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Abstract. Shapelets are discriminative subsequences in a time series
dataset, which provide good interpretability for time series classification
results. For this reason, time series shapelets have attracted great inter-
est in time series data mining community. Although time series shapelets
have satisfactory performance on many time series datasets, how to fast
discover them is still a challenge because any subsequence in a time
series may be a shapelet candidate. There are several methods to speed
up shapelets discovery in recent years. However, these methods are still
time-consuming when dealing with the large datasets or long time series.
In this paper, we propose a preprocessing step with time series key
points for shapelets discovery which make full use of the prior knowl-
edge of shapelets. Combining with shapelets discovery method based
on SAX(Fast-Shaplets), we can find shapelets quickly on all benchmark
datasets of UCR archives, while the classification accuracy is almost the
same as the current methods.
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1 Introduction

Time series data mining has attracted significant interest in recent years because
the series data are common in a wide range of daily life such as finance, medical
treatment, motion, meteorology, etc. As a fundamental research work, classifi-
cation of time series has been studied most commonly. Many research focus on
distance measures for 1-Nearest Neighbor (1-NN) classifiers [1,2]. Although the
evidence show that 1-NN classifier with Euclidean Distance (ED) or Dynamic
Time Warping (DTW) has good classification accuracy, it requires storing and
searching the entire dataset which have high time and space complexity. More-
over, 1-NN classifiers do not give a clear insight to exhibit the most important
pattens between two different classes. To solve these problems, a shapelet-based
time series classification algorithm is proposed by Ye et al. [3].

A shapelet is a time series subsequence with highly discriminative between
two classes. The shapelets discovery algorithm searches shapelets on raw data
c© Springer International Publishing Switzerland 2016
F. Li et al. (Eds.): APWeb 2016, Part II, LNCS 9932, pp. 330–342, 2016.
DOI: 10.1007/978-3-319-45817-5 26



Accelerating Time Series Shapelets Discovery with Key Points 331

and calculates the distance between shapelet candidates and time series. By the
measure of information gain, the candidates are ordered and then the candidate
with highest score is select as a shapelet to split dataset into two parts. For each
part, the same process is used to get the corresponding shapelets. Shapelets are
interpretable to the problem domain because they can tell us whether a shapelet
is a common pattern in one class or not. The advantage has been confirmed
by many researchers [4–6]. To some datasets, this algorithm can achieve more
accurate classification results than other methods [3,10]. It has been applied
to many domains such as medical care [7], gesture recognition [8], electrical
power demand [9]. However, shapelets discovery is very time-consuming. All the
subsequences with any length in time series dataset are shapelet candidates.
Although there are some pruning strategies to speed up shapelets discovery like
admissible entropy pruning [3], intermediate result reuse [10] and reducing the
distance calculation with SAX method (called Fast-Shapelets) [11], it still needs
a lot of time when the dataset is large or time series is very long. For example,
when testing all candidates in the dataset Non-Invasive Fetal ECG Thorax of
UCR time series archives [13], the Fast-Shapelets algorithm still needs over 10 h
to get the results.

In this paper, we analyze the nature of time series shapelets and propose a
preprocessing stage before searching shapelets to reduce the shapelet candidates.
In our algorithm, the shapelet candidates are not all time series subsequences
but the subsequences generated from the key points. Combining with the SAX
representation of time series to find potential shapelet candidates, we can get
the shapelets in less time than other algorithms. The experiments show that our
preprocessing method for decreasing shapelet candidates is useful. In general,
we make two contributions.

1. We propose a method to find the key points of a time series which is used for
searching shapelet candidates. It can fast exclude the obviously impossible
candidates from all subsequences.

2. An algorithm of extracting time series subsequences based on key points is
presented that allows to generate shapelet candidates without repetition.

The rest of this paper is organized as follows. In Sect. 2, we review the related
works about time series shapelets discovery algorithm. We present some nota-
tions and definitions of time series in Sect. 3. Section 4 shows our algorithm in
details. We demonstrate the performance of our algorithm in Sect. 5 and this
work is concluded in Sect. 6.

2 Related Work

The straightforward way for finding shapelets is the brute force algorithm that
generates all possible candidates and tests these candidates by information gain.
The running time is O(n2m4), where n is the number of time series in dataset
D, m is the length of a time series. In the first paper of shapelets discovery, the
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author proposes several methods to speed up the searching work, like early aban-
don pruning and entropy pruning technique. However, it is still time-consuming.
An improved algorithm called Logical Shapelets is given by [10]. One technique
is that it precomputes the sufficient statistics to compute the distance between
a shapelet and a candidate of a time series in amortized constant time. It is a
way of trading space for time. The other is to use a novel admissible pruning
technique to skip the costly computation of entropy for the vast majority of
candidates. The worst-case of running time is O(n2m3) and it requires a lot of
memory space as large as O(nm2).

Rakthanmanon et al. [11] propose a way to find shapelets quickly, where the
raw real-valued and high dimensional data are transformed to a discrete and low
dimensional representation by using Symbolic Aggregate approXimation (SAX)
method [14]. In the discrete representation, they first hash the SAX representa-
tion of candidates by the random projecting method and then use the collision
history to give a rough selection for the overall candidate set. By this way, the
candidates that cannot be a shapelet are excluded quickly. The remaining can-
didates are still confirmed by information gain. The time complexity can reduce
to O(nm2) according to the paper.

3 Notations and Definitions

3.1 Time Series

A time series T is a sequence of m real-valued variables recorded in temporal
order at fixed intervals of time: T = (t1, . . . , ti, . . . , tm), ti ∈ R. For the prob-
lem of time series data mining, a dataset of n time series can be expressed as
D = {T1, T2, . . . , Tn}. For classification, each time series in the dataset D
has a class label of c. Given a time series T of length m, a subsequence S
is a series of length l (l < m) consisting of contiguous time instants of T :
S = (ti, ti + 1, . . . , ti+l−1), where i ∈ [1,m − l + 1], noted as T l

i .

3.2 Time Series Key Points

We define the key points of a time series as the inflection points, local minimum
points, local maximum pointsin a time series curve. They are useful for shapelets
discovery and we will discuss them in detail in Sect. 4.

3.3 Distance Measure

In this paper, we take Euclidean distance as the distance measure between two
time series. Suppose S and S′ are two time series subsequences with the same
length l, the Euclidean distance is calculated by the following formula:

d(S, S′) =

√
√
√
√1

l

l∑

i=1

(si − s′
i)

2 (1)
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The distance between a time series T of length m and a subsequence S of
length l (l < m) is defined as the minimum distance between the S and all
subsequences of T that have the same length with S, i.e.

d(S, T ) = min d(S, T l) (2)

3.4 Time Series Shapelets

As primitives, shapelets can be used to determine the similarity of two time
series. Because any subsequence in all time series of a dataset are probable to
be a shapelet, finding a shapelet requires us to generate the candidates and to
calculate the distances between candidates and a time series. We should also
define a measurement to estimate the quality of a shapelet.

Shapelet Candidates. Given a dataset D, a shapelet candidate is the sub-
sequence of length l in a time series. If dataset D contains n time series and
the length of a time series is m, we can get (m − l) + 1 distinct subsequences
in a time series and n(m − l + 1) subsequences in D. We denote the set of all
subsequences of length l to be Ml : {M1,l, ...,Mi,l, ...,Mn,l, }, where, Mi,l is the
subsequences of the i-th time series in D. The length l can be changed from 1
to m, so the overall subsequences set is: M = {M1, ...,Ml, ...,Mm}.

Generally, if the length of a subsequence is too small or close to m, it may not
be a shapelet. So we can give a minimum and maximum length before calculating
the distances: minlen and maxlen, i.e. M = {Mminlen, ...,Ml, ...,Mminlen}. Note
that M is very large. The most of shapelet research focus on how to efficiently
prune M [3,10,11].

The Quality of a Shapelet. An effective measurement of discriminating the
quality of a shapelet is information gain [3]. It involves the concept of entropy
of a dataset and a split. Suppose that the dataset D contains c different classes,
the number of time series in class i is ni, so the entropy of the dataset is

E(D) = −
c∑

i=1

pi log(pi), where pi = ni/n. A split is a tuple <s, d> of a sub-

sequence s and distance threshold d which can separate the dataset into two
subsets, D1 and D2 with n1 and n2 time series, respectively. The information
gain of a given split sp in a dataset can be express as

IG(sp) = E(D) − n1

n
E(D1) − n2

n
E(D2) (3)

It is possible that two splits have the same information gain. To solve this
problem, the distance between two subsets divided by the given split called a
separation gap is used as a measurement.

gap(sp) =
1
n1

∑

t1∈D1

d(s, t1) − 1
n2

∑

t2∈D2

d(s, t2) (4)
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So the quality of a shapelet candidate is measured by the value of information
gain and separation gap. The large information gain and separation gap value
indicate high discriminatory power of a shapelet candidate.

4 Shapelets Discovery with Key Points

4.1 A Motivating Observation

Note that a shapelet is a subsequence that can discriminate time series from
different classes. So if a subsequence of a time series with no variations in its
values or gradients is considered as a shapelet, the corresponding subsequence in
another time series from a different class must have some variations in values or
gradients. Generally, these variations correspond to some actions or movements
of observation, which can be regarded as features. Therefore, the subsequence
with variations is a more reasonable choice as a shapelet than subsequence with
no variations. The results of previous work about shapelets discovery demon-
strate that all of extracted shapelets contain some variations. Figure 1 shows
some examples from [3].

Fig. 1. (left) Coffee dataset and its shapelet; (right) Gun point dataset and its shapelet

Form Fig. 1, we find that all shapelets contain one or some of key points in
time series. This character can be used to prune unnecessary candidates when
searching shaplets.

4.2 Extracting Key Points

The key points of a time series are special points in a time series curve, so we
can use mathematical methods to find them. Due to the small changes resulting
from the process of data collection, a smooth step is necessary to eliminate these
meaningless changes before we extract the key points from a time series. We
use a rectangle sliding window along with a time series to do this preprocessing.
Figure 2 gives a simple sketch of this method.

The width of rectangle sliding window is preset according to the specific sit-
uation. A large width means a rough sketch which only find the obvious changes
while a small width means that the tiny changes will be found. For a given width,
we scan the points along with time series. If the point is not in the rectangle
sliding window, we pause the scan process and fit a straight line using the points
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Fig. 2. Time series smoothing. (left) Rectangle sliding window; (right) The smoothed
time series

Algorithm 1. Extract KeyPoints
Input: T : a time series; th: gradient threshold
Output: keypoints:the key points in a time series
1: keypoints = []
2: T=TS smooth(T )
3: for each point in T do
4: gradient 1 = Calculate Gradient(t)
5: for each value in gradient 1 do
6: if value > th then
7: keypoints ← the index of value
8: end if
9: end for

10: g sign 1 = sign(gradient 1)
11: gradient 2 = Calculate Gradient(g sign 1)
12: g sign 2 = sign(gradient 2)
13: index = find(abs(g sign 2)==2)+1
14: keypoints ← index
15: end for

in the sliding window. Then, another sliding window is used to do the same thing
until all points of the time series is smoothed. After finishing the smoothing step,
we can extract the key points from a time series.

The Algorithm 1 shows the process of extracting key points. Line 2 executes
the smooth process that is a key part for finding the key points. Line 4 keeps
the variation information of a smoothed time series. The large variation points
are stored in lines 6 and 7. The local minimum and maximum points are found
from lines 10 to 14. Figure 3 shows the key points of a time series.

Fig. 3. Key points of a time series Fig. 4. Key points after removing
unnecessary points
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As we can see, there are too many key points after finishing the previous step
and some key points are close enough. It is unnecessary to keep all points because
the points that is close to each other will generate overlapped subsequences.
So we search each point’s neighborhood and remove the other points. By an
appropriate neighborhood threshold, we can get the reasonable key points. The
result of the above example is expressed in Fig. 4 with a threshold of 10 points.

4.3 Finding the Best Candidates in Key Points Neighborhood

Generating Subsequences in Key Points Neighborhood. A shapelet can
be of any length, so all the subsequences that contain a key point should be gen-
erated and measured by information gain. In order to avoid subsequences with
overlapped parts, we check all key points in the current key point’s neighbor-
hood. Suppose that the current key point is p, the length of subsequences to be
generated is len, there are two cases when we get shapelets candidates (Fig. 5).

Case 1: If there are no other key points in the area of [p−len, p], the candidates’
starting points are from point p − len to p and we can get len candidates.

Case 2: If there are some key points in the area of [p− len, p], the candidates’
starting points are from point k to p and we can get p − k candidates. Note
that k is the closest point to p.

Using SAX Method to Evaluate the Candidates. If we first calculate the
distance of each candidate and all time series in a dataset and then find a split for
computing the information gain value, it is very time consuming. Rakthanmanon
et al. [11] give us a useful way to avoid unnecessary distance computation. Here,
we use this method to evaluate the shapelet candidates generated by key points.

We first transform a subsequence to a SAX word. Here, the SAX process will
not be discussed in details. Everyone who wants to know the process can refer
to [14]. For all SAX words, a random projections method [11] is used to find
the topK candidates with the most discriminating ability. The process is shown
below.

In line 1, we define a matrix to record the masked SAX word occured in time
series. A random projection method is used to mask the SAX words in line 4.
We do r times hashing for a SAX word and get the final matrix. In line 10, we

Fig. 5. A visualized representation of candidates’ starting point area
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Algorithm 2. RandomProjections and CalculateBestSAX
Input: SAXlist: SAX representation of subsequences

k: the number of symbols when masking
r: the number of hashing

Output: topK candidates: the topK discriminating candidates
1: discriminate matrix = [ ]
2: for each saxword in SAXlist do
3: for i=1 to r do
4: sub saxword ← RandomProjections(saxword,k)
5: for all saxword contain sub saxword do
6: discriminate matrix[saxword][ts label]++
7: end for
8: end for
9: end for

10: topK candidates = CalculateBestSAX (discriminate matrix)

use the function CalculateBestSAX to get the topK candidates by counting the
occurrence number of a SAX word when we do hashing step in each class. The
detailed explanation of CalculateBestSAX can be found in [11].

4.4 Shapelets Discovery Algorithm with Key Points

Our shapelet discovery algorithm with key points is presented in Algorithm 3.
The process contains two phase for the subsequence of length len. In the first

phase (lines 4–15), we first extract all key points of a time series ts in line 5 and
then keep the necessary points in line 6. In lines 7–9, all the shapelet candidates
are generated based on key points. The discrete representation of candidates is
gained in lines 11–14. When the first phase finished, the candidates of length len
from all time series in D and their discrete representation are generated. In the
second phase (lines 16–21), we used the random projection method to evaluate
the quality of a candidates SAX representation. This method is proposed in
[11,12], which describe it in detail. We get topK candidates by this way in line
16. For the topK candidates, we still use the information gain to select the best
candidate in lines 18–21. The reason is that the random masking method can
effectively reduce the impossible candidates, but it is imprecise to find the best
shapelets. After doing all admissible candidate length from minlen to maxlen,
we can get the shapelets for the current dataset D.

5 Experimental Evaluation

We will demonstrate two points with our experiments. One is that our shapelets
discovery techniques is useful to find shapelets for time series classification. The
other is to show that our algorithm is faster than the other algorithms when
discovering shapelets. We use the datasets from the UCR Time Series archives
[13] to do our experiments. The UCR Time Series archives contains 85 datasets
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Algorithm 3. Shapelet with Keypoints
Input: D: time series Dataset; maxlen,minlen: max and min length of shapelet
Output: sh: shapelet
1: sh ← [ ]
2: best gain = 0
3: for len from minlen to maxlen do
4: for each ts in D do
5: keypoints = Exact KeyPoints(ts)
6: keypoints = Remove Closed Point(keypoints)
7: for each p in keypoints do
8: subseries = Generate Subseries(ts,p,len)
9: end for

10: saxlist ← [ ]
11: for each s in subseries do
12: sax = Generate SAX (s,len)
13: saxlist ← sax
14: end for
15: end for
16: topK candidates = RandomProjections and CalculateBestSAX (saxlist)
17: t series = Remap to ts(topK candidates)
18: [gain,shapelet] = Calculate Gain(t series)
19: if gain > best gain then
20: best gain = gain & sh ← shapelet
21: end if
22: end for

and provides diverse characteristics with various lengths and number of the
classes, numbers of time series instances. We also use a decision tree classifier
to calculate the classification accuracy by the selected shapelets as the other
works do. In the experiments, the width of rectangle sliding window is set to
(max(T ) − min(T ))/50, the cardinality of SAX is 4 and the size of key points’
neighbourhood is 10.

5.1 Effectiveness of Key Points

Compared with Logical Shapelets. To validate the effectiveness of shapelets
generated by key points, we reproduce the paper’s [10] algorithm called Logical
Shapelets (LS) which is known as the best algorithm for finding time series
shapelets and modify it with key points. Because the Logical Shapelets algorithm
needs a lot of time to get the results in large datasets (over one day), we compare
the classification accuracy between two algorithms using 33 small datasets from
the UCR Time Series archives. Figure 6 shows the results.

The points in Fig. 6 are classification accuracy ratios of two algorithms on
the same datasets. The horizontal axis is the accuracy by using shapelets from
key words and the vertical axis is Logical Shapelets’ results. The line in the
figure stands for that two algorithms have the same classification accuracy on a
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Fig. 6. Classification accuracy of LS and our modified LS by key points

dataset. The lower area under the line states that our algorithm is better. From
the results, we can figure out that the shapelets selected by our algorithm is
effective to build a classifier. In most datasets, we get the same classification
accuracy with Logical Shapelets algorithm. In several datasets, we get better
results. Note that this experiment is used to measure the quality of the selected
shapelets with key points, it shows that our algorithm does not miss the eligible
shapelets although we overlook a lot of candidates when generating the shapelet
candidates. So our time series shapelets discovery algorithm with key points is
feasible.

Compared with Fast Shapelets. Fast Shapelets (FS) [11] use a symbolic
technique to fast prune unnecessary candidates which can speed up the shapelets
discovery process and its accuracy is not perceptibly different with Logical
Shapelets. To verify the effectiveness of our algorithm in large datasets, we com-
pare our algorithm with Fast Shapelets with the same parameters in all datasets
of UCR Time Series archives. The parameters including the number of random
projections and the size of the set of potential candidates are referred to [11].
The classification results are shown in Fig. 7. As well as the above experiments,
we also take the classification accuracy as axes.

We draw two dot lines on the same accuracy line side. The points between the
two lines mean that classification results of two algorithms have little difference.
We can find that two algorithms have not quite different difference in most
of datasets. In almost half datasets (41 of 85), we get better results than FS
algorithm. This experiments demonstrate that our shapelets discovery method
with key points is effective even if we use the discrete representation of time
series to find shapelets.
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Fig. 7. Classification accuracy of our method and Fast Shapelets on 85 benchmark
datasets

5.2 Running-Time Comparison

For all shapelets discovery algorithm, the main factors of finding shapelets are the
number of time series in the dataset and the length of time series. To test the time
efficiency of our method, we do the experiments on a large time series dataset
in UCR time series archives, the NonInvasiveFetalECGThorax1 dataset and
compare our results with FS algorithm. It contains 42 classes, 1800 training time
series of length 750 and 1965 test time series. In this experiments, the parameters
are same for two algorithm: the ratio of random projections is set to 0.25 for a
SAX word and the size of the set of potential candidates is set to 10, i.e. topK in
Algorithms 2 and 3 is 10. Due to the long run-time (over 10 h) of FS algorithm
when searching all candidates in this dataset, we take 10 points interval when
two adjacent candidates are generated as the FS algorithm do. This way don’t
reduce the performance in finding shapelets [11].

Figure 8 shows the running time changes when the number of time series is
varied from 100 to 1800 with a fixed length of 750 for all time series. From the
figure, we can find that the running time of FS algorithm increases from 203 s to
over 4600 s while our algorithm only need 40 s when the number of time series
is 100 and less than 1056 s when the number is 1800. So the speedup factor is
4X-5X in this dataset.

Figure 9 shows that time consumption of our algorithm and the FS algorithm
when the length of time series increasing. In our experiments, we fix the number
of time series at 1800 and change their length from 50 to 750. The running time
of our algorithm is varied form 14 s to 1033 s while the FS algorithm need 26 s
at the beginning and over 4600 s when the length is 750.

These results are not surprising because our algorithm decreases the number
of shapelet candidates with key points. For all dataset of UCR Time Series
archives, the average speedup factor is 3.5 and largest factor is 9.8. The time
complexity of our algorithm is the same as the FS algorithm. But given that our
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Fig. 8. Time consumption with num-
ber of time series

Fig. 9. Time consumption with the
time series length

strategy is only to generate necessary shapelet candidates not all candidates, our
algorithm is faster for finding shapelets.

6 Conclusions

For most time series, there are many subsequences with no or little changes.
When discriminating two time series, most algorithm tend to use the varying
subsequences than immutable subsequences. In this paper, we analyze the essen-
tial properties of time series shapelets and propose a preprocessing step to speed
up the process of shapelets discovery. By using the key points, we decrease the
number of shapelet candidates before measuring their quality as a shapelet. We
have demonstrated that the subsequences generated by the key points do not
miss eligible shapelets in the time series classification experiments compared with
the current algorithm. Moreover, our algorithm for finding shapelets is signifi-
cantly faster in almost all time series dataset of UCR archives than the current
algorithm.
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