paper,
the EA used in LESRM is given in Algorithm2, and the random memorizing
part of LESRM is the same as in [28]. Here, lsnum denotes the maximum number
function evaluations (FEs) permitted for LS at every generation, and D denotes
dimension of the problem. The success ratio of δ denotes the ratio that xnew

(generated by δ) is better than xbest.

Change Detection and Diversity Introduction. To detect the change,
assume k is the number of individuals for detection and NP is the size of popula-
tion, the (NP/k)-th, (2∗NP/k)-th, ((k−1)∗NP/k)-th, ..., (NP )-th (denoted as
detection index) individual in the population are reevaluated at every generation
to detect changes in time. Once a change is detected, the whole population will be
re-evaluated, and NI random individuals will be generated to randomly replace
the individuals of the population except the best individual. In our work, we
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Algorithm 2. Evolutionary Search in LESRM in SELS (xbest)
1: Find the closest non-identical solution xnear to xbest

2: Set δ = dist (xnear, xbest), and LS generation counter lsg = 0
3: repeat
4: repeat
5: Set lsg = lsg + 1, and xnew = xbest + δ*randn(1,D);
6: if mod(lsg,2)==0 then
7: Calculate the success ratio of δ
8: Set δ = δ/2 if the success ratio of δ is less than 0.5
9: Set δ = δ ∗ 2 if the success ratio of δ is larger than 0.5

10: end if
11: until xnew is fitter than xbest

12: Set xbest = xnew

13: Do random memorizing as in [28]
14: until lsnum function evaluations are used up

first give each individual in the population a rank based on the feasibility rules,
and estimate the degree of change severity as the ratio of the number of reverse
order after re-evaluation. We then set NI to max((�reverse ratio ∗ NP�, 2).

The Framework of the Proposed Method. Algorithm 3 gives the whole
process of SELS, which begins with a randomly generated population of candi-
date solutions and utilizes genetic algorithm (GA) to evolve this population.

Algorithm 3. The Framework of SELS
1: Evaluate a randomly generated population P = {xi|i = 1, 2, ...,NP}
2: while computational resources are not used up do
3: repeat
4: Randomly select an unpaired individual x from the population
5: Calculate Euclidean distance between x and each other unpaired individual
6: Pair x with the individual that has smallest positive Euclidean distance to x
7: until all individuals in the population are paired
8: for i ← 1,NP do
9: Re-evaluate xi or xi+1 if i or i + 1 is one detection index

10: if the change is detected then
11: Re-evaluate solutions in P and introduce diversity, go to Step 17
12: else
13: Generate two offspring o1, o2 from xi and xi+1 with GA crossover and

mutation
14: Do deterministic crowding(xi, xi+1, o1, o2), and set i = i + 1
15: end if
16: end for
17: Do local search to the best solution in P
18: end while
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4 Experimental Studies

4.1 Experimental Setup

To assess the efficacy of SELS, we conducted experiments on 11 DCOP
benchmark test functions proposed in [21]. They are: G24-l(dF,fC), G24-
2(dF,fC), G24-3(dF,dC), G24-4(dF,dC), G24-5(dF,dC), G24-6a(2DR,hard),
G24-6c(2DR,easy), G24-7(fF,dC), G24-6d(2DR,hard), G24-8b(fC,OICB). We
recorded the performance of SELS on each test function using the modified
offline error [22] as the performance metric, then compared its performance to
that of 6 state-of-the-art algorithms. They are, dGArepairRIGA [22], dGAre-
pairHyperM [22], GSA + Repair [24], DDECV + Repair [2], DDECV [1] and
EBBPSO-T [4]. In the experiments, the number of changes is set to 12, the
change frequency is 1000 objective function evaluations, and the change severity
is medium (i.e., k = 0.5, and s = 20). We use this setting as all of the 6 compared
algorithms have presented complete experimental results only on this setting in
their original papers.

Note that the first 4 of the compared algorithms use a repair scheme, so they
need a lot of feasibility checking but they ignore the cost. To make a fair compar-
ison, we run SELS only evaluating the feasibility for an infeasible solution and
do not count in the number of used fitness evaluations. The resulted algorithm
is denoted as eSELS and compared to the 4 repair algorithms. When compared
to DDECV and EBBPSO, SELS evaluates both the feasibility and objective
function value for every individual, no matter feasible or infeasible, which is the
same to what DDECV and EBBPSO do.

In the experiments, for both SELS and eSELS, intermediate crossover with
pc = 1.0, and Guassian mutation with pm = 1/D and scale = 0.1 are used,
respectively. In the mutation, at least one variable is mutated every time. The
number of LS objective function evaluations (lsnum) is set to 16, and 4 individ-
uals are used for change detection every generation. Each algorithm is run 50
times on each test function.

4.2 Comparison Results with Existing Algorithms

Table 1 summarizes the mean and standard deviation of the modified offline
error over 50 runs obtained by DDECV, EBBPSO-T and SELS as well as the
performance rank of each algorithm on each test function (in case of ties, average
ranks are assigned) based on Z-test with a level of 0.05. We applied the Friedman
test and further a Holm’s post-hoc procedure [9], which was used for multiple
comparison of algorithms, to investigate whether SELS performed best on the
set of test functions. The analysis shows that SELS has significant improvement
than DDECV and EBBPSO-T at a level of 0.05.

Table 2 gives the performance rank of eSELS and the other 4 repair algo-
rithms on each test function. We also applied the Friedman test and further a
Holm’s post-hoc procedure [9] to do a multiple-problem comparison among the
5 algorithms. The statistical test results show that eSELS performed significantly
better than each other algorithm on the test function set at a level of 0.05.
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Table 1. Comparison results between DDECV, EBBPSO-T and SELS based on exper-
imental results of DDECV and EBBPSO-T in their original papers [1,4], respectively.
The best result obtained on each function is marked in bold.

Func DDECV[rank] EBBPSO-T[rank] SELS[rank]

G24-l 0.109 ± 0.033[3] 0.084 ± 0.041[2] 0.025± 0.008[1]

G24-2 0.126 ± 0.030[2] 0.136 ± 0.013[3] 0.050± 0.015[1]

G24-3 0.057 ± 0.018[3] 0.032± 0.005[1] 0.044 ± 0.022[2]

G24-3b 0.134 ± 0.033[3] 0.104 ± 0.015[2] 0.052± 0.018[1]

G24-4 0.131 ± 0.032[2.5] 0.138 ± 0.022[2.5] 0.082± 0.021[1]

G24-5 0.126 ± 0.030[2.5] 0.126 ± 0.019[2.5] 0.054± 0.014[1]

G24-6a 0.215 ± 0.067[3] 0.116 ± 0.099[2] 0.055± 0.009[1]

G24-6c 0.128 ± 0.025[2] 0.251 ± 0.061[3] 0.052± 0.008[1]

G24-6d 0.288 ± 0.055[2.5] 0.312 ± 0.203[2.5] 0.041± 0.007[1]

G24-7 0.106 ± 0.022[3] 0.045± 0.009[1] 0.087 ± 0.016[2]

G24-8b 0.151 ± 0.058[2] 0.312 ± 0.086[3] 0.055± 0.022[1]

Table 2. Comparison results among eSELS and the other 4 repair algorithms based
on the experimental results in their original papers.

Func dRepairRIGA

[rank]

dRepairHyperM

[rank]

GSA+Repair

[rank]

DDECV+Repair

[rank]

eSELS[rank]

G24-l 0.082± 0.015[3] 0.093± 0.023[4] 0.132± 0.015[5] 0.061± 0.010[2] 0.013± 0.007[1]

G24-2 0.162± 0.021[3.5] 0.171± 0.026[3.5] 0.182± 0.019[5] 0.062± 0.006[2] 0.030± 0.008[1]

G24-3 0.029± 0.004[4] 0.027± 0.005[2.5] 0.028± 0.004[2.5] 0.046± 0.006[5] 0.018± 0.004[1]

G24-3b 0.058± 0.007[2] 0.071± 0.014[3] 0.076± 0.009[4] 0.084± 0.006[5] 0.021± 0.004[1]

G24-4 0.140± 0.028[5] 0.059± 0.010[2] 0.073± 0.012[3] 0.088± 0.011[4] 0.036± 0.009[1]

G24-5 0.152± 0.017[4.5] 0.131± 0.019[3] 0.153± 0.013[4.5] 0.078± 0.008[2] 0.027± 0.024[1]

G24-6a 0.366± 0.033[4.5] 0.358± 0.049[4.5] 0.033± 0.003[1] 0.036± 0.005[2.5] 0.038± 0.006[2.5]

G24-6c 0.323± 0.037[4.5] 0.326± 0.047[4.5] 0.045± 0.004[3] 0.041± 0.010[1.5] 0.040± 0.007[1.5]

G24-6d 0.315± 0.029[5] 0.286± 0.035[4] 0.037± 0.007[2] 0.079 ± 0.006[3] 0.029± 0.004[1]

G24-7 0.154± 0.031[5] 0.067± 0.014[3] 0.018± 0.002[1] 0.107± 0.011[4] 0.035± 0.045[2]

G24-8b 0.341± 0.053[5] 0.257± 0.042[4] 0.192± 0.034[3] 0.074± 0.025[2] 0.025± 0.006[1]

4.3 The Performance Effect of AM, LS and Different Dynamics

We further conducted experiments to check whether the AM and LS can help in
SELS, and comparisons were made among (1) SELS without AM or LS (SELS-
am-ls in short), (2) SELS without LS (SELS-ls in brief), and (3) SELS. Table 3
summarizes the mean and standard deviation of the modified offline error for
each of them along with the comparison results. It is shown that SELS-ls over-
all outperformed SELS-am-ls, and the used LS further improves SELS-ls. This
demonstrates the benefits of using AM and LS.

To evaluate the performance of SELS on different dynamics, we also con-
ducted experiments on small change severity (i.e., k = 1.0, and s = 10) and
large severity (i.e., k = 0.25, and s = 50). Figure 1 gives the evolutionary curves
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Table 3. Comparison results among SELS-am-ls, SELS-ls, and SELS based on exper-
imental results implemented on DCOP test functions. Here, +, −, and ≈ denotes
whether one algorithm is better, worse or equal to another according to Wilcoxon
ranksum test with a level of 0.05.

Func SELS-am-ls SELS-ls vs SELS-am-ls SELS vs SELS-ls

G24-l 0.133 ± 0.037 0.069 ± 0.019 + 0.025 ± 0.008 +

G24-2 0.186 ± 0.017 0.121 ± 0.021 + 0.050 ± 0.015 +

G24-3 0.124 ± 0.038 0.118 ± 0.025 ≈ 0.044 ± 0.022 +

G24-3b 0.233 ± 0.039 0.144 ± 0.021 + 0.052 ± 0.018 +

G24-4 0.199 ± 0.027 0.171 ± 0.030 + 0.082 ± 0.021 +

G24-5 0.162 ± 0.022 0.117 ± 0.017 + 0.054 ± 0.014 +

G24-6a 0.318 ± 0.040 0.163 ± 0.020 + 0.055 ± 0.009 +

G24-6c 0.284 ± 0.030 0.152 ± 0.017 + 0.052 ± 0.008 +

G24-6d 0.198 ± 0.033 0.128 ± 0.023 + 0.041 ± 0.007 +

G24-7 0.121 ± 0.017 0.138 ± 0.018 − 0.087 ± 0.016 +

G24-8b 0.387 ± 0.044 0.242 ± 0.031 + 0.055 ± 0.022 +
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Fig. 1. The Evolutionary difference curves of SELS between different change severity

of the normalised offline error differences between medium and small severity,
and between large and small severity. The X axis denotes the number of objective
function evaluations, and the Y axis denotes difference of the normalised offline
error at each evaluation, which is normalised on each problem in one test func-
tion. In general, we found that SELS performed best on small severity, second
best on medium, and worst on large severity.

5 Conclusion and Future Work

In this paper, a novel speciation-based method was proposed to solve
DCOPs, which combines speciation methods as well as local search together.
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Although the techniques used in SELS are not new, the experimental studies
demonstrated the combination leads to an effective algorithm. In future work,
we will study the performance effect of the choice of local search strategies on the
proposed method, and will also evaluate this new method on more test functions.
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Abstract. Surrogate-assisted evolutionary multiobjective optimization
algorithms are often used to solve computationally expensive problems.
But their efficacy on handling constrained optimization problems hav-
ing more than three objectives has not been widely studied. Particularly
the issue of how feasible and infeasible solutions are handled in generat-
ing a data set for training a surrogate has not received much attention.
In this paper, we use a recently proposed Kriging-assisted evolutionary
algorithm for many-objective optimization and investigate the effect of
infeasible solutions on the performance of the surrogates. We assume
that constraint functions are computationally inexpensive and consider
different ways of handling feasible and infeasible solutions for training the
surrogate and examine them on different benchmark problems. Results
on the comparison with a reference vector guided evolutionary algorithm
show that it is vital for the success of the surrogate to properly deal with
infeasible solutions.

1 Introduction

Problems involving several conflicting objective functions are called multiobjec-
tive optimization problems. Such problems are typical e.g. in industrial applica-
tions. Because of the conflict, there typically does not exist a single solution but
multiple so-called Pareto optimal solutions. The set of all Pareto optimal solu-
tions in the objective space is called a Pareto front. Problems involving more
than three objectives are sometimes referred to as many-objective optimiza-
tion problems. In industrial optimization problems, computationally expensive
functions are common, where function evaluations are time-consuming because
of employing e.g. finite element methods. Such problems are usually handled
using surrogates, which are approximate functions that replace the computation-
ally expensive ones. For overviews of surrogate-assisted evolutionary algorithms
(SAEAs) for single and multiobjective optimization, see [1,2]. Surrogate-assisted
evolutionary algorithms for many-objective optimization have not received much
attention but recently a novel Kriging-assisted evolutionary algorithm for many-
objective optimization called K-RVEA [3] has been proposed.
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 214–224, 2016.
DOI: 10.1007/978-3-319-45823-6 20
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Although industrial problems involve constraints, they have received little
attention in the literature. The constraints pose a challenge for evolutionary
algorithms to generate feasible solutions. More importantly, the presence of both
feasible and infeasible solutions within a population especially during early gen-
erations may cause problems in surrogate training. Usually, a feasible set of
solutions is required to train the surrogate. In unconstrained problems, the solu-
tions generated always lie in the feasible region while in constrained problems,
it may not be the case. In many cases, an initial set of feasible solutions is not
available or it may take a substantial number of function evaluations. In addi-
tion, infeasible solutions can also play a major role in updating the surrogates
as it will affect the performance of the surrogates in subsequent generations.

Next, we present a summary of approaches used in the literature for con-
strained SAEAs. In [4–6], initial training of surrogates was performed without
considering any information from infeasible solutions, while in [7] a prefixed
number of feasible solutions was used to train Kriging models. For updating the
surrogate, in [4], all feasible nondominated solutions from the latest generation
were re-evaluated and added to the training data set. In [5], all nondominated
solutions after using surrogates were reevaluated without considering the feasi-
bility of the solutions. In [6,7], the probability of feasibility was used for selecting
individuals to update the surrogates. However, all these algorithms were tested
on biobjective optimization problems. Therefore, a detailed investigation has
not been done for handling infeasible solutions in constrained many-objective
optimization.

In this study, we focus on constrained SAEAs for many-objective optimiza-
tion problems and investigate three different approaches for creating a training
data set for surrogates. In the first approach, we neglect all infeasible solutions
and the surrogate is trained only with feasible solutions. In the second approach,
we consider some infeasible solutions close to the feasible region in addition to
the feasible ones and in the third approach, we add a penalty to infeasible solu-
tions to train the surrogates. In all of these cases, we also consider infeasible
solutions for selecting individuals to update the surrogates and to limit the size
of the training data set. To update the surrogates, we select individuals so that
a maximum number of feasible solutions is used without a compromise in con-
vergence and diversity. A similar strategy is used to limit the size of the training
data set. As this can affect the training time, we eliminate individuals in such a
way that the performance of the surrogate is not compromised.

We assume that constraint functions themselves are not computationally
expensive. In other words, the computation time of evaluating constraints is sig-
nificantly lower than evaluating objective functions and therefore, surrogates are
not trained for constraint functions. Such a scenario where constraint functions
are not computationally expensive can exist in different cases. For instance, if
objective and constraint functions are independently evaluated or constraints
are available as analytical functions of the decision variables e.g. thickness to
height ratio while considering the design of some structural part of an aircraft.
Regardless of this assumption, our major contribution is towards showing the
effect of infeasible solutions in training surrogates.
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To test different approaches for handling infeasible solutions, we use
K-RVEA [3]. One of the main reasons and also an advantage to use K-RVEA is
its ability to solve problems with more than three objectives. K-RVEA is based
on the reference vector guided evolutionary algorithm RVEA [8], where the man-
agement of surrogates involves reference vectors. In RVEA, reference vectors are
used to decompose the original problem into a number of subproblems. These
subproblems are simultaneously solved and a set of solutions that approximate
the entire Pareto front is finally obtained. Additionally, the balance of conver-
gence and diversity of the solutions in the high-dimensional objective space is
achieved by using a novel scalarization approach called angle penalized distance
(APD) [8]. K-RVEA is an extension of this algorithm and it uses Kriging models
as surrogates to approximate computationally expensive functions. A flowchart
of K-RVEA is presented in Fig. 1.

Start

Initialize 
population

Call objective 
functions/ 
simulator

Add to training 
data set

Remove extra 
individuals from 

the archive

Train Kriging 
models

Run RVEA with Kriging models

Term . 
criterion ?

Update 
surrogate ?Select individuals

Stop
YesYes No

No

Fig. 1. Flowchart of K-RVEA

Initially, a population is initialized randomly or e.g. using Latin hypercube
sampling [9]. Individuals of this population are then evaluated with the original
objective functions and added to a training data set. If the size of this set exceeds
a predefined limit, we eliminate individuals from it. Kriging models for each
objective function are then trained and used to approximate objective function
values. In any generation, if a termination criterion e.g. maximum number of
function evaluations is not met, we update the surrogates after a prefixed number
of generations. To update the surrogates, an efficient selection of individuals is
performed with the help of reference vectors. Individuals are selected so that both
convergence and diversity are managed while updating the surrogates. These
individuals are then re-evaluated with the original functions and added to the
training data set. If the termination criterion is met, nondominated solutions
among all individuals evaluated with the original functions are obtained as the
final solutions. For more details about K-RVEA, see [3].

In the next section, we provide the details of different approaches to handle
infeasible solutions. In Sect. 3, we test and compare three approaches with the
constrained RVEA [8]. Finally, in Sect. 4, we conclude the paper and discuss
future research directions.
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2 Approaches to Handle Infeasible Solutions

In this section, an extension of K-RVEA for constrained problems is presented,
to be called cK-RVEA is given in Algorithm1. cK-RVEA has three phases; ini-
tialization, using the surrogates and updating the surrogates.

Initialization. In the initialization phase, an initial set of feasible and/or infea-
sible solutions is used to train the surrogates. It may be difficult to obtain enough
feasible solutions in the first generation therefore, in some cases, we first find fea-
sible solutions by optimizing the constraint violation as an objective function.
These individuals are stored in a training data set A1. In addition, another set
A2 is used as the storage of nondominated feasible solutions.

Using the Surrogates. In the phase of using the surrogates, Kriging models are
used to approximate objective function values. We use Kriging up to a predefined
fixed number of generations (wmax) before updating the surrogates. We use
the same parameter for the prefixed number of generations that was proposed
for K-RVEA based on a sensitivity analysis. For the selection criterion in this
phase, an individual from each subpopulation with minimum APD is selected
if it is feasible. Otherwise, an individual with a minimum constraint violation
is selected. Individuals thus selected are used as the population for the next
generation.

Updating the Surrogates. The Kriging models are updated after using them
for a fixed number of generations. The selection of individuals to be re-evaluated
is very important for the performance of the surrogates especially when con-
straints are involved. For example, it may be possible that after re-evaluations,
the number of infeasible solutions increases. Therefore, a maximum number
of feasible solutions should be selected. In K-RVEA, a set of individuals U is
selected based on the need of convergence or diversity. To this end, a fixed set of
reference vectors (Vf ) is generated in addition to the adaptive reference vectors
(Va). These reference vectors are used in the selection strategy to be described
below.

Selection Strategy to Update the Surrogates. In K-RVEA, after using
Kriging models for a fixed number of generations, individuals are assigned to the
fixed reference vectors. Then the change in the number of inactive (or empty)
fixed reference vectors from the previous update is calculated. If this change
is smaller than a threshold, we select an individual with the minimum APD,
otherwise with a maximum uncertainty (from the Kriging models). In cK-RVEA,
we use APD or uncertainty if there is at least one feasible solution. Otherwise,
we select an individual with a minimum constraint violation. Next, we provide
a strategy to manage the training data set.

Managing the Training Data. In order to reduce the computation time to
train the Kriging models, we limit the size (maximum size is NI) of the training
data set. For this purpose, we eliminate some individuals from the set after every
time we update the surrogates. We first assign individuals other than the recently
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Algorithm 1. cK-RVEA
Input: FEmax= max number of function evaluations; wmax= prefixed number of gen-

erations before updating Kriging models; NI= max number of individuals in set
A1

Output: nondominated feasible solutions of all evaluated ones from A2

/*Initialization*/
1: Initialize the number of function evaluations FE=0, the generation counter for

using Kriging models w=1 and a counter for the number of updates, tu = 0.
Initialize set A2 = φ

2: Obtain solutions (all feasible OR feasible and infeasible) in the training data set
A1 and update A2 = A1

3: Train a Kriging model for each objective function by using individuals in A1

4: while FE ≤ FEmax do
/*Using the surrogates*/

5: while w ≤ wmax do
6: Run RVEA with Kriging models and update w = w + 1
7: end while

/*Updating the surrogates*/
8: Select a set of individuals U using a selection strategy to update the surrogates

and re-evaluate them with the original functions and update FE = FE + |U |
9: Add individuals from step 8 to A1 and A2 and update |A1| = |A1| + |U | and

|A2| = |A2| + |U |
10: Remove |A1| − NI individuals from A1 using management of the training data,

update w = 1 and tu = tu + 1 and go to step 3
11: end while

evaluated ones to the adaptive reference vectors. These reference vectors are then
clustered into a prefixed number of clusters and an individual either randomly
(if feasible) or with a minimum constraint violation (if infeasible) is selected
from each cluster. In this way, a fixed number of individuals is maintained in the
training data set in order to improve the quality of Kriging models as much as
possible while limiting the computation time.

In the following, we present three different approaches to handle infeasible
solutions and variants of cK-RVEA using them are denoted by cK-RVEA1, cK-
RVEA2 and cK-RVEA3.

Rejecting All Infeasible Solutions. In cK-RVEA1, surrogates are trained
only with feasible solutions. Using feasible solutions to train the surrogates can
help in increasing their performance, especially when the feasible region is very
small. This is the case for example in problem C1-DTLZ1 [10], which also con-
tains many locally Pareto optimal solutions. If the surrogate is trained with
infeasible solutions, the approximated values from it may be far from the feasi-
ble region. Therefore, it is appropriate to find feasible solutions first and then
use the surrogate for approximating objective functions.

Using Some Infeasible Solutions. In cK-RVEA2, we use some infeasible
solutions close to the feasible region in addition to the feasible ones to train the
surrogates. The main advantage of this is that when infeasible solutions are also
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used for training, the surrogates may be able to approximate a more diverse area
without too much reduction in their performance. However, how close and how
many infeasible solutions should be used are two important challenges.

For both cases mentioned above i.e. cK-RVEA1 and cK-RVEA2, a single
objective genetic algorithm with niche based selection [11] is used for consider-
ing constraint violation as the objective function to obtain a fixed number of
solutions in the feasible region. The termination criterion in this algorithm is to
obtain adequate number of feasible solutions. A niche based selection ensures
that a diverse set of feasible individuals in the decision space is obtained to train
the surrogates. However, the diversity in the decision space does not guarantee
diversity in the objective space and needs further attention.

Adding Penalty to Infeasible Solutions. In cK-RVEA3, we train surrogates
with individuals generated randomly or e.g. with a Latin hypercube sampling
and add a penalty to infeasible solutions. The main challenge in penalty based
methods is to use an appropriate penalty parameter and we adopt here three
methods from the study in [12]. In the first method, denoted by cK-RVEA3-I, a
static penalty is added to each objective function value of fi i.e.

fi(x) = fi(x) + R
m∑

j=1

|gj(x)|, (1)

where R is the penalty parameter and | | denotes the absolute value of the con-
straint gj . Note, however, that, we use | | to represent the number of individuals
in a set hereafter (except in (3)).

In the second method of using a penalty parameter denoted by cK-RVEA3-
II, we adapt it with the number of feasible solutions obtained. After a certain
number of function evaluations e.g. FE ≥ FEth, the penalty parameter R is
decreased if the number of feasible solutions has increased from the previous
generation and vice versa i.e.

R =

⎧
⎨

⎩

R

c1
if FE ≥ FEth Δ|Pf | > 0

Rc2 if FE ≥ FEth Δ|Pf | < 0
(2)

where c1 and c2 are predefined parameters and Δ|Pf | denotes the change in the
number of feasible solutions.

In the third method, cK-RVEA3-III, we use the method of parameter free
penalty, where

fi(x) =
{

fi(x) if gj(x) ≥ 0, j = 1, . . . ,m
fmax
i +

∑m
j=1 |gj(x)| otherwise (3)

where fmax
i is the maximum value of fi at the current generation. The main

advantage of using this method is that no parameter is included and infeasible
solutions are always penalized.
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3 Numerical Experiments

In this section, results of experiments on the constrained versions of DTLZ prob-
lems [10] are presented. As mentioned, we consider three different approaches and
compare them with each other and also with the constrained variant of RVEA
[8]. Parameter values for niching are the same as used in [11] and values of para-
meters involved in K-RVEA are as follows: (a) number of individuals to train
the surrogate in initialization phase = number of reference vectors, NI = 50,
(b) number of independent runs = 10, (c) maximum number of function eval-
uations = 300 and (d) number of generations before updating Kriging models,
wmax = 20. In addition, we introduced the following parameters in cK-RVEA:
(a) number of feasible solutions in cK-RVEA2 = 40, (b) static penalty used in
cK-RVEA3-I, R=10000, (c) parameters used in cK-RVEA3-II (from [12]), c1 = 3,
c2 = 4 and initial value of penalty parameter, R = 1.

The number of decision variables was set to 10 for all problems and the
number of constraints varied from one to ten. Inverted generational distance
(IGD) was used as the performance measure and a Wilcoxon rank sum test
analysis with a significance level of 5% was adopted to compare the results.
Results for cK-RVEA1, cK-RVEA2, cK-RVEA3-I and cRVEA for different num-
bers of objectives (denoted by k) are reported in Table 1, where ↑ represents that
cK-RVEA1 performed better than the other, ↓ means that it performed worse,
while ≈ means that statistically there is no significant difference between the
two algorithms.

Table 1. Results for IGD values obtained by cK-RVEA1, cK-RVEA2, cK-RVEA3-I
and cRVEA. The best results are highlighted

Prob. k cK-RVEA1 cK-RVEA2 cK-RVEA3-I cRVEA

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

C1-DTLZ1 3 0.098 0.154 0.166 ≈ 0.147 0.159 0.168 ↑ No feasible solution ↑ No feasible solution

6 0.148 0.176 0.199 ≈ 0.107 0.174 0.219 ↑ No feasible solution ↑ No feasible solution

8 0.258 0.269 0.281 ↓ 0.217 0.248 0.270 ↑ No feasible solution ↑ No feasible solution

10 0.197 0.205 0.236 ≈ 0.166 0.212 0.252 ↑ 0.309 0.359 0.420 ↑ 0.194 0.228 0.311

C2-DTLZ2 3 0.155 0.213 0.271 ≈ 0.189 0.215 0.283 ↑ 0.433 0.592 0.752 ↑ 0.205 0.260 0.291

6 0.373 0.388 0.407 ≈ 0.349 0.406 0.443 ↑ 0.599 0.737 0.965 ↑ 0.389 0.435 0.530

8 0.387 0.479 0.598 ≈ 0.424 0.542 0.755 ↑ 0.533 0.782 0.974 ↑ 0.522 0.601 0.703

10 0.527 0.623 0.729 ↑ 0.571 0.727 0.878 ↑ 0.624 0.783 0.956 ↑ 0.571 0.615 0.673

C3-DTLZ4 3 0.163 0.198 0.256 ≈ 0.160 0.187 0.216 ↑ 0.183 0.249 0.386 ≈ 0.199 0.220 0.236

6 0.467 0.500 0.534 ≈ 0.489 0.527 0.602 ↑ 0.537 0.587 0.646 ↑ 0.574 0.595 0.649

8 0.629 0.674 0.713 ≈ 0.602 0.682 0.808 ↑ 0.713 0.801 0.856 ↑ 0.739 0.798 1.008

10 0.779 0.860 0.903 ↓ 0.781 0.824 0.897 ↑ 0.891 0.991 1.299 ≈ 0.799 0.836 0.916

As can be seen, in C1-DTLZ1, cK-RVEA3-I and cRVEA were not able to
find any feasible solutions in 300 function evaluations. The feasible region in C1-
DTLZ1 is very small, therefore, using directly a surrogate or adding a penalty
without finding feasible solutions was not useful for the surrogates as solu-
tions are far from the feasible region. Therefore, it is important to find suffi-
ciently many feasible solutions and then use surrogates. Both cK-RVEA1 and



On Constraint Handling 221

0 0.5 1 1.5 0
1

20

0.5

1

1.5

cK−RVEA1

0 0.5 1 1.5 0
1

20

0.5

1

1.5

cK−RVEA2

0 0.5 1 1.5 0
1

2
0

0.5

1

1.5

cK−RVEA31

0 0.5 1 1.5 0
1

2
0

0.5

1

1.5

cRVEA

Fig. 2. Nondominated solutions obtained by cK-RVEA1, cK-RVEA2, cK-RVEA3-I and
cRVEA denoted by circles of the run with the best IGD value for three-objective C2-
DTLZ2 test problem. Here ∗’s represent the Pareto front.

cK-RVEA2 found feasible solutions using the single objective genetic algorithm
with constraint violation as the objective function.

We also performed a sensitivity analysis for the parameters of cK-RVEA2
i.e. the number of infeasible solutions and how close to the feasible region they
should be. As mentioned in the parameter settings, the number of solutions was
50 to train the surrogates. In this sensitivity analysis, we used 10, 20 and 30
infeasible solutions out of 50 and rest of them were feasible. For each case, we
changed the distance of solutions from the feasible region. To do that, we used
the normalized constraint violation of 0.5, 0.25, 0.1 and 0.001. Therefore, all
together 12 studies were performed to analyze the number of infeasible solutions
and their distance to the feasible region. Out of all these limited studies, the
case with 10 infeasible solutions and the normalized constraint violation of 0.1
performed best and results from this case are shown in Table 1. However, self-
adapting both the parameters is a future research topic.

Nondominated solutions of C2-DTLZ2 with three objectives of the run with
the best IGD value from cK-RVEA1, cK-RVEA2, cK-RVEA3-I and cRVEA are
shown in Fig. 2. As can be seen, cK-RVEA1 and cK-RVEA2 performed compa-
rably and solutions from both variants got close to the Pareto front. In contrast,
solutions of cK-RVEA3-I, where a penalty is added to infeasible solutions did
not converge to the Pareto front. However, when infeasible solutions were used in
addition to feasible ones in cK-RVEA2, they got closer to the Pareto front. Paral-
lel coordinate plots of C3-DTLZ4 with 10 objectives of the run with the best IGD
values are shown in Fig. 3. As can be seen, solutions from both cK-RVEA1 and
cK-RVEA2 had large ranges in some of the objective values compared to other
algorithms. Furthermore, as can be seen from the table, in most of the cases, the
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Table 2. Results for IGD values obtained by cK-RVEA3-I, cK-RVEA3-II and cK-
RVEA3-III. The best results are highlighted

Problem k cK-RVEA3-I cK-RVEA3-II cK-RVEA3-III

Min Mean Max Min Mean Max Min Mean Max

C1-DTLZ1 10 0.309 0.359 0.420 ≈ 0.257 0.313 0.336 ≈ 0.284 0.362 0.497

3 0.433 0.592 0.752 ↓ 0.206 0.332 0.461 ≈ 0.318 0.637 0.961

C2-DTLZ2 6 0.599 0.737 0.965 ↓ 0.528 0.636 0.913 ≈ 0.570 0.850 1.036

8 0.533 0.782 0.974 ≈ 0.579 0.682 0.787 ≈ 0.620 0.888 1.038

10 0.624 0.783 0.956 ≈ 0.575 0.704 0.867 ↑ 0.632 0.903 0.998

3 0.183 0.249 0.386 ↓ 0.180 0.200 0.222 ≈ 0.195 0.251 0.293

C3-DTLZ4 6 0.537 0.587 0.646 ≈ 0.554 0.599 0.723 ↑ 0.586 0.673 0.730

8 0.713 0.801 0.856 ≈ 0.731 0.837 1.006 ↑ 0.772 0.938 1.052

10 0.891 0.991 1.299 ≈ 0.836 0.967 1.126 ↑ 1.013 1.169 1.363
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Fig. 3. Parallel coordinate plot of nondominated solutions obtained by cK-RVEA1, cK-
RVEA2, cK-RVEA3-I and cRVEA of the run with the best IGD value on 10-objective
C3-DTLZ4 test problem.

constrained variant of RVEA (i.e. without surrogates) performed worse than the
others.

When comparing penalty based methods as detailed in Sect. 2, results are
given in Table 2. As can be seen, the adaptive penalty method in most of the
cases performed equivalently or better than the static penalty method. In any
case, the method of the parameter free penalty was not able to outperform
other methods. All these results show the influence of infeasible solutions on the
performance of the surrogates. These results indicate that an adaptive way of
handling infeasible solutions seems to be needed although more testing needs to
be done on other benchmark problems.
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4 Conclusions and Future Research

In this paper, we investigated the influence of different constraint handling
strategies for collecting training data on the performance of surrogates. These
strategies were investigated on the constrained DTLZ problems using K-RVEA.
Results from the study show that handling infeasible solutions in selecting train-
ing data is very important. Using only feasible solutions i.e. cK-RVEA1 in most
cases performed better than others because individuals approximated by the
surrogates lie in the feasible region. However, it depends on the problem used as
infeasible solutions may be helpful to increase the performance of the surrogates.
Moreover, a hybrid approach to combine the different approaches e.g. how many
and how close should be infeasible solutions to the feasible region, how to adapt
the penalty parameter etc. can be beneficial. In addition, as few constrained
many-objective optimization problems exist in the literature, developing and
testing on new problems will also be our future work.

Acknowledgement. This work was supported by the FiDiPro project DeCoMo
funded by TEKES, The Finnish Funding Agency for Innovation.
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Abstract. Biological and artificial evolution can be speeded up by
environmental changes. From the evolutionary computation perspective,
environmental changes during the optimization process generate dynamic
optimization problems (DOPs). However, only DOPs caused by intrinsic
changes have been investigated in the area of evolutionary dynamic opti-
mization (EDO). This paper is devoted to investigate artificially induced
DOPs. A framework to generate artificially induced DOPs from any
pseudo-Boolean problem is proposed. We use this framework to induce
six different types of changes in a 0–1 knapsack problem and test which
one results in higher speed up. Two strategies based on immigrants,
which are used in EDO, are adapted to the artificially induced DOPs
investigated here. Some types of changes did not result in better per-
formance, while some types led to higher speed up. The algorithm with
memory based immigrants presented very good performance.

1 Introduction

In a recent work [11], Steinberg and Ostermeir investigated the hypothesis that
environmental changes can help molecular evolution to cross fitness valleys. They
experimentally tested four strategies for inducing environmental changes in the
evolution of an antibiotic resistance gene (TEM-15 β-lactamase). One particular
strategy, where low antibiotic resistance individuals are selected in the initial
steps, produced very interesting results. When the evolutionary pathways were
analysed, it was observed that an initially deleterious mutation allowed to access
a promising part of the sequence space. This part of the sequence space was very
difficult to be reached when environmental changes had not occurred.

The idea that biological and artificial evolution can be speeded up by envi-
ronmental changes is not new [6,9,12]. Kashtan et al. [6] compared two strate-
gies for inducing environmental changes in the in silico evolution of five mod-
els: (i) logic circuits; (ii) feed-forward logic circuits; (iii) feed-forward artificial
neural networks; (iv) feed-forward circuits; (v) RNA structure. The two strate-
gies were modularly varying goals and randomly varying goals. Greater speed
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 225–236, 2016.
DOI: 10.1007/978-3-319-45823-6 21
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up was obtained for the first strategy, where subgoals are inserted or removed
during the optimization process. Populations can spend long periods around
metastable states. Environmental changes modify the fitness landscape and evo-
lution dynamics [13], allowing populations to eventually escape from local optima
and plateaus [6]1.

In the evolutionary computation (EC) perspective, the occurrence of envi-
ronmental changes during artificial evolution generates dynamic optimization
problems (DOPs). In recent years, there is an increasing interest in evolutionary
dynamic optimization (EDO) [2,8]. However, to the best of the authors’ knowl-
edge, the works published in this area deal with DOPs where environmental
changes are intrinsic. In other words, artificially induced DOPs are not consid-
ered. Here, we investigate artificially induced DOPs in a perspective of EDO. In
[6], strategies for inducing environmental changes in specific DOPs were inves-
tigated. We propose a general framework to artificially induce environmental
changes in any pseudo-Boolean optimization problem2. The proposed frame-
work is based on the DOP benchmark generator introduced in [14], which will
be presented in Sect. 2. The proposed framework will be presented in Sect. 3.

In the experiments used to test the proposed framework, environmental
changes are artificially induced in the 0–1 knapsack problem in order to eventu-
ally speed up evolution. The experimental results are presented in Sect. 4. It is
important to highlight that testing whether environmental changes can speed up
evolution is only one of the possible motivations to artificially induced changes
in EC. For example, we can artificially induce environmental changes in order
to increase the robustness of the solutions [3]. Also, we can control when envi-
ronmental changes can be inserted in some applications, e.g., those involving
cooperation and competition [10]

From a programmer point of view, there are two main differences between
artificially induced and intrinsic DOPs. In artificially induced DOPs, the pro-
grammer should decide when and how to change the problem, which is impossi-
ble in intrinsic DOPs. To this aim, one needs to answer two questions: (i) When
should the changes be inserted? (ii) How the fitness landscape should be modi-
fied? We strongly believe that trying to answer these two questions opens new
research possibilities in EDO. Researchers can investigate the best way to change
the fitness landscapes from a theoretical point of view.

From a practical point of view, knowing beforehand when the changes occur,
new algorithms and operators can be designed. For example, hypermutation
re-introduces diversity by increasing the mutation rate after a change. Knowing
when a change will occur allows to apply hypermutation some generations before
the change. The development of new algorithms and operators is also important

1 The idea of changing the static fitness landscape in order to make the optimiza-
tion process easier is also present in other approaches. For example, in multi-
objectivization, a single-objective problem is transformed into a multi-objective
problem [7]. Another example is adding noise to the fitness function [5].

2 In a pseudo-Boolean optimization problem P , the fitness function is fP (x) ∈ R,
where x ∈ B

l is a candidate solution vector with dimension l.
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because the goal in intrinsic and artificially induced DOPs can be different.
In intrinsic DOPs, the goal is to track the moving optima, while in artificially
induced DOPs we can be interested in finding the optima only for the static
problem. Here, we test two very simple strategies to deal with artificially induced
DOPs in Sect. 3.

2 DOP Benchmark Generator

Based on the analysis of fitness landscape changes in someDOPs, a benchmark gen-
erator for dynamic pseudo-Boolean optimization problems was proposed in [14].
The generator allows to create DOPs from any pseudo-Boolean optimization prob-
lem P with (static) fitness function fP (x), where x ∈ B

l. A DOP is considered as a
sequence of static landscapes (environments) modified by changes [8]. In the DOPs
created by the generator, the fitness function is given by:

f(x, e) = fP
(
g(x, e)

)
+ Δf

(
g(x, e), e

)
, (1)

where e is the index of environment, i.e., it indicates a static fitness landscape
between two consecutive changes [13]. Instead of computing the static fitness
fP (.) at position x, it is computed at position g(x, e). Besides, a deviation
Δf

(
g(x, e), e

)
is added to fP (.). The generator allows to create 6 different types

of DOPs based on the choice of g(x, e) and Δf
(
g(x, e), e

)
, as described below.

2.1 DOP Type 1: DOP with Permutation

In this case, Δf
(
g(x, e), e

)
= 0 and g(x, e) is given by a permutation of x. In

the generator, 3 different ways to permute x are employed.

DOP Type 1.1 (Permutation of the XOR Type): The candidate x is
permuted according to: g(x, e) = x ⊕ m(e), where:

m(e) =
{
0l, for e = 1
m(e − 1) ⊕ r(e), for e > 1 (2)

where “⊕” is the XOR operator and r(e) is a binary template that is randomly
created in each environment e and contains �ρ · l� ones, where 0 ≤ ρ ≤ 1. The
change severity is controlled by ρ. DOP Type 1.1 produces the same type of
change as the XOR DOP generator [14].

DOP Type 1.2 (Permutation Defined by a Permutation Matrix): The
permutation is given by: g(x, e) = B(e)x, where the permutation matrix B(e)
is incrementally modified according to:

B(e) =
{
Il, for e = 1
C(e)B(e − 1), for e > 1 (3)
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where C(e) is a permutation matrix obtained by randomly exchanging �ρ · l�
lines of the l-dimensional identity matrix Il. In fact, the use of matrices would
imply in a computational cost O(l2). This cost can be reduced to O(l) by using
an integer vector to record the positions of the permuted variables of x. Similar
strategies are adopted for other DOP types.

DOP Type 1.3 (Permutation According to a Set of Templates): The
permutation is defined by:

g(x, e) =
{
x ⊕ mj(e), if x ∈ sj(e), j = 1, . . . , ns

x, otherwise (4)

where sj(e) is a template defining a hyperplane in B
l and ns is the number of

templates. The templates, or schemata in the genetic algorithms terminology,
are composed of digits 0, 1 and * (do not care) and can be associated with
subsets of solutions. Each template sj(e) is given by:

sj(e) =

⎧
⎨

⎩

0l, for e = 1
rj , for e = 2
D(e)sj(e − 1), for e > 2

(5)

where rj is a random template with order equal to os, and D(e) is a permutation
matrix obtained by randomly exchanging os lines of the l-dimensional identity
matrix. The template mj(e) ∈ sj(e) contains l−os

2 ones generated in random
non-fixed positions of sj(e). The order of the template sj(e) is equal to os for
e > 1. The following combinations (os, ns) ∈ {(3, 1), (2, 1), (1, 1), (1, 2), (1, 3)},
corresponding to ρ ∈ {0.125, 0.25, 0.5, 0.75, 0.875}, are used.

2.2 DOP Type 2: Copying Decision Variables

Here, Δf
(
g(x, e), e

)
= 0 and g(x, e) is a transformation that produces decision

variables that are copies of other decision variables. Two ways of copying the
variables are considered: one where the variables in x are copied from other vari-
ables in x and another where the variables are copied from those in a template.

DOP Type 2.1 (Copying Decision Variables Using a Linear Transfor-
mation): The candidate solutions are linearly transformed by: g(x, e) = L(e)x,
where L(e) is a binary matrix generated according to:

L(e) =
{
Il, for e = 1
Q(e), for e > 1 (6)

where Q(e) is a matrix obtained by randomly copying �ρ · l
2� lines of the

l-dimensional identity matrix into other lines.
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DOP Type 2.2 (Copying Decision Variables from a Template): The
transformation is given by:

g(x, e) =
{
m(e), if x ∈ s(e)
x, if x /∈ s(e) (7)

where s(e) is a template given by:

s(e) =
{
0l, for e = 1
θ(e), for e > 1 (8)

The order of the random template θ(e) is l − �ρ · l
2�. The binary template

m(e) ∈ s(e) is randomly generated at each environment e.

2.3 DOP Type 3: Adding Fitness Deviation by a Set of Templates

In this DOP type, x is not transformed, i.e., g(x, e) = x. The fitness deviation
Δf

(
g(x, e), e

)
= Δf(x, e) is given by:

Δf(x, e) =
ns∑

j=1

a(x, sj(e), e), (9)

where ns is the number of templates. The order of each template sj(e) is os.
The parameters os and ns are defined in the same way as in DOP Type 1.3. In
Eq. (9), a

(
x, sj(e), e

)
is given by:

a
(
x, sj(e), e

)
=

{
Δfj(e), x ∈ sj(e)
0, x /∈ sj(e)

(10)

where Δfj(e) is the fitness deviation for sj(e). Here, Δfj(e) is randomly gener-
ated from a uniform distribution in the range [−ρfrange, ρfrange] in each envi-
ronment e. The value of frange is given by the difference between the best and
mean fitness in the initial population (or, if this difference is too small, by the
best fitness in the initial population).

3 Framework for Inducing Environmental Changes

Here, changes are artificially induced in order to test whether they can speed up
evolution. Changes are inserted according to one of the 6 DOP types described
in Sect. 2; we want to test which one produces the best results for speeding up
evolution of a genetic algorithm applied to the 0–1 knapsack problem. In fact,
a little modification is introduced in DOP types 1.3, 2.2, and 3, as described in
Sect. 3.2. The framework for inducing environmental changes in EDO is described
in Sect. 3.1. Variants of the standard genetic algorithm used in EDO are also
tested (Sect. 3.3).
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3.1 Framework

As the objective is to speed up evolution for problem P , we propose a framework
where the static environment for problem P is modified every τ iterations of the
algorithm (generations). The DOP is seen as a sequence of environments, where
the type of each environment is indicated by d(e). While d(e) = 0 indicates that
f(x, e) = fP (x) (i.e., the e-th environment is equal to the static environment for
problem P ), d(e) = c �= 0 indicates an environment produced by DOP type c,
where c ∈ {1.1, 1.2, 1.3, 2.1, 2.2, 3}. When e is odd, i.e., mod(e, 2) = 1, the e-th
environment is equal to the static environment for problem P , i.e., d(e) = 0.
When e is even, i.e., mod(e, 2) = 0, two strategies are compared: (i) Static,
where d(e) = 0; (ii) Dynamic, where d(e) = c and c identifies the DOP Type for
environments where mod(e, 2) = 0. Experiments with each one of the six DOP
types will be presented in Sect. 4.

3.2 DOP Types

Some properties of the DOP types produced by the generator are described [14]:

– Neighbourhood relations: the transformation of the fitness landscapes for DOP
Types 1.1 and 1.2 preserves the neighbourhood relations in the search space. In
other words, instead of transforming the fitness landscape, we could move the
population according to the respective transformation only one time after the
change and compute f(x, e) = fP (x) during τ generations. The neighbourhood
relations are not preserved for the other DOP types.

– All solutions of the search space are changed for DOP Type 1.1. For DOP
Types 1.3. and 3, the fractions of the search space affected by a change are
equal to ρ ∈ {0.125, 0.25, 0.5, 0.75, 0.875}. For the remaining DOP types, the
number of solutions of the search space affected by a change varies from 2l−1

to 2l − 2 for ρ > 0.

A consequence of the last property is that the change can have no effect in
the dynamics of the population. For example, no effect will be observed when the
solutions in the population are not among those affected by the fitness landscape
modification. As we want to change the dynamics of the population here, we will
use the knowledge about the best current solution in order to change the fitness
landscape for DOP Types 1.3, 2.2 and 3. In this way, a small modification is
introduced. In the DOP generator presented in [14], the first template sj(e) for
DOP Types 1.3, 2.2 and 3 is randomly chosen with no restriction. Here, the
template is chosen assuring that xb(e − 1) ∈ sj(e), where xb(e − 1) is the best
solution found in the e-th environment. Thus, DOPs produced by changes of
types 1.3, 2.2 and 3 have the time-linkage property, i.e., knowing the current
best solution influences the future dynamics of the problem [8].
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3.3 Algorithms

The influence of artificially inducing changes in the 0–1 knapsack problem opti-
mized by a standard genetic algorithm (GA) is investigated here. We also test
variants of approaches used in EDO that replaces part of the population by
immigrants. Two types of immigrants are tested:

– Random immigrants (RIs) [1]: when this strategy is used, 20% of the popula-
tion is replaced by randomly generated individuals.

– Memory immigrants (MIs) [15]: when this strategy is used, 10% of the popu-
lation is replaced by individuals stored in a memory population.

Instead of inserting immigrants in every generation, they are inserted only
after a change. Also, as we want to optimize problem P , the memory is formed
by the best individuals found in environments with d(e) = 0. As all the indi-
viduals in the memory were generated in environments with the same fitness
landscape, it is not necessary to re-evaluate them when they are re-introduced
in the population. The MIs are re-introduced in environments where d(e) = 0.
The maximum size of the memory population is equal to the size of the GA
population (popsize). When the maximum size is reached, a random individual
of the memory population is replaced by the new individual, with exception for
the best individual in the memory population. One can observe that we are using
the knowledge about the changes in the problem in order to design the memory
immigrants approach.

4 Experiments

4.1 Experimental Design

The fitness function for the 0–1 knapsack problem [4] is given by:

fP (x) =
l∑

i=1

pixi − R(x) (11)

where x ∈ B
l defines the subset of items in the knapsack and pi is the profit of

the i-th item. The penalty R(x) is equal to zero if the sum of the weights in the
knapsack is less than the knapsack capacity C. Otherwise, the penalty is:

R(x) = α

(
l∑

i=1

wixi − C

)

(12)

where wi is the weight of the i-th item and α = maxi=1,...,l(pi/wi). The prof-
its and weights are integers randomly generated in the beginning of each run.
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The profits are in the range [40, 100], while the weights are in the range [5, 20].
The capacity C is equal to 50% of the sum of all weights. The objective is to
maximize the fitness given by Eq. (11).

For all algorithms, the population size (popsize) is 100. Tournament selection,
elitism, bit flip mutation, and uniform crossover are employed. The mutation rate
is 1/l, while the crossover rate is 0.6. In tournament selection, the best among 3
individuals randomly chosen is selected. Results for 4 algorithms, where RIs and
MIs are inserted or not, are tested. The 2 strategies described in Sect. 3.1 are
tested. For the dynamic strategy, results for runs with each one of the 6 DOP
types are presented. The results of 50 runs for each combination of algorithm,
dimension (l), change severity (ρ), and DOP strategy are presented. In the runs,
the change period (τ) is equal to 500 generations. Each algorithm is run for l
seconds. As the execution time is fixed and the number of evaluations for the
algorithms can be different, the number of generations can also be different.

The best fitness obtained in each run is compared to the evaluation of the
global optimum obtained by dynamic programming. The complexity of dynamic
programming for the 0–1 knapsack problem is O(lC), i.e., if C is polynomial, the
algorithm runs in polynomial time. However, for the general case, the problem is
NP-complete. In the experiments presented in the next section, the best fitness
is stored only for the environments where d(e) = 0. In this way, the best from
all generations are considered for the static strategy. However, for the dynamic
strategy, only the results for environments where the index is odd are recorded.

4.2 Experimental Results

Table 1 shows the average error for the experiments. The average error is
obtained by comparing, for each run, the static fitness of the global optimum
with the static fitness of the best solution found by the algorithm. In order
to test whether the best results are due to the use of immigrants (instead of
due to changing the environment), results for runs of the static case with RIs
and MIs are also presented. The results for the dynamic (with different DOP
types) strategy are compared to the respective results for the static strategy.
The Wilcoxon signed-rank test with the confidence level equal to 0.95 is used to
test the statistical significance of the results.

Changing the environments resulted in better performance for some DOP
types, but not for all. The worse results were obtained for DOP Types 1.1 and
1.2. As commented in Sect. 3.2, neighbourhood relations in the search space are
preserved for changes in DOP Types 1.1 and 1.2. The changes produce the same
effect that uniformly moving the solutions to other regions of the search space.
Uniformly moving the individuals of the algorithm to new regions of the search
space did not result in a better performance in the experiments.

The best results were obtained by DOP Type 2.2, followed by DOP Type 3.
It is interesting to observe that, even directly optimizing fP (.) in approximately
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Table 1. Average error (over 50 runs) for static and dynamic environments. The
symbol s indicates that the results are statistically different according to the Wilcoxon
signed-rank test. Bold face indicates that the results for the changing environments are
statistically better than the respective results for the static environment. Italic face
indicates the best result for each dimension.

RI MI ρ DOP type

Static 1.1 1.2 1.3 2.1 2.2 3

l= 200

No No 0.125 0.8± 1.4 0.7± 1.1 0.7± 1.3 0.1 ± 0.4 (s) 0.2 ± 0.4 (s) 0.1 ± 0.2 (s) 0.1 ± 0.4 (s)

0.500 2.3± 1.8 (s) 1.5± 1.6 (s) 0.2 ± 0.5 (s) 0.8± 1.1 0.1 ± 0.3 (s) 0.2 ± 0.5 (s)

0.875 3.1± 2.2 (s) 1.9± 2.4 (s) 0.5± 1.1 1.3± 1.4 0.1 ± 0.4 (s) 0.2 ± 0.5 (s)

No Yes 0.125 0.7± 1.1 1.4± 1.7 (s) 1.5± 2.0 (s) 0.3 ± 0.5 (s) 0.9± 1.2 0.2 ± 0.6 (s) 0.6± 1.1

0.500 1.6± 1.7 (s) 1.6± 1.9 (s) 0.5± 0.9 1.5± 1.8 (s) 0.3 ± 0.5 (s) 0.7± 1.2

0.875 1.4± 1.9 (s) 1.5± 2.0 (s) 0.7± 1.4 1.1± 1.5 (s) 0.1 ± 0.5 (s) 0.8± 1.2

Yes No 0.125 1.1± 1.7 0.7± 1.4 0.9± 1.2 0.2 ± 0.6 (s) 0.4 ± 0.7 (s) 0.0± 0.2 (s) 0.2 ± 0.5 (s)

0.500 1.9± 1.9 (s) 2.0± 2.5 0.2 ± 0.5 (s) 0.8± 1.1 0.1 ± 0.4 (s) 0.2 ± 0.5 (s)

0.875 2.2± 1.9 (s) 1.6± 2.0 0.4 ± 0.7 (s) 1.2± 1.5 0.0± 0.2 (s) 0.1 ± 0.4 (s)

Yes Yes 0.125 0.7± 1.2 1.2± 1.5 1.4± 1.9 (s) 0.3 ± 0.5 (s) 0.9± 1.4 0.1 ± 0.4 (s) 0.7± 1.3

0.500 1.4± 1.7 (s) 1.8± 1.9 (s) 0.5± 1.0 1.2± 1.8 0.2 ± 0.6 (s) 0.7± 1.3

0.875 1.2± 1.6 (s) 1.0± 1.5 0.7± 1.1 1.5± 1.8 (s) 0.1 ± 0.3 (s) 0.6± 1.0

l= 500

No No 0.125 4.4± 2.8 61.6± 9.6 (s) 60.8± 10.0 (s) 13.0± 3.5 (s) 27.8± 5.0 (s) 4.5± 2.0 7.1± 2.8 (s)

0.500 80.7± 15.5 (s) 72.0± 18.6 (s) 9.1± 3.1 (s) 31.4± 7.4 (s) 4.5± 1.5 4.6± 1.7

0.875 124.0± 15.5 (s) 65.9± 11.7 (s) 16.2± 5.6 (s) 75.1± 10.0 (s) 7.1± 2.4 (s) 6.8± 2.2 (s)

No Yes 0.125 6.3± 3.4 4.9 ± 2.3 (s) 5.7± 3.0 5.7± 2.7 4.9 ± 2.6 (s) 2.9 ± 1.9 (s) 5.6± 3.1

0.500 5.3± 2.8 8.2± 3.1 (s) 4.1 ± 2.7 (s) 5.4± 3.5 2.0 ± 1.6 (s) 3.6 ± 2.3 (s)

0.875 7.7± 3.2 (s) 7.3± 3.5 4.7 ± 2.7 (s) 7.1± 3.9 2.0 ± 1.6 (s) 4.2 ± 2.3 (s)

Yes No 0.125 5.2± 2.4 31.6± 7.4 (s) 76.1± 11.2 (s) 16.5± 4.3 (s) 29.5± 4.8 (s) 7.1± 2.0 (s) 4.3 ± 2.2 (s)

0.500 75.3± 14.8 (s) 63.6± 13.3 (s) 19.8± 4.3 (s) 62.2± 9.4 (s) 3.9 ± 1.6 (s) 4.7± 2.1

0.875 74.2± 16.5 (s) 71.6± 11.7 (s) 28.7± 6.9 (s) 83.6± 10.6 (s) 8.0± 2.6 (s) 6.9± 3.3 (s)

Yes Yes 0.125 5.0± 2.6 5.5± 3.0 6.0± 3.3 3.8 ± 2.2 (s) 7.6± 4.6 (s) 2.7 ± 1.9 (s) 5.7± 2.6

0.500 5.7± 3.4 4.8± 2.7 4.4± 2.5 7.5± 3.4 (s) 3.2 ± 2.1 (s) 6.2± 3.1 (s)

0.875 5.7± ± 3.4 5.5± 2.8 4.7± 3.2 7.6± 4.1 (s) 1.8± 1.6 (s) 6.6± 3.3 (s)

half of the generations, the algorithms eventually obtained better results for the
changing environments. With few exceptions, the dynamic strategy with DOP
Type 2.2 resulted in better performance than the static strategy. Table 2 shows
the percentage of successful runs, i.e., where the global optimum was found. For
l = 200, the best result for the static case is 68%, while the global optimum was
found in 96% of the runs of the algorithm with RIs for the dynamic strategy
with DOP Type 2.2. The best results for the changing environments generally
were obtained when the immigrants strategies were employed. However, immi-
grants generally did not result in better performance for the static environment.
In particular, the best results for the changing environments for the experiments
with l = 500 were obtained when MIs were inserted.
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Table 2. Percentage of runs where the global optimum was found. Bold face indicates
that the result for the dynamic environment is better than the respective result for the
static environment. Italic face indicates the best result for each dimension.

RI MI ρ DOP Type (l = 200) DOP Type (l = 500)

Static 1.1 1.2 1.3 2.1 2.2 3 Static 1.1 1.2 1.3 2.1 2.2 3

No No 0.125 62 62 62 88 84 94 92 4 0 0 0 0 2 0

0.500 22 38 88 54 94 82 0 0 0 0 2 2

0.875 16 40 70 40 92 86 0 0 0 0 0 0

No Yes 0.125 64 46 50 78 54 84 68 2 2 2 2 2 16 0

0.500 36 38 62 44 76 62 0 0 8 4 22 6

0.875 44 48 68 52 90 56 0 2 2 0 24 2

Yes No 0.125 56 62 54 82 76 96 84 0 0 0 0 0 0 2

0.500 32 34 80 56 88 84 0 0 0 0 2 0

0.875 24 42 74 42 96 88 0 0 0 0 0 0

Yes Yes 0.125 68 44 48 76 58 90 62 0 2 0 8 2 14 0

0.500 42 40 72 54 86 66 2 4 2 0 6 0

0.875 44 54 58 46 92 66 2 0 4 0 26 0

5 Conclusions

We investigated artificially induced DOPs in this paper. Environmental changes
can be artificially induced for different reasons, e.g., for speeding up evolution.
A framework for generating artificially induced DOPs from any pseudo-Boolean
problem was presented. Six different types of changes can be induced in the
framework proposed here. The experiments with DOPs generated based on the
0–1 knapsack problem showed that better performance was obtained only for
some change types and change severities.

Particularly, changes generated in DOP Type 2.2 resulted in better perfor-
mance. For static environments, the best percentages of successful runs were:
68% (l = 200) and 4% (l = 500). For DOP Type 2.2, the best percentages of
successful runs were: 96% (l = 200) and 26% (l = 500). Results not shown here
for experiments with l = 300 and l = 400 also indicate better performance for the
dynamic strategy3. The best results were obtained when random and memory
immigrants were employed. The memory immigrants approach employed here
makes use of the knowledge about the sequence of changes in the problem. This
is an example of designing strategies to deal with artificially induced DOPs. The
knowledge about the changes and their impact are usually not known in intrin-
sic DOPs. In artificially induced DOPs, the designer controls when and how to
change the environments.

3 The best percentages of successful runs for DOP Type 2.2 were 66% (l = 300) and
42% (l = 400), against 28% (l = 300) and 18% (l = 400) for the static environments.
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Several future works are possible. Concerning the framework proposed here,
it is necessary to better understand the impact of the different change types in
different problems and state-of-art algorithms developed for static and dynamic
optimization. In artificially induced DOPs, it is necessary to theoretically investi-
gate how and when to change the environment according to the objectives of the
programmer. Also, it is necessary to investigate new algorithms and operators
that make use of the knowledge about the changes.
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2. Cruz, C., González, J., Pelta, D.: Optimization in dynamic environments: a survey
on problems, methods and measures. Soft Comput. 15, 1427–1448 (2011)

3. Fu, H., Sendhoff, B., Tang, K., Yao, X.: Robust optimization over time: problem
difficulties and benchmark problems. IEEE Trans. Evol. Comp. 19(5), 731–745
(2015)

4. Han, K.H., Kim, J.H.: Genetic quantum algorithm and its application to combina-
torial optimization problem. In: Proceedings of the 2000 Congress on Evolutionary
Computation, vol. 2, pp. 1354–1360 (2000)

5. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.
IEEE Trans. Evol. Comp. 9(3), 303–317 (2005)

6. Kashtan, N., Noor, E., Alon, U.: Varying environments can speed up evolution.
Proc. Natl. Acad. Sci. 104(34), 13711–13716 (2007)

7. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-
objective problems by multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L.,
Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, p. 269.
Springer, Heidelberg (2001)

8. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey
of the state of the art. Swarm Evol. Comp. 6, 1–24 (2012)

9. Parter, M., Kashtan, N., Alon, U.: Facilitated variation: how evolution learns from
past environments to generalize to new environments. PLOS Comput. Biol. 4(11),
e1000206 (2008)

10. Richter, H.: Coevolutionary intransitivity in games: a landscape analysis. In: Mora,
A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 869–881.
Springer, Heidelberg (2015)

11. Steinberg, B., Ostermeier, M.: Environmental changes bridge evolutionary valleys.
Sci. Adv. 2(1), e1500921 (2016)

12. Tan, L., Gore, J.: Slowly switching between environments facilitates reverse evolu-
tion in small populations. Evolution 66(10), 3144–3154 (2012)

13. Tinós, R., Yang, S.: Analyzing evolutionary algorithms for dynamic optimization
problems based on the dynamical systems approach. In: Yang, S., Yao, X. (eds.)
Evolutionary Computation for Dynamic Optimization Problems. SCI, vol. 490, pp.
241–267. Springer, Heidelberg (2013)



236 R. Tinós and S. Yang

14. Tinós, R., Yang, S.: Analysis of fitness landscape modifications in evolutionary
dynamic optimization. Inf. Sci. 282, 214–236 (2014)

15. Yang, S.: Genetic algorithms with memory-and elitism-based immigrants in
dynamic environments. Evol. Comput. 16(3), 385–416 (2008)



Efficient Sampling When Searching
for Robust Solutions

Juergen Branke(B) and Xin Fei

Warwick Business School, University of Warwick, Coventry, UK
juergen.branke@wbs.ac.uk, xin.fei.14@mail.wbs.ac.uk

Abstract. In the presence of noise on the decision variables, it is often
desirable to find robust solutions, i.e., solutions with a good expected fit-
ness over the distribution of possible disturbances. Sampling is commonly
used to estimate the expected fitness of a solution; however, this option
can be computationally expensive. Researchers have therefore suggested
to take into account information from previously evaluated solutions. In
this paper, we assume that each solution is evaluated once, and that the
information about all previously evaluated solutions is stored in a mem-
ory that can be used to estimate a solution’s expected fitness. Then,
we propose a new approach that determines which solution should be
evaluated to best complement the information from the memory, and
assigns weights to estimate the expected fitness of a solution from the
memory. The proposed method is based on the Wasserstein distance, a
probability distance metric that measures the difference between a sam-
ple distribution and a desired target distribution. Finally, an empirical
comparison of our proposed method with other sampling methods from
the literature is presented to demonstrate the efficacy of our method.

1 Introduction

Many practical real-world problems involve uncertainty on decision variables.
For example, in engineering, the actual product often does not correspond to the
original design because of manufacturing tolerance. In such cases, the solutions
should not only be good, but also robust. If ξ ∈ Ξ are the possible disturbances to
the decision variables, then the solution’s expected fitness (which in the following,
due to consistency with previous publications, we call effective fitness) is

feff (x) =
∫

Ξ

f(x + ξ)dP (ξ) (1)

where P (ξ) is the probability distribution of disturbance ξ. The effective fitness
can be estimated by sampling as f̂eff (x) =

∑
n f(x+ ξn), ξn ∈ Ξ. However, this

is computationally expensive. Several researchers have thus attempted to speed
up the search for robust solutions, surveys on these topics can be found in [2,8].

A previous study [11] has suggested that, for evolutionary algorithms (EAs),
a single disturbed sample f(x+ξ) that is used to evaluate a solution may actually

c© Springer International Publishing AG 2016
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be sufficient. The same study has reported that, in the case of infinite popula-
tion size, an evolutionary algorithm with a single disturbed sample employed
to evaluate each individual behaves in an identical manner to an evolutionary
algorithm that operates directly on the effective fitness function. In the context
of evolution strategies, [1] propose a mechanism to adaptively increase the popu-
lation size over a run, along with a mechanism that adjusts mutation to account
for the noise on the decision variables. To improve the estimate of an individual’s
effective fitness, previous studies have proposed to compute for the average of
multiple samples, preferably based on Latin Hypercube Sampling [3,5].

EAs are population-based iterative search methods; hence, they usually con-
verge to a promising region of the search space and then evaluate many samples
in this area. Hence, at least towards the end of the optimisation run, when the
EA would like to evaluate a solution, information about many other solutions
in the neighbourhood is likely to be available if it is stored in a memory. This
information can be exploited when estimating the robustness of a solution. Two
questions arise:

1. How should the fitness values from the memory be weighted to yield a good
(i.e., accurate and unbiased) estimate of the effective fitness of an individual?

2. If new information in terms of additional fitness evaluations can be collected,
at what location(s) should this information be collected?

In [3], a new sample is taken at ξ = 0, and all the previous fitness values are
weighted with the probability that a disturbance might actually result in the cor-
responding decision vector. However, this may result in a rather biased estimate
if the distribution of memory samples is quite different from the distribution of
expected disturbances. [9] propose to generate several candidate disturbances ξn,
and then select the one that has the maximal minimum distance to any of the
existing memory samples. This aims to fill in gaps in the distribution of memory
samples; however, it is a rather simple heuristic and often results in extreme
solutions being evaluated that are close to the disturbance boundary. [10] uses
surrogate models to estimate the effective fitness.

In this paper, we propose a new method based on the Wasserstein distance
to address the above two questions mentioned above. The Wasserstein distance
measures the distance between two probability measures. The idea is to derive
a large-sample target distribution from the known probability distribution of
disturbances, and then collect new information and reallocate weight values such
that the Wasserstein distance between the used samples and the large-sample
target distribution is minimised.

The paper is structured as follows. Section 2 describes our proposed method
and the mathematical foundation. Section 3 reports on several empirical exper-
iments and a comparison with other methods from the literature. Finally, the
paper concludes with a summary and some ideas for future work.
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Algorithm 1. EA with ASA
Set t ← 1, initialise population P t.
while Termination criterion is not met do

Generate offspring population O from P t.
Generate N disturbance samples xt

n ∈ Ξt, n = 1, . . . , N
for each solution xm ∈ O, m = 1, . . . , λ do

Compute approximate target zn = xm + ξtn
Identify memory solutions in neighbourhood A(xm)
Construct N approximate set candidates Yn(xm) = A(xm) ∪ zt

n

Compute the Wasserstein distance value of each approximate set Yn(xm).
Select the best approximate set Y∗(xm) with the minimum distance value.
Compute the optimal weight values P (Y∗(xm)).
Compute f̂eff (xm) =

∑
k=1 P (yk)f(yk), yk ∈ Y∗(xm).

end for
Set t ← t + 1, update population P t according to f̂eff (xm), m = 1, . . . , λ

end while

2 Proposed Method

This section describes our proposed method called archive sample approximation
(ASA). The following notations are used throughout the paper:

– ξn ∈ Ξ,n = 1, . . . , N : the underlying disturbance on decision variables.
– zn = x + ξn ∈ Z(x), n = 1, . . . , N (approximation target): one realisation of

disturbed solution x.
– yk ∈ Y(x), k = 1, . . . ,K(K ≤ M) (approximation set): the set is used to

approximate Z(x).
– P (Z), P (Y): the probability measure over approximation sets Z(x),Y(x).
– W (P (Y), P (Z)): the Wasserstein distance between P (Y) and P (Z).
– A = {a1, . . . , aL}: the archive of previous fitness evaluations.
– A(x): a subset of A that contains locations in the “disturbance neighbour-

hood”of solution x.

Algorithm 1 describes how ASA can be integrated into an evolutionary algo-
rithm. First, we generate a set of disturbances Ξ from the underlying noise
distribution. Note that the disturbance set changes in every generation, but we
use the same disturbances for all the individuals within one generation. With
disturbance set Ξ, we can generate the approximation target set Z(xm) for solu-
tion xm that would, if evaluated, allow us to compute a good-enough estimate
of the individual’s effective fitness.

Next, we search A(xm) in the “disturbance neighbourhood” of solution xm

from archive A, and include all available memory solutions into approximation
set Y(xm). Meanwhile, we would like to add one additional disturbance realisa-
tion zn for solution xm into its approximation set. As candidates, we consider
all the points in the target set Z(x), and try inserting each one, resulting in N
approximation sets Yn(xm) = A(xm) ∪ zn. The goal of the ASA procedure is to
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find the best approximation set Y∗(xm) with probability measures P (Y∗(xm))
to well approximate the target Z(xm).

Our algorithm uses the Wasserstein distance [6] to decide which approxima-
tion set is the best option (i.e., where to sample) and how to weigh the sam-
ples. This paper implements the L1 Wasserstein distance to quantify the error
in the approximation set, which can be computed by solving the Kantorovich-
Rubinstein transportation problem, as follows.

W (P (Yn), P (Z)) = min
μ

∑

k

∑

n

d(yk, zn)μ(yk, zn)

s. t.
∑

k

μ(yk, zn) = P (zn), ∀n

μ ≥ 0

(2)

Once we obtain the optimal “transportation plan” μ∗ in (2) is obtained, the
optimal weights (probability measure P (Yn) can be determined immediately by
using

P (yk) =
∑

n

μ∗(yk, zn), ∀k. (3)

To identify the best candidate, we simply add, one by one, each target point
to the set of relevant memory locations A(x), and compute their Wasserstein
distance values W (P (Yn), P (Z)). The ASA algorithm aims to find the approx-
imation set Y∗ with the minimum distance value given by

W (P (Y∗), P (Z)) = min
n

(W (P (Yn), P (Z))). (4)

Finally, we discuss the computation issue of linear program (2) and its effi-
cient solution method. For the Kantorovich-Rubinstein transportation problem,
the computation complexity is significantly influenced by the size of the approxi-
mation target. In this paper, we apply duality theory to reduce the computational
effort. We assume that ηn is the dual decision variable for the nth constraint in
(2), then we have

W (P (Yn), P (Z)) = max
η

∑

n

P (zn)ηn

s.t. ηn ≤ d(yk, zn), ∀n, ∀k

(5)

The optimal value is found if ηn satisfies

η∗
n = min

n
d(yn, zk) (6)

Hence, the Wasserstein value can be computed by using

W (P (Yn), P (Z)) ≤
∑

n

P (zn)η∗
n. (7)

The equality will hold if the linear program exhibits strong duality. By nature
of the transportation problem, the optimal decision algorithm should select the
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closest starting point for each destination to minimise the total transportation
cost. Therefore, the optimal weight value for each element in the approximation
set can be computed as

P (yk) =
∑

n λknP (zn)
N

(8)

with

λkn =

{
1 if yk is the closest sample to zn

0 otherwise

where λkn is an index function that is used to count the number of times yk is
the closest sample to zn.

3 Numerical Experiments

3.1 Test Functions

We demonstrate the performance of our proposed method on three 5-D test
problems listed in Table 1. A 1-D visualisation of each test function is shown
in Fig. 1. TP 1 has a single asymmetric peak and has been adapted from [10].
It will allow to examine an algorithm’s ability to precisely identify the location
of the robust solution. TP 2 has been taken from [4] and is multi-modal. The
original fitness function has its optimum at x = 1, whereas the optimum of the
effective fitness is at x = −1, which allows to test whether an algorithm is able
to correctly identify the robust optimum. TP 3 combines both characteristics
and has been adapted from a function used in [10].

Table 1. Test function description

esioNnoitalumroF

TP 1 min 0.9d +
∑d

i=1 Q1(xi),

U(−1, 1)Q1(xi) =

{
−(8 − xi)

0.1e−0.2(8−xi) xi < 8

0 otherwise

x ∈ [0, 10]

TP 2 min
∑d

i=1 Q2(xi)

U(−0.2, 0.2)Q2(xi) =

⎧
⎪⎨

⎪⎩

−(xi + 1)2 + 1.4 − 0.8 |sin(6.283xi)| −2 < xi < 0

0.6 · 2−8|xi−1| + 0.958887 − 0.8 |sin(6.283xi)| 0 ≤ xi < 2

0 otherwise

x ∈ [−2, 2]

TP 3 min
∑d

i=1 Q3(xi)

U(−1, 1)Q3(xi) = 2sin(10e(−0.2xi)xi)e
(−0.25xi)

x ∈ [0, 10]
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Fig. 1. 1-D visualisation of test functions

3.2 Evolutionary Algorithm

Our method can be combined with any metaheuristic. In this paper, we use
a standard CMA-ES [7] for our experiments, with μ = 4, λ = 8, initial
σ0 = 1

4Search Interval Width and equal weighting of the four individuals to
determine the next centre of the mutation distribution.

3.3 Final Solution Selection and Performance Measure

Due to the noise, the effective fitness estimated by the algorithm is likely to
deviate from the true effective fitness. For this reason, we use the barycenter of
the selected parents as the solution that would be returned to the user.

xfinal =
μ∑

i=1

wixi, wi =
1
μ

The effective fitness of final solution is evaluated using Monte-Carlo simulation
with N = 10, 000 samples.

feff (xfinal) =
1
N

N∑

i=1

f(xfinal + ξi)

In order to better understand the quality of the effective fitness estimation, we
furthermore report on the average absolute error AEt by calculating the mean
squared error between the true and approximate effective fitness as follows.

AEt =
1
λ

λ∑

j=1

∣∣∣feff (xm) − f̂eff (xm)
∣∣∣ , xm ∈ Pt

3.4 Target Samples Generation

We test the following three techniques for generating target samples.

1. Monte Carlo sampling (MC).
2. Latin hypercube sampling (LHS).
3. Equidistant sampling (ES) which places all samples on a regular grid with

three points in each dimension.
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3.5 Experimental Setup

We compare our method with three alternative approaches:

1. SEM: take one random sample for each solution. This is the approach pro-
posed in [11].

2. SEM+AR: take one additional random sample for each solution, but also take
into account all memory points in the area of disturbance. The new sample
and all memory points are equally weighted. This is the approach proposed
in [3].

3. ABRSS: A method that uses Latin Hypercube Sampling as reference points,
and then includes for each reference point the closest memory point. To add
a new sample, some random samples are generated and the one furthest from
any memory point is selected. This method has been proposed in [9].

All methods are incorporated into CMA-ES, the size of target samples or refer-
ence points is 35 = 243 for all methods. All reported results are averaged over
30 runs. The computational budget for each run was 2,500 fitness evaluations.

3.6 Results on Convergence Rate and Average Approximation
Error

Figures 2 and 3 compare the convergence rate and approximation error of differ-
ent methods. The effective fitness of the final solution is also reported in Table 2.
As can be seen, ASA has the best convergence behaviour and smallest approx-
imation error in all three test problems. The use of the Wasserstein distance
effectively controls the approximation error, and thus it has a fast convergence
rate. On TP 1, SEM+AR works almost as good as ASA. Because this problem
is unimodal, all algorithms converge to the correct peak, and a lot of memory
samples accumulate there, leading to a very small approximation error also for
SEM+AR. ABRSS is much worse, probably because its sampling mechanism
tries to sample away from existing memory samples, which in this case means at
less relevant points and introducing a bias. The increase in approximation error
for SEM and ABRSS can be explained by their focusing on the peak area, which
has a very large gradient.

ABRSS is the second best method for TP 2 and TP 3. Since SEM and
SEM+AR draw samples randomly, they are more prone to “lucky” over evalu-
ations of individuals. As a consequence, they always discover new presumably
good solutions, move there, and then realise after some time that the solution
was actually not really very good, leading to a jumping behaviour from one local
optimum to another.

3.7 Influence of the Target Sample Generation Mechanism

ASA requires a set of target samples to start with. To better understand the
influence of the target sample generation mechanism, we compare the influence
of different sample generation methods in Figs. 4 and 5. LHS (which we also
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Fig. 3. Average absolute error of different methods

Table 2. Effective fitness after 2,500 evaluations

Method mean ± s.e.

TP 1 TP 2 TP 3

SEM 0.8988 ± 0.0314 −4.1279 ± 0.0434 3.3569 ± 0.0945

SEM + AR 0.5388 ± 0.0069 −4.1845 ± 0.0420 2.8368 ± 0.0939

ABRSS 0.8893 ± 0.0451 −4.3293 ± 0.0388 2.5574 ± 0.0717

LHS + ASA 0.5269 ± 0.0013 −4.4231 ± 0.0362 2.3083 ± 0.0297

used in the previous experiment) performs well in all test functions. Interestingly,
equidistant sampling outperforms other sampling methods in TP 3, but produces
a bad solution in TP 1. This is probably because the boundary of the disturbance
region has a particular large influence for TP 1, and the way we chose the grid
structure that boundary region was never sampled.
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Table 3. Effective fitness after 2,500 evaluations

Target samples mean ± s.e.

TP 1 TP 2 TP 3

MC+ASA 0.5304 ± 0.0030 −4.3308 ± 0.0625 2.3988 ± 0.0583

ES+ASA 0.6416 ± 0.0076 −4.3042 ± 0.0466 2.2872 ± 0.0439

LHS+ASA 0.5269 ± 0.0013 −4.4231 ± 0.0362 2.3083 ± 0.0297

4 Conclusion

We have looked at the problem of searching for robust solutions, where robust
means a good expected fitness over a given distribution of disturbances to the
decision variables. In particular, we have re-considered the idea of estimating a
solution’s effective fitness by making use of previous fitness evaluations stored in
the memory. We proposed a methodology based on the Wasserstein distance to
decide at what location we should evaluate the fitness in order to gain the most
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useful additional information about a solution’s effective fitness, and also how
to weigh the different samples in the neighborhood for estimating the effective
fitness. Empirical comparisons with several previous methods for this problem
on three test functions demonstrates the superiority of our new approach.

Future work will include developing other distance metrics and moving from
an individual based view to a population based view when determining where
to evaluate fitness.
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Abstract. We give a model of parallel distributed genetic improvement.
With modern low cost power monitors; high speed Ethernet LAN latency
and network jitter have little effect. The model calculates a minimum
usable mutation effect based on the analogue to digital converter (ADC)’s
resolution and shows the optimal test duration is inversely proportional
to smallest impact we wish to detect. Using the example of a 1 kHz 12 bit
0.4095 Amp ADC optimising software energy consumption we find: it will
be difficult to detect mutations which an average effect less than 58 μA,
and typically experiments should last well under a second.

Keywords: Theory · Genetic improvement · Genetic programming ·
Software engineering · SBSE · Parallel EC · Distributed power monitor-
ing

1 Introduction

Evolutionary computing (EC) can be incorporated into product development
either by inventing new designs or optimising existing ones. In both it is funda-
mentally important to be able to decide if a design is fit or not. The widespread
adoption of fully functional mobile computers in the form of smartphones has
thrust optimising software energy usage, and so battery life, into the limelight.

In many cases the quality of designs is calculated using simulators before
manufacture. However, it is necessary that the simulation be detailed enough so
that it can tell automatically a better design from an already good design. In the
case of simple electronics such high quality simulator may exist. However even in
the case of single chip devices, such simulators run several orders of magnitude
slower that the software running on the chip and good simulators for the whole
of a portable device may not be feasible. So for feasibility, cost, credibility and
speed there is increasing interest in optimising portable electronic devices by
using real devices and real power monitors (Fig. 1) to measure their true energy
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Fig. 1. MAGEEC power measurement board �http://mageec.org/

consumption and use it as part of the EC fitness function (Bruce 2015). With the
advent of genetic improvement (GI) (Langdon 2015) it is increasingly common
to view software as mutable and apply EC directly to it (White et al. 2008; Bruce
2015; Schulte et al. 2014a). There is great interest in using real measurements.
Although our immediate use case is genetic improvement and the evolution of
better software, here we are concerned with the practical limits of using real-
world measuring devices in EC.

The next section presents a mathematical model of the accuracy of a single
measuring device directly connected to single test device. Since fitness testing is
usually the bottleneck in EC, it is common to consider running fitness tests in
parallel. Section 3 expands the model of discretised measurement to a high speed
Ethernet local area network based distributed system of dozens of computer
hardware under test. Since Ethernet is a stochastic protocol, network delays are
necessarily variable. Section 4 calculates that the best tests will be surprisingly
short, under one second. This is in keeping with our view that often too much care
is taken to get an accurate fitness value, where it is only necessary to be able to
tell a good mutant from a less good one. Section 5 discusses the results in Sect. 4,
ways to avoid EC degenerating into random search, three alternatives to LAN
messages and concludes. To save space some of the intermediate mathematical
steps and some of the discussion have be omitted. (The full text can be found
in our technical report of the same name RN/16/01.)

2 Directly Connected Monitor

Figure 2 shows a system to automatically measure physical components of an EC
fitness function. The “physical system” will be subject to mutations taken from
the current population and the system will attempt to quantify the mutation’s

http://mageec.org/wiki/Power_Measurement_Board
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/rn_16_01.pdf
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Physical
system

measurement
Physical

Conditioning
Signal ADC

Computer

Fig. 2. Typical modern measuring and monitoring systems interface to the real world
(physical system) via an analogue signal conditioning unit, a measuring device (e.g.
a thermocouple) and an Analogue to Digital Converter (ADC). Although we consider
optimising energy consumption, our mathematical framework can be generally applied.
The conditioned signal is converted into an analogue electrical signal, which converted
into a digital signal by the ADC, which is then read periodically at a fixed rate by the
computer.
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Fig. 3. Energy used is given by area of yellow rectangle times supply voltage (5 V)
E = 5I1t = 5 × 203.6 mA × 8.6 mS = 8.753 mJ. Current resolution a = 0.1 mA
(12 bit ADC full scale 0.4095 Amp). Sampling frequency f = 1 kHz. Quantised energy
= 5 × 203.5 mA × 8 mS = 8.14 mJ. Noise = 8.753 − 8.14 = 0.6134. Relative noise
= 0.6134/8.753 ≈ 7 %.
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effect. Our model applies generally to EC using physical measurement. It could
deal with not just the power consumed by the CPU but also by other activities
particularly the screen (Li et al. 2015), radio links and GPS.

In the case of genetic improvement, the mutation is applied to the software
running on the physical devices (e.g. a smartphone) and the ADC (analog to
digital converter) will measure its power consumption. Since phones operate at
about 5 V little signal conditioning other than a fixed resistor is needed.

The simple model we present is potentially suitable for the very high fre-
quency response that modern oscilloscopes are capable of. Since such oscillo-
scopes cost many thousands of pounds we will concentrate on automated power
monitors costing a few tens of pounds each (such as the one in Fig. 1). Notice
that although they cannot measure very high frequency (short duration) effects,
they can still accurately measure average power consumption. Even if there is
significant amounts of power at high frequency, it does not disappear when mea-
sured at lower frequencies and (assuming there are no serious aliasing effects) it
simply contributes to the low frequency average.

The simple model presented in Fig. 3 assumes running the test causes the
power consumption to rise but that the energy monitoring is quantised both
into discrete time samples and that measurements of power consumption are
also discrete. It assumes the power monitor is not synchronised to the start of
the test software but that the start and end of the test are known. The actual
energy used by the test is proportional to the area of the yellow rectangle in
Fig. 3 but the reported (discretised) energy is proportional to the number of
unit rectangles inside the rectangle bounded by the thick black lines and the
x axis. Next we will mathematically model the difference between the two.

– Supply voltage (assumed known and constant) V Volts.
– Sampling frequency = f , e.g. 1000 Hz.
– Current resolution = a, e.g. 0.1 mA, thus a 12 bit Analogue to Digital Con-

verter (ADC) will have a maximum reading of 0.4095 Amperes.
– Unloaded current draw I0 Amps.
– Actual load I1 Amps.
– The actual energy used is V I1t Joules.
– δ is the time in seconds between the load being applied and first the sample.
– Assuming x is positive, the integer part of x is �x� = x − frac (x).

The measured energy is V a
f

⌊
I1
a

⌋ �(t − δ)f� so the discretization noise is

= V I1t − V a

f

⌊
I1
a

⌋
�(t − δ)f�

= V I1t − V a

f

(
I1
a

− frac
(
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a

))(
(t − δ)f − frac ((t−δ)f)

)

= V at frac
(
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)
+ V I1δ − V aδ frac

(
I1
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)

+
V

f
I1frac ((t−δ)f) − V a

f
frac

(
I1
a

)
frac ((t−δ)f) (1)
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Since the start of running the software is unrelated to the exact point in time
measurements are taken, δ will be uniformly scattered in the range [0 to 1/f ]
and so the expected value of δ is 1/2f (Fig. 3). Since I1 is much bigger than a, it
is reasonable to assume the fractional part of I1/a, i.e. frac (I1/a), is uniformly
distributed across the interval [0–1]. (With a uniform distribution in [0–1], the
expected value of frac (·) is 1/2 and the standard deviation is

√
1/12 = 0.288675).

So the expected noise (Eq. 1) becomes:

V at

2
+ V I1

1
2f

− V a
1
2

× 1
2f

+
V

f
I1

1
2

− V a

f

1
2

× 1
2

=
1
2
V at + V

I1
f

− 1
2
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f

Fractional noise =
noise

true energy
=

1
2V at + V I1

f − 1
2V a

f

V I1t
=

1
2

a

I1
+

1
ft

− 1
2

a

fI1t

(2)

We can approximate the fractional noise by dropping the last term in Eq. 2.
We can express Eq. 2 in terms of the current measurement resolution and number
of samples N = ft. Each ADC raw value is I1/a = k. (For a twelve bit resolution
analogue to digital converter and I1 near the middle of the range k ≈ 2048.) So
Eq. 2 becomes fractional noise ≈ 1/4096 + 1/N . That is, with a coarse sampling
the noise is dominated by the number of samples N but if we can either increase
the sampling rate or run the experiment for longer, the 1/N term becomes
less important and the noise tends to a limit given by the resolution of the
ADC. Further, once the number of samples, N , exceeds the resolution of the
ADC there is only marginal reduction in noise from increasing the number of
samples. Using our 12 bit 1 kHz example ADC, there is only marginal gain in
increasing the number of measurements above 4096. That is, greatly increasing
the measurement time, t, above 4096/f ≈ 4 s, gives little further improvement.
See also end of Sect. 4.

3 Distributed Power Measurement

In the previous section we assume that the onset of the load and when its finished
are known exactly. In the case of distributed power monitoring, two commands
are sent via a local area network (LAN). The first is to start the recording
of energy consumption and the second to stop the recording. Initially we shall
concentrate upon the variation introduced by the LAN and then include the
energy measurement noise given by Eq. 1.

Measuring energy is initiated when the start message packet (p1) reaches
the monitoring computer at time s1. (The LAN packets are shown by dotted
arrows in Fig. 4.) When the acknowledgement packet (p2) reaches the test com-
puter (s2), it starts the experiment, raising the current from rest (I0) to I1. t sec-
onds later (e1) the experiment finishes: the load drops back to I0 and the test
computer sends a message packet (p3) stopping the measurement (e2). In Fig. 4
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Fig. 4. Measuring energy is initiated when the start message (left arrow) reaches the
monitoring computer s1. When the acknowledgement reaches the test computer s2,
it starts the experiment, raising the current from rest (I0) to I1. t seconds later the
experiment finishes: the load drops back to I0 and the test computer sends a message e1
ending the measurement e2. The experiment is done twice (blue and red) but different
results are obtained since the network delays are different. As in Fig. 3, energy used
is given by area of under current curves times supply voltage (5 V). Left (blue) =
12.60 mJ, right (red) = 12.40 mJ, relative difference = 0.2/12.60 ≈ 1.6%. (Color figure
online)

the experiment is done twice but different results are obtained since although
the test computer starts at the same time and the experiment takes t seconds in
both cases, the network delays are different.

The measured energy is V (I0(s2 − s1) + (I1 − I0)t). Where (s2 − s1) is the
observed duration. This is longer than t because of the transit times of the two
network packets p2 and p3. (Figure 5 gives transit times for two LAN pack-
ets, there and back.) Now (s2 − s1) = p2 + t + p3 so measured energy =
V (I0(p2 + t + p3) + (I1 − I0)t) = V (I0(p2 + p3) + I1t).

We will assume that the transit times for the LAN packets are on average
the same and that variations are independent. Thus the variance in the energy
measurement due to network work variations (i.e. V , I1 and t are assumed fixed):

V 2I20 (var (p2) + var (p3)) = 2V 2I20 var (p) (3)

Since we assume that p2 are p3 are equally distributed and independent we drop
their subscripts are refer to them both as p. So var (p) is the variance of LAN
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Fig. 5. Distribution of 3780 network delays. Notice approximate match of Normal
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packet transit times (SD (p) =
√

var (p)). The fractional variation in the energy
measurement is

=
√

2 V I0SD (p)
V (2I0p + I1t)

=
√

2 SD (p)
(2p + tI1/I0)

Figure 5 suggests the mean of the two packet transit time (2p) is typically
0.258 mS and

√
2 SD(p) is 24 μs.

The variation in the discretization noise (given by Eq. 1) is due to variation
in the duration t and size I1 of the load. Treating these as independent gives the
variance in the discretization noise. (Remember the variance of the product of
two independent variables x and y (of means X and Y ) is var (xy) = X2var (y)+
Y 2var (x) + var (x)var (y) (Goodman 1960 Eq. 2).)
Remember (Eq. 1) discretization noise/V

= at frac

(
I1
a

)

+ I1

(

δ+
1

f
frac ((t−δ)f)
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We now calculate the variance of discretization noise/V one term at a time. Note
the variance of the uniform distribution of the range [0-1] is 1/12. Starting with
the first (depends on t) and last terms

var
(

at frac
(

I1
a

))
= a2var (t)/3 + a2t2/12 (4)

var
(

−a

f
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(
I1
a

)
frac ((t−δ)f)

)
= 7/144

a2

f2
(5)

Now the middle terms (which depend on both I1 and δ).
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Taking the variance of the first part (assuming that δ and I1 are independent)
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Combining formulae 4–6 gives var (discretization noise/V ) as:

= a2var (t)/3 + a2t2/12 + var (δ) (I1 − a/2)2 + δ2
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Referring to the end of Sect. 2 we have t = N/f and I1 = ka. Since the load
and measurement computers are not synchronised δ = 1/2f and var (δ) = f2/12
(Fig. 3). So var (discretization noise/V ) becomes

=
a2var (t)
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Assuming a 12 bit ADC and I1 approx. half full scale var (discretization noise)

=
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12
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698880 V 2a2

f2

We will assume t is long compared to both the sampling frequency f and the
network variation. This allows us to assume that the variance in the energy
reported is given by the sum of the variance due to network variation (Eq. 3)
and that due noise in the measuring system (Eq. 7).
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Assuming both t and I1 are fixed so variance of energy measurement is

= 2V 2I20var (p) +
V 2a2t2
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(8)

4 Maximising Beneficial Mutation Detection Rate

Suppose we run the original version of the software to be improved and record
its use of energy. We then mutate the software. Suppose the mutation is benefi-
cial, in that it reduces the energy consumed by Δ. (Here we assume the power
consumption is spread uniformly across the time the software runs. Notice we
are assuming the mutation changes the power consumption but the runtime t is
not changed. See Sect. 5). If Δ2 is large compared to the measurement variance
(Eq. 8) then we can reasonably expect to measure that the mutation has been
beneficial. If the difference is small, we may want to repeat the measurement
to increase Δ. However, this would proportionately reduce the rate that we can
test mutations. Equation 8 means we can ask: Is

Δ2 much bigger than 2V 2I20var (p) + V 2a2t2

12 + V 2a2

144f2

(
24k2 − 12k + 14

)
? (9)

Let ΔI = Δ/V t be the beneficial effect of the mutation expressed in terms
of energy divided by the length of the testing period. Notice that increasing the
mutation testing time also increases the variance in the energy measurement.
We divide by the supply voltage V so that ΔI can be expressed as the average
reduction in current. Using Δ2 = (ΔI)2V 2t2 in Question 9 and then dividing
through by V 2 means Question 9 is the same comparison as: Is (the signal)

t2(ΔI)2 much bigger thana2t2

12 + 2I20var (p) + a2

144f2

(
24k2 − 12k + 14

)

Notice the last two terms do not depend on t and so for ΔI > a
√

1/12 we can
make the energy signal bigger than its variability by increasing t. However, we
cannot effectively detect beneficial mutations with a proportionate effect less
than ΔI = a

√
1/12 ≈ 0.3 a. If we require the signal to be at least twice the

variability (4 times the variance) we can calculate the minimum time required.

t2(ΔI)2 =
a2t2

3
+ 8I20var (p) +

a2

36f2

(
24k2 − 12k + 14

)

t =

√
8I20var (p) + a2

36f2 (24k2 − 12k + 14)

(ΔI)2 − a2/3
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Let Δk = ΔI/a, assume I0 ≈ I1 = ka

t ≈
√

24k2var (p) + 1
12f2 (24k2 − 12k + 14)

3(Δk)2 − 1
(10)

Alternatively we can express this minimum time (Eq. 10) as a minimum number
of number of samples using N = ft (N was defined at the end of Sect. 2).

N ≈
√

k2 (24f2var (p) + 2) − k + 14/12
3(Δk)2 − 1

Again assuming a 1 kHz 12 bit ADC and noting that Fig. 5 suggests
√

2 SD(p)
is 24 μs. i.e. var (p) = 2.86 × 10−10 s2. So f2var (p) = 2.86 × 10−4.

N ≈ k

√
2

3(Δk)2 − 1
(11)

Δk is the mutation’s impact on energy consumption, assumed constant over
time, expressed as a current in units of the analogue to digital converter’s reso-
lution. If the average impact of the mutation is large compared to the resolution
of the ADC, then Δk � 0.58. Therefore for our 1 kHz 12 bit ADC and mutations
with a reasonably large impact the measurement need only last 1.7/Δk s.

5 Discussion and Conclusions

Experimental work suggests that the impact of software mutations is very non-
uniform, with many mutations having no effect or being detrimental and only a
small number being beneficial (Langdon and Petke 2015; Schulte et al. 2014b).
Hence setting the experimental parameters to allow rapid detection of large
impact mutations risks not detecting many small impact mutations. Where large
mutations are rare this risks the EC degenerating into random search. Indeed if
the impact of mutations is too small to be reliably detected (i.e. ΔI < 0.58a)
then we cannot expect miracles from EC.

We have modelled the energy consumption of software mutations by assuming
their impact is spread uniformly throughout each test run. This is unlikely to be
true and more sophisticated models might look at how the impact of mutations
is distributed. However, for a mutation to be detected its effect will still need
to be large compared to the ADC sensitivity. This suggests our present lower
bound (ΔI = 0.58a) might be improved at the cost of assuming more about
software mutants, however, it appears that a critical lower bound will still exist.

If the test program is run repeatedly in order to integrate the mutation’s
effect, we would expect repeated patterns in the power monitor’s signal. There
are very sensitive algorithms which can reliably measure periodic differences even
in the presence of sizeable noise.
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Alternatively, it might be possible to use signal processing to recognise the
onset and termination of the measurement period. Or, several low end test beds
(e.g. the Raspberry Pie) have output pins which could be used to start and stop
energy measurement. Finally, both the computer under test and the computer
running the energy monitors have sophisticated clocks, which can be synchro-
nised and thus absolute time (rather than explicit message passing) might be
used to keep track of the start and end of energy consumption experiments.

1. It will be difficult to detect mutations which have on average an effect less
than

√
(1/3) a (a is the ADC’s resolution) on the current consumed. For our

example 12 bit 0.4095 Amp ADC this sets a lower limit of 58 μA.
2. On the other hand if the effect is much bigger than 58μA, there is little to

be gained by running measurement for longer than a second. Equation 11
suggests the ideal duration falls in proportion to the smallest effect size we
wish our evolutionary system to detect.
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Abstract. Several research efforts have shown that a similarity function
synthesized from examples may capture an application-specific similarity
criterion in a way that fits the application needs more effectively than a
generic distance definition. In this work, we propose a similarity learning
algorithm tailored to problems of syntax-based entity extraction from
unstructured text streams. The algorithm takes in input pairs of strings
along with an indication of whether they adhere or not adhere to the
same syntactic pattern. Our approach is based on Grammatical Evolu-
tion and explores systematically a similarity definition space including
all functions that may be expressed with a specialized, simple language
that we have defined for this purpose. We assessed our proposal on pat-
terns representative of practical applications. The results suggest that
the proposed approach is indeed feasible and that the learned similarity
function is more effective than the Levenshtein distance and the Jaccard
similarity index.

Keywords: Distance learning · Entity extraction · String patterns

1 Introduction and Related Work

Many solutions to practically relevant applications are based on techniques that
rely on a form of similarity between data items, i.e., on a quantification of the
difference between any pair of data items in a given feature space. Although such
a similarity may be quantified by many different generic functions, i.e., distances
or pseudo-distances, a wealth of research efforts have advocated the usage of sim-
ilarity functions that are learned from collections of data pairs labelled as being
either “similar” or “dissimilar” [1–3]. Indeed, similarity functions constructed
by a similarity learning algorithm have proven very powerful in many differ-
ent application domains, as such functions may capture the application-specific
similarity criterion described by the available examples in a way that fits the
application needs more effectively than a generic distance definition.

In this work, we focus on the problem of learning a similarity function suitable
for syntax-based entity extraction from unstructured text streams. The identifica-
tion of strings which adhere to a certain syntactic pattern is an essential compo-
nent of many workflows leveraging digital data and such a task occurs routinely
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 260–269, 2016.
DOI: 10.1007/978-3-319-45823-6 24
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in virtually every sector of business, government, science, technology. Devising
a similarity function capable of capturing syntactic patterns is an important
problem as it may enable significant improvements in methods for constructing
syntax-based entity extractors from examples automatically [4–14]. We are not
aware of any similarity definition capable of (approximately) separating strings
which adhere to a common syntactic pattern (e.g., telephone numbers, or email
addresses) from strings which do not.

We propose an approach based on GE, in which we explore systematically
a similarity definition space including all functions that may be expressed with
a specialized, simple language that we have defined for this purpose. The lan-
guage includes the basic flow control, arithmetic and relation operators. It is
expressive enough to describe important, existing similarity definitions, that we
use as baseline in our experimental evaluation. A candidate solution, i.e., an
individual, represents a program in the language which takes a pair of strings
as input and outputs a number quantifying their similarity. Programs are exe-
cuted with a virtual machine that we designed and implemented. The virtual
machine is necessary only for assessing the quality of candidate solutions during
the evolutionary search: the final solution can obviously be implemented in a
more compact and more efficient way based on the specific technology in which
the learned similarity function will be inserted.

We assessed our proposal on several tasks representative of practical appli-
cations, each task being a large text stream annotated with the strings following
a task-specific pattern. We emphasize that we did not learn one similarity def-
inition for each task: instead, we learned a single similarity function from all
tasks except for one and then evaluated the behavior of the learned similar-
ity function on the remaining task—i.e., on a syntactic pattern that was not
available while learning. The results, averaged across all the tasks, demonstrate
that the proposed approach is indeed feasible, i.e., it is able to learn a similarity
function capable of (approximately) separating strings based on their adherence
to a given syntactical pattern. Most importantly, the learned function is more
effective than the Levenshtein distance and the Jaccard similarity index.

An evolutionary approach to metric learning can be found in [15]. The cited
work proposes a general approach for multi-label clustering problems in a given
feature space. We focus instead on a different and more specific problem: syntax-
based entity extraction from unstructured text streams. Furthermore, we aim at
learning a similarity function and do not insist in requiring that the learned
function be a distance. Several proposals have advocated genetic approaches
to similarity learning in the context of case-based reasoning [16–18]. In those
cases, though, the problem was learning a meaningful similarity criterion between
problem definitions, to enable effective comparison of a new problem to a library
of known, already solved problems. We consider instead similarity between pairs
of strings that are a small part of a problem instance. Our problem statement
follows a common approach in similarity learning: input data consist of pairs of
data points, where each pair is known to belong to either the same class (i.e.,
the same pattern) or to different classes [1]. An alternative framework is based
on input data which consist of triplets of data points (a, b, c) labelled with the
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information regarding whether a is more similar to b or to c [19–21]. Such a
relative comparisons framework has proven to be quite powerful, in particular,
for clustering applications. A relative comparison approach could be applied also
to our entity extraction problem and indeed deserves further investigation.

1.1 Problem Statement

The problem input consists of a set of tasks {T1, . . . , Tn} where each task
describes a syntactic pattern by means of examples. Task Ti consists of a pair
of sets of strings (Pi, Ni): Pi contains strings which adhere to the ith pattern
while Ni contains strings which do not adhere to that pattern. The problem
consists in learning a similarity function m̂(s, s′) which, given two strings s, s′,
returns a similarity index capable of capturing to which degree s and s′ adhere
to the same (unknown) syntactic pattern. That is, intuitively, pairs of strings in
Pi should be associated with a “large” similarity index, while pairs consisting of
a string in Pi and a string in Ni should be associated with a “small” similarity
index. Furthermore, this requirement should be satisfied for all tasks by the same
function m̂.

In details, the ideal learned function should satisfy the following requirement:

∀i ∈ {1, . . . , n},∀x ∈ M(Pi, Ni),∀y ∈ M(Pi, Pi), x < y (1)

where M(S, S′) = {m(s, s′) : s ∈ S, s ∈ S′}. For a given problem input, a
function satisfying Eq. 1 may or may not exist; and, even if it exists, a learning
algorithm may or may not be capable of learning that function.

2 Our Approach

2.1 Search Space and Solution Quality

We consider a search space composed of functions that may be expressed
with the language L described in Fig. 1 in the Backus-Naur Form (BNF).
The available mathematical operators are defined in the rule concerning the
〈ValueReturningFunction〉 non-terminal while relation operators are defined in
rule concerning the 〈Condition〉 non-terminal. The language includes basic flow
control operators and allows defining numeric variables and arrays dynamically.
Access to variables and array elements occur by index.

The language is expressive enough to describe commonly used similarity
indexes: in particular, we described the Levenshtein distance and the Jaccard
similarity index—which we used in our experimental evaluation as baselines—
using this language.

We propose an evolutionary approach based on Grammatical Evolution
(GE) [22,23]. GE is an evolutionary framework where candidate solutions (indi-
viduals) are represented as fixed-length numeric sequences. Such sequences
(genotype) are translated into similarity functions (phenotype) by means of a
mapping procedure which uses the production rules in a grammar definition.
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Rules

1. 〈BlockCode〉 ::= 〈RowOfBlockCode〉
2. 〈Statement〉 ::= 〈Assign〉 | 〈CreateArray〉 | 〈CreateVariable〉 | 〈For〉 | 〈If〉 |

〈Return〉 | 〈SetArrayItem〉
3. 〈ValueReturningFunction〉 ::=〈Constant〉 | 〈GetVariableValue〉 | 〈Add〉 | 〈Decrement〉 |

〈Maximum〉 | 〈Minimum〉 | 〈GetArrayItem〉 | 〈GetArrayLength〉 | 〈Division〉 |
〈Multiplication〉

4 〈Assign〉 ::= var[〈ValueReturningFunction〉] = 〈ValueReturningFunction〉
5. 〈CreateArray〉 ::= newArray[〈ValueReturningFunction〉]
6. 〈CreateVariable〉 ::= createVariable()
7. 〈Division〉 ::= (〈ValueReturningFunction〉 / 〈ValueReturningFunction〉)
8. 〈For〉 ::= for(index0 = 0; index0 < 〈ValueReturningFunction〉; index0++) 〈BlockCode〉
9. 〈If〉 ::= if(〈Condition〉) 〈BlockCode〉 else 〈BlockCode〉

10. 〈Return〉 ::= return 〈ValueReturningFunction〉
11. 〈SetArrayItem〉 ::= array[〈ValueReturningFunction〉][〈ValueReturningFunction〉] =

〈ValueReturningFunction〉
12. 〈Add〉 ::= 〈ValueReturningFunction〉 + 〈ValueReturningFunction〉
13. 〈Subtract〉 ::= 〈ValueReturningFunction〉 - 〈ValueReturningFunction〉
14. 〈Maximum〉 ::= maximum(〈ValueReturningFunction〉,〈ValueReturningFunction〉)
15. 〈Minimum〉 ::= minimum(〈ValueReturningFunction〉,〈ValueReturningFunction〉)
16. 〈Multiplication〉 ::= 〈ValueReturningFunction〉 * 〈ValueReturningFunction〉
17. 〈GetArrayItem〉 ::= array[〈ValueReturningFunction〉][〈ValueReturningFunction〉]
18. 〈GetArrayLength〉 ::= array[〈ValueReturningFunction〉].length
19. 〈Constant〉 ::= 0 | 1 | ... | 255
20. 〈GetVariableValue〉 ::= var[〈ValueReturningFunction〉]
21. 〈RowOfBlockCode〉 ::= 〈Statement〉 | 〈Statement〉 \n 〈RowOfBlockCode〉
22. 〈Condition〉 ::= 〈EqualCondition〉 | 〈NotEqualCondition〉 |

〈GreaterCondition〉 | 〈GreaterOrEqualCondition〉
23. 〈EqualCondition〉 ::= 〈ValueReturningFunction〉 == 〈ValueReturningFunction〉
24. 〈NotEqualCondition〉 ::= 〈ValueReturningFunction〉 != 〈ValueReturningFunction〉
25. 〈GreaterCondition〉 ::= 〈ValueReturningFunction〉 > 〈ValueReturningFunction〉
26. 〈GreaterOrEqualCondition〉 ::= 〈ValueReturningFunction〉 >= 〈ValueReturningFunction〉

Alternative rules

2. 〈Statement〉 ::= 〈CreateVariable〉
3. 〈ValueReturningFunction〉 ::= 〈Constant〉

21. 〈RowOfBlockCode〉 ::= 〈Statement〉

Fig. 1. BNF grammar for the language L: below the set of alternative rules (see text).

After early experimentation, we chose to tailor several aspects of the general GE
framework to our specific problem.

In our case, we represent an individual with a genotype consisting of a tuple
g ∈ [0, 255]ngen , where each gi element is a positive 8-bit integer. We chose
ngen = 350 because with such value we were able to obtain, from two suitable
genotypes, the phenotypes corresponding to the Levenshtein distance and the
Jaccard similarity, according to the mapping procedure described below. Given
a genotype, we obtain the corresponding phenotype, i.e., a similarity function
expressed as a program l in the language L, according to an iterative mapping
procedure which works as follows, starting with l = 〈BlockCode〉 and i = 0: (i)
we consider the first occurrence of a non-terminal in l and the corresponding
rule in the BNF grammar for L; (ii) among the nrule ≥ 1 alternatives (i.e.,
possible replacements separated by | in the rule), we choose the (j + 1)th one,
with j equals to the remainder between gi and nrule; (iii) we increment i by
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one: if i exceeds ngen, we set to 1.The procedure is iterated until no more non-
terminals exist in l: since it is not guaranteed that this condition is satisfied
in a finite number of iterations, we implemented a mechanism to overcome this
limitation. We associate a number c with each non-terminal x in l: the value of
c is set to 0 for the starting non-terminal 〈BlockCode〉, or to c′ + 1 otherwise,
where c′ is the number associated with the non-terminal whose replacement
lead to the insertion of x in l. Whenever a non-terminal among 〈Statement〉,
〈ValueReturningFunction〉, and 〈RowOfBlockCode〉 has to be replaced, if its
c exceeds a parameter cmax = 40, we use the alternative rules shown at the
bottom of Fig. 1 instead of the original ones for those non-terminals—in other
words, with this mechanism we pose a depth limit on the derivation trees.

We quantify the quality of an individual encoding a similarity function m
by its fitness f(m), that we define as follows. Given a numeric multiset I, let
Ip% indicate the smallest element i ∈ I greater or equal to the p percentile of
elements in I. Given a pair of numeric multisets (X,Y ), we define the overlapness
function o(X,Y ; p) ∈ [0, 1] as follows:

o(X,Y ; p) =
|{x ∈ X : x ≥ Yp%}| + |{y ∈ Y : y ≤ X(100−p)%}|

|X| + |Y | (2)

Intuitively, o(X,Y ; p) measures the degree of overlapping between elements of
X and Y , assuming that elements in X are in general smaller than elements of
Y : when X and Y are perfectly separated, o(X,Y ; p) = 0,∀p. The value of p
is used to discard extreme (greatest for X and smallest for Y ) elements in the
multisets. The fitness f(m) ∈ [0, 1] of m is given by:

f(m) =
1
2n

n∑

i=1

o
(
M(Pi, Ni),M(Pi, Pi); 10

)
+ o

(
M(Pi, Ni),M(Pi, Pi); 0

)
(3)

where M(S, S′) is defined as for Eq. 1. In other words, the fitness of m is the
average overlapness over the tasks in {T1, . . . , Tn}: for each task, f(m) takes into
account the average between the overlapness of the two multisets M(Pi, Ni) and
M(Pi, Pi) computed on the whole multisets and after discarding 10% extreme
values. The rationale for the latter design choice is to avoid giving too much
importance to possible outliers in the data. Note that a similarity function sat-
isfying Eq. 1 has zero fitness—i.e., fitness should be minimized.

During the evolutionary search, we evolve a fixed-size population of npop

individuals for niter = 200 generations by means of the mutation and two-point
crossover genetic operators, which are applied to individuals selected by means
of a tournament of size 3.

2.2 Virtual Machine

We designed and implemented a virtual machine (VM) capable of executing
programs in language L. A VM program execution takes a pair of strings
(s, s′) as input and returns the value m(s, s′), m being the similarity function
represented by the program.
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As described in Sect. 2.1, the language allows defining numeric variables and
arrays dynamically with access occurring by index. VM provides a running pro-
gram with a list of numeric variables and a list of numeric arrays. Indexes start
from 0 and when a new variable is created the next free index is used: the actual
variable/array being accessed is determined by the reminder of i

nv
. When exe-

cution starts, VM creates two arrays into the arrays list, one for s and the other
for s′: the ith element of each array contains the UTF-8 representation of the ith
character in the corresponding string. The execution stops when a return state-
ment is reached or when the last instruction has been executed: in the latter
case, the returned value is m(s, s′) = 0.

A VM program execution may fail, in which case execution terminates and
the returned value is m(s, s′) = 0. Failure occurs when one of the following con-
ditions is met: division by zero; maximum number nmax of executed instructions
exceeded; maximum array size narray exceeded—we set nmax = 40000 and nmax

=10 length(s) length(s′).

3 Experimental Evaluation

As described previously, a task describes a syntactic pattern by means of exam-
ples, i.e., each task consists of a pair of sets of strings (Pi, Ni): Pi contains strings
which adhere to the pattern while Ni contains strings which do not adhere to
the pattern. We assess our proposal on several datasets representative of pos-
sible applications of our similarity learning method (the name of each dataset
describes the nature of the data and the type of the entities to be extracted):
HTML-href [11,13,14], Log-MAC+IP [11,13,14], Email-Phone [7,8,11,13,14],
Bills-Date [12,14], Web-URL [7,11,13,14], Twitter-URL [11,13,14]. Each dataset
consists of a text annotated with all and only the snippets that should be
extracted.

We constructed a task (P,N) for each such dataset, as follows. Let d denote
the annotated text in the dataset. Set P contains all and only the strings that
should be extracted from d. Set N contains strings obtained by splitting the
remaining part of d. It follows that no pair of elements in P ∪ N overlap. The
splitting procedure is based on a tokenization heuristics that (approximately)
identifies the tokens that delimit P strings in d; those tokens are then used
for splitting N strings in d as well. For example, if strings in P are delimited
by a space, then we split the remaining part of d by spaces and insert all the
resulting strings in N . The details of the heuristic are complex because different
P strings could be delimited by different characters—we omit the details for ease
of presentation.

We performed a cross-fold assessment of our proposed method, i.e., we exe-
cuted one experiment for each of the 6 tasks resulting from the available datasets.
In each ith experiment we executed our method on a learning set consisting of
all but the ith task. We obtained the actual jth pair (P ′

j , N
′
j) of the learning set

by sampling 2nex items of the corresponding (Pj , Nj), i.e., |P ′
j | = |N ′

j | = nex,
with P ′

j ⊆ Pj , N ′
j ⊆ Nj , where nex is a parameter of the experiment which

affects the amount of data available for learning.
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We used the remaining task (Pi, N
′
i) (i.e., all of the examples in Pi and a

number |N ′
i | = |Pi| of examples sampled randomly from Ni) for quantifying the

quality of the learned similarity function m�—m� being the individual with the
best fitness after the last generation. Note that we assessed m� on a task different
from the tasks that we used for learning it.

For each task, we repeated the experiment for 5 times, each time using a
different random seed. We considered the following indexes for each experiment,
which we averaged across the 5 repetitions: the learning fitness LF, i.e., the
fitness of m� on the learning set; the testing fitness TF, i.e., the fitness of m�

on (Pi, N
′
i); the number #I of instructions in m�; the average number #S of

executed instructions while processing pairs in (Pi, N
′
i) with m�.

We explored two different values for the population size npop, 50 and 100
individuals, and three different values for the cardinality of sets of examples nex:
10, 25 and 50.

Table 1 provides the key results (with nex = 50 and npop = 50), separately for
each dataset and averaged across all datasets. To place results in perspective,
we provide all indexes (except for LF) also for two baseline definitions: the
Levenshtein distance, which counts the minimum number of character insertions,
replacements or deletions required to change one string into the other, and the
Jaccard similarity index, which considers each string as a set of bigrams and is
the ratio between the intersection and the union of the two sets. The key result
is that, on average, the definitions synthesized by our method exhibit the best
results. By looking at individual tasks, our synthesized definitions outperform
Jaccard in three tasks, are nearly equivalent in one task and are worse or slightly
worse in the two remaining tasks. Thus, the similarity functions synthesized by
our method are more effective at separating strings based on their adherence
at a certain syntactic pattern with respect to the traditional Levenshtein and
Jaccard metrics.

Table 2 provides further insights into our method by providing results aver-
aged across all tasks for various combinations of available examples nex and

Table 1. Results of our method, with nex = 50 and npop = 50, and the baselines. Best
TF figure highlighted.

Task LF TF #I #S [×106]

GE GE Jac. Lev. GE Jac. Lev. GE Jac. Lev.

HTML-href 0.45 0.42 0.64 0.91 1877 174 103 0.22 3.49 2.25

Log-MAC+IP 0.44 0.08 0.82 0.91 179 174 103 0.06 0.42 0.75

Email-Phone 0.43 0.64 0.56 0.90 352 174 103 0.41 4.62 3.64

Bills-Date 0.49 0.85 0.59 0.90 1116 174 103 1.56 2.71 5.19

Web-URL 0.40 0.30 0.43 0.92 151 174 103 0.72 23.8 10.00

Twitter-URL 0.48 0.30 0.29 0.90 147 174 103 0.84 6.28 8.10

Average 0.45 0.43 0.55 0.90 637 174 103 0.64 6.90 4.99
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population size npop. It can be seen that, with a larger population (npop = 100),
the amount of learning examples does not impact TF significantly, but more
examples lead to more compact and more efficient solutions (smaller #I and
#S, respectively). On the other hand, the configuration with smaller population
(npop = 50) exhibits a slight but consistent improvement in TF when the amount
of examples grows. It can also be observed that more examples lead to solutions
with varying length but that tend to be more efficient (no clear trend in #I and
decreasing #S, respectively). This observation suggests that our method might
perhaps be improved further by a multiobjective optimization search strategy,
where the fitness of an individual would take into account not only its ability of
capturing similarity as specified in the learning examples (to be maximized) but
also the length of the individual (to be minimized).

Table 2. Results (including learning time tl) for different values of npop and nex.

npop nex LF TF #I #S [×106] tl [s]

50 10 0.37 0.45 552 0.59 52

25 0.43 0.44 3076 0.56 245

50 0.45 0.43 637 0.64 715

100 10 0.34 0.50 1138 2.76 110

25 0.40 0.48 1224 0.94 326

50 0.38 0.49 443 0.44 1056

Table 2 also shows the learning time tl, averaged across repetition: we per-
formed the experiments on a platform equipped with an Intel Core i7-4720HQ
(2.60 GHz) CPU and 16 GB of RAM.

4 Concluding Remarks

We have investigated the feasibility of learning a similarity function capable of
(approximately) separating strings which adhere to a common syntactic pattern
(e.g., telephone numbers, or email addresses) from strings which do not. We are
not aware of any similarity function with this property, which could enable signif-
icant improvements in methods for constructing syntax-based entity extractors
from examples automatically—in many application domains, similarity functions
learned over labelled sets of data points have often proven more effective than
generic distance definitions.

We have proposed a method based on Grammatical Evolution which takes
pairs of strings as input, along with an indication of whether they follow a similar
syntactic pattern. The method synthesizes a similarity function expressed in a
specialized, simple language that we have defined for this purpose.

We assessed our proposal on several tasks representative of practical appli-
cations, with an experimental protocol in which we learned a similarity function
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on a given set of tasks (i.e., patterns) and we assessed the learned function on a
previously unseen task. The results demonstrate that the proposed approach is
indeed feasible and that the learned similarity function is much more effective
than the Levenshtein distance and the Jaccard similarity index.

We plan to extend our investigation in two ways: first, synthesize a more pow-
erful similarity function, by using a broader set of patterns and a larger amount
of labelled data points; in this phase there may certainly be room for further
improvements to our Grammatical Evolution method; next, take advantage of
the learned similarity function in order to improve methods for syntax-based
entity extraction.

Acknowledgements. We are grateful to Michele Furlanetto who contributed in the
implementation of our proposed method.
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Abstract. Structure of a grammar can influence how well a Grammar-
Based Genetic Programming system solves a given problem but it is
not obvious to design the structure of a grammar, especially when the
problem is large. In this paper, our proposed Bayesian Grammar-Based
Genetic Programming with Hierarchical Learning (BGBGP-HL) exam-
ines the grammar and builds new rules on the existing grammar structure
during evolution. Once our system successfully finds the good solution(s),
the adapted grammar will provide a grammar-based probabilistic model
to the generation process of optimal solution(s). Moreover, our system
can automatically discover new hierarchical knowledge (i.e. how the rules
are structurally combined) which composes of multiple production rules
in the original grammar. In the case study using deceptive royal tree
problem, our evaluation shows that BGBGP-HL achieves the best per-
formance among the competitors while it is capable of composing hier-
archical knowledge. Compared to other algorithms, search performance
of BGBGP-HL is shown to be more robust against deceptiveness and
complexity of the problem.

Keywords: Genetic Programming · Hierarchical knowledge learning ·
Estimation of distribution programming · Adaptive grammar · Bayesian
network

1 Introduction

Computer program is a set of instructions which can be represented by a parse
tree. The seminal work in Genetic Programming (GP) [8] showed that genetic
operators can be used to automatically generate and evolve parse trees composed
of elements given in a terminal set and a function set through evolution processes.
A fitness function measures how well the evolved parse tree is. Later, Grammar-
Based Genetic Programming (GBGP) [20,21] was proposed to effectively define
a set of parse trees by a grammar (see [9] for a review). For example, context-free
grammar explicitly models the closure relations of functions and is often adopted
in the early works of GBGP.
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However, context-free grammar fails to model many types of dependencies
in a program, such as data dependencies and control dependencies. For exam-
ple, the sequence of reading from and writing to the same memory resource can
alter the output of a program. Subsequently, some combinations are preferable
and semantically sound in good parse trees which preserve the program depen-
dencies. These dependencies affect how we derive non-terminals in a production
rule. To address this issue, Probabilistic Model-Building Genetic Programming
(PMBGP) [18] approaches weaken the context-free assumption using probabilis-
tic models in the grammar. In every generation, parse trees are created from
the current estimate of distribution which is improved iteratively by good parse
trees. When a good solution is discovered, the final estimate of distribution
reflects the principles (or the knowledge) to generate good parse trees and gives
insights into the problem nature. Dependency in knowledge forms hierarchy. The
combination of knowledge and its hierarchy is called the hierarchical knowledge,
which gives insight into a search problem.

In this paper, we demonstrate how to construct and utilize the hierarchical
knowledge in the Bayesian Grammar-Based Genetic Programming with Hierarchi-
cal Learning (BGBGP-HL) for improving the design of a grammar and automat-
ing the knowledge discovery. Our approach facilitates knowledge discovery while
maintaining the search efficiency.

This paper is organized as follows. In the next section, relevant works on
PMBGP and Grammatical Evolution are summarized. Next, we introduce the
deceptive royal tree problem which is often used as a benchmark accepted by the
PMBGP community. In Sect. 4, we show the hierarchical probabilistic context-
sensitive grammar for the deceptive royal tree problem. After that, the workflow
of the whole system are discussed in Sect. 5. The results are presented in Sect. 6.
The final section is the conclusion.

2 Related Works

The related works of Probabilistic Model-Building Genetic Programming and
Grammatical Evolution are summarized below.

Probabilistic Model-Building Genetic Programming. The approaches
can be broadly classified into two categories. The probabilistic prototype tree
(PPT) model-based methods operate on a fixed-length chromosome represented
in a tree structure [3,4,17] so the PPT model is completely different from our
approach. Another class of approaches utilizes probabilistic context-free gram-
mar (PCFG) [1]. A complete review can be found at [7]. We only summarize the
recent works directly related to our approach. PAGE [5] employs PCFG with
Latent Annotations (PCFG-LA) to weaken the context-free assumption. The
estimate of annotations can be learnt using expectation-maximization (EM)
algorithm or variational Bayes (VB) learning as reported in PAGE-EM and
PAGE-VB respectively, while PAGE-VB can also infer the total number of anno-
tations needed from the learning data. Unsupervised PAGE (UPAGE) [6] utilizes
PCFG-LA mixture model to deal with local dependencies and global contexts.
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BAP [15] applies a learnt Bayesian network on top of a constant size chromosome
and reproduces new individuals using the Bayesian network. Tanev’s work [19]
relies on probabilistic context-sensitive grammar (PCSG), which extends PCFG
by assigning the probability according to the predefined contexts.

Grammatical Evolution. Methods to evolve grammar have also been studied
in non-PMBGP approaches. One of the most prominent approaches is Grammat-
ical Evolution (GE) [11,12]. The original version of GE adopted Backus-Naur
Form for expressing the grammar. Unlike Genetic Programming (GP) [8], each
individual is represented in a chromosome which can then be translated to a
syntax tree and tells the system how to apply the rules using the grammar. GE
has been extended and improved in terms of the genotype-phenotype mapping
rules, search operators and search strategies [10,13,16].

Our Contributions. Contrary to the aforementioned PMBGP approaches, we
employ a hierarchical PCSG model to maintain the syntactical correctness and
guide the derivation of individuals by assigning a Bayesian network to each
production rule. In contrast to the previous works [22,23], our approach can
adaptively create new production rules. This is done by inserting complex and
useful rules composed of the existing rules so that the syntactically correctness is
preserved. In other words, the grammar is self-evolving and production rules are
gradually specialized to adapt to the problem-specific fitness function. The new
rules can capture the substructure frequently occurred in the good individuals.
Our system learns a good strategy to derive an individual from the grammar.
From the best of our knowledge, it is the first attempt to discover hierarchical
derivation structure and capture substructure(s) in parse trees on self-improving
hierarchical PCSG.

3 Deceptive Royal Tree Problem

We applied our approach on the bipolar version of deceptive royal tree (DRT)
problem [24]. It is commonly used as a benchmark for comparing the effectiveness
of PMBGP approaches. The goal of DRT problem is to find a tree with maximum
score. Some deceptive royal trees and their scores are shown in Fig. 1. The DRT
problem has a set of functions labeled by symbols from A to Z and two terminals
x and y. These functions are binary and symmetric, i.e. f(x, y) = f(y, x). There
is a strong dependency between a node and its subtrees. Upon a different combi-
nation of the node and its two subtrees, the score varies greatly due to the extra
global and local completion bonus. The scoring system is calculated recursively
from the leaf nodes to the root node. Given a tree T , which has a root node rT and
two subtrees TL and TR, its score S(T ) is calculated recursively using the function
S(T ) = kglobal(rT , TL, TR) × ((klocal(rT , TL) × S(TL) + klocal(rT , TR) × S(TR))),
where S(x) = 1, S(y) = 0.95, kglobal(rT , TL, TR) is 1 by default, or 2 when TL

and TR are perfect subtrees of the same type; klocal(rT , Tsubtree) is 1
3 by default,

2 when Tsubtree is a perfect subtree, or 1 when Tsubtree has a correct root node
but is not a perfect subtree. In short, kglobal and klocal assign bonus or penalty
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Fig. 1. Examples of the deceptive royal tree problem.

Fig. 2. Initial grammar for the deceptive royal tree problem.

to a tree and give rise to the dependency among the subtrees and their imme-
diate parent node. Refer to Fig. 1, x and y are perfect subtrees only when their
immediate parent node is A, so the trees in (a)–(c) score much higher than that
in (d) due to the penalty for the incorrect immediate parent node B for the two
terminal x nodes.

Another characteristics is that terminal y adds deceptiveness, i.e. importance
of interactions among the nodes. These locally optimal royal trees are similar to
the globally optimal royal trees in terms of structure and score. Refer to Fig. 1,
the royal trees (a) and (b) are the global optimum and local optimum at level
A respectively. At level B, the royal trees (e) and (f) are the global optimum
and local optimum at level B respectively. The problem is challenging because
of deceptive attractors which are local optimums deceiving the search system.

4 Grammar Model

A program is represented in a parse tree which is derived from the hierarchical
PCSG to enforce the syntactic relations. Besides, the probabilistic dependency
relations among the non-terminals of a production rule are captured by Bayesian
networks. The hierarchical PCSG used in the DRT problem is shown in Fig. 2.
For ease of reference, we label each rule and index each non-terminal on the
right-hand side of the arrow (–>) with a subscript. Consider the rule ST.4 in
the example. ST on the left-hand side of the arrow means the rule can be chosen
when we derive any non-terminal ST . The right-hand side of the arrow gives
the content when the rule is derived. Square brackets are used to enclose a
terminal. Hence, [B] is a terminal. ST4 and ST5 are the non-terminals. Further-
more, a Bayesian network is attached to each rule and captures the conditional
dependencies among the non-terminals of that rule. For example, the box in
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Fig. 3. System flowchart.

Fig. 2 shows the Bayesian network of rule ST.4. The Bayesian network models
the conditional dependencies between non-terminals ST4 and ST5 while all ter-
minals are constant and hence ignored. The ovals are the two random variables
corresponding to ST4 and ST5. Non-terminal ST4 has seven possible choices cor-
responding to the seven entries in the conditional probability table. Similarly, we
have another table for ST5. Initially, the probabilities are uniformly distributed
and iteratively updated during evolution.

5 System Architecture

In this section, we present the details of BGBGP-HL. The entire process consists
of seven steps (Fig. 3).

1. Initialize hierarchical PCSG to uniform distributions.
2. Create a new population of parse trees, some of which are derived from the

hierarchical PCSG and the selected parse trees through elitism.
3. Calculate the fitness of the new parse trees in the population.
4. Select a set of parse trees based on their scores.
5. Learn the Bayesian networks in each production rule.
6. Discover and extract new rules (structure and parameters) if the probability

converges.
7. Repeat from step 2 and the selected fitter parse trees survive to the next

generation until meeting the stopping criteria.

This paper mainly focuses on capability of our system with the hierarchical
grammar to discover new rules while the high-level ideas of the methods to
identify and extract new rules are provided for completeness. In step 5, the
Bayesian networks are learnt using K2 algorithm [2]. The samples come from the
fitter parse trees, which are the knowledge of fitness function. After collecting
the expansion choices of production rules among them, we obtain the statistics
on how to derive all the non-terminals. Since these records are collected from
fitter parse trees, each Bayesian network actually represents dependencies of the
choices of non-terminals constituted in the fitter parse trees.
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5.1 Derivation of a Parse Tree

To better understand the connection between hierarchical PCSG and parse trees,
an example is present in this section. To derive a parse tree as shown in Fig. 2,
the system starts from rule Start.1 and picks a rule from ST.1 to ST.7 according
to the conditional probability table (which is initially uniformly distribution).
Let’s say ST.4 is picked. Next, we derive the non-terminal ST4 following the con-
ditional probability distribution table (i.e. table on the left in the box in Fig. 2);
and similarly for the non-terminal ST5. Let’s say ST.3 and ST.5 are picked.
Again, we perform a random sampling recursively according to the probability
distributions until all the leaf nodes in the parse tree are terminals.

5.2 Production Rules Discovery and Extraction

As previously mentioned, a Bayesian network captures the dependencies among
the non-terminals in a production rule. In this section, we introduce the general
idea of our method to discover and extract new production rules from the set of
Bayesian networks of the rules.

Discovery of Interesting Assignments. The conditional probability table
will be analysed. Using Fig. 5 as an example, we firstly identify choices which
are almost certain and then compute the Shannon entropy (i.e. a measure of
randomness of a random variable) of ST4 for every parent configuration ST5.
When the entropy is below 0.5 bit, the randomness of random variable ST4 is
quite low. We have shaded the rows with entropy less than 0.5 bit in Fig. 5 (left).

Extraction of a Rule. Interesting expansion choices for conditional probability
table Pr(ST4|ST5) are marked with an asterisk (*) as shown in Fig. 5 (right).
We want to predict where these interesting expansion choices are based on the
choices of the non-terminals. In this paper, we apply C5.0, which is an advanced
version of C4.5 [14] decision tree learning algorithm, to group and generalize
the interesting expansion choices in all the conditional probability tables of the
same production rule. C5.0 predicts the position of the entries marked with an
asterisk using the choices of random variables as the feature attributes. Refer to
the table on the right in Fig. 5, when ST4 = ST.3 and ST5 = ST.4, the entry
is marked. Since this rule has two non-terminals, we will obtain a record with
three attributes ST4, ST5 and marked (i.e. the attribute for a class label). These
attributes contain the values ST.3, ST.4 and marked (meaning that there is an
asterisk) respectively. We select branches with accuracy over 95 % and construct
new hierarchical rules from the branches.

Importance of Rule Learning. During the evolution, we emphasized that
the grammar not only specifies the valid individuals, but also the dependen-
cies among the non-terminals. In order to generate more good individuals in
the subsequent generations, the grammar is iteratively adapted by (1) adjusting
the probabilities in the conditional probability tables, (2) identifying conditional
dependencies among the non-terminals of the same rule, and (3) forming new
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Fig. 4. Adapted grammar for the deceptive royal tree problem.

Fig. 5. For rule ST.4, it conditional probability table Pr(ST4|ST5) (left) and the table
of interesting expansion choices (right).

production rules. An example is shown in Fig. 4. Firstly, we can see that the dis-
tribution of rule ST.3 is no longer uniform and is updated to produce more good
individuals. Secondly, it can be observed that there is an arrow in the Bayesian
networks of both rule ST.4 and ST.5. For instance, the arrow in the Bayesian
network of rule ST.4 means that ST4 is conditional dependent to its parent ST5.
During the derivation of a non-terminal, its choice is dependent of the choices
of other non-terminals. If ST5 is sampled to ST.3, then the probability of ST4

being ST.3 is 0.6 during the random sampling. Alternatively, if ST5 is ST.4, then
the probability of ST4 being ST.3 drops to 0.1. Therefore, the conditional prob-
ability table in rule ST.4 encodes the dependency. Thirdly, hierarchical PCSG
enables the system to express the solutions in a recursive manner. A produc-
tion rule is a composition of terminals, non-terminals and production rules. The
recursive definition forms hierarchy among the rules. An example is rule ST.8 in
Fig. 4. This rule is composed of rule ST.4 and rule ST.3. Its equivalent represen-
tation and the parse tree of ST.8 are also shown in the same figure. Note that
the non-terminals of rule ST.8 can have a very different dependency structure
(across multiple rules) when comparing with rule ST.4 and rule ST.3.
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6 Evaluation

To demonstrate the search effectiveness and the capability of discovering hier-
archical knowledge of our algorithm, we implemented BGBGP-HL and tested
it with the DRT problem. Apart from the canonical GBGP, it was compared
with two existing PMBGP methods: PAGE-EM [5], and PAGE-VB [5], which
outperformed the univariate model (PIPE), adjacent model (EDP model) and
simple GP [5]. The key parameters and their values of configuration are shown
in Table 1. Due to time constraints, we declare an approach fails if it cannot
obtain an optimal solution in 200,000 fitness evaluations.

We tested the four algorithms on DRT problems at level D, level E and level
F. Table 2 shows the relative performance of the algorithms. At level D, the three
PMBGP approaches performed well and found the optimal solutions over 88 %
of runs. In contrast, GBGP did not perform well and the successful rate was
below 10 %. At level E, the performance of PAGE-EM and PAGE-VB reduced
by around 40 % and 20 % respectively. Their performance dropped continuously
at level F. On average, BGBGP-HL needed roughly half of the number of fitness
evaluations of PAGE-VB to find an optimum. The successful rate of BGBGP-HL
deteriorated slowly and was less susceptible to the increase in tree depth. Among
the successful runs at level E, the average number of fitness evaluations of PAGE-
EM was similar to that of BGBGP-HL. We also applied t-test on the average

Table 1. System specific configuration.

GBGP PAGE-EM PAGE-VB BGBGP-HL

Parameter Value Parameter Value Parameter Value Parameter Value

Population size 1,000 Population

size

1,000 Population size 1,000 Population

size

500

Generation 1,000 Annotation

size

8, 16 Annotation set {1, 2, 4, 8, 16} Mutation 0.8

Crossover rate 0.9 Selection

rate

0.1 Selection rate 0.1 Selection rate 0.4

Mutation rate 0.09 Elite rate 0.1 Elite rate 0.1 Elite rate 0.1

Annotation

exploration range

2 Accumulation

size

100

Table 2. Results for Deceptive Royal Tree Problem at level D, E and F. It shows the
statistics of the number of fitness evaluations in 50 runs. Column Suc., Mean, Std. dev.
and t-test are the number of successful runs, the average, the standard deviation of the
number of fitness evaluations and the t-test results in the successful runs respectively.
‘x’ means the result is not applicable.

Level D Level E Level F

Suc. Mean Std. dev. t-test Suc. Mean Std. dev. t-test Suc. Mean Std. dev. t-test

BGBGP-HL 50 4,392 644 x 48 9,140 1,858 x 45 17,244 12,009 x

GBGP 9 18,972 2,260 + 0 x x x 0 x x x

PAGE-EM 50 10,660 4,543 + 27 9,704 3,220 4 1,704 4,205 −
PAGE-VB 44 9,395 2,896 + 33 21,212 5,689 + 27 39,296 11,293 +
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numbers of fitness evaluations in the successful runs between our approach and
the other approaches. The plus sign (+) indicates our approach is better than
the compared approach with statistical significance (i.e. p < 0.05), and the minus
sign (−) indicates the opposite. The table shows that our approach was better
than the compared approaches with statistical significance. At level E, neither
BGBGP-HL nor PAGE-EM is statistically significantly better than one another
in respect to the average number of fitness evaluations. But the successful rate
of BGBGP-HL is much higher than that of PAGE-EM. At level F, the successful
rate of BGBGP-HL was 90 % and that of PAGE-EM was only 8 %. Although it
seems that PAGE-EM used a smaller number of evaluations on average in the
successful runs, the performance of PAGE-EM must be analyzed more carefully,
as we have underestimated the average number of fitness evaluations of PAGE-
EM because of its poor successful rate. The failed runs in GBGP was trapped in
a local optima. PAGE-EM and PAGE-VB may require a larger population size to
collect enough samples to estimate the dependencies when the tree depth grows.
BGBGP-HL was more robust to the deceptiveness because the deceptiveness is
localized to the leaf nodes y. New rules have learnt, say ST → ([A] [x] [x]) and
ST → ([B] ([A] ST ST ) ([A] ST ST )).

7 Discussion and Conclusion

BGBGP-HL can tackle the problems with strong dependence and deceptiveness.
Meanwhile, it can construct hierarchical knowledge during evolution. Finding
an optimal solution is a crucial step to understand an optimization problem.
Grammar is an effective structural representation for describing the search space
and hierarchical knowledge provided by the domain experts. Besides, contextual
(and stochastic) knowledge can be expressed using hierarchical PCSG. The prob-
abilistic distributions in Bayesian networks are transformed to explicit knowl-
edge. Importantly, BGBGP-HL shows the steps of how knowledge is evolved (or
derived). As a result, we can better understand how to composite the existing
knowledge. While the knowledge produced is hierarchical, it remains comprehen-
sible as it is expressed in the same language. We also argued that BGBGP-HL
belongs to a new category of PMBGP approaches using adaptive grammar. It
differentiates from current probabilistic grammar-based approaches since the
adaptive grammar can also improve the structure (i.e. composition of the exist-
ing production rules) and the parameters (i.e. probability distributions) during
evolution.
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Abstract. We introduce a parallel version of hierarchical evolutionary
re-combination (herc) and use it to evolve programs for ten standard
string processing tasks and a postfix calculator emulation task. Each
processor maintains a separate evolutionary niche, with its own ladder
of competing agents and codebank of potential mates. Further enhance-
ments include evolution of multi-cell programs and incremental learning
with reshuffling of data. We find the success rate is improved by trans-
genic evolution, where solutions to earlier tasks are recombined to solve
later tasks. Sharing of genetic material between niches seems to improve
performance for the postfix task, but for some of the string processing
tasks it can increase the risk of premature convergence.

1 Introduction

Evolutionary Computation typically involves a population of agents
(individuals) undergoing repeated cycles of selection, crossover and mutation.
It has long been recognized that a large-scale crossover would normally result in
an initially inferior agent and that subsequent, smaller crossovers or mutations
would be needed before the new agent becomes competitive in the general popu-
lation. Methods have therefore been proposed to protect these young individuals
for a period of time in an age-layered population structure or similar scheme [6].

Hierarchical evolutionary re-combination and the associated hercl program-
ming language were introduced as an alternative approach to this problem [1].
hercl agents have a stack, registers and memory (Fig. 1), thus combining ele-
ments from linear gp [8] and stack-based gp [9,10]. Programs are divided hier-
archically into cells, bars and instructions. Each cell is effectively a procedure or
subroutine, containing a sequence of executable instructions. Cells are divided
into smaller chunks called bars, delimited by the pipe symbol ( | ) – much like
the bars in a musical score. Each instruction consists of a (single-character) com-
mand, optionally preceded by a sequence of dot/digits which form the argument
for that command. The various commands are listed in Table 1 (see [1] for further
details).
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input: ickey
output:
memory: Minnie..............................

registers: .....[6]..[1]. [7]
stack: MM

code: 0[is|.<syˆ5>};i|8{ ŝ-~:+7=;wo8|-wo]
ˆ

Fig. 1. hercl simulator, showing an evolved agent executing the strcmp task, to com-
pare the strings “Minnie” and “Mickey”. All items are floating point numbers, but
the simulator prints them as a dot (zero), an ascii character, or bracketed in decimal
format, depending on their value.

Table 1. HERCL commands

Input and Output Stack Manipulation and Arithmetic

i fetch input to input buffer # push new item to stack ...... ...... x
s scan item from input buffer to stack ! pop top item from stack ...... x ......
w write item from stack to output buffer c copy top item on stack ...... x ...... x, x
o flush output buffer x swap top two items ... y, x ... x, y

Registers and Memory
y rotate top three items z, y, x x, z, y
- negate top item ...... x .....(−x)

< get value from register + add top two items ... y, x ...(y+x)
> put value into register * multiply top two items ... y, x ...(y ∗ x)
ˆ increment register

Mathematical Functions
v decrement register
{ load from memory location r reciprocal .. x → .. 1/x
} store to memory location q square root .. x → ..

√
x

Jump, Test, Branch and Logic
e exponential .. x .. ex

n (natural) logarithm .. x .. loge(x)
j jump to specified cell (subroutine) a arcsine .. x .. sin−1(x)
| bar line (return on .| halt on 8|) h tanh .. x .. tanh(x)
= register is equal to top of stack z round to nearest integer
g register is greater than top of stack ? push random value to stack
: if true, branch forward

Double-Item Functions
; if true, branch back
& logical and % divide/modulo .. y, x .. (y/x), (y mod x)
/ logical or t trig functions .. θ, r .. r sin θ, r cos θ

~ logical not p polar coords .. y, x .. atan2(y,x), x2+y2

Hierarchical Evolution does not use a population in the usual sense, but
instead maintains a stack or ladder of candidate solutions (agents), and a code-
bank of potential mates. At each step of the algorithm, the agent at the top rung
of the ladder is selected and either mutated or crossed over with a randomly cho-
sen agent from the codebank, or from an external library.
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BAR
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ladderlibrary
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codebank

CELL
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Fig. 2. Hierarchical evolutionary re-combination. If the top agent on the ladder
becomes fitter than the one below it, the top agent will move down to replace the
lower agent (which is transferred to the codebank). If the top agent exceeds its max-
imum number of allowable offspring without ever becoming fitter than the one below
it, the top agent is removed from the ladder (and transferred to the codebank). When
the algorithm is parallelized, each niche has its own ladder and codebank, but all of
them may share a common library, containing the current champ from each niche.

Crossovers and mutations are classified into different levels (tune, point,
bar, branch, cell or block) according to what portion of code from the pri-
mary (ladder) parent is either mutated or replaced with code from the secondary
(codebank or library) parent. A large crossover at the lowest rung of the ladder
is followed up by a series of progressively smaller crossovers and mutations at
higher rungs, concentrated in the vicinity of the large crossover.

In previous work, single-cell hercl programs have successfully been evolved
for coding tasks [1], dynamically unstable control problems [2] and classification
tasks [3]. However, a number of drawbacks emerged:

(a) the algorithm sometimes experienced long periods of stagnation,
(b) for some of the more complex tasks, the single-cell programs became very

long and difficult to evolve,
(c) the number of competing agents in a single ladder is rather low, potentially

missing out on the benefits of parallelism inherent in other EC paradigms.

In the present work, we address these issues by introducing:

(a) incremental training, with reshuffling,
(b) multi-cell evolution,
(c) parallelized hierarchical evolution, on a multi-core architecture.

Aided by these enhancements, we test whether programs can be evolved to
emulate a postfix calculator, and to perform ten string processing tasks modeled
on functions from the standard C library.
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2 HERCL Enhancements

(a) Incremental Training, With Reshuffling: Incremental training has
previously been used to evolve hercl programs for control problems such as
the double pole balancing task [2]. We now extend this approach to supervised
learning, with some additional modifications. The training items are shuffled
into a random order and, initially, the fitness evaluation is based only on the
first two items. Once a certain target cost has been achieved on the first k
items, additional items are added, until the per-item target cost is no longer
achieved. If the system runs for an entire epoch (100,000 offspring) without
adding any new items, the last item on the list is swapped out and replaced with
the next (in order) item – thus giving the system a chance to “move on”, rather
than getting stuck on a particularly difficult item. If two difficult items occur
in succession, the algorithm will swap back and forth between them – up to a
maximum of six attempts (three for each item). After the sixth failed attempt,
a reshuffle event occurs: the training items are reshuffled into a new order, and
training begins again with the first two items (according to the new ordering).
Note that this is not the same as a random re-start, because the codebank and
the champ are retained, and only the subset of the training data changes.

This reshuffling, combined with hierarchical search, gives rise to a process
of creative destruction, where the components of agents evolved under previous
orderings are re-combined, to optimize the fitness under the new ordering. Over
time, code fragments that are advantageous for multiple sets of training items
are more likely to survive to be incorporated into a global solution.

(b) Multi-cell Evolution: In order to evolve multi-cell programs we intro-
duce new levels of crossover beyond the cell level, labeled as block-1, block-2,
block-4, etc. For a block-k mutation, a block of k cells from the secondary par-
ent is transplanted into the primary parent (a jump instruction to the modified
cell(s) may optionally be inserted elsewhere in the code). Subsequent (lower-
level) mutations are concentrated in the vicinity of the transplanted block.

(c) Parallel Hierarchical Evolution: We parallelize the algorithm to run
on a multi-core machine. Each core maintains a separate niche with its own
ladder and codebank, but all of them may share a common library, comprised
of the current best agent (champ) from each of the niches (Fig. 2). As soon
as a global solution is found in one niche, a terminating signal is sent to the
niches running on the other cores. Since competition between agents occurs only
within a niche, data can be reshuffled independently in each niche, thus creating
additional diversity in the system without compromising the “fairness” of the
competition.

For comparison, we include some experiments where each niche is running
completely independently, with no sharing of code between them. This allows us
to examine to what extent improved performance is due to sharing of code, and
to what extent it is due simply to a greater amount of searching.
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3 String Processing Experiments

In our first set of experiments, we attempt to evolve solutions for a set of ten
string processing tasks, adapted from functions in the standard C String Library
string.h (listed in Table 2). The main motivation for choosing these tasks is to
see whether certain general-purpose programming constructs could be evolved,
and form a kind of “standard library” for hercl, to facilitate the learning of more
complex tasks such as those proposed in [5]. The right column of Table 2 gives a
general indication of the kind of programming constructs that are required for
each task. Using this information, along with preliminary experiments, we have
tried to arrange the tasks roughly in order from easiest to hardest.

For each task, 1000 training and 1000 test cases are randomly generated.
String contents are chosen uniformly from the set of all printable ascii char-
acters. For tasks involving a distinguished character or index, the number of

Table 2. String processing tasks and programming constructs.

task description l r v s m i

strcpy
input: a string

output: the same string

strcat
input: a string followed by another string

output: first string concatenated with second string

strlen
input: a string

output: the length of that string

idxstr
input: an index followed by a (non-empty) string

output: the character at that index in the string

chrstr
input: a character followed by a string

output: index of first occurrence of that character
(or an empty message, if it does not occur)

stridx
input: a (non-empty) string followed by a list of indices

output: the list of characters at the specified indices

catstr
input: a string followed by another string

output: second string concatenated with first string

strchr
input: a string followed by a character

?
output: index of first occurrence of that character

(or an empty message, if it does not occur)

strrchr
input: a string followed by a character

?
output: index of last occurrence of that character

(or an empty message, if it does not occur)

strcmp
input: a string followed by another string

output: difference between characters at the first place where
the two strings differ (or zero, if they are identical)

Key:
l = loop r = register v = compare value
s = subtract m = memory i = compare index
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characters before and after it are geometrically distributed with a mean of 3 char-
acters. This is equivalent to choosing the string lengths from a negative binomial
distribution NB(2, 3

4 ) and then choosing the distinguished character uniformly
within the string. Each run is conducted on a 16-core machine with 15 sepa-
rate niches, plus one core dedicated to communication between the other cores
(in a star network arrangement). For the cost function we use the Generalized
Levenshtein Edit Distance [1], which is suitable for comparing outputs that may
vary in length. The target cost is zero.

Table 3 shows the number of minutes to completion for the various evolu-
tionary runs. In the first five runs (labeled Sa to Se) each task was evolved on
its own, up to a maximum of 8 h. In the remaining runs, labeled as transgenic,
the system attempts to evolve solutions for each task in turn, using a library
consisting of the solutions evolved for all of the previous (successful) tasks on
the list. Up to three attempts are made for each task, with each attempt running
for a maximum of 8 h. As soon as one attempt is successful, the system adds the
solution to its library and moves on to the next task. If all three attempts fail,
the system moves to the next task without adding anything to the library.

For the runs labeled as sharing, code was shared between the 15 niches, with
space reserved in the common library for the current best agent from each niche
(updated asynchronously, at the end of each epoch). For the last three runs
(labeled as non-sharing) the cores were run completely independently, with no
genetic material transmitted between cores (and the library consisting only of
the solutions to previous tasks).

Table 4 shows the evolved code from three selected runs (TSb, TSc and Ta).
We see that almost all the runs succeeded in evolving solutions for strcpy,
strcat, strlen, idxstr, chrstr and stridx. The first two tasks – strcpy
and strcat – are easily solved within a few minutes and the resulting code is
practically identical across all runs, as follows:

strcpy 0[i|sw;o] strcat 0[i|sw;i|sw;o]
The solutions for idxstr all involve incrementing or decrementing a register,

until the required index is reached. Those for strlen and chrstr involve count-
ing items – either by incrementing an index, explicitly adding 1, or computing
tanh of each character (which saturates to 1). The solutions for stridx all work
by storing the string into successive memory locations and then accessing the
value at each index in the list.

The last four tasks were solved considerably more often by the transgenic
runs, and we can see several instances where code from previous tasks has been
re-combined to solve later tasks. The solution for catstr in run Ta uses code
from stridx to store the first string into memory, then transfers the second
string to the output buffer, before retrieving the first string from memory. Indeed,
stridx seems to be a kind of bottleneck task in the sense that failure on stridx
in Run Tb has led to failure on all the subsequent tasks. Run TSc has found
solutions for strchr and strrchr which invert the roles of the character and
index, storing each index (plus 0.2) into the memory location specified by the
character. If the same character occurs multiple times, the first or last occurrence
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(as appropriate) will overwrite the others and its index (rounded to the nearest
integer) will be the one that prevails in the relevant memory location. We can
recognize a fragment of code from strrchr in the solution for strcmp, which
stores the first string into memory and then scans the second string, comparing
it with the one in memory, one character at a time, until a non-zero difference
is found.

Runs Sa, Sc, TSa, Ta and T2, which failed to evolve a solution for strchr,
end up solving strrchr by storing each index and character alternately on the
stack, then searching backwards. When the relevant character is found, the next
number on the stack will be the correct index.

Run TSb provides a good example of how a suboptimal “gene” from one task
can find its way into later tasks. For a string of length n, the solution for strlen
is achieved not by incrementing a register but instead by computing the nearest
integer to log

√
(7.5)n � 1.0075n . This gives the correct answer for all strings

up to length 67. The pattern then finds its way (with a slight twist) into the
solution for strchr – which computes a formula based on the sum of the logs
of the characters in the string, with an expected value of 1.04 + 0.985(k − 1).
In other words, the agent is exploiting the independent distribution of the char-
acters, to find a solution which is good enough to give the correct answer for
all 1000 training and test cases, but would not work for all possible inputs.
The solution for strrchr similarly computes a function whose expected value
is 0.79 + 1.02(k − 1). It satisfies all the training data but makes an off-by-one
error on 1 of the 1000 test items.

Table 3. Evolution time for string tasks.

Run Sa Sb Sc Sd Se TSa TSb TSc TS2 Ta Tb T2

transgenic ← No → ← Yes →
time limit 480 mins 3 × 480 = 1440 mins

sharing ← Yes → ← No →
cells ← 1 → 2 1 2

strcpy 2 3 1 4 2 2 4 1 4 1 3 3
strcat 15 6 19 15 15 15 15 16 17 16 8 11
strlen 2 1 190 2 12 109∗ 5 2 3 1 2 1
idxstr 8 2 275∗ 3 2 4 5 2 4 3 81 5
chrstr 122 44∗ 46 × 466 6 16 1 109 22 7 21
stridx 319 124 117 214 251 420 127 163 795 749 × 191
catstr × × × × × × × × 20 342 × 130
strchr × × × × × × 56 32 × × × ×
strrchr 97 × 37 × × 272 5∗ 3 × 918 × 14
strcmp × × × × × × × 174 × × × ×

Key: × = failed to achieve zero cost on the training set
∗ = achieved zero cost on training set but not on test set
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Table 4. Evolved code for selected runs of the string tasks.

Run TSb (sharing)

strlen 0[1#i|y*7.5#s;}qnzwo]
idxstr 0[isi|=̂ :sx;|swo]

chrstr 0[i{s>i|=h:+s;|!wo]
stridx 0[i|s}̂ ;is:o.|>{ws;o]
catstr −
strchr [i|ss;>is|=:x>;o.|!=h;eex=*;{e|6#**x.=x1;7><xgq;qnzwo]
strrchr [i|ss;>is|=:x>;o8|!he|7#**><xgq;qnzwo]

strcmp −
Run TSc (sharing) Run Ta (no sharing)

strlen 0[i|<ŝ ;wo] 0[is:{wo1:|}1.#+s;wo]
idxstr 0[is>2gi|<.=:s5̂ ;|swo] 0[isi|%̂ g:s;|swo]

chrstr 0[i<s>is|=h:+s;|!wo] 0[i<s>is|=h:+s;|>wo]

stridx 0[i|s}̂ ;is:o8|>{ws;o] 0[is|}̂ s;is|~:>{|ws1;o]
catstr − 0[i|}̂ s;is|ws;1̂ {g:;|o]
strchr 0[.2#i>|<ŝ ;}|>};is>{9=z~:o8|wo] −
strrchr 0[.2#i>|.<ŝ 5>};is>{3=z:w|o] 0[i|<̂ s;is>}|=:};o8|%wo]
strcmp 0[is|.<sŷ 5>};i|8{̂ s-~:+7=;wo8|-wo] -

In three cases (Sb chrstr, Sc idxstr and TSa strlen) a very long sub-
optimal solution has been found which explicitly scans items one at a time, then
prints out a hard-coded answer. In general, the non-sharing runs tend to produce
code which is shorter and more robust than that of the sharing runs. The reason
may be that a suboptimal solution can develop in one niche and then spread like
a virus to the other niches. In that case, a system with all niches “quarantined”
from each other may produce a global solution faster. For example, Run Ta
(without sharing) has found a global solution for catstr using memory, whereas
the three sharing runs all got stuck in suboptimal solutions which manage to
store and retrieve up to 5 or 6 characters of the string using specific registers
and stack manipualations, but fail for longer strings. The two-cell runs (TS2
and T2) were able to solve catstr, but their solutions avoid using memory and
instead use recursion, with one recursive call for each item.

It is hard to say whether sharing makes a significant difference in the evolu-
tion times – although the sharing runs may finish slightly faster (or more often)
than the non-sharing runs on tasks like stridx and strrchr where subopti-
mal solutions are unlikely to occur. It may be that some of these tasks – when
provided with evolved solutions to the preceding tasks – effectively require only
one new “trick” in order to succeed. Once this trick is discovered, the evolution
rapidly proceeds to completion. Under this hypothesis, 15 niches running con-
currently would be expected to find the vital “trick” in equal time, whether they
are sharing code or evolving independently. Each trick then becomes a stepping
stone to aid in the evolution of subsequent tasks [7].
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4 Postfix Calculator

In order to further explore the issue of sharing vs. non-sharing evolution, we
tried evolving on a different kind of task, whose solution is more likely to require
a combination of separately evolved modalities. The task we chose is a postfix
calculator. For this task, the input is a sequence of numbers and operators,
forming an arithmetic expression in Postfix or Reverse Polish notation. The
output is the numerical value to which the given expression evaluates.

The allowed operators are +,−, ∗ and /. Again, 1000 training and test cases
are produced by a generative process, according to the probabilistic grammar
shown in Table 5. Expressions involving divide by zero are excluded. For this
task we again use the Generalized Levenshtein Edit Distance. The target cost is
set at 10−6 in order to avoid failure due to roundoff errors.

Table 5. Probabilistic Grammar for generating postfix data.

S → Val (0.1) Op → + (0.25)
S → Tree Tree Op (0.9) Op → − (0.25)

Tree → Val (0.6) Op → ∗ (0.25)
Tree → Tree Tree Op (0.4) Op → / (0.25)

Val → space, followed by numeric value from a Cauchy
distribution, rounded to two decimal places

For the postfix task, two-cell programs rather than single-cell programs were
evolved in the first instance. Ten runs were performed with sharing of genetic
material, and ten runs without sharing. All of the non-sharing runs failed to find
a solution within the 8 h limit. Only two of the ten sharing runs managed to find
a solution.

Ten additional runs were performed to see whether single-cell evolution, with
sharing of code between niches, could produce solutions for the postfix task. For
these runs, the time limit was extended to 24 h per run. Only one of these ten runs
produced a solution. (In order to save computing time, single-cell experiments
without sharing of code were not performed.) The exact evolution times and
evolved solutions are shown in Table 6.

Note that the first of these solutions ultimately uses only one of the two cells.
The code is quite short, and uses a serendipitous combination of trig functions
and logs to distinguish the characters +,−, ∗ and / and perform the appropri-
ate operation. The other two solutions perform an explicit comparison against
(the ascii values of) these characters. Having two cells available during the evo-
lution seems to free up the evolutionary process, and provide greater flexibility
for targeted crossovers and mutations. But, later in the process the code from
one cell may get randomly transplanted into the other cell, allowing it to perform
the whole task on its own.
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Table 6. Evolution times and evolved code for the postfix task.

mins code

314 0[ ]

1[is|>39#g!:ss;|<ct>cnt!gn1:>g:r|*c{|hz-*+s3;wo]
395 0[43#>g~:!*s:wo8]

1[isss:wo.|!ss|41#>g1;0j43#>g;47#>g:yr*<xy|.7#-t!z*+s1;wo]

721 0[isss:wo8|!s46#>s|g:!r*s;2;|vvg:}-<|vg:!+s:wo8|vg4;46#>g:
3;|vvg:}-<|vg:!+s1:wo.|!*s:wo.|4;]

5 Conclusion and Further Work

We have parallelized the hierarchical evolutionary re-combination algorithm, and
shown that hercl programs can successfully be evolved to emulate a postfix cal-
culator and perform ten different string processing tasks. In the process, funda-
mental programming constructs emerge such as incrementing and decrementing
of registers, storing items into successive memory locations, looping until cer-
tain conditions are met and distinguishing between various arithmetic symbols
to select between different computation paths.

This process can be compared to the primordial stages of biological evolution,
where promiscuous recombinations in geographically separated regions over long
periods of time eventually lead to beneficial fragments of genetic code, which can
then be recombined into successively more complex organisms.

In future work we plan to package up the solutions for these string tasks into
a “standard library” and test to what extent the inclusion of this library (and
others like it) would speed up the learning of new tasks.

Our software is freely available on GitHub (via http://hercl.org).
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Abstract. This paper investigates the redundancy of representation in
grammatical evolution (GE) for binary trees. We analyze the entire GE
solution space by creating all binary genotypes of predefined length and
map them to phenotype trees, which are then characterized by their
size, depth and shape. We find that the GE representation is strongly
non-uniformly redundant. There are huge differences in the number of
genotypes that encode one particular phenotype. Thus, it is difficult for
GE to solve problems where the optimal tree solutions are underrepre-
sented. In general, the GE mapping process is biased towards short tree
structures, which implies high GE performance if the optimal solution
requires small programs.

Keywords: Grammatical evolution · Redundant representation ·
Binary trees · Bias

1 Introduction

One core component of any evolutionary algorithm (EA) is the representation
used [17]. Indeed, the choice of representation determines the success of a heuris-
tic search method [17]. In general, there are two types of representations: a direct
and an indirect representation [16]. When using a direct representation, no dis-
tinction between geno- and phenotype is made, just like in standard genetic pro-
gramming (GP) [9], which uses tree structures to represent the individuals. Here,
the search operators (e.g., crossover and mutation) are applied directly to these
tree structures. An indirect representation distinguishes between geno- and phe-
notype. In this case, a representation describes how the genotypes (e.g., binary
strings) are mapped to the phenotypes (e.g., expressions, trees) [16]. When using
this type of representation, the search operators are applied to genotypes, but
the actual effect of these operators is observed at the corresponding phenotypes.

Indirect representations may be biased due to redundant encodings [18].
If this is true, on average more than one genotype represents the same phe-
notype. A representation is uniformly redundant if every phenotype is repre-
sented by the same number of genotypes; it is non-uniformly redundant if one or
more phenotypes are represented by a larger number of genotypes than others.
c© Springer International Publishing AG 2016
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Consequently, the use of redundant representations may be biased and could
therefore influence the search process if the optimal solution or parts of it are
underrepresented [18].

Grammatical evolution (GE) uses a redundant representation [15]. In con-
trast to standard GP, GE [19] uses variable-length binary strings to encode the
programs/expressions and a grammar in Backus-Naur form (BNF) to map the
binary genotypes to the tree phenotypes. Consequently, GE applies standard
genetic search operators such as one-point crossover and mutation to linear bit
strings.

The distribution of trees in the GP solution space is well studied for various
problems [10] and can “[...] give an indication of problem difficulty for GP” [10].
For GE, there are no similar studies. In this paper, we study the non-uniform
redundancy of the GE representation, especially the GE genotype to phenotype
mapping. In our analysis, we focused on binary trees. We explored the entire
solution space of GE by applying different grammars and different genotype
lengths. We used two approaches to characterize trees: First, we used the tree
size and tree depth; second, we took the shape of a tree into account since this
property cannot be neglected when dealing with realistic programs. We showed
that GE representation is strongly non-uniformly redundant. The number of
different genotypes strongly exceeds the number of different phenotypes, and
there are phenotypes that are encoded with higher probabilities than others. In
general, short tree structures are represented most frequently.

In Sect. 2 we review bias and redundant representations. Section 3 reviews
former studies of representation bias in GE. Our analysis and results are pre-
sented in Sect. 4. The paper ends with some concluding remarks.

2 Bias and Redundant Representations

A bias exists if some solutions or solution structures are visited more frequently
than others during the run of a search procedure, or if certain actions are per-
formed more frequently than others during the search [22]. The existence of a
bias may be advantageous or disadvantageous for the search [17]. For example,
a bias of search operators may be used to guide the search in a certain direction
where promising solutions are presumed; this would be a desired bias. Unwanted
bias occurs if there is an interaction between the search operators used and the
chosen representation such that the problem becomes deceptive [1].

In heuristic search methods like GP, a desired bias results from the selec-
tion process. By selecting highly-fit individuals for the next generation, selection
pushes a population in the direction of fitter individuals. In addition, by using
problem-specific recombination or mutation operators, as well as suitable termi-
nal and function sets, GP performance can be improved [21,22]. Indeed, Dignum
and Poli showed that “[...] simple length biases can significantly improve the best
fitness found during a GP run” [5].

Search bias can also be a result of redundant encodings [18]. Encodings are
redundant if there are phenotypes that are encoded by more than one genotype.
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A redundant encoding is biased (i.e., non-uniformly redundant) if not all pheno-
types are encoded by the same number of genotypes; but rather some phenotypes
are represented by a larger number of genotypes than others. When using GE,
there is a redundant representation since there is more than one genotype that
represents the same phenotype [15]. Non-uniform redundancy, where the phe-
notypes are non-uniformly represented by the genotypes, leads to a bias and
causes structural difficulty since some solution structures are underrepresented.
Rothlauf and Goldberg [18] examined the impact of redundant representations
on the performance of evolutionary algorithms (EA). In general, redundant rep-
resentations are less efficient because they use more alleles to store the same
amount of information compared to non-redundant representations. In the case
where a uniformly redundant representation is used, the general performance of
the EA is neither decreased nor increased. In opposition to this, the performance
of the algorithm can be increased or decreased if a non-uniformly redundant rep-
resentation is used. In their experiments, Rothlauf and Goldberg [18] showed that
performance can be increased when the optimal solution is overrepresented, and
it can be decreased when the optimal solution is underrepresented.

3 Bias of Representation in Grammatical Evolution

GE [19] is a variant of GP that uses a complex genotype-phenotype mapping
to create the phenotype programs/expressions from variable-length binary geno-
types. A genotype consists of groups of eight bits (called codons) which encode
an integer value that selects production rules from a grammar in BNF. These
rules are used in the deterministic mapping process to create a phenotype.

Several studies have examined the bias of representation and grammar in GE.
Most of them have focused on the impact of different representations or different
search operators on performance rather than on the impact of the redundant rep-
resentation. O’Neill and Ryan [12,14] examined the effect of genetic code degen-
eracy on genotypic diversity and the performance of GE. When a degenerate
genetic code is used, each codon consists of more bits than actually necessary to
encode a sufficient amount of integer values to select the rules from the grammar.
They found that genetic diversity is higher when a degenerate genetic code is
used. In addition, the amount of invalid individuals is lower. The impact on per-
formance depends on the grammar used. Montes de Oca [11] focused on creating
numerical values by concatenating digits and found that the most-commonly-
used GE grammar induces a bias towards short-length numbers. Hemberg et al.
[8] considered three different GE grammars (postfix, prefix, infix) and their influ-
ence on performance for various symbolic regression problems. They observed
no differences between the grammars for small problem instances. However, for
large problems, a postfix grammar was found to be advantageous. Fagan et al. [6]
compared the performance of GE when using four different genotype-phenotype
mappings (depth-first, breadth-first, random and πGE [13]) for four benchmark
problems and measured the average best fitness, the average size of genotypes,
and the average number of derivation tree nodes over the number of genera-
tions. The πGE mapper outperformed the other mapping strategies in three out
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of four problems. The breadth-first mapper produced larger trees in three out of
four problems compared to the other mapping strategies. Harper [7] showed that
standard GE random bit initialization produces trees that are non-uniformly dis-
tributed since “80 % of the trees have 90 % of their nodes on one side of the tree
or the other” [7]. Trees are biased to be “tall and skinny” [7]. He distinguished
between two types of grammars: explosive and balanced. He defined a grammar
to “be explosive if the number of non-terminals (functions) exceeds the num-
ber of terminals” [7]. A grammar is balanced if the probability for expanding a
non-terminal into a multiple of the same non-terminal is equal to the probability
of expanding into a terminal. Therefore, when using an explosive grammar, the
probability is high that the mapping process will run out of genes [7]. Daida and
co-workers [2–4] studied the influence of the standard GP tree representation
on the search process, and showed that not only crossover and selection does
influence GP search behavior, but so does the representation. Inspired by their
work, Thorhauer and Rothlauf [20] found that a random walk with GE using
standard operators (one-point crossover, mutation and duplication) has a strong
bias towards sparse tree structures.

Overall, GE literature is dominated by experimental studies on the impact of
different search operators or representations on performance, but a fundamental
mathematical analysis of the entire solution space has been omitted.

4 Analysis and Results

We studied the bias of representation in GE for binary trees. Using the defini-
tion from Harper [7], we used a balanced grammar (Fig. 1(a)) and an explosive
grammar (Fig. 1(b)) to map the genotypes to the phenotype trees. We set the
number of codons to 10 and 20, and created all possible binary genotypes by
using 10 and 20 codons respectively, and studied their phenotypic properties.
For the balanced grammar A (Fig. 1(a)), only the least significant bit in each
codon (usually eight bits) determines which rule to choose during the mapping
process. Therefore, we reduced the total number of possible binary genotypes
from 280 to 210 = 1024 when using 10 codons (each consists of one bit), and
from 2160 to 220 when using 20 codons. For the explosive grammar B (Fig. 1(b)),
we needed the last two bits of each codon to define the rule to choose since we
wanted to ensure that all rules were chosen with equal probability. Again, we got
220 different genotypes. So the value of any bit directly affects the phenotype.
We used standard depth-first mapping to create the phenotypes. No wrapping
operator was used since the mapping process would never terminate and thus
the corresponding individuals would be invalid anyway. This is a result of the
structure of the chosen grammars. Before we analyzed the characteristics of all
phenotype trees, the derivation trees were transformed into syntax trees to get
binary trees that only consisted of functions (internal nodes) and terminals (leaf
nodes). For all the tree structures, we measured the following properties: tree
depth, tree size (internal nodes plus leaf nodes) and tree shape.

We started our analysis by distinguishing individuals according to their phe-
notype tree properties: size and depth. Figures 2(a)–(c) show the phenotype
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<start> ::= <expr>
<expr> ::= (<expr> + <expr>)

| <var>
<var> ::= X

(a) grammar A

<start> ::= <expr>
<expr> ::= (<expr> + <expr>)

| (<expr> + <expr>)
| (<expr> + <expr>)
| <var>

<var> ::= X

(b) grammar B

Fig. 1. Production rules in BNF. Balanced (left) and explosive variant (right).

(tree) solution spaces that were created with 10 codons using grammar A, 20
codons using grammar A, and 10 codons using grammar B. We plotted the num-
ber of nodes (tree size) over the tree depth for all phenotype trees. The outer
dashed lines show the boundaries for valid binary trees with a minimum and a
maximum number of nodes. The circles between these lines represent valid trees,
whereas the triangles represent invalid trees. In these cases, the mapping process
could not be finished because the genotype ran out of genes. As a result, there
are invalid binary trees, where not all internal nodes (+) have two child nodes
or not all external nodes are terminals (X). When 10 codons and grammar A
were used, we observe 7 different valid trees and 7 different invalid trees that can
be created with 210 different genotypes (Fig. 2(a)). Under these conditions, valid
trees with a maximum size of 9 nodes can be created. Consequently, when using
20 codons and the same grammar, the phenotype solution space increases, and
the limit of the maximum tree size rises to 19 nodes (Fig. 2(b)). Thus 220 differ-
ent genotypes encode 30 different valid and 16 invalid trees. Figure 2(c) shows
the same result as seen in Fig. 2(a). Here, we used 10 codons and grammar B.
In summary, the solution space of binary trees that can be covered with GE
depends on the length of the genotype. The change from the balanced grammar
A to the explosive grammar B does not modify the solution space of possible
binary trees in GE.

To study the redundancy in GE representation, we had to examine the fre-
quency of all trees. Figures 3(a)–(c) present the proportion of trees of a given
size and depth in a 3D view. This clearly shows that the GE mapping process
creates specific trees with higher probabilities than it does others. Therefore,
representation in GE is non-uniformly redundant. Indeed, trees with a size of
one and a depth of zero were created most frequently, independent from codon
lenght or the grammar used. All trees of size 10 (Figs. 3(a) and (c)) and 20
(Fig. 3(b)) are the result of an unfinished mapping. As Harper [7] described, the
use of the explosive grammar B strongly overrepresents these invalid individuals
(Fig. 3(c)) compared to the use of the balanced grammar A (Figs. 3(a) and (b)).
In summary, we observe an overrepresentation of short valid trees in all three
figures. The GE mapping process has a strong bias towards short trees when
grammar A is used (Fig. 3(a) and (b)); whereas when grammar B is used, the
mapping process more frequently creates longer, but invalid, trees (Fig. 3(c)).
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(a) 10 codons grammar A

(b) 20 codons grammar A

(c) 10 codons grammar B

Fig. 2. Phenotype (binary tree) solution
spaces for different codon lengths and
grammars.

(a) 10 codons grammar A

(b) 20 codons grammar A

(c) 10 codons grammar B

Fig. 3. Proportion of different binary
trees for different codon lengths and
grammars.

Figures 4(a)–(c) represent the proportion of trees that have the same size and
depth (the proportion of invalid trees are not shown). Table 1 (rows A and B)
describes how the probabilities to create particular trees can be calculated. The
probabilities to represent specific trees in Fig. 4(a) when using 10 codons and
grammar A cover a range between 0.5 and 0.0078125 ( 1

27 ). This implies 50% of



298 A. Thorhauer

genotypes represent a tree that consists of one terminal X, whereas only 0.78125%
of genotypes represent a full tree of depth two (Fig. 4(a) d = 2, s = 7). The proba-
bility that a sparse tree with the same size of seven and a depth of three (Fig. 4(a)
d = 3, s = 7), which has only one expanded node at any depth level, is represented
by a binary genotype is four times higher (3.125 %). For 20 codons and grammar
A, the probabilties actually range between 0.5 and approximately 0.000031. The
use of grammar B and 10 codons hugely changes the probabilities to create each
tree since it is three times more likely to choose the rule < expr > + < expr >
than to choose < var > (see Table 1 column B). In this case, the probabilities
range between 0.25 and about 0.00165. In summary, these results reveal a strong
overrepresentation of short and rather sparse trees.

Table 1. The probabilities of representing particular trees for both grammars. Row A
and B: Trees are characterized by their size and depth. Row A: The probabilities to
create a full tree. Row B: The probabilities to create a sparse tree (i.e., same number
of nodes as a full tree but only one expanded node at any depth level). Row C: Trees
are characterized by their size, depth and shape; the probabilities to create any tree of
a given size, depth and shape.

grammar A grammar B

A ( 1
2
)size ( 3

4
)(number internal nodes) × ( 1

4
)(number leaf nodes)

B ( 1
2
)size × 2(d−1) ( 3

4
)(number internal nodes) × ( 1

4
)(number leaf nodes) ∗ 2(d−1)

C ( 1
2
)size ( 3

4
)(number internal nodes) × ( 1

4
)(number leaf nodes)

To study the distribution of different trees in greater detail, we also took the
shape of the trees into account. This implies that the exact ordering of nodes is
relevant (i.e., important in realistic programs). Consequently, the number of dif-
ferent valid phenotype trees that can be encoded by 210 different binary genotypes
increases from 7 (Figs. 4(a) and (c)) to 23 (Figs. 5(a) and (c)). With 220 genotypes,
the number of trees increases from 30 (Fig. 4(b)) to 6918 (Fig. 5(b)). As an exam-
ple, let’s take the case of two trees of different shapes that have a size of five and a
depth of two (Fig. 5(a) d = 2, s = 5).Table 1, rowC shows how to calculate the prob-
ability that a specific tree will be created. The probabilities to encode the different
phenotypes range between 0.5 and approximately 0.00195 ( 1

29 ) when grammar A
and binary genotypes of 10 codons are used, and between 0.5 and about 0.000002
when grammar A and 20 codons are used. Again, the use of grammar B and 10
codons hugely changes the probabilty that a genotype creates a particular tree. In
this case, the distribution of probabilites ranges between 0.25 and about 0.00031.
In summary, the larger the size of a particular tree, the lower the probability that
this tree is represented by a binary genotype (independently from the grammar
used). The probability of creating a specific binary tree depends only on its size.
The additional consideration of the tree shape increases the number of different
trees that can be encoded by 210 and 220 different genotypes, but does not prevent
the overrepresentation of particular binary trees.
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(a) 10 codons grammar A

(b) 20 codons grammar A

(c) 10 codons grammar B

Fig. 4. Number of instances per valid
tree (normalized over all tree instances)
for different codon lengths and gram-
mars. Trees are characterized by their
size and depth.

Fig. 5. Number of instances per valid
tree (normalized over all tree instances)
for different codon lengths and gram-
mars. Trees are characterized by their
size, depth and shape.

Table 2 presents the number |Φp| of different valid phenotypes and the number
|Φpinvalid

| of different invalid phenotypes that can be encoded by genotypes of
either 10 or 20 codons using grammars A and B. These results emphasize that
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Table 2. Number |Φg| of different genotypes (genotype search space Φg), number
|Φp| of different possible valid phenotype trees (phenotype solution space Φp), number
|Φpinvalid | of different possible invalid phenotype trees (Φpinvalid). Trees are character-
ized by their size, depth and shape.

|Φg| |Φp| |Φp|
|Φg | |Φpinvalid | |Φpinvalid

|
|Φg |

grammar A, 10 codons 210 23 0.0225 252 0.2461

grammar A, 20 codons 220 6 918 0.0066 184 756 0.1762

grammar B, 10 codons 220 23 0.00002 252 0.00024

GE representation is strongly redundant since the phenotype solution space (Φp)
is obviously smaller than the genotype search space (Φg). The number of different
valid phenotype trees over the number of different genotypes for grammar A and
10 codons is 0.0225, whereas the proportion of different invalid phenotype trees
is obviously larger (0.2461). Both values are even lower when grammar B is used.
In general, |Φpinvalid

| exceeds |Φp| for both grammars and codon lengths. During
a GE run, these invalid trees are penalized with a mimimum fitness value, and
provide no additional benefit since they will be sorted out.

5 Conclusions

We studied the redundancy in GE representation for binary trees. We used two
different grammars (balanced and explosive) and two different genotype lengths.
We explored the entire solution space of GE by creating all possible binary
genotypes and mapped them to phenotype trees. When trees are characterized
by their size and depth, sparse trees are more likely to be represented than
full trees of the same size. If in addition the shape of a tree is relevant, the
probability of creating a particular binary tree depends only on its size. In this
case, the number of different invalid trees is larger than that of valid trees.
Independent from the grammars used or codon lengths, the number of different
binary genotypes strongly exceeds the number of different binary phenotypes.
Moreover, there are large differences in the number of genotypes that encode one
particular phenotype tree. Thus, it is difficult for GE to solve problems if the
optimal tree solutions are underrepresented. In general, the GE mapping process
is biased towards short tree structures.

A higher genotype length increases the number of different phenotypes that
can be encoded. Moving from a balanced to an explosive grammar alters the
probabilities for creating any tree. Furthermore, the probability that a genotype
encodes an invalid tree is higher.

The focus of our study was on binary trees. Using more complex grammars
and non-binary trees would create a greater variety of different trees and there-
fore reduce the probability of creating trees with the same characteristics. In the
future, we will extend this analysis to different grammars that allow the creation
of more complex non-binary trees.
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Abstract. Selection plays a critical role in the performance of evolution-
ary algorithms. Tournament selection is often considered the most pop-
ular techniques among several selection methods. Standard tournament
selection randomly selects several individuals from the population and
the individual with the best fitness value is chosen as the winner. In the
context of Genetic Programming, this approach ignores the error value
on the fitness cases of the problem emphasising relative fitness quality
rather than detailed quantitative comparison. Subsequently, potentially
useful information from the error vector may be lost. In this paper, we
introduce the use of a statistical test into selection that utilizes infor-
mation from the individual’s error vector. Two variants of tournament
selection are proposed, and tested on Genetic Programming for symbolic
regression problems. On the benchmark problems examined we observe
a benefit of the proposed methods in reducing code growth and general-
isation error.

Keywords: Genetic Programming · Tournament selection · Statistical
test

1 Introduction

There are several factors that can effect the performance of Genetic Program-
ming (GP) for given problems. These factors include the size of a population,
the fitness evaluation of individuals, the selection mechanisms for reproduction,
the encoding and genetic operations for modifying individuals. Amongst these,
selection plays a critical role in GP performance [4]. To date, there have been
many selection schemes proposed, and popular selection schemes in GP include
fitness proportionate selection, ranking selection, and tournament selection [9].
Among these, the most widely used selection in GP is tournament selection [6].

Tournament selection is based on comparing the fitness values of sampled
individuals. The individual with the best fitness is then selected as the winner.
This implementation is simple and its effectiveness has been evidenced by a
number of research [6]. However, the standard implementation used only fitness
c© Springer International Publishing AG 2016
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value while ignoring information from the error of individuals in all fitness cases.
Consequently, some information that is potentially useful for GP search may be
lost. Recent research has shown that significant benefit could be gained by using
semantic information of GP individuals (e.g., [10,12]). Thus, it is attractive to
examine whether using the error value of individuals on the fitness cases for
selection can improve GP performance.

In this paper, the error vector of individuals is used in tournament selection.
Two individuals are compared using a statistical test using their error vector. If
the statistical test (using a Wilcoxon signed rank test in this case) shows that
there is a significant difference, the individual with the better fitness is selected
and tested against the others. This process is repeated for all individuals in the
tournament sample with the winner selected based on the statistical test. We
test the proposed selection technique on a set of benchmark regression problems,
and observe that the proposed method helps to reduce GP code growth and
generalisation error.

The remainder of this paper is organized as follows. In the next section, we
briefly review the related work on improving tournament selection in GP. The two
proposed tournament selection methods are presented in Sect. 3. Section 4 presents
the experimental settings adopted, with the results presented and discussed in
Sect. 5. Finally, Sect. 6 concludes the paper and highlights some future work.

2 RelatedWork

This section presents a brief review of previous research on tournament selection
in GP. Tournament selection is the most popular selection operator in GP [17].
In standard tournament selection, a number of individuals (tournament size) are
randomly selected from the population. These individuals are compared together
and the winner (in terms of better fitness) is selected to go to the mating pool. This
process is then repeatedN times whereN is the population size [4]. The advantage
of tournament selection is that it allows the adjustment of the selection pressure by
tuning the tournament size. Moreover, this method does not require a comparison
of the fitness between all individuals that helps to save a large amount of processing
time [19].

As the standard tournament selection consists of two steps: sampling and
selecting. There is a large number of research focusing on different sampling and
selecting strategies in tournament selection. Xie et al. [20] analysed the perfor-
mance of no-replacement tournament selection in GP. In the no-replacement strat-
egy, no individual can be sampled multiple times within the same tournament.
Another problem in tournament selection is not-sampled problem, in which some
individuals are not sampled at all if a too small tournament size is used. This prob-
lem was discussed by Xie et al. in [18]. Later, Gathercole et al. [7] analyzed the
selection frequency of each individual and the likelihoods of not-selected and not-
sampled individuals in tournament selection of different tournament sizes. Sokolov
and Whitley proposed unbiased tournament selection [15] where all individuals
have a fair chance to participate into the tournament.
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Overall, previous research has shown that sampling strategies have minor
impact to GP performance. Consequently, researchers paid more attention to the
second step in tournament selection: selection. Baeck [3] introduced the selection
probability of an individual of rank j in one tournament for a minimization task,
with an implicit assumption that the population is wholly diverse. Blickle and
Thiele [4] extended the selection probability model in [3] to describe the selection
probability of individuals with the same fitness fj . They defined the worst indi-
vidual to be ranked 1st and introduced the cumulative fitness distribution, which
denotes the number of individuals with fitness value fj or worse.

In this paper, we propose a method for ranking individuals in tournament selec-
tion that is based on the use of a statistical test. To the best of our knowledge, this
techniques has not been studied in GP. The detailed description of our method will
be presented in Sect. 3.

3 Methods

This section describes two new tournament selection techniques. The first tech-
nique is called Statistics-TS1. Similar to the standard tournament selection, a
number of individuals are randomly selected and compared. The winner is then
chosen to go to the mating pool. However, instead of using the fitness value for
comparing between individuals, a statistical test was applied to the error vector of
these individuals. For a pair of individuals, if the test shows that they are differ-
ent, then the individual with better fitness value is the winner. Conversely, if the
test confirms that two individuals are not different, a random individual is selected
from the pair. After that, the winner individual is tested against other individuals
and the process is repeated for all individuals in the tournament size. The detailed
description of Statistics-TS1 is presented in Algorithm 1.

Algorithm 1. Statistics test tournament selection 1
Input: Tour size, Population.
Output: The winner individual.
A ←− RandomIndividual();
for i ← 1 to TourSize do

B ←− RandomIndividual();
sample1 ←− Error(A);
sample2 ←− Error(B);
p − value ←− Testing(sample1, sample2);
if p − value <alpha then

A ←− GetBetterF itness(A,B);
else

A ←− GetRandom(A,B);
end

end
TheWinnerIndividual ←−A ;



306 T.H. Chu et al.

Table 1. Problems for testing statistical tournament selection

Abbreviation Name Attributes Training Testing

A.Benchmarking Problems

F1 korns-11 5 20 20

F2 korns-12 5 20 20

F3 korns-14 5 20 20

F4 vladislavleva-1 2 20 2025

F5 vladislavleva-2 1 100 221

F6 vladislavleva-4 5 500 500

F7 vladislavleva-5 3 300 2640

F8 vladislavleva-6 2 30 93636

F9 vladislavleva-7 2 300 1000

F10 vladislavleva-8 2 50 1089

B.UCI Problems

F11 airfoil self noise 5 800 703

F12 casp 9 100 100

F13 Slump test Compressive 7 50 53

F14 slump test FLOW 7 50 53

F15 slump test SLUMP 7 50 53

F16 winequality-red 11 800 799

F17 winequality-white 11 1000 1000

F18 wpbc 31 100 98

In Algorithm 1, the function RandomIndividual() returns a random indi-
vidual from the GP population. Function Error(A) calculates the vector error
of individual A and function Testing(sample1, sample2) performs a Wilcoxon
signed rank test on two samples. Two last functions,GetBetterF itness(A,B) and
GetRandom(A,B) aims at finding the better fitness individual among A and B or
returning a random individual between two, respectively. Finally, alpha is the crit-
ical value used to decide if the null hypothesis is rejected or accepted. If the output
of the test (p− value) is smaller than the critical value, then the null hypothesis is
rejected. This means that two individuals are significantly different and the better
individual is selected as the winner. If the test can not reject the null hypothesis,
then a random individual is selected from the pair.

The second tournament selection is called Statistics-TS2. Statistics-TS2 is sim-
ilar to Statistics-TS1 but aims at reducing code grow in the GP population. In
Statistics-TS2, if the statistical test can not reject the null hypothesis, then the
individual with smaller size is selected from the pair. In other words, if two individ-
uals involved in the test are not statistically different, then the smaller individual
will be the winner.
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Table 2. Evolutionary parameter values.

Parameter Value

Population size 500

Generations 100

Selection Tournament

Tournament size 7

Crossover probability 0.9

Mutation probability 0.1

Initial Max depth 6

Max depth 17

Max depth of mutation tree 15

Raw fitness mean absolute error on all fitness cases

Trials per treatment 30 independent runs for each value

4 Experimental Settings

In order to measure the impact of the two new tournament selection to GP perfor-
mance,we tested themon eighteenmultivariate regression problems.Among these,
ten problems are benchmark problems [16] and eight problems were taken from
UCI machine learning dataset [2]. The tested problems are presented in Table 1.

The GP parameters used for our experiments are shown in Table 2. The ter-
minal set for each problem includes N variables corresponding to the number of
attributes of that problem. The function set include eight functions (+, -, *, /,
sin, cos, log, exp) that are popularly used in GP. The raw fitness is the mean of
absolute error on all fitness cases. The elitism technique was also used in which
the best individual in the current generation is copied to the next generation. In
the new tournament selection schemes, two critical values (0.05 and 0.1) were used
for the Wilcoxon signed rank test to decide if the null hypothesis is rejected. For
each problem and each parameter setting, 30 runs were performed.

5 Results andDiscussion

This section analyses the performance of two new tournament selection methods
and compares them with the standard tournament selection (Standard-TS). There
metrics used for the comparison are: training error, testing error and solution size.

The first metric is the mean best fitness on the training data and this is pre-
sented in Table 3. This table shows that two new selection methods did not help
to improve the performance of GP on the training data. By contrast, the training
error of standard tournament selection is often better than that of statistical test
based tournament selections. This result is not very surprising since the statisti-
cal based tournament selection techniques impose less pressure on the improving
training error compared to standard tournament selection. Comparing between
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Table 3. The mean best fitness on training data. If the result of Statistics-TS1 and
Statistics-TS2 is significantly worse (p − value < 0.05) than the result of standard-TS,
than its value is printed bold and italic faced.

Problems Standard-TS Statistics-TS1 Statistics-TS2

alpha = 0.05 alpha = 0.1 alpha= 0.05 alpha = 0.1

A.Benchmarking Problems

F1 1.44 2.33 2.24 3.59 2.84

F2 0.24 0.35 0.33 0.58 0.48

F3 4.71 6.09 5.50 6.74 6.83

F4 0.01 0.01 0.01 0.03 0.02

F5 0.04 0.04 0.04 0.06 0.05

F6 0.12 0.12 0.12 0.12 0.12

F7 0.10 0.10 0.09 0.09 0.10

F8 0.37 0.49 0.62 1.08 1.05

F9 1.32 1.53 1.53 1.81 1.60

F10 0.42 0.45 0.41 0.53 0.48

B.UCI Problems

F11 8.17 9.54 8.73 9.00 8.77

F12 3.48 3.90 3.92 4.19 4.00

F13 3.35 4.79 4.62 7.20 6.29

F14 8.05 10.02 9.82 12.22 11.90

F15 4.31 5.95 5.53 7.28 6.90

F16 0.49 0.50 0.50 0.52 0.50

F17 0.61 0.62 0.63 0.64 0.63

F18 25.04 30.18 28.95 32.02 31.78

Statistics-TS1 and Statistics-TS2, the table shows that Statistics-TS2 is often
slightly worse than Statistics-TS1 on the training data.

We also conducted a statistical test to compare the training error of standard
tournament selection with two new selection methods using a Wilcoxon signed
rank test with the confident level of 95 %. If the test shows that the training error of
statistical based tournament selection techniques is significantly worse than that
value of standard tournament selection, this value is printed bold and italic faced
in Table 3. It can be seen that, on most problem, the training error of statistical
based selection is significantly worse compared to standard-TS.

The second metric used to compare the performance of the tested tournament
techniques is their ability to generalize beyond the training data. In each run, the
best solution was selected and evaluated on an unseen data set (the testing set).
The testing error of the best individual was then recorded and the median of these
values across 30 runs was calculated and presented in Table 4. This table shows
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that the testing error of two new tournament selection methods is often better
than the value of standard tournament selection. This is very encouraging since
the result in Table 3 shows that the training error of statistical based selection is
often worse compared to standard tournament selection. The result on the testing
error demonstrates that, using statistical test to only select the winner individual
for the mating pool when the individual is statistically better than others help to
improve the generalization of GP.

Table 4. The Median of test error. If the result of Statistics-TS1 and Statistics-TS2 is
significantly better than the result of standard-TS, than their value is printed bold faced.
Conversely, if their result is significantly worse than standard-TS, this value is printed
bold and italic faced.

Problems Standard-TS Statistics-TS1 Statistics-TS2

alpha = 0.05 alpha = 0.1 alpha = 0.05 alpha = 0.1

A.Benchmarking Problems

F1 10.75 6.80 6.58 5.28 4.09

F2 1.02 0.89 0.90 0.82 0.82

F3 38.70 13.98 15.13 15.27 13.85

F4 0.93 0.39 0.74 0.81 0.79

F5 0.03 0.04 0.05 0.07 0.05

F6 0.13 0.13 0.13 0.13 0.13

F7 0.22 0.23 0.24 0.20 0.18

F8 1.63 1.37 1.90 1.97 2.02

F9 1.86 2.19 2.07 2.53 2.25

F10 1.75 1.76 1.74 1.67 1.44

B.UCI Problems

F11 24.85 20.99 27.06 28.23 31.57

F12 4.86 4.79 4.91 4.65 4.64

F13 7.49 6.86 6.80 8.40 8.03

F14 18.23 15.83 16.01 13.11 14.51

F15 8.97 8.31 8.10 8.57 8.01

F16 0.55 0.54 0.56 0.55 0.55

F17 0.66 0.65 0.66 0.66 0.65

F18 40.69 38.19 39.91 37.03 37.06

The statistical test on the testing error using a Wilcoxon signed rank test with
the confident level of 95 % shows that two new tournament selection techniques are
more frequently better than standard-TS on the testing error. Precisely, Statistics-
TS1 is significantly better than standard-TS on three and four problems with
alpha = 0.05 and alpha = 0.1 respectively while standard-TS is significantly
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better than Statistics-TS1 on one problem, F9. The testing error of Statistics-
TS2 is significantly better than standard-TS on seven and eight problems with
alpha = 0.05 and alpha = 0.1 respectively while standard-TS is significantly
better than Statistics-TS2 on only one problem (F9) with alpha = 0.05. Com-
paring between Statistics-TS1 and Statistics-TS1, the statistical test shows that
Statistics-TS2 is often slightly better than Statistics-TS1 on the unseen data.

Table 5. The average of solutions size of three selection methods. If the solutions found
by Statistics-TS1 and Statistics-TS2 are more complex than those found by standard-
TS, their value is printed bold and italic faced.

Problems Standard-TS Statistics-TS1 Statistics-TS2

alpha= 0.05 alpha = 0.1 alpha = 0.05 alpha = 0.1

A.Benchmarking Problems

F1 295.1 263.2 258.7 97.4 118.0

F2 172.9 161.0 145.5 33.9 36.9

F3 260.8 278.3 283.4 90.0 89.2

F4 175.2 176.1 163.4 40.6 48.1

F5 207.8 213.4 235.1 55.6 61.3

F6 100.8 97.8 84.2 36.4 44.1

F7 120.6 135.5 141.1 57.0 57.2

F8 176.2 135.1 134.9 55.9 37.8

F9 143.1 154.8 152.6 50.4 71.2

F10 156.9 157.2 166.4 47.4 32.6

B.UCI Problems

F11 264.7 313.5 296.9 185.6 211.6

F12 218.4 164.1 171.6 28.8 45.8

F13 216.4 143.0 152.9 22.8 31.5

F14 185.3 135.1 146.7 20.1 25.1

F15 212.1 164.7 152.1 24.2 30.4

F16 121.4 120.0 121.2 47.1 55.8

F17 147.8 125.6 145.7 40.1 46.1

F18 326.9 97.0 173.5 6.4 11.3

The last metric used to analyze the efficiency of statistics based tournament
selection techniques is the size of their solutions. We recored the size of the best
fitness individual in each runs. These values are then averaged over 30 runs and
are presented in Table 5. In Table 5, when the solutions found of Statistics-TS1
and Statistics-TS2 are more complex than those obtained by standard-TS, their
result is printed in bold and italic faced. It can be observed from this that the two
new tournament selection techniques often help to find the solution of smaller size.
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Apparently, the size of the solutions found by Statistics-TS1 is smaller than that
of Standard-TS on most problem. Sometimes, Statistics-TS1 finds solutions that
are more complex than the standard tournament selection and this happens on
seven out of eighteen problems with alpha = 0.05 and on six out of eighteen prob-
lems with alpha = 0.1. For Statistics-TS2, the size of its solutions is much smaller
than that of Standard-TS. It can be seen that the size of the solution obtained by
Statistics-TS2 is often equal to one third of the solutions of Standard-TS on most
problem. Overall, the results in this section show that statistical based tourna-
ment selection methods help GP to find simpler solution and generalize better on
unseen data. This result is promising since finding simple solutions that achieve
good performance on unseen data is the main objective of GP systems.

6 Conclusions and FutureWork

In this paper, we introduced the idea of using a statistical test as part of selection
step that utilizes information from fitness case error vectors of GP individuals. We
proposed two variations of tournament selection that used statistical tests to select
the winner for the mating pool. The effectiveness of the approach was examined on
eighteen symbolic regression problems. In the experimental results we observe that
the proposed techniques helpedGP to reduce code growth and generalisation error.

There are a number of research areas for future work, which arise from this
paper. First, we would like to study the approach to improve the performance of the
statistical based tournament selection techniques on the training data. This may
help the new techniques to perform better on a wider range of problems. One pos-
sible approach that can improve the performance of Statistics-TS1 and Statistics-
TS2 is to combine them with local search techniques such as Soft Brood Selec-
tion [1]. Another approach is to implement these techniques with recent semantic
based crossovers [11,13]. Second, at the theoretical level, it is still unclear while
Statistics-TS1 and Statistics-TS2 perform well on unseen data though their per-
formance on the training data is not as good as standard tournament selection. One
possible reason is that they help to reduce code growth resulting in more parsimo-
nious solutions. It is interesting to compare and analyze these tournament tech-
niques with code bloat control methods like multi-objective GP [8] and operator
equalisation [14]. Finally, a potential limitation of the proposed approach is the
overuse of statistical tests without consideration for the increased probability of
a significant difference being detected by chance [5]. Future research will include
an exploration of the impact of different statistical tests and assessment of their
suitability.
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3. Bäck, T.: Selective pressure in evolutionary algorithms: a characterization of selec-
tion mechanisms. In: Proceedings of the First IEEE Conference on Evolutionary
Computation, pp. 57–62. IEEE Press, Piscataway (1994)

4. Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algo-
rithms. Evol. Comput. 4(4), 361–394 (1996)

5. Cumming, G.: Understanding The New Statistics: Effect Sizes, Confidence Intervals,
and Meta-Analysis. Routledge, New York (2012)

6. Fang, Y., Li, J.: A review of tournament selection in genetic programming. In: Cai, Z.,
Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 181–192. Springer,
Heidelberg (2010)

7. Gathercole, C.: An investigation of supervised learning in genetic programming.
Ph.D. thesis. University of Edinburgh (1998)

8. Jong, E.D.D., Pollack, J.B.: Multi-objective methods for tree size control. Genet.
Program. Evolvable Mach. 4(3), 211–233 (2003)

9. Kim, J.J., Zhang, B.T.: Effects of selection schemes in genetic programming for time
series prediction. Proc. Congr. Evol. Comput. 1, 252–258 (1999)

10. Nguyen, Q.U., Nguyen, X.H., O’Neill, M., McKay, R.I., Galvan-Lopez, E.:
Semantically-based crossover in genetic programming: application to real-valued
symbolic regression. Genet. Program. Evolvable Mach. 12(2), 91–119 (2011)

11. Nguyen, Q.U., Pham, T.A., Nguyen, X.H., McDermott, J.: Subtree semantic geo-
metric crossover for genetic programming. Genet. Program. Evolvable Mach. 17(1),
25–53 (2016)

12. Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geomet-
ric semantic crossovers. Genet. Program. Evolvable Mach. 16(3), 351–386 (2015)

13. Pawlak, T.P., Wieloch, B., Krawiec, K.: Semantic backpropagation for designing
search operators in genetic programming. IEEE Trans. Evol. Comput. 19(3), 326–
340 (2015)

14. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic pro-
gramming and a survey of bloat control methods. Genet. Program. Evolvable Mach.
13(2), 197–238 (2012)

15. Sokolov, A., Whitley, D.: Unbiased tournament selection. In: Proceedings of the
7th Annual Conference on Genetic and Evolutionary Computation, pp. 1131–1138.
ACM, New York (2005)

16. White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W.,
Kronberger, G., Jaskowski, W., O’Reilly, U.M., Luke, S.: Better GP bench-
marks: community survey results and proposals. Genet. Program. Evolvable Mach.
14(1), 3–29 (2013)

17. Xie, H., Zhang, M.: Parent selection pressure auto-tuning for tournament selection
in genetic programming. IEEE Trans. Evol. Comput. 17(1), 1–19 (2013)

18. Xie, H., Zhang, M., Andreae, P., Johnston, M.: Is the not-sampled issue in tourna-
ment selection critical? In: IEEE World Congress on Computational Intelligence,
pp. 3710–3717, June 2008

19. Xie, H., Zhang, M., Andreae, P.: Automatic selection pressure control in genetic pro-
gramming. In: Yang, B., Chen, Y. (eds.) 6th International Conference on Intelligent
System Design and Applications, pp. 435–440. IEEE (2006)

20. Xie, H., Zhang, M., Andreae, P., Johnson, M.: An analysis of multi-sampled issue
and no-replacement tournament selection. In: Proceedings of the 10th Annual Con-
ference on Genetic and Evolutionary Computation, GECCO 2008, pp. 1323–1330.
ACM, New York (2008)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Kin Selection with Twin Genetic Programming

William B. Langdon(B)

CREST, Department of Computer Science, University College London,
Gower Street, London WC1E 6BT, UK

w.langdon@cs.ucl.ac.uk

http://crest.cs.ucl.ac.uk

Abstract. In steady state Twin GP both children created by sub-tree
crossover and point mutation are used. They are born together and die
together. Evolution is little changed. Indeed fitness selection using the
twin’s co-conceived doppelganger is possible.
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1 Introduction

In genetic programming it is very common to represent programs as trees (like
Lisp s-expressions) and to use two point subtree crossover (Koza 1992) to create
new programs. Although subtree crossover can be symmetric and can be used
to create two new programs, it is common to it to use it to create a single child
(Poli et al. 2008, p. 15). The offspring inherits its root node from one parent
and a subtree from its other parent. Typically the second parent passes less
genetic material to its offspring than the first. Also, being lower in the child’s
tree, typically the second parent’s genes have less impact. Here we create and
use both children of each two point crossover. The combined genetic contents
of the two children is the same as the combined contents of their two parents.
Although often subtree crossover creates a smaller and a larger child, it never
changes the average size of programs. However, subtree crossover will typically
mean the children are different from each other and from their parents. In many
cases not only are they genetically different (their trees are different) but also
the children are different sizes from each other and different from both parents.

For simplicity we restrict the GP function set to binary functions so that the
trees have internal nodes with two outward facing edges. However theoretical
results have also been provided for mix-arity as well as fixed arity trees (Dignum
and Poli 2010). Without selection and using only crossover, GP populations
of any initial distribution of sizes and shapes rapidly converge to a limiting
distribution (Dignum and Poli 2010). The final size distribution depends on the
initial total number of functions of each arity and the number of terminals (tree
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leafs). For typical GP populations, the limit distribution contains a few very
small trees, the number of trees rises to a peak near the average tree size and
then there is a long tail of rapidly decreasing frequency of bigger trees (see, e.g.
Dignum and Poli 2010, Fig. 6).

The tendency for GP populations to bloat, i.e. for evolution to produce pro-
gressively larger programs with little increase in their ability, is well known (Poli
et al. 2008, Sect. 11.3). It has been suggested (e.g. Dignum and Poli 2010) that
bloat in tree genetic programming is due to subtree crossover producing small
children with below average fitness. Such children are removed from the pop-
ulation by fitness selection. Since crossover does not change the average size,
the remaining programs will tend to be bigger than average. Thus the remain-
ing population after selection will on average be bigger than their parents. In
the next round of crossovers, subtree crossover will again produce some small
programs. It will keep doing this no matter how big the parent trees are. The
limiting distribution still contains a sizeable fraction of small programs no matter
how big its mean. This bloat theory says they will always have a tendency to be
too small to be useful and so fitness will always cause selection to preferentially
remove them, so the average size of trees will always increase.

Twin genetic programming was conceived with the idea (which failed) of
foiling bloat. The idea being to force simultaneous fitness based removal of both
the smaller and the larger child. Thus in twin GP, two children are created
with the same average size as their parents. Although, whilst in the popula-
tion, they can be independently selected to be parents, when either child is
deleted, she takes her twin with her. (If the two parents were not selected
independently but locked together, like the offspring, then the population would
degenerate into independent lines and interbreeding would be impossible.)

The next section presents twin GP, Sect. 3 describes our experiments, whose
results are given in Sect. 4. The failure to contain bloat and the success of kin
selection are analysed in Sect. 5, including a mathematical model of the disrup-
tion caused by kin selection (in Sect. 5.3), before we summarise in Sect. 6.

2 Twin Genetic Programming

2.1 TinyGP

Our implementation of twin genetic programming is based on Riccardo Poli’s C
implementation of TinyGP (Poli et al. 2008) for Boolean problems. TinyGP pro-
vides a steady state (Syswerda 1989) fixed sized population evolutionary frame-
work.

2.2 Two Offspring Sub-tree Crossover

TinyGP’s subtree crossover essentially provides Koza’s subtree crossover (Koza
1992) but without a bias in favour of choosing functions as crossover points.
That is, the two crossover points (one per parent tree) are chosen independently
at random from all internal and external (leafs) nodes in the tree.
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In TinyGP once the initial population has been created, there are no size
or depth restrictions on the evolving trees and after a few generations bloat is
usually rampant.

The only change for twin GP is to use the two crossover points twice so
creating two offspring (the twins).

2.3 Point Mutation

Children not created by crossover are created by applying point mutation (Poli
et al. 2008, pp. 16–17) at 5 % per node to a copy of their parent. Thus larger
trees are proportionately more likely to be changed at multiple places. Notice
this type of tree mutation does not change the size or the shape of the program.

For twin genetic programming, two child programs are created by two inde-
pendent mutations and then locked together as twins. Since the parents are
chosen independently the twins (like those created by crossover) are typically of
different sizes and shapes.

2.4 Fitness 6 Multiplexor

As a demonstration we use TinyGP’s Boolean six multiplexor problem. The goal
is to evolve a program which takes six Boolean inputs and outputs a Boolean
corresponding to 6-Mux (Koza 1992, Sect. 7.4). I.e. two inputs correspond to
two address lines (giving 4 combinations) which select one of the remaining four
inputs and connect it to the output. There are 26 = 64 possible tests. We use
them all. An individual program’s fitness is the number of test cases it for which
it gives the correct answer. I.e. fitness is an integer between 0 and 64.

2.5 Twin Selection in Steady State Populations

In twin GP both selection to be a parent and deciding which two programs are
to be removed from the population is on the basis of the fitness of the two twins.
We looked at five ways of combining the twins’ fitnesses: twin) the default, just
use the individual program’s fitness. MEAN) use the mean of the fitness of the
program and its twin. MAX) use the best fitness of the two programs. MIN) use
the worse fitness. KIN) use the fitness of the twin, i.e. kin selection. Finally, as
a sanity check, we ignore fitness of the twins entirely and select randomly. As
expected under random selection, evolution does not solve the problem at all
and the populations do not bloat.

3 Experiments

We tried each of the five settings described in Sect. 2.5 and the original TinyGP.
(Results for TinyGP “no twin” are at the top of Table 2). The parameters of twin
GP are summarised in Table 1. Initial results for kin selection were disappointing
and no solutions were found. Hence kin was re-run with a population ten times
as big. We run each experiment 30 times. The results are summarised in Table 2.
(For completeness, all GP runs were also made with the larger population size.)
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Table 1. Twin genetic programming parameters for solving 6 multiplexor

Terminals: 6 Boolean inputs D0–D5

Functions: AND, OR, NAND, NOR

Fitness: All 64 fitness cases

Selection: Binary tournaments used for both parent and replacement selection

Population: 1000 (or 10 000)

Initial pop: Grow, max depth 6

Parameters: 80 % subtree crossover. Both crossover points chosen at random, i.e.
no function bias

20 % point mutation. 5 % chance of substitution with primitive of the
same arity per primitive. Notice mutants are subjected to zero or
more flips and larger programs have proportionately more changes

No depth or size limits

Termination: Problem is solved, or 100 generation equivalents

4 Results

Table 2 shows twin GP working surprisingly well.1 Evolution of successful pro-
grams is even possible if we use the fitness of the worst of the twins. Although
kin selection is obviously doing less well, if we increase the population size, evo-
lution can proceed even if we totally ignore the fitness of the individual and
always use instead the fitness of her twin. As the last pair of columns in Table 2
makes clear, twin GP has totally failed to address bloat.

Table 2. Twin genetic programming six multiplexor (30 runs each)

Experiment Successful runs Best fitness Mean size generation 100

pop size 1000 10000 1000 10000 1000 10000

no twin 21 30 64 64 1518.2 -

twin 13 29 64 64 1357.7 1654.5

MEAN 17 30 64 64 1167.8 -

MAX 19 30 64 64 1136.4 -

MIN 6 28 64 64 960.6 1103.9

KIN 0 11 61 64 259.4 327.0

RAND 0 50 13.6

1 According to the binomial distribution the first three variants of twin GP, i.e. twin,
mean and max, are not significantly worse than TinyGP without twins.
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5 Discussion: Why Does Twin GP Bloat

5.1 Two Can Bloat Too

Figure 1 plots the change in total program size each time a new pair of programs
is created (and so a twin is removed from the population). Figure 1 suggests a
near symmetric distribution but notice the rapidly increase in variation as the
population evolves to contain bigger trees. What Fig. 1 conceals is that the dis-
tribution is not exactly symmetric. Figure 2 plots the average change. In almost
every generation, on average, smaller trees are replaced with bigger ones. I.e.
binary fitness tournaments have a bias towards selecting larger trees to be par-
ents than they select to be killed. This leads to bloat. (Binary tournaments
have the lowest selection pressure or intensity of any simple tournament selec-
tion scheme (Blickle and Thiele 1996, Fig. 4).) That is, despite twin GP’s careful
control of the genetic operations of crossover and mutation, to ensure they do not
change the total size, fitness selection is still bloating the population (Langdon
and Poli 1997).

5.2 How Different Are Twins?

A possible explanation for all twin selection runs evolving fitter trees (including
sometimes finding solutions), might have been that the twins are identical or at
least very similar. However as Fig. 3 shows, there is more to it than that. Firstly
we consider what do we mean by two trees are similar. Figure 3 considers four
similarity metrics. Firstly we look at the trees themselves and then we look at
two metrics based on their outputs.

We can consider if the trees are identical. (This is Koza 1992’s population
variety.) And secondly if they are the same size. As expected twin GP pop-
ulations, like usual GP populations (Koza 1992), do not converge in terms of
their genotypes. Even in the early generations there are almost no tournaments
between identical trees and, in a typical run, none at all after generation nine. If
we look at a much loose definition of tree similarity: are the trees the same size,
we see a similar picture. (Of course identical trees must also have the same sizes,
but not vice versa.) In the early generation about of 5 % of tournaments are
between trees of the same size but this falls to less than 1 % after generation 13.

We also looked at similarity of behaviour. As expected (Langdon et al. 1999),
the populations converge to some extent. Again Fig. 3 looks at two types of
(phenotypic) convergence. Do two programs return identical answers on all the
test cases and secondly do they have the same fitness. (Since fitness is define by
the test cases, two trees which give the same answers on all 64 test cases must
have the same fitness, but not vice versa.)

Phenotypes (i.e. behaviour) in twin GP populations do show some conver-
gence (e.g. Fig. 3) and also twins’ phenotypes (and so fitness) are slightly more
similar than those of the population as a whole. For example at the end of the
run in Fig. 3 30.6 % (+) of twins gave exactly the same answer on all 64 tests
whilst the figure for random pairs was 29.4 % (×).
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Fig. 1. Change in combined size (2 × 2 trees) per tournament in typical twin run
(i.e. selection uses twin’s own fitness). 6-Mux. Population 1000.
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5.3 Expected Impact of Kin Selection in Boolean Problems

We next show in the limit in random populations kin selection impacts half
fitness selection tournaments and calculate the ratio for n = 6 (34.3 % and show
it agrees with experiment (see Fig. 6).

In GP it is common (as we do here, see Table 1) to use an unbiased set of
primitives. Thus before fitness selection, in Boolean problems, like the 6 Mul-
tiplexor, the chance of getting any individual test right is 50 %. Therefore for
an n bit problem, in large trees the initial random distribution of fitness fol-
lows the binomial distribution 2−NCi

N (where N = 2n).2 Notice 2−NCi
N is

symmetric about N/2. In the limit of large n the binomial distribution can be
approximated by a Gaussian distribution (The same holds when the functions
are reversible (Langdon 2003).) The distribution’s mean is 2n−1 and its variance
is 2n−2 (standard deviation 2n/2−1). (E.g. for the 6-mux the mean is 32 and the
standard deviation is 4.) In a random 6-mux population there is a reasonable
chance of drawing two programs with the same fitness. In higher order problems
(i.e. letting n increase) the width of the distribution grows. When it is large com-
pared to 1.0 there is essentially no chance two random programs will have the
same fitness. Thus for large n we need not consider the chance of tournaments
having to consider a draw where individuals have the same fitness.

Consider a program with fitness i having a twin with fitness j in a binary
tournament with a program of fitness k. It will win if i > k and lose if i < k.
Draws i = k are resolved randomly. We can calculate the likelihood that substi-
tuting it with its twin’s fitness will not change the outcome of the tournament.
The twin still wins if i > k & j > k and still loses if i < k & j < k and half draws
will yield the same answer as before, i.e. 1

2 (i = k | j = k). Assuming fitness are
randomly distributed, we can calculate the probability of the same outcome as:

N∑

i=0

2−NCi
N

N∑

j=0

2−NCi
N

N∑

j=0

2−NCi
N

⎛

⎝
δ(i > k & j > k)+
δ(i < k & j < k)+
1/2δ(i = k | j = k)

⎞

⎠ (1)

where δ(x) is 1 if x is true and 0 otherwise. If N is large we can ignore the
draws (i.e. neglect the space occupied by (i = k | j = k)). (i > k & j > k) and
(i < k & j < k) both partition the (0..N)3 cube and allocate a quarter of it each.
I.e. a half in total. Since the density function 2−3NCi

NCj
NCk

N is symmetric
about the centre of the (0..N)3 cube the total sum of probabilities will be a half.
Thus in random populations of large Boolean problems kin selection which uses
the twin’s fitness will disrupt half of binary tournaments.

In the case of 6-mux, N = 64 and we evaluate Eq. 1 numerically using the
actual random tree’s fitness distribution as 65.7 %. (See horizontal line in Fig. 6.)
Notice the close agreement with estimates drawn from a real run in Fig. 6 for
the first generation. Some variation as the population moves away from its ini-
tial random distribution might be expected but the similarity in later generations

2 For the small trees the distribution is only approximately binomial (Langdon 2009).
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suggests although the population’s average fitness has changed its variation (stan-
dard deviation) remains similar (see dotted lines in Fig. 6).

6 Conclusions

In twin genetic programming the combined size of the two children is always
identical to that of their parents. Thus no genetic operation changes the average
size of programs in the evolving population. Nonetheless a very small but sus-
tained bias in fitness selection to kill smaller trees leads to cumulative increase
in program size commonly known as bloat.

Twin genetic programming can be effective even when using elements of
the fitness of the other twin, see Table 2. Evolution is adversely effected when
either ignoring the best fitness of the twins or exclusively using the fitness of
the other twin (kin selection). However we have demonstrated kin selection can
evolve solutions. Surprisingly it is able to do this although using the twin’s
fitness disrupts almost as many selection tournaments as choosing at random
from the population (Fig. 6) and yet evolution makes no progress at all with
totally random selection (last row in Table 2). Section 5.3 presents a generic
theoretical analysis of the impact of kin selection using binary tournaments for
large programs in high order (large n) Boolean problems and applies numerical
values for the special case of small trees and n = 6.

Implementation

C code for twin GP is available via anonymous FTP and via http://www.cs.ucl.
ac.uk/staff/W.Langdon/ftp/gp-code/tiny gp twin.c

Acknowledgements. I am grateful for discussions with T.H. Westerdale.
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Abstract. Recursive functions are an attractive target for genetic
programming because they can express complex computation compactly.
However, the need to simultaneously discover correct recursive and base
cases in these functions is a major obstacle in the evolutionary search
process. To overcome these obstacles two recent remedies have been pro-
posed. The first is Scaffolding which permits the recursive case of a func-
tion to be evaluated independently of the base case. The second is Call-
Tree-Guided Genetic Programming (CTGGP) which uses a partial call
tree, supplied by the user, to separately evolve the parameter expressions
for recursive calls. Used in isolation, both of these approaches have been
shown to offer significant advantages in terms of search performance.
In this work we investigate the impact of different combinations of these
approaches. We find that, on our benchmarks, CTGGP significantly out-
performs Scaffolding and that a combination CTGGP and Scaffolding
appears to produce further improvements in worst-case performance.

Keywords: Recursion · Genetic programming · Call-tree · Scaffolding ·
Grammatical evolution

1 Introduction

Recursive functions solve challenging problems by defining larger solutions in
terms of sub-solutions. Recursive functions are often compact and expressive,
which has made the evolution of recursive functions a popular target for genetic
programming (GP) [5,6,9]. Unfortunately, the evolution of non-trivial recursive
functions through GP has proven difficult in practice [1,6]. One cause of this dif-
ficulty is that fitness functions based solely on test cases are very sensitive to the
correctness of the candidate code for the base case. Thus, when the base case’s
code is wrong, the fitness function will often give very low fitness to candidate
solutions even when the major part of the code – the recursive case – is entirely
correct [6]. This dependence results in the need to simultaneously evolve correct
code for both the base and recursive cases [1,7] before a high fitness score is
achieved.

Several approaches to improve search for recursive functions have been imple-
mented. These have included: the use of niches to preserve diversity during search
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 324–334, 2016.
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[7] and narrowing search-spaces using templates that express common patterns
of recurrence [10,11]. Moraglio et al. [6] defined a simple and general approach,
called Scaffolding, which employed existing test cases to always return a correct
result for recursive calls. This allowed the fitness of the recursive case to be
gauged independently of the base case. Later, Alexander and Zacher [2] defined
Call-Tree-Guided Genetic Programming (CTGGP), which used information in
user-defined partial call trees to separately deduce recursive calls. More recently,
Chennupati et al. [4] implemented Multi-core Grammatical Evolution on par-
allel platforms to speed up the evolution of parallel recursive integer and list
functions.

In this paper we benchmark both Scaffolding and CTGGP alone and in
combination. The question of which configuration of these frameworks gives the
most benefit is interesting, because both Scaffolding and CTGGP showed sig-
nificant improvement over unassisted GP search on their respective recursive
benchmarks. A-priori, Scaffolding and CTGGP have a complementary focus:
Scaffolding allows the base case to be evolved without impacting the search for
the recursive case and, in contrast, CTGGP separately evolves the parameter to
recursive calls. To date, there has been no research that has compared the two
approaches either in isolation or in combination. In this paper we compare the
performance of Scaffolding and CTGGP on a range of recursive benchmarks. We
show that CTGGP performs better than Scaffolding in isolation and the com-
bination of the two approaches marginally improves average performance, but
consistently improves worst-case performance. We also describe improvements
to the CTGGP system and briefly examine their impact.

The remainder of this paper is structured as follows. In the next section
we describe the conceptual frameworks for Scaffolding and CTGGP. In Sect. 3
we describe an implementation of our framework combining Scaffolding and
CTGGP. In Sect. 4 we describe our experimental parameters and results and,
finally, in Sect. 5 we present our conclusions and ideas for future work.

2 Conceptual Frameworks

In this section we describe the concepts of Scaffolding and CTGGP. Both con-
cepts are enhancements to Genetic Programming (GP). Here we define a GP
search framework as a function GPSearch which attempts to discover a target
code fragment f . To define f ’s behaviour, GPSearch requires test-cases in the
form of a list of inputs to f : in = [i1, . . . , ın] and a corresponding list of desired
outputs from f : out = [o1, . . . , on]. Given these definitions, the GPSearch can
be defined:

GPSearch(in, out) = f = argmin
fx∈Genset

Error(fx, in, out)

where Genset is the set of candidate functions that is generated by GPSearch
and Error is an error function that returns a measure of how much the outputs
of fx deviate from the desired outputs in out. In GP, Genset is generated dynam-
ically by an evolutionary process guided by the values of Error. In order to make
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search tractable, the elements of Genset are usually constrained to belong to a
grammar relevant to the problem domain of interest.

In this paper, all of our target benchmarks f are recursive integer functions
of one argument that return one value. We constrain the members of Genset to
this form using Grammatical Evolution (GE) [8] – a form of GP which maps a
binary string genotype to code via a BNF grammar provided by the user. In the
following, we define Error as:

Error(fx, in, out) = Σn
k=1|fx(ink) − outk|

The aim of our search is to converge to target f such that Error(f, in, out) = 0.
Both Scaffolding and CTGGP extend the framework just described. We describe
these extensions in turn.

2.1 Scaffolding

The motivation for Scaffolding stems from the observation that any candidate
recursive function fx applied to test cases in and out will receive a very poor
fitness evaluation unless the base case is correct. For example, in the fib function
shown in Algorithm1 a change of the base case guard on line 2 to x < 1 will
cause the program to fail on most foreseeable test cases. Likewise a change of
the base case body on line 3 to return 1 also causes most test cases to fail. This
happens despite the remaining code being entirely correct.

Algorithm 1. Correct C implementation of the Fibonacci function

1 int correctRecurse(int x) {

2 if (x >= orig_x) {

3 return recurse(x);

4 }

5 for (int i = 0; i < n; i++) {

6 if (inp[i] == x) return out[i];

7 }

8 return recurse(x);

9 }

This sensitivity to errors in the base case has a significant impact on search.
Moraglio proposed Scaffolding [6] to help address this problem. Under Scaffolding,
every recursive call is replaced by a call to a non-recursive function that returns the
correct value for that call. The correct value for each call is mined from the origi-
nal test cases in in and out. Thus, for example, Scaffolding would replace the call
fib(2), where in = [0, 1, 2, 4, 6] and out = [0, 1, 1, 3, 8], with the call correct-fib(2)
which would then return out2 = 1. If the input to the call for the recursive func-
tion doesn’t correspond to a value in in, then recursion is allowed to progress as
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normal until a call with a value in in is encountered. After evolution has completed
Scaffolding replaces all calls with the original function name.

The above scheme makes it possible to evaluate the correctness of the recur-
sive case somewhat independently of the base case. The correctness of the base
case still contributes to fitness to the extent that it is directly or indirectly
exercised by in.

A final detail that must be addressed in Scaffolding is avoiding cases where
the parameter of the recursive call matches the original parameter to the func-
tion. Without intervention, Scaffolding would find these cases to be correct while
the actual program when run would make no progress. Scaffolding handles these
cases by explicitly detecting them and avoiding replacement with the correct
version of the call. This leads to infinite recursion and, thus, poor fitness.

2.2 CTGGP

CTGGP speeds up the GP search process by conducting a separate search for
the parameters of the recursive call. Thus, if the target function is fib in Fig. 1,
CTGGP would conduct a search for parameter expressions x-1 and x-2 sepa-
rately from the rest of the code.

Fig. 1. An example partial call tree for a fib function

This search is guided by information embedded in a user-provided partial
call tree. An example of a call for the fib function is shown in Fig. 1. The nodes
of the call tree can contain up to two numbers. The top number is the parameter
of the recursive call. The bottom number, in brackets, is the value returned by
that call. Note that this return value is not required for every node in the tree.
In addition, the user doesn’t have to provide every call starting from the call
at the root node. Moreover, the tree is allowed to be disjoint and overlapping
calls from parent nodes can be shared, forming a directed-acyclic graph. The
premise underpinning CTGGP is that in order to create the input and output



328 B. Alexander et al.

values required to drive a GP process the user will often sketch an approximation
of a call tree in order to obtain these input and output values. Thus, by using
CTGGP we are merely exploiting information that the user already has in hand.

The partial call tree can be mined for information to guide CTGGP. The
values in in are the top values in each node. The values in out are the bottom
values in each node. In addition, CTGGP uses the structure of the tree to create
a list of tree-segments: segs which contains a list of entries [s1, . . . , sm] where
each si is a pair (pnti, [ci1, . . . , cimi

]) which defines the relationship between the
parent: pnti and its child nodes in the call tree. As an example of the correspon-
dence between the call tree and the values above the values extracted from the
call tree shown in Fig. 1 are shown in Fig. 2

Fig. 2. Values extracted by CTGGP from the call tree in Fig. 1

The search process in CTGGP starts when the user specifies the call tree via a
GUI interface. The interface application infers from the arity of tree fragments,
with confirmation from the user, details of the grammars to be used. These
details include the number of base cases and the inferred number of recursive
calls [2]. From this step two grammars are produced. The first grammar, called
grammar1, is used for searching for the parameters of the recursive calls. An
example of this grammar for the call tree in Fig. 1, is shown in Fig. 3(a). A
second grammar, called grammar2, is used for searching for the remainder of
the function. The corresponding grammar2 is shown in Fig. 3(b). The candidate
expressions generated from grammar1 are referenced in part (b) by the expres-
sions param1 and param2. The recursive calls in grammar2 are always denoted
by the generic name “recurse”.

Once the grammars have been defined, evolution in CTGGP proceeds in
two concurrent phases of GE. Phase 1 produces individual expressions from
grammar1 in order to produce parameter expressions for the recursive call(s).
Phase 2 uses grammar2 to evolve the rest of the recursive function. During
phase 2 evolution, the current best expressions from phase 1 are integrated into
the candidate solutions. This simultaneous evolution is an improvement on our
previous work [2] which ran phase 1 and phase 2 in sequence and thus required
us to make an a-priori estimate of the amount of time phase 1 would require to
find an acceptable solution.

In phase 2, individual candidate solutions fx are evaluated by calling the
Error(fx, in, out) function defined at the beginning of this section. In phase 1
the parameter expressions produced are evaluated by comparing the results of
the candidate parameter expressions to the corresponding entries in segs. As an
example of how this is done for the call tree in Fig. 1, consider a phase 1 search
process for fib that produces the (correct) expressions: param1 = x − 1 and
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Fig. 3. Grammar1 (a) and grammar2 (b) generated by the call tree in Fig. 1.

param2 = x − 2. To test these we extract the first entry from segs from Fig. 2:
(5, [4, 3]). This entry consists of the parent parameter 5 and the child parameters
[4, 3]. We substitute the parent parameter 5 into each of param1 and param2.
These produce, respectively, the values 4 and 3. These are eliminated from the
child parameter list leaving an empty list. The matching process then progresses
other elements of segs. If all child parameter entries in segs are eliminated,
then perfect fitness is given. If some items fail to match then fitness is penalised
according to the distance between the output of the phase 1 expression and the
closest match in the children of the relevant entry in segs.

The whole evolution progresses until either phase 2 evolution finishes with a
perfect score or the maximum number of generations for phase 2 is reached.

3 Implementation and Experimental Setup

In this section we outline how Scaffolding is combined with CTGGP and how
the experiments we use to measure their performance are set up.

To implement Scaffolding we need to embed code to access the correct answer
to each recursive call in each candidate solution fx. In our system this is done
by implementing a function called correctRecurse that takes the place of the
recursive calls: recurse in the phase 2 grammar. correctRecurse is imple-
mented as part of the library code accessed by the candidate solution. The code
for correctRecurse is shown in Algorithm 2. The variable orig x is a global
variable containing the value of the original call to recurse. The variables in
and out are arrays representing in and out respectively. The variable n repre-
sents the length of both in and out. The if-statement on lines 2 to 4 checks to
see if the parameter is the same as that of the original call. If so, it forces a call
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Algorithm 2. Implementation of correctRecurse

1 int correctRecurse(int x) {

2 if (x >= orig_x) {

3 return recurse(x);

4 }

5 for (int i = 0; i < n; i++) {

6 if (inp[i] == x) return out[i];

7 }

8 return recurse(x);

9 }

back to recurse which, in this case, will usually result in infinite recursion and
timeout thus giving a low fitness. The for-loop on lines 5 to 7 checks to see if x
is part of in, if so, it will return the corresponding element of out. Otherwise the
recurse function is called on line 8 with the possibility that it will, eventually,
call correctRecurse again with a parameter that is in in.

The rest of the CTGGP framework remains the same as previously described.
The framework itself is implemented in C++ and uses libGE version 0.261 to
generate individuals and carry out search. Candidate functions are generated
using C grammars and these are compiled into scaffold libraries using the Tiny-
C-Compiler [3] (TCC). In phase 1 evolution, the test harness compares the out-
put of the evolved parameter expressions with the elements of segs. In phase 2
evolution, which runs in a separate thread, the whole function is tested against
the values in in and out. The phase 1 and phase 2 threads communicate via a C
source file containing the parameter expressions generated by phase 1. This file
is locked while being accessed so that our code remains thread-safe.

In our experiments we compare four different configurations on a range of
target benchmarks. The four experiments are Plain - GE run against a gram-
mar for each problem without Scaffolding or CTGGP; Scaffolding - GE run
with Scaffolding but without separate evolution of parameters to recursive calls;
CTGGP - GE running with CTGGP; and Combined combining CTGGP with
Scaffolding as described above.

The target benchmarks are, for an integer parameter (n): factorial returns
the factorial of n; odd-evens returns 0 if nmod 2 = 0 and 1 otherwise; log2 finds
�log2 n�; fib and fib3 calculates the Fibonacci and Fibonacci-3 number for n;
lucas calculates the nth Lucas number (this requires two base cases); and pell
calculates the nth Pell number.

For the CTGGP runs, we use small call trees which provide information
on the first five to six elements of the sequence. With our GUI these cases
take less than 5 min each to draw. To enable a fair comparison for the non-
CTGGP runs we simply integrate the phase1 grammar into the phase 2 grammar
which defines a set of valid target programs. This setup allows the non-CTGGP

1 This framework can be downloaded http://bds.ul.ie/libGE/.

http://bds.ul.ie/libGE/
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experiments to take advantage of the specialised grammars generated with infor-
mation from the structure of the call tree. This specialisation will positively
influence their performance, making our relative estimates of the performance
of CTGGP conservative.

In all experiments we use GE running on an underlying steady-state GA
with tournament selection. The GE parameters remain same as the hand-tuned
parameters from phase 2 from [2]. The replacement probability use is 0.25 and
probabilities for crossover and mutation are, respectively, 0.9 and 0.01. In all
experiments and both phases in the CTGGP experiments we use a population
of 1000 running for 300 generations. The phases are set up to terminate early
if an individual with perfect fitness is encountered. In all experiments using
CTGGP phase 1 terminated faster than phase 2 so phase 2 statistics serve as
the best indicator of the time the algorithm takes.

We ran our experiments on an AMD Opteron 6348 machine with 48 proces-
sors running at 2.8 GHz. When the load on the machine was light the average
evaluation time per individual ranged from 2 ms to 20 ms depending on the com-
plexity of the benchmark. All experiments were run for 50 trials.

4 Results and Discussion

Table 1 shows the results of our experiments. The columns show, respectively, the
data for each experiment. The rows show the results for each benchmark – broken
down into mean number of phase 2 evaluations (x), number of correct answers
(nc) and worst case number of evaluations (max). Where not all runs in an
experiment resulted in success the value of max simply indicates the time when
the longest run terminated rather than maximum time-to-success. These cases
are marked with an asterisk. We also mark bold an entry for x if it is significantly
better than corresponding value in the previous column (according to a log-rank
test). As can be seen, on most benchmarks Scaffolding significantly outperforms
plain GE. CTGGP significantly outperforms Scaffolding on all benchmarks –
pointing to the advantage of utilising call tree information when it is available.
In the last column Combined, only significantly outperforms CTGGP alone on
the lucas benchmark. Exploring further, it can be seen that the value for x is
at least marginally better for combined than for CTGGP for all benchmarks.
Moreover, the value of max is substantially lower for Combined and for CTGGP
indicating that the combination may be a strategy for moderating worst-case
performance.

As previously mentioned, in the latest implementation of CTGGP phase 1
and 2 evolution run concurrently. This means that on machines with spare
processing capacity there is insignificant time overhead incurred from running
phase 1. However, it is still interesting to observe how phase 1 and 2 interact over
time. Figure 4 plots the best phase 1 fitness, best phase 2 fitness and and average
phase 2 fitness against time for a long (75th percentile) run of the Combined
framework on the fib3 benchmark.



332 B. Alexander et al.

Table 1. Mean number of evaluations (x), number of correct answers (nc) and worst
case number of evaluations (max) for the four experimental configurations.

Problem Plain Scaffolding CTGGP Combined

factorial x 4109 2542 219 157

nc 50 50 50 50

max 8942 7032 1403 366

oddeven x 539 478 269 255

nc 50 50 50 50

max 2069 1845 1201 885

log2 x 21524 9049 1404 1206

nc 50 50 50 50

max 103783 22489 11527 3845

fib x 53168 31733 1189 1081

nc 40 49 50 50

max 130923* 130107* 3698 3617

fib3 x 117875 94818 12614 10347

nc 3 18 50 50

max 125723* 124448* 84271 40771

lucas x 105663 35820 3081 1622

nc 8 49 50 50

max 123455* 127936* 12288 7070

pell x 56240 28887 2127 1879

nc 41 49 50 50

max 129823* 128358* 6186 4904

Fig. 4. Plot of fitness against time for the best individual in phase 1 and the best and
average individual in phase 2 for the fib3 benchmark. (Color figure online)

As can be seen, phase 2 is able to make some progress, particularly in aver-
age fitness, while phase 1 is below perfect fitness - this indicates that even
with incorrect parameter expressions search can progress. The speed of phase 2
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search improves once phase 1 has produced the required parameters and termi-
nated. This pattern of behavior is similar to that observed in other runs we have
inspected.

5 Conclusions and Future Work

In this paper we have explored the effect of Scaffolding, CTGGP and a combina-
tion of these on GP search on a range of recursive benchmarks. We have shown
that both Scaffolding and CTGGP significantly improve GP performance and
there are indications that combining these is beneficial in terms of improving
worst case performance. We have also shown that it is productive to run phase
1 and phase 2 evolution of CTGGP concurrently.

This work can be extended in several ways. We could further exploit the rela-
tionships between calling values and return values in the tree to help induct code
that combines return values. We can extend the benchmarks for these experi-
ments to include recurrences in loops. Finally we can conduct a more extensive
study to confirm the effectiveness of the combined framework in reducing worst
case times.

References

1. Agapitos, A., Lucas, S.: Learning recursive functions with object oriented genetic
programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A.
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Abstract. We discuss the use of surrogate models in the field of genetic
programming. We describe a set of features extracted from each tree and
use it to train a model of the fitness function. The results indicate that
such a model can be used to predict the fitness of new individuals without
the need to evaluate them. In a series of experiments, we show how
surrogate modeling is able to reduce the number of fitness evaluations
needed in genetic programming, and we discuss how the use of surrogate
models affects the exploration and convergence of genetic programming
algorithms.

Keywords: Surrogate model · Genetic programming · Random forest

1 Introduction

Evolutionary algorithms are great optimizers, however, they require a large num-
ber of objective function evaluations to find a suitable solution for a given prob-
lem. This large number of evaluations may be problematic in practice. Surrogate
modeling [4] helps to reduce the number of fitness evaluations needed to find a
solution of a given quality. Its main idea is to build an approximate model of the
fitness function, which is used during the optimization as a cheap replacement
of the expensive fitness. In the most common case, the model is built using var-
ious machine learning techniques from the individuals evaluated earlier in the
evolution. The surrogate model is usually a standard regression model. So far,
this technique is used almost exclusively in the field of continuous optimization,
i.e. the optimization of functions R

n → R.
The spread of surrogate modeling to different areas of evolutionary opti-

mization is limited by the higher complexity of machine learning in these cases.
Creating a surrogate model that maps, for example, a genetic program to a real
number is a much more challenging task than running a regression algorithm
on a vector of real numbers. In genetic programming, the surrogate modelling
additionally includes, at least, the extraction of features from the genetic pro-
grams. So far, there are few applications of surrogate modeling outside the field
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 335–344, 2016.
DOI: 10.1007/978-3-319-45823-6 31
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of continuous optimization, one such example is provided by Li et al. [6] who
use surrogate models to solve a problem in mixed integer programming.

Hildebrandt and Branke [3] proposed a method based on phenotypic features
to predict the fitness values of an individual in genetic programming and used
it to evolve dispatching rules for job shop scheduling. To create the feature
vectors, they evaluate the individual on a few tasks and use the results of the
individual as features. Then, they use a nearest neighbor model to predict the
fitness of the individual (the fitness of the closest evaluated individual is used
as a fitness of the new one). Such approach can be used in scenarios where the
evolved program is used as a controller and it can be evaluated on a smaller task.
However, in other scenarios the applicability of this method may be limited. For
example, our motivation for this work is based on our previous work [5], where
we attempted to evolve machine learning workflows with genetic programming.
In such a scenario a partial evaluation of the individual does not make sense.

In this work we investigate the extraction of features directly from the tree
individuals used in GP, with no need to evaluate the individuals. Our main goal
is to create an algorithm, which can use these features to predict the quality
of an individual based solely on it genotypic representation. To this end, we
first extract as many features as possible from the individual and then train a
surrogate model based on random forests. We also investigate the importance
of individual features and how well the predictions match the real quality of
individuals.

2 Surrogate-Based Genetic Programming

We propose a set of features, that can be extracted in a single pass through the
tree without the need to evaluate the program. The features contain information
of different kinds: general features regarding the tree, features concerning the
primitives (i.e. functions) used in the tree, features on the arguments of the
program, features regarding the constants used in the tree, and also the fitness
of the parents of an individual. Particularly, the following features were used in
the experiments in this paper:

– tree features – depth of the tree, size of the tree (number of nodes)
– constant features – maximum, minimum, and mean, number of constants and

distinct constants divided by the size of tree
– argument features – average number of times an argument is used and pro-

portion of arguments used
– for each terminal or primitive – the number of times it is used divided by the

length of the individual
– parents’ fitness – minimum, maximum and mean of the fitness of parents

Therefore, the number of features extracted from each individual equals the
number of different non-terminals + the number of arguments of the program
+ 1 (for the constants as terminals) + 12 (the general features, the counts of
arguments and constants, the statistics on the constants values, and the statistics
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Algorithm 1. Surrogate-based Genetic Programming
Require: n: population size, τ : number of evaluations before surrogate modeling,

Am: maximum size of training set, w: the proportion of worst individuals to discard
1: t ← 0, A = ∅, P0 ← InitRandomPopulation(n)
2: for i in P0 do
3: fi ← Evaluate(i)
4: ϕi ← ExtractFeatures(i); A ← A ∪ {(i, fi, ϕi)}
5: end for
6: while termination criterion not met do
7: t ← t + 1
8: S ← Selection(Pt−1)
9: Ot ← GenerateOffspring(S)

10: if |A| > τ then
11: T ← A � training set
12: if |T | > Am then T ← RandomSample(T , Am)
13: M ← BuildModel(Features(T ), Targets(T ))
14: I ← {i ∈ O|FitnessNotEvaluated(i)}
15: f̂i = {PredFit(i, ExtractFeatures(i), M)|i ∈ I}
16: W ← the indices of w|I| worst individuals
17: for i in I do
18: if i ∈ W then I ← replace i with its parent from S in I
19: end for
20: end if
21: I ← {i ∈ O|FitnessNotEvaluated(i)}
22: for i in Pt do
23: fi ← Evaluate(i)
24: ϕi ← ExtractFeatures(i); A ← A ∪ {(i, fi, ϕi)}
25: end for
26: Pt ← Best(Pt) ∪ RemoveWorst(O)
27: end while

on fitness of parents). We investigate the importance of these features and also
the performance of some models based on these features in Sects. 3.1 and 3.2.

We also considered a number of different features, i.e. the numbers times
each tree of depth one is used. However, such structural features would increase
the length of the feature vector significantly and would make the model training
slower.

2.1 Baseline Algorithm

The main loop of the proposed algorithm (cf. Algorithm1) is a relatively stan-
dard GP algorithm. It first generates a random initial population (line 1) and
evaluates its fitness (line 3). Then, the evolution loop starts, the offspring are
generated (line 9), those with unknown fitness are evaluated (line 23) and, finally,
the environmental selection is performed (line 26). In the environmental selec-
tion, we use a weak elitism, i.e. the best individual from the parents replaces the
worst offspring.
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The part of the algorithm described in the paragraph above is also what we
call the baseline algorithm in our experiments.

2.2 Surrogate Modeling

The surrogate version of the algorithm contains an archive of all individuals eval-
uated during the run which is initialized in the beginning (line 1) and updated
after each evaluation of the real fitness with the value of the fitness and the
features of the evaluated individual (lines 4 and 24).

The main part regarding the surrogate modeling lies between lines 10 and 20.
First, there is a test, whether there are enough (at least τ) evaluated individuals
in the archive, if not, the surrogate part is skipped and the algorithm works
precisely as the simple algorithm described above. Otherwise, the training set is
created. It contains either the whole archive, if there are less then Am individuals,
or a random sample of Am individuals from the archive if there are more. The
sampling step improves the speed of the surrogate model training.

The training of the model is performed on line 13. The features and the
fitness of the individuals from the training set are collected and used for the
training of the surrogate model. The output variable considered by the models
is the fitness of the respective individual. Then, the individuals with unknown
fitness, denoted by set I, are evaluated by the surrogate model. To this end, the
features are extracted from each such individual and its fitness is predicted by the
surrogate model. On line 16, the individuals are sorted by the estimated fitness
and the indices of w|I| worst individuals are put into set W . Each individual with
its index in W is replaced by its parent. This ensures that such an individual
does not need to be evaluated by a real fitness function, and it gives the parent
another opportunity to generate new individual in the next generation (if it
survives the mating selection).

Finally, the rest of the unevaluated individuals (now only (1 − w)|I|) is eval-
uated using the real fitness function. The newly evaluated individuals are added
to the archive and the next generation begins.

2.3 Discussion

We use a rather unusual way of discarding the individuals predicted to be bad
by the model – we replace them by their parents. In preliminary experiments,
we have also tried a more traditional approach, i.e. discarding the individuals
completely and replacing them by random or best parents. However, both these
cases (random or best parents) lead to a fast loss of diversity in the population,
as some of the parents get repeated. That in turn significantly slows down the
convergence of the algorithm and can even lead to pre-mature convergence.

Another feature of the algorithm, which may be slightly unusual in genetic
programming, is the use of weak elitism. We do not need the elitism from the
point of view of preserving the best individual, as we already save the archive of
all of them, however, preliminary experiments have shown, that it may slightly
improve the performance of this simple algorithm.
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3 Experiments

In order to evaluate the performance of our approach, we used four symbolic
regression benchmarks described by White et al. [11] (keijzer-6, vladislavleva-4,
nguyen-7, and pagie-1). The benchmarks represent a range of different func-
tions with one to five arguments and each of the benchmarks uses a differ-
ent set of primitives. For their precise definition refer to [8,11]. In preliminary
experiements, we also used the korns-12 benchmark, however neither the base-
line nor the surrogate algorithm were able to improve the random solutions from
the initial population significantly, so these results are not presented here.

The objective is defined as the base 10 logarithm of the root mean square error
(RMSE) of the prediction. The logarithm is used to make the values smaller and
also easier for the surrogate model to train. As the algorithm uses only tournament
selection (i.e. only comparisons of values), the objective is equivalent to RMSE.

The GP algorithm described above uses a population of 200 individuals and
is run for a maximum of 15,000 objective function evaluations. The population is
initialized by the ramped half-and-half method with maximum depth of trees set
to 5. The mating selection is a tournament of 3 individuals, and the environmen-
tal selection uses a weak elitism (i.e. the best parent is added to the offspring
population and the worst offspring is removed). The algorithm uses a simple
one-point crossover (i.e. random subtrees are selected from each individual and
swapped) and a uniform mutation which replaces a random subtree by a random
subtree of a random depth between 1 and 4. The probability of crossover is 0.2
and the probability of mutation is 0.7. Those parents that do not undergo any
of the operators are simply copied to the offspring population.

Additionally, the surrogate version of the algorithm starts using the surrogate
model after τ = 1000 evaluations and uses at most Am = 5000 random individuals
from the archive for the surrogate training. The surrogate model, unless otherwise
noted, is a random forest for regression with 100 trees with the depth of at most 14
(the rest of the parameters of the trees uses the default values from scikit-learn [9]).
The worst w = 2/3 of the individuals according to the model are discarded and
replaced by their parents. The whole algorithm is implemented in Python using the
deap framework [2] and the source codes are available as supplementary materials
at the authors’ webpage (www.martinpilat.com).

3.1 Model Quality

Before we use the surrogate model in the GP algorithm, we first test the perfor-
mance of the features and different models for predicting the quality of solutions
generated by the algorithm. To this end, we start the baseline GP and in each
generation evaluate the new (therefore never before seen by the model) indi-
viduals with the surrogate model and also the real fitness function. Then, we
compute the Spearman’s rank coefficient, which expresses how similar the rank-
ing provided by two methods is.

The Spearman’s rank coefficient is used instead of correlation, as in the algo-
rithm, we only use comparisons between pairs of individuals and not the actual
values of the fitness (the algorithm uses tournament selection).

www.martinpilat.com
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Fig. 1. The Spearman’s correlation coefficient between the prediction provided by the
model and the real fitness function. Median over 25 independent runs. The predictions
made by the model were not used by the algorithm.

We compare support vector machines for regression (SVM) [10] and random
forests [1] of 100 trees with two different depth limits - either unlimited (RF)
or limited to 14 (RF (14)). Both methods use the default parameters from the
scikit-learn framework and a standardization of the inputs is performed for the
SVM. The limit on the depth of the random forest was set after preliminary
experiments. It should be noted that the algorithm is quite sensitive to these
settings and the provided values are a compromise, which seems to provide the
best overall results. Different settings of the random forests were able to provide
better results for some of the benchmarks than those presented here. In the
preliminary experiments, we also used several types of linear models, however,
their performance in this setting is unsatisfactory.

The results are presented in Fig. 1. The plots show the median of the
Spearman’s correlation coefficient computed over 25 independent runs as a func-
tion of the number of fitness evaluations. These runs were performed without the
algorithm using the model in any way. In most cases, the model needs around
2,000 individuals in the training set before its performance becomes stable. After
that, the Spearman’s correlation coefficient is between 0.5 and 0.6 for most of
the problems (except vladislavleva-4), which indicates a correlation of medium
strength between the model and the observed fitness. For vladislavleva-4 the
Spearmann’s correlation drops to 0.3 after a thousand evaluations, this also coin-
cides with the fact, that after thousand evaluations the convergence speed drops
significantly (c.f. Fig. 2). This may be caused by the fact that the differences
between the individuals get smaller and are thus harder to predict.
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SVM provides the worst results of the three types of models used in this com-
parison, while the random forest with unlimited tree depth provides the best. How-
ever, the differences are rather small for some of the problems (mainly pagie-1 and
vladislavleva-4). As expected, the performance of random forest with the depth of
trees limited to 14 is slightly worse than that of unlimited random forest, but the
difference is negligible. On the other hand, the smaller random forests are trained
much faster, therefore, the RF (14) will be used in the rest of the paper.

3.2 Importance of Features

We have proposed a number of features. Naturally the importance of some of
them is larger than the importance of others. In this section, we investigate which
of the variables are the most important and therefore provide the most informa-
tion about the quality of the programs. Such an information about the features
is interesting not only for surrogate modeling in GP, but also for the design of
better genetic programming operators. One can, for example, mutate more often
those terminals that are more important for the quality of the program. We use
the feature importance as computed by the random forest algorithm to judge
the importance of the variables. This importance is computed [7] as the sum
of the decreases in the performance metric used by the tree (mean square error
in this case) caused by a given variable divided by the number of trees in the
ensemble. Higher values indicate more important features.

To measure the importance, we run the same algorithm as in the previous
section, i.e. the non-surrogate baseline with the model trained in each generation.
This time, we log the importance of each variable provided by the model. The
results of this experiment are summarized in Table 1. We report the four most
important features for each of the problems after 5,000 and 10,000 evaluations
together with their importance.

We can see that among the most important features are almost always some
of the features which relate to the size of the tree – either the height of the tree
or the size (len) of the tree. This should not be surprising, as too small trees can
have a poor performance.

Other often important features are the counts of some of the primitives.
Interestingly, among them the exp is the most important feature for the pagie-1
benchmark and one of the two most important features for the nguyen-7 dataset.
In these cases, the features are important in the negative sense – programs
with exp are inferior to programs without it, as none of the benchmarks use
this function. Otherwise, the more simple primitives (multiplication, addition,
subtraction) seem more important.

The vladislavleva-4 benchmark is interesting – it is the only one, where the
importances of the different statistics on constants are among the top five fea-
tures. The V-F1 feature in this benchmark corresponds to the special function
in this benchmark defined as nε, where ε is a constant evolved by the algorithm.
As this function is important to find the correct solution, it makes sense the
number of times it is used is an important feature.
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Table 1. The four most important features for each of the benchmarks after a given
number of function evaluations. The importance is represented by median importance
of each feature computed over 25 independent runs with the random forest regressor
with 100 trees with maximum depth of 14. “depth” and “size” are the respective tree
features, “const-mean” is the mean value of constants used in the individual and “arg-
count” is the number of arguments used by the individual. The rest of the features
represent the counts of the respective functions used by the individual.

Bench Evals Most important features

keijzer-6 5000 depth (0.397), safesqrt (0.097), mul (0.058), inverse (0.055)

keijzer-6 10000 depth (0.350), safesqrt (0.069), mul (0.050), size (0.050)

pagie-1 5000 exp (0.260), add (0.067), sub (0.060), size (0.060)

pagie-1 10000 exp (0.275), size (0.061), mul (0.058), arg-count (0.050)

nguyen-7 5000 depth (0.134), exp (0.096), safediv (0.068), mul (0.062)

nguyen-7 10000 depth (0.160), exp (0.085), size (0.065), mul (0.064)

vladisl.-4 5000 const-mean (0.150), V-F1 (0.076), depth (0.068), size (0.062)

vladisl.-4 10000 const-mean (0.159), size (0.062), V-F1 (0.059), depth (0.057)

3.3 Algorithm Performance

To test the algorithm, we made 25 runs on each of the benchmarks described
above. The results are presented in Fig. 2. The plots show the dependence of the
fitness (logarithm of the RMSE) on the number of fitness evaluations. Moreover,
the red dotted line shows the p-value of one-sided Mann-Whitney U-test to test
the statistical significance of the differences.

The best results were obtained for the keijzer-6 and pagie-1 benchmarks.
Here, the surrogate version is able to decrease the number of evaluations needed
to find a solution of given quality by almost 50 the evolution (approx. between
2,000 and 7,000 evaluations). After this phase, the baseline version performs
similarly on keijzer-6. For pagie-1, the surrogate is better during the whole 15,000
evaluations given as a budget to the algorithm, however, the differences get
smaller. For the nguyen-7 benchmark, the median run of the surrogate algorithm
is better between 2,000 and 6,000 fitness evaluations. However, the difference is
rather small and the standard deviations are large, which means we can draw
no definitive conclusion from this experiment.

The performance was the poorest for the vladislavleva-4 benchmark. There
is no significant difference between the two algorithms in this case. We believe,
there are two reasons for this behavior. First, most of the improvement happens
before the surrogate modelling is even enabled – the baseline converges fast in
the first 1,000 evaluations and does not improve much further. It may indicate
that the problem becomes too difficult for the simple GP used in this work.
Second, the performance of the model, as indicated by the tests in the previous
sections was quite poor for this benchmark, which also may affect the results in
a negative way.
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Fig. 2. The convergence rate of the algorithm on the four selected benchmarks. The
lines represent the median of 25 runs, the shaded areas represent the first and third
quartile. On the right axis, the red dotted line represents the p-value of the one-sided
Mann-Whitney U-test computed after each 100 evaluations.

4 Conclusions and Future Work

We have proposed a simple surrogate-based genetic programming algorithm
which provides promising results on the selected benchmark problems. We have
shown that the surrogate models are capable of predicting the real fitness value
without the need to evaluate the program, only by utilizing some static features.
This may help to improve the effectiveness of genetic programming for problems
with hard-to-evaluate fitness functions.

We also proposed a basic set of features which can be used for the building of
surrogate models in genetic programming and we have evaluated the performance
of these features. It seems that one of the most important features is the size of
the tree, and among the more important features are the number of times each
of the primitives is used. On the other hand, statistical features on the constants
and features regarding the arguments actually used by the problem seem less
important. In the case of the arguments, it may be caused by the fact that most
of the benchmarks use all of the arguments, thus making these feature useless.

The presented approach should be considered mostly a proof of concept.
There are definitely still many things that require more attention before it can
be successfully used to solve practical tasks. The strategies for replacing the
individuals deemed un-promising by the surrogate model can be refined, as well
as the method for the selection of the training set from the archive – selecting a
diverse set of samples instead of a random one may lead to better models.
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Abstract. Genetic Improvement is an evolutionary-based technique.
Despite its relatively recent introduction, several successful applications
have been already reported in the scientific literature: it has been demon-
strated able to modify the code complex programs without modifying
their intended behavior; to increase performance with regards to speed,
energy consumption or memory use. Some results suggest that it could
be also used to correct bugs, restoring the software’s intended function-
alities. Given the novelty of the technique, however, instances of Genetic
Improvement so far rely upon ad-hoc, language-specific implementations.
In this paper, we propose a general framework based on the software engi-
neering’s idea of mutation testing coupled with Genetic Programming,
that can be easily adapted to different programming languages and objec-
tive. In a preliminary evaluation, the framework efficiently optimizes the
code of the md5 hash function in C, Java, and Python.

Keywords: Genetic improvement · Genetic programming · Linear
genetic programming · Software engineering

1 Introduction

The term “genetic improvement” has been commonly used to denote the science
of applying genetic, breeding principles and biotechnology to improve plants and
animals, that is, to maximize the expression of their genetic potential making
them more productive for human use. While such techniques are dated back to
1700 s, the very same term has been quite recently renovated in a completely
different context: computer science. Nowadays among evolutionary computa-
tion scholars, Genetic Improvement (GI) denotes the application of evolutionary,
search-based optimization methods to the improvement of existing software.

The hope to automatically improve, let alone create, software has been a
driving force of evolutionary computation. In 1992, John Koza asked “how can
computers be made to do what is needed to be done, without being told exactly
how to do it?”, then tried to answer the question by introducing the paradigm
of Genetic Programming (GP) [1]. Despite an unquestionable series of successes,
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 345–352, 2016.
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GP cannot be used to evolve from scratch a full computer program able to solve
a generic problem, yet.

With the more recent GI, practitioners are tackling an apparently easier
problem: given the code of an existing program, GI strives to tweak it in order to
reach a specific goal, such as: improve speed, reduce memory usage, reduce code
length, remove bugs, etc. Such a technique raised the interest of the scientific
community, and several works on the subject have appeared in literature, in the
last few years [2–4]. Despite the interest, so far each application of GI has been
developed in-house by researchers, with solutions designed for specific problems
and computing languages, with little to none code re-usability.

In this paper, we propose a general-purpose framework for GI, able to tackle
problems in any computer language and with user-definable goal. The approach
exploits an existing general-purpose evolutionary algorithm (EA), and is tested
on a simple but challenging test case, the md5 hash function. For three different
languages, C, Java, and Python, the proposed methodology is proven able to
reduce the code size of the function without introducing errors, given a target
number of items for which to generate a hash value.

2 Background

2.1 Genetic Improvement

GI was introduced as a technique able to automatically modify the source code of
existing software, optimizing its performance with regards to user-defined met-
rics [2]. GI was originally based on Genetic Programming (GP) [1]: individuals
are encoded as linear graphs, each one representing a series of permutations on
the code, ranging from commenting blocks, to swapping two lines, to change
the initialization of a variable. Even if the fitness evaluation is specifically tai-
lored for each application, the general idea is always to improve code behavior
with respect to one or more objectives, all the while maintaining the software’s
functionalities.

GI has been successfully applied to different case studies, in order to decrease
energy consumption [3], improve speed [2], specialize a program to optimize
some specific functions [4], and minimize memory usage [5], respectively. Recent
results, aiming at repairing the firmware of a router, prove that GI is also able
to act on compiled code, correcting bugs without direct access to the source or
to test suites [6]. The rising interest of the evolutionary research community for
the topic culminated in a first workshop on the subject, organized during the
GECCO conference in 20151.

As it is common for techniques in the early stages of research, case studies of
GI use ad hoc tools, usually developed from scratch for the specific application.
Now that GI is getting more and more adopted, a general-purpose framework
could be extremely helpful to practitioners and researchers alike, speeding up
prototyping and development of new ideas.

1 http://geneticimprovementsoftware.com/.

http://geneticimprovementsoftware.com/
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2.2 µGP

µGP (MicroGP) [7,8] is an evolutionary toolkit. Originally devised to evolve
assembly-language programs for test program generation [9], it was later
expanded to a general-purpose open-source project2 and exploited for several
applications, ranging from Bayesian network structure learning [10] to analyz-
ing the behavior of wireless network routing protocols [11], from adapting the
number of cards in reactive pull systems [12] to the detection of power-related
software errors in industrial verification processes [13].

What makes µGP suitable to tackle such a wide range of diverse problems is
its design, based on a distinct separation between the description of individuals
in the target application, the evolutionary core, and the fitness evaluator. In
essence, the framework evolves a set of linear directed graphs, where each node
represents a macro, that can in turn present several parameters. The descrip-
tion of the macros is specified by the user through a configuration file. When
individuals are evaluated, the macros in each node are converted to text, and
the resulting file is passed to a user-designed evaluator program. For a high-level
depiction of the framework, see Fig. 1.

Fig. 1. High-level structure of the μGP toolkit. In order to prepare the framework to
tackle a new application, only the parts in gray (XML description file and external
evaluator) need to be modified by the user.

3 Proposed Approach

Given the rising interest around applications of GI, we propose a general-purpose
framework, to ease prototyping and development. The framework is based on the
µGP evolutionary toolkit, and can be quickly adapted to new GI applications,
across different languages, without any need to recompile the source code, simply
acting on configuration files and fitness evaluation.

2 μGP is hosted on SourceForge http://ugp3.sourceforge.net/.

http://ugp3.sourceforge.net/
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Table 1. Set of MT operations selected for the proposed framework.

Short-code Description

CAR Arithmetic operator replacement

CAS Assignment operator replacement

CBI Bitwise operator replacement

CCO Logic connector replacement

CLO Logic operator replacement

CST Constant value replacement

CUN Unary operator replacement

DEL Statement deletion

An individual encodes a sequence of operations to be performed on the tar-
get code. Such operations are inspired by Mutation Testing (MT), a technique
devised in the early 1970s to evaluate the quality of a test suite [14]. The basic
idea is to slightly mutate a program, emulating developers’ errors. All such
mutants are eventually used to assess the effectiveness of a test suite in dis-
criminating bug-free software.

As for GI, most approaches exploiting MT are either problem or language
specific. However, being a well-established technique, one can find in literature
lists of mutation operators that can be applied to programs [15–20].

Our approach exploits the possibility to mutate a source program. We select
a compact list of standard MT operations that are both general and relevant
for all languages. It is important to notice that some MT functions have the
clear purpose of causing a fault, and they have not been considered here. Table 1
shows the set of selected operations.

The proposed approach is summarized in Fig. 2.

3.1 Evolutionary Core

An individual is a variable-length sequence of modifications. Each modification
is encoded as an operation (see Table 1) and one or more operands. Possible
operands, e.g., the list of used operators or the list of used constants, are pre-
computed with static analysis.

The evolutionary core is the out-of-the-box µGP. µGP mutates and recom-
bines individuals using classical genetic operators. In more details: an operation
may be substituted with another operation, or its operands changed. Two indi-
viduals may be mixed using one-cut, two-cut, and uniform crossover operators.

Since the list of operations to be performed on the code is not language-
specific, a parser is required to translate the generic high-level operations to
language-specific ones. After the modified program has been generated, it is then
tested on a set of test cases to ensure that the features are maintained and to
evaluate the quality of the improvement reached, as for standard GI procedure.
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Fig. 2. Structure of the proposed approach. The μGP toolkit is used to generate a
sequence of operations to be performed on the target code. The resulting modified
program is then run through a test suite, in order to assess its functionality, and then
evaluated with regards to a user-defined metric, for example speed, memory usage, etc.

4 Experimental Evaluation

In order to assess the suitability of our approach, we test the proposed framework
on the MD5 function [21], a small, yet paradigmatic, case study. The MD5
message-digest algorithm is a widely used cryptographic hash function producing
a 128-bit (16-byte) hash value, typically expressed in text format as a 32-digit
hexadecimal number. MD5 has been utilized in a wide variety of cryptographic
applications and is also commonly used to verify data integrity despite the fact
that it is now considered unsuitable for further cryptographic use.

The classical MD5 implementation computes the value starting from the key
and performing a series of arithmetic and binary operations on it. The experi-
ments aim at improving the classical MD5 by reducing its size while still guar-
anteeing zero collision of the generated hashes on different fixed input set.

The necessity to optimize a general algorithm applied in a reduced scenario
is not uncommon. And calculating hashes in an embedded system, thus for a
known and fixed number of keys is a plausible scenario.

Experiments tackle the same function implemented in three different lan-
guages: C, Java and Python. Each function was improved in four scenarios, for
a different number of keys: 8, 256, 1, 024, and 4, 096. The parameters used by
the µGP in all the experiments are shown in Table 2. The evolution was stopped
after 50 generations with no improvement in the fitness of the best individual.

In total, twelve different experiments were executed, producing four improved
versions of the original function, in each language. Every improved program
showed a reduced size, while guaranteeing to produce no collisions over the set
of keys. Each run has been repeated 10 times. Results are shown in Table 3.
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Table 2. μGP parameters

Parameter Value Description

μ 30 Population size

ε 1 Elite size

λ 20 Genetic operators applied in each generation

α 0.8 Self-adaptation inertia

τ 2 Tournament size

M 300 Maximum number of generations

St 50 Steady-state threshold

Table 3. Hash function size reduction compared among languages and test suites (10
repetitions)

# keys C Java Python

8 46 % 40 % 36%

256 41 % 37 % 39%

1,024 41 % 36 % 36%

4,096 37 % 38 % 44%

Although preliminary, results are interesting. In both C and Java the achieved
improvement is larger when the key set is smaller, as expected. The less different
inputs are used, the more lines can be removed. Indeed, it must be noted that
the tool is able to modify the original programs, tweaking constants or changing
operators, and not only removing lines. For the Python implementation, on
the other hand, the type of the keys and not their simple number, is the most
important element. Thus, the tool is able to improve the original MD5, but
improvement are not directly connected with the size of the key set.

Table 4 reports the average computational resources required to run the
experiments. The tool was executed on a i7 computer with 16 GB of RAM, using
a Linux-based operating system. Column CPU shows the total time required

Table 4. Time elapsed in each experiment (10 repetitions)

# keys CPU (h:mm) Generations

C Java Python C Java Python

8 2:06 4:20 3:10 162 54 50

256 2:22 4:26 5:09 300 69 147

1,024 2:03 6:25 6:26 300 72 206

4,096 3:50 3:58 5:56 248 53 185
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to run µGP, the tool for applying changes, and the evaluator. Column Gen-
erations reports the average number of generations before a steady-state is
reached.

5 Conclusions

Genetic Improvement (GI) is a recently presented evolutionary technique for
software engineering, able to automatically modify the source code of a program,
increasing its performance with regards to energy/memory consumption or speed
of execution. While the methodology has been proven to be rather promising,
all solutions found in literature are ad-hoc implementations, often devised from
scratch for a specific application. In this paper, we presented a generic framework
for GI, able to target different programming languages and different objectives,
requiring only minor tweaking on the part of the user. The proposed approach
is experimentally tested on simple case studies in Python, C++ and Java, and
the results show that it is able to satisfactorily perform in all instances. Future
works will focus on providing a Graphical User Interface for the framework, and
releasing a full test set of benchmarks for GI, in different languages and for
different objectives.
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Abstract. Research on semantics in Genetic Programming (GP) has
increased dramatically over the last number of years. Results in this area
clearly indicate that its use in GP can considerably increase GP perfor-
mance. Motivated by these results, this paper investigates for the first
time the use of Semantics in Muti-objective GP within the well-known
NSGA-II algorithm. To this end, we propose two forms of incorporating
semantics into a MOGP system. Results on challenging (highly) unbal-
anced binary classification tasks indicate that the adoption of seman-
tics in MOGP is beneficial, in particular when a semantic distance is
incorporated into the core of NSGA-II.

1 Introduction

Genetic Programming (GP) [9] has been successfully used in a range of different
challenging problems (see Koza’s article on human competitive results for a
comprehensive review [10]). Despite its proven success, it also suffers from some
limitations and researchers have been interested in making GP more robust by
studying various elements of the search process, and also by e.g., considering
other GP forms [7].

One of these elements that has relatively recently attracted the attention of
researchers is the study of semantics in GP, resulting in a dramatic increase in
the number of related publications (e.g., [2,8,11,12]).

Semantics is a broad concept that has been studied in different fields making
it hard to give a precise definition of the concept. Moreover, the way seman-
tics has been adopted in canonical GP varies significantly e.g., Beadle and
Johnson [2] used reduced ordered binary decision trees on Boolean problems
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to study semantics, whereas Uy’s work on semantics has focused on repeat-
edly applying crossover to encourage semantic difference between parents and
offspring (see [15] for a summary of works carried out in semantics).

This work uses a popular version of semantics GP, as originally proposed in
[12], and used in recent works from the first author [8,13], in which the semantics
of a (sub)tree is defined as the vector of output values computed by this (sub)tree
for each set of input values in turn (a.k.a. each fitness case in most cases). Several
semantic-based approaches have been proposed for GP which take semantics into
account when e.g., choosing and modifying subtrees, such as the one that has
been demonstrated beneficial in [13] and it is adopted in this work too.

To the best of our knowledge, however, there is no scientific study on the
adoption of semantics in Evolutionary Multi-objective Optimisation at large [5],
and in Multi-objective GP in particular and this paper intends to start filling
this important research area.

The goal of this paper is to incorporate semantics into a Multi-objective
GP paradigm by using the well-known NSGA-II. To this end, we adopted two
different forms of incorporating semantics into NSGA-II: (a) one based on a
relatively simple, efficient and straightforward semantic-based single-objective
GP approach, and (b) one based on the adoption of a semantic distance into the
core of the NSGA-II algorithm.

This paper is organised as follows. In Sect. 2, we introduce our proposed
approaches. Section 3 provides details on the experimental setup used. The
results presented in this paper are discussed in Sect. 4, and finally, conclusions
and future work are drawn in Sect. 5.

2 Semantics in Multi-objective Genetic Programming

In this work, following [12], the semantics of a GP tree describes the behaviour
of the tree when various values are given to the input variables. Two trees can
be syntactically very different while behaving identically. What matters, as far
as solving the problem at hand is concerned, is in fact the behaviour of the tree,
i.e., its response to given inputs. These arguments support the use of semantics
adopted here and at least partly explain the benefits of using semantics in GP
as reported in [8,13].

In the case of a fitness based on the computation of several fitness cases, the
semantics of a GP individual is a vector of size the number of fitness cases, one
value for each fitness case. For instance, in the case of the problems used in this
work (unbalanced data sets introduced in Sect. 3), the semantics of a GP tree is
the vector of real-valued output by the tree for each of the examples in the e.g.,
training data set. In this work, the semantic distance between two trees is the
number of outputs that are different between their semantics. Commonly, when
computing the semantic distance, two outputs are considered different if their
absolute difference is greater than a given threshold [8,13]. In this work, we set
the threshold at 0.5.
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2.1 Evolutionary Multi-objective Optimisation

Multi-objective optimisation (MO) is concerned with the simultaneous optimi-
sation of several objectives. When these are in conflict, no single solution exists,
and trade-offs between the objectives must be sought. The optimal trade-offs are
the solutions for which no objective can be further improved without degrading
another objective. This idea is captured in the Pareto dominance relation: a
point x in the search space is said to Pareto-dominate another point y if x is at
least as good as y on all objectives and strictly better on at least one objective.

The set of optimal trade-off solutions of a MO problem can then be defined
as the set of points of the search space that are not dominated by any other
point, and is called the Pareto set of the problem at hand. The goal of Pareto
MO is to identify the Pareto set, or a good approximation of it. The Pareto front
is the image of the Pareto set in the objective space.

Evolutionary multi-objective optimisation (EMO) [5] is based on the follow-
ing: by replacing the single-objective selection steps, based on the comparison
of fitness values, by some Pareto-based comparison, one turns a single-objective
evolutionary optimisation algorithm into a multi-objective evolutionary opti-
misation algorithm, but because Pareto dominance is not a total order, some
additional criterion must be used so as to allow the comparison of any pair of
points of the search space.

In NSGA-II [6], the Pareto-based comparison uses the non-dominated sorting
procedure: all non-dominated individuals in the population are assigned Rank
1 and removed from the population, the remaining non-dominated individuals
are assigned Rank 2, and so on. The secondary criterion is the crowding distance
that promotes diversity among the individuals having the same Pareto rank: in
objective space, for each objective, the individuals in the population are ordered,
and the partial crowding distance for each of them is the difference in fitness
between its two immediate neighbours. The crowding distance is the sum over
all objectives of these partial crowding distances. Intuitively, it can be seen as
the Manhattan distance between the extremal vertices of the largest hypercube
containing the point at hand and no other point of the population. Selecting
points with the largest crowding distance amounts to favour the low-density
regions of the objective space, thus favouring behavioural diversity.

The NSGA-II proceeds as follows. From a given population of size N , N off-
spring are created using standard variation operators (crossover and mutation).
Parents and offspring are merged, and the resulting population, of size 2N , is
ordered using non-dominated sorting, and crowding distance as secondary crite-
rion. The best N individuals according to this ranking are selected to survive at
the next generation.

Because the underlying idea within NSGA-II is to favour behavioural diver-
sity, but only considering the fitness as a whole, it can be hoped that introducing
semantics in NSGA-II can only enforce this idea.
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2.2 Incorporating Semantics in MOPG

In this work, we investigate two ways of incorporating semantics into a MOGP
system (recall we use NSGA-II). One natural form to do so is to use semantics as
commonly adopted in canonical GP (e.g., semantically-based crossover [13]). In
our study, we adopted the semantics in the selection tournament mechanism [8]
due to its simplicity and efficiency. Briefly, the idea is to create offspring that are
semantically different from their parents when tournament selection is applied:
the first parent is selected as usual and the second parent is selected if it is
semantically different and fitter than the already selected parent, if this is not
satisfied for any individual in the pool, one is chosen at random. We call this
NSGA-II Semantics in Selection (SiS).

The second proposed way to add semantics to NSGA-II is to replace the
crowding distance (see above) with a semantic-based indicator called Semantic-
based Crowding Distance (SCD). This is computed the following way: a pivot
is chosen, being the individual from the first Pareto front (Rank 1) that is the
furthest away from the other individuals of this front using the crowding distance.
For each point, its semantic distance with the pivot is computed. Similarly to the
crowding distance, the SCD is computed as the average of the semantic distance
differences with its closest neighbours in each direction. The higher values of this
SCD are favored during the selection step of NSGA-II. This allows us to have
a set of individuals that are spread in the semantic space, therefore, promoting
semantic diversity, the same way NSGA-II promotes diversity (‘spreadness’) in
the objective space. It is worth pointing out that this approach also works when
there is only one front. This variant of NSGA-II will be called Distance-based
Semantics (DBS) in the following.

3 MOGP Configuration and Experimental Design

To study the effects of semantics in MOGP, we used challenging binary (highly)
unbalanced classification problems taken from the literature [1]. These problems
are of different nature and complexity, e.g., they have from a few features up to
dozens of them, these features include binary, integer, and real-valued features.
Table 1 gives the details for all datasets. These have been used ‘as is’ (i.e., we
did not try to balance the classes out). For each dataset, half of the data (with
the same class balance than in the whole dataset) was used as a training set and
the rest as a test set. All reported results are on the latter.

The terminal and function sets used in these experiments were the same
than in [3]. The terminals are the problem features. The function set consists of
the conditional if function and the typical four standard arithmetic operators:
F = {if,+,−, ∗, /}, where the latter operator is the protected division, which
returns the numerator if the denominator is zero. The if function takes three
arguments: if the first one is negative, the second argument is returned, otherwise
the last argument is returned. These functions are used to build a classifier (e.g.,
mathematical expression) that returns a single value for a given input (data
example to be classified). This number is mapped onto a set of class labels using
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Table 1. Binary unbalanced classification data sets used in our research. Table adapted
from [3].

Data set Classes Number of examples Imb. Features

Positive/Negative (Brief
description)

Total Positive Negative Ratio No Type

Ion Good/bad (ionsphere
radar signal)

351 126 (35.8%) 225 (64.2%) 1:3 34 Real

Spect Abnormal/normal
(cardiac tom. scan)

267 55 (20.6%) 212 (79.4%) 1:4 22 Binary

Yeast1 mit/other (protein
sequence)

1482 244 (16.5%) 1238 (83.5%) 1:6 8 Real

Yeast2 me3/other (protein
sequence)

1482 163 (10.9%) 1319 (89.1%) 1:9 8 Real

Table 2. Confusion matrix.

Predicted positive Predicted negative

Actual positive True Positive (TP) False Negative (FN)

Actual negative False Positive (FP) True Negative (TN)

zero as the class threshold. In our studies, an example is assigned to the minority
class if the output of the classifier is greater or equal to zero. It is assigned to
the majority class, otherwise.

The common way to measure the fitness of a classifier for classification tasks
is the overall classification accuracy: for binary classification, the four possible
cases are shown in Table 2. Assuming the minority class is the positive class, the
accuracy is given by Acc = TP+TN

TP+TN+FP+FN . The drawback of using Acc alone
is that it rapidly biases the evolutionary search towards the majority class [3].
A better approach is to treat each objective (class) ‘separately’ using a multi-
objective approach: Two objectives are considered, the true positive rate TPR =

TP
TP+FN , and the true negative rate TNR = TN

TN+FP , that measure the distinct
accuracy for the minority and majority class, respectively.

The experiments were conducted using a steady state approach with tour-
nament selection (of size 2 for NSGA-II and NSGA-II DBS, and of size 7 for
NSGA-II SiS to encourage semantic diversity). Initialisation and sub-tree muta-
tion used the ramped half-and-half method (initial and final depth set at 1 and
5, respectively). To control bloat, a maximum depth of 8 was specified (root is at
depth 0), or a maximum number of 800 nodes was used. Crossover and mutation
rates were set at 60 % and 40 %, respectively. To obtain meaningful results, we
performed 50 independent runs for each of the MOGP approaches for each of
the problems used in this work.
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Table 3. Average (± standard deviation) hypervolume, where the reference point is
(0,0), of evolved Pareto-approximated fronts, Pareto optimal (PO) front for the three
MOGP used in this work: NSGA-II, NSGA-II SiS and NSGA-II DBS, over 50 runs.

Methods Hypervolume Ion Spect Yeast1 Yeast2

NSGA-II Average 0.842 ± 0.070 0.542 ± 0.024 0.822 ± 0.041 0.944 ± 0.021

PO Front 0.948 0.637 0.875 0.978

NSGA-II SiS Average 0.858 ± 0.063 0.542 ± 0.020 0.827 ± 0.035 0.939 ± 0.048

PO Front 0.960 0.642 0.876 0.977

NSGA-II DBS Average 0.856 ± 0.051 0.548 ± 0.026 0.827 ± 0.015 0.948 ± 0.011

PO Front 0.977 0.664 0.873 0.977

4 Results and Discussion

4.1 Front Hypervolume

As a measure of performance, in order to compare the different approaches, we
use the hypervolume [4] of the evolved Pareto approximations. For bi-objectives
problems, the hypervolume of a set of points in objective space (using reference
point (0, 0)) is easily computed as the sum of the areas of all trapezoids fitted
under each point. Such measure was chosen as being the only known Pareto-
compliant indicator to-date [16]: the larger the hypervolume, the better the
performance. We also computed the Pareto-optimal (PO) front with respect to
all 50 runs, i.e., the set of non-dominated solutions after merging all 50 Pareto-
approximated fronts.

Table 3 reports, for each problem, both the average hypervolume over 50
runs, and the hypervolume of the PO. In this table, the best hypervolumes are
highlighted in boldface. Furthermore, the statistical significance for the results
on the average hypervolume was computed using Wilcoxon Test at 90 % level
of significance, independently comparing each of the semantic-based approaches
(NSGA-II SiS, NSGA-II DBS) against NSGA-II.

According to these results, in three out of the four problems, both semantic-
based MOGP approaches achieve a higher hypervolume of the PO front com-
pared to the NSGA-II. Moreover, the NSGA-II DBS is statistically better (indi-
cated in boldface) than the NSGA-II on two classification problems, but not
statistically different on the other two problems. On the other hand, NSGA-II
SiS is not statistically different on any of the problems compared to NSGA-II.
This suggests that the adoption of semantics into a MOGP approach should be
in one of the pillars of the MO approach.

4.2 Evolved Solutions and Pareto-Optimal Front

Let us now focus on the coverage of the objective space achieved by the semantic
variants of NSGA-II: Fig. 1 displays together on the same plot, for each problem
(top to bottom), and for NSGA-II and NSGA-II DBS (left and center respec-
tively), the 50 Pareto front approximations obtained in the 50 independent runs
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Ion

NSGA-II NSGA-II DBS Difference

Spect

NSGA-II NSGA-II DBS Difference

Yeast1

NSGA-II NSGA-II DBS Difference

Yeast2

NSGA-II NSGA-II DBS Difference

Fig. 1. Accuracy of all evolved solutions over 50 runs using the canonical NSGA-II and
the NSGA-II DBS, shown in the left-hand side and centre of the figure, respectively.
Plots in the the right-hand side of the figure show the evolved solutions that were
exclusively found by either NSGA-II (indicated by a red plus ‘+’ symbol) or NSGA-II
DBS (indicated by a blue cross ‘x’ symbol). For clarity purposes, we reduced the size
of the marker symbols in problems with denser areas (i.e., Yeast problems).
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Ion Spect

Yeast1 Yeast2

Fig. 2. Pareto-Optimal fronts each of the four problems for NSGA-II (black star sym-
bols), NSGA-II SiS (blue circle symbols) and NSGA-II DBS (red square symbols).
(Color figure online)

(NSGA-II SiS is omitted due to space constraints). For some problems (e.g.,
Ion), it is relatively easy to see that NSGA-II DBS has a better coverage of the
objective space. A better look at the difference between NSGA-II and NSGA-II
DBS is proposed on the right-hand side of the figure: only the points found by
one of both algorithms are plotted, a red plus ‘+’ symbol for NSGA-II, a blue
cross ‘x’ symbol for NSGA-II DBS. More blue cross ‘x’ symbols are visible on
top or right of the objective space, where the true Pareto front lies and explains
why DBS has a better performance on the Ion data set.

Figure 2 shows, for each problem, the Pareto-Optimal fronts (POs) for each
of the MOGP approaches used in this work. In accordance to the results reported
in Table 3, little difference is observed among the three methods on the Yeast2
problem, while NSGA-II SiS dominates on the Yeast1 problem; and both seman-
tic variants dominate parts of the front for Ion, while NSGA-II DBS is a clear
winner for Spect.

4.3 Bloat

Bloat (dramatic increase of tree sizes as evolution proceeds) has always been an
issue in GP, and should be monitored carefully when designing new GP variants.
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Ion Yeast2

Fig. 3. Average length of evolved solutions vs generations, over 50 independent runs,
for the Ion and Yeast2 problems, for NSGA-II (black star symbols), NSGA-II SiS (blue
circle symbols) and NSGA-II DBS (red square symbols). (Color figure online)

Contradictory results regarding bloat have been reported for semantic-based GP:
semantics seems to prevent bloat in [8], while it exacerbates it in [13]. To shed
some light on this issue here, Fig. 3 shows, for the Ion and Yeast2 problems, the
average length of evolved trees during evolution.

It is clear that the semantic-based approaches tend to produce slightly shorter
programs compared to canonical NSGA-II on the Yeast2 problem – and similar
tendency was observed for the Yeast1 and Spect problems (not shown here due
to space constraints). Surprisingly, NSGA-II SiS is indeed able to produce much
shorter programs compared to both other methods for the Ion problem. This
is aligned to the results reported in [8], that indicates that SiS is capable of
producing shorter programs compared to e.g., the well-known semantic-based
crossover [13]. From this, we believe that researchers tend to report mixed results
on bloat because its appearance is dependant on both: problem and approach
used, and so, no general conclusions can be drawn on this.

5 Conclusions and Future Work

In Genetic Programming, semantics is commonly defined as the behaviour of
syntactically correct programs. In canonical GP, semantics is represented by the
output vector of the tree for different known inputs and the similarity between
the semantics of two trees gives a much smoother idea of the similarity between
the trees than either the syntactic description of the trees or their raw fitness.

This work proposed two ways to add semantics to Multi-Objective GP, more
precisely NSGA-II for GP. The first one, Semantics in Selection (SiS), was
adapted from canonical GP to NSGA-II. The second approach, named Distance-
based Semantics (DBS), consists in using a semantic distance in lieu of the
crowding distance at the heart of NSGA-II.

We have learned that semantic-based NSGA-II GP behaves better than plain
NSGA-II GP on some well-known unbalanced binary classification problems. We
also learned that NSGA-II DBS outperforms NSGA-II SiS. We believe that the
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reason behind this is because the concept of semantic distance is used into the
very core of NSGA-II. There are multiple research areas that we will consider in
the near future. An in-depth analysis is required to confirm, and understand why
DBS outperforms SiS. Given the encouraging results, it is worth studying the
effects of semantics in other parts of a MOGP algorithm (e.g., ranking system).
It is also necessary to study the adoption of semantics and its impact in other
well-known MO approaches.
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Abstract. In recent years, a number of methods have been proposed
that attempt to improve the performance of genetic programming by
exploiting information about program semantics. One of the most impor-
tant developments in this area is semantic backpropagation. The key idea
of this method is to decompose a program into two parts—a subprogram
and a context—and calculate the desired semantics of the subprogram
that would make the entire program correct, assuming that the context
remains unchanged. In this paper we introduce Forward Propagation
Mutation, a novel operator that relies on the opposite assumption—
instead of preserving the context, it retains the subprogram and attempts
to place it in the semantically right context. We empirically compare
the performance of semantic backpropagation and forward propagation
operators on a set of symbolic regression benchmarks. The experimental
results demonstrate that semantic forward propagation produces smaller
programs that achieve significantly higher generalization performance.

Keywords: Genetic programming · Program semantics · Semantic
backpropagation · Problem decomposition · Symbolic regression

1 Introduction

Standard tree-based genetic programming (GP) searches the space of programs
using traditional operators of subtree-swapping crossover and subtree-replacing
mutation [4]. These operators are designed to be generic and produce syntacti-
cally correct offspring regardless of the problem domain. However, their actual
effects on the behavior of the program, and thus its fitness, are generally hard to
predict. For this reason, many alternative search operators have been recently
proposed that take into account the influence of syntactic modifications on pro-
gram semantics [1,10,11,13].

Semantic backpropagation [12,15] is arguably one of the most powerful tech-
niques employed by such semantic-aware GP operators. The two operators based
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on semantic backpropagation—Random Desired Operator (RDO) and Approxi-
mately Geometric Crossover (AGX) have proved to be successful on a number of
symbolic regression and boolean program synthesis problems [11,12]. Both oper-
ators rely on semantic decomposition of an existing program into two parts—a
subprogram and its context. Given a subprogram, both operators attempt to
calculate its desired semantics, i.e., the values that it should return to make the
entire program produce the desired output, assuming that the context remains
unchanged. The desired semantics can be then used to find a replacement for
the subprogram that improves the overall program behavior.

Despite their superior performance when compared to other GP search oper-
ators [11,12,15], backpropagation-based RDO and AGX face a few major chal-
lenges that can limit their practical applicability. First of all, they are much
more computationally expensive than traditional syntactic operators. Indeed,
in order to calculate desired semantics, the target program output needs to be
backpropagated by traversing the tree and inverting the execution of particu-
lar instructions. The computational cost of this operation is similar to the cost
of a single fitness evaluation (which is typically the most expensive component
of GP). Moreover, using desired semantics to find a subprogram replacement
usually requires even more computational effort. Finally, the results reported so
far demonstrate that RDO and AGX tend to produce relatively large programs
that are difficult to interpret and may suffer from overfitting.

In this paper, we introduce Forward Propagation Mutation (FPM), a novel
semantic-aware operator that also relies on program decomposition but works
in the opposite manner to semantic backpropagation. Instead of preserving the
context and replacing the subprogram, forward propagation retains the subpro-
gram and attempts to place it in the semantically right context. In contrast to
semantic backpropagation, the FPM operator does not require an additional tree
traversal and thus it incurs less computational overhead. Moreover, the experi-
mental results obtained on a set of univariate and bivariate symbolic regression
problems demonstrate that it achieves competitive performance in terms of the
training error while producing much smaller programs that usually perform sig-
nificantly better on the unseen test cases.

2 Semantic Genetic Programming

In order to incorporate semantic-awareness into genetic programming, most of
the recently proposed methods adopt a common definition of program semantics,
known as sampling semantics [13], which is identified with the vector of outputs
produced by a program for a sample of possible inputs. In supervised learning
problems considered here, where n input-output pairs are given as a training set
T = {(x1, y1), . . . , (xn, yn)}, semantics of a program p is equal to vector s(p) =
[p(x1), . . . , p(xn)], where p(x) is a result obtained by running program p on
input x. Consequently, each program p corresponds to a point in n-dimensional
semantic space and a metric d can be adopted to measure semantic distance
between two programs. Furthermore, fitness of a program p can be calculated as
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a distance between its semantics s(p) and the target semantics t = [y1, . . . , yn]
defined by the training set, i.e., f(p) = d(s(p), t).

The information about program semantics and the structure of the semantic
space endowed by a metric-based fitness function can be exploited in many
ways to facilitate the search process carried out by GP. Apart from numerous
semantic search operators [1,10,11,13], the knowledge about semantics can be
used to maintain population diversity [3], to initialize the population [2] or to
drive the selection process [7]. All such semantic-aware methods are collectively
captured by the umbrella term of semantic genetic programming [14]. Recently, a
paradigm of behavioral program synthesis [5] has been proposed, which extends
semantic GP by using information not only about final program results but also
about behavioral characteristics of program execution.

3 Semantic Backpropagation

One of the most important methods in semantic GP is semantic backpropaga-
tion [12]. The key concept behind this method is program decomposition: a pro-
gram p is treated as a function (i.e., it is deterministic and has no side effects)
that can be decomposed into two constituent functions (subprograms) p1 and
p2 such that p(x) = p2(p1(x),x). In particular, if a program is represented as
a tree, such decomposition can be made at each node—the inner function p1
is expressed by the subtree rooted at the given node, while the outer function
p2 corresponds to the rest of the tree (also termed context [9], see left part of
Fig. 1).

Semantic backpropagation assumes that the desired program output p∗(x)
can be produced by retaining the outer function and replacing just the inner one
by another subprogram ps, i.e., p∗(x) = p2(ps(x),x). Starting from the desired
program output p∗(x), the backpropagation algorithm heuristically inverts the
program execution to calculate the desired semantics of the subprogram ps, i.e.,
the values it should produce to make the entire program correct. This idea has
been employed to design two operators, AGX and RDO, which differ with respect
to what they use as the desired program output p∗(x). In this study, we focus on
RDO, a mutation operator that assumes that target semantics t = [y1, . . . , yn]
is given a priori and thus values p∗(xi) = yi can be used as an input for the
backpropagation algorithm.

An example of a mutation performed by RDO is illustrated in Fig. 1 and
proceeds as follows. First, a random mutation node is selected in the parent
program (denoted as a circle with a double border in Fig. 1). The subtree p1
rooted at this node is removed from the tree and the backpropagation algorithm
is applied to calculate the desired semantics of the replacement ps that would
make the offspring program return desired values. The algorithm starts from
the root of the tree, where desired semantics is given by t, and follows the path
to the removed subtree. For each node it calculates the desired semantics of its
child by invoking the Invert function (a detailed description of this function
and the RDO operator in general can be found in [12]).
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Fig. 1. A mutation performed by Random Desired Operator using semantic backprop-
agation. Desired semantics are denoted in italics.

For instance, let us assume that a training set contains just two cases with
inputs x = [1, 2] and desired outputs t = [0, 2]. As shown in Fig. 1, in the
first step the algorithm finds out that to produce desired semantics at the root,
knowing that outputs of its right child are equal to [1, 1], the desired semantics of
the left child must be equal to [1, 3]. This result is used in the subsequent step to
calculate desired semantics for the next node. Finally, given desired semantics at
the mutation node, the RDO operator attempts to replace the removed subtree
with a subprogram that would produce such values. To this end, it employs a
precomputed library of programs (procedures) that allows to efficiently retrieve
a program p∗

l that has the smallest semantic distance to the desired semantics.
Additionally, RDO also checks if a single constant real value would provide a
better match to the desired semantics than p∗

l .
Importantly, in the process of semantic backpropagation, inverting certain

functions can be ambiguous (if the function is not injective) or impossible (if the
function is not surjective). As a result, the desired semantics may contain several
values for each training case or special inconsistent elements. The library must
be able to handle such queries efficiently [12,15].

4 Semantic Forward Propagation

Inspired by semantic backpropagation and RDO we propose an alternative muta-
tion operator based on the complementary idea, which we term semantic forward
propagation. Similarly to RDO, Forward Propagation Mutation (FPM) relies on
decomposability of a program p into a subtree p1 and a context p2. However,
while RDO assumes that a context can be preserved and attempts to replace
the subtree, FPM makes the opposite assumption preserving the subtree and
building a matching context for it.

The FPM operator starts by choosing a random mutation node in the parent
program. The subtree p1 rooted at this node is extracted from the tree and used
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Fig. 2. An operation performed by Forward Propagation Mutation.

as a starting point for creating an offspring. In order to build a new context for
this subtree, we assume a fixed structure of the context pc containing 4 new nodes
and a matching library procedure (see Fig. 2). We apply an exhaustive search
to identify a context p∗

c of the assumed structure, that minimizes fitness of the
entire offspring program p∗

c = arg minpc
f(pc ◦ p1). To this end, we consider all

pairwise combinations of the available unary (e.g., {sin, cos, log, exp}) and binary
functions (e.g., {×,+,−, /}) that could be placed directly above the selected
subtree, as nodes u and b, respectively (cf. Fig. 2). Importantly, we extend the
unary function set with the identity function id(x) = x. If the best found context
p∗
c uses this function we skip adding the node u to the tree. For each pair of

functions (u, b) placed above the subtree p1, we forward propagate the semantics
of the subtree up to the root of the new tree. Then, we apply just a single
backpropagation step, using the same Invert function as in RDO, to calculate
desired semantics d of the other child of the node b, given the the target semantics
t and the forward-propagated semantics s(u ◦ p1).

Since in this case the desired semantics is usually unambiguous, we can use a
different method of searching the library, which could not be easily applied within
the RDO operator. Here, we search for the library procedure which achieves high-
est cosine similarity. In other words, if we treat semantics as an n-dimensional
vector, we return library procedure p∗

l that makes the smallest angle with the
desired semantics d, i.e.:

p∗
l = arg min

pl∈L
arccos

s(pl) · d
‖s(pl)‖‖d‖ .

Finally, we add a constant node c to scale the semantics of the library procedure
making it closer to the desired semantics, i.e., c = (s(p∗

l ) ·d) / ‖s(p∗
l )‖2. An alter-

native, more computationally expensive approach, would be to run simple linear
regression for each candidate program in the library, using its semantics as a sin-
gle explanatory variable and desired semantics d as a response. This approach
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would require extending the context structure to accommodate both an intercept
and a slope coefficient.

5 Experimental Setup

The main goal of the experiments is to compare the performance of RDO and
FPM mutation operators on a suite of symbolic regression benchmarks. Addi-
tionally, as a control setup we employ traditional subtree-replacing mutation
(SRM). All three mutation operators are used along with conventional subtree-
swapping crossover in a standard generational tree-based GP algorithm with
tournament selection. Each mutation operator is employed in five setups with
different values of mutation and crossover probabilities (the source code of our
experiments is available at https://github.com/mszubert/ppsn 2016).

Most of the GP parameters (summarized in Table 1) are adopted from the
recent work on semantic backpropagation [12]. In particular, whenever a random
mutation/crossover node needs to be selected, a uniform depth node selector is
used. Given a program p, it first calculates program’s height h, then draws
uniformly an integer d from the interval [0, h] and finally selects a random node
from all nodes at depth d in program p. This technique has been recently shown
to reduce bloat when compared to conventional Koza-I node selectors [6,12].

Moreover, both RDO and FPM use population-based library which is con-
structed at each generation from all semantically unique subtrees (subprograms)
in the current population. Since we impose an upper limit on the tree height (17),
when searching the library we ignore all the procedures that would violate this
constraint when inserted into the parent program.

We investigate training error, generalization performance (error on 1 000
unseen test cases) and the size of programs produced by using particular muta-
tion operators on 11 symbolic regression benchmarks. We consider six univari-
ate and five bivariate problems that are adopted from previous studies [4,8,12].

Table 1. Genetic programming parameters

Parameter Value

Population size 256

Generations 100

Initialization Ramped half-and-half with height range 2–6

100 retries until accepting a syntactic duplicate

Instruction set {+,−,×, /, exp, log, sin, cos} (log and/are protected)

Tournament size 7

Fitness function Root-mean-square error (RMSE)

Node selection Uniform depth node selector

Maximum tree height 17

Number of runs 30

https://github.com/mszubert/ppsn_2016
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Table 2. Symbolic regression benchmarks.

Benchmark name Objective function Variables Training cases

P4 (Quartic) x4 + x3 + x2 + x 1 20

P7 (Septic) x7 − 2x6 + x5 − x4 + x3 − 2x2 + x 1 20

P9 (Nonic)
∑9

1 x
i 1 20

R1 (x + 1)3/(x2 − x + 1) 1 20

R2 (x5 − 3x3 + 1)/(x2 + 1) 1 20

R3 (x6 + x5)/(x4 + x3 + x2 + x + 1) 1 20

K11 (Keijzer-11) xy + sin((x− 1)(y − 1)) 2 100

K12 (Keijzer-12) x4 − x3 + y2

2
− y 2 100

K13 (Keijzer-13) 6 sin(x) cos(y) 2 100

K14 (Keijzer-14) 8
2+x2+y2 2 100

K15 (Keijzer-15) x3

5
+ y3

2
− x− y 2 100

Selected benchmarks (see Table 2) include polynomial, rational and trigonomet-
ric functions. For each problem, fitness was calculated as root-mean-square error
on a number of training cases. The univariate problems use 20 cases distrib-
uted equidistantly in the [−1, 1] range, while the bivariate ones use a grid of
10 × 10 = 100 points spaced evenly in the [−1, 1] × [−1, 1] square.

6 Results and Discussion

Table 3 presents detailed characteristics of the best-of-run individuals evolved
with particular mutation operators. Each row of the table corresponds to a sin-
gle combination of one of the five GP setups (with different crossover (X) and
mutation (M) probabilities) and one of the three considered mutation opera-
tors (either FPM, RDO or SRM). We performed 30 independent GP runs for
each of such 15 combinations on each of the 11 symbolic regression problems.
To confirm statistically significant differences between the results obtained with
particular mutation operators, for each problem and parameters setup we con-
ducted the Kruskal-Wallis test followed by a post-hoc analysis using pairwise
Mann-Whitney tests (with sequential Bonferroni correction). We set the level of
significance at p ≤ 0.05. Table 3 shows with an underline the results that were
found significantly better than those achieved with the other operators.

The first part of Table 3 shows the average training errors. Although RDO
achieves the best overall results for most univariate problems, for the bivari-
ate ones FPM produces more competitive results. Regardless of the parameter
settings, the traditional SRM operator leads to the highest training error. Note-
worthy, the RDO and FPM operators obtain their best results under different
crossover and mutation settings. While both of them benefit from using tradi-
tional crossover as an additional variation operator, the performance of FPM
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Table 3. Detailed characteristics of best-of-run individuals produced by particular
mutation operators (FPM, RDO, SRM), aggregated over 30 GP runs. Each operator
was employed in 5 GP setups with different crossover (X) and mutation (M) proba-
bilites. Bold marks the best results achieved under certain X/M settings on particular
problems. Underline indicates statistically significant superiority.

Average training error

X M P4 P7 P9 R1 R2 R3 K11 K12 K13 K14 K15

0.0 1.0 0.0011 0.0072 0.0153 0.0064 0.0049 0.0024 0.0626 0.0418 0.0000 0.0031 0.0061
0.5 0.5 0.0001 0.0018 0.0025 0.0012 0.0018 0.0006 0.0299 0.0111 0.0000 0.0012 0.0007
0.5 1.0 0.0001 0.0025 0.0037 0.0020 0.0025 0.0007 0.0358 0.0154 0.0000 0.0021 0.0007
1.0 0.5 0.0000 0.0015 0.0022 0.0012 0.0013 0.0004 0.0283 0.0086 0.0000 0.0012 0.0004F

P
M

1.0 1.0 0.0001 0.0026 0.0029 0.0018 0.0019 0.0006 0.0334 0.0116 0.0000 0.0017 0.0007

0.0 1.0 0.0030 0.0034 0.0147 0.0071 0.0043 0.0030 0.0709 0.0444 0.0440 0.0587 0.0302
0.5 0.5 0.0004 0.0017 0.0029 0.0023 0.0014 0.0018 0.0455 0.0090 0.0038 0.0132 0.0024
0.5 1.0 0.0001 0.0008 0.0004 0.0006 0.0004 0.0002 0.0294 0.0029 0.0007 0.0044 0.0015
1.0 0.5 0.0003 0.0020 0.0008 0.0014 0.0015 0.0004 0.0504 0.0063 0.0015 0.0087 0.0041R

D
O

1.0 1.0 0.0001 0.0003 0.0003 0.0008 0.0004 0.0004 0.0294 0.0047 0.0011 0.0033 0.0008

0.0 1.0 0.0518 0.0742 0.0758 0.0744 0.0811 0.0097 0.2025 0.3049 0.1552 0.2145 0.0723
0.5 0.5 0.0323 0.0968 0.0732 0.0834 0.0608 0.0156 0.1769 0.2328 0.1040 0.1138 0.0608
0.5 1.0 0.0449 0.0926 0.0638 0.0792 0.0880 0.0115 0.1781 0.2128 0.1267 0.1603 0.0748
1.0 0.5 0.0217 0.0882 0.0715 0.0663 0.0666 0.0078 0.1598 0.2005 0.0866 0.1690 0.0623S

R
M

1.0 1.0 0.0282 0.0845 0.0792 0.0698 0.0754 0.0120 0.1942 0.2479 0.1437 0.1724 0.0628

Median test error

X M P4 P7 P9 R1 R2 R3 K11 K12 K13 K14 K15

0.0 1.0 0.0009 0.0084 0.0342 0.0071 0.0044 0.0026 0.0555 0.0529 0.0000 0.0028 0.0057
0.5 0.5 0.0000 0.0046 0.0256 0.0025 0.0123 0.0030 0.0425 0.0581 0.0000 0.0017 0.0008
0.5 1.0 0.0000 0.0045 0.0142 0.0037 0.0045 0.0015 0.0333 0.0290 0.0000 0.0032 0.0008
1.0 0.5 0.0000 0.0069 0.0306 0.0030 0.0042 0.0017 0.0260 0.0311 0.0000 0.0021 0.0005F

P
M

1.0 1.0 0.0000 0.0055 0.0227 0.0025 0.0027 0.0009 0.0300 0.0295 0.0000 0.0024 0.0008

0.0 1.0 0.0039 0.0593 0.0346 0.0087 0.0145 0.0071 0.1089 0.0988 0.0215 0.0774 0.0185
0.5 0.5 0.0025 0.5159 0.0469 0.0406 0.0148 0.0028 0.0738 0.0374 0.0070 0.0252 0.0036
0.5 1.0 0.0117 0.3084 0.0715 0.1522 0.0652 0.0618 0.0639 0.2124 0.0022 0.0556 0.0097
1.0 0.5 0.0006 0.0704 0.0104 0.0081 0.0319 0.0057 0.0445 0.0364 0.0030 0.0283 0.0014R

D
O

1.0 1.0 0.0097 19.486 8E+3 0.0607 0.0466 0.0155 0.0402 0.3878 0.0023 0.0378 0.0026

0.0 1.0 0.0485 0.1170 0.1017 0.0836 0.0585 0.0123 0.2005 0.2649 0.1986 0.1458 0.0814
0.5 0.5 0.0240 0.0958 0.0810 0.0730 0.0592 0.0106 0.1770 0.1874 0.1122 0.0988 0.0525
0.5 1.0 0.0572 0.1865 0.0922 0.0800 0.0694 0.0105 0.1686 0.2037 0.1311 0.1207 0.0882
1.0 0.5 0.0191 0.0899 0.0785 0.0711 0.0641 0.0101 0.1493 0.1874 0.0998 0.1126 0.0446S

R
M

1.0 1.0 0.0257 0.0734 0.0725 0.0739 0.0727 0.0142 0.1894 0.1853 0.1843 0.1723 0.0389

Average program size

X M P4 P7 P9 R1 R2 R3 K11 K12 K13 K14 K15

0.0 1.0 172.6 179.0 195.9 162.2 187.9 161.0 210.9 172.4 9.1 204.9 207.7
0.5 0.5 150.4 341.4 322.1 325.3 352.8 347.7 328.3 305.5 7.4 326.5 260.6
0.5 1.0 78.3 292.4 271.7 287.9 283.3 265.9 286.4 264.5 8.5 258.9 239.6
1.0 0.5 44.0 346.6 354.4 327.2 339.2 311.0 328.0 311.1 7.8 298.6 300.0F

P
M

1.0 1.0 99.2 283.4 271.0 255.7 253.3 270.6 244.8 230.6 8.9 239.8 264.4

0.0 1.0 537.6 690.6 550.8 777.5 2656.9 1203.7 418.6 434.8 85.0 147.2 250.2
0.5 0.5 503.6 637.9 686.0 493.9 529.6 485.7 358.4 482.4 497.1 346.4 1299.6
0.5 1.0 626.9 1004.3 934.1 906.7 854.0 747.2 654.2 841.2 464.3 548.6 1137.2
1.0 0.5 378.6 631.2 588.4 473.0 508.9 486.7 316.8 472.9 311.0 325.5 673.8R

D
O

1.0 1.0 645.6 903.6 909.9 668.6 746.4 696.2 542.9 838.7 426.7 514.6 1034.4

0.0 1.0 122.9 176.1 152.4 133.8 116.2 155.9 109.3 95.1 95.7 63.0 74.7
0.5 0.5 60.0 109.4 95.4 79.7 76.1 95.8 62.7 69.4 59.6 53.5 57.5
0.5 1.0 111.8 172.8 159.6 154.3 122.3 173.6 99.2 95.3 96.1 79.1 82.0
1.0 0.5 97.9 106.4 107.1 96.8 89.9 137.2 89.5 86.6 81.1 87.6 64.4S

R
M

1.0 1.0 119.0 160.9 147.5 150.6 131.0 165.7 95.3 83.2 95.9 80.4 96.5
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decreases when mutation is performed too frequently (i.e., if M = 1.0). To
explain this phenomenon let us note that for a given subprogram, the FPM
operator builds a context in a deterministic way. As a result, if two semantically
equivalent subprograms are selected in the same generation, they will result in
identical offspring. Consequently, FPM can lead to creating too many duplicated
programs and thus losing diversity in the population. Importantly, although
RDO is also deterministic, it is less susceptible to this problem because typically
the number of distinct contexts is much larger than that of distinct subtrees.

In order to assess generalization performance of evolved programs, we cal-
culate the root-mean-square error on 1000 test cases drawn uniformly from the
same range as for the training cases. The median test errors committed by the
best-of-run individuals are presented in the second part of Table 3. In most cases,
the RDO operator (especially for setups that achieve the lowest training error)
suffers from substantial overfitting resulting in large test error. Although the
FPM operator is also vulnerable to overfitting (in particular on problem P9)
it is not as severe as in the case of RDO. With a few exceptions, for each of
the considered problems and parameter setups, the FPM operator obtains the
highest generalization performance.

Finally, we investigate the average size of best-of-run individuals which is
presented in the last part of Table 3. Not surprisingly RDO is the most bloating
operator and this is one of the reasons for its poor performance on the unseen
test data. On the other hand, in preliminary experiments with imposed program
size limit of 300 nodes, we also observed overfitting of the RDO operator. The
programs produced by FPM tend to be much smaller. In particular, on two rel-
atively simple problems, P4 and K13, the FPM operator finds short programs
that obtain zero test error. Apparently, employing FPM allows to discover solu-
tions that are very close to the original function underlying the training data.
However, on all the other problems, the programs produced by RDO and FPM
are significantly larger than those created by the traditional SRM operator.

7 Conclusions

Semantic GP operators have proved to be effective on a number of symbolic
regression problems [11,13,14]. In this study, we confirmed these observations
by analyzing the performance of the RDO operator based on semantic backprop-
agation [12] and the FPM operator that employs a novel idea of semantic forward
propagation. When applied to a suite of symbolic regression benchmarks, both
operators significantly outperformed the subtree-replacing mutation operator
conventionally applied in GP. However, while both considered semantic opera-
tors achieved competitive performance on the training data, the RDO operator
was found much more susceptible to overfitting. The proposed FPM operator,
on the other hand, consistently produced shorter programs that obtained signif-
icantly lower error on the unseen test data.

Despite achieving superior predictive accuracy and producing shorter pro-
grams than RDO, the programs constructed with the FPM operator are still too
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large to be easily understood. This is unfortunate since finding comprehensible
solutions has been always considered as one of the primary benefits of using GP
instead of black-box machine learning methods. As most semantic-aware oper-
ators tend to produce large or very large programs [10], the problem of bloat
remains the major challenge that can limit the practical applicability of such
methods. Therefore, one of the most important directions of future work is to
investigate the performance of RDO and FPM operators combined with parsi-
mony pressure mechanisms that control the complexity of evolved programs.
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Abstract. Genetic programming approaches are moving from analysing
the syntax of individual solutions to look into their semantics. One of
the common definitions of the semantic space in the context of symbolic
regression is a n-dimensional space, where n corresponds to the num-
ber of training examples. In problems where this number is high, the
search process can became harder as the number of dimensions increase.
Geometric semantic genetic programming (GSGP) explores the semantic
space by performing geometric semantic operations—the fitness land-
scape seen by GSGP is guaranteed to be conic by construction. Intu-
itively, a lower number of dimensions can make search more feasible in
this scenario, decreasing the chances of data overfitting and reducing the
number of evaluations required to find a suitable solution. This paper
proposes two approaches for dimensionality reduction in GSGP: (i) to
apply current instance selection methods as a pre-process step before
training points are given to GSGP; (ii) to incorporate instance selec-
tion to the evolution of GSGP. Experiments in 15 datasets show that
GSGP performance is improved by using instance reduction during the
evolution.

Keywords: Dimensionality reduction · Semantic genetic programming ·
Instance selection

1 Introduction

Evolutionary computation methods have recently turned their attention to the
semantics of the solutions represented by individuals instead of focusing only on
their syntax [17]. Particularly, in the case of genetic programming, many meth-
ods are switching from the syntactic space to work on a n-dimensional semantic
space, where n is the number of training instances we learn the function from.
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When applying any function—e.g., an individual—to the training set, the pro-
duced output corresponds to a point in the semantic space.

Given the definition above, the number of dimensions of the semantic space
equals the number of training examples. In problems where this number is high—
a common scenario in real-world applications—the search process can became
harder as the number of dimensions increase, a problem well-known as the curse
of dimensionality [5]. As the number of dimensions of the problem increases, the
volume of the search space also increases exponentially.

One of the simplest ways to deal with the curse of dimensionality is to reduce
the number of dimensions of the search space [5]. As in geometric semantic
genetic programming each space dimension corresponds to a training instance, an
alternative is to perform what in the machine learning literature is known as data
instance selection. Data instance selection is a well-known problem within the
context of data classification, but there is not extensive work regarding regression
problems [2]. Instance selection methods are strongly based on distances between
training instances from both the set of input and output features.

This paper evaluates the impact of reducing the number of dimensions of the
semantic space in the context of geometric semantic genetic programming. This
scenario is interesting since the crossover and mutation operators guarantee the
semantic fitness landscape explored by GP is conic, which can be optimized by
evolutionary algorithms with good results for virtually any metric, as indicated
by [13]. Intuitively, a lower number of dimensions can make search more feasible,
reducing the number of evaluations required to find a suitable solution while
decreasing the chances of data overfitting.

Looking at how current instance selection methods work, we take advan-
tage of previous knowledge and propose two approaches for instance selection:
(i) apply current instance selection methods as a pre-process step before training
points are given to GSGP; (ii) incorporate instance selection to the evolution
of GSGP. In the first case, we use the methods Threshold Condensed Nearest
Neighbor (TCNN) and Threshold Edited Nearest Neighbor (TENN) [9] to select
instances, which are then given to GSGP. The second approach incorporates
instance selection to the evolution of GSGP, through the proposed Probabilistic
instance Selection based on the Error (PSE) method.

Computational experiments in 15 real-world and synthetic datasets, where
the number of training instances varies from 50 to 4000 and instance number
reduction (i.e. search space dimension reduction) of up to 68.50 %, show that
results obtained by TCNN and TENN are no better than those generated by a
random selection scheme. PSE, in turn, shows results statistically significantly
better than GSGP with all instances in 5, and no statistical difference in 7 cases.

2 Related Work

Instance selection methods are commonly used in the classification literature [6],
and play different roles in noisy and noise-free application scenarios. In noise-free
scenarios, the idea is to remove points from the training set without degrad-
ing accuracy, such as improving storage and search time. In noisy application
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domains, the main idea is to remove outliers. In classification, these methods rely
on the class labels of neighbour instances to determine the rejection/acceptance
of an instance to the selected set. However, there are not many methods for
instance selection in regression problems. A few works have extended well-known
instance selection methods for classification to the context of regression [2].

The authors in [7] introduced a method based on mutual information,
inspired by feature selection methods that rely on this criterion. The method
focuses on noise-free scenarios, and has as its main objective to choose the best
subset of instances to build a model. In this same direction, the authors in [16]
propose Class Conditional Instance Selection for Regression (CCISR). It extends
the Class Conditional Instance Selection method for classification, which uses
a class conditional nearest neighbour relation to guide the search process. The
authors in [9] proposed the Threshold Condensed Nearest Neighbor (TCNN) and
Threshold Edited Nearest Neighbor (TENN) algorithms—regression versions of
the ENN and CNN methods for classification, respectively. These algorithms will
be discussed in the next section, as they are used in this paper.

Recently, the authors in [2] compared different strategies for instance selec-
tion in regression: discretization techniques—which transform the continuous
outputs of the problem into discrete variables and then apply the traditional ver-
sion of instance selection methods for classification—TCNN and TENN. They
also proposed an ensemble method, namely bagging, to combine several instance
selection algorithms. Each algorithm within the ensemble returns an array of
binary votes (0 means the instance is not selected and 1 otherwise), and the
relevance of an instance in the training set is considered proportional to the
number of accumulated votes. The final instance selection is given by a thresh-
old, which defines the percentage of votes an instance must have to be selected.
As expected, the ensemble method presented the best results overall.

In our context, the use of an ensemble is not justifiable, as it is a time
consuming task and would add too much time overhead to the search. For this
reason, we adopted the threshold versions of TCNN and TENN, as the first
assumes noise-free scenarios and the second focuses on outliers.

3 Strategies for Semantic Space Dimensionality
Reduction

This section introduces two strategies to reduce the dimensionality of the seman-
tic search space. First, we formally introduce the problem and motivation for
instance selection in this scenario. Given a finite set of input-output pairs repre-
senting the training cases, defined as T = {(xi, yi)}n

i=1—where (xi, yi) ∈ R
d ×R

(i = 1, 2, . . . , n)—symbolic regression consists in inducing a model p : Rd → R

that maps inputs to outputs, such that ∀(xi, yi) ∈ T : p(xi) = yi.
Let I = {x1,x2, . . . ,xn} and O = [y1, y2, . . . , yn] be the input set and output

vector, respectively, associated to the training instances. The semantics of a
program p represented by an individual evolved by GSGP, denoted by s(p),
is the vector of outputs it produces when applied to the set of inputs I, i.e.,
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s(p) = p(I) = [p(x1), p(x2), . . . , p(xn)]. The semantics of any program can be
represented as a point in a n-dimensional topological space S, called semantic
space, where n is the size of the training set.

GSGP introduces geometric semantic operators for GP that act on the syntax
of the programs, inducing a geometric behaviour on the semantic level [14]. These
operators guarantee the semantic fitness landscape explored by GP is conic, a
property with positive effects on the search process. There is formal evidence
that indicates evolutionary algorithms with geometric operators can optimise
cone landscapes with good results for virtually any metric [13].

Algorithm 1. TENN
Input: T = {(xi, yi)}n

i=1, k, α
Output: Instance set P ⊂ T

1 Shuffle T ;
2 P ← T ;
3 for i ← 1 to n do
4 ŷ ← regression(xi, P \ (xi, yi));
5 N ← knn(k, T );
6 θ ← α · sd(N);
7 if θ = 0 then
8 θ ← α

9 if |yi − ŷ| > θ then
10 P ← P \ (xi, yi)

11 return P ;

Algorithm 2. TCNN
Input: T = {(xi, yi)}n

i=1, k, α
Output: Instance set P ⊂ T

1 Shuffle T ;
2 P ← (x1, y1);
3 for i ← 2 to n do
4 ŷ ← regression(xi, P );
5 N ← knn(k, T );
6 θ ← α · sd(N);
7 if θ = 0 then
8 θ ← α

9 if |yi − ŷ| > θ then
10 P ← P ∪ (xi, yi)

11 return P ;

As the semantics in GSGP is defined as a point with a number of dimensions
equivalent to the number of instances given as input to a candidate regression
function, by reducing the number of input instances we automatically reduce the
number of dimensions of the semantic space, which in turn reduces the complex-
ity of the search space. Intuitively, the smaller the complexity the smaller the
number of possible convex combinations, which may help the speed of conver-
gence to the optimum. In this context, the first strategy we propose to reduce
the number of dimensions of the search space is executed before data is given as
input to GSGP, and depends only on the characteristics of the dataset. The sec-
ond strategy, in turn, takes into account the median absolute error of an instance
during GSGP evolution to select the most appropriate instances.

3.1 Pre-processing Strategies

We first introduce two methods for instance selection in regression. The
Threshold Edited Nearest Neighbor (TENN) and Threshold Condensed Nearest
Neighbor (TCNN) [9] adapt instance selection algorithms for classification
problems—ENN [18] and CNN [8]—to the regression domain. They are pre-
sented in Algorithms 1 and 2.
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These algorithms employ an internal regression method to evaluate the
instances according to the similarity-based error. The decision of keeping or
removing the i-th instance from the training set is based on the deviation of
the instance prediction ŷi and the expected output yi, given by |ŷi − yi|. If this
difference is smaller than a threshold θ, ŷi and yi are considered similar and the
instance is accepted or rejected, depending on the algorithm. The threshold θ is
computed based on the local properties of the dataset, given by α ·sd(N), where
α is a parameter controlling the sensitivity and sd(N) returns the standard devi-
ation of the outputs of the set N , composed by the k nearest neighbours of the
instance.

The internal regression method adopted by TCNN and TENN—the pro-
cedure regression presented in Algorithms 1 and 2—can be replaced by any
regression method. Our implementation uses the version of the kNN (k-nearest
neighbour) algorithm for regression to infer the value of ŷ. Besides the training
set T , these algorithms receive as input the number of neighbours to be consid-
ered and a parameter α, which controls how the threshold is calculated. At the
end, the set P of instances selected to be used to train the external regression
method is returned.

TENN is a decremental method, starting with all training cases in the set
P and iteratively removing the instances diverging from their neighbours. An
instance (xi, yi) is considered divergent if the output ŷ inferred by the model
learned without the instance is dissimilar from its output (yi). TCNN, on the
other hand, is an incremental method, beginning with only one instance from the
training set in P and iteratively adding only those instances that can improve
the search. The instance (xi, yi) is added only if the output ŷ inferred by the
model learned with P diverges from yi.

3.2 GSGP Integrated Strategies

Both TENN and TCNN disregard any information about the external regression
algorithm, since they are used in a pre-processing phase. In order to overcome
this limitation, we propose a method to select instances based on their median
absolute error, considering the output of the programs in the current population.
The method, called Probabilistic instance Selection based on the Error (PSE),
probabilistically selects a subset of the training set at each ρ generations, as
presented in Algorithm 3. The higher the median absolute error, the higher the
probability of an instance being selected to compose the training subset used
by GSGP. The rationale behind this approach is to give higher probability to
instances which are, in theory, more difficult to be predicted by the current
population evolved by GSGP.

Given a GSGP population P = {p1, p2, . . . , pm}, the median absolute error
of the i-th instance (xi, yi) ∈ T is given by the median value of the set E =
{|p1(xi)− yi|, |p2(xi)− yi|, . . . , |pm(xi)− yi|}. These values are used to sort T in
descending order, and the position of the instance in T is used to calculate its
probability of being selected to be part of the training set.
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Algorithm 3. PSE method
Input: Training set (T ), population (pop), lower bound (λ)
Output: Instance set P ⊂ T

1 foreach inst = (xi, yi) ∈ T do // Compute the median absolute error

2 E ← [|p1(xi) − yi)|, |p2(xi) − yi)|, . . . , |pm(xi) − yi)|];
3 inst.med ← median(E);

4 Sort T by med value in descending order;
5 P ← {};
6 for i ← 1 to |T | do
7 inst ← (xi, yi) ∈ T ;

8 r̃ ← (i−1)
|T |−1

; // Compute the normalized rank

9 probsel ← 1 − (1 − λ) · r̃2 ; // Probability of selecting inst
10 if probsel ≥ rand() then // Add inst to P with probability probsel
11 P ← P ∪ {inst};

12 return P ;

In order to compute this probability, the method normalizes the rank of the
instance in T to the range [0, 1] by

r̃ =
(i − 1)
|T | − 1

, (1)

where i is the position of the instance in the ordered set T , |.| denotes the
cardinality of the set and r̃ ∈ [0, 1] is the normalized rank. The value of r̃ is used
to calculate the probability of selecting the instance, given by

probsel = 1 − (1 − λ) · r̃2, (2)

where λ is a parameter that determines the lower bound of the probability
function. The higher the value of λ, the more instances are selected. The area
under the function, equivalent to 2+λ

3 , corresponds to the proportion of instances
selected from T .

4 Experimental Results

This section presents an experimental analysis of the instance selection strate-
gies. The results obtained by GSGP with instance selection performed by TCNN
and TENN (Sect. 4.1), and PSE (Sect. 4.2) are compared with GSGP with all
instances.

The experiments were performed in a collection of datasets selected from
the UCI machine learning repository [11], GP benchmarks [12] and a GSGP
study from the literature [1], as presented in Table 1. For real-world datasets,
we performed 5-fold cross-validations with 10 replications, and for synthetic
ones, the data was sampled five times—according to Table 3 from [12]—and
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the algorithms were applied 10 times, both cases resulting in 50 executions. This
sampling strategy justifies the adoption of the t-test in the statistical analysis
performed in this section—the number of replications is larger than 30 [4] For
compatibility purposes, we removed the categorical attributes of the datasets.

All executions used a population of 1,000 individuals evolved for 2,000 gener-
ations with tournament selection of size 10. The grow method [10] was adopted
to generate the random functions inside the geometric semantic operators, and
the ramped half-and-half method [10] used to generate the initial population,
both with maximum individual depth equals to 6. The terminal set included the
variables of the problem and constant values randomly picked from the interval
[−1, 1]. The function set included three binary arithmetic operators (+,−,×)
and the analytic quotient (AQ) [15] as an alternative to the arithmetic division.
The GSGP method employed the crossover for Manhattan-based fitness function
and mutation operators from [3] both with probability 0.5. The mutation step
required by the mutation operator was defined as 10 % of the standard deviation
of the outputs (O) given by the training data. All instances in the training set
were used as input for the instance selection methods and GSGP.

Table 1. Datasets used in the experiments.

Dataset Size Nature Source Dataset Size Nature Source

Airfoil 1503 Real [1,11] Keijzer-7 100 Synthetic [12]

Bioavailability 359 Real [1] ppb 131 Real [1]

Concrete 1030 Real [1,11] TowerData 4999 Real [1]

cpu 209 Real [1,11] Vladislavleva-1 100 Synthetic [1,12]

EnergyCooling 768 Real [1,11] WineRed 1599 Real [1,11]

EnergyHeating 768 Real [1,11] WineWhite 4898 Real [1,11]

Forestfires 517 Real [1,11] Yacht 308 Real [1,11]

Keijzer-6 50 Synthetic [1,12]

4.1 Comparing Instance Selection Methods

In this section we compare the results obtained by GSGP with and without the
instance selection performed before the evolutionary stage (pre-processing). The
selection was performed by TCNN (GSGP-TCNN) and TENN (GSGP-TENN)
methods, with k = 9 and 10 different values for α equally distributed in the
intervals [0.1, 1] and [5.5, 10], respectively. Table 2 presents the median training
and test RMSE’s and the data reduction obtained with α resulting in the largest
data reduction by TCNN and TENN methods—1 and 5.5, respectively.

In order to investigate the significance of instance selection methods in GSGP,
we randomly selected l instances from each dataset, with no replacement, to
compose a new training set used as input by GSGP. The value of l is defined
as the smaller of the sizes of the sets resulting from TENN and TCNN. Table 2
presents the median training and test RMSE’s of these experiments in the last
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Table 2. Median training and test RMSE and reduction (% red.) achieved by the
algorithms for each dataset. Values highlighted in bold corresponds to test RMSE
statically worst than GSGP, according to a t-test with 95% confidence.

Dataset GSGP GSGP-TCNN GSGP-TENN GSGP-Rnd

tr ts tr ts % red. tr ts % red. tr ts

Airfoil 7.89 8.42 7.76 8.74 38.60 8.06 8.60 1.90 7.65 8.38

Bioavailability 9.89 30.74 4.95 36.29 46.30 9.84 31.38 0.90 4.55 34.39

Concrete 3.65 5.39 2.80 6.40 38.20 3.65 5.21 3.20 3.18 5.95

cpu 6.13 30.92 5.46 33.61 11.20 5.06 51.54 65.40 5.67 32.28

EnergyCooling 1.26 1.51 1.28 2.49 14.70 1.28 1.83 36.60 1.19 1.71

EnergyHeating 0.80 0.96 0.83 1.87 11.10 0.67 1.84 45.40 0.77 1.11

Forestfires 30.74 51.63 13.68 101.90 42.80 30.75 51.94 5.80 22.49 57.57

Keijzer-6 0.01 0.40 0.01 0.36 10.60 0.00 1.25 53.00 0.01 0.32

Keijzer-7 0.02 0.02 0.02 0.02 5.30 0.01 0.40 68.50 0.01 0.05

ppb 0.92 28.74 0.20 32.08 41.50 0.91 28.04 3.80 0.25 30.50

TowerData 20.44 21.92 19.82 22.71 12.60 20.44 43.86 41.90 20.40 22.06

Vladislavleva-1 0.01 0.04 0.01 0.07 20.90 0.01 0.07 43.40 0.01 0.06

WineRed 0.49 0.62 0.40 0.73 51.10 0.49 0.62 0.10 0.41 0.66

WineWhite 0.64 0.70 0.66 0.78 52.30 0.64 0.69 0.10 0.60 0.71

Yacht 2.12 2.52 2.20 5.19 36.90 2.11 2.83 24.30 2.01 2.63

two columns (denoted as ‘GSGP-Rnd’). The results obtained show that using
TCNN and TENN do not make any systematic improvement on GSGP results.
Moreover, the results obtained by them are no better than those generated by
a random selection scheme. Hence, the strategies used by these methods do not
seem appropriate for the scenario we have.

4.2 Evaluating the Effects of PSE

In this section, we first investigate the sensitivity of PSE parameters and then
compare the performance of GSGP with and without the PSE method. PSE
parameters ρ and λ have a direct impact on the number of instances selected
and how they are selected. In order to analyse their impact on the search, we
fixed the GSGP parameters and focused on looking at the results as we varied
these parameters. The values of ρ were set to 5, 10 and 15 while we varied
the value of λ in 0.1, 0.4 and 0.7. Table 3 presents the median training RMSE
obtained by the GSGP with these PSE configurations. The results show that
higher values of ρ (15) with lower values of λ (0.1) tend to reduce the training
RMSE.

The experiments with PSE adopt the values of ρ and λ resulting in the small-
est median training RMSE, as presented in Table 3. Table 4 presents the median
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training and test RMSE’s obtained by GSGP and by GSGP with PSE (GSGP-
PSE). In order to identify statistically significant differences, we performed t-
tests with 95 % confidence level, regarding the test RMSE of both methods in 50
executions. The symbol in the last column indicates datasets where the results
present significant difference. Overall, GSGP-PSE performs better in terms of
test RMSE than GSGP, being better in five datasets and worse in three.

Table 3. Median training RMSE of the GSGP-PSE with different values of λ and ρ
for the test bed. The smallest RMSE for each dataset is presented in bold.

Dataset ρ = 5 ρ = 10 ρ = 15

λ = 0.1 λ = 0.4 λ = 0.7 λ = 0.1 λ = 0.4 λ = 0.7 λ = 0.1 λ = 0.4 λ = 0.7

Airfoil 8.03 8.15 8.11 7.97 8.05 8.16 8.12 8.05 8.11

Bioavailability 9.66 9.66 9.88 9.70 9.69 9.83 9.53 9.77 9.81

Concrete 3.35 3.49 3.56 3.35 3.45 3.58 3.34 3.45 3.56

cpu 4.93 5.46 5.70 5.02 5.33 5.89 5.01 5.39 5.88

EnergyCooling 1.13 1.19 1.23 1.12 1.18 1.22 1.12 1.17 1.23

EnergyHeating 0.66 0.72 0.77 0.67 0.72 0.76 0.67 0.71 0.76

Forestfires 25.94 27.67 29.21 25.72 27.61 29.43 25.55 27.87 29.58

Keijzer-6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Keijzer-7 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

ppb 0.50 0.65 0.81 0.53 0.65 0.80 0.52 0.63 0.76

TowerData 19.22 19.74 19.98 19.22 19.61 20.09 19.18 19.61 19.92

Vladislavleva-1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

WineRed 0.47 0.48 0.49 0.47 0.48 0.49 0.47 0.48 0.49

WineWhite 0.63 0.64 0.64 0.63 0.64 0.64 0.63 0.64 0.64

Yacht 1.94 2.02 2.09 1.94 2.01 2.08 1.94 2.00 2.09

Table 4. Median training and test RMSE’s obtained for each dataset. The symbol

�(�) indicates GSGP-PSE is statistically better (worse) than GSGP in the test set
according to a t-test with 95 % confidence.
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Fig. 1. Median RMSE in the training and test sets over the generations for GSGP with
and without PSE for yacth and towerData datasets.

Figure 1 compares the evolution of the fitness of the best individual along
the generations in the training and test sets for GSGP and GSGP-PSE, for
two different datasets. Note that GSGP errors are overall higher than PSE.
For instance, looking at the convergence of the dataset towerData, if we stop
the evolution at generation 1,000, GSGP would have a test error of 25.02 and
GSGP-PSE of 23.64. GSGP needs 293 more generations to reach that same error.

5 Conclusions and Future Work

This paper presented a study about the impact of instance selection methods
on GSGP search. Two approaches were adopted: (i) selecting the instances in a
pre-processing step; and (ii) selecting instances during the evolutionary process,
taking into account the impact of the instance on the search.

Experiments were performed in a collection of 15 datasets in order to eval-
uate the impact of the instance selection. The first analysis showed GSGP fed
with the whole dataset performs better in terms of test RMSE than when using
subsets selected with TENN, TCNN or randomly. The second analysis showed
that overall GSGP with PSE performs better in terms of test RMSE than the
GSGP alone, and that instance selection to reduce the semantic space is worth
further investigation.

Potential future works include analysing the effect of fitness functions that
weight semantic space dimensions, exploring the impact of noise in the PSE
method and studying approaches to insert information about the noisy instances
during the selection.
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Abstract. Ant colony optimization (ACO) is a metaheurisitc which
was originally designed to solve combinatorial optimization problems.
In recent years, ACO has been extended to tackle continuous single-
objective optimization problems, being ACOR one of the most remark-
able approaches of this sort. However, there exist just a few ACO-based
algorithms designed to solve continuous multi-objective optimization
problems (MOPs) and none of them has been tested with many-objective
problems (i.e., multi-objective problems having four or more objectives).
In this paper, we propose a novel multi-objective ant colony optimizer
(called iMOACOR) for continuous search spaces, which is based on ACOR

and the R2 performance indicator. Our proposed approach is the first
specifically designed to tackle many-objective optimization problems.
Moreover, we present a comparative study of our proposal with respect
to NSGA-III, MOEA/D, MOACOR and SMS-EMOA using standard test
problems and performance indicators adopted in the specialized litera-
ture. Our preliminary results indicate that iMOACOR is very competitive
with respect to state-of-the-art multi-objective evolutionary algorithms
and is also able to outperform MOACOR.

1 Introduction

In artificial intelligence, the social behavior of animals and insects has been
a prominent source of inspiration for several metaheuristics which are part of
the broad concept of Swarm Intelligence. Ant Colony Optimization (ACO), was
originally proposed by Dorigo [1], and it is inspired by colonies of real ants that
deposit a chemical substance (called pheromone) on the ground with the aim of
tracing paths to a source of food. The ants tend to take, with a higher probability,
those paths where there is a larger amount of pheromone. In fact, after some
time, the shortest path is the one with the largest amount of pheromone [2]. Due
to this property, ACO was originally applied to the solution of combinatorial
optimization problems (COPs).
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Over the years, the ACO metaheuristic has been extended to continuous
search spaces, being the proposal of Bilchev and Parmee [3] the first of this
sort. According to [4], there are several ACO-based optimizers for continuous
domains although the ACO algorithm for continuous domains (ACOR) [5] is
possibly the most remarkable. In spite of the relatively large amount of ACO-
based algorithms currently available for continuous domains, there are just a
few oriented to solve multi-objective optimization problems (MOPs). In [4] only
two proposals are reported: the Population-based ACO Algorithm for Multi-
Objective Function Optimization (PACO-MOFO) [6] and the Multi-Objective
Ant Colony Optimizer (MOACOR) [7], both based on ACOR. Furthermore, in
the specialized literature no multi-objective ant colony optimizer (MOACO) had
been reported so far as being able to solve many-objective problems [8].

In this paper, we propose a novel indicator-based Multi-Objective Ant Colony
Optimizer based on ACOR, called iMOACOR. To the authors’ best knowledge,
this is the first MOACO algorithm that is able to tackle many-objective opti-
mization problems.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the previous work on ACO in continuous optimization problems.
Section 3 briefly describes ACOR. The detailed description of our proposal is
presented in Sect. 4. Then, we provide our experimental results in Sect. 5. Finally,
Sect. 6 provides our conclusions and some possible paths for future research.

2 Previous Related Work

The first ACO algorithm designed for continuous search spaces was proposed by
Bilchev and Parmee [3]. In this approach, each ant incrementally explores the
search space from a single nest, defined as a promising point, trying different
search directions at a radius not greater than R. At choosing a search direction,
each ant’s decision was biased by a trail quantity which was incremented if
and only if the direction resulted in an improvement of the objective function;
otherwise, the search direction was not taken into account. This process was
repeated until a termination condition was met.

Socha and Dorigo proposed the ACOR [5] algorithm whose fundamental idea
is the use of a continuous probability density function (PDF) instead of a discrete
one as in traditional ACOs. ACOR uses a constant-size archive as its pheromone
model where the best-so-far solutions are stored. For each dimension, a
Gaussian-kernel PDF is defined using the corresponding elements of every stored
solution. An ant incrementally constructs a new solution via the sampling of each
Gaussian-kernel PDF. Once all ants have constructed a new solution, only the
best ones are kept in the archive and the same number are removed from it.
A detailed description of ACOR will be provided in the next section.

The use of ACO in continuous MOPs has been scarcely explored [4]. We are
only aware of two approaches. The first of them is PACO-MOFO, which is based
on the Crowding Population-based ACO algorithm (CPACO) [9] and ACOR.
PACO-MOFO applies a replacement operator based on crowding distance in
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order to maintain diversity and fitness sharing in furtherance of a uniform sam-
pling of the objective space. The second proposal is MOACOR [7], which is a
direct extension of ACOR. The concept of dominance depth of NSGA-II [10] is
used in this case to preserve at each iteration those solutions closer to the Pareto
Front. Moreover, if the number of solutions exceed the size of the archive, those
with a higher crowding distance value are removed in order to maintain constant
the size of the archive.

3 ACOR Overview

The pheromone model of ACOR [5] is represented by an archive T that stores the
k best-so-far solutions. For the ith dimension, a Gaussian-kernel PDF is defined
using the corresponding components of all stored solutions as follows:

Gi(x) =
k∑

j=1

wjg
i
j(x) =

k∑

j=1

wj
1

σi
j

√
2π

· e
− (x−μi

j)2

2σi
j
2

(1)

where i = 1, . . . , n and n is the number of decision variables. Each archive’s
solution j stores a vector of decision variables sj = (s1j , . . . , s

n
j ), an objective

value u(sj) and the weight ωj . The solutions are sorted by their quality, i.e.,
u(s1) ≤ u(s2) ≤ · · · ≤ u(sk), for a minimization problem.

Equation (1) depends on three vectors of parameters: μi is the vector of
means, σi is the vector of standard deviations, and ω is the vector of weights.
The vector of means μi is defined as follows:

μi = {μi
1, . . . , μ

i
k} = {si1, . . . , s

i
k} (2)

The elements of σi have to be independently calculated for each Gaussian-kernel
using the following formula:

σi
j = ξ

k∑

r=1

∣∣sir − sij
∣∣

k − 1
(3)

where ξ > 0 is a parameter of the algorithm that controls the way the long term
memory is used, i.e., the speed of convergence. When ξ is large, the speed of con-
vergence is slower and in case its value is close to zero, the speed of convergence
is increased. Finally, each ωj ∈ ω is calculated as follows:

ωj =
1

qk
√

2π
· e

− (rank(sj)−1)2

2q2k2 (4)

where rank(·) returns the solution’s rank in T according to the established order
and q > 0 is a parameter that controls the diversification of the search. As q → 0,
the best-ranked solutions are preferred to guide the search, and when it takes a
large value, the weights tend to be more uniform.

In order to generate a new solution, first, each ant ai ∈ A chooses, with
probability pj = ωj/

∑k
r=1 ωr, a guiding pheromone sj from T . Then, ai samples

gij(x), i = 1, . . . , n, with the purpose of creating a new solution.
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4 Our Proposed Approach

The hypervolume (HV) [18] and the R2 indicator [11] are two recommended
unary performance indicators which simultaneously evaluate all the desired
aspects of a Pareto Front approximation [11]. However, the R2 indicator requires
less computational effort and it produces a more uniform distribution than HV.
Given a Pareto Front approximation A, the unary version of the R2 indicator
[11] is defined as follows:

R2(A,U) =
1

|U |
∑

u∈U

min
a∈A

{u(a)} (5)

where U is a set of utility functions u : Rm → R that are a model of the decision
maker’s preference that maps each objective vector into a scalar value.

Motivated by the nice properties of the R2 indicator, Hernández and Coello
proposed in [13] a ranking algorithm based on it, called R2-ranking. This mech-
anism groups solutions which optimize a set of utility functions, and place them
on top, such that they get the first rank. Then, such points are removed and a
second rank is assigned in the same way and so on until there are no more points
left to be ranked. One of the advantages of this scheme is its good performance
on many-objective problems.

Concerning the choice of the utility function u in Eq. (5), we use the achieve-
ment scalarizing function (ASF) [12] defined as:

uasf (v | r, λ) = max
i∈{1,...,m}

1
λi

|vi − ri| (6)

where r is a reference vector and λ is a convex weight vector, both of dimension
m. The set U = {λi | i = 1, . . . , N} (N = CH+m−1

m−1 , H is a parameter of
the algorithm) is computed using Simple-Lattice-Design (SLD). Moreover, we
normalize each objective function fi(x) (the R2-ranking algorithm requieres this
normalization) using the following formula:

f ′
i(x) =

fi(x) − zmin
i

zmax
i − zmin

i

,∀i ∈ {1, . . . , m} (7)

where zmin and zmax are statistical approximations to the ideal and nadir vec-
tors [12], respectively. These vectors are updated using a data structure called
RECORD, which was proposed by Hernández and Coello [13].

When we deal with MOPs there is not a unique solution but a set of solutions
which represent the best possible trade-offs among the objectives. Due to this
fact, ACOR’s pheromone model has to be slightly modified in order to store
the best solutions according to some criterion. A Pareto-based scheme is not a
good choice if we aim to solve many-objective problems. Thus, we propose to
use the R2-ranking algorithm because of its good performance in many-objective
problems.
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Each record of the archive T stores the same information as in ACOR,
although in this case the objective value is treated as an objective vector F (si).
Additionally, it is added a field rank(si). Once the solutions in T have been
processed by the R2-ranking, the rank assigned to each solution sj is stored in
rank(sj). In order to create a new solution, we applied the standard process of
ACOR using Eqs. (1) to (4).

The underlying idea of the pheromone update is to promote a competition
between the newly created solutions A and the pheromones in T . Let Ψ = A∪T .
The union set is ranked by the R2-ranking and is immediately sorted, in increasing
order, by the following criteria: (1) rank, (2) utility value, (3) L2-norm. Finally,
all pheromones in T are substituted by the first k solutions of Ψ .

In Algorithm 1, we describe our proposed iMOACOR.1 The algorithm only
requires three parameters: (1) the set of N = CH+m−1

m−1 weight vectors, (2) the
diversification parameter q, and (3) the convergence speed factor, ξ. The pop-
ulation size (M) and the archive size (k) are equal to N due to the optimal
μ-distributions of the R2 indicator [11]. In lines 1 to 3, k random solutions are
generated to initialize T and the RECORD structure is created. At each itera-
tion, the R2-ranking is applied on T and afterwards every ant generates a new
solution. Then, in line 8, the RECORD is updated using the ants’ solutions
with the aim of producing new values of zmin and zmax. From lines 9 to 13, the
pheromone update is performed. This process is repeated until a termination
condition is fulfilled and then the solutions in T are returned in line 14.

Algorithm 1. Main loop of iMOACOR.
Require: MOP, set of N = CH+m−1

m−1 convex weight vectors, q, ξ
Ensure: Pareto front approximation
1: Randomly initialize archive T
2: Initialize RECORD R
3: Initialize zmin and zmax

4: while termination condition is not fulfilled do
5: T ← R2ranking(T )
6: for all ant ∈ A do
7: generateSolution(ant, zmin, zmax)
8: Update reference points (zmin, zmax) using R
9: Ψ ← A ∪ T

10: Ψ ′ ← R2ranking(Ψ)
11: Remove all elements from T
12: Ψ ′ ← sortReduction(Ψ ′)
13: Copy the first k elements from Ψ ′ to T
14: return T

1 The source code of our approach is available at:
http://computacion.cs.cinvestav.mx/∼jfalcon/iMOACOR/imoacor.html.

http://computacion.cs.cinvestav.mx/~{}jfalcon/iMOACOR/imoacor.html
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5 Experimental Results

In order to assess the performance of our proposed approach, we used the
Zitzler-Deb-Thiele (ZDT) test suite, the Deb-Thiele-Laumanns-Zitzler (DTLZ)
test suite, and the Walking-Fish-Group (WFG) test suite. However, due to space
limitations, only the results for the ZDT and DTLZ test problems are included
here. Our proposed approach was compared with respect to: NSGA-III2 [15],
MOEA/D [14], SMS-EMOA [16] (using HypE to estimate the hypervolume val-
ues [17]) and MOACOR

3 [7]. Results were compared using the hypervolume
(HV), inverted generational distance plus (IGD+4) [19] and spacing (S) [18].

Attending the original papers, the common parameter settings for NSGA-III,
MOEA/D and SMS-EMOA have been set as follows: Nc = 20, Pc = 1.0, Nm = 20
and Pm = 1/n. The neighborhood size of MOEA/D was set to 20. The number
of samples in the HypE algorithm was set to 10,000. Based on an experimental
study, the parameters (q, ξ) of iMOACOR and MOACOR were set as (0.1, 0.5)
for low and high dimensionality. In all cases, we performed a maximum number
of 50,000 function evaluations. We used N = 120 weight vectors, which implies
H = 119 and H = 14, for two and three dimensions, respectively.

For the scalability test, we employed DTLZ2 from four to nine objectives. All
parameter values remained the same except for Nc = 30, as suggested in [15].
The maximum number of function evaluations remained the same as before. The
experimental configurations (m,N(H)) are as follows: (4, 120(7)), (5, 126(5)),
(6, 126(4)), (7, 84(3)), (8, 120(3)), (9, 165(3)) and (10, 220(3)).

5.1 Discussion of Results

This section compares iMOACOR with three state-of-the-art MOEAs and a
MOACO that was designed for continuous MOPs. The comparison is performed
in terms of convergence and diversity of the solutions obtained. We perform 30
independent runs of each of the 5 algorithms on all the test instances adopted.
Tables 1 and 2 show the average HV, IGD+ and S values, as well as the standard
deviations (shown in parentheses) obtained by all the algorithms compared. The
two best values among the algorithms are emphasized in gray scale, where the
darker tone corresponds to the best value. A sharp symbol (#) is placed when
a result is statistically different from iMOACOR’s result based on a single-tail
Wilcoxon test (WT) using a significance level of 95 %.

Table 1 shows that NSGA-III yields the best HV results in three of four of
the ZDT test problems and that iMOACOR is the best in one of them. However,
iMOACOR obtained the second best HV value in the problems where NSGA-
III wins. Moreover, iMOACOR outperformed MOEA/D, SMS-EMOA (HypE)
2 We used the implementation available at:

http://web.ntnu.edu.tw/∼tcchiang/publications/nsga3cpp/nsga3cpp.htm.
3 The source code was provided by its author, Abel Garćıa Nájera.
4 For each problem, the reference set is constructed joining the results from all algo-

rithms and then applying the k-means clustering algorithm in order to reduce its
cardinality to k.

http://web.ntnu.edu.tw/~{}tcchiang/publications/nsga3cpp/nsga3cpp.htm
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and MOACOR in all the ZDT problems and the differences are statistically
significant. With respect to IGD+, iMOACOR obtained the second place in 50 %
of the problems and outperformed MOACOR and SMS-EMOA(HypE) in 75 %
of the problems (the differences were statistically significant).

Table 1. Comparison of iMOACOR with respect to SMS-EMOA, MOEA/D, NSGA-III
and MOACOR in the ZDT test problems with two objectives. The symbol # is placed
when the difference with respect to iMOACOR’s result is statistically significant, based
on Wilcoxon’s test. The two best values are shown in gray scale, where the darker
tone corresponds to the best value. NC stands for a not computable result due to an
algorithm’s error.

Problem Algorithm HV IGD+ S

ZDT1

iMOACO
R

120.650592(0.002695) 0.006982(0.000262) 0.022642(0.000638)
MOACO

R
120.647992(0.001834)# 0.004849(0.000213) 0.005066(0.000462)

SMS-EMOA 115.056548(0.204942)# 0.110323(0.006696)# 0.002271(0.002064)
MOEA/D 120.556524(0.029634)# 0.002429(0.000194) 0.004075(0.000219)
NSGA-III 120.662065(0.000361) 0.001986(0.000024) 0.008623(0.000175)

ZDT2

iMOACO
R

120.319499(0.002065) 0.004579(0.000105) 0.022031(0.000424)
MOACO

R
NC NC NC

SMS-EMOA 111.557974(0.298732)# 0.155868(0.009460)# 0.002802(0.000375)
MOEA/D 120.303458(0.009442)# 0.002511(0.000320) 0.003736(0.000130)
NSGA-III 120.328489(0.000541) 0.001919(0.000008) 0.003460(0.000067)

ZDT3

iMOACO
R

128.746630(0.006519) 0.002151(0.000116) 0.017216(0.000907)
MOACO

R
128.718532(0.008340)# 0.003121(0.000213)# 0.005641(0.000496)

SMS-EMOA 125.892282(1.903359)# 0.032616(0.025295)# 0.028416(0.019151)#
MOEA/D 128.214272(0.946685)# 0.005800(0.006714)# 0.014828(0.001110)
NSGA-III 128.774980(0.000181) 0.001413(0.000068) 0.011243(0.000922)

ZDT6

iMOACO
R

117.381093(0.023285) 0.013011(0.001239) 0.023835(0.001014)
MOACO

R
NC NC NC

SMS-EMOA 113.246727(1.377160)# 0.217514(0.070758)# 0.008383(0.016202)
MOEA/D 116.763019(0.071014)# 0.050276(0.005115)# 0.003248(0.000604)
NSGA-III 116.418956(0.002804)# 0.003126(0.000080) 0.001221(0.000018)

Table 2 shows the HV, IGD+ and S values in the DTLZ test problems with
3 objectives. MOACOR obtained the best HV results in 40 % of the problems.
iMOACOR and NSGA-III performed similarly in HV with only one best value
and in 40 % of the problems it ranked second. Moreover, iMOACOR outper-
formed NSGA-III, MOEA/D and MOACOR in 40 % of the problems and outper-
formed SMS-EMOA(HypE) in a statistically significant way, in all problems. On
the other hand, both MOACOR and MOEA/D outperformed, in terms of IGD+,
the rest of the algorithms in 40 % of the problems in a statistically significant
way. Finally, it is worth emphasizing that iMOACOR obtained the best results
in DTLZ6 for every indicator and outperformed the other MOEAs in a statisti-
cally significant way. However, iMOACOR could not outperform MOACOR in a
statistically significant way.

It is worth indicating that, although SMS-EMOA(HypE) obtained the best
S values and iMOACOR the worst, we observed that the solutions obtained by
SMS-EMOA(HypE) are not well spread and they tend to concentrate on a small
region of objective function space. This is not reflected in the S values, because
the solutions are all generated in the same small region. In contrast, iMOACOR

provides a better coverage along the Pareto front, but presents a non-uniform
distribution in some cases, which is the explanation for its poor values.
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Table 2. Comparison of iMOACOR with respect to SMS-EMOA, MOEA/D, NSGA-III
and MOACOR in the DTLZ test suite with three objectives. The symbol # is placed
when the difference with respect to iMOACOR’s result is statistically significant, based
on Wilcoxon’s test. The two best values are shown in gray scale, where a darker tone
corresponds to the best value.

Problem Algorithm HV IGD+ S

DTLZ2

iMOACO
R

7.420386(0.000218) 0.020631(0.000148) 0.051706(0.000954)
MOACO

R
7.396275(0.005367)# 0.027855(0.001570)# 0.049300(0.004648)

SMS-EMOA 4.096654(0.078739)# 0.327737(0.006341)# 0.015061(0.004850)
MOEA/D 7.421695(0.000110) 0.019927(0.000004) 0.048915(0.000023)
NSGA-III 7.421721(0.000480) 0.020182(0.000256) 0.048387(0.000899)

DTLZ4

iMOACO
R

7.419849(0.000499) 0.031649(0.000353) 0.059475(0.003305)
MOACO

R
7.397087(0.004471) 0.037138(0.001348) 0.047430(0.004064)

SMS-EMOA 4.540085(0.510681)# 0.244637(0.072285)# 0.020506(0.023548)
MOEA/D 7.421583(0.000095) 0.029946(0.000007) 0.048923(0.000022)
NSGA-III 7.219506(0.405047) 0.066563(0.073020) 0.040964(0.015405)

DTLZ5

iMOACO
R

59.838732(0.006907) 0.002099(0.000280) 0.004906(0.003023)
MOACO

R
59.868424(0.001271)# 0.001168(0.000229)# 0.007250(0.000658)#

SMS-EMOA 50.323056(0.664565)# 0.001539(0.000362) 0.006650(0.003698)
MOEA/D 59.734700(0.001057)# 0.004707(0.000008)# 0.220014(0.005494)#
NSGA-III 59.831769(0.008471)# 0.001708(0.000447) 0.011428(0.001740)#

DTLZ6

iMOACO
R

1318.921707(0.019110) 0.006341(0.000682) 0.007476(0.003907)
MOACO

R
1315.603646(18.281311) 0.067062(0.338421) 0.028337(0.103803)

SMS-EMOA 1179.647918(18.251463)# 0.260869(0.044008)# 0.012619(0.001664)#
MOEA/D 1317.080995(0.438458)# 0.117785(0.030957)# 0.241082(0.002048)#
NSGA-III 1317.572393(0.378312)# 0.081541(0.023995)# 0.060883(0.039139)#

DTLZ7

iMOACO
R

1.481848(0.128161) 0.208907(0.064111) 0.110911(0.042411)
MOACO

R
1.955759(0.012511) 0.033899(0.002521) 0.066972(0.006164)

SMS-EMOA 1.481553(0.151019) 0.192244(0.050467) 0.046280(0.016713)
MOEA/D 1.827781(0.211815) 0.096353(0.150199) 0.166670(0.034483)#
NSGA-III 1.937277(0.011787) 0.037603(0.001834) 0.058137(0.004748)

Table 3. Comparison of iMOACOR with respect to three MOEAs in DTLZ2 with
four to nine objectives. The symbol # is placed when the difference with respect to
iMOACOR’s result is statistically significant, based on Wilcoxon’s test. The two best
values are shown in gray scale, where the darker tone corresponds to the best value.

Problem Algorithm HV IGD+

DTLZ2 4D

iMOACO
R

15.560885(0.000752) 0.050234(0.004783)
SMS-EMOA 10.249730(0.677489)# 0.291283(0.009656)#
MOEA/D 15.567068(0.000241) 0.037633(0.000019)
NSGA-III 15.566456(0.000668) 0.038679(0.000926)

DTLZ2 5D

iMOACO
R

31.650513(0.001900) 0.079425(0.004944)
SMS-EMOA 21.358261(0.676573)# 0.363571(0.006165)#
MOEA/D 31.667626(0.000250) 0.057564(0.000070)
NSGA-III 31.665300(0.000589) 0.059863(0.000627)

DTLZ2 6D

iMOACO
R

63.714682(0.002503) 0.091338(0.008945)
SMS-EMOA 47.221717(1.575810)# 0.395902(0.009846)#
MOEA/D 63.738154(0.000667) 0.048382(0.000030)
NSGA-III 63.737999(0.001056) 0.051075(0.000791)

DTLZ2 7D

iMOACO
R

127.695926(0.008977) 0.147653(0.008183)
SMS-EMOA 82.448331(3.777842)# 0.501245(0.006396)#
MOEA/D 127.747411(0.001454) 0.088905(0.000024)
NSGA-III 127.749053(0.001358) 0.092568(0.001253)

DTLZ2 8D

iMOACO
R

255.731810(0.060472) 0.166126(0.010043)
SMS-EMOA 184.360111(8.860506)# 0.530043(0.005534)#
MOEA/D 255.819317(0.001518) 0.093164(0.000159)
NSGA-III 255.815238(0.001521) 0.099347(0.001020)

DTLZ2 9D

iMOACO
R

511.711415(0.161806) 0.177908(0.009877)
SMS-EMOA 414.480972(10.937714)# 0.548778(0.006587)#
MOEA/D 511.866089(0.003034) 0.087360(0.000135)
NSGA-III 511.870831(0.001247) 0.092867(0.001409)

Regarding our scalability test, in Table 3 we provide the HV and IGD+ values
in DTLZ2 having from four to nine objectives. Clearly, MOEA/D and NSGA-III
present better HV and IGD+ results than iMOACOR. However, the maximum
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observed difference, in relation to HV, is of order 10−1, which is not very signif-
icant. iMOACOR outperforms SMS-EMOA (HypE) in 100 % of the cases.

6 Conclusions and Future Work

In this paper, we have proposed a new ACO-based multi-objective optimizer
for continuous search spaces, called iMOACOR. Our approach uses ACOR as
its search engine and employs a ranking algorithm based on the R2 indicator
in order to define which solutions are better than the others. This allows our
approach to tackle many-objective problems.

Our experimental results indicate that iMOACOR had a competitive perfor-
mance with respect to NSGA-III and MOEA/D and that is able to outperform
SMS-EMOA (HypE) and MOACOR in most of the test problems adopted. There-
fore, we consider that iMOACOR is a good starting point for having a highly
competitive multi-objective optimizer based on ACO. However, one aspect that
must be emphasized is the difficulty that iMOACOR has on multi-frontal prob-
lems such as ZDT4, DTLZ1 and DTLZ3. Our proposed approach has difficulties
to maintain diversity in these problems and more work in this direction is still
required.

It is worth noticing that the solutions produced by iMOACOR are similar to
those generated by NSGA-III and MOEA/D in terms of distribution and it also
achieves a competitive performance in terms of convergence. Furthermore, our
proposed approach requires much less computational effort than SMS-EMOA.

As part of our future work, we are interested in studying different diver-
sity mechanisms that allow us to maintain the biological metaphor of the ACO
algorithm. Additionally, the pheromone structure still has a lot of room for
improvement. Finally, we also aim to improve the performance of our approach
in many-objective problems.
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Abstract. Variable interaction is an important aspect of a problem,
which reflects its structure, and has implications on the design of efficient
optimization algorithms. Although variable interaction has been widely
studied in the global optimization community, it has rarely been explored
in the multi-objective optimization literature. In this paper, we empiri-
cally and analytically study the variable interaction structures of some
popular multi-objective benchmark problems. Our study uncovers non-
trivial variable interaction structures for the ZDT and DTLZ benchmark
problems which were thought to be either separable or non-separable.

1 Introduction

Variable interaction is a major source of difficulty in numerical optimization,
which hinders the performance of optimizers, especially on functions with com-
plex variable interaction structures [7]. Variable interaction can be loosely
defined as the extend to which the optimization of a variable is affected by
the values taken by other variables. Complete lack of interaction between the
decision variables is the simplest form of interaction structure in which case
the variables can be optimized independently irrespective of the values taken
by other variables. The other extreme is when each variable interacts with
every other variable. However, most real-world problems fall in between these
two extremes [8]. Such problems, which are often called partially separable,
have a modular structure and contain several clusters of interacting variables.
It is clear that if the variable interaction structure is known, the problem
can be decomposed into a set of simpler problems which are easier to opti-
mize. Decomposition-based optimization algorithms have been widely studied
in the field of large-scale global optimization to alleviate the curse of dimen-
sionality. Although there are numerous studies on both detecting and exploit-
ing partial separability in global optimization [5,9], very limited studies have
been dedicated to the analysis of variable interaction in the context of multi-
objective optimization. It is worth noting that the multi-objective NK-landscape
problems [1] consider variable interaction, but they are binary encoded and did
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not account for a modular design with respect to variable interaction. In this
paper, by using the recently developed differential grouping method [5] and
mathematical analysis, we empirically and theoretically analyze the variable
interaction structures of two popular benchmark suites, ZDT [10] and DTLZ [3],
from the evolutionary multi-objective optimization (EMO) literature. Contrary
to the conventional wisdom [4], our analysis shows that most of the ZDT and
DTLZ test problems exhibit nontrivial interaction structures which change with
the number of objectives. A thorough understanding of variable interaction in the
existing benchmarks can have implications on analyzing the behavior of existing
algorithms, the design of new algorithms, and the design of future benchmark
suites. The aim of this paper is to take a small step towards bridging this gap.

2 Preliminaries

The multi-objective optimization problem (MOP) considered in this paper is as:

minimize F(x) = (f1(x), · · · , fm(x))T

subject to x ∈ Ω
(1)

where Ω =
∏n

i=1[ai, bi] ⊆ IRn is the feasible region of the decision (variable)
space, and x = (x1, . . . ,xn)T ∈ Ω is a candidate solution. F : Ω → IRm consti-
tutes m objective functions, and IRm is the objective space.

Definition 1. A function is partially additively separable if it takes the following
general form [7]:

f(x) =
k∑

i=1

fi(xi), k > 1, (2)

where xi are mutually exclusive decision variables of fi, and k is the number of
independent subcomponents.

This property makes it easy to optimize f(x), because each subcomponent xi

can be optimized independently.

argmin
(x1,··· ,xk)

f(x) =
[
argmin

x1

f(x), · · · , argmin
xk

f(x)
]

(3)

Definition 2. Given a continuously differentiable function f(x), for any pair
of variables xi and xj, if ∂2f

∂xi
∂xj

�= 0, then xi and xj are said to interact with
each other; otherwise, they are said to be independent from each other.

The differential grouping method for detecting the variable interaction struc-
ture is derived from the following theorem [5].

Theorem 1. For an additively separable function f(x), ∀a, b1 �= b2, δ ∈ IR, δ �=
0, if the following condition holds:

Δδ,xp
[f ](x)|xp=a,xq=b1 �= Δδ,xp

[f ](x)|xp=a,xq=b2 (4)

then xp and xq are non-separable where
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Table 1. Mathematical definitions of ZDT and DTLZ benchmark suites

Name Definition Domain

ZDT1 f1 = x1 [0, 1]

g = 1 + 9 ·∑n
i=2 xi/(n − 1)

h = 1 −√f1/g

ZDT2 as ZDT1, except h = 1 − (f1/g)2 [0, 1]

ZDT3 as ZDT1, except
h = 1 −√f1/g − (f1/g) sin(10πf1)

[0, 1]

ZDT4 as ZDT1, except
g = 1+10 · (n−1)+

∑n
i=2(x

2
i −10 cos(4πxi))

x1 ∈ [0, 1] xi ∈ [−5, 5]

ZDT6 f1 = 1 − exp(−4x1) sin6(6πy1) [0, 1]

g = 1 + 9 · (
∑n

i=2 xi/(n − 1))0.25

h = 1 − (f1/g)2

DTLZ1 f1 = (1 + g)0.5
∏m−1

i=1 xi [0, 1]

fj=2:m−1 = (1 + g)0.5(
∏m−j

i=1 xi)(1 − xm−j+1)

fm = (1 + g)0.5(1 − x1)

g = 100[n − m + 1 +
∑n

i=m((xi − 0.5)2 −
cos(20π(xi − 0.5)))]

DTLZ2 f1 = (1 + g)0.5
∏m−1

i=1 cos(xiπ/2) [0, 1]

fj=2:m−1 = (1 +
g)0.5(

∏m−j
i=1 cos(xiπ/2))(sin(xm−j+1π/2))

fm = (1 + g) sin(x1π/2)

g =
∑n

i=m(xi − 0.5)2

DTLZ3 as DTLZ2, except g is replaced by the one
from DTLZ1

[0, 1]

DTLZ4 as DTLZ2, except xi is replaced by xα
i , where

i ∈ {1, · · · , m − 1}, α > 0
[0, 1]

DTLZ5 as DTLZ2, except xi is replaced by 1+2gxi
4(1+g)

,

where i ∈ {2, · · · , m − 1}
[0, 1]

DTLZ6 as DTLZ5, except the equation for g is
replaced by g =

∑n
i=m x0.1

i

[0, 1]

DTLZ7 fj=1:m−1 = xm [0, 1]

fm = (1 + g)(m −∑m−1
i=1 [ fi

1+g
(1 + sin(3πfi))])

g = 1 + 9
∑n

i=m xi/(n − m + 1)

Δδ,xp
[f ](x) = f(· · · ,xp + δ, · · · ) − f(· · · ,xp, · · · ) (5)

refers to the forward difference of f with respect to variable xp with interval δ.

Before the analysis, we describe the test problems used in this paper. ZDT
benchmark suite [10] has been extensively used to benchmark numerous EMO
algorithms for more than a decade and has the following general structure [2]:
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(b) variable interaction graph

Fig. 1. Variable interaction structures of the f2 function of ZDT test suite.

minimize F(x) = (f1(xI), f2(xII))
subject to f2(xII) = g(xII) · h(f1(xI), g(xII)),

(6)

where x = (xI ,xII) is partitioned into two non-overlapping sets. In particular,
xI = x1 and xII = (x2, · · · ,xn)T for all ZDT test problems. DTLZ [3] is another
popular benchmark suite in the EMO literature. In essence, the DTLZ is devel-
oped based on the same principle as that of the ZDT. However, unlike ZDT,
DTLZ test problems are scalable to any number of objectives. To help with the
clarity of the analysis in the following section, the mathematical definitions of
ZDT and DTLZ test problems are summarized in Table 1.

3 Variable Interaction Analysis via Differential Grouping

Differential grouping [5] is a function decomposition algorithm that can identify
the underlying variable interaction structure of black-box continuous functions
with a high accuracy. In this study, we employ its modified version (as shown in
Algorithm 1) to analyze the ZDT and DTLZ benchmark suites. Due to the exis-
tence of multiple objective functions1, Algorithm 1 applies differential grouping
to each objective function independently, which results in m interaction structure
matrices.

3.1 Variable Interaction Analysis on ZDT Benchmark Suite

Table 1 clearly shows that f1 of all ZDT test problems is a fully separable function
because it is only a function of x1. Thus, we only need to analyze the variable
interaction for the second objective function f2. To keep the interaction matrices
and the graphs within a manageable size, we set the number of variables to n = 6
which is large enough to reveal the patterns and regularities of the benchmark
functions. The experimental results show that, by running Algorithm1, f2 of
all ZDT test problems share the same variable interaction matrix, as shown
1 The objective functions of ZDT and DTLZ test suites are genuinely independent.
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Algorithm 1. Interaction Analysis via Differential Grouping
Output: Interaction Structure Matrices I

(1)
n×n, · · · , I

(m)
n×n

for i ← 1 to m do1

Initialize all entries of I
(i)
n×n to be 0;2

for j ← 1 to n do3
for k ← 1 to n ∧ k �= j do4

p1 ← rand(1,n), p2 ← p1 /*rand: random number generator */5
repeat6

ξ1 ← rand, ξ2 ← rand;7
until |ξ1 − p1

j | > ε1 ∧ |ξ2 − p1
k| > ε1;8

p2
j ← ξ1;9

Δ1 ← fi(p
1) − fi(p

2);10

p1
k ← ξ2, p2

k ← ξ2;11

Δ2 ← fi(p
1) − fi(p

2);12
if |Δ1 − Δ2| > ε2 then13

I
(i)
jk ← 1;14

return I
(1)
n×n, · · · , I

(m)
n×n15

in Fig. 1(a). The graphical representation of this interaction matrix is a fully
connected graph which is shown in Fig. 1(b). This clearly shows that all the
decision variables of f2 interact with each other, making f2 a fully non-separable
function. In order to validate the correctness of this non-separability property,
we use Definition 2 to prove Proposition 1.

Proposition 1. f2 of the ZDT benchmark suite is fully non-separable.

Proof. Let us start from ZDT1. By taking the derivative of f2 with respect to
x1, we have:

∂f2
∂x1

=
∂(g − (1 − √

x1/g))
∂x1

=
∂(g − √

x1g)
∂x1

. (7)

Since g is a function of x2 to xn, we can treat it as a constant in Eq. 7:

∂f2
∂x1

= −0.5
√

g/x1, (8)

where x1 �= 0. According to Table 1, g is a summation of terms involving x2 to
xn. Therefore:

∂g

∂xi
= 9/(n − 1), (9)

where i ∈ {2, · · · ,n}. Based on Eqs. 8 and 9, we have:

∂2f2
∂x1xi

= − 1
4
√

x1g
· ∂g

∂xi
= − 9

4(n − 1)
√

x1g
, (10)

where i ∈ {2, · · · ,n}. Since g > 0, we have ∂2f2
∂x1xi

�= 0. Based on Definition 2, we
can see that x1 interacts with all other variables, i.e., x2 to xn.
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By taking the derivative of f2 with respect to xi for i ∈ {2, · · · ,n}, we have:

∂f2
∂xi

=
∂g

∂xi
− ∂

√
x1/g

∂xi
=

9
n − 1

(1 −
√

x1

2 4
√

g
). (11)

By taking the derivative of Eq. 11 with respect to x1, we have:

∂2f2
∂xi∂x1

= − 9
4(n − 1) 4

√
g
√

x1
, (12)

where x1 �= 0. Since g > 0, we have ∂2f2
∂xi∂x1

�= 0. Furthermore, by taking the
derivative of Eq. 11 with respect to xj , j ∈ {2, · · · ,n} and i �= j, we have:

∂2f2
∂xixj

=
81

√
x1

8(n − 1)2g−5/4
, (13)

where x1 �= 0. Since g > 0, we have ∂2f2
∂xixj

�= 0. In summary, we can see that all
variables interact with each other, which means that the f2 function of ZDT1 is
fully non-separable. This agrees with the output of differential grouping. Since
the other ZDT test problems share a similar form of h and g functions as that
of ZDT1, we can use the above procedure to prove their non-separability. �	

3.2 Variable Interaction Analysis on DTLZ Benchmark Suite

According to Table 1, the mathematical forms of DTLZ functions can be classi-
fied into three groups: DTLZ1 to DTLZ4, DTLZ5 to DTLZ6, and DTLZ7. Thus,
we investigate the variable interaction structure of each group separately. With-
out loss of generality, we set m = 4 and n = 6 in the experiments. By running
Algorithm 1 on DTLZ1 to DTLZ4, we can empirically verify that they share the
same variable interaction matrices as shown in Fig. 2. Moreover, Fig. 3 is the
graphical representation of the matrices in Fig. 2. To validate the correctness of
this result, we again use Definition 2 to prove Proposition 2.
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Fig. 2. Variable interaction matrices of DTLZ1 to DTLZ4.
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Fig. 3. Variable interaction graphs of DTLZ1 to DTLZ4.

Proposition 2. For DTLZ1 to DTLZ4, ∀fi, i ∈ {1, · · · ,m}, we divide the cor-
responding decision variables into two non-overlapping sets: xI = (x1, · · · ,x�)T ,
� = m − 1 for i ∈ {1, 2} while � = m − i + 1 for i ∈ {3, · · · ,m}; and
xII = (xm, · · · ,xn)T . All members of xI not only interact with each other, but
also interact with those of xII ; all members of xII are independent from each
other.

Proof. From Table 1 and Eq. 6, we re-write the objective functions of DTLZ1 to
DTLZ4 in the following abstract form:

fi(x) = h(xI) · g(xII), (14)

where i ∈ {1, · · · ,m}. xI = (x1, · · · ,x�)T , � = m − 1 for i ∈ {1, 2} while
� = m−i+1 for i ∈ {3, · · · ,m}; and xII = (xm, · · · ,xn)T . Notice that h function
is a multiplication term of all individual variables of xI , while g function is some
independent summations of terms involving all individual variables of xII .

Let us start from DTLZ1. By taking the derivative of fi, where i ∈
{1, · · · ,m}, with respect to each member of xI , i.e., xj , where j ∈ {1, · · · , �},
we have:

∂fi

∂xj
= 0.5(1 + g) ·

�∏

p=1,p�=j

xp. (15)

Now by differentiating Eq. 15 with respect to xk, where k ∈ {1, · · · ,n} and k �= j,
we have:

∂2fi

∂xjxk
=

{
0.5(1 + g) · ∏m−1

p=1,p�=i,j xp, k ∈ {1, · · · ,m − 1}
0.5 ∂g

∂xk
· ∏m−1

p=1,p�=i xp, k ∈ {m, · · · ,n}.
(16)

In particular, when k ∈ {m, · · · ,n}, we have:

∂g

∂xk
= 200(xk − 0.5) + 2000π sin(20π(xk − 0.5)). (17)

Note that both g and ∂g
∂xk

are not 0, when xk �= 0.5, k ∈ {m, · · · ,n}. In this

case, we have ∂2fi

∂xjxk
�= 0, where i ∈ {1, · · · ,m}, j ∈ {1, · · · , �}, k ∈ {1, · · · ,n}

and k �= j. According to Definition 2, we can see that all members of xI not only
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interact with each other, but also interact with those of xII . Note that since fi,
where i ∈ {3, · · · ,m}, is without of xp, where p ∈ {m − i + 2, · · · ,m − 1}, we
can treat xp be independent/non-separable from the other variables for fi.

In addition, by taking the derivative of fi, where i ∈ {1, · · · ,m}, with respect
to each member of xII , i.e., xj , where j ∈ {m, · · · ,n}, we have:

∂fi

∂xj
= 0.5

�∏

p=1

xp · ∂g

∂xj
. (18)

According to Eq. 17, we can see that ∂g
∂xj

is a function of xj . Thus, ∂2f1
∂xjxk

= 0,
where k ∈ {m, · · · ,n} and k �= j. According to Definition 2, we can see that all
members of xII are independent/non-separable from each other.

Since DTLZ2 to DTLZ4 have a similar form as DTLZ1, but are with some
different exponentials, we can use the above proof procedure to derive the same
variable interaction structure as DTLZ1. �	

Then, by running Algorithm1 on DTLZ5 and DTLZ6, we obtain the variable
interaction matrices and graphs, as shown in Figs. 4 and 5, respectively. The
correctness of this result is validated by the proof of Proposition 3.
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Fig. 4. Variable interaction matrices of DTLZ5 and DTLZ6.
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Fig. 5. Variable interaction graphs of DTLZ5 and DTLZ6.
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Proposition 3. For DTLZ5 and DTLZ6, ∀fi, i ∈ {1, · · · ,m}, we divide the cor-
responding decision variables into two non-overlapping sets: xI = (x1, · · · ,x�)T ,
� = m − 1 for i ∈ {1, 2} while � = m − i + 1 for i ∈ {3, · · · ,m}; and
xII = (xm, · · · ,xn)T . For fi, where i ∈ {1, · · · ,m − 1}, all members of xI

and xII interact with each other; for fm, we have the same interaction structure
as Proposition 2.

Proof. From Table 1 and Eq. 6, we re-write the objective functions of DTLZ5
and DTLZ6 in the following abstract form:

fi(x) = h(xI , g(xII)) · g(xII), (19)

where i ∈ {1, · · · ,m − 1}. xI = (x1, · · · ,x�)T , � = m − 1 for i ∈ {1, 2} while
� = m − i + 1 for i ∈ {3, · · · ,m}; and xII = (xm, · · · ,xn)T . Comparing Eq. 19
with Eq. 14, the only difference lies on the h function which consists of both xI

and xII . Note that the objective functions of DTLZ5 and DTLZ6 have a similar
form as that of DTLZ2, we can use the proof procedure of Proposition 2 to prove
that all members of xI not only interact with each other, but also interact with
those of xII .

In addition, due to the additional term of xI within the h function, we can
derive that ∂fi

∂xj
, where j ∈ {m, · · · ,n}, should be a function of both xj and

members of xI . Thus, ∂2fi

∂xjxk
�= 0, where k ∈ {m, · · · ,n} and k �= j. This means

that all members of xII also interact with each other.
As for fm, it still obeys the form of Eq. 14. According to the proof of

Proposition 2, we can easily derive the same interaction structure as described
in Proposition 2. �	

At last, we run Algorithm 1 on DTLZ7 and find that all its objective functions
are fully separable. This means that all entries of its interaction matrices should
be 0, and the corresponding interaction graphs consist of n independent nodes.
The proof of Proposition 4 validates the correctness of this result.

Proposition 4. All objective functions of DTLZ7 are fully separable.

Proof. From Table 1, we can see that fi of DTLZ7 is a function of xi for
i ∈ {1, · · · ,m − 1}. Thus, it is obvious that these objective functions are fully
separable. As for fm, we can re-write it as follows:

fm = (1 + g)m −
m−1∑

i=1

(fi + fi sin(3πfi)) (20)

In this case, fm is the function of some independent summation terms involving
x1 to xn. Therefore, it is also a separable function. �	

4 Conclusions and Future Directions

We have seen that some of the ZDT and DTLZ test problems have com-
plex variable interaction structures that change with the number of objectives.
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More specifically, some objective functions are fully separable (e.g., f1 of ZDT
problems and all objectives of DTLZ7), some are fully non-separable (e.g., f2
of ZDT problems and f1 to fm−1 of DTLZ5 and DTLZ6), while the others are
in between these two extreme cases, i.e., partially non-separable. This result is
in contrast with the existing literature that coarsely classified the functions as
separable or non-separable [4].

An interesting observation about the DTLZ functions is the existence of
overlapping components within the objective functions. For example, in Fig. 3, at
a first glance, the first two objective functions of DTLZ1 to DTLZ4 may be seen
as a single non-separable component. However, upon a closer inspection, we can
see that the variables form three components containing a set of shared decision
variables. Concretely, {x1,x2,x3,x4}, {x1,x2,x3,x5} and {x1,x2,x3,x6} can be
seen as three components with {x1,x2,x3} being the shared variables. This is
analogous to functions with overlapping components in the large-scale global
optimization literature [6]. Although differential grouping can discover the full
variable interaction structure matrix, the optimal decomposition of functions
with overlapping components is still an open question [6]. Based on the analysis
in Sect. 3, it appears that objective functions with overlapping components are
commonplace in multi-objective optimization. The analysis that we presented
in this paper facilitates the study of this phenomenon with respect to both
algorithm and benchmark designs.

Overall, variable interaction can affect various aspects of the EMO commu-
nity, ranging from operator design to the choice of aggregation functions within
decomposition-based EMO algorithms. We believe that variable interaction is
an under-explored area in this literature, which might be due to extreme focus
of the current research on small to medium sized problems. It is clear that
when the dimensionality of a problem grows beyond a certain level, using a
divide-and-conquer strategy becomes inevitable in which case considering vari-
able interaction becomes a necessity. In the future, we plan to analyze a wider
range of common benchmark suites within the EMO community. Additionally,
similar to the large-scale global optimization [6], we plan to develop benchmark
problems with challenging yet controllable variable interaction structures, which
can better resemble the modular nature of real-world optimization scenarios.
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Abstract. We consider the problem of identifying the trade-off between
tolerance level and worst case performance, for a problem where the
decision variables may be disturbed within a set tolerance level. This
is a special case of a bi-level optimization problem. In general, bi-level
optimization problems are computationally very expensive, because a
lower level optimizer is called to evaluate each solution on the upper
level. In this paper, we propose and compare several strategies to reduce
the number of fitness evaluations without substantially compromising
the final solution quality.

1 Introduction

A typical problem in engineering is that manufacturing is not able to produce
exactly to specification, but instead will introduce some deviations from the
design variables. An engineer has to take this into account by allowing for man-
ufacturing tolerances. In this paper, we use an evolutionary multi-objective
(EMO) algorithm to determine the trade-off between tolerance level δ and
worst case performance fwc(x) = minx′∈[x−δ,x+δ] f(x′). This problem has first
been addressed in [4], where an envelope-based (where the lower level is multi-
objective) and a point-based algorithm (lower level is single-objective) were
proposed. The point-based algorithm is a special case of a bi-level optimiza-
tion algorithm. In general, a bi-level optimization problem can be formulated as
follows.

min F (xu, xl) (1)
s.t. xl ∈ argmin{f(xu, xl) : gi(xu, xl) ≤ 0, j = 1, ..., J} (2)

Gk(xu, xl) ≤ 0, k = 1, ...K (3)
xu ∈ XU , xl ∈ XL (4)

where xu and xl are the upper and lower level decision variables, F and f are
the upper and lower level fitness function, and G and g are the upper and lower
level constraints, respectively.

c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 410–420, 2016.
DOI: 10.1007/978-3-319-45823-6 38
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The problem we want to solve can be described as

max f(x′), δ (5)
s.t. x′ = argmin{f(x′), x′ ∈ [x − δ, x + δ]}. (6)

This is a special case of the above bi-level optimization problem with xu =
{x, δ}, xl = x′ and g1(x, x′, δ) = x′ −x+ δ, g2(x, x′, δ) = x−x′ − δ. In particular,
on the upper level we have a multi-objective problem with maximization of f(x′)
and δ, and decision variables are x and δ, and for each upper level solution (x, δ)
the worst case is identified by solving a lower level single objective problem with
minimization of f(x′) and decision variable x′.

Because in bi-level optimization a lower level optimizer has to be run to
evaluate each solution on the upper level, the procedure is computationally very
expensive. In this paper, we re-visit the point-based algorithm and suggest and
compare various strategies to reduce the necessary number of fitness function
evaluations on the lower level.

The paper is structured as follows. First, we survey some related work in
Sect. 2. Section 3 describes the baseline algorithm and presents six different
strategies to reduce the necessary number of function evaluations. The test prob-
lems used are presented in Sect. 4, and the empirical results are discussed in
Sect. 5. The paper concludes with a summary and some ideas for future work.

2 Related Work

As has already been mentioned in the introduction, the problem of looking at
the trade-off between tolerance level and worst case performance has been intro-
duced in [4] and the baseline algorithm we use here is the point-based algorithm
from [4]. [7] considered a similar problem, looking at the trade-off between the
nominal fitness f(x) and the tolerance threshold that guarantees that the worst
case fitness is by no more than a fixed value Δ worse than the nominal fit-
ness. Since this is formulated as a three-level problem and computationally even
more expensive than our bi-level problem, an approach using surrogates is intro-
duced in [6]. Surrogate-assisted EAs have also been used in [8,9] for worst-case
optimization. Multi-objective worst-case optimization is considered in [3]. Many
papers that deal with uncertainty in the decision variables consider expected
fitness optimization rather than worst-case optimization. A survey on robust
design optimization can be found in [2].

There are a number of papers in evolutionary bi-level optimization. In par-
ticular [5] is also suggesting ways to improve the efficiency, including one of the
methods we are testing in this paper, namely maintaining the population of a
lower level EA so that it can be continued later. However, the special structure
of the worst-case optimization problem allows us to exploit more ways to use
upper level information to reduce the fitness evaluations on the lower level. In
[1], surrogate models are combined with Differential Evolution in order to solve
bi-level problems.
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3 Algorithm and New Strategies

3.1 Worst Case Bi-level Evolutionary Algorithm

Algorithms 1 and 2 show the pseudocode for the upper and lower level EA,
respectively. As can be seen, the upper level is a multi-objective NSGA-II type
EA, the lower level is a standard single objective EA. Every individual on the
upper level is evaluated by running a lower level EA. Line 10 of Algorithm1
show that every individual surviving to the next generation is re-evaluated, and
its fitness is updated if a new worst case is found. This is done to ensure that the
worst case of solutions surviving over several generations is reliable. Otherwise,
a solution for which the lower level was unable to find the true worst case might
look deceivingly good on the upper level EA and misguide the search. However,
re-evaluating each individual in every generation doubles the total number of
evaluations and thus the computational cost.

Algorithm 1. Pseudocode for upper level MOEA
1: Initialize parent population P (x, δ)
2: Call lowerEA to evaluate each individual in P
3: for j=1 to g do � g is number of generations
4: Non-dominate sort P
5: Generate offspring population O by evolutionary operators
6: Call lowerEA to evaluate each individual in O
7: Get the union population U = P ∪ O
8: Non-dominate sort U
9: Select individuals to form the next generation parent population P

10: Call lowerEA to re-evaluate each individual in the new next generation
population P

11: end for

3.2 Strategies to Save Fitness Evaluations

Strategy I: Exploit Upper Level Information for Selection and Stop-
ping Criteria at the Lower Level. In worst case optimization, the upper
and lower level both use the fitness function f , but for the upper level it is an
objective to maximize, whereas the lower level tries to minimize it. This can be
exploited to prematurely stop lower level optimization runs if it is apparent that
the corresponding upper level solution would not be interesting. The concept
is visualized in Fig. 1. Let us assume the lower level is trying to find the worst
case of solution E. Then, this solution’s worst case objective moves down (lower
fw) during lower level optimization. If it enters the current dominated region of
the upper level population (depicted by the red solutions A − D), then we know
solution E will be dominated on the upper level, and not contribute significantly
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Algorithm 2. Pseudocode for lower level EA
1: procedure lowerEA(x, δ)
2: Initialize parent population P ′ such that each individual is within [x−δ, x+δ]

� (x, δ) is upper level individual

3: Compute the fitness f(x′) of each individual in P ′

4: for j=1 to g’ do � g’ is number of generations
5: Generate offspring population O′ by evolutionary operators
6: Compute the fitness of each individual in O′

7: Get the union population U ′ = P ′ ∪ O′

8: Sort U ′ according to fitness
9: Select best individuals from U ′ to form the next generation parent popula-

tion P ′

10: end for
11: return best individual in P ′ � lowest f
12: end procedure

to the upper level search, so we can choose to abort the lower level run prema-
turely. Note that we only do this for a solution’s first lower level evaluation, not
for re-evaluation, because the purpose of re-evaluation is to make sure we really
found the worst case.

Strategy II: Use Neighbors to Update Worst Case Fitness. An impor-
tant but computationally expensive step in the bi-level EA is the re-evaluation of
all surviving individuals at the end of each upper level generation. In Strategy
II, we propose to replace the re-evaluation by exploiting neighbors to update
worst-case information instead. Consider the example depicted in Fig. 2 which

Fig. 1. Strategy I: if worst case found
by lower level enters current dominated
region of upper level, the lower level is
aborted.

Fig. 2. Strategy II: update of
worst cases using information from
neighbors. Left part shows a one-
dimensional example, right part shows
a two-dimensional example.
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shows two solutions A and B and their corresponding worst cases fw
A and fw

B

as found by the lower level EA, respectively. The worst case fw
B lies in the dis-

turbance region of solution A. So, if fw
B < fw

A , then we know that fw
A can not

be the true worst case of solution A, and we can replace fw
A by fw

B as a more
realistic estimate of A’s worst case. Because EAs evaluate many solutions in
promising regions of the search space, a solution’s worst case estimate should
quickly become accurate even without re-evaluation.

Strategy III: Skip Re-evaluation if It Does Not Improve Worst-Case
Estimate. If re-evaluating a solution did not identify a new worst case, we can
be more confident that the worst case we found previously is accurate. Strategy
III chooses to skip re-evaluation for this solution in the following generation.

Strategy IV: Lower Level Smart Initialization. The purpose of re-
evaluation is to make sure the lower level really correctly identified the worst
case. In the baseline algorithm, the lower level is re-started from scratch for re-
evaluation. Strategy IV suggests to keep the population at the end of a lower level
run in memory, and re-start the search from this population if the corresponding
upper level solution is to be re-evaluated. This has previously been proposed in
[5]. Note that this may risk getting stuck in a local optimum. Since it does not
make much sense to continue running the algorithm once it has converged, we
abort the lower level EA in case the improvement over the past 5 generations
was less than 0.001.

Strategy V: Make Lower Level Generations Adaptive to δ. For solutions
with smaller tolerance level, the lower level search space is relatively smaller.
Strategy V thus proposes to reduce the number of generations of the lower level
EA for smaller δ. Specifically, we chose to set

Generations = max
{

10,

⌈
maxGen × 2δ

δmax − δmin

⌉}

Strategy VI: Adjust Lower Level Population Size to δ. Instead of reduc-
ing the number of generations as in Strategy V, Strategy VI reduces the pop-
ulation size of the lower level EA for small δ. We chose a function that has a
minimum population size of 1 for δ = 0, and a maximum population size equal to
the usual population size for δ = δmax, which for the test functions considered
later results in popsize = �(popsizemax − 1)/δmax × δ + 1� in case of a single
decision variable, and popSize =

⌈
(popsizemax − 1)/(δmax)2 × δ2 + 1

⌉
for the

case of two dimensional problems.
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4 Test Problems

Test Function 1. This is a simple 1 dimensional test function taken from [4]
for which the optimal Pareto front is known. It is visualized in Fig. 3.

f1(xi) =
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⎪⎪⎪⎪⎨
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3
if 1 < xi ≤ 5

2

−5

3
xi +

23

3
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3
if 4 < xi ≤ 11

2

−2

3
xi − 20

3
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11

2
< xi ≤ 7

1.0 ≤ xi ≤ 7.0

Test Function 2. This function, visualized in Fig. 4 is taken from [7]. It has
more local optima which makes it more interesting, but we do not know the true
Pareto front for this function.

f2(x) = 2e−(x−2)2/0.32 + 2.2e−(x−3)2/0.18 + 2.4e−(x−4)2/0.5

+2.3e−(x−5.5)2/0.5 + 3.2e−(x−7)2/0.18 + 1.2e−(x−8)2/0.18

where 0 ≤ x ≤ 10.

Test Function 3. This is simply a 2D version of Test function 1, with f3(X) =∑
f1(xi). It is visualized in Fig. 5.
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Table 1. Parameter setting for TF1
and 2

UpperLevel LowerLevel

Popsize 100 40

Max generations 500 100

Crossover prob. 0.9 0.9

Mutation prob 0.5 1.0

Table 2. Parameter setting for TF3

UpperLevel LowerLevel

Popsize 100 40

Max generations 500 100

Crossover prob. 0.9 0.9

Mutation prob 0.5 1.0

5 Empirical Results

5.1 Parameter Settings

The parameter settings are displayed in Tables 1 and 2.
For performance evaluation we use the Inverse Generational Distance (IGD)

because, as explained in [4], it penalizes both, if solutions worse than the true
Pareto front have been found, and if solutions seemingly better than the true
Pareto front are found (which can happen because the lower level is not guar-
anteed to find the true worst case). For TF 2, the reference set is obtained by
running our algorithm several times with a very large population size and very
large number of generations. Note that we multiplied all IGD values by 100 to
avoid small numbers. All results reported are averages over 20 runs.

5.2 Test Results and Analysis

We will look at the effect of each of the above six methods individually on differ-
ent test functions, and then try combinations of different methods. In addition
to figures showing the reduction of IGD over fitness evaluations, we show tables
that report, for each method, the number of fitness evaluations needed (in per-
centage of the standard bi-level algorithm) and final IGD.

Table 3. Relative function evaluations and final IGD value when each of the six dif-
ferent strategies are used individually.

TF1 TF2 TF3

Strategy Evals IGD ± std.err Evals IGD ± std.err Evals IGD ± std.err

Standard 100.0 % 0.759 ± 0.012 100.0 % 2.827± 0.089 100.0 % 1.265 ± 0.016

I 55.01 % 0.755 ± 0.011 54.68 % 2.870± 0.093 56.43 % 1.265 ± 0.016

II 50.00 % 0.743 ± 0.014 50.00 % 3.001 ± 0.057 50.00 % 1.420 ± 0.021

III 74.96 % 0.745 ± 0.012 74.08 % 2.851 ± 0.080 72.30 % 1.431 ± 0.025

IV 62.27 % 0.779 ± 0.010 63.85 % 2.904 ± 0.063 52.57 % 1.477 ± 0.021

V 57.23 % 0.765 ± 0.011 91.01 % 2.918 ± 0.063 49.82 % 1.340 ± 0.085

VI 32.27 % 0.798 ± 0.009 50.87 % 3.179 ± 0.076 15.73 % 1.387 ± 0.023
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Table 4. Combining Strategy I with any of the other five strategies, relative function
evaluations and final IGD value.

TF1 TF2 TF3

Strategy Evals IGD±std.err Evals IGD±std.err Evals IGD±std.err

Standard 100.0% 0.759 ± 0.012 100.0% 2.827 ± 0.089 100.0% 1.265 ± 0.016

I+II 6.04% 0.726 ± 0.011 5.12% 3.054 ± 0.062 6.26% 1.511 ± 0.020

I+III 28.35% 0.733 ± 0.009 28.56% 2.927 ± 0.073 27.91% 1.400 ± 0.018

I+IV 9.76% 0.777 ± 0.008 9.70% 2.775 ± 0.072 7.43% 1.449 ± 0.018

I+V 39.94% 1.056 ± 0.017 64.41% 4.751 ± 0.121 32.46% 1.283 ± 0.017

I+VI 20.70% 0.783 ± 0.011 32.24% 2.933 ± 0.085 10.84% 1.471 ± 0.026

Individual Effects. The results of using each of the above 6 strategies indi-
vidually is displayed in Table 3 and Figs. 9, 10, 11, 12 and 13. They are rel-
atively consistent across test problems. Aborting lower level runs when they
result in upper level dominated solutions saves almost 50 % of the evaluations.
Replacing re-evaluation by neighborhood update (Strategy II) always saves
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exactly 50 % of the evaluations. Strategy III (skipping some re-evaluations) saves
only about 25 %. Smart initialization and early stopping in case of convergence
yields between 36 % and 48 %. The biggest differences between test problems
can be found in the techniques that adjust the number of generations or the
population size to the size of the lower level search space. In TF3 this seems to
yield the greatest savings, whereas savings in TF2 are relatively modest. Obvi-
ously this depends on how many Pareto optimal solutions with large δ exist in
the upper level, and for TF1 and 3 there are relatively few, resulting in large
savings. Reducing the population size seems to reduce the number of fitness
evaluations by more than reducing the number of generations, although this
certainly depends on the chosen parameter settings.

While the savings in terms of number of function evaluations are massive
(up to 85 %), most of the methods do not suffer substantially in terms of obtained
IGD. On TF1, all methods work quite well, although the last strategy (adapting
the lower level population size to δ) performs worst. Reducing the number of gen-
erations seems to work better than reducing the population size across all three
test functions. Strategy II (replacing re-evaluation by neighborhood update),
despite saving 50 % of function evaluations, works better than the baseline algo-
rithm on TF1. The reason is that in TF1, all the Pareto optimal solutions have
one of three x values, so there are many solutions with overlapping neighbor-
hoods which allows Strategy II to work particularly well. And because we can
update fitness based on neighborhood before selection, whereas re-evaluation is
done only after selection, it really can do better. Unfortunately, Strategy II is
significantly worse than the baseline algorithm on TF2 which has substantially
more peaks.

The convergence curves (Figs. 9, 10, 11, 12 and 13) confirm these observa-
tions. They also show that the acceleration in convergence by using the above
strategies is generally more substantial in TF1 than in TF2.

Combinations of Strategies. Several of the strategies can be combined.
Table 4 reports on results of combining the early abortion of unpromising runs
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(Strategy I) with each of the other five strategies. The obtained savings in the
number of fitness function evaluations is very remarkable and up to 95 % on TF2
for the case of combining Strategy I with Strategy II (abortion of lower level runs
for unpromising solutions and replacing re-evaluation by neighborhood update).
Note that the savings of Strategy I are independent of re-evaluation, as Strategy
I is only applied during an individual’s first evaluation, so combining Strategy
I (only applied to first evaluation) and Strategy II (to get rid of re-evaluation)
is complementary. Looking at the IGD of Strategy I+II, while the IGD is even
lower than the standard algorithm for TF1, it is substantially higher for TF2
and TF3. A good alternative seems to be the combination of Strategies I+IV, as
it also reduces fitness evaluations by more than 90 %, and works better on TF2
and TF3. Combination of Strategies I+V seems to work well on TF3, but poorly
on TF1 and TF2 (has a very high standard error on TF2, and convergence plot
in Fig. 12 indicates that it gets stuck in a local optimum).

6 Conclusion and Future Work.

This paper suggested and compared various strategies to reduce the necessary
number of fitness function evaluations in bi-level worst case optimization, in par-
ticular when looking at the trade-off between worst case and tolerance level. The
strategies obtained a reduction of fitness function evaluations of up to 95 %, with
only modest decrease in performance. This is an important step towards making
bi-level worst case optimization computationally feasible. In future research, we
will consider whether the proposed strategies can be extended to the envelope
based algorithm proposed in [4], and which of those strategies can be extended
to general bi-level optimization problems. Also, a better understanding of when
and why the different strategies work well would be helpful. Finally, it may be
a good idea to vary the usage of these strategies over the run and, e.g., switch
them off towards the end of the run.

References

1. Angelo, J.S., Krempser, E., Barbosa, H.J.: Differential evolution assisted by a surro-
gate model for bilevel programming problems. In: Congress on Evolutionary Com-
putation, pp. 1784–1791. IEEE (2014)

2. Beyer, H.-G., Sendhoff, B.: Robust optimization-a comprehensive survey. Comput.
Methods Appl. Mech. Eng. 196(33), 3190–3218 (2007)

3. Branke, J., Avigad, G., Moshaiov, A.: Multi-objective worst case optimization by
means of evolutionary algorithms. Evolutionary Computation (2013)

4. Branke, J., Lu, K.: Finding the trade-off between robustness and worst-case quality.
In: Genetic and Evolutionary Computation Conference, pp. 623–630. ACM (2015)

5. Deb, K., Sinha, A.: An efficient and accurate solution methodology for bilevel multi-
objective programming problems using hybrid evolutionary-local-search algorithm.
Evol. Comput. 18(3), 403–449 (2010)

6. Lim, D., Ong, Y.-S., Jin, Y., Sendhoff, B., Lee, B.S.: Inverse multi-objective robust
evolutionary design. Genet. Program. Evolvable Mach. 7(4), 383–404 (2007)



420 K. Lu et al.

7. Lim, D., Ong, Y.-S., Lee, B.-S.: Inverse multi-objective robust evolutionary design
optimization in the presence of uncertainty. In: Genetic and Evolutionary Compu-
tation Conference, pp. 55–62. ACM (2005)

8. Ong, Y.-S., Nair, P.B., Lum, K.: Max-min surrogate-assisted evolutionary algorithm
for robust design. IEEE Trans. Evol. Comput. 10(4), 392–404 (2006)

9. Zhou, A., Zhang, Q.: A surrogate-assisted evolutionary algorithm for minimax opti-
mization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–7. IEEE
(2010)



Multi-objective Selection of Algorithm
Portfolios: Experimental Validation

Daniel Horn1(B), Karin Schork1, and Tobias Wagner2

1 Computational Statistics, Technische Universität Dortmund, Vogelpothsweg 87,
44227 Dortmund, Germany

{daniel.horn,karin.schork}@tu-dortmund.de
2 Institute of Machining Technology (ISF), Technische Universität Dortmund,

Baroper Str. 303, 44227 Dortmund, Germany
wagner@isf.de

Abstract. The selection of algorithms to build portfolios represents a
multi-objective problem. From a possibly large pool of algorithm candi-
dates, a portfolio of limited size but good quality over a wide range of
problems is desired. Possible applications can be found in the context of
machine learning, where the accuracy and runtime of different learning
techniques must be weighed. Each algorithm is represented by its Pareto
front, which has been approximated in an a priori parameter tuning. Our
approach for multi-objective selection of algorithm portfolios (MOSAP)
is capable to trade-off the number of algorithm candidates and the respec-
tive quality of the portfolio. The quality of the portfolio is defined as the
distance to the joint Pareto front of all algorithm candidates. By means
of a decision tree, also the selection of the right algorithm is possible
based on the characteristics of the problem.

In this paper, we propose a validation framework to analyze the per-
formance of our MOSAP approach. This framework is based on a para-
metrized generator of the algorithm candidate’s Pareto front shapes. We
discuss how to sample a landscape of multiple Pareto fronts with prede-
fined intersections. The validation is performed by calculating discrete
approximations for different landscapes and assessing the effect of the
landscape parameters on the MOSAP approach.

Keywords: Multi-objective optimization · Algorithm selection ·
Performance assessment · Benchmarking

1 Motivation

In algorithm selection tasks, it is still common practice to tune and compare
competing algorithms or models with respect to a single performance measure.
For instance, the mean error rate in classification or the best obtained function
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value in optimization. The best algorithm can easily be selected based on the
performance value. Often, however, additional performance measures are worth
consideration. For instance, the budget of computation time or function evalua-
tions could be considered as a second criterion. Since the performance measures
are likely to be contradicting, both the tuning and the selection have to be
adjusted. During the parameter tuning, the respective Pareto front has to be
approximated for each algorithm. As a consequence, sets of solutions are com-
pared in the selection step. As there is likely no single best candidate, the joint
Pareto front is formed by a set of algorithms. In multi-objective selection of algo-
rithm portfolios (MOSAP), we aim at approximating this subset of algorithms
to allow selecting the best algorithm for a specific task a posteriori.

A possible application is the training of support vector machines (SVMs).
Since the training of a single kernelized SVM scales at least quadratically with
the number of observations, exact SVMs may be inapplicable for large datasets.
Many approximative solvers have been introduced to compensate for this draw-
back. We conducted an exhaustive benchmark comparing the accuracy and the
training time of some representative solvers in a multi-objective way [7].

To the best of our knowledge, there is no other work on the MOSAP topic.
After the conceptual ideas of our MOSAP approach have been proposed and
tested on the SVM application [6], we are now interested in benchmarking and
validating MOSAP methods. In particular, we want to evaluate the performance
of our own approach. To accomplish this, we propose a generator for constructing
artificial data samples of candidate algorithms with known global Pareto fronts.
Based on this generator, the performance of the resulting portfolios is evaluated
for different properties of the generated data sets.

2 Multi-objective Selection of Algorithm Portfolios

In general, the performance of a set of r algorithms A = {A1, . . . , Ar} with
respect to m objectives (y1, . . . , ym) ∈ Y m shall be evaluated. Each algorithm
Ai (i = 1, . . . , r) has its own set of parameters. We assume that a multi-objective
parameter tuning has been performed in advance for each algorithm Ai. The
resulting discrete approximation of the respective Pareto front is denoted as
PF (Ai). We focus on the common case of two objectives (y1, y2) ∈ Y 2.

Usually, there is stochasticity in the tuning results (e.g., random start designs
in the optimization [8]). We assume that each tuning has been replicated n > 1
times, resulting in n independent approximations of PFj(Ai) (j = 1, . . . , n) for
each algorithm. From these replications, we can compute the empirical attain-
ment function [4]. In this paper, we use the median front (50%-EAF) as repre-
sentative of the outcome of each algorithm.

Our MOSAP approach is divided into three independent steps. In the first
step, unnecessary candidate algorithms producing so-called interfering fronts
are detected. Interfering fronts are completely dominated by the fronts of the
other candidates and therefore do not contribute to the joint Pareto front. In
our approach, we remove algorithms that are completely dominated in η of
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the replications. In the second step, we build a subset of algorithms with a
reasonable trade-off between the size and the quality with regard to the joint
Pareto front. This selection is a bi-objective decision making problem, as we
aim to minimize the size of the subset and to maximize its quality. We define
the quality of a given subset as the negative gap between its representative
Pareto front and the joint Pareto front of all algorithms. The gap can be mea-
sured by any binary performance indicator, for example the hypervolume [12].
The decision making is implemented by optimizing the augmented Tschebyscheff
norm [9] with a predefined weight vector w. In the third step, we aim at defin-
ing a decision rule for selecting the candidate algorithm for a specific problem.
As we assume a bi-objective problem, we know that for non-dominated points
the value of the second objective will decrease while the value of the first one
increases. Hence, the solutions of the Pareto front can be indexed with regard to
the first objective y1. The domain of this objective is partitioned into intervals
[x1, x2], [x2, x3], . . . , [xt−1, xt]. Each interval is assigned to a specific algorithm
Ai. For approximating this mapping, we calculate the joint non-dominated 50%-
EAF of all remaining algorithms and learn a decision tree [1] with input para-
meter y1. To avoid that xk−1 and xk (k = 2, ..., t) are too close to each other,
the decision tree is pruned with complexity control parameter cp.

In this paper, we aim at selecting an almost comprehensive portfolio of
algorithms, therefore we parametrize our method as follows: η = 0.5, cp = 0.1
and w = (0.01, 0.99) (it is more desirable to have a small gap than a small
portfolio).

3 Test Case Generator

Fig. 1. Result of a biobjective parameter tuning (test
error versus training time) of different approximative
SVM solvers on the mnist dataset [7].

Our goal is the automatic
construction of artificial
test cases that resem-
ble the real data we
observed in the SVM
benchmark [7], but are
also able to take rather
different shapes. In Fig. 1
an example of real data is
displayed.

Our framework for
creating the test cases
consists of four steps. In
the first step, we propose
a flexible parametrized
class of convex Pareto
front shapes. By adjust-
ing the parameters we are able to generate different Pareto fronts with pre-
defined locations and shapes. In the second step, the sampling is extended to
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sets containing multiple Pareto fronts corresponding to r different algorithms. In
this set, we differentiate between two types of Pareto fronts: active fronts that
do have a contribution to the joint Pareto front and interfering fronts without
contribution. The active fronts are constructed under consideration of prede-
fined intersection points. In the third step, we describe how to generate discrete
approximations from the continuously defined fronts in order to simulate the
outcome of each algorithm. We propose four methods with different types of dis-
tributions and approximation error. In the fourth step, we discuss how to create
n noisy replications of these discrete approximations.

Class of Functions. We define a parametrized function family y = e−ax − bx
for a, b > 0 to construct convex functions which differ in the location of the knee
(controlledbyparameter b) and the curvature (controlledbya).We restrict thegen-
erator to convex functions based on our experiences with real-world data [6,7,10].
With this general formulation, we can only define Pareto fronts with a knee point
skewed to lower values of the first objective y1. For skewing the knee point towards
lower values of y2, the function is reflected on the angle bisector. To accomplish
this, we utilize the Lambert W-function [2], which is the inverse function of xex.
We assign this inverse function to negative values of b. A value of b = 0 results in a
knee in the center of the front. The parameter a defines the curvature of the Pareto
front, higher values of a result in a stronger severity of the knee. The effects of a and
b are shown in Fig. 2. We normalize our fronts by subtracting e−a − b and dividing
by 1 − e−a + b. After normalization, all functions of the function family intersect
with the extreme points (0, 1) and (1, 0).

For preparing the next step of building defined sets of Pareto fronts, the
parameters c and d are added to the function family. These parameters allow
the Pareto fronts to be moved horizontally (c) and vertically (d). In addition,
the parameter s is introduced for scaling the Pareto fronts.

The final class of functions is defined as

y =

⎧
⎨

⎩

1
s

(
e−a(x+c)−b(x+c)−e−a+b

1−e−a+b + d
)

if b ≥ 0
1
s

(
1

a|b| [|b|W (u) + a(x + c − 1)(e−a − |b|) − a(x + c)] + d
)

if b < 0

with W the Lambert W-function [2] and

u =
a

|b| exp
(

a

|b|
[
e−a − b + x(b − e−a + 1)

])
.

Sets of Pareto Fronts. For generating a set of Pareto fronts, we want to sample
N active and M interfering functions of the function family. The N active fronts
are arranged according to predefined cut points {t0 = 0, t1, . . . , tN−1, tN = 1}
of the joint Pareto front. Again, we want the joint Pareto front to lie in [0, 1]2

with extreme points (0, 1) and (1, 0).1 The M interfering fronts benchmark the
ability of the algorithm selection approach to sort out unnecessary algorithms.
1 If desired, an a posteriori scaling to arbitrary intervals is possible.
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Fig. 2. Influence of the parameters a and b on the function family. In the left plot b is
set to 0.1, in the right plot a is set to 20.

First the N fronts contributing to the joint Pareto front are sampled. The
parameters a, b and c are drawn randomly as shown in Table 1. Due to numerical
reasons the interval [−0.05, 0.05] for parameter b is excluded. The value of c is
slightly perturbed around the desired left cut point. For the first Pareto front, c
is drawn with μ = 0. This ensures that the knee of the front still lies in (0, 1)2.
The parameter d is automatically calculated based on the sampled values of a,
b and c. It guarantees that the Pareto front intersects with the previous front or
the extreme points in the predefined cut point.

Table 1. Types and parameters of the sam-
pling distributions used in the generator.

Parameter Distribution Distr. parameters

log2 a Uniform [−1, 5]

b Uniform [−5,−0.05] ∪ [0.05, 5]

c Absolute µ = left cut point ti−1

Normal sd = 0.05

This procedure for generating
the active Pareto fronts does not
guarantee that a suitable joint
Pareto front can always be con-
structed. To avoid infeasible data
sets D, several checks are performed
after each Pareto front part PFj has
been sampled. The front PFj has to
be dominated by the remaining fronts for x ∈ [0, tj−1) and x ∈ (tj , 1]. For
x ∈ [tj−1, tj ], it has to be non-dominated. Furthermore, the front must not be
quite similar to one of the other fronts. If one of this criteria is violated, a new
value of the parameter c of the front is sampled. If no suitable front can be found
after 10 samples, all its parameters are sampled again. This is done up to 100
times. If still no suitable front has been found, the next to last front is resampled,
too.

In the next step, the M interfering fronts are generated. The parameters
a and b are sampled according to Table 1. The parameters c and d are copied
randomly from one of the active fronts and a positive noise value is added to
make the function dominated by the corresponding active front. In addition, it
is checked that the interfering front has no intersections with the joint front.
If necessary, the parameters of the interfering front are sampled again. Up to
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now, only y1 is scaled to [0, 1]. In the last step, this also done for y2 by setting
d = d − min y2 and s = |max y2 − min y2|.

Sampling Discrete Approximations. In reality, we have to deal with discrete
approximations of the true Pareto front of an algorithm Ai. We propose
four methods to construct those discrete approximations from the continu-
ously defined Pareto fronts. In the first method called deterministic approx-
imation, k points are distributed with a regular spacing along the front. To
accomplish this, vectors vi = (vi,1, vi,2) are generated with vi,1 = i−1

k−1 and
vi,2 = 1− vi,1 (i = 1, . . . , k). The respective points on the front with v1y1 = v2y2
are calculated. The second method samples the weight vectors vi,1 ∈ [0, 1]
randomly from a uniform distribution (random approximation). The last two
methods are based on actual approximations of the NSGA-II [3], where we
use a population size of k. To construct the respective multi-objective prob-
lem, the continuous Pareto front is plugged as shape function h into the ZDT-
concept [11] ZDT(x1, . . . , xl) = (x1, g · h(x))), where g is a function encoding the
distance to the front with minimum 1. We consider an NSGA-II approximation,
where g is fixed to its minimum value, and a NSGA-II g approximation, where
g(x2, . . . , xl) = 1 + 9

l−1

∑l
i=2 xi [11] is optimized for a few iterations to add a

small approximation error to the front. In our experiments, we set l = 10 and
fix the budget of the NSGA-II to 400 evaluations (400k generations).

Table 2. Standard
deviations in the
parameter-noise
approach.

Parameter sd

a 0.030

b 0.004

c 0.020

d 0.020

Stochastic Replications. In the last step, we simulate n
replications of potential tuning runs for a given joint Pareto
front. We consider two practically motivated situations. In
the first situation, the experiment is repeated under exactly
the same circumstances. Hence, the only source of varia-
tion is the approximation quality of the tuning algorithm.
This variation is simulated by adding noise to each point
of the discrete approximation (point-noise). Following the
idea of approximation error, we use absolute normal ran-
dom variables with μ = 0 and σ = 0.02. In the second situation, some details
of the experiments change in the replications. In the context of machine learn-
ing, a different subset of learning instances may be considered during tuning [6],
whereas a different rotation of the test function could be used for optimiza-
tion [5]. For this situation, we create different instances by adding noise to the
parameters of the Pareto fronts (parameter-noise). We use normally distributed
random numbers with μ = 0 and standard deviations according to Table 2. As
a baseline method, we also consider a noiseless variant (without-noise), that
simply replicates the discrete approximation n times. Examples of the possible
combinations of approximation and replication methods are shown in Fig. 3. For
reproducing our results, the generation of test data has been implemented in our
MOSAP R-package2.

2 https://github.com/danielhorn/multicrit result test.

https://github.com/danielhorn/multicrit_result_test
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Fig. 3. Different types of generating discrete approximations and noisy replications.

4 Experimental Validation

A MOSAP method can make two types of errors: In the first type, it fails in
predicting the correct subset of algorithms. A type 1 error occurs if active Pareto
fronts are not selected, interfering fronts are selected, or the sequence of active
fronts is swapped. The second type of error (type 2 error) is related to the
accuracy of approximating the split points in the algorithm mapping.

Performance Measure. We propose an error measure that simultaneously takes
both types of errors into account. Due to the construction principles of our test
generator, there exists an oracle f : [0, 1] → A which assigns the best algorithm
A for a given value x of the performance measure y1. Furthermore we define f̂
as an estimator for f obtained by the MOSAP approach. The performance of f̂
can be measured by

z(f, f̂) =
∫ 1

0

1(x)f(x)=f̂(x)dx.

z can be interpreted as the ratio of correct predictions of f̂ over y1. The optimum
value is 1. In case of type 1 error, the z-value decreases by the length of the
interval assigned to the wrong algorithm. In case of type 2 error, the z-value
decreases by the approximation error of the split point. The integral can be
easily computed in closed form because 1(x)f(x)=f̂(x) is a piecewise constant
function with known split points.

Benchmark. For benchmarking our MOSAP approach, we consider situations
motivated by our practical applications in SVM tuning [7]. We consider N ∈
{2, 3, 5} active Pareto fronts. The split points between these optimal fronts are
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Table 3. Split points of the considered joint Pareto fronts.

N 2 2 3 3 5 5

Split.type Unif. Non-unif. Unif. Non-unif. Unif. Non-unif.

Split.points {0.5} {0.2} {
1
3
, 2
3

} {0.3, 0.5} {0.2, 0.4, 0.6, 0.8} {0.18, 0.2, 0.55, 0.75}

given in Table 3 and are chosen either uniformly (unif.) or non-uniformly (non-
unif.). In addition, we add M ∈ {0, 2, 5} interfering fronts and consider all four
types of noise in creating the discrete approximation using k ∈ {4, 12, 40, 80}
points and all three types of stochastic replications resulting in 864 different
setups with 100 replications each. For each experiment, we store the correspond-
ing z–value. A higher error corresponds to decreasing z–values.

Hypotheses.

1. Even if a MOSAP method does not make any type 1 error, there will always
be a type 2 error. This error should increase with the number of split points,
the strength of the noise and decreasing quality of the coverage of the Pareto
frontier (number of solutions k, spread and distribution).

2. The MOSAP-method should be able to eliminate the interfering fronts. Hence,
M should not have a significant influence on the z–values.

All hypotheses are checked by means of a linear regression. The variables are coded
as factors using dummy variables. The reference classes are set to: N = 2, M = 0,
k = 80, split.type = uniform, discretize.type = deterministic and replications.type
= without-noise. We do not report significance tests, as most observable results
became significant due to the large number of replications.

5 Results

Due to space restriction we only provide the results of the linear regression in this
paper, its coefficients are summarized in Table 4. The full results are available
in the data-section of our MOSAP R-package.

The intercept of our model is slightly greater than 1. Hence, in the most eas-
iest setting our method is able to reach a perfect result. With only N = 2 active
and M = 0 inference fronts and no noise from both the discrete approximation
and the replication, this case essentially measures how accurate the decision tree
estimates the single split point.

The number of active fronts N has the largest effect. As expected, a higher
number of active fronts or split points results in an increase of the error. For
N = 5 we observe an effect size greater than 0.2. Hence, it is likely that some
type 1 errors occur. This effect can be explained by the trade-off between the
gap of the hypervolume and the number of algorithms which has to be found for
deciding on the subset. Seemingly the gap is too small to be traded-off against
the inclusion of another algorithm. This decision can be manipulated be using
more extreme values of w in our method. Another option might be a human-in-
the-loop, who reconsiders the parameter settings after looking at the results.
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Table 4. Results of the linear regression.

Variable Value Estimator

Intercept 1.02

N 3 −9.47e-2

N 5 −2.35e-1

Split.type Non-uniform 2.71e-2

M 2 −3.74e-3

M 5 −7.74e-3

k 40 9.48e-4

k 12 −1.43e-2

k 4 −1.26e-1

Replications.type Point-noise −2.90e-2

Replications.type Parameter-noise −2.89e-2

Discretize.type NSGA-II −1.58e-2

Discretize.type Random −7.69e-3

Discretize.type NSGA-II g −1.12e-1

Both types of adding noise to the
n replications do result in signifi-
cant decreases of the z-value. This
decrease is of the same level for both
approaches. Compared to the noise
added by the NSGA-II g approach,
however, the decrease of the z-values
for both replication types is rather
low.

The results of the discretization
types are nearly as expected. The
deterministic type is the easiest for
the MOSAP approach. As expected,
NSGA-II g combining both approx-
imation error and a non-uniform distribution results in a significant loss of per-
formance. Surprisingly, random point sets result in better z-values than the ones
of NSGA-II without approximation error. In fact, the random point sets are only
slightly inferior to the deterministic ones. Hence, there is no need for perfectly
spaced Pareto front approximations. This observation is confirmed by the effect
of the approximation size. The reduction from k = 80 to k = 40 points even has
a very small, positive effect, actually it is the only effect without a significant
influence. Nevertheless, a further reduction to k = 12 or k = 4 points results in
a either a slight or strong decrease of the z-value. Hence, k should not be set
too small, but it is unnecessary to use very large discrete approximations. In
conclusion, we can confirm our first hypothesis.

An increase of the number of interfering fronts M results in decreases of
the z-value in the order of 10−3. Compared to the effects of approximation error
(NSGA-II g) or additional active fronts (N = 5), these effects are small, but they
indicate that an increasing amount of interfering fronts may have a negative effect
on the result. Therefore, we can only partially confirm our second hypothesis.

As additional observation, the non-uniform cut points result in better
z-values than the uniform ones. This seems meaningful, since some of the active
fronts cover only a small portion of the joint front. Hence, type 1 errors will
result in a smaller decrease of the z-value.

6 Conclusion and Outlook

In this paper, we present a validation framework for MOSAP methods.
We applied the framework to evaluate to performance of our approach. As
expected, the performance slightly decreases with an increasing number of active
fronts and noisy approximation sets. Nevertheless, our method is capable of find-
ing suitable portfolios and mappings even in the hardest cases considered.

In future work we are going to apply our MOSAP method to more practical
test cases. One possibility would be to derive algorithm portfolios from the results
of the Black-Box Optimization Benchmarking workshop (BBOB) [5]. In this
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workshop, the objectives are the number of function evaluations and the ratio
of target levels attained over a set of functions. In this context, it would also
be interesting whether the Pareto fronts can be merged over different instances
instead of only replications on the same instance.
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Abstract. It is generally believed that Local search (Ls) should be used
as a basic tool in multi-objective evolutionary computation for combina-
torial optimization. However, not much effort has been made to investi-
gate how to efficiently use Ls in multi-objective evolutionary computation
algorithms. In this paper, we study some issues in the use of coopera-
tive scalarizing local search approaches for decomposition-based multi-
objective combinatorial optimization. We propose and study multiple
move strategies in the Moea/d framework. By extensive experiments on
a new set of bi-objective traveling salesman problems with tunable corre-
lated objectives, we analyze these policies with different Moea/d para-
meters. Our empirical study has shed some insights about the impact of
the Ls move strategy on the anytime performance of the algorithm.

1 Introduction

Several single-objective approaches, ranging from problem-specific algorithms to
more generic approaches such as meta-heuristics and evolutionary algorithms,
have been designed, tuned and studied extensively in combinatorial optimiza-
tion. Among many others, local search (Ls) heuristics [2] refer to algorithms
where a solution is improved in an iterative search process by performing lit-
tle perturbation on its vicinity. A common ingredient being at the basis of this
class of algorithms is the so-called neighborhood exploration and move strat-
egy. The specification of at least one neighborhood structure and its proper
combination with a move strategy is in general a cornerstone in the design of
advanced single-objective Ls-based algorithms. Actually, this statement holds
also when turning to the multi-objective setting, where a whole set of solu-
tions, optimizing simultaneously two or more objective functions, is to be com-
puted. Ls components have been investigated to design effective aggregation-
based [3,4,10,12] and dominance-based [9,10,12] multi-objective algorithms. In
particular, within the class of dominance-based algorithms, it is shown in [9]
how different move strategies can have a deep impact on search performance.
In this paper, we are interested in studying the new opportunities offered by
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 431–441, 2016.
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the so-called Moea/d (multi-objective evolutionary algorithm based on decom-
position) [14] framework in incorporating Ls components. In fact, Moea/d is
a recently-proposed aggregation-based framework which was extensively stud-
ied for continuous problems. Interestingly, Moea/d is a reference algorithm in
multi-objective optimization, mainly due to its high flexibility in incorporating
different search paradigms, and the high quality of the so-obtained algorithms.
Nonetheless, very few investigations can be found on the proper incorporation
of Ls within Moea/d for discrete domains. Some adaptations exist, but they
are often based on genetic operators [1,11], and relatively few in-depth investi-
gations [5,6] considering Ls in Moea/d were conducted against the large body
of works in continuous domains.

In this paper, we provide a comprehensive study on incorporating basic Ls
move strategies into the Moea/d framework. More precisely, our contribution
is three-fold. Firstly, we revisit conventional single-objective move strategies and
illustrate how they can be hybridized with Moea/d. In particular, we highlight
how the replacement flow of Moea/d can be adapted to support such strate-
gies. Secondly, we study the performance of the so-designed algorithms using a
new set of bi-objective traveling salesman problem (TSP) instances with tunable
objective correlations. Our thorough experimental analysis shows that different
behaviors can be obtained depending on objective correlation, and more impor-
tantly on available budgets. Our findings are the byproduct of a running time
analysis providing evidence on the importance of the Ls move strategy in the
design of anytime decomposition-based multi-objective algorithms. Thirdly, we
provide a comprehensive study on the impact of Moea/d common parameters.
The research conducted in this paper is also to be viewed as establishing the first
steps towards the design of more powerful decomposition-based multi-objective
algorithms based on more advanced local search components. In fact, notwith-
standing that we are not horse-racing against state-of-the-art algorithms for the
considered optimization problems, and that we consider basic move strategies,
our findings on the anytime performance of the designed algorithms suggests
that incorporating Ls into Moea/d is still in its very infancy beginning, and
hence, would deserve further research investigations in the future.

The rest of this paper is organized as follows. In Sect. 2, we recall some
background on Ls and Moea/d. In Sect. 3, we describe in more details different
strategies for incorporating Ls components into Moea/d. In Sect. 4, we give our
experimental setup. In Sect. 5, we discuss our experimental findings. In Sect. 6,
we conclude the paper and discuss some open research directions.

2 Background

A multi-objective optimization problem (MOP) can be defined by a solution
set X and by an objective function vector f = (f1, . . . , fm) to be minimized.

The Moea/d [14] framework. Moea/d falls into the class of decomposition-
based algorithms. It seeks good-performing solutions in multiple regions of the
Pareto front by decomposing the original MOP into a number of scalarized
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single-objective sub-problems. Different scalarizing functions have been proposed
so-far. In this paper, we use the common weighted Chebyshev function, to
be minimized: g(x | λ, z�) = maxk∈{1,...,m} λk · ∣

∣z�
k − fk(x)

∣
∣; where x ∈ X,

λ = (λ1, . . . , λm) is a positive weighting coefficient vector, and z� = (z�
1 , . . . , z�

m)
is a reference point. In this respect, the originality of the Moea/d framework
is to define a T -neighborhood relation between sub-problems. Let (λ1, . . . , λμ)
be a set of μ uniformly distributed weighting coefficient vectors defining μ sub-
problems. Moea/d maintains a population P = (x1, . . . , xμ), where every indi-
vidual corresponds to one sub-problem. For each sub-problem i ∈ {1, . . . , μ}, its
T -neighbors, denoted B(i), are defined by considering the T closest weight vec-
tors. Sub-problem solutions are evolved with respect to their neighbors. For
every sub-problem, an offspring solution from the T -neighbors set B(i) is gener-
ated using some evolutionary operators. Then, the offspring can replace one or
more T -neighbors if it improves the scalar (Chebyshev) value of the correspond-
ing solution of the neighboring sub-problem. Different variants of this baseline
Moea/d flow exist. In the remainder, we consider the modifications introduced
in [8], considered as a state-of-the-art variant in continuous domains, where
(i) the T -neighbors of a sub-problem is the whole population with a small prob-
ability δ, or B(i) otherwise, and (ii) a newly generated offspring can replace at
most nr other solutions, where nr and δ are two user-defined parameters. Other
Moea/d variants could be considered as well, but for the sake of analysis, we
only consider the most common and widely-used variant from [8,14].

Ls Move Strategies. Ls is a single solution-based walk that iteratively
improves the current solution by means of local transformations, and then mov-
ing to an improving close-by solution. Those transformations are usually based
on a neighborhood function N : X → 2X , which assigns a set of neighboring solu-
tions N (x) ⊂ X to any solution x ∈ X. It should be clear for the reader that we
differentiate between the T -neighborhood of Moea/d and the neighborhood of
a solution in Ls. In the most simple Ls variant, also referred to as hill-climbing,
the search stops when the current solution is not outperformed by any neigh-
bor. This means that a local optimum is reached. The move strategy, defining
the transition rule to select an improving neighbor, is also a key ingredient in
Ls-based search. Typical strategies are as follows: (i) In a best-improvement
(or steepest descent) move, the neighbor that improves the most is selected at
each iteration. This means that the whole neighborhood is generated, which can
be time-consuming for large neighborhoods. (ii) In a first-improvement move,
the first improving neighbor is immediately selected. This avoids to systemati-
cally generate and evaluate the whole neighborhood. The exploration order of
neighbors can remain unchanged, or instead can be randomly shuffled at each
iteration. Additionally, the neighborhood structure can be used as a an evolu-
tionary mutation operator when some few neighboring solutions are sampled
at random. Hence, (iii) a random strategy can be considered as well, where a
random neighbor is generated and replaces the current solution if there is an
improvement.
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3 The MLSD Scheme

Incorporating Ls into Moea/d can be viewed as a natural outcome since several
single-objective sub-problems are to be improved cooperatively. Although the
standard neighborhood exploration mechanisms of Ls might not be very com-
plicated to integrate into Moea/d, still important design technicalities have to
be explicitly and carefully specified, especially when exploring new neighboring
solutions and when performing replacement in original Moea/d.

In the high-level pseudo-code depicted in Algorithm1, we provide a relatively
detailed description of different possible ways of hybridizing Moea/d with Ls
move policies. The proposed scheme is called Mlsd-sr (Multi-objective Local
Search based on Decomposition). One should notice that Mlsd is parametrized
by two elements, namely s (referring to the selection policy) and r (referring to
the replacment policy). This allows us to differentiate between two stages: (i) the
move selection stage (lines 10 to 21), and (ii) the replacement stage (lines 22 to 29).
We thereby obtain four possible variants, as discussed in the following.

Algorithm 1. Mlsd-sr: high-level pseudo-code
Input: μ: population size; T : neighborhood size; δ ∈ [0, 1]; nr ∈ �0, μ�; s ∈ {Best, First,Rnd};

r ∈ {Min,Rnd}.
1
{

λ1, . . . , λμ
}← generate weight vectors w.r.t. μ sub-problems;

2 ∀i ∈ {1, . . . , μ} B(i) ← the T closest sub-problems w.r.t λi;

3 P=
{

x1, . . . , xμ
}← generate the initial population;

4 evaluate P ;
5 (update external archive with P ;) /* optional */
6 set z� from P ;
7 while Stopping Condition do
8 for i ∈ {1, . . . , μ} do
9 if rand {[0, 1]} < δ then Bi ← B(i); else Bi ← P ;

// Stage #1: Move selection
10 k ← rand {Bi};
11 I ← ∅;

/* Check moves and record improved sub-problems */

12 for y ∈ N (xk) do /* By default, s = Best */
13 evaluate y;
14 (update external archive with y;) /* optional */
15 update z� using y;

16 Jy ← {
j ∈ Bi s.t. g(y | λj , z�) < g(xj | λj , z�)

}
;

17 if Jy �= ∅ then
18 cy ← 0;
19 I ← I ∪ {(y, cy, Jy)};
20 if s = First then break;

21 if s = Rnd then break; /* go to line 22 */

// Stage #2: Replacement
22 while ∃j ∈ Bi s.t. (∃(y, cy, Jy) ∈ I s.t. j ∈ Jy and cy < nr) do
23 if r = Min then

24 y
∗ ← argminy s.t. (y,cy,Jy)∈I

{
g(y | λ

j
, z

�
)
}

25 else if r = Rnd then
26 y∗ ← rand {y s.t (y, cy, Jy) ∈ I};
27 xj ← y∗;
28 cy∗ ← cy∗ + 1;
29 Bi ← Bi \ {j};
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The Mlsd scheme iteratively loops over sub-problems until a stopping condi-
tion is satisfied. At each iteration w.r.t. sub-problem i, two stages are performed.
The first stage consists in generating some new candidate solutions to be consid-
ered in the second stage. First, a parent solution xk is selected randomly from
the neighborhood of sub-problem i. The selected solution is then locally explored
using the Ls neighborhood structure N . Three different move strategies can be
considered. The first one (s = Best) consists in traversing all solutions y ∈ N (xk)
in an exhaustive manner while checking for any improvement. Notice that vari-
able Jy (line 16) denotes the set of sub-problems improved by an incumbent
solution y, and cy is a counter initialized to 0. The tuple (y, cy, Jy) is then saved
into set I which contains all the records w.r.t any improving solution in N (xk).
In the second strategy (s = First), the exploration of neighbors N (xk) stops as
soon as an improving solution y is found. This strategy guarantees that if N (xk)
contains at least one improving solution, then it is selected and recorded in set I
for the next stage. The last move strategy (s = Rnd) picks a single incumbent
solution y uniformly at random from N (xk), and records the tuple (y, cy, Jy) in
set I only if y is improving at least one neighboring sub-problem.

The second stage consists in replacing the solutions of neighboring
sub-problems. If no improvement was observed, then the replacement stage is
simply skipped. Otherwise, i.e. when |I| ≥ 1, two possible strategies are con-
sidered. In the first one (s = Min), the solution of every sub-problem j in the
T -neighborhood of sub-problem i is replaced by the best improving solution
y� found during the previous stage (if any). In the second one (s = Rnd), an
improving solution (if any) is picked randomly to replace the current solution
of j. Notice that in case the set I contains one single recorded tuple, the two
previous replacement strategies are equivalent. Notice also that if a First or a
Rnd policy is adopted in the selection stage, the designed replacement strategies
are also equivalent. Hence, the two replacement strategies might imply different
variants of Mlsd only when a Best strategy is adopted in the first stage.

Finally, it is important to notice the role of the nr parameter in the replace-
ment stage. In fact, since several candidate improving solutions can be considered
in the case s = Best, each time a solution y is selected for the replacement in
line 27, its associated counter cy is incremented. Consequently, once this counter
reaches the value nr, the corresponding solution cannot be selected anymore to
replace any sub-problem, as specified by the condition of line 22.

4 Experimental Setup

For the sake of studying the behavior of the Mlsd-sr framework, we consider the
Traveling Salesman Problem (TSP) as a baseline benchmark problem. The moti-
vation behind this choice is two fold. First, permutation-based optimization prob-
lems, like TSP, are of choice when evaluating the behavior of Ls-based algorithms.
Second, the TSP is a fundamental problem that appears at the bottleneck of many
real-world applications and is representative of a wide range of more complex com-
binatorial optimization problems. We emphasize that this choice is to be under-
stood from a purely benchmarking perspective. In particular, it is worth noticing
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that the multi-objective TSP has attracted a lot of interest in recent years and one
can report several state-of-the-art algorithms, see e.g. [5,9,10,12]. This paper does
not propose yet another algorithm for TSP, and we shall not consider to compare
the Mlsd-sr with those algorithms. Besides, designing TSP-specific algorithms
is a whole piece of research that we are not targeting in this experimental study.
Accordingly, we shall only focus on analyzing the relative performance of the dif-
ferent move strategies described previously.

Multi-objective TSP with Correlated Objectives. Given a complete graph
G = (V,E) with n nodes and non-negative edge costs, the symmetric single-
objective TSP seeks a cyclic permutation that contains each node exactly once
and such that the total cost is minimized. A solution can be represented as a
permutation π of size n. Since multiple costs like distance or travel time can
be considered, a multi-objective variant of the TSP can be formulated. Let
{v1, v2, . . . , vn} be the set of nodes, and {[vi, vj ] | vi, vj ∈ V } the set of edges. In
the m-objective case, we have m cost matrices such that each edge [vi, vj ] ∈ E
is assigned a cost ck

ij for each objective function k ∈ {1, . . . ,m}. The objective
functions can then be defined as follows: fk(π) = ck

π(n)π(1) +
∑n−1

i=1 ck
π(i)π(i+1).

The multi-objective TSP is known to be NP-hard and intractable [10]. In this
paper, we consider two-objective symmetric TSP instances (m = 2) with cor-
related random distance matrices. Following [12], edge costs are chosen from a
uniform distribution in [0, 4473]. However, we additionally define a correlation
coefficient ρ ∈ [−1, 1] between the data contained in both cost matrices. The
generation of correlated data follows a multivariate uniform distribution [13].
The positive (resp. negative) data correlation allows to decrease (resp. increase)
the degree of conflict between the objective function values with a high accuracy.
Notice than when ρ = 0, our instances are the same as [12].

Parameter Setting. We consider
the 2-opt exchange operator as the
neighborhood N for TSP, i.e. given a
candidate solution π, the sequence of
nodes located between π(i) and π(j)
is reversed. The neighborhood size is hence n·(n−1)

2 . We experiment instances
of size n = 100 and correlation values: ρ ∈ {-0.8, -0.4, 0.0, 0.4, 0.8}. We con-
sider a broad range for the other parameters, namely population size μ ∈
{50, 100, 150, 200}, T -neighborhood size T ∈ {5, 10, 15, 20}, nr ∈ {1, 2,∞}, and
δ ∈ {0.0, 0.1}. For every parameter combination, we consider the four variants
of Mlsd-sr as summarized in the table below, thus ending up with 1 920 config-
urations, each one independently executed 20 times. For s = First, neighboring
solutions are explored in a random order. The stopping condition is a maximum
budget of 108 function evaluations. The initial population is generated randomly
and the weight vectors are generated as in [14].
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5 Experimental Analysis

We follow the performance assessment protocol proposed in [7] by using the hyper-
volume relative deviation (Ihv) and the additive epsilon (I+ε ) indicators. The
hypervolume reference point is set to the worst objective-value, and the reference
set is the best-found approximation over all tested configurations. Notice that we
use an external archive recording all non-dominated solutions found so far.

High Budget Setting. We first report the descriptive statistics on the
indicator-values, together with a Mann-Whitney non-parametric statistical test
with a p-value of 0.05 and using a Bonferroni correction, for the highest budget
of 108 calls of the evaluation function. In Table 1, we show the rank of different
Mlsd-sr variants with the rank being the number of variants that statistically
outperform the one under consideration for each instance. The lower the rank,
the better the algorithm. Both indicators agree that the best performing variant
of Mlsd over all considered instances is when a Best move strategy is adopted
together with a Min replacement strategy. The objective correlation of consid-
ered instances appear to have a crucial impact. The gap between Mlsd-BM
and the other variants is substantial in the case of conflicting objectives whereas
we found no significant differences for highly correlated objectives. Overall, the
considered Mlsd variants can be ranked as follows: Mlsd-BM > Mlsd-BR ≈
Mlsd-FM > Mlsd-RM. It is important to remark that combining a Best move
strategy with an elitist replacement strategy is crucial, otherwise a First move
strategy would be more appropriate. Notice that at this stage of the analysis,
the Mlsd-RM variant is overall the worst performing one, and the relative per-
formance gap between different T -neighborhoods are not statistically significant.
In the following, we shall show that these preliminary conclusions can only hold
for a high computational budget.

Anytime Analysis. When analyzing the quality of the approximation with
different budgets, we basically find that the relative performance of the consid-
ered variants is deeply impacted, independently of the parameter setting. This is
illustrated in Fig. 1 for a particular parameter setting. Interestingly, the Mlsd-
BM and Mlsd-BR variants can only outperform the other variants for a high
budget. Mlsd-RM, which was shown to be the worst-performing approach in
such a setting, now appears to be the best anytime strategy. This might be
surprising at a first glance. However, in the early stages of the search process,
it is more likely that among few random samples, an improving solution for
different sub-problems is found. In contrast, Mlsd-BM would anyway explore
all neighboring solutions (quadratic in n) and consider at most one solution for
replacement. Hence, Mlsd-RM is likely to progress faster and to save a sig-
nificant number of evaluations. As the quality of the population gets better,
it becomes more unlikely to find improving neighbors using random sampling.
This can explain why Mlsd-RM gets stuck and cannot improve the quality of the
population anymore. It is also interesting to remark that Mlsd-FM provides an
intermediate trade-off, since it is relatively competitive against Mlsd-RM while
being able to catch Mlsd-BM again on the latest stages. Interestingly, these
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Table 1. Algorithm rank summary using 108 function evaluations, μ = 100, nr = 2
and δ = 0.1. The number in brackets stands for the average indicator-value.

Hypervolume relative deviation (Ihv · 10−2) Additive epsilon indicator (I+
ε · 102)

s = B Mlsd-FM Mlsd-RM s = B Mlsd-FM Mlsd-RM

ρ T Mlsd-BM Mlsd-BR Mlsd-BM Mlsd-BR

−0.8 5 0 (1.41) 4 (2.07) 4 (1.95) 12 (2.61) 0 (49.45) 5 (75.43) 4 (66.89) 5 (78.23)

10 0 (1.38) 4 (2.05) 4 (2.02) 12 (2.57) 0 (51.21) 5 (85.53) 5 (86.38) 5 (76.68)

15 0 (1.33) 4 (1.98) 6 (2.17) 12 (2.57) 0 (52.27) 5 (82.10) 10 (91.86) 5 (76.72)

20 0 (1.39) 4 (2.04) 10 (2.28) 12 (2.47) 0 (53.95) 6 (86.20) 14 (103.3) 5 (77.53)

−0.4 5 0 (1.83) 1 (1.95) 8 (2.22) 12 (2.64) 0 (50.63) 2 (58.36) 4 (66.92) 8 (72.60)

10 0 (1.78) 0 (1.84) 2 (2.03) 12 (2.50) 0 (50.92) 2 (60.35) 4 (65.97) 6 (68.70)

15 0 (1.70) 0 (1.92) 5 (2.08) 12 (2.56) 0 (49.39) 2 (58.69) 6 (68.77) 8 (71.54)

20 0 (1.78) 1 (1.95) 5 (2.06) 12 (2.51) 0 (52.14) 3 (60.60) 6 (69.52) 7 (69.94)

0.0 5 0 (2.42) 0 (2.30) 5 (2.67) 1 (2.69) 0 (45.08) 0 (41.62) 4 (51.59) 4 (52.27)

10 0 (2.23) 0 (2.28) 0 (2.44) 5 (2.85) 0 (39.84) 0 (41.71) 0 (47.41) 6 (52.98)

15 0 (2.32) 0 (2.25) 0 (2.52) 7 (2.71) 0 (42.15) 0 (42.22) 0 (49.12) 7 (50.31)

20 0 (2.39) 0 (2.26) 0 (2.49) 7 (2.80) 0 (43.79) 0 (41.02) 0 (47.95) 7 (53.25)

0.4 5 0 (2.66) 0 (2.33) 0 (2.61) 0 (2.47) 1 (44.82) 0 (38.06) 0 (42.65) 0 (40.59)

10 0 (2.51) 0 (2.43) 0 (2.44) 0 (2.50) 0 (42.17) 0 (39.45) 0 (38.80) 0 (39.44)

15 0 (2.59) 0 (2.34) 0 (2.54) 0 (2.64) 0 (39.49) 0 (37.86) 0 (42.62) 0 (42.86)

20 0 (2.54) 0 (2.30) 0 (2.68) 0 (2.52) 0 (39.23) 0 (38.48) 0 (42.14) 0 (41.33)

0.8 5 0 (2.54) 0 (2.15) 0 (2.08) 0 (2.10) 0 (33.76) 0 (29.78) 0 (28.00) 0 (28.25)

10 0 (2.49) 0 (2.21) 0 (2.05) 0 (2.36) 0 (32.83) 0 (30.17) 0 (28.21) 0 (31.87)

15 0 (2.56) 0 (2.22) 0 (2.14) 0 (2.31) 0 (32.78) 0 (28.68) 0 (27.56) 0 (30.62)

20 0 (2.39) 0 (2.40) 0 (2.23) 0 (2.16) 0 (31.57) 0 (31.39) 0 (29.60) 0 (28.54)

results suggest that there is much room for future improvements in the anytime
behavior of Mlsd by considering hybrid move strategies.

Impact of the Population Size (μ). In Fig. 2, we show a subset of results
on the impact of different population sizes on Mlsd-BM and Mlsd-RM (since
no significant impact was found for Mlsd-FM). The larger the population size,
the better the final approximation set, independently of the considered strategy.

Fig. 1. Runtime analysis of the different algorithm variants. Error bars indicate 95 %
confidence intervals. δ = 0, T = 10, nr = ∞ and μ = 100. Notice the log-scales.
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Fig. 2. Runtime analysis for different population sizes. δ = 0, T = 10, nr = ∞.

Fig. 3. Runtime analysis for different T−values. δ = 0, nr = ∞ and μ = 100.

However, smaller population sizes are better for smaller budgets, especially for
instances with correlated objectives. We attribute this to the fact that a larger
population size impacts the population diversity, and is thus more critical when
the Pareto front is larger, which is the case for conflicting objectives.

Diversity Issues (T , nr and δ). We are able to report a significant impact of
the T -neighborhood size only for the Mlsd-BM variant, for highly correlated
objectives and a small budget, as illustrated in Fig. 3. As for parameter nr, we
found a significant impact only for Mlsd-FM and Mlsd-RM, as illustrated in
Fig. 4. We recall that a larger nr−value allows a high-quality solution, possibly
improving multiple sub-problems simultaneously, to replace all those solutions
at once. Intuitively, the surviving solution has then more chance to improve the
overall population quality in subsequent iterations, but at the price of decreasing
diversity. we can see that smaller nr−values are better for convergence purposes,
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Fig. 4. Runtime analysis for different nr−values. δ = 0, T = 10 and μ = 100.

whereas a larger nr−value provides a better performance for small budgets. Inter-
estingly, this observation holds only for highly-correlated objectives. As for para-
meter δ, the impact on performance was only significant when usingMlsd-BM for
correlated objectives with a small T -neighborhood size, but it was not helpful for
improving the relative anytime performance. These empirical observations suggest
that, contrary to the continuous case, the δ parameter might not be of great help
when tackling combinatorial problems with conflicting objectives.

6 Conclusion

This paper investigates the foundations of the design of cooperative scalariz-
ing local search approaches within decomposition-based algorithms for multi-
objective combinatorial optimization. Our results revealed strong evidence on the
need of adaptive algorithms that would enable to mix different move strategies
and to better combine the neighborhood exploration with the replacement stage in
order to properly balance the exploration/exploitation trade-off. It is our hope that
our empirical study can enlighten our current understandings of decomposition-
based approaches for multi-objective combinatorial optimization, and can stimu-
late new research paths towards the design of more powerful multi-objective ran-
domized search heuristics based on local search and decomposition.
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12. Paquete, L., Stützle, T.: Design and analysis of stochastic local search for the mul-
tiobjective traveling salesman problem. COR 36(9), 2619–2631 (2009)

13. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multi-
objective combinatorial search space: MNK-landscapes with correlated objectives.
Eur. J. Oper. Res. 227(2), 331–342 (2013)

14. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE TEC 11(6), 712–731 (2007)



Analyzing Inter-objective Relationships:
A Case Study of Software Upgradability

Zhilei Ren1, He Jiang1(B), Jifeng Xuan2, Ke Tang3, and Yan Hu1

1 Key Laboratory for Ubiquitous Network and Service Software
of Liaoning Province, School of Software,

Dalian University of Technology, Dalian, China
{zren,jianghe,huyan}@dlut.edu.cn

2 State Key Laboratory of Software Engineering,
Wuhan University, Wuhan, China

jxuan@whu.edu.cn
3 School of Computer Science and Technology,

University of Science and Technology of China, Hefei, China
ketang@ustc.edu.cn

Abstract. In the process of solving real-world multi-objective problems,
many existing studies only consider aggregate formulations of the prob-
lem, leaving the relationships between different objectives less visited. In
this study, taking the software upgradability problem as a case study,
we intend to gain insights into the inter-objective relationships of multi-
objective problems. First, we obtain the Pareto schemes by uniformly
sampling a set of solutions within the Pareto front. Second, we ana-
lyze the characteristics of the Pareto scheme, which reveal the relation-
ships between different objectives. Third, to estimate the inter-objective
relationships for new upgrade requests, we build a predictive model,
with a set of problem-specific features. Finally, we propose a reference
based indicator, to assess the risk of applying single-objective algorithms
to solve the multi-objective software upgradability problem. Extensive
experimental results demonstrate that, the predictive models built with
problem-specific features are able to predict both algorithm independent
inter-objective relationships, as well as the algorithm performance spe-
cific indicator properly.

Keywords: Pareto front · Meta-learning · Empirical analysis

1 Introduction

Many real-world multi-objective problems are solved with single-objective
approaches [8,10], leaving the inter-objective relationships less studied. For
example, the software upgradability problem is among the great challenges in
the field of software engineering [10,14]. The problem aims to find the most
suitable upgrade scheme that satisfies the users’ upgrade requests. An upgrade
scheme consists of a sequence of operations, including installing, removing,
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 442–452, 2016.
DOI: 10.1007/978-3-319-45823-6 41
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and/or upgrading packages. The software upgradability problem is inherently
a multi-objective optimization problem, i.e., users may be interested in different
upgrade objectives, such as software stability, package download size, etc. Even
only considering single upgrade objective, the problem is reducible to the partial
weighted MAXSAT problem [6], which is NP-hard. Moreover, the scalability of
the software repositories poses great challenges for the upgrade process. Up to
now, there are more than 43,000 packages in the Debian repository1. The intrin-
sic complexity and the scalability make the upgrade process a difficult problem.
Meanwhile, in the literatures, most studies encode the upgrade requests into cer-
tain single-objective problem instances, such as partial weighted MAXSAT [6],
Mixed Integer Linear Programming (MILP) [10], Pseudo Boolean Optimization
[11], and Answer Set Programming [4]. Then, solvers are employed to resolve
the encoded instances. However, despite the promising accomplishments these
studies have achieved, there are still limitations to be improved. For example,
in the existing approaches, multiple upgrade objectives are handled in aggregate
ways, e.g., the weighted sum scalarization transformation or the lexicographic
combination. Hence, a potential risk of such approaches is that, the relationships
between different upgrade objectives may not be considered properly. If there
exists drastic tradeoff between different objectives, the aggregation strategy has
to be carefully chosen, e.g., the weight vector for the weighted sum approaches,
or the objective order for the lexicographic approaches.

(a) Illustration of the research framework (b) Package example

Fig. 1. Background information

To face this challenge, we take the software upgradability problem as a case
study, and intend to systematically investigate the relationships between differ-
ent objectives. Motivated by the concept of the Pareto optimality, we are inter-
ested in the insights into the characteristics of the upgrade schemes that are not
dominated by any other schemes (denoted as Pareto schemes). More specifically,

1 http://www.debian.org.

http://www.debian.org
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Fig. 1(a) illustrates the research framework in this study, which comprises three
stages. First, we intend to analyze the characteristics of the Pareto schemes.
By uniformly sampling a set of Pareto schemes, we are able to analyze the
relationships between different upgrade objectives. Then, for the meta-learning
stage, we intend to capture the characteristics of the Pareto front by train-
ing a predictive model with features extracted from instances. Finally, we are
interested in the possibility of predicting the relationships between objectives
with the trained model, and leveraging the predicted indicator to evaluate the
suitability of applying certain algorithms. More specifically, we consider the fol-
lowing Research Questions (RQs), which are listed as follows: RQ1: How are
the different objectives correlated? RQ2: Are the inter-objective relationship
of the Pareto schemes predictable with problem specific features? RQ3: Given
an upgrade request, how to assess the suitability of applying single-objective
optimization approaches?

2 Problem and Motivation

Let a universe U be a set of software packages, in which each package p is
determined by the package name and a version number. Associated with each
package, there exists a tuple (D,C), where D denotes the dependency clause set
of p, in which each clause indicates a list of software packages. In the clause, at
least one of the packages have to be installed so that package p could be installed
properly. Accordingly, C represents the conflict clause set for package p. To install
package p, none of the packages in the conflict clause corresponding to package p
should be installed. Given a universe U , a package installation profile is defined
as a subset of the packages within U . In particular, a package installation profile
is valid if all the constraints are satisfied. With the package installation profile
described, the software upgradability problem could be formulated as follows.
Given a universe U , a package installation profile P , as well as a software upgrade
request (install, remove, or upgrade a package set), the software upgradability
problem aims to determine whether there exists an installation profile P ′, so that
P ′ is a valid installation profile that satisfies the upgrade request. Moreover, the
operation sequence that transfers P to P ′ is denoted as the upgrade scheme. In
Fig. 1(b), we give the package information snippet for nano, a text editor. To
install nano version 2.5.3-2, the constraints have to be met, e.g., packages tagged
in the Depends and Conflicts fields have to be installed and removed accordingly.

In this paper, we focus on the optimization version of the problem, i.e., how
to determine the most compact valid upgrade scheme for the request. In the
literatures, there are 5 minimization upgrade objectives, which aim to minimize
the number of packages removed in the solution (f1: “removed”), the packages
changed by the solution (f2: “changed”), the number of outdated packages in
the solution (f3: “notuptodate”), the number of unsatisfiable package recommen-
dations (f4: “unsat”), and the number of extra packages installed (f5: “new”),
respectively. In the existing studies, there are mainly two types of aggregate crite-
ria, both of which consider the lexicographic combination of multiple objectives,
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i.e., the objectives are handled in a hierarchical way, and the first objective has
the highest priority. More specifically, the paranoid criterion first optimizes the
“removed” objective, then the “changed” objective. Meanwhile, the trendy cri-
terion considers the “removed”, the “notuptodate”, the “unsat”, and the “new”
objectives successively [11]. These lexicographic approaches do not have to enu-
merate all the combinations of the objectives. However, if there exists drastic
tradeoff between these objectives, the search might be sensitive to the order of
the objectives. Under such condition, analyzing the relationships between differ-
ent upgrade objectives is necessary. Meanwhile, in the evolutionary computation
literatures, a common resolution is to provide a set of Pareto optimal solutions.
Such approaches do not only provide more choices for the decision maker, but
also enable the analysis about the relationships between objectives, which might
reveal insights into the problem [12]. Inspired by the concept of Pareto opti-
mality, we are interested in deeper understanding of the software upgradability
problem. In this process, the challenge lies in the fact that, obtaining the Pareto
schemes for the software upgradability problem is very time consuming. Hence,
we would adopt the meta-learning technique to tackle this challenge.

3 Experiments and Discussion

The experiments are conducted on an Intel Core i5 3.2 GHz CPU PC with 4 GB
memory, running GNU/Linux with kernel 3.16. For the data set, we employ
the benchmark from the Mancoosi International Solver Competition 2010–2012,
in which the requests are generated from the Debian repository2. After filter-
ing the infeasible upgrade requests3, we obtain in total 350 upgrade requests.
Then, we proceed to describe the Pareto scheme sampling procedure. The Pareto
schemes could be defined as the upgrade schemes that are not dominated by
any other upgrade schemes. In the literatures, there exist various mechanisms
that could convert the problem of achieving the Pareto front into a number of
scalar optimization problems, such as the weighted sum, the Tchebycheff aggre-
gation, and the boundary intersection approaches [15]. Due to its simplicity and
effectiveness, we adopt the weighted sum approach. More specifically, for each
upgrade request, inspired by [15], the {5, 5}-simplex lattice design is employed
to generate 126 weight vectors, which are then used to construct the weighted
single-objective optimization problem. Then, for each weighted problem, we use
a publicly available solver mccs4 with Gurobi, which is a state-of-the-art MILP
solver, to compute the optimal upgrade scheme in the corresponding direction.

3.1 RQ1: Conflict Analysis

First, we are interested in the comparisons between the two existing lexico-
graphical criteria. With the trendy and the paranoid criterion, we apply mccs

2 http://mancoosi.org/misc/.
3 Note that these requests could be detected by the feature extraction phase, see RQ2.
4 http://www.i3s.unice.fr/∼cpjm/misc/mccs.html.

http://mancoosi.org/misc/
http://www.i3s.unice.fr/~cpjm/misc/mccs.html
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Fig. 2. Comparison between the trendy (x-axis) and the paranoid (y-axis) criteria

(a) Scatter plot for the Pareto schemes
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(b) Correlation distributions

Fig. 3. Properties of the Pareto schemes

over each upgrade request respectively, and plot the obtained single-objective
optimal upgrade schemes in Fig. 2. Since the two criteria share the first objec-
tive “removed”, we only plot the comparisons between the two upgrade criteria
under the rest 4 objectives. In each subfigure, the x-axis and the y-axis repre-
sent the trendy and the paranoid criteria, respectively. From Fig. 2, the follow-
ing observations could be drawn. (1) For the “changed” objective, mccs with
the paranoid criterion outperforms mccs with the trendy criterion. This obser-
vation is as expected, in that the trendy criterion does not consider optimizing
the “changed” objective. (2) Similarly, when we consider the “notuptodate” and
the “unsat” objectives, which the paranoid criterion does not care, mccs with
the trendy criterion could achieve better performance. (3) Surprisingly, for the
“new” objective, which only the trendy criterion considers, mccs with the trendy
criterion is outperformed by the same solver with the paranoid criterion. A pos-
sible reason is that, there exist certain correlation between objectives.

To examine the assumption, we plot the Pareto schemes in Fig. 3(a). Due
to the dimensional issue of the problem, we adopt the pairwise scatter plot
to illustrate the relationship between the 5 objectives. The figure comprises 3
components. First, the upper panel represents the scatter plot of the Pareto
schemes projected on each specific plane. Second, the diagonal panel illustrates
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Table 1. Feature category and examples

Domain Feature category Feature example

SAT
(54
features)

Problem size features Variable and clause numbers

Variable–clause graph
features

Variable and clause node degree
statistics

Variable graph features Node degree statistics

Clause graph features Clause graph node degree
statistics

Balance features Horn clauses fraction

MILP
(141
features)

Problem size features Number of variables and
constraints

Variable-constraint graph
features

Variable and constraint node
degree statistics

Linear constraint matrix
features

Cariable and constraint
coefficient statistics

Objective function
features

Normalized objective coefficient
statistics

LP-based features Mean value of integer slack vector

Right-hand side features Mean value of the right-hand side

Probing based features Mixed integer programming gap

the histograms that capture the distributions of the objective values for each
objective. Finally, in the lower panel, we present the Spearman correlation coef-
ficients between objectives. From Fig. 3(a), several interesting phenomena could
be observed. First, under different objectives, the distributions of the objective
values vary significantly. For example, for the “unsat” objective, the objective
values of the Pareto schemes range within [100, 250]. Meanwhile for the “new”
objective, the corresponding interval is [500, 2500]. Second, from the upper panel
of Fig. 3(a), we observe that the relationships between objectives vary greatly
as well. For example, when we consider the relationship between the “changed”
and the “new” objectives, the points in the corresponding subfigure (row 2,
column 5) exhibits a near linear pattern. This phenomenon conforms with what
we observe in Fig. 2. Furthermore, the hypothesis that the two objectives are
correlated is supported by the Spearman test, with a coefficient 0.63. When we
consider the coefficients between other objectives, conflicts could be detected.
For example, there exists a clear negative correlation between the “removed”
and the “notuptodate” objectives.

More importantly, the correlation coefficients between objectives may also
vary significantly over different upgrade requests. In Fig. 3(b), we plot the pair-
wise histograms for the 5 objectives. In Fig. 3(b), each subfigure corresponds to
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the distribution of correlations between objectives over the 350 upgrade requests,
e.g., the upper left subfigure describes the distribution of the correlation between
the “removed” and the “changed” objectives. From the figure, we can observe
several phenomena that support our hypothesis. As expected, the correlation
coefficients between objectives vary greatly. For example, the majority of cor-
relation coefficients ranges within [−1, 0], when we consider the relationship
between the “removed” and the “unsat” objectives. This implies that the two
objectives are negatively correlated. Meanwhile, the “changed” and the “new”
objectives are positively correlated. Besides, in the figures, the “NA” indicates
the upgrade request and the corresponding objectives, for which the objective
value is constant.

Summary of RQ1: We detect conflict between different upgrade objectives.
Moreover, the correlation coefficients between objectives vary greatly over dif-
ferent upgrade requests. Hence, more analysis is required, to reveal more insights.

3.2 RQ2: Correlation Prediction

In the previous experiment, we detect variation of the correlation coefficients
when considering the relationships between objectives. In practice, the corre-
lation coefficients between objectives could be helpful, such as the objective
reduction in the field of many-objective optimization [13]. However, calculation
of these coefficients requires sampling Pareto schemes, which further relies on
exactly solving NP-hard problems. Consequently, this procedure is very time
consuming. In our experiment setup, sampling Pareto schemes for the upgrade
requests costs 225,070.4 s, which may not be tolerable in practice. As a solution,
we adopt the meta-learning approach, to investigate the underlying linkages
between problem specific features and the properties of Pareto scheme. In the
literatures, meta-learning has been widely used for algorithm selection [7], and
performance prediction [5]. These approaches share a commonality, i.e., a set of
features are extracted from the instances, to characterize their properties.

To extract problem-specific features from benchmark instances, we first
encode the upgrade requests with different formulations, and construct features
with off-the-shelf feature extractors5. First, due to the close relationship between
the software upgradability problem and SAT, we could transfer the upgradabil-
ity requests into their decision version SAT instances, and obtain the problem-
specific features accordingly. Second, the software upgradability problem could
also be described as MILPs. Consequently, given an upgrade request, we gen-
erate a MILP instances considering the equally weighted sum of the 5 objec-
tives. Then, feature extraction is conducted over the instance. In particular, we
merge the features from the two problem domains together, which results in 195
features6. The feature categories and the examples for each category are listed in
Table 1. For both problem formulations, the detail of the problem features could
be found in [5]. Besides, a byproduct of the feature extraction is that, we could
5 The code is obtained from http://www.cs.ubc.ca/labs/beta/Projects/EPMs/.
6 We make the data publicly available at http://oscar-lab.org/upgradability/.

http://www.cs.ubc.ca/labs/beta/Projects/EPMs/
http://oscar-lab.org/upgradability/
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Fig. 4. Correlation prediction results (Color figure online)

detect infeasible upgrade request at an early stage. For example, if the transfered
SAT instance is claimed to be unsatisfiable, satisfying the corresponding upgrade
request will not be possible. For the sake of simplicity, with respect to the correla-
tion associated with each pair of objectives, we build a regression model, namely
random forest [1], due to its effectiveness. Given all the 350 upgrade request, we
adopt the 10-fold cross-validation to evaluate the performance of the predictive
model. In particular, those “NA” values are assigned with an exception value
(1.5 in this study).

In Fig. 4, we present the prediction results of the regression. In the figure, the
x-axis and the y-axis indicates the actual and the predicted correlation over the
test set, within each fold of validation, respectively. Different objective combi-
nations are denoted with different colors. Moreover, in the figure we present the
Root Mean Square Error (RMSE) in the figure, to measure the accuracy of the
prediction. From the figure, we observe that the trained model is able to esti-
mate the correlation properly. The majority of the points lie closely around the
reference line y = x. For the accuracy measure, all the RMSE values achieved
by random forest lie below 0.2.

Summary of RQ2: With the problem specific features extracted from the
upgrade requests, we could detect potential correlations between objectives.

3.3 RQ3: Tradeoff Assessment

As in RQ1, we observe that the performances of mccs with the trendy and the
paranoid criteria may vary greatly over different upgrade requests. More impor-
tantly, using single-objective approaches such as lexicographic programming may
pose risks within the problem solving process. If the search is overly concerned
with certain objective, chances are that there may be other objectives over which
the single-objective approaches may perform poorly [2]. Consequently, applying
these methods may cause risks during the problem solving process.

In this experiment, we propose a measurements inspired by the reference
based solution evaluation routine in the evolutionary computation literatures
[9]. More specifically, the idea originates from the concepts of the ideal reference
points, which are constructed by the best objective values with respect to each
objective, considering all the Pareto schemes. With the ideal points described, we
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(a) trendy (b) paranoid (c) prediction results

Fig. 5. Distribution of tradeoff considering different criteria, and prediction results

define the risk of applying single-objective approaches for software upgradability
problem as the maximum loss considering all the optimizing criteria:

tradeoff(s) = max
1≤i≤5

{fi(s) − fi(ideal)}, (1)

where fi indicates the objective function of each optimizing criteria, and s indi-
cates the upgrade scheme achieved by certain algorithm. Given an upgrade
scheme s achieved by certain lexicographic programming algorithm, if s is close
to the ideal point, it would be suitable to accept the upgrade scheme to realize the
upgrade process. Contrarily, a large tradeoff value implies that the correspond-
ing scheme’s quality is poor with respect to at least one objective. Accordingly,
applying the corresponding upgrade scheme may be risky.

In Fig. 5, we present the distribution of the tradeoff measurements consider-
ing the two different criteria. From the figure, the following observations could
be drawn. First, for both the criteria, the tradeoff value varies diversely over
different upgrade requests. For example, for the paranoid criterion, the tradeoff
value ranges within [0, 2286], which means that there exists both easy upgrade
requests (tradeoff = 0), and requests which leads to large tradeoff. Second, Sim-
ilar as in RQ2, calculating the tradeoff indicator requires exactly solving the
software upgradability problem. To make the measurement practical for guiding
the problem solving process, we resort to the meta-learning mechanism again,
to estimate the tradeoff with the problem specific features. The experimental
setup is the same as in RQ2, except that we change the response variable from
the correlation to tradeoff defined in Eq. 1. The prediction results are illustrated
in Fig. 5(c), which is organized similarly with Fig. 4. From the figure, we can
observe that the random forest model is able to predict the risk measurement
tradeoff accurately. For both the trendy and the paranoid criteria, the RMSEs
achieved by the random forest model are 59.8582 and 114.6998, respectively.

Summary of RQ3: In this experiment, we propose a reference based indicator
tradeoff, to assess the suitability of applying aggregation based single-objective
algorithms to solve the problem. Furthermore, we demonstrate that the measure
is predictable, using the problem-specific features, which to some extent prevent
the time consuming Pareto scheme sampling.
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4 Conclusions and Future Work

In this study, we systematically investigate the relationships between multiple
objectives of the software upgradability problem. The contributions of the paper
could be summarized as follows. First, we design a series of experiments to
analyze the inter-objective relationships for the software upgradability problem.
Second, we apply the meta-learning technique to investigate the characteristics
of the upgrade requests. Furthermore, the trained model enables the prediction
of the properties of new upgrade requests. Finally, we propose a risk indicator, to
measure the suitability of applying single-objective algorithms to solve the multi-
objective software upgradability problem. However, there are still limitations
that deserve future work. For example, the Pareto schemes are achieved by an
exact solver. Due to the intrinsic complexity, sampling Pareto schemes for large
scale upgrade request can be very time consuming. In the future, we intend
to resort to multi-objective evolutionary algorithms [3,15] to approximate the
Pareto schemes. Besides, in this study, we treat the off-the-shelf feature extractor
as a black box, to capture the characteristics of the upgrade requests. Hence,
deeper insights could be gained, if we further study the properties of the features
mined from the upgrade requests.
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Abstract. This paper proposes a first step towards multidisciplinary
design of building spatial designs. Two criteria, total surface area (i.e.
energy performance) and compliance (i.e. structural performance), are
combined in a multicriteria optimisation framework. A new way of rep-
resenting building spatial designs in a mixed integer parameter space
is used within this framework. Two state-of-the-art algorithms, namely
NSGA-II and SMS-EMOA, are used and compared to compute Pareto
front approximations for problems of different size. Moreover, the paper
discusses domain specific search operators, which are compared to generic
operators, and techniques to handle constraints within the mutation. The
results give first insights into the trade-off between energy and structural
performance and the scalability of the approach.

Keywords: Evolutionary algorithms · Super-structure · Mixed inte-
ger optimisation · Multicriteria optimisation · Building spatial design ·
Building structural design · Building physics

1 Introduction

When designing buildings many disciplines have to be taken into account. For
example structural design, because a building structure should have optimal
strength, stiffness, and stability. Compliance is a specific measure of the stiff-
ness of the building structure and will be subject to investigation in this paper.
Another example is building physics, for which in this paper specifically climate
control is used as objective, via the minimisation of the building outer surface,
being a pre-cursor for future RC-network modelling obtaining minimal energy
use for heating and cooling. This is an increasingly important objective due to
unpredictable energy prices and climate protection. The built environment is
responsible for about 40 % of the total use of energy and materials [1].
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Traditionally, energy efficiency and structural design objectives are dealt with
in different engineering disciplines, and the same holds for various other objec-
tives (e.g. architectural engineering, construction, etc.). Multidisciplinary opti-
misation aims to combine different disciplines in order to find building designs
that perform well with respect to criteria from various disciplines. It has been
used with great success in areas such as automotive and aerospace engineering
[2], while in the building design domain its development is still somewhat limited.

This paper advances towards multidisciplinary optimisation of building
designs, starting with finding building spatial designs based on criteria from
structural design (compliance) and energy efficiency (total surface area). By
proposing a multicriteria optimisation approach, the problem of conflicting
objectives is discussed. In this case a Pareto front of building designs is com-
puted that can be used in preparation of decision making, to understand design
principles that lead to high performance in one discipline or the other discipline,
and to find valid compromise solutions.

Traditional algorithms in (evolutionary) multicriteria optimisation, such as
SMS-EMOA and NSGA-II, have been formulated for parametric design spaces.
For such spaces they have been extensively tested and show a reliable perfor-
mance. Recently a new super-structure for building spatial design was introduced
by the authors [3,4] and here it is used for multicriteria optimisation for the first
time. The super-structure encodes building spatial designs by means of a mixed
integer representation. By changing discrete variables a large number of alterna-
tives can be encoded. Continuous variables are used to change the dimensioning
of these alternatives. Building spatial designs are viewed as configurations con-
sisting of building spaces that do not overlap with each other. To enforce the
feasibility of the structural designs generated for the building spatial designs,
constraints on the variables are formulated by means of equations, which are
checked before evaluation.

Given these preliminaries, this paper will provide the following research
contributions: (1) first results on multicriteria optimisation of building spatial
designs, including topology choices, (2) discussion of domain specific algorithm
design aspects (search operators, constraint handling), and (3) interpretation
and discussion of the evolved Pareto fronts in the multidisciplinary building
design context. Another aspect discussed in this paper is the scalability of the
approach in terms of the size and complexity of the building spatial design.

The remainder of this paper is structured as follows. Section 2 provides a
brief summary of building design optimisation and the discipline-specific objec-
tives. Then Sect. 3 discusses multicriteria optimisation techniques. The search
space representation, constraints and objective functions are discussed in Sect. 4.
Algorithm details are given in Sect. 5. Thereafter, in Sect. 6 numerical results are
presented and Sect. 7 discusses these results and provides an outlook.

2 Building Spatial Design

Usually a building is designed by an architect and several engineers. They dis-
cuss their progress in project meetings, yet each discipline spends much effort on
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solving and optimising (discipline specific problems) at their own office. As such,
fruitful interaction between disciplines is not guaranteed. This inefficiency of sep-
arated disciplines in the built environment gained acknowledgement [5], which
gave rise to tools that allow more direct collaboration between engineers. One
such tool is building information modelling (BIM) [6]. Through the modelling
of data from various disciplines BIM allows information to be shared between
engineers working on different building design aspects. Since choices made dur-
ing the early stages of a design naturally propagate to the later stages, tighter
collaboration by employing such tools may avoid one discipline disproportionally
affecting performances in other disciplines.

An overview of optimisation tools in the built environment is provided by
Palonen et al. [7]. Such tools generally parametrise components of the building
design to enable the optimisation. Often these tools are limited to variation of
the design through alteration of component variables, adding new components is
rarely possible. Advances are made though, for example in the work by Hofmeyer
and Davila Delgado [8], which focuses on optimisation via the simulation of a
co-evolutionary preliminary building design process. Another interesting work is
that of Hopfe et al. [9] where the significance of design variables on the building
physics performance is predicted.

3 Multidisciplinary and Multicriteria Optimisation

Recently it has been recognised [5] that in order to help design teams consisting
of experts from different disciplines in finding solutions, objectives and simula-
tions from different disciplines have to be considered in concert. Multicriteria
optimisation can be an important method in this context, as it allows to deal
with conflicting objectives and can effectively support decision making.

In general, a multicriteria optimisation problem (MOP) is defined by a set
of objective functions fi : X → R, i = 1, . . . ,m to be minimised (or maximised)
for some search space X. Moreover, constraint functions gj(x) are usually con-
sidered, the value of which must be kept within a prescribed range.

For two feasible solutions x and x′, it is said that x (Pareto) dominates x′, if
and only if ∀i = 1, . . . , m: fi(x) ≤ fi(x′) and there exists j = 1, . . . ,m : fj(x) <
fj(x′). The efficient set XE is the subset of X consisting of points that are not
dominated by any point in X. The set {(f1(x), . . . , fm(x))T |x ∈ XE} ⊂ R

m

is called the Pareto front (PF) of the MOP (given it exists). The PF provides
valuable information about the space of all relevant solutions and their trade-
offs. This paper aims to compute the PF for the real world problem of building
spatial design and discuss the trade-offs between discipline specific objectives.

Recently, various powerful black box optimisation algorithms have been pro-
posed for approximating Pareto fronts. Many of these belong to the class of
evolutionary multicriterion optimisation, which use selection and variation (sto-
chastic mutation, recombination) to steer a population of search points close
to the Pareto front. The selection operator needs to take into account Pareto
dominance, but diversity maintenance is also important in order to guarantee
that all parts of the Pareto front are covered.
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Two state-of-the-art evolutionary multicriterion optimisation algorithms,
namely NSGA-II [10] and SMS-EMOA [11] are used as basic strategies in this
paper. These algorithms will be instantiated for a domain specific search space.

4 Formal Problem Specification

4.1 Search Space Representation

The supercube representation, recently proposed by the authors [3,4], serves to
represent the design space by means of continuous and discrete variables. The
goal of the supercube representation was to formulate building design optimisa-
tion as a mixed integer nonlinear programming (MINLP) problem, an approach
that in other domains is typically referred to as super-structure-based optimisa-
tion. Essentially, discrete variables encode the topology of spaces in the building
spatial design and continuous variables determine the dimensioning of the spaces.

h1

h2

hNh

w1 w2 wNw

d1

d2

dNd

b�
1,1,1

b�
2,1,3

Fig. 1. Supercube grid representation (left) and building spatial design (right).

Building spatial designs consisting of Nspaces spaces are encoded in a cuboid
(3D rectangle) grid of Nw×Nd×Nh cells, these variables respectively refer to the
number of cells in width, depth and height directions. In turn those same direc-
tions employ the indices i ∈ {1, . . . , Nw}, j ∈ {1, . . . , Nd} and k ∈ {1, . . . , Nk},
to determine their dimensioning with the variables wi, dj and hk. Finally each
cell may be turned on or off as being part of a space � ∈ {1, . . . , Nspaces} by the
binary variable b�

i,j,k. This is referred to as the supercube representation, Fig. 1
shows an example of a supercube and a derived building spatial design.

4.2 Topology Constraints

Four topology constraints are considered to disallow configurations of the super-
cube that are infeasible from an engineering point of view. All of these constraints
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can be described in mathematical form with just sums and products as presented
by the authors in [3,4]. Textual explanations of the constraints and an example
of the mathematical notation follow.

No Overlap ensures each cell is active for at most one space which can be
defined mathematically with Eq. 1. Spaces should have a Cuboid Shape. This
can be checked in two steps. Firstly it is ensured that for every space active cells
appear at the same indices in all distinct rows, columns and beams. Secondly it
is checked there are no gaps between the active cells of a space. Vertical Gaps
between spaces, like archways and cantilevered parts, are disallowed in order
to facilitate the check to determine whether a building stands on the ground
by simple procedures. Finally a Constant Number of Spaces is enforced by
making sure every space consists of at least one cell.

∀i,j,k :
Nspaces∑

�=1

b�
i,j,k ≤ 1 (1)

4.3 Objective Functions

Energy performance is measured as the total outside surface area of the building
spatial design, excluding the floor surface of the ground level. In the future, a
RC-network model is planned to find heating and cooling energy per space.

For structural performance a black box simulator is used (meaning standard
MINLP solvers cannot be used for optimisation) with the following settings.
First the building spatial design is provided with a structural design via a so-
called structural grammar. The grammar used here adds four concrete walls and
a concrete roof (a slab) to every space, both with a thickness t=150 mm. Young’s
modulus of the concrete is set to E=30000 N/mm2 and Poisson’s ratio to v = 0.3.
Live loads of 1.8 kN/m2 are then applied to each slab, and wind loads from eight
directions (N, NW, W, etc.) are applied to the building spatial design (with a
pressure of 1.0 kN/m2, a suction of 0.5 kN/m2 and a shear of 0.4 kN/m2) and
transferred to the structural design. Using a finite element analysis (FEM), the
compliance over all loads is calculated. For more details, see [8].

5 Algorithm Design

5.1 Volume Repair

A fixed volume V0 for the building spatial design will be maintained during
optimisation because otherwise objectives could possibly be optimised largely
by taking extreme values for the continuous variables. The volume is taken as in
Eq. 2 below. To exclude inactive cells bi,j,k is found by: bi,j,k =

∑Nspaces

�=1 b�
i,j,k,

note that Eq. 1 needs to hold.

Nw∑

i=1

Nd∑

j=1

Nh∑

k=1

bi,j,kwidjhk = V0 (2)
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When the volume of a new individual is not within a 1 % deviation of V0 it
is repaired by scaling the continuous variables. After scaling, continuous vari-
ables exceeding the lower bound are set to the lower bound. Variables exceeding
the upper bound are multiplied by 0.95 until their value is within the bound.
Naturally changes to variable values will also change the volume, therefore the
process is repeated until the bound checks succeed without changes to the vari-
ables. Using the desired volume and the current volume Vc a factor α = V0/Vc

may be computed. Multiplying the dimensions of the supercube with the cubic
root of α results in V0. As such the scaling function is described by Eq. 3.

∀i : wi = 3
√

αwi ∀j : dj = 3
√

αdj ∀k : hk = 3
√

αhk (3)

5.2 Optimisation and Constraint Checking

NSGA-II and SMS-EMOA are used with typical settings in the experiments
below. In most cases they use the same settings and operators; otherwise it
is indicated. A lower bound lb = 3 and upper bound ub = 19.8 are used for
the continuous variables. Selection strategies are (20 + 20) for NSGA-II and
(50 + 1) for SMS-EMOA. For the ease of notation Ncells := Nw × Nd × Nh is
defined. Binary variables have a probability of 1/Ncells to be initialised to one,
or zero otherwise. Continuous variables are set to a value from lb+(ub− lb)×U ,
where U is drawn uniformly at random from ]0, 1]. Moreover, a fixed step size
0.05 × (ub − lb) is used for the continuous variables. Following the initialisation
the volume of the parent population is repaired as described in the previous
subsection with a desired volume V0 = 43 × Ncells. Each individual is evaluated
as follows. If any constraint is violated a penalty value pen is returned based
on the number of violations CV such that pen = 999, 999, 999 + CV − 1. Here
CV is an integer from one to five to indicate the number of violations. The five
constraints relate to the four previously described constraints. The two parts of
the cuboid shape constraint are counted separately. The objective functions are
only evaluated when no constraints are violated. An evaluation budget of 2500
is used in the experiments. Note that constraint checks are not considered as
evaluations here.

Each offspring is created by applying crossover and mutation. For crossover
a parent P1 is selected uniformly at random from the population. A second par-
ent P2 is then selected uniformly at random with a probability of 0.5, otherwise
P2 = P1. Parents are either recombined with a probability of 0.5, or copied to
the different children C1 and C2. Each binary variable is recombined as C1 = P1
and C2 = P2 with probability 0.5, or as C1 = P2 and C2 = P1 otherwise. Sim-
ulated binary crossover is applied to the continuous variables. When a variable
exceeds a bound it is set to lb or ub as applicable. Finally either of the children is
selected with probability 0.5. Mutation is applied with a probability of 1/Ndims,
where Ndims := Ncells ×Nspaces +Nw +Nd +Nh is the total number of variables.
Binary variables are mutated by bit flips. Polynomial mutation is applied to con-
tinuous variables above the lower bound, variables exactly at the boundary are
reinitialised (as previously described). Following mutation variables exceeding
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their bounds are set to their appropriate boundary values. The volume of the
produced offspring is repaired as previously described. NSGA-II then applies
non dominated/crowding distance sorting to the population of size μ + λ before
selecting the first μ individuals for the next parent population. SMS-EMOA
selects based on the hypervolume contribution (reference point (1.1e9, 1.1e9)).

5.3 Smart Mutation

The general mutation and recombination operators used in NSGA-II and SMS-
EMOA have difficulties navigating heavily constrained objective landscapes, such
as considered here. A smart mutation operator is proposed which only produces
mutants that do not violate the problem specific constraints. Since the algorithms
have similar performance only SMS-EMOA is considered with smart mutation.

The smart mutation method works by extending or reducing spaces by either
adding or removing a surface of cells. This is done by selecting one of the following
faces of the space to make either an outward or an inward move: left, right, top,
bottom, front or back. All moves are applied to all cells along the selected face
of a space, such that the space remains cuboid when adding and removing cells.
These moves are of size one, meaning that the width, depth or height (depending
on the selected face) of a space grows or shrinks by a single cell. Whenever an
outward move adds a cell to a space A that is already part of a space B the cell
is set to inactive for space B. From all mutation steps that do not result in a
constraint violation one is chosen uniformly at random.

A new offspring individual is then created as follows. A parent is selected
uniformly at random. Smart mutation is applied with a 0.25 probability, other-
wise a continuous variable that is relevant to at least one active cell is selected
uniformly at random and mutated by polynomial mutation. No crossover is used.

Initialisation of binary variables is changed to ensure the initial population
consists solely of valid individuals. For every space a non-fully occupied pillar
is selected uniformly at random from the supercube and the first cell from the
bottom that does not belong to any previously initialised space is set active for
this space. To increase diversity in the initial population twenty smart mutations
are applied to the initial individuals of single cell spaces.

Penalty values are no longer used since all offspring are now guaranteed to
be valid. The remaining procedures are the same as in Subsect. 5.2.

6 Numerical Results

Problem configurations are denoted by four numbers. The first three indicate
the dimensions of the supercube and the last indicates the number of building
spaces that are considered. For example 2225 indicates a problem with a 2 ×
2 × 2 supercube and five spaces. Every experiment averages over five runs using
average Pareto fronts (median attainment curves [12]). Tests were done for 222
and 333 configurations both with one, three and five spaces.
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Fig. 2. Average hypervolume growth over five runs, reference point (35000, 2500), for
one, three and five spaces in 222 (left) and 333 (right) configurations.

The various problem configurations show a quick convergence to a relatively
stable hypervolume (taken with log(1 + compliance), surface area) in Fig. 2,
with more complicated configurations naturally taking move evaluations before
stabilising. NSGA-II and SMS-EMOA produce similar attainment curves as may
be observed in Fig. 3. This indicates the considered process works and results in a
Pareto front approximation. The standard deviations of the hypervolume at the
final generation are relatively small for most problem configurations and do not
change the numerical result. Only for the 3335 configuration large deviations
occur for the generic methods, but even their highest hypervolume solutions
do not outperform the smallest hypervolume found by the method with smart
mutation. A one sided Wilcoxon test between NSGA-II and SMS-EMOA results
in W = −1, indicating there is no significant difference. Moreover, applying the
one sided Wilcoxon test between either of those methods and smart SMS-EMOA
results in W = 15, indicating the method with smart mutation is better with a
statistical significance of 0.05.

Fig. 3. Median attainment curves from five runs for one, three and five spaces in a 222
configuration (left) and a 333 configuration (right).

Smart SMS-EMOA produces similar results to the other two approaches for
single space problems as can be observed in Fig. 2. For the problems with three
spaces the method with smart mutation improves over the other two by a decent
margin, and for five spaces it is clearly better both in terms of convergence speed
and the final solution. The same behaviour can be observed in Fig. 3, where
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Fig. 4. Best spatial designs found with smart SMS-EMOA for the 3335 configuration.
Minimal compliance (left), knee point (center) and minimal surface area (right).

differences in performance become more pronounced with larger problem sizes.
Clearly, smart mutation produces a better Pareto front approximation.

Figure 4 shows the best found spatial designs in terms of each objective as well
as a compromise solution at the knee point of the median attainment curve. As
can be expected the optimal spatial design in terms of minimal surface area has a
cuboid shape. The knee point solution is largely similar, but has a slightly lower
structure and as a result is stretched in both width and depth to maintain the
volume. Finally the minimal compliance solution has an L-shaped and elongated
structure. The lower structure can be explained since it results in less strain on
the structural elements, reducing the compliance.

Table 1. Average runtime over five runs, rounded to the closest whole minute.

Problem configuration 2221 2223 2225 3331 3333 3335

CPU time (minutes) 42 342 888 42 620 1008

Table 1 shows the CPU time used with smart mutation. The other methods
performed similarly because the compliance computations used by far the most
CPU time. Each experiment used a single core of an i7-3770 CPU @ 3.40 GHz
processor and with 16 GiB DIMM DDR3 Synchronous 1600 MHz memory.

7 Discussion

Multicriteria optimisation algorithms for a building spatial design have been
developed and tested for moderate size problems. The problem has been for-
mulated as a mixed integer program. Moreover, the problem is characterised
by a large number of constraints and a specific constraint handling mutation
operator has been proposed. Pareto front approximations have been obtained.
They always have a convex shape which makes it possible to find compromise
solutions in knee points. The results show that smart mutations can be benefi-
cial for exploring larger and more dense regions. However, in order to scale up
the problem size further research in this direction is needed, including recom-
bination operators. Moreover, surrogate modelling may allow for a more effi-
cient exploration of the objective landscape. Finally, while statistical significant
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improvement was shown when using the method with smart mutation, parame-
ter tuning should be applied in future work to compare the methods with their
optimal parameter settings.

Acknowledgments. The authors gratefully acknowledge the financing of this project
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Energy Use, Optimal Spatial and Structural Performance).
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Abstract. This paper introduces a novel type of a problem in which two
travelling salespersons are competing, where each of them has two conflicting
objectives. This problem is categorized as a Multi-Objective Game (MOG). It is
solved by a non-utility approach, which has recently been introduced. According
to this method all rationalizable strategies are initially found, to support poste-
riori decision on a strategy. An evolutionary algorithm is proposed to search for
the set of rationalizable strategies. The applicability of the suggested algorithm
is successfully demonstrated on the presented new type of problem.

1 Introduction

Studies on the Travelling Salesman Problem (TSP) have produced many versions of
the original problem. Among such TSP versions are multi-objective problems (e.g.,
[1, 2]) and game problems (e.g., [3, 4]). This paper introduces a new version of a TSP,
which amalgamates the aforementioned types of problems. The proposed TSP concerns
a multi-objective game (MOG) between two salespersons that compete over markets,
which are located in different cities. In such a game, each of the salespersons has
multiple conflicting objectives (two in the current example).

The proposed MOG is examined based on the solution concept of rationalizable
strategies’ of MOGs. According to this concept, which has recently been introduced in
[5], the rationalizable strategies are a result of a non-utility approach to MOGs. The set
of the rationalizable strategies encloses all the strategies that may serve as the best
response when considering a situation in which the players are undecided about their
objective preferences. As shown in [5], finding the set of rationalizable strategies
allows the players to select a preferred strategy, out of that set, using multi-criteria
decision-making considerations. In order to find the set of rationalizable strategies, a
modification to the evolutionary algorithm of [6] is suggested. The modified algorithm
serves as an alternative search approach to the one presented in [7]. It is noted that a
comparison of the proposed algorithm with that of [7] is left for future work.

The rest of this paper is organized as follows. Section 2 provides some background
on MOGs under undecided objective preferences. Section 3 presents the proposed new
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type of problems and Sect. 4 describes the proposed algorithm. Next, an example is
presented in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Background

Many practical problems, in economics and engineering, can be modeled as games
with multiple objectives or payoffs. Furthermore, each player might deal with her own
conflicting objectives. In such games, which are termed MOGs, a vector of objective
functions must be considered (e.g., [8]). If MOGs’ players have objective preferences,
then a utility function can be used to transform the MOG into a game with a single
objective per each player. But, players may want to postpone the decision to a stage
after all possible strategies are found and their performance trade-offs are examined.
The idea of MOGs with undecided/postponed/undeclared objective preferences, was
first presented in [6]. It was re-examined more recently in [5], where the concept of
rationalizable strategies has been introduced.

As in [5], the considered game is zero-sum with respect to each component of the
payoff vector. The game is pure strategy, single-act and non-cooperative. It is also of
incomplete information because the players do not know what the opponent’s objective
preferences are. The ideas of [5] are summarized below.

2.1 The Players, Strategies and Payoffs

A MOG is considered between two players P1 (maximizer), and P2 (minimizer). Let S1
and S2 be the sets of all possible I and J strategies for P1 and P2 respectively, such that:

S1 ¼ s11; s
2
1; . . .:; s

i
1; . . .. . .; s

I
1

� �
; S2 ¼ s12; s

2
2; . . .:; s

j
2; . . .. . .; s

J
2

� � ð1Þ

Where I and J are the total number of strategies of P1 and P2, respectively.
The interaction between the ith strategy and the jth strategy played by P1 and P2,

respectively, results in the following payoff vector:

�fi;j ¼ f 1ð Þ
i;j ; f 2ð Þ

i;j ; . . .; f kð Þ
i;j ; . . .; f

Kð Þ
i;j

h iT
2 R

K ð2Þ

Where K is the number of objectives (payoffs) considered by each player.
The set of all interactions between a strategy si1 of player P1 and each of the

available strategies of the second player P2 results with the following set of payoff
vectors (performances) that are associated with strategy si1:

Fsi1
¼ �fi;1; . . .;�fi;j; . . .;�fi;J

� � ð3Þ

In the same way, the set of the associated payoff vectors (performances) of strategy
sj2 of the maximizer is:
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Fsj2
¼ �f1;j; . . .;�fi;j; . . .;�fI;j

� � ð4Þ

2.2 The Set of Rationalizable Strategies

As explained in [5], a general zero-sum MOG can be evaluated as a minimization or a
maximization problem, depending on the players’ viewpoint. Formally:

For the maximizer P1 : maxs j22S2 minsi12S1
�fi;j
� � ð5Þ

For the minimizer P2 : minsi12S1 maxs j22S2
�fi;j
� � ð6Þ

However, the above are ill-defined. When applied on a vector, the operators max
and min require an interpretation. Here, following [5], the interpretation concerns the
use of domination. When the maximizer is the optimizer, the representative set includes
the Pareto-fronts (anti-optimal) as obtained by solving the minimization problem for
each of the maximizer’s strategies:

F��
si1

¼ �fi;j 2 Fsi1
j:9�fi;j0 2 Fsi1

: �fi;j0 �min �fi;j
n o

8j; j0 ¼ 1; J½ � ð7Þ

The set of all the anti-optimal fronts of P1 is a set of sets, as defined below.

F��
1 ¼ F��

s11
; . . .;F��

si1
; . . .;F��

sI1

n o
ð8Þ

Sorting F��
1 and selecting the dominating sets in the minimization problem (dominating

in the inverse problem) will result in the maximizer’s (P1) irrational strategies. Hence,
the set of irrational strategies of the maximizer are:

Sirr1 := si1 2 S1j9si01 2 S1F
��
si1

�min F��
si01
8i; i0 2 1; I½ �

n o
ð9Þ

The set Sirr1 includes all P1’s strategies that are associated with a dominating
anti-optimal front in the maximization problem. The set of rationalizable strategies of
P1 is the relative complement of S1 and Sirr1 :

SR1 ¼ S1 � Sirr1 ð10Þ

The set SR1 includes all P1’s strategies that are associated with a non-dominating
anti-optimal front in the maximization problem where the cardinality of SR1 is SR1

�� �� ¼ I 0

and 1� I 0 � I. Each of the rationalizable strategies is represented in the objective space
by its related anti-optimal front. The union of all the I 0 anti-optimal fronts of the
rationalizable strategies F��

si1
form the rationalizable layer of P1:

FR
1 ¼

[I 0

i¼1
F��
si1

where F��
si1
�F��

1 ð11Þ
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2.3 Selecting a Strategy

The set of rationalizable strategies and their performances can be used to select a
strategy. This, however, is not within the focus of this paper, and the interested reader
is referred to [5] for some suggested ideas concerning such a selection.

3 Proposed TSP

The proposed type of a TSP concerns a MOG between two salespersons that compete
over costumers that are located in several cities. Each of the salespersons has multiple
conflicting objectives (taken as two in the studied case). The basic assumption is that
neither of them knows what the chosen route of the opponent is.

The game arena is represented as undirected weighted graph. The considered graph
contains N vertices (cities), where each vertex represents one member of the cities’ set
C ¼ c 1ð Þ; c 2ð Þ; . . .; c Nð Þf g. The arcs of the graph represent the roads between the
cities. The game is between two competing salespersons (players), which are denoted
by P1 and P2. A strategy of a player, which is a chosen route (path), is defined as a
partial permutation of the cities’ set C. Each player may visit a city no more than once.

The routes of the players are described as the ordered sets Path1 ¼ c11; c
1
2; . . .; c

1
N1

n o

and Path2 ¼ c21; c
2
2; . . .; c

2
N2

n o
(where 1�N1;N2 �N) for the first and second players,

respectively. Each element c1i or c
2
j of the routes denotes a city, such that the superscript

points to which player visited that city, and the subscript indicates the order by which
the player visited it.

Each interaction between two strategies of the players is assessed by each player
using two payoffs. The first payoff is based on the difference between the lengths of
players’ routes. The second is based on a difference between the values of the cities
visited by the players. Let L1 ¼ Length Path1ð Þ and L2 ¼ Length Path2ð Þ be the route
length of the paths of P1 (the maximizer) and P2 (the minimize), respectively. It is
assumed that each city c ið Þ has a different market size, which is considered as the
value of this city, v c ið Þð Þ 2 vmin; vmax½ �. Then, the revenue of P1 and P2 is V1 ¼
Value Path1ð Þ ¼ PN1

i¼1 v c1i
� �

and V2 ¼ Value Path2ð Þ ¼ PN2
i¼1 v c2i

� �
, respectively.

If both routes contain common cities, namely Path1 \Path2 6¼ £, then the first player
arriving to a common city, earns the city value, whereas the other gets no added value
for visiting this city. It is noted that the player with the shortest route to a common city
is considered here as the first to arrive to that city.

In the considered game the first objective is f 1ð Þ ¼ L2 � L1 and the second is
f 2ð Þ ¼ V1 � V2. Player P1 aims at maximizing both objectives while P2 aims at min-
imizing them. The reason for this objectives setting is to form a complete contradiction
between the two players such that the game is a zero-sum game. In future work we
intend to define the objectives such that each player concerns only for her own path
length and path value.
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4 Proposed One-sided Algorithm

The suggested evolutionary algorithm is a modified version of the one introduced in
[6]. It searches for the rationalizable strategies of one player (optimizer) at a time.
Hence, we refer to it as a one-sided algorithm, as opposed to the co-evolution algorithm
of [7]. The principles of the algorithm are described below.

The proposed evolutionary algorithm includes an inner and an outer loop, in a
manner similar to that of [6]. Note that in the current application the crossover operator
is omitted. As in [6], the inner-loop finds the representative anti-optimal front of each
strategy of the considered population (of the optimizer). Namely, at each inner itera-
tion, the worst possible actions of the opponent are taken into considerations. When all
the iterations of the inner-loop are completed, each of the optimizer’s strategies of the
current generation is represented by an anti-optimal front.

At the outer-loop, the optimizer implements a set-based optimization procedure, by
applying a procedure similar to that of [6]. Namely, at the outer-loop, the optimizer is
applying an optimization procedure based on the representative anti-optimal fronts of
her strategies. However, there is a significant difference between the current work
and [6]. This difference is in the process of selecting the strategies for the optimizer in
the outer-loop. In [6], the optimizer selects the strategies with the best anti-optimal
fronts while here, the optimizer excludes the strategies with the worst anti-optimal
fronts. This difference stems from the definition of the rationalizable strategies in [5].
The outer-loop procedure to sort and select the strategies is described in the following.

4.1 Strategies’ Fitness and Sorting

The outer-loop of the algorithm performs a lexicographic selection of strategies (similar
to that in [9]). It is based on two indicators including: rank (r) and in-rank (ir) grade.
When comparing two strategies, the one with a higher rank is preferred. If the ranks are
equal, then the strategy with the higher in-rank grade is preferred.

The rank of a strategy r is calculated by sorting the strategies as follows. All
strategies that their representative anti-optimal fronts do not dominate any other
anti-optimal front (in the inverse optimization problem), receive the best rank
(rank ¼ 1). Next, these strategies and their representative anti-optimal fronts are
removed from the list and the above step is repeated with rank ¼ rankþ 1. This
procedure is repeated until all strategies are assigned with a rank.

The ir grade, of strategies of the same rank, is calculated based on [5], which
follows [10, 11]. In order to assign a strategy q with its ir grade, the anti-optimal front
F��
q of the strategy is compared with that of any p strategy within the same rank.

Without loss of generality, in a maximization problem each such comparison results
with a value that is calculated using the following indicator:

Idþ F��
q ;F��

p

� �
¼ max�f q2F��

q
min�f p2F��

p
maxk2 1;K½ � f kð Þ

q � f kð Þ
p

� �
ð12Þ
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Namely, the indicator Idþ of the first anti-optimal front is the minimal distance that
the second anti-optimal front needs to be moved (in both directions) until it becomes
dominated by the first front in the inverse optimization problem. The in-rank-grade ðirÞ
of a strategy is the minimal value of all its Idþ indicators, obtained out of all the
pair-wise comparisons of its anti-optimal front with all the anti-optimal fronts of the
other strategies within the same rank. Namely, if there are N strategies in the rank of the
strategy with the anti-optimal front F��

q then the in-rank grade (ir qð Þ) of this strategy is:

ir qð Þ ¼ minp2 1;N½ �^p6¼q Idþ F��
q ;F��

p

� �� �
ð13Þ

4.2 The Route Coding

Each route is represented by two vectors of size N, where N is the number of cities. The
first vector is a permutation of the N cities. The second vector is a random binary
vector. The route is a list of cities from the first vector which is created by eliminating
from the permutation vector all the cities that are associated with a zero in the second
vector. Consider a TSP with six cities, C ¼ c 1ð Þ; c 2ð Þ; c 3ð Þ; c 4ð Þ; c 5ð Þ; c 6ð Þf g or in
short = {1, 2, 3, 4, 5, 6}. Within the considered case, a possible example of a per-
mutation vector is {3, 1, 6, 4, 2, 5}. Assuming that the binary vector is {1, 0, 0, 1, 1, 0},
then the coded path is path ¼ c 3ð Þ; c 4ð Þ; c 2ð Þf g. It is noted that at the end of the tour
the salesperson returns to the starting city. Hence, the actual path is
h ¼ c 3ð Þ; c 4ð Þ; c 2ð Þ; c 3ð Þf g, or in short path ¼ 3; 4; 2; 3f g.

5 Case Study

This section provides an example of the proposed competitive TSP. It is designed to
illustrate the effectiveness of the proposed algorithm and the type of information that it
provides to the salespersons.

5.1 The Arena

The considered arena includes fourteen cities. Twelve cities are arranged in two groups
(metropolises), as shown in Fig. 1.

The index of each city is given in brackets, and the adjacent number is the city
value. The groups are cities 1�6½ � and 7�12½ �. The two remaining cities (13 and 14) are
located far from both metropolises (metros). These cities are hereby termed countryside
cities. The countryside city 14 is closer to the 1st metro and the countryside city 13 is
closer to the 2nd metro.

Each salesperson starts the tour from a different metro. The first salesperson starts at
city 5 and the second one at city 8. The starting city of P1 and P2 is denoted in Fig. 1 by
light and dark gray squares, respectively. It is noted that the values of the two coun-
tryside cities are taken higher than those of the metro cities. The higher values give the
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salespersons a “motivation” to deviate from the metros toward the countryside cities.
In this arena it is expected that each salesperson will not travel to the other metro.
When traveling towards the other metro, the objective of a minimal path length is
negatively affected. Moreover, by traveling to the other metro the value of the tour is
not necessarily improved, as the other salesperson is expected to already visit the cities
of that metro. On the other hand, it is not as clear if the incentive to go to the
countryside cities, due to their higher values, is sufficient. This issue can be examined
using the proposed algorithm.

It is noted that the current TSP problem is a selective one, namely the tour may hold
any number of cities, such that 1� pathj j �N. In the current problem setting, all the
paths start from a fixed city, therefore the number of all possible paths is:

PN�1
n¼1 n!,

which is the sum of all possible partial permutations of a set of N � 1 cities. Hence, in
the given problem of = 14, the number of possible paths is 6:75� 109 and therefore the

number of possible interactions of the considered game is 6:75� 109ð Þ2¼ 4:56� 1019.

5.2 Results

The following results were obtained using 100 individuals and 100 generations for the
inner-loop and 50 individuals and 50 generations for the outer-loop. The employed
mutation rate was 20 % and no crossover was used. The mutation is a random
switching between two genes at each vector of the genotype. It is noted that the term
rationalizable is hereby shorten to rational. Figure 2 shows an entire set of payoff
vectors of all fronts, from a typical run. Clearly, from the maximizer perspective, the
fronts of the rational strategies are better than those of the irrational strategies.

Figure 3 describes typical results as obtained for the maximizer. Two anti-optimal
fronts are shown. The upper and lower ones correspond to the rational and irrational
strategy of the middle and left panel, respectively. At each of these strategies, the starting
city of the salesperson is denoted by a square and the second city by a star. The value of
each city is indicated aswell. Examining theobjective space (right panel of Fig. 3) it canbe
seen that the anti-optimal front of the irrational path dominates the anti-optimal front of the
rational path (in aminimization problem). The shown rational strategy ofP1 is path {5, 14,

Fig. 1. Arena

The Competing TSP Under Multi-criteria 469



4, 6, 3, 5}, while the irrational one is path {5, 11, 4, 14, 3, 5}. Themain difference between
the two paths is that the irrational includes city 11 of the remote metro, while the
rationalizable one does not. Moreover, P1 visits this city right after living the initial city,
while in the rational path, the salesperson goes directly to city 14 and does not visit city 11
at all. It seems obvious that visiting city 11 is an irrational choice for P1. Not only that this
city is in the remote metro, but it is also the city with the lowest value there. Therefore,
visiting this city is an irrational choice as by doing so the length of the path increases
significantly while the value is hardly improved. Moreover, by visiting city 11, P1 risks
losing city 14 of the high value, to the opponent. Another difference between the rational
and irrational paths is that in the irrational path, the salesperson skips city 6. This city is in
themetro ofP1 andhas the highest value (80) there, so skipping this city is also an irrational
choice. On the other hand, in the rational path, the salesperson travels directly to the
countryside city (14) with the highest value. After visiting city 14, the salesperson returns
to her metro and visit two more cities with high values (cities 4 and 6) and one city with a
low value (city 3).

Fig. 2. Fronts of rational (black) and irrational (gray) strategies

Fig. 3. Example of a rational and an irrational strategy of the maximizer, P1 (middle and right
panels respectively). The associated anti-optimal fronts (left panel).
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Sixty-two runs were performed, where each run produced a multiset of (approxi-
mated) rationalizable strategies. To allow statistical analysis, several preliminary steps
are carried out as follows. First, a set Q is created of all different paths, as obtained from
all the 65 multisets. It turns out that the resulting set includes 64 different paths (64 out
of 6:75� 109 possible paths). These are denoted as pr, where r 2 f1; 62g. Second, the
62 multisets are united into a multiset, which is denoted as M. Third, the number of
repetitions of pr in M is denoted as qr. Finally, the frequency of a solution pr is defined
as 100qr= Mj j. The paths with the six highest frequencies are shown in Fig. 4, which
also indicates (in brackets) their frequencies. It is noted that most of the 64 paths appear
in a very low frequency (less than 1 %). Moreover, the frequencies are decaying fast
such that the sixth solution is already with only 1.24 %.

Almost all (94.5 %) of the rationalizable solutions are paths within the salesperson
metro and the nearby city. Most (over 88.5 %) of the rationalizable solutions are paths
that include city 14 (the countryside city with the highest value). Among the most
frequent solutions is path {5} which corresponds to the shortest path length on the
expense of a low value. The duplication of the most frequent solutions may indicate
that the diversity is poor, and therefore convergence may be too fast. We suspect that
this phenomenon is due to the use of the in-rank grade, which is measured within the
objective space rather than using diversification in the genotypic (strategy) space.

6 Summary, Conclusions and Future Work

The current paper presents and defines a novel type of a TSP in which two salespersons
are competing. In contrast to previous studies on competing TSP, here the problem is
posed as a multi-objective game under undecided objective preferences. In addition,

Fig. 4. The paths of P1 with the six highest frequencies. (The 1st city is designated by a square
and the 2nd by a star)
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this work proposes a new algorithm to find the rationalizable strategies in such games.
The proposed algorithm is demonstrated on the aforementioned TSP. Future work will
include: (a) speciation within the strategy space by a measure of dissimilarity between
paths, (b) a comparison of the results of the proposed algorithm with those obtained by
the algorithm of [7], (c) extension to a non-zero-sum game, (d) solving more general
cases of competitive TSP. Finally, it should be noted that some initial work on eval-
uating the algorithms using test functions and specially devised measures can be found
in [12].
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Abstract. The success of local search techniques in the solution of
combinatorial optimization problems has motivated their incorporation
into multi-objective evolutionary algorithms, giving rise to the so-called
multi-objective memetic algorithms (MOMAs). The main advantage for
adopting this sort of hybridization is to speed up convergence to the
Pareto front. However, the use of MOMAs introduces new issues, such
as how to select the solutions to which the local search will be applied
and for how long to run the local search engine (the use of such a local
search engine has an extra computational cost). Here, we propose a new
MOMA which switches between a hypervolume-based global optimizer
and an IGD+-based local search engine. Our proposed local search engine
adopts a novel clustering technique based on the IGD+ indicator for
splitting the objective space into sub-regions. Since both computing the
hypervolume and applying a local search engine are very costly proce-
dures, we propose a GPU-based parallelization of our algorithm. Our
preliminary results indicate that our MOMA is able to converge faster
than SMS-EMOA to the true Pareto front of multi-objective problems
having different degrees of difficulty.

1 Introduction

Most practical real-world problems have several objectives (these objectives are
often in conflict) which need to be optimized at the same time. They are called
Multi-objetive Optimization Problems (MOPs). Contrary to a Single-objective
Optimization Problem (SOP), a MOP does not result in a single optimal solu-
tion. Instead, it results in a set of solutions which represent the best trade-offs
among all the objectives. These solutions are known as Pareto optimal and their
image is called the Pareto Optimal Front (POF). Most researchers are inter-
ested in finding Pareto fronts, which have a good (e.g., uniform) distribution.
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There are several methods for solving MOPs such as Memetic Algorithms (MAs)
which combine a global optimizer (e.g., an evolutionary algorithm) with a Local
Search engine (LS). Recently, MAs have shown to efficiently solve MOPs (see for
example [16,17]). In general, LS techniques use decision variable space neighbor-
hoods whose selected points generate vectors in the objective function space.

It is worth mentioning that combining a global optimizer with a local search
technique for specific MOPs is critical to achieve good results, if the fitness func-
tion computation in real-world MOPs takes a considerable amount of running
time. Likewise, there exist computational trade-offs between local and global
search. Thus, some researchers, such as [4], have raised some specific questions
related to the effectiveness and efficiency of local search engines:

– How often should the LS be applied based upon a probability, PLS?
– On which k solutions should LS be used given a neighborhood N(x) where x

is a current solution?
– How long should LS be run defined by a time period T?
– How efficient does LS need to be versus its effectiveness?

These questions involve some difficulties for designing new multi-objective
memetic algorithms (MOMAs).

Here, we propose a new MOMA which uses a LS technique based on the mod-
ified inverted generational distance (IGD+) (this indicator was recently proposed
by Ishibuchi [12,13]) combined with a hypervolume-based global optimizer [3].
We want to combine different properties of each indicator for improving the per-
formance of the overall MOMA. This is possible, since these indicators have nice
properties (i.e., hypervolume is Pareto compliant and IGD+ is weakly Pareto
compliant). However, the main drawback of the hypervolume is the high com-
putational cost associated with its computation. So, this limits the use of this
indicator, particularly in problems having many objectives. On the other hand,
IGD+ has a very low computational cost, even in high dimensional problems.
In spite of the fact that this hybridization is possible, there are still some draw-
backs which limit the use of this type of combination, since computing the exact
hypervolume contribution is highly costly.

Nowadays, this sort of limitations can be addressed by using massive parallel
processors such as a Graphic Processing Unit (GPU). There is plenty of evidence
that indicates that GPU-based approaches can reduce the running time without
losing the advantages of CPU-based approaches (for more details see [2,14,18]).
For this reason, we develop here a parallel implementation of our MOMA and
illustrate its performance when using both indicators (hypervolume and IGD+).

The remainder of this paper is organized as follows. Section 2 provides some
basic concepts related to multi-objective optimization. Our MOMA is described
in Sect. 3. Section 4, presents our methodology and a brief discussion of our pre-
liminary results. Finally, conclusions and some possible paths for future research
are provided in Sect. 5.
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2 Basic Concepts

We are interested in solving problems of the type:

minimize f(x) := [f1(x), f2(x), . . . , fm(x)]T (1)

subject to:
gi(x) ≤ 0, i = 1, 2, . . . , p (2)

hj(x) = 0, j = 1, 2, . . . , q (3)

where x = [x1, x2, . . . , xn] is the vector of decision variables, fi : Rn → R,
i = 1, . . . ,m are the objective functions and gi, hj : R

n → R, i = 0, . . . , p,
j = 1, . . . , q are the constraint functions of the problem.

In order to describe our LS technique, we have to provide more details about
the IGD+ indicator before presenting our proposed algorithm. According to [13],
the IGD+ indicator can be described as follows:

IGD+(A,Z) =
1

|Z|

⎛

⎝
|Z|∑

j=1

d+j (z,a)
p

⎞

⎠

1/p

(4)

where a ∈ A ⊂ R
m, z ∈ Z ⊂ R

m, A is the Pareto front set approximation and
Z is the reference set. d+(a,z) is defined as:

d+(z,a) =
√

(max{a1 − z1, 0})2, . . . , (max{am − zm, 0})2. (5)

Therefore, we can see that the set A represents a better approximation to the
real PF when we obtain a lower IGD+ value, if we consider the reference set
as PFTrue.

3 Our Proposed Multi-objective Memetic Algorithm

3.1 Global Optimizer

Our MOMA consists of two different approaches. The first one is a global opti-
mizer which is based on SMS-EMOA [3]. The second method is our local search
technique which uses an IGD+-based search technique. The global optimizer
starts with an initial population of N individuals. Then, a new individual is cre-
ated through the use of evolutionary operators. This new individual will become
a member of the next population, if replacing an existing individual leads to a
higher quality of the population with respect to the hypervolume contribution.
Afterwards, one individual is discarded from the worst ranked front in order to
maintain the same population size. If the cardinality of this front is larger than
1, the individual which minimizes the hypervolume contribution is eliminated.
The LS technique is launched when a certain percentage of the total number of
generations is reached. Next, we will provide more details of the way in which
our LS works.
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3.2 Local Search Engine

We focused on how to select the kth solution to which LS should be applied.
A straightforward solution is to apply LS to all the individuals in the popula-
tion. Although this involves a higher computational cost, in our case, this sort
of scheme is possible because of our GPU-based implementation. Thus, our pro-
posal is to apply several local search engines on different regions of the search
space, which are specified by a clustering technique, based on the IGD+ indica-
tor. It is worth noting that this indicator requires a reference set Z. Our proposed
approach creates different neighborhoods for each point in the reference set. The
ith neighborhood is created by N points from the population. Such points have
the nearest distance with respect to the ith reference point in terms of the d+
distance (see Eq. (5)). Our LS technique starts with a population P which con-
tains N individuals obtained by our global search engine. The new ith offspring
is created by choosing three different parents from its neighborhood. The parents
are recombined using the differential evolution operator, where the first parent
is selected by the nearest distance in terms of the d+ distance and the rest of the
parents are randomly chosen. The second step is to combine the parents and the
offspring of each neighborhood to form the so-called Q set. The new population
at generation t + 1 is generated by finding the nearest point from Q for each
z reference point in Z. This process is repeated until the stopping criterion is
satisfied (we use the maximum number of iterations).

3.3 Reference Set

We can approximate the geometrical shape of certain types of Pareto Fronts
(PFs) using superspheres. A γ-supersphere is a type of curve which is described
as follows:

{(y1, . . . , ym) ∈ R
m
+ | yγ

1 + · · · + yγ
m = 1} (6)

where γ ∈ R+ is an arbitrary and fixed value. We only consider the “positive”
parts of the γ-superspheres. According to [8], we can view the positive parts of
the γ-superspheres as concave if γ > 1 or as convex if 0 < γ < 1. Clearly, we
can see that a set of weight vectors satisfies Eq. (6) when γ = 1, since a weight
vector is defined as:

Definition 1 Let w = [w1, . . . , wm] ∈ Rm. We say that w is a weight vector if∑m
j=1 wj = 1 and wj ≥ 0.

In order to build the reference set, we assume that we have a set of weight vectors
which is used to construct the reference set. We need to find the γ-value which
will be used to transform the weights set into the reference set. Clearly, in order
to find the γ-value, Eq. (6) would become a root-finding problem and we can say
that the γ-value needs to satisfy:

yγ
1 + · · · + yγ

m − 1 = 0 (7)
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For solving Eq. (7), we use Newton’s method for approximating the γ-value.
Now, we can see that the next approximation to the root is defined as:

γk+1 = γk − (
∑m

j=1 yγk

j ) − 1
∑m

j=1 yγk

j log(yj)
(8)

Let Q be the current set which was created combining the parent and offspring
population. Thus, the reference set is created by Algorithm 1.

Algorithm 1. Computation of the reference set which is based on super-
sphere curves
Require: A current set Q ⊂ R

m, a set of weighted vectors

W ⊂ R
m, where m is the number of objectives, expand value e ⊂ R and translate

value t ⊂ R

Ensure: The reference set Z which is the best approximation of the set Q

1: Find the nondominated points from Q and

save to Q′

2: for each p ∈ Q′ do

3: for each w ∈ W do

4: Compute d⊥(p,w) =‖ p− wTpw/ ‖ w ‖2‖
5: end for

6: Assign r(w) = argmin
p∈Q′

d⊥(p,w)

7: end for

8: j ← 0

9: for each w ∈ W do

10: stepsize ← pr(w)·w/ ‖ w ‖2
11: y ← stepsize ∗ w

12: Approximate the γ value using equation (7)

13: Compute the supersphere point as zj,k ← e(wγ
j,k) − t for all j = 1, . . . , m

14: j ← j + 1

15: end for

In the first step of the algorithm, we find the non-dominated points from set
Q which will establish the non-dominated region. After that, in the first loop, we
search the nearest perpendicular distance between each weighted vector w and
the non-dominated points (we find the best relationship between each weighted
vector and each non-dominated point). In order to construct the reference sur-
face, we project the nearest non-dominated point to a specific weighted vector
w. Once this is done, we can search the γ-value using Newton’s method, which is
described by Eq. (8). Finally, the reference point is computed using the γ-value.
After that, we apply the expand and translate operations. These operations
transform the surface for spreading the reference set along of objective space.
We can see that this process is considered as a generation and is repeated for
each weighted vector. For generating the weighted vectors, we adopted Das and
Dennis’ approach [5] and the number of weighted vectors was set to N .
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3.4 GPU Implementation

The main idea of our parallel implementation is to use all the available hard-
ware resources for improving the performance of our proposed MOMA. For this
reason, in order to simplify the parallelization we focused only on the most
time-consuming parts of the algorithm. Our implementation is based on two dif-
ferent parallel implementations, one for handling the local search technique, and
another one, which is responsible of computing the hypervolume contribution
from the global search engine. As we indicated in Sect. 3.2, the LS procedure is
composed by a clustering technique, a procedure for generating new offspring
as well as the evaluation of the objective functions. This process is repeated for
a certain number of iterations. The main idea is to apply the LS technique to
all the individuals of the population. For this reason, the parallelization of this
procedure is done in the following way: we adopt a SIMD1 model to apply the
clustering technique to create each sub-region on the objective space at the same
time. Thus, this procedure creates different blocks of threads, where each thread
computes the d+ value (see Eq. (5)) between each reference point in Z and each
current point in the population Q. After that, each block searches the nearest
distance (this process is repeated until having b elements for building the clus-
tering region). After this is done, we create m offspring, each of them residing
in a specific sub-region (the ith neighborhood) using a thread of the GPU for
each of them. Thus, each thread in the block can assess the new offspring in
the neighborhood. It is worth mentioning that this process needs to normalize
all points for each generation of the local search technique, in order to handle
objectives having different units.

In [14], the use of a GPU-based approach showed that it is possible to find
a good approximation of MOPs using the hypervolume indicator as a selection
mechanism without losing the advantages of a sequential approach. For this rea-
son, we adopted this approach for implementing the second part of our MOMA.2

4 Experimental Results

We compare the performance of our memetic algorithm with respect to SMS-
EMOA which has two different variants. The first version uses exact calculation
of the hypervolume contribution for each generation of the search process. The
second version incorporates the algorithm proposed in [1] for estimating the
hypervolume using Monte Carlo sampling, instead of the exact hypervolume
calculations adopted in the original implementation of SMS-EMOA. Our MOMA

1 SIMD (Single Instruction Multiple Data) is a computer architecture which can han-
dle only one instruction but applies it to many data streams simultaneously [9].

2 The GPU-based approach computes in a faster way the hypervolume contribution
of a point.
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was compared with respect to its GPU-based implementation. Our proposed
approach was implemented in CUDA-C.3

4.1 Test Problems

For our comparative study, we adopted two benchmarks: (1) the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [7] and (2) the Walking-Fish-Group (WFG)
test suite [10,11]. These problems include different aspects which make them
more difficult to solve (for more details see [7,11]).

4.2 Methodology

For our comparative study, we decided to adopt the hypervolume indicator,
which assesses both convergence and maximum spread along the Pareto front.
Mathematically, if Λ denotes the Lebesgue measure, the hypervolume can be
described as:

IH(A,yref ) = Λ

⎛

⎝
⋃

y∈A
{x| y ≺ x ≺ yref }

⎞

⎠ (9)

where A is the approximation of the Pareto front optimal set and yref ∈ R
k

denotes the reference point. In order to compute IH , we use different reference
points for each test suite, which were set to (1, . . . , 1) for DTLZ1, (2, . . . , 2) for
DTLZ2 to DTLZ6, (2, . . . , 2, 7) for DTLZ7 and (3, 5, . . . , 2m + 1) for the WFG
test problems. Additionally, we also compared the running time of each MOEA,
which was measured in minutes.

4.3 Parameterization

For the DTLZ test suite, the total number of decision variables is given by
n = m + k − 1, where m is the number of objectives and k was set to 5 for
DTLZ1, to 10 for DTLZ2 to DTLZ6 and to 20 for DTLZ7. The number of
decision variables in the WFG test problems was set to 24, and the position-
related parameter was set to m − 1. Instances with two and three objectives
were adopted.

The parameters of each MOEA used in our study were chosen in such a way
that we could do a fair comparison among them. The distribution indexes for
the SBX and polynomial-based mutation operators [6] were set as: ηc = 20 and
ηm = 20, respectively. The crossover probability was set to pc = 0.9 and the
mutation probability was set to pm = 1/L, where L is the number of decision
variables. In the SMS-EMOA-HyPE, the number of samples was set to 50,000.
3 The GPU platform and API developed by Nvidia called CUDA [15] (Computer

Unified Device Architecture), which is the one adopted in this work, is based on
the CUDA-C language, which is an extension of C that allows the development of
GPU routines called kernels. Each kernel defines instructions that are executed on
the GPU by many threads at the same time.
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The number of generations of the LS technique was set to 50 for the DTLZ
test problems and to 80 for the WFG test problems, where each generation the
LS is applied for each reference point. The control parameter F was set to 0.5
for the differential evolution operator. The total number of function evaluations
was set in such a way that it did not exceed 30,000 for the DTLZ test problems
and 50,000 for the WFG test suite. All the implementations were tested on the
same computer which has the following characteristics: An Intel Core i7-3930k
CPU running at 3.20 GHz, with 8 GB of RAM 1600 MHz DDR3. Our GPU was
a Geforce GTX 680, and we ran our experiments in Fedora 18 (64-bit version).

4.4 Discussion of Results

Table 1 provides the average hypervolume over the 30 independent executions of
each approach for each test suite. Additionally, we show the average time, which
was measured in minutes, needed to perform the maximum number of function
evaluations in each case and the speed up achieved (in parentheses). The best
results are presented in boldface.

Table 1. Comparison of results for each test suite, using the average hypervolume
indicator.

Test Suite 1 Test Suite 2

Problem m SMS-EMOA SMS-EMOA-HYPE IGD+-MA IGD+-MA(GPU) Problem m SMS-EMOA SMS-EMOA-HYPE IGD+-MA IGD+-MA(GPU)

DTLZ1 2 0.8732805 0.8725481 0.8726563 0.8709863 WFG1 2 7.0150395 6.6915866 7.4293168 7.3778004
3 0.974249 0.9666142 0.9737887 0.9731913 3 62.566032 53.1739159 62.4667318 62.4431766

DTLZ2 2 3.2109678 3.2095071 3.2109715 3.2109601 WFG2 2 11.4297746 11.4126833 11.4304887 11.429895
3 7.4313536 7.4260692 7.4312298 7.4312795 3 100.9053244 100.3897934 100.9423556 100.8915152

DTLZ3 2 1.9302655 2.7552999 2.8205047 2.8444797 WFG3 2 10.9301202 10.8957265 10.9346344 10.9320503
3 6.8129142 5.0821156 7.0065842 6.9233977 3 76.0218553 74.3412533 76.0301204 76.0650755

DTLZ4 2 2.9687737 2.8466417 2.9082368 2.9478005 WFG4 2 8.6759874 8.6474796 8.6749735 8.6751788
3 6.927273 6.9031298 6.9659859 7.0188906 3 77.3490714 76.1356581 77.2287144 77.236047

DTLZ5 2 3.2109635 3.2095599 3.2109646 3.210965 WFG5 2 8.2444335 8.2422967 8.2653013 8.2702657
3 6.1052922 6.1009119 6.1050065 6.1050063 3 74.1569177 73.3959324 74.1328251 74.1289772

DTLZ6 2 3.0727714 3.0898 2.9075032 2.8973674 WFG6 2 8.3786401 8.3522619 8.3785062 8.3762176
3 5.6964296 5.2659912 5.2550039 5.2817297 3 74.5010368 73.4821868 74.5165829 74.6646198

DTLZ7 2 4.4180206 4.3527739 4.4174787 4.417529 WFG7 2 8.685331 8.6549507 8.6863782 8.6863691
3 12.8437627 12.7603802 7.878233 7.5641662 3 77.6304566 76.4916201 77.5775899 77.5752613

WFG8 2 8.3184115 8.2791368 8.3251368 8.3208976
3 73.6151505 72.5266533 73.5156236 73.5167815

WFG9 2 8.5957132 8.4786182 8.5693595 8.5555043
3 76.279433 73.9882086 76.3432385 76.3733424

It is clear that the winner in this experimental study is our GPU-based
MOMA in terms of CPU time. We are also able to obtain the same results as
the sequential version, which verifies that our parallel implementation is working
as expected (see Table 2). We can see that our MOMA is able to converge faster
than SMS-EMOA on some test problems (e.g., in the multi-frontal problems)
and it outperforms SMS-EMOA-HYPE in all instances. This confirms that our
proposed IGD+-based LS is an effective way to solve MOPs. It is worth noting,
however, that for DTLZ5, DTLZ6 and DTLZ7, SMS-EMOA performs better
than our MOMA. The reason is probably that the true Pareto front of these
problems is linear and disconnected, which makes the approximations produced
by our approach to converge to a single region of the search space.
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Table 2. Computational time (measured in minutes) required by each execution of the
MOEAs compared. In the parentheses show the speed up.

Test Suite 1 Test Suite 2

Problem m SMS-EMOA SMS-EMOA-HYPE IGD+-MA IGD+-MA(GPU) Problem m SMS-EMOA SMS-EMOA-HYPE IGD+-MA IGD+-MA(GPU)

DTLZ1 2 0.2353 (2.22x) 1.1378 (10.74x) 0.1571 (1.48x) 0.1059 WFG1 2 0.4365 (2.03x) 1.9709 (9.17x) 0.3661 (1.7x) 0.2149
3 1.3434 (2.54x) 0.7481 (1.41x) 0.9396 (1.78x) 0.5290 3 6.1682 (3.25x) 17.4731 (9.2x) 4.5742 (2.41x) 1.8995

DTLZ2 2 0.3145 (2.36x) 5.1541 (38.69x) 0.2720 (2.04x) 0.1332 WFG2 2 0.6315 (2.64x) 3.8164 (15.94x) 0.4441 (1.86x) 0.2393
3 3.5239 (2.26x) 14.3901 (9.21x) 2.9234 (1.87x) 1.5616 3 7.1067 (3.46x) 4.9679 (2.42x) 5.1835 (2.52x) 2.0555

DTLZ3 2 0.1349 (1.33x) 0.2886 (2.85x) 0.1488 (1.47x) 0.1014 WFG3 2 0.6760 (2.51x) 4.9836 (18.51x) 0.6065 (2.25x) 0.2692
3 1.2725 (1.95x) 1.2460 (1.91x) 0.8001 (1.22x) 0.6534 3 6.4021 (2.75x) 17.4964 (7.53x) 5.7263 (2.46x) 2.3238

DTLZ4 2 0.2803 (2.11x) 3.6041 (27.11x) 0.2221 (1.67x) 0.1329 WFG4 2 0.7430 (2.78x) 7.4647 (27.92x) 0.5865 (2.19x) 0.2673
3 2.9593 (2.67x) 10.6125 (9.59x) 2.0486 (1.85x) 1.1070 3 8.5252 (3.22x) 13.9963 (5.29x) 5.8787 (2.22x) 2.6452

DTLZ5 2 0.3151 (2.38x) 5.1250 (38.66x) 0.2710 (2.04x) 0.1325 WFG5 2 0.7245 (2.49x) 9.0330 (31.02x) 0.7122 (2.45x) 0.2912
3 2.2238 (2.4x) 10.8695 (11.71x) 1.4279 (1.54x) 0.9283 3 8.1814 (3.15x) 14.4043 (5.55x) 5.9147 (2.28x) 2.5967

DTLZ6 2 0.1501 (1.56x) 0.6505 (6.76x) 0.1114 (1.16x) 0.0962 WFG6 2 0.5864 (2.31x) 6.1397 (24.17x) 0.5381 (2.12x) 0.2540
3 1.7579 (2.51x) 4.2780 (6.12x) 1.2497 (1.79x) 0.6993 3 6.0747 (2.8x) 12.14762 (5.6x) 5.1019 (2.35x) 2.1701

DTLZ7 2 0.3111 (2.66x) 3.5508 (30.4x) 0.2026 (1.74x) 0.1167 WFG7 2 1.1146 (3.32x) 12.5224 (37.31x) 0.8211 (2.45x) 0.3356
3 2.8511 (3.31x) 11.2552 (13.07x) 1.6282 (1.89x) 0.8611 3 8.4301 (2.53x) 19.5875 (5.89x) 7.6072 (2.29x) 3.3255

WFG8 2 0.5485 (2.43x) 3.9599 (17.56x) 0.4466 (1.98x) 0.2255
3 4.6612 (2.69x) 8.9829 (5.18x) 4.6498 (2.68x) 1.7358

WFG9 2 0.9392 (2.91x) 10.4772 (32.51x) 0.7952 (2.47x) 0.3222
3 8.8769 (2.67x) 18.8293 (5.67x) 7.8688 (2.37x) 3.3232

5 Conclusions and Future Work

We have proposed a new Multi-Objective Memetic Algorithm which has an
IGD+-based local search engine. The core idea of our proposed algorithm is
to combine properties of two different performance indicators. Our proposal
includes a GPU-based implementation which makes it possible to launch mul-
tiple local search processes at the same time. Our preliminary results indicate
that it is possible to improve the convergence of a hypervolume-based approach
in multi-frontal problems.

Our proposed GPU-based multi-objective memetic algorithm is able to
achieve a significant speed up (of up to 38x) with respect to SMS-EMOA. As
part of our future work, we would like to improve the method for building the
reference set, which is used for computing the IGD+ value, since it has a few
drawbacks on some test problems. Additionally, we would like to test our app-
roach in many-objective problems.
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Abstract. In order to understand strengths and weaknesses of opti-
mization algorithms, it is important to have access to different types of
test problems, well defined performance indicators and analysis tools.
Such tools are widely available for testing evolutionary multiobjective
optimization algorithms.

To our knowledge, there do not exist tools for analyzing the per-
formance of interactive multiobjective optimization methods based on
the reference point approach to communicating preference information.
The main barrier to such tools is the involvement of human decision
makers into interactive solution processes, which makes the performance
of interactive methods dependent on the performance of humans using
them. In this research, we aim towards a testing framework where the
human decision maker is replaced with an artificial one and which allows
to repetitively test interactive methods in a controlled environment.

Keywords: Multiobjective optimization · EMO · Testing framework ·
Decision maker’s preferences · Preference information · Aspiration level

1 Introduction

Many real-life problems of decision making and support are tackled by multi-
objective optimization. A solution of a multiobjective optimization problem can
be defined as a feasible solution which is the most preferred for a decision maker
(DM). Therefore, multiobjective optimization methods that aim at supporting
a DM rely on information about the DM’s preferences (preference information
for short) and incorporate mechanisms of communication with the DM. In the
methods where such communication is organized in an interactive way (i.e. inter-
active methods), the solution process is carried out in iterations. In each iteration,
the DM provides preference information and, as feedback, obtains information
about Pareto optimal solutions derived based on this preference information
[2,8,9]. Interactive methods are very suitable for solving practical problems due
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to several advantages [2]. First, the DM gets the possibility to learn progres-
sively about the set of Pareto optimal solutions of a complex problem, which
reduces cognitive load. Secondly, applying interactive methods does not necessi-
tate generating many Pareto optimal solutions, which is essential in the case of
computationally complex problems. Instead, only solutions that are interesting
for the DM are generated.

Many interactive methods have been developed so far, see e.g. [2,8,9]. Natu-
rally, the problem of testing and comparing different methods arises [7,8]. Mak-
ing tests and comparisons of interactive multiobjective optimization methods is
hampered by the necessity of involving DMs in tests. First of all, this involve-
ment makes method testing much more costly than testing by computational
means, taking into account that many problems of industry, management, engi-
neering, etc. require DMs being experts in corresponding fields. Secondly, it is
hard to conduct good quality experiments due to various barriers related to
human nature: the difficulty of creating proper motivation of DMs if tested e.g.
by students using artificial problems; the inconsistency of human nature and
variability among humans; difficulties of accounting for improving DM’s capa-
bilities in time due to learning1.

As noted in [7,8], only few interactive multiobjective optimization methods
have been extensively tested, which means that information about the quality of
most of the methods cannot be called reliable. The main sources of such infor-
mation are intuitive conclusions of the authors of the methods and results of
employing the methods for solving limited numbers of real-world or hypothet-
ical problems. In order to overcome the deficiency of tests and comparisons of
interactive methods, one can use artificial DMs understood as techniques of gen-
erating preference information. Because interactive methods vary significantly
in approaches to preference information modeling [9,10], different artificial DMs
should be created for different preference information types.

Compared to the diversity of interactive methods, the number of approaches
to creating artificial DMs is very limited. In [8], some examples of testing meth-
ods by using artificial DMs were described. Since 1999, only few new works have
appeared where actions of DMs have been simulated using artificial mechanisms.
Among them, a DM was represented as an additive value function in [13], and
that representation was used for generating goals in a simulated goal program-
ming problem with a discrete number of alternatives. When generating goals,
judgment errors and biases of the DM were simulated and then effects on the
performance of goal programming algorithms were studied. In [15], a universal
mechanism of generating DM’s preference information was proposed based on
minimizing the distance of the corresponding Pareto optimal solution to a given
“goal solution”. However, that mechanism has a limited application area. The
work in [7] aimed at the same goal as our research, except that a DM was mod-
elled via a value function, which does not allow generating reference point, but

1 Humans learn, therefore, it is not easy to employ the same DMs to test different
methods, as they have learnt about the problem while solving the problem, which
affects the quality of a long series of experiments.
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provides preference information as rankings of given sets of alternatives. Some
mechanisms of modeling the imperfection of humans’ judgments was incorpo-
rated into that model and used for testing the BC-EMOA algorithm [7].

More approaches to creating artificial DMs have been developed for enhanc-
ing existing methods, and they may be adoptable for method testing. The app-
roach in [1] is an example of such a study (see also references therein), where
the DM’s preference model based on a fuzzy inference system was trained dur-
ing the interactive solution process and used for providing additional preference
information on behalf of the DM.

Clearly, each artificial DM created for testing methods should be tailored to
the preference information expected by these methods. A popular way of model-
ing DM’s preferences is via value functions (often referred to as utility functions).
The advantages are a theoretically proved completeness [5], and the simplicity
of representation. From a value function, one can easily obtain such preference
information as pairwise comparisons or rankings of given sets of alternatives (as
e.g. in [7]). Note that methods where the DM can be replaced by a value function
are called non ad hoc methods [8,12,13]. However, in many interactive meth-
ods which are popular in practice, the preference information is provided in the
form of reference points [2,9] representing desirable objective function values.
Such methods are regarded as ad hoc, e.g. methods where the DM cannot be
replaced by a value function [8,12,13]. To our knowledge, there are no artificial
DMs developed for testing methods based on reference points.

In this paper, we develop an artificial DM for testing interactive methods,
which involve preference information as a reference point. It is the first develop-
ment of this kind. We mimic the behavior of a human DM who adjusts prefer-
ences based on obtained information about derived solutions, and demonstrates
randomness in the behavior in responses to the uncertainty about the Pareto
optimal set.

The paper is organized as follows. In Sect. 2, we describe the concept of an
artificial DM and in Sect. 3 incorporate it into a framework for testing interactive
methods. In Sect. 4, we present results of testing two methods: R-NSGA-II [4]
and minimizing an achievement scalarizing function [14]. We conclude in Sect. 5.

2 Artificial Decision Maker

We propose to employ an artificial DM to replace the real DM. Our concept of
an artificial DM and its interaction with an interactive method comprises the
following three components:

– Steady part : the complexity of knowledge possessed by the DM and related
to solving the considered class of problems which does not change during the
solution process. This includes accumulated experience and the core prefer-
ences which do not change in time.

– Current context : the current situation as perceived by the DM, which may
change in time. This includes: the knowledge about the problem accumulated
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by the DM during the solution process, level of tiredness which can affect
concentration, and the probability of making mistakes.

– Preference information: the method-specific information expressed by the DM
during the solution process to guide the method toward solutions that are more
preferred by the DM.

The artificial DM should be defined by the steady part which does not change
in time, a mechanism of representing and updating the current context as the
solution process continues, and the mechanism of generating the preference infor-
mation based on the steady part and the current context. By varying the para-
meters of the steady part, one can obtain different artificial DMs for conducting
multiple experiments.

It is tempting to describe the steady part as a classical model of DM’s pref-
erences (e.g. choice function, binary relation or utility function). However, as
said, there are no studies describing how to generate preference information in
terms of reference points from such models. Therefore, we construct the steady
part in the form of some general preference information which cannot be called
a preference model in the classical sense. We propose a procedure of generating
the current preference information based on the steady preference information
and taking into account the current context. The latter is represented by the
current solution or the set of derived solutions available for the DM.

3 Testing Framework

The aim of this research is to create a framework for comparing different interac-
tive methods with an artificial DM. The proposed framework is compatible with
interactive methods where the DM provides one’s preferences in each iteration
of the method as a reference point. In what follows, we first give basic notions of
multiobjective optimization, then describe the artificial DM used in the frame-
work, and finally proceed with details on how the artificial DM is utilized.

Multiobjective optimization problems are formulated as follows:

minimize f(x) = (f1(x), . . . , fk(x))T

subject to x = (x1, . . . , xn)T ∈ S,

meaning that the DM wishes to simultaneously minimize k (k ≥ 2) objective
functions fi : S → R on the set S of feasible solutions (decision vectors) which
is a nonempty compact subset of R

n. The image of S is denoted by f(S). Its
elements z = f(x) = (f1(x), . . . , fk(x))T in the objective space R

k consisting of
objective (function) values are called objective vectors.

The set of Pareto optimal solutions of the problem (the Pareto optimal set) is
defined by E = {x ∈ S : there is no x′ ∈ S such that fi(x′) ≤ fi(x′) for all i =
1, . . . , k and f(x′) �= f(x′)}.

Let us also introduce an ideal objective vector and a nadir objective vec-
tor defined, respectively, as z� = (z�

1 , . . . , z�
k)T where z�

i = minx∈E fi(x) for
i = 1, . . . , k, and znad = (znad1 , . . . , znadk )T where znadi = maxx∈E fi(x) for
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i = 1, . . . , k. Note that the nadir objective vector is, in general, more difficult to
obtain than the ideal objective vector and, therefore, approximations are often
used (see e.g. [3,8] and references therein).

The current context is defined as follows. We assume that the artificial DM
is aware of the bounds of the objective functions, that is, the objective vectors
z� and znad. These vectors can either be known or estimated [8]. Their compo-
nents give bounds on the aspiration levels which constitute a reference point. In
addition, the set of derived Pareto optimal (or non-dominated) solutions, which
is updated during the solution process, provides the DM with information about
what combinations of objective function values are achievable.

As for the steady part of preference representation, for each objective fi, i =
1, . . . , k, we introduce a “ranking coefficient” wi which determines the priority
of the objective function fi over the other objective functions. That is, the DM
prefers more to obtain smaller values for those objective functions whose wi ∈
(0, 1] is larger. We assume that all objective functions are relevant to the problem
and, therefore, each of them should have a ranking coefficient.

In addition to ranking coefficients, we utilize initial aspiration levels, aspi ∈
(z�

i , znadi ], i = 1, . . . , k, that is, objective values the artificial DM would like to
achieve. If aspi = znadi , we assume that the artificial DM initially does not have
any preferences regarding objective fi.

The probability p ∈ (0, 1] determines how willing the artificial DM is to give
up on the initial preferences. With larger p and larger wi values, the artificial
DM is more probable to consider the fi objective relevant, i.e., to use aspi as
the reference point component (otherwise, it uses the component of the nadir
vector). Alongside with the constant probability p, we introduce the varying
probability pλ which is initialized with p and decreased in the process of consec-
utive consideration of objective functions in the order defined by their priority
(for details, see the scheme of the decision process below). Finally, the preference
information is represented as a reference point ref = (ref1, . . . , refk).

Now we can describe how the artificial DM interplays with a method. This
process has the following parameters: θ – tolerance value which controls when
an objective function value is considered to be acceptable; tmax – maximum
number of iterations; t – iteration counter. Furthermore, we denote a uniformly
distributed random number in the interval [0, 1] by rand.

At the beginning of the solution process, when the set of derived solutions P
is empty, we generate preference information as described below.

1. For each objective function fi:
(a) if aspi is not defined, set aspi = z�

i ;
(b) Set initial components of the reference point refi:

i if rand < p · wi, set refi = aspi,
ii else, set refi = znadi .

Here, if the aspiration level for an objective function is not defined, we set it to
the ideal value of this objective in step (a), as each objective should have the
opportunity to be improved, even if the artificial DM does not have a notion
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of what the values should be. Otherwise, the component of the initial reference
point for each objective function is set at step (b) either as the aspiration level
or the component of the nadir objective vector. The latter choice depends on
the ranking coefficient of the objective function as well as the probability, if the
aspiration level of the objective function should be used, in order to increase the
priority of improving values of those objective functions.

After the artificial DM has been initialized with preference information, it is
utilized with an interactive multiobjective optimization method as follows.

1. Set
pλ = p – the varying probability of using the aspiration level as the compo-
nent of the reference point,
F = ∅ – the current index set of relevant objective functions,
t = 0 – the iteration counter,
P – the set of derived Pareto optimal (non-dominated) solutions,
and generate initial preferences (reference point ref) as described above.

2. t++
3. Provide the interactive method with the current reference point ref to gen-

erate a new Pareto optimal solution x, and add this solution to the set P .
4. For each objective function fi ordered by ranking coefficients wi in a decreas-

ing order:
a. if aspi − fi(x) < θ and rand < p, add i to the set F ,

else, if rand < pλ, add i to the set F .
b. Set pλ = pλ − pλ

i · |F |.
5. If |F | = k, go to step 10.
6. For each objective function fi with i ∈ F :

a. Set the new component of the reference point refi:
refi = aspi − (aspi − fi(x))/2.

7. For each objective function fl with l �∈ F :
a. Construct predictl using a decision tree trained with previously obtained

Pareto optimal solutions;
b. set refl = min(predictl, z

nad
l ).

8. If the new reference point is identical to the previous one, go to step 10.
9. If t < tmax go to step 2.

10. STOP. Select x as the solution to the problem.

In the beginning of the solution process, the interactive method is used to
generate a new objective vector using the current reference point ref. Then we
select and add to set F those objective functions which are considered to be
relevant during this iteration. Firstly, if the objective vector value has achieved
the desired aspiration level, it is selected with a high probability (but not equal
to one), as we are assuming that the DM is not certain that the aspiration level
is the best possible which could be achieved.

On the other hand, if the component of the objective vector has not achieved
the desirable value, it is selected with a lower probability. This selection proba-
bility is then decreased based on the number of objective functions selected so
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far. The described scheme gives a strong preference on selecting most preferred
objectives that have achieved desired values, while decreasing chances to select
less desired objective functions. When all objective functions are selected to be
relevant, the current Pareto optimal solution is considered to be the final solu-
tion of the problem. This means that it is possible that the artificial DM will
end the solution process prematurely.

Next, in step 4. a new reference point ref is created. In order to take into
account that the aspiration level might not be reachable, the reference point com-
ponents for the selected objectives are set between the current objective function
value and the aspiration level. Then the remaining reference point components
are set either to the nadir value or to the value predicted by a decision tree
[11] trained with previously obtained Pareto optimal solutions. A decision tree
is built for each objective, using the values of the other objectives as a training
data for predicting which values should be selected for other objectives in order
to obtain the preferred value for the considered objective function.

The solution is finally accepted either when all initial aspiration levels have
been achieved, artificial DM could not create a new reference point or after the
maximum number of iterations has been conducted.

4 Numerical Experiments

Next we give some computational results to demonstrate application of the
artificial DM. For this demonstration, we use two different methods for gen-
erating new Pareto optimal solutions: R-NSGA-II algorithm [4] and minimizing
the achievement scalarizing function (ASF) of a reference point method [14] to
project a reference point to the Pareto optimal set, where the differential evo-
lution algorithm is used to minimize the ASF. As the latter method produces
only a single Pareto optimal solution, while R-NSGA-II produces several ones,
among the Pareto optimal (nondominated) solutions generated by R-NSGA-II,
the one nearest to the reference point is selected. The R-NSGA-II algorithm had
the population size 100 and was allowed to have maximum of 200 generations
totaling to maximum of 20000 evaluations. The differential evolution method
had the stopping criterion of maximum of 20000 evaluations.

Each method was used to solve four different problems: DTLZ1 – DTLZ4
[6] with the number of objectives (k) ranging from 2 to 6, totaling 24 different
problems. Each problem was solved ten times using both methods, with ten dif-
ferent, randomly generated sets of initial preference information. The maximum
number of iterations was set to 11.

Examples of two test runs when solving the ZDLT2 problem with three objec-
tive functions with both R-NSGA-II and the ASF methods can be seen in Figs. 1
and 2, respectively. In these figures, the search path taken by the artificial DM is
shown as a continuous line, with x marking as each reference point constructed
by the artificial DM. The diamond represents the initial reference point and the
square represents the final reference point of the solution process. In Fig. 1, it can
be seen that the artificial DM constructed seven reference points in the case of
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Fig. 1. R-NSGA-II: search path with
the artificial DM

Fig. 2. ASF method: search path with
the artificial DM

R-NSGA-II and nine for the ASF method (Fig. 2). The circle outside the search
path shows the aspiration level, aspi, i = 1, . . . , k, that the artificial DM was
aiming at. The Pareto optimal solutions generated during the test runs are not
shown here.

At the beginning of each test run, the artificial DM does not have any knowl-
edge of the Pareto optimal set of the problem being solved and as described in
Sect. 3, the first steps taken are random. This means that all search paths are
different for each test run, and the first steps can lead away from the aspiration
levels. But as can be seen in figures, after the artificial DM has accumulated
enough knowledge of the problem, the solution process converges towards the
aspiration levels.

The obtained results are detailed in Table 1 for R-NSGA-II and in Table 2
for the ASF method, where for brevity we limit to the cases k ∈ {2, 4, 6}. In
the tables, we give the name of the problem, the number of objectives (k), the
mean and minimum distances to the initial aspiration levels and the standard
deviation of the distances. Finally, the tables report how many iterations the
artificial DM used the on average during the test runs.

As can be seen, a distinction between the two methods can be drawn, while
both methods behave in a somewhat similar manner. The ASF method could
find final solutions that are consistently closer to the initial preferences, i.e.,
mean values and deviations of distances are smaller than with R-NSGA-II. The
ASF method was also able to achieve the initial aspiration levels, even though
this did not happen in all runs. For problems with four and more objectives,
the differences in the performance were slightly smaller, as the ASF method did
not achieve initial aspiration levels consistently, but it should be noted that the
performance of R-NSGA-II also deteriorated.

The latter result can be considered as somewhat surprising, taking into
account that the NSGA-II algorithm underlying the R-NSGA-II algorithm does
not typically perform well with problems having more than three objective
functions, and it could be expected that the performance of R-NGSA-II would
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Table 1. R-NSGA-II results

Problem k mean dev min iter

DTLZ1 2 0.709 0.447 0.000 10

DTLZ2 2 0.040 0.044 0.002 11

DTLZ3 2 2.427 1.600 0.863 5

DTLZ4 2 0.237 0.278 0.006 9

DTLZ1 4 0.224 0.185 0.012 11

DTLZ2 4 0.273 0.185 0.061 11

DTLZ3 4 3.579 0.954 1.671 5

DTLZ4 4 0.439 0.355 0.038 11

DTLZ1 6 0.432 0.270 0.148 11

DTLZ2 6 0.365 0.192 0.024 11

DTLZ3 6 6.000 2.238 3.865 11

DTLZ4 6 0.411 0.269 0.026 11

Table 2. ASF method results

Problem k mean dev min iter

DTLZ1 2 0.606 0.327 0.000 10

DTLZ2 2 0.002 0.002 0.000 11

DTLZ3 2 2.112 1.870 0.000 4

DTLZ4 2 0.002 0.002 0.000 11

DTLZ1 4 0.239 0.257 0.000 11

DTLZ2 4 0.004 0.002 0.001 11

DTLZ3 4 1.819 1.340 0.000 6

DTLZ4 4 0.069 0.147 0.001 11

DTLZ1 6 0.386 0.247 0.001 10

DTLZ2 6 0.102 0.207 0.001 10

DTLZ3 6 1.725 1.287 0.005 8

DTLZ4 6 0.115 0.155 0.001 11

deteriorate more. However, it should be noted that the aim of the interactive
solution processes is not to obtain best possible coverage of the Pareto fron-
tier, but to concentrate on the area which is the most interesting for the DM.
As R-NSGA-II generates several solutions in that area in contrast to a single
solution obtained by the ASF method, the former algorithm provides the arti-
ficial DM more information, i.e., Pareto optimal solutions to construct more
suitable reference points. This implies that the comparison of population based
and non-population based methods should be made fair by paying attention to
the amount of information the artificial DM is trained with.

5 Conclusions

In this research, we proposed to build an automated framework for testing inter-
active multiobjective optimization methods, without utilizing a value function
to represent the DM’s preferences. This was achieved by replacing the human
DM with an artificial DM constructed from two distinct parts: the steady part
and the current context. With the steady part the artificial DM tries to maintain
the search towards its preferences, while at the same time the current context
allows changing the direction as well as ending the solution process prematurely,
mimicking actions of a human DM. With the proposed framework, it is possible
to carry out repeatable tests of interactive methods in a controlled environment.

The numerical experiments performed with the proposed testing framework
indicate that the algorithm can identify differences between different interac-
tive methods. In the experiments, two interactive methods were compared solely
based on the distance between the final solution and the steady preference infor-
mation. In addition to this distance, it would be interesting to construct new
performance metrics specific for interactive methods, such as characteristics of
the trajectory of the solution process in the objective space.
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Abstract. The use of hyper-heuristics is increasing in the multi-
objective optimisation domain, and the next logical advance in such
methods is to use them in the solution of many-objective problems. Such
problems comprise four or more objectives and are known to present
a significant challenge to standard dominance-based evolutionary algo-
rithms. We incorporate three comparison operators as alternatives to
dominance and investigate their potential to optimise many-objective
problems with a hyper-heuristic from the literature. We discover that
the best results are obtained using either the favour relation or hyper-
volume, but conclude that changing the comparison operator alone will
not allow for the generation of estimated Pareto fronts that are both
close to and fully cover the true Pareto front.

1 Introduction

As the field of hyper-heuristic research matures, attention is moving from solving
problems requiring the optimisation of a single objective to those comprising two
or more objectives. A recent paper [14] proposed a multi-objective extension of a
single-objective algorithm that identifies good sequences of heuristics to apply to
a given problem. The original single-objective algorithm updates the transition
probabilities that govern the selection of the next heuristic using the raw fitness
value, and in the multi-objective extension this was replaced with a dominance-
based approach.

Though such multi-objective problems are prevalent, it is well known that
optimisation problems often comprise a large set of objectives that must be
simultaneously optimised [10]. Problems with four or more objectives are often
called many-objective problems. Using dominance-based multi-objective algo-
rithms to solve many-objective problems is generally problematic, as the domi-
nance relation does not scale well to even relatively small numbers of objectives;
solutions quickly become incomparable, as they are considered equivalent under
dominance. A considerable amount of research in the evolutionary computation
field has been devoted to the investigation of evolutionary algorithms that are
capable of solving many-objective problems. These generally take one of two
approaches: either some of the problem objectives must be discarded so that a
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 493–502, 2016.
DOI: 10.1007/978-3-319-45823-6 46
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standard multi-objective EA can be employed, or an alternative to the domi-
nance relation must be found. To our knowledge, no work in the hyper-heuristic
field has considered many-objective problems. In this paper, we begin to investi-
gate many-objective test problems [4], considering problems comprising four, five
and six objectives. We take inspiration from work on dominance alternatives and
consider indicators to investigate how useful they are when incorporated into a
recent multi-objective hyper-heuristic, such that the indicator replaces the dom-
inance relation for comparing solutions.

The remainder of this paper is organised as follows. Some relevant background
material is presented in Sect. 2 before the indicators we examine are introduced
in Sect. 3. Section 4 presents our experimental setup, and results are discussed
in Sect. 5. We discuss our conclusions and future work in Sect. 6

2 Background

2.1 Many-Objective Optimisation

In the last decade research on many-objective optimisation has increased rapidly.
A solution x to an arbitrary many-objective optimisation problem is described
by an M -dimensional objective vector y, such that M ≥ 4:

y = (f1(x), . . . , fM (x)). (1)

Evolutionary algorithms are known to generate good solution sets to multi-
objective problems. Such algorithms often use the dominance relation to com-
pare the relative quality of two solutions. With the advent of research into many-
objective optimisation it has been known that dominance does not scale well to
compare many-objective solutions. As the number of objectives increases, so does
the likelihood that two solutions will be equivalent; given just a 5-objective prob-
lem, and a uniform distribution of solutions, solutions residing in approximately
95 % of objective space will be incomparable under dominance.

Various approaches have been taken to address the inability of dominance-
based MOEAs to optimise many-objective problems. Generally, these approaches
either involve finding an approach that can compare solutions described by a
large number of objectives [3] or identifying redundant objectives that can be
discarded so that a standard dominance-based MOEA can be used. This work
takes the former option, and we consider three approaches to comparing many-
objective solutions; these are described in Sect. 3.

2.2 Hyper-heuristics

Hyper-heuristics are techniques that identify low-level heuristics that generate
good solutions to optimisation problems. They operate above the domain barrier,
meaning that they optimise the heuristics, rather than the solutions to a given
optimisation problem, and require no problem-specific information to function.
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They have been applied in a wide range of problem domains, often solving com-
binatoric problems but also in the continuous domain, to great success. Hyper-
heuristics are either generative or selection-based. A generative hyper-heuristic
creates novel low-level heuristics, such as mutation or crossover operators, that
are tailored to work on a specific type of problem. In this work we only con-
sider selection-based methods, which operate with a pre-defined pool of low-level
heuristics and identify those that are well suited to a specific problem domain.

A central part of a selection hyper-heuristic is the mechanism by which the
next low-level heuristic to apply is chosen. Common methods are random selec-
tion, selection with choice function, and more recently Markov-based methods.
In this work we employ an algorithm based on a hidden Markov model [14],
which is described later. A recent survey of hyper-heuristic approaches is pro-
vided in [2].

The use of hyper-heuristics within many-objective optimisation has received
very little attention. Some studies have used them to solve multi-objective prob-
lems. One recent example was [13], which employed a reinforcement learning-
based Markov chain approach to solving continuous multi-objective problems.
Another approach incorporated the hypervolume indicator [8] into the move
acceptance strategy of a hyper-heuristic and applied it to solve multi-objective
test problems [11,12]. [9] presented a multi-objective hyper-heuristic designed to
operate in the realm of search-based software engineering; their algorithm was
based on NSGA-II, and used choice function in concert with a multi-armed ban-
dit to select low-level heuristics. With the exception of the hypervolume example,
these methods rely heavily on dominance; as discussed earlier, we hypothesise
that these approaches will not scale well to deal with many-objective problems,
and we discuss potential ways of addressing this issue in the next section.

3 Indicators

Since the discovery that standard, dominance-based, evolutionary optimisers do
not provide sufficient selective pressure to locate an acceptable estimate of a
many-objective problem’s Pareto front [7] significant research efforts have been
spent investigating alternatives to dominance. Three that are considered in this
study are hypervolume [8], the favour relation [5], and an indicator based on the
average rank method [1].

3.1 Hypervolume

An early contribution, which remains one of the principle indicators of solution
quality is the hypervolume [8]. The hypervolume is the dominated space between
a solution (or solutions) and a pre-defined reference point. Hypervolume has
been used as an indicator in a range of studies, including a recent work in
which it was incorporated into the acceptance strategy of a hyper-heuristic [11].
That work considered continuous multi-objective test problems, however was
restricted to 2-objective problems only. Though the hypervolume scales to any
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number of objectives, it is often restricted to problems with low numbers of
objectives because of its computational complexity when calculated exactly for
a population (though it can be estimated accurately with Monte Carlo sampling
[6]). This work is not hindered by such complexity issues, as the calculation is
trivial for a single solution.

3.2 Favour Relation

Given two solutions yi and yj , the favour relation [5] determines which is the
fitter solution in terms of which is dominant on the most objectives. More for-
mally:

yi <f yj ⇔ |{m : yim < yjm}| > |{m : yjm < yim}|. (2)

We incorporate the favour relation as a direct replacement for dominance, such
that transition probabilities and the parent solution for the next generation are
updated if the current parent solution does not favour its child.

3.3 Average Rank

Many of the dominance alternatives that have been proposed in the literature
are based on population ranking. The MOSSHH algorithm is a point-based app-
roach, and thus has no population that can be ranked. That said, it does have
an external archive of non-dominated solutions that can be ranked, we use it in
combination with the average rank method [1].

Given a population Y = {yi}Ni=1 of solutions, the solutions are ranked M
times, once according to each objective such that rim is the rank of the i-th
solution on the m-th objective. The average rank r̄i is then computed with:

r̄i =
1
M

rim. (3)

In order to use this formulation as an indicator we calculate the average rank
of the elite archive. The indicator returns 1 if the rank of the new solution is
superior to its parent, and 0 otherwise. It is necessary to ensure that the child
has been added to the archive, however due to the formulation of the algorithm
described shortly, it is not possible to evaluate the indicator if the child has not
been added to the archive.

4 Experiments

In order to determine the usefulness of the indicators outlined in Sect. 3 we now
incorporate them into a hyper-heuristic to compare them against the dominance-
based approaches that has been shown to work well for multi-objective problems
comprising two or three objectives. We employ a selection hyper-heuristic called
MOSSHH [14], in which sequences of low-level heuristics that lead to good solu-
tions are identified. A transition probability matrix is maintained, which governs
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Algorithm 1. MOSSHH
1: x, hc, A,B = initialise()

2: E = initialise archive() Initialise the archive.
3: repeat
4: hp = hc

5: hc = select(A, hp) Choose the next heuristic
6: AS = select(B, hc) Set the acceptance strategy
7: record(hp, hc, AS) Record the current heuristic
8: x′ = apply(x, hc) Apply the heuristic to the current solution
9: if AS == 1 then
10: E = update archive(E, f(x′)) If acceptance strategy was met update archive
11: if ¬I(f(x), f(x′)) then
12: x = x′ If the indicator is true replace the parent with the child
13: if archived(f(x′)) then
14: update probabilities()

15: end if
16: end if
17: clear records()

18: end if
19: until termination criterion met

the transition from one low-level heuristic to another, and each heuristic has an
acceptance strategy, which determines the likelihood that the solution generated
by a given heuristic will be accepted. Both transition probabilities and accep-
tance strategies are learned using an online learning process.

The indicator-based multi-objective sequence-based hyper-heuristic
(MOSSHH) [14] algorithm is described in Algorithm 1. The algorithm begins
by initialising a random parent solution, choosing a starting low-level heuristic,
and initialising the transition probability and acceptance strategy matrices uni-
formly (Line 1). An empty elite archive is initialised (Line 2). The first stage in
each iteration of the iterative process is to select the next low-level heuristic and
acceptance strategy using the current low-level heuristic (Lines 4–6). The chosen
values are recorded (Line 7), in case the current sequence of low-level heuristics
is identified as being useful, and the new low-level heuristic is applied to gener-
ate a new solution (Line 8). If the acceptance strategy is met (AS == 1) then
the solution’s objective values are evaluated and the archive is updated. Any
solutions dominated by the new solution are discarded, and if the solution itself
is not dominated by the archive then it is added to it (Line 10). At this point,
the parent and child solutions are compared using one of the indicators. If the
indicator deems that the child is superior to the parent, then the child solution
succeeds the parent solution as the parent in the next generation. Otherwise,
the current parent solution is retained. If the solution was added to the archive,
then the sequence of low-level heuristics that led to it is complete, and transition
probability and acceptance strategies are updated accordingly (Line 14).

The problems we examine are drawn from the DTLZ suite of test problems
[4]. Specifically, we investigate 4-, 5- and 6-objective instances of the DTLZ1,
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(a) DTLZ1 (b) DTLZ2 (c) DTLZ6

Fig. 1. Generational distance results for 6-objective instances of DTLZ1, DTLZ2 and
DTLZ6.

DTLZ2 and DTLZ6 test problems. Each problem has been selected to demon-
strate the hyper-heuristic’s ability to cope with specific problem features (such
as deceptive fronts and a discontinuous Pareto front). The problems are para-
metrised as suggested in [4]. In the case of DTLZ1 and DTLZ6, the algorithm
is run for 50,000 function evaluations. DTLZ2 is known to be a easier problem,
and as such is run for just 5,000 function evaluations due to computational time
constraints.

The following set of low-level heuristics is employed:

Ruin and recreate two versions; in the first, the entire solution is destroyed
and replaced with a random feasible solution. In the second, a single parame-
ter is chosen and replaced.

Mutation three additive mutation operators. In each, a parameter is chosen
at random and mutated with an additive mutation drawn from one of three
probability distributions (uniform, in the region (−0.05, 0.05); Gaussian, with
0 mean and standard deviation 0.1; beta, in the region (−0.05, 0.05)).

Archive selection two versions; one in which the entire solution is replaced
with a solution drawn at random from the archive, and a second in which a
parameter is replaced with an archived solution’s corresponding parameter.

In total, H = 7 low-level heuristics are employed. To begin with, each has an
equal probability of selection (transition probabilities are initialised to 1/H).

Each problem is optimised with MOSSHH using each of the four indicators. In
order to analyse the results, each instance of the problem is optimised 30 times
for each of the four problems. We compare the results using the generational
distance to examine the convergence properties of the algorithm, as well as using
inverted generational distance to consider diversity.

5 Results

Figure 1 illustrates the generational distance results for 6-objective instances
of DTLZ1, DTLZ2 and DTLZ6, while Fig. 2 shows the corresponding inverted
generational distance results. The corresponding 4- and 5-objective results are



Towards Many-Objective Optimisation with Hyper-heuristics 499

(a) DTLZ1 (b) DTLZ2 (c) DTLZ6

Fig. 2. Inverted generational distance results for 6-objective instances of DTLZ1,
DTLZ2 and DTLZ6.

omitted for space. The results were generated by computing the mean distance
from the final archive of solutions for each run to a set of Pareto optimal samples,
in the case of generational distance, and the corresponding distance from the
sample sets to the optimised solution sets, in the case of inverted generational
distance.

In the case of DTLZ1, the results show that the dominance-based indicator
has failed to converge to the Pareto front. Both the favour and hypervolume
indicators have performed significantly better, converging much closer to the
Pareto front, and covering it more extensively as can be seen from the IGD
results. The rank-based indicator has not performed well, with at best compara-
ble performance to that of the dominance indicator. The difference is less clear
in the DTLZ2 case; though the favour and hypervolume indicators have again
converged closer to the Pareto front, the difference is less significant. In terms
of diversity, there is little to chose between the four alternatives; this is not
surprising, as DTLZ2 is designed to be an easier problem for optimisers to solve.

Figure 3 shows representative estimated Pareto fronts obtained by optimising
a 6-objective instance of DTLZ2 using the four indicators. To colour the solu-
tions, the population was ranked to identify the objective on which each solution
has the best rank. This information is used to colour the line representing each
solution. As can be seen, the dominance and rank indicators have a spread of
preferred objectives, whereas the favour and hypervolume indicators have opti-
mised a specific objective (objective 6). The improved performance of these two
indicators can be explained by this, as large numbers of solutions that optimise
this objective (and objective 5) have been included in the estimated Pareto set,
which means the overall mean distance between the estimated front and the true
front is reduced.

The algorithm has managed to optimise DTLZ6, though, interestingly, the
generational distance results are the reverse of those for DTLZ1 and DTLZ2.
This is likely to be because of the available heuristics; given the propensity for
the indicators to optimise specific regions of the Pareto front, as discussed above,
a problem with discontinuities will present difficulties for an optimiser that does
not have crossover heuristics available to it. Once the algorithm has converged to
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(a) Dominance (b) Favour

(c) Hypervolume (d) Rank

Fig. 3. Parallel coordinate plots showing the estimated Pareto front obtained by opti-
mising a 6-objective instance of DTLZ2 with various indicators. (Color figure online)

(a) Dominance (b) Favour

(c) Hypervolume (d) Rank

Fig. 4. Transition probability matrices for 6-objective instances of DTLZ1 (top). Key
to low-level heuristics (bottom-top) – grey: ruin and recreate (solution); red: ruin and
recreate (parameter); green: uniform mutation; blue: Gaussian mutation; cyan: beta
mutation; magenta: archive replacement (solution); yellow: archive replacement (para-
meter). A large block indicates a large probability of transitioning to that heuristic
from the current heuristic. (Color figure online)

a specific region of the Pareto front, the mutation heuristics used herein appear
to lack the ability to cross discontinuities and, though the archive heuristics
were intended to ameliorate this lack of crossover, they only allow the algorithm
to return to areas of the space that have previously been explored. Crossover
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heuristics will be required to make this algorithm scale to problem features such
as discontinuous Pareto fronts.

Figure 4 presents the transition probability matrices for the 6-objective
instances of DTLZ1. In each case, the transition probability matrices from the
thirty runs have been averaged. As can be seen, in the case of the dominance and
rank-based indicators, which performed less well, there is a higher propensity to
use the ruin and recreate and archive heuristics. In contrast, the more success-
ful favour and hypervolume indicators have preferred mutational heuristics; this
aligns with known results for multi-objective instances of these problems [14].

6 Conclusion

This paper has presented an analysis of the use of a selection hyper-heuristic to
solve many-objective optimisation problems. This is, as far as we are aware, the
first study of its type, and as such have evaluated the algorithm’s performance
on a small number of test problems with relatively small numbers of objectives;
future work will expand this approach to a wider range of problems and con-
sider many more objectives. The work presented three approaches to comparing
many-objective solutions. Of the three, we consider the favour and hypervolume
indicators to be the most successful, though we note that these were less useful
when optimising discontinuous Pareto fronts. A wider range of low-level heuris-
tics, including crossover heuristics, would likely address this issue, though that
would require conversion to a population-based approach.

As we move toward optimising problems comprising larger numbers of objec-
tives, we expect the conditions experienced in this work to become more pro-
nounced. The dominance relation will become less able to provide selection pres-
sure, and the favour and hypervolume indicators will likely continue to optimise
specific regions of the Pareto front well, at the expense of other regions. It is
therefore unlikely that considering alternative comparison methods alone will
allow us to successfully optimise many-objective problems, and as such we are
currently investigating additional ways in which hyper-heuristics can be modified
so that they can be used to optimise such problems.
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Abstract. A number of weight vector-based algorithms have been proposed for
many-objective optimization using the framework of MOEA/D (multi-objective
evolutionary algorithm based on decomposition). Those algorithms are char-
acterized by the use of uniformly distributed normalized weight vectors, which
are also referred to as reference vectors, reference lines and search directions.
Their common idea is to minimize the distance to the ideal point (i.e., con-
vergence) and the distance to the reference line (i.e., uniformity). Each algorithm
has its own mechanism for striking a convergence-uniformity balance. In the
original MOEA/D with the PBI (penalty-based boundary intersection) function,
this balance is handled by a penalty parameter. In this paper, we first discuss
why an appropriate specification of the penalty parameter is difficult. Next we
suggest a desired shape of contour lines of a scalarizing function in MOEA/D.
Then we propose two ideas for modifying the PBI function. The proposed ideas
generate piecewise linear and nonlinear contour lines. Finally we examine the
effectiveness of the proposed ideas on the performance of MOEA/D for
many-objective test problems.

Keywords: Evolutionary multi-objective optimization (EMO) �
Many-objective optimization � Decomposition-based evolutionary algorithm �
MOEA/D

1 Introduction

In the EMO (evolutionary multi-objective optimization) community, many-objective
optimization has been a hot topic in the last decade [9, 10]. The difficulty of
many-objective optimization for EMO algorithms is explained as follows [9]: When a
Pareto dominance-based EMO algorithm such as NSGA-II [4] and SPEA [14] is
applied to a multi-objective problem with many objectives, all solutions in a population
become non-dominated with each other in a very early stage of evolution. As a result,
no strong selection pressure towards the Pareto front can be generated by its Pareto
dominance-based fitness evaluation mechanism.

Recently a number of weight vector-based algorithms were proposed for
many-objective problems in the framework of MOEA/D [13] such as I-DBEA [1],
RVEA [2], NSGA-III [3] and MOEA/DD [11]. Those algorithms are characterized by
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the use of uniformly distributed normalized weight vectors. They also have similar
fitness evaluation mechanisms. In Fig. 1, we show the angle a between the solution f
(x) and the nearest reference line l, the distance d1 from f(x) to the ideal point z* along
l, and the distance d2 from f(x) to l. Each solution is usually assigned to the nearest
reference line l using the angle a or the distance d2. Then the fitness of the assigned
solution is evaluated by the closeness to the nearest reference line (i.e., a or d2) and the
closeness to the ideal point (i.e., d1).

An important issue is how to strike a balance between the convergence (i.e.,
minimization of d1) and the uniformity (i.e., minimization of d2 or a). In MOEA/D
[13], this balance was handled by the penalty parameter θ for the distance d2 in the
following PBI (penalty-based boundary intersection) function:

Minimize f PBIðxjw; z� Þ ¼ d1 þ hd2; ð1Þ

where the penalty parameter θ is a non-negative real number. This parameter is used to
handle the balance between the convergence d1 and the uniformity d2.

In this paper, we first discuss the difficulty of the penalty parameter specification in
MOEA/D in Sect. 2. We also discuss a desired shape of the contour lines of a
scalarizing function in MOEA/D. Next we propose two ideas for modifying the PBI
function in Sect. 3. One is a piecewise linear function, and the other is a non-linear
function. Then the performance of MOEA/D with each function is examined in Sect. 4.
Finally we conclude this paper in Sect. 5.

2 Parameter Specification in the PBI Function

In Fig. 2, we show the relation between the contour lines of the PBI function and the
optimal solution for a concave Pareto front. When θ is not small, the optimal solution is
on the intersection of the reference line and the Pareto front as shown in Fig. 2(b) and
(c). However, when θ is small, the optimal solution is far from the reference line. For
example, the red circle on the f2 axis in Fig. 2(a) is the optimal solution for the
reference line with the direction (0.8, 0.2). Moreover, when θ is small, it is difficult to
find a solution on the concave region of the Pareto front as shown in Fig. 2(a).

Minimize f1(x)z*

w

d2

d1

f(x) l

M
in

im
iz

e 
f 2

(x
)

a

Fig. 1. The weight vector w, the reference line l, and the solution f(x).
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Well-distributed solutions are obtained from a small value of θ in Fig. 3(a) and a
large value of θ in Fig. 3(c). However, in Fig. 3(b) with θ = 1, the three solutions are
close to each other around the center of the Pareto front (i.e., well-distributed solutions
are not obtained). Thus an intermediate value of θ is not a good choice.

From these discussions, one may think that a large value of θ is a good choice. The
use of a large value of θ is also consistent with the emphasis of the uniformity in the
above-mentioned weight vector-based algorithms. However, a large value of θ
degrades the convergence property of the PBI function in the same manner as the
performance deterioration of Pareto dominance-based EMO algorithms for
many-objective problems [7]. In Fig. 4, we show the region of solutions which are
evaluated as being better than the red circle by the PBI function. When θ is small in
Fig. 4(a), the solution has a large improved region. However, when θ is large in Fig. 4
(c), the improved region is very small. So, it is not likely that a better solution is easily
found by crossover and mutation. The increase in the number of objectives exponen-
tially decreases the ratio of this improved region in the neighborhood of the solution.

Fig. 2. Relation between the contour lines of the PBI function for three directions ((w = (0.2,
0.8), (0.5, 0.5), (0.8, 0.2)) and the optimal solution for the case of a concave Pareto front. (Color
figure online)

Fig. 3. Relation between the contour lines of the PBI function for three directions ((w = (0.2,
0.8), (0.5, 0.5), (0.8, 0.2)) and the optimal solution for the case of a convex Pareto front.
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This exponential decrease explains poor performance of the PBI function with a large
value of θ for many-objective knapsack problems [7]. Similar discussions were given
about the specification of p in the weighted Lp scalarizing function in [12].

These discussions, however, are not consistent with experimental results in our
former study [8] where good results were obtained from a large value of θ for
many-objective DTLZ1 and DTLZ2 problems. This inconsistency can be explained by
the special features of DTLZ 1-4 [5]. In DTLZ 1-4, the decision variable vector x is
separable into the distance variable vector xM and the position variable vector xpos. The
objective vector f(x) is written as f(x) = (1 + g(xM))h(xpos). Pareto optimal solutions
are obtained by minimizing the scalar function g(xM) to g(xM) = 0. Thus, the con-
vergence improvement can be viewed as separate single-objective optimization.

In Fig. 5, we show 100 solutions generated by the polynomial mutation with the
distribution index 20 to a randomly selected single variable from each of three solutions
(open circles). When a distance variable in xM is mutated, only the distance from the
ideal point z* is decreased or increased without changing any value of h(xpos). Thus
improved solutions are obtained on the line between the ideal solution z* and the

Fig. 4. Improved region for a solution (red circle) with respect to the PBI function. (Color figure
online)

Fig. 5. 100 solutions generated by polynomial mutation of a randomly selected variable [8].
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current solution in Fig. 5. If the current solution is on the reference line, those solutions
are evaluated as being better than the current solution by the PBI function independent
of the value of θ. When the mutation is applied to a position variable in xpos, the
location of the solution is changed without changing the value of g(xM) as shown in
Fig. 5. Thus the uniformity can be improved separately from the convergence. Thanks
to these special features, good experimental results were reported when a large value of
θ was used for many-objective DTLZ 1-4 test problems. WFG 4-9 test problems [6]
also have similar special features.

Discussions on the specification of θ in this section are summarized as follows.

(a) Small values of θ: The PBI function has high convergence ability even for
many-objective problems. Its main difficulty is the handling of concave Pareto
fronts.

(b) Values between (a) and (c): The diversity of solutions can be very small for values
around θ = 1 when the shape of the Pareto front is convex.

(c) Large values of θ: Uniformly distributed solutions are likely to be obtained.
However, the convergence is degraded by the increase in the number of objectives.

These discussions may suggest two directions for improving the PBI function. One
is to improve the uniformity for the PBI function with a small value of θ. This direction
is illustrated in Fig. 6(a). The other is to improve the convergence for the PBI function
with a large value of θ as illustrated in Fig. 6(b). The contour lines after the modifi-
cation are similar between Fig. 6(a) and (b). That is, the convergence is emphasized
only when a solution is close to the reference line. The uniformity is emphasized when
a solution is far from the reference line.

3 Modifications of the PBI Functions

The PBI function after the modifications in Fig. 6 can be formulated using two penalty
parameters θ1 and θ2 as the following two-level PBI function:

Fig. 6. Modifications of the contour lines of the PBI function.
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Minimize f PBI2�Levelðxjw; z� Þ ¼ d1 þ h1d2; if d2 � d�;
d1 þ h1d� þ h2ðd2 � d�Þ; if d2 [ d�;

�
ð2Þ

where θ1 < θ2 and d
* is a parameter to switch the penalty value between θ1 and θ2. If d2

is smaller than d*, a small penalty value θ1 is used. If d2 is larger than d*, a large
penalty value θ2 is used for the amount of the violation: d2 - d*. In this paper, we
specify the two penalty parameters θ1 and θ2 as θ1 = 0.1 and θ2 = 10.

The value of d* is specified by solutions in the current population as follows:

d� ¼ a
1
H

1
m

Xm
i¼1

ðf Max
i ðxÞ � f Min

i ðxÞÞ; ð3Þ

where α is a parameter, H is an integer parameter used for generating uniformly
distributed weight vectors in MOEA/D, m is the number of objectives, and f Max

i ðxÞ and
f Min
i ðxÞ are the maximum and minimum values of the ith objective in the current
population, respectively. In (3), the average width of the domain of each objective is
divided by H to obtain a rough estimation for the distance between adjacent solutions.
The parameter α is used to examine the validity of the formulation (3) through com-
putational experiments with various values of α.

Our idea in (2) is to use a small penalty value only when a solution is close to the
reference line. This idea can be also implemented as the following quadratic function.

Minimize f PBIQuadraticðxjw; z� Þ ¼ d1 þ hd2
d2
d�

; ð4Þ

where d* is the same parameter as in (2), which is calculated by (3). The effect of the
penalty parameter θ is decreased by the factor (d2/d

*) when d2 is small (i.e., d2 < d*)
and increased by (d2/d

*) when d2 is large (i.e., d2 > d*). When d2 = d*, this formulation
is the same as the PBI function in (1). The value of θ is specified as θ = 1 in (4).

4 Computational Experiments

4.1 Experimental Results of the PBI Function

We applied MOEA/D with the PBI function to DTLZ 1-2 with four and eight objec-
tives. Various values of θ between 0.01 and 100 were examined. The total number of
examined solutions was used as the termination condition: m� 10;000 solutions for
m-objective problems. We examined various settings of the population size. The
neighborhood size in MOEA/D was specified as 10 % of the population size. The
number of decision variables (n) was 5 + m − 1 (DTLZ1) and 10 + m − 1 (DTLZ2).
We used the SBX crossover with the distribution index 15 and the crossover proba-
bility 0.8, and the polynomial mutation with the distribution index 20 and the mutation
probability 1/n. The average hypervolume was calculated over 50 runs for the reference
point (0.6, …, 0.6) of DTLZ1 and (1.1, …, 1.1) of DTLZ2.
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In the same manner, we applied MOEA/D to 500-item 0/1 knapsack problems with
four and eight objectives [7] except for the following settings: 400,000 solution
evaluations, uniform crossover with the probability 0.8, bit-flip mutation with the
probability 2/500, the reference point (0, …, 0) for the hypervolume calculation, and
the reference point z* for the PBI function as z�i ¼ 1:1�maxffiðxÞg for i = 1,
2, …, m where max{fi(x)} is the maximum value of fi(x) among all the examined
solutions [7].

The average hypervolume value over 50 runs is shown in Figs. 7, 8 and 9. Each
circle shows the average result from the corresponding setting of the population size
(e.g., 56) and the value of θ (e.g., 0.01). The range of appropriate values of θ in each
figure are as follows: 5 ≤ θ ≤ 20 in Fig. 7, 2 ≤ θ ≤ 100 in Fig. 8, and 0.01 ≤ θ ≤ 0.1
in Fig. 9. The PBI function with a small values of θ cannot handle the concave Pareto
front of DTLZ2 in Fig. 8. Large values for θ deteriorate the convergence performance
of the PBI function for many-objective knapsack problems in Fig. 9(b). Clear per-
formance deterioration is also observed around θ = 1 in Figs. 7 and 9. Figures 7, 8 and
9 show the difficulty and the importance of an appropriate parameter specification of θ.

Fig. 7. Results of the PBI function on DTLZ1 (Linear Pareto front).

Fig. 8. Results of the PBI function on DTLZ2 (Concave Pareto front).
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4.2 Experimental Results of the Two-Level PBI Function

Experimental results of the two-level PBI function are shown in Figs. 10, 11 and 12
where the horizontal axis is 1/α. At the leftmost (rightmost) point of each figure with a
small (large) value of 1/α, θ1 = 0.1 (θ2 = 10) is mainly used. Thus the obtained results
at the leftmost (rightmost) point of each figure are almost the same as those by θ = 0.1
(θ = 10) in Subsect. 4.1. Only for the knapsack problems, we use larger values of α
(see the horizontal axis of each figure in Figs. 10, 11 and 12).

Fig. 9. Results of the PBI function on the knapsack problems (Convex Pareto front).

Fig. 10. Results of the two-level PBI function on DTLZ1.

Fig. 11. Results of the two-level PBI function on DTLZ2.
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4.3 Experimental Results of the Quadratic PBI Function

Experimental results of the quadratic PBI function are shown in Figs. 13, 14 and 15.
The obtained results at the leftmost (rightmost) point of each figure are similar to those
by θ = 0.01 (θ = 100) in Subsect. 4.1. This is because the penalty value is very small
(very large) on average at the leftmost (rightmost) point in Figs. 13, 14 and 15. We can

Fig. 12. Results of the two-level PBI function on the knapsack problems.

Fig. 14. Experimental results of the quadratic PBI function on DTLZ2.

Fig. 13. Experimental results of the quadratic PBI function on DTLZ1.

Use of Piecewise Linear and Nonlinear Scalarizing Functions in MOEA/D 511



also observe some similarity among the obtained results on each test problem in the
three subsections such as the V-shape results in Figs. 9(a), 12(a) and 15(a).

5 Conclusions

We first explained why the specification of the penalty value θ is difficult in the PBI
function of MOEA/D. Then we proposed an idea of modifying the shape of the contour
lines of the PBI function to strike a convergence-uniformity balance. This idea was
implemented as two-level and quadratic PBI functions. By the proposed idea, we
obtained interpolative results between small and large penalty value cases in Figs. 11
and 14 for the DTLZ2 problems. In Figs. 11(a) and 14(a), improvement was observed
by the proposed idea from the interpolative results when 0.1 < 1/α < 1. However, for
the DTLZ1 and knapsack problems, clear performance deterioration was observed from
the interpolative results, which was similar to the performance deterioration by θ
around 1.0 in the original PBI function.
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Abstract. Learning classifier systems (LCSs) are rule-based evolution-
ary algorithms uniquely suited to classification and data mining in
complex, multi-factorial, and heterogeneous problems. The fitness of indi-
vidual LCS rules is commonly based on accuracy, but this metric alone
is not ideal for assessing global rule ‘value’ in noisy problem domains
and thus impedes effective knowledge extraction. Multi-objective fitness
functions are promising but rely on prior knowledge of how to weigh
objective importance (typically unavailable in real world problems). The
Pareto-front concept offers a multi-objective strategy that is agnostic
to objective importance. We propose a Pareto-inspired multi-objective
rule fitness (PIMORF) for LCS, and combine it with a complimen-
tary rule-compaction approach (SRC). We implemented these strate-
gies in ExSTraCS, a successful supervised LCS and evaluated perfor-
mance over an array of complex simulated noisy and clean problems (i.e.
genetic and multiplexer) that each concurrently model pure interaction
effects and heterogeneity. While evaluation over multiple performance
metrics yielded mixed results, this work represents an important first
step towards efficiently learning complex problem spaces without the
advantage of prior problem knowledge. Overall the results suggest that
PIMORF paired with SRC improved rule set interpretability, particu-
larly with regard to heterogeneous patterns.

Keywords: Data mining · Classifier systems · Fitness evaluation ·
Multi-objective optimization · Machine learning

1 Introduction

Rule-based machine learning (RBML) algorithms learn a set of ‘IF:THEN’ asso-
ciation rules capturing piece-wise local patterns to map the problem. Learning
classifier systems (LCS) are a well-studied type of RBML predominantly applied
to supervised and reinforcement learning tasks [1]. LCSs evolve a set of rules
that collectively comprise a solution/prediction model. This distributed solution
varies from the standard machine learning paradigm of a single model solution,
which has made LCS particularly well suited to complex, multifactorial, and
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 514–524, 2016.
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heterogeneous problems such as the n-bit multiplexer machine learning bench-
marks [2]. While most early LCS research has focused on reinforcement learning,
supervised learning has become a major focus in recent years, particularly with
regards to real-world applications [2–5]. One major area includes biomedical data
mining and prediction. These types of problems are typically characterized as
‘noisy’, can include a large number of variables, and can involve complex under-
lying patterns of association such as epistatic interactions and heterogeneity. In
2015, [2] introduced ExSTraCS 2.0, a more scalable Michigan-style supervised
LCS. This approach was able to detect and characterize epistatic and heteroge-
neous patterns in noisy simulated genetic data, and was the first algorithm to
report solving the 135-bit multiplexer directly. However additional emphasis on
accuracy in the fitness function was necessary to efficiently solve the set of mul-
tiplexer problems (i.e. the ν parameter, which controls the influence of accuracy
on fitness, was set to 10 rather than the default of 1). Having prior knowledge
that these problems were ‘clean’ (i.e. the problem could be optimally solved with
100% prediction accuracy) was an important part of choosing an appropriate
objective weight. In that case, accuracy was overemphasized as the only explicit
objective. The same logic is true for being able to solve noisy problems. In [2,6]
it was found that having ν set above 1 reduced performance in noisy domains.
This is because noisy problems can not be solved with 100% prediction accuracy,
and ‘optimal’ rules for these problems will have an accuracy below 1. Overem-
phasizing accuracy in a noisy problem leads to dramatic over-fitting, and a loss
of generalization, prediction accuracy, and interpretability.

Only a handful of studies have explored a multi-objective fitness functions in
LCS. Implicit and explicit multi-objective learning approaches for Michigan and
Pittsburgh-style LCS algorithms were reviewed in [7]. Multi-objective research
in Pittsburgh-style LCSs has focused on balancing rule-set accuracy with parsi-
mony [8,9]. The MOLeCS algorithm was introduced as the first explicitly multi-
objective Pittsburgh LCS [10], applying competing objectives of rule-accuracy
and coverage, where coverage refers to the number of training instances that
were matched, and thus ‘covered’ by the rule. MOLeCS was the first LCS to
consider a Pareto-front based rule fitness. Two different Pareto-front approaches
were proposed in [10] to determine rule fitness ranking each generation of the
genetic algorithm. Each involved the formation of a non-dominated rule-fitness
front from rules in the current population. The first strategy gave all rules on the
front the same ‘best’ fitness score, and all beneath, the same lower fitness score.
The second strategy gave all rules on the front the best set of overall scores but
rules on the non-dominated front with the highest accuracy also had the high-
est fitness. These approaches are not applicable to Michigan-style LCSs, which
perform online rather than batch learning. Seeking to improve performance in
noisy problems, a weighted-sum approach to multi-objective fitness function for
Michigan-style LCS rules was recently proposed in ExSTraCS 2.1 [11] to avoid
the overfitting issues that persist even when ν was set to 1 as seen in ExSTraCS
2.0 [2]. This new fitness function improved the interpretability and power to
automatically characterize underlying complex patterns in the evolved rule set
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without sacrificing accuracy [11]. However this approach relies on the assump-
tion that the data is noisy. Case in point, ExSTraCS 2.1 was no longer able to
solve clean multiplexer problems beyond the 20-bit version since accuracy was
now being undervalued.

In this study we present preliminary results for a Pareto-inspired multi-
objective rule fitness (PIMORF). Our goal was to see if we could implement
a Pareto-based Michigan-style LCS and determine whether we could identify
Pareto-front properties that could be used to switch the objective weighting in
favor of accuracy (in clean problems), and coverage (in noisy ones), without the
advantage of prior knowledge. Also, building off work in [12], we introduce a
fast rule compaction strategy that takes advantage of the multi-objective fit-
ness function to globally rank rules for efficient rule set reduction that preserves
performance. This proposed PIMORF was implemented and tested within the
ExSTraCS 2.1 algorithm and evaluated over the 6-bit to 135-bit multiplexer
problems, as well as a spectrum of complex, noisy simulated genetic datasets
concurrently modeling epistatic and heterogeneous patterns of association. We
expect that this work will (1) demonstrate the feasibility of adapting the Pareto-
front concept to the Michigan-style LCS architecture, (2) improve knowledge
extraction, and (3) pave the way for other data-driven fitness function adap-
tations to encourage assumption-free automated machine learning and data
mining.

2 Methods

In this section we briefly (1) introduce the ExSTraCS algorithm, (2) describe how
the PIMORF is updated and applied, (3) describe our proposed rule compaction
strategy, and (4) outline the evaluation strategy.

2.1 Algorithm

The ExSTraCS algorithm [2] is a Michigan-style LCS algorithm, that has been
expanded and adapted to better suit the needs of real-world supervised learn-
ing problems wherein classification, prediction, data mining, and/or knowledge
discovery is the goal. Most recently in version 2.1, it was expanded to include a
multi-objective fitness function that utilized a balanced weighting for the accu-
racy and coverage objectives. The accuracy and coverage metrics used in the
present study were calculated as described in [11]. In short, the accuracy objec-
tive is the accuracy above what would be expected by random chance (based
on the ratio cases to controls), transformed with an exponential function so
that accuracy improvement beyond random chance were highly valued, but less
emphasis was being placed on achieving 100% accuracy. The coverage metric
is a state-frequency adjusted measure of the proportion of instances correctly
(i.e. accurately) covered by the given rule. For rules that have not yet seen all
of the training instances (i.e. so called ‘Not Epoch Complete’ (NEC) rules),
we extrapolate this proportion up to the expected correct coverage once all
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Fig. 1. Pareto front illustrations: (A) General representation of a 2-objective
Pareto-front. (B) Application of the Pareto front concept to the calculation of rule-
fitness in PIMORF.

data has been observed. For a detailed description of the ExSTraCS algorithm
see [2,11]. For comparison we also evaluate ExSTraCS 2.0.1.2, which employs
the typical accuracy-based LCS fitness [2]. All implementations are available on
sourceforge.com or by request.

2.2 PIMORF for LCS

The Pareto-front is part of the Pareto-optimization approach popularized for
multi-objective learning in genetic algorithms [13]. Figure 1A illustrates compo-
nents of a general Pareto-front as it might be applied to any evolutionary mod-
eling approach. Typically, a population of models are generated and objective
performance is evaluated (often accuracy and parsimony). Each model appears
as a point in the objective space (see Fig. 1A). The ‘front’ (i.e. non-dominated
front) is the set of all non-dominated points. A point is non-dominated if at
least one of its objective values is the maximum observed given the value of the
second objective. Next, the set of non-dominated points/models are chosen as
the parents for the next generation of models, while dominated models can be
discarded. Over multiple generations, the goal is to evolve the front closer to
the theoretical optimum. The benefit of this approach is that evolution takes
both objectives into account without making any assumptions about objective
weighting (i.e. all points on the non-dominated front are treated with equal
priority). Our Pareto adaptation to Michigan-style supervised LCS algorithms,
(PIMORF) is differently designed to calculate rule-front-relative multi-objective
rule fitness values. Instead of points representing models in the multi-objective
front space, they represent LCS rules, that are each only part of the overall LCS
‘model’. In PIMORF, the rule-fitness front is updated during the course of learn-
ing i.e. every time a new rule is generated and added to the rule-population, we
check to see if the rule is non-dominated. If it is, the rule-fitness front is updated

http://www.sourceforge.com
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accordingly. The PIMORF rule-front constitutes the current standard for opti-
mal multi-objective rule fitness, and rules that do not fall on the front (i.e.
dominated rules) can be preserved since they might be important contributors
to the overall solution despite not possessing a non-dominated combination of
objective values. Implementation of PIMORF involves the following: (1) Scal-
ing the ‘correct coverage’ objective using the maximum observed rule coverage
[11]. (2) Learning and updating two separate rule-fitness fronts: one for ‘epoch
complete’ (EC) rules that have been around long enough to have trained on the
entire dataset, and another for NEC rules which have seen at least 1000 instances
in the training set. To allow for a fair coverage comparison, NEC rule coverage
values are extrapolated as described in [11] up to the total training set size. (3) In
the first 1000 learning iterations, prior to either front being established, accu-
racy alone is applied as a surrogate for multi-objective fitness. (4) Rule-fitness
is calculated as the relative distance between the origin (where accuracy and
coverage objectives are both 0) and the rule point vs. the origin and the inter-
cept point on the rule-fitness front (see Fig. 1B). This is an agnostic approach to
multi-objective fitness weighting since any rule on the front has the maximum
fitness value. We also explored averaging this agnostic fitness value with a linear
accuracy or coverage bias, to be applied in the case that we wanted to apply
prior knowledge assuming a clean or noisy problem, or utilize characteristics of
the rule-fitness front to detect this automatically. This PIMORF implementa-
tion, combining the relative parato distance with a coverage gradient bias will
be referred to as ExSTraCS 2.1.1.

2.3 Rule Compaction

Rule compaction is a form of post-processing applied to the evolved LCS pop-
ulation following training. Its goal is to remove poor or redundant rules from
the population and yield a more compact rule-set that is easier to interpret (i.e.
extract knowledge), and ideally that preserves or improves power and predictive
accuracy. In previous work, a variety of LCS rule compaction strategies were
implemented and compared [12]. These strategies relied on an accuracy-based
fitness function, and therefore has the drawback of being poor for globally rank-
ing rules in the context of noisy problems. This is because highly accurate rules
in the population consistently over-fit the training data. In this study, we intro-
duce a simple rule compaction (SRC) scheme which we contrast with QRC, a
rapid scheme from [12], that preserves or improves performance, but minimally
reduces the overall rule-set size by removing clearly poor or inexperienced rules.
SRC complements PIMORF which yields a more globally reliable rule-ranking
metric than accuracy or rule-numerosity (i.e. the number of copies of a rule in
the population). Numerosity had previously been applied as a rough estimator
of global rule-value with mixed success [12]. SRC is implemented as follows:
(1) Rank all rules in the population by PIMORF. (2) Progress through the rule
set by descending PIMORF. (3) For each rule, identify and remove any instances
in the training data that the rule correctly covers. If no remaining instances can
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be correctly covered, or the rule has an accuracy below the probability of ran-
domly selecting the class specified by the rule, or the rule has not yet had the
opportunity to train on the whole dataset (i.e. a NEC rule), this rule is excluded
from the final rule-set. SRC stops once the training set is empty (i.e. it has been
completely covered), or it has gone through the entire rule set.

2.4 Evaluation

In the present study we compare and evaluate ExSTraCS with and without
the proposed PIMORF as well as compare QRF to SRC in the case where
PIMORF is applied. Both implementations were run over the same set of 960
noisy (i.e. heritabilities of 0.1, 0.2, or 0.4), complex simulated genetic datasets
with 20 discrete-valued attributes that were described and applied in [11] and
generated using GAMETES [14]. Each dataset concurrently modeled patterns
of epistasis and heterogeneity concurrently where four of the attributes were
predictive and 16 were non-predictive. 20 replicates of each dataset were ana-
lyzed and 10-fold cross validation (CV) was employed to measure average testing
accuracy and account for over-fitting. ExSTraCS was run up to 200,000 learn-
ing iterations. Pair-wise statistical comparisons were made using the Wilcoxon
signed-rank tests. All statistical evaluations were completed using R. Compar-
isons were considered to be significant at p ≤ 0.05. All analyses were performed
using ‘Discovery’, a 2400 core Linux cluster available to the Dartmouth Col-
lege research community. These comparisons are performed over a set of key
performance metrics [2]. Both accuracy metrics were calculated as a respective
‘balanced accuracy’ to account for imbalanced datasets as the default output of
ExSTraCS. ‘Both Power’ is the ability to correctly identify both two-locus het-
erogeneous models. ‘Single Power’ is the ability to have found at least one. ‘Both
Co-occur. Power’ indicates the ability to detect both correct heterogeneous pat-
terns, while ‘Single Co-occur. Power’ is to detect at least one. Macro Population
refers to the number of unique classifiers in the classifier population. Addition-
ally we generated 18 toy simulated genetic datsets each with 20 attributes and
1600 training instances. These included datasets with either (1) a single locus
linear model, (2) a two-locus XOR interaction model, or (3) a three-locus XOR
interaction model each with varying degrees of noise (0–100%). Another 6 clean
datasets with increasing sample sizes were generated for respective multiplexer
benchmarks of (6-bit through 135-bit) [2]. This secondary analysis was designed
to explore rule front properties that may serve as a ‘switch’ to automatically
direct ExSTraCS to adopt an accuracy or coverage objective bias in a problem
dependent manner.

3 Results and Discussion

Table 1 summarizes the statistical results comparing ExSTraCS with a multi-
objective fitness function (v2.1) to ExSTraCS with a simpler accuracy based
fitness (v2.0.2.1), as well as to our proposed implementation of PIMORF in
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Table 1. Average performance over all 960 datasets.

Rule population performance after 200,000 iterations

Performance ExSTraCS

Statistics v2.1 v2.0.2.1 p v2.1.1 p +QRF p +SRC p

Training Accuracy .7472 .7975 ↑ ** .7519 ↑ ** .7485 ↓ * .7648 ↑ **

Test Accuracy .6215 .6177 ↓ ** .6123 ↓ ** .6130 - .6192 ↑ *

Both Power .4104 .4031 - .3895 ↓ ** .3901 - 0.3875 ↓ *

Single Power .7802 .7542 ↓ ** .7635 ↓ ** .7710 ↑ * .7740 ↑ **

Both Co-Occur. Power .2292 .0333 ↓ ** .2656 ↑ ** .2675 - .3542 ↑ **

Single Co-Occur. Power .8271 .7688 ↓ ** .8260 - .8266 - .8375 ↑ **

Macro Population 1248.5 1351.5 ↑ ** 875.6 ↓ ** 810.2 ↓ ** 192.7 ↓ **

Run Time (min) 52.57 50.56 ↓ ** 35.56 ↓ ** 35.61 - 35.58 -

− No significant change
* p < 0.05 (Direction of change given by arrows)
** p < 6.94 × 10−4 (Cutoff assumes Bonferroni multiple test correction based
on 72 comparisons)

ExSTraCS (v2.1.1). This table further presents statistical comparisons between
v2.1.1 following the application of QRF rule compaction, and differently with
the application of the proposed SRC approach. As expected, preliminary testing
applying SRC to ExSTraCS with accuracy-based fitness yielded a much smaller
rule-set but with large performance losses (not shown). As can be reiterated
from this table, a multi-objective fitness function (in v2.1) globally improved
or maintained average performance measures when compared to accuracy based
fitness (in v2.0.2.1) over a spectrum of noisy datasets. Closer inspection of these
results, replicating findings in [11], suggest some data set specific trade offs for
accuracy and power metrics, enforcing the suboptimality of a multi-objective
fitness function with constant equal objective weights. With the substitution of
PIMORF as the fitness metric in ExSTraCS (in v2.1.1), we do observe signifi-
cant performance losses in testing accuracy, Both Power and Single Power, but
on the other hand observe a significant increase in Both Co-Occurence Power,
which reflects the ability of the algorithm to accurately detect and interpret
both underlying heterogeneous models, a critical advantage of LCS algorithms
in comparison to other machine learning approaches. Closer inspection of the
v2.1.1 results yielded similar dataset specific trade offs in performance, suggest-
ing that when averaged over all datasets this new implementation was not ideal
in terms of some key performance metrics, but universal performance metric
improvements could be expected if the dataset could be paired to the proper
objective weights. Furthermore, v2.1.1 significantly and dramatically reduced
the macro-population size (i.e. number of unique rules in the final population),
and significantly reduced algorithm run time. While PIMORF performance is not
yet optimal without proper objective weighting, the results are promising and
support the importance of a multi-objective fitness in noisy rule-based machine
learning. Next we examine the effect of our proposed rule compaction strategy
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Fig. 2. Pareto inspired rule front comparisons. Each box gives the respective rule-
fitness front, with accuracy and coverage axes each scaled between 0 and 1. Points
represent rules in the final rule population. The background shading under the curve
represents a basic illustration of underlying relative rule-fitness. Note that points found
above the front are NEC rules with likely overestimates of objectives. The large black
box groups all analyses involving noisy data.

(SRC) in comparison with no rule compaction and QRF. The results for v2.1.1
in Table 1 represent no rule compaction, and the following two columns present
the results of QRF and SRC being independently applied to the same rule popu-
lations summarized in the column for v2.1.1. This comparison reveals that while
QRF does indeed further reduce the rule population size while preserving if
not slighly improving some performance metrics, SRC, benefiting from multi-
objective fitness that better captures a global sense of rule value, significantly
improves testing accuracy as well as all other power metrics with the excep-
tion of Both Power which yields a relatively small loss. Using SRC, we observe
the largest significant increase in Both Co-Occurrence Power observed for any
implementation of LCS or ExSTraCS on this array of simulated genetic bench-
marks [2,5,6,11]. This performance metric has been by far the most difficult to
improve. Given that SRC dramatically reduces the population size, while simul-
taneously improving performance relative the population without compaction,
this strategy is an improvement over QRF and other strategies evaluated in [12].

In a related analysis, we sought to characterize evolved rule-fitness fronts
learned under different conditions of problem complexity and noise. The goal
was to see if properties of the front could be applied to appropriately adapt
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the fitness function to include a more appropriate objective bias without prior
problem knowledge. Figure 2 organizes a series of PIMORF rule-fronts learned
on an array of benchmark datasets modeling main effects, pure 2-way, or 3-way
interactions, or clean multiplexer benchmark problems of increasing complex-
ity. We summarize some interesting observations, but concede that preliminary
analyses seeking to apply these characteristics to predict whether the underlying
problem was clean or noisy during learning, suggest that none of these trends
can be universally applied as a reliable discriminator of clean vs. noisy prob-
lems. Relatively ‘simple’ patterns in the data such as main effects or relatively
complex clean data patterns tend to yield a single point rule front (1, 2, and 3
locus models without noise). In such problems, objective weighting likely makes
little to no difference, since optimal rules will be perfectly accurate and correctly
cover the largest number of training instances. As clean problems become more
complex (e.g. 4, 5, or 6 locus interactions), or include heterogeneity, we would
not expect optimal rules to also cover the most instances. This is because over-
general rules, with sub-optimal accuracy, can correctly cover a larger number of
instances than an optimally accurate rule in complex problem spaces.

For each front with multiple points, consider the points at the ends of the
front. Let’s call the far right point the ‘CoverMax ’ or the accuracy observed
at the largest coverage. The point on the far left we will call the ‘Accuracy-
Max ’, or the largest coverage observed at the maximum rule accuracy. One
interesting trend is that in partially noisy problems, CoverMax tends to be
not only large, but larger than AccuracyMax. A more general way to view this
trend is to notice that partially noisy problems tend to have a shallow over-
all slope. Alternatively, in clean, complex problems, such as the set of increas-
ingly complex multiplexer problems, AccuracyMax tends to be both large and
larger than CoverMax, or more generally, the slope of these fronts are steep.
Unfortunately, these trends become unreliable indicators when (A) there is insuf-
ficient signal, or (B) problem complexity increases but the noise level fixed, or
(C) the complexity/dimensionality of a problem become so great that the magni-
tude of AccuracyMax maxes it difficult to distinguish a complex clean rule-front
from a completely noisy signal. This makes the implementation of an automated
‘switch’, shifting from accuracy to coverage bias problematic. In a clean but
complex problem, until at least one optimal rule is found, the characteristics of
the front might suggest that the problem is noisy and add a coverage bias. The
addition of the wrong bias makes it even more unlikely that optimal rules will
be identified, and that the rule front will be correctly updated to an accurately
characteristic shape. One final observation for the multiplexer problems, is that
we can see clusters of rules forming linear patterns. These groups turned out
to correspond with the number of attributes specified in respective rules. Here
we can effectively observe the different linear relationships between the accuracy
and coverage within candidate rules that have not specified all of the necessary
attributes to correctly cover the underlying multiplexer problem (e.g. in the 135-
bit problem the 5 clearly identifiable groups correspond to 1–5 attributes having
been specified in those rules.
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4 Conclusions

The initial results presented in this paper demonstrate the potential benefits of a
Pareto-front inspired LCS rule-fitness and support taking an agnostic approach
to objective weighting in the likely absence signal to noise ratio prior knowledge
in real-world problems. Therefore to promote effective modeling (i.e. accurate
prediction and interpretable solutions) in problem domains that are not known to
be 100% signal, a key goal should be to identify or properly estimate the signal to
noise ratio, and apply this information to correctly weight accuracy and coverage
objectives in the rule fitness function. Despite observing some interesting trends
comparing simulated datasets with clean to noisy signals, we have not identified
a reliable ‘switch’ that could be employed to automatically adapt the algorithm
to employ the proper objective bias. Future work will explore a purely agnostic
Pareto-based rule-fitness to evolve rules and rely on a rule compaction scheme
to test different objective weight ratios, and select the best one as the final rule-
set. While this work focuses on the adaptation of rule-based machine learning
to problems with unknown noise properties, multi-objective fitness could still
benefit performance on clean problems, where a small explicit generalization
pressure, has the potential to speed up learning beyond the underlying implicit
generalization pressures and the use of subsumption.
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Abstract. Decomposition is a well-established mathematical program-
ming technique for dealing with multi-objective optimization problems
(MOPs), which has been found to be efficient and effective when cou-
pled to evolutionary algorithms, as evidenced by MOEA/D. MOEA/D
decomposes a MOP into several single-objective subproblems by means
of well-defined scalarizing functions. It has been shown that MOEA/D is
able to generate a set of evenly distributed solutions for different multi-
objective benchmark functions with a relatively low number of decision
variables (usually no more than 30). In this work, we study the effect of
scalability in MOEA/D and show how its efficacy decreases as the num-
ber of decision variables of the MOP increases. Also, we investigate the
improvements that MOEA/D can achieve when combined with coevo-
lutionary techniques, giving rise to a novel MOEA which decomposes
the MOP both in objective and in decision variables space. This new
algorithm is capable of optimizing large scale MOPs and outperforms
MOEA/D and GDE3 when solving problems with a large number of
decision variables (from 200 up to 1200).

1 Introduction

Although in real-world applications, many MOPs have hundreds or even thou-
sands of decision variables, the effect of the scalability of decision variables space
over modern MOEAs has not been properly addressed. In fact, scalability in deci-
sion variables space is a topic that has been only scarcely studied in the context
of multi-objective optimization using MOEAs. This is perhaps motivated by the
fact that most researchers assume that the currently available MOEAs should
be able to work properly with a large number of decision variables. Nevertheless,
there exists empirical evidence that indicates that most of the currently available
MOEAs significantly decrease their efficacy as the number of decision variables
of a MOP increases [4,5]. The work reported here tries to narrow the gap in this
important topic.

We are interested in improving the MOEA/D [14] framework in order to
make it capable to deal with large scale (in decision variables space) MOPs.
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Thus, we study here the effect of scalability in MOEA/D and we investigate the
improvements that this algorithm can achieve. For this purpose, we propose to
combine the MOEA/D framework with Cooperative Coevolutionary techniques
(which have shown to be very effective for large scale single-objective optimiza-
tion [8,13]), giving rise to a novel MOEA based on a double decomposition (both
in objective and decision variables space).

The remainder of this paper is organized as follows. The previous related
work is discussed in Sect. 2. Section 3 describes our proposed approach and the
experiments carried out to validate it. Finally, our conclusions and some possible
paths for future work are drawn in Sect. 4.

2 Previous Related Work

Regarding studies on scalability in MOEAs, to the authors’ best knowledge,
the most significant ones are those reported by Durillo et al. [4,5], in which
the behavior and effect of decision variables scalability over eight multi-
objective metaheuristics (representatives of the state-of-the-art) are analyzed.
For this sake, the authors adopted a benchmark of scalable problems (the
Zitzler-Deb Thiele (ZDT) [16] test suite) using a number of decision variables
that ranged from 8 up to 2048. The study paid particular attention to the com-
putational effort required by each algorithm for reaching the true Pareto front
of each problem. These papers provide empirical evidence of the decrease in effi-
cacy and efficiency that multi-objective metaheuristics have when dealing with
MOPs with a large number of decision variables, as it is shown in their results.

Another work in this direction is a small study presented in [14], where ZDT1
is solved with up to 100 decision variables using MOEA/D. They analyze how the
computational cost, measured in terms of the number of function evaluations,
increases as the number of decision variables of the problem increases. This
is shown using a number of decision variables that ranges from 10 up to 100
variables. They used as a performance index the average number of function
evaluations spent by MOEA/D for reducing the D-metric [17] and concluded
that the average number of function evaluations linearly scales up, as the number
of decision variables increases. They attribute these results to two facts: (i) the
number of scalar optimization sub-problems in MOEA/D is fixed to be 100,
regardless of the number of decision variables of the problem. (ii) the complexity
of each single-objective optimization could scale linearly with the number of
decision variables. However, this study is too small to show a general behavior
of MOEA/D over large scale (in decision variables space) MOPs.

Although scalability in decision variables space is a topic that has been only
scarcely studied in the evolutionary multi-objective optimization field, large-
scale optimization has been the focus of an important amount of research in
global (single-objective) optimization using evolutionary algorithms. The cur-
rently available approaches for large-scale global optimization can be roughly
divided in two groups: those that decompose a high-dimensional decision vari-
ables vector into small subcomponents which can then be handled by conven-
tional EAs (see for example [13]) and the ones that approach the problem by
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disturbing the population of the EA or by combining different evolutionary meth-
ods (see for example [9]). From these methods, cooperative coevolution has been
found to be one of the most successful approaches for solving large and complex
problems, through the use of problem decomposition.

3 Our Proposed Approach

The main idea of our proposed approach is to make use of the divide-and-conquer
technique, adopted by the cooperative coevolutionary framework for large scale
single objective optimization, and incorporate such concept into MOEA/D. Our
motivation is that it is very natural to use scalar optimization methods in
MOEA/D, since each solution is associated with a scalar optimization prob-
lem, in contrast with non-decomposition MOEAs where in most cases there is
no easy way for them to take advantage of scalar optimization methods. Next,
we give a brief description of both MOEA/D and cooperative coevolution.

3.1 MOEA/D

The multi-objective evolutionary algorithm based on decomposition (MOEA/D)
[14] has attracted growing interest from the community, due to its simplicity
and to its effectiveness when applied to a broad range of MOPs. MOEA/D
decomposes the MOP into a set of single-objective subproblems and solves these
subproblems simultaneously using an evolutionary algorithm. It adopts a set of
weights each of which corresponds to a single subproblem. Each weight vector is
used as a search direction to define a scalar function. For this sake, the so called
Tchebycheff decomposition is the most widely used approach. Given a weight
vector λ = [λ1, . . . , λn]T the corresponding subproblem is defined as:

minimize gte(x|λ, z∗) = max
1≤i≤n

λi|fi(x) − z∗
i | (1)

where z∗ is the reference point chosen as the minimum of objective function
values found during the evolution. The main advantage of the Tchebycheff app-
roach is that it works regardless of the shape of the Pareto front, while other
decomposition approaches (like the weighted sum approach) only work for con-
vex Pareto fronts. The weights are also used to define neighborhoods of the
subproblems. The neighborhood relations among these subproblems are defined
based on the distances between their aggregation coefficient vectors. At each
generation, a new individual is generated and evaluated using its own neighbor-
hood of weights, with the idea that any information about these closest weight
vectors should be helpful for optimizing the current individual’s subproblem.
Once this new individual is created, it is compared to its parent and in case it is
better, it replaces its parent. Moreover, it is also compared to other individuals
in its neighborhood and is allowed to replace some of them. Therefore, at each
generation, the population is composed of the best solution found so far (i.e.,
since the start of the run of the algorithm) for each subproblem.
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3.2 Cooperative Coevolution

In nature, coevolution is the process of reciprocal genetic change in one species,
or group, in response to another. That is, coevolution refers to a reciprocal
evolutionary change between species that interact with each other [6]. A coevo-
lutionary search involves the use of multiple species as the representation of a
solution to an optimization problem. In the case of cooperative algorithms, which
are the focus of this work, individuals are rewarded when they work well with
other individuals and punished when they perform poorly together [11].

The first framework of cooperative coevolution (CC) utilized within evolu-
tionary algorithms was originally introduced by Potter and De Jong [10], with
their Cooperative Coevolutionary Genetic Algorithm (CCGA). This framework
uses a divide-and-conquer approach to split the decision variables into subpopu-
lations of smaller size, so that each of these subpopulations is optimized with a
separate EA. The main idea was to decompose a high-dimensional problem into
several low-dimensional subcomponents and evolve these subcomponents coop-
eratively. So, instead of evolving a population (global or spatially distributed) of
similar individuals representing a global solution, the cooperative coevolutionary
framework coevolves subpopulations of individuals representing specific parts of
the global solution.

After this work, there were many more cooperative coevolutionary
approaches, most of them for large scale global optimization since this showed to
be a good framework for solving high-dimensional problems [8,13]. In general,
the most common cooperative coevolutionary framework for high-dimensional
global (single-objective) optimization can be summarized as follows:

1. Decompose a vector of decision variables into m low dimensional subcompo-
nents.

2. Set j = 1 to start a new cycle.
3. Optimize the jth subcomponent with a certain EA for a predefined number

of fitness evaluations (FEs).
4. If j < m then j + +, and go to Step 3.
5. Stop if the stopping criteria are satisfied; otherwise, go to Step 2 for the next

cycle.

3.3 Description of Our Proposed Approach

If we are to extend the basic computational model of cooperative coevolution
into an approach that already uses a decomposition strategy as the one adopted
by MOEA/D, we must address the issues of a second problem decomposition, as
well as other issues such as the interdependencies among subcomponents, credit
assignment, and the maintenance of diversity. In order to do so and to provide
reasonable opportunities for the success of co-adapted subcomponents and an
increase in efficiency when dealing with large scale MOPs, we can not use the
whole model of cooperative coevolution as we did in our previous work presented
in [1], since it is much more costly (due to the use of multiple subpopulations)
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than the use of MOEA/D as a standalone algorithm. Instead, we only incorporate
into MOEA/D a coevolutionary step where we make use of the divide-and-
conquer technique that splits the MOP to be solved, but in decision variables
space.

Our proposed approach divides the vector of decision variables into S sub-
components (species), each one representing a subset of all the decision variables
at a time rather than taking only one variable per subcomponent. We assign each
decision variable to its corresponding subcomponent in a random way, trying to
increase the chance of optimizing some interacting variables together. However,
it is important to note that the cooperative coevolutionary adaptation presented
here does not work as in the original framework, since we do not intend to use
several subpopulations for each subcomponent of the problem and we will not
need individuals from the other species to assemble a complete solution in order
to perform a fitness evaluation. Here, we only use decision variable decomposition
to make operations (crossover and mutation) more effective and with this, we
can manage in a better way the curse of dimensionality (the performance of an
evolutionary algorithm deteriorates rapidly as the dimensionality of the search
space increases [12]) present in MOEAs. So, individuals will still be represent-
ing a whole solution, but operators will be applied based on the corresponding
species, and not based on the individuals. The algorithm of our proposed MOEA
based on double decomposition (MOEA/D2) works as follows:

m
...

m
...

m
...

D

Vector of decision
variables

Species 1 Species 2 Species S

Species
Subcomponents

Fig. 1. Graphical representation of the subcomponents (species) creation. Here, we
assume a vector of decision variables of dimension D which is divided into S subcom-
ponents of dimension m, created in a random way from the original vector of decision
variables and assigned to the S existing species, where D = m ∗ S.

Input:
– The MOP with k objective functions
– N : The number of subproblems considered in MOEA/D
– S: The number of species for decision variables decomposition
– A set of N uniform spread weight vectors:

λ1, . . . , λN

– T : The neighborhood size
Output:

– PS: the final solutions found during the search
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Step (1) Initialization:
Step (1.1) Set the external population of final solutions PS = ∅.
Step (1.2) Find the T closest weight vectors to each weight vector. For each

i = 1, . . . , N , set B(i) = {i1, . . . , iT }, where λi1 , . . . , λiT are the T closest
weight vectors to λi.

Step (1.3) Generate an initial population x1, . . . xN randomly or by a
problem-specific method. Set FV i = f(xi).

Step (1.4) Divide the problem into S subcomponents c1, . . . , cS each of
dimension m, created in a random way from the original vector of decision
variables x of dimension D (as shown in Fig. 1), where D = m ∗ S, such
that, for each j = 1, . . . , N , xj = [c1j , . . . , c

S
j ].

Step (1.5) Initialize z = [z1, . . . , zk]T , where zi is the best value found so
far for objective fi.

Step (2) Update:
For i = 1, . . . , N do

Step (2.1) Crossover and Mutation:
For j = 1, . . . , S do

Step (2.1.1) Randomly select two indexes p, q from B(i), and then gen-
erate a new solution yj

c from cjp and cjq using crossover.
Step (2.1.2) Apply a problem-specific repair improvement heuristic on

yj
c to produce y′j

c.
Step (2.2) Assemble y′ from [y′1

c , . . . , y
′S
c ], sorting the subcomponents to

form the original vector of decision variables.
Step (2.3) For each j = 1, . . . , k, if zj > fj(y′), then set zj = fj(y′).
Step (2.4) Update of Neighboring Solutions: For each index j ∈ B(i)

use (1) such that, if gte(y′|λj , z∗) < gte(xj |λj , z∗), then FV j = f(y′).
Step (2.5) Remove from the external population PS all the vectors domi-

nated by f(y′). Add f(y′) to PS if no vectors in PS dominate it.
Step (3) Stopping Criterion: Stop if the termination criterion is satisfied.

Otherwise, go to Step 2.

Since cjp and cjq in Step 2.1.1 are the current best subcomponent (in deci-
sion variables space) solutions to neighbors of the ith subproblem (in objective
function space) and their dimensions are less than the original vector of decision
variables x, their offspring y′j

c (already improved by mutation) should be a good
contribution to the complete assemble of the new final solution y′. Therefore,
the resultant solution is very likely to have a lower (improved) function value
for the neighbors of the ith subproblem. Also, by using only the decomposition
nature of the cooperative coevolutionary framework, there is no need for extra
function evaluations. Therefore, the efficiency of MOEA/D is not lost.

3.4 Experimental Results

We validated MOEA/D2 comparing its performance with respect to that of
the original MOEA/D and with respect to GDE3 [7]. Although GDE3 is not a
decomposition based algorithm, in the studies presented in [4] this differential
evolution based MOEA obtained the best overall results, which is the reason
why we decided to include it in our comparative study.
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Methodology. For the purposes of this study, we adopted the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [3] with instances of three objectives with a
number of decision variables that ranges from 200 to 1200. In order to assess the
performance of each approach, we selected the hypervolume indicator [15], since
this measure can differentiate between degrees of complete outperformance of
two sets. The hypervolume is defined as the n-dimensional space that is contained
by an n-dimensional set of points. When applied to multi-objective optimization,
the n-dimensional objective values for solutions are treated as points for the
computation of such space. That is, the hypervolume is obtained by computing
the volume (in objective function space) of the nondominated set of solutions Q
that minimize a MOP. For every solution i ∈ Q, a hypercube vi is generated with
a reference point W and the solution i as its diagonal corner of the hypercube:

S = V ol

⎛

⎝
|Q|⋃

i=1

vi

⎞

⎠ (2)

The aim of this study is to identify which of the algorithms being compared
is able to get closer to the true Pareto front using the same number of objective
function evaluations and how they behave as the dimensionality of the MOP
increases.

Parameterization. The parameters of each algorithm used in our study were
chosen in such a way that we could do a fair comparison among them. For
MOEA/D2 and MOEA/D, we adopted SBX and polynomial-based mutation [2]
as the crossover and mutation operators, respectively. The mutation probability
was set to pm = 1/l, where l is the number of decision variables; the distribution
indexes for SBX and the polynomial-based mutation were set as: ηc = 20 and
ηm = 20. For the case of MOEA/D2, different numbers of species were used for
each problem instance, in order to have 2 decision variables per species. So, for
problems with 200 decision variables, 100 species were used, for problems with
400 decision variables, 200 species were used, and so on. The maximum number
of iterations adopted for all problems and MOEAs was set to 1000, regardless of
their dimensionality. The F and CR values for GDE3 were set to 0.5. Finally,
the population size for all algorithms in all problems instances was set to 100.

Discussion of Results. In our experiments, we obtained the hypervolume value
over the 25 independents runs performed. Table 1 shows the average hypervol-
ume of each of the MOEAs being compared for each test problem adopted, as
well as the results of the statistical analysis that we made to validate our exper-
iments, for which we used Wilcoxon’s rank sum. Also, we show the improvement
on the hypervolume value that our approach was able to obtain with respect
to that of the other algorithms. GDE3 presented the poorest performance in
all problem instances. MOEA/D produced competitive results for DTLZ2 and
DTLZ4, although it could not outperform our approach in any problem instance.
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Table 1. Average of the hypervolume indicator. The cells containing the best hypervol-
ume value for each problem have a grey colored background. The improvement columns
show the improvement on the hypervolume value that our approach was able to get
against that of the other MOEAs. The P(H) columns shows the results of Wilcoxon’s
rank sum test. P is the probability of observing the given result (the null hypothesis
is true). Small values of P cast doubt on the validity of the null hypothesis. H = 0
indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5%
level. H = 1 indicates that the null hypothesis can be rejected at the 5% level.

MOEA/D2 MOEA/D MOEA/D2-MOEA/D MOEA/D2-MOEA/D GDE3 MOEAD2-GDE3 MOEAD2-GDE3

Function No. Vars HV HV Improvement P(H) HV Improvement P(H)

DTLZ1 200 124999991998953.0000 124999970289543.0000 21709410.2344 0.000000 (1) 124923656113375.0000 76335885578.2031 0.000000 (1)

400 124999755014274.0000 124999298073533.0000 456940740.9063 0.000000 (1) 124181465622337.0000 818289391936.5000 0.000000 (1)

600 124998478272908.0000 124996030413092.0000 2447859816.0625 0.000000 (1) 122039040800943.0000 2959437471964.5000 0.000000 (1)

800 124995060011719.0000 124985536236730.0000 9523774988.8594 0.000000 (1) 117702084444497.0000 7292975567222.5300 0.000000 (1)

1000 124986970597954.0000 124955356063479.0000 31614534475.2500 0.000000 (1) 110256296271387.0000 14730674326567.2000 0.000000 (1)

1200 124970550659900.0000 124894718579624.0000 75832080276.4531 0.000000 (1) 99191612716078.9000 25778937943821.2000 0.000000 (1)

DTLZ2 200 728999.3904 728999.3862 0.0043 0.712386 (0) 728989.2937 10.0967 0.000000 (1)

400 728999.3808 728999.3680 0.0128 0.043602 (1) 728321.7458 677.6350 0.000000 (1)

600 728999.3605 728999.3085 0.0520 0.000000 (1) 721831.2296 7168.1309 0.000000 (1)

800 728999.2870 728999.1289 0.1581 0.000000 (1) 698874.5807 30124.7063 0.000000 (1)

1000 728999.0954 728998.4267 0.6687 0.000000 (1) 653788.8012 75210.2941 0.000000 (1)

1200 728998.4393 728994.9746 3.4647 0.000000 (1) 571671.4472 157326.9921 0.000000 (1)

DTLZ3 200 1727999970755560.0000 1727999849624200.0000 121131355.7500 0.000000 (1) 1727222040269000.0000 777930486563.2500 0.000000 (1)

400 1727996400439630.0000 1727991944817710.0000 4455621923.0000 0.000000 (1) 1716392835963730.0000 11603564475898.3000 0.000000 (1)

600 1727970985655110.0000 1727945403715830.0000 25581939288.2500 0.000000 (1) 1679379508439150.0000 48591477215964.8000 0.000000 (1)

800 1727890440027340.0000 1727805158813020.0000 85281214323.2500 0.000000 (1) 1597662758376130.0000 130227681651214.0000 0.000000 (1)

1000 1727715593620590.0000 1727460212199730.0000 255381420857.2500 0.000000 (1) 1463152563598520.0000 264563030022069.0000 0.000000 (1)

1200 1727363193497010.0000 1726773363259150.0000 589830237867.0000 0.000000 (1) 1259639566256750.0000 467723627240265.0000 0.000000 (1)

DTLZ4 200 728999.4140 728999.4078 0.0062 0.277231 (0) 728991.3901 8.0240 0.000000 (1)

400 728999.4065 728999.3896 0.1154 0.000000 (1) 728201.9349 434.6057 0.000000 (1)

600 728999.3788 728999.3464 0.0324 0.000000 (1) 720704.2965 8295.0824 0.000000 (1)

800 728999.3150 728999.1945 0.1206 0.000000 (1) 696046.7161 32952.5989 0.000000 (1)

1000 728999.1477 728998.6192 0.5285 0.000000 (1) 644641.3868 84357.7609 0.000000 (1)

1200 728998.5780 728994.9171 3.6609 0.000000 (1) 559363.2154 169635.3626 0.000000 (1)

DTLZ5 200 1727866.0538 1727865.9384 0.1154 0.013007 (1) 1727431.4481 434.6057 0.000000 (1)

400 1727865.5061 1727864.6278 0.8784 0.000000 (1) 1721336.0150 6529.4911 0.000000 (1)

600 1727863.4153 1727859.1967 4.2187 0.000000 (1) 1697620.6971 30242.7183 0.000000 (1)

800 1727857.2346 1727840.7092 16.5255 0.000000 (1) 1635056.7976 92800.4370 0.000000 (1)

1000 1727837.7148 1727760.3047 77.4101 0.000000 (1) 1510727.5139 217110.2010 0.000000 (1)

1200 1727773.5677 1727524.1382 249.4296 0.000000 (1) 1313095.5122 414678.0555 0.000000 (1)

DTLZ6 200 999967922.4861 999899450.4162 68472.0699 0.000000 (1) 999330750.1795 637172.3066 0.000000 (1)

400 998891441.7157 996820925.0570 2070516.6587 0.000000 (1) 987305237.5147 11586204.2010 0.000000 (1)

600 990768252.6193 981381295.3432 9386957.2761 0.000000 (1) 948509739.2585 42258513.3608 0.000000 (1)

800 964064335.0353 937687686.8457 26376648.1896 0.000000 (1) 874883514.5826 89180820.4527 0.000000 (1)

1000 906131328.8124 855654049.3429 50477279.4695 0.000000 (1) 744576613.9787 161554714.8337 0.000000 (1)

1200 803763312.2166 712087777.8538 91675534.3628 0.000000 (1) 551828946.6234 251934365.5932 0.000000 (1)

DTLZ7 200 2203.4849 2203.4656 0.0193 0.000000 (1) 2055.0598 148.4252 0.000000 (1)

400 2193.4627 2192.7324 0.7303 0.000000 (1) 1699.4438 494.0190 0.000000 (1)

600 2090.3379 2067.9036 22.4343 0.000413 (1) 1338.1314 752.2065 0.000000 (1)

800 1842.2642 1815.7768 26.4875 0.013007 (1) 1059.6383 782.6260 0.000000 (1)

1000 1605.8489 1526.3840 79.4649 0.000001 (1) 855.6279 750.2210 0.000000 (1)

1200 1398.8865 1352.2878 46.5987 0.006223 (1) 718.3771 680.5094 0.000000 (1)
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According to Wilcoxon’s test, we cannot reject the null hypothesis in only two
cases when comparing our approach to MOEA/D, in DTLZ2 and DTLZ4 with
200 decision variables, which means that in these cases both algorithms have
a similar behavior. This shows that our approach has a similar performance
to MOEA/D in multi-frontal problems. The best overall performance of our
approach was in DTLZ1, DTLZ3 and DTLZ6, where our approach significantly
outperformed MOEA/D and GDE3, and as the results show, as the dimension-
ality of the problems grows, the improvement obtained by our approach on the
hypervolume value increases. So, we can confirm that our approach can handle
in a better way problems with degenerate Pareto optimal fronts, as is the case
of DTLZ6. Decomposition is very effective when solving non-separable problems
such as DTLZ1 and DTLZ3. For DTLZ5 and DTLZ7, the improvement was
more remarkable as the dimensionality of the problems increased. However, our
approach was also able to outperform both MOEA/D and GDE3 in all instances.
Based on the results of Wilcoxon’s test, we can confirm that the null hypothesis
can be rejected, so MOEA/D2 produced the best overall results.

4 Conclusions and Future Work

Here, we developed a novel decomposition-based MOEA called MOEA/D2,
which adopts decomposition based techniques used by cooperative coevolution-
ary algorithms. MOEA/D2 uses a double decomposition of the MOP, one in
objective functions space, as done by MOEA/D, and another one in decision
variables space. Our experimental results indicate that MOEA/D2 clearly out-
performs MOEA/D and GDE3 in MOPs having from 200 up to 1200 decision
variables. Our approach was able to deal with all the difficulties presented in the
DTLZ test suite, even in high dimensionality. The results confirmed that our
proposed approach is very effective and efficient in tackling large scale MOPs.
As part of our future work, we intend to study other decomposition techniques
for decision variable space. We are also interested in studying the possible use of
other (computationally inexpensive) methods to generate a set of weight vectors
more uniformly distributed for MOEA/D2.
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Abstract. Here we present a framework for the automatic tuning of
spiking neural networks (SNNs) that utilizes an evolutionary algorithm
featuring indirect encoding to achieve a drastic reduction in the dimen-
sionality of the parameter space, combined with a GPU-accelerated SNN
simulator that results in a considerable decrease in the time needed for
fitness evaluation, despite the need for both a training and a testing
phase. We tuned the parameters governing a learning rule called spike-
timing-dependent plasticity (STDP), which was used to alter the synap-
tic weights of the network. We validated this framework by applying it
to a case study in which synthetic neuronal firing rates were matched
to electrophysiologically recorded neuronal firing rates in order to evolve
network functionality. Our framework was not only able to match their
firing rates, but also captured functional and behavioral aspects of the
biological neuronal population, in roughly 50 generations.

Keywords: Spiking neural networks · Evolutionary algorithms ·
Indirect encoding · Neurophysiological recordings · Plasticity · Data
matching · Parallel computing

1 Introduction

As the power and availability of high-performance computing resources grows,
large and biologically realistic networks of spiking neurons are becoming increas-
ingly relevant as a computational modeling tool. Networks consisting of on the
order of hundreds or thousands of neurons allow researchers to formulate models
that can represent how neural circuits give rise to cognition and behavior [12],
and they allow engineers to prototype novel mechanisms that may prove useful
in applications of neuromorphic hardware [9].
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 537–547, 2016.
DOI: 10.1007/978-3-319-45823-6 50



538 E.L. Rounds et al.

An important step in the design of these networks is the selection of parame-
ter values that enable the model to perform a desired target function. Simulations
of spiking neural networks (SNNs) tend to be very computationally expensive,
and involve a large number of free parameters. For instance, even after a model of
a neurological system has been constrained with the best available physiological
data, it is not uncommon for an SNN to exhibit tens or hundreds of thousands
of unknown synaptic weight parameters that must be specified by the model
designer. Furthermore, SNN applications are often based on recurrent network
topologies, where gradient-based optimization methods (such as backpropaga-
tion) are inapplicable. For these reasons, the task of parameterizing an SNN to
solve a particular task, or to accurately model particular biological data, is an
especially difficult kind of neural network optimization problem.

In this paper, we propose a two-pronged framework for tuning the para-
meters of spiking neural networks. First, we achieve a drastic reduction in the
dimensionality of the parameter space by using a learning mechanism as an
indirect encoding method for automatically adapting the weights of neural con-
nections. This allows us to use an evolutionary algorithm (EA) to tune only the
coarse-grained structure of the network and the global parameters of the learning
method itself. Second, we use a GPU-based SNN simulator to accelerate fitness
evaluation. This allows us to compensate for the increased computational effort
that is required to train the networks through learning. To learn the synaptic
weights, we apply a standard nearest neighbor implementation of spike-timing-
dependent plasticity (STDP) [11], a widely-used and biologically realistic model
of synaptic plasticity which has been studied experimentally [4] as well as com-
putationally.

We demonstrate the functionality of this framework by applying it to a
case study in which an SNN is tuned to match neural recordings from the rat
retrosplenial cortex (RSC) [1]. To our knowledge, this is the first attempt to
apply search algorithms to train SNNs to replicate neurophysiological data from
awake, behaving animals. Existing work in the area of SNN synthesis has either
trained recurrent networks to match high-level animal behavior in cognitive tasks
[7,13,17], or it has focused on tuning the parameters of individual neuron models
to match electrophysiological data [8,14–16]. However, in order to better under-
stand the mechanisms underlying neurological circuits and to verify theoretical
models of cognition, it is important that they are able to match neurological
data in terms of neuronal firing rates as well as population functionality and
behavior. Sometimes the choice of these parameters can be constrained by high-
quality physiological data [20], but even with the best-understood brain regions
we almost never know the precise value that these parameters should assume to
best mimic nature. We show that this can be done effectively through the use of
the present evolutionary parameter-tuning framework.

In general, neural networks have been successfully evolved using both direct
and indirect encoding schemes. The NEAT and HyperNEAT algorithms [18,19]
utilize an indirect encoding scheme in order to evolve increasingly complex net-
work topologies, while Carlson et al. [5] used a similar approach to ours to
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evolve SNNs whose neuronal responses gave rise to receptive fields similar to
those found in neurons from the primary visual cortex. However, this study used
artificial data and did not perform a behavioral task. Asher et al. [2] used a
direct encoding scheme to train an artificial neural network (ANN) to perform
visually- and memory-guided reaching tasks. However, this approach took thou-
sands of generations to evolve, and yielded a network that had less biologically
realistic neuronal units. To our knowledge, evolutionary algorithms utilizing indi-
rect encoding have not been used to tune the parameters of networks containing
realistic spiking neurons in order to perform a cognitive task.

To summarize, our approach is novel in three key ways: (1) We use biologically
plausible spiking SNNs with realistic neural dynamics that not only reproduce
the behavior of neural circuits, but also match empirical data at the neuron level
while simultaneously capturing the holistic behavior of the circuit, (2) we use an
indirect encoding approach evolutionary algorithm to tune SNNs, and (3) we use
GPUs to run populations of SNNs simultaneously, thus speeding up the search
process. This approach may be useful for replicating other neural datasets, and
for creating biologically plausible SNNs.

2 Methodology

We test our STPD-based encoding method by fitting the activity of a network
of 1,017 neurons to neurophysiological and behavioral data that have been pre-
viously collected by Alexander and Nitz from six male Long-Evans rats [1]. In
neuroscience models, this topology is often loosely, manually specified based on
the known, somewhat incomplete properties of a real structure in the brain. In
the present case, we begin with a pre-specified network topology that defines the
coarse-grained connectivity structure among several groups of neurons (Fig. 1).
The goal of parameter tuning is to adjust the details of the network—such as
synaptic weights, the number of connections between groups, and/or the behav-
ioral parameters of the neurons in each group—such that the network success-
fully produces the desired target behavior.

2.1 RSC Model

In the current study, each SNN contained three groups of neurons, shown in
Fig. 1: 417 excitatory input neurons, which handled the encoding of the behav-
ioral inputs; 480 regular-spiking excitatory Izhikevich neurons and 120 fast-
spiking inhibitory Izhikevich neurons [10]. The network had four types of connec-
tions: inputs to excitatory (Inp→Exc), inputs to inhibitory (Inp→Inh), recur-
rent excitatory (Exc→Exc), and inhibitory to excitatory (Inh→Exc). All synaptic
projections were random with a 10 % chance of connectivity. No topology was
enforced. To train the network, a learning rule known as STDP was used to
update the weights of the network [4]; specifically, a standard nearest-neighbor
implementation [11]. Homeostatic synaptic scaling was incorporated into the
STDP rule in order to keep the neuronal firing rates within a reasonable regime
by scaling to a target firing rate (for more details see Carlson et al. [6]).
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Fig. 1. The network topology used in the current study included four input groups,
excitatory and inhibitory neuron populations, feedforward inhibition, and recurrent
excitation, with 10 % connectivity between neurons.

2.2 Parameters and Training

The automated tuning framework was used to evolve a total of 18 parame-
ters, which were related to plasticity, overall firing rates and weight ranges (see
Table 1). These parameters were used as inputs to the CARLsim GPU-based
simulation framework, which we used to run the SNN models [3,5]. Twelve
parameters related to STDP were evolved, which correspond to three types of
STDP curves. The remaining parameters control the homeostatic target base
firing rates for the excitatory and inhibitory populations, and the initial and
maximum weight values for each set of inter-group connections.

Table 1. Parameters initialized via the ECJ framework

Parameter A+ A− τ+ τ− Base

FR

(exc)

Base

FR

(inh)

Inp-

Exc

Init.

Inp-

Inh

Init.

EE

Init.

IE Init.

Minimum −0.0002 −0.0002 5.0 5.0 5.0 5.0 0.01 0.01 0.001 0.001

Maximum 0.004 0.004 100.0 100.0 20.0 20.0 0.5 0.5 0.5 0.5

Std. dev −0.00042 −0.00042 9.5 9.5 1.5 1.5 0.049 0.049 0.0499 0.0499

Each network was trained on a subset of trials from the Alexander and Nitz
experiments [1]. In the present study, each generation underwent a training ses-
sion and a testing session. Both consisted of 150 behavioral trials, which were
drawn randomly from separate subsets of the total number of trials recorded to
ensure that there was no overlap. In the testing phase, STDP was disabled in
order to keep the synaptic weights fixed following training.

Following testing, the population was evaluated by summing the best cor-
relations between the experimentally observed and simulated neurons for each
SNN. The best correlations were found by first correlating every simulated neu-
ron (n = 600) against every experimentally observed neuron (n = 228). Next,
a match was chosen based on highest correlation value between each experi-
mentally observed neuron and the corresponding simulated neuron (a neuron
could only be chosen once). After all experimentally observed neurons had a



An Evolutionary Framework for Replicating Neurophysiological Data 541

match, the fitness score for that individual SNN was computed by summing the
correlations ρ between each pair (1). A maximum mean firing rate threshold
was also incorporated into the fitness function to ensure that simulated firing
rates were reasonable and realistic. The firing rate of each neuron in the network
was averaged across all trials, and the highest observed value was considered
the maximum mean. If the observed maximum mean firing rate maxFR exceeded
the threshold, then the fitness score was penalized by subtracting the difference
between the threshold and the observed firing rate (2):

f(x ) =
{∑n

i=1 ρ(realFRi, synFRmatch) if maxFR < FRtarget,∑n
i=1 ρ(realFRi, synFRmatch) − FRerror otherwise, (1)

where
FRerror = FRmax − FRtarget, (2)

and FRtarget = 250 Hz was the maximum mean firing rate allowed for any given
neuron.

After a generation, the fitness scores were sent to ECJ via the PTI for eval-
uation and constructing a new population. The simulations proceeded for 50
generations. The complete process was repeated 10 times to ensure repeata-
bility. It is important to reiterate that the use of GPU processing speeds up
the fitness function significantly. In this case, the fitness function runs 136,800
Pearson’s r correlations (600 synthetic neurons multiplied by 228 neurophysio-
logical neurons) per each individual, which is computationally very expensive.
This complexity could increase considerably with the size of the dataset being
replicated, the size of the network being run, and/or the number of individuals
in the population, making it very important that the fitness function can be
calculated in parallel on GPU.

2.3 Evolutionary Algorithm

We represented the parameter space of the RSC model as vectors in R
18, and

then applied a (μ + λ)-style, overlapping-generations EA with truncation selec-
tion to maximize f(x ). We used a mutation operator that takes each parameter
and adds 1-dimensional Gaussian noise with probability 0.5. The width of the
Gaussian mutation operator was fixed at 10 % of the range that each parame-
ter was allowed to vary within. The values of μ and λ were fixed at 3 and
15, respectively. It was straightforward to combine the SNN simulator with the
ECJ evolutionary computation system [21] to create a unified parameter-tuning
framework.

These decisions result in an algorithm with a small population and a strong
selection pressure. This simple EA proved sufficient for our purpose, which is
provide a proof of the feasibility of evolving SNNs with an STDP-based indirect
encoding. We leave the problem of customizing EA design decisions to maximize
performance for future work.
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3 Results

3.1 Fitness Values and Firing Rate Correlations

Each of the 10 independent runs of the EA were executed for a small number of
generations. Thanks to the indirect encoding, the best fitness found tended to be
very high after just 50 generations (see Fig. 2(a)), with a mean of 105.93 ± 0.91.
The highest observed fitness was 107.79. A total of 228 experimentally correlated
neurons were matched, thus the average firing rate correlation was about 0.47 per
neuron. The lowest observed fitness was 104.7, resulting in a correlation of about
0.46 per neuron (strong correlations by experimental standards). At the start of
each evolutionary run, the average maximum fitness score was 84.57 ± 19.78.

Each of the ten evolutionary runs took 3.13 ± 1.26 days to complete. A
breakdown of how long a generation took can be seen in Table 2. In the beginning,
the population ran very slowly, taking approximately four hours to complete
(slightly under two hours for training, and slightly more for testing). By the
tenth generation, the population took roughly an hour to complete, which stayed
relatively constant across the remaining generations (breaking down to about
20 min for training and 30 for testing). However, there was considerable variance
in how long a generation could take at each point (each generation had a standard
deviation of about one hour) because of the different firing rates of individual
SNNs. Although the fitness increased during the evolutionary run, the selection
strategy tended to include high and low firing SNNs in the population, which
affects runtime performance in CARLsim.

The tuning framework was able to closely match experimental neural activity
to simulated neural activity. Figure 2(c) shows two representative examples of
matched neurons with high correlations. Note that the correlation values in the
figure are not much higher than the average correlation value, suggesting that
they are typical examples of matched neurons indicative of the network’s overall
fitness. Thus the EA was able to generate networks whose neuronal firing rates
were able to match those of the experimental dataset.

Table 2. Average runtimes in minutes (mean/std. dev)

Generation 1 10 20 30 40 50

Training 115.09/24.86 21.85/20.71 22.23/21.54 20.29/17.62 18.5/11.83 21.17/16.79

Testing 126.28/39.51 42.43/40.55 42.91/30.89 39.39/28.34 32.1/17.32 39.65/37.13

Total 240.48/59.24 64.42/59.57 65.3/50.4 59.94/45.25 50.66/28.38 60.91/49.86

3.2 Replicating Empirical Data

The evolved networks were also able to capture functional aspects of the neurons
observed in the electrophysiological data. In agreement with Alexander and Nitz
[1], we found neurons that were active when the animal was turning left or right
(turn, no mod. in Fig. 2(b)) and turn cells that were route modulated (i.e.,
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(a) Fitness Curve (b) Neuron Type Distribution

(c) Matched Neuron Examples

Fig. 2. (a) Network fitness rapidly and consistently converged over 50 generations. (b)
All evolved networks yielded consistent distributions of neuron types. (c) Two repre-
sentative matched neuron examples are provided, demonstrating that firing rate cor-
relations between synthetic and experimentally-observed neurons were generally quite
high.

preferring one turn over another on the same route; e.g., the first left instead of
the second left on an LRL route; see turn, mod. in Fig. 2(b)), as well as neurons
that were turn-insensitive (see no action specificity in Fig. 2(b)). In agreement
with the experimental data, we found that approximately 20 % of the population
were turn-sensitive, but were not route modulated. The ratios of turn-sensitive
and route modulated cells found in the evolved SNNs were comparable to those
found experimentally (compare our Fig. 2(b) with Fig. 3(a) in Alexander and
Nitz [1]). However, we found a higher proportion of neurons that were route
modulated (48 % as opposed to 26 %), and surprisingly, fewer of our neurons
were turn-insensitive (32 % as opposed to 50 %). This may be because our SNN
inputs, which were derived from recorded behavioral metrics, were less noisy
than the sensorimotor signals that the rat uses to navigate.



544 E.L. Rounds et al.

3.3 Replicating Population Functionality

Lastly, the EA produced network behavior that was quite similar to the empir-
ical findings, which is important because it suggests that the network functions
similarly to the biological RSC, and thus has the ability to capture population
dynamics as well as replicate biological neuronal firing rates. The evolved agent’s
position along a track could be discerned from the simulated population activity
(see Fig. 3). Positional reconstruction was computed by cross-correlating mean
neural activity across even vs. odd trials. Similar to that observed experimen-
tally, the positional ensemble firing rate reconstructions from a representative
evolved SNN clearly showed that the neural activity at positions on even trials
was highly correlated with neural activity at the same positions on odd trials
(Fig. 3(a)), thus very accurate reconstructions could be determined from pop-
ulation activity when the subject was in the same environment. That is, the
highest correlation values occurred between the same bin numbers across even
and odd trials, as shown by the white dashed line, from the top left corner to
the bottom right corner. The reconstruction process was also applied to trials
when the tracks were in different locations (α and β). Figure 3(b) shows a corre-
lation matrix between positions in β and positions in α for the LRL trajectory.
These reconstructions indicated that the position of the agent could be inferred
between the track positions as well, but with less accuracy than for the even vs.
odd reconstructions. This is consistent with the results reported in [1] (compare
our Fig. 3(a) and (b) with Fig. 3(e) and 6(a) in Alexander and Nitz [1]), sug-
gesting that the evolved simulated network is capable of conjunctively encoding
allocentric and route-centric information similar to the biological RSC. These
results were consistent across all evolved SNNs.

(a) αLRL (b) αβLRL

Fig. 3. (a) Positional ensemble firing rate correlations (even vs. odd trials) which were
highest fell along a ‘perfect prediction line’ suggesting that the network was able to
infer its position along any given route so long as that route was in the same allocentric
position. (b) Positional ensemble firing rate correlations for all trials at position α
vs. position β deviated from the perfect prediction line, suggesting that the network
discriminated routes that existed in different allocentric positions.
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4 Discussion

In the present study, we introduced an automated tuning framework that lever-
ages the search power of evolutionary algorithms combined with the paralleliza-
tion of GPUs, which can result in a speedup of up to 60 times faster than a CPU
in CARLsim [3]. This results in an efficient method for searching the SNN para-
meter space by drastically reducing its dimensionality via an indirect encoding
scheme in which a learning rule, STDP, was used to specify the synaptic weights
of each network. Performing fitness evaluation on each network in parallel fur-
ther reduced the time necessary to tune the SNNs, even though every individual
in the population was subjected to both a training and a testing phase. We suc-
cessfully applied this framework to a case study in which it was used to evolve
a model of the brain region RSC using electrophysiologically recorded neurons.
Rather than altering the synaptic weights of each SNN directly, an evolutionary
algorithm was used to alter the learning parameters of each SNN until a close
match between synthetic and recorded neuronal firing rates was found, which
resulted in a reduction of the number of parameters to be tuned from thousands
to only 18. Furthermore, the evolutionary algorithm took only 50 generations to
converge, demonstrating the framework was able to efficiently evolve a solution.
This is in stark contrast to direct encoding methods of evolving neural networks,
which can take thousands of generations to converge [2].

The phenomenological results of this case study suggest that the approach
of using STDP as an indirect encoding scheme will generalize to other types
of SNN tuning problems, and can be used to match other neurophysiological
datasets, since many electrophysiological recordings are collected under condi-
tions similar to the present dataset. First, the SNNs successfully captured the
underlying network activity, which was reflected in the fitness score of each
evolved network. Secondly, the SNNs captured neuronal function observed in
the data, which was reflected in empirically observed distributions of non-route
modulated turn-sensitive neurons and route modulated turn-sensitive neurons,
respectively. Thirdly, the ensemble activity of the synthetic neurons captured
behavioral functionality, such as position and route reconstruction.

The capacity to efficiently synthesize networks that reproduce neuron and
network functionality across these three levels is of considerable importance
as we attempt to move toward a greater understanding of brain function. We
have demonstrated that we have created a powerful tool with this capacity by
applying our framework to this case study of the RSC, which may be applied
to a variety of modeling efforts and tuning problems involving SNNs. Further
experiments are underway to investigate how the network responds to manipula-
tions of its inputs, and to predict how neural activity in the retrosplenial cortex
might change depending on environmental context. These predictions can then
be tested by conducting new electrophysiological experiments, the results of
which could lead to a better understanding of how neural responses give rise to
behavior.



546 E.L. Rounds et al.

Acknowledgments. Supported by the National Science Foundation (Award IIS-
1302125).

References

1. Alexander, A.S., Nitz, D.A.: Retrosplenial cortex maps the conjunction of internal
and external spaces. Nat. Neurosci. 18(8), 1143–1151 (2015)

2. Asher, D.E., Krichmar, J.L., Oros, N.: Evolution of biologically plausible neural
networks performing a visually guided reaching task. In: Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computation (GECCO 2014),
pp. 145–152. ACM, New York (2014)

3. Beyeler, M., Carlson, K.D., Chou, T.-S., Dutt, N., Krichmar, J.L.: CARLsim 3:
a user-friendly and highly optimized library for thecreation of neurobiologically
detailed spiking neural networks. In: 2015 International Joint Conference on Neural
Networks (IJCNN 2015), pp. 1–8. IEEE (2015)

4. Bi, G.-Q., Poo, M.-M.: Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neu-
rosci. 18(24), 10464–10472 (1998)

5. Carlson, K.D., Nageswaran, J.M., Dutt, N., Krichmar, J.L.: An efficient automated
parameter tuning framework for spiking neuralnetworks. Front. Neurosci. 8 (2014)

6. Carlson, K.D., Richert, M., Dutt, N., Krichmar, J.L.: Biologically plausible models
of homeostasis and STDP: stabilityand learning in spiking neural networks. In: The
2013 International Joint Conference on Neural Networks (IJCNN 2013), pp. 1–8.
IEEE (2013)

7. Carnevale, F., deLafuente, V., Romo, R., Barak, O., Parga, N.: Dynamic control of
response criterion in premotor cortex during perceptual detection under temporal
uncertainty. Neuron 86(4), 1067–1077 (2015)

8. Fountas, Z., Shanahan, M.: GPU-based fast parameter optimization for phenom-
enological spikingneural models. In: 2015 International Joint Conference on Neural
Networks (IJCNN 2015), pp. 1–8, July 2015

9. Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G.S., Linderman, R.W.: Memristor
crossbar-based neuromorphic computing system: a case study. IEEE Trans. Neural
Networks Learn. Syst. 25(10), 1864–1878 (2014)

10. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks
14(6), 1569–1572 (2003)

11. Izhikevich, E.M., Desai, N.S.: Relating STDP to BCM. Neural Comput. 15(7),
1511–1523 (2003)

12. Krichmar, J.L., Coussy, P., Dutt, N.: Large-scale spiking neural networks using
neuromorphic hardwarecompatible models. ACM J. Emerging Technol. Comput.
Syst. (JETC), 11(4) (2015). Article no. 36

13. Mante, V., Sussillo, D., Shenoy, K.V., Newsome, W.T.: Context-dependent compu-
tation by recurrent dynamics in prefrontal cortex. Nature 503(7474), 78–84 (2013)

14. Prinz, A.A., Billimoria, C.P., Marder, E.: Alternative to hand-tuning conductance-
based models: construction and analysis of databases of model neurons. J. Neuro-
physiol. 90(6), 3998–4015 (2003)

15. Prinz, A.A., Bucher, D., Marder, E.: Similar network activity from disparate circuit
parameters. Nat. Neurosci. 7(12), 1345–1352 (2004)

16. Rossant, C., Goodman, D.F.M., Fontaine, B., Platkiewicz, J., Magnusson, A.K.,
Brette, R.: Fitting neuron models to spike trains. Front. Neurosci. 5(9) (2011)



An Evolutionary Framework for Replicating Neurophysiological Data 547

17. Song, H.F., Yang, G.R., Wang, X.J.: Training excitatory-inhibitory recurrent
neural networks forcognitive tasks: a simple and flexible framework. PLoS Comput.
Biol. 12(2), e1004792 (2016)

18. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

19. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

20. Tripathy, S.J., Savitskaya, J., Burton, S.D., Urban, N.N., Gerkin, R.C.: Neuro-
electro: a window to the world’s neuron electrophysiology data. Front. Neuroinf. 8
(2014)

21. White, D.R.: Software review: the ECJ toolkit. Genet. Program. Evolvable Mach.
13(1), 65–67 (2012)



A Cross-Platform Assessment of Energy
Consumption in Evolutionary Algorithms

Towards Energy-Aware Bioinspired Algorithms
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Abstract. Energy consumption is a matter of paramount importance
in nowadays environmentally conscious society. It is also bound to be a
crucial issue in light of the emergent computational environments aris-
ing from the pervasive use of networked handheld devices and wear-
ables. Evolutionary algorithms (EAs) are ideally suited for this kind of
environments due to their intrinsic flexibility and adaptiveness, provided
they operate on viable energy terms. In this work we analyze the energy
requirements of EAs, and particularly one of their main flavours, genetic
programming (GP), on several computational platforms and study the
impact that parametrisation has on these requirements, paving the way
for a future generation of energy-aware EAs. As experimentally demon-
strated, handheld devices and tiny computer models mainly used for
educational purposes may be the most energy efficient ones when look-
ing for solutions by means of EAs.

Keywords: Green computing · Energy-aware computing · Performance
measurements · Evolutionary algorithms

1 Introduction

In the analysis of single or multi-processor algorithm performance, an important
feature is frequently forgotten: energy consumption, which largely correlates with
performances provided by new processors. That is why, in an environment where
raw processor speed is no longer doubling at an accelerated pace, reducing energy
consumption and taking it into account when evaluating algorithms becomes an
issue, to the point that latest HPC benchmarks also include this measurement
in their reports and there are calls for energy-proportional computing [5] and
green computing [10], a term that was born in the last decade to refer to prob-
lems associated to energy consumption in computing environments, particularly
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 548–557, 2016.
DOI: 10.1007/978-3-319-45823-6 51
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in large data centers. But this energy-aware and proportional point of view is
equally applicable to desktop computers and any kind of algorithms that may
be run.

When dealing with evolutionary algorithms (EAs), big efforts have been
applied to improve performances while applying parallel and distributed sys-
tems [13]. Improvements have tried to analyze global quality of solutions when
compared with time required to find them. But similarly as the traveler consid-
ering not only speed but also price when selecting means of transport, we should
also consider energy consumption when running an algorithm, and not just the
time to solution.

To the best of our knowledge, the influence of this important parameter has
not been analyzed yet in the context of EAs, although its importance has already
been recognized [6]. This is the main goal of this work, to make a preliminary
analysis of the impact of energy consumption when running a well know EA,
Genetic Programming, on different hardware architectures, so that we may in
the future be aware of the importance, and even design energy-aware EAs; we
will also measure the impact of a particular feature, population size, in the
energy consumption, so that these parameters can be taken into account in an
energy-aware design of evolutionary algorithms.

The rest of the paper is organized as follows: Sect. 2 describes previous works
on the area; Sect. 3 describes the experiments performed and Sect. 4 shows the
results obtained. Finally we summarize our conclusions in Sect. 5.

2 Evolutionary Algorithms and Energy Consumption

Computer science took interest in energy efficiency a number of years ago, and
a new research topic was born, Green Computing [10], together with the energy-
aware [5,14] concept. Even processor makers offered new processors providing
dynamic frequency scaling, which adapts energy consumption as well as heat
dissipation to the need of the processes to be run [1,2,4].

On the other hand, EAs have already been applied as optimization algo-
rithms in the context of energy management. We can thus find optimization
problems associated to HVAC (Energy management of heating, ventilating and
air-conditioning) [8,12]. We can also find EAs applied to energy dispatch [7]. But
any of the above referred problems are only tangentially connected to the prob-
lem we are interested in: how to include energy consumption as one of the main
features of EAs to be considered when looking for solutions, and its relationship
with the main parameters of the algorithm.

The main concept discussed in this paper is the capability of an EA to adapt
to dynamic environments in which energy consumption is one of the main com-
ponents to be optimized [6]. This capability, which is one of the self-� features of
a given algorithm, including EAs [6], has already been considered by researchers
in other kind of algorithms and computer architectures [3], in some cases an
essential part of them [14]. Energy-awareness is considered a key component in
infrastructures of any size, from large data centers to processor architectures for
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mobile devices where battery life must be optimized. Also in this context, EAs
have been employed to design cache hierarchies reducing energy consumption
and heat dissipation [16].

Yet, to the best of our knowledge, EAs have never been studied from the point
of view of their own energy needs. Given their stochastic nature, the number of
parameters regulating the way they perform the search process and the plethora
of hardware platforms available to run them, we consider it of interest to study
the energy consumed when looking for a solution, so that in the future they may
become energy-aware and capable of self-regulating when progressing towards
the solution of the problem faced. This is what we have set out to do in this
paper.

3 Methodology

This preliminary study tries to measure energy consumption for the Genetic
Programming (GP) algorithm. In the following subsections both the algorithm
setting (Sect. 3.1) and computational platforms (Sect. 3.2) are presented.

3.1 Algorithmic Setting

Given the stochastic nature of this kind of algorithms, we firstly decided to run
each of the experiment 30 times so that the average can be computed as an esti-
mation of the algorithm behavior. In order to establish a fair comparison among
the different hardware platforms considered, these runs are done with the same
30 random seeds so that all of the runs are exactly the same in every platform,
when considering high level operations defined in the high level programming
language.

On the other hand, and given the influence of computing time in the total
amount of energy consumed by the algorithm, we configured the main loop of
the algorithm to finish when the optimal solution is found. We are thus mainly
interested in the average computing time for the 30 runs, together with the
energy consumed along that time. The only differences that may arise are due
to hardware differences: instruction set architecture, processor speed and oper-
ating system; features that are not the focus of this work. Nevertheless, these
differences may influence future decision on the preferred hardware and operat-
ing system for the algorithms.

We must also mention the interest in studying some of the main parameters
of the algorithm: they have a well-known impact on the time to find solutions,
and may thus also directly, or indirectly influence the energy consumed to reach
that solution. In this preliminary study we have focused on population size and
have tested several values for the problem selected. Although we are working
with GP and a well-known problem, this first analysis will be helpful to see that
energy consumption is an important issue when working with EAs.
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Table 1. Main GP parameters for multiplexer 6.

Max number of generations 500

Population sizes 100, 200, 400, 500, 1000

Crossover probability 0.9

Mutation probability 0.1

Table 2. Devices

Device Processor Cores RAM OS

raspberry pi Cortex-A7 900MHz 4 1GB Raspbian GNU/Linux 7

tablet Samsung Galaxy Tab 3
SM-T311, Exynos 4212
1.5GHz

2 1.5GB Android 4.4.2 (kernel 3.0.31)

laptop Intel(R) Core(TM) i5-2450M
2.5GHz

4 8GB Ubuntu 12.04.5 LTS

iMac Intel(R) Core(TM) i5 2.7GHz 4 4GB OSX 10.11.4

blade Virtual Machine (on IBM
8CPUs x 2GHz Intel Xeon
CPUE5504 @ 2.00GHz (x2),
16Gb RAM)

4 4GB Debian 6.0, 64 bits

In order to ease the compilation processes in every hardware platform, we
have selected a well known implementation of GP in the C programming lan-
guage: lilgp1. Regarding the problem selected for the experimental stage, we have
selected one of the test problems provided by lilgp: the multiplexer problem. To
be precise, we have set up to work with 6 bits. The main parameters of the
algorithm are described in Table 1. Function and terminal sets are the standard
ones as described by Koza [11].

3.2 Computational Platforms

Several computational platforms have been tested, i.e., raspberry pi, tablet, lap-
top, iMac and blade. Table 2 provides the details for the hardware architectures
and operating systems used. Given the differences among hardware devices, we
have employed different ways for measuring energy consumed by each of the
algorithms.

Laptop and Raspberry Pi. Regarding the laptop and raspberry pi, we have
employed a multimeter for measuring total power delivered to the device in
two different scenarios: (i) when the algorithm is not running and (ii) when
the algorithm is running. Starting with an initial measurement at rest (first
scenario) in both cases, our multimeter is able to measure the watts delivered,

1 http://garage.cse.msu.edu/software/lil-gp/.

http://garage.cse.msu.edu/software/lil-gp/
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which remains constant in the case of raspberry pi while the algorithm is running.
So we can obtain watts delivered by the algorithm (second scenario) by simply
subtracting both values. In the laptop the watts delivered vary continuously, so
we record a video in order to register all possible values and how long it lasted
each one. Once all data are collected, we analyze how long each value stays with
respect to the total execution time. Thus, we can accurately compute the average
power delivered and, finally by subtracting the initial value, we get the power
delivered by the algorithm.

Tablet. In order to collect data about energy consumption to Android devices,
such as smartphones or tablets,PowerTutor2 [15] has been used. This app is a diag-
nostic tool for analyzing system and app energy consumption. In order to obtain
energy measurements of the EA, PowerTutor runs in the background and logs data
on energy utilization for each app, summarizing the info in an intuitive user inter-
face (reporting the number of Joules the app has consumed during the run).

iMac. Data collection in the iMac was done using HardwareMonitor3. This
application suite includes a command-line tool that provides readings of the
internal hardware sensors built on the computer. In order to obtain power mea-
surements, a shell script is run in parallel to each run of the EA. This script
gathers sensor data periodically (we use a sampling frequency of 1s) and goes to
sleep state between measurements. During the experimentation, no other appli-
cation is run, apart from background processes under OS control. To gauge the
data, the same data-collection process is run for 100 s before each batch of runs,
thus providing an indication of the system basal consumption at that moment
which is in turn used to compute the excess power delivered due to the EA (and
hence accounting for eventual hysteretic phenomena).

Blade. Ecosystems such as clusters are often used to process big data sets. This
kind of systems allow us to optimize, by sharing, resources like Ethernet, storage
devices, power supply, etc. The ecosystem we use employs VMWare Esxi 5.04 (see
Table 2) whose hypervisor provides us with information about energy consumed
by both the hardware platform as well as any of the virtual machines running
on it. Thus we can obtain specific data for the virtual machine running the
algorithm, and thus we can compute the difference between energy consumption
when the algorithm is running and when it is not running.

4 Results

As described in the previous section, computational times and power deliv-
ered for each of the devices are reported in Table 3; algorithms tested using
2 http://ziyang.eecs.umich.edu/projects/powertutor/documentation.html.
3 http://www.bresink.com/osx/HardwareMonitor.html.
4 https://my.vmware.com/web/vmware/details?productId=229&downloadGroup=

ESXI50.

http://ziyang.eecs.umich.edu/projects/powertutor/documentation.html
http://www.bresink.com/osx/HardwareMonitor.html
https://my.vmware.com/web/vmware/details?productId=229&downloadGroup=ESXI50
https://my.vmware.com/web/vmware/details?productId=229&downloadGroup=ESXI50
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Table 3. Time (in seconds) for lilgp-multiplexer-6 run on each system depending on
the population size. The numbers denote the mean and the standard error of the mean
for the 30 runs performed.

population size

System 100 200 400 500 1000

raspberry pi 7.77 ± 1.31 19.91 ± 2.41 46.22 ± 4.01 61.10 ± 7.19 116.80 ± 13.55

laptop 1.73 ± 0.31 4.43 ± 0.54 10.60 ± 0.97 13.89 ± 1.68 27.13 ± 3.36

iMac 1.38 ± 0.28 3.69 ± 0.48 8.98 ± 0.84 11.74 ± 1.44 22.95 ± 2.85

tablet 4.43 ± 0.75 4.85 ± 0.78 35.68 ± 4.15 36.17 ± 4.17 68.70 ± 7.89

blade 2.59 ± 0.53 6.88 ± 0.91 16.78 ± 1.59 22.28 ± 2.77 43.53 ± 5.48
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Fig. 1. (a) Average power delivered in each run. (b) Energy consumption per run. In
both cases the bars (corresponding to raspberry pi, tablet, laptop, iMac and blade from
left to right in each group) indicate mean values and the error bars span the standard
error of the mean. Notice the logarithmic scale in the Y axis.

different population sizes for each of the experiments are shown in Fig. 1a. The
first thing that may be noticed is the difference in computing time among devices
analyzed, which corresponds with expectations: small devices (raspberry pi and
tablet) require quite a long time to reach solutions and this is typically the rea-
son why they are not frequently used as the hardware platform to run EAs –
although they are useful when non-standard distributed models are analyzed
(such as pool-based models, [9]).

Nevertheless, we are considering a different point of view, and will not just
focus on computing time. Different features can thus be analyzed: (i) device
behavior when considering energy consumed or power delivered by the algo-
rithm per unit of time; (ii) total energy required to find a solution and (iii) the
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Fig. 2. (a) Distribution of fitness values attained for each population size (platform
independent). (b) Trade-off between fitness attained and energy consumption. The
data points mark mean values and the error bars indicate the standard error of the
mean. A fit to a power-law E ∝ fk is also included (in the case of the blade system,
we have omitted the last point since it is an outlier). Notice the logarithmic scale in
the Y axis.

way population size influences the energy needs when looking for a solution. If
we focus firstly on the energy required by lilgp to be run in every device (see
Fig. 1b), we notice that handheld devices (raspberry pi and tablet) are the least
demanding ones, requiring an order of magnitude less energy to run the same
algorithm when compared with more standard computers: iMac, laptop and blade
system. Secondly, when considering the total energy required to reach the solu-
tion for the problem, the tablet running Android is the device that provides the
cheapest solution, according to energy consumed, while blade and laptop are the
most expensive ones in every case. Yet, if we only focus on computing time, the
opposite is the case, and iMac, laptop and blade would be the preferred ones. But
given that we are looking for energy-efficient ways of finding solutions by means
of EAs, then raspberry pi and tablet might be preferred. Of course, this may look
as a somewhat expected result a posteriori but it is nevertheless important to
have obtained experimental confirmation of this fact, since different devices do
not necessarily have to yield analogous trade-offs between energy consumption
and speed.

In addition to absolute energy consumption values, it is also interesting to
analyze how the energy requirements vary for a given device when the parame-
terization is changed. In this case, we have focused on population sizes for two
reasons: firstly, it is an essential parameter that greatly influences the search
process and can have an energy impact due to both the different behavior of
the algorithm and memory management issues that might appear; secondly, its
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use in conjunction with a stopping condition based on generations influences the
total work done as well as the quality of the solutions attained. This fact is used
as a proxy to study energy consumption as a function of the attained quality of
solutions in devices in which online energy measurements are not possible (and
hence only the total energy consumed in a run can be measured).

We see in Fig. 1b that there is a general trend of increasing energy cost for
increasing population sizes5 which has a twofold cause: the longer computa-
tional time needed to complete the runs and the slightly larger power delivered
in each case (i.e., energy spent per unit time is influenced by the population
size). The latter effect can be due to issues related to memory management and
is most remarkable in non-handheld devices (quite interestingly, no change is
found for raspberry pi and quite small changes for the tablet). This increased
energy toll does not always pay off as we can see by inspecting Fig. 2a; except
for the largest population size, there does not seem to be a significant differ-
ence between the median fitness for a certain size and the immediately smaller
size. A more focused perspective on this issue is shown in Fig. 2b in which we
depict the energy required by each device to attain a certain fitness. The order
of growth of this cost can be modeled as a power law as a first approximation.
Such a power law is consistent with the superlinear cost of obtaining increasingly
better approximations to the optimal solution and –while the fit can be obvi-
ously improved– it provides the means for a first comparison of these different
devices. Thus, we can see how the general trends are not dramatically different
for raspberry pi, tablet, laptop and iMac except for the offset of order of mag-
nitude between the two former and the two latter. The blade system provides
a more stable energy profile and can be preferred to laptop and iMac if a tight
approximation to the optimum is sought. However, the smaller devices remain
the best option in terms of absolute energy cost.

5 Conclusions

We have presented a preliminary study on the energy consumed by a well known
EA: the Genetic Programming algorithm. We have analyzed the behavior of a
benchmark GP problem, the multiplexer-6, and have run it using lilgp on
different hardware devices running a number of operating systems, from blade
systems using different Linux distributions to tablet devices running Android.

One of the first things we have learned is that although devices with better
processors can run the algorithm faster, they spend larger amounts of energy,
and the total energy required to find a solution is also larger. This means that
although the standard preference for better hardware platforms and processors
allows to find solutions more quickly, it incurs in waste of energy that should be
considered: it is much more energy efficient to run the algorithm on a Raspberry

5 In the case of the blade, we can observe that a population with 1000 individuals
consumes less energy than with 500 individuals. This phenomenon is due to the
processor frequency decreases because more memory is needed.
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Pi or a tablet device. Of course, it is expected that some very computationally-
expensive problems could not be fully solved in one of these devices. Then again,
they can provide a valuable, energy-efficient contribution to the collective resolu-
tion of such problems when used within a larger ephemeral network of computing
devices [6].

Secondly, we have seen the influence of one of the main parameters of the
algorithm may have on the energy consumed: changing population sizes auto-
matically produce a change in the amount of energy required to reach solutions,
and this is a hint on future analysis. We should thus carefully consider how each
of the parameters of the algorithm may also influence the amount of energy
consumed when looking for solutions.

As a future line of work, it would be interesting to consider different devices
in the same class exploring the space of solutions in a multiobjective way: which
devices manage to find the solution faster for the least amount of energy? In
principle the analysis is generic and does not rely on any feature that could be
said to be GP-specific, so we believe the conclusions extracted are applicable
to any EA. This said, it would be also interesting to further confirm this. We
will thus expand the study to other evolutionary algorithms to check whether
these energy profiles are exclusive of GP or there are variations among them.
Energy profiling the algorithms will also allow us to find out where the energy
expenses actually come from, allowing us to optimize the algorithm itself making
it energy-aware.
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Abstract. We experimentally compare synchronous and asynchronous
parallelization of the SMS-EMOA. We find that asynchronous paral-
lelization usually obtains a better speed-up and is more robust to fluctu-
ations in the evaluation time of objective functions. Simultaneously, the
solution quality of both methods only degrades slightly as against the
sequential variant. We even consider it possible for the parallelization to
improve the quality of the solution set on some multimodal problems.

Keywords: Asynchronous · Synchronous · Parallel · Multiobjective ·
Evolutionary · Optimization

1 Introduction

With the rise of multi-core systems in all device classes from smartphones to
desktops, parallel algorithms become more and more important. Parallelization
is especially beneficial in optimization, where a high number of objective func-
tion evaluations should be enabled. An asynchronous parallelization appears
preferable as it gets around the inevitable idle times caused by synchronous
parallelization, but it must be precluded that this advantage is bought at the
expense of solution quality.

Formerly, sophisticated algorithms containing message passing, master/slave
concepts, or island models were often necessary to distribute execution on a
cluster of nodes [3,5,6]. On present-day integrated multi-core architectures, sim-
ple shared memory communication may already be sufficient, especially for the
application area of population-based optimization. Here, we focus on an evo-
lutionary algorithm (EA) for multiobjective optimization, namely the S-metric
selection evolutionary multiobjective optimization algorithm (SMS-EMOA) [1].
In its original form, the algorithm follows a steady-state scheme, which means
that only one offspring solution is created per generation. This approach is in a
sense optimal with regard to the exploitation of information in the current pop-
ulation, but unsuitable to synchronous parallelization. With synchronous paral-
lelization, we mean the creation of λ > 1 offspring per generation, evaluating
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 558–567, 2016.
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Fig. 1. Illustration of synchronous (left) and asynchronous parallelization (right). Idle
times are visualized as dotted lines. In the asynchronous case, three time steps can be
saved by giving up the generation concept.

them in parallel, and carrying out selection after all evaluations have finished.
This approach requires an extension of the selection scheme, to be able to select
μ individuals from μ + λ. This (μ + λ)-selection may have been avoided for
SMS-EMOA to some extent, because the exact calculation of the hypervolume
contributions probably requires algorithmically more complex code, or will take
longer than the conventional (μ + 1)-selection. Alternatively, one could sidestep
the problem by taking a greedy approach of λ selections in the (μ + 1)-scheme,
removing one individual after another. However, Bringmann and Friedrich advise
against this approach [2].

Unfortunately, the synchronization is unfavorable in case of fluctuating eval-
uation times, because it creates idle times (see Fig. 1). An alternative is asyn-
chronous parallelization, which allows us to keep using (μ + 1)-selection, but
means giving up the concept of generations. Klinkenberg et al. [5] were the first
to propose asynchronous parallelization of the SMS-EMOA. Their implementa-
tion was a master/slave approach using message passing on a cluster with twelve
nodes. They combined it with metamodeling to save expensive function evalu-
ations and applied it to a molecular control problem. The results indicated a
nearly linear speed-up and only a slight decrease of solution quality between one
and twelve processors. However, the analysis was not taken further because the
parallelization was not the sole topic of the work. Another successful real-world
application of the asynchronous SMS-EMOA is due to Menges et al. [7], who
optimized the motion planning of a mobile robot.

Depolli et al. [3] investigate the asynchronous parallelization of a multiobjec-
tive differential evolution algorithm (AMS-DEMO) on a steel casting problem
and benchmarks. They identify the selection lag as an important measure for
the performance of asynchronous EMOAs. It is defined as “the number of solu-
tions that undergo selection in the time between the observed solution’s creation
and selection” [3]. In their experiments, a linear speed-up with four processors
could already be observed for evaluation times of only 0.01 seconds. While these
results are encouraging, the question arises if the SMS-EMOA with its rela-
tively expensive survivor selection achieves similar values. We try to answer this
question with our experiment in Sect. 3. Before, we present the asynchronous
SMS-EMOA in detail (Sect. 2), and afterwards we draw conclusions in Sect. 4.
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Algorithm 1. Asynchronous SMS-EMOA
Input: mutex, population P0

1: t ← 0
2: while stopping criterion not fulfilled do
3: x ← createOffspring(Pt, mutex) // create 1 offspring
4: evaluate(x) // calculate objective values
5: enter(mutex ) // lock out other processes
6: Qt ← Pt ∪ {x}
7: {F1, . . . , Fw} ← nondominatedSort(Qt) // sort in w fronts
8: r ← createReferencePoint(Fw) // calculate reference point for last front
9: x∗ ← argminx∈Fw (Δs(x, Fw, r)) // determine x∗ with smallest contribution

10: Pt+1 ← Qt \ {x∗} // remove worst individual
11: t ← t + 1
12: leave(mutex ) // release lock for other processes
13: end while

2 The Asynchronous SMS-EMOA

Large differences in the evaluation times of individuals result in idle times in
synchronously parallelized algorithms, because selection cannot start before all
objective values are available. These idle times are of course a waste of resources.
Figure 1 (left) shows an example of such a generational approach with a (μ+6)-
EA. The six offspring are evaluated in parallel. The time during which a process
calculates a function value is indicated by a horizontal solid line. Dotted lines
mark idle times. The vertical lines mark the synchronization points between the
generations. In this example, 29 of the 84 time steps are unused, so the system
is idle 35 % of the time. The asynchronous approach is more efficient, finishing
the execution three time steps earlier and idling only 11 time steps at the end
(Fig. 1, right).

Thus, we implement the SMS-EMOA as an asynchronous algorithm to mini-
mize the idle time. The pseudocode is shown in Algorithm 1. The idea is to have
several processes working on a shared population, with the additional benefit
that the selection scheme can stay a (μ + 1). To make this work, all read and
write operations involving the population must be protected by a lock, allowing
only one process to access at a time. Entering and leaving the critical section is
illustrated in lines 5 and 12. As the required functionality is provided by virtually
all modern programming languages, these modifications are extremely simple.
The objective function evaluation, where the most time is spent according to
the common black-box optimization assumptions, may happen in parallel. After
the process finishes an evaluation, it waits until it can enter the critical section
to carry out the survivor selection. Naturally, the new individual may either
replace another one or be rejected. Then, the section is left and the next gener-
ation starts with creating the next individual by variation. This loop continues
until a stopping criterion is fulfilled. So, every single process executes all tasks
of an SMS-EMOA, not only a subset as in a master/slave scenario.
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Table 1. Experimental factors

Factor Type Symbol Levels

Problem instances Non-observable {WFG1, . . . , WFG9}
#Objective functions Observable m {2, 3}
Evaluation base time Observable tb {0.01, 0.1, 1}
Evaluation time behavior Observable {fixed, random, proportional}
Parallelization Control {sync, async}
Parallelization degree Control p {1, 4, 16, 64}
Population size Control μ {10, 100}

Also the function createOffspring does a read access to the population for
parent selection. It has to protect it by a critical section to avoid modifications
of the population during this time.

3 Experiment

Research Question. How do the properties of multiobjective problems and
parallelization settings of the SMS-EMOA influence performance?

Pre-experimental Planning. When the overhead of the SMS-EMOA is neg-
ligible in comparison to the evaluation time, an almost linear speed-up can be
expected for the asynchronous variant [3,5]. The synchronous variant should
only achieve the same run time with constant evaluation times, and is expected
to suffer from fluctuations, as explained in Sect. 2. The hypervolume calculations
of the SMS-EMOA become a bottleneck with increasing number of objectives m
and increasing population size μ. Thus, it is expected that the speed-up dete-
riorates when m and μ are large and evaluation time is low. The experimental
setup is chosen to enable quantification of this behavior.

Selection lag is recorded for both synchronous and asynchronous variants.
Depolli et al. [3] identify the selection lag of the asynchronous variant (without
queues) as p − 1 for p processors. We presume that in the synchronous case,
a value of 1

p

∑p−1
i=0 i = (p − 1)/2 would be the expected value for the selection

lag, because only individuals in the same generation can be selected during one
individual’s evaluation.

Task. We calculate the dominated hypervolume and the averaged Hausdorff
distance (AHD, [8]) of the final population with respect to a Pareto-optimal ref-
erence set, after running the SMS-EMOA for a fixed number of function evalua-
tions. The reference set contains 500 points for two objectives and 1000 for three.
The reference points for the hypervolume are (3, 5)� and (3, 5, 7)�. To assess run-
ning time, wall-clock time is measured and the weak speed-up in comparison to
the sequential variant is computed [3]. The term weak speed-up means that we
divide the sequential time by the parallel time without taking into account the
potential quality differences of the results, which are regarded separately.
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Setup. We implemented the algorithm described in Sect. 2 and the synchronous
variant in the language Python (version 3.4). The code is publicly available in
the packages evoalgos1 and optproblems [9,10]. As variation operators, simulated
binary crossover and polynomial mutation are used. The parameters of these
operators are set to ηm = 20, ηc = 20, pm = 0.1, and pc = 0.7.

Table 1 contains the experimental factors for this experiment, which are com-
bined in a full-factorial design. We carry out five stochastic replications per con-
figuration. As test problems, the set from the walking fish group (WFG, [4]) is
used with two and three objectives. The number of decision variables is set to 24,
with k = 4 position-related parameters. The feasible region of the problems is
normalized to the unit hypercube. The evaluation time of the objective functions
is determined as follows. We assume a base value of tb seconds and define three
different ways to obtain the actual evaluation time te. The first alternative is to
use the tb value as it is, te = tb. The second variant takes two random uniform
numbers u1, u2 ∼ U [0, 1] and sets te = (u1 + u2) · tb. This way, te has a trian-
gular distribution between zero and 2tb. The last approach uses te = tb · f1(x ),
where f1 is the first objective function of the WFG problems, whose image is
always [0, 2]. This setup is motivated by different real-world scenarios. The fixed
evaluation time corresponds to homogeneous hardware and constant simulation
time. Random fluctuations will appear if the optimization is running on a het-
erogeneous cluster. Simulation time may also be solution-dependent, leading to
correlated evaluation times, as in [7].

The number of function evaluations is set to 10000 for each algorithm run.
We exclude the population initialization and only measure the time spent in
the optimization loop. By using sleep system calls to spend the te seconds, we
can simulate a parallelized SMS-EMOA run on a single core, because the other
algorithm parts are in critical sections anyway. The experiment is run on AMD
Opteron 6276 processors with 2.3 GHz; operating system is Ubuntu Linux.

Results and Observations. Figs. 2 and 3 show the weak speed-up. The solid
and dashed lines depict median values of the 45 runs on the nine WFG problems.
Error bars mark 95 % confidence intervals for the median. The grey diagonal rep-
resents the maximally possible linear speed-up. In most cases, the asynchronous
variant obtains a better speed-up than the synchronous one, with a few excep-
tions for high parallelization degrees and low evaluation times on two objectives.
The speed-up of the synchronous variant sometimes even drops below one for
three objectives. Figure 4 illustrates the selection lag values for the different con-
figurations. For this figure, we first calculated the mean selection lag for each run.
The lines in the figure are the median of 135 runs, due to the number of remain-
ing configurations per panel. Generally, the predicted values seem to be accurate,
except that the selection lag of the asynchronous variant drops off when evalu-
ation times are small compared to selection times. Figure 5 shows some selected
indicator values for hypervolume and averaged Hausdorff distance. The random
noise in these values is much higher than for the run times. However, in Fig. 5a
1 With a runnable example in the documentation at https://ls11-www.cs.

tu-dortmund.de/people/swessing/evoalgos/doc/algo.html.

https://ls11-www.cs.tu-dortmund.de/people/swessing/evoalgos/doc/algo.html
https://ls11-www.cs.tu-dortmund.de/people/swessing/evoalgos/doc/algo.html
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Fig. 2. Weak speed-up versus parallelization degree for μ = 10.

there seems to be a positive effect on both indicators, while in Fig. 5b and c the
results seem mixed.

Discussion. The cases where the synchronous beats the asynchronous variant
regarding speed-up may be caused by differences in the overhead of the imple-
mentations. The asynchronous one especially makes more function calls, because
each solution is processed individually. On the other hand, the decline of the syn-
chronous variant for m = 3 may be because it has to compute hypervolume for
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Fig. 3. Weak speed-up versus parallelization degree for μ = 100.

μ+p solutions, while the asynchronous only ever does μ+1. Generally, the mea-
sured speed-ups should be seen as rather conservative estimates, if we consider
that the SMS-EMOA, including the hypervolume computation, was implemented
in pure Python. The speed-up could be further improved by implementing it in
a lower-level language such as C++.

We are not entirely sure why the selection lag of the asynchronous variant is
sometimes lower than expected. One explanation could be that the distribution
of the budget on the worker processes becomes uneven with decreasing tb. This
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Fig. 4. Measured selection lag versus parallelization degree. The upper triangles (�)
mark p − 1, the lower ones (�) (p − 1)/2.

hypothesis stems from the observation that the scheduler only ran a single thread
when we switched off the delay completely. If it is true, then the selection lag
could also drop below (p−1)/2. To look into this issue, we recorded the partition
of the budget and calculated its standard deviation. However, the effect could
only be observed for fixed evaluation times, and the standard deviation did not
exceed the values of the two fluctuating cases. In any case, we recommend to
record this data on the actual parallelization also in future experiments.

The results in Fig. 5 can be explained by the fact that for multimodal prob-
lems it is usually beneficial to spend a larger part of the budget on exploration
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Fig. 5. AHD and hypervolume values of the final populations for configurations with
m = 2 and μ = 10. All three test problems are multimodal.

than for unimodal problems. The asynchronous variant additionally can sam-
ple objective space regions with lower evaluation times with a higher density
than expensive regions, due to the missing synchronization. Thus, proportional
evaluation times may cause a drift of the population towards a small part of
the Pareto-front. This may either be beneficial, if simulation time is to be mini-
mized [7], or detrimental, if we want to simulate interesting solutions with higher
fidelity. Naturally, the assessments of AHD and hypervolume do not necessarily
have to agree.

4 Conclusion

Both the synchronous variant with greedy selection and the asynchronous variant
obtain an almost linear speed-up in a scenario of expensive function evaluations
and moderate parallelization. The synchronous variant falls off more sharply
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under less favorable circumstances. The experiments have shown that the quality
of solutions may even increase with more parallelism for multimodal problems
whereas it may decrease for unimodal problems. We conjecture that this behavior
is caused by a higher selection lag preventing a rapid movement to local optima.
In theory, selection lag should only depend on the parallelization degree (and
the queue size, if queues are used). However, our experiment discovered that
for asynchronous parallelization, reality can somewhat deviate from theory. It
is our impression that the measured selection lag especially deviates from the
expectation in the cases where speed-up is low and parallelization does not work
well. Thus, it might be used as a tool to assess the usefulness of asynchronous
parallelization even when speed-up cannot be computed due to missing data on
sequential performance.
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Abstract. In the last decade, there has been a growing interest in multi-
objective evolutionary algorithms that use performance indicators to
guide the search. A simple and effective one is the S-Metric Selection
Evolutionary Multi-Objective Algorithm (SMS-EMOA), which is based
on the hypervolume indicator. Even though the maximization of the
hypervolume is equivalent to achieving Pareto optimality, its computa-
tional cost increases exponentially with the number of objectives, which
severely limits its applicability to many-objective optimization pro-
blems. In this paper, we present a parallel version of SMS-EMOA, where
the execution time is reduced through an asynchronous island model
with micro-populations, and diversity is preserved by external archives
that are pruned to a fixed size employing a recently created technique
based on the Parallel-Coordinates graph. The proposed approach, called
S-PAMICRO (PArallel MICRo Optimizer based on the S metric), is
compared to the original SMS-EMOA and another state-of-the-art algo-
rithm (HypE) on the WFG test problems using up to 10 objectives. Our
experimental results show that S-PAMICRO is a promising alternative
that can solve many-objective optimization problems at an affordable
computational cost.

1 Introduction

Numerous real-world problems can be formulated as Multi-Objective Optimiza-
tion Problems (MOPs), which involve several (often conflicting) objectives to be
optimized at the same time. In general, a MOP is formally described as follows:

Minimize F (x) := (f1(x), f2(x), . . . , fm(x)) (1)
subject to x ∈ S, (2)

C.A. Coello Coello—Author gratefully acknowledges support from CONACyT
project no. 221551.
E. Alba—Author is partially funded by the Spanish MINECO and FEDER project
TIN2014-57341-R (http://moveon.lcc.uma.es).
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where x is the vector of decision variables, S ⊂ IRn is the feasible region set and
F (x) is the vector of m (≥2) objective functions (fi : IRn → IR). The aim is
to seek from among the set of all values, which satisfy the constraint functions
defined in Eq. (2), the particular set x ∗ that yields the optimum values for all
the objective functions.

Multi-Objective Evolutionary Algorithms (MOEAs) are sto-
chastic, population-based, search techniques; which are well-suited for solving
a wide variety of complex MOPs. In the last decades several MOEAs have been
proposed (see, for example, [4, Chap. 2] and [18]), with the vast majority rely-
ing on two concepts: Pareto dominance1 as their primary selection mechanism,
followed by a density estimator.2 The former favors non-dominated solutions
over dominated ones, whereas the latter induces a total order of incomparable
solutions,3 preserving diversity4 at the same time.

One of the main concerns is that Pareto-based MOEAs face difficulties to
reach the Pareto optimal front5 when dealing with many-objective optimization
problems (m ≥ 4) [9,11,13]. This is due to the fact that most or all solutions
in the population quickly become non-dominated with respect to the rest, and
the best individuals are identified only by the density estimator. Thus, in some
cases good locally non-dominated solutions in terms of convergence might be
discarded at the expense of keeping good solutions in terms of diversity, in spite
of the fact that they may be distant from the Pareto optimal front [1]. To address
this issue, a new trend is the incorporation of performance indicators6 into the
selection mechanism of a MOEA [2,6,19]. The hypervolume indicator [4, p. 257]
is, with no doubt, a natural choice, (see for example [6,19]) since it is the only
unary indicator that is known to be Pareto compliant. Also, it has been proven
that maximizing the hypervolume is equivalent to reaching the Pareto optimal
set [7]. However, the main drawback of this sort of approach is its computational
cost, which increases exponentially with the number of objectives [3], making it
prohibitive for many-objective optimization problems.

In this work, we focus on the S-Metric Selection Evolutionary Multi-
Objective Algorithm (SMS-EMOA) [6], due to its simplicity and superiority
over Pareto- and Aggregation-based algorithms [6,10,16]. This optimizer is a
steady state evolutionary algorithm that ranks individuals according to Pareto
dominance and uses the hypervolume as its density estimator. The worst-case
complexity of SMS-EMOA is O(|P |m) [17]. Parallelizing SMS-EMOA arises as a
possible alternative to reduce its computational cost, where at least two strate-

1 A solution x ∈ S dominates a solution y ∈ S (x ≺ y) if and only if ∀i ∈ {1, . . . ,m},
fi(x) ≤ fi(y) and ∃j ∈ {1, . . . ,m}, fj(x) < fj(y).

2 A density estimator models the distribution of a population, by measuring the si-
milarity degree among individuals.

3 Two solutions x,y ∈ S are incomparable if neither x ≺ y nor y ≺ x holds.
4 Diversity refers to achieving a uniform distribution of solutions covering all regions

of the objective function space.
5 POF := {F (x) ∈ IRm : x ∈ S, � ∃y ∈ S,y ≺ x}.
6 A performance indicator, defined as I : IRm → IR, measures the quality of an appro-

ximation set (the final population of a MOEA).
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gies are possible [14]: (1) parallelization of the computations, in which the ope-
rations applied to an individual are performed in parallel, and (2) parallelization
of the population, in which the population is partitioned and each subpopulation
evolves in semi-isolation (individuals can be exchanged between subpopulations).
Klinkenberg et al. [10] and Lopez et al. [12] have studied the first approach. In
[10], a variation of SMS-EMOA parallelized the evaluations of individuals using a
surrogate model, whose purpose was to approximate the function values. In [12],
the exact hypervolume contributions of SMS-EMOA were parallelized through
the use of Graphics Processing Units (GPUs). To the best of our knowledge, our
work is the first attempt to incorporate the second sort of approach (paralleliza-
tion of the population) into SMS-EMOA.

In order to get a better grasp of the variability of the execution time of SMS-
EMOA, we sampled several points on DTLZ1 [4, p. 200], varying the number
of objective functions and the population size on a PC Intel(R) Core(TM) i7
CPU 950 @ 3.07 GHz × 8 with 3.8 GB memory, using the same parameters in all
experiments [6]. The average resulting surface is shown in Fig. 1. An interesting
observation is that, regardless of the number of objectives, time was almost
negligible when using small populations (less than 20 individuals). This fact is
considered in our proposal, where we use micro-populations in an asynchronous
island model [15]. Furthermore, diversity is improved by external archives that
are kept to a constant size by a recently proposed density estimator [8], which
is scalable in objective space.

The remainder of this paper is organized as follows. Section 2 is devoted
to the description of our proposed parallel MOEA. In Sect. 3 we present our
experimental results. Finally, Sect. 4 provides our conclusions and some potential
lines of future research.
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Fig. 1. Average execution time of SMS-EMOA.



A Parallel Version of SMS-EMOA for Many-Objective Optimization 571

2 Our Proposed Approach

The PArallel MICRo Optimizer based on the S metric (S-PAMICRO) draws
ideas from the island model, where the overall population is split into l micro-
populations, called islands. Every island evolves independently a serial SMS-
EMOA with an external archive of size l × |P |, where |P | corresponds to the
micro-population size. In this approach, the islands are connected in a logical
unidirectional ring, exchanging nmig solutions occasionally7 in an asynchronous
fashion. The goal of S-PAMICRO is to reduce the execution time of SMS-EMOA,
hopefully also improving the quality of solutions in high dimensional spaces,
because of the separated search of the islands, which changes the behavior of the
serial version and yields a new kind of algorithm [14,15].

Algorithm 1 . Outline of an island in S-PAMICRO
Input: MOP, stopping criterion, island identification i, number of islands l, number

of migrants nmig, and frequency of migration fmig.
Output: Final sub-population A
1: A ← ∅ {initialize external archive}
2: n ← l|P | {archive size limit}
3: Initialize micro-population P at random
4: while the stopping criterion is not satisfied do
5: P ← SMS-EMOA(MOP, fmig, P ) {execute during fmig evaluations of the

objective vector}
6: R ← Check the arrival of migrants from (l + i − 1) (mod l) island
7: A ← A ∪ P ∪ R
8: if |A| > n then
9: A ← Pruning(A,n) {see Algorithm 2}

10: S ←Uniform Random Selection(A,nmig) {nmig random solutions are selected
from A}

11: Send copies of S to the (i + 1) (mod l) island
12: P ← Elitist Ranking Replacement(P ∪ R) {dominated individuals are likely to

be discarded}
13: return A

In Algorithm 1, we present the pseudocode of an island in S-PAMICRO.
First, the external archive A and its maximum size are specified. Next, the
micro-population P is initialized at random. In line 5, SMS-EMOA is executed
during fmig function evaluations. Then, an island receives, without blocking,
the immigrants R from the source island, according to the adopted topology. In
line 7, the external archive is updated, adding the current micro-population as
well as the immigrants. In lines 8 and 9, the external archive is truncated if it
exceeds its limits, using the technique described in the next paragraph. In the
following two lines, the candidates to be migrated are selected by using the po-
licy of uniform-random migration [15], in which nmig individuals are randomly

7 This is known as migration.
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selected from the archive and a copy of them is sent to the destination island. In
line 12, the micro-population is updated, replacing |R|(<|P |) individuals with
the immigrants. Here, we employed elitist-ranking replacement [15], where immi-
grants are combined with the current population, and then they are ranked using
Pareto dominance, and the worst solutions are removed. This elitist mechanism
preserves the currently best solutions for the next iteration, assuring proximity
to the Pareto optimal front. At the end, the final sub-populations of all islands
i ∈ {0, 1, . . . , l − 1} are collected and adjusted to the size l × |P |, using the same
pruning technique. This operation is performed by a designated island.

Algorithm 2 . Pruning
Input: Population P , desired size n
Output: Reduced population P
1: {F1, . . . , Fk} ← Rank population P in k fronts according to Pareto dominance.
2: Calculate zmin and zmax

3: Normalize population p.y ← p.y−z min

z max−z min , ∀p ∈ P, p.y ∈ IRm

4: while |P | > n do
5: if |Fk| ≤ |P | − n then {Remove members of the k-th front}
6: r ← Fk

7: k ← k − 1
8: else
9: D ← Calculate density of P based on the Parallel-Coordinates graph

10: r ← arg maxp∈Fk
D[p]

11: Fk ← Fk \ {r}
12: P ← P \ {r}
13: return P

Our pruning technique is explained in Algorithm2. First the population is
ranked using the well-known non-dominated sorting procedure [4, p. 93]. In lines
2 and 3, the population is normalized in the objective space by means of two
reference points: zmin, composed of the best objective values found so far, and
zmax, formed with those vectors parallel to the axes with the lowest Euclidean
norm. Next, all members of the worst current k-th front are removed if the size
of this front is less or equal than the number of individuals to be removed (lines
5–7). Otherwise, the individual with the highest density value is eliminated from
the current front (lines 9–11) until the desired size is achieved.

The density estimator, originally proposed in [8], is based on a visualization
technique, called Parallel Coordinates. In this technique, a graph is built in the
2-dimensional plane where m copies of the real line IR are placed perpendicular
to the x-axis and a solution in IRm is represented by a series of connected line
segments with vertices on the parallel axes. The core idea in the density estimator
is to represent the Parallel Coordinates of each distinct pair of objective functions
as a 2D matrix, where the m(m − 1)/2 graphs are attached next to each other
and only normalized individuals are considered. The dimension of this matrix
depends on a resolution parameter (γ). An element of the matrix identifies the
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level of overlapping line segments and those individuals covering a wide area of
the matrix have a better density estimator. Interested readers are referred to [8]
for more details.

S-PAMICRO was developed in the EMO Project,8 our framework for Evo-
lutionary Multi-Objective Optimization. This software is implemented in C
language and MPICH.9

3 Experimental Results

In this section, we investigate the effectiveness of S-PAMICRO on the Walking-
Fish-Group (WFG) test suite [4, p. 209]. In this benchmark, properties, such
as non-separability, multi-modality, deceptiveness and bias, are preserved as we
increase the number of objectives, making these problems harder to solve for a
MOEA. The decision variables (n) and the position-related parameter (k) are
specified in Table 1.

We compared the results of our proposed algorithm with respect to SMS-
EMOA, its parallel version using the asynchronous island model without external
archives (pSMS-EMOA), and the Hypervolume Estimation Algorithm (HypE)
[2] for 2, 3, 5 and 10 objectives. HypE ranks the population by means of Pareto
dominance and its secondary selection criterion is based on the estimation of the
hypervolume contributions using Monte Carlo sampling (for 2 and 3 objectives,
the exact value is computed). All the MOEAs were implemented in the EMO
Project, using real-numbers encoding.

The variation operators were polynomial-based mutation and simulated
binary crossover (SBX) [5]. The crossover rate and its distribution index were
set to 0.9 and 20, for 2 and 3 objectives, and 1.0 and 30 for many-objective
problems. The mutation rate and its distributed index was set to 1/n and 20,
respectively. For HypE, the number of sampling points was fixed to 20,000 and
the resolution parameter of S-PAMICRO (γ), as suggested in [8], is shown in
Table 1.

Table 1. Parameters adopted in our experiments

m WFG MOEAs pMOEAs feval S-PAMICRO

n k |P | |P | l γ

2 24 4 100 10 10 40,000 3

3 24 4 120 10 12 50,000 2

5 47 8 196 11 18 50,000 2

10 105 18 276 11 25 80,000 2

The stopping criterion consisted of reaching a maximum number of objec-
tive function evaluations (feval), limiting the execution time to no more than
two hours for each run. For fair comparisons, the parameters were similar in the

8 Available at http://computacion.cs.cinvestav.mx/∼rhernandez.
9 https://www.mpich.org.

http://computacion.cs.cinvestav.mx/~{}rhernandez
https://www.mpich.org
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sequential and parallel cases. The population size |P | of the sequential algorithms
(SMS-EMOA/HypE) and the parallel MOEAs (pSMS-EMOA/S-PAMICRO)
are defined in Table 1, as well as the number of islands or processors (l) in
the latter case. Here, l is equivalent to the division of the overall population
size among the micro-population size. Experiments were carried on a Cluster
of 10 PCs Intel(R) Core(TM) i7 CPU 950 @ 3.07 GHz × 8 with 3.8 GB memo-
ry. The frequency of migration, fmig, was set to 80 function evaluations and
the number of migrants nmig was set to 2 (these values were empirically deter-
mined). We performed 30 independent runs for all scenarios. For comparing
results, we adopted the hypervolume indicator, bounded by the reference points
(3, 5, 7, . . .) for the instances WFG1 and WFG3; and (2.2, 4.2, 6.2, . . .) for the
rest of the problems. We applied the Wilcoxon rank sum test (one-tailed) to the
mean hypervolume indicator values, in order to determine whether S-PAMICRO
performed better than the other MOEAs at the significance level of 5 %.
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Fig. 2. Average execution time of optimizers.

The average execution time, using a logarithmic scale for the y-axis, is shown
in Fig. 2. As it can be observed, S-PAMICRO spent considerably less time than
SMS-EMOA and HypE. For example, with 10 objectives, a run of our proposed
approach took only 16 s out of the two hours that were allowed to the other
MOEAs. Using 5 objective functions, S-PAMICRO ended in 5 s, in contrast
to the 26 min spent by HypE. Even in low dimensionality, our algorithm could
reduce the run time a little bit. Furthermore, the overhead of handling the exter-
nal archive in S-PAMICRO is relatively low, compared to pSMS-EMOA that was
the fastest optimizer.

On the other hand, interesting results with respect to the quality of solutions
were obtained. In Table 2, we present the hypervolume indicator values of all the
experiments. An arrow pointing upwards (↑) means that our algorithm outper-
formed in a significantly better way, the other MOEAs compared. Conversely,
an arrow pointing downwards (↓) means that our algorithm was significantly
beaten. An asterisk (∗) means that the algorithm was interrupted because the
allowed execution time was exceeded. In the majority of the cases for 5 and 10
objectives, S-PAMICRO obtained the best results, outperforming SMS-EMOA,
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Table 2. Median and standard deviation of the hypervolume indicator on the WFG
benchmark. The two best values are shown in gray scale, where a darker tone co-
rresponds to the best value.

m HypE SMS-EMOA pSMS-EMOA S-PAMICRO

WFG1

2 5.17e+00 4.11e-1 ↑ 4.45e+00 3.63e-1 ↑ 3.66e+00 2.59e-1 ↑ 6.61e+00 9.65e-1

3 5.66e+01 1.62e+0 ↓ 5.28e+01 2.50e+0 ↑ 4.23e+01 3.08e+0 ↑ 5.56e+01 3.71e+0

5 2.82e+03 1.17e+2 ↑ 3.18e+03 7.20e+1 ∗ ↑ 3.91e+03 4.83e+1 ↑ 5.16e+03 3.88e+2

10 4.19e+09 1.81e+8 ↑ 1.88e+09 2.62e+8 ∗ ↑ 5.28e+09 5.76e+7 ↑ 5.87e+09 2.33e+8

WFG2

2 5.46e+00 2.79e-2 ↑ 5.47e+00 1.25e-1 ↑ 5.39e+00 1.71e-1 ↑ 5.49e+00 4.00e-2

3 5.34e+01 4.21e+0 ↓ 4.47e+01 4.47e+0 5.18e+01 2.00e+0 ↑ 5.32e+01 2.50e-1

5 4.24e+03 3.00e+2 ↑ 4.41e+03 3.32e+2 ∗ ↑ 4.66e+03 1.52e+1 ↑ 4.75e+03 2.00e+1

10 4.66e+09 3.22e+8 ↑ 3.80e+09 2.86e+8 ∗ ↑ 4.91e+09 1.75e+8 ↑ 4.93e+09 1.96e+8

WFG3

2 1.09e+01 3.06e-2 ↑ 1.09e+01 2.09e-2 ↑ 1.08e+01 3.23e-2 ↑ 1.09e+01 4.50e-2

3 7.59e+01 2.19e-1 ↑ 7.60e+01 1.52e-1 7.48e+01 1.06e-1 ↑ 7.61e+01 3.61e-1

5 5.55e+03 1.55e+2 ↑ 6.84e+03 5.88e+1 ∗ ↑ 6.93e+03 3.11e+1 ↑ 7.22e+03 5.86e+1

10 8.37e+09 1.38e+8 ↓ 7.64e+09 1.95e+8 ∗ ↑ 5.91e+09 3.30e+8 ↑ 8.19e+09 1.98e+9

WFG4

2 2.91e+00 3.46e-3 ↓ 2.90e+00 1.08e-2 2.77e+00 2.05e-2 ↑ 2.90e+00 2.10e-2

3 2.96e+01 5.19e-2 ∗ ↓ 2.97e+01 5.43e-2 ↓ 2.66e+01 2.41e-1 ↑ 2.88e+01 4.45e+0

5 1.69e+03 9.10e+1 ↑ 2.50e+03 6.71e+1 ∗ ↑ 3.13e+03 7.15e+1 ↑ 3.47e+03 1.16e+2

10 1.86e+09 1.03e+8 ∗ ↓ 1.37e+09 6.15e+7 ∗ ↓ 2.00e+09 4.38e+8 ↓ 1.22e+09 5.81e+8

WFG5

2 2.59e+00 2.40e-3 ↑ 2.58e+00 2.82e-3 ↑ 2.53e+00 1.21e-2 ↑ 2.59e+00 8.62e-3

3 2.74e+01 7.07e-1 ∗ ↓ 2.73e+01 1.38e-1 ↓ 2.52e+01 1.92e-1 ↑ 2.70e+01 1.46e-1

5 1.96e+03 1.33e+2 ↑ 2.47e+03 5.10e+1 ∗ ↑ 2.75e+03 1.50e+2 ↑ 3.31e+03 9.51e+1

10 1.95e+09 1.06e+8 ∗ ↑ 1.04e+09 3.14e+7 ∗ ↑ 1.04e+09 3.47e+8 ↑ 3.99e+09 6.24e+8

WFG6

2 2.65e+00 5.79e-2 ↑ 2.64e+00 5.43e-2 ↑ 2.56e+00 3.93e-2 ↑ 2.68e+00 2.11e-2

3 2.77e+01 2.68e-1 2.79e+01 2.12e-1 ↓ 2.52e+01 3.86e-1 ↑ 2.77e+01 4.05e-1

5 1.80e+03 1.37e+2 ↑ 2.08e+03 7.00e+1 ∗ ↑ 2.93e+03 6.19e+1 ↑ 3.39e+03 6.23e+1

10 1.83e+09 1.28e+8 ↑ 9.82e+08 3.55e+7 ∗ ↑ 2.02e+09 2.55e+8 ↑ 3.83e+09 5.36e+8

WFG7

2 2.92e+00 1.60e-3 ↓ 2.91e+00 1.05e-2 ↓ 2.84e+00 1.25e-2 ↑ 2.91e+00 3.05e-1

3 2.97e+01 2.72e-2 ∗ ↓ 2.99e+01 1.35e-2 ↓ 2.73e+01 2.64e-1 ↑ 2.93e+01 1.95e-1

5 1.82e+03 1.10e+2 ↑ 2.66e+03 7.07e+1 ∗ ↑ 3.20e+03 7.84e+1 ↑ 3.55e+03 4.62e+1

10 2.22e+09 1.08e+8 ↓ 1.26e+09 5.23e+7 ∗ 1.12e+09 2.77e+8 8.52e+08 7.72e+8

WFG8

2 2.25e+00 1.46e-2 ↓ 2.24e+00 1.13e-2 ↓ 2.10e+00 2.99e-2 ↑ 2.24e+00 3.37e-2

3 2.34e+01 2.82e-1 ↑ 2.52e+01 8.04e-2 ↓ 2.19e+01 4.28e-1 ↑ 2.43e+01 5.25e-1

5 1.52e+03 1.20e+2 ↑ 2.26e+03 5.62e+1 ∗ ↑ 2.55e+03 1.16e+2 ↑ 2.86e+03 3.62e+2

10 1.84e+09 1.29e+8 ↓ 1.06e+09 4.60e+7 ∗ ↓ 1.53e+09 3.69e+8 ↓ 4.64e+08 7.71e+8

WFG9

2 2.30e+00 2.61e-1 ↑ 2.78e+00 2.34e-1 ↑ 2.63e+00 2.09e-1 ↑ 2.81e+00 4.88e-1

3 2.16e+01 1.56e+0 ∗ ↑ 2.82e+01 1.77e+0 ↓ 2.25e+01 1.10e+0 ↑ 2.74e+01 6.78e+0

5 1.75e+03 1.65e+2 ↑ 2.36e+03 1.12e+2 ∗ ↑ 2.57e+03 6.33e+1 2.61e+03 8.93e+2

10 1.66e+09 1.10e+8 ↑ 1.12e+09 6.31e+7 ∗ ↑ 1.87e+09 3.46e+8 ↑ 2.31e+09 9.27e+8
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HypE and pSMS-EMOA. While with 2 and 3 objectives, our proposal only sur-
passed pSMS-EMOA, being competitive with SMS-EMOA and HypE.

In summary, we observed that S-PAMICRO could achieve much better
results than SMS-EMOA and HypE in high dimensionality, spending much less
computational time. For this reason, we claim that our proposed approach is a
promising alternative for solving many-objective optimization problems.

4 Conclusions and Future Work

This paper presented a parallel version of the S-Metric Selection Evolutionary
Multi-Objective Algorithm (SMS-EMOA). The new approach, called PArallel
MICRo Optimizer based on the S metric (S-PAMICRO), draws ideas from the
asynchronous island model with relatively small populations. Diversity is pre-
served through external archives that are pruned to a limit size, using a recently
proposed technique that is based on automatic image analysis. We compared
our proposal with respect to HypE (Hypervolume Estimation Algorithm), and
with respect to the serial version of SMS-EMOA and another parallel version
of it. We observed that S-PAMICRO is a viable alternative for solving many-
objective optimization problems at an affordable computational time. In fact, the
execution time seems to be dominated by polynomial terms and not the expo-
nential terms when using micro-populations. The model of the execution time of
S-PAMICRO is 1.526m–1.632, using least-squares approximation. Further stu-
dies are nevertheless required, adopting more benchmarks and comparing to
other state-of-the-art MOEAs. We are also interested in studying the effects of
the additional parameters related to the migration operator.
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Abstract. Pattern recognition and classification is a central concern for
modern information processing systems. In particular, one key challenge
to image and video classification has been that the computational cost of
image processing scales linearly with the number of pixels in the image
or video. Here we present an intelligent machine (the “active categorical
classifier,” or ACC) that is inspired by the saccadic movements of the eye,
and is capable of classifying images by selectively scanning only a por-
tion of the image. We harness evolutionary computation to optimize the
ACC on the MNIST hand-written digit classification task, and provide
a proof-of-concept that the ACC works on noisy multi-class data. We
further analyze the ACC and demonstrate its ability to classify images
after viewing only a fraction of the pixels, and provide insight on future
research paths to further improve upon the ACC presented here.

Keywords: Active categorical perception · Attention-based process-
ing · Evolutionary computation · Machine learning · Supervised
classification

1 Introduction

Pattern recognition and classification is one of the most challenging ongoing
problems in computer science in which we seek to classify objects within an
image into categories, typically with considerable variation among the objects
within each category. With invariant pattern recognition, we seek to develop a
model of each category that captures the essence of the class while compressing
inessential variations. In this manner, invariant pattern recognition can tolerate
(sometimes drastic) variations within a class, while at the same time recog-
nizing differences across classes that can be minute but salient. One means of
achieving this goal is through invariant feature extraction [1], where the image
is transformed into feature vectors that may be invariant with respect to a set of
transformations, such as displacement, rotation, scaling, skewing, and lighting
changes. This method can also be used in a hierarchical setting, where subse-
quent layers extract compound features from features already extracted in lower
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 581–590, 2016.
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levels, such that the last layer extracts features that are essentially the classes
themselves [2]. Most of these existing methods have one thing in common: they
achieve invariance either by applying transformations to the image when search-
ing for the best match, or by mapping the image to a representation that is itself
invariant to such transformations.

In contrast to these “passive” methods where transformations are applied
to the image, we propose an active, attention-based method, where a virtual
camera roams over and focuses on particular portions of the image, similar to
how our own brain controls the focus of our attention [3]. In this case, the
camera’s actions are guided by what the camera finds in the image itself: In
essence, the camera searches the image to discover features that it recognizes,
creating in the process a time series of experiences that guides further movements
and eventually allows the camera to classify the image. We call this camera an
“active categorical classifier,” or ACC for short.

Broadly speaking, the problem of classifying a spatial pattern is transformed
into one of detecting differences within and between time series, namely the tem-
poral sequence that the virtual camera generates in its sensors as it navigates the
image. The method we propose here is inspired by models of visual attention [4],
where attention to “salient” elements of an image or scene is guided by the image
itself, such that only a small part of the incoming sensory information reaches
short-term memory and visual awareness. Thus, focused attention overcomes the
information-processing bottleneck imposed by massive sensory input (which can
easily be 107 − 108 bits per second in parallel at the optic nerve [4]), and serial-
izes this stream to achieve near-real-time processing with limited computational
requirements.

In previous work, we have shown that it is possible to evolve robust controllers
that navigate arbitrary mazes with near-perfect accuracy [5] and simulate realis-
tic animal behavior [6]. Independently, we have shown that we can evolve simple
spatial classifiers for hand-written numerals in the MNIST data set [7]. Here
we use the same technology to evolve active categorical classifiers that “forage”
on images and respond to queries about what they saw in the image without
needing to examine the image again.

2 Methods

In this section, we describe the methods used to evolve the active categorical
classifiers (ACCs). We begin by describing the simulation environment in which
the ACC scans and classifies the images. Next, we outline the structure and
underlying neural architecture of an ACC. Finally, we provide details on the
evolutionary process that we used to evolve the ACCs and the experiments that
we conducted to evaluate them.

2.1 Simulation Environment

We evaluate the ACC on the MNIST data set, which is a well-known set of hand-
written digits commonly used in supervised image classification research [8].



Evolution of Active Categorical Image Classification 583

The MNIST data set contains 28× 28 pixel images of hand-written digits—all
with corresponding labels indicating what digit the image represents (0–9)—
and comes in two predefined sets of training and testing data (60,000 and 10,000
images, respectively). In this project, we binarize the images such that any pixels
with a grayscale value >127 (out of the range [0, 255]) are assigned a value of 1,
and all other pixels are assigned a value of 0.

When we evaluate an ACC, we place it at a random starting point in the
28× 28 image and provide it a maximum of 40 steps to scan the image and assign
a classification. (The 40-step maximum is meant to limit each simulation to a
reasonably short amount of time.) Every simulation step, the ACC decides (1)
what direction to move, (2) what class(es) it currently classifies the image as,
and (3) whether it has made its final classification and is ready to terminate the
simulation early. The ACC is evaluated only on its final classification for each
image in the training set, with a “fitness” score (Find) assigned as:

Find =
1

1000
×

1000∑

i=1

CorrectClassi
NumClassesGuessedi

(1)

where i is the index of an individual image in the training set, CorrectClassi = 1
if the correct class is among the NumClassesGuessedi guesses that the ACC
offers (it is allowed to guess more than one), and CorrectClassi = 0 otherwise.
Thus, an ACC can achieve a minimum fitness of 0.1 by guessing all classes for
all images, but only achieves a maximum fitness of 1.0 by determining only the
correct class for every image. We note that due to computational limitations, we
subset the MNIST training set to the first 100 images of each digit, such that
we use only 1,000 training images in total (1/60th of the total set).

Fig. 1. Active categorical classifier (ACC) configuration. The ACC brain has
64 binary states that either fire or are quiescent, and represent sensory input from the
image, internal memory, or decisions about how to interact with the image (described
in the text).
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2.2 Active Categorical Classifier (ACC)

We show in Fig. 1 the ACC in its natural habitat, roaming a digitized MNIST
numeral. Each ACC has a brain that consists of 64 Markov neurons (“states”)
that either fire (state = 1) or are quiescent (state = 0), and represent sensory
input from the image, internal memory, and decisions about how to interact with
the image. The ACC uses nine of these states to view nine pixels of the image
in a 3× 3 square, and four of the states to probe for activated pixels outside of
its field of view with four raycast sensors that project across the image from the
0◦, 90◦, 180◦, and 270◦ angles of the 3× 3 square (green squares in Fig. 1). The
raycast sensors activate only when they intersect with an activated pixel, and
allow the ACC to find the numeral even if its starting position is far from it.

We also provide the ACC two actuator states (“motor neurons”) that allow
it to “saccade” three pixels up/down and left/right, or any combination thereof
(red rectangles denoted as wheels in Fig. 1). In addition, the ACC has 20 states
dedicated to classifying the image: 10 states that can be activated to guess each
digit class (blue squares), and 10 states to veto an activated guess for each
digit class (purple squares), e.g., “this is definitely not a 4.” This configuration
allows the ACC to guess multiple classes at once, and combine its internal logic
to veto any of those guesses if it believes them to be incorrect. Finally, the
ACC has a “done” state (orange triangle), which allows it to end the simulation
early if it has already decided on its final guess(es) for the current image. The
remaining 28 neurons are “memory” states (black circles) used to process and
store information, and integrate that information over time.

The “artificial brain” for the ACC in these experiments is a Markov Net-
work (MN, see, e.g., [5,7,9]) that deterministically maps the 64 states (described
above) at time t to a corresponding series of output states that we interpret to
determine the ACC’s movement actions and classifications at time t + 1. The
combination of output states and sensory inputs from time t + 1 are then used
to determine the output states for the ACC at time t+ 2, and so on. Every MN
must therefore usefully combine the information provided over time in the 64
states to decide where to move, classify the image, and finally to decide when it
has gathered enough information to make an accurate classification. Making all
these decisions at once requires complex logic that is difficult to design.

2.3 Optimization Process

In order to create the complex logic embodied by a Markov Network, we evolve
the MNs to maximize classification accuracy on the training images. We use a
standard Genetic Algorithm (GA) to stochastically optimize a population of byte
strings [10], which deterministically map to the MNs that function as the ACC’s
“artificial brains” in the simulation described above. Due to space limitations,
we cannot describe MNs in full detail here; a detailed description of MNs and
how they are evolved can be found in [11].

In our experiments, the GA maintains a population of 100 byte strings
(“candidates”) of variable length (maximum = 10,000 bytes) and evaluates them
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according to the fitness function in Eq. 1. The GA selects the candidates to
reproduce into the next generation’s population via tournament selection, where
it shuffles the population and competes every byte string against only one other
byte string. In each tournament, the byte string with the highest fitness pro-
duces one exact copy of itself as well as one mutated copy of itself into the next
generation, while the “loser” produces no offspring. We note that the GA applies
only mutations to the offspring (no crossover/recombination), with a per-byte
mutation rate of 0.05 %, a gene duplication rate of 5 %, and a gene deletion rate
of 2 %.

2.4 Experiments

According to the evolutionary optimization process, the GA selects ACCs that
are capable of spatio-temporal classification of MNIST digits. We first ran 30
replicates of the GA with random starting populations and distinct random
seeds and allowed these replicates to run for 168 hours on a high-performance
compute cluster. From those 30 replicates, we identified the highest-fitness ACC
(the “elite”), and seeded another set of 30 replicates with mutants of the elite
ACC. We allowed this second set of replicates to run for another 168 hours. In
the following section, we report on the results of these experiments.

Fig. 2. Fitness over time on the MNIST training set. Each line represents a
replicate of the evolutionary process that trains the active categorical classifiers. The
lines represent the highest-fitness individual every 1,000 generations, where the blue
line traces the lineage that led to the highest-fitness individual out of all replicates.
After running all 30 replicates for one week, we took the best individual from the first
set of runs and seeded another set of evolutionary runs with it, which is represented
by the cluster of lines following the top lineage of first set.



586 R.S. Olson et al.

Fig. 3. Active categorical classifier (ACC) accuracy on the binarized MNIST
testing set. We report per-digit accuracy (labeled 0–9) of the ACC as well as the
average accuracy across all digits (labeled “Overall”).

3 Results

At the completion of the second set of replicates, the remaining active categorical
classifiers (ACCs) had been optimized for 336 hours and roughly 250,000 gen-
erations. Shown in Fig. 2, the ACCs experienced the majority of their improve-
ments within the first 150,000 generations, and minimal improvements occurred
in the second set of replicates, indicating that the ACCs had reached a plateau—
either because the scan pattern required to improve was too complex, or because
improving the classification accuracy on poorly classified digits compromised the
ability to classify those digits the ACC was already proficient at. Such trade-offs
are likely due to insufficient brain size, and investigations with larger brains are
currently underway.

Instead of continuing the optimization process for a third set of replicates, we
identified the highest-fitness ACC from replicate set 2 (highlighted in blue, Fig. 2)
and analyzed its spatio-temporal classification behavior to gain insights into its
functionality. For the remainder of this section, we focus on the best ACC evolved
in replicate set 2, which we will simply call “the ACC.” Shown in Fig. 3, the ACC
achieved respectable but not state-of-the-art performance on the MNIST testing
set: It managed to classify most of the 0s and 1s correctly for example, but
failed to classify many of the 2s. Overall, the ACC achieved a macro-averaged
accuracy of 76 %, which provides a proof-of-concept that the ACC works, but
still has room for improvement on noisy multi-class data sets. We note that we
have optimized ACCs on a set of hand-designed, non-noisy digits, where they
managed to achieve 100 % accuracy. Thus, it is clear that the ACC architecture
requires additional experimentation to fully adapt to noisy data, much like other
methods currently in use. In Fig. 4B, we analyze the movement patterns of the
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A) B)

0

Fig. 4. Analysis of informative pixels in the MNIST training set. Panel A
shows the most informative pixels in the MNIST training set according to feature
importance scores from a Random Forest (i.e., Gini importance [12]), whereas Panel B
shows the pixels that the best active categorical classifier visited most frequently when
classifying the MNIST data set. In both cases, darker colors represent higher values.

ACC by counting how many times each pixel is viewed in the ACC’s 3× 3 visual
grid when classifying the MNIST data set. Even though the ACC always starts
at a random location in the image, we find that it follows a stereotypical scanning
patterns of the digits: the ACC lines itself up to the top-left of the digit, then
executes an L-shaped scanning pattern.

In contrast, Fig. 4A depicts the most informative pixels for differentiating
the classes in the binarized MNIST data set with a Random Forest classifier as
implemented in scikit-learn [13]. Here, we find that the most informative pixels
exist in the center of the images, with several less-informative pixels on the
image edges. Importantly, we note that the ACC never scans some of the most
informative pixels in the lower half of the MNIST images (Fig. 4A vs. B). We
believe that this behavior is the reason that the ACC is rarely able to classify any
of the 2s, for example, because some of the most critical pixels for differentiating
2s from the rest of the digits are never visited.

We provide examples of the ACC scanning patterns in Fig. 5. Shown again is
the stereotypical L-shaped scanning pattern starting at the upper-left corner of
every digit. (We note that we trimmed the agent paths to only the final scanning
pattern because the initial phase of ACC movements are simply lining up to the
upper-left corner of the digit.) Interestingly, the ACC scans only a fraction of
the available pixels to make each classification, and appears to be integrating
information about the digit over space and time to identify distinctive sub-
features of the digits. Furthermore, the ACC completes the majority of its scans
within 5–10 steps and then immediately activates the “done” state, indicating
that the ACC also learned when it knows the correct digit.
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Fig. 5. Example trajectories of the best active categorical classifier (ACC).
The arrows indicate the direction that the ACC followed, whereas the dark grey areas
indicate the pixels that it scanned. Although the ACC starts all evaluations at random
spots in the grid, it aligns itself to the digit to a common starting point and executes
and L-shaped scan of the digit. We note that we excluded an example of digit 2 because
the ACC rarely classifies it correctly, although it follows a similar L-shaped trajectory.

4 Discussion

The results that we display here show that it is possible to optimize an active cat-
egorical classifier (ACC) that scans a small portion of an image, integrates that
information over space and time, and proceeds to perform an accurate classifi-
cation of the image. Although the ACC does not achieve competitive accuracy
on the MNIST data set compared to many modern techniques (76 % testing
accuracy, Fig. 3), we believe that this result is due to the lack of training data
rather than any particular limitation of ACCs: Due to computational limita-
tions, we were only able to use a fixed set of 1,000 training images (100 of each
class) to optimize the ACCs, while modern techniques use much larger training
sets that even include additional variations of the training images [14]. Indeed,
when we trained a scikit-learn Random Forest with 500 decision trees [13] on
the same binarized training set of 1,000 images, it achieves only 88.5 % accuracy
on the MNIST testing set as compared to 97.5 % when it is trained on the full
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training set. Thus, in future work we will focus on integrating methods that
expose the ACCs to all training images in an efficient manner.

From the point of view of embodied artificial intelligence, the challenge pre-
sented to the ACC in the image classification task is remarkably difficult. For
one, these experiments challenged a single artificial brain to simultaneously per-
form several complex tasks, including to line itself up to a consistent starting
point regardless of where it randomly starts in the image, decide where it needs
to move to complete the scan based on limited information about the image,
determine what pixels are important to consider, and integrate that information
over space and time to classify the image into 1 of 10 classes. We furthermore
challenged the ACC to evolve something akin to a “theory of mind” such that
it knows when it has guessed the correct class for the image and to end the sim-
ulation early. In future work, it will be illuminating to analyze the underlying
neural architecture of the evolved ACCs to provide insight into the fundamentals
of active categorical perception [15].

Unlike many modern image classification techniques that must analyze an
entire static image to determine an image’s class, the ACC instead integrates
information from a small subset of the pixels over space and time. This method
naturally lends itself to video classification, where feature compression will play
a crucial role in overcoming the massive data size challenge for real-time classi-
fication of moving objects [3]. Lastly, recent work has shown that modern deep
learning-based image classification techniques tend to be easily fooled because
they are trained in a supervised, discriminative manner: They establish decision
boundaries that appropriately separate the data they encounter in the training
phase, but these decision boundaries also include (and thus mis-classify) many
inappropriate data points never encountered during training [16]. Although most
deep learning researchers respond to this challenge by creating additional “adver-
sarial” training images to train the deep neural networks [17], we believe that
the findings in [16] highlight a critical weakness in deep learning: the resulting
networks are trained to precisely map inputs to corresponding target outputs,
without generalizing far beyond the training data they are exposed to [18].

Due to their nature, deep neural networks are highly dependent on the train-
ing data, and only generalize to new challenges if they are similar to those
encountered in the training data [17]. In contrast, heuristic-based machines such
as the ACC learn simple, generalizable heuristics for classifying images that
encode the conceptual representation [9] of the objects, and should not be so
easily fooled. As such, even if the ACC in the present work does not achieve
competitive accuracy when compared to modern deep learning techniques, we
believe that further development of heuristic-based image classification machines
will lead to robust classifiers that will eventually surpass deep neural networks
in generalizability without the need for adversarial training images. We fur-
ther believe that it is precisely those machines that carry with them complex
representations of the world that will become the robust and sophisticated intel-
ligent machines of the future. Whether the embodied evolutionary approach we
describe here will succeed in this is, of course, an open problem.
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Abstract. The potential of cooperative coevolutionary algorithms
(CCEAs) as a tool for evolving control for heterogeneous multirobot
teams has been shown in several previous works. The vast majority of
these works have, however, been confined to simulation-based experi-
ments. In this paper, we present one of the first demonstrations of a
real multirobot system, operating outside laboratory conditions, with
controllers synthesised by CCEAs. We evolve control for an aquatic mul-
tirobot system that has to perform a cooperative predator-prey pursuit
task. The evolved controllers are transferred to real hardware, and their
performance is assessed in a non-controlled outdoor environment. Two
approaches are used to evolve control: a standard fitness-driven CCEA,
and novelty-driven coevolution. We find that both approaches are able to
evolve teams that transfer successfully to the real robots. Novelty-driven
coevolution is able to evolve a broad range of successful team behaviours,
which we test on the real multirobot system.

Keywords: Cooperative coevolution · Evolutionary robotics · Novelty
search · Reality gap · Heterogeneous multirobot systems

1 Introduction

Cooperative coevolutionary algorithms (CCEAs) allow for the evolution of solu-
tions that consist of coadapted, interacting components [16,17]. CCEAs are a
natural fit for the evolution of heterogeneous multiagent systems [18], as each
agent can be represented as an independent component of the solution, and can
therefore evolve a specialised behaviour (see for instance [12,18,22]). The classic
CCEA architecture [17] operates with two or more populations, where each agent
evolves in a separate population. Populations are isolated from one another,
meaning that individuals only compete and reproduce with members of their own
population. The individuals in each population are evaluated by forming teams
with representative individuals from the other populations. These teams are
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evaluated in the problem domain, and the individual under evaluation receives
the fitness score obtained by the team as a whole.

Previous works that have applied CCEAs to the evolution of agent behav-
iours can be divided in three main categories [14]: (i) game-theoretic environ-
ments, essentially strategy games where each agent is rewarded according to a
payoff matrix [15,21]; (ii) abstract embodied agents, where the evolved agents
are situated in an environment that they sense and act in, but the agents are
abstract and unrelated to any real robotic platform [7,18,22]; and (iii) simu-
lated robotics tasks, in which the evolved agents are modelled closely after a real
robotic platform and a real task environment [10,11].

One notable category is missing from this list, namely real robotics tasks –
tasks in which behavioural control is evolved in simulation, and then transferred
to a real robot team. While this reality gap has been crossed using other evolu-
tionary algorithms [19], in both single [8] and multirobot systems [3], to the best
of our knowledge, CCEAs have been confined to simulation-based experiments
up until now. The potential of CCEAs to evolve control for robot teams has been
shown in simulation in tasks such as: predator-prey pursuit [7,11], herding [18],
collective construction [13], multirobot foraging [5,12], and keepaway soccer [4].

In this paper, we evolve control for an aquatic surface multirobot system that
must perform a cooperative predator-prey pursuit task. Predator-prey pursuit
is one of the most commonly studied tasks in multiagent coevolution. In the
cooperative version of this task [7,11,22], a team of predators must cooperate
to capture an escaping prey. The predator-prey task is especially interesting in
CCEA studies because behavioural heterogeneity and close cooperation in the
predator team is required to effectively catch the prey [22]. After evolving the
controllers offline in simulation, we transfer the controllers to the real robotic
platform, and systematically evaluate them in an outdoor environment. The
natural unpredictability associated with the aquatic environment (caused by
inaccurate robot motion, waves, and currents) allow us to study transferability
in a realistic scenario, and understand how controllers evolved by CCEAs are
able to cope with noisy and stochastic conditions.

We evolve control using two cooperative coevolution approaches: a stan-
dard fitness-driven CCEA [17], and novelty-driven cooperative coevolution [7] –
a recently proposed algorithm that aims at mitigating the premature conver-
gence issues that commonly plague CCEAs [15,16]. Novelty-driven coevolution
is based on novelty search [9], an evolutionary approach that rewards individuals
displaying novel behaviours, rather than exclusively rewarding the individuals
that display the highest performance with respect to a fitness function. Novelty-
driven coevolution (NS-Team) relies on team-level behaviour characterisations,
and rewards behaviourally novel teams in addition to high-fitness ones, as it is
typically done in CCEAs. The team-level characterisations capture how the team
as a whole behaves, without discriminating between the behaviours of the indi-
vidual agents. Both the fitness and the novelty scores of the teams are used to
reward the individuals, via a multi-objective algorithm. By rewarding agents
that lead to novel team behaviours, an evolutionary pressure towards novel
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equilibrium states is created. Besides the ability to overcome premature con-
vergence, and thus reach higher quality solutions, it has also been shown that
NS-Team can evolve a diverse set of solutions for a given task [4,5,7].

2 Experimental Setup

2.1 Cooperative Predator-Prey Task

In our predator-prey pursuit task, a team of three predators must cooperate
to capture one escaping prey. Only the controllers of the team of predators are
evolved, while the prey has a pre-specified fixed behaviour.

Fig. 1. Task setup used for the evolu-
tionary process.

In each trial, the three predators are
placed in the centre of the arena, with ran-
dom positions and orientations (Fig. 1).
The prey is placed in a random location,
ranging from 20 m to 35 m from the cen-
tre of the arena. A trial ends if a predator
gets closer than 2 m from the prey (prey
is captured), if the prey escapes the arena,
or if the time limit (75 s) is reached. The
prey moves in the opposite direction of the
closest predator, if that predator is closer
than 10 m, otherwise it does not move.
The prey can move up to the maximum
possible speed of the predators, meaning
that the predators typically cannot out-
run it. Cooperation among the predators
is therefore essential to capture the prey.

2.2 Robotic Platform

For our experiments, we use an aquatic multirobot system [1] that has been used
in other evolutionary robotics studies in the past [3]. Each robot is a small (65 cm
in length) differential drive mono-hull robot. The robots can move at speeds of
up to 1.7 m/s, turn at a maximum rate of 90◦/s, and are equipped with GPS
and compass. The robots broadcast information (such as their position) to their
neighbours up to a range of 40 m using Wi-Fi, which is then used to calculate the
robots’ sensory inputs. The same robotic platform is used for both the predator
robots and prey robot.

Each predator is controlled by an artificial neural network, which receives the
sensory inputs – the distance to other predators and the relative position of the
prey – and has two outputs that control the linear speed and the angular velocity
of the robot. The two output values are converted to left and right motor speeds
and applied to the robot’s motors. The network relies on the following sensory
inputs, which are limited to a range of 40 m, and are normalised to [−1, 1]:
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Predator Sensing: Six inputs for detecting the other predators, corresponding
to six equally-sized circular sectors around the robot. Each input returns the
normalised distance to the closest predator in the corresponding sector, or
the maximum value if no predator is present there.

Prey Location: Two inputs returning (i) the relative angle from the predator
to the prey (zero corresponds to straight ahead), and (ii) the normalised
distance from the predator to the prey. If the prey is not within sensing
range, the sensors return an angle of zero and the maximum distance.

2.3 Evolutionary Setup

Both fitness-driven and novelty-driven cooperative coevolution were imple-
mented over the same standard coevolutionary architecture [17]. There are three
coevolving populations, one for each of the predators. Every generation, each
population is evaluated in turn. To evaluate an individual from one popula-
tion, a team is formed with one representative from each other population –
the individual that obtained the highest fitness score in the previous generation,
or a random one in the first generation. Only the individual currently under
evaluation receives the score obtained by the team. Every team is evaluated in
10 simulation trials, with randomized initial conditions. The controllers of each
population are evolved by NEAT [20], a neuroevolution algorithm extensively
used in evolutionary robotics, that evolves both the weights and topology of the
networks. The three coevolving populations use the parameters listed in Table 1.

The fitness function F is the same as the one used in [7], which rewards the
teams for capturing the prey as soon as possible, or getting close to it:

F =

{
2 − τ/T if prey captured
max(0, (di − df )/size) otherwise

, (1)

where τ is the time to capture the prey, T is the maximum trial length, di and
df are, respectively, the average initial and final distance from the predators to
the prey, and size is the side length of the arena.

Novelty-driven coevolution is implemented as proposed in [7], using the NS-
Team technique, which computes the individuals’ novelty scores based on the
behavioural novelty displayed by the team in which the individual participated.
To calculate the novelty score of each team, we rely on four features to charac-
terise team behaviour, all normalised to [0,1]: (i) whether the prey was captured

Table 1. Parameters used for NEAT and novelty search (last row).

Population size 150 Target species count 5 Crossover prob 20%

Recurrency allowed true Mutation prob 25 % Prob. add link 5 %

Prob. add node 3% Prob. mutate bias 30 % Num. generations 250

Novelty k-nearest 15 Add archive prob 2.5 % Max. archive size 2000
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or not; (ii) average final distance of the predators to the prey; (iii) average dis-
tance of each predator to the other predators over the trial; and (iv) trial length.
The novelty search algorithm was configured according to [6], see Table 1 (last
row). The novelty score of each individual is combined with its fitness score using
the NSGA-II [2] multiobjective ranking, as advocated in previous works [6,7].

2.4 Simulation

For the evolutionary process, we used a two-dimensional simulation environment,
where the robots are abstracted as circular objects with a certain heading and
position1. The robot motion model was implemented based on simple measure-
ments taken on the real robots, and did not include complex physics simulation
or fluid dynamics. In order to facilitate the transfer from simulation to reality
and promote general behaviours, noise was applied to the sensors and actua-
tors [3,8] based on measurements taken from real robots, and the initial task
conditions were varied in every simulation trial. The following parameters were
varied during the simulated trials:

Set for Each Trial: random individual motor speed offsets of up to 10% of
maximum speed; compass offset up to ±9◦; the prey’s escape speed varied
between [75 %,100 %] of the predators’s maximum speed; and the initial posi-
tions and orientations of all robots were varied according to Sect. 2.1.

Set at Each Time Step: GPS error up to 1.8 m; compass error up to ±10◦;
motor output varied up to 5 %; and the prey’s escape direction randomly
varied up to 50 % from the optimal direction.

3 Evolving and Identifying Diverse Behaviours

For both fitness-driven (Fit) and novelty-driven cooperative coevolution (NS-
Team), we followed a methodology that allowed us to identify a set of diverse and
high-quality solutions, that were then evaluated in the real multirobot system.

Evolutionary Process: Each evolutionary approach was repeated in ten inde-
pendent evolutionary runs. To obtain a more accurate estimate of the evolved
teams’ quality and behaviour, all the best-of-generation teams (the teams that
obtained the highest fitness score in each generation, in each evolutionary run)
were re-evaluated a posteriori in 50 simulation trials. On average, the evolution-
ary runs of Fit achieved a highest fitness score of 1.09 ± 0.10, and NS-Team
achieved 0.96 ± 0.20. While this difference is significant (p = 0.043, Mann-
Whitney U test), both approaches managed to evolve high-quality solutions.

Behaviour Mapping: To visualise the diversity of behaviours evolved by
each evolutionary approach, we mapped the best-of-generation teams accord-
ing to their behaviour characterisation vector (see Sect. 2.3), as done in previous
works [7]. The four dimensions of the behaviour characterisation were reduced
1 https://github.com/BioMachinesLab/drones/tree/master/JBotAquatic.

https://github.com/BioMachinesLab/drones/tree/master/JBotAquatic
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Fig. 2. Left: trained Kohonen map, where each node represents a region of the team
behaviour space. Middle and right: team behaviour exploration by the two evolutionary
approaches. The darker a region, the more of the evolved teams belonged to it.

to two dimensions using a Kohonen self-organising map in order to obtain a
visual representation of the team behaviour space exploration, see Fig. 2 (left).
The teams evolved by each evolutionary approach were then mapped: each team
is assigned to the node (map region) with the closest weight vector, see Fig. 2.
The results show that NS-Team explored the behaviour space much more uni-
formly, and could reach behaviour regions that were never reached by Fit, which
is consistent with the results reported in previous works [7].

Selection of Solutions: We then proceeded to select a diverse set of solutions
to be tested in the real robots. We selected different regions of the behaviour
space where the prey capture rate was high, and identified the team belonging
to each of those regions that obtained the highest fitness score, see Fig. 2. We
chose one team evolved by Fit, as all the high-quality teams were found in the
bottom-right corner of the map, and four solutions evolved by NS-Team, from
different regions of the map with high prey capture values.

4 Transferring the Teams to Real Robots

The selected teams were then evaluated in the real multirobot system. The
experiments were performed in a semi-enclosed water body, see Fig. 3. The task
setup was similar to the simulation setup (see Sect. 2.1): the three predator
robots were placed close to the centre of the arena, and the prey was placed
at approximately 25, 30, and 35 m away from the centre, in each of the three
trials that were used to assess the performance of the teams. Each trial lasted
for at most 100 s, the arena boundaries were 100×100 m, and the prey moved at
the maximum speed. To compare the results of the real-robot experiments with
simulation, the chosen teams were re-evaluated in 500 simulation trials, using
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Fig. 3. Photo of the real-robot experiments, at Parque das Nações, Lisbon, Portugal,
in a semi-enclosed area in the margin of the Tagus river.

Environment:
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Simulated (500 trials)
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Fig. 4. Comparison of the fitness score and behaviour features obtained in the real-
robot experiments (asterisks) and in simulation (violin plots) in similar conditions.

the same initial conditions as the real-robot experiments. The fitness scores and
behaviour features of the teams operating in the real environment were computed
using logged GPS data.

In Fig. 4 (Fitness), we compare the fitness scores obtained by the teams
in simulation and in the real robots. We additionally explore the diversity of
team behaviours by comparing the controllers’ performance in reality and in
simulation according to the behaviour features that were used in novelty-driven
coevolution (Sect. 2.3). The results show that all teams except NS2 were able to
capture the prey in the majority of the trials. The fitness scores obtained in the
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Starting positions

Final positions

Predators' path

Prey's path

10 meters

Fit1 NS1 NS2

NS3 NS4

Fig. 5. Traces of one experimental trial (out of three) for each of the teams evaluated
in the real robots. Traces and videos of all real-robot experiments are available online.2

real experiments are similar to the scores obtained in simulation, fitting in the
distribution obtained in simulation. These results are a first indication that the
evolved controllers were generally able to cross the reality gap successfully.

The effectiveness of the team behaviours was confirmed by analysing the
traces of the real-robot experiments, shown in Fig. 5. The Fit1 and NS1 teams
displayed a behaviour where the three predators would initially spread and move
towards the prey, each approaching the prey from a different direction. The
behaviour of NS2 was similar to Fit1 and NS1, but the predator team dispersed
more. The teams NS3 and NS4 displayed a significantly different behaviour:
only two predators chased the prey, approaching it from opposite directions,
while the remaining predator would move away from the group. The observed
robot traces are consistent with the measured behavioural features (Fig. 4), and
confirm that novelty-driven coevolution was able to achieve a wide diversity
of team behaviours. For instance, it is possible to observe that NS3 and NS4
display a higher dispersion and final distance to prey, which is explained by the
fact that in these teams, only two predators chase the prey. The differences and
similarities between the team behaviours observed in the real-robot experiments
are consistent with the behaviour map obtained in simulation (Fig. 2).
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Overall, despite the stochastic conditions of the aquatic environment, the
predators displayed effective cooperation, and were consistently able to solve
the task. The team of predators would often fail to capture the prey in the
first attempt, but the team would then spread out and try to encircle the prey
again. Moreover, robots sometimes displayed temporary motor failures (see sup-
plementary videos2), which did not compromise the effectiveness of the team.
These behaviours suggest that the teams were not overfitted to the simulation
environment, and could effectively adapt to different scenarios.

5 Conclusion

In this paper, we employed cooperative coevolutionary algorithms (CCEAs) to
evolve control for an aquatic multirobot system. Our experiments relied on a
cooperative predator-prey task, where a heterogeneous team of three predators
was evolved to capture one reactive prey. Two evolutionary approaches were
applied: traditional fitness-driven cooperative coevolution, and novelty-driven
cooperative coevolution. The evolutionary processes were conducted exclusively
in simulation, and a number of high-fitness teams were then systematically eval-
uated in real robots operating in a non-controlled outdoor environment.

The evolved teams generally transferred well to the real robots, successfully
crossing the reality gap. Out of the five teams tested, four teams could consis-
tently capture the prey, and obtained fitness scores very similar to those obtained
in simulation. The cooperation between robots that was exhibited in simulation
was also observed in real robots, and the teams displayed robust behaviours that
did not appear to be overfitted to the simulation environment. The successful
transfer is especially notable given that we used low-fidelity simulator during
evolution, and given the stochastic nature of the real task environment. We
encouraged the evolution of robust and transferable controllers by introducing
conservative amounts of noise and variations in the sensors and actuators of the
robots in simulation, and by using multiple trials to evaluate each solution, with
different initial conditions.

Novelty-driven cooperative coevolution was able to produce a good diversity
of high-quality team behaviours for solving the task, which were identified fol-
lowing a systematic approach. The diversity of behaviours that was observed in
simulation was also present in the real multirobot system.

In summary, we demonstrated that CCEAs can be successfully used to syn-
thesise control for a real multirobot system, operating in an environment outside
controlled laboratory conditions. Despite the large number of previous works
that have showed the potential of CCEAs for evolving heterogeneous multirobot
systems, our work stands amongst the first to demonstrate this potential in real
robots and in a realistic environment. Our experiments also validated, for the
first time, the potential of novelty-driven cooperative coevolution in real robots,
and confirmed it as a valuable approach to evolve diverse team behaviours.

2 Videos and logs of the experiments: http://dx.doi.org/10.5281/zenodo.49582.

http://dx.doi.org/10.5281/zenodo.49582
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Abstract. We present an approach to the study of cognitive phenomena
by using evolutionary computation. To this end we use a spatial, devel-
opmental, neuroevolution system. We use our system to evolve ANNs
to perform simple abstractions of the cognitive tasks of color perception
and color reading. We define these tasks to explore the nature of the
Stroop effect. We show that we can evolve it to perform a variety of cog-
nitive tasks, and also that evolved networks exhibit complex interference
behavior when dealing with multiple tasks and incongruent data. We
also show that this interference behavior can be manipulated by chang-
ing the learning parameters, a method that we successfully use to create
a Stroop like interference pattern.

1 Introduction

Much research in cognitive psychology has been devoted to goal directed behav-
ior or to the mental processes involved in focusing on relevant information and
declining or ignoring irrelevant information. One of the paradigmatic tasks in
cognitive psychology is the Stroop task in which people are presented with words
in color (e.g., RED in green) and asked to pay attention to the color and ignore
the meaning of the word. The current work applies evolutionary algorithms
(EAs) to study the mechanisms involved in the Stroop task.

1.1 The Stroop Effect

In his original work Stroop [14] presented participants with lists of stimuli on
a card and asked them to name the color of the ink as fast as possible. He
measured the time to name 100 stimuli on each card. Stroop used two conditions,
incongruent (e.g., RED in green) and neutral (i.e., patches of colors). Responding
was slower to the incongruent condition than to the neutral condition. Stroop
suggested that the difference between incongruent and neutral conditions was
an indication for the automaticity of word reading. Importantly, when he asked
participants to read the words and ignore their color, word reading was not
hampered by the incongruent colors.

c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 602–612, 2016.
DOI: 10.1007/978-3-319-45823-6 56
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With the introduction of computers to psychology laboratories, the task
changed to a trial-by-trial task. Vocal response time of participants was measured
in milliseconds. These single trial experiments enable experimenters to include
congruent trials (i.e., Green in green). As computer presentations mix all con-
ditions, participants are unable to predict the appearance congruent inputs and
cannot adopt a reading strategy for those inputs.

Research on goal directed behavior use not only the Stroop task but other
tasks also [2,5,12].

1.2 Neuroevolution

Neuroevolution is the subfield of evolutionary computation concerned with grow-
ing Artificial Neural Networks (ANNs) via artificial evolution. The field has
attracted much research effort. Stanly and Miikkulainen [13] created the NEAT
system for the explicit purpose of evolving complex networks from simple initial
networks. NEAT uses direct encoding where evolved genes relate to specific parts
of the network. HyperNEAT is a neuroevolution system created on the basis of
NEAT that uses indirect encoding and is widely used to evolve ANNs that per-
form various tasks [10,11,15]. HyperNEAT works by evolving Meta-networks
with NEAT, that in turn decide on edge weights in the ANN that is meant to
perform the task. Some neuroevolution systems take a cue from nature and use
a developmental scheme. For example, Kitano [9] presented a method of evolv-
ing grammars that generate ANN connectivity maps. Another example is Gruau
[4]. Gruau suggested the concept of Cellular Encoding (CE) where the individ-
ual neurons act as cells during the developmental process. In Gruau’s system
development of ANNs is dictated by the genome (a tree genome in [9]’s case. A
linear genome in ours). Many other implementations are presented in a review
by Floreano et al. [3]

1.3 The Current Work

In this work we present an evolutionary learning based approach to the study of
cognitive phenomena. We employ an EA on populations of randomly generated
ANNs in order to evolve networks that perform cognitive tasks. This allows
us to explore the specific conditions under which certain phenomena may occur.
Specifically, in the first phase of the project we wanted to create a neuroevolution
system that features natural qualities. Next, we attempted to generate a Stroop
effect. Specifically, we aimed to generate interference and facilitation and also
the asymmetry between word reading and color naming. That is, significant
interference and facilitation in color naming with small or null effects in word
reading.

2 Spatial Developmental Neuroevolution System

As suggested earlier, we designed our evolutionary system with an eye towards
nature. We cannot emulate all natural traits but we focused on three important
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traits which we integrated as design features. These important attributes of our
system are listed below:

1. ANN based: We chose neuroevolution because the artificial neuron is an
abstraction of the biological neuron. Though the two are by no means iden-
tical an ANN is similar to brain systems in being a decentralized computa-
tion system made of simple computation units that share some of the same
attributes.

2. Developmental: A gene in the individual’s genome does not map directly to a
specific simple element in the final network. Rather, it is seen as a command
that is to be performed by the developing network or a subset of its artificial
neurons, during the developmental process.

3. Spatial: Every artificial neuron in our system is located in some point in a
virtual space. Developmental steps are space related, placing, moving, and
connecting neurons to each other using spatial coordinates.

2.1 The Spatial ANN

The ANNs in our system consist of three distinct layers: An input layer, an
output layer, and a hidden layer. Each one of the layers exists in its own space
defined by the user. The user defines the number of dimensions each layer has
and the size of each dimension. The spaces contain a discrete grid of locations
where a neuron may reside (e.g. A 3D layer of size 3 × 4 × 5 contains exactly
3 × 4 × 5 = 60 possible neuron locations).

In the input and output layers every location contains an artificial neuron.
The hidden layer’s content depends on the individual’s genome. The genome
defines all hidden neurons as well as all network edges. The input values are
real numbers in the [−1,1] range (we typically use the extreme values −1 and 1
but the system supports using other values as well). Outputs are limited to the
[−1,1] range.

2.2 Genome Structure

Our encoding is based on a genome in the form of a linear array of genome
atoms (or genes). Each gene is a set of integers and real numbers denoted by

Table 1. Fields in the genome atom

Field name Field type

Read Mode Integer

New Read Mode Integer

Opcode Integer

Weight Real

Threshold Real

Location Offset Integer array
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field names. Table 1 presents the names of the fields. The last line shows the
Location offset array of fields. This is an integer array that signifies a location
offset in one of the network grids (the identity of which depends on the type of
gene being read). The length of the array is determined by the number of spatial
dimensions which the user controls using run parameters.

2.3 Run Parameters

The particulars of each run are controlled by the user with a series of run para-
meters. Evolutionary parameters control the evolutionary process, fitness para-
meters control the calculation of individual fitness, ANN parameters control the
basic attributes of the networks and encoding parameters control the genome’s
encoding rules into the ANN phenotype.

Evolutionary parameters include number of generations, population size,
crossover probability, mutation probability, type of selection and diversity main-
tenance parameters. Our system utilized single-point crossover variant that
allows genome size to change by up to 20 % in each crossover event. Mutation
is uniform (mutation probability is per gene and not per individual). When a
spot in the genome is chosen for mutation, one of two actions is performed each
with a probability of 0.5: Either the atom itself is randomly changed or a small
genome segment beginning with the chosen atom is copied to another random
location in the genome. Our system uses standard tournament selection. In the
experiments described in this work we use a tournament size of 4.

The diversity maintenance measure limits the number of individuals with
similar behavior profiles. An individual’s behavior profile is an array made of
all the output values its ANN gets for all the fitness tests (the values in the
behavior profile are rounded to values in {−1,0,1}). The distance ratio between
two behavior profiles is the number of locations where the profiles differ divided
by the length of the profiles. We say that two individuals are neighbors if the
distance ratio between their behavior profiles is lower than a value controlled
by the user (which we typically set at 0.3). Our diversity maintenance system
allows an individual to be selected only if the number of its neighbors already
selected is lower than a certain threshold (typically 30). We used this method to
encourage diversity not only in genome but also in behavior.

Fitness parameters include the test inputs used to calculate the fitness score
and the test inputs used to calculate the benchmark score. The two calculations
differ in that the fitness score calculates a much smoother function. When cal-
culating fitness the individual is rewarded slightly for every output neuron that
generates a correct output, as well as being given a bonus for the whole network
giving the correct answer. The benchmark score is only affected by whether the
network’s answer to the test input is correct or not. In both the fitness and the
benchmark score cases we normalize the scores to the [0,1000] range to make
them easier to assess.

ANN network size parameters include a limit on the number of hidden layer
neurons and of network links, which we set to 400 and 4000, respectively. Initial
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genome size is set to 80 (limited to a maximum of 150). The number of different
read codes is set to 31. The read codes determine which neuron reads which gene.

The read encoding scheme for i codes is based on a complete binary tree with
i nodes that are tagged in level order starting at 1. In order to decide whether
or not a given neuron reads a given gene the read codes of the neuron and the
gene have to match. Two read codes match if one is an ancestor of the other in
the tree.

2.4 Spatial Developmental Encoding

Our system supports multiple encoding schemes. There are several different types
of actions that a gene can cause. The probability of a gene encoding a certain
action is controlled by the user, who chooses how much weight to assign to each
of the possible gene types. Table 2 contains the encoding weights we chose for our
experiments below. We chose these values empirically and with use of common
sense.

Table 2. Different action types and their weights in our experiments. an action can
have a weight of 0 or higher assigned to it. An action assigned a weight of 0 is impossible
to encode with any gene. The probability that an action will be encoded by a randomly
generated gene is proportionate to the weight of that action.

Action name Weight Action description

New Node 10 Create a new neuron

Move 2 Move neuron

Connect 4 Connect neuron to another neuron

Connect output 4 Connect neuron to an output

Connect input 4 Connect an input to neuron

Connect all output 0 Connect neuron to all outputs

Connect all input 4 Connect all inputs to neuron

Mutate Threshold 2 Change neuron threshold and factor

Split 8 Split existing neuron, creating a new neuron next
to it

Power Split 4 Split existing neuron, creating a new neuron with
all the same connections

Sleep 4 Neuron sleeps, no longer performing actions

Awaken 4 Sleeping neuron wakes up, and resumes
performing actions

Die 2 Neuron dies and is removed from network

Of the actions described in Table 2 New Node stands out as working on the
entire network (by adding a neuron to it). All other actions are activated by
individual neurons for which the read encoding matches.
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3 The Problem Domains

In this research, we interpret our outputs in a way analogous to nature. The
human brain often makes decisions when a plurality of neurons signal together
rather than relying on just one neuron. In our experiments we followed this
principle. The domains explored in this work (i.e., reading words or naming
colors) are classification tasks where the ANN is expected to tell a number of
different classes apart (e.g., distinguishing between three colors; blue, red, green).
In these tasks, the output is a two dimensional 4 × 5 grid, and each one of the
4 rows stands for one of the possible classes (e.g., blue). Decision is made by
plurality rule, with the network choosing class i if and only if row i in the
output has more 1’s in it than any other row.

3.1 Color Perception

In the Color Perception task (or CP) the ANNs are required to identify the color
of an input. In this work we define the CP task to work with a 3-dimensional
input grid of size 4 × 5 × 5. We see the input as made up of 4 2-dimensional
grids: 3 colored “visual field” grids (red, green and blue) and 1 “task definition”
grid that is used to differentiate between color perception and Color Reading
tasks. In the CP task we expect the forth grid of the input to contain all −1’s.
The output is a 2-dimensional grid of size 4× 5 with a correct output being one
that contains a plurality of 1’s in the row representing the right answer. Our
convention is that the first row stands for red, the second stands for green, the
third stands for blue and the forth is reserved for future use for inputs that do
not have one dominant color. In Figs. 1 and 2 there are two examples of inputs
for the CP task. In these figures, and all other figures further on that show
examples of inputs, we assume that an empty square represents an input of −1
and a square containing a black circle represents an input of 1.

Fig. 1. Neutral CP input of × sign in
blue

Fig. 2. Congruent CP input of + sign
in red
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3.2 Color Reading

In the Color Reading task (or CR) the ANNs are required to read a colored
symbol in the input. The input and output dimensions are identical to the CP
task. In the CR task we expect the forth grid of the input to contain all 1’s. Our
convention for the output is similar to CR. We chose symbols to stand for the
three base colors. The + symbol stands for red, the sideways H stands for green
and the H stands for blue. In Figs. 2, 3 and 4 we see the symbols for red, green
and blue, respectively.

Fig. 3. Incongruent CR input of green
sign (the sideways H) in red

Fig. 4. Incongruent CR input of blue
sign (the H) in green

4 Experiments

We ran several experiments in the different tasks. Each experiment was designed
to check another phenomenon. In each experiment we ran the same simulation
100 times in order to get sufficient data. For some experiments we had to compare
two or more types of runs. In those cases each run type got its own set of
100 simulations. Each 100 simulation experiment set took at most about a day
(running on a laptop computer with Intel Core i7-4700MQ 2400 MHz 4-core
processor). In all the runs below we used an elitism rate of 0.02, a mutation rate
of 0.02 and a crossover rate of 0.8.

The runs generate a lot of data. For brevity we do not present all generated
data here. We will present data which we think is relevant to the experiments
presented.

4.1 Evolving Color Perception and Reading

First we attempted to evolve ANNs that perform each task separately. For
brevity’s sake we do not go into much detail as far as these runs are concerned.

To evolve ANNs for the CP task we used a population of 200 individuals,
running for 120 generations. In 81 out of 100 simulations the ANNs reached a
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perfect benchmark score on the CP task. To evolve ANNs for the CR task we
used a population of 500 individuals, running for 900 generations. Though only
7 of the simulations resulted in individuals that had a perfect benchmark score
on the CR task, they were not far off the mark. The best solution in a simulation
had a mean benchmark score of 909.0457 (σ = 80.3975).

4.2 Mixed

We used a population of 400 individuals, running for 400 generations. We cal-
culated the fitness score and the benchmark score using the 12 test inputs from
The CP Experiment and the 21 test inputs from the CR Experiment. After the
runs terminated, we checked the best individuals on congruent and incongruent
inputs separately in both tasks.

Looking at congruent inputs the best solution in a simulation had a mean
benchmark score of 949.999 (σ = 119.6258) in the CP task. Looking at incon-
gruent inputs the best solution in a simulation had a mean benchmark score of
801.6637 (σ = 173.5871) in the CP task. Looking at congruent inputs the best
solution in a simulation had a mean benchmark score of 893.3315 (σ = 176.5132)
in the CR task. Looking at incongruent inputs the best solution in a simulation
had a mean benchmark score of 446.6643 (σ = 149.5968) in the CR task.

We conducted one-way ANOVA on the 4 score types (F (3, 396) = 208.3780).
The difference between the congruent and incongruent is significant in the CP
task (p < 0.0001), and also in the CR task (p < 0.0001).

In both tasks there are no significant differences in other attributes of the
individuals, which is to be expected as the individuals being compared are taken
from the same population pools. These results show that interference does occur
in our system and that the congruent inputs are easier for our evolved networks.
However there is not clear directionality as in the Stroop case. Networks do
better on congruent inputs in both the CP and CR tasks.

4.3 Weighted

We attempted to generate directionality by weighting the fitness function. In this
experiment we used the same parameters as in the mixed experiment described
in Sect. 4.2 except for the fitness function, which was weighted to bias evolution
in favor of the CR task. Each fitness test-case from the CR test suite affected
the fitness result as if it appeared 30 times in the suite.

Looking at congruent inputs the best solution in a simulation had a mean
benchmark score of 749.9962 (σ = 219.0449) in the CP task. Looking at incon-
gruent inputs the best solution in a simulation had a mean benchmark score of
493.3311 (σ = 141.9752) in the CP task. Looking at congruent inputs the best
solution in a simulation had a mean benchmark score of 746.6633 (σ = 246.7312)
in the CR task. Looking at incongruent inputs the best solution in a simulation
had a mean benchmark score of 738.3301 (σ = 191.3615) in the CR task.

We conducted one-way ANOVA on the 4 score types (F (3, 396) = 38.2965).
The difference between the congruent and incongruent is significant in the CP
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task (p < 0.0001), but it is insignificant in the CR task (p = 0.9915). This
approach successfully creates the desired asymmetry that is an attribute of the
Stroop effect.

4.4 Phased and Weighted

In this experiment we added a phasing element to our simulations. We ran a
population of 400 for 150 generations evaluating fitness on both CP and CR
tests, using the weighted mixed test suite we used in Sect. 4.3, then we allowed
the population to evolve for 400 generations on CR inputs only, and then let it
evolve for 150 more generations the weighted mixed test suite.

Looking at congruent inputs the best solution in a simulation had a mean
benchmark score of 716.6629 (σ = 243.3185) in the CP task. Looking at incon-
gruent inputs the best solution in a simulation had a mean benchmark score of
458.3311 (σ = 142.8719) in the CP task. Looking at congruent inputs the best
solution in a simulation had a mean benchmark score of 819.9976 (σ = 234.1278)
in the CR task. Looking at incongruent inputs the best solution in a simulation
had a mean benchmark score of 794.9971 (σ = 186.3103) in the CR task.

We conducted one-way ANOVA on the 4 score types (F (3, 396) = 64.7027).
Again the difference between the congruent and incongruent is significant in the
CP task (p < 0.0001), while it is insignificant in the CR task (p = 0.8256). This
approach also creates an asymmetry effect similar to Stroop, and also results
in a higher score on the CR task (however, this difference is not statistically
significant).

4.5 Neutral CP Input

Among our 12 inputs for the CP task there are 3 X shaped inputs that are neither
congruent nor incongruent. These are considered Neutral inputs (see Fig. 1 for
an example of a neutral CP input).

In the experiments we ran in which a Stroop like effect appeared the results
on neutral CP inputs fell somewhere in between the congruent and incongruent
scores. In the weighted fitness experiment the best solution in a simulation had
a mean benchmark score of 596.6617 (σ = 202.648) on neutral inputs. In the
phased weighted fitness experiment the best solution in a simulation had a mean
benchmark score of 569.9951 (σ = 202.6477) on neutral inputs. In light of these
results we can say that our experiments are Stroop like also in the classical
sense using neutral inputs. On the other hand this is also where our results
differ somewhat from the Stroop effect as it appears in humans (the difference
in performance between congruent and neutral tests is small to negligible).

5 Concluding Remarks

Our system employs various measures to make the developmental process more
like natural development.
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We presented a new developmental spatial neuroevolution system for cogni-
tive science research and used it to explore the Stroop effect and evolve ANNs
that show some Stroop like behaviors. We successfully replicated, in our evolved
networks, the phenomenon of interference due to conflict between the two tasks.
We also succeeded in establishing that this conflict can be directional, by biasing
the fitness function in favor of the reading task.

There is still much to be done and we want to explore these issues further
and also expand our system and look into some new areas. Listed below are
some avenues for future research which we believe are promising and we plan to
pursue:

– We plan to examine numerical cognition, checking to see if using simple tasks
as an evolutionary stepping stone improve the evolution of counting ability.
We plan to follow up on work by Katz et al. [8] and Cantlon et al. [1] that
suggests counting ability may have evolved from a simpler cognitive system
for size perception.

– We plan to expand our inquiry into the evolutionary dynamics of evolving
ANNs to perform cognitive tasks. Specifically we are interested in the effects
of changing task and environment in mid run on the resulting population.
Some of these effects have been demonstrated in the past in several simple
domains [6,7].

– We plan to explore the Stroop effect and other similar effects such as Numerical
Stroop and the Simon Effect.

Our system itself is still a work in progress, more functionality is needed
in order to make it more flexible so it can cover more complex behavior. An
obvious extension would be to allow for the evolution of recurrent networks that
can handle domains with multiple instances that require the network to react
according to new input as well as its own output (such as navigation tasks, and
tasks that require networks to have memory capabilities).

Acknowledgments. The research leading to these results has received funding from
the European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013)/ERC Grant agreement number 295644.
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Abstract. Random number generators (RNGs) play an important role
in many real-world applications. Besides true hardware RNGs, one
important class are deterministic random number generators. Such gen-
erators do not possess the unpredictability of true RNGs, but still have
a widespread usage. For a deterministic RNG to be used in cryptogra-
phy, it needs to fulfill a number of conditions related to the speed, the
security, and the ease of implementation. In this paper, we investigate
how to evolve deterministic RNGs with Cartesian Genetic Programming.
Our results show that such evolved generators easily pass all randomness
tests and are extremely fast/small in hardware.

Keywords: Random number generators · Pseudorandomness ·
Cryptography · Cartesian Genetic Programming · Statistical tests

1 Introduction

Random number generators are used in a range of applications spanning from
producing simple values and adding randomness to programs, over online betting
to various cryptographic applications. Accordingly, they are important compo-
nents in many real world scenarios. In cryptographic applications one relies on
a source of randomness that can produce truly random numbers when generat-
ing seeds, nonces, initialization vectors (IVs), etc. However, for many of today’s
applications like generating masks or padding messages, true randomness is not
needed, only statistical quality is required [1]. There, it is sufficient to use PRNGs
that produce good results and yet are realized with deterministic methods.
One example is the Blum Blum Shub generator [2] that produces numbers that
are indistinguishable from true random numbers by means of standard statistical
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testing. This example shows that it is possible to obtain numbers of a sufficient
statistical quality with a deterministic method.

In this paper, we investigate the efficiency of Cartesian Genetic Programming
(CGP) when evolving deterministic PRNGs. In order to do so, we present a new
framework capable of generating many PRNGS that pass statistical tests and
are fast and small when implemented in hardware.

Motivation and Contributions. One real-world application of PRNGs in
cryptography is to use them for masking [3] as a countermeasure against side
channel attacks. When used for such a purpose, we want those generators to be
extremely fast and small when implemented in hardware. To obtain a generator
with such characteristics, we cannot use “expensive” operations like multiplica-
tion or addition.

Therefore, in this paper we evolve PRNGs that pass all statistical tests and
use only cheap operations, which is also an important difference between our
approach and related work, since there multiplication and addition operations
appear without constraints [4,5]. We emphasize that if we can use the multipli-
cation operation, then there exist much smaller PRNGs than those presented
in related work and it is a trivial task to design a PRNG that passes all sta-
tistical tests. Next, we consider some of the fitness functions that are used in
related work actually inappropriate since they do not mimic the inner working
of a PRNG. Therefore, in this paper we use a fitness function that we believe
describes the PRNG behavior better. Finally, we are the first to apply CGP
to this problem, since that paradigm is the most natural for PRNG structures
because of its multiple input – multiple output configuration.

In Sect. 2, we give the necessary introduction to random numbers, PRNGs,
and testing methods. Then, in Sect. 3, we give an overview of related work. In
Sect. 4, we discuss the model of the PRNG we design and the obtained results.
Section 5 offers a short discussion on the results, their applicability and some
possible future research avenues. Finally, Sect. 6 offers a short conclusion.

2 (Pseudo) Random Number Generators

In this paper, we follow the terminology as given in the AIS 20/31 proposals [6].
An ideal random number generator is a mathematical construct that gen-
erates sequences of independent and uniformly distributed random numbers. A
random number generator (RNG) is any group of components or an algo-
rithm that outputs sequences of discrete values. RNGs can be divided into true
random number generators and pseudorandom number generators.

A true random number generator (TRNG) is a device for which the out-
put values depend on some unpredictable source that produces entropy. Pseudo-
random number generators (PRNGs) or deterministic random number
generators (DRNGs) represent mechanisms that produce random numbers by
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performing a deterministic algorithm on a randomly selected seed. Crypto-
graphically secure pseudorandom number generators are PRNGs with
properties suitable for use in cryptography.

A seed is a random value used to initialize the internal state of the generator.
A state is an instantiation of a random number generator. Note that PRNGs
can accept additional input data besides the seed value. In Fig. 1, we give a
model of a PRNG.

Fig. 1. Model of a PRNG.

In the rectangular A, we depict the input value for the generator (seed) and
the PRNG (some function ϕ) and in the rectangular B the one-way function (H)
with the RNG output. Here, ψ is the output function, ϕ is the state transition
function, and xn+1 = ϕ(xn). In this work, we concentrate only on part A and
we assume that the one-way function H does not exist. This diagram conforms
to the model called DRNG.2 [6], but we note that here we are not interested
in forward and backward secrecy requirements. Forward and backward secrecy
ensure that it will not be possible to determine the successor and predecessor
values from a known subsequence of output values.

2.1 Testing Randomness

The quality of PRNGs is evaluated using statistical tests which follow the same
procedure as any other hypothesis testing. The hypothesis under test is that the
PRNG produces a perfectly random output. Tests are applied on the output
bit sequences. Each test defines a metric called the test statistic which can be
computed from the sequence under test. A simple example of the test statistic
is the bias of the sequence defined as:

ε =

∣∣∣∣∣
Nones

Nones + Nzeroes
− 0.5

∣∣∣∣∣
, (1)

with Nones the number of ones and Nzeros the number of zeros in the sequence.
The next step is to compute the Pvalue which is the probability that an ideal
RNG produces a sequence which is more extreme with respect to the defined
metric than the sequence under test. For example, if the sequence under test
contains 70 zeros and 30 ones, then the Pvalue is equal to the probability that an
ideal RNG produces a 100-bit sequence with bias higher than 0.2. The final step
is comparing the Pvalue with the predetermined constant, for example α = 0.01.
If the Pvalue is higher than the cut-off value α, than the sequence passes the test,
otherwise it fails.
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Each statistical test checks for a different statistical defect, therefore more
extensive testing results in a more reliable outcome. Several batteries of statis-
tical tests have been proposed, where the most famous ones are the NIST [7]
and DIEHARD [8] test suites. In general, the tests applied on longer sequences
are more likely to detect statistical weaknesses. In this work, we use the NIST
battery of 15 tests applied on sequences of 106 bits. Statistical tests can produce
both false-positive and false-negative errors. The probability of a false-positive
error (truly random sequence fails the test) is equal to the chosen parameter α.
Here, we use the value α = 0.01 as recommended by the NIST standard [7].

3 Related Work

John Koza used genetic programming (GP) to evolve programs that output ran-
dom numbers [9]. As a fitness function he used the notion of information entropy
as defined by Shannon and the end result was a program that was able to accept
a sequence of consecutive integer values and transform it into random binary dig-
its. Hernandez, Seznec, and Isasi used GP to evolve random number generators
where they used the strict avalanche criterion (SAC) as a fitness function [10].
Martinez et al. designed a pseudorandom number generator suitable for crypto-
graphic usage by means of GP [4]. The obtained generator – Lamar was tested
with a number of tests where the input values were obtained via a counter func-
tion. We consider this work the most serious attempt on evolving PRNGs for
cryptographic usage although in our opinion this work has some potential draw-
backs since it does not follow the structure a PRNG should have as discussed
in Sect 5. Lopez et al. focused on the evolution of PRNGs that could be used
in low cost RFID tags [5]. They followed an approach similar to previous work
where the fitness function was based on the notion of the SAC and the testing
on values obtained via a counter function.

4 The Proposed Model of a PRNG and Results

As a design choice, we decided to work with PRNGs that have four input termi-
nals. Each terminal is represented with a 32-bit unsigned integer variable. This
means that the state of our generator has 128 bits. Since we assume that the
input and output sizes of the variables are of the same size, it means that our
PRNG should output 128 bits of random data in every iteration.

We use the function set (inner nodes) that consists of binary Boolean primi-
tives: rotate right/left for one position (RR/RL), shift right/left for one position
(SR/SL), AND, NOT, XOR, and P(x). The function P(x) is a basic perfect outer
shuffle where the bits are interleaved into two halves of a word and the outer
(end) bits remain in the outer positions [11]. Note that the hardware implemen-
tations of RR, RL, SR, SL, and P consist only of rearranging the signal wires and
therefore come without the cost of additional logic gates. Such an architecture
is suitable for both hardware and software implementations because it utilizes
a simple FIFO buffer. To handle the cases where the input value to a PRNG is
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all zeros or all ones, we use one constant that we select randomly and it equals
4E2D93A616. Although we work with generators that have four variables and a
128-bit state, we note that we could have chosen any number of variables and
any variable size that is available in ANSI C (for the results to be platform
independent).

4.1 Cartesian Genetic Programming Approach

In Cartesian Genetic Programming (CGP) a program is represented as an
indexed graph. The terminal set (inputs) and node outputs are numbered sequen-
tially. Node functions are also numbered separately. CGP has three parameters
that are chosen by the user; number of rows nr, number of columns nc, and
levels-back l [12]. In our experiments, for the number of rows we use a value of
one and for the levels-back parameter we use the same value as for the number
of columns. The number of node input connections nn is two, the number of
node output connections no is one, and the population size equals five in all our
experiments. To obtain 128 bits of random values we set the number of output
nodes to 4, so we need only one iteration to obtain the full generator state. For
the CGP individual selection, we use a (1 + 4)-ES strategy in which offspring are
favored over parents when they have a fitness less than or equal to the fitness of
the parent. The mutation type is probabilistic.

To evaluate the performance of the evolved PRNGs, we use the following
procedure. In every generation we randomly create four 32-bit input values and
assign them to the terminal set. Next, we run the PRNG with those input values
and we obtain output values (which we informally call “initial output”). Then,
we check how a small change at the input propagates to the output. To do so,
we XOR the original input values with all vectors of 128 bits and Hamming
weight equal to one. For each of those modified input values, we again run the
PRNG and save the output values (called “modified outputs”). Then, we do a
pairwise XOR between the “initial output” and the “modified output” values
and we send the result to the Test function (see Eq. (2)).

The goal of this part of the evaluation process is to check the impact of a
single bit change. One way to do this is by checking the avalanche criterion (AC),
which indicates how many output bits change when a single input bit changes.
The ideal generator would have on average 50 % of output bits changed for every
input bit change. It is possible to enforce an even stricter criterion – SAC, where
the demand is that exactly 50 % of output bits are changed for every input bit
change. However, SAC does not necessarily imply better statistical quality. It is
possible to construct a simple array of XOR gates which satisfies the SAC and
yet has very poor performance as a PRNG. Instead, we choose to evaluate the
entropy of the change caused by a single input bit flip.

We developed a test function based on the NIST approximate entropy test [7].
This choice was guided by two facts. First, the statistic of this test is the function
that always results in a value between 0 and 1, with a higher value corresponding
to better randomness. This is very suitable for computing the fitness function.
Second, the approximate entropy test is applicable to very short bit sequences.
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Note that when computing the fitness function we apply the test function on
sequences of 128 bits.

The approximate entropy test uses the estimation of the entropy-per-bit as
the test statistic. First, the relative frequencies of all 4-bit and 3-bit patterns are
estimated. Based on these frequencies, the entropy is estimated as:

Test(output value) =
∑

i(m=3)

νi
n

log
νi
n

−
∑

i(m=4)

νi
n

log
νi
n

, (2)

where νi is the number of occurrences of each bit pattern and n is the length of
the sequence. Since the higher the value of the Test function the better, we aim
to maximize the fitness value, where the maximal result equals 128 (scoring 1
on all 128 tests).

Finally, to check how a generator deals with the all-zeros and all-ones input
vector, we run it for those values and the result is again sent to the Test func-
tion (now there are no pairs of output values to XOR before invoking the Test
function). Finally, the resulting fitness function equals:

fitness =
130∑

1

Test(output value) − missing ∗ 130, (3)

where output value is either an XOR between two output values (as is the case
for the first 128 tests) or is a single output value (as is the case for the all-
zeros and all-ones input vectors). The variable missing represents the number
of missing terminals in the generator. The parameter 130 is selected so to enforce
that every solution that is missing a terminal is worse than any correct solution
(i.e. with all terminals).

Finally, we run our evaluation procedure for n “rounds”. The round process
is very simple and it just repeats the whole procedure described above, but
instead of randomly selecting input variables for every round, we use the out-
put variables from the previous round. By this technique we aim to mimic the
mechanism of a PRNG since there the input of iteration t+1 is the output from
the iteration t. When using a mechanism with multiple rounds, the cumulative
fitness equals the smallest fitness value over all rounds. With this criterion, we
ensure that the generator behaves at least as good as for the worst evaluation
round. Indeed, when we work with only one round, it is hard to predict how the
generator behaves when it takes the previously generated values as an input.
We experimented with several round number values, but we did not observe any
improvement when the number of rounds is greater than two. Consequently, in
all our experiments we use two rounds.

4.2 Experimental Results

As one of our goals is to evolve generators that are as small and fast as possible
in hardware, that intuitively means we want to restrict the size of the graph we
have. Therefore, here we investigate what is the necessary population size and
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graph size to evolve PRNGs that pass statistical tests. In all the experiments
we set the termination criterion to 20 000 generations. We emphasize that our
experiments showed that it is already possible to evolve good PRNGs with a
significantly lower number of generations.

The results in Table 1 show the obtained mean fitness values of the best indi-
viduals out of 30 runs for every combination of parameters. However, although
the average value can help us to deduce which parameter combination works the
best, it can also be misleading. Therefore, we additionally give the best obtained
values for every combination of parameters.

Table 1. Average/max results for CGP.

Genotype/pm 1 4 7 10

15 60.8925/74.8561 66.8327/73.576 69.4915/77.7739 69.284/73.6348

30 74.2445/80.5798 72.8384/80.4259 72.5254/76.4385 71.0447/77.7706

50 72.0271/75.471 74.8202/81.6425 76.9252/82.7421 75.1236/80.4513

100 70.9798/76.7845 76.7837/82.3453 78.4326/83.7166 76.057/84.7544

200 74.7316/82.4207 77.4329/83.157 79.2718/84.6614 78.9486/82.1012

500 75.3872/82.5726 80.1348/84.3552 80.0269/83.7311 80.3652/83.4072

1 000 78.3797/83.895 79.9121/84.458 80.6124/84.1686 79.1203/83.0524

On the basis of the results, we select a genotype size equal to 100 and a
mutation probability of 10 % as the best performing parameters.

4.3 Evaluation of the Results

After we obtain the results from CGP, we need to test whether they actually pass
the statistical tests. In order to do so, we first use a parser that takes as an input
the CGP encoding of a solution and produces a C source code as given below.
Note that this example of PRNG passes all statistical test, but otherwise we do
not impose any other criterion in the choice of PRNG (i.e. we did not select it on
the basis of the size or specific operations). Here, uint represents the unsigned
int variable type and const is the value we chose as a constant (4E2D93A616).
It is important to note that the full set of NIST statistical tests are applied only
in this phase, and not during the evolution since they are relatively slow.
void CGP ( uint x0 , u int x1 , u int x2 , u int x3 , u int ∗z0 , u int ∗z1 , u int ∗z2 , u int ∗z3 )

{ uint y4 = x0 & x1 ; u int y5 = x2 ˆ x3 ; u int y6 = ( y5 >> 1) | ( y5 << 31 ) ;

u int y7 = p1 ( y6 ) ; u int y8 = x3 ˆ y7 ; u int y9 = p1 ( y8 ) ; u int y10 = y6 ˆ y9 ;

u int y11 = ( y9 << 1) | ( y9 >> 31 ) ; u int y12 = const ; u int y13 = p1 ( y10 ) ;

u int y14 = y12 ˆ y11 ; u int y15 = y12 ˆ y13 ;

u int y16 = ( y15 >> 1) | ( y15 << 31 ) ; u int y17 = y10 ˆ y16 ;

u int y18 = p1 ( y17 ) ; u int y19 = y18 >> 1 ; u int y20 = y18 ˆ y4 ;

u int y21 = p1 ( y20 ) ; u int y22 = y18 ˆ y21 ; u int y23 = p1 ( y18 ) ;

u int y24 = y19 ˆ y18 ; u int y25 = y23 ˆ y19 ; u int y26 = y22 ˆ y14 ;

∗z0 = y18 ; ∗z1 = y25 ; ∗z2 = y26 ; ∗z3 = y24 ; }

The source code is then automatically run until it outputs a string of bits of
length n, with n equal to 1 000 000. That string serves as an input for the NIST
statistical test suite [7]. Only if a generator passes all the tests, we consider it
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good enough to be used in practice. Our results showed that on average 80 % of
evolved PRNGs pass statistical tests.

Finally, we implemented our CGP example solution and Lamar in Verilog
HDL and then we compared them with the Mersenne Twister generator which
is a widely used general-purpose PRNG [13]. These algorithms were synthesized
using Xilinx ISE14.7 on a Virtex4 xc4vfx100-10ff1152 to draw a fair comparison
with the reference implementation of the Mersenne Twister. The implementa-
tion result is given in Table 2. With the utilization of 188 slices, our algorithm
achieves a maximum working frequency of 286 MHz. The Lamar can reach a
working frequency of 43 MHz with 645 slices. Designs can be parallelized to
obtain a higher throughput. Therefore we use throughput per slice as the metric
for implementation efficiency. As shown in the table, given the same footprint
on FPGA, our CGP implementation could be 90 times faster than the Lamar
and 3 times faster than the Mersenne Twister design [13].

Table 2. Comparison of the hardware implementation results

Slices LUTs/FFs/BRAMs Throughput/slice

CGP 188 317/128/0 195Mbps/slice

Lamar [4] 645 1045/238/0 2.16Mbps/slice

Mersenne twister [13] 128 213/193/4 65.7Mbps/slice

5 Discussion and Future Work

If comparing our approach with the one followed for the Lamar PRNG [4], we
see there is a number of important differences. In Lamar, the authors run inde-
pendent tests (rounds) for a number of times (usually repeated 16 384 times
with an explanation that it is experimentally proven to be enough). Our first
objection is that the number of repetitions is an additional parameter one needs
to tune and there is no background knowledge one can use. Second, since they
use independent input values to create new output values, this does not mimic
the working of a PRNG, but rather resembles the procedure one would use when
testing a number of Boolean functions. Although this does not necessarily lead
to bad results, we find it potentially problematic since in general we do not aim
to evolve PRNGs that output an extremely short sequence before needed to
be reseeded with a new value. Next, Lamar uses operations like addition and
multiplication that we believe are not suitable for small and fast PRNGs to be
implemented in hardware. Besides those operations, there are also rotations and
shift operations where the number of shift positions is huge and therefore results
in zero values for shift operations and a number of unnecessary rotations in rota-
tion operations. Considering the hardware implementation on both ASIC and
FPGA, the fixed point multiplier usually has a larger footprint than other logi-
cal functions and elementary arithmetic functions, as addition and subtraction.
The on-chip DSP slices on FPGAs can be used to implement the multiplication
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without occupying reconfigurable fabric. However, the number of these dedicated
DSPs is relatively small.

Finally, the authors of Lamar consider using it as a stream cipher [1], which
we believe is unrealistic. Since it is not possible to automatically test all the
properties a stream cipher should have (since it would mean a fully automatic
cryptanalysis, which is not possible) it is also not possible to write an appropri-
ate fitness function. Therefore, although we do not categorically claim it is not
possible to successfully evolve a stream cipher, we state that such a cipher would
be good by accident since we cannot evolve it specifically for that purpose.

In future work, we plan to work with a variable number of rounds, where
in the beginning we would use a smaller number of rounds and as the evolu-
tion progresses we would increase the number of rounds to increase the selection
pressure and ensure our PRNGs have higher chances passing a posteriori testing.
Next, we could use longer sequences as inputs for the fitness function since then
the fitness function will be able to better discriminate PRNGs and consequently,
the success rate of PRNGs after the statistical tests will be higher. To obtain
such longer sequences, we could use a concatenation of results for several rounds.
Additionally, recall Fig. 1 where we said that in this paper we disregard the rec-
tangular B that includes the one-way function. The simplest solution in adding
a one-way function would be to simply combine several bits of the output string
via an XOR function. If one decides to go with the EC approach, then he could
evolve one or more Boolean functions with high nonlinearity [14].

We believe more experiments are necessary to determine the limits of the
evolutionary approach. Since we aim to find generators that not only pass all
the statistical tests, but are also fast and small when implemented in hardware,
we could improve the fitness function in an effort to reduce the number of nodes
in CGP. Finally, we propose a setting where we believe that the evolutionary
approach would display its full benefits. Consider an FPGA board that also has
an ARM processor (e.g. Zynq). Then one can put on the ARM the CGP that
evolves PRNGs. Such evolved PRNGs can be sent to the FPGA to be partially
reconfigured. Therefore, with this approach we would effectively use evolvable
hardware [15] to increase the security of a system.

6 Conclusions

In this paper, we address the issue of evolving pseudorandom number generators
that are suitable for cryptography. The results obtained show that CGP can be
used as a viable choice to evolve PRNGs. To define a real-world application
for such generators, we discuss the limitations of PRNGs and where they could
be used and consequently what properties they need to have. Furthermore, we
present a fitness function that in our opinion ensures better results than those
used before. We emphasize that we aimed to evolve PRNGs that are extremely
small and fast in hardware and therefore do not rely on expensive operations
like multiplication or addition.
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Abstract. Cognitive agents are able to perform categorical perception
through physical interaction (active categorical perception; ACP), or pas-
sively at a distance (distal categorical perception; DCP). It is possible
that the former scaffolds the learning of the latter. However, it is unclear
whether ACP indeed scaffolds DCP in humans and animals, nor how
a robot could be trained to likewise learn DCP from ACP. Here we
demonstrate a method for doing so which involves uncertainty: robots
are trained to perform ACP when uncertain and DCP when certain.
We found evidence in these trials that suggests such scaffolding may be
occurring: Early during training, robots moved objects to reduce uncer-
tainty as to their class (ACP), but later in training, robots exhibited less
action and less class uncertainty (DCP). Furthermore, we demonstrate
that robots trained in such a manner are more competent at categorizing
novel objects than robots trained to categorize in other ways.

Keywords: Uncertainty · Active categorical perception · Robotics

1 Introduction

The embodied approach to cognitive science holds that the body is a necessary
component for the acquisition of adaptive—and, ultimately, cognitive—behavior
[3,7]. Since the establishment of this approach, much work has been dedicated
to investigating how the body can do so [8], and quantifying its contribution
[4,6]. A common approach for doing so is to employ robots, in which all aspects
of their morphology, control structure, and task environment can be observed
and experimentally modified.

A common skill investigated from an embodied perspective is categorical per-
ception: how an agent makes use of its body to generate the requisite stimuli to
learn appropriate categories. Initially, Beer evolved minimally cognitive agents
to achieve this ‘active’ form of categorical perception (ACP) [1]: the agents inter-
acted with their environment in a way that reduces intracategorical differences
and magnifies intercategorical ones. Subsequent studies explored this phenom-
enon using more complex robot morphologies [2,11,12]; those robots physically
manipulated the objects to be categorized. However, sophisticated cognitive
agents typically employ distal categorical perception (DCP)—categorizing an
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 623–632, 2016.
DOI: 10.1007/978-3-319-45823-6 58
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Fig. 1. Evolved behavior for a robot that interacts with its environment when uncer-
tain to perform categorical perception. Time is tracked through panels A through D.
Movement of the arm is tracked in box e. Movement of the object is tracked in box f.

object by sight and/or sound from a distance—as it has obvious advantages over
ACP, such as rapidity, avoidance of potentially dangerous contact, and success
even when physical contact is not possible. This raises questions regarding how
animals learn (and how robots should learn) DCP, ACP, and how and when to
switch between them. One hypothesis is that ACP scaffolds the learning of DCP:
interactions with objects can structure perception in such a way as to facilitate
learning of non-embodied skills [5].

The question remains however as to the conditions under which ACP or DCP
should be employed. We hypothesize that such switching should be modulated
by uncertainty: unfamiliar stimuli should trigger internal uncertainty, which in
turn should trigger appropriate action resulting in ACP, which, finally, provides
scaffolding for the learning of DCP when next presented with this object. Over a
lifetime, this should result in an agent that exhibits more instances of DCP and
fewer of ACP. Here, we demonstrate the usefulness of this particular mechanism
by training simulated robots to perform ACP when uncertain and DCP when
certain. We show that, when exposed to novel stimuli, these robots categorize
better than robots trained to categorize in other ways.

2 Methods

We conducted a series of experiments in which a simulated yet embodied robot
attempts to categorize objects in its environment (Fig. 1). It is embodied in the
sense that, despite its virtual surroundings, actions it performs can impact the
environment, and the agent immediately detects the sensory repercussions of
those effects. An evolutionary algorithm was used to train the robot to perform
ACP, DCP, or a combination of the two when exposed to a number of environ-
ments. The robot’s task was to correctly categorize large objects as large, and
small objects as small. When training concludes, the best robot’s categorization
abilities were tested by exposing it to novel environments, and its categorization
error in those novel situations was measured.
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Fig. 2. (a) The robot body is constructed from two arms. The upper limbs are attached
to a central body. The limbs are attached to each other and the body with four motor-
ized joint, each containing an angle sensor. Thin lines represent line of sight for sensing
distance. The robot can be exposed to any one of 14 objects, which are placed either in
the line of sight or ‘blind’ to the robot. Objects are either large (large circles) or small
(small circles). (b) The controller of the robot is instantiated as an artificial neural
network. The input layer is made up of four proprioceptive neurons (P), four vision
neurons (V) and a bias neuron (B). Hidden layer consists of 4 recurrent hidden neurons
(H). Output layer: four motor neurons (M) and four guess neurons (G)

The Robot Body. The robot’s body was constructed from four equal length
cylinders and a small central body constructed from a rectangular solid. The
arms adjacent to the main body are connected by supporting motorized joints
to it, as are the forearms connected to the upper arms (Fig. 2a). There are a total
of four motorized joints, yielding four mechanical degrees of freedom. Each of the
motorized joints enabled the connected objects to rotate relative to one another
through the robot’s coronal plane, which, given its morphology, corresponds to
the horizontal plane. This results in the arms flexing in horizontally toward the
main body and extending outward from the main body, also horizontally. The
arms were placed at a particular height so that they do not end up breaking the
visual beams emanating from the robot (black and gray lines in Fig. 1).

The Robot Controller. The controller of the robot is instantiated as a
partially-recurrent artificial neural network. There are three layers that make
up the neural network: the input layer, a hidden layer, and an output layer
(Fig. 2b). The input layer consists of two types of sensory neurons: vision neu-
rons (V ) and proprioceptive neurons (P ). At each time step during which a robot
is simulated, the angles of the four motorized joints are computed, normalized
to real values in the range [−1,+1], and supplied to the four proprioceptive
neurons. Likewise, four beams are sent out from the main body such that they
span the range [−60o,+60o] in front of the robot. The angles between each pair
of neighboring beams was set to 40o. While the robot may move its arms, it
cannot move the visual beams. However, the beams may be broken by coming
into contact with an external object. The length of each beam at each time step
is computed and scaled to a real value in [0, 1] such that zero indicates the beam
is unbroken, while one indicates that an object is in contact with the base of
the beam. The hidden layer consists of four fully recurrent hidden neurons (H):
each hidden neuron receives input from each of the sensors (in addition to a
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fixed-output bias neuron B) as well as values from the other hidden neurons,
including itself. The new value of the ith hidden neuron hi is computed as

hi = tanh((
4∑

j=1

sjwji) + wbi + (
4∑

k=1

hkwki)) (1)

where sj is the value of the jth sensor neuron, wji is the weight of the synapse
connecting the jth sensor neuron to the ith hidden neuron (wji ∈ [−1,+1]),
wbi is the weight of the synapse connecting the bias neuron (value clamped to
one) to the ith hidden neuron, hk is the value of the kth hidden neuron, wki is
the weight of the synapse connecting the kth hidden neuron to the ith hidden
neuron, and tanh(x) brings the hidden neuron values back into the range [−1, 1].

The output layer is comprised of two different types of neurons: motor neu-
rons (M) and guess neurons (G). The value of the ith output neuron is computed
at each time step using oi = tanh(

∑4
j=1 hjwji) regardless of whether it is a motor

or guess neuron. The value of each of the four motor neurons is scaled to the
range [−45o,+45o] and then supplied, as a desired angle, to each of the four
joints. A proportional-derivative (PD) controller is effected by supplying torque
to the joint proportional to the difference between the current angle and the
desired angle. The outputs arriving at the guess neurons are employed by the
robot to perform categorical perception and are described in more detail below.

The Task Environment. When evaluated, a robot is equipped with a neural
network labeled with a particular set of synaptic weights as described above.
The robot is then exposed to one of 14 environments as shown in Fig. 2. There
are seven possible positions. At each location a cylinder with a large or small
radius may appear. Objects are placed in such a way that they are either initially
unseen by the robot or in its direct line of sight.

The Evolutionary Algorithm. An evolutionary algorithm was used to train
neural networks in the robot as described above. For each evolutionary trial,
seven environments from the total set of 14 were chosen as random and fixed
as the training set for that trial. In a different evolutionary trial, seven different
environments may be chosen. At the outset of the trial, an initial population of 20
random neural networks were created. Each of these neural networks contained
random synaptic weights drawn from [−1,+1] with a uniform distribution. Each
neural network was then evaluated on the robot seven times, in the seven envi-
ronments chosen for that trial. During each of these seven evaluation periods, the
robot was allowed to move for 25 time steps in the simulator. This population of
neural networks was then evolved for 100 generations using a common evolution-
ary algorithm that balances increasing fitness over time while also maintaining
genetic diversity in the population [9]. When the 100 generations complete, the
ANN with highest fitness in the population is re-evaluated on the robot seven
times, in the seven novel environments that were unseen during evolution.

The Fitness Functions. The robots in this experiment were evaluated against
four different fitness functions, leading to four experimental conditions. In the
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first condition, robots were evolved simply to categorize correctly (C). In the sec-
ond condition they were evolved to categorize correctly while minimizing move-
ment (CnM). In the third condition they were evolved to categorize correctly
while maximizing movement (CM). In the fourth and final condition they were
evolved to categorize correctly, and to do so by moving when uncertain about the
object’s category and remaining still when certain about the object’s category.
This condition was referred to as CR, as the robot should establish a correla-
tion (R) between movement and uncertainty. Fifteen independent evolutionary
trials, each starting with a different randomly chosen set of seven objects and 20
random ANNs, were performed for each of the four conditions, yielding a total
of 60 independent trials.

The fitness functions for these conditions were constructed from combinations
of the following terms

C =
T∑

t=1

E∑

e=1

G∑

i=1

(g(t)ei − se)2/TEG (2)

K =
T∑

t=1

E∑

e=1

M∑

m=1

|(a(t)
em − a(t−1)

em )|/TEM (3)

R =
E∑

e=1

Corr(Ge,me)/E (4)

Ge = [σ(g(2)
e ), σ(g(3)

e ), . . . , σ(g(25)
e )] (5)

me = [
M∑

m=1

|a(2)
em − a(1)

em|, . . . ,
M∑

m=1

|a(25)
em − a(24)

em |] (6)

where

– C denotes how well a given neural network categorizes, averaged over all T =
25 time steps, E = 7 training objects, and G = 4 guess neurons (C = 0
indicates perfect categorization and C = 1 the worst possible categorization);

– K denotes the average amount of motion over all T time steps, E training
environments, and M = 4 motors;

– R denotes the amount of correlation (Corr) between uncertainty (Ge) and
amount of movement (me), averaged over all E environments (R = 1 indicates
the robot moves maximally when uncertain and minimally when certain);

– Ge represents a vector containing the uncertainties of the ANN when exposed
to the eth environment, at each time step of the exposure (with the exception
of the first time step);

– me represents a vector containing the amount that the robot moved when
exposed to the eth environment, at each time step of the exposure (with the
exception of the first time step);

– g
(t)
ei represents the output of the ith guess neuron during the tth time step of

exposure to the oth object;
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– se represents the size of the object in the eth environment (small object=-0.5,
large object=+0.5);

– a
(t)
em represents the angle of the mth motorized joint during the tth time step

of exposure to the eth environment; and
– g

(t)
e represents a vector containing the values of the four guess neurons gen-

erated during the tth time step when exposed to the eth environment, and
σ(g(2)

e ) represents the variance within that vector.

Condition C: In the first condition, robots were only evolved to categorize,
regardless of the amount or type of movement they employed to do so. This was
accomplished by evolving robots that maximized the fitness function

FC = 1/(1 + C). (7)

Condition CnM : In the second condition, DCP was explicitly favored by evolv-
ing robots that successfully categorize while also minimizing movement:

FCnM = (
1

1 + C
)(

1
1 + K

). (8)

Condition CM : In this third condition, ACP was explicitly favored by evolving
robots to successfully categorize while maximizing movement:

FCM = K/(1 + C). (9)

Condition CR: Finally, robots were evolved in the fourth condition to employ
DCP when uncertain as to the object’s size and to employ ACP when they were
certain. This was accomplished using

FCR = R/(1 + C). (10)

Prediction Variance and Uncertainty. Here, we employ the variance among
the values of the guess neurons to denote a controller’s uncertainty about the
current object’s category. In the machine learning literature, prediction variance
is often employed as a proxy for uncertainty [10]. This is because, as long as
individual units in a predictive model (here, the guess neurons) are independent,
they are likely only to converge on the same prediction when that prediction is
correct. This is not unlike a group of people with very different backgrounds
generating diverse—and thus mostly wrong—answers to questions that touch
on an area of their mutual ignorance, but who only generate similar responses
when the question touches on an area of their common knowledge. The guess
neurons here are independent because each guess neuron has its own synaptic
weights connecting it to the input layer.

3 Results

At the termination of each run, for each condition, the robot with the best fitness
is extracted from the population. Each of these controllers is then re-instantiated
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Fig. 3. The average ability of the best 15 controllers to correctly categorize unseen
objects, for the four experimental conditions tested. The bars are in reference to the
standard error for each condition.

in the robot and evaluated a further seven times, in the seven environments that
the controller did not experience during training. We employed C (Eq. 2) to
compute the robot’s average ability to categorize these E = 7 novel environ-
ments. A controller that obtains lower values of C when exposed to these novel
environments is thus exhibiting a better ability to generalize its ability to cate-
gorize, compared to another controller with a higher value of C. Figure 3 reports
the average generalization abilities of the 15 evolved controllers extracted from
the four conditions. Testing for significance was computed using multiple Mann-
Whitney U tests. The tests looked for significant differences between the CR
condition and the remaining three conditions (C, CnM , and CM). Significant P-
values were found in each comparison. After correcting for multiple comparisons
using the Bonferroni method of adjustment, the P-values found between CR and
C, CR and CnM , and CR and CM are respectively 1.52 × 10−5, 1.52 × 10−5,
and 1.18 × 10−3. Significant P-values indicate that the relative average amount
of categorization error performed by individuals in the CR condition is signif-
icantly lower than the error of individuals in the remaining three conditions.
Therefore, it can be concluded that individuals evolved under the CR condition
are better suited for tasks involving categorization of objects than individuals
from the other three evolutionary conditions.

4 Discussion

Why is C worse than CR? The controllers evolved in the C condition per-
formed worse than those evolved for CR for several reasons. Such controllers may
have generated little to no motion, enabling rapid and successful categorization
of seen objects, while sacrificing the ability to categorize unseen objects, in the
training environments. This may have led to overfitting such that novel, seen
objects in the testing environments were categorized incorrectly. Conversely,
controllers may have evolved to perform more motion. Such a strategy might
cause correct, instantaneous categorization which is subsequently lost when the
robot comes into contact with the object.

Why is CnM worse than CR? Controllers evolved in the CnM condition
are likely incentivized to memorize the categories of seen objects, and ignore
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the categories of unseen objects. This results in overfitting: the robot will not
only poorly categorize novel, unseen objects, but novel, seen objects as well. In
other words, the robots are deprived of the ability to reduce spurious differences
between intracategory objects through motion.

Why is CM worse than CR? Conversely, controllers evolved in the CM con-
dition may suffer from two disadvantages compared to controllers evolved using
CR. Controllers from CM may not be able to afford to hold still when they are
certain of a novel object’s class. Moreover, they may have to exhibit so much
motion that they end up magnifying spurious intracategory differences, rather
than generating less—yet appropriate—movement that reduces those differences.

How did CR Succeed? Controllers produced in the CR condition presumably
outperformed the controllers produced by the other three conditions because
they can better employ ACP, or DCP, when that form of categorization is most
appropriate. When the robot is certain about an object’s category, it should
employ DCP without moving: the robot does not need to wait for physical con-
tact with the object to categorize the object. Moreover, if it does contact the
object, the resulting sensor data may affect the guess neurons and thus draw
the robot away from the already correctly-predicted category. Conversely, when
the robot is uncertain as to the object’s category, it should initiate movement as
rapidly as possible: that is, exactly at the moment that it is uncertain. Another
interesting result from the CR condition is that when a CR-generated controller’s
uncertainty is high, it also tends to exhibit higher category error At such times,
CR-generated controllers are encouraged to move as much as possible. How-
ever, once in contact with the object and the amount of uncertainty starts to
decrease, less motion is necessary: the robot is free to perform whatever actions
are appropriate to reduce intracategory differences. In contrast, CM generated
robots are more restricted in the kinds of actions they can employ to reduce
these differences: they must generate high-magnitude movements.

Evidence of Scaffolding. Within the CR trials, there is some evidence that
suggests robots may initially evolve ACP, which scaffolds the subsequent evolu-
tion of DCP in later generations. Figure 4 reports evolutionary changes in uncer-
tainty and movement generated by the best robots extracted from 13 trials using
the CR fitness function. Uncertainty and movement is only recorded when these
robots encounter the leftmost large and small cylinders (Fig. 2 shows one such
robot hitting the large cylinder). Movement among these robots increases dur-
ing the first 30 generations: this movement may cause the robot to hit the large
but not the small object, and thus may exaggerate the initially small yet inter-
categorical difference registered by the leftmost distance sensor when exposed
to these two objects. This in turn may enable evolution to discover controllers
that successfully use this magnified difference to correctly categorize these two
objects. Later still, mutations may alter the controller to predict correctly using
smaller and smaller differences from this visual sensor, earlier and earlier dur-
ing the evaluation period, ending ultimately with a robot able to immediately
categorize these two objects correctly using the leftmost visual sensor, thus not
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Fig. 4. Evolutionary increase, and subsequent decrease, in average movement among
the best robots evolved using the CR fitness function.

requiring physical interaction with these objects. Indeed, motion does seem to
decrease after generation 30 in these trials. If ACP had not been useful for scaf-
folding DCP, we should have seen evolved robots that only used DCP only in
the presence of seen objects (thus no observed motion in the presence of these
two leftmost objects) and ACP only in the presence of unseen objects. However,
more analysis is required to determine whether the scaffolding of DCP by ACP
did indeed occur in these trials.

Possible Sources of Error. One potential source of error is that only 100
generations of evolution were performed with a relatively small initial popula-
tion of 20 individuals. This may not have allowed for significant optimization to
occur in all conditions. The very short evaluation period may also be a source
of error, because the CM and C conditions may allow for the discovery of exag-
gerated movements that yet, given enough time, eventually reduce intracategory
differences. More generally, longer evaluation periods will allow for a greater
range of movements that may then better help clarify the relationship between
movement, categorization, and uncertainty.

5 Conclusion

Here we have shown that it is possible to explicitly train robots to exhibit ACP
when uncertain and DCP when certain, and that such robots outperform other
robots trained to perform ACP or DCP at will but without the ability to do so
based on uncertainty; trained to always perform DCP (categorize without mov-
ing); or trained to always perform ACP (categorize via movement). Further, this
approach does not require us to dictate how the robot should interact with its
environment; it is free to discover its own strategies for reducing intracategory
differences through physical interaction. This work helps to clarify the relation-
ship between three competencies necessary for any embodied agent that wishes
to categorize rapidly and successfully: the ability to categorize, the ability to
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interact with the world, and the ability to decide when such interactions are and
are not needed for categorization. In future work we wish to employ more sophis-
ticated optimization methods, such as multiobjective optimization, which enable
better tradeoffs between multiple fitness terms. We would also like to investi-
gate the kinds of physical interactions generated by the controllers, and how
such actions differ based on different circumstances. Further, we wish to inves-
tigate how the successful controllers described here gradually acquired DCP,
ACP, and/or whether the acquisition of one scaffolded the subsequent acquisi-
tion of the other. Finally, we wish to explore whether such dynamics relate to
how humans categorize.
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Abstract. The community structure detection problem in weighted
networks is tackled with a new approach based on game theory and
extremal optimization, called Weighted Nash Extremal Optimization.
This method approximates the Nash equilibria of a game in which nodes,
as players, chose their community by maximizing their payoffs. After per-
forming numerical experiments on synthetic networks, the new method is
used to analyze functional connectivity networks of the brain in order to
reveal possible connections between different brain regions. Results show
that the proposed approach may be used to find biomedically relevant
knowledge about brain functionality.

Keywords: Community structure · Weighted networks · Game theory ·
Brain functional connectivity networks

1 Introduction

During the last years, more and more computational methods for community
structure detection focus on dealing with very large datasets [8], while small sets
with more challenging structures are often ignored. However, many applications
require ‘sensible’ algorithms that can reveal the inner structure in networks for
which the architecture is not obvious and for which there is no available infor-
mation about the real structure. An example of such networks are the functional
connectivity networks of the brain, usually constructed from raw fMRI data. A
growing interest in brain research is reflected by recent American and European
large scale research projects that are dedicated to study the brain and its disor-
ders1. As the expected impact of these projects may be compared to that of the
1 Such projects include the BRAIN Initiative (http://www.braininitiative.nih.gov/,

April, 2016) and the European Human Brain Project (https://www.humanbrain
project.eu/, April, 2016).
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celebrated Human Genome Project, we anticipate an increased need for methods
that allow exploratory analysis and predictions based on datasets describing the
dynamics of the brain, such as fMRI data. As different parts of the brain work in
collaboration, community detection has a high potential to reveal relevant infor-
mation about brain functionality which may contribute to better understanding
the mechanisms of the brain and brain disorders.

In this context we are proposing exploring such networks with a new game
theoretic tool that uses the concept of Nash equilibria within an extremal opti-
mization algorithm to identify possible communities. We show that this method
is capable to identify inner network connections that are not grasped by other
methods.

2 Weighted Nash Extremal Optimization

The community structure detection problem consists in finding groups of nodes
in a network that are more linked to each other than to the rest of the net-
work [4]. In spite of the fact that there are many computational approaches to
this problem, there still does not exist a formal definition for the community
structure that is universally accepted to encompass the simple description from
above. In this paper we explore the use of the Nash equilibrium concept from
game theory as a possible characterization for the community structure with
non-overlapping nodes in weighted, undirected, networks.

2.1 The Community Structure Detection Game

Consider a weighted graph G = (V,E) where V is the set of nodes, V = {i}i=1,n,
and E the set of edges. Let W = {wij}i,j∈V be the set of weights wij associated
to each edge eij = (i, j) from E. In this work we will consider positive weights.

Let game Γ = (N,S,U) be composed of:

– the set of players N = V , i.e. each node is the network G is a player in game Γ ;
– the set of strategy profiles S = S1 × S2 × . . . × Sn, where × represents the

cartesian product, and Si is the set of strategies of player i. In Γ , Si represents
communities in G, i.e. each node has to chose a community; an element s ∈
S is called a strategy profile having the form s = (s1, s2, . . . , sn), where si
represents the community chosen by player i.

– the payoff functions U = {ui}i∈N , where ui : S → R, computed as the contri-
bution of a node to its community [16]:

ui(s1, s2, . . . , sn) = f(si) − f(si\{i}), (1)

where

f(C) =

∑
i,j∈C wij

∑
i∈C,j∈V wij

(2)
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is the fitness of community C. Thus, the payoff of a node i depends on its
strategy, as well as the strategies of the other nodes that have chosen the same
community as i, and the nodes that did not choose the community of i.

A strategy profile s∗ is a Nash Equilibrium if ui(si, s∗
−i) ≤ ui(s∗

i ), ∀i ∈ N and
∀si ∈ Si, where (si, s∗

−i) = (s∗
1, . . . , si, . . . , s

∗
n) is the strategy profile in which all

players chose their strategies from s∗, except player i that chooses si. A Nash
equilibrium (NE) of game Γ is a partition over the set of nodes N = V such that
no node can increase its payoff by unilateral deviation. We can consider this also
as an alternate definition for the community structure of a network; to test this
hypothesis we use numerical experiments performed on benchmarks with known
community structures.

NEs of a game can be computed with heuristic methods by using the Nash
ascendancy relation between strategy profiles [9] that counts the number tN (s, q)
of players that can improve their payoffs by unilateral deviation from one strategy
profile s to q:

tN (s, q) = card{i ∈ N |ui(s) < ui(qi, s−i), qi �= si}. (3)

Strategy s is better in Nash sense than strategy q (or strategy s Nash ascends
strategy q) if tN (s, q) < tN (q, s). A strategy profile s∗ is non-dominated with
respect to the Nash ascendancy relation if �q ∈ S such that q Nash ascends s.
It is known that the set of Nash non-dominated solutions is equal to the set of
Nash equilibria of the game [9].

2.2 Method

The community detection problem in unweighted networks has been previously
approached by an extremal optimization algorithm based on the game theo-
retic approach described above [16]. Another similar extremal optimization app-
roach that maximizes the modularity function [12] can be found in [10]. In this
paper we present a new extremal optimization variant, called Weighed Nash
Extremal Optimization (W-NEO), designed to capture the community struc-
ture in weighted networks.

An extremal optimization (EO) algorithm [2] typically uses one individual
s = (s1, . . . , sn) to search the space and preserves each iteration the best solution
found up to that moment, sbest. A fitness value is assigned to each component si
in s, i = 1, n. Each iteration, the component sj having the worst fitness value is
randomly re-initialized. If the new individual is better than sbest, it will replace
it. If not, the search continues from the new value of s.

W-NEO extends EO by evolving a population of pairs (s, sbest) that search
independently for the Nash equilibria of game Γ by using the Nash ascendancy
relation.

Encoding. Individuals s (and sbest) are represented as strategy profiles of game
Γ , i.e. integer vectors; a component i represents the community of node i. Com-
munities are numbered from 0 to a maximum value ncomm. The value of ncomm

differs between EO pairs (s, sbest), it is set at the beginning of the search, and



636 R.I. Lung et al.

Algorithm 1. W-NEO step
1: For current configuration s evaluate ui(s), the payoff function corresponding to

each node i ∈ {1, . . . , n}.
2: find the k worst components in s and replace them with a random value;
3: if (s Nash ascends sbest) then
4: set sbest := s.
5: end if

Algorithm 2. Weighted Nash Extremal Optimization
1: Randomly initialize and evaluate popsize pairs of configurations (s, sbest).
2: Compute kNash;
3: Set k1 = kNash;
4: repeat
5: Update k = min{kNash, [k1 + 2 nr.it

MaxGen
(1 − k1)]};2

6: Apply a W-NEO step on each (s, sbest) pair;
7: Update kNash;
8: until the maximum number of generation is reached;
9: Return sbest with highest fitness Φ.

2 nr.it is the iteration number, and [·] represents the integer part.

takes values between a minimum and maximum expected number of communi-
ties cmin and cmax.

Fitness Assignment. For each individual, the payoff functions ui, i = 1, n (1) are
computed and used to compare nodes within a W-NEO iteration. To compare s
and sbest, a different fitness function, Φ, is used, computed as:

Φ(s) =
n∑

i=1

ui(s) · w
(in)
i , (4)

where w
(in)
i is the sum of the weights of the links node i has with other nodes

in its community. W-NEO uses fitness Φ as an alternative to the modularity
function [12].
Extremal Optimization. Several EO variants proposed for the community struc-
ture problem in unweighted networks extend the typical EO by modifying more
than one node during an iteration. This number, denoted by k, can be fixed, or
set adaptively. In the first half of the search, Noisy EO [10] linearly decreases the
value of k from a given value to 1, whereas in its second phase, k is kept constant.
MNEO [16] decreases k exponentially throughout the search. The recommended
initial value for k is 10% of the number of nodes, which is a parameter for both
methods.

W-NEO uses an adaptive mechanism to update k values by combining the
linear decrease of NoisyEO with the tN (s, sbest) operator used by the Nash ascen-
dancy relation (3). Each iteration, the number kNash is computed as the maxi-
mum value of tN (s, sbest) in that iteration. The number k of nodes changed in
one iteration is computed as the minimum value between kNash and the one
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corresponding to NoisyEO. The first kNash value, denoted by k1, is computed
immediately after the initialization of the population and it is used to set the
initial value in the equation that decreases k linearly. Thus, W-NEO does not
need a parameter for the initial value of k. The outline of W-NEO is presented
in Algorithm 2 and a W-NEO step is detailed in Algorithm1.
Parameters. W-NEO uses the following parameters:

– Population size - popsize;
– Maximum number of generations - MaxGen;
– Expected minimum and maximum number of communities.

2.3 Numerical Experiments - Synthetic Benchmarks

The performance of W-NEO is tested on a set of synthetic benchmarks and com-
pared with the results obtained by other methods that compute the community
structure in weighted networks.

Benchmark. The LFR benchmark [5] is used to evaluate the performance of
W-NEO in a first phase. Three sets of networks and corresponding community
structures were generated2, with parameters presented in Table 1. The most
important parameters are μ, representing the ratio of links a node has outside
its community. A μ value of 0.5 indicates that the node has an equal number
of links in its community and outside, and a μ value of 0.6 that the node has
more links outside than inside. The μw parameter is similar, taking weights into
account. μw = 0.6 means that the sum of weights of the links the node has in
its community is 0.4 of the total strength of that node.

Table 1. LFR benchmarks. 30 networks were generated for each μ and μw value. κ is
the average node degree, κmax is the maximum degree, and τ1 and τ2 are the minus
exponents for the degree sequence and for the community size distribution, respectively.

Name N κ κmax τ1 τ2 μ μw Comm. size

LFR 128 128 20 50 2 1 0.3,0.4,0.5,0.6 0.1–0.6 [10,50]

LFR 1000 S 1000 20 50 2 1 0.3,0.4,0.5,0.6 0.1–0.6 [10,50]

LFR 1000 B 1000 20 50 2 1 0.3,0.4,0.5,0.6 0.1–0.6 [20,100]

The most challenging sets in this benchmark are the small ones (128 nodes),
with μ and μw values above 0.4, having the least well defined structures. The
bigger networks may seem more challenging because of their size, but they all
present a well defined community structure even for μ, μw = 0.5, because of
the greater number of communities in which the outside links of a node can
be distributed, making the difference between the number of links inside its
2 By using the code available at https://sites.google.com/site/andrealancichinetti/

software, accessed May, 2015.

https://sites.google.com/site/andrealancichinetti/software
https://sites.google.com/site/andrealancichinetti/software
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community and the number of links in any other community bigger than in the
case of networks with 128 nodes and smaller number of communities.

Performance Evaluation. Results are evaluated by using the normalized mutual
information indicator (NMI) [6]. A NMI of 1 indicates identical community struc-
tures. When two different community structures are compared to the real struc-
ture, the one having the higher NMI value is considered better.

Comparisons with Other Methods. The results obtained by W-NEO are compared
with those obtained by three state of art methods: Oslom [7], Infomap [14], and
Louvain [1]. Differences in median NMI values obtained by each method for
each set of 30 networks are evaluated by using the Wilcoxon sign-rank test with
a confidence level of 0.05.

Parameter Settings. W-NEO parameters are: population size, minimum and
maximum expected number of communities, and maximum number of gener-
ations. Considering that (s, sbest) pairs evolve independently, the effect of size
of the of the population is the usual one, in this case using a larger population
being equivalent with performing multiple independent runs with smaller popu-
lations. The expected number of communities influences the results in a similar
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Table 2. Wilcoxon sign -rank test results. A • indicates that the corresponding method
provided the best results. If there are more methods with results that are not statisti-
cally different from the best one, they are also marked with a •.

128 nodes 1000 nodes S 1000 nodes B

µ µW W -NEO Oslom Infomap Louvain W -NEO Oslom Infomap Louvain W -NEO Oslom Infomap Louvain

0.3 0.1 • • • • - • • • - • • •
0.2 • • • • - • • • - • • •
0.3 • • - • - • • - - • • •
0.4 - • - - - • • - - • • -

0.5 - • - - - • - - - • - -

0.6 - • - - - • - - - • - -

0.4 0.1 • - • • - • • • - • • •
0.2 • - • • - • • • - • • •
0.3 • - - • - • • • - • • •
0.4 • - - • - • • - - • • •
0.5 • • - - - • - - - • • -

0.6 - • - - - • - - - • - -

0.5 0.1 • - • • - • • • - • • •
0.2 • - • • - • • • - • • •
0.3 • - • • - • • • - - • •
0.4 • - - - - • • • - - • •
0.5 • - - - - • • - - - • •
0.6 • - - - - • - - - - • •

0.6 0.1 - - • - - • • • - • - -

0.2 - - • - - - • • - - • •
0.3 • - • - - - • - - - • •
0.4 • - - - - - • • - - • -

0.5 • - - • - - • • - - • -

0.6 • - - • - - • - - - • •

manner. For these numerical experiments, the minimum and maximum number
of communities was set such that approx. 20 % of the population has assigned
the real number of communities. The population size was set to 30. Because the
maximum number of generations indirectly influences the results, as it related
to the value of k (Algorithm 2), several values are tested for this parameter.

Results and Discussion. Numerical results obtained on the synthetic benchmarks
are presented as error-bars in Figs. 1 and 2 (MaxGen = 10 000). The results of
the Wilcoxon sign-rank test are presented in Table 2. For the small networks,
the results provided by W-NEO are in some cases the best compared with the
other methods, and in most cases as good as the others. For the 1000 nodes
sets, W-NEO results are statistically different than all the others, but with NMI
values greater than 0.9 in almost all cases (Fig. 2).

W-NEO Parameters. Figures 3 and 4 illustrate the variation of average NMI
values with the maximum number of generations. For each set two values are
represented: the average NMI of the individuals having the best Φ value in each
run and the average NMI of the individual with the best NMI in the final pop-
ulation. The small differences between the two values indicate the the function
Φ can be considered as an efficient fitness function for assessing the quality of a
community structure.
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3 Brain Functional Connectivity Networks

In order to examine if W-NEO can detect communities of the brain, we used
a public resting-state fMRI database from the 1000 Functional Connectomes
Project, Addiction Connectome Preprocessed Initiative. In our study we used
the MTA 1 dataset with the ANTS registered, no scrubbing, no global signal
regression preprocessing pipeline.3 The dataset contains 126 subjects’ resting-
state data, based on which, and an atlas of 90 functional regions of interest
(ROI) [15], we calculated the Pearson correlation between the activities of the
ROIs.4 We calculated an “averaged” network, in which nodes correspond to
ROIs, denoted as r1, r2, . . ., and the weight of each connection {ri, rj} is the
average of the correlations between ri and rj over all the subjects. Only positive
correlations with values above 0.35 were considered.

For each subject, information about cannabis usage and the childhood diag-
nosis for Attention Deficit Hyperactivity Disorder (ADHD) is available. There-
fore, additionally to the “averaged” network, we considered four disjoint groups
of subjects: (A) the healthy subjects (no cannabis usage, no ADHD), (B)
cannabis users without ADHD, (C) ADHD patients who do not use cannabis,
and (D) subjects with childhood diagnoses of ADHD who regularly use cannabis.
For each of these groups, we obtained a network of ROIs. In each of these net-
works, we calculated the weight of the connection {ri, rj} as the average of the
correlations between ri and rj for the subjects belonging to the group.

From the community structure detection point of view, the brain functional
connectivity networks proved to be challenging; performing multiple runs with
the four algorithms led to different results for each run and each algorithm, with
Oslom, Infomap and Louvain finding structures with maximum 3 communities.
However, by setting the values for the minimum and maximum number of com-
munities to 10 and 20, W-NEO provides structures with more communities that
can be further analyzed.

Thus, after performing 30 independent runs (MaxGen = 3000) for each
network, the resulting community structures were aggregated in the following
manner: each node was placed in the same community with the node with which
it was placed in the same community most of the times in the 30 runs. If there
are several such nodes, one of them is selected at random. Because the resulting
community structure contained many communities formed only by two nodes, a
further step consisted in uniting the communities having the smallest fitness val-
ues with those with which they have the strongest link. The strength of the link
between two communities is computed as the ratio between the sum of weights
of the links that connect the communities and the number of nodes that link
them. Communities are merged until their number equals the recommendation
of the domain experts, i.e. 14.

3 See http://fcon 1000.projects.nitrc.org/indi/ACPI/html/ for details.
4 One ROI (Basal Ganglia 4) did not include meaningful measurement for any of the

126 subjects, therefore we ignored this ROI in the subsequent analysis.
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Fig. 5. Community structure of the averaged whole brain functional connectivity
network.

Fig. 6. Community structure of the anterior and posterior salience network in case of
(A) healthy subjects, (B) cannabis users without ADHD, (C) subjects with childhood
diagnoses of ADHD who does not use cannabis, (D) subjects with childhood diagnoses
of ADHD who regularly use cannabis.

Results. The detected community structures (Figs. 5 and 6) are consistent with
domain knowledge and they illustrate that the proposed community detection
approach may be applicable to discover new insights about brain functional-
ity and brain disorders. In particular, we examined the structure of two large
communities of brain regions, the so called default mode network5 (anterior and
posterior default mode networks), and the salience network (anterior and poste-
rior salience networks).

The role of the default mode network (DMN) in drug addiction has been
shown by several studies [11,13]. In our community structures we found that the
DMN is more intact (more ROIs are in the same community) in non-addicted
subjects. In healthy subjects, 13 ROIs of the DMN belong to the same com-
munity, whereas we observed 11 ROIs of the DMN to be highly connected in
ADHD patients. In contrast, in case of cannabis addicts, both with and without
ADHD, the DMN is decomposed to several smaller communities (with less than
7 ROIs).

5 We note that in the brain research community, the phrases default mode network
and salience network are used to refer to two specific sets of strongly interconnected
regions of the brain. Therefore, the default mode network and the salience network
are communities according to the terminology used throughout this paper.
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The salience network has a critical role in attention, therefore it is expected
to be related to ADHD [3]. In healthy subjects and cannabis addicts without
ADHD, the salience networks were found to be intact, in particular 11 and 12
ROIs were observed within the same community. However, in subjects diagnosed
with ADHD, the salience network’s largest community has only 7 ROIs, see
Fig. 6.

4 Conclusions

The analysis of brain functional connectivity networks from the community
structure point of view can offer important information about the structure
and functioning of the brain. The brain networks are relatively small, with very
unclear structure, not detected by existing algorithms. In this paper we pro-
pose a game theoretic approach capable to identify strong connections in these
networks and construct community structures that can offer relevant knowledge
about the functioning of the brain.
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16. Suciu, M., Lung, R.I., Gaskó, N.: Mixing network extremal optimization for com-
munity structure detection. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015. LNCS,
vol. 9026, pp. 126–137. Springer, Heidelberg (2015)



Data Classification Using Carbon-Nanotubes
and Evolutionary Algorithms

E. Vissol-Gaudin(B), A. Kotsialos(B), M.K. Massey, D.A. Zeze, C. Pearson,
C. Groves, and M.C. Petty

School of Engineering and Computing Sciences, Durham University, Stockton Road,
Durham DH1 3LE, UK

{eleonore.vissol-gaudin,apostolos.kotsialos,m.k.massey,
d.a.zeze,christopher.pearson,chris.groves,m.c.petty}@durham.ac.uk

Abstract. The potential of Evolution in Materio (EiM) for machine
learning problems is explored here. This technique makes use of
evolutionary algorithms (EAs) to influence the processing abilities of
an un-configured physically rich medium, via exploitation of its phys-
ical properties. The EiM results reported are obtained using particle
swarm optimisation (PSO) and differential evolution (DE) to exploit the
complex voltage/current relationship of a mixture of single walled car-
bon nanotubes (SWCNTs) and liquid crystals (LCs). The computational
problem considered is simple binary data classification. Results presented
are consistent and reproducible. The evolutionary process based on EAs
has the capacity to evolve the material to a state where data classifica-
tion can be performed. Finally, it appears that through the use of smooth
signal inputs, PSO produces classifiers out of the SWCNT/LC substrate
which generalise better than those evolved with DE.

1 Introduction and Background

Evolution-in-materio (EiM) is an Unconventional Computing (UC) technique
which focuses on exploiting the underlying properties of materials to bring
them to a computation inducing state [12]. Contrary to traditional computing
with Metal-Oxide-Silicon-Field-Effect-Transistor (MOFSET) technology, where
everything is designed, produced and programmed very carefully, EiM uses a
bottom up approach where computation is performed by the material without
having explicit knowledge of its internal properties [13].

The idea of EiM can be found in early work of Pask [2] which was con-
cerned with growing an electrochemical ear. More recent work [21], is based on
observations made when evolutionary algorithms (EAs) were used for designing
electrical circuits on Field-Programmable-Gate-Arrays (FPGAs). The resulting
circuit topologies were influenced by the material of the board used. Because of
feedback provided by the iterative nature of stochastic optimisation interacting
with the material, the identified solutions were based on the specific FPGA’s
properties that were unaccounted for during the board’s design. EiM replaces
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the FPGAs with un-configured material systems favouring exploitation of some
physical property by a search algorithm [12].

Here, using an iterative process, the material is configured until it reaches a
state where a pre-specified scheme of interaction is uniquely translated as a com-
putational input/output relationship. Viewing this iterative process as material
training, this type of EiM requires the selection of finite training and verifica-
tion datasets. Since the problem is about a computation, the datasets consist of
known input/output pairs from its domain of definition and range, respectively.
The training process requires the repetitive application of computation inputs
sent to the material and measurements of its corresponding response. Measured
responses are translated into computation outputs, which allows the definition of
an error function. The physical property measured and the interpretation scheme
of the material’s response used for translating it into a computation output are
pre-specified and fully known before the training process starts.

There are two types of incident signals on the material. Computation inputs,
which are used to represent the arguments of a computation, and configuration
inputs, which are used for changing the material’s properties. Modulation of
the incident signals is controlled by an error minimising optimisation algorithm,
which explores the problem’s search space. The search space itself, is a hybrid
of the material’s physical state and the subspace spanned by the independent
configuration inputs. Hence, the optimisation algorithm aims at configuring the
material at a particular state by finding the optimal configuration inputs pro-
ducing that material state, the response of which can be uniquely translated into
a computation. In effect, EiM is a bottom up approach for producing a comput-
ing device where the exact architecture, or material state, remains unknown.
Reservoir computing is based on similar notions [5,10].

EiM has a broad scope and can be divided in four inter-dependant dimen-
sions: (a) the type of material used, (b) the physical property manipulated to
obtain a computation, (c) the computational problem itself and (d) the optimi-
sation algorithm used for solving the corresponding problem. Figure 1 illustrates
the basic concept.

An algorithm selects a set of configuration inputs. Computation inputs from
the training dataset are sent to the material; its response is recorded for each
input and is translated into a computation output. For each input/output pair,
an error is calculated to allow an objective function evaluation. This objective
function is minimised by a derivative-free optimisation algorithm.

In our implementation, the evolvable material is connected to a computer via
an mbed micro-controller fixed on a custom-made motherboard. Configuration
and computation input signals are constant voltage charges applied by the mbed
to the material and outputs are direct current measurements. Voltages are sent
to the material through a set of Digital-to-Analogue-Converters (DACs) fixed
on the motherboard. They are connected to the array of gold micro-electrodes
shown in Fig. 1 deposited on a glass slide using etch-back photolithography.
The material blend is drop-deposited within a nylon washer (2.5 mm internal
diameter) fixed to this platform for material/electronics interaction.
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Fig. 1. EiM concept and electrode array (50µm contacts, 100µm pitch)

Different organic and inorganic media have been used as materials, such as
slime moulds [7], bacterial consortia [1], cells (neurons) [18], liquid crystals (LC)
panels [6] and nano-particles [3]. Single walled carbon nanotubes (SWCNT)
based materials have shown the potential to solve computational problems
[8,11,14,15,22]. In [19] it is argued that inorganic materials make a better
medium for unconventional computing exploration. Following this argument, as
well as results in [22], a mixture of SWCNT and LC in liquid form is used here.

These types of materials have a very complex structure and the develop-
ment of analytical or stochastic models of their behaviour is very difficult. In
their absence, EiM treats them as black boxes, leading to the use of derivative
free population based stochastic search algorithms for solving the training prob-
lem. Here, a particle swarm optimisation (PSO) [9] and an implementation of
differential evolution (DE) [17] are used, which will be referred to as EAs.

Several candidate computational problems can be used in the context of
EiM. A more comprehensive review of potential problems can be found in [16].
The problem considered here is a simple binary data classification with different
degrees of separation and data distributions.

2 Evolved Material

A mixture of SWCNT and LC, where nanotubes are dispersed in liquid crystals
at varying concentrations, is used. SWCNT are both semiconducting and con-
ducting; the samples used contain less than 15 % impurities (according to vendor
specifications) as residual from the catalytic growth process.

It is shown in [22] that SWCNTs tend to bundle under an applied electric
field, establishing a percolation path between electrodes. The greater length of
these bundles or “ropes” with respect to the dimensions of LC molecules suggests
that they are not highly influenced by movement of the latter. The purpose of
a LC matrix is therefore to provide a fluid medium in which the SWCNTs can
move in response to the field. Formation of percolation paths is variable and
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reconfigurable allowing the creation of complex electrical networks. This adds
an extra dimension to the problem, compared to previous experiments where
SWCNTs were mixed with a solid polymer [8,11].

3 The Classification Problem

Three variants of a binary data classification problem are considered based on
different 2-dimensional datasets. A typical training and verification procedure is
followed and the corresponding datasets have Kt = 800 and Kv = 4000 members.
Figure 2(a) shows the training datasets for the separable (SC) and merged (MC)
classes and (b) for the V1 class (V1C). The units of the two computation inputs
are in Volts. When a particular pair is used, the two electrodes reserved to receive
computation inputs are charged with the corresponding voltages. SC and MC
data are organised into two different squares; the SC ones are not overlapping
and are placed at a distance, whereas the MC ones overlap slightly. V1C’s data
are completely separable, but they are arranged diagonally so as to increase the
problem’s difficulty. After training using those datasets, the material must be
in such a state so as to infer the class (C1 or C2) for any input pair randomly
selected from the verification dataset. Effectively the objective is to evolve an
analogue machine, capable of distinguishing the class an input belongs to.

)b()a(

Fig. 2. (a) SC and MC and (b) V1C training datasets.

4 Problem Formulation

Evolution of such a device is formulated as an optimisation problem. There are
sixteen connections on the micro-electrode array twelve of which are used. Two
of those are used for sending computation inputs as voltage pulses of amplitude
Vin = (V in

1 , V in
2 ) and eight are used for sending configuration voltages as pulses

within the range Vj ∈ [Vmin, Vmax], j = 1, . . . , 8. The remaining two connections
are reserved for measuring outputs currents I = (I1, I2) (A) when the material
has been sent Vin and is under charge of the Vj ’s.
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By considering as a decision variable only the possible locations where the
two components of Vin are applied and using a simple increasing index scheme
for assigning configuration voltages (e.g. if V in

1 is assigned to electrode 3 and
V in
2 is assigned to 5, then the following assignment for the configuration inputs

takes place: V1 → 1, V2 → 2, V3 → 4 V4 → 6, V5 → 7, V6 → 8, V7 → 9 V8 → 10)
then there are 10P2 = 90 possible connection assignments. A continuous variable
p ∈ [1, 90] is defined and updated by the EA used rounded to the nearest integer
during the iterations.

The optimisation problem’s vector of decision variables is defined as

x = [V1 . . . V8 R p]T (1)

where R is a scaling factor. It is for a specific electrode assignment p and set
of configuration voltages Vj , that the material’s response to an input Vin is
recorded. The response is a pair of measurements I = (I1, I2) (A) of the direct
current at the two output locations, which are the basis of a comparison scheme
using R for deciding the class Vin belongs to.

Let I(k) denote the pair of direct current measurements taken when input
data Vin(k) from class Ci, i = 1 or i = 2, are applied while the material is
subjected to configuration voltages V

(k)
j . Vin(k) and V

(k)
j are applied according

to electrode assignment number p(k) and scaling factor R(k) is used. Also, let
C(Vin(k)) denote Vin(k)’s real class and CM (Vin(k),x) the material’s assess-
ment of it calculated according to the following rule:

CM (Vin(k),x) =
{

C1 if I1(k) > RI2(k)
C2 if I1(k) ≤ RI2(k). (2)

For every training pair of data Vin(k), k = 1, . . . , Kt the error from trans-
lating the material response according to rule (2) is

εx(k) =
{

0 if CM (Vin(k),x) = C(Vin(k))
1 otherwise. (3)

The mean total error is given by

Φe(x) =
1

Kt

Kt∑

k=1

εx(k). (4)

Two penalty terms are added to (4), H and U . H(x) penalises solutions with
high configuration voltages and is given by

H(x) =

∑8
j=1 V 2

j

8V 2
max

. (5)

The rationale behind this penalisation is that incremental and generally low lev-
els of configuration voltages are preferable. Solutions where high V

(k)
j are applied
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can destroy material structures favourable to the problem formed during evolu-
tion. On the other hand, solutions that render the material unresponsive need
to be avoided. A measure of such unresponsiveness is calculated at the end of
each search iteration ι, where a sample equal to the population size S of error
function evaluations is available. Let σ2

o,ι denote the variance of Φ(x) and σ2
V,ι

the variance of
∑8

j=1 V 2
j at iteration ι. A value of σ2

o,ι close to zero indicates a
non-responsive material and the penalty term takes the form

Uι =

(

1 − σ2
o,ι

σ2
V,ι

)2

. (6)

Hence, the total objective function Φs(x) for an arbitrary individual s at iteration
ι is given by

Φs(x) = Φe(x) + H(x) + Uι. (7)

Uι aims at leading the optimisation away from material states where the same
response is given for different inputs.

The optimisation problem to be solved is that of minimising (7) for a popu-
lation of size S, subject to voltage bound constraints Vj ∈ [Vmin, Vmax], R > 0,
electrode assignment p and classification rule (2). Vmin = 0 Volts and for the SC
problem Vmax = 4 Volts whereas for the MC and V1C Vmax = 7 Volts.

Two different stochatic optimisation algorithms are used for solving this prob-
lem, differential evolution (DE) [20] and particle swarm optimisation (PSO) [4].
A constricted version of PSO with parameters taken from [9] is implemented.
The DE algorithm implementation uses the parameters suggested in [17]. A pop-
ulation size of S = 10 is used for DE and PSO.

5 Results and Discussion

The first column of Table 1 presents the minimum error Φ∗
e achieved during

training. Once training is terminated, verification is performed on the trained
material by applying back the optimal solution achieved along with the previ-
ously unused verification data. The same verification procedure is repeated ten
times. The other four columns of Table 1 refer to results of these runs. Φ∗

e,v is
the minimum error, Φw

e,v the worst, Φe,v the average and σ2
Φe,v

the variance. For
both DE and PSO, the penalty terms H(x) and Uι are not included and the
classification error for Φe is given, for the sake of brevity.

Table 1 shows that for all problems, except outliers, and both algorithms,
the observed error increase at the verification phase is Φ∗

e −Φ∗
e,v < 2.125%. This

indicates that the material’s behaviour is consistent and generalises well as a
classifier. Solutions obtained during training using DE can be better than those
of PSO, especially for the SC and V1C datasets. However, PSO outperforms DE
with respect to consistency across experiments and generalisation of the solution.
This can also be observed for the MC dataset where DE obtains both the smallest
and largest error for verification (Φ∗

e,v = 4.37% and 18.25% respectively) whilst
variance of PSO verification tests tends to be lower.
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Table 1. Training and verification errors for SC, MC and V1C problems.

SC experiments Φ∗
e (%) Φ∗

e,v (%) Φw
e,v (%) Φe,v (%) σ2

Φe,v

PSO 1SC 1.3 1.675 2.35 2.0375 0.0527

PSO 2SC 1.6 2.125 3.2 2.6175 0.1277

PSO 3SC 1.3 1.975 2.45 2.25 0.0305

DE 1SC 0.7 1.05 1.625 1.3975 0.03193

DE 2SC 10.4 16.325 18.5 17.4035 0.3652

DE 3SC 1.6 1.675 2.55 2.185 0.06565

MC experiments Φ∗
e (%) Φ∗

e,v (%) Φw
e,v (%) Φe,v (%) σ2

Φe,v

PSO 1MC 5.8 6.6 7.075 6.815 0.0171

PSO 2MC 5.2 6.325 8.8 7.7225 0.648

PSO 3MC 5.7 7.825 9.025 8.5975 0.1184

DE 1MC 3.4 3.975 4.625 4.38 0.0439

DE 2MC 6.4 7.525 8.95 8.145 0.1739

DE 3MC 5.7 18.25 19.425 18.8375 0.1321

V1C experiments Φ∗
e (%) Φ∗

e,v (%) Φw
e,v (%) Φe,v (%) σ2

Φe,v

PSO 1V1C 2.7 3.975 5.175 4.6525 0.1318

PSO 2V1C 2.6 3.5 4.25 3.8625 0.0559

PSO 3V1C 1.1 2.525 3.375 2.915 0.063

DE 1V1C 1.3 2.325 2.725 2.4975 0.016

DE 2V1C 1.7 3.125 4.00 3.4975 0.071

DE 3V1C 0.007 4.55 6.2 5.575 0.2617
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Fig. 3. Convergence patterns for training the material based on the V1C data.

Figure 3 shows the convergence pattern of the error for DE and PSO and
is representative of the 18 experiments in Table 1. The baseline tests were per-
formed using samples containing only LCs as material, without any SWCNTs.
When DE is used, the material adapts within few iterations; subsequently the
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Fig. 4. Visualisation of p and sample V c
j trajectories for PSO and DE.

algorithm spends more iterations exploiting the minimum found. On the other
hand, the PSO algorithm achieves better results at a later stage exploring more
the search space.

Figures 4(a) and (b) present the verification error distribution of the 3rd runs
of DE and PSO, respectively, using the MC dataset. Both converged to solutions
with the same training error Φ∗

e = 5.7%, but with different Φe,v. The overlapping
area of the two classes forms the core of the points that are erroneously classi-
fied. However, the better generalisation property of the PSO solution compared
to that produced by DE is evident, as the errors outside the overlap are fewer.
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When the DE solution is applied, the errors are far more widely dispersed and
densely distributed into the area of C2, making a poor classifier out of the
material.

Figures 4(c) and (d) show the distinctive difference between the two algo-
rithm’s configuration voltages’ trajectories, averaged over S, per iteration. It
can be seen that the search performed by DE is more noisy even when the
algorithm aims to exploit a minimum. On the other hand, PSO’s exploration
of the search space is based on smoother inputs. Figure 4(e) depicts the conver-
gence trajectory of p for all experiments using the V1C dataset. Convergence
is not towards the same value of p, but resulting input pin location is similar.
Figure 4(f) presents the corresponding mapping of p with regard to input loca-
tion on the micro-electrode array for the optimal solutions of the three problems.
Experiments resulting to errors between 4–10 % for Φ∗

e and Φ∗
e,v tend to have a

p corresponding to the most favoured locations shown in Fig. 4(f).
Our current hypothesis is that the poorer generalisation of the solutions

obtained by DE is due to the pattern of average configuration voltages per itera-
tion. The PSO algorithms smoother trajectories of V c

j build structures inside the
material, reinforcing responses minimising the classification error. The noisy V c

j

applied by DE appears to make the formation of such structures more difficult.
Over the different experiments, DE is less consistent in its performance; explo-
ration of the search space by the PSO algorithm results in better conductive
circuit formation within the material. This hypothesis needs to be supported by
more experiments and evidence, such as image analysis of the material before
and after training.

6 Conclusion

This paper has presented the results of an investigation on evolution in materio
for a mixture of single walled carbon nanotubes and liquid crystals. Under the
influence of different levels of voltage applied at various locations of its body,
conductive networks are formed by the nanotubes. Three simple classification
problems are considered and training of the material as a data classifier is for-
mulated as an optimisation problem. Results obtained with training and verifi-
cation datasets are reported, showing that the solution can perform classification
for similar problems with different instances. The stronger exploration element
of PSO and the smoother input signals sent appear to result to classifiers that
generalise better.

This is quite a new area of research and many issues need to be addressed.
A more detailed investigation needs to be performed on the optimisation algo-
rithms used and the impact of their search pattern on the solutions’ quality.
More recent variants of evolution-inspired algorithms need to be implemented
as well. The impact of the SWCNT and LC concentration in the mix needs to be
evaluated. Finally, more complicated problems will be considered and it would
be very interesting to observe the material structure patterns formed for this
purpose in each particular case.
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10. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

11. Massey, M.K., Kotsialos, A., Qaiser, F., Zeze, D.A., Pearson, C., Volpati, D.,
Bowen, L., Petty, M.C.: Computing with carbon nanotubes: optimization of thresh-
old logic gates using disordered nanotube/polymer composites. J. Appl. Phys.
117(13), 134903 (2015)

12. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box.
In: Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware, pp.
167–176. IEEE (2002)

13. Miller, J.F., Harding, S.L., Tufte, G.: Evolution-in-materio: evolving computation
in materials. Evol. Intel. 7(1), 49–67 (2014)

14. Miller, J.F., Mohid, M.: Function optimization using cartesian genetic program-
ming. In: Proceedings of the 15th Annual Conference Companion on Genetic and
Evolutionary Computation, pp. 147–148. ACM (2013)

15. Mohid, M., Miller, J.F., Harding, S.L., Tufte, G., Lykkebø, O.R., Massey, M.K.,
Petty, M.C.: Evolution-in-materio: solving machine learning classification problems
using materials. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.)
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Abstract. The aim of the paper is to introduce a wait-and-see (WS)
reformulation of the transportation network design problem with sto-
chastic price-dependent demand. The demand is defined by hyperbolic
dependency and its parameters are modeled by random variables. Then,
a WS reformulation of the mixed integer nonlinear program (MINLP) is
proposed. The obtained separable scenario-based model can be repeat-
edly solved as a finite set of MINLPs by means of integer programming
techniques or some heuristics. However, the authors combine a tradi-
tional optimization algorithm and a suitable genetic algorithm to obtain
a hybrid algorithm that is modified for the WS case. The implementation
of this hybrid algorithm and test results, illustrated with figures, are also
discussed in the paper.

Keywords: Stochastic transportation model · Network-design prob-
lem · Nonlinear pricing · Wait-and-see approach · Genetic algorithm ·
Hybrid algorithm

1 Introduction

The transportation network design problem (TNDP) remains a challeng-
ing research topic in transportation planning. From constructing new roads,
pipelines, power lines, etc. to determining the optimal road toll, TNDP has
provided valuable information for capital investment in transportation [1,7,18].
Various approaches have been used to solve TNDP. Steenbrink [17] and
Magnanti and Wong [8] reviewed a number of the network design problems
(NDP’s) and some earlier algorithms. LeBlanc [7] proposed a branch-and-bound
procedure to solve the problem but the algorithm did not perform well in large-
scale problems. For a detailed review of solution techniques see, e.g., [1,11].

This paper presents a hybrid algorithm for the solution of a scenario-based
wait-and-see (WS) stochastic mixed integer nonlinear program (MINLP), which
models the design of a transportation network under price-sensitive stochas-
tic demand. Regarding the solution technique, we mention our direct approach
c© Springer International Publishing AG 2016
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derived from modeling ideas (e.g., [13]). Due to the growing popularity of pric-
ing strategies development and further applications in industry, we follow up on
our previous modeling ideas presented in [4], where we modeled a mixed integer
linear program with linearly price-dependent stochastic demand. So, we extend
our previous model from [4] into a more complex case with a nonlinear (hyper-
bolic) price-demand dependency and, therefore, we also modify the previously
used algorithm [4,13].

2 Stochastic TNDP with Pricing Solved by WS Approach

In this section, we develop the above mentioned MINLP which represents the
design of a transportation network under price-sensitive stochastic demand.
Note, that in our case, the network consists of three components: supply, demand,
and transition parts of the system, see [2]. Before we deal with the stochastic
problem and its WS reformulation, we shortly review the hyperbolic pricing
function [10].

2.1 Pricing

Consider a price-setting firm that faces a price-dependent demand function,
bi(pi), describing the dependency between price pi and demand bi for each cus-
tomer denoted by i. To capture real-world situations, we will further define the
demand function as bi(pi) = αip

−βi

i , where αi > 0 and βi > 1, see Fig. 1.
This means that the selling prices are decision variables, and so we want to

find the optimal price p∗
i for each customer i.

Fig. 1. Example of a hyperbolic demand-pricing function.
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2.2 Stochastic Demand and the WS Approach

In real-world problems, the customer demand information is often uncertain and
varying. This situation is usually modeled by one of the following determinis-
tic reformulations: (a) the here-and-now (HN) approach, which means that the
decisions are made before the demand is observed, see [15] and, specifically, [13];
(b) the wait-and-see (WS) approach, which means that the demand is known
at the decision point. An interested reader can also find useful references to
fundamental concepts of stochastic programming, e.g., in [6,15].

In this paper, we approach the stochastic TNDP with pricing using the WS
scenario-based approach. The scenario-based approach assumes that we have
enough observations of the parameters αi,s and βi,s (one combination of the
observations represents one particular scenario for each customer). In order to
develop the mathematical model, we define the following (decision) variables,
index sets and parameters.

• The decision variables:
xe,s : amount of the product to be transported on edge e in scenario s,
δen,s ∈ {0, 1} : 1 if new edge en is built in scenario s, 0 otherwise,
pi,s : unit selling price for customer i in scenario s,

• second-stage variables:
y+

i,s : shortages for customer i in scenario s,

y−
i,s : leftovers for customer i in scenario s,

• index sets:
E : set of edges, e ∈ E,
En : set of new (built) edges, en ∈ En, En ⊂ E,
i : set of customers (or locations with a non-zero demand), i ∈ I,
j : set of production locations (or warehouses), j ∈ J,
k : set of traffic nodes, k ∈ K,
V : set of all nodes (vertices) in the network, v ∈ V ,V = I ∪ J ∪ K,
S : set of all possible scenarios, s ∈ S, s = 1, 2, . . . ,m,

• and parameters:

Av,e : incidence matrix, Av,e

⎧
⎪⎨

⎪⎩

1 if edge e leads to node v,

−1 if edge e leads from node v,

0 otherwise,
bv,s : the demand in node v for scenario s,
ce : unit transporting cost on edge e,
den

: cost of building of a new edge en,
r+i , r−

i : unit penalty cost for shortages/leftovers at customer node i,
l, u : lower and upper bound for selling prices,
αi,s, βi,s : scenario-based (and demand-related) parameters.

Then, we formulate the stochastic TNDP with nonlinear pricing, which we
reformulate using WS approach, and so, we solve the model repeatedly, i.e., once
for each scenario:



658 D. Hrabec et al.

∀s ∈ S :

max
∑

i∈I

(
∑

e∈E

Ai,exe,s)pi,s − ∑

e∈E

cexe,s − ∑

en∈En

den
δen,s − ∑

i∈I

(r−
i y−

i,s + r+i y+
i,s)(1)

∑

e∈E

Ai,exe,s = bi,s − y+
i,s + y−

i,s, ∀i ∈ I, (2)

∑

e∈E

Aj,exe,s = bj,s, ∀j ∈ J, (3)

∑

e∈E

Ak,exe,s = bk,s, ∀k ∈ K, (4)

xen,s ≤ δen,s

∑

j∈J

(−bj), ∀en ∈ En, (5)

y+
i,s ≤ bi,s, ∀i ∈ I, (6)

xe,s ≥ 0, ∀e ∈ E, (7)
δen,s ∈ {0, 1}, ∀en ∈ En, (8)

y+
i,s, y−

i,s ≥ 0, ∀i ∈ I, (9)

pi,s ≥ l, ∀i ∈ I, (10)
pi,s ≤ u, ∀i ∈ I, (11)

bi,s = αi,sp
−βi,s

i,s , ∀i ∈ I. (12)

The objective function (1) maximizes the total profit, which is the revenue minus
all the costs (transportation, network design and penalties for leftovers and short-
ages). Equations (2–4) are balance constraints, i.e. amount entering a node is
equal to the demand plus the amount leaving; in addition, in the constraint
(2) we consider quantities presenting leftovers and shortages, respectively. (5)
guarantees that there will be no transported amount on non-built edges. (6) is a
constraint on shortages, i.e. any shortage can not be higher than related demand.
(7)–(11) state domains of decision variables, while Eq. (12) states the hyperbolic
dependency between price and demand (see Fig. 1).

Obviously, the problem (1)–(12) is nonlinear, but it seems that the exact
solvers deal with a linearized (MILP) version of it. Such nonlinear problems
often requires a heuristic approach, especially large scale problems. Therefore,
we further propose a hybrid algorithm in Sects. 3 and 4.

3 Hybrid Algorithm for the WS Approach

The above-mentioned model was coded in GAMS and solved by the BARON,
MINOS and CPLEX solvers for suitable test instances. The obtained results
are considered acceptable. The next solution attempt targeted large test prob-
lems using the same techniques; however, this led to an increase of the required
computational time.
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Due to the above, the decision to utilize previous experience was made,
see [3,13]. This resulted in the implementation of a modified hybrid algorithm
combining the GAMS code with a selected genetic algorithm (GA). The C++
implementation concentrating on the GAMS-GA interface is developed for the
updated GA, as it was discussed in [12]. This can also be replaced by other GAs
[9]. The principles of the following algorithmic scheme follow the papers [3,13].

1. Initialize the computer environment for parallel computations.
2. Define the scenario-based GAMS model and load the model and data into

*.gms files for each scenario. Specify control parameters for the GA so that
one instance is created for each scenario. The parameters can be defined either
by the user (e.g., the population size) or inherited from the GAMS code (e.g.,
how many edges in the network should be taken into account).

3. Build an initial population for each GA instance. Specifically, the initial values
of 0–1 variables must be generated and copied in the $INCLUDE files, from
which they are read by the GAMS code.

4. The GAMS model is repeatedly solved (in parallel, two loops, one for scenarios
and one by population size) by using the MINOS solver. Each run solves the
program for the fixed values of 0–1 variables. The profit (or, alternatively,
cost) function values are computed (initially in 3. and then in 8.).

5. The best results obtained from GAMS in 4. are saved for comparisons.
6. The termination conditions for the algorithm are tested (in parallel) and the

algorithm is terminated if they are met. Otherwise the algorithm proceeds
until the last scenario solution is obtained.

7. Input values for the GA from GAMS results are generated, see step 4. Specif-
ically, the profit function values for each member of population of the GA are
received from results of the GAMS runs in 4.

8. The GA run leads to an update of the set of 0–1 variables (population), see
[12] for details.

Broadly speaking, the GA works with 0–1 variable δen,s for each scenario s,
while MINOS solves the remaining nonlinear problem (NLP) for the fixed binary
variable δ, i.e. MINOS computes optimal xe,s, pi,s as well as value of the objective
function. Afterwards, the value of objective/fitness function (1) is sent back for
the solution assessment and then, according to 6., the algorithm continues.

4 Description of the Utilized Genetic Algorithm

This section shortly reviews key ideas of the utilized GA that works as the main
part of the hybrid algorithm, see Sect. 5. It follows the previous ideas of one of
the authors [12]; see also [13] for its extension.

In general, we consider a set of genetic operators containing: the crossover
operator, the mutation operator, and eventually other problem dependent or
implementation dependent operators. All these operators generate descendants
from parents. The parent selection operator and the genetic operators have a
probabilistic character and the deletion operator is usually deterministic. The
fitness value f is a non-negative number which captures a relative measure of
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the quality of every individual in the current population. The run of our GA can
be described using the following steps: (1) Generation of the initial population
(random generation is often used) composed of individuals. (2) Computation
of fitness function values related to 1). (3) Parent selection and generation of
offspring. (4) Creation of the new population by using deletion operator and
addition of offspring generated in the previous step. (5) Mutation. (6) If the
stopping rule is not satisfied, go to step 3), otherwise continue to 7). (7) The
result is the best individual in the population. It is usually advantageous to
use some redundancy in genes, and then the physical length of the genes can
be greater than one bit. Such a type of redundancy by shades was introduced
by Ryan [14]. To prevent degeneration and the deadlock in a local extreme, a
limited lifetime of individuals can be used. This limited lifetime is implemented
via a death operator [12], which represents something like a continual restart of
the GA. Many GAs are implemented on a population consisting of haploid indi-
viduals (each individual contains one chromosome). However, in nature, many
living organisms have more than one chromosome and there are mechanisms
used to determine dominant genes. Sexual recombination generates an endless
variety of genotype combinations that increases the evolutionary potential of
the population. Since it increases the variation among the offspring produced
by an individual, this improves the probability that some of them will be suc-
cessful in varying and often unpredictable environments. The modeling of sexual
reproduction is quite simple. The population is divided into two parts - males
and females. One parent from each part is selected for crossover. The sex of the
individual is stored in the special gene; this gene is not mutated. The sex of
the descendant is determined by a crossover of the sexual genes of parents, the
descendant is placed into the corresponding part of population. The replacement
scheme is associated with another problem. To ensure monotonous behavior the
incremental replacement (steady-state replacement) was introduced. We can use
least-fit member replacement where one (or more) elements with the worst fit-
ness is replaced, or we can replace randomly chosen element(s). Therefore, the
elitism brings a way to keep monotony while generational replacement is used.
One or several best individuals represent the elite. The whole elite is directly
taken into the next iteration.

So, the GA used in the paper for problem related computations uses rank-
ing selection, haploid chromosomes, shadows and limited lifetime, as described
above. We used uniform crossover and the probability of mutation of every gene
was 5%. Every 01 variable was stored in one gene having length of 3 bits. This
redundant coding uses the shades technique mentioned above. The population
size was 20 individuals; such a low value was chosen in relation to the computa-
tional complexity of evaluation of the fitness. The maximum number of iterations
was limited to 50. The maximum lifetime of individual was set to 5 iterations.

5 Computations and Results

Figure 2 represents an initial visualization of an example. The example shows
a distribution network: bold lines are existing edges and dash lines are possible
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Fig. 2. Input network structure for the WS case [4].

edges that can be switched on by 0–1 variables, nodes 1–14 present customers,
15,16 production nodes, 17–30 transition nodes.

The main idea of the hybrid algorithm is based on the solution of a sto-
chastic program for various sequences of the fixed 0 − 1 variables repeatedly for
each scenario. This extends the idea of [13] with modifications of the hybrid
algorithm in Sect. 3. So, the optimal objective function values are obtained
together with these sequences of zeros and ones. They serve as the input fit-
ness value plus elements of the populations for the GA instances that utilizes its
own above mentioned steps that are hidden within the GA structure. Updated
sequences of zeros and ones are generated by the GA and sent to the GAMS
through the updated $INCLUDE file and the computational loop continues until
a satisfactory improvement of the network design is obtained. For the purpose
of future comparison, we have utilized the test examples from [4]. The com-
parison between MINOS and of the proposed hybrid solution will be subject of
our future research, but we have already shown on other MINLP problems that
usage of exact solvers is not applicable in real (large) problems due to a huge
computational time [4]. Therefore, using of the hybrid approach has one more
reason in the MINLP’s.

Results are described in Fig. 3 where the thicknesses of lines represent fre-
quencies of usage in m scenarios, and hence, probabilities that variables xe

related to edges are non-zeros. The fixed lines are drawn as dash lines to empha-
size the role of edges generated by the WS computations. We may also see
that the stochastic demand usually requires new edges to bring the necessary
adaptation in the results. In comparison with the HN solutions (cf. [13]) it
can be done in a more flexible and cheaper way. Figure 3 also shows that only
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Fig. 3. Visualization of results for the hybrid algorithm for 100 scenarios.

Fig. 4. Visualization of results from GAMS for 1 scenario.
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suboptimality has been reached by computations for some scenarios, as extra
unnecessary edges are switched on by the GA runs (e.g., 5–28).

To compare the obtained results, due to extreme time requirements of finding
a traditional GAMS MINLP solution, we utilized one scenario case and provide a
visualization of the result in Fig. 4. We leave further comparison of time require-
ments as well as values of objective functions for our further research.

6 Conclusions and Further Research

The paper presents a WS reformulation of a TNDP with stochastic price-
dependent demands. The proposed mixed-integer nonlinear model is solved with
the original hybrid algorithm involving GA for the solution of the WS network
design problem. The previously introduced hybrid algorithm (see [4,13]) has
been modified and successfully tested. This reconfirms our conclusions in [13]
about the portability of the approach to other problems.

In our further research work, we plan to compare (or improve) the proposed
hybrid algorithm with similar ideas dealing with differential evolution, specif-
ically multi-chaotic success-history based parameter adaptation for differential
evolution [5], which is a novel version of the standard GA that, hopefully, may
achieve better computational results for our MINLP problems. Moreover, some
obvious suboptimalities (see, e.g., Fig. 3) produced by the GA can easily be
eliminated by appending a local search procedure to the GA run.

Similar mixed integer (nonlinear) stochastic programs may appear in many
application areas, including NDP [11], traffic networks [3] or waste management
problems [16]. Therefore, the suggested hybrid algorithm can be modified and
widely applied.
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9. Matoušek, R.: HC12: the principle of CUDA implementation. In: Proceedings of
the 16th International Conference on Soft Computing MENDEL 2010, pp. 303–308,
Brno, Czech Republic (2010)

10. Petruzzi, N.C., Dada, M.: Pricing and the newsvendor problem: a review with
extensions. Oper. Res. 47(2), 183–194 (1999)

11. Poorzahedy, H., Rouhani, O.M.: Hybrid meta-heuristic algorithms for solving net-
work design problem. Eur. J. Oper. Res. 182, 578–596 (2007)

12. Roupec, J.: Advanced genetic algorithms for engineering design problems. Eng.
Mech. 17(5–6), 407–417 (2011)

13. Roupec, J., Popela, P., Hrabec, D., Novotný, J., Olstad, A., Haugen, K.K.: Hybrid
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Abstract. In this paper we investigate evolutionary mechanisms and
propose a new mutation operator for the evolutionary design of Combi-
national Logic Circuits (CLCs). Understanding the root causes of evo-
lutionary success is critical to improving existing techniques. Our focus
is two-fold: to analyze beneficial mutations in Cartesian Genetic Pro-
gramming, and to create an efficient mutation operator for digital CLC
design. In the experiments performed the mutation proposed is better
than or equivalent to traditional mutation.

Keywords: Cartesian genetic programming · Point mutation operator ·
Circuit design · Combinational circuits

1 Introduction

The design of circuits is an important research field and the corresponding opti-
mization problems are complex and computationally expensive. The design of a
Combinational Logic Circuits (CLC) is based on the data from a truth table that
lists all possible combinations of input logic levels with the corresponding out-
put logic level. Given a certain truth table, it is possible to identify a CLC that
meets the conditions prescribed by the truth table using traditional techniques
and/or metaheuristics [5,9,14,16].

Several strategies for the design of combinational circuits have been reported
[2,5,6,9,14,16]. The aim of these approaches is to find a functional solution,
and to minimize the number of gates. Nowadays, CGP (Cartesian Genetic Pro-
gramming) [15] is one of the most efficient methods for evolutionary design and
optimization of digital combinational circuits [16,21]. CGP is a genetic program-
ming technique in which the programs are modeled as directed acyclic graphs
(DAG) and, thus, a large number of computational structures can be easily rep-
resented, such as CLCs [17]. That graph is represented by a matrix of potentially
connected elements.
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-45823-6 62
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The literature shows that different function sets are used in the evolutionary
design. Koza [12] designed circuits using a small set of gates Γ = {and, or, not}.
Miller et al. [15,17] and, recently, Goldman and Punch [10,11] used 4 types
of gates Γ = {and, or, nand, nor}. Coello et al. [2–4,9] used 5 types of gates
Γ = {and, not, or, xor, wire}. In [8], Gajda expanded the set of functions and
used 9 types of gates Γ = {and, or, not, nand, nor, xor, wire, c0, c1} where not
and wire are unary functions (taking the first input of the gate) and ck is a
constant generator with the value k.

Understanding how search operators interact with solution representation
is a critical step in order to design new techniques for improved search. There
have been a number of previous studies into various aspects of GP evolution.
For instance, [10,11] created methods to prevent wasted CGP evaluations and
methods to overcome CGP’s search limitations imposed by genome ordering [13].

The remainder of this paper is organized as follows: Sect. 2 summarises
Cartesian Genetic Programming while Sect. 3 describes the proposed ideas. The
computational experiments are presented in Sect. 4, where the obtained results
are compared to those from the literature. Section 5 presents some discussions
and, finally, Sect. 6 concludes the paper.

2 Cartesian Genetic Programming

In 1999, Miller [15] proposed a new form of Genetic Programming, called
Cartesian Genetic Programming, in which the programs are modeled as directed
acyclic graphs (DAG). Recently, [19] presented a CGP method that encodes
programs via cyclic graphs. CGP provides a great generality enabling the repre-
sentation of neural networks, circuits, and other computational structures [17].
Some features can be highlighted:

– CGP represents an individual using a matrix of processing nodes.
– Nodes contain genes describing what function they perform and how they are

connected to other nodes.
– DAGs are represented by a collection of nodes connected by directed edges.
– CGP has three parameters associated to the representation and mapping

process: the number of columns, the number of rows, and levels-back. levels-
back controls the connectivity of the graph by constraining which columns a
node can get its inputs from.

– Offspring are created by means of mutation.
– Offspring replace parents when they are better or have the same fitness value.
– The most common form of CGP uses a (μ + λ) reproduction strategy, where

μ parents generate λ offspring and then, from the (μ+λ) individuals, the top
μ are taken to be parents in the next generation.

Figure 1a shows an example of the matrix representation adopted by CGP,
where I1, I2, I3 are the primary inputs, O1, O2 are outputs, and each node repre-
sents an operation or its function (or, if, switch, . . . ). Figure 1b shows an example
where number of columns = 4, number of rows = 2, and levels-back = number
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of columns. The nodes can have their inputs connected to the outputs of any
nodes in the columns to the left of the current one or to a primary input. In this
case, nodes 5, 6, 9, 10, and 11 are neutral, having no influence on the phenotype.
These nodes are referred to as inactive. When a node is connected to an output
(directly or indirectly), it is called active, as nodes 4, 7, and 8. Inactive nodes
allow for genetic drift, as individuals can be mutated without changing their
fitness. Figures 1c and d show phenotypes associated with the outputs O1, and
O2, respectively.

Fig. 1. CGP representation

Modern CGP practice has mostly done away with rows and levels-back in
favor of rows = 1 and levels-back as the sum of the number of columns with the
number of inputs.

2.1 Single Active Mutation (SAM)

CGP’s usual variation operator is a point mutation. However, different imple-
mentations can be found in the literature, making it hard to define a standard
version of the algorithm. For instance, in some papers [15] this operator chooses
a set number of genes at random to be mutated, while in other papers [20] each
gene can be mutated with a certain probability, allowing any number of genes
to be mutated at once.

When mutations occur in non-coding sections of the genotype, no modifica-
tion will appear in the phenotype and, consequently, both individuals (mutated
and non-mutated) have the same fitness. In order to avoid this situation Goldman
and Punch [10] proposed a method in which a single active gene is modified every
time an offspring is generated. This alternative will be referred to as “SAM” here.
SAM’s iterative process generates an offspring by mutating randomly selected
genes until an active gene is changed. When this mutation operator is used, one
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can see that: (i) one active gene is mutated, (ii) inactive genes may be changed,
and (iii) no mutation rate needs to be specified by the user. As SAM achieved the
best results in the hardest test-problem from [10], here we adopted this mutation
operator as a baseline for all the computational experiments.

3 Description of the Biased Single Active Mutation

Traditionally, the mutation operator used in CGP is a point mutation operator,
in which a randomly chosen position in the matrix representation is replaced by
another randomly selected value. As the elements of the matrix are composed
by a function/operation and its inputs, two different modifications can occur.
When a function is chosen for gene mutation, then a valid value is the address
of any function in the function set (here called mutation type gate), whereas if
an input gene is selected to be modified, then a valid value is the address of the
output of any previous node in the genotype, or of any program input.

The proposed approach is based on the idea of analyzing the behavior of
the genotype during the evolutionary process for a given set of problems. Based
on this analysis, we create a bias to help direct gene mutation when applied to
other problems. For each run, every time the child has a fitness value better than
that of its parent (the child proceeds to the next generation), we say a beneficial
mutation occurred. Every time such improvement occurs, we check whether this
mutation occurred on the function executed by the parent. In this case, we store
the new and beneficial transition, from the previous (in the parent) to the new
function (in the child).

At the end of the evolutionary process, we create the frequency table of all
transitions, giving rise to a probability distribution. The creation of the prob-
abilities transition matrix is illustrated in Fig. 2. This probability distribution
is utilized to guide the evolutionary process. Every time a function is to be
changed, this probability distribution will be used. This new mutation operator
proposed here is referred to as biased SAM.

Figure 3 shows an example of the biased mutation, where a gate and is
selected to be mutated. The new value of that node is chosen according to the
probabilities present in the transition probabilities matrix. In this example, the
new gene in the child is a nor gate.

4 Case Study

4.1 Analysis of the Evolution

Initially four benchmark problems, taken from [1], were chosen where the suc-
cess of the mutations applied during the evolutionary process is studied as
explained in Sect. 3. We used the expanded set of functions as in [8]: Γ =
{and, or, not, nand, nor, xor, wire, c0, c1}, We also used μ = 1, λ = 4, number
of rows=1, number of columns=100, and levels-back = number of columns, as
in [16].
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Fig. 2. Illustration of the generation of the transition probabilities matrix.

The test-problems are defined as:

Circuit 1: The first problem has four inputs and one output. The set F
indicates the rows of the truth table in which the outputs are equal to one:
F = {0, 1, 3, 6, 7, 8, 10, 13}.
Circuit 2: The second problem has five inputs, one output, and
F= {2, 3, 6, 7, 10, 11, 13, 15, 18, 19, 21, 23, 25, 27, 29, 31}.
Circuit 3: The third problem has four inputs, three outputs, and
F1 = {0, 5, 10, 15}; F2 = {1, 2, 3, 6, 7, 11}; F3 = {4, 8, 9, 12, 13, 14}.
Circuit 4: The fourth problem has five inputs, three outputs, and
F1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 28, 29, 30, 31};
F2 = {0, 2, 4, 6, 7, 8, 10, 12, 14, 15, 16, 18, 20, 22, 23 24, 26, 28, 30, 31};
F3 = {4, 5, 12, 13, 20, 21, 28, 29}.

A hundred independent runs were performed and the algorithm is terminated
when a correct circuit is found or the maximum number of evaluations is reached;
here, 100000 evaluations are allowed.

For each beneficial mutation, the exchanges are stored and frequency of occur-
rence of each exchange will be used in order to build a matrix of transition prob-
abilities. Figure 4 presents a bar plot of the values stored in that matrix at the
end of the analysis. Notice that Fig. 3 shows one particular case: the probabili-
ties for the and gate of a parent. The matrix of transition probabilities will be
used to guide mutation (biased mutation) in other problems as will be seen in
Sect. 4.2.
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Fig. 3. Example of the biased mutation operator. When a gate (function) is selected
to be mutated, then it is replaced by another one using a roulette wheel defined by the
transition probabilities matrix obtained by counting the beneficial mutations.

4.2 Designing a Combinational Logic Circuit

For a comparative study four benchmark problems studied by Goldman and
Punch [11] and widely used in the electronics literature [7,18] were chosen to
verify the effectiveness of our approach. All experiments were implemented in
MATLAB and for statistical analysis we used SPSS. The following values were
calculated and used in the comparisons: the number of times a feasible solution
is found (we call it a “hit”), the median of the number of objective function
evaluations required to obtain a feasible solution (called here “MES”), and the
number of beneficial mutations per thousand evaluations performed. Notice that
larger values of this ratio indicate a smaller number of objective function eval-
uations unnecessarily wasted and, consequently, an increase in the performance
of the method.
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Fig. 4. Values in the transition probabilities matrix obtained using the four benchmark
problems shown in Sect. 4.1, considering the beneficial mutations from parent to child
gates.

For all test-problems, we used μ = 1, λ = 4, performed 51 independent runs,
and adopted the function set Γ = {and, or, not, nand, nor, xor, wire, c0, c1}.
Also, for each problem, we employed the same number of nodes used by
Goldman and Punch [11]. To ensure that a feasible solution is always found
at the end of a run, a sufficiently large number of function evaluations (5000,
500000, 500000, 1000000, respectively for problems 1, 2, 3, and 4) is pre-defined
for each problem. Goldman and Punch [11] were able to solve those problems in
95 % of the runs with 1487, 42278, 74939, and 611034, evaluations respectively.
The maximum number of evaluations allowed here are at least 60 % higher than
those required in [11] to solve the problem.

The results of each type of mutation are shown in Table 1. The first line
for each problem shows the control configuration corresponding to SAM, as
described in Sect. 2.1.

Problem 1: The first problem, 3-Bit Parity, is considered very simple, but is
the most common test-problem in the CGP literature [11,17,22,23] and may
help understand how the mutation changes affect the results. The topology con-
figuration was number of rows = 1, number of columns = 500, as chosen in [11].
It can be seen that the biased mutation converges to a feasible solution with
a smaller number of evaluations. The proposed technique obtained MES = 269
while the control configuration has MES = 413.
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Table 1. Comparison between standard and biased SAM for the four test-problems
used here. “Hits” represents the number of times that a given approach found a feasible
solution. The number of times that a beneficial mutation occurs every 1000 evaluations
is denoted by “Beneficial Mutation/1000 evals”. “MES” is Median Evaluations to
Success. The p-values calculated with the Mann-Whitney U test over the MESs are
also presented.

Circuit Single Hits Beneficial MES Confidence p-value

active mutation (%) mutation/1000 evals MES interval

Bit Standard 98 15.7 413 285 .. 469 –

Parity Biased 100 15.9 269 189 .. 393 0.049

16 to 4 bit Standard 100 1.6 19473 16673 .. 22953 –

encoder Biased 100 1.9 16153 14525 .. 20837 0.103

4 to 16 bit Standard 90 1.0 332813 293501 .. 360637 –

decoder Biased 100 2.1 165665 145681 .. 184161 0

3-Bit Standard 76 1.3 559385 464745 .. 744909 –

Multiplier Biased 88 1.6 435781 382125 .. 550645 0

Problem 2: The second problem is the 16-4 bit encoder, which can be
found in [10,11]. The topology configuration was number of rows = 1, num-
ber of columns = 2000, as chosen in [11]. The proposed technique obtained
MES = 15951 while the control configuration has MES = 19469.

Problem 3: The third problem, is the 16-4 bit decoder proposed in [10,11]. The
topology configuration was number of rows = 1, number of columns = 1000, as
chosen in [11]. The proposed technique obtained MES = 161889 while the control
configuration has MES = 325193.

Problem 4: The fourth problem is the 3-bit multiplier, which can be found
in [10,11]. The topology configuration was number of rows = 1, number of
columns = 5000, as in [11]. This problem is very difficult by comparison to the
other ones. The proposed technique obtained MES = 430487 while the control
configuration has MES = 559385.

5 Discussion of the Results

Analyzing the transition probability matrix extracted from the four benchmark
problems in Sect. 4.1, one can see that the most important modification during
mutations is to change a nand gate in the parent to a xor gate. On the other
hand, relatively fewer cases were observed in which a beneficial mutation arises
from changing a not gate into an or gate. Thus, the reinforcement of the occur-
rence of the first exchange, and the avoidance of the second one can potentially
improve the performance of the algorithm.

It is interesting to note in Fig. 4 that there is no gate to be preferable in the
mutation for all cases. The probability of the transition varies with the gate to be
modified. For instance, the xor gate has a higher probability value when nand or
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or gates are being modified while it presents a lower probability of improvement
when replacing wire or not gates.

When the entire transition probabilities matrix is considered in the search,
the results (presented in Sect. 4.2) are better than those obtained by the base-
line (SAM) version, for all test-problems used here. Thus, one can see that the
extraction of knowledge is possible and useful in improving the performance
of CGP.

Finally, notice that beyond the decrease in the number of objective function
evaluations to reach a feasible solution, the ratio between the average number of
beneficial mutations and the average number of evaluations to success increased,
showing that the efficiency of the search is also improved for all problems tested.

6 Conclusions

This paper proposed a new mutation for automatic design of combinational
logic circuits via Cartesian Genetic Programming. Through the analysis of the
evolutionary process in a given set of problems it was possible to gain knowledge
and then use it to guide the search. The incorporated knowledge about the
performance of the mutation operator constitutes an important step towards
increasing the power of CGP as a design tool.

Experimental results confirmed the superiority of the new biased mutation
operator over a standard mutation in reducing the number of fitness evaluations
in the design of combinational logic circuits.

Nevertheless, a more in-depth study of the evolutionary mechanisms and ben-
eficial mutations remains as a promising research area. The rationale behind the
design of the biased Single Active Mutation applied here to circuit design, is not
restricted to this type of application; other design domains can be investigated.
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Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol.
8672, pp. 476–486. Springer, Heidelberg (2014)

20. Turner, A.J., Miller, J.F.: Neutral genetic drift: an investigation using cartesian
genetic programming. Genet. Program. Evol. Mach. 16(4), 531–558 (2015)

21. Vasicek, Z.: Cartesian GP in optimization of combinational circuits with hundreds
of inputs and thousands of gates. In: Machado, P., et al. (eds.) EuroGP 2015.
LNCS, vol. 9025, pp. 139–150. Springer, Berlin (2015)

22. Walker, J.A., Miller, J.F.: The automatic acquisition, evolution and reuse of mod-
ules in cartesian genetic programming. IEEE Trans. Evol. Comput. 12(4), 397–417
(2008)

23. Yu, T., Miller, J.F.: Neutrality and the evolvability of boolean function landscape.
In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon,
W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, p. 204. Springer, Heidelberg (2001)



Fast and Effective Multi-objective Optimisation
of Submerged Wave Energy Converters
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Abstract. Despite its considerable potential, wave energy has not yet
reached full commercial development. Currently, dozens of wave energy
projects are exploring a variety of techniques to produce wave energy effi-
ciently. A common design for a wave energy converter is called a buoy.
A buoy typically floats on the surface or just below the surface of the
water, and captures energy from the movement of the waves.

In this article, we tackle the multi-objective variant of this problem:
we are taking into account the highly complex interactions of the buoys,
while optimising the energy yield, the necessary area, and the cable
length needed to connect all buoys. We employ caching-techniques and
problem-specific variation operators to make this problem computation-
ally feasible. This is the first time the interactions between wave energy
resource and array configuration are studied in a multi-objective way.

Keywords: Wave energy · Multi-objective optimisation · Simulation
speed-up

1 Introduction

Global energy demand is on the rise, and finite reserves of fossil fuels, renew-
able forms of energy are playing a more and more important role in our energy
supply [11]. Wave energy is a widely available but largely unexploited source of
renewable energy with the potential to make a substantial contribution to future
energy production [3,9]. There are currently dozens of ongoing wave energy
projects at various stages of development, exploring a variety of techniques [10].

A device that captures and converts wave energy to electricity is often referred
to as a wave energy device or wave energy converter (WEC). One common WEC
design is called a point absorber or buoy. A buoy typically floats on the surface
or just below the surface of the water, and it captures energy from the move-
ment of the waves [9]. In our research, we consider three-tether WECs (Fig. 1)
as a technological alternative to the common single-tether WECs. While their
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Submerged buoy

Tether

Power take-off system

Sea floor

Fig. 1. Schematic representation of a three-tether WEC [18].

capital cost are higher than of conventional single-tether heaving buoys, they
can extract significantly more energy from the waves [16]. In our case, the buoys
are fully submerged and tethered to the seabed in an offshore location. They
use the motion of the waves to drive a hermetically sealed hydraulic line to
drive hydroelectric turbines to generate electricity, or to power a reverse osmosis
desalination plant to create potable water.

A single wave energy converter can only capture a limited amount of energy
alone, which is why it is essential to deploy wave energy devices in large numbers.
A group of wave energy devices is commonly referred to as a wave energy farm or
array [2]. In order to evaluate our arrays, we use a recently developed frequency
domain model for arrays of fully submerged three-tether WECs [15]. This model
allows us to investigate different parameters, such as number of devices and
array layout. In addition to the objective of producing energy, we consider the
following two objectives: the cable length needed to connect all buoys as given
by the minimum spanning tree, and the area of the convex hull needed to place
all buoys. The ideal choice of parameters leads to an optimisation problem: what
are the best trade-offs of the buoys’ locations, the area needed, and the cable
length needed? To the best of our knowledge, this study is the first to investigate
this question to reduce costs and to increase efficiency.

We proceed as follows. In Sect. 2, we introduce the multi-objective buoy
placement problem and the different objectives that are subject to our investi-
gations. Then, we present in Sect. 3 our speed-ups, the operators, and the con-
straint handling used. We report on our computational study in Sect. 4 before
we conclude with a summary.

2 Preliminaries

In the following, we outline the different objectives and constraints that we
consider for the WEC array optimisation.

Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be the set of x and y coordinates
of n WECs in the plane. The goal is to find a set of coordinates such that the
energy output of the whole wave farm is maximised. At the same time, the total
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length of the cable or pipe necessary to interconnect the buoys, as well as the
area necessary for the wave farm, should be minimised.

The WEC design that we consider is a fully submerged spherical body con-
nected to three tethers that are equally distributed around the buoy hull (Fig. 1).
Each tether is connected to the individual power generator at the sea floor, which
allows to extract power from surge and heave motions simultaneously [14].

2.1 Power Output Prediction

In the following, we briefly outline the model of this kind of WECs arrays as it
was derived by Sergiienko et al. [15] and used by Wu et al. [18].

The dynamic equation of the WECs array is derived in the frequency domain
using linear wave theory, where a fluid is inviscid, irrotational and incompressible
[4]. This model considers three dominant forces that act on the WECs:

(i) excitation force includes incident and diffracted wave forces;
(ii) radiation force acts on the oscillating body due to its own motion;
(iii) power take-off force that exerts on the WEC from machinery through

tethers.

The key point in the array performance is the hydrodynamic interaction
between buoys that can be constructive or destructive depending on the array
size and geometry.

Assuming that the total number of devices in the array is n and p is the body
number, then the dynamics of the p-th WEC in time domain is described as:

Mpẍp(t) = Fexc,p(t) + Frad,p(t) + Fpto,p(t), (1)

where Mp is a mass matrix of the p-th buoy, ẍp(t) is a body acceleration vector in
surge, sway and heave, Fexc,p(t), Frad,p(t), Fpto,p(t) are excitation, radiation and
power take-off (PTO) forces respectively. The power take-off system is modelled
as a linear spring and damper for each mooring line with two control parameters,
such as stiffness Kpto and damping coefficient Bpto.

In case of multiple bodies, where p = 1 . . . n, Eq. (1) can be extended to
include all WECs and expressed in frequency domain:

(
(MΣ + AΣ(ω)) jω + BΣ(ω) − Kpto,Σ

ω
j + Bpto,Σ

)
ˆ̇xΣ = F̂exc,Σ , (2)

where subscript Σ indicates a generalised vector/matrix for the array of N bod-
ies, AΣ(ω) and BΣ(ω) are radiation added mass and damping coefficient matri-
ces that include hydrodynamic interaction between buoys, Kpto,Σ , Bpto,Σ are
the stiffness and damping block-matrices of the PTO system.

The total power absorbed by the array of WECs can be calculated as:

PΣ =
1
4
(F̂∗

exc,Σ
ˆ̇xΣ + ˆ̇x∗

ΣF̂exc,Σ) − 1
2

ˆ̇x∗
ΣBˆ̇xΣ , (3)

where ∗ denotes the conjugate transpose.
For more details on the model, we refer the interested reader to [15,18].
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2.2 Constraints and Assumptions

We have the following constraints placed on our optimisation. The first one
enforces an upper bound on the area of the farm. This constraint ensures that
we can only place a buoy i within a certain area, which is a realistic constraint
for most layout problems. For a rectangular wave farm with length l and width
w, this constraint is satisfied iff

0 ≤ xi ≤ l and 0 ≤ yi ≤ w, 1 ≤ i ≤ n. (4)

Because buoys can damage each other if they get too close, and also maintenance
ships need to be able to navigate between them, the second constraint regulates
the spacial proximity. It is satisfied iff

√
(xi − xj)2 + (yi − yj)2 ≥ 50meters. (5)

In addition to the above constraints, we assume that all WECs have the same
power take-off characteristics.

2.3 Euclidean Minimum Spanning Tree

Fig. 2. An example WEC
array. The circles visualise
the safety distance.

We use the Euclidean minimum spanning tree
(MST) to calculate the minimum length of cable
or pipe required to connect all buoys in a particu-
lar array configuration. It is computed by first con-
structing the complete graph on the set of points
that represent the buoys and edge costs given by
the Euclidean distance between any pair of buoys.
Then, the minimum spanning tree for this graph is
computed and used as an objective representing the
costs of the cable or pipe length. Figure 2 displays
an array layout as, as well as the minimum spanning
tree, represented by lines joining each buoy.

2.4 (Cost of the) Convex Hull

In our study, the cost of the convex hull is defined as the area contained by the
set of points forming the convex hull. This value is the minimum land area that
is required for a wave farm layout. Figure 2 displays a buoy layout, as well as
the area (cost) of the convex hull shaded in grey.

3 Computational Speed-Up, Operators, and Constraint
Handling

3.1 Speed-Up of Simulation

In order to make the simulations computationally feasible, and to make the best
use of the available hardware, we reimplemented the PTO system in C++ and
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Table 1. Runtime per evaluation in seconds (median of 20 runs). Ω is the set of
frequencies ω used. In each cell, single-thread results are on the left and multi-thread
ones on the right. Laptop denotes a computer with a Intel Core i7-4910MQ CPU (up to
3.9 GHz, used with 4 threads) and 32 GB RAM. Server is a compute server with four
AMD Opteron 6348 CPUs (up to 3.4 GHz, used with 48 threads) and 128 GB RAM.

n |Ω| MATLAB C++

Laptop Server Laptop Server

4 50 29.28/11.64 56.15/3.54 2.83/0.98 5.48/0.38

9 25 80.96/31.14 153.75/9.48 8.32/3.05 16.28/0.98

16 25 262.86/97.58 508.63/29.88 29.31/9.94 55.42/3.23

25 25 658.21/239.37 1265.97/72.46 71.92/26.20 141.16/8.95

parallelised it with OpenMP [13]. Because the system is defined as a series, it is
inherently parallelisable and a linear speed-up possible. Furthermore, OpenMP’s
framework allows for nested paralellisation, which further decreases the overall
running time. The integrals are calculated with the GNU Scientific Library [5],
which has support for integrals with singularities. After comparing the perfor-
mance of complex linear system solving in C++ and MATLAB [12], the result
from Eq. (2) is obtained from MATLAB. Note that the evaluation of Eq. (3) can
only be parallelised for each of the frequencies ω considered.

The evaluation of a WEC array is time consuming even with parallelisa-
tion. The integral calculation is the bottleneck consuming upwards of 95 % of
the running time. Wu et al. [18] used caching of integral computations because
a large portion of these integrals are repeated, achieving a factor 7 speed-up
in running time. We use the caching approach even more comprehensively, by
caching results not only within a single layout evaluation like Wu et al., but by
reusing them across multiple evaluations. This additional improvement can help
if an optimisation algorithm modifies only part of a solution at each iteration,
therefore reusing integrals computed in previous iterations.

In Table 1 we list the achieved time needed to compute the intra-buoy interac-
tions. As we can see, the speed-ups (up to 142-fold) allow us to run significantly
more evaluations if the overall available time is limited.

3.2 Problem-Specific Operators

As the problem is highly constrained due to a large number of buoys and the
given safety margin around each buoy, the operators have to ensure that feasible
placements are produced. We investigate the benefit of the two variation oper-
ators MovementMutation and BlockSwapCrossover by Tran et al. [17]
over the commonly used Polynomial Mutation and Simulated Binary Crossover.
The former pair was designed for wind turbine placement optimisation, where
safety distance constraints and area constraints also need to be considered.
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MovementMutation is an operator that does a local change to the current
solution. For a randomly picked WEC, MovementMutation moves it to a
randomly selected spot along a selected direction to a feasible location.

BlockSwapCrossover is designed to implant a randomly selected rectan-
gular “block” of WECs from each of the two parents to produce two children,
each with a varying degree of information from each parent. A repair operator
is applied in case the number of WECs does not match to the target number.

Note that the fundamental difference between both the WEC positioning and
the wind turbine positioning is that “shading” is the primary inter-turbine effect,
while the primary inter-buoy effect is “phase shifting”. However, as the operators
do not consider these effects directly, we can apply them to our problem as well.

3.3 Constraint Handling

As described in Sect. 2.2, we consider area constraints and safety distance con-
straints in this study.

The area (box) constraint is enforced by applying a sinusoidal-shaped func-
tion that maps any value to a closed range. The function used has the form [6]:

x = a + (b − a) ∗ (1 + cos(π ∗ x/(b − a) − π))/2 (6)

The advantage of this function is twofold. First, the boundaries of the region
are automatically enforced without the need for a check on each iteration. Sec-
ond, it provides a smooth transition of the movements of buoys close to the
boundaries, contributing to the performance of the optimisation algorithm.

The inter-buoy distance is enforced by applying a penalty to the objectives.
This penalty is proportional to the distance that the buoys lie outside the safety
margin. The resulting objectives O′ are used in the optimisation process:

O′ = O

⎛

⎝1 − K

n∑

i

n∑

j �=i

max(M − d(i, j), 0)

⎞

⎠ (7)

where n is the number of buoys, M is the safety distance to keep between buoys,
d(i, j) is the Euclidean distance between the buoys, and K ∈ IR+ is the penalty
regularisation parameter. This parameter is meant to control the slope of the
penalty applied, acting as a trade-off between discouraging solutions that lie far
into the infeasible region, and allowing the exploration of boundary regions.

4 Experimental Study

In this section, we describe our experimental setup and report on the results of
different multi-objective evolutionary algorithms using our speed-ups and vari-
ation operators for the multi-objective buoy placement problem.
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4.1 Experimental Setup

For the basis of our study, we utilise the algorithms SMS-EMOA [1] and MO-
CMA-ES [7], as implemented in the optimisation framework Shark 3.0 [8]. We
use SMS-EMOA in two variants: (i) the default SMS-EMOA with Polyno-
mial Mutation and Simulated Binary Crossover, and (ii) the problem-specific
SMS-EMOA� with MovementMutation and BlockSwapCrossover (see
Sect. 3.2).

We use a population of size μ = 50 for all experiments, and the evaluation
budget for each run is 6000 evaluations. All other parameters are used with their
default values in the Shark library. Unless stated otherwise, we report the results
of 20 independent runs.
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Fig. 3. Initial population in
the 25-buoy scenario. The
μ = 50 layouts are shown
in different colours. (Color
figure online)

For all runs, we initialise the first population
with regular grids that are scaled from the tight-
est grid to the most generous one where buoys are
placed on the boundaries as well. In Fig. 3 we show
an example, which also shows the non-linear effect
that arises from the constraint handling of the box
constraints (Eq. 4). The side-effect of this initialisa-
tion is that we already achieve right from the begin-
ning a population of solutions that is guaranteed to
be diverse in the size of the convex hull and in the
length of the minimum spanning tree. In prelimi-
nary experiments, we observed that this approach
performed better than one with random initial
layouts.

The scenarios are defined as follows. The goal is to place 4, 9, 16, and 25 buoys
subject to the three objectives in a quadratic area. We scale the area available
with the number (considering an area of 20,000 m2 per buoy), which results in
squares with sides of length 283 m, 424 m, 566 m, and 707 m respectively.

To compare the performance of the different setups, we inspect the sets of
trade-offs visually, and we employ the hypervolume indicator. To compute the
latter, we rescale the final solution set into the unit cube that is defined by the
extreme values (of feasible layouts) observed for each scenario.

In each scenario, we use the sea state, i.e. the wave frequency distribution,
and the features of the buoys as defined in the single-objective investigations
in [18], which allows us to compare results for 25 buoys. The WEC radius is
a = 5 meters, and their power take-off characteristics are kept static. The mass
of each buoy is equal to 0.85 times the mass of the displaced water. Ocean depth
is chosen to be 30 m and all WECs are submerged 6 m to the centre of buoy.

To compute the power output of a solution, we need to choose a number of
discrete wave frequencies from the wave spectrum. While Wu et al. [18] observed
that a single frequency from the entire spectrum of waves can be used with
reasonable accuracy during buoy placement optimisation, we prefer to use a
significantly more time-consuming approach with 25 or 50 wave frequencies.
This provides us with very accurate power output predictions. Also, this greatly
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reduces the risk of unrealistic exploitation of local optima due to ill-conditioned
scenarios, which we have observed in the one-frequency case.

4.2 Experimental Results

In the following, we compare the performance of the different multi-objective
approaches. Figure 4 summarises the hypervolumes achieved by the final popu-
lations for the different scenarios. While the standard version of MO-CMA-ES
outperforms the standard version of SMS-EMOA, both are easily outperformed
(in terms of achieved hypervolume) by SMS-EMOA�. It appears that even though
the latter employs operators previously used in wind turbine placement optimi-
sation, they are also beneficial in our case.

Note that MO-CMA-ES hardly benefits from the caching of simulation
results, as it tends to sample new coordinates for all buoys every time. While
this behaviour is typically an advantage, it was infeasible for us to apply MO-
CMA-ES to the optimisation of the larger scenarios.

Exemplarily, we show in Fig. 5 how the average objective scores across
the populations as they evolve over time. Interestingly, SMS-EMOA and
SMS-EMOA� behave quite differently, even though they differ only in their varia-
tion operators. For example, the standard SMS-EMOA performs best in terms of
convex hull and length of the minimum spanning tree, but it produces on average
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ing for 16 and 25 buoys due to the unacceptable run-times.
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Fig. 5. Evolution of objective scores over time in case of the 9-buoy scenario. Shown
are the averages and the 95 % confidence intervals. Note that we are minimising the
negative power output, meaning that smaller values are better.
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Fig. 6. Population with the highest power output layout for 25 buoys (left, computed
by SMS-EMOA�), with the three-dimensional space being projected twice into the two-
dimensional space. The layout with the highest power output (3.590 MW) is shown in
the middle, and it uses more than twice the area of the layout with the lowest output
(3.270 MW) in this population. Note that the waves arrive from the top of the layouts.
The circles in the middle and in the right show the 5 m-buoys (to scale).

the layouts with the worst power output. It appears that all three approaches
explore quite different parts of the objective space across all runs. This is not
only reflected by the final mean values, but also by the spread across different
runs by the same algorithm. In summary, this shows to us that a decision maker
should not blindly trust multi-objective performance indicators, but inspect the
solution sets as well. In practice, a single trade-off layout has to be chosen for
implementation, and even though the nature of the problem is multi-objective,
the decision eventually boils down to hidden preferences or economic factors.

Lastly, we briefly compare our results for 25 buoys with the ones by [18]. We
take their best result and recompute the power prediction more accurately using
25 frequencies instead of the single frequency they used. As a result, their best
layout has a predicted power output of 3.459 MW. Compared to this, our best
layout (Fig. 6) has an output of 3.590 MW, which is 3.8 % better.

To conclude, we can see that the multi-objective optimisation of arrays of
wave energy converters is feasible, if software engineering tricks are employed to
speed-up the simulations, and if problem-specific variation operators are used.
Also, it is important for engineers to explore different algorithms as these explore
the objective spaces with different biases—and the consequence of this bias might
matter to the decision maker.

5 Conclusions

Wave energy plays an increasing role in the energy supply world-wide. We have
investigated the problem of placing wave energy converters on a given offshore
area using different conflicting objective functions.

In a first step, we speeded up and parallelised the computations of the buoys’
interactions, which resulted in a speed-up by a factor of up to 142 for 25 buoys. In
order to improve the actual optimisation, we employed variation operators from
the loosely related wind turbine problem. Interestingly, these problem-specific
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operators proved to be effective in our setting as well, despite the intra-device
interactions being fundamentally different.

The computational study shows that multi-objective evolutionary algorithms
can be used for the multi-objective buoy placement problem; in particular, our
best performing configuration even improves the power output upon a previous
single-objective results by 3.8 %. This improvement can translate into millions
of additional dollars of income per year during the lifetime of the wave farm.

In the future, we will extend our research to optimising the individual power
take-off characteristics of the buoys in addition to their position, as the effective
sea state within the WEC arrays differs significantly from the state outside.

We made the code and results available online: http://cs.adelaide.edu.au/
∼optlog/research/energy.php

Acknowledgments. This work has been supported by the ARC Discovery Early
Career Researcher Award DE160100850.
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Abstract. One of the central questions of biology is how complex bio-
logical systems can continue functioning in the presence of perturba-
tions, damage, and mutational insults. This paper investigates evolution
of spiking neural networks, consisting of adaptive exponential neurons.
The networks are encoded in linear genomes in a manner inspired by
genetic networks. The networks control a simple animat, with two sen-
sors and two actuators, searching for targets in a simple environment.
The results show that the presence of noise on the membrane voltage
during evolution allows for evolution of efficient control and robustness
to perturbations to the value of the neural parameters of neurons.

Keywords: Spiking neural networks · Adaptive exponential integrate-
and-fire model · Genetic algorithm · Robustness to noise · Robustness
to damage

1 Introduction

One of the central mysteries of biology is the enormous robustness of complex
biological systems to perturbations [7]. This robustness is paradoxical because
large complexity suggests fragility. And yet biological systems are robust not
only to the fluctuations of the external environment, malfunctions of internal
parts, but also the steady bombardment, over generations, of genetic distur-
bances (mutations) resulting in slight changes in structure of these systems. For
example, biological genetic networks are robust to transcriptional noise, point
mutations, deletions and duplications of genes. Perhaps the most complex sys-
tems known, biological neural networks, are robust to changes at several scales—
developmental variability from one generation to the next, influencing the
number of cells and theirs connectivity, fluctuations over individual life in the
number of cells resulting from their death of cells and formation of new ones,
and at a scale smaller still—destruction and formation of synapses, changes of
the neurophysiological properties of individual neurons, etc.
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 686–696, 2016.
DOI: 10.1007/978-3-319-45823-6 64
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As the components of artificial computational systems get smaller, these sys-
tems become more difficult to build (resulting in the variability of structure)
and more unreliable (with more noise and more fragility of each part). Hence
the interest in building artificial systems inspired by biology, such as artificial
genetic networks and artificial neural networks, which promise large computa-
tional resources, low power consumption, and robustness to silicon mismatch
(for example [6]).

In this paper I investigate the interplay between the robustness to noise and
to other perturbations in evolved artificial spiking neural networks. The networks
are evolved to control the behavior of a simple animat, with and without the
noise on membrane potential of neurons. I then analyse the robustness of these
networks to changes in parameters of neurons and the functioning of the animats’
actuators.

The model of evolution of networks used in this paper was built originally
for artificial genetic networks. We called this approach a ‘mixed paradigm’ [8,9],
because the encoding in the artificial genomes is inspired by the encoding of
biological genetic networks, but the functioning of the networks is inspired by the
networks of biological neurons in the brain. In biology, the encoding of the neural
structures in the genome is much more indirect, with the number of neurons
in large mammalian brains vastly larger than the number of genes. However,
the computational task faced by the networks investigated here is quite simple,
consisting of directional movement toward target of an animat with two sensors
and two actuators, so a simple encoding is more than sufficient.

2 Model

2.1 Evolving Spiking Neural Networks

The network model used in this paper does not restrict the number of nodes
or connections in the networks (more precisely, the restrictions imposed by the
limited computer memory are never reached in practice; however, the task con-
sidered here does not require large networks). Each internal node is encoded in
the genome as a series of cis genetic elements followed by a series of trans ele-
ments (Fig. 1). Each element in the genome has several fields (four in the version
of the model used in this paper): the type (cis, trans, and input or output), sign,
and two coordinates. Three types of connections are allowed between the nodes:
input-cis—encoded by one input and one cis element—and, similarly, trans-cis,
and trans-output. The signs determine if a particular connection is inhibitory
(when the signs of two elements are different) or excitatory (when the signs are
the same).

A connection is formed if the coordinates of two elements are such that
the Euclidean distance between the corresponding points in an abstract
2-dimensional space is below a predefined threshold (5.0). The smaller the dis-
tance, the higher the weight of the connection (using the positive part of the
function 10−2d

d+1 , where d is the distance between the elements). If more than
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one connection is formed between any two nodes, the weights are added, giv-
ing in the end either a positive synaptic weight (an excitatory connection) or
a negative one (an inhibitory connection). For example, to calculate the weight
between the second sensory neuron in the network for the animat in Figs. 1 and
3 (marked as S) to the first interneuron (which has 5 cis elements), we need
to add the weights coming from the interactions between input-cis pairs (3, 4),
(3, 5), and (3, 8), the other pairs have distances higher than 5.0. This gives the
weight −0.16 − 3.07 + 2.04 = −1.19.

Input nodes have one state variable, determined by the sensors on the ani-
mat; internal and output nodes have four state variables: membrane potential
v, adaptation current w, excitatory conductance gE , and inhibitory conductance
gI . They are governed by four differential equations, according to the adaptive
exponential integrate-and-fire model of spiking neurons (AdEx, EIF) [2,5]:

dv

dt
=

gL(EL − v) + gLδe
v−VT

δ + w + gE(EE − v) + gI(EI − v) + Ioffset
C

(1)

dw

dt
=

a(V − EL) − w

τw
(2)

gE
dt

=
−gE
τE

(3)

gI
dt

=
−gI
τI

(4)

Euler integration was used, with 1-ms steps. The exponential term gives an
upswing of the action potential (when the input current, gE(EE−v)+gI(EI−v)+
Ioffset, drives the membrane potential beyond VT ), which is stopped when the
potential reaches 0 mV, and the downswing (in the next simulation step) results
from the reset condition: v is given the value of Vr, and w is incremented by b.
If the neuron has a negative (positive) connection, the inhibitory (excitatory)
conductance of the postsynaptic neuron is incremented by the synaptic gain
(0.003µS) multiplied by the weight.

The values of the parameters used in this paper give tonic spiking when
the input current is constant (above about 0.2204 nA): leak conductance gL =
0.01µS, rest potential EL = −70 mV, slope factor δ = 2 mV, threshold poten-
tial VT = −50 mV, excitatory reversal potential EE = 0mV , inhibitory reversal
potential EI = −70mV , offset current Ioffset = 0 for internal neurons and
Ioffset = 0.5 nA for output nodes, membrane capacitance C = 0.2 nF, adap-
tation coupling a = 0.002µS, adaptation time constant τw = 30 ms, synaptic
time constants tauE = tauI = 5ms, reset voltage V = −58 mV, and adaptation
increment b = 0 nA.

2.2 Animats and Their Environment

The animat has two sensors and two actuators. The state of the sensors depends
on the amount of the signal received from the targets (which can be seen as,
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Fig. 1. The genome and the animat. The genome of animat shown in Fig. 3 is shown
as an example (left); it consists of two sets of a series of cis (dark green) and trans
(pink) elements, thus encoding two internal nodes. The four elements on top encode
the outputs (green) and inputs (gray). The animat (right) has two sensors in front
(light circles) and two actuators behind them (the direction of the thrust is shown by
black straight lines); the trace of the movement for the first 500 ms is indicated by the
curvy line; as the animat approaches the target on its left, the right actuator is slightly
more active. (Color figure online)

for example, light intensity or scent [3]). The signal coming from a given target
decreases with the Euclidean distance (dEuc) from this target (as 1

1+0.2dEuc
), and

reaches maximum (1.0) at zero distance. The signal coming from all the targets
is summed. When a target is reached, it disappears, and the signal field changes
instantaneously. The activation of the sensor (SL and SR, Fig. 1) is equal to the
value of signal at the sensor’s location.

The sensory information is provided to the neurons that connect to the
input nodes. The state of one of these nodes (S, for sum) depends on the aver-
age activation of both sensors on the animat ( 2

1+e−γavg(SR+SL) − 1), and the
state of the other (D, for difference)—on the difference in sensors’ activation
( 1
1+e−γdif(SR−SL) ). In other words, the state of the node D is 0.5 when the acti-

vation of the left and right sensor on the animat is the same, and it decreases
towards 0 (or increases towards 1) when the right-left difference decreases (or
increases). The steepness of the sigmoid functions is set to amplify small dif-
ferences or to allow for a dynamic response even when the animat is close to
several targets (γdif = 10, γavg = 0.5). At each simulation step, the state of
each input node is determined, rounded to the largest previous hundredth (to
simulate sensors with limited precision), and this value, multiplied by the synap-
tic gain and the weight of the connection to a postsynaptic internal neuron to
which the input node connects, is added to the excitatory (or inhibitory, if the
weight is negative) conductance of this postsynaptic neuron.

The thrust forces (Fig. 1) generated by the actuators are proportional to
number of spikes of the output neurons in the previous 120 ms. The directions of
the forces are such that when the activations of the actuators differ, the animat
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turns, but even when only one actuator is active, the animat moves in a loop
rather than turning on the spot. When both previously active actuators become
inactive, the motion continues due to inertia until the animat is brought to a stop
by drag (proportional to velocity). This drag also imposes a maximum velocity
possible.

2.3 Genetic Algorithm

Each evolutionary run consisted of 250 generations of a genetic algorithm with
a constant population size of 300 individuals, with binary tournament selection
(draw two, keep the better one), and elitism (10 individuals). The genomes of
the animats in the initial population had, apart from two input and two output
elements, three series of cis and trans elements (the number of cis and trans in
each series was drawn from the normal distribution with mean and standard
deviation both equal to 3.0, rounded to the largest smaller integer; all numbers
below 1.0 were binned to 1). Coordinates in genetic elements were determined by
drawing a random direction and a random distance from (0, 0) using a uniform
distribution. Genetic operators were changes of coordinates (with probability
0.005 per gene; coordinate change causes the point corresponding to the element
to move in the abstract 2-dimensional space by a distance drawn from a normal
distribution), deletions, and duplications of individual elements. The probabili-
ties of deletions and duplications were 0.00375 and 0.0025, respectively, creating
a mutational pressure for short genomes.

The genetic algorithm aimed to minimize the average value of the fitness
function over 5 random maps with 20 targets each, ffit = 1 − ctargets

20 ), where
ctargets is the amount of targets reached. The animats were allowed to move
for 24000 ms during evolution, but when analysing the champions after each
run (and testing robustness), the fitness was re-evaluated by averaging for 1000
random maps with 20 targets and 48000 ms for each map.

Since the output nodes spike at a constant frequency without input from
internal neurons (because of the positive offset current), most animats in the
initial population moved, although not directionally.

3 Results and Discussion

Although the foraging task considered here is quite simple, corresponding to
Braitenberg vehicle 2b [1], it is not completely trivial. This is because the number
of targets gets smaller with each find, changing the activation of the sensors on
the animat, and the control has to be tuned to the physics of the environment
(the drag forces) and the animat (the thrust of the actuators). In fact, only about
6 % of the independent runs resulted in networks that allowed the animat to find
nearly all the targets on any map (fitness function below 0.1, meaning that at
most about 2 targets out of 20 were left on average). Only these champions
were analysed further (9 from 159 independent runs conducted with Gaussian
noise on the membrane potential with standard deviation 5 mV; 13 from 209
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Fig. 2. The behavior of the best animat in the cohort of 13 champions evolved without
noise. See text for details.
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Fig. 3. The behavior of the worst animat in cohort of 13 champions evolved without
noise. See text for details.
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Fig. 4. The behavior of the best animat in the cohort of 9 champions evolved with
noise. See text for details.
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Fig. 5. The behavior of the worst animat in the cohort of 9 champions evolved with
noise. See text for details.
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Table 1. Comparison of the robustness of the 9 champions evolved with noise on
voltage and 13 evolved without. The fitness function values (all the columns but the
last 2) have been obtained for 1000 random maps and 48000ms; the last 2 columns
indicate the number of cis and the trans elements in the genomes. The values of the
fitness function below 0.25 are highlighted in red, the values below 0.33 in green, and
below 0.40 in grey. The last row shows the results of the comparison between 9 and 13
values in each column using the Anderson-Darling k-samples test, with values below
0.05 highlighted in red. See text for more details.

independent runs without noise, Table 1; all the re-evaluations shown in the
table were performed using the noise levels at which the networks were evolved).

The results clearly indicate that networks evolved with noise were much
more robust to other perturbations (Table 1). Nearly all of such networks (with
the exception of one) allowed to find at least two thirds of the targets when the
activity of one of the actuators was increased by 15 %, and the activity of the
other actuator was decreased by 15 % (Table 1, column 2 and 3). Some animats
performed better when the left actuator had higher and the right lower activity;
for the other animats the inverse situation resulted in better performance, so
Table 1 shows the results for the better scenario in column 2 and for the worse
scenario in column 3. The networks evolved without noise did not fare well in the
worse scenario (see Table 1 for p-values of all the statistical tests; all tests were
done using the Anderson-Darling k-sample test; I also used, when appropriate,
the two-sample Kolmogorov-Smirnov test, the p-values for the two tests were
very close in value).

Similarly, most of networks evolved with noise performed well when the inter-
nal neurons were given either positive or negative offset current of 0.2 nA (instead
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of 0; Table 1; column 4 and 5), when the offset current for the output nodes was
decreased or increased by 0.3 nA (from 0.5 to 0.2 or 0.8, respectively; column 5
and 6), when synaptic gain was increased or decreased by 0.0005µS (from 0.003
to 0.0025 or 0.0035; column 7 and 8), reset voltage decreased or increased by
10 mV (from 58 to −68 or −48; column 9 and 10), or rest potential decreased or
increased by 30 mV (from 70 to −100 or −40; column 11 and 12). None of the
networks evolved without noise performed well in these scenarios.

Two networks evolved with noise were not affected much even by a change
from tonic spiking to tonic spiking with adaptation (by setting the adaptation
increment b = 0.1 nA), the fitness function changed in these two cases from 0.017
to 0.119 and from 0.035 to 0.089, and two other networks could perform even
with Gaussian noise with standard deviation 7 mV (the fitness function changed
from 0.015 to 0.227, and from 0.030 to 0.109), while only one network without
noise gave good behaviour with noise up to 2 mV (the fitness function changed
from 0.074 to 0.198).

In general, the networks evolved with noise were encoded by slightly longer
genomes than the networks evolved without noise (although all the networks in
Table 1 had 3 internal nodes, with the exception of the one in the last row, shown
in Figs. 1 and 3). This difference can be attributed mostly to a higher number
of cis elements in the genomes evolved with noise (Table 1; column 13 and 14).

The detailed analysis of the topology of the networks indicates that all net-
works have a neuron spiking with high frequency and inhibiting one of the actu-
ators (Figs. 2, 3, 4 and 5, the best and worst in each cohort is shown; the top
panels in all four figures show the voltage in the first 500 ms of the three, or two,
internal neurons; the order from left to right on the top corresponds to the order
from top to bottom in the graph on the bottom left panel of each figure, D is for
input node whose state corresponds to the difference in animat sensors, S is for
the node whose state corresponds to the sum/average of the sensors, R and L
indicate output nodes regulating right and left actuators, respectively, red edges
correspond to excitatory, and blue to inhibitory connections; the bottom right
shows the trajectory of the animat over 48000 ms).

For example, the network of the best animat in the cohort of 13 evolved
without noise (Fig. 2) this high-frequency neuron is internal neuron 3, the one
inhibiting stronger the left actuator. The network has also a self-sustaining loop
between neurons 1 and 3, a weaker loop between 2 and 3, the neuron 2 activates
itself very weakly, and neuron 1 inhibits itself strongly. The sustained activity of
neurons 2 and 3 results in a continued circular counterclockwise movement after
all the targets are reached (and the sensors are quiet); since the left actuator is
inhibited (by neuron 3), the animat turns to the left.

The small network in Fig. 3 is a less efficient controller; the trajectory shows
that three targets have been missed on this map (filled dark circles in the top
right). With small activation of the sensors, and driven mostly by self-sustained
spiking of both neurons (neuron 1 with higher frequency), the animat continues
to move with the left actuator more activated than the right, and will not reach
the targets if the simulation is continued.
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In contrast, the animat in Fig. 4, evolved with noise, reaches all the targets,
and—with no activation of the sensors—continues to move without any clear
pattern, driven by noise, and sustained activity of the network (with neuron 1
at the highest frequency, much higher than the spiking frequency of the other
neurons, but with neuron 3 having the most complex spiking pattern, with peri-
ods of activity separated by relative quiescence, apparent also in the first 500 ms,
Fig. 4 top). Note that the noise prevents the animat to reach the target as pre-
cisely as is possible for the animats evolved and acting without noise (most
targets are reached after an approach along a circular local trajectory).

The same is true for the worst animat in the cohort of 9 evolved with noise.
This animat is relatively less efficient than the best one, but on this map it
manages to collect all the missing 3 targets when the simulation is continued
beyond 48000 ms shown (and used to reevaluate fitness); after all the targets are
collected, the sustained activity of all neurons (with the highest frequency of
neuron 3, and complex spiking pattern of neuron 2) continues.

4 Conclusion and Future Work

The main conclusion is that both an efficient control and robustness to pertur-
bations to the value of the parameters of neurons can be evolved in the presence
of noise, similarly to our previous results showing that robustness to noise in
evolving genetic networks promotes robustness to damage [4]. The noise used
in this paper was on one of the state variables of the spiking neural network; it
will be interesting to see if other models of noise and perturbations (for exam-
ple, relevant to neuromorphic hardware [6] will give similar results. Importantly,
the networks in the model used here were encoded in an artificial genome in
a way that does not limit in principle, and allows the evolutionary process to
vary, the number of nodes and connections in the network. It remains to be seen
if the evolution for more complex tasks and behaviors, possibly requiring more
complex networks, is possible in this system.
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Abstract. This paper presents the Voronoi diagram-based evolutionary
algorithm (VorEAl). VorEAl partitions input space in abnormal/normal
subsets using Voronoi diagrams. Diagrams are evolved using a multi-
objective bio-inspired approach in order to conjointly optimize classifi-
cation metrics while also being able to represent areas of the data space
that are not present in the training dataset. As part of the paper VorEAl
is experimentally validated and contrasted with similar approaches.

1 Introduction

Anomalous Internet traffic detection is a major question of computer network
security. Intrusion detection systems (IDSs) [9] have proposed with the intention
of tackling this issue. They are meant to protect a network by providing a line of
defense that is able to detect and react to network attacks. Two main approaches
are used when building an IDS: (i) misuse-based and (ii) anomaly-based detec-
tion. While the former focuses on detecting attacks that follow a known pattern
or signature, the latter is interested in building a model representing the sys-
tem’s normal behavior while assuming all deviated activities to be anomalous
or intrusions. Because of that fact anomaly detection has received increasing
attention in the recent past.

Anomaly detection has been addressed with different approaches (see [2] for
a survey). Among nature-inspired approaches artificial immune systems (AISs)
[7] have received an special attention.

This paper proposes the Voronoi diagram-based evolutionary algorithm
(VorEAl). VorEAl is inspired on AISs and the representations that had been pro-
posed for evolutionary shape design consolidating previous progresses made in
this direction [8]. Its main distinctive feature is that it evolves Voronoi diagram-
based representations for normal/abnormal regions of the search space. Such
representation offers a flexible and compact alternative to some common rep-
resentations used in AIS such as hyper-spheres and hyper-rectangles. VorEAl
applies a multi-objective approach that takes into account the detection accu-
racy and other especially devised volume-based methods that promotes the emer-
gence of solutions that also adequately represent areas of the input space where
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 697–706, 2016.
DOI: 10.1007/978-3-319-45823-6 65
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no normal data has been received and, therefore, should represent anomalies.
As in any multi-objective approach, the algorithm produces a set of trade-off
solutions. VorEAl applies a committee approach that is based on the best (in
term of a priori given set of preferences) subset of those solution.

The paper is organized as follows. Section 2 presents the context of AIS
and some existing approaches to anomaly detection. Section 3 introduces the
Voronoi representation for abnormal and normal input subsets, together with
the variation operators and objective functions used to evolve it and VorEAl as
a whole. Section 4 introduces our methodology for the experimental validation
of VorEAl, also presenting the results of the study and comparing them with
other approaches from the literature. Finally, Sect. 5 discusses the results and
sketches some further research directions.

2 Foundations

There has been a consistent interest by the community on proposing nature-
inspired approaches to anomaly detection. In this context, AISs have attracted
attention as they embody an analogy to the biological immune system. They
are particularly appealing for anomaly detection problems as they capture the
ability of the biological system of telling apart normal body cells from pathogens.
That is, from a computational perspective, they create a model that is able to
discriminate between normal (self) and abnormal (non-self) objects. This feature
make AISs specially suited to be applied in the context of anomaly-based IDSs.

In order to extend AISs’ performance it is necessary to apply algorithms
that combine a powerful representation capacity as well as the possibility of
adequately adapting that capacity to meet the problem characteristics.

Voronoi diagrams are geometrical constructs that were known by the ancient
Greeks. Any set of points (aka Voronoi sites) in some n-dimensional Euclidean
space E defines a Voronoi diagram, i.e., a partition of that space into Voronoi
cells: the cell corresponding to a given site S is the set of points whose closest
site is S. The boundaries between Voronoi cells are the medians of the [SiSj ]
segments, for neighbor Voronoi sites Si and Sj . Though originally defined in
two or three dimensions, there exist several algorithmic procedures to efficiently
compute Voronoi diagrams in any dimension.

Voronoi diagrams offer a compact representation for shapes (surfaces in 2D,
volumes in 3D, for instance), by attaching to each Voronoi cell (or, equiva-
lently, to the corresponding Voronoi site), a Boolean label. The resulting Voronoi
diagram is a partition of the space into 2 subsets: the “true” cells are the
shape/volume, and the “false” cells are the outside of the shape/volume. The
genotype is here a (variable length) list of labeled Voronoi sites, and the pheno-
type is the corresponding partition in the space into two subsets. More generally,
any piece-wise constant function on the underlying space can be represented by a
similar representation by using real-valued labels. Such representation has been
successfully used in the context of Evolutionary Optimum Design [5,10]. In par-
ticular, it has been demonstrated that the local complexity of the representation
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can also be adjusted by evolution: in regions of the space where the shape has
a complex boundary, several Voronoi sites will be used, whereas only a few of
them will be necessary elsewhere.

In the context of classification, the target phenotypes are partitions of the
parameter space into positive and negative examples (in the case of 2 classes),
and can hence also be represented by Voronoi diagrams with Boolean labels —or
with labels taken from a finite alphabet in the case of more than 2 classes.

3 The Voronoi Diagrams-Based Evolutionary Algorithm

We now discuss the building blocks of VorEAl. In particular, we present variation
operators, the possible strategies used for evaluating the individuals and how
these elements are assembled together to form the algorithm.

3.1 Variation Operators

The genotypes of Voronoi representations is a variable length list of Voronoi sites
(S1, . . . , Sp), with p ∈ [Pmin, Pmax], where each site is defined by its n coordinates
in E . Each site S has an associated label S.� that determines how a point that
falls within the corresponding cell is classified.

Fig. 1. Mutation of a Voronoi diagram.
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Mutation Operator. Several mutation operators can be designed for such a
variable-length representation.

– At the individual level, a Voronoi site can be added, at a randomly chosen
position, with a random label; or a randomly chosen Voronoi site can be
removed.

– At the site level, Voronoi sites can be moved around in the space – and the
well-known self-adaptive Gaussian mutation has been chosen here, inspired
by Evolution Strategies (see (1) below); or the label of a Voronoi site can be
changed.

In the self-adaptive Gaussian mutation [11], each coordinate x of each Voronoi
site also “carries” its own variance σ that is used for its Gaussian mutation.
Coordinate x undergoes Gaussian mutation with variance σ while σ undergoes
a log-normal mutation with learning rate η as follows:

x ← σN (x, 1) and σ ← σeηN0,1 (1)

The different mutation operators are applied according to different probabil-
ities, following the procedure described in Fig. 1.

Fig. 2. Crossover operator for Voronoi diagrams.

Crossover Operator. The crossover operator for Voronoi representation should
not simply exchange some Voronoi sites between both parents, but should respect
the locality of the representation. Voronoi sites that are close to each other should
have more chance to stay together than Voronoi sites that are far apart. This
is achieved by the geometric crossover that operates on two (randomly selected)
parents by creating a random cutting hyperplane, and exchanges the Voronoi
sites from both sides of the hyperplane. The Voronoi diagrams are of course
reconstructed after the crossover. This procedure is described in detail in Fig. 2a.
A two-dimensional example is given in Fig. 2b.
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3.2 Objectives and Fitness Assignment

Anomaly detection can be posed as a particular case of classification problem
where data items must be tagged either as “normal” or “anomalous”. That rely-
ing on a dataset Ψ =

{
x(i), y(i)

}
where, without loss of generality we can state

that x ∈ R
n and y(i) ∈ {normal; anomaly} obtain a classifier that correctly

detects instances that correspond to each of the two categories. Because of this
fact the existing metrics devised to assess the quality of a classification algo-
rithm are also applicable in this context. For this particular problem, the most
relevant metrics are accuracy, recall and specificity, although many more could
also be of use. Accuracy seems the best choice in the general case, as one wants
to correctly identify all examples. But when dealing with anomalies, the dataset
is generally highly imbalanced, as normally there are fewer anomalous instances
than ‘normal’ ones. If only the classification accuracy is used, the error contri-
bution of the anomalies will be reduced and hence the model will be biased to
not regard them.

Furthermore, as already mentioned, the anomaly detection problem requires
that the classifier is not only able to correctly classify the “normal” and “anom-
alous” instances present in the training dataset but is also capable of detecting
when a given input falls in an area that was not covered by data of the training
set and, therefore, also can be interpreted as an anomaly.

It is possible to prompt the Voronoi diagrams (individuals) to represent the
known data in a form as compact as possible by expressing that as the relation
between the volumes of the Voronoi cell and the convex hull of the training data
that it contains. Let I = {Si, i = 1 . . . nI} be a Voronoi diagram, and, for each
cell Ci, let vi ∈ R be its volume and Di the set of data points it contains, i.e.,
Di = {x ∈ Ψ ; d(x, Si) ≤ d(x, Sj)∀i �= j}, d being the n-dimensional Euclidian
distance. We can then define the individual compactness as the sum, for each
cell, of the ratio of the volume of the convex hulls of Di and the volume of the
cell,

C(I) =
{∑

i
volume(convex hull(Di))

vi
if |Di| > n,

0 in other case.
(2)

It could be hypothesized that the previous formulation can be improved by
adding a multiplicative term that counts the number of elements in Di, resulting
in the multiplicative compactness

Cmult(I) =
{∑

i (|Di| − n) volume(convex hull(Di))
vi

if |Di| > n,

0 in other case.
(3)

In both cases, maximizing the compactness will produce cells that contain the
data in a form as tight as possible. Those compactness objectives can be comple-
mented by one that promotes the existence of empty cells that represent areas
of the input domain that are now present in the training data. Such objective
would take care of sites with small Di’s and promote that they become empty
as the evolution takes place. A form of representing this is by computing the
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total volume of cells with an anomaly label of an individual and rate it by the
number of elements it contains,

EV(I) =
∑

i,Si.�=anomaly

vi

1 + 2 ln(|Di| + 1)
. (4)

Consequently, it is obvious that it is necessary to jointly address all of those
objectives. Therefore, a multi-objective optimization approach will empower the
algorithm with the capacity to address all the requirements of the task at the
same time.

3.3 Algorithm Description

VorEAl consolidates the previous components as an algorithm that constructs a
classification model. The algorithm starts by creating an initial random popula-
tion P0 of npop individuals. At a given iteration t, individuals in the population
Pt are then mutated and mated using operators described above and thus pro-
ducing an offspring population Poff that consists of noff individuals. At this point,
individuals that have not yet been evaluated are presented with the dataset and
the values of the different objective functions are calculated. In this work, we
compute the accuracy, recall and specificity, but it should be noted that others
are available. From the union of Pt and Poff, the best npop are selected using
the non-dominated sorting selection of NSGA-II [3].

This process repeats until the stopping criterion of the algorithm is met.
When that happens, the algorithm has a final population Pfinal from which the
best individual(s) can be selected to represent the ‘self’ of the AIS. This a non-
trivial task as it implies taking into account the different conflictive objectives. In
this work, we select a committee of individuals Pcommittee ⊆ Pfinal that contains
the ρ-percent of Pfinal with the highest accuracy. Hence, the classifier returns
the most voted decision among the members of Pcommittee.

Fig. 3. Training and testing datasets. Test set anomalies present in the test datasets
are generated using the procedure described in Sect. 4.
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4 Experimental Study

The previous discussion and proposal must be complemented by a set of exper-
iments that establish the validity of VorEAl and studies the impacts of the
different components presented. That is the focus of this section.

One of the main questions regarding VorEAl is at what point a multi-
objective affinity function would actually generate better results at an admissible
cost. It could be argued that there exists the possibility that adding more objec-
tives would just make the search process more complex and resource demanding.

An important matter to be clarified was the impact of each of the objectives
presented in previous section. For that reason different combinations were tested.
In particular, we tested accuracy and compactness (a/c); accuracy, compactness
and total empty volume (a/c/t); accuracy and multiplicative compactness (a/m)
and accuracy, multiplicative compactness and total empty volume (a/m/t).

In order to provide grounds for comparison with similar approaches as well
as well-known approaches, other methods were included in the experiments.
In particular, we included the negative selection algorithm (NSA) [6] using
both variable-sized hyper-spheres and hyper-rectangles. For fair comparisons,
we applied the NSA+

sp and NSA+
re in which non-self training samples are subse-

quently used to enrich the detector library generated by NSA.
Similarly, we have included in the experiments two well-known classifiers:

one-class vector machines (SVMs) [12] and the näıve Bayes classifier.

Table 1. Summary of the outcome of the statistical hypothesis tests for each problem
and performance indicator. When an algorithm in the row has been significantly better
than the one in the column the corresponding cell is marked with a “+”. If it has been
worst then the cell contains a “−”. Cases where no significant difference was established
are identified with a “∼”.
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ä
ıv

e
B

ay
es

· ∼ − − + + + ∼
∼ · − − + + + ∼
+ + · − + + + +
+ + + · + + + +
− − − − · − − −
− − − − + · − −
− − − − + + · −
∼ ∼ − − + + + ·

Half kernel

V
o
rE

A
l
(a

/
c)

V
o
rE

A
l
(a

/
c/

t)

V
o
rE

A
l
(a

/
m

)

V
o
rE

A
l
(a

/
m

/
t)

N
S
A

-r
e

N
S
A

-s
p

o
n
e-

cl
a
ss

S
V

M
n
ä
ıv

e
B

ay
es

· − − − + − − −
+ · ∼ − + ∼ + +
+ ∼ · ∼ + ∼ + +
+ + ∼ · + + + +
− − − − · − − −
+ ∼ ∼ − + · + +
+ − − − + − · −
+ − − − + − + ·

Outliers

V
o
rE

A
l
(a

/
c)

V
o
rE

A
l
(a

/
c/

t)

V
o
rE

A
l
(a

/
m

)

V
o
rE

A
l
(a

/
m

/
t)

N
S
A

-r
e

N
S
A

-s
p

o
n
e-

cl
a
ss

S
V

M
n
ä
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The experiments involved six classification benchmarks problems: the ‘two
spiral’, ‘crescent and full moon’, ‘half densities’, ‘corners’, ‘outliers’ and ‘cluster
in cluster’ problems. They have the advantage that they can be visualized in 2D
while still posing a substantial challenge to the algorithm. One key element that
must be addressed is the ability of the method to detect anomalies that were
present in the original dataset and also those that were not present. Six tests were
prepared with that goal in mind by adding random anomaly data in the areas
that did not had any data in the training dataset. The resulting training and test
datasets can be observed in Fig. 3. Besides fixing these parameters we limited the
population to 100 individuals and ran the algorithms for 500 generations. The
rest of the parameters are tuned using a grid search procedure on a reduced-size
problem. The same parameters were used for all problems. The mutation of the
parameters were ps = 0.5, pf = 0.5, pt = 0.1, p+ = 0.2, p− = 0.1 and η = 0.5,
while the mating probability was 0.5, the minimum and maximum number of
sites in an individual was set to 20 and 100, respectively and the committee
selection percentile (ρ) was set to 5 % of the population.

The stochastic nature of the algorithms being analyzed calls for the use of
an experimental methodology that relies on statistical hypothesis tests. Using
those tests, we are able to determine in a statistical sound way if one algorithm
instance outperforms another. The topic of assessing stochastic classification
algorithms is studied in depth in [4]. There, it is shown that the Bergmann–
Hommel procedure is the most suitable for our class of problem. In all cases, we
have used a base level of significance of 0.05 and we run the same experiment
instances 50 times. The results of this experiments are shown as box plots in
Fig. 4. It can be inferred from those plots that the three-objective form of with
accuracy, multiplicative compactness, and total empty volume VorEAl yielded
the best results.

Fig. 4. Box plots of the experimental evaluations on the anomaly detection test sets.
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Fig. 5. Summaries of the statistical tests and an illustrative example. (Color figure
online)

When many tests are carried out, a comprehensive analysis of the results is
rather difficult as it implies cross-examining and comparing the results presented
separately. Consequently, we present them in summarized form in Table 1. It
should be noted that experiment parameters and results are available online
at http://lmarti.com/VorEAl. To further simplify the understanding of results,
why we decided to adopt a more integrative representation like the one proposed
in [1]. Figure 5 summarizes the outcome of the hypothesis tests by grouping them
by metric and problem, as explained in the previous section. Here it is clearly
visible how VorEAl with multiplicative compactness and total empty volume
objectives is generally able to yield better results. Finally, as an illustrative
example, we show in Fig. 5c an example of an evolved Voronoi diagram.

5 Discussion and Conclusion

In this paper we have presented VorEAl, a multi-objective evolutionary algo-
rithm that relies on Voronoi diagrams for representation. VorEAl has been
devised with the problem of anomaly detection in mind. The experimental results
obtained as part of this work point out that this is a promising direction of work.
However, there are many areas that should be further studied and explored. From
an algorithmic point of view, we should explore other classification objectives
(metrics).

It is important to try other multi-objective fitness assignments, like those
based on multi-objective performance indicators or reference points. This last

http://lmarti.com/VorEAl
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approach is of particular interest as, as we already mentioned, in our case we
have an a priori known ideal solution that can be used to guide the search. In
parallel, work should the done in understanding and reducing the computational
complexity of the algorithm. In this direction, we are already working on creating
approximative versions of the volume meant to decrease the computational cost
of the computation of the objective functions.

Acknowledgements. This work has been funded by the project PIA-FSN-P3344-
146479. Authors wish to thank the reviewers for their fruitful comments.
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Abstract. Satellite imagery and remote sensing provide explanatory
variables at relatively high resolutions for modeling geospatial phenom-
ena, yet regional summaries are often desirable for analysis and action-
able insight. In this paper, we propose a novel method of inducing spatial
aggregations as a component of the machine learning process, yielding
regional model features whose construction is driven by model predic-
tion performance rather than prior assumptions. Our results demonstrate
that Genetic Programming is particularly well suited to this type of fea-
ture construction because it can automatically synthesize appropriate
aggregations, as well as better incorporate them into predictive models
compared to other regression methods we tested. In our experiments we
consider a specific problem instance and real-world dataset relevant to
predicting snow properties in high-mountain Asia.

Keywords: Spatial aggregation · Feature construction · Genetic
programming · Symbolic regression

1 Introduction

Regional modeling focuses on explaining phenomena occurring at a regional, as
opposed to site-specific or global scales [11]. Regional models are of interest in
many remote sensing applications, as they provide meaningful units for analysis
and actionable insight to policymakers. Yet satellite imagery and remote sens-
ing provide variables at relatively high resolutions. Consequently, studies often
involve decisions concerning how to integrate this information in order to model
regional processes. Considering measurements at each individual spatial unit as
a separate model feature can result in a high dimensional problem in which high
variance and overfitting are major concerns. For this reason, spatial aggregation
is often applied in this setting to uniformly up-sample variables to be consistent
with the response. Although in averaging variables across all spatial units in the
region, we discard information which could in turn diminish prediction accuracy
and our understanding of underlying phenomena.

Rather than strictly incorporating individual spatial units or uniformly up-
sampling, it might instead be beneficial to construct features of a regional model
using particularly important subsets of geographical space. In this paper, we
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 707–716, 2016.
DOI: 10.1007/978-3-319-45823-6 66
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move away from uniform up-sampling aggregations towards more flexible and
interesting aggregation operations predicated on their subsequent use as fea-
tures of a regional model. We propose a novel method of inducing spatial aggre-
gations as a component of the machine learning process, yielding features whose
construction is driven by model performance rather than prior assumptions.

In experiments designed to explore these techniques, we consider a specific
problem and real dataset: estimating regional Snow Water Equivalent (SWE)
in high-mountain Asia with satellite imagery. Improved estimation of SWE in
mountainous regions is critical [3] but is difficult due in part to complex charac-
teristics of snow distribution [2].

2 Methods

We take a comparative approach to the SWE problem, considering ridge regres-
sion, lasso, and GP-based symbolic regression1. For each regression model, we
consider a filter-based method of feature construction in addition to a second,
more dynamic method. For linear regression, we incorporate a wrapper approach
in which constructed features and the regression model are induced in separate
learning processes, with feedback between the two. For symbolic regression, we
use an embedded approach where constructed features and the regression model
are induced simultaneously over the course of an evolutionary run.

The Dataset. The SWE dataset2 is derived from data collected by NASA’s
Advanced Microwave Scanning Radiometer (AMSR2/E) and Moderate Reso-
lution Imaging Spectroradiometer (MODIS) for March 1 - September 30, in
2003 - 2011, over an area that spans most of the high mountain Asia. We have
three explanatory variables measured daily across a 113 × 113 regular grid for
1935 days: (1) mean and (2) standard deviation of sub-pixel Snow Covered Area
[4,10], as well as (3) an estimate of SWE derived from passive microwaves [15].
Our response variable is regional SWE, an attribute of the entire study region,
represented as a single value for each of the 1935 days. The response was “recon-
structed” by combining snow cover depletion record with a calculation of the
melt rate to retroactively estimate how much snow had existed in the region [9].

2.1 Regression Models

Ridge regression [5] is similar to ordinary least squares (OLS) but subject to a
bound on the L2-norm of the coefficients. Because of the nature of its quadratic
constraint, ridge regression cannot produce coefficients exactly equal to zero
and keeps all of the features in its model. Lasso (Least Absolute Shrinkage and
Selection Operator, [16]) modifies the ridge penalty and is subject to a bound

1 The source code necessary for reproducing our results is available at https://github.
com/skriegman/ppsn 2016.

2 Raw satellite data was pre-processed by Dr. Jeff Dozier (UCSB) using previously
reported techniques and is available upon request.

https://github.com/skriegman/ppsn_2016
https://github.com/skriegman/ppsn_2016
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on the L1-norm of the coefficients. The geometry of this L1-penalty has a strong
tendency to produce sparse solutions with coefficients exactly equal to zero. In
many high dimensional settings, lasso is the state-of-the-art regression method
given its ability to produce parsimonious models with excellent generalization
performance. For both lasso and ridge regression, the parameter constraining
the coefficients is set through cross-validation.

Genetic Programming (GP, [7]) is a very flexible heuristic technique which
can conveniently represent free-form mathematical equations (candidate regres-
sion models) as parse trees. GP’s inherent flexibility is well-suited for our particu-
lar problem because it can efficiently express spatial aggregations and seamlessly
combine them into the learning process with minimal assumptions. Furthermore,
the “white box” nature of GP may provide physical insights about this complex
problem that is currently lacking, as in other domains [1,13].

To search the space of possible GP trees we use a variant of Age-Fitness
Pareto Optimization (AFPO, [12]). AFPO is a multiobjective method that relies
on the concept of genotypic age, an attribute intended to preserve diversity. We
extend AFPO to include an additional objective of model size, defined as the
syntactic length of an individual tree. The size attribute protects parsimonious
models which are less prone to overfitting the training data. The GP algorithm
therefore identifies the Pareto front using three objectives (all minimized): age,
error (fitness), and size. For the fitness objective, we use a correlation-based
function rather than pure error, and define fCOR = 1 − |φ(ŝ, s)|, where φ(ŝ − s)
denotes Pearson correlation between model predictions (ŝ) and actual values of
our response (s), regional SWE. Correlation has recently been shown to outper-
form error-based search drivers given that if a model makes a systematic error it
could be easily eliminated by linearly scaling the output and therefore should be
protected [14]. Accordingly, for all GP implementations, we apply a linear trans-
formation after fCOR -driven evolution has concluded, by using an individual
program (model) output as the single input of OLS on the training data.

Our implemented GP experiments used ramped half-and-half initializa-
tion with a height range of 2–6 and an instruction set including unary
({sin, cos, log, exp}) and binary functions ({×,+,−, /}). One thousand individ-
uals in the population are subject to crossover (with probability 0.75) and muta-
tion (with probability 0.01) over the course of 1000 generations. There is a static
limit on the tree height (17) as well as the tree size (300 nodes). Each experi-
ment consists of 30 evolutionary runs, from which the best model (lowest train-
ing fCOR) is selected. The selected model is then transformed using OLS, and
subsequently validated using unseen test data.

Standard Methods. Ridge regression, lasso, and GP may be performed on the
raw data using each variable at each individual spatial unit as a separate feature.
We denote these methods as Standard Ridge (SR), Standard Lasso (SL) and
Standard GP (SGP). SR, SL and SGP each have access to 113×113×3 = 38307
features, but only 1720 observations in each fold of data.
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2.2 Feature Construction Methods

Feature construction is a well studied problem and the utility of genetic pro-
gramming for feature construction has been recognized in many previous studies
[8]. The key difference in our work from this past work is the nature of the data
being modeled. We presume that there exist spatial autocorrelations of varying
size and shape that, if aggregated to improve the signal to noise ratio, yield
features supporting more accurate predictions.

In a regional model, we can construct features by aggregating higher dimen-
sional variables across space. However, it is not entirely clear what kind of aggre-
gations are useful as features of a predictive model. Grouping variables based on
similarity or dissimilarity does not necessarily produce useful regional features.
In this paper, we make an assumption about the importance of distance and
continuity in effective spatial aggregations, based on Tobler’s first law of geog-
raphy [17] which states that “everything is related to everything else, but near
things are more related than distant things.” Accordingly, we limit the space of
possible spatial aggregations to be an average of values within a circular spatial
area defined by its centerpoint and radius. However, where to aggregate, how
many aggregations to perform, and how to combine the aggregates must still be
determined manually or decided during model optimization. We view filters and
wrappers as intermediary steps in relaxing assumptions towards our embedded
approach, which automates all three of these aspects.

The Filter Method. Filter-based feature construction methods transform or
“filter” the original variables as a preprocessing step, prior to modeling. Our fil-
ter for the SWE problem represents a static up-sampling transformation of the
original variables. Each variable is decomposed in space by a grid of overlapping
circles3 of equal radii centered on a square lattice pattern of points (see Fig. 1a, c
and e for example). Each constructed feature corresponds to the average (arith-
metic mean) of a particular variable sampled within a particular circle of space.
Units that reside in an overlapping region of two separate circles are included in
the calculation of both features. Since there are three explanatory variables in
the SWE dataset, an R × R grid corresponds to p = 3R2 constructed features.
The constructed features are then used as inputs for ridge regression, lasso, and
GP, which we will refer to as Filtered Ridge (FR), Filtered Lasso (FL), and Fil-
tered GP (FGP). We will also specify the value of R used in a particular model
instance as a subscript, e.g. FR15 denotes Filtered Ridge with R = 15. We con-
sider filters with R ∈ {1, 2, . . . , 20}, however note that the standard methods are
essentially filters with R = 113, albeit with the non-overlapping square pixels.

The Wrapper Method. Wrapper-based feature construction methods incor-
porate feedback from the fit of the model. We implement wrappers around both
ridge regression and lasso in order to enable the circular sampling regions to
3 The shape of circles are in reality so-called “small circles,” as they lie on the surface

of earth.
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define their own center and radius. The circles are no longer fixed on a grid with
a predetermined size. Instead, each constructed feature is uniquely parameter-
ized by the coordinates of a center unit (x, y), as a latitude and longitude tuple,
and a radius r, as a single value floating point number in km. The center can be
any spatial unit in the region, including one at the edge of the raster. The radius
is restricted to be within 0 and 1000 km, which is flexible enough to contain only
a single unit or span the entire region (see Fig. 1b and d for example).

Wrapped Ridge (WR) and Wrapped Lasso (WL) separately use a ridge/lasso-
driven hill climbing algorithm to construct features that minimize Mean Absolute
Error (MAE), i.e. 1

n

∑n
i=1 |ŝi − si|, where si is the actual value of our response

(regional SWE) and ŝi is output predicted by the model over n observations.
The algorithm uses the same number of circles for each of the three variables,
initializing their parameters (x, y, r) randomly. For 1000 iterations, a single con-
structed feature (circle) is randomly selected and subject to a Gaussian mutation
on one of its parameters with standard deviation equal to 25 % of the radius
and centered at zero. A new ridge/lasso model is then refit on the mutated set
of features using a random subset of data sampled without replacement. If the
mutation lowered model error on the complementing set of training data left out,
then the change is accepted. Otherwise, the mutation is undone. If a proposed
mutation to the radius would take it outside the restricted range of 0 − 1000
km, then it is “bounced-back” the distance it would have exceeded the bound-
ary. For example, a random mutation that would result in a radius of 1200 km,
becomes 1000 − (1200 − 1000) = 800 km. Thirty restarts are used from which
the best model based on training data is selected. We consider R ∈ {1, 2, 3, 4}
for wrappers corresponding to 3 × R2 features which really means 3 × 3 × R2

modifiable parameters.

The Embedded Method. By using GP, we can allow for flexibility with
respect to the placement and number of aggregations as well as the way in
which they are combined to form a model. However, stochastic optimization
methods like GP cannot be easily “refit” in the same manner as deterministic
algorithms like ridge regression or lasso. Therefore using wrapper approach for
GP is computationally infeasible. Instead, modifications to aggregated features
are implemented through mutation-based operators.

In Genetic Programming with Embedded Spatial Aggregation (GPESA)
introduced here, our constructed features are represented as parameterized tree
terminals, with parameters (x, y, r). Constructed features are randomly initial-
ized in the same manner as the wrapper method, but separately for each termi-
nal of each individual in the population. Greedy Gaussian mutations to the
parameters (x, y, r) of a randomly selected constructed feature occur in the
population with 20 % probability, each generation. Mutations to r have mean
zero and a standard deviation of 25 %, subject to the bounce-back rule. Simi-
larly, mutations to (x, y) have mean distance zero and a standard deviation of
0.25r. For 25 iterations, greedy mutations modify the parameterized terminals
within a particular GP tree. A modification is accepted if it successfully reduces
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average error (fCOR) on random subsets of training data sampled with replace-
ment. Aside from the stochastic application, another key difference between the
wrapper method’s hill climbing algorithm and the GPESA’s greedy mutations is
that the overall regression model stays the same between mutations rather than
being “refit” after each mutation.

Validation. In order to validate the generalization of models we partition the
dataset into nine overlapping folds. Each fold corresponds to leaving out one
year for testing and training on the remaining eight (using years 2003–2011).
We use MAE on the unseen test data as a metric to assess model performance.
To account for a difference in scale across any set of features, all input model
features are standardized over time by removing the mean and scaling to unit
variance. This means that as wrapper and embedded methods construct new
aggregations, the sampled data is scaled over time prior to being averaged over
space. Since our goal is near-real-time estimation for a future day, the training
values of a feature’s mean and variance are reapplied when scaling the same
feature in validation.

3 Results

Table 1 displays the test error of each valid regression and feature construction
method combination. For filters and wrappers, only the best performing model
is displayed and we indicate the particular value of parameter R as a subscript.
Since the ultimate goal of our paper is to synthesize a method better than
existing approaches, we must statistically compare GPESA to SL, the state-
of-the-art linear regression/variable selection algorithm. The null hypothesis of
interest here is that of no difference between GPESA and a SL. Therefore we
perform yearly Wilcoxon signed rank tests [6] comparing GPESA to SL with
Bonferroni correction across the nine years. For five out of the nine test years,
GPESA is significantly better than SL, while for the other four years there is no
significant difference with SL.

Through displaying only the best testing filters and wrappers, we aim to
focus speculation about GPESA performance through a conservative lens. Yet
we ultimately view filters and wrappers as intermediary steps “working up”
to GPESA. Accordingly, the best test error better represents a bound on
the potential performance of a particular intermediary method even though it
may not be possible to achieve such performance through a parameter sweep
based on the training data. And indeed, across all methods tested, GPESA
reported the lowest recorded median mean-absolute error within all but two years
(7 of 9) where it has the second lowest.
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Table 1. Median mean-absolute error with corresponding standard errors in parenthe-
ses. Only the best testing filter- and wrapper-based results (choice of R) are displayed.
We explicitly compare GPESA with the state-of-art, SL. Bold values indicate signifi-
cance (at 0.05 level with Bonferroni correction) under a Wilcoxon singed rank test in
which the null hypothesis asserts that distribution of the differences between GPESA
and SL is symmetrically distributed about 0.

4 Discussion

Our results show that incorporating dynamic aggregations of higher resolution
variables into a regional model is beneficial in our particular problem setting, as
compared to both uniform up-sampling of variables and a state-of-the-art linear
regression technique (SL) that incorporates individual spatial units. SL achieves
competitive prediction performance through a sparse linear combination of the
individual spatial units, on par with SGP which is not linearly constrained.
Ultimately, GPESA performed significantly better (lower median test error) than
SL on a majority (5 of 9) of cross validation folds. Moreover, whenever GPESA
was not significantly better than SL it was not significantly worse.

A main reason why GPESA has an advantage in this application is the dif-
ficulty of knowing a priori what the most important spatial datapoints are, and
how to best aggregate them. Additionally, the structure of the model itself is
unknown and it depends on the resulting aggregations. Therefore this is not a
fixed length optimization problem, which makes it well-suited for GPESA, which
can search over different numbers and non-linear combinations of spatial aggre-
gations. While SL can theoretically perform the same aggregation as a GPESA
terminal (mean within a radius of a geographical point), SL is restricted to a
single linear solution while GPESA is not.

However, it’s important to emphasize that the computational cost of GPESA
is higher than that of traditional GP and much higher than that of linear regres-
sion. In particular, the most expensive operation is the “on the fly” aggregation
component of GPESA which makes the fitness evaluation require 500 % more time
than in SGP. Part of the incurred cost is due to inefficiencies of our implemen-
tation that necessitated a copy with all spatial aggregation operations. In future
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Fig. 1. Importance (defined in Sect. 4) of spatial units. For filters (a.) FR, (c.) FL,
and (e.) FGP, importance is displayed at each resolution R ∈ {1, 2, . . . 20} and each
individual filter subplot is annotated with the corresponding R. For wrappers (b.) WR
and (d.) WL, R ∈ {1, 2, 3, 4}. Finally, (f.) GPESA, which has no R parameter. White
areas indicate spatial units unused in feature construction across all three exploratory
variables.
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work we will look at reducing this overhead through more efficient data structures
(e.g. k-d trees).

Importance of Spatial Data. To better understand the relevance of particu-
lar spatial locations, we define the importance of a spatial unit for both linear
and symbolic methods, separately. For ridge regression and lasso, we can define
importance by exploiting the disposition of coefficients to be larger for variables
with a stronger correlation to the response, relative to a particular feature set.
We define linear regression importance of a particular spatial unit as the aver-
age absolute coefficient of features that incorporate the unit into a regression
model. While we cannot as easily determine relative importance within nonlin-
ear models, we can instead define importance by exploiting the multiple candi-
date solutions provided from stochastic multiobjective optimization. We define
GP importance of a particular spatial unit as the average absolute correlation
(1 − fCOR) of nondominated solutions that incorporate the unit.

To visualize the importance of spatial information, we generated a series of
heatmaps (Fig. 1). In Figs. 1a, c and e we show regional importance values of filter
methods for each R ∈ {1, ..., 20}, with the relevant value of R annotated in the
upper left corner of each box. Note that in lasso- and GP-based approaches, some
variables are unused (white), while ridge cannot perform variable selection and
uses all. Figures 1b and d plot WR and WL for R ∈ {1, 2, 3, 4}. Finally, Figs. 1e
and f plot the importance of spatial information in the GP sense, for FGP and
GPESA, respectively. Overall, this visualization indicates an agreement among
all methods on the relatively higher importance of information in the lower
center/right region of the image.

5 Conclusion

In this work we developed a novel method to address the problem of modeling
a regional response with high resolution satellite imagery. We moved away from
uniform up-sampling aggregations towards more flexible and interesting aggre-
gation operations predicated on their subsequent use as features of a regional
model. Our proposed technique, GPESA, is general and intended to apply to a
variety of modeling problems on spatially organized data. But as an application
example, and as a setting in which to evaluate our techniques, we considered
the problem of estimating snow water equivalent in high mountain Asia using
satellite imagery. Our results showed that using GP to evolve spatial aggrega-
tions outperforms lasso, the state-of-the-art method for directly incorporating
individual spatial units into a sparse linear model.

In future work we plan to explore more flexible spatial and temporal aggre-
gations for more predictive modeling in real earth science applications.

Acknowledgements. Thanks to Dr. Jeff Dozier (UCSB) for posing the high-
mountain Asia SWE problem and providing associated datasets.
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Abstract. A novel one-class learning approach is proposed for network
anomaly detection based on combining autoencoders and density esti-
mation. An autoencoder attempts to reproduce the input data in the
output layer. The smaller hidden layer becomes a bottleneck, forming a
compressed representation of the data. It is now proposed to take low
density in the hidden layer as indicating an anomaly. We study two possi-
bilities for modelling density: a single Gaussian, and a full kernel density
estimation. The methods are tested on the NSL-KDD dataset, and exper-
iments show that the proposed methods out-perform best-known results
on three out of four sub-datasets.

Keywords: Anomaly detection · Autoencoder · Density estimation

1 Introduction

Anomaly detection plays an important role in a variety of application domains
ranging from intrusion detection in network security, credit card fraud detec-
tion, health care and insurance to fault detection in safety critical systems [1,3].
This is due to the fact that anomalies often translate to critical, actionable
information or potentially dangerous situations and events. In network security,
anomaly detection is the task of distinguishing illegal, malicious activities from
normal traffic or behavior of systems [3,13]. This has become increasingly impor-
tant due to valuable resources and the widespread use of computer networks in
recent years.

Network anomaly detection models must be sufficiently flexible to keep up
with the continuous evolution of attacks or malicious activities over time, and
the occurrence of new, unknown anomalies [8]. Moreover, labeled anomaly data
may not be available, due to the rarity of intrusions, difficulty of labeling, and
the privacy and security concerns of computer networks [8,19]. For these rea-
sons, one-class learning or novelty detection is a common approach for network
anomaly detection. A one-class classifier constructed from only normal (target)
data is employed to classify whether an unseen instance belongs to the normal
class or anomaly (non-target) class [15].

c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 717–726, 2016.
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We are continuing previous research on one-class classification (OCC) with
Kernel Density Estimation (KDE) [2]. It works by defining a threshold on density
of the normal data: query points below the threshold are classed as anomalies.
Several approaches to modeling density are possible, e.g. a single Gaussian, mul-
tiple independent Gaussians, and negative mean distance [21], but KDE is the
most flexible of all. We found that KDE performed very well (better than One-
class SVM [18]), but was slow at query time, so we provided a method to speed
it up using Genetic Programming (GP).

Another method commonly used for anomaly detection is autoencoders
(AEs). This design was named an “autoencoder” by Japkowicz et al. [11], who
applied it for novelty detection in 1995. An autoencoder is a neural network
which learns to reconstruct its input at the output layer. A narrow middle layer
compresses redundancies in the input data while non-redundant information
remains [11]. The effect is rather like a non-linear PCA. AEs are commonly used
as building blocks in deep neural networks [10], and a key idea is that after train-
ing, the output layer is discarded, and the hidden layer is used as a new feature
representation. In the one-class learning context, the reconstruction error (RE)
of trained AEs is commonly used as a measure of “anomalyness”.

In this paper, we investigate the distribution of data in the AE hidden layer.
Based on this, we will propose a novel one-class learning method which models
density of the compressed data from hidden layer on a trained AE. Two well-
known density estimators are employed to model the density from hidden layer,
a single Gaussian and a full KDE. An autoencoder is first trained on the normal
class to minimize RE. The normal data is then passed through the trained AE
again, and its density in the hidden layer is estimated. At the testing stage, a
query point is first passed through the trained AE, and its value at the hidden
layer is classified into normal or anomaly class by the density models.

The rest of this paper is organized as follows. We briefly review some work
related to OCC based on AEs. In Sect. 3, we give a short introduction to AEs and
density estimation. This is followed by a section proposing OCC using AEs and
density estimation together. Experiments, Results and Discussion are presented
in Sects. 5 and 6 respectively. The paper concludes with highlights and future
directions.

2 Related Work

Recently, autoencoders or bottleneck neural networks became popular for anom-
aly detection as one-class learning techniques [17,22]. Hawkins et al. [9] trained a
replicator neural network with narrow middle layers on normal data to construct
a one-class classifier using reconstruction error as an indicator of anomalies. They
used a step-wise activation function for the hidden layer to divide the continu-
ously distributed data into clusters. Similarly, Sakurada and Yairi [17] compared
classifiers based on AE, denoising AE, linear PCA, and kernel PCA. The clas-
sifiers were evaluated on spacecraft telemetry data. The learned features in the
hidden layer were also examined.
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Veeramachaneni et al. [22] proposed an ensemble learner to combine three
single classifiers: AE, density-based, and matrix decomposition-based. They also
used a human expert to provide ongoing correct labels for the algorithms to
learn from. They tested their model on a large network log file dataset, with
good results.

Erfani et al. [7] proposed a hybrid of a Deep Belief Network (DBN) and a
linear one-class SVM for high-dimensional anomaly detection. A one-class SVM
was built on the top of the trained DBN. This structure takes advantage of
high decision classification accuracy from one-class SVMs and non-linear fea-
ture reduction from DBNs. The model was tested on eight UCI datasets, with
comparable results to AE, and a significant improvement at query time.

In our work, we present a new approach for anomaly detection. We apply
density estimation on the compressed data in the hidden layer. This method is
distinct from those discussed above.

3 Preliminaries

3.1 Autoencoder

An autoencoder is a neural network with a (typically) narrow middle layer (“bot-
tleneck”). It attempts to reproduce the input at the output, as illustrated in
Fig. 1(a). It is commonly used for novelty detection and deep learning [9,11].

Let x ∈ R
n be an input example. The hidden representation z(x) ∈ R

m is
represented in Eq. 1,

z (x) = f1 (W1x + b1) (1)

where f1 is a non-linear activation function, W1 ∈ R
n×m is a weight matrix,

b1 ∈ R
m is a bias vector. The latent representation z is then mapped back into

a reconstruction x̂ ∈ R
n in the output layer:

x̂ = f2 (W2z(x) + b2) (2)

where W2 ∈ m × n and b2 ∈ R
n are the weight matrix and bias vector of the

output layer. f2 is the output function. In this work, the logistic function (Eq. 3)
and the identity function are used for hidden and output layers respectively. In
Eq. 3, k is a steepness parameter.

f1 (z) =
1

1 + e(−kz)
(3)

The parameters of the network, θ = {W1,W2, b1, b2}, are optimized such
that the average reconstruction error (RE) is minimized. RE can be measured in
many ways, and mean square error (MSE) is commonly used in training neural
networks. In order to minimise the RE, stochastic gradient descent (SGD) is
commonly used to train the network.

For anomaly detection, a model trained on normal data tends to fail to
reproduce anomaly data, and produces high RE. Therefore, the reconstruction
error is used as anomaly score. A test instance will be regarded as an anomaly
if its RE is higher than a pre-determined error threshold.
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3.2 Density Estimation

In this section, we briefly describe two methods of estimating density, Centroid
and KDE. The Centroid method uses a single Gaussian, whose mean is placed
at the centroid of the training data. The standard deviation is chosen to equal
the standard deviation of the data, but in fact is unimportant: when we impose
a threshold on density, the method becomes equivalent to imposing a threshold
on distance (i.e. radius) from the centroid.

KDE is a non-parametric method of estimating probability density given a
sample. Let x1, x2, ...., xn be a set of d-dimensional samples in R

d drawn from
an unknown distribution with density function p(x). An estimate p̂(x) of the
density at x can be calculated using

p̂(x) =
1
n

n∑

i=1

Kh (x − xi) (4)

where Kh : Rd → R is a kernel function with a parameter h called the band-
width. The Gaussian kernel (Eq. 5) is common in applications and is the only
one used in this paper. As illustrated in Fig. 1(b) in KDE each point contributes
a small “bump” to the overall density, with its shape controlled by the kernel
and bandwidth. The bandwidth parameter h controls the trade-off between bias
of the estimator and its variance.

Kh (x) = exp (− x2

2h2
) (5)

4 Proposed Approach

Our proposed approach is to use density estimation on the hidden layer of an
autoencoder. Our motivation for this is the same as that for RE-based OCC:
anomaly data is poorly reconstructed by an AE trained on normal data, and
part of this must be due to anomaly data occupying an unusual position in the
hidden layer. We demonstrate this in Fig. 3. There are two phases in our method,
training and testing, as illustrated in Fig. 2. In the training phase, an AE is first
trained on a normal training set, and the training set is then passed through
the trained AE again. The training data, compressed in the hidden layer, is
used to build a density model. Based on the training stage, a density threshold
is set, for example keeping 95 % of the training set. The compressed data will
be classified as normal or anomaly by a threshold on the density model. Two
density estimation methods are employed: Centroid and KDE.

The combination of an AE and density estimation takes advantage of their
different strengths. AEs can compress input data to fewer dimensions while
retaining non-redundant information, while density estimation works best in
lower-dimensional spaces.
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(a) (b)

Fig. 1. (a) An autoencoder. (b) Density estimated by KDE (Figure from https://en.
wikipedia.org/w/index.php?title=Kernel density estimation)

Fig. 2. The proposed anomaly detection model

5 Experiments

5.1 Datasets

The approach of simulating a one-class dataset by throwing away data from a
binary dataset is a common approach in previous work [2,5,21]. In this work, we
choose datasets that have one class considered as normal class and other classes
treated as an anomaly class [4,21]. Four UCI datasets [14], namely Wisconsin
Breast Cancer Database (WBC), Wisconsin Diagnostic Breast Cancer (WDBC),
Cleveland heart disease (C-heart) and Australian Credit Approval (ACA), and
NS-KDD dataset [20] are employed for our experiments. For the UCI datasets,
we randomly sample 70 % for training and 30 % for testing. The normal training
set is formed by removing all anomaly examples.

NSL-KDD dataset is a filtered version of the KDD Cup 1999 dataset [12]
after removing all redundant instances and making the task more difficult. Each
record in the dataset is labeled as either normal or as a specific kind of attack
belonging to one of the four main categories: Denial of Service (DoS), Remote

https://en.wikipedia.org/w/index.php?title=Kernel_density_estimation
https://en.wikipedia.org/w/index.php?title=Kernel_density_estimation
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to Local (R2L), User to Local (U2R) and Probe. NSL-KDD consists of two
datasets: KDDTrain+ and KDDTest+ which are drawn from different distrib-
utions. Several of the variables in the dataset are categorical or discrete. We
simply treat them as real-valued. As shown in Sect. 6 this gives good results, but
better encodings are possible.

In this work, we plan to conduct our experiments on four groups of attacks
separately. The aim is to see how efficiently our method performs on each group
of attacks. In order to transfer hyperparameter values from the UCI to the
NSL-KDD datasets, we wish to have a similar-sized dataset. We randomly sub-
sample 350 normal instances from KDDTrain+. We use all normal and anomaly
instances from KDDTest+ as our labelled test set. The details are shown in
Table 1.

Table 1. One-class classification datasets

Dataset Features Training set Testing set

Normal Normal Anomaly

C-heart 13 112 48 42

ACA 14 268 115 93

WBC 9 310 134 72

WDBC 30 249 108 64

DoS 41 350 9711 7458

R2L 41 350 9711 2887

U2R 41 350 9711 67

Probe 41 350 9711 2421

5.2 Experimental Settings

In this work, the classifiers will be constructed from the normal class only. There
is no validation set for doing cross-validation. Therefore, we plan to conduct
two experiments, one preliminary experiment for tuning the hyperparameters
of the proposed models and one main experiment for evaluating the models.
We use the terms OCCEN, OCKDE, and OCAE to refer to one-class classifiers
based on the hybrid of AE and Centroid, the hybrid of AE and KDE, and
AE itself respectively. The choice of a threshold for classifiers in practice varies
from domain to domain, but in this work we try many different thresholds, and
evaluate the area under the resulting ROC curve (AUC).

The parameters that will not be estimated from the preliminary experiment
are set to common values. The Adaptive Gradient Algorithm (Adagrad) [6] with
a common value for the learning rate, α = 0.01, and smoothing term ε = 10−8

will be used to train AEs. Hawkins et al. [9] chose different values for epochs (from
1000 to 40000), but in this work we choose a single value for epochs = 5000. The

Gaussian kernel is used for KDE and its bandwidth, h =
√

hidden size
2 as in [16].



A Hybrid Autoencoder and Density Estimation Model 723

The preliminary experiment is done on the four UCI datasets to investigate
steepness, k, and estimate the size of hidden layer, m, of the models for later
testing on the NS-KDD dataset. Firstly, we visualise the data distribution in
the hidden layer. In Fig. 3, normal and anomaly data are plotted with different
values of k (0.1, 0.5, 1.0) and m = 2. We see normal data is approximately
Gaussian for k = 0.1 whereas for k = 1.0 it seems to be distributed along the
borders of a hyperbox. Even in this 2D example, for k = 1.0, the anomaly data
is strongly concentrated in a single area, allowing good separation. We choose a
common value k = 1.0 for our main experiment.

Fig. 3. Data on hidden layer with respect to hidden size, m = 2

Secondly, we run the models with different sizes of hidden layer on the four
UCI datasets. In Fig. 4, the AUC from OCCEN, OCKDE and OCAE are plotted
against hidden size. The figures illustrate that both the three classifiers produce
very high AUC values at hidden size, m = 4 and 8 on WBC, and m = 4 on
ACA. However, on C-heart, OCCEN and OCKDE perform very well at m = 3
and 6 whereas OCAE produces the highest AUC at m = 4. The highest and the
second highest AUC values from the three classifiers on WBCD are obtained at
m = 8 and 6 respectively. Overall, these classifiers produce good accuracy at
m = 3 or 4 on WBC, ACA and C-heart, and at m = 6 or 8 on WBCD.

Therefore, we propose a rule of thumb for choosing hidden size, m = [1 +
√

n],
where n is the number of features. Based on this rule, we calculate parameter
m for the models on these datasets, m = 4 for WBC, ACA and C-heart, and
m = 6 for WBCD. For the NSL-KDD dataset, m will be equal to 7.

The main experiment is to investigate the performance of the methods
OCAE, OCCEN, OCKDE on the four groups of attacks in NSL-KDD dataset.
The classifiers are set up with the set of parameters presented above, and the
results are shown in Table 2 and Fig. 5. The code of the experiments is available
on github1.

6 Results and Discussion

This section presents the experimental results of evaluating the proposed one-class
classifiers on the four groups of attacks in NSL-KDD dataset. The performance of
1 https://github.com/caovanloi/AEDensityEstimation.

https://github.com/caovanloi/AEDensityEstimation
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Fig. 4. Plotting AUC values against different hidden sizes on the UCI datasets

the three one-class classifiers, OCAE, OCCEN, OCKDE is evaluated using AUC.
The results are summarized in Table 2. The ROC curves of the density-based clas-
sifiers are shown against those of OCAE in Fig. 5.

Table 2 illustrates the AUC values from the three one-class classifiers. It can
be seen from the table that OCKDE performs very well in terms of accuracy,
and better than OCAE on DoS, U2R and Probe. The AUC values from OCCEN
are also higher than those from OCAE on Probe. However, the performance of
OCCEN is similar to or worse than that of OCAE on three other groups.

The ROC curves are displayed in Fig. 5. The ROC curves of OCCEN,
OCKDE are plotted against the ROC curve of OCAE. It can be seen that the
curves of OCKDE is usually higher than the curves of the two other classifiers
on the NSL-KDD dataset.

Table 2. The AUC results from the three classifiers on NSL-KDD dataset

Dataset RE AUC

OCAE OCCEN OCKDE

DoS 0.459 0.960 0.956 0.974

R2L 0.459 0.909 0.839 0.891

U2R 0.459 0.928 0.888 0.945

Probe 0.459 0.971 0.986 0.987

Overall, these results suggest that the proposed density-based classifiers,
OCCEN and OCKDE, tend to perform well in terms of accuracy on datasets
in which the normal and anomaly classes are highly separated (e.g. Probe, DoS
or U2R). The KDE-based one-class classifier, OCKDE, is more powerful than
OCCEN and OCAE in detecting anomalies from NSL-KDD dataset.
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Fig. 5. The ROC curves of the three classifiers on NSL-KDD dataset

7 Conclusion and Further Work

In this paper, we have proposed a novel method for anomaly detection based
on estimating density in the compressed hidden-layer representation of autoen-
coders. We have motivated this method through visualization of density in the
hidden layer. We investigated the hyperparameters of AE based on the UCI
datasets, and proposed an equation for estimating the size of hidden layer for
later evaluating the models on NSL-KDD dataset.

The experimental results suggest that our proposed model performs well, and
often out-performs a typical autoencoder approach based on reconstruction error
on the dataset from security domain. The model also tend to work efficiently on
the datasets in which the normal and anomaly classes are highly separated. This
will help our model become an universal method for anomaly detection. Further
work will focus on how to speed up the query stage of the models.

Acknowledgements. This work is funded by Vietnam International Education
Development (VIED) and by agreement with the Irish Universities Association.
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Abstract. A rigorous runtime analysis of evolutionary multi-objective
optimization for the classical vertex cover problem in the context of
parameterized complexity analysis has been presented by Kratsch and
Neumann [1]. In this paper, we extend the analysis to the weighted ver-
tex cover problem and provide a fixed parameter evolutionary algorithm
with respect to OPT , the cost of the optimal solution for the problem.
Moreover, using a diversity mechanism, we present a multi-objective evo-
lutionary algorithm that finds a 2−approximation in expected polynomial
time.

1 Introduction

The area of runtime analysis has provided many rigorous new insights into the
working behaviour of bio-inspired computing methods such as evolutionary algo-
rithms and ant colony optimization [2–4]. In recent years, the parameterized
analysis of bio-inspired computing has gained additional interest [1,5,6]. Here
the runtime of bio-inspired computing is studied in dependence of the input
size and additional parameters such as the solution size and/or other structural
parameters of the given input.

One of the classical problems that has been studied extensively in the area
of runtime analysis is the classical NP-hard vertex cover problem. Here, an undi-
rected graph is given and the goal is to find a minimum set of nodes V ′ such that
each edge has at least one endpoint in V ′. Friedrich et al. [7] have shown that
the single-objective evolutionary algorithm (1+1) EA can not achieve a better
than trivial approximation ratio in expected polynomial time. Furthermore, they
have shown that a multi-objective approach using Global SEMO gives a factor
O(log n) approximation for the wider classes of set cover problems in expected
polynomial time. Further investigations regarding the approximation behaviour
of evolutionary algorithms for the vertex cover problem have been carried out
in [8,9]. Edge-based representations in connection with different fitness functions
have been investigated in [10,11] according to their approximation behaviour in
c© Springer International Publishing AG 2016
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the static and dynamic setting. Kratsch and Neumann [1] have studied evolution-
ary algorithms and the vertex cover problem in the context of parameterized com-
plexity. They have shown that Global SEMO, with a problem specific mutation
operator is a fixed parameter evolutionary algorithm for this problem and finds
2−approximations in expected polynomial time. Kratsch and Neumann [1] have
also introduced an alternative mutation operator and have proved that Global
SEMO using this mutation operator finds a (1 + ε)−approximation in expected
time O(n2 log n + OPT · n2 + n · 4(1−ε)OPT ). Jansen et al. [10] have shown that
a 2-approximation can also be obtained by using an edge-based representation in
the (1+1) EA combined with a fitness function formulation based on matchings.

To our knowledge all investigations so far in the area of runtime analysis
consider the (unweighted) vertex cover problem. In this paper, we consider the
weighted vertex cover problem where in addition weights on the nodes are given
and the goal is to find a vertex cover of minimum weight. We extend the investi-
gations carried out in [1] to the weighted minimum vertex cover problem. In [1],
multi-objective models in combination with a simple multi-objective evolution-
ary algorithm called Global SEMO are investigated. One key argument for the
results presented for the (unweighted) vertex cover problem is that the popu-
lation size is always upper bounded by n + 1. This argument does not hold in
the weighted case. Therefore, we study how a variant of Global SEMO using an
appropriate diversity mechanism is able to deal with the weighted case.

Our focus is on finding good approximations of an optimal solution. We
analyse the time complexity with respect to n, Wmax, and OPT , which denote
the number of vertices, the maximum weight in the input graph, and the cost of
the optimal solution respectively. We first study the expected time of finding a
solution with expected approximation ratio (1 + ε) for this problem by Global
SEMO with alternative mutation operator. Afterwards, we consider DEMO, a
variant of Global SEMO, which incorporates ε-dominance [12] as diversity mech-
anism. We show that DEMO using standard mutation finds a 2-approximation
in expected polynomial time.

The outline of the paper is as follows. In Sect. 2, the problem definition is
presented as well as the classical Global SEMO algorithm and DEMO algorithm.
Runtime analysis for finding a (1 + ε)−approximation by Global SEMO is pre-
sented in Sect. 3. Section 4 includes the analysis that shows DEMO can find
2−approximations of the optimum in expected polynomial time. At the end, in
Sect. 5 we summarize and conclude.

2 Preliminaries

We consider the weighted vertex cover problem defined as follows. Given a graph
G = (V,E) with vertex set V = {v1, . . . , vn} and edge set E = {e1, . . . , em}, and
a positive weight function w : V → N+ on the vertices, the goal is to find a
subset of nodes, VC ⊆ V , that covers all edges and has minimum weight, i. e.
∀e ∈ E, e ∩ VC �= ∅ and

∑
v∈VC

w(v) is minimized. We consider the standard
node-based approach, i.e. the search space is {0, 1}n and for a solution x =
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1. Choose x ∈ {0, 1}n uniformly at random and set P = {x};
2. while (not termination condition)

– Choose x ∈ P uniformly at random and set x′ = x;

– Let E(x) ⊆ E denote the set of edges that are not covered by x and

S(x) ⊆ {1, . . . , n} the vertices being incident on the edges in E(x).

– Choose b ∈ {0, 1} uniform at random.

– If b = 0 flip each bit of x′ independently with probability 1/n.

– Otherwise flip each bit of S(x′) independently with probability 1/2 and each other bit

independently with probability 1/n.

– If there is no y ∈ P with f(y) ≤ f(x′) then delete all z ∈ P with f(x′) ≤ f(z) from

P and add x′ to P .

Algorithm 1. Global SEMO

(x1, . . . , xn) the node vi is chosen iff xi = 1. The Integer Linear Programming
(ILP) formulation of this problem is:

min
n∑

i=1

w(vi) · xi

s.t. xi + xj ≥ 1 ∀(i, j) ∈ E

xi ∈ {0, 1}
By relaxing the constraint xi ∈ {0, 1} to xi ∈ [0, 1], the linear program

formulation of Fractional Weighted Vertex Cover is obtained.
We consider primarily multi-objective approaches for the weighted vertex

cover problem. Given a multi-objective fitness function f = (f1, . . . , fd) : S → R

where all d objectives should be minimized, we have f(x) ≤ f(y) iff fi(x) ≤ fi(y),
1 ≤ i ≤ d. We say that x (weakly) dominates y iff f(x) ≤ f(y).

Let G(x) be the graph obtained from G by removing all nodes chosen by x and
the corresponding covered edges. Formally, we have G(x) = (V (x), E(x)) where
V (x) = V \ {vi | xi = 1} and E(x) = E \ {e | e ∩ (V \ V (x)) �= ∅}. Kratsch and
Neumann [1] investigated a multi-objective baseline algorithm called Global
SEMO using the LP-value for G(x) as one of the fitness values for the
(unweighted) minimum vertex cover problem. In order to expand the analysis
on behaviour of multi-objective evolutionary algorithms to the Weighted Vertex
Cover problem, we modify the fitness function that was used in Global SEMO
in [1], to match the weighted version of the problem. We investigate the multi-
objective fitness function f(x) = (Cost(x), LP (x)), where

– Cost(x) =
∑n

i=1 w(vi)xi is the sum of weights of selected vertices
– LP (x) is the value of an optimal solution of the LP for G(x).

We investigateGlobal SEMOwithalternativemutationoperator (Algorithm 1)
introduced in [1]. Here, the nodes that are adjacent to uncovered edges are mutated
with probability 1/2 in some steps. In the fitness function used in Global SEMO,
both Cost(x) and LP (x) can be exponential with respect to the input size; there-
fore, we need to deal with exponentially large number of solutions, even if we only
keep the Pareto front.
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1. Choose x ∈ {0, 1}n uniformly at random and set P = {x};
2. while (not termination condition)

– Choose x ∈ P uniformly at random and set x′ = x;

– Flip each bit of x′ independently with probability 1/n.

– If there is a y ∈ P where (f(y) ≤ f(x′) ∧ f(y) �= f(x′)) or

(b(y) = b(x′) ∧ Cost(y) + 2 · LP (y) ≤ Cost(x′) + 2 · LP (x′)) then keep P

unchanged and go to 4;

– Otherwise delete all z ∈ P with f(x′) ≤ f(z) ∨ b(z) = b(x′) from P and add x′ to P .

Algorithm 2. DEMO

One approach for dealing with this problem is using the concept of
ε−dominance [12]. The concept of ε−dominance has previously been proved to
be useful for coping with exponentially large Pareto fronts in some problems [13,
14]. Having two objective vectors u = (u1, · · · , um) and v = (v1, · · · , vm), u
ε−dominates v, denoted by u �ε v, if for all i ∈ {1, · · · ,m} we have (1+ε)ui ≤ vi.
In this approach, the objective space is partitioned into a polynomial number of
boxes in which all solutions ε−dominate each other, and at most one solution from
each box is kept in the population.

Motivated by this approach, DEMO (Diversity Evolutionary Multi-objective
Optimizer) has been investigated in [14,15]. In Sect. 4, we analyze DEMO
(see Algorithm 2) in which only one non-dominated solution can be kept in
the population for each box based on a predefined criteria. In our setting,
among two solutions x and y from one box, y is kept in P and x is dis-
carded if Cost(y) + 2 · LP (y) ≤ Cost(x) + 2 · LP (x). To implement the con-
cept of ε−dominance in DEMO, we use the parameter δ = 1

2n and define
the boxing function b : {0, 1}n → N

2 as b1(x) = �log1+δ(1 + Cost(x)) and
b2(x) = �log1+δ(1 + LP (x)).

Analysing the runtime of our evolutionary algorithms, we are interested in
the expected number of rounds of the while loop until a solution of desired
quality has been obtained. We call this the expected time until the considered
algorithm has achieved its desired goal.

3 Analysis of Global SEMO

In this section, we analyse the expected time of Global SEMO (Algorithm 1) to
find a (1+ε)-approximation. Before we present our analysis for Global SEMO,
we state some basic properties of the solutions in our multi-objective model. The
following theorem shown by Balinski [16] states that all basic feasible solutions of
the fractional vertex cover, which are the extremal points or the corner solutions
of the polyhedron that forms the feasible space, are half-integral.

Theorem 1. Each basic feasible solution x of the relaxed Vertex Cover ILP is
half-integral, i.e., x ∈ {0, 1/2, 1}n [16].
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As a result, there always exists a half integral optimal LP solution for a vertex
cover problem. This result and the following lemmata are used in the analysis
of Theorem 2 which presents the main approximation result for Global SEMO.
The proof of Lemma 3 can be found in [17].

Lemma 1. For any x ∈ {0, 1}n, LP (x) ≤ LP (0n) ≤ OPT .

Proof. Let y be the LP solution of LP (0n). Also, for any solution x, let G(x) be
the graph obtained from G by removing all vertices chosen by x and their edges.
The solution 0n contains no vertices; therefore, y is the optimal fractional vertex
cover for all edges of the input graph. Thus, for any solution x, y is a (possibly
non-optimal) fractional cover for G(x); therefore, LP (x) ≤ LP (0n). Moreover,
we have LP (0n) ≤ OPT as LP (0n) is the optimal value of the LP relaxation. ��
Lemma 2. Let x = {x1, · · · , xn}, xi ∈ {0, 1} be a solution and y =
{y1, · · · , yn}, yi ∈ [0, 1] be a fractional solution for G(x). If there is a vertex
vi where yi ≥ 1

2 , mutating xi from 0 to 1 results in a solution x′ for which
LP (x′) ≤ LP (x) − yi · w(vi) ≤ LP (x) − 1

2w(vi).

Proof. The graph G(x′) is the same as G(x) excluding the edges connected to
vi. Therefore, the solution y′ = {y1, · · · , yi−1, 0, yi+1, yn} is a fractional vertex
cover for G(x′) and has a cost of LP (x) − yiw(vi). The cost of the optimal
fractional vertex cover of G(x′) is at most as great as the cost of y′; thus LP (x′) ≤
LP (x) − yi · w(vi) ≤ LP (x) − 1

2w(vi). ��
Lemma 3. The population size of Global SEMO (Algorithm 1) is upper bounded
by 2 · OPT + 1 and the search point 0n is included in the population of Global
SEMO, in expected time O (OPT · n(log Wmax + log n)).

Lemma 4. A solution x fulfilling the two properties

1. LP (x) = LP (0n) − Cost(x) and
2. there is an optimal solution of the LP for G(x) which assigns 1/2 to each
non-isolated vertex of G(x)

is included in the population of Global SEMO in expected time O(OPT ·
n(log Wmax + log n + OPT )).

Proof. The search point 0n which satisfies property 1 is included in the pop-
ulation in expected time of O(OPT · n(log Wmax + log n)), due to Lemma 3.
Let P ′ ⊆ P be a set of solutions such that for each solution x ∈ P ′,
LP (x) + Cost(x) = LP (0n). Let xmin ∈ P ′ be a solution such that LP (xmin) =
minx∈P ′LP (x).

If the optimal fractional vertex cover for G(xmin) assigns 1/2 to each non-
isolated vertex of G(xmin), then the conditions of the lemma hold. Otherwise, it
assigns 1 to some non-isolated vertex, say v. The probability that the algorithm
selects xmin and flips the bit corresponding to v, is Ω( 1

OPT ·n ), because the
population size is O(OPT ) (Lemma 3). Let xnew be the new solution. We have
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Cost(xnew) = Cost(xmin)+w(v), and by Lemma 2, LPw(xnew) ≤ LPw(xmin)−
w(v). This implies that LP (xnew) + Cost(xnew) = LP (0n); hence, xnew is a
Pareto Optimal solution and is added to the population P .

Since LPw(xmin) ≤ OPT (Lemma 1) and the weights are at least 1, assuming
that we already have the solution 0n in the population, by means of the method
of fitness based partitions, we find the expected time of finding a solution that
fulfils the properties given above as O(OPT 2 · n). Since the search point 0n is
included in expected time O(OPT · n(log Wmax + log n)), the expected time
that a solution fulfilling the properties given above is included in P is O(OPT ·
n(log Wmax + log n + OPT )). ��
Theorem 2. The expected time until Global SEMO has obtained a solution that
has expected approximation ratio (1 + ε) is O(OPT · 2min{n,2(1−ε)OPT} + OPT ·
n(log Wmax + log n + OPT )).

Proof. By Lemma 4, a solution x that satisfies the two properties given in
Lemma 4 is included in the population in expected time of O(OPT ·n(log Wmax+
log n + OPT )). For a set of nodes, X ′, we define Cost(X ′) =

∑
v∈X′ w(v).

Let X be the vertex set of graph G(x). Also, let S ⊆ X be a vertex cover
of G(x) with the minimum weight over all vertex covers of G(x), and T be
the set containing all non-isolated vertices in X \ S. Note that all vertices
in X \ (S ∪ T ) are isolated vertices in G(x). Due to property 2 of Lemma 4,
1
2Cost(S) + 1

2Cost(T ) = LP (x) ≤ Cost(S); therefore, Cost(T ) ≤ Cost(S). Let
OPT ′ = OPT − Cost(x). Observe that OPT ′ = Cost(S).

Let s1, . . . , s|S| be a numbering of the vertices in S such that w(si) ≤ w(si+1),
for all 1 ≤ i ≤ |S| − 1. And let t1, . . . , t|T | be a numbering of the vertices in T such
that w(ti) ≥ w(ti+1), for all 1 ≤ i ≤ |T | − 1. Let S1 = {s1, s2, . . . , sρ}, where
ρ = min{|S|, (1 − ε) · OPT ′}, and T1 = {t1, t2, . . . , tη}, where η = min{|T |, (1 −
ε) · OPT ′}.

With probability Ω( 1
OPT ), the algorithm Global SEMO selects the solution

x, and sets b = 1. With b = 1, the probability that the bits corresponding
to all vertices of S1 are flipped, is Ω((12 )ρ), and the probability that none of
the bits corresponding to the vertices of T1 are flipped is Ω((12 )η). Also, the
bits corresponding to the isolated vertices of G(x) are flipped with probability
1
n ; hence, the probability that none of them flips is Ω(1). As a result, with
probability Ω( 1

OPT ·( 12 )ρ+η), solution x is selected, the vertices of S1 are included,
and the vertices of T1 and isolated vertices are not included in the new solution x′.
Since ρ+η ≤ 2(1−ε)·OPT ′ ≤ 2(1−ε)·OPT , and also ρ+η ≤ n; the expected time
until solution x′ is found after reaching solution x, is O(OPT ·2min{n,2(1−ε)OPT}).

Note that the bits corresponding to vertices of S2 = S \ S1 and T2 = T \ T1,
are arbitrarily flipped in solution x′ with probability 1/2 by the Alternative
Mutation Operator. Here we show that for the expected cost and the LP value
of x′, the following constraint holds: E[Cost(x′)] + 2 · LP (x′) ≤ (1 + ε) · OPT .
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Let S′ ⊆ S and T ′ ⊆ T denote the subset of vertices of S and T that are
actually included in the new solution x′ respectively. In the following, we show
that for the expected values of Cost(S′) and Cost(T ′), we have:

E [Cost(S′)] ≥ (1 − ε) · OPT ′ + E [Cost(T ′)] (1)

Since the bits corresponding to the vertices of S2 and T2 are flipped with
probability 1/2, for the expected values of Cost(S′) and Cost(T ′) we have:

E [Cost(S′)] = Cost(S1) +
Cost(S2)

2
= Cost(S1) +

Cost(S) − Cost(S1)
2

= 1/2Cost(S) + 1/2Cost(S1)

and E [Cost(T ′)] = 1/2Cost(T2).
If ρ = |S|, then S1 = S and Cost(S1) = Cost(S) = OPT ′. If ρ = (1 − ε) ·

OPT ′, we have Cost(S1) ≥ (1 − ε) · OPT ′, since each vertex has a weight of
at least 1. Using Cost(S) = OPT ′ and the inequality above, we have

E [Cost(S′)] ≥ (1 − ε) · OPT ′ +
ε · OPT ′

2

We divide the analysis into two cases based on the relation between η and |T |.
Case (I). η = |T |. Then T2 = T ′ = ∅. Thus, E [Cost(T ′)] = 0 and Inequality

(1) holds true.
Case (II). η = (1 − ε) · OPT ′ < |T |. Since w(ti) ≥ w(ti+1) for 1 ≤ i ≤ |T | − 1

and Cost(T ) ≤ Cost(S) = OPT ′, we have

Cost(T2) ≤ |T | − η

|T | Cost(T ) ≤ OPT ′ − (1 − ε) · OPT ′

OPT ′ Cost(T )

≤ εCost(S) = ε · OPT ′

Thus for the expected value of Cost(T ′), we have E [Cost(T ′)] = 1
2Cost(T2) ≤

ε·OPT ′
2 .
Summarizing above analysis, we can get that the Inequality (1) holds. Using

this inequality, we prove that in expectation, the new solution x′ satisfies the
inequality Cost(x′) + 2 · LP (x′) ≤ (1 + ε) · OPT :

E
[
Cost(x′)

]
+ 2 · LP (x′) = Cost(x) + E

[
Cost(S′)

]
+ E

[
Cost(T ′)

]
+ 2 · LP (x′)

≤ Cost(x) + E
[
Cost(S′)

]
+ E

[
Cost(S′)

]− (1 − ε) · OPT ′ + 2 · LP (x′)

≤ Cost(x) + 2E
[
Cost(S′)

]− (1 − ε) · OPT ′ + 2 · (OPT ′ − E
[
Cost(S′)

]
)

= Cost(x) + (1 + ε) · OPT ′ = Cost(x) + (1 + ε) · (OPT − Cost(x))

≤ (1 + ε) · OPT.

Now we analyze whether the new solution x′ could be included in the
population P . If x′ could not be included in P , then there is a solution x′′
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dominating x, i.e., LP (x′′) ≤ LP (x′) and Cost(x′′) ≤ Cost(x′). This implies
Cost(x′′) + 2 · LP (x′′) < Cost(x′) + 2 · LP (x′) ≤ (1 + ε) · OPT . Therefore, after
having a solution that fulfils the properties of Lemma4 in P , in expected time
O(OPT ·2min{n,2(1−ε)OPT}), the population would contain a solution y such that
Cost(y) + 2 · LP (y) ≤ (1 + ε) · OPT .

LetP ′ contain all solutionsx ∈ P such thatCost(x)+2·LP (x) ≤ (1+ε)·OPT ,
and let xmin be the one that minimizes LP . Let y = {y1, · · · , yn} be a basic LP
solution for G(xmin). According to Theorem 1, y is a half-integral solution.

Let Δt be the improvement that happens on the minimum LP value in p′ at
time step t. Also let k be the number of nodes that are assigned at least 1

2 by
y. Flipping only one of these nodes by the algorithm happens with probability
at least k

e·n . According to Lemma 2, flipping one of these nodes, vi, results in
a solution x′ with LP (x′) ≤ LP (xmin) − yi · w(vi) ≤ LP (xmin) − 1

2 · w(vi).
Observe that the constraint of Cost(x′)+2 ·LP (x′) ≤ 2 ·OPT holds for solution
x′. Therefore, Δt ≥ yi · w(vi), which is in expectation at least LP (xmin)

k due to
definition of LP (xmin).

Moreover, at each step, the probability that xmin is selected and only one of
the k bits defined above flips is k

(2·OPT+1)·e·n , As a result we have:

E[Δt | xmin] ≥ k

(2 · OPT + 1) · e · n
· LP (xmin)

k
=

LP (xmin)
e · n · (2 · OPT + 1)

According to Lemma 1 for any solution x, we have LP (x) ≤ OPT . We
also know that for any solution x which is not a complete cover, LP (x) ≥ 1,
because the weights are positive integers. Using the method of Multiplica-
tive Drift Analysis [18] with s0 ≤ OPT and smin ≥ 1, we get the expected
time O(OPT · n log OPT ) to find a solution z for which LP (z) = 0 and
Cost(z) + 2 · LP (z) ≤ (1 + ε) · OPT .

Overall, the expected number of iterations of Global SEMO, for find-
ing a (1 + ε)-approximate weighted vertex cover, is bounded by O(OPT ·
2min{n,2(1−ε)OPT} + OPT · n(log Wmax + log n + OPT )). ��

4 Analysis of DEMO

In this section,we analyse the other evolutionary algorithm,DEMO(Algorithm 2),
that uses some diversity handling mechanisms for dealing with exponentially large
population sizes. We are making use of the following lemma whose proof can be
found in [17].

Lemma 5. The population size of DEMO is upper bounded by O (n · (log n+
log Wmax)) and the search point 0n is included in the population in expected time of
O(n3(log n + log Wmax)2).

Lemma 6. Let x ∈ P be a search point such that Cost(x) + 2 · LP (x) ≤ 2 ·
OPT and b2(x) > 0. There exists a 1-bit flip leading to a search point x′ with
Cost(x′) + 2 · LP (x′) ≤ 2 · OPT and b2(x′) < b2(x).
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Proof. Let y = {y1 · · · yn} be a basic half integral LP solution for G(x). Since
b2(x) = LP (x) �= 0, there must be at least one uncovered edge; hence, at least one
vertex vi has a yi ≥ 1

2 in LP solution y. Consider vj the vertex that maximizes
yiw(vi) among vertices vi, 1 ≤ i ≤ n. Also, let x′ be a solution obtained by
adding vj to x. Since solutions x and x′ are only different in one vertex, vj , we
have Cost(x′) = Cost(x) + w(vj). Moreover, according to Lemma 2, LP (x′) ≤
LP (x) − 1

2 · w(vj). Therefore,

Cost(x′) + 2 · LP (x′) ≤ Cost(x) + w(vj) + 2
(

LP (x) − w(vj)
2

)

≤ Cost(x) + 2 · LP (x) ≤ 2 · OPT

which means solution x′ fulfils the mentioned constraint. If LP (x) = W , then
yjw(vj) ≥ W

n , because n is an upper bound on the number of vertices selected
by the LP solution. As a result, using Lemma 2, we get LP (x′) ≤ W · (1 − 1

n ).
Therefore, we have:

(1 + δ) (1 + LP (x′)) ≤ 1 + δ + W

(
1 − 1

n

)
(1 + δ)

≤ 1 + δ + W + W (δ − 1
n

− δ

n
)

≤ 1 + W + W (2δ − 1
n

− δ

n
) ≤ 1 + W

which implies 1+log1+δ(1+LP (x′)) ≤ log1+δ(1+W ). As a result, b2(x′) < b2(x)
holds for x′, which is obtained by performing a 1-bit flip on x, and the lemma
is proved. ��
Theorem 3. The expected time until DEMO constructs a 2-approximate vertex
cover is O

(
n3 · (log n + log Wmax)2

)
.

Proof. Consider solution x ∈ P that minimizes b2(x) under the constraint
that Cost(x) + 2 · LP (x) ≤ 2 · OPT . Note that 0n fulfils this constraint
and according to Lemma 5, the solution 0n will be included in P in time
O

(
n3(log n + log Wmax)2

)
.

If b2(x) = 0 then x covers all edges and by selection of x we have Cost(x) ≤
2 · OPT , which means that x is a 2−approximation.

In case b2(x) �= 0, according to Lemma 6 there is a one-bit flip on
x that results in a new solution x′ for which b2(x′) < b2(x), while
the mentioned constraint also holds for it. Since the population size is
O (n · (log n + log Wmax)) (Lemma 5), this 1-bit flip happens with a probabil-
ity of Ω

(
n−2 · (log n + log Wmax)−1

)
and x′ is obtained in expected time of

O(n3 · (log n + log Wmax)2). This new solution will be added to P because
a solution y with Cost(y) + 2 · LP (y) > 2 · OPT can not dominate x′ with
Cost(x′)+2 ·LP (x′) ≤ 2 ·OPT , and x′ has the minimum value of b2 among solu-
tion that fulfil the constraint. Moreover, if there already is a solution, xprev, in
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the same box as x′, it will be replaced by x′ because Cost(xprev)+2·LP (xprev) >
2 · OPT ; otherwise, it would have been selected as x.

There are at most A = 1 + � log n+log Wmax

log(1+δ)  different values for b2 in the
objective space, and since δ = 1

2n , A = O(n · (log n+log Wmax)). Therefore, the
expected time until a solution x′′ is found so that b2(x′′) = 0 and Cost(x′′) + 2 ·
LP (x′′) ≤ 2 · OPT , is at most O(n3 · (log n + log Wmax)2). ��

5 Conclusion

The minimum vertex cover problem is one of the classical NP-hard combinato-
rial optimization problems. In this paper, we have generalized previous results
of Kratsch and Neumann [1] for the unweighted minimum vertex cover prob-
lem to the weighted case where in addition weights on the nodes are given. We
have studied the expected time required by Global SEMO to find a (1 + ε)-
approximation. Furthermore, our investigations show that the algorithm DEMO
using the ε-dominance approach reaches a 2-approximation in expected polyno-
mial time.
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Abstract. We consider how well-known branching approaches for the
classical minimum vertex cover problem can be turned into randomized
initialization strategies with provable performance guarantees and inves-
tigate them by experimental investigations. Furthermore, we show how
these techniques can be built into local search components and ana-
lyze a basic local search variant that is similar to a state-of-the-art app-
roach called NuMVC. Our experimental results for the two local search
approaches show that making use of more complex branching strate-
gies in the local search component can lead to better results on various
benchmark graphs.

1 Introduction

The parameterized analysis of heuristic search methods has gained a lot of
attention during the last few years [1,3,6–8,10]. It provides a mechanism for
understanding how and why heuristic methods work for prominent combinato-
rial optimization problems. There are different methods closely related to the
notion of fixed parameter algorithms. One popular paradigm to design parame-
terized algorithms are bounded search tree algorithms which search for a good
solution by branching according to different rules that may be applied to solve
the underlying problem.

For the classical vertex cover problem, different branching algorithms are
available to answer the question whether a given graph has a vertex cover of size
at most k. We investigate two common strategies resulting in fixed parameter
algorithms running in time O∗(2k) and O∗(αk)1, where α = 1.4656, to solve this
problem.

We show how these search tree algorithms can be turned into initialization
approaches that produce initial solutions in linear time. We start by presenting
an edge-based initialization approach which obtains a vertex cover having at
most k = 2OPT − r, 0 ≤ r ≤ OPT , nodes with probability at least

(
k

OPT

) ·2−k.

1 We use O∗(·) to describe the essential functional behavior, ignoring all terms of
lower order. For exponential expressions all polynomials are omitted: O∗(g(n)) =
O(g(n) poly g(n)).

c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 740–750, 2016.
DOI: 10.1007/978-3-319-45823-6 69



Fixed-Parameter Single Objective Search Heuristics 741

Furthermore, we present a node-based initialization approach which obtains an
optimal solution with probability at least α−OPT .

After having considered initialization approaches, we turn the branching rules
into local search approaches and investigate their behaviour on different types
of graphs. Both local search approaches start with a given vertex cover and try
to find a smaller vertex cover by searching in the infeasible region of the search
space. Our edge-based approach captures the essential ideas of a state-of-the-art
local search algorithm for minimum vertex cover called NuMVC [2]. Having a
vertex cover of size k, one node is removed to obtain a set of k − 1. If this set is
still a vertex cover, the algorithm searches for a vertex cover of size k − 2 and so
on. If the set is not yet a vertex cover an additional node is taken out and a node
covering an uncovered edge is chosen. We turn these ideas in combination with
our theoretical insights into an edge-based local search approach which obtains
a vertex cover of size at most k = 2OPT − r in an expected number of 2r+1

phases where each phase consists of a sequence of k local search steps.
Furthermore, we turn the node-based initialization approach into a simi-

lar local search approach and compare both local search strategies on different
benchmark graphs. Our experimental results show that the node-based approach
usually leads to a local search approach that obtains better solutions than the
edge-based local search approach.

The paper is structured as follows. In Sect. 2, we provide some background
material on parameterized algorithms and the minimum vertex cover problem.
Section 3 introduces our two initialization heuristics and examines them from a
theoretical and experimental perspective. Section 4 presents our two local search
approaches and studies them on different types of benchmark instances. Finally,
we provide some concluding remarks.

2 Preliminaries

The vertex cover problem is one of the best-known combinatorial optimization
problems. Given an undirected graph G = (V,E), the goal is to find a minimum
set of vertices V ′ such that edge has at least one end vertex in V ′. The problem
is NP-hard and several 2-approximation algorithms are known. Furthermore, the
problem has been studied extensively in the area of parameterized complexity. In
fact, it is the archetypical problem in this area. Various kernelization approaches
leading to fixed parameter algorithms of different runtime quality are known.

We make use of two branching approaches from the area of parameterized
complexity [4]. Both have been introduced to determine whether a given graph
G = (V,E) contains a vertex cover of at most k nodes. The first approach builds
on the fact that a vertex cover has to contain for each edge at least 1 node.
It starts with G, picks an edge e = {u, v} currently not covered, and branches
according to the two options of including u or v. This allows to answer the
question of whether G contains a vertex cover of size at most k in time O∗(2k).

The second approach makes more sophisticated decisions according to the
degree of a node with respect to the uncovered edges. Considering a degree 1
node, it’s always safe to take its neighbor. In the case of dealing with a degree 2



742 W. Gao et al.

Algorithm 1. Edge-based Initialization Heuristic
1 C := ∅;
2 repeat
3 Let e = {u, v} be a random uncovered edge, i.e., e ∈ G[C];
4 with probability 1/2 do
5 C := C ∪ {u}
6 else
7 C := C ∪ {v}
8 until C is a vertex cover of G;
9 Return C;

node u, one has to choose either the two neighbors v and w of u or all neighbors
(including u) of v and w. Finally, for a node u of degree at least 3, one has
to choose u or all its neighbours. This approach allows to answer the question
of whether G contains a vertex cover of size at most k in time O∗(αk), where
α = 1.4656.

We build on these two fixed parameter algorithms for the decision version
of the vertex cover problem and study how to turn them into randomized ini-
tialization strategies with provable guarantees on their probability of achieving
a solution of certain quality. In addition, we explore how they can be turned
into local search approaches and study the performance of these approaches on
benchmark instances.

For describing our algorithms we need one more piece of notation for each
vertex cover C ⊆ V of a graph G = (V,E). We denote the subgraph of G
consisting of the edges not covered by C and the corresponding non-isolated
vertices by G[C] := (VC , EC) with

EC := E \ {e ∈ E | e ∩ C �= ∅} and
VC := {v ∈ V | v ∩ EC �= ∅}.

Furthermore, we denote by degG[C](u) the degree of a node u in G[C] and
by NG[C][u] the set of neighbours of u in G[C].

3 Initialization Strategies

We now describe two randomized initialization strategies based on the branching
approaches described in the previous section. Both start with an empty set
of nodes and add vertices until a vertex cover has been obtained. The edge-
based initialization outlined in Algorithm1 randomly selects in each step an
uncovered edge and adds one of its endpoints chosen uniformly at random to
the vertex cover.

For the edge-based initialization we can give a tradeoff between size of the
obtained vertex cover and success probability.
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Algorithm 2. Vertex-based Initialization Heuristic
1 C := ∅;
2 repeat
3 if mindeg(G[C]) = 1 then
4 Let u be a random node with degG[C](u) = 1;

5 C := C ∪ NG[C][u] ; /* degree 1 rule */

6 else
7 Let u be a node chosen uniformly at random from G[C];
8 if degG[C](u) = 2 then

9 Let v, w ∈ V such that NG[C][u] = {v, w};

10 with probability α−|NG[C][v]∪NG[C][w]| do
11 C := C ∪ NG[C][v] ∪ NG[C][w]
12 else
13 C := C ∪ NG[C][u] ; /* degree 2 rule */

14 else

15 with probability α− degG[C](u) do
16 C := C ∪ NG[C][u]
17 else
18 C := C ∪ {u} ; /* degree ≥ 3 rule */

19 until C is a vertex cover of G;
20 Return C;

Theorem 1. For all r with 0 ≤ r ≤ OPT, the edge-based initialization heuristic
obtains a vertex cover of size at most k := 2 · OPT − r with probability at least(

k
OPT

) · 2−k.

Proof. Let C∗ be an optimal solution of value OPT . For each edge e at least
one of its endpoints is contained in C∗. Hence, each step in the initialization
process increases the number of nodes chosen from C∗ by 1 with probability at
least 1/2. We call a step increasing the number of nodes already chosen from C∗

a success. OPT successes are sufficient to obtain a vertex cover. The probability
to have OPT successes during k steps is at least

(
k

OPT

) · 2−k.

Observe that for r := 0 (and k = 2OPT ), the edge-based initialization
heuristic therefore obtains a 2-approximation of the minimum vertex cover with
probability at least

(
2OPT
OPT

) · 2−2OPT = Θ(1/
√
OPT ). On the other hand, for

r := OPT (and k = OPT ), the edge-based initialization heuristic obtains a
minimum vertex cover with probability at least 2−OPT .

We now introduce an initialization heuristic based on more complex vertex-
based branching. The vertex-based initialization given in Algorithm2 first han-
dles degree 1 nodes in the graph G[C]. If there is no degree 1 node in G[C]
then a node u in G[C] is chosen uniformly at random and the degree rule for
u is applied in a probabilistic way. To be more precise, if u is of degree 2 and
v, w are its neighbours in G[C] then all neighbours of v and w are added with
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Fig. 1. The histograms show the frequency that each algorithm gets the initial vertex
cover of certain size. The optimal vertex cover size of each instance is indicated with
red vertical line in each figure.

probability α−|NG[C][v]∪NG[C][w]| while v and w are added otherwise. Similarly, if
u is of degree at least 2 in G[C] then all neighbours of u in G[C] are added with
probability at least α− degG[C](u) while u is added otherwise.

We provide a lower bound on the probability that the vertex-based initial-
ization obtains an optimal solution.

Theorem 2. The vertex-based initialization heuristic obtains a vertex cover of
size OPT with probability at least α−OPT , where α = 1.4656.

Proof. The vertex-based initialization heuristics carries out a randomized
branching according to the different rules. We distinguish the different cases
regarding the degree of a node. For any graph, there is an optimal vertex cover
that does not contain the node u if u is a degree one node. We investigate
the degree 2 and 3 rules and show that each step i which requires selecting
OPT i nodes corresponding to an optimal solution occurs with probability at
least α−OPT i . For a degree 2 node, there is an optimal vertex cover that con-
tains either the neighbors v and w of u or all the neighbors of v and w. Note
that a degree 2 rule is only applied if there is no node of degree 1 in G[C]. This
implies that both v and w have to be connected to a node different from u.
The probability of selecting v and w is 1 − α−|NG[C][v]∪NG[C][w]| which is at least
α−2 if |NG[C][v] ∪ NG[C][w]| ≥ 2. If |NG[C][v] ∪ NG[C][w]| = 1, then v and w are
connected and we have a cycle of length 3 (u − v − w − u) for which selecting
any subset of 2 nodes is optimal. Selecting u leads to an isolated edge {v, w}
for which the degree 1 rule selects a single vertex and therefore situations where
|NG[C][v] ∪ NG[C][w]| = 1 always lead to an optimal solution for the cycle of
length 3. Finally, if u is of degree at least 3 there is an optimal vertex cover
which either contains u or all the neighbors of u. The probability of selection u
is 1 − α− degG[C](u) > α−1.
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Hence, the probability of selecting, in each step, a set of nodes leading to an
optimal solution is at least

�∏

i=1

α−OPT i = α−OPT

where are � is the number of iterations of the algorithm to produce the vertex
cover.

3.1 Experimental Investigations

In this section, we discuss about the experiments aiming at comparing the per-
formance of Algorithms 1 and 2. Both algorithms are evaluated on sample Vertex
Cover instances chosen from different benchmarks categories, which are DIMACS
benchmarks, random generated undirected graphs and real world graphs.

There are some vertex cover benchmarks that are widely used to evaluated
the performance of minimum vertex cover solver. One of these benchmarks is the
DIMACS benchmark which is a set of challenge problems coming from the Sec-
ond DIMACS Implementation Challenge for Maximum Clique, Graph Coloring
and Satisfiability [5]. The original Max Clique problems from the challenge are
converted to complement graphs and used as vertex cover problems. The random
undirected graphs are generated with a pre-defined instance size and selection
rate of edges. An edge between any two nodes is added to the graph with a
certain pre-defined probability. In [9], there are a number of real world graphs
with various number of vertices and edges. The sample graphs are selected from
the undirected unweighted graphs.

Both of the algorithms are implemented in JAVA and the programs are exe-
cuted for 101 independent repeated runs on each instance to obtain the statistics.
The histograms in Fig. 1 are achieved by comparing the vertex cover sizes that
the two algorithms get from running on four instances from different categories.
The distribution of the solutions obtained in 101 independent runs is visualized
with the histograms. In the first histogram and those lying in the second row, it
is clear that vertex-based initialization generated smaller solutions for these two
instances. For the instance brock200 4 from DIMACS benchmarks, the vertex-
based approach has higher probability to generate better initial solutions than
its edge-based counterpart.

Table 1 shows the five-number summary of each ranked set of 101 results
testing on specific instance. From Table 1, the initial solutions of real world
graphs generated by Algorithm2 are all smaller than those from Algorithm 1. For
the graphs from random and DIMACS benchmarks, the vertex-based approach
can give better initial solutions for most times. Moreover, Algorithm2 is able to
generate solutions that are already global optimum for some of the instances in
random and real world category.



746 W. Gao et al.

Table 1. Experimental results on instances comparing the statistics between
Algorithms 1 and 2.

Instance EBH VBH

Name |V | |E| OPT min Q1 Median Q3 Max Min Q1 Median Q3 Max

random 50p0.1 50 117 28 31 35 36 37 40 28 29 30 31 33

random 50p0.1-2 50 139 31 34 37 38 39 43 31 32 33 34 36

random 100p0.05 100 288 58 68 72 74 75 81 59 61 62 63 67

random 100p0.05-2 100 261 58 67 71 73 75 79 58 60 61 62 66

random 500p0.01 500 1 206 284 344 353 357 362 371 292 296 298 301 308

random 500p0.01-2 500 1 282 284 344 358 362 365 372 290 298 300 302 308

soc-hamsterster 2 426 16 630 1 612 1 709 1 726 1 731 1 737 1 755 1 672 1 684 1 690 1 695 1 716

soc-wiki-Vote 889 2 914 406 486 501 508 513 532 406 406 407 409 412

web-edu 3 031 6 474 1 451 1 742 1 765 1 771 1 780 1 793 1 451 1 452 1 453 1 454 1 457

web-google 1 299 2 773 498 582 596 604 611 632 501 506 508 509 517

bio-celegans 453 2 025 249 286 293 298 300 306 254 260 263 266 277

bio-yeast 1 458 1 948 456 583 608 618 626 656 456 459 460 462 468

brock200 4 200 6 811 183 192 194 195 196 198 190 193 194 194 197

brock400 4 400 20 035 367 390 392 393 394 396 387 390 391 392 395

brock800 4 800 111 957 774 792 794 795 796 798 792 793 794 794 797

C125.9 125 787 91 102 107 108 110 114 96 100 101 102 107

C250.9 250 3 141 206 227 231 232 234 238 222 225 226 228 232

C500.9 500 12 418 443 474 479 481 483 487 467 474 476 477 480

4 Local Search

We now introduce local search algorithms that make use of the aforementioned
branching ideas. Both local search algorithms work with a list C representing
a set of nodes and adding nodes to C in both algorithms always means adding
them to the end of the list.

The edge-based local algorithm (see Algorithm 3) is a simplified version of one
of the most successful approaches for solving the vertex cover problem, namely
NuMVC [2]. It starts with a vertex cover of size k + 1 and tries to find a smaller
vertex cover of size k by removing one node. If this step violates the property of
a vertex cover, it removes an additional node, picks an uncovered edge and adds
one of its nodes uniformly at random. After a vertex cover of size k is obtained,
it continues the process to search for a vertex cover of size k − 1 and so on.

In the following, we give an upper bound on the number of steps of edge-
based local search to find a vertex cover of size k. For our analysis, we partition
the run of edge-based local search into distinct phases of length k which consist
of k iterations of the while-loop.

Theorem 3. For all r with 0 ≤ r ≤ OPT, the edge-based local search finds
a vertex cover of size k := 2OPT − r after (expected) at most 2r+1 phases of
length k.

Proof. We investigate the probability that during k steps of the while-loop a
vertex cover has been found at least once. We call this a success during a phase
of k steps. Let C∗ be a vertex cover of size OPT . As C∗ is a vertex cover, it
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Algorithm 3. Edge-based Local Search
1 Let C be an initial vertex cover represented as a list;
2 repeat
3 Choose a node v ∈ C uniformly at random and set C := C \ v;
4 while ((C is not a vertex cover of G) and (not termination condition)) do
5 Choose the first node v of C and set C := C \ v;
6 Let e = {u, v} be a random uncovered edge, i.e., e ∈ G[C];
7 with probability 1/2 do
8 C := C ∪ {u}
9 else

10 C := C ∪ {v}

11 until termination condition;
12 Return C;

contains for each edge e ∈ E at least one vertex. Consider an edge e = {u, v}.
At each iteration, a vertex z ∈ C∗ is picked with probability at least 1/2 and
each node of C∗ is picked at most once as only uncovered edges are chosen. The
expected number of distinct vertices contained in C∗ during a phase of k steps
is therefore at least k/2 = (2OPT −r)/2. The probability that during the first r
steps only nodes of C∗ are picked is at least 2−r. The expected number of nodes
of C∗ picked in the remaining 2OPT −2r steps (before a vertex cover is reached)
is at least OPT − r. Furthermore, it is at least OPT − r with probability 1/2.
Hence, the algorithm picks all OPT nodes during a phase of k = 2OPT − r
steps with probability at least 2−(r+1). The expected number of phases of length
k needed to find a vertex cover is therefore at most 2r+1.

We also turn the vertex-based branching approach into a vertex-based local
search algorithm (see Algorithm 4). This approach searches for a vertex cover
after removing a node together with all its neighbors. Afterwards, it tries to
obtain a new vertex cover by picking a random node of minimum degree in the
graph consisting of currently all uncovered edges. Based on the degree of this
node the degree rules are applied with the already introduced biased probabili-
ties. The last step is iterated until a vertex cover is found again.

4.1 Experimental Investigations

We test Algorithms 3 and 4 on some sample instances to evaluate their perfor-
mance. Both algorithms are given an initial vertex cover produced by Algorithm1
and the cut off generation is set to 100 000. Both algorithms are implemented in
JAVA and their performance is measured by the number of iterations it takes to
make improvement.
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Algorithm 4. Vertex-based Local Search
1 Set α := 1.4656;
2 Let C be an initial vertex cover represented as a list;
3 repeat
4 Choose the first node v of C and set C := C \ N2

G[v];
5 repeat
6 Let u be a random node with degG[C](u) = mindeg(G[C]);

7 if degG[C](u) = 1 then

8 C := C ∪ NG[C][u] ; /* degree 1 rule */

9 else if degG[C](u) = 2 then

10 Let v, w ∈ V such that NG[C][u] = {v, w};

11 with probability α−|NG[C][v]∪NG[C][w]| do
12 C := C ∪ NG[C][v] ∪ NG[C][w]
13 else
14 C := C ∪ NG[C][u] ; /* degree 2 rule */

15 else

16 with probability α− degG[C](u) do
17 C := C ∪ NG[C][u]
18 else
19 C := C ∪ {u} ; /* degree ≥ 3 rule */

20 until C is a vertex cover of G (or termination condition);

21 until termination condition;
22 Return C;

Figure 2 shows the improvement of the two algorithms on example instances
over iterations. |C| − OPT denotes the size difference between the best solution
so far and the globally optimal solution. The stairstep lines are drawn for three
independent runs for each instance and algorithm. The vertex-based heuristic
makes significant improvement before 2 000 generations for these three instances
from the observation of the solid lines while the solution of edge-based heuristic
does not improve much until 100 000 which is the cutoff bound. For the random
graphs, the vertex-based approach is able to find a global optimum before 10 000
iterations whereas the edge-based heuristic does not reach the optimal solution
before 100 000 iterations.

More results are shown in Table 2. The average best vertex cover sizes at
certain number of iterations from 10 independent runs of these two algorithms
on a certain vertex cover problem are listed in the table. From the statistics in
Table 2, vertex-based approach produces better results for 15, 15, 16 and 16 out of
the 17 instances after 10 000, 50 000, 100 000 and 200 000 iterations, respectively.
Moreover, Algorithm 4 has a success rate of 100 % in solving 8 instances from
different categories.
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Fig. 2. The improvement of both algorithms in three example instances over iterations.
The lines in blue, red and green color represent an independent run on the instance
random-50prob10, C125.9 and bio-celegans, respectively. The dotted lines and solid
lines denote the results from Algorithms 3 and 4.

Table 2. Performance comparison between Algorithms 3 and 4 on some sample
instances. The average vertex cover size is listed after running each algorithm for certain
number of iterations.

Instance EBH VBH

Name |V | |E| OPT 10 000 50 000 100 000 200 000 10 000 50 000 100 000 200 000

random 50p0.1 50 117 28 29.8 29.4 28.9 28.8 28.0 28.0 28.0 28.0

random 50p0.1-2 50 139 31 33.0 32.6 32.1 32.0 31.0 31.0 31.0 31.0

random 100p0.05 100 288 58 66.7 65.4 65.1 64.8 58.0 58.0 58.0 58.0

random 100p0.05-2 100 261 58 66.4 64.8 64.3 64.0 58.0 58.0 58.0 58.0

random 500p0.01 500 1 206 284 351.3 348.8 348.2 346.6 286.4 284.9 284.4 284.4

random 500p0.01-2 500 1 282 284 357.0 354.9 353.1 352.3 286.3 284.2 284.2 284.0

bio-celegans 453 2 025 249 291.4 290.7 290.0 289.8 250.7 249.7 249.3 249.3

bio-diseasome 516 1 188 285 316.2 314.5 314.5 313.3 288.9 287.3 287.0 286.6

soc-dolphins 62 159 34 36.3 35.7 35.4 34.9 34.0 34.0 34.0 34.0

soc-wiki-Vote 889 2 914 406 502.2 502.2 502.2 502.2 406.2 406.0 406.0 406.0

ca-netscience 379 914 214 243.9 241.1 240.3 238.7 216.7 215.7 215.1 214.7

ca-Erdos992 6 100 7 515 461 819.1 808.3 801.2 794.9 461.0 461.0 461.0 461.0

C125.9 125 787 91 102.7 101.1 100.5 100.4 95.3 93.3 92.8 92.8

C250.9 250 3 141 206 228.2 226.8 226.3 225.6 232.5 231.5 231.2 230.6

MANN a27 378 702 252 261.0 260.8 260.4 260.1 252.9 252.6 252.3 252.1

MANN a45 1 035 1 980 690 705.0 705.0 705.0 705.0 701.6 694.2 693.3 692.7

MANN a81 3 321 6 480 2 221 2 241.0 2 241.0 2 241.0 2 241.0 2 241.4 2 241.1 2 239.0 2 235.1

5 Conclusions

We have shown how well-known fixed parameter branching algorithms for the
minimum vertex cover problem can be turned into randomized initialization
strategies and guarantee the probabilities of obtaining good solutions. Further-
more, we have incorporated the branching rules into local search algorithms and
observed that the edge-based local search algorithm is equivalent to the core
component of the state-of-the-art local search algorithm called NuMVC. Con-
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sidering the edge-based local search algorithm from a theoretical perspective we
have shown fixed parameter and trade-off results on its performance. Addition-
ally, we have demonstrated how the more complex vertex-based branching rules
can be incorporated into the vertex-based local search algorithm and shown that
this usually leads to better results on random graphs and social networks than
edge-based local search.
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Abstract. The Covariance matrix adaptation evolution strategy
(CMA-ES) evolves a multivariate Gaussian distribution for continuous
optimization. The evolution path, which accumulates historical search
directions in successive generations, plays a crucial role in the adapta-
tion of covariance matrix. In this paper, we investigate what the evolution
path learns in the optimization procedure. We show that the evolution
path accumulates natural gradient with respect to the distribution mean,
and acts as a momentum under stationary condition. The experimental
results suggest that the evolution path learns relative scales of the eigen-
vectors, expanded by singular values along corresponding eigenvectors of
the inverse Hessian. Further, we show that the outer product of evolution
path serves as a rank-1 momentum term for the covariance matrix.

1 Introduction

The covariance matrix adaptation evolution strategy (CMA-ES) is a popular
evolutionary algorithm for continuous optimization. It samples a set of candidate
solutions from the multivariate Gaussian distribution, then selects the best ones
for adapting the distribution mean, covariance matrix, and global step-size [1,2].

CMA-ES is invariant to linear transformations of the search space [3,4] due
to its covariance matrix. It approximates the inverse Hessian matrix, learning
the objective condition and pair-wise parameter dependencies. The covariance
matrix is adapted by a rank-1 update with a evolution path and a rank-μ update
with a weighted maximum likelihood estimation using selected solutions. By
averaging the search directions over a few generations, the evolution path cancels
out opposite search directions and accumulates consistent directions in successive
generations [1,5]. It is constructed into rank-1 update for the covariance matrix
for increasing the likelihood of producing solutions along this direction. Exper-
imental results show that the evolution path dramatically affects the algorithm
performance [6].

Yet, it is still not fully understood what the evolution path approximates
in CMA-ES. This paper is dedicated to experimentally investigate what the
evolution path approaches in the adaptation for covariance matrix. The main
conclusions of this paper are as follows.

c© Springer International Publishing AG 2016
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– The evolution path accumulates the natural gradient with respect to the
distribution mean, and acts as a momentum term under a stationary condition
for guiding the search.

– The evolution path learns the relative scales of the eigenvectors of the inverse
Hessian.

– The update term for the evolution path provides an efficient approximation
to the first principal component of the rank-μ weighed maximum likelihood
estimation of the covariance.

– The rank-1 update with the evolution path serves as a rank-1 momentum
term of for covariance matrix.

The remainder of this paper is organized as follows. In Sect. 2, we present a brief
description of CMA-ES. Section 3 shows that the evolution path accumulates
the natural gradient with respect to the distribution mean, and serves as a
momentum term. In Sect. 4, we conduct experiments to investigate geometric
properties of the evolution path. Section 5 concludes the paper and discusses the
future research.

2 The CMA-ES

For a given optimization problem minx∈Rn f(x), the CMA-ES algorithm is out-
lined in Algorithm1. At iteration t, it samples λ solutions from the current
distribution by adding a Gaussian mutation to the distribution mean (line 5 to
line 7).

The sampled solutions are evaluated with the objective function f(x). Then
they are sorted according to the objective values for updating the parameters.
The best μ solutions are selected to recombined into the distribution mean for
the next generation with specific weights (line 9).

The step-size is adapted based on cumulative step-size adaptation
method using a cumulative evolution path pσ

t . Consecutive search directions
C− 1

2
t (mt+1 − mt)/σt are accumulated into the evolution path pσ

t with spe-

cific learning rate (line 10), with C− 1
2

t = BT D−1B. It exploits the correlations
between successive search directions. The step-size tends to increase, if they are
correlated and the length of pt+1

σ is larger than the expected length under ran-
dom selection. Otherwise, the step-size tends to decrease if consecutive search
directions are anti-related (line 14).

The covariance matrix is adapted with two terms, the rank-1 update with
evolution path and rank-μ update with weighted maximum likelihood estima-
tion of the covariance matrix (line 13) [1,2]. The evolution path accumulates
the mean difference between consecutive generations (line 12). Historical search
directions damp with a factor (1 − cc) for reducing the importance. A trigger
hσ is used for preventing the evolution path from growing too large (line 11).
A weighted maximum likelihood estimation of the covariance matrix based on
selected solutions contributes rank-μ update for the covariance matrix (line 13).
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Algorithm 1. (μ/μw, λ)-CMA-ES

1: Given λ = 4 + �3 ln n�, μ =
⌊

λ
2

⌋
, wi = ln(μ+1)−ln i

μ ln(μ+1)−∑ ln(j)
for

i = 1, · · · , μ, μeff = 1∑μ
i=1 w2

i
, cσ = μeff+2

n+2μeff+3
, dσ = 1 + cσ +

2 max(0,
√

μeff−1
n+1

− 1), cc = 4
n+4

, c1 = 2 min(1,λ/6)

(n+1.3)2+μeff
, cμ =

2(μeff−2+1/μeff)

(n+2)2+μeff

2: Initialize m0, σ0,C0 = I,p0 = 0,p0
σ = 0, t = 0

3: repeat
4: for 1 to λ do
5: zi ∼ N (0, I)
6: yi = BDzi ∼ N (0,Ct)
7: xi = mt + σtyi ∼ N (mt, σ

2
t Ct)

8: end for
9: mt+1 =

∑μ
i=1 wixi:λ, where f(x1:λ) ≤ f(x2:λ) ≤ · · · ≤ f(xμ:λ)

10: pσ
t+1 = (1 − cσ)pσ

t +
√

cσ(2 − cσ)μeffC
− 1

2
t (mt+1 − mt)/σt

11: hσ = 1
(
‖pσ

t+1‖ <
√

1 − (1 − cσ)2(t+1)(1.4 + 2
n+1

)E‖N (0, I)‖
)

12: pt+1 = (1 − cc)pt + hσ

√
cc(2 − cc)μeff(mt+1 − mt)/σt

13: Ct+1 = (1 − c1 − cμ)Ct + c1pt+1p
T
t+1 + cμ

∑μ
i=1 wiyi:λy

T
i:λ

14: σt+1 = σt · exp
(

cσ
dσ

( ‖pσ
t+1‖

E‖N (0,I)‖ − 1
))

15: t = t + 1
16: until stopping criterion is met
17: return

3 The Evolution Path Acts as Momentum Term

We illustrate in the following that the evolution path acts as a momentum term
by accumulating natural gradients.

Typically, the evolution path exploits sign information by accumulating his-
torical search directions. For a given mutation direction y ∈ N (0,C), the outer
products yyT and (−y)(−y)T give the same result. Hence, if updating the covari-
ance with only current mutation directions, the sign information gets lost. The
evolution path is designed for averaging the search directions over successive
steps. It is updated by the direction

mt+1 − mt =
μ∑

i=1

wi(x − mt). (1)

with an coefficient
√

μeff/σt such that the update direction
√

μeff(mt+1 −
mt)/σt ∼ N (0,Ct) under random selection. Hence, with the learning rate
designed according to (1 − cc)2 + (

√
cc(2 − cc))2 = 1, the evolution path is

also distributed according to N (0,Ct) under random selection. This is known
as stationary condition [4].

The information geometric optimization framework (IGO) [7] provides us
another way to investigate the evolution path. The IGO framework considers to
optimize the expected fitness



754 Z. Li and Q. Zhang

J(θ) =
∫

W f
θt

(x)pθ(x)dx, (2)

where θ is the parameters of the distribution family, and W f
θt

(x) is the trans-
formed objective function of f and the current distribution θt. It determines the
selection scheme [7].

Given θ = (m,C) for Gaussian distributions, the parameters are iteratively
updated along the natural gradient direction, which presents the steepest descent
direction on the statistic manifold. The natural gradient is generally estimated
based on samples. Specifically, the estimation of natural gradient with respect
to the distribution mean is given by (Eqs. 41–42 in [7])

∇̃mJ(θ) =
λ∑

i=1

ŵi(xi − mt), (3)

where ŵi are empirical selection scheme as ŵi = 1
λ1

(
rk(xi)+0.5

λ < 0.5
)

(see
Eq. 14 in [7]), where rk(xi) = |{j|f(xj) < f(xi)}| is the number of solutions
which are superior to xi.

As we only care about the direction, the similarity between the Eqs. (1) and
(3) suggests that the update term for the evolution path is actually an estimation
of the natural gradient with respect to the distribution mean. Consequently, the
evolution path accumulates the natural gradients with respect to the distribution
mean. Thus, the evolution path acts as a momentum term under the stationary
condition.

The momentum technique is commonly used in optimization of machine
learning [8–10]. Further research pointed out that the momentum method is actu-
ally a stationary version of the conjugate gradient method [11]. Hence, searching
along the evolution path can be considered as a stochastic approximation to the
conjugate gradient method.

4 Empirical Results on Evolution Path

In this section, we conduct some experiments on commonly used test problems
to investigate what the evolution path learns. Although the experimental results
may differ from run to run due to the sample randomness, we can still obtain
some common results. In these experiments, all the parameters of CMA-ES are
set as [3]. The test problems are presented in Table 1. The experiments are
conducted on dimension 10 unless exceptionally and clearly specified.

4.1 Evolution Path Learns the Relative Scale

Consider a quadratic function

f(x) =
1
2
xT Hx, (4)
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Table 1. Test problems

fcigar(x) = x2
1 + 106 ·∑n

i=2 x2
i fcigtab(x) = x2

1 + 104 ·∑n−1
i=2 x2

i + 106 · x2
n

felli100(x) =
∑n

i=1 102· i−1
n−1 · x2

i felli(x) =
∑n

i=1 106· i−1
n−1 · x2

i

ftablet(x) = 106 · x2
1 +
∑n

i=2 x2
i ftwoaxes(x) = x2

1 + 106 ·∑n
i=2 x2

i

fdiffpow(x) =
∑n

i=1 x
2+10∗ i−1

n−1
i frosen(x) =

∑n−1
i=1 (100(xi+1 − x2

i )
2 + (xi − 1)2)

where H is the positive-definite Hessian matrix. Its inverse H−1 can be
decomposed as H−1 = UΛ2UT , with U as orthogonal matrix and Λ =
diag(λ1, · · · , λn) as diagonal matrix. Let s be the direction expanded as

s = λ1u1 + λ2u3 + · · · + λnun,

As the eigenvectors are restricted to be unit, the coefficients λi, i = 1, · · · , n,
actually present the relative scales along each eigenvector. Figure 1 shows a scale
vector on quadratic functions.

Fig. 1. The direction s on quadratic functions. Any mirror direction with respect to
any eigenvector or origin is equivalent with s.

A Case Study. Figure 2 presents a typical run of CMA-ES on the fcigar(x)
function, which is characterized by a predominant long search direction. Clearly,
the optimization procedure can be divided into three phases according to the
step-size. First, the objective value and the step-size descend, as the distribution
mean approaches the long search direction. Then, the step-size increases as the
evolution path gradually learns scale direction. At the third phase, the step-size
and the objective value descend, while the evolution path oscillates around the
scale direction.

Experimental Results Analysis. Figure 3 presents experimental results of
a typical run on the test problems with dimension 50. Depicted are the true
scale direction on each component, the evolution path, and an average evolu-
tion path over n = 50 generations. We consider only the relative scale of the
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Fig. 2. The optimization procedure of a typical run fcigar(x) function. Depicted in the
figure include the square root of the objective function, the step-size, and the angle
between evolution path and the predominant search direction e = (1, 0, · · · , 0). (Color
figure online)

evolution path among the components. These experimental results suggest that,
although affected dramatically by the randomness, the evolution path approxi-
mately learns a scale direction.

4.2 Rank-1 Approximation to the Rank-µ Update

Let yw be the update term for the evolution path yw = 1
σt

(mt+1 − mt) =
∑μ

i=1 wiyi:λ. The outer product ywyT
w provides an efficient approximation to

the rank-μ update term (5).
In addition to rank-1 update with evolution path, the covariance matrix in

CMA-ES is updated by the rank-μ update with weighted maximum likelihood
estimation using current population. The rank-μ update term gives

Cμ =
μ∑

i=1

wiyi:λyT
i:λ. (5)

This can be obtained from the IGO perspective [7], as an estimation to the
natural gradient direction of the expected fitness with respect to the covariance.

Typically, the outer product of the first principal component of covariance
matrix Cμ serves as the optimal rank-1 approximation to Cμ. Thus, we test
whether the direction yw approximates the first principal component of Cμ,
denoted as e1. We calculate the angle between the evolution path and the first
principal component cos θ = yT

we1/‖yw‖.
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Fig. 3. The absolute evolution path learns a scale direction of the objective function,
which is expanded by singular values on the eigenvectors. The scale direction s is
normalized to be unit.

Figure 4 presents the frequency of |cos θ| in the optimization procedure of a
typical single run. It shows that the angle |cos θ| > 0.95 presents a predomi-
nant frequency on all test problems. Definitely, this indicates that the evolution
path approximately learns the first principal component of the rank-μ covari-
ance matrix. Consequently, the outer product of yw provides an efficient rank-1
approximation to the rank-μ update term Cμ.

4.3 Rank-1 Approximation to the Covariance Matrix

In this subsection, we investigate how the evolution path approximates the
covariance matrix with both rank-1 and rank-μ updates. We consider how the
evolution path approximates the first principal component of the covariance
matrix C, which represents the longest search direction of the fitness local land-
scape of the objective function.

We calculate the frequencies which eigenvector is the closest to the evolution
path. At each generation, the covariance matrix is decomposed into eigenvectors,
and we calculate the angle between any eigenvector to the evolution path cos φi =
pT

c bi, i = 1, . . . , n, with bi denoting the eigenvector corresponding to the i-th
largest eigenvalue of Ct+1. The one with largest absolute value corresponds to
the eigenvector closest to the evolution path.

Figure 5 presents the experimental results. On fcigar and fcigtab functions
which have a long search direction, the first principal component possess the
dominant frequency as the closest eigenvector among all eigenvectors. On all
test functions except for fdiffpow, the first principal component corresponds to
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Fig. 4. The frequencies of cos θ values between yw and the first principal component
of Cμ in a typical single run.

the largest frequency among all eigenvectors, including the non-quadratic frosen

function. Special attention should be payed to the frosen function which has a
dramatically changed fitness landscape. The frequency is even higher than that
of felli100 function. This indicates that the evolution path roughly learns the first
principal component of the covariance matrix. Consequently, the outer product
of evolution path provides an efficient rank-1 approximation to the covariance
matrix.

4.4 Momentum for the Covariance Matrix

The rank-μ update with weighted maximum likelihood estimation for the covari-
ance can be obtained from the IGO perspective [7,12]. In the training for neural
networks, the momentum term can effectively cancel out opposite search direc-
tions and accumulate consistent search directions [9,10]. However, as the zeroth-
order update for the covariance matrix can only increase the likelihood along
the selected directions, directly accumulating the rank-μ as the momentum for
the covariance cannot cancel out opposite search directions, neither reduces the
likelihood along these directions. This means that the pure rank-μ update for
the covariance matrix cannot exploit the sign information [4].

It is the evolution path that accumulates historical search directions in suc-
cessive generations and cancels out opposite search directions. Updating the
covariance matrix with the evolution path can effectively increase only the like-
lihood along consistent search directions. Consequently, the rank-1 update with
evolution path acts as a rank-1 momentum term for covariance matrix.
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Fig. 5. The frequencies of eigenvectors presenting closest one to evolution path in a
typical single run.

5 Conclusion and Future Research

In this paper, we investigate what the evolution path approximates in the opti-
mization procedure of CMA-ES. By accumulating successive natural gradient
on the distribution mean, it can be viewed as a momentum under stationary
condition. Further, experimental results suggest that the evolution path actu-
ally approximates a scale direction expanded by singular values of the inverse
Hessian on quadratic functions. As the evolution path cancels out opposite search
directions, it increases the likelihood along consistent search directions. Conse-
quently, the rank-1 update term with evolution path serves as rank-1 momentum
term for the covariance matrix.

Researches on the momentum methods pointed out that it can be viewed
as discretization of a non-zero mass Newtonian equation with the influence of
a conservative force field [13]. In the future, we will investigate how to extend
the information geometric optimization framework to second order methods to
include the evolution path. This can provides us a class of randomized optimiza-
tion algorithms.
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Abstract. Recently, different evolutionary algorithms (EAs) have been
analyzed in noisy environments. The most frequently used noise model
for this was additive posterior noise (noise added after the fitness evalu-
ation) taken from a Gaussian distribution. In particular, for this setting
it was shown that the (µ + 1)-EA on OneMax does not scale gracefully
(higher noise cannot efficiently be compensated by higher µ).

In this paper we want to understand whether there is anything spe-
cial about the Gaussian distribution which makes the (µ + 1)-EA not
scale gracefully. We keep the setting of posterior noise, but we look at
other distributions. We see that for exponential tails the (µ + 1)-EA on
OneMax does also not scale gracefully, for similar reasons as in the case
of Gaussian noise. On the other hand, for uniform distributions (as well
as other, similar distributions) we see that the (µ + 1)-EA on OneMax
does scale gracefully, indicating the importance of the noise model.

Keywords: Evolutionary algorithm · Noisy fitness · Theory

1 Introduction

A major challenge to the theoretical analysis of randomized search heuristics
is developing a rigorous understanding of how they behave in the presence of
uncertainty. Uncertain problems are pervasive in practice, and practitioners often
rely on heuristic techniques in these settings because classical tailored approaches
often cannot cope with uncertain environments such as noisy objective functions
and dynamically changing problems [1,10].

It is therefore very important to understand the effect that different proper-
ties of uncertainty have on algorithm behavior. In stochastic optimization, the
fitness of a candidate solution does not have a deterministic value, but instead
follows some given (but fixed) noise distribution. We are interested in under-
standing what properties of the noise distribution pose a direct challenge to
optimization, and what problems might be overcome by different features of the
algorithm. Prior work on stochastic optimization is mostly concerned with the
magnitude of noise (usually measured by the variance). Our goal in this paper is
to also understand how different kinds of distributions might affect optimization.

This is in contrast to most recent work on the theoretical analysis of random-
ized search heuristics in stochastic environments. For ant colony optimization,
c© Springer International Publishing AG 2016
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a series of papers studied the performance of ACO on stochastic path finding
problems [3,5,13], see also [8,9] for early work in this area. For evolutionary algo-
rithms, Gießen and Kötzing [7] analyzed the (μ + λ)-EA on noisy OneMax and
LeadingOnes and found that populations make the EA robust to specific distri-
butions of prior and posterior noise, while [2] considers non-elitist EAs and gives
run time bounds in settings of partial information. None of these works aimed at
showing difference between noise settings. Posterior noise from a Gaussian was
considered in [6,12] for various algorithms.

We follow [6] in their definition of what counts as a desirable property of an
algorithm with respect to noisy optimization: graceful scaling. An algorithm is
said to scale gracefully if, for any noise strength v, there is a suitable parameter
for this algorithm such that optimization is possible in a time polynomial in v
(a typical measure of noise strength v is the variance of the noise). We give the
formal details in Definition 1.

In this paper we consider the (μ + 1)-EA optimizing the classical OneMax
fitness function with additive posterior noise coming from some random vari-
able D. The case of D a Gaussian distribution was considered in [6], where the
authors found that the (μ + 1)-EA does not scale gracefully. In this paper we
investigate what properties of D lead to graceful scaling, and what properties
do not.

In Sect. 3 we consider the case of exponentially decaying tails in the distri-
bution of the noise. This is similar to the case of Gaussian noise, which decays
even faster. In fact, we use a similar proof to show that also in this case the
(μ + 1)-EA does not scale gracefully with noise.

After this we turn to another extreme case, uniform distributions. In Sect. 4
we show that, for noise taken from a uniform distribution, the (μ+1)-EA scales
gracefully. Our proof makes use of the fact that the uniform distribution is
truncated at its lower end: there is a value k such that the noise never takes
values below k, but values between k and k + 1 are still fairly frequent. Thus,
our results generalize to all noise distributions with this property.

Our results have some interesting implications. First, if it is possible to trun-
cate the noise distribution artificially, then this can potentially improve the run
time of an EA. This is an attractive option since no noise-specific modifications
need to be made to the algorithm (such as performing re-evaluations to sample
the distribution and thereby reduce the variance). Second, there are settings
where even very large populations do not sufficiently reduce the effect of the
noise, so that other techniques are required. This serves as a cautionary tale
to practitioners that increasing the population size does not always improve an
EA’s robustness to noise.

Before we discuss our results on exponential tails and uniform distributions
in Sects. 3 and 4, respectively, we introduce the algorithm and noise model in
Sect. 2. Finally in Sect. 5 we summarize our findings and conclude the paper.
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2 Preliminaries

In this paper we study the optimization of pseudo-Boolean functions (mapping
{0, 1}n for fixed n to real numbers). As our main test function we use OneMax,
where

OneMax : {0, 1}n → R, x �→ ‖x‖1 := |{i : xi = 1}|.
As algorithm for the optimization, we consider the (μ + 1)-EA, defined in
Algorithm 1. The (μ + 1)-EA is a simple mutation-only evolutionary algorithm
that maintains a population of μ solutions and uses elitist survival selection.

Algorithm 1. The (μ + 1)-EA.
1 t ← 1;
2 Pt ← µ elements of {0, 1}n uniformly at random;
3 while termination criterion not met do
4 Select x ∈ Pt uniformly at random;
5 Create y by flipping each bit of x with probability 1/n;
6 Pt+1 ← Pt ∪ {y} \ {z} where ∀v ∈ Pt : f(z) ≤ f(v);
7 t ← t + 1;

2.1 Noise Model

We consider additive posterior noise, meaning that the noisy fitness value is
given by the actual fitness value plus some term sampled (independently for
each sample) from some fixed random variable D. For OneMax and a fixed
distribution, we call this noisy fitness function OneMaxD.

Let F be a family of pseudo-Boolean functions (Fn)n∈N where each Fn is a
set of functions f : {0, 1}n → R. Let D be a family of distributions (Dv)v such
that for all Dv ∈ D, E(Dv) = 0. We define F with additive posterior D-noise as
the set F [D] := {fn + Dv : fn ∈ Fn, Dv ∈ D}.

Definition 1. An algorithm A scales gracefully with noise on F [D] if there is a
polynomial q such that, for all gn,v = fn + Dv ∈ F [D], there exists a parameter
setting p such that A(p) finds the optimum of fn using at most q(n, v) calls
to gn,v.

We will need the following result regarding noisy optimization from [6] for
our negative results.

Theorem 2 [6]. Let μ ≥ 1 and D a distribution on R. Let Y be the random
variable describing the minimum over μ independent copies of D. Suppose

Pr(Y > D + n) ≥ 1
2(μ + 1)

.
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Consider optimization of OneMaxD by (μ + 1)-EA. Then, for μ bounded from
above by a polynomial, the optimum will not be evaluated after polynomially
many iterations w.h.p.

Intuitively, whenever the selection pressure is so weak that selection is almost
uniform (which would mean a probability of 1/(μ+1) for choosing any particular
individual), optimization will not succeed.

2.2 Drift Analysis

For the theoretical analysis we will use the following drift theorem.

Theorem 3 (Multiplicative Drift [4]). Let (Xt)t≥0 be a sequence of random
variables over R≥0. Let T be the random variable that denotes the earliest point
in time t ≤ 0 such that Xt < 1. If there exist c > 0 such that, for all a,

E[Xt − Xt+1 | T > t, Xt = a] ≥ c a,

then, for all a,

E[T | X0 = a] ≤ 1 + ln(a)
c

.

3 Exponential Tails

In this section we consider noise taken from a random variable D that decays
exponentially fast, i.e., we assume

F (t) := Pr(D < k) = 1
2ect if t ≤ 0 and

F (t) := 1 − 1
2e−ct if t > 0,

for some constant c. By taking the derivative of F, we get the probability mass
function p of D, i.e.,

p(t) = F ′(t) = c
2ect if t ≤ 0 and

p(t) = c
2e−ct if t > 0.

This is basically a symmetric variant of the exponential distribution. Note
that D is a distribution, since F is non-negative and monotonically increas-
ing, limt→−∞ F (t) = 0, and limt→∞ F (t) = 1. Because p is symmetric around 0,
it follows that D has mean 0.

We calculate the variance of D:

Var(D) =
∫ ∞

−∞ t2p(t)dt = c
2

(∫ 0

−∞ t2ectdt +
∫ ∞
0

t2e−ctdt
)

= c
∫ 0

−∞ t2ectdt = c

[
(2−2ct+t2c2)ect

c3

]0

−∞
= 2

c2 =: σ2,
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where the integral can be computed by integrating by parts twice. This leads to

F (t) = 1
2e

√
2 t

σ if t ≤ 0 ; and

F (t) = 1 − 1
2e−√

2 t
σ if t > 0.

We now want to show that, in this setting and for sufficiently large variance,
the (μ + 1)-EA is not successful. We will start with the case of μ ∈ {1, 2}, as
this case is not covered by our main theorem of this section (Theorem 5 below).
The proof is instructive, since its structure is similar to the proof of Theorem5,
while it is a bit simpler in the details.

Proposition 4. Consider optimization of OneMaxD by the (μ + 1)-EA with
μ ∈ {1, 2}. Suppose σ2 = ω(n2). Then the optimum will not be evaluated after
polynomially many iterations w.h.p.

Proof. We set up to use Theorem 2. Thus, let t− < 0 and t+ > 0 be such that
Pr(D < t−) = Pr(D ≥ t+) = 1/4. Hence, Pr(t− ≤ D < 0) = Pr(0 ≤ D < t+) =
1/4 because D is symmetric around 0.

We consider D and μ copies of it: D∗
i , for i = 1, . . . , μ. We want to bound

Pr
(

min
i=1,...,µ

{D∗
i } > D + n

)
= Pr

(
µ∧

i=1

D∗
i > D + n

)

.

We lower-bound the above probability as follows:

Pr
(

µ∧

i=1

D∗
i > D + n

)
≥ Pr(D < t−)

µ∏

i=1

Pr(D∗
i ≥ t− + n) +

Pr(t− < D < 0)
µ∏

i=1

Pr(D∗
i ≥ n) +

Pr(0 < D < t+)
µ∏

i=1

Pr(D∗
i ≥ t+ + n)

= 1
4

(
µ∏

i=1

Pr(D∗
i ≥ t− + n) +

µ∏

i=1

Pr(D∗
i ≥ n) +

µ∏

i=1

Pr(D∗
i ≥ t+ + n)

)
.

Thus, we have to bound the probabilities of the form Pr(D∗
i ≥ a + n). We do so

by showing Pr(D∗
i ≥ a + n) ≥ (

1 − o(1)
)
Pr(D∗

i ≥ a). First, consider a ≥ 0.

Pr(D∗
i ≥ a + n) = 1

2e−√
2 a+n

σ = 1
2e−√

2( a
σ +n

σ ) = 1
2e−√

2( a
σ +o(1))

=
(
1 − o(1)

)
Pr(D∗

i ≥ a).

Note that if a = t−, we get t− + n < 0, because we assume that Pr(D < t−) =
1/4, which means that t− = −Θ(σ) = −ω(n2).

Pr(D∗
i ≥ t− + n) = 1 − Pr(D∗

i < t− + n) = 1 − 1
2e

√
2 t−+n

σ

= 1 − (
1 + o(1)

)
e
√
2 t−

σ =
(
1 − o(1)

)
Pr(D∗

i ≥ t−).
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This results in

Pr

(
µ∧

i=1

D∗
i > D + n

)

≥ (
1 − o(1)

)1
4

((
3
4

)µ

+
(

2
4

)µ

+
(

1
4

)µ)
,

which is at least 1/
(
2(μ + 1)

)
for μ ∈ {1, 2}. Applying Theorem 2 completes the

proof.

We now turn to the more general case.

Theorem 5. Consider optimization of OneMaxD by the (μ+1)-EA with μ ≥ 3
and μ bounded from above by a polynomial in n. Suppose σ2 = ω(n2). Then the
optimum will not be evaluated after polynomially many iterations w.h.p.

Proof. This proof follows the ideas of the one of Corollary 6 from [6]. Let a = ω(1)
be such that σ2 ≥ (na)2.

Again, we want to use Theorem 2, thus, let Y be the minimum of μ inde-
pendent copies of D, whereas D is a distribution as defined above. We want
to bound Pr(D + n < Y ). Hence, we choose two points t0 < t1 < 0 such that
Pr(D < t0) = 0.7/μ and Pr(D < t1) = 1.4/μ. Note that Pr(D < t0) < Pr(D <
t1) < 1/2, since μ ≥ 3. Thus, t0 and t1 actually exist.

We define the following two disjoint events that are a subset of the event
D + n < Y :

A: The event that D < t0 − n and t0 < Y .
B: The event that t0 − n < D < t1 − n and t1 < Y .

We first focus on bounding Pr(D < t0 −n) and do so showing that t0 ≤ −na/32
holds via contraposition.

Assume that t0 > −na/32 (still t0 < 0). Because we assume σ ≥ na as well,
we get that s := −t0/σ < 1/32. Due to the definition of D we get

Pr(D < t0) = F (t0) =
1
2
e−√

2s >
1
2
e−

√
2

32 >
0.7
3

.

Since we assume μ ≥ 3, this contradicts the definition of t0. Hence, the bound
t0 ≤ −na/32 holds which is equivalent to t0(1+32/a) ≤ t0−n. Thus, we estimate

Pr(D < t0 − n) ≥ Pr

(

t0
(
1 + 32

a

)
)

= 1
2e

√
2

t0(1+ 32
a )

σ = e−o(1)

2 e
√
2

t0
σ

=
(
1 − o(1)

)
1
2e

√
2

t0
σ =

(
1 − o(1)

)
Pr(D < t0).

Because Pr(D < t0 −n) ≤ Pr(D < t0) holds trivially, we have Pr(D < t0 −n) =(
1 − o(1)

)
Pr(D < t0).

We now bound Pr(t0 − n < D < t1 − n) = Pr(D < t1 − n) − Pr(t0 − n <
D), where we are left with bounding Pr(D < t1 − n). We do so analogously
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to the calculations before. This time, we bound t1 ≤ −na/64, since assuming
t1 > −na/64 leads to

Pr(D < t1) >
1
2
e−

√
2

64 >
1.4
3

.

All the remaining calculations can be done as before, and we get Pr(t0 − n <
D < t1 − n) =

(
1 − o(1)

)
1.4/μ − (

1 − o(1)
)
0.7/μ =

(
1 − o(1)

)
0.7/μ. Overall, we

have

Pr(Y > D + n) ≥ Pr(A) + Pr(B) =
(
1 − o(1)

)
0.7
µ

(
(
1 − 0.7

µ

)µ

+
(
1 − 1.4

µ

)µ
)

≥ (
1 − o(1)

)2 0.7
µ

(
e−0.7 + e−1.4

) ≥ 1
2µ ≥ 1

2(µ+1) .

Applying Theorem2 completes the proof.

The statement of Theorem 5 is basically that if the standard deviation of
the noise is asymptotically larger than the greatest OneMax value (n), the noise
will dominate and optimization will fail. The proof idea can be expanded to the
case when Pr(D < t0) = Ω(1) if t0 = −Ω(σ), i.e., there is at least a constant
probability to deviate by at least one standard deviation from the mean. In such
a case the OneMax value is irrelevant, since it will easily be dominated by the
noise.

Overall, we get the following statement regarding graceful scaling.

Corollary 6. The (μ+1)-EA does not scale gracefully on OneMax with additive
posterior noise from a distribution with exponential tails as given above (para-
metrized in the variance).

4 Truncated Distributions

In this section we consider truncated distributions; these distributions are a gen-
eralization of uniform distributions, which capture the essence of what our proofs
need to show that the (μ + 1)-EA can scale gracefully. Truncated distributions
are distributions whose density functions vanish above (respectively, below) some
point k and whose mass near that point is bounded from below by some value q.

Definition 7. Let D be a random variable. If there are k, q ∈ R such that

Pr(D > k) = 0 ∧ Pr
(
D ∈ (k − 1, k]

) ≥ q,

then we call D upper q-truncated. Analogously, we call D lower q-truncated if
there is a k ∈ R with

Pr(D < k) = 0 ∧ Pr
(
D ∈ [k, k + 1)

) ≥ q.
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From [14] we know that the run time of the (μ + 1)-EA on OneMax is
O(μn + n log n) when no noise is present. The following theorem looks at the
optimization behavior for truncated noise and gives a slightly weaker run time
bound in the presence of noise which is suitably truncated.

Theorem 8. Let μ ≥ 1 and let D be lower 2 log(nμ)/μ-truncated. Consider
optimization of OneMaxD by the (μ+1)-EA. Then the optimum will be evaluated,
in expectation, after O(μn log n) iterations.

Proof. We argue with drift on the number of 1s in the search point with the most
number of 1s. If the search point with the most number of 1s is never removed
within the first O(μn log n) iterations, then multiplicative drift (Theorem3)
will give us the result. If any other search point evaluates in the minimal bracket
[k, k + 1), then the best search point is safe (if there are multiple best, then it is
safe anyway). The probability that none evaluates in the minimal bracket is at
most

Pr
(
D 	∈ [k, k + 1)

)µ ≤
(

1 − 2 log(nμ)
μ

)µ

≤ exp
( − 2 log(nμ)

)

≤ O
(

1
(nμ)2

)
.

Thus, the expected number of iterations until the best search point decreases
in number of 1s is ω(μn log n) iterations. Since this holds from any starting
configuration, the result follows from the fact that the optimum can be found
by iteratively increasing the best individual in O(μn log n) iterations.

As a corollary to Theorem 8, we turn the statement of the previous theorem
around and show how large a population is required for efficient optimization in
the presence of truncated noise.

Corollary 9. Let D be lower q-truncated. Then, for all μ ≥ 3q−1 log(nq−1), in
the optimization of OneMaxD by (μ + 1)-EA, the optimum will be evaluated, in
expectation, after O(μn log n) iterations.

Corollary 10. Let μ, r ≥ 1. Consider optimization of OneMax with reevaluated
additive posterior noise uniformly from [−r, r] by (μ + 1)-EA without crossover.
Then the optimum

1. will be evaluated within O(μn log n) iterations in expectation if r ≤
μ/

(
4 log(nμ)

)
;

2. will not be evaluated within polynomially many iterations w.h.p. if r ≥
n(μ + 1).

Proof. Let D be the uniform distribution on [−r, r].
Regarding the first claim, we note that D is lower 1/(2r)-truncated, so the

result follows from Theorem 8.
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For the second claim we want to use Theorem 2. Define

f : [−r, r] → [−r, r] + n, x �→
{

x if x ≥ −r + n ;
r + n − x otherwise.

Then we have that D + n and f(D) have the same distribution. Let Y be the
minimum over μ independent copies of D. Due to symmetry, we have Pr(Y >
D) = 1/(μ + 1). Thus, we have

Pr(Y > D + n) = Pr
(
Y > f(D)

)

≥ Pr(Y > f(D) ∧ D > −r + n)
= Pr(Y > D ∧ D > −r + n)
≥ Pr(Y > D) − Pr(D ≤ −r + n)

=
1

μ + 1
− n

2r

≥ 1
2(μ + 1)

.

The result now follows with Theorem 2.

From this we get the result regarding graceful scaling on uniform noise.

Corollary 11. The (μ + 1)-EA scales gracefully on OneMax with additive pos-
terior noise from the uniform distribution on [−r, r].

5 Summary

In this work we saw indications that the shape of the distributions plays an
important role in settings with noisy fitness functions. For the case of the uni-
form distributions, we can give bounds for when optimization is successful and
for when it is not. The analysis is significantly more complicated for other dis-
tributions, but our results still suggest that more even distributions make opti-
mization easier.

It seems that further results are hard to come by and probably require a new
way of dealing with diversity of populations (a long standing open problem).
In particular, the only theorem for lower bounds we have is Theorem2, which
makes significant worst-case assumptions about the diversity of the population.
Similarly, all upper bounds usually make worst-case assumptions on the diversity,
but this time in the other direction (namely that the population is clustered,
while Theorem 2 is based on the assumption that a single good individual works
against many bad individuals). This also explains the gap in the bounds for the
uniform distribution (Corollary 10). An alternative route could be in adapting
drift theorems specifically for populations [11].

It is open whether we need better tools for showing lower or upper bounds; a
useful first step could thus be to conjecture run time bounds based on empirical
evidence and analyzing also the spread of the population carefully in dependence
on the distribution.
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Abstract. Most theoretical work that studies the benefit of recombina-
tion focuses on the ability of crossover to speed up optimization time on
specific search problems. In this paper, we take a slightly different per-
spective and investigate recombination in the context of evolving solu-
tions that exhibit mutational robustness, i.e., they display insensitivity to
small perturbations. Various models in population genetics have demon-
strated that increasing the effective recombination rate promotes the
evolution of robustness. We show this result also holds in the context of
evolutionary computation by rigorously proving crossover promotes the
evolution of robust solutions in the standard (µ+ 1) GA. Surprisingly,
our results show that this effect is still present even when robust solutions
are at a selective disadvantage due to lower fitness values.

1 Introduction

The role of crossover in evolutionary computation is still a major open prob-
lem in the theory of evolutionary algorithms. In some cases, it can be prov-
ably helpful for optimization obtaining quantifiable speed-ups on functions like
Jump and OneMax, and particular combinatorial optimization problems on
graphs [2,5,7,10,11]. In other cases, recombination can actually be seen as a
destructive operator that is detrimental to optimization [13]. The goal of this
work is to contribute to our understanding of environments in which crossover
can be helpful.

In population genetics, an increased recombination rate has been shown to
increase mutational robustness: the resistance of fitness to mutational perturba-
tions [3]. In this paper, we want to examine this effect in the context of runtime
analysis for evolutionary algorithms. In particular, we introduce a model land-
scape for which we prove crossover favors regions of higher neutrality. This effect
can be seen even when robust solutions have a much weaker fitness gradient than
non-robust solutions. On the other hand, as the recombination rate is tuned to
zero, greedy hill-climbing behavior takes over and favors regions with sharper fit-
ness gradients: even when these regions contain solutions that are not as robust
to perturbations.

Our model landscape is motivated by the fact that in some optimization
problems, there could be sensitive decision variables that correspond to non-
robust solutions and non-sensitive decision variables that induce more robust
solutions because they correspond to a large plateau. In practice, we will not
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 771–781, 2016.
DOI: 10.1007/978-3-319-45823-6 72
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know where these sensitive and non-sensitive variables are. However, our results
suggest that if they exist, then using crossover tends to favor these more robust
solutions even when they are at a fitness disadvantage.

1.1 Visualizing the Evolution of Robustness

We begin with a simple visualization that gives an intuition for why high
crossover rates favor robust solutions. The purpose of this short section is to
gain some geometric insight into the proofs contained in Sects. 2 and 3. We con-
sider an extension of the cycle Zn to a cylinder (formally Z2

n, but without the
added wrap-around in the second dimension). We consider all individuals at
the “bottom” of the cylinder to have a small fitness of, say, 5. Fitness grows
“upward”, but only on certain paths (i.e., for certain x-values). We consider the
case of one wide path and many narrow paths. Figure 1 depicts this fitness land-
scape (darker colors indicate higher fitness). Maximal fitness can be achieved for
all maximal y values. We assume that fitness grows more quickly along narrow
paths, by a factor of 1.1. Individuals not on any paths with x-value larger than
0 are dead.

To formulate a simple illustrative example of how recombination can favor
robust optimization we present the following short experiment (details omitted
due to space constraints) to motivate the rest of the paper. We construct a
cylinder of size 102 × 104; the wide path has a width of 10 and there are 14
evenly-spaced narrow paths. We consider a (μ +λ) GA with μ = 50 and λ = 250
evolving on this fitness landscape. During a run, populations with high crossover
rates favor the wide path, focusing on the middle of the wide path. On the other
hand, mainly asexually reproducing populations favor narrow paths.

Now consider the case where the fitness landscape changes dynamically,
but rarely. More precisely, we consider a random shift of the complete fitness
landscape in x-direction by ±2 after 6000 iterations, simulating a small but

Wide path Narrow paths
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Fig. 1. Left: landscape with many paths leading to the global optimum on the cylinder.
Right: prob. GA w/recombination rate pr does not get extinct during optimization.
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significant change in the environment. Populations that exclusively focus on
climbing narrow paths will go extinct when the dynamic change of the fitness
landscape occurs; populations not too close to the edge of the wide path will
survive.

We plot the ratio of populations going extinct before reaching the top y-
value, in dependence on the crossover rate pr (Fig. 1, right). As we can see, with
growing crossover rate, it is more and more likely that a population survives and
reaches the optimum, due to choosing the wide path to walk up instead of the
narrow paths. In particular, an asexually reproducing population will go extinct
with high probability, while a population employing crossover in every iteration
will go extinct with only very low probability.

2 Preliminaries

We now turn to a more formal analysis in order to prove rigorous statements
about how robustness can evolve using recombination. Our aim is to construct
a pseudo-Boolean function f : {0, 1}n → R that is structurally similar to the
landscape in Fig. 1, but is somewhat easier to work with mathematically. In
particular, we want to define a function that has a set of solutions corresponding
to a “wide path”, on which each level has an exponential number of solutions,
and a collection of sets corresponding to “narrow paths” where there is only a
small plateau (each fitness level has only a polynomial number of solutions). We
also require the fitness values of the wide path to have a gradual slope, whereas
the fitness values of narrow paths have a sharper slope.

Let n = 2k for some k ∈ N. We partition a bitstring x ∈ {0, 1}n into three
consecutive segments of length k, length n/2, and length (n/2 − k).

x1 . . . xk
︸ ︷︷ ︸

first segment

xk+1 . . . xk+n/2︸ ︷︷ ︸
second segment

xk+n/2+1 . . . xn
︸ ︷︷ ︸

third segment

.

Denote [x]1 = (x1x2 · · · xk) as the length-k string corresponding to the first
segment substring of x. Similarly, [x]2 and [x]3 are the length-n/2 and length-
(n/2 − k) strings formed from the second and third segments of x.

We say that a bit string is on the wide path iff the first segment is all 0s. We
fix a set H = {h1, h2, . . . , hn/2} of n/2 unique bit strings of length n/2. We say a
bitstring is on a narrow path if (1) it contains at least log k 1s in the first segment,
and (2) the substring in its second segment belongs to H. The first condition
ensures adequate separation from the wide path; the second condition defines a
collection of subspaces of {0, 1}n that contain each narrow path. Formally, we
define the set W of wide-path solutions as W = {x ∈ {0, 1}n : x1 = · · · = xk = 0}
and the set N of narrow-path solutions as N = {x ∈ {0, 1}n : x1 + · · · + xk ≥
log k ∧ [x]2 ∈ H}. Each narrow path is associated with a unique hi ∈ H.

To provide a concrete definition of the set H of narrow path keys, we employ
the concept of Hadamard codes [1]. Our motivation is that Hadamard codes
provide a clean way of ensuring the narrow paths are sufficiently distant from
one another, while simplifying many of the proofs.
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A Hadamard code is an error-correcting linear code over binary strings.
For our setting, we consider the set of dimension k − 1 Hadamard codes
of length 2k−1 = n/2. To construct this code, we define the inner product
between two length k − 1 bitstrings x and y as 〈x, y〉 =

∑k−1
i=1 xiyi (mod 2). Let

σ : {1, . . . , 2k−1} → {0, 1}k−1 be a bijection. Then, for each i ∈ {1, . . . , 2k−1},
the i-th codeword is the string hi ∈ {0, 1}2k−1

such that hij = 〈σ(i), σ(j)〉 for
all j ∈ {1, . . . , 2k−1}. There are hence 2k−1 = n/2 unique codewords of length
n/2 and we set H = {hi | i ∈ {1, . . . , 2k−1}}. We explicitly rely on the minimum
distance property of a dimension k − 1 Hadamard code: each pair of distinct
codewords is separated by Hamming distance at least 2k−1/2.

We define a pseudo-Boolean fitness function f in such a way so that there is
a steeper fitness gradient on the narrow paths. Let c > 1 be a constant.

f(x) =

⎧
⎪⎨

⎪⎩

LeadingOnes([x]3), x ∈ W;
cLeadingOnes([x]3), x ∈ N ;
−∞, otherwise.

(1)

Here LeadingOnes(x) :=
∑n

i=1

∏i
j=1 xj counts the number of leading ones of

its argument. We say an individual is non-viable if its fitness is negative infinity.
Such an individual corresponds to an infeasible solution.

The uniform crossover of two individuals on the wide path always results
in an individual on the wide path (with fitness at least the minimal of the two
parent fitnesses). On the other hand, uniform crossover of two individuals on
separate narrow paths will very likely be non-viable, as we now see.

Lemma 1. Let x, y ∈ H ⊆ {0, 1}n/2 such that x 
= y. Define 0 < ε < 1 to be an
arbitrary constant. Then with probability 1 − 2−Ω(n), the offspring produced by
uniform crossover of x and y is at distance at least nε from any string in H.

Proof. Let z ∈ H ⊆ {0, 1}n/2 be an arbitrary length n/2 Hadamard code. Let
Br(z) ⊆ {0, 1}n/2 denote the ball of radius r < n/4 around z. By the properties
of the dimension k − 1 Hadamard code, each codeword has minimum distance
2k−1/2 to any other codeword and thus d(x, y) ≥ 2k−1/2 = n/4. Therefore, every
element of Br(z) must lie at distance at least max{d(x, z), d(y, z)}− r ≥ n/4− r
from at least one of x or y. Therefore, the probability that crossover produces
an offspring w ∈ Br(z) is at most (1/2)max{d(x,w),d(y,w)} ≤ 2−n/4+r.

We now bound the probability of the offspring of x and y belonging to a set
of solutions that lies within some radius-r ball of any narrow-path solution in
N . Let w ∈ {0, 1}n/2 be the offspring produced by uniform crossover of x and
y. There are |H| = n/2 distinct Hadamard codes, and |Br(z)| ≤ (n/2 + 1)r.
Applying a union bound, the probability that w lies within a ball of radius r
around any Hadamard code z ∈ H is at most

Pr

(

w ∈
⋃

z∈H

Br(z)

)

≤ |H|(n/2 + 1)r2−n/4+r = 2−n/4+O(r log n).

Setting r := nε completes the proof. �
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Lemma 1 implies that crossing over two solutions on distinct narrow paths
is usually fatal: with overwhelming probability, the offspring is non-viable (or it
lies on the wide path) because its narrow-path segment lies sufficiently far from
any Hadamard code. Moreover, it is exponentially unlikely that a subsequent
mutation operation applied to the offspring could repair the damage, since it
would need to flip at least nε bits to get to the nearest narrow path solution.

3 Formal Analysis

We now prove that a high recombination rate favors wide-path solutions dur-
ing evolution, whereas a low recombination rate favors narrow-path solutions.
Individuals that lie on the wide path are robust in the following sense. Let x
be on the wide path and let y be on a narrow path. Consider any perturbation
process that that changes some bits in a string, subject to the constraint that a
constant number of bits change in expectation, and that number is concentrated
around its expectation (e.g., uniform mutation with a Θ(1/n) mutation rate, or
changing Θ(1) bits uniformly at random). If x undergoes this perturbation, it
is non-viable only with probability Θ(k/n) = o(1). On the other hand, such a
mutation on y results in a non-viable solution already with constant probability.
It is therefore easy to see that in a dynamic environment where perturbations
occur during evolution (as with our example in Sect. 1.1), a process following
the wide path will in general be more successful. The result is also interesting in
a static context where the algorithm produces a string robust to changes after
evolution, or in homologous landscapes in which the optimal solution lies only
at the end of the wide path.

3.1 Algorithm

We study a simple population-based evolutionary algorithm equipped with a
recombination rate parameter pr ∈ [0, 1] that dictates the frequency with which
recombination is employed to generate offspring. The (μ + 1) GA (see Algorithm 1)
is a steady-state genetic algorithm that maintains a population of μ elements of
{0, 1}n and uses uniform parent selection and truncation survival selection. In each
iteration, with probability pr two parents are chosen uniformly at random with-
out replacement (this condition is not necessary for the result, but necessary for
a simpler proof). An offspring is then produced by uniform crossover followed by
mutation. Otherwise, with probability 1−pr a single individual is chosen uniformly
at random and an offspring is produced by mutation only. We examine its behavior
at extremal recombination rates pr ∈ {0, 1}.

We construct the initial population P0 by selecting exactly one element uni-
formly at random from each path, hence μ = n/2+1. For each length-n/2 string
z′ ∈ H, we construct a x ∈ {0, 1}n where the [x]1 is drawn uniformly at random
from the set of length-k binary strings with at least log k ones, [x]2 := z′, and
the remaining positions are initialized uniformly at random. For the wide path,
we choose a solution uniformly at random from W by creating a string with the
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Algorithm 1. The (μ + 1) GA with recombination rate pr

for t ← 0 to ∞ do
Select r uniformly at random from [0, 1];
Select {x, y} ⊆ Pt uniformly at random;
if r < pr then x ← UniformCrossover(x,y);
Create z by flipping each bit of x independently with probability 1/n;
Let u ∈ Pt ∪ {z} chosen s.t. ∀v ∈ Pt ∪ {z} : f(u) ≤ f(v);
Pt+1 ← (Pt ∪ {z}) \ {u};

first k bits set to zero, and the remaining string initialized uniformly at random.
Our use of dimension-Ω(log n) Hadamard codes requires a linear population size.
In this paper we leave the effect of different orders of μ as an open question.

Lemma 2. Let P0 be the initial population described above. With probability
1 − e−Ω(n), at least (1 − ε)n/4 narrow-path solutions have zero fitness.

Proof. The third segment of each string in P0 is drawn uniformly at random
and so the number of leading ones is geometrically distributed. The event that
a string has zero fitness occurs independently with probability 1/2. The count
of zero-fitness narrow-path strings in P0 is binomially distributed and a simple
application of Chernoff bounds completes the proof. �

Lemma 3. Let P0 be the initial population described above. Let c > 1 be the
multiplicative constant defined in Eq. (1) and let a > 1 be an arbitrary constant.
With probability 1 − O(n−(a−1)), max{f(x) : x ∈ P0} ≤ ac log n.

Proof. Since the initial fitnesses are geometrically distributed, the probability
that a given leading-ones segment has � leading ones is (1/2)�+1. Taking a union
bound over all μ = n/2 + 1 solutions, the probability that no string has more
than � leading ones is at least 1 − (n/2 + 1)(1/2)�+1.

The claim is proved by setting � = a log n, since the fitness can be no higher
than c multiplied by the number of leading ones in the third segment. �

3.2 No Recombination

We show that mutation-only strategies favor the non-robust narrow-path solu-
tions. We begin by proving it is unlikely that the initial fitness of any wide-path
solution is improved within O(n log1/c n) generations.

Lemma 4. Let P0 be the initial population described above and c > 1 be the
multiplicative constant defined in Eq. (1). Let f0 be the initial fitness of the wide-
path solution in P0. Then with probability 1 − o(1), after an log1/c n steps of the
(μ+1) GA with pr = 0, for any constant a > 1, every wide path solution has
fitness at most f0.
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Proof. Let E be the event that the number of wide-path solutions after an log1/c n
iterations is strictly less than n/log2n. We first bound the probability of E .

Denote as Ti the waiting time until the number of wide-path solutions
increases, measured from the first generation in which there are i wide-path solu-
tions. To jump to the wide-path from a narrow-path, mutation must flip log log n
bits. This occurs in any generation with probability that vanishes superpolyno-
mially fast, so we assume it does not happen during an log1/c n steps.

Each Ti is geometrically distributed with success probability at most i/μ
since at the very least we must select a wide-path solution for mutation. Let
T be first time there are n/log2n wide-path solutions in the population. Thus,
E(T ) =

∑n/log2n
i=1 E(Ti) ≥ μ

∑n/log2n
i=1 1/i = Θ(n log n). The probability that the

number of wide-path solutions exceeds n/log2n after an log1/c n generations is

Pr(E) = 1 − Pr(T ≤ an log1/c n) ≥ 1 − Pr
(

T ≤ a

log1−1/c n
E(T )

)
= 1 − o(1).

Here we have applied tail bounds on the sum of independent geometric random
variables [4]. Assume there are i wide-path solutions in iteration t < an log1/c n.
Then, under condition E , the probability that the fitness of any wide-path solu-
tion is increased is at most i/(μn) ≤ 2/(n log2 n).

Let F be the event that no wide-path fitness ever increases during an log1/c n
generations. By the law of total probability, Pr(F) ≥ Pr(E) Pr(F | E), so

Pr(F) ≥ Pr(E)
(

1 − 2
n log2 n

)an log1/c n

≥ Pr(E)
(

1 − 2a

log2−1/c n

)
= 1 − o(1),

where we have applied Bernoulli’s inequality. �

Theorem 5. Consider a run of the (μ+1) GA with pr = 0 initialized with P0.
With probability 1 − o(1), there exists a polynomial poly(n) such that for all
t > poly(n) all elements of Pt are on some narrow path.

Proof. We first argue that the fitness of the initial wide-path solution is f0 ≤
log log n with probability 1−o(1). The fitness of this individual depends only on
what position in the leading-ones segment the first zero appears. This value is
distributed geometrically with success probability 1/2. So the probability that
the first zero appears beyond the (log log n)-th position is 1−2− log log n = 1−o(1).

We say a solution x ∈ {0, 1}n is high-fitness if f(x) > f0. We now argue
that there are many high-fitness narrow-path solutions in P0. Each narrow-path
solution is high-fitness if it has more than (1/c) log log n leading ones, because
its fitness is then strictly greater than log log n = f0. Hence, the probability that
an individual narrow-path solution is high-fitness is 2−(1/c) log log n. The initial
n/2 fitness-values are independent, so by Chernoff bounds, for some positive
constant γ > 0, there are at least n/(γ log1/c n) high-fitness solutions with high
probability. For the remainder of the proof, we assume this property holds.

Since an individual in the population can only be replaced by an offspring
with a larger or equal fitness value, the count of high-fitness solutions never
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decreases. Let Xt denote the 0–1 random variable such that Xt = 1 if and only
if a high-fitness solution is cloned in generation t. We have

Pr(Xt = 1) ≥ 1
μ

n

γ log1/c n

(
1 − 1

n

)n

≥ 1

a log1/c n
,

for a > 0 a positive constant. Let S =
∑an log1/c n

t=0 Xt. Obviously, S is a lower
bound on the number of high-fitness solutions in the population after an log1/c n
generations. Thus we have E(S) ≥ n = 2(μ − 1) and by Chernoff bounds,
Pr(S < μ) ≤ e−Ω(n). Hence, with high probability, there are only high-fitness
solutions in the population by generation an log1/c n.

Finally, we can apply Lemma 4 to conclude that with probability 1−o(1), no
wide-path solution was ever improved during the take-over period of high-fitness
solutions. Under these events, no wide-path solution remains in the population.

After this point, a new wide-path solution appears only if a narrow-path solu-
tion is mutated onto the wide path. This requires changing at least log log n bits
in the first segment for which we derive a superpolynomial waiting time w.h.p.
When pr = 0, the algorithm is identical to the (μ+1) EA, which solves leading
ones in polynomial time [12]. Iterations with no viable offspring only slow the
process by a constant factor. After poly(n) steps, all individuals have fitness at
least (n/2 − k) + 1 and so no wide-path solution will ever be accepted. �

3.3 Full Recombination

We now prove that if the recombination rate is one, the (μ + 1) GA favors robust
wide-path solutions. The following lemma states narrow-path solutions are dif-
ficult to create by the crossover operation.

Lemma 6. Consider a run of the (μ+1) GA with pr = 1 initialized as above.
With probability 1 − o(1), no new narrow-path offspring are accepted within n3

generations.

Proof. Let Et denote the event that the first narrow-path offspring is generated
in generation t. We argue that Pr(Et) is sufficiently close to zero for all t ≤ n3.
Consider a generation in which no new narrow-path offspring have been created
yet. There are three possibilities for parent selection: (1) two wide-path solutions
are selected as parents, (2) two narrow-path solutions are selected as parents,
and (3) wide-path solution and a narrow path solution are selected as parents.

In the first case, the result of uniform crossover must lie on the wide-path
since the offspring inherits the entire first segment from both parents. In this
case it is up to mutation alone to move the offspring to a narrow path. However,
since each narrow-path solution must have log log n ones in the first segment,
mutation must flip log log n bits, which only happens with probability o(1).

In the second case, since we assume no new narrow-path solutions have been
produced by generation t, each pair of narrow-path solutions lie on distinct
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paths. By Lemma 1, crossover between any two narrow-path solutions results in
an offspring whose second segment is at least nε-far from any Hadamard code.

For the third case, we can focus on a single Hadamard code, namely h0 = 0n/2,
and then take a union bound over all n/2 codes. We define the Hamming weight
of a binary string to be the number of ones it contains. Let Xt be the minimum
Hamming weight in the second segment over all wide-path solutions at time t. If
a wide-path solution is recombined with the unique narrow-path solution y ∈ N
with [y]2 = h0, then the expected Hamming weight of the offspring is Xt/2. Oth-
erwise, if we cross a wide-path solution with some string z having m > 0 ones in
[z]2, the expected Hamming weight of the offspring is Xt/2+m/2. The probability
of selecting y is 1/μ. It is straight-forward to apply a negative drift argument [8,9]
on the potential log(Xt) to show Xt does not hit zero within n3 generations with
probability at most 1/n4+δ for a constant δ > 0. In total, the probability for the
third case is at most 2/n3+δ.

Therefore, letting p = max0≤t≤n3{Pr(Et)}, the probability that the count
of narrow-path solutions does not increase in the first n3 steps is bounded by
∏n3

t=1 (1 − Pr(Et)) ≥ (1 − p)n3 ≥ 1 − pn3 = 1 − o(1). �

Theorem 7. Starting from the initial population described above, with high
probability, after T = O(n2 log n) iterations of the (μ+1) GA, all elements of
PT are on the wide path and remain there for any polynomial number of steps.

Proof. We show that with probability 1 − o(1) the entire population converges
to the wide path in O(n2 log n) steps. Subsequently, only wide-path solutions
reproduce so we get superpolynomial waiting time for new narrow-path solutions.

Define Wt and Zt to be the count of wide-path solutions and zero-fitness
narrow path solutions in Pt, respectively. We condition on the following set of
events, each holding with high probability: (1) a narrow-path offspring does not
appear within n3 steps (Lemma 6), (2) Z0 ≥ (1 − ε)n/4 (Lemma 2), and (3) the
fitness of any solution in P0 is at most ac log n for constants a, c > 1 (Lemma 3).

We divide a run of the (μ + 1) GA into two phases. The first phase begins at
t = 0 and lasts until there are Ω(n) wide-path solutions in the population. Let
T1 = inf{t ∈ N : Wt > μ/8}. The first phase begins at t = 0 and ends at t = T1.
During this phase, since we assume no narrow-path solutions are spontaneously
created, Wt ≤ μ/8 and Zt ≥ Z0 − μ/8. Moreover, Wt+1 − Wt ≥ 0 for all t ≤ T1.

During this phase, a wide-path solution is chosen as a parent with probability
Wt/μ and the resulting offspring is on the wide path with probability at least
1/(2en). Under this event, Wt+1 = Wt + 1 only if a narrow-path solution is
replaced in the selection phase. Since the fitness of the offspring is at least zero,
the probability that a narrow path solution is selected for deletion is at least
Zt/μ ≥ (3 − 4ε)/8. Thus at each iteration t ≤ T1 in the first phase, we have
E(Wt+1 − Wt | Wt) ≥ Wt(3 − 4ε)/(16μen) = Ω

(
Wt/n2

)
. We can bound the

hitting time of Wt to μ/8 = n/16 using the General Drift Theorem of Lehre and
Witt [6] to get T1 = O(n2 log n) with probability 1 − o(1).

The second phase begins at time T1 + 1. In this phase, Wt ≥ μ/8 so two
wide-path solutions are selected as parents for crossover with probability Ω(1).
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If two wide-path solutions are selected as parents, the result of crossover (before
mutation) must be on the wide path, and must have a fitness at least as high as
the lowest fitness of the parents. With probability at least 1/(en), mutation can
then flip the first zero in the leading-ones segment to improve the fitness of the
offspring by at least 1. This offspring is accepted since it is strictly more fit than
at least one element of Pt (its least fit parent). We call such a result a success.

The probability of a success in each iteration is Ω(1/n) and independent.
After c′μn iterations for an appropriate constant c′ > 0, we have had at least
μ successes in expectation. We call a sequence of μ successes a round. Let m =
min{f(x) : x ∈ PT1+1} ≥ 0 be the minimum fitness in the population at the start
of phase two. After one round, μ offspring have been accepted with fitness at least
m+1 so the minimum fitness in the population after the first round is at least 1.
After 1 + ac log n rounds, the minimum fitness is at least (m + 1) + ac log n >
ac log n. Since no new narrow-path solutions spontaneously appear during this
time, it follows by Lemma 3 that all narrow-path solutions present in the initial
population must have been replaced by wide-path solutions during this phase.

Applying Chernoff bounds to the success count, with probability 1 − e−Ω(n),
each round takes at most (1 + ε)c′μn = O(n2) steps and we conclude all narrow-
path solutions are replaced after O(n2 log n) rounds during the second phase. �
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Abstract. We regard the problem of maximizing a OneMax-like func-
tion defined over an alphabet of size r. In previous work [GECCO 2016]
we have investigated how three different mutation operators influence
the performance of Randomized Local Search (RLS) and the (1+1) Evo-
lutionary Algorithm. This work revealed that among these natural muta-
tion operators none is superior to the other two for any choice of r. We
have also given in [GECCO 2016] some indication that the best achiev-
able run time for large r is Θ(n log r(log n + log r)), regardless of how
the mutation operator is chosen, as long as it is a static choice (i.e., the
distribution used for variation of the current individual does not change
over time).

Here in this work we show that we can achieve a better performance
if we allow for adaptive mutation operators. More precisely, we analyze
the performance of RLS using a self-adjusting mutation strength. In this
algorithm the size of the steps taken in each iteration depends on the
success of previous iterations. That is, the mutation strength is increased
after a successful iteration and it is decreased otherwise. We show that
this idea yields an expected optimization time of Θ(n(log n + log r)),
which is optimal among all comparison-based search heuristics. This is
the first time that self-adjusting parameter choices are shown to outper-
form static choices on a discrete multi-valued optimization problem.

Keywords: Run time analysis · Adaptive parameter choices ·
Mutation · Theory

1 Introduction

We combine in this work two ideas that came up quite recently in the theory of
randomized search heuristics for the optimization of discrete problems: the study
of multi-valued functions f : {0, 1, . . . , r−1}n → R and an adaptive choice of the
parameters. For the multi-valued generalization of OneMax-type functions we
present a variant of Randomized Local Search (RLS) that chooses its step sizes
in a self-adjusting manner. We prove that this algorithm is optimal among all
comparison-based black-box optimizers. Even more, its expected optimization
c© Springer International Publishing AG 2016
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time is strictly smaller than that of any comparison-based search heuristic using
static parameter choices. After the work presented in [5] this is only the second
time that a self-adjusting parameter setting is proven to outperform any static
choice for a discrete optimization problem, and it is the first time that this is
shown for a problem over multiple decision variables.

Some background information and references for the concepts used in this
work follow.

1.1 Optimization of Multi-valued OneMax Functions

Most research in discrete evolutionary computation theory regards problems that
are defined over the n-dimensional Hamming cube {0, 1}n, while many experi-
mental results exist also for other discrete search spaces (see, for example, [20]
and the references therein for early examples). Only few theoretical works exist
that study the extension of evolutionary algorithms and other randomized search
heuristics to more general domains Ω, cf. [7] for a discussion. In [7] we considered
the minimization of r-valued OneMax-type functions fz assigning to each string
x ∈ {0, 1, . . . , r − 1}n the sum

∑n
i=1 d(xi, zi) of the component-wise distances to

a fixed unknown string z ∈ {0, 1, . . . , r −1}n (cf. Sect. 2 for detailed definitions).
We have analyzed in [7] three different ways to extend RLS and the (1 + 1)

Evolutionary Algorithm (EA) to black-box optimizers for r-valued functions. All
three versions maintain the property that for RLS in each iteration the entry
of exactly one position i ∈ {1, . . . , n} is changed, while for the (1+1) EA an
independent coin flip with success probability 1/n decides whether or not the
entry of the i-th position is subject to change. The three variants thus differ in
how entries selected for modification are updated. The uniform step operator
replaces an entry by different one chosen uniform at random, while the ±1 step
operator adds or subtracts 1 from the current entry. For large r the operator
with the best performance on the r-valued generalizations of OneMax is the
Harmonic one which adds or subtracts to the current entry a number j ≤ r that
is chosen with probability proportional to 1/j. Its expected optimization time
on r-valued OneMax is Θ(n log r(log n + log r)).

A natural question to ask is whether a better performance with respect to r
can be achieved. However, from [4] we know that no static distribution of step
sizes can achieve a better run time than Ω((log r)2) for n = 1 (see [7] for a
discussion).

1.2 RLS with Self-adjusting Step Sizes

In this work we show that a better dependence on r can be achieved if we allow
the step operator to change over time. More precisely, we regard the algorithm
RLSa,b which works as follows. A current search point x ∈ {0, 1, . . . , r − 1}n is
maintained, along with a real-valued velocity vector v ∈ [1, r/4]n denoting the
step size in each dimension. In each iteration, one dimension i ≤ n is chosen
uniformly at random for variation; with probability 1/2 the value xi is increased
by �vi�, otherwise decreased by �vi�, all other dimension remain as in x. If this
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new search point has better fitness, the old search point is discarded and the
step size vi is increased to avi (for some constant a > 1). If the new search point
has worse fitness, it is discarded and the velocity vi is decreased to bvi (for a
positive constant b < 1). See Algorithm 1 in Sect. 2.2 for details.

We show that, for suitable constants a and b, the expected optimization time
of RLSa,b on the set of r-valued OneMax functions is O(n(log n + log r)), thus
gaining a factor of at least log r over any RLS variant using static step sizes. This
bound is provably optimal among all comparison-based algorithms. That is, no
black-box algorithm can achieve a better performance on r-valued OneMax
functions unless it explicitly exploits absolute fitness-values.

1.3 Self-adjusting Parameter Choices

One easily observes that in continuous optimization static parameter choices
are not very meaningful. This is why for such problems several examples exist
where adaptive parameter choices are well understood also from a theoretical
perspective (for example, the works [2,14,15] analyze the convergence rates of
different evolution strategies). As has been noted in [7], however, such results are
difficult to compare to performance guarantees in discrete optimization let alone
being transferable to such problems. This is mostly due to the fact that in discrete
optimization we do not study the speed of convergence but the time needed to
hit an optimal solution. But even if one studies continuous optimization with an
a-priori fixed target precision (see [16] and the references therein), then typically
the norms used to evaluate a solution differ from the typically regarded 1-norm
used in discrete optimization.

For the discrete domain, several empirical works exist that suggest an advan-
tage of adaptive parameter updates (cf. [12], [13, Chap. 8], and [17] for sur-
veys). However, the first work formally showing an asymptotic gain over sta-
tic parameter selection is the self-adjusting choice of the population size of the
(1+(λ, λ)) GA proposed and analyzed in [5]. In that work the advantage is shown
for the classic OneMax functions fz : {0, 1}n → R, x �→ |{1 ≤ i ≤ n | xi = zi}|.
Our result is hence the first of its type for a multi-valued search problem in the
discrete domain.

Also when we include in our consideration other adaptive parameter choices1

only few situations exist for which an advantage over static parameter choices
could be proven. All these works study the optimization of pseudo-Boolean func-
tions f : {0, 1}n → R. To be more precise, the only theoretical investigations
of adaptive parameter choices in discrete optimization that we are aware of
1 Following the terminology introduced in [5, Sect. 3.1] we distinguish between

functionally-dependent and self-adjusting parameter choices. While functionally-
dependent parameter choices depend only on the current state of the algorithm, they
may explicitly use absolute fitness values. Fitness-dependent mutation rates are a
typical example for such functionally-dependent parameter choices. Self-adjusting
parameter choices, in contrast, do not depend on absolute fitness information but
rather on the success of previous iterations. This is the case of the parameter updates
of the RLSa,b considered in this work.
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analyze advantages of a fitness-dependent mutation rate for the (1+1) EA opti-
mizing LeadingOnes [3] and for RLS optimizing OneMax [8], a self-adjusting
choice of the number of parallel evaluations in a parallel EA [19] as well as a
fitness-dependent [6] and the above-mentioned self-adjusting [5] choice of the
population size for the (1 + (λ, λ)) GA.

We believe that self-adjusting parameter choices provide a possibility for
significant improvement of many search heuristics, and theoretical analyses can
offer guidance for how to design such self-adjustment mechanisms. Our work
shows that our mathematical toolbox, in particular drift analysis, is well-suited
to analyze such systems.

2 Preliminaries

For any positive integer n we set [n] := {1, 2, . . . , n} and [0..n] := {0} ∪ [n]. We
regard in this work r-valued functions over strings of length n, i.e., functions
f : [0..r − 1]n → R. The value of r may or may not depend on n, and it may or
may not be smaller or larger than n.

We briefly define below the problem setting and the self-adjusting version of
RLS that we aim at analyzing.

2.1 Multi-valued OneMax Problems

As in [7] we regard two classes of r-valued OneMax functions. These classes are
the collection of functions fz : [0..r −1]n → R;x �→ ∑n

i=1 d(xi, zi), z ∈ [0..r −1]n.
They differ in the metric d used to evaluate the distance of xi to zi. The first metric,
which we call the interval-metric dint, is the usual metric on the integers, i.e.,

dint(a, b) := |b − a|.

Note that in the interval-metric the fitness landscapes of the r-valued OneMax
functions are not isomorphic to each other. This can be easily seen, for example,
by comparing f(0,...,0) with f(r/2,...,r/2) which has a much more symmetric fitness
landscape. Note that, for the boundary handling we employ in this paper (see
Sect. 2.2), our results are unaffected by the exact choice of r-valued OneMax
function. This is why we also consider a second metric, which we call the ring-
metric dring. This metric connects the two endpoints of the interval [0..r − 1]
such that it forms a ring, i.e.,

dring(a, b) := min{|b − a|, |b − a + r|, |b − a − r|}.

Unlike the name OneMax suggests, we regard in this work the minimization of
the r-valued OneMax functions. It is easily seen that, regardless of the metric
in place, the unique global optimum of fz is thus the string z. We call z the
target vector of fz.
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2.2 RLS with Self-adjusting Mutation Strength

We investigate the following natural generalization of RLS to a multi-valued
algorithm RLSa,b with a self-adjusting mutation strength whose update rules
are parametrized by the constants 1 < a ≤ 2 and 1/2 < b < 1. The algorithm is
summarized in Algorithm 1.

Algorithm 1. RLSa,b with self-adjusting step sizes maximizing a function
f : [0..r − 1]n → R

1 Initialization: Let v ∈ [1, �r/4�]n uniformly at random;
2 Sample x ∈ [0..r − 1]n uniformly at random and query f(x);
3 Optimization: for t = 1, 2, 3, . . . do
4 Choose i ∈ [n] uniformly at random;
5 for j = 1, . . . , n do
6 if j = i then with probability 1/2 let yj ← xj − �vj� and let

yj ← xj + �vj� otherwise
7 else yj ← xj

8 Query f(y);
9 if f(y) < f(x) then vi ← min{avi, �r/4�} else vi ← max{1, bvi}

10 if f(y) ≤ f(x) then x ← y

RLSa,b maintains a search point x ∈ [0..r−1]n as well as a real-valued velocity
vector v ∈ [1, �r/4�]n; we use real values for the velocity to circumvent rounding
problems. Both these strings are initialized uniformly at random, but it is not
difficult to verify that all results shown in this paper apply to any arbitrary
initialization of x and v. In one iteration of the algorithm a position i ∈ [n] is
chosen uniformly at random. The entry xi is replaced by xi−�vi� with probability
1/2 and by xi + �vi� otherwise (see below for how to deal with overstepping the
endpoints of the interval [0, r−1]). The entries in positions j 	= i are not subject
to mutation. The resulting string y replaces x if its fitness is at least as good as
the one of x, i.e., if f(y) ≤ f(x) holds (recall that we regard the minimization
of f). If the offspring y is strictly better than its parent x, i.e., if f(y) < f(x), we
increase the velocity vi in the i-th component by multiplying it with the constant
a and we decrease vi to bvi otherwise. The algorithm proceeds this way until
we decide to stop it. Since we regard in this work the time needed until RLSa,b

evaluates for the first time an optimal solution (this random variable is called
the run time of Algorithm 1), we do not specify any stopping criterion here.

We will now discuss some technical details.
It may happen that xi − �vi� < 0 or xi + �vi� > r − 1. If we are working

with the interval-metric then we assume that the algorithm does not change
its current position, that is, the offspring is discarded and the velocity is not
adjusted (decreasing the velocity in this case would lead to the same results).
In the ring-metric we identify all values modulo r, i.e., we identify values p < 0
with p + r and values p > r − 1 with p − r. Note that in the ring-metric it can
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happen that we decrease the fitness regardless of whether we add or subtract
from xi the value �vi�. This in particular applies when xi is close to r/2.

Furthermore, we emphasize that the velocity vector is an element in the
real interval [1, �r/4�], that is, it does not necessarily take integer values. This
technicality avoids that rounding inaccuracies accumulate over several velocity
adaptations. The velocity is capped at 1 (to avoid situations in which we do not
move at all) and at �r/4� (to avoid too large jumps).

To further lighten the notation, we say that the algorithm “moves in the right
direction” or “towards the target value” if the distance to the target is actually
decreased by �vi�. Analogously, we speak otherwise of a step “away from the
target” or “in the wrong direction”.

2.3 Drift Analysis

The idea of drift analysis is to map the optimization process to a series of real-
valued random variables that measure, in a suitable way, the expected progress
that the algorithm achieves in one iteration. The hope is to show that this
expected progress systematically depends on the current state of the algorithm,
for example, in an additive or a multiplicative way. Drift theorems then help
to convert the expected progress made in one iteration to bounds on the time
needed to hit a certain goal such as identifying an optimal search point; cf. [10,18]
for a more detailed discussion of drift theory.

In the context of RLSa,b the state of the algorithm can be described by the
pair (x, v) consisting of the current search point x ∈ [0..r − 1]n and the current
velocity vector v ∈ [1, �r/4�]n. We will design in Sect. 3 a potential function g
that maps these states to real numbers in a way that the expected progress of one
iteration of RLSa,b depends on the current potential g(x, v) in a multiplicative
way. That is, for y and v′ denoting the resulting search point and velocity vector
after one iteration of RLSa,b, we will show that E(g(x, v) − g(y, v′)) ≥ δg(x, v)
for some positive constant δ. The following drift theorem will then allow us to
derive bounds on the expected run time of RLSa,b on any r-valued OneMax
function. This multiplicative drift theorem had first been introduced to the theory
of randomized search heuristics in [10]. A more direct proof of this results, that
also gives large deviation bounds, can be found in [9]. The variables X(t) in the
statement correspond to the state g(x, v) of the algorithm after t iterations.

Theorem 1 (from [10]). Let X(0),X(1), . . . be a random process taking values
in S := {0}∪[smin,∞) ⊆ R. Assume that X(0) = s0 with probability one. Assume
that there is a δ > 0 such that for all t ≥ 0 and all s ∈ S with Pr[X(t) = s] > 0
we have E[X(t+1)|X(t) = s] ≤ (1 − δ)s. Then T := min{t ≥ 0 | X(t) = 0}
satisfies E[T ] ≤ ln(s0/smin)+1

δ .

3 Main Result

In this section we sketch the proof of the following statement (the full proof does
not fit the available space).
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Theorem 2. For constants a, b satisfying 1 < a ≤ 2, 1/2 < b ≤ 0.9, 2ab−b−a >
0, a+ b > 2, and a2b > 1 (one can choose, for example, a = 1.7 and b = 0.9) the
expected run time of RLSa,b (Algorithm1) on any generalized r-valued OneMax
function is Θ(n(log n + log r)) and this is optimal among all comparison-based
algorithms.

The lower bound as well as the statement that no comparison-based algo-
rithm can have an expected run time of smaller order easily follows from a
coupon collector argument and the information-theoretic lower bound. In a bit
more detail, we note that in the initial solution there are, with high probability,
Θ(n) positions i in which the value xi does not agree with that of the target
string. The algorithm has to touch each of these positions at least once, which by
the well-known coupon collector theorem (cf. [1, Sect. 1] for an introduction to
this problem) requires Θ(n log n) iterations on average and with high probabil-
ity. The Ω(n log r) follows from the observation that there are rn possible target
strings in total. Since RLSa,b exploits only the information whether or not the
offspring has a fitness value that is at least as good as that of its parent (in the
decision of whether or not to replace the parent) and whether or not its fitness
is strictly better (in the decision how to update the velocity), it is a comparison-
based algorithm that uses only log2(3) bits of information per iteration. As such
it therefore needs Ω(log(rn)) = Ω(n log r) iterations in expectation to optimize
any unknown r-valued OneMax function. See [11] for how to turn the latter
information-theoretic consideration into a formal proof.

To prove the upper bound we use drift analysis; multiplicative drift analysis
to be more precise. To this end, as explained in Sect. 2.3, we need to find a map-
ping of the state (x, v) of the algorithm to a real value. This potential function
should measure some sort of distance to the target state. We briefly discuss this
potential function below. Proving that it yields the required multiplicative drift
is the purpose of Lemma 3.

To simplify the notation below, for a given search point x and the target bit
string z and the chosen metric d, we let di = d(xi, zi) (for all i ≤ n) be the
distance vector of x to z. Thus, the goal is to reach a state in which the distance
vector is (0, . . . , 0). We now want to define a potential function in dependence on
(d, v) (where of course d is dependent on x) such that it is 0 when d is (0, . . . , 0)
and strictly positive for any x 	= (0, . . . , 0). Furthermore, we easily see that
there are two important ways to make progress, either by advancing in terms
of fitness or by adjusting the velocity to a value that is more suitable to make
progress in future iterations. This has to be reflected in the potential function.
Our ultimate goal being the minimization of fitness, it is not difficult to see that
some preference should be given to a progress in fitness. This can be achieved
by multiplying the term accounting for the appropriateness of the velocity with
some constant c < 1. We measure the appropriateness of the velocity as the
maximum of the ratios di/(2vi) and 2vi/di, reflecting the fact that a velocity
of di/2 is very well-suited for progress; smaller values give less progress, while
larger values lead to a badly adjusted velocity in the next iteration (and very
large values make progress in fitness impossible).
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One problem in getting good drift is that velocities vi just below 2di allow
for jumping over the target while increasing the (already too large) velocity.
We get around this problem by observing that it is equally likely that the large
velocity is reduced because of a jump in the wrong direction, and then, while
still larger than di, will still give a good improvement when overstepping the
goal. We reflect this in the potential function by giving a penalty term of pdi

(for some suitable constant p) on any state (d, v) having a too large velocity.
To sum up this discussion we use as potential function the following map

g : [0..r − 1]n × [1, �r/4�]n → R, (x, v) �→ ∑n
i=1 gi(di, vi) where gi(di, vi) := 0 for

di = 0 and for di ≥ 1

gi(di, vi) := di +

{
cdi max{2vi/di, di/(2vi)}, if vi ≤ 2bdi;
cdi max{2vi/di, di/(2vi)} + pdi, otherwise

(1)

and c, p are (small) constants specified below.
Summarizing all the conditions needed below, we require that the constants

a, b, c, p satisfy 1 < a ≤ 2, 1/2 < b ≤ 0.9, 2ab − b − a > 0, a + b > 2, a2b > 1,
8abc + 2p + 4c/b ≤ 1/16, p > 8c

(
a+b
2 − 1

)
, and p > 4(a − 1)c > 0.

We can thus choose, for example, a = 1.7, b = 0.9, p = 0.01, and c = 0.001.
The following lemma, together with the observation that the initial potential

is of order at most nr2 plugged into the multiplicative drift theorem (Theorem1)
proves the desired overall expected run time of O(n log(nr)).

Lemma 3. Let d 	= (0, . . . , 0) and v ∈ [1, �r/4�]n. Let (d′, v′) be the state of
Algorithm1 started in (d, v) after one iteration (i.e., after a possible update of x
and v). The expected difference in potential satisfies

E (g(d, v) − g(d′, v′) | d, v) ≥ δ

n
g(d, v)

for some positive constant δ.

4 Conclusions

While in [7] we analyzed static mutation operators for optimizing multi-valued
functions f : [0..r − 1]n → R, in this paper we gave an operator based on self-
adjusting step sizes. We proved that, in the case of RLS, this leads to a provably
optimal run time for r-valued OneMax functions.

Already for the analysis of RLS we gave an intricate drift-argument, with
many different cases to consider and penalty terms for resolving situations which
would otherwise allow for search points with negative drift. Extending our results
to the case of the (1+1) EA might thus be a very challenging task, pushing the
limits of drift theory.

Note that we chose a specific step size adaptation scheme which guarantees
optimal run time. It would also be interesting to investigate other adaptation
schemes. For example, the step size, in each iteration, could be drawn from a
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distribution (just as in one of the operators presented in [7]), and the parameters
of this distribution are adapted.

Another issue with step sizes is that infeasible areas of the search space might
be reached (in our setting this can happen if we use the interval metric). The
issue of boundary handling is a known problem, and our boundary handling
technique is by no means the only way for dealing with it. We believe that our
choice is natural and leads to a “fair” treatment of all parts of the search space,
and it leads to an optimal run time for our setting. It might be interesting to see
whether there are other settings where a different boundary handling is more
natural, or gives better run time.

Acknowledgments. This research benefited from the support of the “FMJH Program
Gaspard Monge in optimization and operation research”, and from the support to this
program from EDF (Électricité de France).
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Abstract. Theoretical analysis of all kinds of randomised search heuris-
tics has been and keeps being supported and facilitated by the use of sim-
ple example functions. Such functions help us understand the working
principles of complicated heuristics. If the function represents some prop-
erties of practical problem landscapes these results become practically
relevant. While this has been very successful in the past for optimisation
in unimodal landscapes there is a need for generally accepted useful sim-
ple example functions for situations where unimodal objective functions
are insufficient: multimodal optimisation and investigation of diversity
preserving mechanisms are examples. A family of example landscapes is
defined that comes with a limited number of parameters that allow to
control important features of the landscape while all being still simple in
some sense. Different expressions of these landscapes are presented and
fundamental properties are explored.

1 Introduction

Most real-world optimisation problems do not have a single best solution but
many locally or globally optimal ones. The field of multimodal optimisation deals
with tackling such problems and nature-inspired techniques have proven to be
very popular and powerful to tackle these types of problems [17].

Over the last decade a rich set of benchmarks for the systematic and sound
comparison of different optimisation methods has been developed1. Many prob-
lems in these benchmarks are multimodal. However, they are usually restricted to
real-parameter optimisation problems and not accessible to theoretical analysis.
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1 see, e.g., www.epitropakis.co.uk/cec16-niching/competition and coco.gforge.inria.fr.
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There has been some debate on appropriate optimisation goals in multimodal
optimisation [2]. On one hand, one could be interested in the global perspective
of locating a single (local or global) optimum. On the other hand, practition-
ers are often aiming at a multi-local perspective, i.e., they want to identify a
multitude of different optima, either in a simultaneous or sequential fashion2.
When considering such a multi-local perspective, niching techniques [19] are
very common, i.e., techniques that prevent the algorithm from converging to a
single solution and thus, enable it to explore multiple peaks of the search space
in parallel. Some previous theoretical work consider Ising model problems [5,21]
or simple bi-modal example function [6,16] exist. However, no common set of
benchmarks suitable for theoretical analysis is available to date.

This lack of suitable benchmark functions is a serious impediment for the
development of a theory of multimodal optimisation. In the area of classical
optimisation where one is ‘only’ interested in finding an optimal search point
simple example functions have been at the heart of the development of a powerful
and useful theoretical framework and a multitude of strong theoretical results.
Consider for example the well-known example function OneMax, used as early
as 1992 to derive run time results for a simple evolutionary algorithm [15]. It has
given rise to a natural generalisation, the class of linear functions [4] which in turn
has motivated the introduction of a powerful proof technique: drift analysis [7].
And still today it is the function to consider when introducing novel perspectives
[9] or expanding the horizon of theoretical analysis [12]. Clearly, OneMax is not
the only useful and important example function but it is one of a relatively small
number of example functions, most of which are unimodal (see [8] for a broad
overview). Multimodal example functions are rarely considered–one noteworthy
exception being TwoMax, a simple bi-model problem that can be seen as the
maximum of OneMax and ZeroMax [6].

We address this need by introducing a family of landscapes with a limited
number of parameters. We want to allow for the control of important features of
problems that are simple enough for theoretical analysis. We explore properties
of these ‘theoretical’ landscapes in the spirit of fitness landscape analysis that
usually considers landscapes underlying real-world problems such as satisfiabil-
ity [18] or are inspired by biology [20].

It is important to note that there has been some debate on appropriate
example functions and optimisation goals in multimodal optimisation [2]. While
the research in this paper is inspired by this discussion it goes beyond the initial
ideas presented in [2] by introducing three different ways of implementation.
One might want to argue that our example functions are inspired by and a
generalisation of TwoMax, similar to linear functions being inspired by and a
generalisation of OneMax. We think that the set of example functions presented
here is a richer and more interesting generalisation. It bears resemblance with
‘older’ problem classes (e. g., [10,11]) but allows for more control. It is similar to
the moving peaks benchmark [1] but it is static, of course.

2 see, e.g., www.epitropakis.co.uk/ppsn2016-niching.

http://www.epitropakis.co.uk/ppsn2016-niching
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In the next section we present our main ideas behind our example functions.
We describe the properties of some interesting landscapes in Sect. 3. We hint at
the richness of the different example functions in Sect. 4.

2 Defining Landscapes and Objective Functions

We define our example functions based on an abstract idea of a landscape. It is
important to note that we use landscape in a general, colloquial sense that does
not coincide with the technical meaning of a fitness landscape as something that
is defined by a neighbourhood graph and function values. We will be considering
this latter kind of landscape (calling them fitness landscape to emphasise the
difference) when we have defined objective functions.

We fix the set of bit strings of length n (equivalently, the Boolean hypercube
of dimension n) as our search space. This is a complex, high-dimensional search
space. Nevertheless, we think of it as a flat landscape where we introduce peaks
that are defined by their position, their slope and their height (where we will give
the height in an indirect way). The objective of an optimisation algorithm oper-
ating in this landscape is to identify peaks: a highest peak in exact optimisation,
a collection of peaks in multimodal optimisation.

The kind of search heuristics we consider usually conduct search by modifying
one or several bit strings they have explored already to get to another, yet
unexplored bit string. The modifications tend to change only a limited number
of bits and, therefore, it makes sense to use the Hamming distance between two
bit strings as metric in our search space. The Hamming distance of x and y,
H(x, y), equals the number of bits that have different values in x and y. Clearly,
it is a value between 0 and n. If x is a point in our landscape we currently
have and y is a point we want to reach then H(x, y) = 0 indicates that we have
reached the target point y. Since we will be considering maximisation it is more
convenient to consider n − H(x, y) instead.

Definition 1. For x, y ∈ {0, 1}n let H(x, y) :=
n−1∑

i=0

|x[i] − y[i]| denote the Ham-

ming distance of x and y. We also define G(x, y) := n − H(x, y).

We now introduce our notion of a landscape that is defined by some number
of peaks with their parameters that are introduced to the search space. We want
to find these peaks and therefore consider the distance to a nearest peak.

Definition 2. A landscape is defined by the number of peaks k ∈ N and the
definition of the k peaks (numbered 1, 2, . . . , k) where the i-th peak is defined by
its position pi ∈ {0, 1}n, its slope ai ∈ R

+, and its offset bi ∈ R
+
0 .

For a search point x ∈ {0, 1}n we define its closest peak (given by its index i)
as cp(x) := arg min

i∈{1,2,...,k}
H(x, pi). In cases where there are multiple i that minimise

H(x, pi) we define as tie breaking rule that i should additionally maximise ai ·
G(x, pi)+bi. If this is still not unique an arbitrary i that minimises H(x, pi) and
among those maximises ai · G(x, pi) + bi can be selected.



Example Landscapes to Support Analysis of Multimodal Optimisation 795

The tie breaking rule we introduce is tailored towards the way we calculate
fitness (which we define in Definition 3). Since we are interested in finding peaks
it makes sense to concentrate on a higher one if there are multiple nearest peaks.
Since we only care about distance and height we do not care about any tertiary
criterion.

The general idea of our landscape is that the fitness value of a search point
depends on peaks in its vicinity. For the sake of clarification, let us consider the
situation for a landscape with only a single peak, i. e., k = 1 and the parameters
of the peak are p1, a1, b1. The fitness of x ∈ {0, 1}n is given as a1 · G(x, p1) + b1.
We see that the peak itself has fitness a1 · G(p1, p1) + b1 = a1 · n + b1. We call
a1n + b1 the height of the peak p1.

It remains to be determined how we deal with multiple peaks. There are
different ways this can be handled and there is no correct or incorrect way of
doing it. It depends on what you want to achieve. We consider three different
options and briefly discuss what we have in mind for the different versions.

Definition 3. Let k ∈ N and k peaks (p1, a1, b1), (p2, a2, b2), . . . , (pk, ak, bk) be
given. We define the following three objective functions (also called fitness func-
tions).

– f1(x) := acp(x) · G
(
x, pcp(x)

)
+ bcp(x), called the nearest peak function

– f2(x) := max
i∈{1,2,...,k}

ai · G(x, pi) + bi, called the weighted nearest peak function

– f3(x) :=
∑

i∈{1,2,...,k}
ai · G(x, pi) + bi, called the all peaks function

The nearest peak function, f1, has the fitness of a search point x determined
by the closest peak. The fitness is given as discussed above, ai · G(x, pi) + bi,
and the peak i that determines the slope ai and offset bi is the closest peak,
i = cp(x). It implements a very local point of view where the height of other
peaks is ignored even if their height is very much higher and they are only a
little farther.

The weighted nearest peak function, f2, takes the height of peaks into
account. It considers ai · G(x, pi) + bi for all k peaks and uses the peak that
yields the largest value to determine the function value. This implies that peaks
with bigger height determine the function value in a larger area of the search
space in comparison to smaller peaks.

The all peaks function, f3, takes into account ai · G(x, pi) + bi for all peaks
simultaneously and simply adds them up. Note that f3(x)/k yields the average
influence of all peaks and in this sense we can view f3 as an ‘averaged’ fitness
landscape. Since many randomised search heuristics are rank-based [3] the dif-
ference between f3(x) and f3(k)/k is inconsequential.

We use the following visualisation of fitness landscapes resulting from the
above definitions: We project the n-dimensional Boolean hypercube onto a
2-dimensional plane and connect direct Hamming neighbours by edges. We use
a third dimension for the resulting fitness values, indicated by both height and
colour (where blue indicates low fitness and red high fitness). An example for f1
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Fig. 1. Visualisation of fitness landscapes: f1 with n = 5, k = 1, p1 = 1n, a1 = 1 and
b1 = 0 (left) and f3 with p1 = 11111, p2 = 11001, p3 = 10101, a1 = a2 = a3 = 5 and
b1 = b2 = b3 = 0 (right) (Color figure online)

with n = 5, k = 1, p1 = 1n (the all-ones bit string), a1 = 1 and b1 = 0, which is
identical to the well-known OneMax function, is shown in Fig. 1 (left).

We will discuss the differences between the three different fitness functions
in more detail in the next two sections. We will also discuss which properties of
the different fitness functions are of particular interest.

3 Properties

All three objective functions yield the same fitness landscapes for k = 1. They
are all OneMax-like, i.e., p1 is the single local and global optimum, fitness
strictly decreases with increasing Hamming distance to p1 and all points with
equal Hamming distance to p1 have the same fitness value. Consequently, we
restrict ourselves to the more interesting case of k > 1.

When analysing fitness landscapes a variety of criteria can be considered (see,
e.g., [20] for an overview). In this paper, we are particularly interested in the
number of local and global optima and their locations in the search space. We
additionally consider the so-called basin of attraction of a local optimum, i.e.,
the set of search points that are guaranteed to lead to it when using a simple hill-
climber such as Random Local Search (RLS, Algorithm 1), and use as a measure
for its size the probability that this happens when starting from a search point
selected uniformly at random (u.a.r.).

Algorithm 1. Random Local Search (RLS)

1 Choose x ∈ {0, 1}n u.a.r.
2 repeat
3 Create offspring y := x. Select i ∈ {0, . . . , n − 1} u.a.r. and flip bit y[i].
4 if f(y) ≥ f(x) then x := y

5 until forever
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Additionally, we are interested in the influence of different parameters of
landscapes (see Definition 2). This includes particularly the number of peaks
k, their positions and heights (as defined by their slope and offset). Note, the
peaks that we use to define a landscape do not necessarily correspond to a local
optimum of the resulting fitness landscape (see Sect. 4.2).

4 Results

We provide some first insights into properties of our proposed set of example
functions by considering a number of properties that are similar to properties of
known example functions and are, we hope, of some general interest. The results
in these sections hint at properties of different instantiations of our families of
example functions that could be starting point for useful analysis of different
randomised search heuristics. We examine a generalisation of the well-known
TwoMax function [6] for all three fitness functions from Definition 3 in Sect. 4.1.
Section 4.2 is dedicated to the comparison of f1 and f2. Looking at randomly
distributed peaks we compare the influence of the slope as it manifests itself
in f1 and f2. Looking at f3 in Sect. 4.3 we consider an important property by
means of a specific configuration of peaks.

4.1 Generalisation of TwoMax

As a starting point, we consider a landscape with two peaks p1 = 0n and
p2 = 1n and see that for f1 with offsets b1 = b2 = 0 and slopes a1 = a2 = 1
this is identical to the well-known bi-modal example function TwoMax(x) :=
max {∑n

i=1 x[i], n − ∑n
i=1 x[i]}. We examine all three fitness functions and dif-

ferent settings for the two offsets and slopes. In the following, let |x|1 denote the
number of 1-bits in x and |x|0 the number of 0-bits.

It is easy to see that f1 has exactly the two local maxima p1 and p2. Offsets
and slopes influence only the fitness values but not the basins of attractions.

Theorem 1. Let p1 = 0n and p2 = 1n with arbitrary a1, a2 ∈ R
+, b1, b2 ∈ R

+
0 .

The fitness landscape defined by f1 has exactly two local maxima, p1 and p2, with
fitness a1 · |x|0+b1 and a2 · |x|1+b2, respectively. RLS reaches p1 with probability
1/2 and p2 otherwise.

Proof. As discussed in Sect. 2, the fitness is only determined by the closest peak.
It follows immediately, that the two peaks are both locally optimal and that each
search point is in the basin of attraction of its closest peak. Plugging all parameters
into Definition 3 yields the first statement. Let Bi denote the basin of attraction
of pi. For the second statement we need to prove that the RLS starts in B1 or B2

with equal probability. From the above, we see that all x with |x|0 > n/2 are in
B1 while all x with |x|1 > n/2 are in B2. As both sets of points are of equal size
RLS starts in either of them with equal probability. Points with |x|1 = |x|0 = n/2
have equal distance to p1 and p2 and belong to neither basis of attraction. Given
such a point x, we know that RLS flips a 1-bit with probability 1/2 and a 0-bit
otherwise. Thus, after one step, we are in one of the two previous cases. ��
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Things are different for f2 as larger peaks have influence in a larger area of
the search space in comparison to smaller peaks and thus will have a larger basin
of attraction. We remark that our choice of p1 and p2 implies that two search
points with the same number of 0-bits have equal fitness value. Thus, we can
derive a bound on |x|0 that determines the boundary of the basins of attractions
of p1 and p2.

Theorem 2. Let p1 = 0n and p2 = 1n with arbitrary a1, a2 ∈ R
+, b1, b2 ∈ R

+
0

and consider the fitness landscape defined by f2. The basin of attraction of p1
contains all search points x with |x|0 > a2/(a1 + a2) · n + (b2 − b1)/(a1 + a2).

Proof. According to Definition 3, the fitness of a search point x is determined by
p1 if a1 · (n−H(x, 0n))+b1 > a2 · (n−H(x, 1n))+b2. We see that |x|1 = H(x, 0n)
and thus, |x|0 = n − H(x, 0n). Similarly, we have |x|1 = n − H(x, 1n). We get
a1 · |x|0 + b1 > a2 · (n − |x|0) + b2 which is equivalent to |x|0 > a2/(a1 + a2) ·
n + (b2 − b1)/(a1 + a2) and see that all x with this property are in the basin of
attraction of p1. ��

We see that RLS is initialised in the basin of attraction of p1 with probability
1 − o(1) if (a2n + b2 − b1) / (a1 + a2) = n/2 − ω(

√
n).

For f3 all peaks have an influence on a search point’s fitness. This leads to a
very different structure of the fitness landscape.

Theorem 3. Let p1 = 0n and p2 = 1n with arbitrary a1, a2 ∈ R
+, b1, b2 ∈ R

+
0 .

If a1 �= a2, the fitness landscape defined by f3 has a unique global optimum. If
a1 > a2, this global optimum is p1. Otherwise it is p2.

If a1 = a2, all search points have the same fitness a2 · n + b1 + b2.

Proof. According to Definition 3, the fitness of a search point x is

f3(x) = (a1G(x, 0n) + b1) + (a2G(x, 1n) + b2) = (a1 − a2) · |x|0 + a2 · n + b1 + b2.

We see that a1 = a2 implies f3(x) = a2 · n + b1 + b2, which is independent of x,
proving the second statement. For a1 > a2 the fitness increases with increasing
number of zeros and thus, p1 is the unique global optimum. Similarly, it decreases
with increasing number of zeros if a1 < a2. ��

4.2 Comparing f1 and f2

The fitness landscapes defined as f1 and f2 are similar in nature. For both fitness
landscapes the fitness is defined by only one of the peaks: for f1 it is always the
nearest peak; for f2 the slope and offset of the peaks are taken into account so
that ‘higher’ peaks can ‘overrule’ closer but smaller peaks. We formalise this by
considering the set of local optima.

Theorem 4. For f1 and f2 the set of local maxima is a subset of the peak
locations {p1, p2, . . . , pk}. If the minimum Hamming distance between two peaks
is at least 3 then the set of local maxima for f1 is the set of peaks and, for f2,
the set of local maxima is a subset of the set of local maxima of f1.
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Proof. If a point x is not a peak it has a Hamming neighbour with smaller
Hamming distance to the peak that defines the function value of x. This proves
that x cannot be a local maximum. Now, consider f1 for a set of peaks that have
minimum Hamming distance 3. Each Hamming neighbour y of a peak p has p as
its nearest neighbour because the other peaks have Hamming distance at least 2
from y. This implies that f1(y) < f1(p) and since this holds for each Hamming
neighbour y we have that p is a local optimum. Finally, consider a peak pi that is
local maximum for f2. We want to prove that pi is also a local maximum for f1.
If the nearest other peak has Hamming distance at least 3 we are done. Consider
a peak pj with Hamming distance 1. We have that pi is not a local optimum for
f1 if f1(pj) > f1(pi) holds. But in this case f2(pj) > f2(pi), too, so pi is not a
local maximum for f2, either. Finally, consider a peak pj with Hamming distance
2. Again, we have that pi is not a local optimum if f1(pj) > f1(pi) holds. But in
the same way this implies f2(pj) > f2(pi) and pi is a local maximum for f1. ��

Clearly, the question if the set of local optima for f1 and f2 differ for a given
set of peaks depends on the parameters of the peaks. We consider the case of
peaks with random positions to show a remarkable phase transition with respect
to the other parameters, slope and offset. While the relative slope difference ai/aj

can be arbitrarily large (measured in n) it turns out that constant bounds on the
smallest and largest relative difference determine if f1 and f2 have completely
equal or almost completely different local optima.

Theorem 5. Let an at most polynomial number k = nO(1) of peaks (p1, a1, a2),
(p2, a2, b2), . . . , (pk, ak, bk) with a1, a2, . . . , ak ∈ R

+, b1, b2, . . . , bk ∈ R
+
0 and

bi ≤ ai for all i ∈ {1, 2, . . . , k} be given where the peak positions p1, p2, . . . , pk

are chosen independently, uniformly at random from {0, 1}n. Let the minimum
and maximum relative slope differences be m := min

i�=j∈{1,2,...,k}
ai/aj and M :=

max
i�=j∈{1,2,...,k}

ai/aj. There exist constants 0 < c1 < c2 < 1 such that if m > c2

the set of local optima of f1 and f2 are equal to {p1, p2, . . . , pk} with probability
1 − o(1) and if M < c1 there are peak parameters with this value of M such
that the set of local optima of f1 and f2 have only one element in common with
probability 1 − o(1).

Proof. We first show that the peaks are all in linear Hamming distance of each
other with overwhelming probability. Consider two arbitrary peaks pi and pj .
Considering pi fixed, the expected number of bits equal in pi and pj when choos-
ing pj ∈ {0, 1}n uniformly at random equals n/2. Application of Chernoff bounds
[14] and application of a simply union bound yields that for all pairs of peak
positions pi, pj with i �= j we have Pr(H(pi, pj) ∈ [(1 − ε)n/2, (1 + ε)n/2]) =
1 − e−Ω(n). We consider only the situation where this is the case.

We have f1(pi) = ai · n + bi and f2(y) = ai · (n − 1) + bi for any Hamming
neighbour y of pi. We want to show that f2(pi) = f1(pi) and f2(y) = f1(y) holds
which implies that pi is a local optimum of f2. We consider only pi since the case
y is very similar. We have f2(pi) = max

j∈{1,...,k}\{i}
{ai ·n+bi, aj ·(n−H(pi, pj))+bj}.
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Thus, we want to prove that ai ·n+bi > aj ·(n−H(pi, pj))+bj holds. Remember
that we have bj ≤ aj and H(pi, pj) ≥ ((1 − ε)/2)n. Thus, it suffices if ai · n >
aj · n · (((1 + ε)/2) + (1/n)) holds. With ai/aj > ((1 + ε)/2) + (1/n) this is the
case so that choosing any c2 > (1 + ε)/2 suffices (because ai/aj ≥ m).

On the other hand, we are also in the situation where H(pi, pj) < (1+ ε)n/2.
We have ain+ bi ≤ (1+1/n)ain and aj · (n−H(pi, pj))+ bj ≥ aj ·n · ((1− ε)/2).
Thus, if ai/aj < ((1 − ε)/2)/(1 + 1/n) we have that f2(pi) is determined by the
peak (pj , aj , bj). Clearly, any constant c1 < (1 − ε)/2 suffices (because ai/aj <
M). It is not hard to see that we can set the peak slopes in a way that f2 is
defined by the same peak (pj , aj , bj) making pj the only local (and thus also
global) optimum. ��

4.3 Considering Properties of f3

As a third example we consider an important property of f3. For this we look
at a landscape on n = 5d bits with three clustered peaks p1 = 1n, p2 = 12d02d1d

and p3 = 1d0d1d0d1d, a1 = a2 = a3 and arbitrary b1, b2 and b3. Note, that
the three peaks have pairwise equal Hamming distance H(pi, pj) = 2d. We first
observe that the fitness landscape based on f3 has a unique global optimum that
coincides with the centre of mass of the three peaks. An example for d = 1 is
shown in Fig. 1 (right).

Theorem 6. Let p1 = 1n, p2 = 12d02d1d and p3 = 1d0d1d0d1d, a1, a2, a3 ∈ R
+

with a1 = a2 = a3 and arbitrary b1, b2, b3 ∈ R
+
0 . The centre of mass of the three

peaks, i.e., 13d0d1d, is the unique global optimum of the fitness landscape defined
by f3.

Proof. Recall that f3(x) :=
∑

i∈{1,2,...,k} ai · (n − H(x, pi)) + bi. We first observe
that the offsets bi do not have an influence on the ranking of search points as
b1 + b2 + b3 is added to the fitness of all search points. Thus, we can ignore the
bi in the following. As a1 = a2 = a3, search points maximising

∑
i∈{1,2,...,k} n −

H(x, pi) will be assigned the maximal fitness value. It is easy to see that these
are exactly the points that minimise the average Hamming distance to the given
peaks. Using this, the first statement follows directly from the proof of Theorem 1
in [13] and we obtain the centre of mass by performing a simple majority vote
for each bit position. ��

We remark that the above approach can be used to determine the set of
global maxima for arbitrary sets of peaks. If a1 = a2 = a3, we first obtain the
set of search points with maximal fitness value by performing a simple majority
vote for each bit position. Note, that in case of ties, search points with both
bit values are assigned maximal fitness. For example, let us consider the above
peaks with d = 1, i.e., p1 = 11111, p2 = 11001 and p3 = 10101, and p4 = 00000.
We see that we have a tie for the 2nd and 3rd bits. Thus, we have four search
points with maximal fitness value: 11101, 11001, 10101 and 10001. Given the set
of search points with maximal fitness values we can then easily determine the
set of global maxima.
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The approach can also be generalised to peaks with different slopes by using
a weighted majority vote where each a bit in pi is assigned weight ai. Let W0 =∑

i with pi[j]=0 ai and W1 =
∑

i with pi[j]=1 ai. We set the j-th bit to 0 if W0 > W1

and to 1 if W1 > W0. Ties are handled as discussed above.
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Abstract. The runtime of evolutionary algorithms (EAs) depends criti-
cally on their parameter settings, which are often problem-specific. Auto-
mated schemes for parameter tuning have been developed to alleviate
the high costs of manual parameter tuning. Experimental results indi-
cate that self-adaptation, where parameter settings are encoded in the
genomes of individuals, can be effective in continuous optimisation. How-
ever, results in discrete optimisation have been less conclusive. Further-
more, a rigorous runtime analysis that explains how self-adaptation can
lead to asymptotic speedups has been missing. This paper provides the
first such analysis for discrete, population-based EAs. We apply level-
based analysis to show how a self-adaptive EA is capable of fine-tuning
its mutation rate, leading to exponential speedups over EAs using fixed
mutation rates.

1 Introduction

An obstacle when applying Evolutionary Algorithms (EAs) is that their effi-
ciency depends crucially, and sometimes unpredictably, on their parameter set-
tings, such as selective pressure and mutation rates [12]. Parameter tuning [7],
where the parameters are fixed before running the algorithm, is the most com-
mon way of choosing the parameters. A weakness with parameter tuning is
that optimal parameter settings may depend on the current state of the search
process. In contrast, parameter control allows the parameters to change during
the execution of the algorithm, e.g. according to a fixed schedule as in simulated
annealing, through feedback from the search, or via self-adaptation [7]. Adaptive
parameters can be essential and advantageous (e.g. covariance-matrix adapta-
tion [9]) in continuous search spaces. In discrete spaces, it has been shown that
changing the mutation rate as a function of the current fitness [2] can improve
the runtime, and the 1/5-rule has been used to adapt the population size [5].

While previous studies have shown the benefit of adaptive parameters, only
global parameters were analysed. Instead, we look at so-called “evolution of
evolution” or true self-adaptation [7], in which the parameter is encoded in the
genome of individual solutions. The existing studies on this topic from the EC
literature is mostly experimental [1,7,13], or about proving the convergence of
the population model at their limit [1], i. e. infinite population.

We study evolution of mutation rates in non-elitist populations, where the
mutation rates of individuals are encoded in their own genomes. The mutation
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 803–813, 2016.
DOI: 10.1007/978-3-319-45823-6 75
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rate of the mutation rate is a strategy parameter p, which in endogenous control
is itself evolved [1,14]. We consider exogenous control, where the parameter p
is fixed globally. Our contribution is twofold: using a benchmark function, we
provide necessary and sufficient conditions for self-adaptation to be effective; we
show that self-adaptation is necessary in optimising a variant of this function.
More precisely, an EA with a fixed or uniform mixing of mutation rates requires
exponential time, while self-adaptation is efficient. As a by-product, we also
prove that a non-elitist EA can outperform the elitist (μ + λ) EA.

2 Preliminaries

For any n ∈ N, define [n] := {1, . . . , n}. The natural logarithm is denoted by
ln(·), and the logarithm to the base 2 is denoted by log(·). For x ∈ {0, 1}n, we
write x(i) for the i-th bit value. The Hamming distance is denoted by H(·, ·)
and the Iverson bracket by [·]. Given a partition of a search space X into m
ordered “levels” (A1, . . . , Am), we define A≥j := ∪m

i=jAi. A population is a vector
P ∈ X λ, where the i-th element P (i) is called the i-th individual. Given A ⊆ X ,
we let |P ∩ A| := |{i | P (i) ∈ A}| be the number of individuals in population P
that belong to the subset A.

All algorithms considered here are of the form of Algorithm 1 [4]. A new
population Pt+1 is generated by independently sampling λ individuals from an
existing population Pt according to a selection mechanism psel, and perturbing
each of the selected individuals by a variation operator pmut. A fitness function
g : Y → R is implicitly embedded in the selection mechanism psel.

Algorithm 1. [4]
Require: Finite search space Y with an initial population P0 ∈ Yλ.
1: for t = 0, 1, 2, . . . until a termination condition is met do
2: for i = 1 to λ do
3: Sample It(i) ∈ [λ] according to psel(Pt), and set x := Pt(It(i)).
4: Sample x′ ∈ Y according to pmut(x), and set Pt+1(i) := x′.

We consider the standard bitwise mutation operator, where for any pair of
bitstrings x, x′ ∈ {0, 1}n and any mutation rate χ ∈ (0, n], the probability of
obtaining x′ from x is Pr (x′ = mut(x, χ)) = (χ/n)H(x,x′) (1 − χ/n)n−H(x,x′)

.
To model the parameter control problem, we assume that Algorithm 1 must
choose the mutation rate parameter χ from a predefined set M.

Uniform mixing, denoted pmix
mut, chooses the mutation rate χ uniformly

at random from the set M every time an individual is mutated, pmix
mut(x) :=

mut(x, χ), where χ ∼ Unif(M). The special case of |M| = 1, i.e. a fixed mutation
rate, has been studied extensively [4,12]. Here, we focus on |M| > 1. It is known
that such mixing of mutation operators can be beneficial [6,11].
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Self-adaptation uses an extended search space Y = X × M, where each
element (x, χ) consists both of a search point x ∈ X and a mutation rate χ ∈ M.
A fitness function g : Y → R is defined by g((x, χ)) := f(x) for all (x, χ) ∈ Y. The
mutation operator pmut is written as padaptmut and it is parameterised by a globally
fixed parameter p ∈ (0, 1/2] such that padaptmut ((x, χ)) := (x′, χ′) where χ′ = χ
with probability 1 − p, and χ′ ∼ Unif(M \ {χ}) otherwise, and x′ = mut(x, χ′).

We analyse the runtime of Algorithm 1 using the level-based theorem [3].
This theorem applies to any population-based process where the individuals in
Pt+1 are sampled independently from the same distribution D(Pt), where D
maps populations to distributions over the search space X . In Algorithm 1, the
map is D = pmut ◦ psel, i.e., composition of selection and mutation.

Theorem 1 ([3]). Given a partition (A1, . . . , Am+1) of X , define T := min{tλ |
|Pt ∩Am+1| > 0} to be the first point in time that elements of Am+1 appear in Pt

of Algorithm 1. If there exist parameters z1, . . . , zm, z∗ ∈ (0, 1], δ > 0, a constant
γ0 ∈ (0, 1) and a function z0 : (0, γ0) → R such that for all j ∈ [m], P ∈ X λ,
y ∼ D(P ) and γ ∈ (0, γ0] we have

(G1) Pr (y ∈ A≥j | |P ∩ A≥j−1| ≥ γ0λ) ≥ zj ≥ z∗
(G2) Pr (y ∈ A≥j | |P ∩ A≥j−1| ≥ γ0λ, |P ∩ A≥j | ≥ γλ) ≥ z0(γ) ≥ (1 + δ)γ

(G3) λ ≥ 2
a

ln
(

16m

acεz∗

)
with a =

δ2γ0
2(1 + δ)

, ε = min{δ/2, 1/2} and c = ε4/24

then E [T ] ≤ (2/cε)(mλ(1 + ln(1 + cλ)) +
∑m

j=1 1/zj).

We apply the negative drift theorem for populations [10] to obtain tail bounds
on the runtime of Algorithm 1. For any individual Pt(i), where t ∈ N and
i ∈ [λ], define Rt(i) := |{j ∈ [λ] | It(j) = i}|, i.e., the number of times the
individual was selected. We define the reproductive rate of the individual Pt(i)
to be E [Rt(i) | Pt], i.e., the expected number of offspring from individual Pt(i).
Informally, the theorem states that if all individuals close to a given search point
x∗ ∈ X have reproductive rate below a certain threshold α0, then the algorithm
needs exponential time to reach x∗. The threshold depends on the mutation
rate. Here, we derive a variant of this theorem for algorithms that use multiple
mutation rates. In particular, we assume that the algorithm uses m mutation
rates, where mutation rate χi/n for i ∈ [m] is chosen with probability qi. The
proof of this theorem is similar to that of Theorem4 in [10], and thus omitted.

Theorem 2. For any x∗ ∈ {0, 1}n, define T := min{t | x∗ ∈ Pt}, where Pt is
the population of Algorithm 1 at time t ∈ N. If there exist constants α0, c, c

′, δ > 0
such that with probability 1 − e−Ω(n)

– the initial population satisfies H(P0, x
∗) ≥ c′n

– for all t ≤ ecn and i ∈ [λ], if H(Pt(i), x∗) ≤ c′n, then the reproductive rate of
individual Pt(i) is no more than α0,

–
∑m

j=1 qje
−χj ≤ (1 − δ)/α0, and maxj χj ≤ χmax for a constant χmax ,

then Pr
(
T ≤ ec′′n

)
= e−Ω(n) for a constant c′′ > 0.



806 D.-C. Dang and P.K. Lehre

3 General Negative Results

Using Theorem 2, we can now show general negative results for uniform mixing
and self-adaptation of two mutation rates for any function with a unique global
optimum x∗, assuming that the initial population is positioned sufficiently far
away from x∗. The following theorem is a special case of Theorem 2 for |M| = 1.

Theorem 3. The runtime of Algorithm 1 with reproductive rate α0 and muta-
tion rate χhigh/n ≥ (ln(α0) + δ)/n for some constant δ > 0 satisfies
Pr (T ≤ ecn) = e−Ω(n) on any function with a unique global optimum x∗ assum-
ing that H(P0, x

∗) ≥ c′n for two constants c > 0 and c′ ∈ (0, 1).

For binary tournament and (μ, λ)-selection, α0 is bounded from above by
2 and λ/μ respectively. Hence, any mutation rate above ln(2) for 2-tournament
selection and ln(λ/μ) for (μ, λ)-selection by a constant renders the EA inefficient.

For |M| = 2, we have the following general result, again due to Theorem 2.

Theorem 4. Consider Algorithm 1 with reproductive rate α0 and mutation
rates χlow/n and χhigh/n. If there exist constants δ1, δ2, ε > 0 such that

– χlow ≥ ln(α0) − ln(1 + δ1) and χhigh ≥ ln(α0) − ln(1 − δ2),
– the EA chooses mutation rate χhigh with probability at least δ1(1+ε)

δ1+δ2
,

then Pr (T ≤ ecn) = e−Ω(n) on any function with a unique optimum x∗ given
that H(P0, x

∗) ≥ c′n for some constants c′, c > 0.

Uniform mixing selects the mutation rate χhigh/n with probability 1/2. Thus, if
δ1/(δ1 + δ2) is below 1/2 by a constant then the EA is inefficient. For example,
in binary tournament, the setting χlow ≥ ln(3/2) − ln(100/99) and χhigh ≥
ln 3 + ln(33/32) satisfies the conditions for δ1 = 103/297, δ2 = 105/297 and
δ1/(δ1+δ2) = 103/208 < 1/2. In contrast, Theorem 8 shows that self-adaptation
is efficient in this setting. In self-adaptation, χhigh/n is selected with at least
probability p, thus self-adaptation becomes inefficient if p > δ1/(δ1 + δ2).

4 Robustness of Self-adaptation

The previous section showed how critically non-elitist EAs depend on having
appropriate mutation rates. A slightly too high mutation rate χhigh can lead to
an exponential increase in runtime. Uniform mixing of mutation rates can fail
if the set of allowed mutation rates M contains one mutation rate which is too
high, even though the set also contains an appropriate mutation rate χlow.

Self-adaptation has a similar problem if the strategy parameter p is chosen
too high. However, we will prove for a simple, unimodal fitness function that
for a sufficiently small strategy parameter p, self-adaptation becomes highly
robust, and is capable of fine-tuning the mutation rate. For the rest of this
section, we consider a set of two mutation rates M = {χlow, χhigh} which for
arbitrary parameters � ∈ [n] and ε > 0 are defined by

(
1 − χhigh

n

)�
< μ

λ ≤
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(
1 − χhigh

n

)�−1 and μ
λ (1+ε) ≤ (

1 − χlow
n

)n
. By the previous section, if � is chosen

sufficiently small, and hence χhigh sufficiently high, then uniform mixing will fail
on any problem with a unique optimum. In contrast, using a Chernoff and a
union bound, the following lemma shows that individuals that have chosen χhigh

will quickly vanish from a self-adapting population, and the population will be
dominated by individuals choosing the appropriate mutation parameter χlow.

Lemma 1. Let Yt := |Pt ∩ A−1| where Pt is the population of Algorithm 1 at
time t ∈ N with (μ, λ)-selection on LeadingOnes and the set A−1 is as defined
in Eq. (1). Then Pr (Yt ≥ max((3/4)μ, (1 − p/3)tY0)) ≤ t · e−Ω(λ) for all t ∈ N.

Theorem 5. Algorithm1 with (μ, λ)-selection where λ ≥ c ln(n) for a suffi-
ciently large constant c > 0, and self-adaptation from the set M = {χlow, χhigh}
using a sufficiently small constant strategy parameter p satisfying (1+ε)(1−p) ≥
1 + pε has expected runtime O(nλ log(λ) + n2) on LeadingOnes.

Proof. We partition the search space into the following n + 2 levels

Aj :=

⎧
⎪⎨

⎪⎩

{(x, χhigh) | Lo(y) ≥ �} if j = −1
{(x, χlow), (x, χhigh) | Lo(x) = j} if 0 ≤ j ≤ � − 1
{(x, χlow) | Lo(x) = j} if � ≤ j ≤ n.

(1)

The special level A−1 contains search points with too high mutation rate. We
first estimate the expected runtime assuming that there are never more than
(3/4)μ individuals in level A−1. In the end, we will account for the generations
where this assumption does not hold.

We now show that conditions (G1) and (G2) of the level-based theorem hold
for the parameters γ0 := (1/8)(μ/λ), δ := pε, and zj = Ω(1/n). Assume that the
current population has at least γ0λ = μ/8 individuals in A≥j−1 and γλ < γ0λ
individuals in A≥j , for 0 ≤ j ≤ n and γ ∈ [0, γ0). If 0 ≤ j ≤ � − 1, then an
individual can be produced in levels A≥j if one of the γλ individuals in these
levels is selected, and none of the first j bits are mutated. Assuming in the
worst case that the selected individual has chosen the high mutation rate, the
probability of this event is at least (γλ

μ )
((

1 − χhigh
n

)j (1 − p) +
(
1 − χlow

n

)j
p
)

>

(γλ
μ )

((
1 − χhigh

n

)�−1 (1 − p) +
(
1 − χlow

n

)n
p
)

≥ γ(1+ pε). All individuals in lev-
els j ≥ � use the low mutation rate. Hence, an individual in levels A≥j can be
produced by selecting one of the γλ individuals in this level, not change the
mutation rate, and not flip any of the first j ≤ n leading 1-bits. The probability
of this event is at least γλ

μ

(
1 − χlow

n

)j (1− p) > γλ
μ

(
μ
λ (1 + ε)(1 − p)

) ≥ γ(1+ δ).
Condition (G2) is therefore satisfied for all levels. For condition (G1), assume
that the population does not contain any individuals in A≥j . Then in the worst
case, it suffices to select one of the at least γ0λ individuals in level Aj , switch
the mutation rate, and only flip the first 0-bit and no other bits. The probability
of this event is higher than γ0λ

μ

(
χlow

n

) (
1 − χhigh

n

)n−1
p = Ω(1/n).

Condition (G3) holds for any population size λ ≥ c ln(n) and a sufficiently
large constant c, because γ0 and δ are constants. It follows that the expected
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number of generations until the optimum is found is t1(n) = O(n log(λ)+n2/λ).
By Markov’s inequality, the probability that the algorithm has not found the
optimum after 2t1(n) generations is less than 1/2.

Finally, we account for the generations with more than (3/4)μ individuals in
level A−1. We call a phase good if after t0(n) = O(log(λ)) generations and for the
next 2t1(n) generations, there are fewer than (3/4)μ individuals in level A−1. By
Lemma 1, a phase is good with probability 1 − (t0(n) + 2t1(n)) · e−Ω(λ) = Ω(1),
for λ ≥ c ln(n) and c a sufficiently large constant. By the level-based analysis, the
optimum is found with probability at least 1/2 during a good phase. Hence, the
expected number of phases required to find the optimum is O(1). The theorem
now follows by keeping in mind that each generation costs λ evaluations. ��

We have shown that the EA can self-adapt to choose the low mutation para-
meter χlow when required. Nevertheless, uniform mixing of mutation rates with
a sufficiently small χlow could achieve the same asymptotic performance. Fur-
thermore, naively picking a mutation rate from the beginning also has a constant
probability of optimising the function in polynomial time. Our aim is therefore
to show that there exists a setting for which all the above approaches, except
self-adaptation, fail. To prove this, we have identified a problem fm where a high
mutation rate is required in one part of the search space, and a low mutation
rate is required in another part.

fm(x) :=

{
m if x = 0n, and
LeadingOnes(x) otherwise.

We call the local optimum 0n the peak, and assume that all individuals in the ini-
tial population are peak individuals. The elitist (μ+λ) EA without any diversity
mechanism will only accept a search point if it has at least m leading 1-bits.

Theorem 6. Starting at 0n, the (μ+λ) EA has expected runtime nΩ(m) on fm.

To reach the optimal search point more efficiently, it is necessary to accept
worse individuals into the population, e.g. a non-elitist selection scheme should
be investigated. Since fm has a unique global optimum, either using only a too
high mutation rate or uniformly mixing a correct mutation rate with a too high
one can lead to exponential runtime as discussed above. Analogously to the
(μ + λ) EA, we also prove that using a too low mutation rate fails because the
population is trapped on the peak (e.g. due to Theorem 2, individuals fell off the
peak have too low reproductive rate to optimise m leading 1-bits). Subsequent
proofs use the two functions q(i) := (1 − χlow/n)i and r(i) := (1 − χhigh/n)i,
which are the probabilities of not flipping the first i ∈ [n] bits using mutation
rate χlow/n and χhigh/n respectively. Clearly, q(i) and r(i) are monotonically
decreasing in i. We also use the function β(γ) := 2γ(1−γ/2), which is the prob-
ability that binary tournament selection chooses one of the γλ fittest individuals.

Theorem 7. The runtime of Algorithm 1 on fm with tournament size 2, ini-
tialised with the population at 0n and fixed mutation rate χ ≤ ln(3/2)−ε for any
constant ε ∈ (0, ln(3/2)) satisfies Pr (T ≤ ecn) = e−Ω(λ) for a constant c > 0.
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Theorem 8. If M = {χlow, χhigh} where χlow := ln(32 ) − ε for any constant
ε ∈ (0, ln(10099 )), and ln(3) ≤ χhigh = O(1), then there exists an m ∈ Θ(n)
such that Algorithm1 starting with the population at 0n, with tournament size
2, population size λ ≥ c ln n for some constant c > 0 and self-adaptation of M
with p = 1/20 has expected runtime O(nλ log(λ) + n2) on fm.

Recall that uniform mixing is inefficient in this setting. Our intuition is that
with sufficiently high mutation rate, some individuals fall off the peak and form a
sub-population which starts optimising the LeadingOnes part of the problem.
If the selective pressure is not too high, the sub-population should escape the
local optimum, adapt the mutation rate, and reach the optimal search point 1n.
We used the level-based technique to infer constraints on the mutation rates and
the strategy parameter p that allow this to happen. We use Lemma 2 to show
that there are few individuals on the peak, or with “incorrect” mutation rates.

Lemma 2. Given any subset A ⊂ X , let Yt := |Pt ∩ A| be the number of
individuals in generation t ∈ N of Algorithm 1 with tournament size 2, that
belong to subset A. If there exist three parameters ρ, σ, ε ∈ (0, 1) such that
Pr (pmut(y) ∈ A) ≤ ρ for all y ∈ A and Pr (pmut(y) ∈ A) ≤ σγ∗ −ε for all y �∈ A,
where γ∗ := 2 − (1 − σ)/ρ, then Pr (Yt ≥ max (γ∗λ, (1 − ε/2)tY0)) ≤ t · e−Ω(λ).

Proof (of Theorem 8). We apply the level-based theorem with respect to a par-
titioning of the search space X = {0, 1}n × M into the following n + 2 levels

Aj :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{(0n, χlow), (0n, χhigh)} if j = −1,

{(x, χlow), (x, χhigh) | Lo(x) = 0 ∧ x �= 0n} if j = 0,

{(x, χlow), (x, χhigh) | Lo(x) = j} if 1 ≤ j ≤ � − 2,

{(x, χlow), (y, χhigh) | Lo(x) = � − 1,Lo(y) ≥ � − 1} if j = � − 1,

{(x, χlow) | Lo(x) = j} if � ≤ j ≤ n.

where � ∈ [n] is the unique integer such that
(
1 − χhigh

n

)�
< 85

171 ≤ (
1 − χhigh

n

)�−1
.

Note that as long as m ≤ ln(171/85)(n − 1)/χhigh, we have
(
1 − χhigh

n

)m ≥
(e−χhigh)

m
n−1 ≥ 85

171 >
(
1 − χhigh

n

)�
, hence � > m.

We first estimate the expected runtime assuming that every population con-
tains less than ψλ individuals in A−1, and less than ξλ individuals in the set
B := {(y, χhigh) | Lo(y) ≥ �}, where ψ := 123/250 and ξ := 1/5. In the end, we
will account for the generations where these assumptions do not hold. We begin
by showing that condition (G2) of the level-based theorem hold for all levels.

Levels 0 ≤ j ≤ m: Assume that the population contains γλ individuals in
A≥j for any γ ∈ (0, γ0). An individual in A≥j will be selected if the tourna-
ment contains at least one individual in A≥j , and no individuals in A−1. The
probability of this event is β(γ) ≥ 2γ(1 − γ0/2 − ψ). The mutated offspring of
the selected individual will belong to levels A≥j if none of the first j ≤ m bits
are flipped, which occurs with probability at least r(m). Hence, condition (G2)
is satisfied if there exists a γ0 ∈ (0, 1) and a constant δ > 0 such that for all
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γ ∈ (0, γ0], it holds β(γ)r(m) ≥ γ(1 + δ), i.e., it is sufficient to choose m ∈ N

sufficiently small such that r(m) =
(
1 − χhigh

n

)m ≥ 1+δ
2(1−γ0/2−ψ) . Note that such

an m = Θ(n) exists, because 2(1 − γ0/2 − ψ) = 127
125 − γ0 > 1 + δ when γ0 and δ

are sufficiently small.
Levels m + 1 ≤ j < �: The probability of mutating an individual from A≥j

into A≥j , pessimistically assuming that the selected individual uses the high
mutation rate χhigh, is at least r(�−1)(1−p)+q(�−1)p > r(�−1)(1−p)+q(n)p >
(85/171)(1 − p) + (2/3)p = 1/2 + 1/180. Hence, assuming that the current pop-
ulation has γλ individuals in A≥j where γ ∈ (0, γ0), the probability of selecting
one of these individuals and mutating them into A≥j is at least β(γ)(r(�−1)(1−
p) + q(� − 1)p) > 2γ(1 − γ0/2)(1/2 + 1/180) = γ(1 − γ0/2)(1 + 1/90) > γ(1 + δ′)
for some δ′ > 0 given that γ0 is a sufficiently small constant. Note that the lower
bound on β(γ) here does not depend on ψ, and nor on ξ because in this setting
the peak individuals have lower fitness than the individuals in Aj , and B ⊂ A≥j .

Levels � ≤ j ≤ n: By the level-partitioning, any individual in these levels uses
the low mutation rate χlow, and other individuals with at least � leading 1-bits
belong to the set B. Assume that the current population contains γ ∈ (0, γ0)
individuals in A≥j . An individual in A≥j can be produced by having a binary
tournament with at least one individual from A≥j and none of the at most ξλ
individuals in B, not mutating any of the bits, and not changing the mutation
rate. The probability of this event is at least 2γ(1 − γ0/2 − ξ)q(n)(1 − p) ≥
γ(4/5 − γ0/2)(19/15) = γ(1 + 1/75 − (19/30)γ0) > γ(1 + δ′) for some constant
δ′ > 0, assuming that γ0 is sufficiently small.

We now show that condition (G1) is satisfied for a parameter z = Ω(1/n) in
any level j. Assume that there are at least γ0λ individuals in A≥j . Then, to create
an individual in A≥j+1, it is sufficient to create a tournament of two individuals
from A≥j , flip at most one bit, and either keep or switch the mutation rate. The
probability of such an event is at least γ2

0(χlow/n)(1 − χhigh/n)n−1p = Ω(1/n).
To complete the application of the level-based theorem, we note that since

δ and γ0 are constants, condition (G3) is satisfied when λ ≥ c ln n for some
constant c. Hence, under the assumptions on the number of individuals in level
A−1 and B described above, the level-based theorem implies that the algorithm
obtains the optimum in expected t1(n) = O(n log(λ) + n2/λ) generations. Fur-
thermore, by Markov’s inequality, the probability that the optimum has not been
found within 2t1(n) generations is less than 1/2.

To complete the proof, we justify the assumption that less than ψλ individu-
als belong to level A−1, and less than ξλ individuals belong to B. We will show
using Lemma 2 that starting with any population, these assumptions hold after
an initial phase of t0(n) = O(log(λ)) generations. We call a phase good if the
assumptions hold for the next t1(n) < ecλ generations.

To apply Lemma 2 with respect to level A−1, we note that the probability
of obtaining an individual in A−1 by mutating an individual in A−1 is bounded
from above by q(n)(1−p)+ r(n)p ≤ (2/3)eε(1−p)+p/3 ≤ 65/99. Furthermore,
to mutate an individual from X \ A−1 into A−1, it is necessary to flip at least
one specific bit-position, i.e., with probability O(1/n). Therefore, by Lemma 2
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with σ = 49/4950 and ρ = 65/99, it holds for all t where t0(n) < t < ecn and
t0(n) = O(log(λ)) that Pr (|Pt ∩ A−1| ≥ ψλ) = e−Ω(λ) where ψ := 123/250.

Similarly, the probability of not destroying a B-individual with mutation is
by definition of � at most

(
1 − χhigh

n

)� (1−p) ≤ (
85
171

) (
19
20

)
= 17

36 =: ρ. To create a
B-individual from X \B, it is in the best case necessary to change the mutation
rate from χlow to χhigh and not mutate the first � bit-positions. The probability
of this event is

(
1 − χhigh

n

)�
p ≤ (

85
171

) (
1
20

)
= 17

684 . Therefore, by Lemma 2 wrt
σ := 3/20 and the above value of ρ, for every generation t where t0(n) < t < ecλ

and t0(n) = O(log(λ)) it holds Pr (|Pt ∩ B| ≥ ξλ) = e−Ω(λ), where ξ := 1/5.
To summarise, starting from any configuration of the population, a phase of

length t0(n) + 2t1(n) = O(n log(λ) + n2/λ) generations is good with probability
1 − e−Ω(λ). If a phase is good, then the optimum will be found by the end of
that phase with probability at least 1/2. Hence, the expected number of phases
required to find the optimum is O(1), and the theorem follows, keeping in mind
that each generation costs λ function evaluations. ��

5 Experiments

Below are results from 1000 experiments with the self-adaptive EA on the
LeadingOnes function for n = 200, p = 1/1000 using (μ, λ)-selection for
μ = 500, λ = 4μ, and mutation parameters M = {2/5, 2}. For each j ∈ [n],
the figure contains a box-plot describing the distribution of the fraction of the
population choosing χlow over all generations where the (1/10)-ranked individ-
ual in the population has j leading one-bits.
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The initial population, including mutation rates, are sampled uniformly at
random. Hence the (1/10)-ranked individual will have fitness close to 1 in the first
generations. For j ≤ 5, i. e. early in the run, approximately half of the population
chooses the low mutation. However, the population quickly switches to the higher
mutation χhigh until the (1/10)-ranked individual in the population reaches a
value approximately j ≥ 60 where the population switches to the lower mutation
χlow. Almost all individuals choose χlow for j ≥ 108. These experimental results
confirm that the population adapts the mutation rate according to the region of
the fitness landscape currently searched.
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6 Conclusion

In this first runtime analysis of self-adaptation, we have shown that self-
adaptation with a sufficiently low strategy parameter can robustly control
mutation-rates in non-elitist EAs, and that this automated control can lead
to exponential speedups compared to EAs that use fixed mutation rates, or uni-
form mixing of mutation rates. The results were obtained via level-based analy-
sis, further demonstrating the strength of this technique in handling complex
population dynamics.
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Abstract. Set-quality indicators have been used in Evolutionary Multi-
objective Optimization Algorithms (EMOAs) to guide the search process.
A new class of set-quality indicators, the Sharpe-Ratio Indicator, com-
bining the selection of solutions with fitness assignment has been recently
proposed. This class is based on a formulation of fitness assignment
as a Portfolio Selection Problem which sees solutions as assets whose
returns are random variables, and fitness as the investment in such
assets/solutions. An instance of this class based on the Hypervolume
Indicator has shown promising results when integrated in an EMOA
called POSEA. The aim of this paper is to formalize the class of
Sharpe-Ratio Indicators and to demonstrate some of the properties of
that particular Sharpe-Ratio Indicator instance concerning monotonicity,
sensitivity to scaling and parameter independence.

Keywords: Sharpe Ratio · Portfolio selection · Evolutionary
algorithms · Multiobjective optimization

1 Introduction

Indicator-based Evolutionary Multiobjective Optimization Algorithms
(EMOAs) are currently among the state-of-the-art in Evolutionary Multiobjec-
tive Optimization. These EMOAs rely on quality indicators to guide the search,
which map a point set into a scalar value, such as the Hypervolume Indica-
tor [5,9]. Good quality indicators capture in a single value the proximity to the
Pareto front and the sparsity/diversity of the set, which tends to enhance the
capability of indicator-based EMOAs to find well-spread sets of good solutions.

Studies of quality-indicator properties have shown the abilities and limita-
tions of indicator-based EMOAs. Such properties allow one to better understand,
for example, whether an indicator-based EMOA aiming at the maximization of
the indicator, is able to converge to the Pareto Front (monotonicity [10]) or
understand which distribution each indicator favors (optimal μ-distributions [1]).

Yevseyeva et al. [8] established a link between the theory of Portfolio Selection
and selection in Evolutionary Algorithms (EAs) by making an analogy between
assets and individuals, expected return and individual quality, and return covari-
ance and lack of diversity. They proposed that individuals be assessed through
c© Springer International Publishing AG 2016
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the optimization of a Portfolio Selection Problem (PSP), formalized as the bi-
objective problem of assigning investment to a set of assets so as to maximize
expected return while minimizing return variance (associated to risk). This trans-
lates into the problem of assigning fitness to an EA population so as to max-
imize overall population quality while minimizing lack of diversity. Due to the
bi-objective nature of the PSP, different optimal investment strategies balancing
risk and expected return may be defined, such as the Sharpe Ratio, a risk-
adjusted performance index well known in Finance [3]. A new indicator related
to the Hypervolume Indicator, but based on the maximization of the Sharpe
Ratio, was proposed and integrated in an EMOA with promising results. How-
ever, its theoretical properties have not been considered so far.

The goal of this paper is to formalize the class of Sharpe-Ratio Indicators
and to study some of the properties of the indicator proposed by Yevseyeva
et al. [8]. Section 2 provides the background. Section 3 details and formalizes the
class of indicators based on the Sharpe Ratio and reintroduces the indicator
proposed by Yevseyeva et al., which will be called Hypervolume Sharpe Ratio
(HSR) Indicator, as an instance of this class. Then, some properties of the HSR
Indicator regarding monotonicity, reference points, and scaling independence,
will be demonstrated in Sect. 4. Some conclusions are drawn in Sect. 5.

2 Background

2.1 Definitions

In multiobjective optimization, each solution is mapped according to d objective
functions onto a point in the objective space, R

d. For simplicity, only those points
in objective space will be considered throughout this paper. Note that a number
in parentheses in superscript is used for enumeration (e.g. a(1), a(2), a(3) ∈ R

d)
while a number in subscript is used to refer to a coordinate of a point/vector
(e.g. vi is the ith coordinate of v ∈ R

d). As the objective space is a partially
ordered set, the Pareto dominance relation is introduced [4,11]:

Definition 1 (Dominance). A point u ∈ R
d is said to weakly dominate a point

v ∈ R
d, iff ui ≤ vi for all 1 ≤ i ≤ d, and this is represented as u ≤ v. If, in

addition u �= v, then u is said to dominate v and is represented as u < v. If
ui < vi for all 1 ≤ i ≤ d, then u is said to strongly dominate v, and this is
represented as u � v.

Definition 2 (Set dominance). A set A ⊂ R
d is said to weakly dominate a

set B ⊂ R
d iff ∀b∈B, ∃a∈A : a ≤ b. This is represented as A 	 B. A is said to

dominate a set B iff A 	 B and B � A, and this is represented as A ≺ B.

2.2 Properties

A set-indicator is a function I that assigns a real value to a non-empty set of
points in R

d [10]. Among the properties a set-indicator may possess [10], this
paper will cover parameter independence, sensitivity to scaling and monotonicity.



816 A.P. Guerreiro and C.M. Fonseca

Typically, an indicator is easier to use the lower is the number of parameters
that must be set. A scaling invariant indicator (e.g. the cardinality indicator [10])
guarantees that the indicator value for any subset of the objective space remains
unchanged when the objective space is scaled. A weaker form of invariance, called
scaling independence, ensures that the order defined by an indicator among all
subsets of the objective space is kept when the objective space is scaled.

Monotonicity is an important property as it formalizes the empirical notion
of agreement between indicator values and set dominance. A monotonic indicator
guarantees that a set of nondominated solutions is never considered to be worse
than another set which it dominates. A definition of (weak) monotonicity of a
set-quality indicator with respect to set dominance is given in [10]:

Definition 3 (Monotonicity). A set-indicator I is weakly monotonic w.r.t set
dominance iff, given two point sets A,B ⊂ R

d, A ≺ B implies I(A) ≥ I(B).

The above properties have been studied for indicators such as the hyper-
volume indicator (strictly monotonic [10] for sets of points that strongly dom-
inate the reference point, parameter-dependent [1], scaling independent [5,9])
and the additive ε-indicator (weakly monotonic [10], dependent on multiple
parameters [10]), thereby motivating their use in EMOAs as well as in per-
formance assessment. Not holding such properties may discourage the use of an
indicator in EMOAs. For example, a non-monotonic indicator may prefer non-
Pareto Front solutions over Pareto front solutions dominating them, as is the
case with the Average Hausdorff distance [7] and cardinality [10].

2.3 Sharpe Ratio

A portfolio balancing return and risk, is obtained by optimizing Problem 1:

Problem 1 (Sharpe-Ratio Maximization). Let A = {a(1), . . . , a(n)} be a non-
empty set of assets, let vector r ∈ R

n denote the expected return of these assets
and matrix Q ∈ R

n×n denote the return covariance between pairs of assets. Let
x ∈ [0, 1]n be the investment vector where xi denotes the investment in asset
a(i). The Sharpe-Ratio maximization problem is defined as:

max
x∈[0,1]n

h(x) =
rT x − rf√

xT Qx
s. t.

n∑

i=1

xi = 1 (1)

where rf represents the return of a riskless asset and h(x) is the Sharpe Ratio [3].

Although Problem 1 is non-linear, h(x) may be homogenized and thus, it may
be restated as an equivalent convex quadratic programming (QP) problem [3]:

Problem 2 (Sharpe-Ratio Maximization - QP Formulation).

min
y∈Rn

g(y) = yT Qy (2a)

s. t.
n∑

i=1

(ri − rf )yi = 1 (2b)

yi ≥ 0, i = 1, . . . , n (2c)
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The optimal investment x∗ for Problem 1, i.e., the optimal risky portfolio,
is given by x∗ = y∗/k, where y∗ is the optimal solution of Problem 2 and
k =

∑n
i=1 y∗

i .
So far, the set of assets A has been considered to be fixed and so have r and

Q. However, in this paper, r and Q are computed as function of a set of assets A
that is not fixed and thus, hA(x) and gA(y) will be used instead of h(x) and g(y),
respectively, to highlight this dependence where needed. Moreover, with a slight
abuse of language, a solution y to Problem 2 will also be called an investment
vector, as for a solution x for Problem 1.

3 Sharpe-Ratio Indicator

In this section, the class of Sharpe-Ratio Indicators is formalized, and the Hyper-
volume Sharpe-Ratio Indicator proposed by Yevseyeva et al. [8] is instantiated.

The return of each individual is related to the preferences of a Decision Maker
(DM) and different methods can be used to model the uncertainty surrounding
DM preferences. Yevseyeva et al.’s [8] interpretation of selection in EAs as a
portfolio selection problem sees the return of each individual asset as a random
variable whose expected values can be computed.

Problem 1 does not state what the expected return and covariance of
assets/individuals are. Different preferences lead to different ways of modeling
return (and vice-versa) which may lead to different investment strategies in EAs.
Therefore, a broad class of indicators based on the Sharpe Ratio can be defined:

Definition 4 (Sharpe-Ratio Indicator). Given a non-empty set of assets
A = {a(1), . . . , a(n)}, the corresponding expected return, r, and covariance
matrix, Q, the Sharpe-Ratio Indicator, ISR(A), is defined as follows:

ISR(A) = max
x∈Ω

hA(x) (3)

where Ω ⊂ [0, 1]n is the set of solutions that satisfy the constraints of Problem 1.

Note that the Sharpe-Ratio Indicator simultaneously evaluates the quality of the
set A through a scalar, ISR(·), and also the importance of each solution in that
set through the optimal investment vector x∗.

The Hypervolume Sharpe-Ratio Indicator (HSR Indicator) is an instance of
the Sharpe-Ratio Indicator where the expected return vector and the return
covariance matrix are computed based on the Hypervolume Indicator as pro-
posed by Yevseyeva et al. [8]. The expected return of a solution is the probability
of that solution being satisfactory to the DM, assuming a uniform distribution
of the DM’s goal vector in an orthogonal range [l, u], l, u ∈ R

d. For the ith

individual in the population, this is represented by component pi of a vector p,
whereas the return covariance between the ith and jth individuals is represented
by element qij of a matrix Q (i, j = 1, . . . , n). Let:

pij(l, u) =
Λ([l, u] ∩ [a(i),∞[∩[a(j),∞[)

Λ([l, u])
=

∏d
k=1(uk − max(a(i)

k , a
(j)
k ))

∏d
k=1(uk − lk)

(4)



818 A.P. Guerreiro and C.M. Fonseca

Fig. 1. An example of the region measured to compute pij , given a point set A =
{a(1), a(2)} ⊂ R

2. The region measured to compute p1 and p2 and p12 is depicted in
darker gray in Figures (a), (b) and (c), respectively.

where l, u ∈ R
d are two reference points and Λ(·) denotes the Lebesgue

measure [2]. Note that pij is, therefore, the normalized hypervolume indica-
tor of the region jointly dominated by a(i) and a(j) inside the region of inter-
est, [l, u]. Moreover, from the formulation [8], ri(l, u) = pi(l, u) = pii(l, u) and
qij(l, u) = pij(l, u)−pi(l, u)pj(l, u). For the sake of readability, P = [pij ]n×n and
Q = [qij ]n×n will be assumed to have been previously calculated and, therefore,
parameters l and u from expression (4) will be omitted as long as no ambiguity
arises. Note that, from the definition of qij , Q = P − ppT .

In Fig. 1, assuming w.l.o.g. that l = (0, 0) and u = (1, 1), and thus,
Λ([l, u]) = 1, the area of the darker regions in Figs. 1(a) to (c) are, exactly, p1,
p2 and p12, respectively. Note that pii is related to the area dominated by a(i)

inside the region [l, u], while pij is related to the area simultaneously dominated
by a(i) and a(j) inside the region [l, u].

The Sharpe Ratio hA(x) for the set of solutions A where r and Q are defined
as in (4) will be represented by hA

HSR(x, l, u). Analogously to the Sharpe-Ratio
Indicator, the HSR Indicator is formally defined as follows:

Definition 5 (Hypervolume Sharpe-Ratio Indicator). Given a non-empty
point set A = {a(1), . . . , a(n)} ⊂ R

d, the points l, u ∈ R
d, the expected return p

and the covariance Q computed as expressed in (4), the Hypervolume Sharpe-
Ratio Indicator IHSR(A, l, u) is given by:

IHSR(A, l, u) = max
x∈Ω

hA
HSR(x, l, u) (5)

where Ω ⊂ [0, 1]n is the set of solutions that satisfy the constraints of Problem 1.

As Yevseyeva et al. [8] pointed out, it follows from the definition of qij that the
riskless asset is such that rf = 0. Consequently, Problem 2 may be simplified by
noting that the constraint (2b) must always be satisfied. Therefore, the following
is true for any solution y in the feasible space Ω:

yT Qy =
n∑

i=1

n∑

j=1

pijyiyj −
n∑

i=1

piyi

n∑

j=1

pjyj =
n∑

i=1

n∑

j=1

pijyiyj − 1 = yT Py − 1 (6)
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Note that this simplification of Problem 2 is applicable to any DM preference
model where rf is zero.

4 Properties of the HSR Indicator

In the following, the optimal investment is shown to be invariant to the setting
of l under certain conditions. Varying l can also be interpreted as applying
linear transformations to the objective space, under which the indicator is scaling
independent. Finally, the HSR Indicator is shown to be weakly monotonic.

4.1 Reference Points and Linear Scaling

Given a non-empty point set A ⊂ R
d and the reference points l, u ∈ R

d, such that
for all a ∈ A, l ≤ a � u holds, the location of l can be shown to have no effect
on the optimal investment in A as long as {l} ≤ A and u remains fixed. This is
equivalent to applying a linear transformation to the objective space, with u as
the center of the transformation. Thus, in practice, only one parameter of the
HSR Indicator needs to be set (the upper reference point, u). Formally:

Theorem 1. Let A ⊂ R
d be a non-empty point set, let l, u ∈ R

d be two
reference points such that ∀a∈A, l ≤ a � u, and let x∗ ∈ [0, 1]n be such that
IHSR(A, l, u) = hA

HSR(x∗, l, u). If l′ ∈ R
d is such that {l′} ≤ A, then x∗ also

satisfies IHSR(A, l′, u) = hA
HSR(x∗, l′, u).

Proof. Recall expression (4), of pij , for a given point set A = {a(1), . . . , a(n)} ⊂ R
d,

where p = [pii]n×1 and P = [pij ]n×n (i, j = 1, ..., n). P (l′, u) and p(l′, u) may be
defined as functions of P (l, u) and p(l, u), respectively, in the following way:

P (l′, u) =
v

v′ P (l, u) (7a)

p(l′, u) =
v

v′ p(l, u) (7b)

where v = Λ([l, u]) and v′ = Λ([l′, u]).
Assume that y ∈ R

n is the vector of variables of Problem 2 (minimizing
gAHSR(y, l, u) = yT Py − 1), when l is set as the lower reference point and that,
analogously, y′ ∈ R

n is the corresponding vector of variables when l′ is used
instead. Taking into account expressions (7b) and the equality constraint of
Problem 2, the following is derived:

p(l, u)T y = p(l′, u)T y′ ⇔ p(l, u)T y =
v

v′ p(l, u)T y′ ⇔ y =
v

v′ y
′ (8)

which implies that when y is such that y = v
v′ y

′, if y′ > 0 then y > 0 and
therefore, if y′ is feasible so is y and vice-versa. Hence, the following holds:

gAHSR(y′, l′, u) = y′T P (l′, u)y′ − 1 =
v′

v
yT P (l, u)y − 1 =

v′

v
gAHSR(y, l, u) − 1 +

v′

v
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Therefore, the optimal solution y′∗ for Problem 2, given l′, can be obtained
from the optimal solution y∗, given l, i.e., y′∗ = v′

v y∗. Consequently, the optimal
solution x∗ for Problem 1:

x∗ =
y∗

∑n
i=1 y∗

i

=
v
v′ y

′∗
v
v′

∑n
i=1 y′∗

i

=
y′∗

∑n
i=1 y′∗

i

. (9)

Hence, IHSR(A, l, u) = hHSR(x∗, l, u) implies that IHSR(A, l′, u) = hHSR(x∗, l′, u)
thus, Theorem 1 is proved.

Note that moving the lower reference point, l, for example, to a lower value of
one of the objectives while the others are kept the same, is equivalent to scaling
down that objective with respect to the other objectives. Thus, the placement of
l can also be seen as a way of linearly scaling the objective functions (as long as
this reference point continues to dominate A). Therefore, by Theorem 1, scaling
the objective space under such conditions does not affect the optimal investment.

Scaling through l comes down to multiplying pi and pij by a positive con-
stant as in the proof of Theorem 1. Observing the Sharpe Ratio expression h(x)
in Problem 1, the HSR-indicator is not scaling invariant, i.e., scaling the objec-
tive space will affect the indicator value. However, the HSR-indicator is scaling
independent under these linear transformations, as shown next.

Theorem 2 (Linear-Scaling Independence of IHSR). Consider two point
sets A,B ⊂ R

d and two reference points l, u ∈ R
d such that ∀a∈A,b∈B, l ≤ a, b � u.

Assume w.l.o.g. that A and B are such that IHSR(A, l, u) ≤ IHSR(B, l, u). Then,
IHSR(A, l′, u) ≤ IHSR(B, l′, u) holds for any l′ ∈ R

d such that {l′} ≤ A,B.

Proof. Let pA, PA and QA denote, respectively, the expected return vector, the
matrix of expected return and the return covariance matrix with respect to
point set A. Scaling is applied to A and B in expression h(x) in Problem 1 by
multiplying a constant t > 0 by each pi and pij and, therefore, p′

A = tpA and
P ′
A = tPA, where t = Λ([l,u])

Λ([l′,u]) . Consequently,

IHSR(A, l′, u) ≤ IHSR(B, l′, u) ⇔
tpT

AxA√
txT

APAxA − t2xT
ApApT

AxA

≤ tpT
BxB√

txT
BPBxB − t2xT

BpBpT
BxB

⇔

1
t
(xT

ApApT
AxA)(xT

BPBxB) ≤ 1
t
(xT

BpBpT
BxB)(xT

APAxA)

(10)

Since the constant t vanishes from the inequality, which includes the case where
the lower reference point is not changed (t = 1), Theorem 2 is proved.

4.2 Monotonicity

The property of monotonicity may now be stated for the HSR Indicator:
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Theorem 3 (Weak Monotonicity of the Hypervolume Sharpe-Ratio
Indicator). Consider two reference points l, u ∈ R

d and two point sets
A,B ⊂ [l, u[ such that A ≺ B. Then IHSR(A, l, u) ≥ IHSR(B, l, u).

In order to prove this theorem, two auxiliary results are stated first. Lemma 1 is
used to prove Lemma 2, which is then used in the proof of the theorem. Similarly
to expression (4), for any two points a, b ∈ [l, u[, let pab denote the measure of
the region bounded above by u ∈ R

d that is dominated simultaneously by a and
b, and let pa = paa. Note that pc > 0 for any point c ∈ [l, u[.

Lemma 1. Consider two points a, b ∈ [l, u[ such that a < b. Then, for all
c ∈ [l, u[⊂ R

d, pbpac ≤ pbcpa holds.

Proof. Consider w.l.o.g. that l = (0, ..., 0) and u = (1, . . . , 1) and therefore,
Λ([l, u]) = 1. Lemma 1 will be proved by contradiction. Hence, suppose that, for
some choice of c ∈ [l, u[:

pbpac > pbcpa ⇔∏d
i=1 (1 − bi)(1 − max(ai, ci)) >

∏d
i=1 (1 − max(bi, ci))(1 − ai)

(11)

Thus, there should be, at least, a dimension i for which the following holds:

(1 − bi)(1 − max(ai, ci)) > (1 − max(bi, ci))(1 − ai) (12)

However, by manipulating expression (12), it is possible to verify that bi ≥ ci

implies ai > max(ai, ci), and that bi < ci implies ai > bi, which are both untrue.
Consequently, expression (11) does not hold either, and Lemma 1 is proved.

Lemma 2. Consider a point set A = {a(1), . . . , a(n)} ⊂ [l, u[, where n ≥ 2,
and, without loss of generality, assume that a(2) < a(1). Then, the investment
vector x∗ ∈ [0, 1]n that maximizes the Sharpe Ratio for the set A is such that the
investment in a(1), denoted by x∗

1, is zero.

Proof. Note that, for constraint (2b) to be satisfied, there has to be a strictly
positive investment in, at least one asset and thus, all constraints are linearly
independent for any feasible solution to Problem 2. Thus, the prerequisites of the
first-order necessary optimality conditions (KKT conditions) [6] are satisfied.

Following the notation and definitions in Nocedal and Wright [6], the KKT
conditions state that if a feasible solution y∗ is optimal, then there is a Lagrange
multiplier vector λ∗ for which all components associated to an inequality con-
straint are nonnegative and the product of each component of λ∗ and the cor-
responding constraint at y∗ is zero. Moreover, the gradient of the Lagrangian
function w.r.t y∗ is zero (∇yL(y∗, λ∗) = 0). The Lagrangian function, for the
HSR Indicator (in Problem 2) is:

L(y, λ) = yT Py − 1 − λ1p
T y −

n+1∑

i=2

λiyi−1 (13)
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and the corresponding partial derivative w.r.t. yk at (y∗, λ∗) for k = 1, ..., n is:

∂L(y∗, λ∗)
∂yk

= 2
n∑

i=1

piky∗
i − pkλ∗

1 − λ∗
k+1 = 0 (14)

Lemma 2 is proved by contradiction. Let y∗
1 and y∗

2 represent the investments
in a(1) and a(2), respectively. Since a(2) dominates a(1), the following holds:

p1 = p12, p1 < p2 and p1i ≤ p2i, i = 3, . . . , n (15)

Suppose that the optimal investment y∗ is such that y∗
1 > 0. Then, the KKT

conditions imply that λ∗
2 = 0. By manipulating Eq. (14) for k = 1, 2 using the

conditions in (15), the following condition on λ∗
3 is obtained:

p1(p12 − p2)y∗
1 +

n∑

i=3

(p1p2i − p1ip2)y∗
i = p1λ∗

3
2 ≥ 0 (16)

λ∗
3 ≥ 0 must be true so that it is a valid Lagrange multiplier. Therefore, since

p1 > 0, the left-hand side of expression (16) must be zero or positive. However,
the first term is clearly negative since p12 = p1 < p2, and the sum is non-positive
by Lemma 1.

Therefore, no optimal Lagrange multiplier vector λ∗ exists for which the KKT
conditions hold true when y∗

1 is strictly positive, and consequently, y∗ cannot be
optimal. Therefore, y∗

1 = 0 which implies that x∗
1 = 0 and proves Lemma 2.

Proof (Theorem 3). Consider two point sets A,B ⊂ [l, u[⊂ R
d, such that

|A|, |B| ≥ 1 and A ≺ B. Since any points in B−A are dominated points in A∪B,
by Lemma 2 they are assigned zero investment, and IHSR(A∪B) = IHSR(A) must
hold true. Suppose that IHSR(B) > IHSR(A). Then, an investment strategy in
A ∪ B with Sharpe Ratio greater than IHSR(A ∪ B) where zero investment is
given to the points in A − B would exist, which leads to a contradiction and
proves the theorem.

5 Concluding Remarks

The Sharpe-Ratio Indicator class has been formalized, and theoretical results
on the particular HSR Indicator have been presented regarding the indepen-
dence of one of the reference points, scaling independence and the monotonicity
property. Although the formulation of the HSR Indicator involves two reference
points, only one needs to be set in practice. The second reference point is just
a technical parameter that is required by the formulation. Indeed, the optimal
investment is not affected by the linear objective rescaling implied by changes to
this second reference point, and the indicator is scaling independent under such
transformations. Thus, the HSR Indicator does not require more parameters to
be set than, for example, the Hypervolume Indicator. The HSR Indicator is also
weakly monotonic w.r.t. set dominance.

The study of other properties of interest, including optimal μ-distributions
for the HSR Indicator, will be the subject of future work.
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Abstract. When using the classic standard bit mutation operator, par-
ent and offspring differ in a random number of bits, distributed according
to a binomial law. This has the advantage that all Hamming distances
occur with some positive probability, hence this operator can be used, in
principle, for all fitness landscapes. The downside of this “one-size-fits-
all” approach, naturally, is a performance loss caused by the fact that
often not the ideal number of bits is flipped. Still, the fear of getting
stuck in local optima has made standard bit mutation become the pre-
ferred mutation operator.

In this work we show that a self-adjusting choice of the number of
bits to be flipped can both avoid the performance loss of standard bit
mutation and avoid the risk of getting stuck in local optima. We propose
a simple mechanism to adaptively learn the currently optimal mutation
strength from previous iterations. This aims both at exploiting that gen-
erally different problems may need different mutation strengths and that
for a fixed problem different strengths may become optimal in different
stages of the optimization process.

We experimentally show that our simple hill climber with this adap-
tive mutation strength outperforms both the randomized local search
heuristic and the (1+1) evolutionary algorithm on the LeadingOnes func-
tion and on the minimum spanning tree problem. We show via mathe-
matical means that our algorithm is able to detect precisely (apart from
lower order terms) the complicated optimal fitness-dependent mutation
strength recently discovered for the OneMax function. With its self-
adjusting mutation strength it thus attains the same runtime (apart
from o(n) lower-order terms) and the same (asymptotic) 13 % fitness-
distance improvement over RLS that was recently obtained by manually
computing the optimal fitness-dependent mutation strength.

1 Introduction

When using a bit-string representation in evolutionary computation, that is,
when the search space is Ω = {0, 1}n, then standard bit mutation is the by far
most-employed mutation operator. It creates a new individual (offspring) from
an existing one (parent) by flipping each bit of the parent independently with
some probability p, often with p = 1/n. By this, the Hamming distance of parent
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 824–834, 2016.
DOI: 10.1007/978-3-319-45823-6 77
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and offspring, that is, the number of positions in which the strings differ, follows
a binomial distribution with parameters n and p. If p = 1/n, then the expected
distance is one (following the idea that mutation should be a minimalistic change
of the individual), but all distances in [0..n] := {0, 1, . . . , n} occur with positive
probability. Consequently, a hill climber using this mutation operator (e.g., the
(1 + 1) evolutionary algorithm (EA)) cannot get permanently stuck in a local
optimum, no matter what the fitness landscape of the underlying optimization
problem looks like.

The downside of this “one-size-fits-all” approach, naturally, is that it does not
exploit particular properties of the landscape. It is well-known (though not in
all cases explicitly proven) that for simple fitness landscapes like those of One-
Max, linear functions, LeadingOnes, and royal-road functions, flipping only
single bits gives smaller optimization times than using standard bit mutation
(often, the improvement is by a factor of e ≈ 2.718). For the minimum spanning
tree (MST) problem, a mutation operator randomly choosing between flipping
a single random bit or two random bits gives again better results than standard
bit mutation, whereas flipping always only one bit or always exactly two bits in
most cases lets the algorithm get stuck in a local optimum.

Our Results: The examples above show that using a problem-specific opti-
mal mutation strength can lead to a fair speed-up over standard bit muta-
tion, however, with the risk of making the algorithm fail badly when choosing a
wrong mutation strength. For this reason, we design a simple hill climber that
autonomously tries to choose the optimal mutation rate by analyzing the past
performance of the different mutation strengths. This aims both at exploiting
that different problems ask for different mutation strengths and at exploiting
that for a fixed problem the optimal mutation strength may change during the
optimization process; a problem even less understood than the right problem-
specific static mutation strength.

We experimentally analyze our new algorithm on the LeadingOnes and
the MST problem. We observe that, for suitable parameter settings, it clearly
outperforms the (1 + 1) EA. Interestingly, it even beats the randomized local
search (RLS) heuristic (flipping always one bit) for the LeadingOnes problem
and the variant of RLS flipping one or two bits for the MST problem. This shows
that for these problems a better performance can be obtained from a mutation
strength that changes over time, and that our algorithm is able to find such
superior fitness-dependent mutation strengths.

The heart of our work is making this effect mathematically precise for One-
Max. For this function, an optimal fitness-dependent mutation strength was
recently found in [4]. This optimal mutation strength is quite particular. It uses,
for all but a lower order fraction of the runtime, the mutation strength one (that
is, flips a random bit). In a short initial segment of the optimization process,
flipping a larger number of bits is superior. The optimal number of bits is decreas-
ing with increasing fitness, but is always an odd number. Despite differing from
RLS only in a short period, the simple hill climber using this fitness-dependent
mutation strength with a fixed budget of iterations computes solutions that have
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an expected fitness distance that is 13 % smaller than those computed by RLS,
making it the current best unbiased mutation-based optimizer for OneMax
(cee [8] for a discussion on the fixed-budget performance measure). However,
due to its complicated nature, it is not clear how a non-expert should find such
fitness-dependent mutation strengths.

For our new algorithm with self-adjusting mutation strength, we show that
it essentially is able to find this optimal mutation schedule on the fly. More
precisely, with high probability our algorithm always (apart from a lower-order
fraction of the iterations) uses a mutation strength which gives an expected
progress equal to the best possible progress (again, apart from lower order terms).
Consequently, our algorithm has the same optimization time (apart from an o(n)
additive lower order term) and the same asymptotic 13 % superiority in the fixed
budget perspective as the algorithm with the hand-crafted mutation strength
schedule from [4].

These first results indicate that a self-adjusting mutation strength both works
well for problems with different optimal mutation strengths (in an even better
way than the “one-size-fits-all” approach of standard bit mutation) and, beyond
this, can also find good fitness-dependent mutation schedules. We defer the
details to the following sections, where we propose our new algorithm (Sect. 2),
give some experimental evidence for its superiority (Sect. 3), conduct a rigorous
runtime analysis for OneMax (including the proof that the optimal mutation
strength essentially is always employed) in Sect. 4, and discuss how to choose
parameters and take other design choices (Sect. 5).

Discussion of Previous Works on Adaptive Mutation Operators: Given
the importance of mutation, not surprisingly, there is a plethora of works on
adaptive uses of mutation. With very few exceptions, these works are experimen-
tal in nature. They mostly indicate that an adaptive change of how mutation is
performed can be beneficial. However, it seems hard to derive generally accepted
design rules from these works. For reasons of space, we cannot avoid referring
the reader to some of the central works [1,5,9,12] and the extensive follow-up
work.

On the theoretical side, a first dynamic setting of the mutation rate was
proposed and analyzed in [7]. They propose to use the (1 + 1) EA with a muta-
tion rate that, depending on the iteration counter, takes a value in {2k/n |
k = 0, 1, 2, . . . , �log2(n)� − 2}. They construct an example function where the
(1 + 1) EA with this dynamic mutation rate greatly outperforms the (1 + 1) EA
with any fixed mutation rate. However, they also show that their EA has an
asymptotically larger runtime on most classic test functions. In [2], a fitness-
dependent choice of the mutation rate was proposed that improves the runtime
of the (1 + 1) EA on the LeadingOnes function from approximately 0.86n2

for the fixed mutation probability 1/n to approximately 0.68n2. For population-
based EAs a rank-based mutation rate has been investigated in [11].

All of the works discussed above use standard bit mutation, that is, flip each
bit independently with a certain, adaptively chosen, probability p. Our main
point in this work is that flipping a fixed number of r bits, where the mutation
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Algorithm 1. RLS with fitness-dependent mutation strength. When max-
imizing functions f : {0, 1}n → D, the algorithm takes as parameter a
mutation strength function r : D → [1..n] describing how many bits to flip
given a certain fitness of the current search point. The operator flip(x, r)
generates from x a new search point by flipping exactly r random bit
positions.
1 Initialization: Choose x ∈ {0, 1}n uniformly at random;
2 Optimization: for t = 1, 2, 3, . . . do
3 y ← flip(x, r(f(x)));
4 if f(y) ≥ f(x) then x ← y;

strength r is chosen in a self-adjusting manner, is more profitable because it
greatly reduces the use of r-bit flips with a sub-optimal mutation strength r. We
are not aware of any work on this type of self-adjusting mutation. An optimal
fitness-dependent choice of r for OneMax was determined in [4] recently.

2 Randomized Local Search with Fitness-Dependent
and Self-adjusting Mutation Strength

In [4], a variant of the classic randomized local search (RLS) heuristic with fitness-
dependent mutation strength was proposed (Algorithm1). Whereas the classic
version of RLS creates a new search point always by flipping a single random bit,
RLS with fitness-dependent mutation strength flips a number of bits (“mutation
strength”) functionally depending on the current fitness.

While it is clear that choosing the best mutation strength for each fitness
level can improve the performance, it is not so clear how to find a good muta-
tion strength function. The example of OneMax studied in [4] indicates that a
substantial understanding of the underlying optimization problem is necessary
to profit from varying the mutation strength depending on the fitness.

To overcome this difficulty, in this work we propose to choose the mutation
strength in each iteration based on the experience in the optimization process so
far. We enforce gaining a certain experience by designating each iteration with
probability δ as a learning iteration. In a learning iteration we flip a random num-
ber of bits (chosen uniformly at random from a domain [1..rmax]) and store (in an
efficient manner) the progress made in these iterations. In all regular iterations, we
use the experience made in these learning iterations to determine the most promis-
ing mutation strength and create the offspring with this mutation strength.

More precisely, let us denote by xt the search point after the t-th iteration,
that is, after the mutation and selection step of iteration t. Denote by x0 the
random initial search point. If t is a learning iteration, denote by rt the random
mutation strength r used in this iteration. Otherwise set rt = 0.

The main idea of our algorithm is to learn the efficiency of the mutation
strengths, that is, the expected progress made when flipping r bits, for all
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r ∈ [1..rmax]. We do so via a time-discounted average of the progresses observed
in the learning iterations: We define an estimate for the future progress, called
velocity in the absence of a better name, after the t-th iteration by

vt[r] :=
∑t

s=1 1rs=r(1 − ε)t−s(f(xs) − f(xs−1))
∑t

s=1 1rs=r(1 − ε)t−s
. (1)

In this expression, the parameter ε, called forgetting rate, determines the decrease
of the importance of older information. Since (1 − ε)1/ε = (1/e) + o(1) for all
ε = o(1), the reciprocal 1/ε of the forgetting rate is (apart from constant factors)
the information half-life.

We first observe that we can compute the velocities iteratively and thus,
unlike equation (1) might suggest, do not need to store the full history of the
learning iterations. To this aim, we need to store one additional value for each r,
namely the sum of the (1 − ε)t−s terms used in the weighted average, that is,

wt[r] :=
t∑

s=1

1rs=r(1 − ε)t−s.

Then the following recursive description of the velocities and weight sums is
easily seen: If in iteration t + 1 we have not done a learning step with mutation
strength r, that is, rt+1 �= r, then vt+1[r] = vt[r] and wt+1[r] = (1 − ε)wt[r]. If
rt+1 = r, then

vt+1[r] =
(1 − ε)wt[r]vt[r] + f(xt+1) − f(xt)

(1 − ε)wt[r] + 1
,

wt+1[r] = (1 − ε)wt[r] + 1.

For exploiting the experience gained in the learning iterations, we adopt a
greedy strategy and always choose the mutation strength with highest velocity
(breaking ties randomly, but giving preference to the previous-best mutation
strength). While we generally postpone a discussion on parameter settings and
other design choices to Sect. 5, let us remark already here that our greedy choice
of the mutation strength might be detrimental for fitness landscapes in which the
optimal mutation strength changes very frequently. There a velocity-weighted
random choice might be more fruitful.

From this discussion, we derive the algorithm RLS with self-adjusting muta-
tion strength (Algorithm 2).

3 Experimental Results

In this section we describe some experimental results for our algorithm. These are
by no means intended to account for a thorough scientific investigation, both for
reasons of space and because we feel that the mathematical investigation in the
subsequent section is more insightful, also with respect to why the proposed ideas
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Algorithm 2. RLS with self-adjusting mutation strength. The parameters
of the algorithm are the maximum mutation strength rmax, the learning
rate δ, and the forgetting rate ε.
1 Initialization:
2 Choose x ∈ {0, 1}n uniformly at random;
3 for r = 1 to rmax do v[r] := 0 and w[r] := 0 ;
4 r∗ ← 1;
5 Optimization: for t = 1, 2, 3, . . . do
6 z ← random([0, 1]);
7 if z ≤ δ then % learning iteration
8 r ← random({1, . . . , rmax});
9 y ← flip(x, r);

10 v[r] ← (1−ε)w[r]v[r]+max{0,f(y)−f(x)}
(1−ε)w[r]+1

;

11 w[r] ← (1 − ε)w[r] + 1;
12 if f(y) ≥ f(x) then x ← y;
13 for r′ ∈ {1, . . . , rmax} \ {r} do w[r′] ← (1 − ε)w[r′];

14 else
15 r+ ← random(argmaxr(v[r]));
16 if v[r+] > v[r∗] then r∗ ← r+;
17 y ← flip(x, r∗);
18 if f(y) ≥ f(x) then x ← y;
19 for r ∈ {1, . . . , rmax} do w[r] ← (1 − ε)w[r];

work well. Nevertheless, the experimental results indicate that our new algorithm
gives good results also for problems other than OneMax, they give some hints
on how to choose the parameters rmax, δ and ε (more on this in Sect. 5), and
they taught us that finding suitable parameters was not very difficult—we were
immediately faster than the (1 + 1) EA and with at most a few trials were able
to beat RLS. All experiments were repeated 100 times; all numbers given below
are the averages of these 100 runs.

LeadingOnes Function: The LeadingOnes function is defined by Lo(x) :=
max{i ∈ [0..n] | ∀j ≤ i : xj = 1}, that is, it counts, starting from the
left end, how many consecutive ones the bit-string x contains. The expected
optimization time (number of iterations until the optimum is found) for RLS
is 0.5n2 ± O(n), that of the (1 + 1) EA with mutation rate p = 1/n is
0.5n2(1−1/n)((1−1/n)−n −1) = 0.5(e−1)n2 ±O(n) ≈ 0.8591n2. When taking
the asymptotically optimal mutation rate of approximately 1.59/n, the opti-
mization time drops to approximately 0.7720n2. When taking a (best-possible)
fitness-dependent mutation rate of pi = 1/(i+ 1) at fitness i, then the optimiza-
tion time drops to (e/4)n2 ± O(n) ≈ 0.6796n2 [2].

Experimentally, for n = 10, 000 and taking the parameters rmax = 5, δ = 0.1
and ε = 1/(5, 000, 000), we observed an average optimization time of 45.0 million
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iterations, that is, 0.450n2, which clearly beats RLS and all (1 + 1) EA results
described above. The relative standard deviation is low, 4.36% to be precise.1

Minimum Spanning Trees: Given a connected undirected graph G = (V,E)
with edge weights w : E → R>0, the minimum spanning tree problem asks for
finding a tree in G that connects all vertices and that has minimal total weight.
This problem can be solved via evolutionary methods by taking a bit-string
representation (each bit describes whether some edge is part of the tree or not)
and taking as fitness function (to be minimized) the sum of the weights of the
edges in the string representation plus a punishment term for each connected
component (except the first one). For this representation of the problem, both
RLS (flipping one or two bits with equal probability) and the (1 + 1) EA find
an optimal solution in any input in expected time O(|E|2 log(|E|wmax), where
wmax is the maximum weight of an edge (see [10]).

We ran the following experiments. We took as graph G the complete graph
on 50 vertices (hence |E| = 1225) with edge weights chosen independently at
random in [0, 1], thus having a unique minimum spanning tree. On this instance,
RLS in the variant that flips either one or two bits (random choice between these
two alternatives) took 5.08·106±37.75% iterations. Our algorithm with rmax = 5,
δ = 0.1, and ε = 1/(20, 000) took 2.70 · 106 ± 36.34% iterations. Analyzing these
runs in more detail, we observe that the preferred mutation strength r after a
short initial phase takes the maximum value 5, then decreases to one, and finally
goes back to two, which is then used for the large remainder of the optimization
process. For reasons of computation time, we could not evaluate the (1 + 1) EA
on graphs on 50 vertices. For graphs on 20 vertices, the (1 + 1) EA was roughly
2.7 times slower than RLS.

4 Mathematical Runtime Analysis on OneMax

In this section, we analyze via mathematical means how our algorithm optimizes
OneMax. This is an asymptotic analysis in terms of the problem size n. We
refer to the previous well-established runtime analysis literature for more details
on the motivations of mathematical runtime analysis and on the meaning of
asymptotic results, cf. [6].

The main result of this section is a proof that our algorithm with reasonable
parameter settings very precisely detects the optimal mutation strength. It thus,
apart from the learning iterations, has the same performance as the recently
proposed randomized local search algorithm with fitness-dependent mutation
strength [4]. The main technical challenge in this analysis are the dependencies
between the progress of the algorithm and the learning system trying to estimate
the velocities. We overcome these, among others, via a domination argument
developed in [3, Lemma 1.20].

Throughout this section, we assume that rmax is a constant independent of n.
For simplicity, we only regard the parameters ε = n−0.99 and δ = n−0.01 but
1 We report in the following the mean and relative standard deviations of our experi-

ments by expressing, for example, the previous numbers as 45.0 · 106 ± 4.36 %.
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remark that broader ranges of these parameters would work as well. In addition
to the notation introduced in Sect. 2, we write r∗

t for the number of bits flipped
in a non-learning iteration. We also define the fitness distance d(x) = n − f(x)
for all x ∈ {0, 1}n.

For reasons of space, all proofs had to be removed from this extended
abstract. They will be made available in a full journal version.

The following lemma states that, apart from an initial segment of the opti-
mization process, the values of wt[r] can essentially assumed to be constant over
time.

Lemma 1. Let r ∈ [1..rmax], t ≥ H := (1/ε) ln(n) and w∗ := δ/rmaxε. Then
with probability 1 − exp(−nΩ(1)), |wt[r] − w∗| ≤ w∗O(n−0.002).

The following two lemmas show how well our learning mechanism is able
to detect the currently most profitable mutation strength. We denote in the
following the progress from flipping r bits when in distance d from the optimum
by Xr

d := max{d(x)−d(flip(x, r)), 0}, where x is any search point with d(x) = d.

Lemma 2. Let r ∈ [1..rmax], t ≥ 1 and H = (1/ε)2 ln(n). Then
with probability at least 1 − exp(−nΩ(1)), we have vt+H [r] ≤ (1 +
O(n−0.002))max{E[Xr

d(xt+H)], (ε/δ)n0.01}.

Lemma 3. Let r ∈ [1..rmax], t ≥ 1 and H = (1/ε) ln(n). Assume that
E[Xr

d(xt+H)] = Ω(n0.01ε/δ). Then with probability at least 1 − exp(−nΩ(1)), we
have vt+H [r] ≥ (1 − O(n−0.002))E[Xr

d(xt+H)].

The fact that our algorithm very precisely detects the optimal mutation
strength implies that its fitness progress in each iteration is very close to the
maximum possible (Theorem 1) and that it has a performance very close to the
algorithm developed in [4] (Theorem 2).

Theorem 1. Let T be the optimization time of our algorithm with parameters
δ = n−0.01 and ε = n−0.99 on OneMax. Let T ′ = min{T, 2n ln(n)}. Then with
probability at least 1−O(n0.19), for each non-learning iteration t ∈ [2 ln(n)/ε, T ′],
we have E[Xr∗

t

d(xt−1)
] ≥ (1 − O(n−0.002))max{E[Xr

d(xt−1)
] | r ∈ [1..rmax]}.

Theorem 2. Let Trmax be the minimal expected runtime on the OneMax
problem among all randomized local search algorithms with fitness-dependent
mutation strength flipping at most rmax bits. Then the expected runtime T of
our algorithm A is at most Trmax + o(n). Consequently, by taking rmax large
enough, our algorithm has the same expected runtime (apart from o(n) terms)
as the algorithm using the optimal fitness-dependent mutation strength of [4].
Also, let xA be the current solution of our algorithm and xRLS be the cur-
rent solution of randomized local search after a fixed budget of B ≥ 0.2675n
iterations. Then the expected Hamming distances to the optimum x∗ satisfy
E[H(xA, x∗)] ≤ (1 + o(1))0.872E[H(xRLS , x∗)].
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5 Parameter Choice and Design Alternatives

In this work we have proposed and analyzed a first hill climber that adaptively—
based on previous fitness improvements—decides how many bits to flip in the
mutation step. The required design choices were influenced by the positive exper-
imental results and by our desire to prove with mathematical means that this
algorithm tracks well the optimal mutation strength recently exhibited for One-
Max. We now discuss two design variants that might prove useful for other
optimization problems and give some general hints on how to choose the para-
meters of the algorithm.

A first observation is that our algorithm does not necessarily converge to
an optimal solution. If there are local optima that can only be left by flipping
more than rmax bits, then our algorithm has a positive probability of being stuck
in such an optimum indefinitely. A simple way to overcome this is to use the
mechanism proposed in this work only to redistribute the probability mass on
r-bit-flips with r ∈ [1..rmax] and keep the probability distribution from stan-
dard bit mutation for the rest. In other words, in the main optimization loop
in a non-learning iteration with probability Pr[B(n, 1/n) > rmax], the algorithm
determines r according to the binomial distribution B(n, 1/n) conditional on
being greater than rmax; and it determines r from the learned velocities other-
wise. This obviously ensures that the algorithm converges.

A second observation is that the highly greedy choice of r as the maximizer
of the learned velocities might be too greedy for less well-behaved optimization
problems in which the ideal mutation strength changes very frequently. In such
situations it might be preferable to use the learned velocities only to give a mild
preference to seemingly more profitable strengths. For example, in line 15 of
Algorithm 2 one could choose r+ with probability proportional to v[r] and then
flip r+ bits.

A final modification that we want to propose is to use the progress expe-
rienced in any iteration (and not only the learning iterations) to update the
velocities. Our update rule is designed in a way that different frequencies of the
r values impose no problems. Hence in a sense, we are currently wasting the
information available from the non-learning iterations. Our main motivation for
doing so is that the mathematical analysis would have been more difficult, in
particular, Lemma 1 would not be true with updates in each iteration. In exper-
iments, the version with updates in each iteration usually, but not consistently,
performed better.

A word on the parameters: it seems advisable to choose rmax small, because
the learning effort is proportional to rmax and because in the vast majority of the
iterations a small r was optimal. In our experiments, we always obtained good
results with rmax = 5, but we admit that in this first study we have not conducted
an exhaustive series of experiments (also not for the other parameters). For the
learning rate δ, we obtained good results with δ = 0.1. It is immediately clear
that δ(1−1/rmax) is the rate of iterations using a non-optimal mutation strength
(unless two strengths are equally good), which gives some motivation to keep δ
small. Of course, often a non-optimal mutation strength still has a reasonable



k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation 833

chance of giving progress, so these iterations often are not completely wasted
(that is, only spent on learning and not on optimization). The parameter hardest
to set is ε. A large value implies that we quickly forget the outcomes of previous
iterations. This may allow a quick adaption to a changed environment, but also
carries the risk that a rare exceptional success with a non-ideal r-value has a
too large influence. In our experiments, the latter aspect was seemingly more
dominant and we obtained the best results with relatively small ε-values like
0.01 or even the reciprocal of 0.1 times the expected total number of iterations.

6 Conclusion

We proposed and analyzed a simple hill climber using k-bit flips with a self-
adjusting choice of the mutation strength k. This use of k-bit flips instead of
the usually preferred standard bit mutation with its random mutation strength
allowed to much better exploit the most effective mutation strength. At the same
time, the self-adjusting choice allowed to find the optimal mutation strength
automatically and on-the-fly. By this, also the risk of getting stuck in local
optima, the known draw-back of k-bit flips, was overcome. We are confident
that replacing standard bit mutation by k-bit flips with a self-adjusting choice
of k will lead to performance gains for many optimization problem beyond the
ones regarded in this work.
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Abstract. Selection hyper-heuristics are automated methodologies for
selecting existing low-level heuristics to solve hard computational prob-
lems. They have been found very useful for evolutionary algorithms when
solving both single and multi-objective real-world optimization prob-
lems. Previous work mainly focuses on empirical study, while theoreti-
cal study, particularly in multi-objective optimization, is largely insuffi-
cient. In this paper, we use three main components of multi-objective
evolutionary algorithms (selection mechanisms, mutation operators,
acceptance strategies) as low-level heuristics, respectively, and prove that
using heuristic selection (i.e., mixing low-level heuristics) can be expo-
nentially faster than using only one low-level heuristic. Our result pro-
vides theoretical support for multi-objective selection hyper-heuristics,
and might be helpful for designing efficient heuristic selection methods
in practice.

1 Introduction

Hyper-heuristics are automated methodologies for selecting or generating heuris-
tics to solve hard computational problems [4]. There are two main hyper-heuristic
categories: heuristic selection and heuristic generation. This paper focuses on
the former type. Given a set of low-level heuristics, a heuristic selection method
chooses an appropriate one to be applied at each decision point.

Selection hyper-heuristics have been widely and successfully applied for evo-
lutionary algorithms (EAs) solving single-objective optimization problems such
as personnel scheduling, packing, vehicle routing, etc [3]. After that, they start
to emerge in evolutionary multi-objective optimization. Burke et al. [5] first
proposed a multi-objective hyper-heuristic approach based on tabu search for
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the space allocation and timetabling problems. McClymont and Keedwell [17]
developed a Markov chain based hyper-heuristic method for designing water dis-
tribution network. By using NSGAII, SPEA2 and MOGA as low-level heuristics,
Maashi et al. [16] designed a choice function based hyper-heuristic to solve the
vehicle crashworthiness design problem. Selection hyper-heuristics also achieved
successes in other real-world multi-objective optimization problems, e.g., the 2D
guillotine strip packing problem [18] and the integration and test order problem
in software engineering [10].

Most previous work focuses on empirical study. Meanwhile, theoretical analy-
sis, particularly running time analysis, is important for enhancing our under-
standing and designing efficient hyper-heuristics, as Burke et al. stated in [3].
However, the running time analysis on selection hyper-heuristics is difficult due
to their complexity and randomness, and few results have been reported. By
using mutation operators as low-level heuristics, He et al. [11] first gave some
conditions under which the asymptotic hitting time of the (1+1)-EA (a simple
EA) with a mixed strategy is not larger than that with any pure strategy. Note
that a mixed strategy (which corresponds to heuristic selection) chooses one low-
level heuristic according to some distribution each time, while a pure strategy
uses only one fixed low-level heuristic. Their result was then extended to the
expected running time measure and to population-based EAs in [12]. Lehre and
Özcan [15] later gave concrete evidence that mixing two specific mutation oper-
ators is more efficient than using only one operator for the (1+1)-EA solving the
GapPath function. They also proved the benefit of mixing acceptance strategies
for the (1+1)-EA solving the RRk function. In [19], by mixing global and local
mutation operators, the (1+1)-EA was proved to be a polynomial time approxi-
mation algorithm for the NP-hard single machine scheduling problem. In [6], the
(1+1)-EA mixing two specific mutation operators was shown to be able to solve
the easiest function for each mutation operator efficiently. The above studies
investigate whether selection hyper-heuristics can bring an improvement on the
performance. Alanazi and Lehre [1] also compared different heuristic selection
methods (i.e., mixed strategies with different distributions), and proved their
similar performance for the (1+1)-EA solving the LeadingOnes function.

All of the above-mentioned studies consider single-objective optimization.
To the best of our knowledge, there has been no theoretical work supporting
the effectiveness of selection hyper-heuristics in multi-objective optimization. In
this paper, we prove that using heuristic selection can speed up evolutionary
multi-objective optimization exponentially via rigorous running time analysis.
The widely used multi-objective EA GSEMO in previous theoretical analy-
ses [8,14,21] is employed. It repeats three steps: choosing a solution by some
selection mechanism, reproducing a new solution by mutation, and updating
the population by some acceptance strategy. This paper considers the three
main components of GSEMO, i.e., selection mechanism, mutation operator and
acceptance strategy, as the low-level heuristic, respectively. For each kind of
low-level heuristic, we give a bi-objective pseudo-Boolean function, and prove
that the expected running time of GSEMO with a mixed strategy is polynomial
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while GSEMO with a pure strategy needs at least exponential running time. The
analysis also shows that the helpfulness of selection hyper-heuristics is because
the strengths of one heuristic can compensate for the weaknesses of another. For
mixing acceptance strategies, we also empirically compare the running time of
GSEMO with different mixed strategies, and the results imply the importance
of choosing a proper heuristic selection method.

The rest of this paper is organized as follows. Section 2 introduces some pre-
liminaries. The helpfulness of mixing selection mechanisms, mutation operators
and acceptance strategies is then theoretically analyzed. Finally, we conclude
the paper.

2 Preliminaries

Multi-objective optimization requires to simultaneously optimize two or more
objective functions, as shown in Definition 1. Note that maximization is con-
sidered in this paper. The objectives are usually conflicted, and thus there is
no canonical complete order on the solution space X . The comparison between
solutions relies on the domination relationship, as presented in Definition 2.
A solution is Pareto optimal if there is no other solution in X that dominates
it. The set of objective vectors of all the Pareto optimal solutions constitutes
the Pareto front. The goal of multi-objective optimization is to find the Pareto
front, that is, to find at least one corresponding solution for each element in the
Pareto front. In this paper, we consider the Boolean space, i.e., X = {0, 1}n.

Definition 1 (Multi-objective Optimization). Given a feasible solution
space X and objective functions f1, . . . , fm, multi-objective optimization can be
formulated as

maxx∈X
(
f1(x), f2(x), ..., fm(x)

)
.

Definition 2 (Domination). Let f = (f1, f2, . . . , fm) : X → R
m be the objec-

tive vector. For two solutions x and x′ ∈ X :

1. x weakly dominates x′ if, ∀1 ≤ i ≤ m, fi(x) ≥ fi(x′), denoted as x � x′;
2. x dominates x′ if, x � x′ and fi(x) > fi(x′) for some i, denoted as x � x′.

Evolutionary algorithms (EAs) have become a popular tool for multi-
objective optimization, due to their population-based nature. In previous the-
oretical studies, GSEMO is the most widely used multi-objective EA (MOEA)
[8,14,21]. As described in Algorithm 1, it first randomly selects an initial solu-
tion, then repeats the three steps (selection, mutation, acceptance) to improve
the quality of the population. In selection, a solution is uniformly selected from
the current population; in mutation, a new solution is generated by flipping each
bit of the selected solution with probability 1

n ; in acceptance, the new solution
is compared with the solutions in the population, and then only non-dominated
solutions are kept. Although simple, GSEMO explains the common structure of
various MOEAs, and hence will be used in this paper as well.
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Algorithm 1. GSEMO
Given the solution space X = {0, 1}n and the objective function vector f , GSEMO
consists of the following steps:

1: Choose x ∈ X uniformly at random
2: P ← {x}
3: repeat
4: [Selection] Choose x from P uniformly at random
5: [Mutation] Create x′ by flipping each bit of x with probability 1/n
6: [Acceptance] if �z ∈ P such that z � x′

7: P ← (P − {z ∈ P | x′ � z}) ∪ {x′}
8: end if
9: until some criterion is met

Selection hyper-heuristics manage a set of low-level heuristics, and select an
appropriate one to be applied at each decision point. Despite their practical
successes, the theoretical analysis is still in its infancy, particularly for multi-
objective optimization. In this paper, we take the three components of GSEMO,
i.e., selection, mutation and acceptance, as the low-level heuristic, respectively,
and compare the performance of GSEMO with a mixed strategy and a pure strat-
egy. For each component of GSEMO, we will use two concrete low-level heuristics.
A typical mixed strategy employed in our analysis (denoted by GSEMOp) is to
use the first low-level heuristic with probability p ∈ [0, 1] in each iteration of
GSEMO, and use the second one otherwise. Note that a mixed strategy corre-
sponds to using heuristic selection, while a pure strategy only uses one specific
low-level heuristic and thus implies that heuristic selection is not employed.

The performance of the comparison algorithms is measured by their running
time complexity. Note that running time analysis has been a leading theoretical
aspect for randomized search heuristics [2,20]. The running time of a MOEA is
usually counted by the number of fitness evaluations (the most costly computa-
tional process) until finding the Pareto front [8,14,21].

3 Mixing Selection Mechanisms

In this section, we use two fair selection mechanisms [9,14] as low-level heuristics:

– fair selection w.r.t. the decision space: Each solution in the current
population has a counter c1, which records the number of its offsprings.
The solution with the smallest c1 value will be selected for reproduction
in each iteration. That is, line 4 of Algorithm1 changes to be “Choose
x ∈ {y ∈ P | c1(z) ≥ c1(y),∀z ∈ P} uniformly at random”.

– fair selection w.r.t. the objective space: Each counter (denoted as c2) is
associated with an objective vector rather than a decision vector. Line 4 thus
changes to be “Choose x ∈ {y ∈ P | c2(f(z)) ≥ c2(f(y)),∀z ∈ P} uniformly
at random”.
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Fairness is employed to balance the number of offsprings of all solutions in the
current population, and thus to achieve a good spread over the Pareto front.
GSEMO with these two mechanisms are denoted by GSEMOds and GSEMOos,
respectively. For GSEMO with the mixed strategy (denoted by GSEMOp), it uses
the fairness w.r.t the decision space with probability p ∈ [0, 1] in each iteration;
otherwise, it uses the fairness w.r.t the objective space. Note that GSEMOds

and GSEMOos are GSEMOp with p = 1 and p = 0, respectively.
We then compare their running time on the ZPLG function. As shown in

Definition 3, ZPLG can be divided into three parts: ZeroMax, a plateau, and a
path with little gaps. It is obtained from the PLG function in [9] by replacing
the second objective value 1 in the ZeroMax part with 2. The Pareto front is
{(n, 2), (n + 1, 1), (9n

8 + 2, 0)}, and the corresponding Pareto optimal solutions
are 0n, SP1 and 1n, respectively.

Definition 3 (ZPLG).

ZPLG(x) =

⎧
⎪⎨

⎪⎩

(|x|0, 2) x /∈ SP1 ∪ SP2

(n + 1, 1) x ∈ SP1

(n + 2 + i, 0) x = 13n/4+2i0n/4−2i ∈ SP2,

where |x|0 =
∑n

j=1(1 − xj) denotes the number of 0-bits, SP1 = {1i0n−i | 1 ≤
i < 3n/4}, SP2 = {13n/4+2i0n/4−2i | 0 ≤ i ≤ n/8} and n = 8m,m ∈ N.

Theorem 1 shows that GSEMO with a pure strategy needs exponential run-
ning time with a high probability. The result of GSEMOos on ZPLG is directly
from that on the PL function (i.e., Theorem 1) in [9], since ZPLG has the same
structure as PL by treating its SP2 part as a whole. The inefficiency is because
GSEMOos allows the Pareto optimal solution 0n to generate new solutions in
SP1, which stop the random walk on the plateau SP1 and thus prevent from
reaching SP2. The result of GSEMOds on ZPLG can be directly from that on the
PLG function (i.e., Theorem 4) in [9], since their proof relies on SP1 and SP2,
which are the same for ZPLG and PLG. The inefficiency is because GSEMOds

easily gets trapped in the random walk on SP1, which prevents from following
the path SP2 to find the Pareto optimal solution 1n. We then prove in Theorem 2
that by using the mixed strategy, GSEMOp can solve ZPLG in polynomial run-
ning time. The idea is that first employing GSEMOds allows the random walk
on SP1 to reach SP2, and then employing GSEMOos allows following the path
SP2 to find 1n. Thus, we can see that the advantage of using heuristic selec-
tion is that the strengths of one heuristic can compensate for the weaknesses of
another.

Theorem 1. On ZPLG, the running time of GSEMOds is 2Ω(n1/2) with prob-
ability 1 − 2−Ω(n1/2), and that of GSEMOos is 2Ω(n1/4) with probability 1 −
e−Ω(n1/3).

Theorem 2. The expected running time of GSEMOp with p=1− 1
n3 on ZPLG

is O(n6).
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Proof. We divide the optimization process into two phases: (1) starts after ini-
tialization and finishes until the population P contains 0n, a solution from SP1

and a solution from SP2; (2) starts after phase (1) and finishes until P contains
0n, a solution from SP1 and 1n, i.e., the Pareto front is found.

For the first phase, we can follow the analysis of GSEMOds on PL (i.e.,
Theorem 2) in [9]. In their proof, the only part relying on the fair selection w.r.t.
the decision space is to allow a consecutive random walk of length δn3 (δ is
a constant) on the plateau SP1, under the condition that the c1 value of the
maintained solution from SP1 is always smaller than that of the Pareto optimal
solution 0n. Note that the fair selection w.r.t. the decision space is used with
probability 1−1/n3 in each iteration of GSEMOp. Such a random walk happens
with probability (1 − 1

n3 )δn3 ≥ (2e)−δ ∈ Ω(1). Thus, the asymptotic running
time is not affected, and the expected running time of this phase is the same as
that of GSEMOds on PL, i.e., O(n3 log n).

For the second phase, the population P always contains three solutions, 0n,
a solution from SP1 and a solution from SP2. The probability that a better
solution from SP2 is found under the condition that a solution from SP2 has
been selected for mutation is at least 1

n2 (1− 1
n )n−2 ≥ 1

en2 , since it is sufficient to
flip the leftmost two 0-bits. It is easy to see that at most n

8 such improvements
are sufficient to find the Pareto optimal solution 1n. The worst case is reached
when the first found solution from SP2 is 13n/40n/4. We consider that the fair
selection w.r.t. the objective space is used, which happens with probability 1

n3

in each iteration of GSEMOp. Because the c2 values of (n, 2) and (n+1, 1) (i.e.,
the objective vectors of 0n and the solution from SP1) are never decreased, the
solution from SP2 is selected for reproduction at least once in three consecutive
iterations. Thus, the expected running time of this phase is at most n3 ·3· n

8 ·en2 ∈
O(n6). 
�

4 Mixing Mutation Operators

In this section, we use two mutation operators [15] as low-level heuristics:

– one-bit mutation: Line 5 of Algorithm 1 changes to be “Create x′ by flipping
one randomly chosen bit of x”. Note that one specific bit is chosen with
probability 1

n .
– two-bit mutation: Line 5 of Algorithm 1 changes to be “Create x′ by flipping

two different and randomly chosen bits of x”. Note that two specific bits are
chosen with probability 1/

(
n
2

)
= 2

n(n−1) .

GSEMO with these two operators are denoted by GSEMO1b and GSEMO2b,
respectively. GSEMO with the mixed strategy (denoted by GSEMOp) uses one-
bit mutation with probability p ∈ [0, 1] in each iteration; otherwise, it uses
two-bit mutation.

We then compare their running time on the SPG function. As shown in
Definition 4, SPG has a short path SP with increasing fitness except the
solutions 1i0n−i with i mod 3 = 1. The construction of SPG is inspired from
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the GapPath function in [15]. The Pareto front is {(n, 1), (n2, 0)}, and the cor-
responding Pareto optimal solutions are 0n and 1n, respectively.

Definition 4 (SPG).

SPG(x) =

⎧
⎪⎨

⎪⎩

(|x|0, 1) x /∈ SP

(−1, 0) x = 1i0n−i ∈ SP, i mod 3 = 1
(in, 0) x = 1i0n−i ∈ SP, i mod 3 = 0 or 2,

where SP = {1i0n−i | 1 ≤ i ≤ n} and n = 3m,m ∈ N.

The following two theorems show that the expected running time of GSEMO
with a pure strategy is infinite while that of GSEMO with the mixed strategy is
polynomial. The proof idea is straightforward. In every three adjacent solutions
on the path SP , there is a bad one 1i0n−i with i mod 3 = 1. Using one-bit and
two-bit mutation alternatively can jump over those bad solutions on SP and
finally reach the Pareto optimal solution 1n, while using only one-bit or two-bit
mutation obviously will get stuck in some solution 1i0n−i with i mod 3 = 0 or 2.

Theorem 3. The expected running time of GSEMO1b and GSEMO2b on SPG
is infinite.

Proof. We consider that the initial solution is the Pareto optimal solution 0n,
which has the objective vector (n, 1). This happens with probability 1

2n due to
the uniform sampling. For GSEMO1b, one-bit mutation on 0n can only generate
solutions with the objective vector (n− 1, 1) or (−1, 0), which are dominated by
0n. Thus, the population P will always contain only 0n. For GSEMO2b, two-bit
mutation on 0n generates solutions with the objective vector (n−2, 1) or (2n, 0).
Thus, P contains 0n and 120n−2 after a while. Since two-bit mutation on 120n−2

cannot generate better solutions on SP , P will always keep in this state. Thus,
starting from 0n, either GSEMO1b or GSEMO2b cannot find the Pareto front,
which implies that the expected running time is infinite. 
�
Theorem 4. The expected running time of GSEMOp with p ∈ [0, 1] being a
constant on SPG is O(n3).

Proof. The population P contains at most two solutions, because the second
objective of SPG has only two values 0 and 1. We first analyze the expected
running time until the Pareto optimal solution 0n is found. Let x denote the
solution with the second objective value 1 in P . Such a solution will exist in P
after at most n expected running time. This is because a solution from SP can
generate an offspring solution not from SP by flipping the first 1-bit, which hap-
pens with probability at least 1

n by either one-bit or two-bit mutation. Assume
that the number of 0-bits of x is j (j ≥ 1). It is easy to see that j cannot decrease,
and it can increase by flipping one 1-bit (but not the last) using one-bit muta-
tion. Because the probability of selecting x for mutation is at least 1

2 and one-bit
mutation is used with probability p, the probability of increasing j by 1 in one
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iteration is at least 1
2 ·p · n−j−1

n for j ≤ n−2 and 1
2 ·p · 1

n for j = n−1. Thus, the
expected running time to find 0n is at most

∑n−2
j=1

2n
p(n−j−1) + 2n

p ∈ O(n log n).
When finding 0n, we pessimistically assume that the solution from SP has

not been found. Starting from 0n, the solution 120n−2 can be found by flipping
the first two 0-bits using two-bit mutation. This happens with probability (1−p)·

2
n(n−1) , and thus the expected running time is n(n−1)

2(1−p) ∈ O(n2). Once a solution
from SP with i mod 3 �= 1 has been found, using one-bit and two-bit mutation
alternatively can follow the path SP to find the Pareto optimal solution 1n. If
i mod 3 = 2, flipping its first 0-bit by one-bit mutation can generate a better
solution. This happens with probability 1

2 · p · 1
n . If i mod 3 = 0, flipping its first

two 0-bits by two-bit mutation can generate a better solution. This happens with
probability 1

2 · (1 − p) · 2
n(n−1) . Since n

3 such two improvements are sufficient to

find 1n, the expected running time is at most n
3 · ( 2n

p + n(n−1)
(1−p) ) ∈ O(n3). Thus,

the theorem holds. 
�

5 Mixing Acceptance Strategies

In this section, we use two acceptance strategies as low-level heuristics:

– elitist acceptance: As lines 6–8 of Algorithm 1, only non-dominated solutions
are kept in the population, and the existing solution in P with the same
objective vector as the newly generated solution will be replaced.

– strict elitist acceptance: It is the same as elitist acceptance, except that the
old solution with the same objective vector as the newly generated solution
will not be replaced. That is, line 6 of Algorithm1 changes to be “if �z ∈ P
such that z � x′”.

The difference between these two strategies is to accept or reject the solution
with the same fitness. This has been theoretically shown to have a significant
effect on the performance of EAs in single-objective optimization [13]. Note that
GSEMO with elitist acceptance is just GSEMO. GSEMO with the strict strategy
is denoted by GSEMOstrict. In each iteration of GSEMO with the mixed strategy
(denoted by GSEMOmixed), elitist acceptance is used if the newly generated
solution x′ and the parent solution x have the same objective vector; otherwise,
strict elitist acceptance is used. Note that the mixed strategy employed here is
different from that of GSEMOp.

We then compare their running time on the PL function. As shown in
Definition 5, PL has a short path SP − {1n} with constant fitness. The Pareto
front is {(n, 1), (n + 2, 0)}, and the corresponding Pareto optimal solutions are
0n and 1n, respectively.

Definition 5 (PL) [8].

PL(x) =

⎧
⎪⎨

⎪⎩

(|x|0, 1) x /∈ SP = {1i0n−i | 1 ≤ i ≤ n}
(n + 1, 0) x ∈ {1i0n−i | 1 ≤ i < n}
(n + 2, 0) x = 1n.
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Theorem 5 shows that GSEMO with a pure strategy on PL needs expo-
nential running time. The result of GSEMO was proved in [8], and its ineffi-
ciency is because a solution not from SP can generate a new solution from SP ,
which stops the ongoing random walk on SP . The inefficiency of GSEMOstrict is
because the first found solution from SP is far from the Pareto optimal solution
1n, and strict elitist acceptance does not allow the random walk on SP . We
then prove in Theorem 6 that GSEMO with the mixed strategy can solve PL in
polynomial running time. It works by allowing accepting the solution with the
same fitness only in the random walk procedure.

Theorem 5. On PL, the running time of GSEMO is 2Ω(n1/24) with probability
1− e−Ω(n1/24) [8], and that of GSEMOstrict is nΩ(n

5 ) with probability 1−2−Ω(n).

Proof. The initial solution is not in SP with probability 1 − n
2n due to uniform

selection, and it has at most 2n
3 1-bits with probability 1 − e−Ω(n) by Chernoff

bounds. The population P contains at most two solutions, since the second
objective of PL has only two different values. Note that the number of 1-bits
of the solution not from SP will never increase, since the first objective is to
maximize the number of 0-bits. Because the probability of flipping at least n

12
bits simultaneously in one step is less than n− n

12 , the first found solution from
SP has at most 3n

4 1-bits with probability at least 1−n− n
12 . Once a solution from

SP − {1n} has been found, it will never change because SP − {1n} is a plateau
and GSEMOstrict will not replace the solution with the same fitness. Thus, P
will always contain two solutions, a solution x from SP − {1n} with |x|1 ≤ 3n

4
and a solution y not from SP with |y|1 ≤ 2n

3 . The probabilities of mutating
x and y to 1n in one step are at most n−n

4 and n−n
3 , respectively. Thus, after

n
n
5 steps, the Pareto optimal solution 1n is generated with probability at most

n
n
5 ·n− n

4 = n− n
20 by the union bound. By combining all the above probabilities,

we get that the running time is nΩ(n
5 ) with probability 1 − 2−Ω(n). 
�

Theorem 6. The expected running time of GSEMOmixed on PL is O(n3).

Proof. Since the function PL outside SP has the same structure as OneMax,
the expected steps to find 0n is O(n log n) by using the analysis result of the
(1+1)-EA on OneMax [7]. Then, it needs O(n) expected steps to find a solution
from SP , as it suffices to flip the leftmost 0-bit of 0n. For GSEMOmixed, if an
offspring solution from SP is generated by mutation on the solution not from
SP , it will not replace the solution from SP in the current population; but if
it is generated by mutation on the current solution from SP , the replacement
will be implemented. Thus, the algorithm will perform the random walk on the
plateau SP and the solution not from SP will not influence it. Note that the
solution from SP is selected for mutation with probability 1

2 . Using the analysis
result of the (1+1)-EA on SPC (i.e., Theorem 7) in [13], we get that the random
walk needs O(n3) expected running time to find 1n. 
�

Note that the mixed strategy employed by GSEMOmixed here is different
from that by GSEMOp for mixing selection mechanisms or mutation operators.
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Fig. 1. Estimated ERT of GSEMOmixed and GSEMOp for solving the PL problem,
where a base 10 logarithmic scale is used for the y-axis.

GSEMOp uses the first low-level heuristic with probability p ∈ [0, 1] in each
iteration and uses the second one otherwise. To investigate the influence of dif-
ferent mixed strategies, we conduct experiments to compare GSEMOmixed with
GSEMOp for mixing elitist and strict elitist acceptance. The parameter p is set
as 1

n , 0.5 and 1− 1
n , respectively. For each comparison algorithm on each problem

size n ∈ {5, 10, . . . , 50}, we run the algorithm 100 times independently, where
each run stops when the Pareto front of the PL problem is found. The average
number of fitness evaluations is used as the estimation of the expected running
time (ERT). The result is plotted in Fig. 1. Note that the ERT of GSEMOp for
n ≥ 20 is too large to estimate. We can observe that GSEMOmixed is much more
efficient than GSEMOp. The curves of GSEMOmixed and GSEMOp grow in a
closely logarithmic and linear trend, respectively, which implies that their ERT
is approximately polynomial and exponential, respectively. Thus, these empirical
results suggest that choosing a proper threshold selection method is important.

6 Conclusion

This paper presents a theoretical study on the effectiveness of selection hyper-
heuristics for multi-objective optimization. Rigorous running time analysis
showed that applying selection hyper-heuristics to any of the three major com-
ponents of a MOEA, i.e., selection, mutation and acceptance, can exponentially
speed up the optimization. From the analysis, we find that selection hyper-
heuristics work by allowing the strengths of one heuristic to compensate for
the weaknesses of another. Our result provides theoretical support for multi-
objective selection hyper-heuristics. The empirical comparison on different mixed
strategies also implies the importance of choosing a proper heuristic selection
method.
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Abstract. The challenges of solving problems naturally represented as
permutations by Estimation of Distribution Algorithms (EDAs) have
been a recent focus of interest in the evolutionary computation commu-
nity. One of the most common alternative representations for permuta-
tion based problems is the Random Key (RK), which enables the use of
continuous approaches for this problem domain. However, the use of RK
in EDAs have not produced competitive results to date and more recent
research on permutation based EDAs have focused on creating supe-
rior algorithms with specially adapted representations. In this paper, we
present RK-EDA; a novel RK based EDA that uses a cooling scheme to
balance the exploration and exploitation of a search space by controlling
the variance in its probabilistic model. Unlike the general performance of
RK based EDAs, RK-EDA is actually competitive with the best EDAs
on common permutation test problems: Flow Shop Scheduling, Linear
Ordering, Quadratic Assignment, and Travelling Salesman Problems.

Keywords: Estimation of distribution algorithm · Random key ·
Permutation problems · Cooling scheme · Univariate model

1 Introduction

Estimation of Distribution Algorithms (EDAs) are Evolutionary Algorithms
(EAs) that generate solutions by sampling a Probabilistic Model (PM) of promis-
ing solutions. The ability to model the features of more promising solutions is
a major attribute that differentiates them from most other EAs [7]. They ben-
efit from the use of machine learning techniques, which makes them better at
solving certain categories of larger and more difficult problems [12]. Problems
naturally represented as permutations have however been identified as challeng-
ing for EDAs. This is attributed to the fact that EDAs have not been extensively
explored to solve this class of problems [3]. EDAs for permutation spaces have
therefore been a focus of research in recent years.

EDAs applied to permutations have been categorised into ad hoc approaches
with varying strategies, integer space based and continuous space based [3]. One
of the common continuous representations for solving permutations in EAs is the
well-known Random Key (RK). RKs have an advantage over most other per-
mutation representations as they always produce permutation feasible solutions.
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 849–858, 2016.
DOI: 10.1007/978-3-319-45823-6 79
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This is particularly not the case for integer based EDAs as they often require a
procedure to handle the mutual exclusivity constraint.

RK based EDAs have however been considered the poorest [3] of the EDAs
designed for permutation problems. RK representation has not been sufficiently
adapted to benefit from the operation of EDA. It contains some inherent redun-
dancy as a result of several RKs producing the same ordering thereby intro-
ducing plateaux to the search space [2,3,13]. Also, variability in the values that
capture the same priority across solutions of a population limits the information
captured by the probabilistic model. They therefore struggle to produce compet-
itive results [7]. Models that are more specific to permutations such as histogram
models [16,17], permutation distribution models [4–6] and factoradics [14] have
shown better performances.

Some classical examples of RK based EDAs are REDA [15], EGNAee

&UMDAc [10]. REDA uses the triangulation of Bayesian network approach and
focuses on model efficiency by modelling subset nodes of a problem. EGNAee

builds a Gaussian network where the structure of a problem is learnt using
edge exclusion tests [10]. The UMDAc which is also a structure identification
algorithm based on Gaussian network performs hypothesis tests to identify the
density of its model’s components. In addition, IDEA-ICE [2] can also be clas-
sified as a RK based EDA, although it uses a crossover operator to preserve
building blocks in addition to its probabilistic model. Also, RKs associated with
the building blocks are rescaled to improve the likelihood of them being properly
combined. The IDEA-ICE shows better performance compared to the classical
RK based EDAs.

The proposed Random Key Estimation of Distribution Algorithm (RK-EDA)
attempts to capture some of the identified limitations of RKs as well as exploit
their advantages.

The rest of this paper is described as follows. Section 2 motivates and
describes the novel algorithm, RK-EDA. A discussion of problem sets and exper-
imental design is presented in Sect. 3. Section 4 presents and discusses results
while conclusions are presented in Sect. 5.

2 RK-EDA

The proposed RK-EDA is a univariate EDA whose probabilistic model, similar
to UMDAc, is based on mean values of genes in more promising solutions of a
population. It exploits already found good genes by sampling a Gaussian distri-
bution based on mean and variance values. Unlike UMDAc, RK-EDA imposes a
user defined variance parameter rather than a population generated one. This is
because we achieved better performance using a controlled variance value. Fur-
thermore, we propose to use a cooling rate parameter to control exploration and
exploitation. This controls the level of variance in solutions of a population such
that there is more exploration at the start of the algorithm, which automatically
cools as the search progresses.

In this section, we present the algorithmic details of RK-EDA.



RK-EDA: A Novel Random Key Based Estimation of Distribution Algorithm 851

Algorithm 1. RK-EDA
1: Initialise σ, ts and ps

2: Generate initial population P of size ps

3: for g = 1 to MaxGen do
4: Evaluate and rescale individuals in P
5: Select best ts < ps solutions to form S
6: Calculate μS

7: c = 1 − g
MaxGen

8: σg = σ ∗ c
9: M = N(μS , σg)

10: Pnew = ∅
11: repeat
12: Sample M to generate offspring off
13: Add off to Pnew

14: until |Pnew| = ps

15: P = Pnew

16: end for

As shown in Algorithm 1, RK-EDA requires the initialisation of three para-
meters which are initial variance σ, truncation size ts and population size ps.
Since the stopping criteria is based on the number of fitness evaluations allowed
(FEs), the maximum number of generations MaxGen is estimated by dividing
FEs by ps.

A population P of RKs is randomly generated, evaluated and rescaled. The
rescaling procedure requires the conversion of RKs to ranks e.g. [0.12, 0.57, 0.23,
0.25, 0.99] becomes [1, 4, 2, 3, 5]. The ranks are then rescaled to values between
0 and 1. This is done by setting rescaledRKi = ranki−1

n−1 where rescaledRKi and
ranki are respectively the rescaled RK and rank of gene i, and n is the problem
size. The RK in the previous example therefore becomes [0.00, 0.75, 0.25, 0.50,
1.00]. With this approach, another set of RKs [0.01, 0.06, 0.03, 0.04, 0.2] which
is the same solution as the previous example will have the same rescaled RK
value [0.00, 0.75, 0.25, 0.50, 1.00]. With this approach, we are able to minimise
redundancy and improve the information captured by the probabilistic model.

The best ts solutions of the population are selected to generate a population
S. Also, μS in ln. (6) is an array μS1 , ..., μSn

that saves the mean of all RKs at
indexes {1 · · · n} in the selected population S. Note that μSn

refers to the mean
of all RKs in the nth index of each solution of S.

Cooling Rate c is calculated with respect to the particular generation such
that its value is higher for the first few iterations and lower at the last set of
iterations. As shown in ln. (8), c is used to generate generational variance σg.
Multiplying c with σ to form σg makes it possible to achieve higher exploration
at the start of the algorithm and more exploitation as g increases.

Furthermore, M is defined as a normal distribution N(μS , σg) and is updated
for each generation g. Unlike μS which is an array of values, σg is not an array
but a single value. An offspring solution off is generated by sampling M . Each
gene i (1 ≤ i ≤ n) of off is generated based on σg and μSi

, off is repeatedly
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added to the offspring population Pnew until its size equals ps. At the end of
each generation, Pnew completely replaces the parent population P .

3 Experimental Settings

In this section we present the permutation problem instances as well as the
parameter settings.

3.1 Permutation Problems

To assess the performance of RK-EDA, we apply it to a range of permuta-
tion benchmark problems. These problems include Flow Shop Scheduling Prob-
lem (FSSP), Linear Ordering Problem (LOP), Quadratic Assignment Problem
(QAP) and Travelling Salesman Problem (TSP). These are formerly defined in
[3], we have used the same objective functions as presented in the review paper
and is summarised in Table 1. Note that we also consider the more recently used
Total Flow Time (TFT) criteria for further experiments on the FSSP.

Table 1. Definition of the permutation problems

PPs Objective functions Definition of symbols

TSP min
{∑n

i=2 dci−1,ci + dcn,c1

}
ci - ith city

dci−1,ci - distance between ci−1

and ci

FSSP min {cjn,m} cji,m =
max(cji,m−1, cji−1,m) + pji,m

ji - ith job

m - machine m

cji,m - completion time for ji on m

pji,m - processing time for ji on m

QAP min
{∑n

i=1

∑n
j=1 ha,b × dla,lb

}
li - ith location

ha,b - flow between facilities a and b

dla,lb - distance between la and lb

LOP max
{∑n

i=1

∑n
j=1 dωiωj

}
ωi - index of row and column at

position i

Matrix D = [dij ]

3.2 Problem Sets

We evaluate RK-EDA using the selected permutation problems in [14]. We
acknowledge that many of the problems are small instances especially the FSSP.
Also, results from running RK-EDA on the FSSP problem instances gives an
intuition that the algorithm is more competitive on the FSSP. We therefore
added four larger FSSP problems.
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The problem sets used in this paper are listed below.

1. TSP: bays29, berlin52, dantzig42 and fri26
2. FSSP: tai20-5-0, tai20-5-1, tai20-10-0 and tai20-10-1 (smaller instances)

tai50-10-0, tai50-10-1, tai100-20-0 and tai100-20-1 (larger instances)
3. QAP: tai15a, tai15b, tai40a and tai40b
4. LOP: t65b11, be75np and be75oi

These are commonly used problems and we consider them useful for compar-
ing with other EDAs for permutation problems.

3.3 Parameter Setting

To be able to understand the parameter settings that suit RK-EDA, we explored
a range of values and found different parameters suitable for different problem
classes and sizes. To be able to make a fair comparison between RK-EDA and
the considered algorithms, we use a set of parameters across all problems as done
in the review [3]. The set of parameters used for RK-EDA is shown in Table 2.
Based on preliminary tests, these parameters produce relatively good quality
solutions across all problem classes and instances.

Table 2. Parameter values for RK-EDA

Parameter Values

Population Size (ps) 50

Truncation Size (ts) 0.1*ps

Variance (σ) 1/(3.14 ∗ log10n)

Stopping Criteria 1000n2 FEs

Maximum Number of Generations (MaxGen) 20n2

Number of Runs 10

4 Results and Discussion

In this section, we present the results of running RK-EDA on the aforementioned
permutation problem sets. Table 3 shows the minimum, maximum, average and
standard deviation based on 10 runs of RK-EDA using the parameters presented
in Table 2. Results are compared based on averages and standard deviations. We
have highlighted results where optimal solution was found (appended *). We also
highlight results that are significantly better (appended �) or not significantly
different (appended **) from the best of the reviewed algorithms. We used the
student t-test to measure statistical significance with a 0.05 significance level.

The results in Table 3 are presented according to problem classes. Note that
FSSPs and FSSPl respectively denote the smaller and larger instances of the
FSSP.
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Table 3. Average performance of RK-EDA on benchmark problems

Groups Problems Minimum Maximum Mean Stdev

TSP bays29 2020.0 2091.0 2041.5 21.3*

berlin52 8207.0 8742.0 8404.6 164.0

dantzig42 729.0 824.0 771.2 35.6

fri26 937.0 968.0 949.5 11.9*

FSSPs tai20-5-0 1278.0 1279.0 1278.1 0.3* �
tai20-5-1 1359.0 1360.0 1359.5 0.5**

tai20-10-0 1586.0 1618.0 1602.9 11.1

tai20-10-1 1680.0 1691.0 1685.2 3.2

FSSPl tai50-10-0 3046.0 3119.0 3090.7 24.2**

tai50-10-1 2923.0 2964.0 2937.6 14.9 �
tai100-20-0 6344.0 6424.0 6386.4 21.0 �
tai100-10-1 6291.0 6381.0 6338.6 27.2 �

QAP tai15a 393496.0 412072.0 404616.6 5350.2

tai15b 51968294.0 52238818.0 52088443.6 72876.7

tai40a 3353650.0 3418792.0 3391139.0 20951.9

tai40b 642257062.0 659424886.0 652079961.9 4690584.3

LOP t65b11 355180.0 356311.0 356028.2 295.6

be75np 716221.0 716930.0 716644.3 249.8**

be75oi 110928.0 111156.0 111012.3 77.8

Table 4 shows the performance of each algorithm on the considered problems.
The table is ordered according to the overall ranks shown in column “ALL”.
Columns TSP, FSSPs, QAP, LOP and FSSPl show the average ranks of algo-
rithms on instances of their respective problem classes. Column ALL is the aver-
age rank of algorithms on all instances of TSP, FSSPs, QAP and LOP. Since
one of the motivations for selecting the additional problems (FSSPl) is that we
ranked relatively high on FSSPs, FSSPl was not used to create the overall rank
so as to eliminate bias towards performance on FSSP. Also, since one of the
reviewed algorithms was not applied to instances of FSSPl, it will be impossible
to generate an overall rank for the algorithm. To generate the ranks shown in the
table, we use the average fitness recorded by each algorithm as reported in [3]
and [14] as well as that of RK-EDA shown in Table 3. All algorithms are ranked
from best to worst for each problem.

We used “-” to denote missing results where authors have not applied their
algorithm to the given problem class.

According to the review presented in [3], EHBSAWT and NHBSAWT were
recognised as the best performing algorithms. A similar result is depicted by the
overall rank of these algorithms in Table 4. EHBSAWT ranks 1st while RK-EDA
ranks 2nd with NHBSAWT .
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Table 4. Average ranks of algorithms

Algorithms TSP FSSPs QAP LOP ALL FSSPl

EHBSAWT [16] 1.00 1.75 4.00 2.00 2.13 3.25

RK-EDA 3.75 2.50 7.00 2.25 4.00 1.00

NHBSAWT [17] 8.50 3.00 2.00 1.75 4.00 3.00

NHBSAWO [17] 6.00 4.50 2.50 4.25 4.27 4.75

Factoradics [14] 6.50 6.25 6.75 7.00 6.47 -

UMDA [9] 8.25 6.75 4.75 6.25 6.53 7.00

EBNABIC [1] 8.25 7.50 3.75 6.50 6.67 7.00

EHBSAWO [16] 2.25 6.00 10.00 10.75 7.27 9.75

MIMIC [1] 10.50 8.00 6.25 6.50 7.80 3.50

TREE [13] 12.25 10.50 8.75 9.75 10.33 7.00

IDEA-ICE [2] 11.25 10.75 10.50 9.75 10.53 8.75

REDAUMDA [15] 14.50 11.00 12.00 11.50 12.27 12.25

REDAMIMIC [15] 8.50 14.25 14.00 13.25 12.47 12.25

EGNAee [11] 9.00 14.75 13.25 15.00 12.93 12.25

omeGA [8] 14.25 12.00 14.75 14.50 13.80 14.75

UMDAc [11] 10.25 16.00 15.75 15.00 14.13 13.50

We observed that the RK based EDAs such as REDAUMDA, REDAMIMIC ,
EGNAee, UMDAc as well as the RK based GA (OmeGA) are ranked least in
Table 4 which is similar to the conclusion in the review Ceberio et al. [3]. OmeGA
had been introduced in the review to compare with the performance of the EDAs
in general. RK-EDA however shows a different trait outperforming all other RK
based algorithms.

Furthermore, the performance of RK-EDA varies with different classes of
problems. It produced competitive results on the FSSP, ranking 2nd on FSSPs

and 1st on FSSPl. RK-EDA produced statistically better results than the best of
the reviewed algorithms on three FSSPl instances. It also produced competitive
results for the TSP and LOP but much less competitive performance on the
QAP. This may be attributed to the fact that parameters that suit other problem
classes are not particularly suitable for the search space presented by the QAP.

In addition to the reviewed algorithms, other permutation based EDAs exist
but were not included in the previous comparison because their results are not
reported on the selected problems. GM-EDA [4] exhibits the best results on FSSP
when hybridised with local search procedures such as variable neighbourhood
search (VNS). We therefore compare RK-EDA with GM-EDA on a selected set
of FSSP instances. In order to compare the two EDAs in a fair way, we use the
reported results of GM-EDA without VNS.

We use the same set of parameters presented by the authors in [4] except that
we do not consider elitism. This is because preliminary experiments show that
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Table 5. Parameter values and stopping criteria for experiments on FSSP based on
TFT

Parameter settings: Parameter Values

Population size (ps) 10n

Truncation size (ts) 0.1*ps

Variance (σ) 0.15

MaxGen FEs/ps

Number of runs 20

Stopping criteria: Problem sizes FEs

20 × 05 182224100

20 × 10 224784800

50 × 10 256208100

100 × 20 283040000

Table 6. Average TFT for FSSP

Problems Algorithm Average Stdev

tai20-5-0 RK-EDA 14085 14

GM-EDA 14058 13

tai20-5-1 RK-EDA 15223 20

GM-EDA 15224 46

tai20-10-0 RK-EDA 21003 14

GM-EDA 21006 46

tai20-10-1 RK-EDA 22660 81

GM-EDA 22561 135

tai50-10-0 RK-EDA 89233 292

GM-EDA 89041 400

tai50-10-1 RK-EDA 84858 138

GM-EDA 84849 326

tai100-20-0 RK-EDA 373607 523

GM-EDA 374708 1388

tai100-20-1 RK-EDA 379947 501

GM-EDA 380750 868

elitism does not improve the performance of RK-EDA. In addition, 0.15 initial
variance value particularly produced competitive results for FSSP instances.
Table 5 shows the parameters of RK-EDA, which are adapted for solving the
FSSP.

In Table 6, we present the average fitness over 20 runs for RK-EDA as well as
GM-EDA. The results are based on the Total Flow Time (TFT) objective function
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and we compare using instances of FSSPs and FSSPl. The results for GM-EDA
have been extracted from [4]. Values that are significantly better are presented
in bold. The results show that the GM-EDA is significantly better on two of the
smallest problems (tai20-5-0 and tai20-10-1 ) while RK-EDA shows significant
improvement on the largest problems (tai100-20-0 and tai100-20-1 ). There are
however no significant difference between the performance of the algorithms on
other instances.

Results from comparing RK-EDA with GM-EDA as shown in Table 6 also
indicate that RK-EDA is competitive and should be further explored to solve
bigger and more complex problems.

5 Conclusions

EDAs based on RKs have previously been considered the poorest of permuta-
tion based EDAs [3]. One of the problems posed by RKs is attributed to the
variety of ways of representing an ordering [13]. In this paper, we introduce a
novel RK based EDA (RK-EDA) which addresses this by rescaling the RKs uni-
formly. This approach improves the information captured by the probabilistic
model. Furthermore, RK-EDA uses a cooling scheme to manage the rate of explo-
ration/exploitation of the search space such that there is better exploration at
the start of the algorithm and better exploitation of already found good pattern
as the search progresses.

Furthermore, learning a probability structure is considered the most expen-
sive operation in EDAs [2], we present a simple model, which only saves the mean
of solutions in a selected population. This is relatively computationally efficient.
RK-EDA whose procedure is comparatively simple produces very competitive
results. It outperforms other reviewed continuous EDAs. It is also competitive
with the best permutation EDAs in general.

RK-EDA’s most competitive performance is seen on FSSP and the least
on QAP. It’s performance on FSSP gets more competitive as the problem
size increases presenting the best results on the largest of the considered
FSSP instances. The performance of RK-EDA on larger problems is therefore
recommended for further investigation.

In addition, the use of local search has been reported to improve the per-
formance of the GM-EDA, hybridisation of the RK-EDA may also improve its
performance.
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12. Pelikan, M., Sastry, K., Cantú-Paz, E.: Scalable Optimization via Probabilistic
Modeling: From Algorithms to Applications. Springer, Heidelberg (2006)

13. Pelikan, M., Tsutsui, S., Kalapala, R.: Dependency trees, permutations, and
quadratic assignment problem. In: Genetic and Evolutionary Computation Con-
ference: Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, vol. 7, pp. 629–629 (2007)

14. Regnier-Coudert, O., McCall, J.: Factoradic representation for permutation opti-
misation. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN
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Abstract. It has been observed that in many real-world large scale
problems only few variables have a major impact on the function value:
While there are many inputs to the function, there are just few degrees of
freedom. We refer to such functions as having a low intrinsic dimension.
In this paper we devise an Estimation of Distribution Algorithm (EDA)
for continuous optimisation that exploits intrinsic dimension without
knowing the influential subspace of the input space, or its dimension,
by employing the idea of random embedding. While the idea is applica-
ble to any optimiser, EDA is known to be remarkably successful in low
dimensional problems but prone to the curse of dimensionality in larger
problems because its model building step requires large population sizes.
Our method, Random Embedding in Estimation of Distribution Algo-
rithm (REMEDA) remedies this weakness and is able to optimise very
large dimensional problems as long as their intrinsic dimension is low.

Keywords: Estimation of distribution algorithm · Black-box
optimization · Intrinsic dimension

1 Introduction

Optimisation over a high dimensional search space is challenging. However, it
has been noted that in certain classes of functions most decision variables have
a limited impact on the objective function. Examples include hyperparameter
optimisation for neural and deep belief networks [1], automatic configuration of
state-of-the algorithms for solving NP-hard problems [8], optimisation problems
in robotics [14], and others [3]. In other words, these problems have low intrinsic
dimensionality. In the numerical analysis literature [3] the influential parame-
ter subspace has been termed as the ‘active subspace’, and methods have been
developed to estimate this subspace. Fortunately, for optimisation, estimating
the influential subspace is not required: In [14] it was shown that a sufficiently
large random subspace contains an optimum with probability 1, and this was
c© Springer International Publishing AG 2016
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used to dramatically improve the efficiency of Bayesian optimisation by exploit-
ing the low intrinsic dimensionality of problems.

In this paper we further develop the random embedding technique, and intro-
duce it to evolutionary search, by employing it to scale up Estimation of Distrib-
ution Algorithms (EDA) for problems with low intrinsic dimension. Although the
underlying theoretical considerations are applicable to any optimisation method,
our focus on EDA is due to it being one of the most successful methods in low
dimensional problems [11] and most unsuccessful or expensive in high dimensions
[5,9,12].

Definition. A function f : RD → R has intrinsic dimension di, with di <
D, if there exists a di dimensional subspace Υ such that ∀x ∈ RD, f(x) =
f(ProjΥ (x)).
In the above, ProjΥ (x) denotes the orthogonal projection, i.e. ProjΥ (x) = ΦΦT x,
where Φ ∈ RD×di has columns holding a linear basis of Υ .

The following result in [14] shows that, for such functions, a global optimum
exists in a randomly chosen linear subspace – hence a low dimensional search is
sufficient.

Theorem 1 [14]. Assume we are given a function f : RD → R with intrinsic
dimension di < d and a random matrix R ∈ RD×d with independent entries
sampled from a standard Gaussian. Then, with probability 1, for any x ∈ RD,
there exists a y ∈ Rd such that f(x) = f(Ry).

Given some box constraints on the original problem, the authors [14] develop
an upper bound on the search box required for the low dimensional search.
However, their proof only applies to the case when d = di, and in practice they
recommend a smaller search box and use a slightly larger d. Recall, in practice
we have no knowledge of the value of di. However, on synthetic problems the
experimental results do appear to be better when d is slightly larger than di.

In the next section we derive a bound on the search box that holds true
for d > di, and show that the required box size that guarantees to contain
a global optimum is indeed smaller when d is larger. Secondly, we devise an
EDA optimisation algorithm that implements these ideas employing a random
Gaussian embedding.

2 REMEDA: Random Embedding EDA

In this section we present our REMEDA algorithm and explain how it exploits
the intrinsic dimensionality of problems. Instead of optimising in the high dimen-
sional space, REMEDA will do a random embedding, using the random matrix
R ∈ RD×d, d � D with i.i.d. entries drawn from a standard Gaussian, and then
optimises the function g(y) = f(Ry), y ∈ Rd in the lower dimensional space.

The psuedo-code of REMEDA is given in Algorithm 1. It takes the population
size N , box constraints for a D-dimensional problem, and the internal working
dimension d � D. As in basic EDA, the REMEDA algorithm then proceeds by
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initially generating a population of individuals uniformly randomly. However,
these individuals are generated in the d-dimensional space, within some suitable
box constraints in this space that are determined from the given D-dimensional
box. The details of how this is done will follow shortly. The algorithm then
evaluates the fitness of these individuals with the use of a random embedding
matrix R ∈ RD×d that transforms the d-dimensional points into the original
D-dimensional space of decision variables. The matrix R has entries drawn i.i.d.
from a standard Gaussian distribution, as in Theorem1. Based on the fitness
values obtained, the fittest individuals are selected using a selection method, such
as truncation selection. The maximum likelihood estimates (MLE) of the mean
μ ∈ Rd and the covariance Σ ∈ Rd×d of the promising solutions are computed
from the set of selected fittest individuals, and these are used to generate the
new generation by sampling from a multivariate Gaussian distribution. The new
population is formed by replacing the old individuals by the new ones. We also
use elitism, whereby the best individual of the previous generation is kept.

Algorithm 1. The Pseudocode of REMEDA with Population size N and intrin-
sic dimensionality of the problems, di

Inputs: N , D, d, Box
(1) Set the search box boundaries in the low-dimensional space Rd (cf. Theorem 2

&text)
(2) Set P ← Generate N points uniformly randomly within the box in Rd to give

an initial population
(3) Set R ← Generate a random embedding matrix, R ∈ RD×d.
Do

(4) Evaluate the fitness of yi as f(Ryi), i = 1...N
(5) Select best individuals P sel from P based on their fitness values
(6) Calculate the mean μ and covariance Σ of P sel

(7) Use the μ and Σ to sample new population, Pnew

(8) P ← Pnew

Until Termination criteria are met
Output: P

We have not yet specified how to determine the d-dimensional box constraints
that correspond to the given D-dimensional ones. Given some box constraints
in RD, the following theorem gives the required box constraints for the search
in Rd.

Theorem 2. Let f : RD → R be a function with intrinsic dimension di <
d < D that we want to optimise subject to the box constraint χ ⊂ RD, where
χ is centered around 0. Denote the intrinsic subspace by Υ , and let Φ be a
D × di matrix whose columns form an orthonormal basis for Υ . Denote by
x∗

t ∈ Υ ∩ χ an optimiser of f inside Υ . Let R be a D × d random matrix
with independent standard Gaussian entries. Then there exists an optimiser
y∗ ∈ Rd such that f(Ry∗) = f(x∗

t ) w.p. 1, and for any choice of ε ∈ (0, 1),
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if d > (
√

di +
√

2 ln(1/ε))2, then ||y∗||2 ≤ ||x∗
t ||2√

d−√
di−

√
2 ln( 1

ε )
with probability

at least 1 − ε.

Proof. The existence of y∗ is guaranteed by Theorem 1, and global optimisers
outside the subspace Υ are irrelevant since the function takes all its range of
values in Υ . So our focus is to upper bound the length of y∗.

From the proof of Theorem 1 in [14] we know that ∃y∗ ∈ Rd s.t.

ΦΦT Ry∗ = x∗
t (1)

Hence,
||x∗

t || = ||ΦΦT Ry∗|| ≥ smin(ΦΦT R)||y∗|| (2)

where we use the Rayleigh quotient inequality, and smin(·) denotes the smallest
singular value.

Note that ΦΦT R is a di × d random matrix with i.i.d. Gaussian entries.
When d = di it is a square matrix, and a bound on its smallest singular value
was applied in [14]. Instead, for the case d > di we employ the bound of Davidson
and Szarek that applies to rectangular Gaussian matrices [4]. We have for any
ε ∈ (0, 1) for which

√
d − √

di − ε > 0, that:

||y∗|| ≤ ||x∗
t ||√

d − √
di − ε

(3)

with probability 1− exp(− ε2

2 ). Now setting exp(−ε2/2) = τ and solving for ε we

get ε =
√

2 ln( 1
τ ). Plugging this back and renaming τ to ε completes the proof. �
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Fig. 1. Comparison of our theoretical bound (REMEDA), with various values of d > di

versus the bound of [14] (REMBO), which holds when d = di.

In Fig. 1 we plotted the bound on the search box from our Theorem2 for
various values of d > di in comparison with the bound in [14] for d = di. We see
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that our result is tighter for nearly all values of d and it explains why a smaller
search box is sufficient when d > di. The single point for Rembo in Fig. 1 is for
d = di where as the curve for Remeda is for values of d > di.

In practice, of course, we typically have no knowledge of the value of di,
in which case we cannot use theoretical bounds directly to set our search box.
However, we can fix the search box – for instance to

√
d-times the coordinates

if the original box, as suggested in [14], and our Theorem2 then suggests that
increasing d can eventually make this fixed-size box sufficiently large to contain
the optimiser y∗. This is what we used in the experiments reported.

3 Related Work

Model building in high dimensions is the subject of many recent research efforts,
as high dimensionality limits the usefulness of optimisers in practice. Many
approaches were proposed, here we will limit ourselves to a few of the most
relevant ones.

Among these methods, the Eigendecomposition EDA (ED − EDA) [6] pro-
poses to utilise a repaired version of the full covariance matrix estimate, with the
aim to capture interactions among all decision variables and guide exploration of
the search space. Other methods use limited dependencies. For example, Coop-
erative Co-evolution with Variable Interaction Learning (CCV IL) proposed by
Weicker et al. in [15] is a deterministic method to uncover dependencies between
decision variables, which has later been extended to the CCVIL framework by
Chen et al. in [13]. EDA with Model Complexity Control (EDA−MCC) [5] also
employs a deterministic algorithm to split the decision variables into two disjoint
subsets, of which one set contains decision variables with only minor interaction
and the other set contains the strongly dependent variables that are further
grouped randomly, and inter-group dependencies are neglected. Other methods
include Covariance Matrix Adaptation (CMA-ES) [7], separable CMA-ES (sep-
CMA-ES ) [10] and Multilevel Cooperate Co-evolution (MLCC)[16].

There are also methods that apply dimensionality reduction techniques to
reduce the dimension of the problems in order to avail EDA the opportunity to
demonstrate its capabilities. An example of this type of techniques are random
projections [9,12,14]. However, none of these methods have been designed to take
advantage of the intrinsic structure of the problems as our REMEDA approach
does.

4 Experiments

4.1 Test Functions and Performance Measures

We created test functions with intrinsic dimension 5 from existing benchmark
functions, by embedding the di-dimensional versions of these problems into
higher D-dimensions. That is, we add D −5 additional dimensions which do not
impact on the function value, and (optionally) rotate the search space around
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the origin in a random direction. Hence, the functions will take D-dimensional
inputs, but only 5 linear combinations of these input variables determine the
function value. The algorithm will have no knowledge of which these directions
are, not even that there are 5, but it has knowledge that the number of impor-
tant directions is much less that D. The functions we employed in this way
here are the following: Shifted Ellipse, Shifted Schwefel’s problem 1.2, Shifted
Rotated High Conditional Elliptic function, and Shifted Rosenbrock function.
We also took the Branin function from [14] which has intrinsic dimension 2.
The functions are listed in Table 1.

Table 1. Test functions of low intrinsic dimension of 2 or 5. o is the shift vector.

PN Name Expression

1 Sphere
∑di

j=1(xj − oj)
2

2 Ackley’s 20 − 20 exp(−0.2
√

1
di

∑di
j=1((xj − oj) ∗ M)2)-

exp( 1
di

∑di
j=1(cos(2π(xj − oj) ∗ M))+e

3 Elliptic
∑di

j=1(10
6)

j−1
di−1 ∗ (xj − oj) ∗ M)

4 Rosenbrock
∑di−1

j=1 (100(z2
j − zj+1)

2 + (zj − 1)2)

z = x − o + 1

5 Branin (−1.275
x2
1

π2 + 5x1
π

+ x2 − 6)2

+(10 − 5
4π

) cos(x1) + 10

We employ two common performance indicators: (i) The fitness gap achieved
under a fixed budget is the difference between the best fitness achieved and the
true optimum; (ii) The scalability is the budget of function evaluations needed
to reach a pre-defined value to reach.

4.2 Results and Discussion

Experiments on a di= 2 Problem. In the first set of experiments we consider
the D = 25 dimensional Branin function that has intrinsic dimension di = 2.
Though, we should note that D can be as large in principle, as we like since the
working strategy and the budget usage of REMEDA are independent of D. In
this experiment, we vary the internal working dimension d, and the population
size N , under a fixed budget of 500 function evaluations.

The results are shown in Table 2, as obtained from 50 independent repeti-
tions of each experiment. We can see from Table 2 that d = di = 2 is not the
best choice, as the size of the search box is not sufficient at d = di. Also observe
that increasing d beyond 4 drops the performance – this is because searching
in a larger dimensional space is not necessary and is less resource-effective. Fur-
thermore, we see for all d tested, the higher the population sizes, the worse the
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Table 2. Fitness gap achieved by REMEDA on the Branin function (di = 2 embedded
in D = 25), with a total budget of 500 function evaluations.

Pop. size d=2 d=4 d=6

Mean std Mean std Mean std

300 1.4297 2.601 2.4908 3.1013 3.9007 3.0322

150 0.4128 0.6607 1.1701 1.313 2.1368 2.1046

80 0.826 2.9973 0.4193 0.4459 0.8303 0.9331

40 0.6375 2.9073 0.04 0.0969 0.1927 0.3865

30 0.6737 2.4939 0.0336 0.0853 0.1038 0.2615

performance. This is because a large population unnecessarily uses up the bud-
get when the search only happens in a small dimensional subspace. With these
insights in place, next we carry out a more comprehensive study.

Results and Comparisons on Problems with di = 5. In this section, we
compare our method with state of the art approaches in heuristic optimisation,
on problems with intrinsic dimension di = 5. The ambient dimension was D =
1000 in these experiments, but as already mentioned this can be much higher
without causing problems as long as di stays low.

We expect that REMEDA should gain advantage from its ability to exploit
intrinsic dimensional property while other methods have not been designed to
make use of such structure. On the other hand, REMEDA needs to find a good
value for its internal dimension d without knowing di (as this information is
normally not available in practice). This will use up part of the budget, but the
hope is that it will pay off by a speedy progress in the search.

We start with d = 1, using convergence as a stopping criterion, and move
up progressively to higher values of d until the fitness reached upon convergence
is no longer improved by the increase of d. Within each value of d tried, we
run REMEDA to convergence, until the relative change in fitness is below a
threshold: f(t)−f(t+1)

f(t) < 10−8, where t is the generation count and f is the
fitness value. When this condition is satisfied, we move on to the next value of
d, and re-initialise the population randomly (although other schemes could also
be investigated). The total number of fitness evaluations used throughout this
process is the total budget that we then provide to the competing algorithms.

The bar chart in the leftmost plot of Fig. 2 shows an example of the fitness
gaps achieved at convergence with consecutive values of d. The error bars show
one standard error from 25 independent repetitions. In the rightmost plot we
show the evolution of the best fitness. Superimposed, we also show the trajec-
tories of competing state of the art methods: EDA-MCC [5], RP-EDA [9], and
tRP-EDA [12]. All use the same budget and same population size (Table 3). For
all the d tried, we plot their concatenated trajectories in such a way that the
next starts from the end of the current one.
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From Fig. 2 we can see that REMEDA attains a fitness value close to the opti-
mum efficiently, while the other methods are not able to achieve the same within
the same budget. We also superimposed an idealised version of plain EDA – that
is a plain EDA that receives the di-dimensional version of the problem – and we
see that REMEDA is nearly as good.
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Fig. 2. Finding d (left) and evolution of best fitness (right) for REMEDA, 3 competing
methods, and a di-dimensional EDA on the idealised problem. Results are averaged
over 25 independent runs. All methods use the same population size.

Table 3. Comparing REMEDA with other state of the art methods.

Fn REMEDA sep-CMA-ES EDA-MCC tRP-ENS-EDA RP-ENS-EDA
Mean std Mean std Mean std Mean std Mean std

F1 0 0 3.81E+04 2.16E+04 6.41E+04 8.21E+03 37.80 3.17 25.79 2.05

F2 0 0 1.00E+07 7.92E+05 1.99E+06 1.42E+06 1.40E+08 7.99E+06 1.38E+08 6.59E+06

F3 0.18 0.91 4.75E+07 3.47E+06 2.90E+09 2.29E+08 6.81E+08 5.60E+07 2.84E+08 2.62E+07

F6 45.92 216.11 5.44E+06 2.09E+06 3.56E+10 4.93E+09 1.60E+07 1.88E+06 9.64E+06 1.44E+06

F8 14.19 7.89 21.67 0.01 21.34 0.06 21.66 0.01 21.43 0.06

4.3 Scalability Experiments

Function evaluation is costly in most practical problems. Here we study what
is the required budget of function evaluations to reach a specified value of the
fitness gap.

Before running these scalability experiments, we carried out some experi-
ments to determine the required population size as a function of the intrinsic
dimension of the problem, so that we can vary the latter and set the popula-
tion size automatically. For this we use a bisection method as in [2]. To find
the population size that results in the lowest number of evaluations required to
reach a pre-determined fitness gap value to reach (VTR), we start from a very
large population size that can solve the problem within a large predetermined
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budget and then search for a small population size that cannot solve the prob-
lem anymore. In between these limits we use binary search to find the optimal
population size. We repeated this 25 times and took the average.

We fix the value to reach (VTR) to 10−5, and vary the intrinsic dimensionality
of the problem di ∈ [2, 50]. We count the number of fitness evaluations needed for
our proposed REMEDA to reach the VTR. The same experiment was repeated
for three other choices of VTR: 10−3, 102 and 103 in order to make sure that
the conclusions will not be specific to a particular choice of the VTR. In all
these experiments the maximum fitness evaluations was fixed to 6 × 103, so the
algorithm stops when the budget is exhausted.

Figure 3 shows the average number of function evaluations as computed from
the successful runs out of 25 independent repetitions for each problem, with
each intrinsic dimension tested. From the figure, we observe a linear fit on the
scalability measurements.

Fig. 3. Number of function evaluations taken by successful runs of REMEDA to reach
a pre-specified value to reach (VTR) as the problem intrinsic dimensionality is varied in
di ∈ [2, 50]. The markers represent averages computed from 25 independent repetitions.

5 Conclusions and Future Work

We proposed random embedding in Estimation of Distribution Algorithm to scale
up EDA by exploiting the intrinsic dimension of problems whereby the search
takes place in a much lower dimensional space than that of the original problem.
Our method is suited for large scale problems that take a large number of inputs
but only depend on a few linear combinations of them. On such problems we have
demonstrated that our method outperforms the best state of the art algorithms
in evolutionary computation. Our technique and its theoretical basis are applica-
ble in principle to any optimisation method, and in the light that problems with
intrinsic dimension are quite prevalent in real-world applications, it seems a worth-
while avenue for future work to make use of it more widely.
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Abstract. Understanding the behaviour of heuristic search methods is
a challenge. This even holds for simple local search methods such as
2-OPT for the Traveling Salesperson problem. In this paper, we present
a general framework that is able to construct a diverse set of instances
that are hard or easy for a given search heuristic. Such a diverse set is
obtained by using an evolutionary algorithm for constructing hard or
easy instances that are diverse with respect to different features of the
underlying problem. Examining the constructed instance sets, we show
that many combinations of two or three features give a good classification
of the TSP instances in terms of whether they are hard to be solved by
2-OPT.

1 Introduction

Heuristic search methods such as local search, simulated annealing, evolutionary
algorithms and ant colony optimization have been shown to be very successful for
various combinatorial optimization problems. Although they usually don’t come
with performance guarantees on their runtime and/or approximation behaviour,
they often perform very well in several situations. Understanding the conditions
under which optimization algorithms perform well is essential for automatic algo-
rithm selection, configuration and effective algorithm design. In both the artifi-
cial intelligence (AI) [1–4] and operational research communities [5,6], this topic
has become a major point of interest.

The feature-based analysis of heuristic search algorithms has become an
important part in understanding such type of algorithms [7,8]. This approach
characterizes algorithms and their performance for a given problem based on fea-
tures of problem instances. Thereby, it provides an important tool for bridging
the gap between pure experimental investigations and mathematical methods
for analysing the performance of search algorithms [9–11]. Current methods for
the feature-based analysis are based on constructing hard and easy instances for
an investigated search heuristic and a given optimization problem by evolving
instances using an evolutionary algorithm [7,12,13]. This evolutionary algorithm
constructs problem instances where the examined algorithm either shows a bad
(good) approximation behaviour and/or requires a large (small) computational
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effort to come up with good or optimal solutions. Although the evolutionary
algorithm for constructing such instances is usually run several times to obtain
a large set of hard (easy) instances, the question arises whether the results in
terms of features of the instances obtained give a good characterization of prob-
lem difficulty.

In the paper, we propose a new approach of constructing hard and easy
instances. Following some recent work on using evolutionary algorithms for gen-
erating diverse sets of instances that are all of high quality [14,15], we introduce
an evolutionary algorithm which maximizes diversity of the obtained instances
in terms of a given set of features. Our approach allows to generate a set of
instances that is guaranteed to be diverse with respect to the problem features
at hand. Carrying out this process for several combinations of features of the
considered problem and algorithm gives a much better classification of instances
according to their difficulty of being solved by the considered algorithm.

To show the benefit of our approach compared to previous methods, we con-
sider the classical 2-OPT algorithm for the TSP. Previous feature-based analyses
have already considered hard and easy instances in terms of approximation ratio
and analyzed the features of such hard (easy) instances obtained by an evo-
lutionary algorithm. The experimental results of our new approach show that
diversity optimization of the features results in an improved coverage of the fea-
ture space over classical instance generation methods. In particular, the results
show that for some combinations of two features it is possible to classify hard
and easy instances into two clusters with a wider coverage of the feature space
compared to the classical methods. Moreover, the three-feature combinations
further improve the classification of hard and easy instances for most of the
feature combinations. Furthermore, a classification model is built using these
diverse instances that can classify TSP instances based on hardness for 2-OPT.

The remainder of this paper is organized as follows. Firstly, we introduce
the Euclidean TSP and the background on feature based analysis. Afterwards,
we state our diversity optimization approach for evolving instances according to
feature values and report on the impact of diversity optimization in terms of
the range of feature values. As feature values can be very diverse both for easy
and hard instances, we consider the combinations of several features for instance
classification afterwards. We then build a classification model that can classify
instances based on hardness and finally finish with some conclusions.

2 Background

We consider the classical NP-hard Euclidean Traveling Salesperson problem
(TSP) as the example problem for evolving hard and easy instances which have
a diverse set of features. Our methodology can be applied to any optimization
problem, but using the TSP in our study has the advantage that it has already
been investigated extensively from different perspectives including the area of
feature-based analysis.

The input of the problem is given by a set V = {v1, . . . , vn} of n cities
in the Euclidean plane and Euclidean distances d : V × V → R≥0 between
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Algorithm 1. (μ + λ)-EAD

1 Initialize the population P with μ TSP instances of approximation ratio at least
αh.

2 Let C ⊆ P where |C| = λ.
3 For each I ∈ C, produce an offspring I ′ of I by mutation. If αA(I ′) � αh, add I ′

to P .
4 While |P | > μ, remove an individual I = arg minJ∈P d(J, P ) uniformly at

random.
5 Repeat step 2 to 4 until termination criterion is reached.

the cities. The goal is to find a Hamiltonian cycle whose sum of distances is
minimal. A candidate solution for the TSP is often represented by a permutation
π = (π1, . . . , πn) of the n cities and the goal is to find a permutation π∗ which
minimizes the tour length given by c(π) = d(πn, π1) +

∑n−1
i=1 d(πi, πi+1).

For our investigations cities are always in the normalized plane [0, 1]2, i. e.
each city has an x- and y-coordinate in the interval [0, 1]. In following, a TSP
instance always consists of a set of n points in [0, 1]2 and the Euclidean distances
between them.

Local search heuristics have been shown to be very successful when dealing
with the TSP and the most prominent local search operator is the 2-OPT opera-
tor [16]. The resulting local search algorithm starts with a random permutation
of the cities and repeatedly checks whether removing two edges and reconnect-
ing the two resulting paths by two other edges leads to a shorter tour. If no
improvement can be found by carrying out any 2-OPT operation, the tour is
called locally optimal and the algorithm terminates.

The key factor in the area of feature-based analysis is to identify the prob-
lem features and their contribution to the problem hardness for a particular
algorithm and problem combination. This can be achieved through investigating
hard and easy instances of the problem. Using an evolutionary algorithm, it is
possible to evolve sets of hard and easy instances by maximizing or minimizing
the fitness (tour length in the case of the TSP) of each instance [5–8]. However,
none of these approaches have considered the diversity of the instances explic-
itly. Within this study we expect to improve the evolutionary algorithm based
instance generation approach by introducing diversity optimization.

The structural features are dependent on the underlying problem. In [7],
there are 47 features in 8 groups used to provide an understanding of algorithm
performance for the TSP. The different feature classes established are distance
features, mode features, cluster features, centroid features, MST features, angle
features and convex hull features. The feature values are regarded as indicators
which allow to predict the performance of a given algorithm on a given instance.

3 Feature-Based Diversity Optimization

In this section, we introduce our approach of evolving a diverse set of easy or
hard instances which are diverse with respect to important problem features.
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As in previous studies, we measure hardness of a given instance by the ratio of
the solution quality obtained by the considered algorithm and the value of an
optimal solution.

The approximation ratio of an algorithm A for a given instance I is defined
as

αA(I) = A(I)/OPT (I)

where A(I) is value of the solution produced by algorithm A for the given
instance I, and OPT (I) is value of an optimal solution for instance I. Within
this study, A(I) is the tour length obtained by 2-OPT for a given TSP instance
I and OPT (I) is the optimal tour length which we obtain in our experiments
by using the exact TSP solver Concorde [17].

We propose to use an evolutionary algorithm to construct sets of instances
of the TSP that are quantified as either easy or hard in terms of approximation
and are diverse with respect to underlying features of the produced problem
instances. Our evolutionary algorithm (shown in Algorithm1) evolves instances
which are diverse with respect to given features and meet given approximation
ratio thresholds.

The algorithm is initialized with a population P consisting of μ TSP instances
which have an approximation ratio at least αh in the case of generating a diverse
set of hard instances. In the case of easy instances, we start with a population
where all instances have an approximation ratio of at most αe and only instances
of approximation ratio at most αe can be accepted for the next iteration. In each
iteration, λ ≤ μ offspring are produced by selecting λ parents and applying muta-
tion to the selected individuals. Offsprings that don’t meet the approximation
threshold are rejected immediately.

The new parent population is formed by reducing the set consisting of parents
and offsprings satisfying the approximation threshold until a set of μ solutions
is achieved. This is done by removing instances one by one based on their con-
tribution to the diversity according to the considered feature.

The core of our algorithm is the selection among individuals meeting the
threshold values for the approximation quality according to feature values. Let
I1, . . . , Ik be the elements of P and f(Ii) be their features values. Furthermore,
assume that f(Ii) ∈ [0, R], i.e. feature values are non-negative and bounded
above by R.

We assume that f(I1) ≤ f(I2) ≤ . . . ≤ f(Ik) holds. The diversity contribu-
tion of an instance I to a population of instances P is defined as

d(I, P ) = c(I, P ),

where c(I, P ) is a contribution based on other individuals in the population
Let Ii be an individual for which f(Ii) �= f(I1) and f(Ii) �= f(Ik). We set

c(Ii, P ) = (f(Ii) − f(Ii−1)) · (f(Ii+1) − f(Ii)),

which assigns the diversity contribution of an individual based on the next
smaller and next larger feature values. If f(Ii) = f(I1) or f(Ii) = f(Ik), we
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set c(Ii, P ) = R2 if there is no other individual I �= Ii in P with f(I) = f(Ii)
and c(Ii, P ) = 0 otherwise. This implies an individual Ii with feature value
equal to any other instances in the population gains c(Ii, P ) = 0. Furthermore,
an individual with the unique smallest and largest feature value always stays in
the population when working with μ ≥ 2.

In [7], 47 features of TSP instances for characterizing easy and hard
TSP instances have been studied. We consider 7 features coming from differ-
ent feature classes which have shown to be well suited for classification and
prediction. These features are: angle mean, centroid mean distance to centroid,
chull area, cluster 10pct mean distance to centroid, mst depth mean, nnds mean
and mst dists mean.

We refer the reader to [7] for a detailed explanation for each feature. We carry
out our diversity optimization approach for these features and use the evolution-
ary algorithm to evolve for each feature a diverse population of instances that
meets the approximation criteria for hard/easy instances given by the approxi-
mation ratio thresholds.

All programs in our experiments are written in R and run in R environ-
ment [18]. We use the functions in tspmeta package to compute the feature
values [7].

The setting of the evolutionary algorithm for diversity optimization used
in our experiments is as follows. We use μ = 30 and λ = 5 for the parent and
offspring population size, respectively. The 2-OPT algorithm is executed on each
instance I five times with different initial solutions and we set A(I) to the average
tour length obtained. The examined instance sizes n are 25, 50 and 100, which are
denoted by the number of cities in one instance. Based on previous investigations
in [7] and initial experimental investigations, we set αe = 1 for instances of size
25 and 50, and αe = 1.03 for instances of size 100. Evolving hard instances, we
use αh = 1.15, 1.18, 1.2 for instances of size n = 25, 50, 100, respectively. The
mutation operator picks in each step one city for the given parent uniformly at
random and changes its x- and y-coordinator by choosing an offset according to
the Normal-distribution with standard deviation σ. Coordinates that are out of
the interval are reset to the value of the parent. Based on initial experiments
we use two mutation operators with different values of σ. We use σ = 0.025
with probability 0.9 and σ = 0.05 with probability 0.1 in a mutation step.
The evolutionary algorithm terminates after 10, 000 generations which allows to
obtain a good diversity for the considered features. For each n = 25, 50, 100 and
each of the 7 features, a set of easy and hard instances are generated, which
results in 42 independent runs of the (μ+λ)-EAD.

4 Range of Feature Values

We first evaluate our diversity optimization approach in terms of the diversity
that is obtained with respect to a single feature. Focusing on a single feature
in each run provides the insight of the possible range of a certain feature value
for hard or easy instances. The previous study [7], suggests that there are some
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Fig. 1. (left) The boxplots for centroid mean distance to centroid feature values of a
population consisting of 100 different hard or easy TSP instances of different number of
cities without or with diversity mechnism. (right) The boxplots for cluster 10 % distance
distance to centroid feature values of a population consisting of 100 different hard or
easy TSP instances of different number of cities without or with diversity mechnism.
Easy and hard instances from conventional approach and diversity optimization are
indicated by e(a), h(a) and e(b), h(b) respectively.

differences in the possible range of feature values for easy and hard instances.
We study the effect of the diversity optimization on the range of features by
comparing the instances generated by diversity optimization to the instances
generated by the conventional approach in [7]. Evolving hard instances based
on the conventional evolutionary algorithm, the obtained instances have mean
approximation ratios of 1.12 for n = 25, 1.16 for n = 50, and 1.18 for n = 100.
For easy instances, the mean approximation ratios are 1 for n = 25, 50 and 1.03
for n = 100.

Figure 1 (left) presents the variation of the mean distance of the distances
between points and the centroid feature (centroid mean distance to centroid) for
hard and easy instances of the three considered sizes 25, 50 and 100. Each set
consists of 100 instances generated by independent runs [7]. As shown in Fig. 1
(left) the hard instances have higher feature values than for easy instances for
all instance sizes. For example, for instance size 100 and for the hard instances
the median value (indicated by the red line) is 0.4157 while its only 0.0.4032 for
the easy instances. The respective range of the feature value is 0.0577 for the
hard instances and 0.0645 for the easy instances. For the instances generated by
diversity optimization (easy and hard instances are indicated by e(b) and h(b)
respectively), there is a difference in the median feature values for the hard and
easy instances similar to the instances generated by the conventional approach.
Additionally, the range of the feature values for both the hard and easy instances
has significantly increased. For example, for the instance size 100, the median
value for easy instances is 0.4028 and the range is 0.2382. For the hard instances
of the same size, the median is 0.04157 while the range is 0.1917 (see Fig. 1
(left)).

Similarly, Fig. 1 (right) presents the variation of cluster 10% distance to cen-
troid (cluster 10pct distance to centroid) feature for the hard and easy instances
generated by the conventional approach (indicated by (e(a) and h(a)) and for
the hard and easy instances generated by diversity optimization (indicated by
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(e(b) and h(b))). The general observations from these box plots are quite similar
to the observations from the mst dist mean shown in Fig. 1 (left).

The above results suggest that the diversity optimization approach has
resulted in a significant increase in the coverage over the feature space. Hav-
ing the threshold for approximation ratios (αe and αh) our method guarantees
the hardness of the instances. These approximation thresholds are more extreme
than the mean approximation values obtained by the conventional method. Being
able to discover all these instances spread in the whole feature space, our app-
roach provides a strong basis for more effective feature based prediction.

As a result of the increased ranges and the similar gap in median feature val-
ues for hard and easy instances compared to the conventional instances, there is a
strong overlap in the ranges of the features for easy and hard instances generated
by the diversity optimization. This is observed in the results for mst dist mean
and cluster 10pct distance to centroid shown in Fig. 1. Similar pattern holds for
the other features as well. This prevents a good classification of problem instances
based on single feature value.

5 Classification Based on Multiple Features

As a single feature is not capable in clearly classifying the hard/easy instances,
combinations of two or three different features are examined in the following. Our
analysis mainly focuses on combinations of the 7 previously introduced features.

According to the observation and discussion in [7], the two features dis-
tance max and angle mean can be considered together to provide an accurate
classification of the hard and easy instances. Whereas after increasing the diver-
sity over the seven different feature values and a wider coverage of the 2D space is
achieved, the separation of easy and hard instances is not so obvious, as shown
in Fig. 2. There are large overlapping areas lying between the two groups of
instances. As the number of cities in an instance increases, the overlapping area
becomes larger. It is hard to do classification based on this. Therefore the idea
of combining three different feature is put forward.

Support vector machines (SVMs) are well-known supervised learning models
in machine learning which can be used for classification, regression and outliers

Fig. 2. 2D Plots of feature combinations which provide a separation between easy
and hard instances. The blue dots and orange dots represent hard and easy instances
respectively. (Color figure online)
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detection [19]. In order to quantify the separation between instances of different
hardness based on the feature values, SVM models are constructed for each
combination of features.

Let ACCn be the training accuracy of a feature combination in separating
the hard and easy instances of size n. We define ACCn as the ratio of number
of instances which are correctly classified by the model to the total number
of instances in the dataset. All classification experiments are done in R with
library{e1071} [20].

The training data of the SVM models are the population of 420 instances
generated as in Sect. 3 and the training accuracy is regarded as a quantified
measurement of the separation between hard and easy instances. The feature
combinations used for classification are the 21 two-feature combinations and 35
three-feature combinations discussed in Sect. 5.

The linear classifier is the first model tried in classifying the dataset. Since
the dataset is not linearly separable, taken the trade-off between maximizing the
margin and minimizing the number of misclassified data points into consider-
ation, the soft-margin SVM is used for classification. From experiment results,
most of the accuracies of different feature combinations lie in the range of 0.6
to 0.7, which implies the high possibility that the linear models are not suitable
for separating the hard and easy instances based on most of the feature combi-
nations. Therefore we move to applying kernel functions for non-linear mapping
of the feature combination. The Radial Basis Function (RBF) kernel is one of
the well-known kernel functions used in SVM classification.

There are two parameters needed when applying RBF kernel, which are
C(cost) and γ. The parameter setting for RBF is crucial, since increasing C and
γ leads to accurate separation of the training data but at the same time causes

Table 1. The accuracy of SVM with RBF kernel separating the hard and easy instances
in different two-feature space.

Feature 1 Feature 2 ACC25 ACC50 ACC100
angle mean centroid mean distance to centroid 0.8476 0.8071 0.8071

angle mean chull area 0.7857 0.7810 0.7929

angle mean cluster 10pct mean distance to centroid 0.7810 0.7786 0.8000

angle mean mst depth mean 0.7524 0.7381 0.8000

angle mean nnds mean 0.8167 0.8833 0.8452

angle mean mst dists mean 0.8119 0.8024 0.8405

centroid mean distance to centroid chull area 0.8619 0.7667 0.8381

centroid mean distance to centroid cluster 10pct mean distance to centroid 0.8524 0.8357 0.7548

centroid mean distance to centroid mst depth mean 0.8381 0.7643 0.8095

centroid mean distance to centroid nnds mean 0.8786 0.9524 0.8476

centroid mean distance to centroid mst dists mean 0.8905 0.8571 0.8762

chull area cluster 10pct mean distance to centroid 0.8000 0.7881 0.8548

chull area mst depth mean 0.7429 0.7429 0.7571

chull area nnds mean 0.8071 0.8905 0.8452

chull area mst dists mean 0.8619 0.8643 0.9024

cluster 10pct mean distance to centroid mst depth mean 0.7619 0.7714 0.7929

cluster 10pct mean distance to centroid nnds mean 0.8190 0.8833 0.8643

cluster 10pct mean distance to centroid mst dists mean 0.8095 0.8095 0.8738

mst depth mean nnds mean 0.7786 0.8595 0.8405

mst depth mean mst dists mean 0.8095 0.8214 0.8810

nnds mean mst dists mean 0.8500 0.9143 0.9024
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over-fitting. The SVMs here are generated for quantifying the separation rate
between hard and easy instances rather than classifying other instances. After
some initial trials, (C, γ) is set to (100, 2) in all the tests to avoid over-fitting.
This parameter setting may not be the best for the certain feature combination
in SVM classifying, but it helps us to gain some understanding of the separation
of hard and easy instances generated from previous experiments based on the
same condition.

Tables 1 and 2 show the accuracy of different two-feature or three-feature
combination in hard and easy instances separation. With RBF kernel, SVM
with certain parameter setting can generate a model separating the dataset with
average accuracy of 0.8170, 0.8244 and 0.8346 in 2D feature space for instance
size 25, 50 and 100 respectively. Whereas with three features, SVM with the
same parameter setting provides a separation with average accuracy of 0.9503,
0.9584 and 0.9422 for instance size 25, 50 and 100 respectively.

From the results, it can be concluded that there are better separations
between hard and easy instances in the 3D feature space.

6 Conclusions

With this paper, we have introduced a new methodology of evolving easy/hard
instances which are diverse with respect to feature sets of the optimization prob-
lem at hand. Using our diversity optimization approach we have shown that the
easy and hard instances obtained by our approach covers a much wider range in
the feature space than previous methods. The diversity optimization approach
provides instances which are diverse with respect to the investigated features.
The proposed population diversity measurements provide good evaluation of the
diverse over single or multiple feature values. Our experimental investigations
for 2-OPT and TSP have shown that our large set of diverse instances can be
classified quite well into easy and hard instances when considering a suitable
combination of multiple features which provide some guidance for predication as
the next step. In particular, the SVM classification model built with the diverse
instances that can classify TSP instances based on problem hardness provides
a strong basis for future performance prediction models that lead to automatic
algorithm selection and configuration. Building such models would require fur-
ther experimentation to determine the minimal set of strong features that can
predict performance accurately.
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Abstract. Inspired by natural evolution’s affinity for discovering a wide
variety of successful organisms, a new evolutionary search paradigm
has emerged wherein the goal is not to find the single best solution
but rather to collect a diversity of unique phenotypes where each vari-
ant is as good as it can be. These quality diversity (QD) algorithms
therefore must explore multiple promising niches simultaneously. A QD
algorithm’s diversity component, formalized by specifying a behavior
characterization (BC), not only generates diversity but also promotes
quality by helping to overcome deception in the fitness landscape. How-
ever, some BCs (particularly those that are unaligned with the notion of
quality) do not adequately mitigate deception, rendering QD algorithms
unable to discover the best-performing solutions on difficult problems.
This paper introduces a solution that enables QD algorithms to pursue
arbitrary notions of diversity without compromising their ability to solve
hard problems: driving search with multiple BCs simultaneously.

Keywords: Novelty search · Non-objective search · Quality diversity ·
Behavioral diversity · Neuroevolution

1 Introduction

Evolutionary computation (EC) has developed increasingly sophisticated search
algorithms around the idea that increasing fitness is a powerful mechanism for
optimization [2]. However, natural evolution is more than an optimizer. Unlike
conventional optimization, nature has no single unifying target and often rewards
being different in addition to being better. Indeed, natural evolution has discov-
ered a vast diversity of organisms and ways of being, simultaneously solving an
uncountable and ever-changing array of problems from sight to ambulation to
cognition, not by finding a single “best” solution to each but instead by collecting
a breadth of viable alternatives.

In a step away from EC’s longstanding fixation on fitness for the purpose
of optimization, a new algorithm called novelty search (NS) [8] was introduced,
which searches only for diversity and is notably free from objective pressure.
Ironically, novelty search and its variants [4,13] were initially heralded themselves
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as powerful tools for optimization because their agnosticism to the objective
sometimes allows them to bypass the problem of deception and thus succeed on
tasks where traditional objective-based approaches fail. However, NS’s ability to
collect a wide breadth of phenotypes is largely unappreciated when applied as
an optimization algorithm: any accumulated diversity in such an application is
eventually discarded in favor of saving only the best-performing individual.

Taking NS in a different direction, a unique search paradigm has begun to
emerge within EC wherein diversity itself is a desirable end product. New algo-
rithms such as Novelty Search with Local Competition (NSLC) [9] and MAP-
Elites [12] stand apart from the usual focus on optimization in that rather than
simply trying to find the single best individual (or tradeoffs among a set of objec-
tive targets [3]), these algorithms are instead designed to find quality diversity –
a maximally diverse collection of individuals in which each member is as high-
performing as possible. For example, one classic application of QD is to collect
as many successful ambulating virtual creature morphologies as possible [9,18].
QD is distinct from other approaches designed to return multiple results (such
as those that seek to return a handful of local optima) in that all parts of the
diversity space are considered equally important and the goal is to sample the
entire space, returning the best possible performance in each region (even lower-
performing regions). Compared to simple optimization, QD represents a new
style of search that more closely embodies the spirit of natural evolution and
for which evolutionary treatments are uniquely well-suited due to their natural
inclination for exploring many promising directions at the same time.

Applying QD algorithms such as NSLC or MAP-Elites requires both a notion
of quality (a fitness function) and a notion of diversity, called the behavior char-
acterization (BC), which defines the degree of difference between two individu-
als. So far, applications of QD have largely featured characterizations that are
unaligned with quality, which means that where an individual is located in the
diversity space has little bearing on its potential performance; examples include
the time individual legs of a hexapod robot spend on the ground [1], the spe-
cific image class targeted by a generated image [14,15], and the size and shape
of ambulating stick-figure creatures [18]. We can see that this focus on charac-
terizations that are orthogonal to quality is natural by examining our intuitive
sense of QD in nature. Indeed, Earth has accumulated a diverse repertoire of
organisms with respect to intuitive characterizations such as size, appearance,
or locomotion strategy, but those characterizations themselves are not good pre-
dictors of a particular organism’s reproductive capacity or cognitive function
(intuitive measures of quality). In effect, the types of diversity that we consider
to be interesting or salient are often unaligned with our notions of quality.

This observation is interesting because a recent study comparing state-of-
the-art QD algorithms in a relatively easy maze domain called the “QD-Maze”
(inspired by the “HardMaze” domain [8] that has become ubiquitous in studies
involving NS) indicates that the degree of characterization-quality alignment has
a significant impact on performance and furthermore suggests that unaligned
characterizations may be sub-optimal for driving search [16]. If this hypothesis
is true, then typical approaches to QD may break down on harder problems.
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The goal of this paper is to specifically address the challenge of finding
“unaligned QD” in the context of a difficult maze domain (such that finding
solutions is non-trivial even for the most sophisticated approaches). Experimen-
tal evidence in this domain confirms that driving search with an unaligned BC
indeed has catastrophic effects on the ability of QD algorithms to successfully
collect QD. As a solution, this paper introduces the idea of driving search with
multiple BCs simultaneously. The success of this new approach offers a promising
strategy for applying QD algorithms even when there is an incongruity between
the desired notion of diversity and the ideal characterization for driving search,
thus opening the door to a wider breadth of potential domains in the future.

2 Domain: QD-Gauntlet

Because the QD-Maze domain of Pugh et al. [16] is relatively easy, its results
in effect speak to search spaces with a variety of relatively simple solutions. Yet
many spaces of interest in the future will likely require a significant degree of
complexity to find the interesting needles in the haystack. Earth itself has this
quality, where there are innumerable different species, yet each is highly complex
in its own right. Thus the new QD-Gauntlet domain in this paper builds on
the old QD-Maze by greatly increasing the complexity of the possible paths to
solutions, but still providing the opportunity for variety among those paths. In
particular, like the QD-Maze [16], the QD-Gauntlet is a maze domain featuring
an egocentric robot with multiple viable paths to the goal. An egocentric maze
is an appealing platform for studying QD algorithms because the results are
easily visualized and egocentric mazes are well-studied in the context of novelty
search, where results originally obtained on HardMaze [8] have been shown to
generalize to a variety of other domains such as quadruped locomotion [11],
game content generation [10], swarm robotics [4], and image classification [19].
Furthermore, while the Euclidean distance to the goal heuristic that traditionally
drives search in maze domains is known to be deceptive (which is the primary
source of difficulty), in this domain we can also compute the perfect solution
paths, enabling concrete measurements of the progress towards solving the maze.

The new maze, QD-Gauntlet (Fig. 1), is significantly more complex than its
predecessors. In QD-Gauntlet, there are four distinct corridors leading horizon-
tally to a goal point on the right side of the maze. Each corridor (i.e. leg) of the
maze is composed of four successive segments, where each segment is designed to
be approximately equivalent to the size and complexity of the canonical Hard-
Maze [8]. To ensure that the four legs are similarly difficult, the legs are near
mirror images of each other with slight variations. Importantly, QD-Gauntlet
contains several long, straight corridors that terminate in a dead-end close to
the goal. These dead-end corridors serve to increase maze difficulty by deceiving
quality-seeking (i.e. fitness-based) search mechanisms. To further increase maze
difficulty, agents are given strict time constraints such that deviating too far
from one of the optimal paths will cause the agent to run out of time before
reaching the goal.
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Fig. 1. QD-Gauntlet. An egocentric agent begins on the start point (left) and is
presented with four viable paths to reach the goal point (right). The maze is riddled
with dead-ends that serve to deceive objective-oriented search algorithms.

As in Lehman and Stanley [8], agents are driven by evolved neural networks
and are equipped with a set of six wall-sensing rangefinders (five spanning the
frontal 180 degrees and one facing the rear), four pie-slice sensors to sense the
distance and relative direction of the goal point, and a single output to specify
left-right turns. The challenge then is not to evolve a path, but rather to evolve
a neural network that can correctly guide the agent through one of the long and
deceptive corridors based on its sensory inputs. Furthermore, the hope is that
QD algorithms can find multiple such solutions in the same run, corresponding
to a variety of different driving strategies. Doing so would be a proxy for finding
QD in any domain whose solutions are challenging and deceptive to reach.

3 Algorithms

This section describes the algorithms considered in this study, focusing first on
variants of novelty search from the literature. Then, two additional algorithms
are introduced to address the problem of finding QD when the desired notion
of diversity is not aligned with quality. The hope is that the results from this
study will also provide guidance for other QD algorithms in the future, such as
MAP-Elites [1,12].

Fitness. Included as a baseline to establish domain difficulty, a purely fitness-
based search is implemented as standard generational NEAT [17] with a
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population size of 500, where fitness is the deceptive Euclidean distance to the
goal heuristic (which also drives the quality portion of the QD algorithms that
follow).

With the exception of Fitness, all of the other algorithms in this paper are
implemented as steady state (only a small portion of the population is replaced
at a time to avoid radical shifts in what is considered “novel” from one tick to
the next: genomes are replaced in batches of 32 to allow moderate parallelism).

NS. While not technically a “quality diversity” algorithm because there is no
quality component, the novelty search (NS) [8] algorithm forms the foundation
of a number of other algorithms in this study and serves as another baseline for
comparison, establishing what is possible without a drive towards quality. Nov-
elty search works by rewarding novelty instead of fitness, where novelty measures
how different an individual’s behavior is from those that have been seen before.
More formally, novelty is calculated by summing the distance to the k-nearest
behaviors (in this paper, k = 20) from a set composed of the current population
and an archive of past behaviors. The distance between two behaviors is simply
the Euclidean distance between those behaviors when represented as a vector of
numbers (called a behavior characterization). While there exist several different
strategies for managing the archive [5], preliminary experiments indicated that
a powerful strategy is to add all individuals to an archive with a maximum size
that is enforced by deleting those with the lowest novelty (novelty is recomputed
against the archive before each deletion). In all cases, NS is run with a population
size of 500 and a maximum archive size of 2,500.

NSLC. Novelty search with local competition (NSLC) [9] combines the diversify-
ing pressure of NS with a localized drive towards quality called local competition
(LC), calculated as the proportion of 20 nearest behavioral neighbors with a
lower fitness score. LC encourages increasing performance within local behav-
ioral neighborhoods without suffering the deleterious effects of a global objective
pressure. Novelty and LC are combined by Pareto ranking as in the NSGA-II
multi-objective optimization algorithm [3].

3.1 Multi-BC QD Algorithms

In each of NS and NSLC, search is driven by some notion of behavioral diversity
(i.e. a BC). Traditionally, the BC that drives search corresponds to the type
of diversity that the researcher is interested in collecting (e.g. different types of
robot morphologies or different walking gaits) and thus is typically unaligned
with the notion of quality. Unaligned BCs are less capable of overcoming decep-
tion [7,16] and on difficult tasks (such as QD-Gauntlet) may altogether fail to
obtain high-performing solutions, creating a problem for researchers interested
in finding unaligned QD. As a solution, we introduce the idea here of driving
search with multiple BCs simultaneously and propose two possible methods for
doing so. While each method can conceivably support three or more BCs, for
simplicity the experiments that follow are restricted to only two BCs.
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NS-NS. The basic NS algorithm can be extended to support multiple BCs
simultaneously by combining their respective novelty scores in a multi-objective
formulation (with NSGA-II [3]). In this algorithm, dubbed NS-NS, each BC
maintains its own independent archive and individuals are evaluated against
each archive in turn to calculate one novelty score per BC. There is only a single
breeding population where the breeding potential for each member is decided
by Pareto ranking according to novelty scores. The key idea is that in a two-BC
formulation, one BC may be ideal for driving search while the other corresponds
to the type of diversity the user is interested in collecting.

NS-NSLC. While NS-NS facilitates searching with multiple concepts of diver-
sity, it lacks the explicit drive towards quality that is essential to QD algorithms.
This omission is remedied in NS-NSLC by adding a local competition objective
(in the same way as in NSLC) where behavioral neighbors are decided by the
(unaligned) BC that corresponds to the user’s desired notion of diversity.

4 Experiment

As discussed in Sect. 3, a common component of all QD algorithms is the BC,
which formalizes the notion of diversity so that it can drive the search explicitly.
In domains where there is really only one desired objective behavior, the BC
serves only to drive search towards better solutions and thus a strongly-aligned
BC is most appropriate (e.g. NS quickly solves the difficult HardMaze domain [8]
because it circumvents the problem of deception by pursuing novel endpoints).
However, when diversity itself is a desirable product of search, researchers must
choose a BC that expresses the type of diversity they want to collect; often
this choice results in a BC that is not well-aligned with the notion of quality,
which recent research suggests may not be optimal for driving search towards
better solutions [7,16]. To investigate how the performance gap between aligned
and unaligned BCs extends to hard problems, this paper compares the strongly-
aligned EndpointBC from Lehman and Stanley [8] and the unaligned Direc-
tionBC from Pugh et al. [16] on the much more challenging QD-Gauntlet (Fig. 1).
However, congruent with the common practice of searching for unaligned QD,
in this paper QD is always collected with respect to DirectionBC.

EndpointBC simply characterizes agent behavior by its (x, y) location at the
end of its trial. This strongly-aligned BC is a powerful way to drive search on
maze domains because it explores progressively more remote locations until the
goal point is found. On the other end of the alignment spectrum, DirectionBC
characterizes how the agent drives instead of where. DirectionBC consists of five
values indicating whether the agent was most frequently facing north (0.125),
east (0.375), south (0.625), or west (0.875) during each fifth of its trial. When
driving search with this unaligned BC, it is possible to exhaust the entire behav-
ior space without ever discovering high-performing solutions.

Each of the algorithms from Sect. 3 is implemented with each of Direc-
tionBC and EndpointBC for a total of seven treatments: Fitness, NSd, NSe,
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NSLCd, NSLCe, NSeNSd, and NSeNSLCd. Each treatment is run 20 times on
QD-Gauntlet, each for 1,000,000 evaluations (by which time all treatments reach
a performance plateau). Networks are evolved with a modified version of Sharp-
NEAT 1.0 [6] with mutation parameters validated by Pugh et al. [16]: 60 %
mutate connection, 10 % add connection, 0.5 % add neuron. Networks are feed-
forward and restricted to asexual reproduction; other settings follow SharpNEAT
1.0 defaults.

The performance of each treatment is evaluated according to the QD-score
metric introduced by Pugh et al. [16] (and similar to the “global reliability”
metric in Mouret and Clune [12]). Over the course of a run, a collection of indi-
viduals called the “QD grid” is gathered: the QD grid is managed such that each
behavioral bin remembers the highest quality individual seen so far. While these
bins are reminiscent of the bins in a MAP-Elites grid, the QD grid is completely
external to the breeding population and thus does not interfere with or influence
evolution. The QD-score is calculated as the total quality across all filled bins
within the QD grid and reflects both how many distinct behaviors have been dis-
covered and how good those behaviors are. Regardless of the BC driving search,
QD-score for this study is always calculated with respect to DirectionBC (i.e.
the QD grid represents a collection of different ways of driving). Consequently,
the EndpointBC-driven treatments in effect test whether QD with respect to one
BC can be achieved passively by driving search with another BC altogether.

While fitness for algorithms in this paper is the Euclidean distance to the
goal, this heuristic is deceptive and does not accurately characterize how close
collected behaviors are to actually solving the maze. Thus, for the purposes of
evaluation, quality for individuals within the QD grid is instead represented by
a progress score that respects that agents cannot drive through walls. Progress is
defined as inversely proportional to the length of the shortest valid path between
the agent’s final location and the goal point of the maze. Importantly, this mea-
sure of quality (which draws a perfect, non-deceptive gradient over the drivable
area of the maze) is not available to drive search and is only used for assessment.

5 Results

Figure 2 depicts the final QD-score (averaged over 20 runs) for each treatment
after 1,000,000 evaluations. Unsurprisingly, Fitness performs significantly worse1

than all other treatments (p < 0.001), underscoring the importance of special-
ized approaches to QD from outside the realm of conventional optimization.
Notably, treatments driven by DirectionBC perform significantly worse than the
EndpointBC and multi-BC treatments (p < 0.001), even though EndpointBC
has nothing to do with the type of diversity being collected. Explaining this
disparity, DirectionBC treatments fail to find even a single solution across all 40
runs, while each of the EndpointBC and multi-BC treatments consistently find
multiple maze solutions per run – thus DirectionBC’s low performance represents
an inability to overcome deception in the QD-Gauntlet.
1 Statistical significance is determined by an unpaired two-tailed Student’s t-test.
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Fig. 2. Final QD-score. The final QD-score achieved by each treatment is shown
(averaged over 20 runs). Error bars represent standard error. Bars are color-coded
according to which BC drives search: DirectionBC-driven treatments (subscript d) are
drawn in green, EndpointBC-driven (subscript e) in red, and multi-BC in blue. (Color
figure online)

Among the best surveyed approaches, NSeNSLCd and NSLCe are not signif-
icantly different after the full 1,000,000 evaluations (p = 0.163). However, End-
pointBC and multi-BC approaches demonstrate fundamentally different trends
of QD-score over time (not shown): while multi-BC increases rapidly to an early
plateau, EndpointBC takes much longer to reach similarly high scores. Corre-
spondingly, NS eNSLCd scores significantly better than NSLCe (p < 0.05) until
224,000 evaluations, after which point NSLCe catches up.

6 Discussion and Conclusion

The QD-Gauntlet task, like the HardMaze [8] before it, contains a pronounced
level of deception wherein the natural “Euclidean distance to the goal” fitness
function does not always point the way to the goal but rather often leads search
into an evolutionary dead end. In this task, as in any domain where deception is
sufficiently present, strictly following the compass of increasing fitness (as in the
Fitness treatment in this paper) is doomed to fail. While the idea of pursuing
behavioral diversity instead of objective fitness (as in novelty search) is often
recognized as a powerful way to confront such problems, it is clear that to be
effective behavioral diversity cannot be applied naively.

Such a naive application of behavioral diversity lies in DirectionBC. Because
it is unaligned with the concept of quality (driving closer to the goal), diver-
sity with respect to DirectionBC can be achieved without making any progress
towards conquering the problem of deception. Indeed, in the QD-Gauntlet, Direc-
tionBC alone is incapable of unlocking the best-performing parts of the search
space. Even if QD algorithms driven by such a BC succeed in generating a collec-
tion of locally optimal niches, if the best-performing behaviors cannot be found
then the system is only operating at a fraction of its potential.
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Experimental evidence on the QD-Gauntlet supports the idea that achieving
QD with respect to quality-unaligned BCs in the traditional way is problematic:
surprisingly, more QD is found with respect to DirectionBC by driving search
with a completely different BC (EndpointBC – which is known to excel at solv-
ing maze tasks) than when search is driven by DirectionBC itself (Fig. 2). This
result suggests that the ability of a BC to overcome deception can be just as
instrumental in the search for QD as actually searching for diversity.

To allow QD algorithms to effectively bypass the problem of deception with-
out sacrificing the desired notion of diversity, this paper introduces the idea of
multi-BC QD algorithms that drive search with more than one BC at the same
time: one that targets diversity and another that is better suited to driving
search. Of the multi-BC variants surveyed, the best performance is achieved by
NSeNSLCd, which is on par with NSLCe for achieving the highest QD-score on
the QD-Gauntlet (Fig. 2). Although EndpointBC alone in NSLCe succeeds in
collecting diversity with respect to DirectionBC in this study, it would be naive
to assume that collecting diversity with respect to one BC can always succeed at
covering diversity in arbitrary unrelated characterization spaces. Therefore, while
NSLC with an aligned BC emerges highly successful in this study, for researchers
aiming for long-term collection of unaligned QD, the multi-BC formulations offer
an attractive alternative that allows explicitly searching for both unaligned and
aligned diversity while potentially losing no significant performance.

While this paper has focused on QD variants of NS, in particular centered on
NSLC, an interesting future direction will be to validate the advantage of mul-
tiple BCs on other QD algorithms such as MAP-Elites. In MAP-Elites, multiple
BCs are possible because each BC can in principle control a separate grid, and
all the grids can be run at the same time. In this way, it is possible to apply
lessons from experiments here to a broad range of future QD algorithms.

Overall, this study reveals that the currently-accepted practice within QD of
exclusively driving search with the desired notion of diversity (BC) can break
down on hard problems and that an effective solution is to drive search with mul-
tiple BCs simultaneously. The insights gained here therefore expand the reach of
quality diversity to more difficult problems and to arbitrary notions of diversity,
bringing evolutionary computation one step closer to emulating the inventive
power of natural evolution.
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Abstract. Population diversity is essential for avoiding premature con-
vergence in Genetic Algorithms (GAs) and for the effective use of
crossover. Yet the dynamics of how diversity emerges in populations are
not well understood. We use rigorous runtime analysis to gain insight into
population dynamics and GA performance for a standard (μ+1) GA and
the Jumpk test function. By studying the stochastic process underlying
the size of the largest collection of identical genotypes we show that the
interplay of crossover followed by mutation may serve as a catalyst lead-
ing to a sudden burst of diversity. This leads to improvements of the
expected optimisation time of order Ω(n/ log n) compared to mutation-
only algorithms like the (1+1) EA.

Keywords: Genetic algorithms · Crossover · Diversity · Runtime
analysis · Theory

1 Introduction

Genetic Algorithms (GAs) are powerful general-purpose optimisers that perform
surprisingly well in many applications. Their wide-spread success is based on a
number of factors: using populations to diversify search, using mutation to gen-
erate novel solutions, and using crossover to combine features of good solutions.
Crossover can combine building blocks of good solutions, and help to focus search
on bits where parents disagree. For both tasks the population needs to be diverse
enough for crossover to be effective. A common problem in the application of
GAs is the loss of diversity when the population converges to copies of the same
search point, often called “premature convergence”.

Understanding population diversity and crossover has proved elusive. The
first example function where crossover was proven to be beneficial is called
Jumpk. In this problem, GAs have to overcome a fitness valley such that all
local optima have Hamming distance k to the global optimum. Jansen and
Wegener [7] showed that, while mutation-only algorithms such as the (1+1) EA
c© Springer International Publishing AG 2016
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require expected time Θ(nk), a simple (μ+1) GA with crossover only needs time
O(μn2k3+4k/pc) where pc is the crossover probability. This time is O(4k/pc) for
large k, and hence significantly faster than mutation-only GAs. However, their
analysis requires an unrealistically small crossover probability pc ≤ 1/(ckn) for
a large constant c > 0. Hence the analysis does not reflect the typical behaviour
in GA populations with constant crossover probabilities pc = Θ(1) as used in
practice. Kötzing et al. [8] later refined these results towards a crossover prob-
ability pc ≤ k/n, which is still unrealistically small. Both approaches focus on
creating diversity through a sequence of lucky mutations, relying on crossover to
create the optimum once sufficient diversity has been created. Their arguments
break down if crossover is applied frequently.

Here we provide a novel approach to show that diversity can also be created
by frequent applications of crossover followed by mutation. For the maximum
crossover probability pc = 1 we prove that on Jumpk diversity emerges natu-
rally in a population: the interplay of crossover, followed by mutation, can serve
as a catalyst for creating a diverse range of search points out of few different
individuals. This allows to prove a speedup of order n/ log n for k ≥ 3 compared
to mutation-only algorithms such as the (1+1) EA. Both operators are vital:
mutation alone requires Θ(nk) expected iterations to hit the optimum from a
local optimum. As shown in [8, Theorem 8] using only crossover with pc = Ω(1)
but no mutation, diversity reduces quickly, leading to inefficient runtimes for
small population sizes (μ = O(log n)).

After defining the algorithm, the (μ+1) GA from [7], and the Jumpk function
in Sect. 2, we elaborate on the population dynamics in Sect. 3, preparing the
ground for the following runtime result. For the standard mutation rate, we
show in Sect. 4 that the (μ+1) GA with pc = 1, μ = O(n), k = O(1) optimises
Jumpk in expected time O

(
μn log(μ) + nk/μ + nk−1 log(μ)

)
. Compared to the

expected time Θ(nk) for the (1+1) EA this corresponds to a speedup of order
n/ log n for k ≥ 3 and

√
n/ log n for k = 2, for the best possible choice of μ.

2 Preliminaries

The Jumpk : {0, 1}n → N class of pseudo-Boolean fitness functions was origi-
nally introduced by Jansen and Wegener [7]. The function value increases with
the number of 1-bits in the bitstring until a plateau of local optima is reached
consisting of all points with n − k 1-bits. However, its only global optimum is
the all-ones string 1n. Between the plateau and the global optimum there is a
gap of Hamming distance k which has to be “jumped over” for the function to
be optimised. The function is formally defined as

Jumpk(x) =

{
k + |x|1 if |x|1 = n or |x|1 ≤ n − k,

n − |x|1 otherwise,

where |x|1 =
∑n

i=1 xi is the number of 1-bits in x.
We will analyse the performance of a standard steady-state (μ+1) GA [7]

with pc = 1 using at each step uniform crossover (i.e., each bit of the offspring is
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Algorithm 1. (μ+1) GA with pc = 1
P ← μ individuals, uniformly at random from {0, 1}n;1

while 1n /∈ P do2

Choose x, y ∈ P uniformly at random;3

z ← mutate(crossover(x, y));4

P ← P ∪ {z};5

Remove one element from P with lowest fitness, breaking ties u.a.r.;6

chosen uniformly at random from one of the parents) and standard bit mutation
(i.e., each bit is flipped with probability pm = χ/n = Θ(1/n)). Algorithm 1
shows the pseudo code for the (μ+1) GA, tailored to pc = 1.

3 Population Dynamics

The following lemma gives a on bound the expected time for the whole popu-
lation to reach the plateau. It is proved using level-based arguments, similar to
those in [3]. The proof is omitted due to space restrictions.

Lemma 1. The expected time until the entire population of (μ+1) GA with
pm = Θ(1/n) reaches the plateau of Jumpk for k = O(1) (or the optimum has
been found) is O(nμ log μ + n log n).

In the remainder of the analysis we study the algorithm’s behaviour once all
individuals are on the plateau. Previous observations of simulations have revealed
the following behaviour. Assume the algorithm has reached a population where
all individuals are identical. We refer to identical individuals as a species, hence
in this case there is only one species. Eventually, a mutation will create a different
search point on the plateau, leading to the creation of a new species. Both species
may shrink or grow in size, and there is a chance that the new species disappears
and we go back to one species only.

However the existence of two species also serves as a catalyst for creating fur-
ther species in the following sense. Say two parents 0001111111 and 0010111111
are recombined, then crossover has a good chance of creating an individual with
n − k + 1 1s, e.g. 0011111111. Then mutation has a constant probability of flip-
ping any of the n − k − 1 unrelated 1-bits to 0, leading to a new species, e.g.
0011111011. This may lead to a sudden burst of diversity in the population.

Due to the ability to create new species, the size of the largest cluster performs
an almost fair random walk. Once its size has decreased significantly from its
maximum μ, there is a good chance for recombining two parents from different
species. This helps in finding the global optimum as crossover can increase the
number of 1s in the offspring, compared to its parents, such that fewer bits
need to be flipped by mutation to reach the optimum. This is formalised in the
following lemma.
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Lemma 2. The probability that the global optimum is constructed by a uniform
crossover of two parents on the plateau with Hamming distance 2d, followed by
mutation (pm = χ/n), is

2d∑

i=0

(
2d

i

)
1

22d

(χ

n

)k+d−i (
1 − χ

n

)n−k−d+i

≥ 1
22d

(χ

n

)k−d (
1 − χ

n

)n−k+d

(1)

Proof. For a pair of search points on the plateau with Hamming distance 2d,
both parents have d ones among the 2d bits that differ between parents, and
n − k − d 1s outside this area. Assume that crossover sets i out of these 2d bits
to 1, which happens with probability

(
2d
i

) · 2−2d. Then mutation needs to flip
the remaining k + d − i 0s to 1. The probability that such a pair creates the
optimum is hence

2d∑

i=0

(
2d

i

)
1

22d

(χ

n

)k+d−i (
1 − χ

n

)n−k−d+i

.

The second bound is obtained by ignoring summands i < 2d for the sum. ��
Note that even a Hamming distance of 2, i.e. d = 1, leads to a probability of
Ω(n−k+1), provided that such parents are selected for reproduction. The proba-
bility is by a factor of n larger than the probability Θ(n−k) of mutation without
crossover reaching the optimum from the plateau. We will show that this effect
leads to a speedup of nearly n for the (μ+1) GA, compared to the expected time
of Θ(nk) for the (1+1) EA [5] and other EAs only using mutation.

The idea behind the analysis is to investigate the random walk underlying the
size of the largest species. We bound the expected time for this size to decrease
to μ/2, and then argue that the (μ+1) GA is likely to spend a good amount
of time with a population of good diversity, where the probability of creating
the optimum in every generation is Ω(n−k+1) due to the chance of recombining
parents of Hamming distance at least 2.

In the following we refer to Y (t) as the size of the largest species in the
population at time t. Define

p+(y) := Pr (Y (t + 1) − Y (t) = 1 | Y (t) = y) ,

p−(y) := Pr (Y (t + 1) − Y (t) = −1 | Y (t) = y) ,

i.e., p+(y) is the probability that the size of the largest species increases from y
to y + 1, and p−(y) is the probability that it decreases from y to y − 1.

The following lemma gives bounds on these transition probabilities, unless
two parents of Hamming distance larger than 2 are selected for recombination
(this case will be treated later in Lemma 4). We formulate the lemma for arbi-
trary mutation rates χ/n = Θ(1/n) and restrict our attention to sizes Y (t) ≥ μ/2
as we are only interested in the expected time for the size to decrease to μ/2.
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Lemma 3. For every population on the plateau of Jumpk for k = O(1) the
following holds. Either the (μ+1) GA with mutation rate χ/n = Θ(1/n) per-
forms a crossover of two parents whose Hamming distance is larger than 2, or
the size Y (t) of the largest species changes according to transition probabilities
p−(μ) = Ω(1/n) and, for μ/2 ≤ y < μ,

p+(y) ≤ y(μ − y)(μ + y)
2μ2(μ + 1)

(
1 − χ

n

)n

+ O
(

(μ − y)2

μ2n

)
,

p−(y) ≥ y(μ − y)(μ + χy)
2μ2(μ + 1)

(
1 − χ

n

)n

− O
(

μ − y

μn

)
.

Proof. We call an individual belonging to the current largest species a y-
individual and all the others non-y individuals. In each generation, there is
either no change, or one individual is added to the population and one indi-
vidual chosen uniformly at random is removed from the population. In order to
increase the number of y-individuals, it is necessary that a y-individual is added
to the population, and a non-y individual is removed from the population. Anal-
ogously, in order to decrease the number of y-individuals, it is necessary that a
non-y individual is added to the population, and a y-individual is removed from
the population.

Given that Y (t) = y, let p(y) be the probability that a y-individual is created
at time t + 1, and q(y) the probability that a non-y individual is created.

We now estimate an upper bound on p(y). We may assume that the Hamming
distance between parents is at most 2 as otherwise there is nothing to prove.
A y-individual can be created in the following three ways:

– Two y-individuals are selected. Crossing over two y-individuals produces
another y-individual, which survives mutation if no bits are flipped, i.e., with
probability (1 − χ/n)n.

– One y-individual and one non-y individual are selected. The crossover operator
produces a y-individual with probability 1/4 and mutation does not flip any
bits with probability (1 − χ/n)n. If the crossover operator does not produce a
y-individual, then to produce a y-individual at least one specific bit-position
must be mutated, which occurs with probability O(1/n). The overall proba-
bility is hence (1/4)(1 − χ/n)n + O(1/n).

– Two non-y individuals are selected. These two individuals are either identical
or have Hamming distance 2 (i.e., by assumption). In the first case they both
have one of the k 0-bit positions of a y-individual set to 1. In the second case
they either both have one of the k 0-bit positions of a y-individual set to 1 or
they both have one of the n−k 1-bit positions set to 0. In both cases, crossover
cannot change the value of such bit. Thus, at least one specific bit-position
must be flipped, which occurs with probability O(1/n).
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Taking into account the probabilities of the three selection events above, the
probability of producing a y-individual is

p(y) =
(

y

μ

)2 (
1 − χ

n

)n

+ 2
(

y

μ

) (
1 − y

μ

)[(
1
4

) (
1 − χ

n

)n

+ O

(
1
n

)]

+
(μ − y)2

μ2
O

(
1
n

)

=
(
1 − χ

n

)n
(

y

μ

)(
y

μ
+

μ − y

2μ

)
+ O

(
y(μ − y)

μ2
· 1
n

)
+ O

(
(μ − y)2

μ2
· 1
n

)

=
y(μ + y)

2μ2

(
1 − χ

n

)n

+ O

(
μ(μ − y)

μ2
· 1
n

)

We then estimate a lower bound on q(y). In the case where y = μ, a non-y
individual can be added to the population if:

– two y-individuals are selected, and the mutation operator flips one of the k
0-bits and one of the n − k 1-bits. This event occurs with probability q(μ) =
k(n − k)

(
χ
n

)2 (
1 − χ

n

)n−2 = Ω(1/n), where we used that k = O(1).

In the other case where y < μ, then a non-y individual can be added to the
population in the following two ways:

– A y-individual and a non-y individual are selected. Crossover produces a copy
of the non-y individual with probability 1/4, which is unchanged by muta-
tion with probability (1 − χ/n)n. Or with probability 1/4, crossover produces
an individual with k − 1 0-bits. Mutation then creates a non y-individual by
flipping a single of the n − k 1-bit positions. This event occurs with probabil-
ity (1/4)(n − k)

(
χ
n

) (
1 − χ

n

)n−1 ≥ (χ/4)
(
1 − χ

n

)n − O(1/n) using again that
k = O(1).

– Two non y-individuals are selected. In the worst case, the selected individu-
als are different, hence crossover produces an individual on the plateau with
probability at least 1/2, which mutation does not destroy with probability
(1 − χ/n)n.

Assuming that μ/2 ≤ y < μ and n is sufficiently large, the probability of adding
a non-y individual is

q(y) ≥ 2

(
y

μ

)(

1 − y

μ

)[(
χ + 1

4

)(
1 − χ

n

)n
− O

(
1

n

)]

+
1

2

(

1 − y

μ

)2 (
1 − χ

n

)n

=
(μ − y)(μ + χy)

2μ2

(
1 − χ

n

)n
− O

(
μ − y

μ
· 1

n

)

.
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Multiplying p(y) and q(y) by the respective survival probabilities, we get

p−(y) ≥
[
(μ − y)(μ + χy)

2μ2

(
1 − χ

n

)n

− O

(
μ − y

μ
· 1
n

)] (
y

μ + 1

)

=
(μ − y)(μ + χy)y

2μ2(μ + 1)

(
1 − χ

n

)n

− O

(
(μ − y)

μ
· 1
n

)
.

p+(y) =
[
y(μ + y)

2μ2

(
1 − χ

n

)n

+ O

(
y(μ − y)

μ2
· 1
n

)] (
μ − y

μ + 1

)

=
(μ2 − y2)y
2μ2(μ + 1)

(
1 − χ

n

)n

+ O

(
(μ − y)2

μ2
· 1
n

)
.

Both equalities hold for values of y between μ/2 and μ. ��
Steps where crossover recombines two parents with larger Hamming distance

were excluded from Lemma 3 as they require different arguments. The following
lemma shows that conditional transition probabilities in this case are favourable
in that the size of the largest species is more likely to decrease than to increase.

Lemma 4. Assume that y ≥ μ/2 and the (μ+1) GA on Jumpk with k = O(1)
and mutation rate χ/n = Θ(1/n) selects two individuals on the plateau with
Hamming distance larger than 2, then for conditional transition probabilities
p∗

−(y) and p∗
+(y) for decreasing or increasing the size of the largest species,

p∗
−(y) ≥ 2p∗

+(y).

Proof. Assume that the population contains two individuals x and z with
Hamming distance 2� ≤ 2k, where � ≥ 2. Without loss of generality, let us
assume that they differ in the first 2� bit positions.

In the case that the majority individual y has � 0-bits in the first 2� positions,
then a y-individual may be produced by creating the � 0-bits and � 1-bits in the
exact positions by crossover and no mutation should occur. Alternatively, at least
one exact bit has to be flipped by mutation. Then, the probability of producing
a y-individual from x and z, and replacing a non y-individual with y is less than

p∗
+(y) ≤

[(
1
2

)2� (
1 − χ

n

)n

+ O

(
1
n

)] (
μ − y

μ + 1

)

On the other hand, the probability of producing an individual on the plateau
different from y, and replacing a y-individual is at least (for sufficiently large n)

p∗
−(y) ≥

((
2�

�

)
− 1

) (
1
2

)2� (
1 − χ

n

)n
(

y

μ + 1

)
> 2p∗

+(y).

In the other case, assume that the majority individual y does not have �
0-bits in the first 2� bit-positions. Then the mutation operator must flip at least
one specific bit among the last n − 2� positions to produce y, which occurs with
probability O(1/n), while the probability to produce a non y-individual on the
plateau is still Ω(1). ��
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4 Standard Mutation Rate

In this section we state the main result. Herein we consider pm = 1/n.

Theorem 1. The expected optimisation time of the (μ+1) GA with pc = 1,
pm = 1/n and μ ≤ κn, for some constant κ > 0, on Jumpk, k = O(1), is
O(μn log(μ) + nk/μ + nk−1 log(μ)).

For k ≥ 3 the best speedup compared to the expected time of Θ(nk) for the
(1+1) EA [5] and other EAs only using mutation is of order Ω(n/ log n) for μ =
κn. For k = 2 the best speedup is of order Ω(

√
n/ log n) for μ = Θ(

√
n/ log n).

Note that for mutation rate 1/n, the dominant terms in Lemma 3 are equal,
hence the size of the largest species performs a fair random walk, up to a bias
resulting from small-order terms. This confirms our intuition from observing
simulations. The following lemma formalises this fact: in steps where the size
Y (t) of the largest species changes, it performs an almost fair random walk.

Lemma 5. For the random walk induced by the size of the largest species, con-
ditional on the current size y changing, for μ/2 < y < μ, the probability of
increasing y is at most 1/2 + O(1/n) and the probability of decreasing it is at
least 1/2 − O(1/n).

We use these transition probabilities to bound the expected time for the
random walk to hit μ/2.

Lemma 6. Consider the random walk of Y (t), starting in state X0 ≥ μ/2.
Let T be the first hitting time of state μ/2. If μ = O(n), then E(T | X0) =
O(μn + μ2 log μ) regardless of X0.

Proof. Let Ei abbreviate E(T | X0 = i), then Eμ/2 = 0 and Eμ = O(n) + Eμ−1

as p−(μ) = Ω(1/n) by Lemma 3.
For μ/2 < y < μ the probability of leaving state y is always (regardless of

Hamming distances between species) bounded from below by the probability of
selecting two y-individuals as parents, not flipping any bits during mutation, and
choosing a non-y individual for replacement (cf. Lemma3, Lemma 4):

p+(y) + p−(y) ≥ y2

μ2
·
(

1 − 1
n

)n

· μ − y

μ + 1
≥ μ − y

24μ

as y ≥ μ/2, μ + 1 ≤ 3μ/2 (since μ ≥ 2), and (1 − 1/n)n ≥ 1/4 for n ≥ 2.
Using conditional transition probabilities 1/2 ± δ for δ = O(1/n) according to
Lemma 5, Ei is bounded as Ei ≤ 24μ

μ−i +
(
1
2 − δ

)
Ei−1 +

(
1
2 + δ

)
Ei+1.

This is equivalent to
(
1
2 − δ

) · (Ei − Ei−1) ≤ 24μ
μ−i +

(
1
2 + δ

) · (Ei+1 − Ei).
Introducing Di := Ei − Ei−1, this is equivalent to

Di ≤
24μ
μ−i +

(
1
2 + δ

) · Di+1

1
2 − δ

≤ 50μ

μ − i
+ α · Di+1
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for α := 1+2δ
1−2δ = 1+O(1/n), assuming n is large enough. From Eμ = O(n)+Eμ−1

we get Dμ = O(n), hence an induction yields Di ≤ ∑μ−1
j=i

50μ
μ−j ·αj−i+αμ−i ·O(n).

Combining α = 1 + O(1/n) and 1 + x ≤ ex for all x ∈ R, we have αμ ≤
eO(μ/n) ≤ eO(1) = O(1). Bounding both αj−i and αμ−i in this way, we get

Di ≤ O(n) + O(μ) ·
μ−1∑

j=i

1
μ − j

= O(n + μ log μ)

as the sum is equal to
∑μ−i

j=1 1/j = O(log μ).
Now, Dμ/2+1 + Dμ/2+2 + · · · + Di = (Eμ/2+1 − Eμ/2) + (Eμ/2+2 − Eμ/2+1) +

· · · + (Ei − Ei−1) = Ei − Eμ/2 = Ei. Hence we get Ei =
∑i

k=(μ/2)+1 Dk ≤
O(μn + μ2 log μ). ��

Now we show that, when the largest species has decreased its size to μ/2,
there is a good chance that the optimum will be found within the following
Θ(μ2) generations.

Lemma 7. Consider the (μ+1) GA with pc = 1 on Jumpk. If the largest species
has size at most μ/2 and μ ≤ κn for a sufficiently small constant κ > 0, the
probability that during the next cμ2 generations, for some constant c > 0, the
global optimum is found is Ω

(
1/(1 + nk−1/μ2)

)
.

Proof. We show that during the cμ2 generations the size of the largest species
never rises above (3/4)μ with at least constant probability. Then we calculate
the probability of jumping to the optimum during the phase, given this happens.

Let Xi, 1 ≤ i ≤ cμ2 be random variables indicating the increase in number of
individuals of the largest species at generation i. We pessimistically ignore self-
loops, thus the size of the species either increases or decreases in each generation.
Using the conditional probabilities from Lemma 5, we get that the expected
increase in each step is 1 · (1/2 + O(1/n)) − 1 · (1/2 − O(1/n)) = O(1/n). Then
the expected increase in size of the largest species at the end of the phase is

E(X) =
cμ2
∑

i=1

Xi =
cμ2
∑

i=1

O(1/n) = (c′μ2)/n ≤ c′κμ ≤ (1/8)μ,

where we use that μ ≤ κn and κ is chosen small enough.
By an application of Hoeffding bounds Pr (X ≥ E(X) + λ) ≤ exp(−2λ2/∑

i c2i ) with λ = μ/8 and ci = 2, we get that Pr (X ≥ (2/8)μ) ≤ exp(−c′) =
1 − Ω(1). We remark that the bounds also hold for any partial sum of the
sequence Xi ([1], Chap. 1, Theorem 1.13), i. e. with probability Ω(1) the size
never exceeds (3/4)μ in the considered phase of length cμ2 generations.

While the size does not exceed (3/4)μ, in every step, there is a probability
of at least 1/4 · 3/4 = Ω(1) of selecting parents from two different species, and
by Lemma 2 the probability of creating the optimum is Ω(n−k+1).
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Finally, the probability that at least one successful generation occurs in a
phase of cμ2 is, using (1 − (1 − p))λ ≥ (λp/(1 + λp)) for λ ∈ N, p ∈ [0, 1] [2,
Lemma 10], the probability that the optimum is found in one of these steps is

1 −
(

1 − 1
Ω(n−k+1)

)cμ2

≥ Ω

(
μ2 · n−k+1

1 + μ2 · n−k+1

)
.

Finally, we assemble all lemmas to prove our main result.

Proof (of Theorem 1). The expected time for the whole population to reach the
plateau is O(μn log(μ) + n log n) by Lemma 1. Once the population is on the
plateau, we wait till the largest species has decreased its size to at most μ/2.
According to Lemma 6, the time for the largest species to reach size μ/2 is
O(μn + μ2 log μ). By Lemma 7, the probability that in the next cμ2 steps the
optimum is found is Ω

(
1/(1 + nk−1/μ2)

)
. If not, we repeat the argument. The

expected number of such trials is O(1 + nk−1/μ2) and the expected length of
one trial is O(μn + μ2 log μ) + cμ2 = O(μn + μ2 log μ). The expected time for
reaching the optimum from the plateau is hence at most O(μn + μ2 log(μ) +
nk/μ + nk−1 log(μ)).

Adding up all times and subsuming terms O(μ2 log(μ)) = O(μn log μ) and
O(n log n) = O(nk/μ + nk−1 log μ) completes the proof. ��

5 Conclusion

A rigorous analysis of the (μ+1) GA has been presented showing how the use
of both crossover and mutation considerably speeds up the runtime for Jumpk

compared to algorithms using mutation only. Traditionally it has been believed
that crossover may be useful only if sufficient diversity is readily available and
that the emergence of diversity in the population is due to either mutation
alone or should be enforced by the introduction of diversity mechanisms [4,6,9].
Indeed, previous work highlighting that crossover may be beneficial for Jumpk

used unrealistically low crossover probabilities to allow mutation alone to create
sufficient diversity. Conversely, our analysis shows that the interplay between
crossover and mutation on the plateau of local optima of the Jumpk function
quickly leads to a burst of diversity that is then exploited by both operators to
reach the global optimum.
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Abstract. Recent literature suggests that local optima in fitness
landscapes are clustered, which offers an explanation of why
perturbation-based metaheuristics often fail to find the global optimum:
they become trapped in a sub-optimal cluster. We introduce a method
to extract and visualize the global organization of these clusters in form
of a barrier tree. Barrier trees have been used to visualize the barriers
between local optima basins in fitness landscapes. Our method computes
a more coarsely grained tree to reveal the barriers between clusters of
local optima. The core element is a new variant of the flooding algorithm,
applicable to local optima networks, a compressed representation of fit-
ness landscapes. To identify the clusters, we apply a community detection
algorithm. A sample of 200 NK fitness landscapes suggests that the depth
of their coarse-grained barrier tree is related to their search difficulty.

Keywords: Fitness landscape analysis · Barrier tree · Disconnectiv-
ity graph · Local optima networks · Big valley · Search difficulty ·
NK-landscapes

1 Introduction

To overcome the problem of getting stuck in a local optimum, many metaheuris-
tics based on local search apply a perturbation operator. The perturbation is
supposed to “kick” an algorithm away from the current region of the search
space. This principle is known as iterated local search (ILS) [1], e.g. as imple-
mented in the Lin and Kernighan Heuristic [2,3]. The “big valley” hypothesis
[4] states that the local optima in many fitness landscapes are not randomly dis-
tributed, but clustered and surrounding the global optimum. Consequently, one
might assume that once a local optimum has been reached, ILS-based algorithms
should easily find the global optimum after a limited number of perturbations.
However, we know that this is by no means the case in practice. An approach
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to explain this observation is given in the most recent literature [4–7]: instead
of one big valley, fitness landscapes consist of multiple clusters (or funnels). The
existence of such a structure offers a new explanation for the search difficulty of
landscapes: since the connections between clusters are sparse, perturbation steps
fail to escape from sub-optimal clusters to the cluster of the global optimum.

The objective of this paper is to complement the recent literature on the
multi-cluster structure of landscapes with a new approach to study this structure,
and to draw conclusions on search difficulty. A method that has been used to
characterize the structure of fitness landscapes are barrier trees [8]. A barrier
tree shows in a hierarchical structure how the local optima basins are connected
in the landscape. The leaf nodes are the local optima and the branching nodes
are the saddle points connecting the basins [9]. Due to the ability of ILS to easily
move from local optimum to local optimum, we are primarily not interested in
the barriers between their basins. The core issue for ILS is that local optima are
clustered. Thus, we need to study which barriers exist between these clusters.
The method we introduce here addresses this purpose. It allows us to compute
a coarse-grained barrier tree and to characterize the landscape on the level of
clusters. To reveal the clustering structure of landscapes, local optima networks
(LONs) [10] have been used. A LON is a compressed representation of a fitness
landscape. In a LON, each node is a local optimum, and the edges represent
the transitions of an algorithm between the basins around the local optima.
A problem with LONs is that it can be difficult to visualize their structure when
they consist of a large number of nodes and edges. To identify clusters in fitness
landscapes, statistical measures have been applied to LONs, e.g. counting the
network graph’s connected components [5] or community detection [7].

Our contribution is a modified version of the “flooding algorithm”, which
accepts as an input (i) a LON of a fitness landscape and (ii) a pre-computed clus-
tering structure of the LON. The output is a coarse-grained picture of the land-
scape which retains the global structure and allows the eventual visualization of
larger landscapes.Wedemonstrate ourmethodwith instances of theKauffmanNK
model. For each instance, we computed the LON and the clusters. We obtained
the clusters by community detection with the Markov cluster algorithm [11], as
proposed in an earlier study [7]. We analyze the resulting barrier trees by visual
inspection and a statistical approach. We provide an indication how the structure
of the barrier tree is related to the search difficulty of a landscape.

The article is structured as follows: Sect. 2 introduces the concept of fitness
landscapes for the study of problems and heuristic search. In Sect. 3, we explain
how to construct a standard barrier tree for fitness landscape analysis. In order
to construct a coarse-grained barrier tree (based on the local optima clusters), we
need a method to identify the clustering structure. In Sect. 4, we introduce local
optima networks as a compressed representation of fitness landscapes, and the
Markov cluster algorithm to reveal the clustering structure of a fitness landscape.
In Sect. 5, we present the algorithm to calculate the coarse-grained barrier tree
of a fitness landscape. We visualize instances and examine the search difficulty.
A brief summary and conclusions are in Sect. 6.
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2 Fitness Landscapes

The concept Fitness Landscapes was introduced to study the reproductive
success of genotypes in theoretical biology [12]. Fitness landscapes have been
adopted in combinatorial optimization to study the structure of problems and
the dynamics of heuristic search. A fitness landscape is defined as a triplet of
the search space S, the fitness function f , and the neighborhood structure N(S).
The search space S contains all valid solutions. The fitness function f : S → R≥0

assigns a fitness value to each s ∈ S (we assume non-negative values and a max-
imization problem). The neighborhood function N : S → P(S) assigns a set of
neighbors N(s) to every s ∈ S. Two solutions are neighbors if they are mutually
reachable by one step of local search.

A local optimum is a solution that has a higher fitness than its neighbors [13].
A higher number of local optima (modality) leads to a landscape that is more
“rugged”, which increases the search difficulty for local search-based algorithms
[14]. A local optimum is surrounded by a basin of attraction. The basin around
an optimum is the set of solutions from which the optimum attracts a local
search algorithm. We define a function for the basin around a local optimum lo
as B : lo → P(S\LO). B assigns an element from the set of all subsets (power
set P) of solutions over the search space to each local optimum lo ∈ LO (the set
of all local optima).

The Kauffman NK model of landscapes [15] is frequently used for the study of
fitness landscapes. The NK model is a combinatorial optimization problem from
the class of pseudo-Boolean functions. An instance is defined by the two parame-
ters N and K, where N is the number of binary variables. The size of the search
space S is |S| = 2N . K is the number of variables interacting with each other
(epistasis). To instantiate the model, the co-variables are randomly selected.
A higher value of K leads to a higher search difficulty [14]. The distance between
two solutions x, y ∈ S is the number of differing bits (Hamming-distance).

3 Barrier Trees of Fitness Landscapes

Barrier trees were introduced in computational chemistry to study the structure
of potential energy landscapes [16,17], i.e. to examine the barriers that exist
between the optima basins. Barrier trees are sometimes referred to as disconnec-
tivity graphs [18,19]. Even though Barrier trees have been used to study heuristic
search [8,9], the literature on this topic is rather sparse. To construct the bar-
rier tree of a fitness landscape, a database of the local optima (we assume local
maxima in this paper), and the transition states connecting at least two basins
around different local optima, is required. The transition states are also called
saddle points. In a 2-dimensional landscape, a saddle point is a local minimum.
In a higher dimensional landscape, multiple of local minima, connecting two
basins, may exist. In such a case, the saddle point is the local minimum with
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maximal fitness. Since the fitness of the saddle point is lower than the fitness of
the two connected local optima, it can be interpreted as a barrier between them:
to move from one of the local optima to the other, an algorithm has to accept
a fitness deterioration down to the level of the local minimum. To visualize the
barrier tree, local optima are identified with leaves, while the branching nodes
represent saddle points separating groups of local optima.

A method to compute the barrier tree of a fitness landscape is the so-called
“flooding algorithm” [9]. We think that a comprehensive understanding of this
method is essential; hence we depict the mechanism in Fig. 1. For a maximiza-
tion problem, the algorithm iterates over all solutions in the search space in a
descending order (in terms of fitness): the landscape is “flooded”. When a local
optimum is found, a node is added to the barrier tree (steps 1 and 2). When
a saddle point is found, a branching node is added to the tree, and edges are
added to connect the saddle point to the adjacent local optima. From here, the
saddle point now represents the basins of all adjacent local optima (step 3, the
basins are merged by the flooding). This procedure is repeated until the last
local optimum or saddle point has been found (step 4).

Since we are interested in the barriers that exist between the clusters of local
optima in a landscape, we present a variant of the flooding algorithm suitable for
this purpose in Sect. 5. Before, we need to explain how to characterize funnels
in fitness landscapes. For this purpose, we introduce a special representation of
fitness landscapes known as local optima networks (LONs) and a method using
this representation to characterize funnels in the next Sect. 4.

4 Clusters of Local Optima in Fitness Landscapes

Local Optima Networks (LONs) are a novel approach to study the structure of
fitness landscapes [10] and have recently been used to reveal the structure of
multiple clusters [5–7,20]. LONs were originally inspired by the study of energy
landscapes [21]. A LON is a complex network in which the nodes represent
the local optima in a landscape (and their basins, resp.). The edges reflect an
algorithm’s transition between the basins. The concept of LONs allows the study
of fitness landscapes from a network perspective and has the potential to deepen
our understanding of metaheuristics and problems.

A network is a graph G = (V,E) with the set of vertices V and the set of
edges E. In a LON, the vertex set V contains the local optima of the fitness
landscape. There exists an edge between two local optima if their basins are
in some way connected, leading to a potential transition between the two local
optima. An escape edge [22] is defined by the distance function of the fitness
landscape d (minimal number of moves between two solutions): there exists a
directed edge exy from local optimum lox to loy if there is a solution s such that
d(s, lox) ≤ D ∧ s ∈ B(loy). The weight wxy of edge exy is the probability that a
search algorithm can escape from the local optimum lox into the basin around
loy. The constant D > 0 determines the maximum distance that an algorithm
uses during a perturbation step.
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(1) (2)

(3) (4)

Fig. 1. Four steps of the flooding algorithm, creating the barrier tree of a fitness land-
scape. The vertical axis is the fitness, the horizontal axis is the landscape. Since we use
a maximization problem, the space is “flooded” from the top to the bottom.

To reveal the clustering structure of fitness landscapes, we proposed to apply
“community detection” to local optima networks [7]. Community detection is an
exploratory variant of graph partitioning [23]. The objective of this method is
to partition the network graph in a discipline-related, meaningful way. A very
general definition of a community is a group of nodes that have more links
among each other than to nodes in other communities. However, the definition
of a community depends on the discipline applied and there exists a variety of
algorithms that have been validated for different purposes [24,25].

Community detection in LONs has been done in earlier studies [26,27]. How-
ever, we [7] found that in particular, the Markov Cluster Algorithm (MCL, [11])
is an appropriate method of community detection to detect clusters in LONs
and characterize the clustering structure of fitness landscapes. An explanation
for this is that MCL is based on stochastic flows. LONs model the stochastic
process of an algorithm in a fitness landscape. For this reason, the application
of MCL matches the network model and produces meaningful results.

5 Coarse-Grained Barrier Trees of Fitness Landscapes

In order to escape from a cluster of local optima to another cluster, ILS needs
to pass a barrier by a deterioration of the fitness. To visualize the structure of
the barriers between the clusters in the landscape, we present a variant of the
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flooding algorithm [9] as introduced in Sect. 3 and Fig. 1. The pseudo code can
be obtained from Algorithm1. As an input, the algorithm accepts a LON and a

Algorithm 1. Flooding Algorithm for LONs (Maximization Problem)
Require: Local Optima Network G = (V,E), Partition P over V (the cluster sets)
1: Let R be an empty set
2: for all p ∈ P do
3: Add the local optimum of p with max. fitness to R
4: end for{R contains one representing local optimum per cluster in P}
5: Let T = (VTree, ETree) be the empty Barrier Tree
6: Order V by f in descending order
7: for all v ∈ V do
8: if v ∈ R then
9: Add Node v to Barrier Tree VTree

10: else
11: C = {p ∈ P | ∃n ∈ p | ((v, n) ∈ E ∨ (n, v) ∈ E)}
12: {Select those partition sets (clusters) which contain a local

optimum adjacent to v in the LON graph}
13: if |B| > 1 then {v connects at least two clusters, i.e. v is a saddle point}
14: Add Node v to Barrier Tree VTree

15: for all c ∈ C do {For each cluster set c connected to saddle point v}
16: r = c ∧ R {Choose node r representing connected cluster set c}
17: Add Edge (v, r) to ETree

18: Update P : Merge Partition set containing v and c
19: Remove r from R {Flood the connected cluster}
20: end for
21: end if
22: end if
23: end for
24: return T

partition of the LON’s vertex set, i.e. a set with the clustering structure of the
landscape. To obtain the clusters, we propose to apply the Markov cluster algo-
rithm to the LON. As a first step, the algorithm selects the best local optimum
for each cluster (set R). Then, the set of local optima nodes V is ordered by
fitness in descending order. The algorithm iterates over each node. If the node
is a representing node (in R), it is added to the barrier tree. Else, the algorithm
determines the number of clusters adjacent to the current node in the LON. If
the number is higher than one, the node is a saddle point and is also added to the
tree. Then, the algorithm connects the saddle point to the nodes representing
the adjacent clusters in the tree. From here, the saddle point represents all adja-
cent clusters (“flooding”): the clusters of the current and all the adjacent nodes
are merged in the partition set, and the representers of the adjacent clusters
are removed from R. This process is repeated until the whole LON is flooded
(merged into one partition).
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Fig. 2. Local optima network (left) and the coarse-grained barrier tree (right) of an
NK landscape (N = 20, K = 5) with low search difficulty (success rate of ILS: 0.76).
The color of the nodes represents the cluster (global optimum cluster is red in both
graph types). In the tree, the branching nodes are black. In the local optima network,
the size of the node represents the fitness, whereas the node size in the tree is the size
of the cluster by the number of local optima. In the tree, the fitness is visualized by the
node height (higher distance to the root means higher fitness). The layout of the local
optima network is based on the ForceAtlas2 algorithm [28]. The local optima network
shows only the best 20% of nodes (all clusters still visible). (Color figure online)

Fig. 3. LON and Coarse-Grained Barrier Tree of an NK landscape (N = 20, K =
5) with high search difficulty (success rate of ILS: 0.22). Please cf. Fig. 2 for further
explanations.

To demonstrate our method, we selected an easy and a hard instance of
the Kauffman NK model (N = 20, K = 5). To determine their difficulty, we
performed 1000 independent runs of ILS per instance and measured the success
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rates (0.76 and 0.22). The ILS stopped after a limited number of fitness function
evaluations (1/5th of the search space), or when the global optimum was found.
We extracted the LONs and computed the clusters in both LONs with MCL.
We used the LONs and the clusters to construct the coarse-grained barrier trees
with our variant of the flooding algorithm. Figures 2 and 3 plot the LON and
the corresponding tree. Visual inspection of the LONs (left) confirms that the
clustering as obtained by MCL is meaningful: nodes of the same color have
a higher proximity to their own cluster than to those of a different cluster.
Comparing both barrier trees (right), we observe a much deeper tree and thus a
higher number of barriers in the case of the hard instance.

Even though a deeper study on the search difficulty is out of the scope of
this paper, we conducted a first systematic approach towards this observation.
We generated 200 instances of NK landscapes (N = 20, K = 5). We grouped
the landscapes by the depth of the coarse-grained barrier tree and compared
their difficulties for ILS. The results can be obtained from Fig. 4. For landscapes
with a very short tree, we observe that the difficulty has a high variety, even
though the median indicates a low difficulty (≈ 0.6). The median success rates
get lower with a deeper tree, which means that their difficulty increases. This is
not surprising: a deeper tree means that a traversal to the global optimum has—
by average—a longer path. A search algorithm needs to pass more barriers then,
and the difficulty is higher. This finding is consistent with the previous literature
on regular barrier trees [9], however the observation that many landscapes with
a low number of barriers can be difficult is counter-intuitive. We suggest that
in these cases, additional factors, like the cluster size of the global optimum [7]
need to be considered. We plan to conduct more research towards this direction.

Fig. 4. Success Rate of ILS (difficulty) for different values of tree depth. The median
success rate declines (search difficulty increases) with a higher depth of the tree.
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6 Summary and Conclusion

As our main contribution, we presented a new method to visualize fitness land-
scapes and characterize them by the barriers between clusters of local optima.
The existence of a multiple-cluster structure has recently emerged [6,7] as a
refinement of the big valley hypothesis. We applied our method to a limited
set of instances of the Kauffman NK model. Our results suggest that the tree
depth might be related to the search difficulty of the landscapes for iterated local
search. This is consistent with previous findings on difficulty in the literature [9].
A possible explanation is that the existence of barriers prevents iterated local
search from escaping local optima clusters. This finding is rather preliminary and
needs further investigation. Other structural properties of the landscapes must
be taken into consideration, too. For further research, it would be interesting to
see how the coarse-grained trees look for NK landscapes with higher levels of
epistasis. It is also unclear whether or not there are differences between the NK
model with random and adjacent co-variables. The adjacent NK model is often
considered to be solvable with less effort. It would be worthwhile to examine if
the tree depths are different between both models. We think that the method
introduced here points to a new direction in studies of fitness landscapes.
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8. Hallam, J., Prügel-Bennett, A.: Large barrier trees for studying search. IEEE
Trans. Evol. Comput. 9, 385–397 (2005)

9. van Stein, B., Emmerich, M., Yang, Z.: Fitness landscape analysis of nk land-
scapes and vehicle routing problems by expanded barrier trees. In: Emmerich, M.,
et al. (eds.) Evolutionary Computation IV. AISC, vol. 227, pp. 75–89. Springer,
Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-319-31471-6_1
http://dx.doi.org/10.1007/978-3-319-30698-8_5


910 S. Herrmann et al.
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Abstract. Exploration of the search space through the optimisation
of phenotypic diversity is of increasing interest within the field of evolu-
tionary robotics. Novelty search and the more recent MAP-Elites are two
state of the art evolutionary algorithms which diversify low dimensional
phenotypic traits for divergent exploration. In this paper we introduce a
novel alternative for rapid divergent search of the feature space. Unlike
previous phenotypic search procedures, our proposed Spatial, Hierarchi-
cal, Illuminated Neuro-Evolution (SHINE) algorithm utilises a tree struc-
ture for the maintenance and selection of potential candidates. SHINE
penalises previous solutions in more crowded areas of the landscape. Our
experimental results show that SHINE significantly outperforms novelty
search and MAP-Elites in both performance and exploration. We con-
clude that the SHINE algorithm is a viable method for rapid divergent
search of low dimensional, phenotypic landscapes.

Keywords: Algorithm design · Phenotypic diversity · Neuroevolution ·
Evolutionary robotics

1 Introduction

Divergent evolutionary search methods are receiving increasing interest in the
evolutionary robotics community. Optimising phenotypic diversity within a pop-
ulation has been shown to avoid convergence towards local optima [5], to provide
diverse ranges of solutions in a given domain, [4,7,8] and to assist with the adapt-
ability of robot controllers [2]. Novelty search, introduced in [5] and the more
recent multi-dimensional archive of phenotypic elites (MAP-Elites) [10], are two
algorithms which utilise divergent phenotypic search. In this paper we introduce
the Spatial, Hierarchical, Illuminated Neuro-Evolution (SHINE) algorithm, a
novel method which the authors show explores low dimensional phenotypic land-
scapes more thoroughly and rapidly than the current state of the art. Similarly
to MAP-Elites, our proposed SHINE algorithm selects future populations from
an archive of previous solutions. However, the archive in the SHINE algorithm
is maintained within an hierarchical, spatially partitioned tree structure. Both
the weighting of offspring selection and the number of representatives assigned
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DOI: 10.1007/978-3-319-45823-6 85



912 D. Smith et al.

to the archive are calculated from the depth of the vertices within which the
solutions reside. Candidate solutions which exhibit phenotypic traits in more
crowded areas of the landscape are assigned to vertices deeper within the tree,
and are penalised accordingly. This allows the evolutionary trajectory to focus
on larger, shallower areas of the landscape, producing a divergent, and iteratively
more focused search procedure.

This paper is organised as follows. In Sect. 2 we give a brief overview of the
use of divergent phenotypic search within evolutionary robotics. In Sect. 3, we
introduce our proposed SHINE algorithm, highlighting the methods for archive
management, spatial partitioning and selection of offspring in a 2-dimensional,
quadtree implementation. An initial experimental domain, selected to assess the
ability of the SHINE algorithm to explore the phenotypic landscape, is presented
in Sect. 4. Our results, which are presented in Sect. 5, highlight that SHINE
significantly outperforms both novelty search and MAP-Elites. In Sect. 6 we
conclude that the hierarchical procedure adopted by the SHINE algorithm is a
promising method for rapid divergent phenotypic search.

2 Related Work

Novelty Search. Novelty search, as proposed by Lehman and Stanley [5], is an
algorithm which removes the need for a traditional objective function through
the assignment of high fitness values to novel behaviours in a population. The
objective fitness function is replaced by a behavioural distance metric, which is
used to determine the novelty of an individual in a population. High novelty is
assigned to individuals which exhibit features with a large distance to both the
rest of the population and an archive of previously encountered, highly novel
phenotypic traits.

Although novelty search has been shown to outperform objective fitness
search, especially in deceptive domains, it has been shown that the assessment of
behavioural novelty alone is insufficient as a generalisable evolutionary technique
in many tasks, especially in domains with large feature spaces [1,9].

MAP-Elites. More recently, the MAP-Elites algorithm, as introduced in [2,10]
is an evolutionary procedure that aims to find the highest performing solution at
each point in a low dimensional behaviour space. It is a hybridization of objective
driven and divergent search. In MAP-Elites, evolution proceeds through the
maintenance of an archive of previously high performing individuals, with each
individual being assigned to bin within a discrete, low dimensional representation
of the feature space. Offspring for subsequent generations are randomly selected
from the archive of high performing, yet phenotypically diverse individuals.

Due to the ability of MAP-Elites to highlight the highest performing solutions
in a phenotypic landscape, Mouret and Clune introduce the term illumination
algorithm to separate it from traditional optimisation algorithms [10].
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3 Spatial, Hierarchical, Illuminated Neuro-Evolution

SHINE is an illumination algorithm designed for rapid exploration of low-
dimensional feature spaces. SHINE promotes divergent search through penal-
ising solutions which are in more crowded areas of a predefined, low dimen-
sional phenotypic landscape. The algorithm utilises a spatially partitioned tree
for the maintenance of an archive of phenotypic representatives. The mechanisms
applied to both the storage and selection of the representatives are designed
specifically to weight subsequent generations towards more offspring in sparse
areas of the landscape.

The SHINE algorithm shares similarities to both novelty search and MAP-
Elites. As in MAP-Elites, SHINE maintains an archive of previous solutions
which are selected for inclusion by low-dimensional discrete phenotypic traits.
However, SHINE utilises an hierarchical, spatially partitioned tree structure for
archive maintenance. MAP-Elites stores a single elite within each area of the
feature space; the current best performing individual at an objective function.
SHINE maintains multiple individuals within each vertex of the archive tree
which are chosen by their distance to the boundaries of their particular pheno-
typic trait, in a manner more aligned with novelty search. Therefore, the SHINE
algorithm also differs from MAP-Elites in that it directly aims to optimise sparse
areas of the feature space. Here we introduce the main SHINE procedure, out-
lining a 2-dimensional implementation which utilises a quadtree structure [11].

3.1 The Algorithm

The main procedure of the SHINE algorithm, (Algorithm1) begins by initializing
a random population P with n random individuals (Lines 1–5). In each gener-
ation, every individual ρ is assessed in the domain and a phenotypic descriptor
is measured and assigned to μ (lines 7–9). The tree, T , is queried with the
descriptor μ (line 9). After all individuals in the current population have been
assessed and the tree structure updated, P is added to the archive (line 11).
A new archive is calculated and assigned to X (line 12). All individuals are
removed from the population, which is then repopulated with mutated offspring
from the updated archive X via weighted roulette selection (lines 14–18). This
procedure is repeated until a terminating condition is met, or alternatively after
a predefined number of generations (line 19).

Phenotypic Tree. In a similar manner to MAP-Elites, the SHINE algorithm
progresses through the maintenance of an archive of genomes which are selected
for inclusion by a measured phenotypic trait. However, SHINE maintains an
archive of potential genomes in an hierarchical, spatially partitioned tree.

The number of dimensions and the bounding volume of the phenotypic
descriptor are required to initialise the root vertex of the phenotypic tree. In
this paper, we focus upon the 2-dimensional implementation of the algorithm,
resulting in a quadtree structure [11]. We define a phenotypic descriptor as an
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Algorithm 1. Main SHINE procedure
Require: α: max tree depth, β: vertex division level, V: phenotypic tree
1: procedure SHINE
2: P ← ∅

3: while |P | < n do
4: P ← RandomIndividual()
5: end while
6: do
7: for ρ ∈ P do
8: μ ← PerformTrial(ρ)
9: QueryTree(μ, V)

10: end for
11: UpdateArchive(P , V)
12: X ← CurrentRepresentatives(V)
13: P ← ∅

14: while |P | < n do
15: x ← RouletteSelection(X )
16: x′ ← Mutate(x)
17: P ← P

⋃
x′

18: end while
19: while Terminate() is false
20: end procedure

ordered pair μ = (x, y). However, the algorithm may be extended to phenotypic
descriptors with higher numbers of dimensions. Let |μ| represent the number
of dimensions of a phenotypic descriptor and let c = 2|μ|. Each vertex will be
subdivided into c child vertices (each dimension being split into 2 equal regions).
Therefore, 3-dimensional traits (|μ| = 3) would require an octree (c = 23)
structure.

The SHINE algorithm requires 2 pre-defined constants to control the subdi-
vision of the tree. We define constant α to be the maximium depth of the tree
and β as the maximum number of points which may fall within a leaf vertex
before it is divided. These constants are used to determine both the underlying
phenotypic tree structure and the archive of representatives.

A series of trial runs in our experimental domain were performed with a range
of α and β values: α = (3, 4, 5, . . . , 12, 13, 14), β = (20, 40, 60, . . . , 120, 140, 160).
The values α = 7 and β = 80 produced the most reliable and optimal results
and are therefore used in our experimental setup. Testing in further domains
and with differing population sizes would be required to ascertain whether these
values are universally optimal.

The QueryTree(μ,V) method (line 9, Algorithm1) determines the devel-
opment of the tree structure. Figure 1 illustrates an example quadtree structure
with parameters α = 4 and β = 2. During each generation, all individuals are
assessed and the tree is queried with their phenotypic descriptor, μ. Let v repre-
sent the relevant vertex of V. Let the bounding area of v = [vx1 : vx2]×[vy1 : vy2],
where vx1 < μx ≤ vx2 ∧ vy1 < μy ≤ vy2. Let vd be the depth within the tree
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Fig. 1. An overview of spatial partitioning in the SHINE archive. (α = 4, β = 2).

and |v| be the number of descriptors currently assigned to v. If the capacity
of v has been exceeded and the maximum depth has not been reached, such
that |v| > β ∧ vd < α, then v is subdivided into 4 equal sized regions, i. e.,
top-left, top-right, bottom-left and bottom-right (TL, TR,BL,BR, Fig. 1). All
descriptors within v are then assigned to their relevant child vertices.

Archive Management. After the tree has been queried by the population, the
resulting structure is utilised to determine the distribution of the archive of rep-
resentatives from which subsequent populations are selected. Membership of the
archive is weighted dependant upon the depth of the representatives’ containing
vertex. Shallower vertices in the tree structure are assigned more representatives.
Representatives do not alter the structure of the tree, rather the relevant vertex
for a potential representative’s phenotypic descriptor determines whether it is
added to the archive. Let |μ| represent the dimensions of a phenotypic descriptor
and let c = 2|μ|. Equation (1) defines the maximum number of representatives
r(v) which may be assigned to a particular vertex.

r(v) = (vd − α + 1)c (1)

The number of representatives within a single vertex will therefore fall within
the range 1 ≤ r(v) ≤ (α + 1)c. Let Xv be the set of all representative within a
vertex, v. If the capacity of v is reached, such that |Xv| = r(v), representatives
from Xv are selected for addition or removal based upon a distance function d(x).
This distance function determines the distribution of representatives within a
single leaf vertex. In alignment with this, let x be a potential representative for
inclusion within the archive, where x /∈ Xv. Let w ∈ X be the weakest current
representative w = arg max

∀i∈Xv

d(i). The updated archive of representatives, which

we define as X ′
v, is determined as in Eq. (2).

X ′
v =

⎧
⎨

⎩

Xv

⋃
x if |Xv| < r(v)

Xv if |Xv| = r(v) and d(x) > d(w)
{Xv \ w}⋃

x if |Xv| = r(v) and d(x) ≤ d(w)
(2)
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Fig. 2. An illustration of the
corner sorting method for
representative selection.

Dependant upon the particular type of search
required, various metrics may be proposed. For
example, defining d(x) as an objective function
would allow the archive to behave in a similar man-
ner to the MAP-Elites algorithm [10], selecting elite
representatives for inclusion within the phenotypic
tree. We also suggest that metrics based upon nov-
elty search [5] or hybrid novelty-objective measures
[12] may be of particular interest for further testing
of the algorithm in different domains.

In our experiment, presented in Sect. 4, we
utilise the corner distance metric, a function which
favours representatives in the outer corners of the
containing vertex, encouraging representatives to

focus on the areas closest to neighbouring vertices and increasing the chance
of mutated offspring to acquire phenotypic traits in neighbouring cells. Figure 2
illustrates our corner method for representative selection. Representatives are
sorted by distance from the outer corner of their assigned vertex’s position in the
quad tree structure (i.e. representatives in top-left vertices are sorted by their
distance from top left corner of the vertex). Once the number of representatives
exceeds the maximal threshold, as defined in Eq. (1), the representative with the
largest distance is removed.

Proportional Selection. SHINE utilises a traditional roulette wheel method
for the selection of offspring. Potential solutions are selected from the complete
set of current representatives within the tree X = {Xv1

⋃
, ...,

⋃ Xv|V|}. The fit-
ness f(x) of a representative x in vertex v is obtained by calculating the recipro-
cal of the sum of the vertices’ depth vd and its normalised population vp

β . Defined
as 1/(vd+

vp
β ) and simplified in Eq. (3).

f(x) =
β

βvd + vp
(3)

This fitness assignment results in a lower probability of selection of repre-
sentatives within smaller (deeper within the tree) and more crowded (higher
population) areas of the phenotypic landscape, allowing the search procedure to
concentrate on larger and sparser vertices within the tree.

4 Experimental Evaluation

Domain. The aim of our experiment is to assess the diversity and thorough-
ness of phenotypic exploration in an evolutionary trajectory optimised with the
SHINE algorithm in comparison to novelty search and MAP-Elites. Therefore,
we select a domain with a deceptive objective function and which requires a high
level of exploration to produce a successful solution.
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Fig. 3. The HARD maze
domain. Triangle indicates
agent start position, circle
indicates exit.

Our experimental domain is taken directly from
previous studies which have assessed novelty search
and variants of the algorithm [3,5,6]. The maze
used in our experiment, the HARD maze, is clas-
sified as a deceptive domain, particularly difficult
for objective algorithms to reliably find solutions
(Fig. 3). The maze is of the size 1000 × 1000 units,
the agent has a size of 20 units and successfully
reaching the exit requires the agent to be within
20 units. Each agent is given 4000 time steps to
complete the maze. Populations of 200 controllers
were optimised for 1000 generations. The agent con-
trollers are neural networks which are evolved using
the NEAT algorithm [13], with the speciation mech-

anism deactivated. As in [3,5,6], the objective fitness of a solution ρ is calculated
as f(ρ) = l−dist(ρ, e), where l is the diagonal length of the maze and e is the exit
to the maze. The phenotypic descriptor is calculated from the ending position
of the agent, μ = (ρx, ρy).

We assess 4 algorithms in our experiment — traditional objective based
search (OBJECTIVE), novelty search (NOVELTY), MAP-Elites (MAP-
ELITES), and our proposed SHINE algorithm (SHINE). The algorithms were
repeated in each domain 50 times with a different random seed in each trial.
In order to ensure consistency between algorithms, identical random seed values
were given to each of the algorithms in each trial. The performance of each algo-
rithm was determined by the number of generations taken to locate the exit in
the domain.

The simulation was performed using a bespoke domain written in the C++
programming language, developed to be similar to the original maze domain
experiments in [5,6]. The implementation of the NEAT algorithm used was devel-
oped as an extension to the MultiNEAT software in the C++ language1.

Domain Coverage. The cumulative coverage of the domain is calculated at
each generation in the trial over 1000 generations. The domain is divided into
a 2-dimensional matrix M , where |M | = n × n. In our presented results,
n = 30. The final position of an individual (ρx, ρy) is mapped to the correspond-
ing region of M . Let M ′ be the set of the regions of M which contain individuals:
M ′ = {x : x ∈ M ∧ |x| > 0}. Domain coverage is then calculated as |M ′|

|M | .

Exploration Uniformity. The spread of the population is measured through
the calculation of exploration uniformity in a similar manner to [3]. To ascertain
the speed at which exploration occurs for each algorithm, values are calculated
at each generation in the trial rather than cumulatively over the whole trial as in
[3]. Again, the population is mapped to the discrete matrix M . Let Pt be the set
of individuals in the population at generation t and let Ψt be the distribution of
Pt over M . The exploration uniformity of the population, D(Pt), is calculated as

1 c©2012 Peter Chervenski. http://multineat.com/index.html.

http://multineat.com/index.html
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Fig. 4. Performance results from HARD maze domain (SHINE, NOVELTY and MAP-
ELITES were successful in all trials.)

the similarity between Ψt and the uniform distribution U . As in [3] the distance
metric used is the Jensen-Shannon distance (JSD). The exploration uniformity
at generation t is thus defined as:

D(Pt) = 1 − JSD(Ψt, U), where :

Ψt =
( |I1|

|Pt| , ...,
|I|Pt||
|Pt|

)
, Ir = {i ∈ Pt : region(i) = r}

U =

⎛

⎜⎜
⎜
⎝

n2 times
︷ ︸︸ ︷

1
|M | × · · · × 1

|M |

⎞

⎟⎟
⎟
⎠

(4)

5 Results

Performance. As illustrated in Fig. 4a, all 3 algorithms located solutions to the
maze in all 50 trials, resulting in a probability of success of 1.0. Maximum prob-
ability of success is reached significantly faster (p < 0.001) by the SHINE algo-
rithm, after 182 generations, compared with 374 generations for MAP-ELITES
and 819 generations for NOVELTY. Both NOVELTY and MAP-ELITES fol-
low a similar gradient of ascent, however NOVELTY requires a higher number
of generations to locate a solution in 3 of the trials.

Figure 4b shows the number of generations taken to find a successful solution.
The SHINE algorithm requires a significantly fewer number of generations, with
a median value of 71. MAP-ELITES and Novelty achieve similar results, with
median values of 146 and 141 generations respectively.

Diversity. Figure 5a shows the exploration uniformity for each of the algorithms
over 1000 generations. The maximum mean level of exploration uniformity is
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Fig. 5. Diversity of the algorithms within the HARD domain. (Shaded area indicates
25th to 75th percentiles.)

achieved by the SHINE algorithm, 0.51912 after 772 generations. However, it
achieves comparably high levels after 232 generations, remaining relatively stable
throughout the evolution. Both MAP-ELITES and NOVELTY fail to achieve
this maximal level within 1000 generations, however the exploration uniformity
is still increasing for both algorithms at the end of the trial. The maximum mean
level achieved by MAP-ELITES is 0.50584 after 984 generations. NOVELTY
achieves a maximal value of 0.51408 after 988 generations. Therefore an evo-
lutionary run with a higher number of generations may allow MAP-ELITES
and NOVELTY to achieve a level of exploration uniformity similar to SHINE.
Figure 5b shows the proportion of the domain covered by the population. All
three algorithms produce similar levels of domain coverage for the initial 400 gen-
erations. However, beyond this SHINE covers significantly more of the domain
than both NOVELTY and MAP-ELITES.

6 Conclusion

In this paper we have introduced a novel method for rapid exploration of low
dimensional feature spaces. Our experimental evaluation in a deceptive simu-
lated maze domain shows that the SHINE algorithm outperforms both novelty
search and MAP-Elites, two state of the art algorithms for divergent pheno-
typic search. We have shown that the hierarchical tree structure and approach
taken for archive maintenance and offspring selection in the SHINE algorithm
are viable methods for rapid phenotypic exploration.

Further experimental validation is required in order to establish the perfor-
mance of the SHINE algorithm in domains with a less direct mapping between
the feature space and the objective landscape. The authors suggest that a
replacement of the corner method presented in this paper to an objective func-
tion would allow SHINE to be compared more directly with MAP-Elites in objec-
tive focussed domains. The authors are aware of the limitations in testing within
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a simulated environment. MAP-Elites has been shown to be extendible to the real
world application of robot controllers [2]. Therefore we suggest a future direction
to be the assessment of SHINE beyond simulation, in real world domains.

Acknowledgements. This work was funded by EPSRC through the Media and Arts
Technology Programme, an RCUK Doctoral Training Centre EP/G03723X/1. Compu-
tational facilities were provided by the MidPlus Regional Centre of Excellence for Com-
putational Science, Engineering and Mathematics, under EPSRC grant EP/K000128/1.

References

1. Cuccu, G., Gomez, F.: When novelty is not enough. In: Di Chio, C., et al. (eds.)
EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 234–243. Springer, Heidelberg
(2011)

2. Cully, A., Clune, J., Tarapore, D., Mouret, J.-B.: Robots that can adapt like ani-
mals. Nature 521(7553), 503–507 (2015)

3. Gomes, J., Mariano, P., Christensen, A.L., Devising effective novelty search algo-
rithms: a comprehensive empirical study. In: Proceedings of the 2015 Genetic and
Evolutionary Computation Conference, pp. 943–950. ACM (2015)

4. Gomez, F.J.: Sustaining diversity using behavioral information distance. In: Pro-
ceedings of the 11th Annual Conference on Genetic and Evolutionary Computation,
pp. 113–120. ACM (2009)

5. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through
the search for novelty. In: ALIFE, pp. 329–336 (2008)

6. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search
for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

7. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty
search and local competition. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, pp. 211–218. ACM (2011)

8. Lehman, J., Stanley, K.O., Miikkulainen, R.: Effective diversity maintenance in
deceptive domains. In: Proceedings of the 15th Annual Conference on Genetic and
Evolutionary Computation, pp. 215–222. ACM (2013)

9. Mouret, J.-B.: Novelty-based multiobjectivization. In: Doncieux, S., Bredèche, N.,
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Abstract. It is well known that in open-ended evolution, the nature of
the environment plays in key role in directing evolution. However, in Evo-
lutionary Robotics, it is often unclear exactly how parameterisation of
a given environment might influence the emergence of particular behav-
iours. We consider environments in which the total amount of energy is
parameterised by availability and value, and use surface plots to explore
the relationship between those environment parameters and emergent
behaviour using a variant of a well-known distributed evolutionary algo-
rithm (mEDEA). Analysis of the resulting landscape show that it is
crucial for a researcher to select appropriate parameterisations in order
that the environment provides the right balance between facilitating sur-
vival and exerting sufficient pressure for new behaviours to emerge. To
the best of our knowledge, this is the first time such an analysis has been
undertaken.

Keywords: Evolutionary robotics · Parameter selection · Environment-
driven evolution · Distributed online adaptation

1 Introduction

Due to technological advances in both hardware and software, the vision of send-
ing swarms of robots into unchartered terrains to monitor and map environments
is becoming much closer to being realised. This brings significant new challenges
for evolutionary robotics, with the need for completely distributed evolutionary
algorithms to evolve controllers that enable robots to survive for long-periods of
time. The issue of survival is key if robots are to effectively accomplish any kind
of task: user-driven tasks cannot even be achieved if the integrity of the swarm
is compromised through lack of ability to survive.

A number of recent algorithms tackle this issue, notably mEDEA [1] and
its variations e.g. mEDEArf [7] and MONEE [4,6]. However, the emerging
behaviours arising from the interactions of an open-ended evolutionary algo-
rithm with its environment are not well understood, perhaps in part due to the
time-consuming experimentation that needs to be done to conduct sweeps of
the parameters that define the environment. It is common in optimisation to

c© Springer International Publishing AG 2016
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explore the relationship between algorithmic parameters and fitness. However,
evolutionary robotics adds an additional dimension in that it is not only the
algorithms parameters that change but also the environmental parameters.

Given that it is the environment that provides the pressure to adapt in a
purely open-ended scenario, it is crucial to gain some understanding of these
landscapes. Particularly in simulation, it is easy to arbitrarily select environ-
mental parameters such as the number of available energy sources or their cor-
responding energy-values. However, arbitrary choices can inadvertently create
landscapes which have a major influence on the evolution of behaviour. For
example, assume a researcher wishes to investigate whether individual learning
speeds up environment-driven evolution: if an environment is created that has
too much energy available then it is unlikely to exert sufficient pressure for indi-
vidual learning to be beneficial or even emerge. Quantifying ‘too much’ (or ‘too
little’) is of course difficult. In order to address this, we conduct an analysis of
an open-ended evolution algorithm operating in a variable environment. To the
best of our knowledge, this is the first time this has been attempted.

Using an open-ended evolutionary algorithm, mEDEArf [7], we consider
evolved behaviours in environments in which the total energy available is para-
meterised by two variables that determine the availability and value of energy
pellets within in the environment. Using a 3-dimensional visualisation of the
energy landscape for mEDEArf we show:

– the energy landscape contains three distinct regions: energy-poor, energy-
neutral and energy-rich, as well as a ‘dead-zone’ in which robots cannot survive

– the energy-rich region is relatively large compared to other regions but is very
rugged

– that on the energy-neutral line, distinct behaviours evolve at different places
along the line

We propose that the energy-neutral region provides the most obvious settings
for conducting experimentation that aims to extend a robots ability to survive
or accomplish tasks.

2 Related Work

The completely distributed evolutionary algorithm for open-ended evolution
mEDEA was first proposed in [1]. It was tested using a scenario in which envi-
ronmental pressure forces robots to compete for limited resources in order to
gain energy. The algorithm was demonstrated to be both efficient with regard
to providing distributed evolutionary adaptation in unknown environments, and
robust to unpredicted changes in the environment. The basic algorithm has been
extended in a number of ways.

Haasdijk et al. [6] extended mEDEA so that in addition to surviving and
operating reliably in an environment, a robot could also perform user-defined
tasks. Their new framework MONEE (Multi-Objective aNd open-Ended Evo-
lution algorithm) showed initially that task-driven behaviour can be promoted
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without compromising environmental adaptation. More recently, they investi-
gated the trade-off between the survival and task-accomplishment that evolution
must establish when the task is detrimental to survival, finding that task-based
selection exerts a higher pressure than the environment. Fernández Pérez et al. [3]
study the impact of adding explicit selection methods to the mEDEA algorithm
in a task-driven scenario. They evaluate four selection methods that induce dif-
ferent intensities of selection pressure, using tasks that include obstacle avoidance
and foraging, finding that higher selection pressure results in improved perfor-
mances, especially in more challenging tasks. Hart [7] also extended mEDEA by
including selection based on a fitness value that was calculated relative to those
robots in the immediate vicinity, thus maintaining the decentralised nature of
the algorithm, and additionally using this relative fitness value to control the
frequency and range of broadcasting. Parameter tuning of algorithmic parame-
ters to optimise algorithmic task-performance was investigated by [5]. However,
to the best of our knowledge, no methodical investigation of environment para-
meter settings has been conducted: researchers tend to select arbitrary values or
simply use those defined in previous papers.

3 Algorithm Description

Evolution of robot controllers is performed by the mEDEArf , first introduced in
[7]. The algorithm is an extension of the original mEDEA algorithm of Bredeche
and Montanier [1] with the addition of an explicit fitness measure. This influences
the spread of genomes through the population in order to increase survivability,
thus ensuring the integrity of the swarm.

mEDEArf utilises an agent driven by a control architecture whose parame-
ters are defined by the currently active genome. The genome defines the weights
of an Elman recurrent neural network (RNN) consisting of 16 sensory inputs,
one bias node (feeding into the hidden layer) and 2 motor outputs (translational
and rotational speeds). 8 ray-sensors are distributed around the robot’s body.
They detect the proximity to the nearest object and its type. The RNN has 1
hidden layer with 16 nodes, thus 322 weights are defined by the genome. This
setup is adapted from [1]. An overview of the algorithm is given in Algorithm1
and reader is referred to [7] for more detail. In brief, for a fixed period, robots
move according to their control algorithm, broadcasting their genome that is
received and stored by any robot within range. At the end of this period, a
robot uses roulette-wheel selection to choose a genome from its list of collected
genomes according to a relative fitness value, and applies a variation operator.
This takes the form of a Gaussian random mutation operator, inspired from
Evolution Strategies. Robots that have not collected any genomes temporarily
become inactive, thus reducing the population size.

Each robot estimates its fitness in terms of its ability to survive based on the
balance between energy lost and energy gained, delta Energy (δE): this term is
initialised to 0 at t = 0 (when the current genome was activated) and is decreased
by 1 at each time-step, and increased by Etoken if it crosses an energy token.
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Given δE , a robot calculates a fitness value which is relative to those robots in
a range r according to Eq. 1, where f ′

i is the relative fitness of robot i at time t,
meansubi is the mean δE of the robots within the subpopulation defined by all
robots in range r of robot i, and sdsubi is the standard deviation of the δE of
the subpopulation.

f ′
i(t) =

δi(t) − meansubi(t)
sdsubi(t)

(1)

Note that evolution is asynchronous, in keeping with the paradigm of a dis-
tributed algorithm without central control. If a robot runs out of energy and has
an empty genome list, it remains stationary until it receives a new genome from
a passing robot at which point it starts a new lifetime. Thus at any time-step,
each robot potentially has a different ‘age’.

genome.randomInitialise();
agent.load(genome);
while forever do

if genome.isNotEmpty() then
while lifetime < maxLifetime and energy > 0 do

agent.move();
if neighbourhood.isNotEmpty() then

rf = agent.calculateRelativeFitness(neighbourhood); // eq. 1

broadcast(genome,rf);

end

end
genome.empty();

end
if genomeList.size() > 0 then

genome = applyVariation(selectrhoulette−wheel(genomeList));
agent.load(genome);
genomeList.empty();

end

end

Algorithm 1. Pseudo code of our adapted version of the mEDEA algo-
rithm based on vanilla mEDEA by Bredeche and Montanier [1]

4 Method

All experiments are conducted in simulation using Roborobo! by Bredeche et al.
from [2]. A static environment is created, using an arena previously described in
[3,4,6]. The robot cannot pass through the outer and inner walls, however, it is
possible to broadcast through an obstacle. Energy tokens are randomly scattered
in the environment. If a robot moves over a token, its energy is increased by an
amount Etoken. The energy token disappears when consumed and reappears after
a fixed amount of time later at a different random location. Fixed parameters
describing the simulation are given in Table 1.
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Energy is consumed in three ways. There is a fixed cost to ‘living’ of 0.5 units
per timestep, regardless of whether the robot moves or not. A robot moving
consumes an amount of energy Em that is related to its rotational speed vrot,
translational speed vtrans, and their respective maximum values vrotMAX and
vtransMAX , and is given by

Em = (vrot/vrotMAX + vtrans/vtransMAX)/4 (2)

Finally, a robot consumes energy when communicating. This is an important
factor in the real-word but one that it is often overlooked in simulation models.
The model used is exactly as described in [10], with an energy cost of ERX =
0.082 units for receiving and a cost of ETX(r) = 0.075 units for transmitting.

The goal of the experiments is to understand the energy landscape in terms
of the median δEnergy of a robot in the population as a function of the two envi-
ronmental parameters: count, the number of energy tokens available, and value,
the energy value of each token. Table 1 shows the ranges of values considered
for each parameter. Parameters are set before the beginning of the experiment
and remain fixed throughout. Each experiments was repeated for 5 independent
runs. This number is rather low for a noisy application of this type but was
chosen to speed up computation due to the high number of experiments that
had to be run in total.

Table 1. Simulation and experimental parameters for all experiments

Simulation parameters

Arena size 1024 pixel by 1024 pixel

Max. robot lifetime 2500 iterations

Token re-spawn time 500 iterations

Sensor range 196 pixel

Variable parameters

Number of robots 50, 75, 100

Number of tokens (count) 0–1300 (in steps of 50)

Energy value per token (value) 0–1400 (in steps of 50)

Experimental parameters

Number of runs 5

Maximum iterations 375000 (=150× 2500)

Start energy 500

Maximum range rmax 128

Data is gathered from the robots every 2500 iterations. Recall from Sect. 3
that each robot chooses a new genome once it has depleted all its energy or
reached the maximum lifetime, leading to asynchronous generation changes



926 A. Steyven et al.

throughout the population. Hence, the data gathered at each interval represents
a snapshot across robots of multiple ages and therefore does not necessarily
capture the peak performance of each robot (i.e. it may include very ‘young’
robots). However, given that the goal of the experiment is to understand the
interplay of the specific algorithm and environment under consideration, this is
not a relevant factor.

5 Analysis

Figure 1 shows three rotated 3-dimensional plots of surface obtained using 100
robots after 375,000 iterations. The x and y axes represent the count and value
variables, while the z axis represent the median δE of the robot population over
the last 2500 iterations. The grey plane marks a value for δE of zero, at which
point robots have an energy balance of zero, i.e. the same amount of energy as
they started the experiment with. Three broad regions are noticeable: a large
region in which the robots have positive δE (green and blue value above the grey
plane), a region lying on the plane itself, and finally a region below the plane
in which robots are spending more energy than they are collecting, i.e. δE < 0.
In order to explore this in more detail, a 2-dimensional top-down projection
is shown in Fig. 2 obtained from populations of 50, 75 and 100 robots, and is
discussed in detail below.

(a) rotated 90◦ right (b) centred (c) rotated 90◦ left

Fig. 1. View on the resulting surface from different angles. The figure was created
by plotting the median δE of the last 2500 iterations of the experiment. The grey
plane marks a value for δE of zero, at which point robots in an experiment have an
energy balance of zero. In other words, the same amount of energy as they started the
experiment with. A 3D model can be found at [9] (Color figure online)

5.1 Different Performance Regions

Figure 2 shows clearly that the landscape is defined by four different regions:
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Fig. 2. Overview of andscape, as plot of the real data on the left and as a cartoon
version on the right. 4 different regions are shown: (A) Dead Zone, (B) Lean Valley,
(C) Neutral Line, (D) Excess Energy. (Color figure online)

(A) Dead Zone: In this region, the environment does not provide enough energy
for the algorithm to evolve controller that can survive a full run. Low values for
both parameters, count and value result in the extinction of the whole robot
population within a few generations. The random genomes that the controllers
are initialised with generally result in a random spinning behaviour, rather than
movement. This random behaviour, combined with the lack of energy tokens
in the immediate vicinity in which the robot is born, mean that robots cannot
survive given its inability to move.

(B) Lean Valley (negative δE): This region starts at the edge of the dead zone
that marks the point where there is just enough energy available that some robots
survive until the end of the experiment, i.e. it marks the point where a robot has
spent all its initial energy and started picking up tokens from the environment.
Moving down towards the bottom of the valley, an increasing number of robots
survive as there is more energy in environment, with the corollary that each robot
has less total energy — the energy available is shared between more robots. The
bottom of the valley marks the minimum δE that still enables survival. Moving
upwards out of the valley on the other side, robots gradually get better in both
harvesting energy from the environment and managing their residual energy
as a result of evolving better strategies. For example, good strategies optimise
movement, or avoid moving towards tokens in which there are other robots
close by.

(C) Neutral Line ( δE = 0): This line marks the points in the environment where
the environment provides exactly enough energy to enable a robot to maintain
an energy balance of zero, i.e. the costs of moving and communicating are just
balanced by energy harvested.
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(D) Excess Energy ( δE > 0): In the final region, in which both cost and value
are high, robots are able to locate more energy in the environment than is
required to maintain their initial energy E0, either due to the abundance of
pucks or the high energy value of pucks.

5.2 Environmental Influence on Behaviour

In order to properly understand the evolved behaviours that lead to the land-
scapes just described, a more detailed analysis is required. Figure 3 examines
pairings of (count, value) along the three dashed lines in 2, i.e. equivalent-value
(a-b), equivalent-count (c-d) and the diagonal in which count = value line (e-f).
The figure shows boxplots of the δE values at specific pairings of (count, value)
and the ratio of genome broadcasts made to unique genomes received over a
lifetime. The latter quantity leads to insights into behaviour as it relates to
the number of unique robots encountered by an individual robot: a robot will
broadcast indiscriminately to any robot in its range but will only collect unique
genomes. At the equivalent-count and equivalent-value lines, we fix the parame-
ter count and value respectively, and successively increase the other parameter
in steps of 50.

5 points are shown. The first point on (a) corresponds to a total energy Etot

that is the same as the first points on graphs (c) and (e) below it etc.1. For a
specific value of Etot, then is clear that high value combined with low count
leads to robots that have increased δE when compared to robots with high
count but low value (graph (a) compared to graph (e)). Robots must therefore
evolve behaviours that enable them to seek out the rare but high-value pucks.
These robots also have high broadcast:genome ratios, suggesting the robots are
frequently coming into contact with the same robots. A possible explanation
lies in the fact that the robots appear travel in small groups, thus broadcasting
continually to the same robots; the rare occurrence of pucks leads to many robots
having to travel towards the same regions of the space. On the other hand, a
high count leads to robots that receive more unique genomes than in the high
value case: this is suggestive of a more random movement pattern that enables
each robot to encounter many unique robots during its lifetime. In this case there
is low selection pressure to evolve focused movement due to the abundance of
pucks.

5.3 Behaviours in the Neutral Region

We propose that the energy neutral region is of greatest interest for researchers
wishing to conduct research moving beyond genetic evolution of survival, for
example using individual or social learning [8] or task-driven research [4]. In
this region, on the one hand, robots are able to survive, while on the other, the
environment does not over-provide, thus ensuring that there is scope for robots

1 While this is exactly true for the first and third rows, in the middle row which
represents equal count/value it is necessary to approximate.
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Fig. 3. Cuts through different parts of the landscape. Points towards different behav-
iours in terms of exploration. (a-b) value = 1150, vary count; (c-d) count = value;
(e-f) count =1150, vary value. (Color figure online)

Table 2. Results obtained at three configurations within the neutral region

Count Value Robots

50 75 100

Age Age
Genome

Brodcasts
Genome Age Age

Genome
Brodcasts
Genome Age Age

Genome
Brodcasts
Genome

200 1150 770 107.94 46.61 767.5 63.86 28.99 667 49.97 21.18

500 500 1026.5 86.12 39.11 1038.5 52.39 25.93 928.5 41.26 19.67

1150 200 1173.5 79.83 33.43 1093 47.39 21.95 1059 36.52 15.49

to learn novel behaviours. We further investigate three specific points within
this region there is approximately the same amount of energy available in the
environment (Table 2). The table shows the median age increases with increas-
ing count — it is easier to maintain sufficient energy to survive as availability
increases. The lower median observed at low count reflects the fact that many
robots do not survive long. The time to find a new unique genome (age:genome)
is shortest at high count, reflecting frequent encounters with novel robots. Broad-
cast:genomes is highest at low count as observed in the previous section. All three
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configurations lead to the same energy balance of 0, but diverse behaviours result
in the gain in energy being offset by movement and broadcasting in each case.

6 Conclusion

We have presented the first analysis of the fitness landscape (as a function of
environmental parameter) that results from running an open-ended evolutionary
algorithm (mEDEArf) in an environment that is parameterised by two values
that control the distribution of energy in the environment. Adjusting the avail-
ability and value of energy pucks results in the evolution of a range of different
behaviours. Rather than arbitrarily selecting parameters in which to study evo-
lution, we suggest that it is vital to understand how these choices will direct
evolution, by changing the selection pressure exerted by the environment.

Three distinct regions are observed in which the final energy balance can be
negative, neutral, or positive. A fourth region is found in which robots cannot
survive. We propose that the energy neutral region is a good region in which
to undertake experiments. It provides an environment in which robots are able
to survive, enabling experimentation, while at the same time, will reward new
behaviours which are able to more efficiently harness energy from the environ-
ment. It is clear that the environment plays a key role in influencing what kind
of behaviours emerge, in that it is not the total amount of energy available that
matters but also the manner in which it is spread. Future work should be aimed
at understanding the landscape in more detail, and in particular, explaining the
ruggedness of some regions.
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Abstract. We evaluate the performance of estimating the number of
local optima by estimating their proportion in the search space using
simple random sampling (SRS). The performance of this method is com-
pared against that of the jackknife method. The methods are used to
estimate the number of optima in two landscapes of random instances of
some combinatorial optimisation problems. SRS provides a cheap, unbi-
ased and accurate estimate when the proportion is not exceedingly small.
We discuss choices of confidence interval in the case of extremely small
proportion. In such cases, the method more likely provides an upper
bound to the number of optima and can be combined with other meth-
ods to obtain a better lower bound. We suggest that SRS should be the
first choice for estimating the number of optima when no prior informa-
tion is available about the landscape under study.

1 Introduction

Local search algorithms are widely used to find solutions to many optimisation
problems either on their own or as a part of other metaheuristics. The neigh-
bourhood operator they employ defines a structure over the search space; the
properties of that structure can strongly influence their performance. One of
these properties is the number of local optima, which combined with the addi-
tional knowledge of other properties such as the quality of the optima and the
correlation between the basin size and fitness can give an indication of the struc-
ture difficulty. Nonetheless, knowing only the number of local optima can still
provide some guidance in informing the choice of the neighbourhood operator.
The knowledge of the number of local optima can also be used to study its growth
behaviour, as the dimensionality increases, or across different values of problem
parameters (e.g. phase transition control parameter). However, the number of
local optima in a given instance is not known in advance and counting them
is infeasible in most cases, apart from very small problem sizes. Therefore, the
need for obtaining a statistical estimate of the number of local optima arises.
Having an estimate of the total number of optima can also be helpful in com-
menting on the quality of the found local optima or the confidence that the
global has been seen [17]. In the last two decades, a number of approaches have
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been proposed for estimating the number of local optima in combinatorial opti-
misation problems (COPs) [4,6,8,9,15–17]. Most of these methods start from a
random sample of different configurations and apply local search to them until
a local optimum is reached. Some of the methods are non-parametric estimators
such as jackknife and bootstrap [6], while others assume some parametric dis-
tribution of the basin sizes (e.g. gamma distributions) [8,9]. However, each of
these methods has its particular limitations and none of them provide a good
estimate in all scenarios (e.g. when the basin sizes are different or when the
number of optima is small). For example, the jackknife method [6] requires the
sample size to increase as the number of optima increases, which is impractical
since the number of optima grows exponentially or sub-exponentially with the
problem size in most problems [13,15]. One drawback of the bootstrap method
is its computational demands to carry out the re-samplings [6]. The approach
proposed by [8] models the basin sizes using gamma distribution and requires
an estimate of the parameter value of the distribution, which may not be prac-
tical. Another possible limitation of all the methods that apply local search to
an initial random sample is the time needed to converge to a local optimum. In
many cases, this time is linear or superlinear in problem size [15,21], but it can
be exponential in other cases [5]. A review and an evaluation for several of these
methods and others from the statistical literature can be found in [12].

The problem of estimating the number of local optima in COPs can be con-
sidered as the classical problem of estimating a population proportion in statis-
tics. However, the use of this method to estimate the number of local optima is
seldom found in the literature. It has been used to estimate number of optima
in the multidimensional assignment problem [11], and in the quadratic assign-
ment problem [19,20]. [4] mentioned the attractiveness of the simplicity and
the unbiased estimate provided by this method, but they argued against it as
the required sample size can be very large when the proportion is exceedingly
small. They also criticised that in such a case, the method is more likely to pro-
vide an upper bound estimate rather than a lower bound one. [12] recommends
using it only when all or most of the sampled optima have been seen once, after
applying local search to an initial sample of points. This method is problem-
independent and we argue that it is the best for estimating the number of local
optima in terms of simplicity, accuracy and computational requirement when
their proportion is large. As mentioned before, the required sample size for an
accurate estimate increases as the proportion decreases, which makes obtaining
an accurate estimate very expensive. However, an upper bound on the number
of optima in such cases can still be obtained with reasonable sample sizes, giving
some useful information about the studied landscapes. In the rest of this paper,
we refer to estimating the number of local optima by estimating their propor-
tion as simple random sampling (SRS). To provide a baseline, we compare the
performance of SRS with the performance of the jackknife method. In Sect. 2,
we introduce some preliminaries. In Sect. 3, we describe SRS and jackknife, and
discuss different choices of confidence intervals for SRS. In Sect. 4 we describe
the experimental settings and discuss the results.
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2 Preliminaries

Search Space: The search space X is the finite set of all the candidate solu-
tions. The fitness functions of all the studied problems in this paper are
pseudo-Boolean functions, hence the search space size is |X| = 2n.

Neighbourhood: A neighbourhood is a mapping N : X → P (X), that asso-
ciates each solution with a set of candidate solutions, called neighbours,
which can be reached by applying the neighbourhood operator once. The
set of neighbours of x is called N(x), and x /∈ N(x). We consider two dif-
ferent neighbourhood operators: the Hamming 1 operator (H1 ) and the 1+2
Hamming operator (H1+2 ). The neighbourhood of the H1 operator is the set
of points that are reached by a 1-bit flip mutation of the current solution x,
hence the neighbourhood size is |N(x)| = n. The neighbourhood of the H1+2
operator includes the Hamming one neighbours in addition to the Hamming
two neighbours of the current solution x, which can be reached by a 2-bits flip
mutation. The neighbourhood size for this operator is |N(x)| = (n2 + n)/2.

Fitness Landscape: The fitness landscape of a combinatorial optimisation
problem is a triple (X,N, f), where f is the objective function f : X → R,
X is the search space and N is the neighbourhood operator function [18].

Local Optima: We define a local minimum x∗ ∈ X as f(y) > f(x∗) for all
y ∈ N(x∗). A local maximum is defined analogously. We use the term local
optimum to denote either a local maximum or a local minimum. We refer to
the actual number of optima in a given landscape as v.

Local Search: The local search strategy we use is the best improving move,
stopping when a local optimum is reached.

Basin of Attraction: The basin of attraction B(x∗) for an optimum x∗ ∈ X is
the set of points that leads to it after applying local search to them, B(x∗) =
{x ∈ X | local-search(x) = x∗}.

3 Estimation Methods

3.1 Simple Random Sampling

Suppose that a random sample of size s is taken from the search space, and
that Y optima has been observed in the sample (0 ≤ Y ≤ s), p is the unknown
proportion of the optima in the search space. Since the sample size is fixed, and
the sampled configurations are independent and have a constant probability of
being an optimum given by p, then Y has a Binomial distribution, B(s, p), with
s trials and p success probability. The unbiased point estimate of the population
proportion is given by p̂ = Y/s and the estimated number of local optima can
then be directly calculated by multiplying p̂ by the search space size S = |X|.
There are several methods for computing confidence interval estimates for p; the
most referred ones are based on the approximation of the binomial distribution
by the normal distribution [14]. A rule of thumb, that is frequently mentioned,
is that the binomial distribution is suitable for approximation by the normal
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distribution as long as sp ≥ 5 and s(1 − p) ≥ 5 [2,22]. The most widely used
confidence interval for p is the standard Wald confidence interval (CIs) [2,14,22]:

CIs = p̂ ± zα/2

√
p̂(1 − p̂)

s
(1)

where zα/2 is the z-score for (1 − α)100% confidence level and zα/2

√
p̂(1−p̂)

s is
the error margin e. The error margin can be corrected for a finite population

of size S to be equal to e = zα/2

√
p̂(1−p̂)

s

√
S−s
S−1 , where the value

√
S−s
S−1 is the

finite population correction (fpc) factor [22]. The value of fpc is approximately
one when S is large compared to s, and is obviously equal to zero when s = S.
The sample size for a desired confidence level and a desired margin of error can
be determined for an infinite population by:

s0 =
z2α/2p̂(1 − p̂)

e2
(2)

If no prior information about p or no initial estimate of p̂ is available, then p̂ can
conservatively be set to 0.5 where the expression p̂(1− p̂) is maximised. This will
ensure that the sample size is at its maximum for the desired e. However, the
proportion of optima is typically much smaller than that, thus it might be more
wise to set p to a smaller value and set e to a much smaller value. The sample
size can be corrected for a finite population by the following formula:

s1 =
s0S

s0 + (S − 1)
(3)

From Eq. (2) we can see that the sample size does not depend on the popula-
tion size but only on the desired confidence level, the desired margin of error, and
the estimate of p. The behaviour of Wald interval is poor when p is close to 0 or
1, and when Y = 0 or Y = s, the length of the Wald interval is zero [1,2,14]. The
exact Clopper-Pearson interval (exact in the sense of using the binomial distribu-
tion rather than the approximation by the normal distribution) is an alternative
method to consider in such cases. However, and because of the inherent con-
servativeness of exact methods, other approximate methods are more useful [1].
The Agresti-Coull confidence interval (CIAC) is recommended for correcting the
Wald interval. It recentres the Wald interval by adding the value z2α/2/2 to Y so
it becomes Ỹ = Y +z2α/2/2 and adding the value z2α/2 to s to become s̃ = s+z2α/2.
When the z-score for the 95 % confidence level (z20.05/2 = 1.96) is approximated
to 2, the Agresti-Coull interval is equivalent to adding two successes and two
failures to the sample [1,2]. The corrected point estimate is p̃ = Ỹ /s̃ and the
confidence interval is given by:

CIAC = p̃ ± zα/2

√
p̃(1 − p̃)

s̃
(4)

Using Agresti-Coull confidence interval, the SRS estimation of the number
of local optima is given by:

v̂SRS = p̃S (5)
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3.2 Jackknife

Jackknife is a non-parametric method based on the idea of re-sampling to reduce
the bias of the estimate. The use of jackknife to estimate the number of local
optima was first proposed by [6]. We selected the jackknife method as a com-
parison baseline for two reasons: jackknife has an attractive simple and fast
closed-form computation, and it is recommend to be used when the size of the
sample is adequate with respect to v [6,12]. Starting from s different randomly
sampled configurations and after applying local search to each one of them, the
jackknife estimate of the number of local optima is given by:

v̂JK = β +
s − 1

s
β1 (6)

where β1 is the number of optima that have been seen once and β =
∑r

i=1 βi

is the number of distinct optima seen. Note that this is a special case of the
jackknife estimator where one point is left out of the original sample s at a time.
A generalised estimator that considers leaving out 1, . . . , 5 points at a time can
be found in [3]. As pointed out by [17], the choice of the most suitable number of
points to leave out in order to achieve a better estimate is problem-dependent.

4 Experiments

We obtain statistical estimates of the number of optima in randomly generated
instances of the number partitioning problem and the 0–1 knapsack problem.
The aim of the experiments is twofold: compare the estimates of SRS with that
of jackknife, and examine the effect of the sample size on the accuracy of the SRS
estimate. We compare the performance of the two methods using two sample sizes
to allow for a fair comparison, since SRS uses at most s(|N(x)| + 1) number of
fitness evaluations compared to s(|N(x)|+1)+t|N(x)| fitness evaluations used by
jackknife, where t is the total number of steps taken when descending(ascending)
from each initial configuration. We describe the settings of the two sample sizes
in more details in the results subsection.

4.1 Combinatorial Optimization Problems

Number Partitioning Problem (NPP). Given a set W = {w1, . . . , wn} of
m-bit positive integers (weights) drawn at random from the set {1, 2, . . . ,M}
with M = 2m, the goal is to partition W into two disjoint subsets S, S′ such
that the discrepancy between them |∑wi∈S wi − ∑

wi∈S′ wi| is minimised. The
instances we study have weights drawn from a uniform distribution and m = n.

When the weights are drawn from a uniform distribution, the theoretical
average proportion of the local optima in the H1 landscape is given by the
following formula that was obtained using statistical mechanics analysis [7]:

〈p〉NPP =

√
24
π

n−3/2 (7)
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0-1 Knapsack Problem (0-1KP) is defined as follows: given a knapsack of
capacity C and a set of n items each with associated weight wi and profit pi,
the aim is to find a subset of items that maximises f(x) =

∑n
i=1 xipi, subject

to
∑n

i=1 xiwi ≤ C,where x ∈ {0, 1}n, C = λ
∑n

i=1 wi, and 0 ≤ λ ≤ 1. Infeasible
solutions that violate the given constraint are penalised by subtracting this value
from the fitness function: Pen(x) = ρ (

∑n
i=1 xiwi − C) +

∑n
i=1 pi, where ρ =

maxi=1,...,n {pi} /mini=1,...,n {wi}. The weights of the instances studied in this
paper are drawn from a discretised normal distribution N (2n−1, 2n

10 ).

4.2 Results

The mean estimates of v in the two landscape of the 0-1KP is shown as n grows
in Fig. 1 (note that some data points lie on top of each other). The estimates were
obtained by the jackknife and SRS, and were averaged over 10 samples for each
sample size. The sample sizes are set as follows: first we obtained the sample size s
for each n from Eqs. (2) and (3) by setting e = 0.005, p̂ = 0.3 and zα/2 = 2.576.
Note that the sample size, only changes slightly as n increases, starting from
s = 45, 701 when n = 18, until it reaches s = 55, 351 when n = 100. After
obtaining s, we then set the small sample size of SRS to s and the small sample
size of jackknife to s − t + t/(|N(x)| + 1) (i.e. we subtract the fitness evaluations
used when ascending from the sample budget). We set the large sample size of
jackknife to s and the large sample size of SRS to s+t−t/(|N(x)|+1), where t is
the total number of steps taken by jackknife with the large sample. The samples
are drawn without replacement for n ≤ 24. The figure shows that SRS using
both small and large sample sizes accurately estimates the real proportions in
both landscapes, apart from n = 100 in the H1+2 landscape. The discrepancy
between estimates of the large and small samples in this case, in addition to
the larger standard deviations, indicate that the proportion is small and that
the sample size, in particular the small one is probably inadequate. As for the
jackknife, both sample sizes quickly become inadequate as the number of optima
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Fig. 1. SRS and Jackknife estimates of the optima number (in log scale) as the problem
size grows. Each data point represents the average estimate of 10 samples from a single
instance of 0-1KP. The error bars show the standard deviations.
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Fig. 2. Each figure shows the estimates of the number of optima in a single instance
of 0-1KP, and each data point shows the estimate of a single sample. The error bars
around SRS estimates are the 95 % CIAC.
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Fig. 3. SRS estimates of the optima proportion versus s. The sample sizes are obtained
from Eqs. (2) and (3) by setting p̂ = 0.3 and zα/2 = 2.576 (corresponding to 99 %
confidence level). The results are for a single instance of 0-1KP of size n = 30. The
error bars are the 95% CIAC.

seen once quickly grows with n until all the optima that have been seen were
only seen once. Thus, the method fails to provide accurate estimates and grossly
underestimates v. This is more noticeable in the H1 landscape where v is large.
The CIAC of SRS estimates are very narrow in H1 landscape across all n, but
they get wider as n increases in the H1+2 landscape. In Fig. 2, we look closely
at the results of four instances of size n = 30, 100 from Fig. 1. The figure shows
the confidence interval around 5 estimates of each method with each sample
size. The width of the CIAC decreased with the large sample size as expected.
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Table 1. NPP sample sizes

n 24 30 100 1000

s e = 〈p〉NPP 276 388 2,395 75,915

e = 〈p〉NPP

5
6,889 9,697 59,855 1,897,856

e = 〈p〉NPP

10
27,520 38,785 239,420 7,591,421
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Fig. 4. Optima proportion in the H1 landscape of NPP for different vales of n. SRS
estimates are shown when the sample size is obtained with 3 different desired error
margins e (shown in Table 1). The results are for 100 random instances for each n.
Obtaining the real proportion was only computationally feasible for n = 24, 30. The
theoretical mean proportions are obtained from Eq. (7).
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The SRS large sample size for n = 30 is around 2 × 105 and around 3 × 105 for
n = 100. Obtaining the real number of optima was infeasible for n = 100 (note
that methods that exploit some knowledge of f can obtain v of larger n than that
feasible by exhaustive search of X [10]), therefore we show the estimate of SRS
with a larger sample size by setting Y to the sum of the number of optima found
in all the large samples and s to the sum of the large sample sizes. The outcome
v̂SRS of both instances are around 10−5. The very wide CIAC with negative lower
bounds around the small sample size estimates of SRS in n = 100 indicate that
the proportion is much smaller than what SRS can precisely estimate with this
sample size. In such a case, the v̂SRS more likely provides an upper bound to v.
However, we suggest combining the results of the two methods in such cases by
using the result of the jackknife method for a better lower bound than just zero.

Figures 3 and 4 show how the accuracy of SRS estimates increases as the
desired error margin e decreases. Decreasing e consequently increases s. The fig-
ures also show how SRS is able to accurately estimate the fraction of v with rel-
atively small s. As we mentioned before, the required s does not directly depend
on n, but since the fraction of v usually declines as n grows [7], the required s will
increase with n as shown in Table 1. The values of s in Table 1 are obtained from
Eqs. (2) and (3) by setting p̂ = 〈p〉NPP (obtained from Eq. (7)), zα/2 = 2.576 and
e as shown in the table. In both problems and in both landscapes, most of the
basin sizes are small and only very few ones are large.

5 Conclusions

Simple random sampling with the CIAC provides a simple way to obtain an
unbiased statistical estimate of the number of local optima. The accuracy of
the obtained estimate depends on the sample size s, which can be determined
for a desired margin of error e. A negative lower bound of the CIAC usually
indicates that the proportion is smaller than the desired e. In such a case, s can
be increased considering that it only costs at most |N(x)|+1 fitness evaluations
per configuration. This is practical as long as the proportion is not exceedingly
small. Alternatively, the estimate of SRS can be used as an upper bound as it
is more likely to provide an overestimate in such cases. It can be combined with
the estimate of another method that applies local search to an initial sample
for a lower bound other than zero (since these methods usually tend to provide
an underestimate [12]). We recommend that SRS should be the first method to
use for estimating the number of optima, especially when no prior information
is available about the problem being studied.
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15. Prügel-Bennett, A., Tayarani-N, M.-H.: Maximum satisfiability: anatomy of the
fitness landscape for a hard combinatorial optimization problem. IEEE Trans. Evol.
Comput. 16(3), 319–338 (2012)

16. Reeves, C.R.: Direct statistical estimation of GA landscape properties. Found.
Genet. Algorithms 6, 91–107 (2001)

17. Reeves, C.R., Eremeev, A.V.: Statistical analysis of local search landscapes. J.
Oper. Res. Soc. 55(7), 687–693 (2004)

18. Stadler, P.F., Stephens, C.R.: Landscapes and effective fitness. Comments Theor.
Biol. 8(4–5), 389–431 (2002)
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Abstract. Evolutionary computation is a field defined by large data sets
and complex relationships. Because of this complexity it can be difficult
to identify trends and patterns that can help improve future projects
and drive experimentation. To address this we present evoVision3D, a
multiscale 3D system designed to take data sets from evolutionary design
experiments and visualize them in order to assist in their inspection and
analysis. Our system is implemented in the Unity 3D game development
environment, for which we show that it lends itself to immersive naviga-
tion through large data sets, going even beyond evolution-based search
and interactive data exploration.

Keywords: Evolutionary computation · Multiscale · Visualization ·
Game engine

1 Introduction

It is said that history is the greatest teacher. Sometimes in order to move forward
one must review past decisions and choices in order to identify common trends
and patterns to predict future outcomes. This historical evaluation is especially
valuable in interactive evolutionary algorithms [6] and genetic programming [12],
where users review past experiments and trends in order to improve and refine
their selection algorithms and fitness evaluations. However, evolutionary systems
often produce very large data sets filled with complex relationships, making it
difficult for a human to effectively process. Additionally, there are times when
a system’s requirements can suddenly change, rendering previous evaluations
insufficient and forcing the user to begin their review from scratch. To address
these issues we present evoVision3D, a multi-level visualization environment, dis-
playing complex evolutionary data in a 3-dimensional, immersive scene (Fig. 1).
In this paper we will explore evoVision3D’s features and how we have expanded
upon evoVersion, an evolutionary data tracking and synchronization tool, we
have developed earlier [10].

c© Springer International Publishing AG 2016
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Fig. 1. Example of an evolutionary design workspace in 3D virtual reality using evoVi-
sion3D: columns represent experiments, disks denote populations, whose colours depict
average fitness.

2 Related Work

With the advent of highly capable video game development environments, such
as Unity 3D [4], it has become more and more common to use game engines for
scientific research and visualization [15]. Taking advantage of advanced visuali-
sation libraries and built-in physics engines, there is substantial opportunity for
their integration into professional research. In this paper, we present related work
in the areas of (1) evolutionary visualization, (2) VR technology and (3) evoVer-
sion, one of our previous systems implemented in the Unity 3D Game Engine.

2.1 Evolutionary Visualization

Building upon the foundation laid by evoVersion, we draw inspiration from pre-
vious works. We combine a node-ring graph visualization [9] with a multiscale
visualization model [14] to display data efficiently and with a dense arrangement
of visual information without becoming overwhelming. We organize each session
into a set of discrete generations represented by a series of stacked rings (Fig. 1).

We have drawn inspiration from the EvoShelf system, which applies tech-
niques normally found in photo management software, organizing evolutionary
data in a manner reminiscent to programs such as iTunesTM [8]. We use a sim-
ilar modular design, providing a flexible and plug-in friendly environment. As
we will demonstrate, the straightforward presentation of data makes searching
through larger populations smoother and less cumbersome. evoVision3D differs
from EvoShelf due to our use of 3D visualization rather than 2D with respect
to result presentation and navigation (see Sect. 3.1). With evoVision3D we pro-
vide a tool to coordinate collaborative development among multiple users, rather
than just one unsynchronized account.
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We expand on Daida et al.’s work on mapping expression trees to a circu-
lar 2D grid, which provides a simple visualization, facilitating the identification
of trends and patterns across a genetic programming session [7]. In compari-
son, evoVision3D enables data inspection, filtering, and analysis across multiple
experiments. A visual analytics interface for evolutionary data has been discussed
in [13]. More traditional 2D scatterplots are used to inspect and categorization
data. In contrast, evoVision3D expands the data presentation to 3D and across
multiple evolutionary sessions.

2.2 VR Technology and 3D Game Engines

Following evoVersion [10] and Shepherd’s genome browser [15], evoVision3D is
built using the Unity 3D game engine [4]. With the recent increase in pub-
lic availability for professional-quality game engines and their active developer
communities, these engines have proven to be an extremely valuable asset in
the development of visualization systems. A notable example of this is Unity’s
built-in support for virtual reality systems such as the Oculus Rift [3], allowing
for easy integration of these systems into immersive data display solutions.

2.3 evoVersion

evoVersion is a system designed to collect, store and visualize interactive evolu-
tionary data. evoVersion utilizes the iterative storage methodology of software
version control systems such as Git [2] and Subversion [1] and applies it to evolu-
tionary computation in order to record, organize and analyze the resulting data.
It consists of three primary components: interactive selection, data storage and
basic 3D visualization. The interactive selection component handles user-driven
evaluation and evolution of the phenotype population. The data storage com-
ponent records all iterations of the population on a remote SQL server. The
visualization component takes the data stored in the database and visualizes
histories of evolutionary designs in a column-based format (Fig. 2). evoVision3D
builds upon this system and focuses on improving the functionality and perfor-
mance of the visualization component with regard to the existing data collection
and storage mechanics while using the data sets produced by evoVersion as the
primary data source.

3 The evoVision3D System

evoVision3D seeks to build upon the visualization scheme seen in evoVersion and
provide the user with intuitive and efficient means of visualizing complex evo-
lutionary data sets from various evolutionary experiments. To achieve this evo-
Vision3D combines evoVersion’s data arrangement with an additional set of
features in order to further assist the user as they examine the data visualiza-
tion space. These features include: (1) a spatial arrangement of the visual data
representations, (2) a multi-level abstraction of data, (3) genealogy tracing for
specific elements, (4) similarity filtering, and (5) a set of dynamic interface panels
summarizing key details and statistics of a given element.
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3.1 Data Arrangement

In evoVision3D, each of a user’s evolutionary experiments are treated as a dis-
tinct event with a series of discrete populations arranged in ascending historical
order. Each evolutionary experiment, or session, is represented by a single verti-
cal column (Fig. 1). The height of this column reflects the number of generations
during that experiment, allowing the viewer to easily determine which sessions
were the most active. Session columns are arranged in a spiral pattern, growing
from previous sessions towards the center to the newest around the outer edge.

3.2 Multiscale Abstraction

A common problem encountered when visualizing these kinds of data sets in 3D
is the limits of computer memory and rendering capabilities, making it imprac-
tical to fully render each individual phenotype at once when dealing with larger
data sets. To address this challenge, evoVision3D utilizes multiscale abstraction
of the data sets to reduce the computational overhead incurred during the visu-
alization, improving both load times and frame rate significantly. Similar to [5],
evoVision3D uses multiple levels of visualization. Each level differs in terms of
breadth and detail of the data portrayed in order to collect both general and
specific details with regards to evolutionary design histories.

Based on a hierarchal storage structure, our system currently operates on
multiple levels of detail: sessional, generational, and individual (Fig. 2). The ses-
sional level data is represented as a series of stacked disks arranged to form a
column. Each of these disks represents a single generation of that session. Disks
are arranged in ascending order of creation, placing the first generation at the
bottom and the most recent generation at the top. The color of the disk denotes
the average fitness of the entire population at that point in time during the
experiment. Each color lies along a linear gradient between red and green, where

)c()b()a(

Fig. 2. The three levels of scale used in evoVision3D in descending order of detail.
Automatic scale transition is triggered by the user approaching a specific object. (Color
figure online)
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red denotes a fitness of 0 (worst rating) and green represents a fitness of 100
(best rating). Alternatively, an object colored gray either has yet to be evalu-
ated or has had its coloring toggled off by the user. By observing the color of
each disk within the column the user can get a general feel for the quality of a
session (Fig. 1).

At the generational level (Fig. 2b), each disk allows the user to view a series
of nodes arranged in a ring within the disk. Each node, depicted as a distinct
3D object, represents a single member of a population. The color of each node
represents the specific fitness of its corresponding element. This gives a more
detailed breakdown of a generation’s population without the need to render
each individual phenotype, while also providing a quick visual summary of their
fitness ratings.

At the individual level (Fig. 2c) the system renders the individual phenotypes
of the elements within a generation. The nodes from the generational level lose
their transparency and a representation of that element’s phenotype is rendered
inside the node. This presumes that a visual representation is available for each
element. This allows the user to see a depiction of the element in combination
with its fitness, represented by the color hue.

Each of these levels are rendered dynamically on demand. This keeps the
memory overhead for the system minimal, while also reducing the amount of
content loaded when the visualization engine initializes. This allows the system
to maintain a high degree of efficiency even when rendering large data sets. The
transition between each level of detail can be both manually and automatically
triggered as needed. Automatic transitions are triggered based on the user’s
position relative to the session columns in the scene. A generation disk enters
the generational level of detail when the distance between their position and
the center point of a given disk is less than a user-defined value (Fig. 3). When
this distance once again becomes greater than this user-set value the disk will
return to its previous sessional level of detail (an opaque colored disk). The
individual level of detail is triggered when the distance between the user and
a disk is less than the radius of a generation’s disk. In order to automatically
trigger this transition the user enters the column in question, providing a 360
degree panoramic view of the local population. As with the generational level,
the disk returns to its previous level of detail when the user exits the column
space of that particular session.

Manual transitions can be invoked through key strokes at any time and will
set the entire scene to a specific level of detail without regard to the user’s
position in the scene. These manual modes can be useful when trying to identify
trends at a certain level of detail, allowing the user to navigate through and
inspect the visualization space. This allows the system to maintain a minimal
amount of wait time to load each scene.

3.3 Genealogy Tracing

One of the key aspects to evolutionary systems is their application of iterative
development. New elements are derived from pre-existing elements through a
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Fig. 3. An illustration of the conceptual boundaries used to trigger scale transitions
in the visualization space. As the user approaches a generation disk its visual models
become more and more detailed.

combination of crossover and mutation operations. Mutation is the process of
applying a random modification to an existing genotype, while crossover is the
act of combining two or more genotypes to produce a new child that shares
a part of each parent’s genotype combined together [10]. It is therefore quite
valuable to maintain an understanding of an element’s ancestry in order to help
identify trends and patterns created through inheritance. In evoVision3D one
can trace through a targeted element’s genealogical history in order to identify
and visualize the relationship it shares with its ancestors (Fig. 4). Serving as a
filter, the genealogy trace removes all objects not related to the selected element
from the scene and sets all remaining nodes to the individual detail level. The
system then procedurally generates a series of line segments, where each line
represents the relationship between a parent and its children. These connections
produce a 3-dimensional family tree for the selected element, allowing the user
to observe the genetic changes that culminated in the production of the target
element. This operation uses a breadth-first expansion down the generations,
allowing the user to examine the connections from more recent generations to
older generations.

3.4 Similarity Filtering

Similarity filtering allows the user to identify what sections of a user’s experiment
set occupy the same genotype neighborhood. It allows the user to select an
element and calculate its similarity to all other elements present in the scene.
All elements whose similarity falls below a user-set threshold are filtered out,
leaving only those individuals that have significant similarities to the selected
element (Fig. 5). The colors of these individual nodes and the encompassing
generational disks are changed from visualizing fitness to instead reflect the
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Fig. 4. Visualizing an element’s genealogy: line segments illustrate the relationship
between parent and child (from top to bottom in each column). Cyan lines indicate
a mutation while yellow lines denote a crossover relationship, allowing for quick iden-
tification of development patterns within a session. The left column shows a mix of
mutation and crossover, the middle session evolved mostly by crossovers, whereas only
mutations created the individuals in the session on the right. (Color figure online)

Fig. 5. Filtering the scene based on genetic similarity. The chosen phenotype is pre-
sented in the top left of the screen and only the nodes that have reached a user-defined
degree of similarity are rendered in the scene. (Color figure online)
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degree of similarity to the chosen element. Green denotes high similarity, while
red denotes low similarity.

3.5 Dynamic Summary Panel

The multiscale representation and color encoding provide an effective summary
of an element’s phenotype and fitness. evoVision3D supplements this by pro-
viding three dynamic interface panels with a summary of an object’s data and
statistics. This function dynamically loads the data of any selected object in
the scene, producing a summary of the underlying data, a close up view of its
phenotype (if applicable) and a comparison of its fitness compared to all other
objects in the scene (Fig. 6).

Fig. 6. Panel overlay. By selecting an object in the visualization space a summary view
of key information is displayed, including summary data (center), phenotype viewer (to
the right) and fitness statistics (to the left).

Data Panel. The data panel serves as a summary of an item’s data as stored in
the SQL database. Appearing next to the user’s cursor, it consists of a translucent
back panel and a textual output of key information. The information changes
depending on the detail level. At the sessional level, a generation’s disk dis-
plays high level information such as the population size at that generation and
the ID number of the associated session. Alternatively, at the individual and
generational levels the panel instead displays information for the now visible
individual.

Phenotype Viewer. Displayed in the bottom right corner of the screen (Fig. 6),
this panel allows the user to quickly check an element’s phenotype without having
to trigger the individual level of detail. This is useful for inspecting individual
elements while operating on the generational level of detail, without the need
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to reposition the camera while still allowing the user to rotate and magnify the
viewer space. This can assist in the identification of patterns shared by elements
such as, for example, a certain fitness range via manual observation and selection.

Radial Glyph. Expanding on evoVersion’s radial fitness rings [10], we added a
glyph display contained inside a circular boundary, depicted in the bottom left
corner (Fig. 6) This panel consists of two primary components: a measurement
guide and a data map. The measurement guide is a translucent blue diamond
that serves as a form of relative measurement for the given data. Each of the four
points on this diamond represents a specific attribute. Starting from the topmost
point and moving clockwise these points measure the fitness of the current target
(Ind), the average fitness of the current target’s generation (Gen), the average
fitness of the target session (Ses) and the average fitness for every single session
currently in the scene (All). The respective values are plotted along the line
between the center of the guide and its corresponding corner. The higher the
value, the closer its point is plotted to the outer edge of the guide. The points
are connected to form an irregular n-sided shape that, for example, represents
the target’s fitness rating compared to other elements in the scene. This model
of representation can easily be expanded to include more than four values.

4 Conclusion and Future Work

evoVision3D is a promising avenue for visualizing and exploring evolutionary
histories. Implemented in the Unity game engine [4], it provides a robust suite of
navigation and filtering tools for evolutionary data inspection and analysis. This
level of performance also makes VR support viable for the system as a whole,
allowing for a new avenue of immersive visualization to be explored. At this
point our future work is threefold: the expansion of existing features, integration
of gesture control to support immersive VR interaction and extending use of the
system to more complex evolutionary systems in order to test its viability in the
context of dense evolutionary data visualization [11] and collaborative coevolu-
tion [16]. We plan to expand upon the current color encoding and radial glyph
graphs used to analyze and compare the fitnesses of individual elements and gen-
erations. We are also working on a flexible search tool capable of visualizing the
similarity between population elements in terms of both genotype and phenotype
features to assist in identifying commonalities and trends within the data set.
The addition of gesture control to supplement peripheral systems such as the
Oculus Rift Virtual Reality Headset [3] makes navigation through the virtual
space more natural and intuitive, providing a logical alternative to the tradi-
tional mouse and keyboard interaction. Finally, in order to further reduce the
computational overhead and allow for rendering of even larger scenes we plan
to apply a dynamic octree implementation similar to that seen in Shepherd’s
genome exploration system [15] to further improve performance.
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Abstract. When combined with machine learning, the black-box analy-
sis of fitness landscapes promises to provide us with easy-to-compute
features that can be used to select and configure an algorithm that is
well-suited to the task at hand. As applications that involve computa-
tionally expensive, stochastic simulations become increasingly relevant
in practice, however, there is a need for landscape features that are both
(A) possible to estimate with a very limited budget of fitness evalua-
tions, and (B) accurate in the presence of small to moderate amounts of
noise. We show via a small set of relatively inexpensive landscape fea-
tures based on hill-climbing methods that these two goals are in tension
with each other: cheap features are sometimes extremely sensitive to even
very small amounts of noise. We propose that features whose values are
calculated using population-based search methods may provide a path
forward in developing landscape analysis tools that are both inexpensive
and robust to noise.

Keywords: Parameter tuning · Landscape analysis · Meta-learning ·
Noisy evaluation

1 Introduction

Tuning the parameters of large, stochastic simulations in science and engineer-
ing is becoming an increasingly important and popular application domain for
evolutionary algorithms (EAs) and metaheuristics (ex. [6,16,17]). These applica-
tions tend to involve fitness functions that are very expensive to compute—each
evaluation taking on the order of seconds, minutes, or even hours to complete.
To approach problems of this kind effectively, the algorithm designer must have
some means of quickly and efficiently gathering information about the problem
that can help reduce the number of generations that are necessary for a search
method to reach a satisfactory solution. In applications where a thorough ana-
lytical understanding of the problem is not available, this information-gathering
process is often restricted to learning about the problem by directly sampling
the evaluation function, which is treated as a black box.

c© Springer International Publishing AG 2016
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Finding ways of characterizing salient properties of fitness landscapes via
empirical data—and, especially, of predicting what kinds of algorithms are likely
to perform well on them—has been a fundamental goal of metaheuristics and
evolutionary computation research since the early days of the field. Researchers
have leveraged a number of different mathematical ideas over the years (such
as epistasis, correlational properties, and information theory) to produce several
families of black-box landscape features [11,14,18,19]. Because these statistical
methods are based solely on queries made to the objective function, they can
be used even on poorly-understood problems, where little or nothing is known
a priori about the relationships among variables.

In order for black-box landscape analysis to be useful in practice, however,
the information it provides about how to solve a given problem must outweigh
the cost of calculating the statistical features. The ‘budget’ of computational
effort that can be spared for up-front analysis is especially small in applications
whose evaluation functions involve expensive scientific simulations. A number
of landscape features have been proposed that can be computed effectively with
especially few queries to the evaluation function, at least on deterministic (noise-
less) test functions [1]. Real-world fitness landscapes, and stochastic simulations
in particular, often display some degree of noise, however.

In this paper, we are concerned about the intersection of noisy fitness land-
scapes and the calculation of informative landscape features for computationally
intensive applications. In some circumstances, noise may interfere, not only with
the progress of a search algorithm as it seeks a global optimum, but also with
the attempts of a landscape analysis tool to accurately estimate properties of
the task. The problem of noisy fitness functions was heavily studied in the 1990’s
and early 2000’s, and a variety of well-understood approaches are available for
configuring evolutionary algorithms to cope with noise [3,10]. Coping with noise
does not come for free, however—it often requires extra fitness evaluations which
we may not be able to afford when the evaluation function is computationally
intensive.

We find it necessary, then, to revisit the well-studied question of noise, now
in the context of a pressing need for effective landscape analysis tools that make
as few queries as possible to the evaluation function. In this study, we examine
several cheap-to-evaluate landscape features and show that a subset of them are
extremely sensitive to even very small amounts of noise. Furthermore, we find
that the error that this noise introduces into feature estimation can be difficult
to correct for in an efficient way. As an alternative, we propose features that
use population-based methods as a means of gathering information about the
landscape in a way that is both inexpensive and robust to noise.

1.1 Research Questions

Intuitively, it’s clear that qualitative features of an objective function such as
multimodality, deceptiveness, or the correlation of traits among parents and off-
spring [2,13] convey a great deal of information about whether a given search
strategy is well-suited to particular task. Early work on landscape analysis sought
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to identify ways in which a problem might be “easy” or “hard” for a particular
algorithm of choice (namely the genetic algorithm, ex. [8,9]). But as the philos-
ophy of the research community moves toward “solving the problem at hand in
the best way possible, rather than promoting a certain metaheuristic” [5], the
primary purpose of landscape analysis has shifted to serving as a predictive aid
in the design or selection of a custom algorithm that is well-suited to the given
task [15]. Landscape features can be used as input data for machine learning
algorithms, which are increasingly being used to learn predictive models for use
in algorithm selection and configuration (ex. [4]). Even if a particular statistical
feature is difficult for an engineer to interpret in terms of intuitive concepts like
multimodality, the feature may be useful if it provides salient or complementary
information to a machine learner in conjunction with other features.

If there is a great deal of error or bias in an estimate of a feature, however, its
usefulness as a basis for learning may in some cases be greatly diminished. There
is a practical need, then, for landscape features that are both (A) inexpensive
to estimate, and (B) accurate in the presence of small to moderate amounts of
noise. Table 1 details a number of features, taken from Abell et al., that can
typically be computed in on the order of a few hundred or a few thousand fit-
ness evaluations, but which are still sufficiently informative to enable a portfolio
method to perform well on a suite of noiseless benchmark functions [1]. These
satisfy our criterion of inexpensiveness (A), but how do they fair with noise (B)?

Research Question 1: How sensitive to noise are the 8 landscape features
identified in Table 1?

Next we begin an investigation into how error in the estimation of features can
be corrected for. A straightforward way to do this is to seek to approximate the
features of the expected fitness landscape F̂ (x) by taking several fitness samples
each time the landscape is queried and returning their ‘explicit average’ [10].

Research Question 2: Is using explicit averaging an effective means of
correcting for noise when measuring these features?

Finally, the features in Table 1 rely heavily on the results of a number of runs
of a hill-climbing method as a means of exploring the structure of the landscape.
Trajectory methods such as this are notorious for their sensitivity to noise. We
consider the possibility that a population-based method may be more effective
at identifying informative local optima in the presence of noise:

Research Question 3: Can population-based algorithms serve as a useful
alternative to hill-climbers for quickly gathering information about noisy
fitness landscapes?
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Table 1. Landscape features used this study.

Feature Description

1 MeanPairwiseLocalOptDist Mean pairwise distance between optima found by
a number of hill climbers.

2 StdPairwiseLocalOptDist Standard deviation of (1).

3 MeanLocalToBestDist Mean distance between the best known optimum
and the optima found by a number of hill
climbers.

4 StdLocalToBestDist Standard deviation of (3).

5 FractionBest The ratio of local optima found by the
hill-climbers that have fitness equal to the best
known optimum.

6 MeanRandomToLocalDist Mean distance from a number of random points to
the nearest optimum found with a hill climber.

7 StdRandomToLocalDist Standard deviation of (6).

8 FDC Local fitness distance correlation, based on the
best result of the hill-climbers

2 Methodology

2.1 Test Functions

Our experiments are conducted on 10-dimensional instances from the suite of 24
test functions that are implemented in version v15.03 of the COmparing Contin-
uous Optimisers (COCO) platform, a framework that has been used for a number
of years in the Black-Box-Optimization-Benchmarking (BBOB) workshops held
at GECCO and CEC. This test suite includes many well-known unimodal and
multimodal real-valued functions, such as the sphere, Rastrigin, and Rosenbrock
functions, along with rotated variants, etc., all of which are defined on a range
of [−5, 5] in each dimension. The COCO source code is available from http://
coco.gforge.inria.fr/.

In addressing RQ1, our independent variable will be the amount of noise on
the landscape. We opt to use a multiplicative noise model of the form

F (x) = f(x) + p · |f(x) − f(x∗)| · ε, (1)

where f(x) is the original (noiseless) test function, f(x∗) is the fitness of the
global optimum, and ε ∼ N (0, 1) is a standard Gaussian random variable.
The constant p controls the strength of the noise. In this model, the amount
of noise that is added to the landscape at the point x is proportional to the dif-
ference between its fitness and the global best fitness—so, the poorer a solution
is, the nosier it is. This qualitative rule holds in many applications, where poor
solutions often correspond to solutions that have especially unstable behavior.

http://coco.gforge.inria.fr/
http://coco.gforge.inria.fr/
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2.2 Features

All of the features in Table 1 make some use of the result of a number of inde-
pendent runs of a hill-climbing algorithm. We implement the hill climber as a
(1+1)-style evolutionary algorithm, and we run this method 100 times to gather
a set of representative local optima from which features may be computed. Each
individual in the EA is represented as a point x ∈ R

L, with L = 10, and we
apply a 1-dimensional Gaussian mutation operator to each element of the off-
spring with probability 1/L. We let each hill climber run for 3,000 steps, so as to
get a stable estimate of the features. It is worth noting, however, that features
based on hill climbing can be informative even if they are run only for a very
small number of steps [1].

Features 1–4 are computed directly from the best individuals found by the
100 runs. Feature 5 (FractionBest) denotes the fraction of the 100 hill-climbing
runs whose best individual has fitness equal to the overall best individual found
in all 100 runs. The intent of this feature is to measure the frequency with which
a greedy search method converges on a local optimum. There is always some
variation, however, in just how closely a given climber will converge to the true
local optimum. For the purposes of calculating this feature, then, we consider
two individuals to have ‘equal’ fitness if and only if the difference between their
fitnesses is less then an arbitrary threshold value of 0.01.

We compute features 6 and 7 using 1,000 random points. For feature 8, we
use a local variant of Jones’ well-known fitness distance correlation (FDC) [11].
Classical fitness distance correlation requires knowledge of the global optimum
to be computed. Since we are using synthetic test functions, we do have knowl-
edge of the global optimum. The purpose of this study, however, is to examine
the behavior of landscape features as exploratory, black-box analysis tools. We
follow Kallel and Scipemaier in defining a local FDC simply by substituting the
best known optimum for the global optimum [12]. In our case, the “best known
optimum” refers to the best optimum found by the 100 hill-climbing routines.

2.3 Coping with Noise

A test of RQ2 involves performing the feature measurements as described above,
but we now replace the fitness function F (x), which is a random variable, with
a constant estimate F̂ (x) of the expected fitness landscape like so:

F̂ (x) =
1
N

N∑

i=1

F (x). (2)

We will test this method’s effectiveness by empirically examining the relationship
between the observed error in feature estimates and the number of samples N .

To test RQ3, we replace the (1+1)-style EA used in the feature calculations
with a (μ + λ)-style EA. We vary the value of μ and keep λ = μ.
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Fig. 1. Mean feature profiles, averaged across 50 ten-dimensional instances of each of
the 24 noiseless test functions in the BBOB suite.

3 Results

3.1 Sensitivity Analysis

The features we have implemented provide us with an eight-dimensional char-
acteristic profile of each test function. The parallel plot in Fig. 1 visualizes these
profiles for all 24 of the noiseless test functions. We consider the profile calcu-
lated from each noiseless landscape to be the ‘true’ feature values. The question
is how our estimate of those feature values incurs error as noise increases (RQ1).

Figure 2 shows the value of each feature estimate, averaged over all 24 test
functions, as we increase the value of p (see Eq. 1). While there is a great deal of
variance in behavior across the 24 functions (not shown), in general we find that
features 1–4 are extremely sensitive to noise: the estimate becomes inaccurate as
soon as p reaches a value of about 10−3. The remaining feature estimators (6–8)
appear to be reasonably robust to small amounts of noise—but they suddenly
become inaccurate when p reaches a threshold of about 0.25.

This answers RQ1: The features under study are highly sensitive to noise in
the fitness landscape.

3.2 Explicit Averaging

We’ve shown that we can make the error in feature estimation explode by adding
small amounts of artificial noise. Now we turn to the question of whether we can
attenuate this error through explicit averaging of more than one fitness sample.
We implemented explicit averaging for fitness evaluation during the hill-climber
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Fig. 2. Deviation between the estimated and true feature values as noise increases.

runs—that is, in this section we use the same (1+1)-style EA to compute feature
estimates, but now every time an individual has its fitness evaluated, some N ≥ 1
fitness samples are taken and averaged according to Eq. 2.

Let the magnitude of the noise be fixed at the small value of p = 5 · 10−4.
Figure 3 shows the result of feature estimation averaged over all 24 instances
while allowing the number of samples N to vary. We find that using explicit
averaging of fitness has very little discernible impact on the accuracy of fitness
measurements. Even at N = 15, a great deal of error remains.

Our answer to RQ2 is thus negative: it seems that explicit averaging is not
an effective means of correcting for noise.

3.3 Population-Based Search

It is well known that population-based search methods can perform a kind of
‘implicit averaging’ that makes their performance robust to noise. This is borne
out in our experiments with the (μ + λ)-EA, shown in Fig. 4. We see a sharp
reduction in error when we increase μ from 1 to 2. As μ grows, however, we see
stark, systematic deviations from the true feature values. This may be because,
while the population-based EA is not significantly affected by small amounts
of noise, it also has a tendency to converge to high-quality or global optima
instead of the local optima that the features based on the (1+1)-EA are designed
to seek out.

Our answer to RQ3 is mixed, then: Replacing the hill-climbers in these
features with a population-based algorithm does overcome noise, but it changes
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the kind of information that the features gather from the landscape. Whether
this information is useful for prediction or not is a question that is beyond the
scope of this study.
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4 Conclusion

Noise poses a particularly difficult challenge to the solution of computationally
expensive problems. We find that the features under study, which are based on
identifying local optima with a greedy search method, are sensitive to noise,
yielding a positive answer to RQ1. Even very, very small quantities of noise are
sufficient to entirely frustrate efforts to accurately measure features of a fitness
landscape with these methods. Furthermore, we found that explicit averaging
of many fitness samples is not sufficient to substantially attenuate the error
caused by noise. A large number of fitness samples may be necessary to fully
counteract even the impact that a very minuscule quantity of noise has on feature
measurements—answering RQ2 in the negative. Consequently, the features we
have studied here, while they are initially appealing for computationally intensive
applications because of their low cost, become computationally infeasible in the
presence of noise.

We have shown that modifying these features to use a population-based algo-
rithm in place of the hill-climbers is a promising approach, allowing us to over-
come the issue of noise (RQ3). Because these algorithms are less greedy than a
hill-climber, however, they gather different information about the landscape, and
are less effective at collecting a representative sample of diverse local optima.

Our findings suggest that landscape analysis researchers should look toward
the design of features that use population-based algorithms to gather information
about the landscape. Future work might, for instance, explore replacing hill-
climbers with state-of-the-art multimodal optimization methods. These may be
able to overcome the noise problem while still gathering a representative sample
of local optima [7]. Such an approach may be able to maintain some of the
computational efficiency of the hill-climbing approach while also attaining some
robustness to moderate amounts of noise.

Acknowledgments. This work was funded by U.S. National Science Foundation
Award IIS/RI-1302256.
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Abstract. This paper formally defines multimodality in multiobjective
optimization (MO). We introduce a test-bed in which multimodal MO
problems with known properties can be constructed as well as numeri-
cal characteristics of the resulting landscape. Gradient- and local search
based strategies are compared on exemplary problems together with spe-
cific performance indicators in the multimodal MO setting. By this means
the foundation for Exploratory Landscape Analysis in MO is provided.

Keywords: Multiobjective optimization · Multimodality · Landscape
analysis · Hypervolume gradient ascent · Set based optimization

1 Introduction

In multiobjective optimization, respective algorithms are particularly challenged
by multimodality of the underlying landscape caused by the interaction of objec-
tive functions. Thus, sophisticated Exploratory Landscape Analysis (ELA, [7])
features which are able to assess the level and type of multimodality based on an
initial problem sample have huge potential for understanding algorithm behav-
iour, automated algorithm selection and algorithm design. Despite the success
of ELA in single-objective continuous black-box optimization (e.g. [1,4]) multi-
objective optimization has not been appropriately addressed apart from limited
approaches in the combinatorial context (e.g. [6,9]) or expert-based character-
istics such as the Pareto front shape, the dimensionality and some intuitions
on multimodality. We here lay the groundwork for constructing such experi-
mental features systematically by providing formal definitions of multimodality
in terms of distinguishing between local and global efficient sets. A versatile
problem generator is introduced for designing multimodal mixed sphere prob-
lems with predefined characteristics. Bringing together theoretical analysis and
experiments, and contrasting gradient and local search based methods, highly
increases understanding of the problem domain multimodality in multiobjective
optimization as well as the explorative algorithm.
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 962–972, 2016.
DOI: 10.1007/978-3-319-45823-6 90
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Section 2 introduces topological definitions, Sect. 3 details the problem gener-
ator and theoretically analyzes the resp. multimodal structures, Sect. 4 discusses
the exploration algorithms, Sect. 5 presents algorithm and problem characteris-
tics, and Sect. 6 provides experimental results. Conclusions are drawn in Sect. 7.

2 Multimodality

We present an approach of defining multimodality in that we distinguish between
global and local efficient sets in R

d (the decision space). We are aware that most
parts can be generalized to other spaces. We first recall some topological notions:

1. Let A ⊆ R
n. The set A is called connected if and only if there do not exist two

open, disjoint subsets U1 and U2 of Rn such that A ⊆ U1 ∪ U2, U1 ∩ A �= ∅,
and U2 ∩ A �= ∅.

2. Let B ⊆ R
n. A subset C ⊆ B is a connected component of B iff C is connected,

and any subset of B which is a strict superset of C is not connected, and C
is non-empty.

Pareto concepts are given next: Let f : X → R
m be a multiobjective function

where X ⊆ R
d is the decision space. We will denote the component functions

of f by fi : X → R, i = 1, . . . , m. Given a totally ordered set (T,≤) where ≤
denotes the total order, we can define as usual the Pareto order, denoted by ≺,
on T k for any k ∈ N as follows. Let t(1) = (t(1)1 , . . . , t

(1)
k ), t(2) = (t(2)1 , . . . , t

(2)
k )

be elements of T k. We say t(1) ≺ t(2) iff t
(1)
i ≤ t

(2)
i , i = 1, . . . , k and t(1) �= t(2).

Specializing this to the reals with their natural, total order we obtain the Pareto
order on R

m. A point x ∈ X is called Pareto efficient or global efficient or for
short efficient iff there does not exist x̃ ∈ X such that f(x̃) ≺ f(x). The subset
of X consisting of all the efficient points of X is denoted by XE and is called the
efficient subset of X (or the efficient set of f). The image of XE under f is called
the Pareto front of f . To define local efficient points in X and local efficient sets
in the multiobjective case, we propose the following definitions:

Definition 1 (Efficiency of Points/Sets). A point x ∈ X is called a
locally efficient point of X (or of f) if there is an open set U ⊆ R

d with x ∈ U
such that there is no point x̃ ∈ U ∩ X such that f(x̃) ≺ f(x). The subset of all
the local efficient points of X is denoted by XLE.

A point x ∈ X is called a global efficient point of X (or of f) if there is no
point x̃ ∈ R

d ∩ X such that f(x̃) ≺ f(x). The subset of all the global efficient
points of X is termed efficient set of f and denoted by XE.

A subset A ⊆ X is a local efficient set of f if A is a connected component of
XLE (= the subset of X which consists of the local efficient points of X ).

Definition 2 (Local Pareto Front). A subset P of the image of f is a local
Pareto front of f , if there exists a local efficient set E such that P = f(E).
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The (global) Pareto front (PF) of f is obtained by taking the image under f of
the union of the connected components of the set of global efficient points of X .
If XE is connected, then the (global) Pareto front of f is also connected, provided
f is continuous on XE . One might also consider definitions related to connected
components in the objective space [8]. However, we will omit this for brevity.

3 Analytics on Simple Mixed Sphere Problems

We use a sophisticated problem generator based on the Multiple Peaks Model
2 (MPM2, [10]) to illustrate the proposed topological definitions and further
analyse the behavior of explorative algorithms.

f(x) = 1 − max
1≤i≤N

{gi(x)} , x ∈ R
d (1)

gi(x) = Hi

(
1 +

(√
(x − ci)T D(x − ci)

)si

/Ri

)−1

, i = 1, . . . , N (2)

Note that the gi functions define peaks with center ci, depth Hi, radius Ri and
shape si. D is the inverse of the covariance matrix while we concentrate on
spherical peaks with isotropic level curves (mixed spheres), i.e. D = cI, c ∈ R�=0.

A bi-objective optimization problem (f1(x|gi), f2(x|g′
i)) → min results in

choosing two different parameter sets – parameters of f2 are labeled by the
prime symbol. Exemplary problems are illustrated in Figs. 1, 2 and 3.

In order to evaluate and compare the Pareto fronts obtained by the opti-
mization algorithms used in this paper, the analytical Pareto front (and efficient
set) is derived in the following. First, we focus on the simplest case where each
objective function consists of only one peak. In this case the Pareto efficient set
PE is the line segment connecting c to c′: PE : {αc + (1 − α)c′ | 0 ≤ α ≤ 1}.

Then the parametric form of the Pareto front can be derived by mapping an
arbitrary point in the efficient set x̂ = αc+(1−α)c′ through the objective func-
tions, which – using the Mahalanobis distance d(c, c′;D) =

√
(c′ − c)T D(c′ − c)

– finally results after algebraic transformation in f2 as a function of f1, for c �= c′:

f2 = 1 − H ′

⎛

⎝1 +

(

d(c, c′;D′)

(

1 − R1/s

d(c, c′;D)

(
H

1 − f1
− 1

)1/s
))s′

/R′

⎞

⎠

−1

The range of f1 is [min{f1(c), f1(c′)},max{f1(c), f1(c′)}].
Using the expression above, we could calculate the red part of the global

Pareto front in Fig. 1. For multiple peaks the (local) efficient sets still settle on
line segments connecting each pair of peaks. It is difficult to derive the analytical
expression because the effective peak might change when traversing along the line
segment connecting peaks and multiple local efficient sets could exit on the same
line segment (check Fig. 3 for example). However, it is possible to approximate
the local efficient sets numerically by uniformly sampling on the line segments
and taking the maximal non-dominated subset of the samples.
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Fig. 1. Example of a simple mixed sphere problem in the decision (left figure) and
objective space (right). Objectives are visualized in the decision space by pink (objec-
tive 1) and blue (objective 2) contour lines. The connections between peaks from the
two objectives are shown as grey lines and the corresponding local efficient sets (or
fronts) are colored. Here, the red and green parts form the disconnected global PF,
whereas the cyan and purple parts show the remaining disconnected local PFs. The
given scenario represents three disconnected local efficient sets (green/purple, cyan,
red), two domination layers (red/green vs. cyan/purple) and four local Pareto fronts.
(Color figure online)

Fig. 2. Local Pareto fronts in the decision (left) and objective space (right) for a rather
simple mixed sphere problem consisting of one peak in the first objective (pink contour
lines) and three peaks in the second objective (blue contour lines). The red area is
caused by the fact that it belongs to the same local efficient set as the cyan area, and
at the same time to the global dominance layer. (Color figure online)
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Fig. 3. Local Pareto fronts for a complex mixed sphere problem consisting of five peaks
per objective, resulting in a total of 30 disconnected local efficient sets, 19 domination
layers and 167 local Pareto fronts.

4 Explorative Algorithms

Hypervolume Indicator Gradient Ascent (HIGA-MO). Taking the advantage of
the analytically computable gradient information of the mixed sphere problems,
we choose the Hypervolume Indicator Gradient Ascent [2,3], because it is capable
of generating well-distributed PF approximations and is almost free of control
parameters. The corresponding pseudo-code is given in Algorithm 1. The basic
idea is to maximize the Hypervolume indicator H of an approximation set of
the true PF by using the gradient of H. We denote the set of search points as
{x1, . . . ,xμ},xi ∈ R

d and X = [xT
1 , . . . ,xT

μ ]T ∈ R
μd. As H can also be expressed

as a function of the input vectors, one can calculate the Hypervolume indica-
tor gradient ∂H(X)/∂X. By applying the chain rule the so-called subgradients
∂H(X)/∂xi = [∂H(X)/∂yi] · [∂yi/∂xi] [2] can be computed for i = 1, . . . , μ.
In practice, a step-size control is used to adapt the step-size for each decision
vector.1

HIGA-MO performs a fast local search and some individuals might get stuck
in a local efficient set. However, in mixed sphere problems local efficient sets
might be connected to the global one and the Hypervolume indicator gradient
will steer the local efficient points towards the global one.

Stochastic Local Search (SLS). A simple local search strategy based on paral-
lel perturbation and elitist selection is implemented. Essentially, each individ-
ual candidate solution of the current solution set is perturbed once per round.
According to a simple (1+1)-selection scheme, for each pair of original and
related perturbed solution the original solution is replaced when dominated by

1 The HIGA-MO source code is available on moda.liacs.nl/index.php?page=code.
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Algorithm 1. Hypervolume Indicator Gradient Ascent
1 initialize the search points X uniformly in the search space
2 while the termination criteria are not satisfied do
3 Y ← evaluation of search points X
4 layers {Li}q

i=1 ← non-dominated-sorting of population R

5 for i = 1 to q do
6 for every element sj in layer Li do
7 compute the subgradient ∂H(X)/∂xj

8 xj ← xj + σ · [∂H(X)/∂xj ]
9 end for

10 end for
11 end while
12 return {Li}q

i=1,X,Y with yi = [f1(xi), f2(xi)]
T , i = 1, . . . , μ

the perturbed one. Initially, μ independently random solutions are generated
using a Latin hypercube design. In every iteration, each solution is modified by
an upper bounded normal distributed perturbation with maximum step size of
σ. Here the step-size is fixed. After the elitist and parallel selection process based
on domination, μ solutions are available for the next round until the maximum
number of iterations is reached.

The rational of using this simple approach is to contrast the HIGA-MO search
approach with a local search representative that is unable to traverse along local
Pareto fronts. We expect this approach to get stuck in local efficient solutions.

5 Problem and Algorithm Characteristics

Problem Characteristics. In contrast to sophisticated ELA features [4,7], we
know the underlying objective functions and solely intend to quantify some
obvious differences in landscapes. The count ratio describes the problems by
ratios related to the number of all local fronts or sets: count ratio.global
computes the percentage of fronts that are global PFs, count ratio.conn ps
the percentage of sets connected to any of the global efficient sets, while
count ratio.conn pf denotes the analogous percentage for PFs. The length
ratio characteristics compute ratios of the lengths of the fronts and sets:
length ratio.global ps computes the ratio of the lengths of all global Pareto
sets and all local sets, whereas length ratio.global pf denotes the analogous
ratio of global and local PFs. While length ratio.conn ps captures the ratio
of the total length of all sets connected to any of the global efficient sets and the
length of all local sets, length ratio.conn pf measures the analogous ratio in
objective space.

Algorithm Characteristics. We propose characteristics in order to capture dif-
ferences in local search behavior of the considered explorative algorithms.

The population characteristics describe the distribution of the final set of
individuals of an algorithm run. They measure the percentage of individuals that
are located in the ε-environment of any of the global PFs (pop.global front),
a front that is connected to any of the global PFs (pop.conn global front),
and any local front in general (pop.local front). The coverage characteristics
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addresses the percentage of fronts that are reached by the final “population”,
i.e. at least one individual of that population is located in the ε-environment of
the respective front.

We use the coverage of global fronts (cover.global front), fronts connected
to any of the global fronts (cover.conn global front), connected local fronts
(cover.conn local front) and local fronts in general (cover.local front). As
the number of fronts might be larger than the population size (i.e. the number
of considered individuals), we standardize each characteristic by its maximum.

6 Experiments

Experimental Setup. Two exemplary instances with different levels of multi-
modality (low, very high) were generated using the MPM-2 generator [5,10],
which is e.g. available in the R-package smoof. For our experiments, we used
the settings shown in Table 1. Our explorative algorithms (cf. Sect. 4), were run
with a population size μ = 50 and an initial step size of 0.01 (SLS) and 0.001
(HIGA-MO). Note that the step-size is adaptive in HIGA-MO and will increase
largely during the optimization while it remains unchanged in SLS.

Experimental Results. As stated in the previous sections, we applied different
algorithms (HIGA-MO and SLS) on two opposing multimodal, multiobjective
problems. The analyzed problems can in fact be divided into a simple (cf. Fig. 2)
and a complex scenario (cf. Fig. 3) as the corresponding problem characteristics
show. The red line (representing the simple scenario) within the parallel coor-
dinate plot (cf. Fig. 4) is always above the blue line of the complex scenario,
which means that a higher ratio of the local fronts (or sets) are part of the
global non-dominated front (set). These findings are supported by some count
characteristics, which are listed in Table 2. As each of the peaks of one objective
is connected to each peak of the other objective (and each of those connections
can contain multiple connected components), there exist 30 connected compo-
nents within the complex scenario. Given the fact that the points of a connected
component often belong to multiple domination layers, the components can be

Table 1. Parameter configuration for the setup of the MPM2-generator.

Name of parameter Simple scenario Complex scenario

in general in R Obj. 1 Obj. 2 Obj. 1 Obj. 2

Number of peaks n.peaks 1 3 5 5

Dimensions dimensions 2 2 2 2

Topology topology "random" "random" "random" "random"

Seed seed 1 3 2 5

Rotated peaks rotated FALSE FALSE FALSE FALSE

Shape of peaks peak.shape "sphere" "sphere" "sphere" "sphere"
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Fig. 4. The parallel coordinate plot on the left side distinguishes the two analyzed mul-
tiobjective, multimodal optimization problems from each other by means of rather sim-
ple problem characteristics, whereas the right figure visualizes the differences between
HIGA-MO and SLS (Section 4) on these two problem instances. (Color figure online)

Table 2. Overview of the count chararacteristics of the problems.

Count characteristic Scenario

Simple Complex

Optima (obj. 1 vs. obj. 2) 1 vs. 3 5 vs. 5

Domination layers 3 19

Connected components 3 30

Sets connected to global efficient set 2 66

Fronts connected to global efficient front 2 12

Local (global) efficient sets 4 (2) 167 (7)

split into numerous local efficient sets, resulting in 167 local sets – seven of them
being non-dominated.

In addition, the mixed-sphere problems come with a nice property: all local
efficient sets are located on connections of two peaks and thus many of them
are connected. For instance, almost 40% of all local efficient sets (66 out of
167) in the complex scenario are connected to (at least) one of the seven non-
dominated sets. In consequence, smarter optimization algorithms only need to
find one of those sets and can then “travel” along the connected sets until they
converge in one of the non-dominated sets. As shown in Fig. 5, HIGA-MO is able
to exploit that property. At the beginning, it performs similar to SLS and tries
to find any of the aforementioned local efficient sets. Once it finds one of them,
it travels along the connections – the so-called channels – and afterwards often
converges in one of the non-dominated sets. The channels are visible (as strong
black lines) in Fig. 5. In contrast to HIGA-MO, a “regular” algorithm (such as
SLS) likely stops, once it hits one of the local efficient sets. These findings can
also be detected by our measures as the right plot of Fig. 4 shows. While both
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algorithms find the majority of the local efficient sets in either scenario (SLS
finds more fronts in both scenarios), the individuals of HIGA-MO also often find
the global Pareto sets, while the ones from SLS are often stuck in the local sets.

7 Discussion and Outlook

This paper provides a thorough definition of multimodality in the context
of multiobjective optimization problems (MOPs). Moreover, analytical and

Fig. 5. Population of HIGA-MO (top) and SLS (bottom), respectively. The grey arrows
visualize the trace of each individual and the colored points represent the elements from
the final population. The different colors indicate the different domination layers – red
points belong to the global PF, green points to the second layer, etc. (Color figure
online)
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experimental approaches are presented which derive or approximate the global
and local Pareto fronts of a MOP. Specifically, mixed sphere test problems of
different dimensionality are designed and the behavior of a sophisticated Hyper-
volume gradient ascent approach and a stochastic local search variant are con-
trasted on problems consisting of different levels of multimodality. It is reflected
that multimodality is a crucial factor determining the difficulty of a problem,
especially in case the optimization algorithm relies on local search techniques.

Moreover, indicators are derived which allow to assess algorithm behavior
w.r.t. the detection of global and local Pareto fronts which can further be used
for performance assessment. In combination with specific indicators for problem
characteristics, the basis for systematically constructing respective Exploratory
Landscape Features is formed which has huge potential w.r.t. algorithm bench-
marking, selection and design, also for higher dimensional problems.
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Grimme acknowledge support by the European Research Center for Information Sys-
tems (ERCIS).
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Abstract. This paper presents entropy-based population diversity mea-
sures that take into account dependencies between the variables in order
to maintain genetic diversity in a GA for the traveling salesman prob-
lem. The first one is formulated as the entropy rate of a variable-order
Markov process, where the probability of occurrence of each vertex is
assumed to be dependent on the preceding vertices of variable length in
the population. Compared to the use of a fixed-order Markov model, the
variable-order model has the advantage of avoiding the lack of sufficient
statistics for the estimation of the exponentially increasing number of
conditional probability components as the order of the Markov process
increases. Moreover, we develop a more elaborate population diversity
measure by further reducing the problem of the lack of statistics

1 Introduction

Maintaining the genetic diversity in the population is one of the most impor-
tant factors for bringing out the potential of genetic algorithms (GAs). One of
the approaches to maintain population diversity is to design an appropriate mea-
sure of population diversity, which are used as a trigger to activate diversification
procedures [8,9] and a part of the fitness function to maintain population diver-
sity in a positive manner [3,5,11].

As is well known in information theory, entropy is a measure of the uncer-
tainty of a probability distribution and it has been used to design population
diversity measures. Most of the entropy-based population diversity measures
are defined as the sum of the entropies of the univariate marginal distributions
of all variables in the form of −∑n

i=1

∑
a∈A P (Xi = a) log P (Xi = a). This

type of population diversity measure is widely used in GAs for the knapsack
problem [4], binary quadratic programming problem [10], traveling salesman
problem [3,5,7,8], and others [11]. This entropy measure, however, does not
have an ability to capture dependencies between the variables.

In our previous work [6], we proposed an entropy-based diversity measure
that takes into account dependencies between the variables, and this measure
was used to maintain population diversity in a GA for the traveling salesman
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 973–983, 2016.
DOI: 10.1007/978-3-319-45823-6 91
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problem (TSP). This diversity measure, denoted as Hm, was formulated as the
entropy rate of a Markov process of order m, where the probability of occurrence
of each vertex at a certain position was assumed to be dependent on the m
preceding vertices in the population (tours). The use of the diversity measure
Hm with an appropriate value of m (= 4) improved the performance of the GA.

In the practical use of a fixed-order Markov model, there is seldom sufficient
data to accurately estimate the exponentially increasing number of conditional
probability components as the order of the Markov model increases. A variable-
order Markov model is useful to reduce this problem, where the probability of
occurrence of each symbol is assumed to be dependent on the preceding symbols
of variable length, which varies depending on the available statistics. Variable-
order Markov models have been successfully applied to areas such as machine
learning [1] and bioinformatics [2]. In this paper, we develop an population diver-
sity measure based on a variable-order Markov model, which models the prob-
ability distribution of individuals in the population. Moreover, we improve this
diversity measure by further reducing the problem of the lack of data.

The remainder of this paper is organized as follows. In Sect. 2, we first
describe the diversity measure Hm and its variant proposed in the previous work.
Then, we propose two entropy-based diversity measures derived from variable-
order Markov models. The GA framework used to evaluate the proposed diversity
measures is described in Sect. 4. Computational results are presented in Sect. 5
and conclusion is given in Sect. 6.

2 Previous Work

In [6], we proposed an entropy-based population diversity measure that takes
into account dependencies in sequences of vertices included in the population of
the GA for the TSP. This section outlines this work.

Let Si (i = 1, . . . , n) be a random variable representing the i-th vertex in
the tours of the population, where n is the number of the vertices (cities). The
probability of occurrence of each vertex at a certain position is modeled as
a Markov process of order m, where it is assumed to be dependent on the m
preceding vertices in the tours of the population. Given that each tour has a cyclic
structure, the joint probability distribution P (S1 = s1, S2 = s2, . . . , Sn = sn),
which is denoted as P (s1, s2, . . . , sn) for simplicity, is represented by the following
formula, where index i + n (1 ≤ i ≤ m) corresponds to i.

P (s1, s2, . . . , sn) =
n∏

i=1

P (si+m | si, . . . , si+m−1) (1)

Given that each tour can start from an arbitrary vertex, the joint probability
distribution of any subset of the sequence of random variables should be invari-
ant with respect to shifts in the index. Therefore, the entropy H of this joint
probability distribution is equivalent to nHm (Eq. 2), where Hm (Eq. 3) is the
entropy rate of the Markov process of order m that models the probability of
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occurrence of each vertex in the population. For a more detailed explanation of
Eq. 2, see the previous work. Equation 3 can be easily transformed into Eq. 5.

In information theory, the entropy rate of a data source is the average number
of bits per symbol needed to encode it. Therefore, the existence of the same
sequence consisting of up to m + 1 vertices in the population will decrease the
value of Hm.

H = −
∑

s1

· · ·
∑

sn

P (s1, . . . , sn) log P (s1, . . . , sn) = nHm (2)

Hm = −
∑

s1

. . .
∑

sm+1

P (s1, . . . , sm+1) log P (sm+1 | s1, . . . , sm) (3)

= −
∑

s1

· · ·
∑

sm+1

P (s1, . . . , sm+1) log
P (s1, . . . , sm+1)
P (s1, . . . , sm)

(4)

= Hm+1 − Hm, (5)

where
Hk = −

∑

s1

· · ·
∑

sk

P (s1, . . . , sk) log P (s1, . . . , sk). (6)

To compute Hk in the asymmetric TSP, all sequences of length k are sam-
pled in the population, and P (s1, . . . , sk) is estimated by N(s1,...,sk)

nNpop
, where

N(s1, . . . , sk) is the number of a sequence of vertices {s1, . . . , sk} in the popula-
tion consisting of Npop tours. In the symmetric TSP, the sampling is conducted
in both travel directions and P (s1, . . . , sk) is estimated by N(s1,...,sk)

2nNpop
.

Another diversity measure, denoted as H ′
m, was also proposed. This measure

is defined as the sum of the diversity measures Hk (k = 1, . . . , m), which can
be simplified as Eq. 7. This diversity measure was designed in an ad hoc way to
reduce the problem of the lack of statistics for the accurate estimation of Hm.

H ′
m = H1 + H2 + · · · + Hm = Hm+1 − H1 (7)

3 Population Diversity Measures Based on
Variable-Order Markov Models

3.1 Motivation

The population diversity measure proposed in this paper is also defined as the
entropy rate of a Markov process. We denote a set of the symbols generated
from an information source as L. In what follows, we use random variables
Si (i = . . . ,−2,−1, 0) to represent a Markov process, where S0 represents the
symbol to be observed next and S−i (i > 0) represents the i-th preceding symbol.
The expression of Hm is therefore given by the following formula.

Hm = −
∑

s−m

. . .
∑

s−1

∑

s0

P (s−m, . . . , s−1, s0) log P (s0 | s−m, . . . , s−1) (8)
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In theory, the value of Hm gives the entropy rate of an Markov
process of order k (i.e., Hm = Hk) as long as k ≤ m because P (s0 |
s−m, . . . , s−k, . . . , s−1) = P (s0 | s−k, . . . , s−1) in this case. Therefore, m should
be set to a greater value so that the entropy rate Hm has an ability to cap-
ture higher-order dependencies in a sequence of symbols generated from an
information source. If m is too large, however, Hm would not be a meaning-
ful population diversity measure because there is seldom sufficient samples of
sequences in the population to accurately estimate the conditional probability
distributions P (s0 | s−m, . . . , s−1), s−m, . . . , s0 ∈ L, which are estimated as
N(s−m,...,s−1,s0)
N(s−m,...,s−1)

. Therefore, there is a tradeoff between the potential ability to
capture higher-order dependencies and the estimate accuracy of the conditional
probability distributions. The population diversity measures proposed in this
paper aim to capture higher-order dependencies in sequences of vertices in the
population while reducing the problem of the lack of data.

3.2 A Population Diversity Measure Htr1
m

We model the probability of occurrence of a symbol (vertex) appearing in
sequences of symbols (sequences of vertices in the population) as a variable-order
Markov process. In a variable-order Markov process, the probability distribution
of the next symbol s0 depends on the preceding symbols of variable length k. The
basic idea is to determine the value of k adaptively so that the number of samples
N(s−k, ..., s−1) is a sufficient statistic for estimating the conditional probability
distribution P (s0 | s−k, . . . , s−1). For example, if a specific sequence of symbols
{. . . , s′

−3, s
′
−2, s

′
−1} is observed at a certain point, the conditional probability

distribution of occurrence of the next symbol s0 is modeled as P (s0|s′
−k, ..., s

′
−1)

such that the number of samples N(s′
−k, ..., s

′
−1) is greater than a predefined

minimum number of samples.
A variable-order Markov process is characterized by a set of the conditional

probability distributions: P (s0|sc) , sc ∈ S, where S is a set of sequences of
symbols for the conditioning variables and each element sc represents a specific
sequence of symbols of any length that is less than or equal to m. Here, we put
the upper limit on the length of sequences for the conditioning variables because
it is impractical to store all conditional probability components if m is too large
(e.g. m > 10). For any sequence of symbols {. . . , s−2, s−1} at a certain point, the
length of the sequence assigned to the conditioning variables must be uniquely
determined. To represent set S that satisfies this requirement, a so-called context
tree is useful. Let s̃c be the reverse sequence of sc and S̃ = {s̃c|sc ∈ S}. The
elements of S̃ are represented as the leaf nodes of a context tree as illustrated
in Fig. 1 (Left), where every node has either 0 or |L| children.

The entropy rate of the variable-order Markov process, which we denote as
Htr1

m , is then defined by the following formula.
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Htr1
m = −

∑

sc∈S

∑

s0∈L

P (sc, s0) log P (s0 | sc) = −
∑

sc∈S

∑

s0∈L

P (sc, s0) log
P (sc, s0)

P (sc)

= −
∑

sc∈S

∑

s0∈L

P (sc, s0) log P (sc, s0) +
∑

sc∈S
P (sc) log P (sc) (9)

The entropy rate Htr1
m is closely related to Hm. If a context tree S̃ is represented

as a perfect tree with depth m, Htr1
m is equivalent to Hm, meaning that Htr1

m

is a generalization of Hm. In addition, Htr1
m can be viewed as an approximation

of Hm. In fact, Htr1
m is obtained from Hm though the approximation of P (s0 |

s−m, . . . , s−k, . . . , s−1) = P (s0 | s−k, . . . , s−1) for all {s−k, . . . , s−1} ∈ S.
Next, we describe how to determine set S̃ (and equivalently S). The corre-

sponding context tree S̃ is updated at fixed intervals (see Sect. 4) by the following
procedure, where ratio is a parameter taking a value between 0 and 1.

1. S̃ is initialized as the perfect tree of depth one, i.e., S̃ = {s−1|s−1 ∈ L}.
2. For each of the leaf nodes {s−1, ..., s−k} ∈ S̃, if there exists at least one value

s′
−(k+1) ∈ L such that N(s′

−(k+1), s−k, . . . , s−1) ≥ Npop ∗ ratio, this node is
expanded to generate the new leaf nodes {s−1, ..., s−k, s−(k+1)}, s−(k+1) ∈ L.

3. Expansions of the leaf nodes are iterated until no expansion is possible or
the depth of each leaf node reaches the predefined maximum number m. The
resulting tree S̃ is returned.

The aim behind the expansion of a leaf node {s−1, ..., s−k} ∈ S̃ is to capture
higher-order dependency expressed as the conditional probability distribution
P (s0|s′

−(k+1), s−k, . . . , s−1) only when it is judged to be reliable. The parameter
ratio balances the tradeoff between the potential ability to capture higher-order
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Fig. 1. (Left) A context tree representation of S̃, where L = {a, b, c} and the threshold
is 8. Each node is connected by a thick link if the number of the corresponding sequence
in the population (indicated beside each node) is greater than or equal to the thresh-
old. The corresponding Markov process is defined as follows: P (s0|a, a), P (s0|b, a),
P (s0|c, a), P (s0|b), P (s0|a, a, c), P (s0|b, a, c), P (s0|c, a, c), P (s0|b, c), and P (s0|c, c).
(Right) A context tree representation of S̃merge obtained from S̃. Nodes in each dotted
frame are merged. The corresponding Markov process is defined as follows: P (s0|a, a),
P (s0|b, a), P (s0|c, a), P (s0|b), P (s0|a ∨ b, a, c), P (s0|c, a, c) and P (s0|b ∨ c, c).
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dependencies and the estimate accuracy of the conditional probability distri-
butions. However, this expansion collaterally generates unreliable conditional
probability distributions P (s0|s′′

−(k+1), s−k, . . . , s−1) for s′′
−(k+1) ∈ L \ {s′

−(k+1)}
because the values of N(s′′

−(k+1), s−k, . . . , s−1) are less than the predefined
threshold. Note that if expansion of a leaf node is allowed only if the num-
ber of samples is greater than the threshold for all child nodes, no expansion is
likely to occur.

3.3 A Population Diversity Measure Htr2
m

As suggested in the previous subsection, unreliable conditional probability dis-
tributions included in the formulation of Htr1

m have a potentially harmful effect
on the evaluation of population diversity. To reduce this problem, we modify the
variable-order Markov model used to derive Htr1

m .
The basic idea is to merge unreliable conditional probability distributions

into a single one in order to increase the number of samples for the condition-
ing variables. One simple method is to merge the unreliable conditional parts
{s′′

−(k+1), s−k, . . . , s−1}, s′′
−(k+1) ∈ L\{s′

−(k+1)} into a single one. Figure 1 illus-
trates an example where the unreliable conditional parts (nodes connected by
thin links) in S̃ are merged accordingly. We denote the resulting set of sequences
of symbols for the conditioning variables and corresponding context tree as
S̃merge. For example, a merged conditional probability distribution P (s0|b∨ c, c)
is estimated by N(b,c,s0)+N(c,c,s0)

N(b,c)+N(c,c) . Although the number of samples for a merged
conditional part may be still less than the predefined threshold, the problem of
the lack of sufficient data will be alleviated. We denote the entropy rate of the
variable-order Markov process defined by S̃merge as Htr2

m .

4 GA Framework

To evaluate the ability of the proposed population diversity measures Htr1
m and

Htr2
m , we perform the GA proposed in [5] as in the case of the previous work [6].

Algorithm 1 gives the GA framework where brief comments are written directly
in the algorithm. For more details, see the previous work [6].

An important point is that each of the population diversity measures is incor-
porated into the evaluation function used for selecting individuals to survive
(line 8). Let L be the average tour length of the population and H the popula-
tion diversity measure (Htr1

m or Htr2
m ). For each individual y ∈ {c1, . . . , cNch

, pA},
it is evaluated by the following evaluation function (Eq. 10), and the one with
the smallest value is selected to replace the population member selected as pA.
Here, ΔL(y) and ΔH(y) denote the differences in L and H, respectively, when
xr(i) (= pA) is replaced with an offspring solution y. This evaluation function is
motivated to minimize L − TH after the replacement, where T is a coefficient
that takes a balance between the influences from L and H and it is adaptively
updated (basically decreased) during the course of the search. Note that offspring
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Algorithm 1. Procedure GA

1: Generate initial population {x1, . . . , xNpop}; // a simple local search is used;
2: repeat
3: Update S̃ or S̃merge based on the procedure described in Section 3 ;
4: Let r(·) be a random permutation of 1, . . . , Npop;
5: for i := 1 to Npop do
6: pA := xr(i), pB := xr(i+1); // set a pair of parents
7: {c1, . . . , cNch} := Crossover(pA, pB); // generate Nch offspring solutions

using edge assembly crossover
8: xr(i) := Select Best(c1, . . . , cNch , pA); // select the best individual to

replaces the population member selected as pA
9: end for

10: until a termination condition is satisfied
11: return the best individual in the population;

solutions that increase L are never selected in order to prevent the population
from not converging, i.e., no replacement occurs when pA itself is selected.

Eval(y) =
{

ΔL(y) − TΔH(y) (ΔL(y) ≤ 0)
∞ (ΔL(y) > 0) (10)

For every offspring solution y, ΔH(y) can be computed in O(km) time, where
k is the number of edges of an offspring solution y that do not exist in the parent
pA (k is usually much smaller than n). Each time pA is replaced with the selected
offspring solution, the values of N(·), which are stored in the form of a tree, can
be updated in O(km) time.

5 Experimental Results

5.1 Experimental Settings

To investigate the ability of the proposed population diversity measures Htr1
m

and Htr2
m , we performed the GA described in the previous section by using each

of the population diversity measures in the evaluation function (Eq. 10). The
parameters for the GA were set as follows: Npop = 300 and Nch = 30. Note
that the same settings were used in the previous work [6] for evaluating the
population diversity measures Hm and H ′

m. We tested the proposed population
diversity measures with the following parameter settings.

• Htr1
m (m = 6, ratio = 0.05, 0.1, 0.2, 0.3)

• Htr2
m (m = 6, ratio = 0.05, 0.1, 0.2, 0.3)

• Htr2
m (m = 8, ratio = 0.1)

For each setting, we performed the GA 30 times on 21 instances with
sizes ranging from 10,000 to 25,000 in the well-known benchmark sets:
TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/), National
TSPs (http://www.math.uwaterloo.ca/tsp/data/index.html), and VLSI TSPs.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://www.math.uwaterloo.ca/tsp/data/index.html
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5.2 Results

Table 1 shows the solution quality of the GA using the proposed population
diversity measures Htr1

m and Htr2
m in the following format: the instance name

(instance) together with the optimal or best known solution (Opt. or UB), the
number of runs that succeeded in finding the optimal or best-known solution
(#S), and the average percentage excess over the optimal or best-known solutions
(A-Err). The result of the GA using the diversity measure H4, which achieved
the best solution quality among Hm (m = 1, 2, 3, 4, 6) in the previous work, are
also presented for a baseline comparison. We performed the one-sided Wilcoxon
rank sum test for the null hypothesis that the median of the distribution of tour
length obtained by the GA using each of Htr1

m and Htr2
m is greater than that

of GA using H4. If the null hypothesis is rejected as a significant level of 0.05,
results in the table are indicated by the asterisk. In addition, results are also
indicated by the dagger if the opposite null hypothesis is rejected.

Let us first summarize the results of the GA using the population diver-
sity measures Hm and H ′

m (m = 1, 2, 3, 4, 6, 8) proposed in the previous work.
Table 2 shows only averaged results taken from [6] (results of m = 8 are newly
added). As indicated in Table 2, the diversity measure Hm improves the ability
in evaluating population diversity with increasing the value of m up to 4, but the
greater values of m deteriorates the ability due to the lack of available samples
necessary to estimate the conditional probability distributions. The diversity
measure H ′

m also improves the ability in evaluating population diversity with
increasing the value of m up to 6. Moreover, the result of H6

′ is better than that
of H4. Considering the definition of H ′

m, this result suggests that the diversity
measure H ′

6 achieves a better balance between the ability to capture higher-
order dependencies and the estimate accuracy of the conditional probability
distributions, although the definition of H ′

m is somewhat ad-hoc.
Next, we focus on the results of the diversity measure Htr1

6 . Table 1 shows
that the GA using Htr1

6 achieves the best solution quality when the parameter
ratio is set to 0.2 or 0.3. For a smaller value of ratio, the solution quality is
deteriorated. This is a predictable consequence because if the value of ratio is too
small, it would not be likely to obtain a sufficient statistics from the population
necessary for the accurate estimation of the conditional probability distributions.
The use of Htr1

6 with the best parameter value for ratio (= 0.2 or 0.3), however,
shows only a slight improvement over the use of H4.

Next, we focus on the results of the diversity measure Htr2
6 . The GA using

Htr2
6 achieves the best solution quality when the parameter ratio is set to 0.1,

which is less than the best parameter value for Htr1
6 . Moreover, the best result

of Htr2
6 is better than that of Htr1

6 . These observations indicate that the use of
Htr2

m succeeds in capturing higher-order dependencies while reducing the prob-
lem of the lack of sufficient samples for the accurate estimation of the conditional
probability distributions. Compared to H4, the use of Htr2

6 with the best para-
meter value for ratio (= 0.1) significantly improves the solution quality in four
instances. However, this result is almost same as that of H ′

6.
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Table 1. Solution quality of the GA using the diversity measures Htr1
m and Htr2

m

H4 Htr1
6

ratio = 0.05 ratio = 0.1 ratio = 0.2 ratio = 0.3

Instance Opt.(UB) #S A-Err #S A-Err #S A-Err #S A-Err #S A-Err

xmc10150 (28387) 24 0.00070 26 0.00047 29 0.00012∗ 29 0.00012∗ 28 0.00035

fi10639 520527 24 0.00011 21 0.00021 23 0.00016 23 0.00018 24 0.00010

rl11849 923288 25 0.00014 18 0.00037† 19 0.00030† 21 0.00026 27 0.00013

usa13509 19982859 22 0.00010 17 0.00017 24 0.00008 21 0.00010 19 0.00014

xvb13584 (37083) 29 0.00009 23 0.00081† 26 0.00036 27 0.00027 29 0.00009

brd14051 469385 23 0.00017 19 0.00026 26 0.00008 27 0.00005 26 0.00011

mo14185 (427377) 19 0.00014 20 0.00014 19 0.00018 18 0.00015 19 0.00016

xrb14233 (45462) 10 0.00279 9 0.00286 11 0.00279 10 0.00301 12 0.00271

d15112 1573084 16 0.00014 17 0.00008 16 0.00007 15 0.00005 17 0.00003

it16862 557315 6 0.00023 4 0.00044† 2 0.00040† 2 0.00039† 6 0.00030

xia16928 (52850) 24 0.00076 23 0.00050 18 0.00101 19 0.00095 16 0.00164†

pjh17845 (48092) 13 0.00132 17 0.00097 15 0.00125 15 0.00104 13 0.00118

d18512 645238 21 0.00009 20 0.00009 22 0.00008 23 0.00009 25 0.00007

frh19289 (55798) 30 0.00000 26 0.00030† 26 0.00024† 28 0.00012 30 0.00000

fnc19402 (59287) 19 0.00067 16 0.00079 18 0.00067 17 0.00079 19 0.00062

ido21215 (63517) 23 0.00058 18 0.00105 22 0.00058 27 0.00016 17 0.00110†

fma21553 (66527) 15 0.00090 10 0.00120 8 0.00120 16 0.00070 21 0.00050

vm22775 569288 0 0.00140 1 0.00141 0 0.00131 0 0.00121 1 0.00119

lsb22777 (60977) 21 0.00055 19 0.00060 22 0.00044 28 0.00011∗ 24 0.00033

xrh24104 (69294) 29 0.00005 28 0.00010 26 0.00019 28 0.00010 29 0.00005

sw24978 855597 9 0.00039 11 0.00047 14 0.00037 12 0.00031 11 0.00024

Average 19.1 0.00054 17.3 0.00063 18.4 0.00057 19.3 0.00048 19.7 0.00053

Htr2
6 Htr2

8

ratio = 0.05 ratio = 0.1 ratio = 0.2 ratio = 0.3 ratio = 0.1

Instance Opt.(UB) #S A-Err #S A-Err #S A-Err #S A-Err #S A-Err

xmc10150 (28387) 26 0.00059 25 0.00070 28 0.00023 26 0.00047 28 0.00023

fi10639 520527 20 0.00013 25 0.00008 24 0.00010 28 0.00004 27 0.00005

rl11849 923288 23 0.00019 29 0.00004∗ 28 0.00006 28 0.00006 25 0.00013

usa13509 19982859 21 0.00011 23 0.00016 24 0.00009 25 0.00007 23 0.00010

xvb13584 (37083) 27 0.00036 29 0.00009 25 0.00045† 25 0.00045† 25 0.00045†

brd14051 469385 25 0.00015 26 0.00009 27 0.00007 29 0.00003∗ 27 0.00006

mo14185 (427377) 25 0.00005∗ 23 0.00009 22 0.00013 17 0.00020 24 0.00012

xrb14233 (45462) 9 0.00308 8 0.00330 3 0.00396† 6 0.00374† 12 0.00249

d15112 1573084 15 0.00007 18 0.00005 20 0.00004 18 0.00004 18 0.00003

it16862 557315 6 0.00033 5 0.00027 3 0.00037† 5 0.00032 2 0.00035

xia16928 (52850) 22 0.00082 22 0.00069 23 0.00088 9 0.00227† 25 0.00063

pjh17845 (48092) 11 0.00132 19 0.00083 19 0.00083 19 0.00076∗ 22 0.00062∗

d18512 645238 19 0.00010 21 0.00007 19 0.00014 23 0.00006 24 0.00005

frh19289 (55798) 26 0.00042† 30 0.00000 29 0.00006 27 0.00024† 27 0.00018†

fnc19402 (59287) 22 0.00051 19 0.00062 20 0.00056 14 0.00118 20 0.00056

ido21215 (63517) 19 0.00079 25 0.00026 27 0.00021 23 0.00058 24 0.00031

fma21553 (66527) 23 0.00035∗ 22 0.00040∗ 19 0.00065 20 0.00055 26 0.00020∗

vm22775 569288 1 0.00107∗ 2 0.00091∗ 3 0.00094∗ 1 0.00119 2 0.00097∗

lsb22777 (60977) 23 0.00038 27 0.00016∗ 26 0.00022 26 0.00022 28 0.00011∗

xrh24104 (69294) 28 0.00010 28 0.00010 28 0.00010 29 0.00005 29 0.00005

sw24978 855597 20 0.00020∗ 14 0.00033 17 0.00020∗ 12 0.00032 18 0.00023∗

Average 19.6 0.00053 21.0 0.00044 20.7 0.00049 19.5 0.00061 21.7 0.00038
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Table 2. Solution quality of the GA using the diversity measures Hm and H ′
m

m = 1 m = 2 m = 3 m = 4 m = 6 m = 8

Div. #S A-Err #S A-Err #S A-Err #S A-Err #S A-Err #S A-Err

Hm 16.7 0.00085 18.1 0.00066 18.2 0.00065 19.1 0.00054 16.1 0.00063 11.8 0.00094

H′
m 16.7 0.00085 19.0 0.00069 19.8 0.00061 20.5 0.00053 21.5 0.00046 20.8 0.00047

Note: When no diversity measure is incorporated, #S and A-Err are 1.2 and 0.00544,

respectively.

Next, we focus on the results of Htr2
8 with ratio = 0.1. We can see that the

solution quality of Htr2
8 is better than that of Htr2

6 . This result also indicates that
the core idea of Htr2

m make it possible to successfully capture higher-order depen-
dencies while reducing the problem of the lack of sufficient statistics. Moreover,
the use of Htr2

8 achieves the best solution quality among all population diversity
measures including H ′

6.

6 Conclusion

The proposed population diversity measure Htr1
m is defined as the entropy rate

of the variable-order Markov process with the aim of capturing higher-order
dependencies in sequences of vertices in the population while reducing the prob-
lem of the lack of sufficient statistics. The use of this diversity measure, however,
has shown only a slight improvement in evaluating population diversity over the
previously proposed entropy-based diversity measure Hm, which is based on the
fixed-order Markov model. On the other hand, another variant of the proposed
population diversity measure Htr2

m has succeeded in improving the abilities of
Hm and Htr1

m by further reducing the problem of the lack of sufficient statistics.
This research has shown a potential of entropy-based population diversity mea-
sures that take into account dependencies between the variables, and the efficacy
of the proposed population diversity measures should be investigated on other
permutation problems in the future work.
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Abstract. Convergence and diversity are two main goals in mul-
tiobjective optimization. In literature, most existing multiobjective
optimization evolutionary algorithms (MOEAs) adopt a convergence-
first-and-diversity-second environmental selection which prefers nondom-
inated solutions to dominated ones, as is the case with the popular
nondominated sorting based selection method. While convergence-first
sorting has continuously shown effectiveness for handling a variety of
problems, it faces challenges to maintain well population diversity due
to the overemphasis of convergence. In this paper, we propose a general
diversity-first sorting method for multiobjective optimization. Based on
the method, a new MOEA, called DBEA, is then introduced. DBEA
is compared with the recently-developed nondominated sorting genetic
algorithm III (NSGA-III) on different problems. Experimental studies
show that the diversity-first method has great potential for diversity
maintenance and is very competitive for many-objective optimization.

1 Introduction

Multiobjective optimization problems (MOPs) widely exist in real-world appli-
cations, such as scheduling [11] and design [12]. MOPs often have several conflict-
ing objectives for which any improvement in one objective inevitably aggravates
another. Due to multiobjectivity, there is no single optimal solution. Instead,
the optima of MOPs is a set of trade-off solutions, known as Pareto-optimal set
(POS). Correspondingly, the image of the POS in the objective space is called
Pareto-optimal front (POF).

Multiobjective optimization evolutionary algorithms (MOEAs) are a class of
important methods for solving MOPs. MOEAs employ a population of candidate
individuals and optimize them in an evolutionary manner. As a result, a set of
solutions can be obtained in a single run. Besides, MOEAs do not necessarily
require any knowledge and information of the MOPs to be optimized, i.e., con-
tinuousness or differentiability. All these features make MOEAs very suitable for
solving MOPs. So far, a large number of MOEAs [2,9,10] have been proposed
in the evolutionary computation community.

In the design of MOEAs, two goals should be considered: (1) minimizing
the gap between candidate solutions and the true POS (convergence) and (2)
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 984–993, 2016.
DOI: 10.1007/978-3-319-45823-6 92
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maximizing the distribution of candidate solutions (diversity). However, these
two goals are generally assumed to be conflicting [13]. In practice, most existing
MOEAs achieve convergence by prior Pareto-based sorting of the evolving pop-
ulation and diversity by the additional calculation of individuals’ density infor-
mation. The well-known nondominated sorting genetic algorithm II (NSGA-II)
[2] and strength pareto evolutionary algorithm 2 (SPEA2) [10] are representative
examples of this method. Such a method actually performs environmental selec-
tion in a convergence-first-and-diversity-second manner. That is, nondominated
individuals [2] are preferable to dominated ones although dominated individ-
uals may contribute considerably to population diversity. While this method
works well in two- and three-objective optimization problems, it has encoun-
tered great difficulties in many-objective optimization where problems have four
or more objectives [6]. This is mainly because a large portion of the popula-
tion becomes nondominated as the number of objectives increases. In this case,
the convergence-first selection will consider only nondominated individuals and
leave little room for diversity selection. If all nondominated individuals are them-
selves not diversified, it would lead to a detrimental diversity loss due to the
convergence-first selection.

Inspired by the assumption that dominated individuals can contribute to pop-
ulation diversity, this paper proposes a new diversity-first sorting approach with
the aid of a set of diverse reference directions. The approach sorts the popualtion
into different fronts, each front representing a level of diversity and convergence.
Then, a diversity-first sorting based evolutionary algorithm (DBEA) is intro-
duced. Empirical studies and algorithm comparisons demonstrate the promise
of DBEA for multi- and many-objective optimization.

The remainder of the paper is organized as follows. Section 2 reviews the
classic nondominated sorting method. Section 3 presents a new diversity-first
sorting method, followed by our detailed implementation of DBEA in Sect. 4.
Experimental design and comparison results are presented in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Classic Sorting Methods

Most existing MOEAs are convergence-first based methods, such as NSGA-II [2]
and SPEA2 [10]. Convergence-first based methods prefer convergence to diver-
sity. They sort population depending mainly on individuals’ convergence1. One
of the most important sorting methods is the nondominated sorting used in
NSGA-II. In the following, we will briefly describe how nondominated sorting
works, followed by some discussions on its advantages and disadvantages.

2.1 Nondominated Sorting

In every generation, when the parent population (P) and offspring population
(Q) are combined to form a union population (R) of size 2N , environmental
1 Note that, although some algorithms like SPEA2 sort individuals by exploiting both

convergence and diversity, convergence is priorly considered and emphasised.
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(a) (b)

Fig. 1. Nondominated sorting.

selection should be carried out on R to construct a new parent population of size
N for the next generation. The nondominated sorting strategy can be used for
selection and works as follows. First, each individual is compared with all other
individuals in R, and all nondominated solutions of R are identified and assigned
to front L1. Then, individuals in L1 are removed from R, and the remaining
individuals in R are compared with each other to determine the nondominated
set, which are assigned to front L2. The procedure is repeated until no individuals
are left in R, i.e., all individuals have been assigned to a front.

Figure 1(a) gives a graphical illustration of the nondominated sorting. The
main idea behind the nondominated sorting is to classify the entire combined
population into different nondominated fronts according to individuals’ conver-
gence. After the non-dominated sorting, the new population can be constructed
by selecting solutions of different non-dominated fronts, one at a time. The selec-
tion starts with individuals of the first front L1 and continues with those of the
second front L2, followed by the rest of the fronts and so on. Since only N slots
are allowable in the new population, not all fronts can be considered. When
the last allowed front (e.g., Ll) is being considered, there may exist more indi-
viduals in Ll than the remaining slots in the new population. In this situation,
niche-preservation strategies, such as crowding distance [2], the-farthest-the-first
method [1], and nearest neighbour technique [10], are desirable for selecting the
remaining number of individuals from front Ll in order to maintain diversity.

2.2 Advantages and Disadvantages

Advantages. The nondominated-sorting based selection favours convergence
so that individuals in better fronts will be priorly preserved. The selection is
helpful for a fast convergence speed.
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Disadvantages. The nondominated-sorting based selection may undermine
population diversity if well-converged individuals are not diversified. Figure 1(b)
presents an example where diversity loss occurs if only six nondominated indi-
viduals are allowed to be preserved. The loss of diversity in the example could
further incur evolutionary stagnation where overcrowded boundary regions are
overexploited and intermediate regions are left unexplored.

3 Proposed Sorting Method

On the basis of discussions on convergence-first MOEAs, we propose and analyse
a diversity-first sorting method in the following subsections.

3.1 Diversity-First Sorting

The proposed diversity-first sorting method works as follows. First, the objec-
tive space is partitioned into a number of subspaces with the aid of a reference
direction set W . Reference directions in W are required to be uniformly dis-
tributed. Then, each individual (whose objective values need to be normalized
beforehand) in the combined population is associated with a subspace. This can
be done by identifying the nearest reference direction to the considered individ-
ual. In each subspace, individuals are assigned a fitness value that can reflect
its convergence level. Potential fitness assignment approaches for this purpose
can be scalarizing functions used in MOEA/D [9], strength fitness in SPEA2
[10], or nondominated ranks in NSGA-II [2], whichever is the easiest for users to
implement. An individual with the best fitness from each subspace is assigned
to front L1. After that, the individual in L1 are removed from the subspaces,
and another with the best fitness from each subspace is assigned to front L2.
If multiple solutions have the same fitness, a random one is considered. This
procedure continues until each individual in each subspace has been assigned to
a front. Note that, in case that a subspace is empty, this subspace is skipped.

Figure 2(a) illustrates the outcome of diversity-first sorting, where popula-
tion distribution is identical to that of Fig. 1(a). After the sorting, the new
population can be constructed by selecting solutions of different fronts, one at
a time. Similar to the nondominated sorting, not all fronts can be considered
due to the limited number of slots in the new population. If the last allowed
front (e.g., Ll) has more individuals than the remaining slots, random selection
on Ll can be performed to fill up the new population. Note that, it is advisable
to use techniques that are helpful for convergence to select individuals from Ll.
For example, fitness assignment can be performed on Ll, and individuals with
relatively good convergence are priorly selected.

3.2 Advantages and Disadvantages

Advantages. As can be seen from Fig. 2(b) (where the population distribution
is the same as that of Fig. 1(b)), the diversity-first sorting enhances local diversity
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(a) (b)

Fig. 2. Diversity-first sorting.

in each subspace. As a result, population diversity can be well maintained during
the evolution. Besides, population convergence is also properly considered in the
course of sorting. The sorting method can provide a good coverage and spread
of approximation.

Disadvantages. Since the diversity-first sorting employs a reference direction
set for population partition, the resulting population distribution depends largely
on the uniformity of the reference direction set. The potential drawbacks remain
unknown, and a future work will be devoted to these aspects.

4 Diversity-First Based Evolutionary Algorithm (DBEA)

In this section, we present an MOEA based on the proposed diversity-first sort-
ing, called DBEA for short. The framework of DBEA is described in Algorithm1.
Several key components of DBEA are explained as follows.

Reference direction set W : W can be constructed on a unit simplex using Das and
Dennis’s systematic approach [4] if the number of objectives is small. Otherwise,
W is constructed by two-layered approach mentioned in [6].

Objective normalization: similar to NSGA-III [6], DBEA identifies all extreme
points and then use them to construct a hyperplane. The intercepts of objective
axes and the hyperplane can be computed. DBEA uses these intercepts and the
utopia point to normalize the objective values of individuals.

Population partition: for each population individual, DBEA computes the acute
angle between its normalized objective vector and each reference direction. The
reference direction having the minimum acute angle is considered the right sub-
space that the individual should reside in.
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Algorithm 1. Framework of DBEA
1: Input: N (population size)
2: Output: approximated Pareto-optimal set
3: Generate a diverse reference direction set W :
4: Create an initial parent population P ;
5: while stopping criterion not met do
6: Apply genetic operators on P to generate offspring population P ;
7: Q := P ∪ P ; /*parent and offspring are combined*/
8: Normalize objectives of members in Q and partition Q into different subspaces;
9: (L1, L2, . . . ) :=diversity-first-sort(Q); /*diversity-first sorting is triggered*/

10: (S1, S2, . . . ) :=nondominated-sort(Ll); /*Ll is the last front to be included*/
11: Select continuously individuals from (S1, S2, . . . ) until P is filled up;
12: end while

Diversity-first Sorting: to facilitate sorting, individuals should be distinguishable
in terms of convergence. In this paper, DBEA simply applies nondominated sort-
ing in each subspace, leading to each individual having a rank. Individuals with
better rank values are priorly selected. In case there is a tie between individu-
als, those having the smallest perpendicular distance to the associated reference
direction are preferred.

Selection on the last front to be included: DBEA performs the nondomi-
nated sorting on the last allowed front Ll, resulting in a series of subfronts
{S1, S2, . . . }. Then, DBEA selects individuals on these subfronts, starting from
the first subfront S1. If the last subfront to be included has more individuals than
the remaining slots, individuals are randomly copied to the new population.

5 Experimental Study

To make a proper and fair comparison, algorithms to be considered should have
similar framework other than different methodologies. In our experiments, we
would like to compare DBEA with the recently-developed NSGA-III algorithm
[6]. DBEA and NSGA-III have very similar framework but differ mainly in
distinct sorting methods. For both algorithms, the simulated binary crossover
(SBX) [3] and polynomial mutation [5] are used as variation operators. As
suggested in [6], the crossover probability is pc = 1.0 and its distribution index
is ηc = 30. The mutation probability is pm = 1/n and its distribution ηm = 20.
In the following subsections, DBEA and NSGA-III will be first tested on a hard
problem that challenges algorithms’ diversity performance. After that, these two
algorithms will be compared on many-objective optimization.

5.1 Results on a Hard Three-Objective Problem

Liu et al. [8] introduced several hard-to-converge problems with considerably
deceptive properties and strong variable linkages. As a testing example, we
choose the three-objective MOP6 to distinguish the difference between diversity-
first sorting and convergence-first sorting. MOP6 places deceptive attractors on



990 S. Jiang and S. Yang

Fig. 3. Approximated POFs for MOP6 over 20 runs. Top: NSGA-III; bottom: DBEA.

the boundary of the objective space. If population diversity is not properly main-
tained, the search will get trapped into local optima. As a consequence, not all
the POF regions can be found. Both algorithms use the systematic design method
[4] to generate 91 reference directions or points. Correspondingly, the population
size in DBEA and NSGA-III was set to 92, which, as suggested in NSGA-III, is
the smallest multiple of four higher than reference points. The maximum number
of generations was set to 5000, which is much higher than normal settings due
to the hardness of this problem.

Figure 3 shows the worst-case, best-case, and whole MOP6 approximations
of NSGA-III and DBEA over 20 independent runs. It can be clearly observed
from the figure that, in all runs, NSGA-III prefers some boundary solutions and
misses a large part of the POF of MOP6. In contrast, DBEA is always capable of
obtaining a set of diversified solutions, although a few boundary solutions do not
converge perfectly. The poor performance of NSGA-III is mainly caused by its
convergence-first based selection. In NSGA-III, environmental selection is based
on individuals’ convergence level (nondominated sorting). That is, individuals on
better sorting fronts have priority to be selected first. If the selected individuals
all reside in a local search space (the boundary region in the case of MOP6), the
evolution will experience a dramatic diversity loss, resulting in NSGA-III not
being able to diversify the solution set any more. Thus, NSGA-III fails in this
situation. On the contrary, the diversity-first based selection seems to be a wise
option, as it can maintain population diversity at a high level. Therefore, DBEA
shows better performance than NSGA-III on the considered test problem.

5.2 Results on WFG Problems

The previous subsection has demonstrated the superiority of DBEA over
NSGA-III in the three-objective case in terms of diversity. One may wonder
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Table 1. Best, mean, and worst IGD values of compared algorithms over 20 runs

M=3 M=5 M=8

Problem NSGA-III DBEA NSGA-III DBEA NSGA-III DBEA

WFG4 0.00946 0.01068 0.28054 0.28103 0.71357 0.71239

0.01300 0.01313 – 0.28338 0.28310 ≈ 0.72304 0.72473 ≈
0.01714 0.01661 0.28749 0.28557 0.73107 0.74052

WFG5 0.09445 0.09386 0.34631 0.34813 0.75591 0.75563

0.09683 0.09483 † 0.35063 0.34879 † 0.75870 0.75820 †
0.09917 0.09559 0.35283 0.35015 0.76268 0.76214

WFG6 0.07036 0.07828 0.34445 0.33282 0.74635 0.74721

0.12819 0.13388 – 0.37310 0.37950 ≈ 0.79313 0.78546 ≈
0.16738 0.19958 0.40561 0.41077 0.83568 0.82690

WFG7 0.00993 0.00920 0.27209 0.27646 0.70625 0.70584

0.01232 0.01322 – 0.27733 0.27720 ≈ 0.72276 0.72168 †
0.01553 0.01681 0.27974 0.27943 0.74034 0.73439

WFG8 0.23728 0.23639 0.58692 0.57160 1.45400 1.27610

0.25205 0.24869 † 0.61987 0.60271 † 1.57690 1.57910 †
0.26632 0.26161 0.62657 0.61874 1.73940 1.72546

WFG9 0.07266 0.05796 0.39788 0.38946 0.91319 0.92767

0.11684 0.11420 † 0.42125 0.41719 † 1.00700 0.99933 †
0.36338 0.36184 0.48428 0.45785 1.19820 1.12270

whether DBEA can perform well in higher-dimensional cases. To this end, we
test DBEA and NSGA-III on several WFG [7] test problems having three to
eight objectives. Both algorithms use the same population size by setting iden-
tical reference directions or points with the two-layered method [6]. That is, 92,
210, and 156 for 3, 5, and 8 objectives, respectively. The maximum number of
generations was 500, 1000, and 1500 for 3, 5, and 8 objectives, respectively. Each
algorithm was executed 20 independent runs.

In order to quantify the performance of algorithms, we employ the reference
point based inverted generational distance (IGD) suggested by [6] and hypervol-
ume (HV) [14] as our performance metrics. The reference vector for the compu-
tation of HV was set as the nadir point of the true POF plus one. All reported
HV values come from the normalization of originally computed HV values.

Tables 1 and 2 present the IGD and HV values of two compared algorithms,
respectively, where the best results are highlighted in bold face. The Wilcoxon
rank-sum test at a 0.05 significance level was employed to compare the statisti-
cal significance of difference between two algorithms. “†”, “≈”, and “–” in the
tables denote DBEA is better than, equivalent to, and worse than NSGA-III,
respectively. It is easy to see that, the performance of DBEA improves as the
number of objectives increases. For three objectives, NSGA-III performs better
than DBEA on WFG4, WFG6 and WFG7 whereas DBEA wins on the other
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Table 2. Best, mean, and worst HV values of compared algorithms over 20 runs

Problem M=3 M=5 M=8

NSGA-III DBEA NSGA-III DBEA NSGA-III DBEA

WFG4 0.85281 0.85230 0.94849 0.94844 0.98060 0.98074

0.85191 0.85191 – 0.94808 0.94809 ≈ 0.97992 0.97995 †
0.85145 0.85151 0.94758 0.94764 0.97908 0.97836

WFG5 0.82652 0.82655 0.91367 0.91393 0.93682 0.93701

0.82595 0.82639 † 0.91307 0.91379 † 0.93637 0.93682 †
0.82541 0.82614 0.91244 0.91321 0.93527 0.93642

WFG6 0.83362 0.83117 0.91607 0.92151 0.94384 0.94624

0.81705 0.81540 – 0.90336 0.90120 ≈ 0.92088 0.92489 †
0.80628 0.79718 0.89009 0.88789 0.89975 0.90262

WFG7 0.85218 0.85217 0.94875 0.94869 0.98069 0.98071

0.85180 0.85169 – 0.94838 0.94841 † 0.98030 0.98042 †
0.85120 0.85120 0.94799 0.94801 0.97975 0.97988

WFG8 0.80278 0.80351 0.88415 0.88548 0.91022 0.92898

0.80088 0.80167 † 0.88249 0.88358 † 0.89509 0.90005 †
0.79854 0.79838 0.87989 0.88171 0.88229 0.88473

WFG9 0.83951 0.84112 0.92595 0.92771 0.94890 0.94712

0.83030 0.83188 † 0.92242 0.92445 † 0.93507 0.93103 ≈
0.74526 0.74771 0.91616 0.92146 0.81770 0.81948

problems. For five and eight objectives, DBEA generally obtains better results
than NSGA-III in terms of IGD and HV. Since NSGA-III is a leading method for
many-objective optimization, such observation implies DBEA can perform well
in the case of many objectives. Thus, diversity-first based selection is effective
and applicable to many-objective optimization.

6 Conclusions

While convergence-first based MOEAs have been increasingly reported to be
effective in solving a variety of MOPs, they may come across difficulties in main-
taining population diversity, resulting in a poor approximation of the POF. For
this reason, this paper has suggested a new diversity-first sorting method to
overcome the difficulty of convergence-first sorting. The advantages and disad-
vantages of convergence-first and diversity-first sorting methods have been briefly
discussed. Afterwards, a new algorithm based on the proposed sorting method,
i.e., DBEA, has been suggested.

The proposed DBEA has been examined and compared with the recently-
developed NSGA-III algorithm on several test problems with different opti-
mization difficulties. Experimental results have shown that DBEA has great
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advantages in maintaining diversity for problems where NSGA-III fails. Fur-
thermore, DBEA has also great potential for many-objective optimization, as
indicated by its outperformance over NSGA-III in many cases.

Inspired by these encouraging performance, we would like to extend the cur-
rent work to other classes of MOEAs, such as indicator-based selection methods
and decomposition-based MOEAs in the future. Also, the convergence part of
DBEA needs to be investigated. Different fitness assignment techniques will be
integrated into the diversity-first sorting, and their suitability and effectiveness
will be investigated.

Acknowledgments. This work was funded by the Engineering and Physical Sciences
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Abstract. Local optima networks are a compact representation of fit-
ness landscapes that can be used for analysis and visualisation. This paper
provides the first analysis of the Asymmetric Travelling Salesman Prob-
lem using local optima networks. These are generated by sampling the
search space by recording the progress of an existing evolutionary algo-
rithm based on the Generalised Asymmetric Partition Crossover. They
are compared to networks sampled through the Chained Lin-Kernighan
heuristic across 25 instances. Structural differences and similarities are
identified, as well as examples where crossover smooths the landscape.

1 Introduction

The global structure of fitness landscapes in combinatorial optimisation is far
from being well-understood, and yet crucially impacts the dynamic of search
heuristics. The operators within such algorithms usually restrict the search space
in some way, potentially over-exploring or missing key parts of the actual land-
scape. Tools to better understand and visualise fitness landscapes are therefore
needed. The symmetric Travelling Salesman Problem (TSP) has been widely
studied. Its more general formulation, the Asymmetric TSP (ATSP) has received
less attention but is useful to model real-world situations where symmetry is
often a luxury. In this paper, we attempt to provide some insights into its land-
scape structure by studying local optima networks.

Local optima networks (LON) are graph-based models of combinatorial fit-
ness landscapes, originally inspired by work on energy landscapes in computa-
tional chemistry [4]. A fitness landscape is compressed into a graph where nodes
are local optima and edges possible search transitions among them [10,17]. The
first model considered binary search spaces and the NK family of landscapes;
nodes were local optima according to a best-improvement local search with bit-
flip moves, and edges account for transition probabilities among basins of attrac-
tion [10]. This model required a full enumeration of local optima and basins, and
was therefore impossible to scale to realistically sized landscapes. An alternative
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 994–1003, 2016.
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definition of edges was later proposed to account for escape probabilities among
optima, that is, probabilities to hop from a local optimum to another after a
perturbation (large mutation) followed by local search [18]. Recently, sampling
approaches have been developed using escape edges in order to model landscapes
of realistic size [6,11–13]. In particular, work on the symmetric Travelling Sales-
man Problem has revealed intriguing landscape visualisations, providing com-
pelling evidence of the existence of multiple valleys or clusters of local optima
(also called funnels) on the studied instances [12,13]. Most local optima network
models so far consider transitions based on perturbation operators. Ochoa et al.
[9] proposed a model where transitions are based on recombination. Specifically,
the deterministic Partition (Tunnelling) Crossover by Tinós et al. was consid-
ered [16], together with efficient procedures for extracting all the local optima
of NK landscapes of string length up to 30, based on exploiting the structure of
pseudo-Boolean problems with bounded epistasis [3].

The main goal of this article is to model tunnelling crossover networks for
asymmetric Travelling Salesman instances of realistic size. More specifically, the
contributions are:

1. First study of local optima networks for the asymmetric TSP.
2. An extension of the local optima network model to capture evolutionary algo-

rithms. This is achieved by incorporating two types of edges, one based on
mutation and another based on recombination.

3. A network sampling mechanism based on instrumenting an existing evolu-
tionary algorithm.

4. Comparing the local optima network structure emerging from an evolutionary
algorithm against a single-point heuristic (Iterated Local Search).

Following this introduction, the paper presents the crossover operator in
Sect. 2. Section 3 provides key definitions for local optima networks and describes
how the network data are gathered. Section 4 presents the instances, which are
analysed in Sect. 5. The conclusion is found in Sect. 6.

2 Generalised Asymmetric Partition Crossover

Our study considers the Generalised Asymmetric Partition Crossover (GAPX),
a deterministic recombination operator proposed by Tinós et al. [15] for the
Asymmetric Travelling Salesman Problem. GAPX is based on the Generalised
Partition Crossover (GPX), developed by Whitley et al. [19] for the symmet-
ric TSP. GAPX and GPX recombine partial solutions that are not shared in
common between two parent solutions. First, a union graph Gu = G1 ∪ G2 is
created from graphs G1 and G2 representing the parent solutions. Then, com-
mon edges are removed from Gu and connected components are identified. Some
of the connected components are the recombining components, i.e., connected
subgraphs that can be deterministically recombined. GAPX and GPX find the
best recombinations among the recombining components in order to generate
the offspring. If the number of recombining components is q, then the best of 2q
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Fig. 1. Recombining two parent solutions using GAPX. (a) Parent solutions are shown
by solid (blue) and dashed (red) lines. (b) In a first step, ghost vertices are inserted after
vertices of degree 4. (c) Common edges are removed, allowing to identify 3 partitions.
(Color figure online)

offspring is found at computational cost O(n). This is possible because the par-
tial evaluations of each one of the q recombining components are independently
computed.

In GPX, the recombining components are the connected components sepa-
rated from the rest of the graph by exactly two common edges. The remainder
of the graph is also a recombining component. The Lin-Kernighan-Helsgaun
(LKH) algorithm [5] includes a recombination operator, called Iterative Partial
Transcription (IPT), which is similar in effect to GPX.

The GAPX includes enhancements to GPX that allow it to find many more
recombining partitions than GPX and IPT. As a consequence, an exponentially
higher number of offspring is explored. For example, when recombining the two
parents shown in Fig. 1a, GPX (adapted to the asymmetric TSP) finds q = 2
partitions, while GAPX finds q = 3 partitions. Thus, while GPX finds the best
of 22 = 4 offspring in this example, GAPX finds the best of 23 = 8 offspring.

One enhancement to GPX is that GAPX exploits cuts that break nodes of
degree 4 of Gu as a site for crossover. This is possible by splitting every vertex
of degree 4 in order to create “ghost” vertices (Fig. 1b). According to the the
direction of flow given by the solutions, common edges between the original
vertices and their respective ghost vertices can be created. Such common edges
are candidate sites for crossover when the connected components of the new
union graph are identified.

3 Local Optima Networks for TSP

Nodes and edges make up the networks. They are defined by the methodology
for extracting the network data which is described in the next subsection. A full
enumeration of the local optima for ATSP instances of non-trivial size is clearly
unmanageable. Therefore, the networks are based on a sample of high-quality
local optima in the search space. We first provide some basic definitions, below,
before describing the sampling algorithm.
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3.1 Definitions

Definition 1. A tour is a local optimum if none of its neighbours is shorter than
it. The set of local optima is denoted by LO.

The neighbourhood is imposed by k-opt local search. The later is applied after
a crossover or mutation operation, in the case of an evolutionary algorithm, and
after a perturbation, in the case of an Iterated Local Search. A k-opt local search
considers all the possibilities of exchanging k edges in a tour and picks the best.
The local optimality criterion is, therefore, rather stringent since only a small
number of tours are k-optimal.

Definition 2. Edges are directed and of different types based on crossover,
mutation, or perturbation. There is an edge from local optimum LOi to local
optimum LOj , if LOj can be obtained after any of those operations to LOi

followed by k-opt search. The set of edges is denoted by E.

In the case of the crossover, a pair of edges is created: one starting from each
parent and targeting the offspring as has been done in [9]. However, the local
optima networks in the latter did not include a second type of edge based on a
mutation operator, which we include here.

Definition 3. The local optima network, LON, is the graph LON = (LO,E)
where nodes are the local optima LO, and set E are the edges.

3.2 Gathering Network Data

The GAPX network data is generated by instrumenting and adapting the genetic
algorithm from Tinós et al. [15] (see Algorithm 1). After each crossover or muta-
tion operation, the solution obtained is transformed using 3-opt and each unique
local optimum obtained is stored in LO. We also store, in E, an edge between
the starting and end optima after one of these two operations. If no improv-
ing solution is found during 20 consecutive generations, all the solutions in the
population, except the ones with best fitness, are replaced by random solutions
improved by 3-opt.

Contrary to the GA from [15], a full 3-opt is performed, not a greedy version.
This is done after all crossover and mutation operations. The algorithm can
therefore be described as a fully hybrid algorithm, combining a GA and local
search. The mutation operator consists of a sequence of up to 5 double-bridge
moves, i.e., exchanges of 4 edges in a specific pattern. The algorithm is run 100
times with a population of 100 individuals, until a global optimum is found or
500 generations have elapsed. These parameters also depart from the original
ones (300 individuals and 1500 generations), otherwise success rates of 100 %
in finding a global optimum are observed on most instances. Discriminating
between easier and harder instances would therefore be more difficult.

To provide a basis for the comparison of the GAPX network data, we use net-
work data from an Iterated Local Search based on the well-known Lin-Kernighan
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P ← popInit()
while termination condition is not satisfied do

Q(1) ← bestSolution(P )
for i ← 2 to maxPop do

(p1, p2) ← selection(P )
Q(i) ← 3opt(crossover(p1, p2))
LO ← LO ∪ {Q(i)}; E ← E ∪ {(p1, Q(i)), (p2, Q(i))}
if crossover did not improve the solutions then

best ← chooseBest(p1, p2)
Q(i) ← 3opt(doubleBridgeMutation(best))
LO ← LO ∪ {Q(i)}; E ← E ∪ {(best,Q(i))}

end

end
if best sol. did not improve in last 20 gen. then Q ← immigration(P )
P ← Q

end
Algorithm 1. Local optima network sampling in evolutionary algorithm.

(LK) heuristic [8]. We instrumented [13] the Chained Lin-Kernighan (Chained-
LK) implementation by Applegate et al. [2] provided in the Concorde TSP
solver [1]. LK applies 2, 3 and higher-order k-opt moves, with k chosen adap-
tively. The perturbation operator in Chained-LK is a double-bridge. Let us note
that LK is designed for the symmetric TSP. A conversion step is required to
handle ATSP instances. The process is described in the next section.

Ensuring fairness between two different algorithms when gathering local
optima is not obvious. We chose to first run the hybrid algorithm and record
the total number of edges that had been travelled across the 100 runs for each
instance. Chained-LK was then executed such that it performed enough runs
to have travelled across as many edges. Each of these runs ends when a global
optimum has been found or when 20n perturbations have been performed, with
n being the number of vertices in the original ATSP instance. On the instances
where this method does not lead to at least 100 Chained-LK runs, additional
runs are executed to reach 100.

4 Selected ATSP Instances

Our study considers the ATSP instances from TSPLIB [14] belonging to different
types, as well as instances generated using the DIMACS symmetric TSP gener-
ator code. We use two types of generated instances: uniformly distributed cities
(prefixed by E) and clustered cities (prefixed by C). The symmetric instances
are transformed into asymmetric instances by inserting random Gaussian devi-
ations (with standard deviation equal to 0.2di,j) to each distance di,j , where i
and j are any two cities. By considering this variety of instances, our aim is
to discover structural differences distinguishing the hard from the easy to solve
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instances. The instances from TSPLIB are mostly real-life instances, originat-
ing from sequencing, scheduling, vehicle routing and stacker crane problems.
Instances ry48p and kro124p are synthetic.

The Concorde exact solver was used to compute the minimal fitness for the
generated instances. Since Concorde can only handle symmetric TSP instances,
the ATSP instances were transformed into symmetric instances by doubling the
number of vertices [7]. Given a set V of n vertices and the distance di,j ,∀i, j ∈ V ,
a new city n+ i is created ∀i ∈ V . The cost of edge (i, n+ i) is set to 0,∀i ∈ V ,
the cost of (n + i, j) is set to di,j + M,∀i, j ∈ V , where M is a sufficiently
large number, and the cost of the remaining edges is set to ∞. The value nM
is subtracted from the fitness. The same transformation was used to convert
the ATSP instances into instances that are suitable for Concorde’s Chained-LK
heuristic.

5 Network Analysis

The execution and network data generated are summarised in Table 1. GAPX
indicates results for the hybrid algorithm based on the GAPX. CLK indicates
results based on Chained-LK. The column titled Runs indicates the number of
Chained-LK runs required to traverse at least as many edges as where traversed
by 100 runs of the GAPX-based algorithm. Success represents the proportion of
runs that find a global optimum. Unique Opt. refers to the number of unique
global optima. Conn. Comp refers to the number of connected components. Edge
Opt. and Mut. show the proportion of GAPX edges where the end node is already
3-opt before local search and the proportion of edges that are mutation edges,
respectively.

The first observation is that at least one global optimum has been found on
most instances for each solving method. This indicates that, although the algo-
rithms and their parameters may not be perfect, the best solutions are reachable
using these two sampling approaches. We may therefore interpret the results with
a minimal level of confidence that they represent a non-trivial part of the land-
scape. Furthermore, with the chosen parameters, Chained-LK sometimes has
similar success rates to the GAPX-based algorithm on several instances, which
would tend to show that the edge budget allocated is sufficient to fairly compare
the two types of networks.

The smallest and easiest instance, br17, exhibits a smooth landscape under
the different operators used. Global optima are found in the first generation or
iteration, which is highlighted by the high number of connected components.
This is an artefact of the sampling algorithms which terminates a run as soon as
a global optimum is found. Thus plateaus of global optima are not fully explored.

At the opposite end, the largest instances (rbg) are very easy for the GAPX-
based algorithm. Chained-LK, on the other hand, struggles and its 100 separate
runs end up in 100 different funnels (connected components). However, the mean
fitness of the Chained-LK nodes is lower than that of GAPX nodes. This show-
cases GAPX’s ability to tunnel through what is a totally different landscape for
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(a) Hybrid GA (b) Chained-LK

Fig. 2. Subsets of local optima networks for rbg323 under a fitness threshold of 1331.
The hybrid GA network is further simplified by selecting only the 10 largest components
(513 nodes). The global optima, with fitness 1326, are painted red. The Chained-LK
network contains 3883 nodes in 7 components indicated by different colours, the smaller
one on a plateau of fitness 1329, the others on a plateau of fitness 1331. (Color figure
online)

Chained-LK. It is interesting to note that, as opposed to other instances, the
majority of nodes generated through crossover are not 3-optimal and that there
is a low proportion of mutation edges as well. GAPX combined with 3-opt are
thus able to drive the search through the landscape largely without mutation.
Figure 2 shows a subset of the local optima networks for rbg323 very close to the
global optima. The structure difference is striking, with the Chained-LK network
stuck on two plateaus.

Connected-component-wise, Chained-LK has a tendency to generate land-
scapes with fewer components while finding more unique global optima in gen-
eral. This may seem surprising given that Chained-LK recorded fewer unique
nodes and edges. These numbers are smaller since local optima that do not
improve the current solution in a run are not recorded due to memory con-
straints. Otherwise these worsening solutions would make up the majority of
nodes.

Pearson’s correlation coefficients were computed for pairwise comparisons of
several execution and landscape features. One of them is the mean normalised
fitness of nodes, not displayed in Table 1, which is always under 0.3 units. It
is negatively correlated to the number of edges (−0.54) and nodes (−0.60) for
Chained-LK but there is no correlation for GAPX. It is the opposite for the
number of connected components, which is not correlated to the mean normalised
fitness for Chained-LK but shows a negative correlation (−0.65) for GAPX.

The number of connected components is strongly correlated (1.0) to the
number of unique local optima for Chained-LK and to a lesser degree (0.72)
for GAPX. In the context of crossover and mutation networks, the proportion
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of crossover edges that end in a local optima before the application of 3-opt is
strongly correlated (0.92) to the proportion of mutation edges. This indicates
that mutation is usually required to increase diversity.

This work is a first attempt at extracting crossover networks of moderately
large permutation problem instances. As such it has some limitations. For exam-
ple, the nodes’ mean in-degree across instances ranges between 1 and 3. This is
different from the results obtained by [9], where the mean in-degree ranged from
0.8 to 245 for exhaustively sampled NK landscapes. This could simply be due
to the nature of ATSP landscapes, the use of mutation edges or be the result of
some bias in the sampling. Further work will investigate such issues.

6 Conclusion

Local optima networks help to better understand the global structure of combi-
natorial landscapes by providing a relatively compact representation. Neverthe-
less, sampling is required to study instances on non-trivial sizes. We have done
this here for the Asymmetric TSP with networks generated from an evolutionary
and an iterated local search algorithm. We have presented evidence of their dif-
ferences and similarities. On some larger real-life instances the crossover-based
algorithm produced networks that were drastically different from the other app-
roach, effectively demonstrating the tunnelling behaviour of carefully designed
crossover operators.

This work only scratches the surface of the use of local optima networks for
understanding evolutionary algorithms and the structure of non-trivial combina-
torial problem instances. Further work will look at improving the sampling, both
in the methodology and the quantity of data points gathered. We also intend to
carry out systematic investigations of a wide range of instances with different
characteristics.
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Trust (award number RPG-2015-395) and by the UK’s Engineering and Physical
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Abstract. Workshops have a longstanding tradition at PPSN. This doc-
ument provides a short description of the workshops that were held at
the 2016 edition of the conference. For each workshop we provide a gen-
eral description of the aim and scope, in addition to the list of accepted
papers.

1 Introduction

Workshops, in addition to the main program, have a longstanding tradition at
the conference series on Parallel Problem Solving From Nature (PPSN). Conse-
quently, the PPSN 2016 Organizing Committee invited proposals for workshops
to be held in conjunction with the main PPSN conference. The workshops at
PPSN are intended to be a forum for presenting and discussing, for example, new
emerging approaches or critical reflections within a subfield. They often provide
an excellent opportunity to meet people with similar interests, to be exposed to
cutting-edge research and to exchange ideas in an informal setting. The respon-
sibility of the workshops is solely in the hands of the organizers, who care for
their coordination, publicity—that is, for sending out call for papers/abstracts—,
collecting and reviewing the papers/abstracts, and maintaining a webpages pro-
viding the lists of accepted talks. As in previous years, workshop organizers were
also in 2016 able to decide between half and full day workshops. The workshop
format was up to the organizers. However, as workshop co-chairs we encour-
aged to facilitate interactive sessions and suggested to solicit concept papers
or abstracts of not more than a few pages length, instead of full papers. All
workshops were held during the first two days of PPSN, which are traditionally
dedicated to workshops and tutorials.

2 The Four Workshops

At PPSN 2016, four workshops in very different areas of the field took place–some
nicely complementing accepting tutorials presented earlier at the conference.
In the following we provide a short description of the aim and scope of these
workshops, together with their list of accepted papers.
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 1007–1011, 2016.
DOI: 10.1007/978-3-319-45823-6 94
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Workshop Title: 2nd International Workshop on Advances
in Multi-modal Optimization

Organizers: Mike Preuss, Michael G. Epitropakis and Xiaodong Li
URL: http://www.epitropakis.co.uk/ppsn2016-niching/

Aim and Scope: This workshop aimed to bring together researchers from evo-
lutionary computation and related areas who are interested in Multi-modal Opti-
mization. This is a currently forming field, and the organizers aimed for a highly
interactive and productive meeting that would make a step forward towards
defining it. The workshop provided a unique opportunity to review the advances
in the current state of the art in the field of Niching methods. Further dis-
cussion dealt with several experimental/theoretical scenarios, performance mea-
sures, real-world and benchmark problem sets and outline the possible future
developments in this area. Positional statements, suggestions, and comments
were very much welcomed by the organizers.

List of Accepted Abstracts/Papers

eltiTsrohtuA

C. Zarges Towards theoretical analysis in Multi-modal
Optimization

S. Wessing, G. Rudolph and
M. Preuss

Assessing Basin Identification Methods for
Locating Multiple Optima

S. Nallaperuma, K. Gao and
F. Neumann

Feature based analysis on problem hardness

J. K. Pugh, L. B. Soros and
K. O. Stanley

Quality Diversity: A New Kind of
Multimodal Search

P. Kerschke and C. Grimme Multi-modality in Continuous
Multi-Objective Optimization

A. Moshaiov Multi-concept Optimization vs. Multi-modal
Optimization

K. Bibiks and J.-P. Li Discrete species conserving cuckoo search for
resource-constrained project scheduling
problems

Workshop Title: Landscape-Aware Heuristic Search

Organizers: Nadarajen Veerapen and Gabriela Ochoa
URL: http://www.cs.stir.ac.uk/events/ppsn2016-landscape/

Aim and Scope: Fitness landscape analysis and visualization can provide sig-
nificant insights into problem instances and algorithm behavior. The aim of
this workshop was to encourage and promote the use of landscape analysis
to improve search algorithms and their understanding. Examples include land-
scape analysis as a tool to inform the design of algorithms, landscape metrics

http://www.epitropakis.co.uk/ppsn2016-niching/
http://www.cs.stir.ac.uk/events/ppsn2016-landscape/
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for online adaptation of search strategies, mining landscape information to pre-
dict instance hardness and algorithm runtime. The workshop sought to bring
together researchers interested in landscape analysis and in exploiting problem
structure to develop informed search strategies. The workshop provided a unique
opportunity to present existing work, propose new ideas or put forward position
statements.

List of Accepted Abstracts/Papers

eltiTsrohtuA

V. Santucci and A. Milani A Triple Interpretation of Combinatorial
Search Spaces

S. Tari, M. Basseur, and
A. Goëffon

Climbing Fitness Landscapes with the
Maximum Expansion Pivoting Rule

P. A. Consoli, Y. Mei,
L. L. Minku and X. Yao

Dynamic Selection of Evolutionary Operators
Based on Online Learning and Fitness
Landscape Analysis

P. Kerschke and H. Trautmann Exploratory Landscape Analysis By Using
the R-Package flacco

K. Alyahya and J. E. Rowe Fitness Landscape Analysis of a Class of
NP-Complete Binary Packing Problems

F. Daolio, A. Liefooghe,
S. Verel, H. Aguirre and
K. Tanaka

Fitness Landscape Analysis, Problems
Features and Performance Prediction for
Multi-objective Optimization

W. B. Langdon and M. Harman Fitness Landscape of the Triangle Program
D. Whitley, F. Chicano and
B. Goldman

Mk Landscapes Problem Structure

S. Verel, F. Daolio, G. Ochoa,
and M. Tomassini

Toward Algorithm Portfolio Based on Local
Optima Network Features

Workshop Title: Intelligent Transportation Workshop

Organizer: Neil Urquhart
URL: http://www.soc.napier.ac.uk/∼40000408/ppsn/

Aim and Scope: This workshop aimed to bring together researchers using
nature inspired computing to support intelligent transportation, allowing them
to present and discuss ideas and concepts with their peers. Potential partici-
pants were asked to submit a one page abstract according to the instructions
outlined on the workshop website. Abstracts were peer reviewed and the authors
of successful abstracts were invited to give a presentation of 25 min of their work
at the workshop. Solicited topics included the optimization of goods deliveries,
the optimization of mobile workforce, the use of nature inspired computing tech-
niques with real world transport related data and APIs, and traffic and transport
management.

http://www.soc.napier.ac.uk/~40000408/ppsn/
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List of Accepted Abstracts/Papers

eltiTsrohtuA

J. Ouenniche Invited Talk
A. Fernández-Ares,
M. Garćıa-Arenas,

,zehcnáS-aı́craG.P
V. Rivas-Santos and
J. J. Merelo

Nowcasting traffic

A. Ekart, E. Ilie-Zudor and
C. Buckingham

Combining Human Expertise and Machine
Learning for Intelligent Transportation
Resource Management

N. Urquhart and A. Fonzone Using multiple real world objectives in
mobile workforce problems

M. Adham and P. Bentley Evaluating Fitness Functions within the
Artificial Ecosystem Algorithm and their
Application to Bicycle Redistribution

K. Sim and E. Hart A Combined Generative and Selective
Hyper-heuristic for the Vehicle Routing
Problem

Workshop Title: Natural Computing in Scheduling and Timetabling

Organizers: Ahmed Kheiri, Rhyd Lewis and Ender Özcan
URL: http://ahmedkheiri.bitballoon.com/ppsn2016workshop/

Aim and Scope: The aim of this workshop was to bring together researchers
and practitioners to share their experiences and report on emerging approaches
in solving real-world scheduling problems. A particular interest was on
approaches that give a deeper insight into scheduling problem classes, and that
enable the exploitation of structural information during the automated search
for a solution to a given problem. General purpose approaches used for the auto-
mated generation of heuristics for solving single and multi-objective scheduling
problems and issues related to development of such approaches were also of
particular interest.

List of Accepted Abstracts/Papers

eltiTsrohtuA

J. Branke Invited Talk: Evolutionary Design of
Production Scheduling Heuristics

J. Gasior and F. Seredynski Multi-objective Scheduling in Unreliable
Distributed Computing Environment

N. Pillay and E. Özcan The Role of Generation Constructive
Hyper-Heuristics in Educational Timetabling

A. Kheiri, R. Lewis,
J. Thompson and P. Harper

Heuristic-based Method for Scheduling
Surgical Procedures

http://ahmedkheiri.bitballoon.com/ppsn2016workshop/
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3 Final Words

It is worth noting that the workshop on Landscape-Aware Heuristic Search that
was originally planned for half a day, was extended to a 3/4-day workshop due
to an unexpected large number of submissions. Summarizing we can say that
all workshops, with their combined contribution of 26 presentations to the con-
ference program, enjoy great popularity and made a significant contribution to
PPSN 2016.
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Abstract. PPSN 2016 hosts a total number of 16 tutorials covering a
broad range of current research in evolutionary computation. The tuto-
rials range from introductory to advanced and specialized but can all be
attended without prior requirements. All PPSN attendees are cordially
invited to take this opportunity to learn about ongoing research activities
in our field!

1 Chairs’ Welcome

Tutorials offer an efficient and interactive way of learning about ongoing research
activities. While introductory tutorials are particularly targeted at researchers
c© Springer International Publishing AG 2016
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who have just recently entered (or are about to enter) the multifaceted research
field of evolutionary computation, more specialized tutorials address both junior
and senior researchers intending to intensify or refresh their knowledge about
various topics of interest.

In response to our call for tutorials we have received a large number of high-
quality tutorial proposals out of which 16 have been selected for presentation
at the conference. These 16 tutorials will be presented in two days at PPSN
2016, on September 17 and 18, which are exclusively reserved for tutorial and
workshop presentations.

The topics of the tutorials cover introductions to evolutionary computation
in cryptography, multi-modal optimization, and hyper-heuristics.

More specialized tutorials discuss gray-box optimization, graph-based and
cartesian genetic programming, intelligent systems for smart cities, and the
importance of diversity in evolutionary optimization.

A classic in the tutorial landscape is the introduction to evolutionary multi-
objective optimization (EMO), a topic also addressed in the tutorials on using
the attainment function as a tool for the performance evaluation of EMO
algorithms.

Those researchers wishing to learn more on the role of theory in our field
should not miss the tutorial on theory of evolutionary computation. This tuto-
rial is followed up by a basic introduction to runtime analysis of evolutionary
algorithms (EAs) and one on the theory of parallel EAs. A forth theory-flavored
tutorial aims at bridging the gap between the optimization over manifolds and
evolutionary computation.

In addition, a hands-on guide to experiment with real hardware is proposed
for evolutionary robotics, it is discussed how to efficiently implement EAs in the
cloud, and how to save time and cost through meta-model assisted optimization.
We invite all PPSN participants to explore the wide range of topics discussed in
the selected tutorials and wish you an enjoyable conference!
Nicolas Bredeche and Carola Doerr
PPSN 2016 Tutorial Chairs

2 Abstracts of the Tutorials

2.1 A Bridge Between Optimization over Manifolds
and Evolutionary Computation

Tutorial Speaker: Luigi Malagò, Shinshu University (Japan)

Tutorial Abstract: The aim of this tutorial is to explore the promising connec-
tion between the well-consolidated field of optimization over manifolds and evo-
lutionary computation. In mathematics, optimization over manifolds deals with
the design and analysis of algorithms for the optimization over search spaces
with admit a non-Euclidean geometry. One of the simplest examples is probably
the sphere, where the shortest path between two points is given by a curve, and
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not a straight line. Manifolds may appear in evolutionary computation in at
least two contexts. The simplest one is the case when an evolutionary algorithm
is employed to optimize a fitness function defined over a manifold, such as in
the case of the sphere, the cone of positive-definite matrices, the set of rotation
matrices, and many others. The second one is more subtle, and is related to
the stochastic relaxation of a fitness function. A common approach in model-
based evolutionary computation is to search for the optimum of a function by
sampling populations from a sequence of probability distributions. For instance,
this is the case of evolutionary strategies, probabilistic model-building genetic
algorithms, estimation of distribution algorithms and similar techniques, both
in the continuous and in the discrete domain. A strictly related paradigm which
can be used to describe the behavior of model-based search algorithms is that of
stochastic relaxation, i.e., the optimization of the expected value of the original
fitness function with respect to a probability distribution in a statistical model.
From this perspective a model-based algorithm is solving a problem which is
strictly related to the optimization of the stochastic relaxation over a statistical
model. Notably, statistical models are well-known examples of manifolds, where
the Fisher information plays the role of metric tensor. For this reason, it becomes
of great interest to compare the standard techniques in the field of optimization
over manifolds, with the mechanisms implemented by model-based algorithm
in evolutionary computation. The tutorial will consist of two parts. In the first
one, a unifying framework for the description of model-based algorithms will
be introduced and some standard well-known algorithms will be presented from
the perspective of the optimization over manifold. Particular attention will be
devoted to first-order methods based on the Riemannian gradient over a mani-
fold, which in the case of a statistical model is known as the natural gradient.
In the second part, we will discuss how evolutionary algorithms can be adapted
to solve optimization problems defined over manifold, which constitutes a novel
and promising area of research in evolutionary computation.

2.2 Advances on Multi-modal Optimization

Tutorial Speaker: Mike Preuss, University of Dortmund (Germany), and
Michael G. Epitropakis, Lancaster University (UK)

Tutorial Abstract: Multimodal optimization is currently getting established as
a research direction that collects approaches from various domains of operational
research and evolutionary computation that strive for delivering multiple very
good solutions at once. We discuss several scenarios and list currently employed
and potentially available performance measures. Furthermore, many state-of-
the-art as well as older methods are compared and put into a rough taxonomy.
We also discuss recent relevant competitions and their results and outline the
possible future developments in this area.
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2.3 The Attainment Function Approach to Performance Evaluation
in Evolutionary Multiobjective Optimization

Tutorial Speaker: Carlos M. Fonseca and Andreia P. Guerreiro, University of
Coimbra (Portugal)

Tutorial Abstract: The development of improved optimization algorithms and
their adoption by end users depend on the ability to evaluate their performance
on the problem classes of interest. In the absence of theoretical guarantees, per-
formance must be evaluated experimentally while taking into account both the
experimental conditions and the nature of the data collected.

Evolutionary approaches to multiobjective optimization typically produce
discrete Pareto-optimal front approximations in the form of sets of mutually
non-dominated points in objective space. Since evolutionary algorithms are sto-
chastic, such non-dominated point sets are random, and vary according to some
probability distribution.

In contrast to quality indicators, which map non-dominated point sets to real
values, and side-step the set nature of the data, the attainment-function app-
roach addresses the non-dominated point set distribution directly. Distributional
aspects such as location, variability, and dependence, can be estimated from the
raw non-dominated point set data.

This tutorial will focus on the attainment function as a tool for the eval-
uation of the performance of evolutionary multiobjective optimization (EMO)
algorithms. In addition to the theoretical foundations of the methodology, com-
putational and visualization issues will be discussed. The application of the
methodology will be demonstrated by interactively exploring example data sets
with freely available software tools. To conclude, a selection of open questions
and directions for further work will be identified.

2.4 Evolutionary Algorithms and Hyper-heuristics

Tutorial Speaker: Nelishia Pillay, University of KwaZulu-Natal (South Africa)

Tutorial Abstract: Hyper-heuristics is a rapidly developing domain which has
proven to be effective at providing generalized solutions to problems and across
problem domains. Evolutionary algorithms have played a pivotal role in the
advancement of hyper-heuristics, especially generation hyper-heuristics. Evolu-
tionary algorithm hyper-heuristics have been successful applied to solving prob-
lems in various domains including packing problems, educational timetabling,
vehicle routing, permutation flowshop and financial forecasting amongst others.
The aim of the tutorial is to firstly provide an introduction to evolutionary algo-
rithm hyper-heuristics for researchers interested in working in this domain. An
overview of hyper-heuristics will be provided. The tutorial will examine each of
the four categories of hyper-heuristics, namely, selection constructive, selection
perturbative, generation constructive and generation perturbative, showing how
evolutionary algorithms can be used for each type of hyper-heuristic. A case
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study will be presented for each type of hyper-heuristic to provide researchers
with a foundation to start their own research in this area. Challenges in the
implementation of evolutionary algorithm hyper-heuristics will be highlighted.
An emerging research direction is using hyper-heuristics for the automated
design of computational intelligence techniques. The tutorial will look at the
synergistic relationship between evolutionary algorithms and hyper-heuristics in
this area. The use of hyper-heuristics for the automated design of evolutionary
algorithms will be examined as well as the application of evolutionary algorithm
hyper-heuristics for the design of computational intelligence techniques. The
tutorial will end with a discussion session on future directions in evolutionary
algorithms and hyper-heuristics.

2.5 Evolutionary Computation in Cryptography

Tutorial Speaker: Stjepan Picek, KU Leuven (Belgium) and University of
Zagreb (Croatia)

Tutorial Abstract: Evolutionary Computation (EC) has been used with great
success on various real-world problems. One domain abundant with numerous
difficult problems is cryptology. Cryptology can be divided into cryptography
and cryptanalysis where although not always in an obvious way, EC can be
applied to problems from both domains. This tutorial will first give a brief intro-
duction to cryptology intended for general audience. Afterwards, we concentrate
on several topics from cryptography that are successfully tackled up to now with
EC and discuss why those topics are suitable to apply EC. However, care must
be taken since there exists a number of problems that seem to be impossible
to solve with EC and one needs to realize the limitations of the heuristics. We
will discuss the choice of appropriate EC techniques (GA, GP, CGP, ES, multi-
objective optimization) for various problems and evaluate on the importance
of that choice. Furthermore, we will discuss the gap between the cryptographic
community and EC community and what does that mean for the results. By
doing that, we give a special emphasis on the perspective that cryptography
presents a source of benchmark problems for the EC community.

This tutorial will also present some live demos of EC in action when dealing
with cryptographic problems.

2.6 Evolutionary Multiobjective Optimization

Tutorial Speaker: Dimo Brockhoff, Inria Lille - Nord Europe (France)

Tutorial Abstract: Many optimization problems are multiobjective, i.e., mul-
tiple, conflicting criteria need to be considered simultaneously. Due to conflicts
between the objectives, usually no single optimum solution exists. Instead, a
set of so-called Pareto-optimal solutions, for which no other solution has better
function values in all objectives, does emerge.
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In practice, Evolutionary Multiobjective Optimization (EMO) algorithms
are widely used for solving multiobjective optimization problems. As stochastic
blackbox optimizers, EMO approaches cope with nonlinear, nondifferentiable, or
noisy objective functions. By inherently working on sets of solutions, they allow
the Pareto-optimal set to be approximated in one algorithm run—opposed to
classical techniques for multicriteria decision making (MCDM), which aim for
single solutions.

Defining problems in a multiobjective way has two further advantages:

– The set of Pareto-optimal solutions may reveal shared design principles
(innovization)

– Singleobjective problems may become easier to solve if auxiliary objectives are
added (multiobjectivization).

Within this tutorial, we comprehensively introduce the field of EMO and
present selected research results in more detail. More specifically, we

– explain the basic principles of EMO algorithms in comparison to classical
approaches,

– show a few practical examples motivating the use of EMO, and
– present a general overview of state-of-the-art algorithms and selected recent

research results.

2.7 Evolutionary Robotics—A Practical Guide to Experiment with
Real Hardware

Tutorial Speaker: Jacqueline Heinerman and Gusz Eiben and Evert Haasdijk
and Julien Hubert, VU Amsterdam (Netherlands)

Tutorial Abstract: Evolutionary robotics aims to evolve the controllers, the
morphologies, or both, for real and/or simulated autonomous robots. Most
research in evolutionary robotics is partly or completely carried in simulation.
Although simulation has advantages, e.g., it is cheaper and it can be faster, it
suffers from the notorious reality gap. Recently, affordable and reliable robots
became commercially available. Hence, setting up a population of real robots is
within reach for a large group of research groups today. This tutorial focuses
on the know-how required to utilise such a population for running evolutionary
experiments. To this end we use Thymio II robots with Raspberry Pi extensions
(including a camera). The tutorial explains and demonstrates the work-flow from
beginning to end, by going through a case study of a group of Thymio II robots
evolving their neural network controllers to learn collecting objects on-the-fly.
Besides the methodology and lessons learned, we spend time on how to code.

2.8 Graph-Based and Cartesian Genetic Programming

Tutorial Speaker: Julian Miller and Patricia Ryser-Welch, University of York
(UK)
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Tutorial Abstract: Genetic Programming is often associated with a tree rep-
resentation for encoding expressions and algorithms. However, graphs are also
very useful and flexible program representations which can be applied to many
domains (e.g. electronic circuits, neural networks, algorithms).

Over the years a variety of representations of graphs have been explored such
as: Parallel Distributed Genetic Programming (PDGP) , Linear-Graph Genetic
Programming, Enzyme Genetic Programming, Graph Structured Program Evo-
lution (GRAPE) and Cartesian Genetic Programming (CGP).

Cartesian Genetic Programming (CGP) is probably the best known form of
graph-based Genetic Programming. It was developed by Julian Miller in 1999–
2000. In its classic form, it uses a very simple integer address-based genetic
representation of a program in the form of a directed graph. CGP has been
adopted by a large number of researchers in many domains.

In a number of studies, CGP has been shown to be comparatively efficient to
other GP techniques. It is also very simple to program. Since its original formu-
lation, the classical form of CGP has also undergone a number of developments
which have made it more useful, efficient and flexible in various ways. These
include the addition of automatically defined functions (modular CGP), self-
modification operators (self-modifying CGP), the encoding of artificial neural
networks (GCPANNs) and evolving iterative programs (iterative CGP).

2.9 Gray Box Optimization in Theory and Practice

Tutorial Speaker: Darrell Whitley, Colorado State University (USA)

Tutorial Abstract: This tutorial will cover Gray Box Complexity and Gray
Box Optimization for k-bounded pseudo-Boolean optimization. These problems
can also be referred to at Mk Landscapes, and included problems such as
MAX-kSAT, spin glass problems and NK Landscapes. Mk Landscape problems
are a linear combination of M subfunctions, where each subfunction accepts at
most k variables. Under Gray Box optimization, the optimizer is given access to
the set of M subfunctions. If the set of subfunctions is k-bounded and separable,
the Gray Box optimizer is guaranteed to return the global optimum with 1 eval-
uation. If a problem is not deceptive, the Gray Box optimizer also returns the
global optimum after 1 evaluation. This means that simple test problems from
ONEMAX to “Trap Functions” are solved in 1 evaluation in O(n) time under
Gray Box Optimization. If a tree decomposition exists with a fixed bounded
tree width, then the problem can be solved using dynamic programming in O(n)
time. If the tree decomposition is bounded by lg(n), then the problem can be
solved by dynamic programming in O(n2) time. Even for those problems that
are not trivially solved, Gray Box optimization also makes it possible to exactly
compute Hamming distance 1 improving moves in constant time. Thus, neither
mutation nor enumeration of the Hamming neighborhood are necessary. Under
many conditions it is possible to calculate the location of improving moves in a
Hamming distance radius r neighborhood, thus selecting improving moves several



Tutorials at PPSN 2016 1019

moves ahead. This also can be done in constant time. There also exists deter-
ministic forms of recombination that provably return the best possible offspring
from a reachable set of offspring. Partition Crossover relies on localized problem
decomposition, and is invariant to the order of the bits in the representation. The
methods identify partitions of nonlinear interaction between variables. Variables
within a partition must be inherited together. However, bits in different parti-
tions can be linearly recombined. Given p partitions, recombination can be done
in O(n) time such that crossover returns the best solutions out of 2p offspring.
The offspring can also be proven to be locally optimal in the largest hyperplane
subspace in which the two parents reside. Thus, Partition Crossover is capable
of directly moving from known local optima to new, high quality local optima
in O(n) time. These innovations will fundamentally change both Local Search
and Evolutionary Algorithms. Empirical results show that combining smart local
search with Partition Crossover results in search algorithms that are capable of
finding globally optimal solutions for nonlinear problems with a million variables
in less than 1 min.

2.10 Implementing Evolutionary Algorithms in the Cloud

Tutorial Speaker: JJ Merelo, University of Granada (Spain)

Tutorial Abstract: Creating experiments that can be easily reproduced and
converted in a straightforward way into a report involves knowing a series of tech-
niques that are of widespread use in the open source and commercial software
communities. This tutorial will introduce this techniques, including an introduc-
tion to cloud computing and DevOps for evolutionary algorithm practitioners,
with reference to the tools and platforms that can make development of new
algorithms and problem solutions fast and reproducible.

2.11 Intelligent Systems for Smart Cities

Tutorial Speaker: Enrique Alba, University of Málaga (Spain)

Tutorial Abstract: The concept of Smart Cities can be understood as a holistic
approach to improve the level of development and management of the city in a
broad range of services by using information and communication technologies.

It is common to recognize six axes of work in them: (i) Smart Economy, (ii)
Smart People, (iii) Smart Governance, (iv) Smart Mobility, (v) Smart Environ-
ment, and (vi) Smart Living. In this tutorial we first focus on a capital issue:
smart mobility. European citizens and economic actors need a transport system
which provides them with seamless, high-quality door-to-door mobility. At the
same time, the adverse effects of transport on the climate, the environment and
human health need to be reduced. We will show many new systems based in the
use of bio-inspired techniques to ease the road traffic flow in the city, as well
as allowing a customized smooth experience for travelers (private and public
transport).
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This tutorial will then discuss on potential applications of intelligent sys-
tems for energy (like adaptive lighting in streets), environmental applications
(like mobile sensors for air pollution), smart building (intelligent design), and
several other applications linked to smart living, tourism, and smart municipal
governance.

2.12 Meta-Model Assisted (Evolutionary) Optimization

Tutorial Speaker: Boris Naujoks and Jörg Stork and Martin Zaefferer and
Thomas Bartz-Beielstein, TH Köln (Germany)

Tutorial Abstract: Meta-model assisted optimization is a well-recognized
research area. When the evaluation of an objective function is expensive, meta-
model assisted optimization yields huge improvements in optimization time or
cost in a large number of different scenarios. Hence, it is extremely useful for
numerous real-world applications. These include, but are not limited to, the opti-
mization of designs like airfoils or ship propulsion systems, chemical processes,
biogas plants, composite structures, and electromagnetic circuit design.

This tutorial is largely focused on evolutionary optimization assisted by
meta-models, and has the following aims: Firstly, we will provide a detailed
understanding of the established concepts and distinguished methods in meta-
model assisted optimization. Therefore, we will present an overview of current
research and open issues in this field. Moreover, we aim for a practical approach.
The tutorial should enable the participants to apply up-to-date meta-modelling
approaches to actual problems at hand. Afterwards, we will discuss typical prob-
lems and their solutions with the participants. Finally, the tutorial offers new
perspectives by taking a look into areas where links to meta-modelling con-
cepts have been established more recently, e.g., the application of meta-models
in multi-objective optimization or in combinatorial search spaces.

2.13 Promoting Diversity in Evolutionary Optimization:
Why and How

Tutorial Speaker: Giovanni Squillero, Politecnico di Torino (Italy), and
Alberto Tonda, INRA (France)

Tutorial Abstract: Divergence of character is a cornerstone of natural evo-
lution. On the contrary, evolutionary optimization processes are plagued by an
endemic lack of diversity: all candidate solutions eventually crowd the very same
areas in the search space. Such a “lack of speciation” has been pointed out in the
seminal work of Holland in 1975, and nowadays is well known among scholars. It
has different effects on the different search algorithms, but almost all are quite
deleterious. The problem is usually labeled with the oxymoron “premature con-
vergence”, that is, the tendency of an algorithm to convergence toward a point
where it was not supposed to converge to in the first place. Scientific literature
contains several efficient diversity-preservation methodologies that ranged from
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general techniques to problem-dependent heuristics. However, the fragmentation
of the field and the difference in terminology led to a general dispersion of this
important corpus of knowledge in many small, hard-to-track research lines.

Upon completion of this tutorial, attendees will understand the root causes
and dangers of “premature convergence”. They will know the main research lines
in the area of “diversity promotion”. They will be able to choose an effective
solution from the literature, or design a new one more tailored to their specific
needs.

2.14 Runtime Analysis of Evolutionary Algorithms: Basic
Introduction

Tutorial Speaker: Per Kristian Lehre, University of Nottingham (UK), and
Pietro S. Oliveto, University of Sheffield (UK)

Tutorial Abstract: Evolutionary algorithm theory has studied the time com-
plexity of evolutionary algorithms for more than 20 years. This tutorial presents
the foundations of this field. We introduce the most important notions and defini-
tions used in the field and consider different evolutionary algorithms on a number
of well-known and important example problems. Through a careful and thorough
introduction of important analytical tools and methods, including fitness- and
level-based analysis, typical events and runs, and drift analysis. By the end of the
tutorial the attendees will be able to apply these techniques to derive relevant
runtime results for non-trivial evolutionary algorithms.

In addition to custom-tailored methods for the analysis of evolutionary algo-
rithms we also introduce the relevant tools and notions from probability theory
in an accessible form. This makes the tutorial appropriate for everyone with an
interest in the theory of evolutionary algorithms without the need to have prior
knowledge of probability theory and analysis of randomised algorithms.

Variants of this tutorial have been presented at GECCO 2013–2015, attract-
ing well over 50 participants each time. The tutorial will be based on the
’Theoretical analysis of stochastic search heuristics’ chapter of the forthcoming
Springer Handbook of Heuristics.

2.15 Theory of Evolutionary Computation

Tutorial Speaker: Benjamin Doerr, École Polytechnique (France)

Tutorial Abstract: Theoretical research has always accompanied the devel-
opment and analysis of evolutionary algorithms, both by explaining observed
phenomena in a very rigorous manner and by creating new ideas. Since the
methodology of theory research is very different from experimental or applied
research, non-theory researcher occasionally find it hard to understand and profit
from theoretical research. Overcoming this gap in our research field is the target
of this tutorial. Independent of particular theoretical subdisciplines or methods
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like runtime analysis or landscape theory, we aim at making theory accessible to
researchers having little exposure to theory research previously. In particular,

– we describe what theory research in EC is, what it aims at, and showcase some
of key findings of the last 15 years,

– we discuss the particular strengths and limitations of theory research,
– we show how to read, understand, interpret, and profit from theory results.

2.16 Theory of Parallel Evolutionary Algorithms

Tutorial Speaker: Dirk Sudholt, University of Sheffield (UK)

Tutorial Abstract: Evolutionary algorithms (EAs) have given rise to many
parallel variants, fuelled by the rapidly increasing number of CPU cores and the
ready availability of computation power through GPUs and cloud computing.
A very popular approach is to parallelize evolution in island models, or coarse-
grained EAs, by evolving different populations on different processors. These
populations run independently most of the time, but they periodically commu-
nicate genetic information to coordinate search. Many applications have shown
that island models can speed up computation time significantly, and that par-
allel populations can further increase solution diversity. However, there is little
understanding of when and why island models perform well, and what impact
fundamental parameters have on performance.

This tutorial will give an overview of recent theoretical results on the runtime
of parallel evolutionary algorithms. These results give insight into the fundamen-
tal working principles of parallel EAs, assess the impact of parameters and design
choices on performance, and contribute to the design of more effective parallel
EAs.
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