
A Distributed Frequent Itemsets
Mining Algorithm Using Sparse

Boolean Matrix on Spark

Yonghong Luo1, Zhifan Yang1, Huike Shi1, and Ying Zhang1,2(B)

1 College of Computer and Control Engineering, Nankai University, Tianjin, China
{luoyonghong,yangzhifan,shihuike,zhangying}@dbis.nankai.edu.cn

2 College of Software, Nankai University, Tianjin, China

Abstract. Frequent itemsets mining is one of the most important
aspects in data mining for finding interesting knowledge in a huge mass
of data. However, traditional frequent itemsets mining algorithms are
usually data-intensive and computing-intensive. Take Apriori algorithm,
a well-known algorithm in finding frequent itemsets for example, it needs
to scan the dataset for many times and with the coming of big data era,
it will also cost a lot of time over GB-level data. In order to solve those
problems, researchers have made great efforts to improve Apriori algo-
rithm based on distributed computing framework Hadoop or Spark. How-
ever, the existing parallel Apriori algorithms based on Hadoop or Spark
are not efficient enough over GB-level data. In this paper, we proposed a
distributed frequent itemsets mining algorithm by sparse boolean matrix
on Spark (FISM). And experiments show FISM has better performance
than all others existing parallel frequent itemsets mining algorithms and
can also deal with GB-level data.

Keywords: Frequent itemsets mining · Apriori algorithm · Spark ·
Sparse matrix · FISM

1 Introduction

In order to solving the problem of association rules mining in the era of big data,
many researchers have proposed lot of algorithms that using parallel comput-
ing technologies to deal with association rules mining. Yang X Y [4] proposed a
distributed Apriori algorithm using Hadoop’s MapReduce framework, however,
this algorithm would cause a large number of I/O operations. Qiu H [3] pro-
posed a parallel frequent itemsets mining algorithm with Spark called YAFIM
(Yet Another Frequent Itemset Mining). And experiments show that, compared
with the algorithms implemented with Hadoop, YAFIM achieved 18× speedup
in average for various benchmarks [3]. But, YAFIM will also cost many hours
when processing GB-level data. In the year of 2015, Zhang F proposed DPBM,
a distributed matrix-based pruning algorithm based on Spark [1]. Experiments

c© Springer International Publishing Switzerland 2016
F. Li et al. (Eds.): APWeb 2016, Part II, LNCS 9932, pp. 419–423, 2016.
DOI: 10.1007/978-3-319-45817-5 38



420 Y. Luo et al.

show that it is faster than YAFIM. But this algorithm may have a critical prob-
lem: if the total transactions are large enough, the computing speed will be very
slow and not efficient.

In order to solve these problems, this paper proposed FISM, a new distributed
frequent itemsets mining algorithm by using sparse boolean matrix on Spark.
First, we use sparse matrix to replace the boolean-matrix of DPBM. Next, we
also improved the generating process of candidate frequent itemsets. The exper-
iments show that FISM outperforms DPBM, YAFIM, Parallel FP-Growth and
other algorithms in both speed and scalability performance.

2 Distributed Frequent Itemsets Mining Algorithm
by Using Sparse Boolean Matrix on Spark (FISM)

Assume that there are n transactions in the dataset D, and we call it T =T1,
T2, · · · , Tn. Next, assume that there are m items in the dataset called I = I1, I2,
· · · , Im. The following are main steps of FISM:

First scan the dataset and for every item Ii (i = 1, 2, 3, · · · , m), get the vector
Vi (bi1, bi2, bi3, · · · , bin) where

bij =

{
1 Ii ∈ Tj

0 Ii /∈ Tj

(j = 1, 2, 3, · · · , n; i = 1, 2, 3, · · · , m), and if bij = 0 then transaction Tj does not
contain item Ii. There are total m vectors which build up the boolean matrix
B. The number of columns of boolean matrix B is n and the number of rows of
boolean matrix B is m. Sometimes, the number of transactions are very large,
so the boolean matrix B will be implemented by sparse matrix. Figure 1 shows
the actual data structure of B. For example, the i-th member of vectors is a
list (4, 7, 68, 6457, · · · ), so it means that transaction 4, 7, 68 and 6457 all contain
Item Ii and other transactions do not contain Item Ii. According to boolean
matrix B, we can easily get the support number of Item Ii .

Fig. 1. Sparse Boolean matrix B



A Frequent Itemsets Mining Algorithm Using Sparse Matrix 421

Definition 1. The “AND” result of one itemset E is defined as follows:

Suppose that E consists of h items, they are I1, I2, I3, . . ., Ih, and suppose
that these items’ corresponding rows in sparse boolean matrix B are V1, V2, V3,
. . ., Vh, and suppose that Vresult =V1 & V2 & V3, . . ., & Vh. Define that Vresult

is the “AND” result of E. The symbol “&” means “AND” operation between
two vectors.

It is easy to generate (k + 1)-candidate frequent itemsets by k-frequent item-
sets. After we get all k-frequent itemsets, for every k-frequent itemset, we stored
its “AND” result (see Definition 1) in a list.Obviously, every (k + 1)-candidate
frequent itemset consists of a new item Inew and a k-frequent itemset called
itemsetold, and the ”AND” result of itemsetold is called Vold. Then Vold will be
reused in the “AND” operation of Vold and Inew’s corresponding row of sparse
boolean matrix B. In this way, we needn’t to do k+1 times “AND” operations for
the confirming of every one of (k + 2)-frequent itemset. We just do one time of
“AND” operation of Vold and Inew’s boolean vector. Especially, we implemented
the “AND” operation with multithreading technology.

In general,traditional frequent itemsets finding algorithms will scan the
dataset for many times and this cause large amount of I/O operations while
FISM only needs to scan dataset for once and use sparse matrix to accelerate
the procedure of frequent itemsets finding. In theoretically, FISM outperforms
traditional Apriori algorithm by up to one order of magnitude. And the experi-
ments will confirm it.

3 Experiments Results

In this section, we compared FISM with MRApriori [4], YAFIM [3], DPBM [1]
and PFP-growth (parallel FP-Growth [2] algorithm implemented by Spark team)
to evaluate its performance. We implemented all the algorithms in Spark1.5.0.
All the datasets are stored in HDFS and the cluster consists of 4 nodes and each
node has 4 Intel Xeon cores with 2.60 GHz, 22.5 GB memory and 1 TB disk. The
running system is CentOS6.5 and the version JDK is 1.7. Last but not least, the
correctness of all the algorithms mentioned above are exactly same.
Table 1 are characteristics of the datasets. Table 2 are results of experiments.

We can see that in every repetition and dataset, FISM outperforms all the
others algorithms. For all the datasets, FISM is 1.8× faster than PFP-growth,
20× faster than YAFIM and 10× faster than DPBM.

Table 1. Detail properties of datasets

Dataset Number of items Number of transactions Size

T10I4D100K 870 100000 3.9 MB

T40I10D100K 1000 100000 14.8 MB

Webdocs 1000 1692300 1.37 GB



422 Y. Luo et al.

Table 2. Experiments results

Dataset YAFIM MRApriori DPBM FP Growth FISM

T10I4D100K sup=0.01 340 s 1920 s 75 s 32 s 15 s

T40I10D100K sup=0.01 167min >12 h 43min 6.6min 2.9min

Webdocs sup=0.2 Out of memory Out of memory Out of memory 7.0min 5.1min

Replicated times of dataset

C
os

t t
im

e(
m

in
ut

es
)

0

100

200

300

400

500
PFP-Growth
FISM
DPBM

(a) T10I4D100K Sup=0.01

Replicated times of dataset
1 2 3 4 5 6 1 2 3 4 5 6

C
os

t t
im

e(
m

in
ut

es
)

0

100

200

300
PFP-Growth
FISM
DPBM

(b) T40I10D100K Sup=0.01

Fig. 2. The sizeup performance of each algorithms

Figure 2 shows the sizeup performance of all algorithms. The x-axis shows
the number of replicated times of dataset. FISM is always faster than any other
algorithms. MRApriori and YAFIM are not included in Fig. 2 because they spend
more than 24 h. At the same time, we can see that with the increasement of
dataset, the FISM ’cost time are increasing in a nearly linear way.

4 Conclusions

In order to accelerate frequent itemsets mining in big data era, this paper pro-
posed FISM, a new distributed sparse boolean-matrix based frequent itemsets
mining algorithm with Spark. It generate a sparse boolean matrix which shows
whether one item is included in one transaction or not, then use the matrix to
get all frequent itemsets. In this way, we only need to scan the dataset once. The
experiments show that FISM is 1.8× faster than PFP-growth, 20× faster than
YAFIM and 10× faster than DPBM. In addition, the FISM also has a better
performance in scalability.

Acknowledgements. This work is partially supported by National 863 Program of
China under Grant No. 2015AA015401, as well as the Research Foundation of Min-
istry and China Mobile under Grant No. MCM20150507. This work is also partially
supported by Tianjin Municipal Science and Technology Commission under Grant No.
13ZCZDGX01098 and No. 16JCQNJC00500.



A Frequent Itemsets Mining Algorithm Using Sparse Matrix 423

References

1. Gui, F., Ma, Y., Zhang, F., Liu, M., Li, F., Shen, W., Bai, H.: A distributed fre-
quent itemset mining algorithm based on Spark. In: 2015 IEEE 19th International
Conference on Computer Supported Cooperative Work in Design (CSCWD), pp.
271–275. IEEE (2015)

2. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: ACM SIGMOD Record, vol. 29, pp. 1–12. ACM (2000)

3. Qiu, H., Gu, R., Yuan, C., Huang, Y.: YAFIM: a parallel frequent itemset min-
ing algorithm with Spark. In: 2014 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 1664–1671. IEEE (2014)

4. Yang, X.Y., Liu, Z., Fu, Y.: Mapreduce as a programming model for association
rules algorithm on Hadoop. In: 2010 3rd International Conference on Information
Sciences and Interaction Sciences (ICIS), pp. 99–102. IEEE (2010)


	A Distributed Frequent Itemsets Mining Algorithm Using Sparse Boolean Matrix on Spark
	1 Introduction
	2 Distributed Frequent Itemsets Mining Algorithm by Using Sparse Boolean Matrix on Spark (FISM)
	3 Experiments Results
	4 Conclusions
	References


