
Practical Study of Subclasses of Regular
Expressions in DTD and XML Schema

Yeting Li2, Xiaolan Zhang1,2, Feifei Peng1,2, and Haiming Chen1(B)

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

{zhangxl,pengff,chm}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

liyeting@snnu.edu.cn

Abstract. DTD and XSD are two popular schema languages widely
used in XML documents. Most content models used in DTD and XSD
essentially consist of restricted subclasses of regular expressions. How-
ever, existing subclasses of content models are all defined on stan-
dard regular expressions without considering counting and interleaving.
Through the investigation on the real world data, this paper introduces a
new subclass of regular expressions with counting and interleaving. Then
we give a practical study on this new subclass and five already known
subclasses of content models. One distinguishing feature of this paper is
that the data set is sufficiently large compared with previous relevant
work. Therefore our results are more accurate. In addition, based on this
large data set, we analyze the different features of regular expressions
used in practice. Meanwhile, we are the first to simultaneously inspect
the usage of the five subclasses and analyze different reasons dissatis-
fying the corresponding definitions. Furthermore, since W3C standard
requires the content models to be deterministic, the determinism of con-
tent models is also tested by our validation tools.
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1 Introduction

As a main file format for data exchange, the eXtensible Markup Language (XML)
has been widely used on the web [1]. The presence of a schema provides a lot
of conveniences and advantages for various applications such as data process-
ing, automatic data integration, static analysis of transformations and so on
[3,12,20–23,27,31]. DTD (Document Type Definitions) and XSD (XML Schema
Definitions) are two popular schema languages recommended by W3C (World
Wide Web Consortium) [30]. Most content models used in DTD and XSD essen-
tially consist of restricted subclasses of regular expressions. Therefore for prac-
tical purpose many researches focus on the study of subclasses practically used.
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In 2004, Bex et al. proposed a subclass called the simple regular expressions
after analyzing 109 DTDs and 93 XSDs from Cover Pages [6], which became the
basis of later work. Martens et al. discussed the complexity of decision problems
for eCHARE, an extension of simple regular expression, and still call it simple
regular expression [24]. Later eCHARE was called CHARE in [25]. In 2005,
Bex et al. discussed the expressiveness of XSDs based on 819 XSDs harvested
from the web in [5]. In this corpus only 225 XSDs remained no errors and 85%
were in fact structurally equivalent to a DTD. In 2006, after an analysis of 819
DTDs and XSDs gathered from Cover Pages as well as from the web, Bex et al.
proposed two new subclasses: single occurrence regular expression (SORE) and
chain regular expression (CHARE) [7]. In [7], CHARE is defined as a subclass
of SORE and it has a weaker expressiveness than the CHARE defined in [25].
Using 966 DTDs and XSDs, Feng et al. extended CHARE [7] to Echare to cover
more content models [15]. Echare allows two kinds of base symbols a and a+

where a ∈ Σ.
The above discussion reveals some shortcomings of existing work. First, it

is clear that the names of different subclasses of regular expressions above are
quite confusing in the literature. Therefor we rename these subclasses and use
new names in this paper. The relations between the new and the old names are
shown in Table 1. Second, the scale of data sets was far from enough for analysis.
One distinguishing feature of this paper is that the data set is sufficiently large
compared with previous relevant work. So it will be helpful to get a more accurate
result. Using techniques such as proxies, disguised as a browser, multi-threading,
we gather a large sample of 2427 DTD and 4859 XSD files from Google after
removing duplicate schemas by MD5. The data set covers different fields such
as education, agriculture, science, economics, engineering, sports and so on. The
whole list for our data set and tools used in this paper can be found in http://lcs.
ios.ac.cn/∼zhangxl/project.html. Besides, in existing work the above subclasses
were separately discussed in different papers using relatively small data sets,
while in this paper we simultaneously analyze these subclasses using a new larger
data set.

Table 1. Relations between new and old restricted subclass names

New names Old names

CHARE Simple regular expression [6]

eCHARE CHARE [25]

SORE SORE [7]

Simplified CHARE CHARE [7]

eSimplified CHARE Echare [15]

In addition, these subclasses are all defined on standard regular expressions.
However, counting and interleaving have already been used in XSDs. Björklund

http://lcs.ios.ac.cn/~zhangxl/project.html
http://lcs.ios.ac.cn/~zhangxl/project.html
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et al. made an incremental evaluation of regular expressions with counters based
on a data set from three libraries: RegExLib, Snort and XML Schema on the
web in [10]. The results show that almost half of the regular expressions use
non-trivial counters which exclude the forms of a[0,0], a[0,1] and a[1,1]. They also
found that the vast majority is the simple form of CHAINs: e1 · e2 · · · em where
ei = (a1 + a2 + · · · + an)[k,l]. In [17], Ghelli et al. proposed a restricted subclass
defined by T :: = ε|a[m,n]|T+T |T ·T |T&T where m ∈ N\{0} and n ∈ N\{0}∪{∗}.
In L(T ), each alphabet symbol can appear at most once. Counters can only occur
as a constraint for terminal symbols. For example, (a? · (b + c + d)[1,100]) is not
allowed. In 2008 they introduced a linear-time membership algorithm [18] for
this subclass. Furthermore, determinism of regular expressions with counting
and interleaving has been discussed by many researchers [13,16,19,28]. In this
paper, we extend CHARE with counting and interleaving operators. We conduct
a series of experiments with result of a more popular use of this new subclass
(94 %) in real world. We also analyze the determinism of it together with other
five commonly used subclasses based on our data set. The main contributions of
this paper are listed as follows.

- Considering numerical occurrence constraints and interleaving, we extend
CHARE to a new restricted class called extended CHARE with counting and
interleaving (eCICHARE). To the best of our knowledge, we are the first to
analyze the usage of regular expressions with counting and interleaving together
through real world data.

- Based on the large data set, we inspect the properties of different subclasses
used in practice including eCICHARE by different measures. Particularly, the
proportions of all subclasses used in practice are analyzed. In addition, we are
the first to analyze the usage of eCHARE using real world data.

The rest of paper is organized as follows. Section 2 gives the definitions used
in this paper. Then we introduce the data set and experiments in Sect. 3. The
related work is discussed in Sect. 4 and Sect. 5 gives the conclusion.

2 Definitions

2.1 Regular Expression with Counting and Interleaving

Let Σ be a finite alphabet of terminal symbols. Each string consists of a finite
sequence of symbols in Σ. Σ∗ means the set of all strings over Σ. A regular
expression with counting and interleaving over Σ is ∅, ε, or a ∈ Σ, or is the
union r1 + r2, the concatenation r1 · r2, the interleaving r1&r2, the Kleene-star
r∗
1 , the choice r1?, the counting r

[m,n]
1 with m ≤ n and n > 0, or the plus r+1

where r1 and r2 are both regular expressions. r1 · r2 is also written as r1r2. Let
s be a string in Σ∗ and |s| denotes its size. We use s1&s2 to denote the set of
strings obtained by s1 and s2 in every possible way. For s ∈ Σ∗, s&ε = ε&s = s
and a ·s1&b ·s2 = (a · (s1&b ·s2))∪ (b · (a ·s1&s2)). For example, strings accepted
by a&b&c are {abc, acb, bac, bca, cab, cba}. Counting is the numerical occurrence
constraint which defines the minimal and maximal number of times for a certain
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symbol in a regular expression. For E = (a[1,3] + b)[2,3]b, it means that two-to-
three repeats of a choice between a sequence of one-to-three a elements or a
single b, followed by a single b. By RE(&,#) we represent regular expressions
extended with interleaving and counting. We use RE(&) and RE(#) to denote
the regular expressions with interleaving and counting respectively. # and &
operators help us to express the content models more succinctly and concisely.

2.2 eCICHARE

We introduce a new subclass which extends CHARE with interleaving and count-
ing.

Definition 1 (extended CHARE with counting and interleaving
(eCICHARE)). Base symbols are a, a?, a∗, or a+ where a ∈ Σ. A factor
is of the form e, e?, e∗, e[m,n], or e+ where e is a disjunction of base sym-
bols of the same kind. An eCICHARE is ∅, ε, a concatenation of factors, or an
unordered sequence of factors with interleaving among them.

In the definition, each eCICHARE cannot contain both concatenation and inter-
leaving operators at the same time. Numerical occurrence can only be the con-
straint to factors. This restriction is severe, but the experiment result shows that
it is actually met by most of regular expressions in real world data. In addition,
two forms of eCICHARE: a[0,1] and a[1,1] are always substituted by a? and a in
practice.

For instance, E1 = (a∗ + b∗)?(a + b)∗(c+ + d+)e?, E2 = a[1,3]b? and E3 =
(a∗ + b∗)?&(a + b)∗&(c+ + d+)&e? are both eCICHAREs while E4 = (a∗ +
b∗)?(a + b[0,3])∗(c+ + d+)&e? is not.

2.3 Determinism

Determinism is required by W3C specification for content models of DTDs and
XSDs. It is also called the unique particle attribution (UPA) property by W3C
Recommendation. It has the same meaning with one-ambiguity [11], and weak
determinism [16,29]. Suppose that we match a string s against a given regular
expression E from left to right. If we always know definitely the next symbol we
will match without looking ahead in the string, E is deterministic. The formal
definition of determinism is as follows.

Definition 2 (Determinism [4]). An expression E is deterministic if and only
if for all words uxv, uyv ∈ L(E′) where |x| = |y| = 1, if x �= y then x′ �= y′.

In this definition, E′, x′ and y′ are the marked forms of E, x and y. For example.
E = (a + b)∗a?b∗, then E′ = (a1 + b2)∗a3?b∗

4 and (E′)′ = E. E = aa∗ is a
deterministic regular expression while E = a∗a is not.
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2.4 Definitions for Other Five Subclasses

Definition 3 (CHARE [6]). Base symbols are a, a?, a∗, a+ where a ∈ Σ. A
factor is of the form e, e?, e∗, e+ where e is a disjunction of base symbols of the
same kind. A simple regular expression is ∅, ε, or a concatenation of factors.

For instance, (a∗ + b∗)(a+ b)?b∗(a+ b)∗ is a CHARE while (abc+ c?)(a∗ + b∗)d?
is not.

Definition 4 (eCHARE [25]). Base symbols are s, s?, s∗, s+ where s is a
non-empty string. A factor is of the form e, e?, e∗, e+ where e is a disjunction
of base symbols of the same kind. That is of the form (s1+···+sn), (s∗

1+···+s∗
n),

(s1? + · · · + sn?), (s+1 + · · · + s+n ), where n ≥ 1 and si is non-empty string. An
eCHARE is ∅, ε or a concatenation of factors.

For example, ((abc)∗ + b)(a + b)?(ab)+(ac + b)∗ is an eCHARE.

Definition 5 (SORE [7]). Let Σ be a finite alphabet. A single-occurrence reg-
ular expression (SORE) is a regular expression over Σ in which every terminal
symbol occurs at most once.

For instance, (((a + b), c)?d+)∗e is a SORE while (a∗ + b∗)a is not.

Definition 6 (Simplified CHARE [7]). A Simplified CHARE is a SORE over
Σ of the form f1 · · ·fn where n ≥ 1. Every factor fi is an expression of the form
(a1 + · · · + an), (a1 + · · · + an)?, (a1 + · · · + an)∗, (a1 + · · · + an)+ where n ≥ 1
and every ai is a terminal symbol.

For example, (a + b)?c∗ is a Simplified CHARE while (a + b?)a is not.

Definition 7 (eSimplified CHARE [15]). An eSimplified CHARE is a SORE
over Σ of the form f1 · · · fn where n ≥ 1. Every factor fi is an expression of the
form (a1 + · · · + an), (a1 + · · · + an)?, (a1 + · · · + an)∗, (a1 + · · · + an)+ where
n ≥ 1 and every ai is a terminal symbol or the form of a+

i .

For example, (a + b+)c? is an eSimplified CHARE.
CHARE and eCHARE require the base symbols in each factor must be the

same kind while eSimplified CHARE can be different.

3 Experiments

3.1 Data Set

Data Preprocess. There are two steps in our data preprocess. First, get the
DTD and XSD files. Repositories of data set such as GSML, DMTF, DSML,
DWML, FACETMAP, GITHUB, GRAPHML, HAPMAP, IOP, KAIST, NCBI,
BIOXSD, CORBA, CSML and so on are well-formed. We can harvest DTDs
and XSDs from their official websites directly. But others need to be crawled
through Google by queries: filetype:dtd or filetype:xsd. Using these two queries,
we get many URLs for DTDs (or XSDs). However, not all these URLs point to
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a DTD (or XSD) directly but to some HTML files. Such HTML file may have a
link or path to a DTD (or XSD), or just some information on the website. For
links, we make a recursive resolving to download these related DTDs and XSDs.
For information on the websites, we use a specific script tool: html parser which
is written in Python to analyze the information and obtain the schema. Second,
do data cleaning. We remove duplicate files with same URLs. More precisely, we
use the technique MD5 to analyze whether two files with different URLs have
the same content. If so, redundant files are also removed. At last, we obtain 2427
DTD files and 4859 XSD files and extract 64249 and 67255 regular expressions
from DTDs and XSDs files respectively.

For the convenience of discussion, we introduce a uniform syntax to denote
subclasses of restricted regular expression by specifying the allowed factors used
in [25]. The base symbols are denoted by a, a?, a∗, a+. s means a string in Σ∗.
The disjuncts are denoted by (a1 + a2 + · · · + an), (a1? + a2? + · · · + an?),
(a∗

1 +a∗
2 + · · ·+a∗

n), (a+
1 +a+

2 + · · ·+a+
n ) which can be also extended with choice,

Kleene-star, and plus respectively. These factors can be abbreviated by the form
of (+ · ··). We use RE((+a?), a∗) to illustrate the subclass whose factors can be
in the form of (a1? + a2? + · · · + an?) where ai ∈ Σ and n ≥ 1 or the form of a∗

for some a ∈ Σ. We list some possible factors in Table 2.

Table 2. Possible factors in subclasses of regular expressions and their abbrevia-
tions [25]

Factor a a? a∗ a+ s? s∗ s+

Abbr. a a? a∗ a+ s? s∗ s+

Factor Abbr.

(a1 + · · · + an) (+a)
(a1 + · · · + an)? (+a)?
(a1 + · · · + an)∗ (+a)∗

(a1 + · · · + an)+ (+a)+

(a∗
1 + · · · + a∗

n) (+a∗)
(a+

1 + · · · + a+
n ) (+a+)

Factor Abbr.

(s1 + · · · + sn) (+s)
(s1 + · · · + sn)? (+s)?
(s1 + · · · + sn)∗ (+s)∗

(s1 + · · · + sn)+ (+s)+

(s∗
1 + · · · + s∗

n) (+s∗)
(s+1 + · · · + s+n ) (+s+)

Based on 64249 and 67255 regular expressions from DTDs and XSDs, we
analyze the occurrence types of regular expressions in practice. We treat the
form of a+ operator as aa∗. The result is shown in Table 3. From Table 3, we can
find that the form of RE(a, (+a)∗) accounts for the most proportion (34.6%)
for DTDs while in XSDs, forms of RE(a, a?) and RE(a, a∗) are more popular.
In addition, the vast majority of regular expressions belongs to the subclass of
eCICHARE with proportion of 90.3% for DTDs and 94.1% for XSDs respec-
tively.
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Table 3. Occurrence of types

% of DTDs % of XSDs

RE(a) 18.71 19.28

RE(a,a?) 6.18 22.56

RE(a,a*) 17.02 23.34

RE(a,a?,a*) 3.16 9.49

RE(a,(+a)) 1.74 3.07

RE(a,(+a)?) 0.36 1.09

RE(a,(+a)*) 34.63 5.33

RE(a,(+a)?,(+a)*) 3.72 1.60

RE(a,(+a*)*) 3.59 0.16

RE(#) 0 4.06

RE(&) 0 2.07

RE(#,&) 0 ≈ 0

Others 0.97 1.96

Total eCICHARE 90.08 94.00

3.2 Definitions for Measures

In this section, we first introduce some definitions of measures used in the exper-
iment such as star height, nesting depth, density and so on. Then, using these
measures, we analyze the properties and complexity of regular expressions from
different aspects.

Definition 8 (Star Height [2]). The star height of a regular expression E over
the alphabet Σ, denoted by h(E), is a nonnegative integer defined recursively as
follows:

1. h(E) = 0, if E = ∅ or a for a ∈ Σ,
2. h(E) = max{h(E1), h(E2)}, if E = (E1 + E2) or E = (E1 · E2),

where E1 and E2 are regular expressions over Σ,
3. h(E) = h(E1) + 1 if E = (E1)∗ and E1 is a regular expression over Σ.

The star height [2] reflects the maximum nesting depth of Kleene-star occurring
in a regular expression. It is an illustration for the complexity of DTDs and
XSDs. We give the star height of DTDs and XSDs respectively. We use some
substitutions in our experiment of computing the star height. For example, E1 =
a+ and E2 = a[m,∞] can be rewritten as the form of E′

1 = aa∗ and E′
2 = a∗. We

treat interleaving similarly as the operator of concatenation. In fact, other forms
of counting and interleaving do not influence the results of star height. From
Table 4, we observe that the result of distributions for DTDs and XSDs have no
significant differences. Content models with star height larger than 2 are very
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Table 4. Star height observed in DTDs and XSDs

Star height 0 1 2 3 4

% of DTDs 27.71 70.66 1.58 0.05 0

% of XSDs 53.62 44.94 1.15 0.29 ≈ 0

rare. For XSDs, the proportion with the star height equal to 1 is higher in our
result than that in [6] which is 38% and 17% respectively.

Besides, we also consider the counter height for regular expressions of XSDs.
Counter height is defined just like the star height. The result indicates that the
counter height with 1 of regular expressions with counting accounts for almost
89.3%. Star height and counter height are both illustration of iteration depth
of regular expressions. In this paper, we introduce Nesting depth to measure
the complexity of a regular expression. For example, the star height for regular
expressions E1 = (a + b?)?c[2,4]d and E2 = a are both zero. But the complexity
for E1 and E2 should be different. Nesting depth considers all operators possible
in regular expressions including counting and interleaving. For example, let E =
1++(2? ·3+)∗ +4[1,3]. Its corresponding nesting depth is 2. We show proportions
of DTDs and XSDs by nesting depth in Table 5. From Table 5, we can find that
both DTDs and XSDs with nesting depth lower than 2 are more than 95%. That
means schemas with complex structures are very rare.

Definition 9 (Nesting Depth). The nesting depth of a regular expression E
over Σ, denoted by ND(E), is a nonnegative integer defined recursively as fol-
lows:

1. ND(E) = 0, if E = ∅, ε or a for a ∈ Σ,
2. ND(E) = max{ND(E1), ND(E2)}, if E = (E1 + E2), E = (E1&E2) or

E = (E1 · E2), where E1 and E2 are regular expressions over Σ,
3. ND(E) = ND(E1) + 1, if E = (E1)∗, E = (E1)+, E = (E1)? or E =

(E1)[m,n] for E1 is a regular expression over Σ.

Then we consider the density distribution of DTDs and XSDs respectively
based on the real world data. The density [6] can be another measure to illustrate
the complexity degree of rules in content models.

Definition 10 (Density [6]). The density of a schema is defined as the number
of elements occurring in the right hand side of its rules divided by the number
of elements. The formula is d = 1

N

∑N
i=1 |Ai| where N is the total number of

Table 5. Nesting depth observed in DTDs and XSDs

Nesting depth 0 1 2 3 4

% of DTDs 20.59 76.38 2.49 0.50 0.04

% of XSDs 22.86 72.82 3.91 0.37 0.04
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Fig. 1. ID number of DTDs (left) and XSDs (right) versus their density

element definitions occurring in this schema, Ai is the string in the right hand
of a rule, |Ai| denotes the size of Ai.

The density [6] can be a measure to illustrate the complexity degree of regu-
lar expressions. From Definition 10, we can easily find that the larger the value
is, the more sophisticated rules a schema will have. In our experiment, we treat
counting as unary operator and the interleaving operator as concatenation. The-
ses processings do not influence the results of density. Based on the large data
set, we give the distributions of density in Fig. 1 for DTDs and XSDs respec-
tively. From Fig. 1, it is easy to find that the density less than 10 for DTDs and
XSDs is 95.8 % and 94.4 %.

3.3 XML Schema Features Used in Practical

Although DTD is simple, it develops with some shortcomings such as no mod-
ularity, limited expressiveness for new domains, limited basic types and so on.
The content model of an element in DTD depends only on the element name. In
contrast, XML Schema is based on type definitions and allows the content model
to depend on the context in which the element is used. With stronger expres-
siveness, the usage of XML Schema grows gradually though it is complicated to
some extent. Table 6 shows the features of XSDs used in practice.

3.4 Determinism

We consider the determinism of the regular expressions on our large data set.
We use our own tools to check the determinism of regular expressions for DTD
and XSD respectively. The result is shown in Table 7. From Table 7, we observe
that these subclasses almost all satisfy the deterministic requirement. Take the
first number 58536/64249 for example. 64249 means the total number of regular
expressions for DTDs in the whole data. 58536 means the number of determin-
istic regular expressions in the whole data set.
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Table 6. XML schema features used in the corpus

Features % of XSDs

SimpleType extension 5.62

SimpleType restriction 13.85

ComplexType extension 10.27

ComplexType restriction 1.69

Abstract attribute 9.57

Final attribute 0.86

Block attribute 0.29

Fixed attribute 2.94

SubstitutionGroup 8.87

Redefine 1.54

xs:all 3.56

Occurrence 4.48

Namespace 96.29

Import 19.16

Key/keyref 0.95

Unique 1.61

Table 7. Determinism of regular expressions

Google Whole data CHARE eCHARE eCICHARE

DTDs 58536/64249 58343/58404 58513/58579 58343/58404

XSDs 67218/67255 59061/59078 59222/59247 60492/60509

3.5 Usage of Subclasses of Regular Expressions in Practice

In this section, we mainly investigate the usage and proportions of six subclasses
in practice based on our large data set. In particular, k-ORE [4] is discussed with
different values of k at the same time. k-ORE means each alphabet symbol in
regular expression occurs at most k times. The reasons and proportions dissat-
isfying the corresponding definitions are also discussed. In our experiment, we
call regular expressions with counting and interleaving as non-standard regular
expressions. They are analyzed separately because counting and interleaving are
specific features for XSDs. This is a little different from that in [6,7]. In [6,7],
they rewritten regular expressions with counting as a new form using choice
operator ?. For example, E = a[1,3] is transformed to E′ = aa?a?. This trans-
formation is not reasonable enough which influences the results of CHARE and
eCHARE. The result in Table 8 indicates that the existing five subclasses still
have been used in a large scale (more that 80%). However, the usage of regular
expressions with counting and interleaving increases gradually. They are called
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Table 8. Proportions of subclasses of regular expressions

Subclasses % of DTDs % of XSDs

CHARE 90.08 87.88

Non-CHARE: non-terminal symbols 8.84 3.52

Non-CHARE: different unary operators 1.08 1.93

Non-CHARE: non-standard expressions 0 6.67

eCHARE 90.37 88.13

Non-eCHARE: not a string 8.31 3.26

Non-eCHARE: different unary operators 1.32 1.94

Non-eCHARE: non-standard expressions 0 6.67

SORE 95.01 92.45

Non-standard expressions 0 6.67

2-ORE 3.62 0.65

3-ORE 0.37 0.10

4-ORE 0.31 0.07

5-ORE 0.52 0.01

6-ORE 0.10 0.05

k ≥ 7 0.07 ≈ 0

Simplified CHARE 88.10 86.10

Non-Simplified CHARE: not a SORE 4.99 0.88

Non-Simplified CHARE: non-terminal symbols 5.00 2.82

Non-Simplified CHARE: different unary operators 1.91 3.52

Non-Simplified CHARE: non-standard expressions 0 6.67

eSimplified CHARE 89.12 86.73

Non-eSimplified CHARE: not a SORE 4.99 0.88

Non-eSimplified CHARE: non-terminal symbols 5.00 2.82

Non-eSimplified CHARE: the unary operator * or ? 0.89 2.90

Non-eSimplified CHARE: non-standard expressions 0 6.67

eCICHARE 90.08 94.00

Non-eCICHARE: non-terminal symbols 8.84 3.68

Non-eCICHARE: different unary operators 1.08 1.94

Non-eCICHARE: regular expressions with counting 0 0.37

non-standard expressions in our experiment and accounts for 6.67%. After we
extend CHARE to eCICHARE, the proportion rises to 94.00% from 87.88%.

Bex et al. concluded that 92% of DTDs and 97% of XSDs were CHARE
based on 109 DTDs and 93 XSDs [6]. In [7], Bex et al. found that 99% regu-
lar expressions were Simplified CHARE, which were also SORE based on 819
DTDs and XSDs. While in our experiment, the proportions for CHARE, SORE,
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Simplified CHARE, eSimplified CHARE are lower. The main reason is the dif-
ference of data sets. Our data set is larger and more comprehensive, which leads
to more accurate results and is closer to the real situation. Another reason is the
different process of counting and interleaving operators. The transformation of
counting in [6,7] such as the substitution aa?a? of a[1,3], increases the propor-
tions of CHARE and eCHARE. Besides, we are the first to analyze the usage of
eCHARE through real world data. The proportions of eCHARE are 90.37% for
DTDs and 88.13% for XSDs. Reasons dissatisfying the corresponding definitions
are shown in the table clearly. For example, non-terminal symbols mean using
expressions such as the forms of ab and a?b∗ where a, b ∈ Σ as base symbols
in a disjunction. They are not allowed in four subclasses: CHARE, Simplified
CHARE, eSimplified CHARE and eCICHARE. For CHARE, they account for
8.84% and 3.52% for DTDs and XSDs respectively. The proportions for other
three subclasses can be found in Table 8. However, strings like the form of ab as
the base symbols is valid for eCHARE. The form of (a?b∗ + c) is not allowed
in eCHARE. We call it as extended strings. The proportion of extended strings
is not small and they will be considered in our future work. The proportion of
SORE (95.01% for DTDs and 92.45% for XSDs) means that symbols in the
vast majority of regular expressions only occur once most of the time. Simplified
CHARE and eSimplified CHARE are both subclasses of SOREs. In [15], eSim-
plified CHARE accounts for 84.8% based on 2009 regular expressions while in
our experiment the proportion is 89.12% for DTDs (64249 regular expressions)
and 86.73% for XSDs (67255 regular expressions). The unary operators ∗ and ?
cannot be constraints for base symbols in eSimplified CHARE, which account
for 0.89% and 2.9% for DTDs and XSDs respectively. For all six subclasses,
proportions of other reasons are not large. For example, different unary opera-
tors depict the use of the form (a? + b∗)c as factors which is not valid in the six
subclasses. The unary operator * or ? is the form of (a∗+b∗) which is not allowed
in eSimplified CHARE. In the definition of eCICHARE, numerical occurrence
constraints cannot be nested. The reason of regular expressions with counting is
the form of (a[1,3] + b)[1,2] which is not valid for eCICHARE.

4 Related Work

Early in 2002, Choi [14] made an experiment about DTDs. 60 DTDs were
extracted from the XML.org DTD repository [32]. He analyzed the features of
DTDs and proposed measures to make a deep study of their structural properties
such as local properties including syntactic complexity, determinism, ambiguity
and global properties including reachability, recursion, simple path and simple
cycle, chain of stars, hubs. He found that the majority of DTDs used in real
world is the form of chain. This result has provided important suggestion for
later study in this field.

Based on 109 DTDs and 93 XSDs crawled from Cover Pages, Bex et al. [6]
proposed simple regular expression which was named CHARE in this paper.
They found that 92 % and 97 % of all element definitions in DTDs and XSDs
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are CHAREs. Martens et al. extended CHARE to eCHARE in [25]. Using an
improved data set crawled from Cover Pages and the web, about 819 DTDs and
XSDs, Bex et al. introduced two new subclasses of regular expressions: SORE and
Simplified CHARE in [7]. The results revealed that more than 99 % of the regular
expressions occurring in practical schemas are Simplified CHARE (therefore also
SORE). In 2006, Bex et al. in [8] proposed the concept of k-occurrence. A regular
expression is k-occurrence if every alphabet symbol occurs at most k times in it
[8]. According to the same data set in [7], they concluded that regular expressions
occurring in practical schemas are such that every alphabet symbol occurs at
most k times and actually, in 98 % of the cases k = 1. Martens et al. in [26]
concluded that in more that 98 % of the XSDs occurring in practice the content
model of an element depends only on the label of the element itself, the label of
its parent, and (sometimes) the label of its grand-parent after an examination of
225 XSDs gathered from the Cover Pages. Later in 2007, Bex et al. [9] introduced
the concept of k-local. An XSD is k-local if its content models depend only on
labels up to the k-th ancestor [9]. For most cases in real world, the value of k is 1.
This result is conformed with that in [8]. In 2014, inspired by Simplified CHARE,
Feng et al. proposed eSimplified CHARE whose base symbol allows the forms of
a and a+ where a ∈ Σ. The data set used in [15] consists of 966 valid DTDs and
XSDs which were rewritten as 2009 regular expressions. Based on this data set,
the cover ratio of eSimplified CHARE reached 84.8 % from 79.5 % for Simplified
CHARE. In addition, two inference algorithms for eSimplified CHARE were
given.

In addition, regular expressions with counting and interleaving have been
studied by many researchers. Björklund et al. were the first to make an incremen-
tal evaluation of regular expressions with counters. They gathered about 3024,
458 and 8830 regular expressions respectively from three libraries: RegExLib,
Snort, and XML Schema on the web in [10]. The results show that there are
1705 out of 3024 (about 56.3%), 270 out of 458 (about 58.9%) regular expres-
sions use non-trivial counters in RegExLib and Snort. Regular expressions with
non-trivial counters are the forms excluding three specific ones: a[0,0], a[0,1] and
a[1,1]. In addition, the proportions of CHAINs are 73.3%, 85.1% and 86% for the
data of three libraries above. In [17], Ghelli et al. proposed a restricted subclass
defined by T :: = ε|a[m,n]|T+T |T ·T |T&T where m ∈ N\{0} and n ∈ N\{0}∪{∗}.
In L(T ), each alphabet symbol can appear at most once. Counter can only occur
as a constraint for terminal symbols. For example, (a? ·(b+c+d+e+f)[1,100]) is
not allowed. Based on this subclass, they first proposed a linear-time translation
algorithm of the translation of each regular expression into a set of constraints in
[18]. Then they introduced a linear-time membership algorithm to check whether
a word satisfies the resulting constraints.

5 Conclusion and Future Work

In this paper, we introduce a new restricted subclass of regular expression with
counting and interleaving. The experiment results show that this subclass can
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cover more content models in real world. Then different features of five sub-
classes of content models, i.e., CHARE, eCHARE, SORE, Simplified CHARE,
eSimplified CHARE together with eCICHARE are also analyzed using differ-
ent measures. We inspect their usages and give the corresponding proportions
based on the real world data. Our data set is much larger than previous work
which leads to more accurate results. We believe that our work will be helpful to
the applications and further study of DTDs and XSDs. One future work is the
study of inference algorithms and complexity problems related to eCICHARE.
The strong and weak determinism of eCICHARE will also be considered. Besides,
based on our experiment results, it is possible to propose other useful subclasses
of content models.
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