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Abstract. Missing values have negative impacts on big data analysis.
However, in absence of extra knowledge, exact imputation can hardly be
conducted for many data sets. Therefore, we have to tolerate missing val-
ues and perform data mining on incomplete data sets directly. To achieve
high quality data mining on incomplete data, we propose a classification
approach based on multiple views. We use various complete views of the
data set to generate the base classifiers and combine the results of base
classifiers. Since the amount of base classifiers will affect the effectiveness
and efficiency of the classification, we aim to find proper view sets. We
prove that the view set selection problem is an NP-hard problem and
develop an approximation algorithm with approximate ratio ln|S| + 1
where S is the feature set of original data set. Extensive experimen-
tal results demonstrate the efficiency and effectiveness of the proposed
approaches.

1 Introduction

Classification is an important kind of techniques of data mining. Clearly, missing
values will affect the quality of classification result. Taking medical data sets as
an example, patient A’s blood pressure value is lost, and we cannot predict what
it is exactly in absence of extra knowledge. If we fill in a value which is in the
blood pressure normal range but the true data is beyond the scope, the model
being trained will be affected by the wrong data and emerge fatal mistakes, and
vice versa. Someone’s life will be lost regrettably due to the mistakes. Thus,
incompleteness has to be handled for classification.

Current solutions can be divided into two types. One solution [1–6] trains
the model from complete data subset and imputes missing values based on that
model. The other deletes samples with missing values, and then performs classi-
fication directly. In absence of extra knowledge, the cost of the former solution
is high, and it can hardly get exact values, which may lead to a low accuracy of
classification and inefficiency. The efficiency of the latter one indeed wins, but
the accuracy is disturbed by the samples with missing values.

Motivated by this, in this paper, we attempt to conduct classification on
incomplete data directly to acquire relatively high-quality results. To achieve
this goal, we need to utilize the complete share in data sufficiently. We use
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Table 1. A dirty data set D

s1 s2 s3 s4 s5 s6 T

r1
√ × √ √ × √

1

r2
√ √ √ √ × √

1

r3
√ × √ √ √ √

0

r4 × × √ √ √ √
1

r5 × √ √ × √ × 0

r6
√ √ √ × √ √

0

r7 × √ × √ √ √
1

Table 2. Part of extracted views

Vi Si Ri

V1 S1 = {s1, s3, s4, T} R1 = {r1, r2, r3}
V2 S2 = {s2, s4, s5, T} R2 = {r7}
V3 S3 = {s1, s2, s5, T} R3 = {r6}
V4 S4 = {s2, s5, s6, T} R4 = {r6, r7}
V5 S5 = {s3, s4, T} R5 = {r1, r2, r3, r4}
V6 S6 = {s2, s6, T} R6 = {r2, r6, r7}
· · · · · ·

an example to illustrate this point. Consider an incomplete data set D with
the feature set S(s1, s2, s3, s4, s5, s6, T ), where T is the column of type and the
sample set R(r1, r2, r3, r4, r5, r6, r7), as shown in Table 1, where “

√
” denotes the

data is available while “×” denotes it is missing. Table 2 shows the part of views
from D. Vi denotes the ith view queried, Si is the feature set of the ith view,
and Ri is the sample set. Each view is a complete share of original data. The
challenge is that the complete share of data may not be sufficient enough for
classification due to the difference in incomplete values. Fortunately, the data
have relevance. That is, some part of data could be implied from other part.

With the consideration of keeping relevance among data and not trying use-
less imputation, we propose a novel method which considers different complete
share of the incomplete data. A base classifier is trained from each view. With
these base classifiers, we adopt the voting mechanism to generate the final clas-
sification results. Clearly, the amount of views affects the efficiency as well as
effectiveness of the algorithms. To achieve high performance, we do not have to
use all the views, but only to find a combination of views which can cover all
the features of dirty data set and a great majority of samples.

The contributions of this paper could be summarized as three points.

1. We take different views of incomplete data into account and regard them as
base classifiers, which mitigates decline of accuracy caused by missing data.

2. To keep all features in the data set during training and ensure the efficiency,
we propose view selection problem which we prove to be NP-hard and develop
an efficient weighted greedy algorithm called VS with approximate ratio,
ln|S| + 1, where S is the feature set of original data.

3. Experimental results show that our approach performs better and spend less
time than the imputation-based solution.

The remainder of this paper is organized as follows. We introduce our frame-
work in the next section which can acquire a relatively high-quality classifica-
tion result from an incomplete data set directly. Section 3 introduces our view
selection phase. Experimental results are reported in Sect. 4 and conclusions are
presented in Sect. 5.
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2 The Framework

In this section, we introduce the framework of our approach. Our method has
three phases, preprocessing, view selection and combination. We acquire views
satisfying the rules in preprocessing phase, which prepares for view selection
phase. After selecting the views used to train base classifiers, we combine their
classification results to obtain the final result. To describe the approach clearly,
we use F to represent the set of views satisfying the rules which will be described
concretely in Sect. 2.1, and use � to represent the combination of views selected
to be the base classifiers.

2.1 Preprocessing

In this phase, we give some rules to limit the amount of views for selection which
mainly reduce the calculation burden on view selection phase.

Rule 1: ∀ Vi ∈ F , | Ri |≥ θ | R |, θ ∈ [0.1, δ].
With this rule, we restrict that the sample coverage of each view should

exceed a threshold θ which avoids the extreme case that one view indeed covers
many features but only cover few samples. We also restrict the value of θ should
be less than δ which agrees with common sense.

Rule 2: ∀ Vi ∈ F , | Si |> 2.
This rule ensures that the views only containing two features (including the

column T ) are abandoned because it is ridiculous to classify with a single feature.

Rule 3: If ∃ Vi and Vj , where Ri = Rj and Si ⊆ Sj , then delete Vj from F .
Once there exists two views satisfying the rule above, the view with more

features will be deleted. From the point of samples, they both have the same per-
formance. The only distinctive between them is that one or more extra features
are considered redundant.

Rule 1 makes this phase similar to the mining of frequent item set because the
set of threshold θ is same as the support count in Apriori [7], while Rule 3 change
the process into the mining of frequent closed item sets. As the combination of
these three rules, we choose the algorithm in [8] to filter the views for F .

2.2 View Selection

Since the first phase have filtered the views for F , in this phase, our goal is to
find the combination � which contain the fewest views but can generally express
the incomplete data set with current available data from F .

We will formally define view selection problem which is proven to be NP-hard
in Sect. 3. Furthermore, we develop an approximate algorithm whose approxi-
mate ratio is ln|S| + 1.
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2.3 Combination

In this phase, each view selected into � will be trained to be a base classifier and
we adopt the voting mechanism to generate the final classification results. We
can use any mining technique to train the base classifiers.

Given an instance Xq to be classified, because of the voting mechanism, the
final result F (Xq) depends on the result fi(Xq) of all the base classifiers. We
regard the result of each classifier equally, that is,

F (Xq) ← arg max
Vi∈�

fi(Xq).

3 View Selection

In this section, we focus on view selection problem in the second phase. We
formally define the view selection problem as follows:

min | � |, � ⊆ F

s.t.

⎧
⎪⎨

⎪⎩

⋃

Vi∈�

Si = S,

| ⋃

Vi∈�

Ri |≥ δ | R | δ ∈ [0.5, 1].

In this definition, on condition that we attempt to select the fewest views
to cover all the features and a great majority of samples, each view abundantly
keeps the relationship among different features and guarantees a good general-
ization ability.

Theorem 1. View selection problem is NP-hard.

Proof (Sketch). To prove that view selection problem is NP-hard, we show that
set-covering problem [9] could be reduced to view selection problem. In other
words, we need to show how to reduce any instance of set-covering problem
to an instance of view selection problem in polynomial time. When δ = 1 and
∀ Vi ∈ F , | Ri |= δ | R |, we can use induction to express any instance of
set covering as that of view selection. Thus, if the view selection problem has a
solution, the set covering problem has a solution. Since set-covering is NP-hard,
view selection problem is NP-hard. �

Our problem is similar to the set-covering problem in two dimensions. Unlike
the set-covering problem, we cannot directly use the greedy strategy. Concretely
speaking, when we want to use the greedy strategy to pick a view, we may indeed
choose the one that covers the greatest number of remaining uncovered elements
of one dimension, but we cannot guarantee that how many uncovered elements of
the other dimension we have covered. We must consider the coverage of features
and the coverage of samples simultaneously. Moreover, we do not need to cover
all the elements of samples while we must cover all the elements of features.
With regard to our problem, we decide to change one dimension into the weight
of the other dimension which will affect the selection of view.
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Algorithm 1. View Selection (S,R,F)
1: U = S, T = R
2: � = ∅, M = ∅

3: while U �= ∅ do
4: if | M |≥ δ | R | then
5: for all i such that Vi ∈ F do
6: ωi = 1
7: end for
8: else
9: for all i such that Vi ∈ F do

10: ωi =| Ri\M |
11: end for
12: end if
13: select an Vi ∈ F that maximizes ωi× | Si ∩ U |
14: U = U \ Si, T = T\Ri

15: � = � ∪ {Vi}, M = M ∪ Ri

16: end while
17: return �

The algorithm works as follows. The set U and T contains, at each stage, the
set of remaining uncovered features and samples. The set � is used to contain
which views have been chosen while the set M is to record which samples have
been covered so that we can compute the weight of every view. Line 4–12 update
the weight of each subset. When the second constraint that the samples should
be covered at least δ | R | is satisfied, ωi is 1 which means the value of weight
will not affect the selection of view any more. Otherwise, ωi is | Ri\M |. Line 13
is the greedy decision-making step, choosing a view Vi whose product between
ωi and the amount of features will covered the first time is the largest. After
Vi is selected, line 14 removes its features from U and its samples from T , and
line 15 places Vi into � and add Ri, i.e. the samples of Vi into M . When the
algorithm terminates, the set � contains a subset of F that covers S.

Time Complexity Analysis. We can easily verify VS to run in time poly-
nomial in | S |, | R | and | F |. Since the number of iterations of the loop
on lines 3–16 is bounded from above by min(| S |, | F |), and we can imple-
ment the loop body to run in time O(| R || F | + | S || F |). For most data
sets, the amount of samples is over that of features a lot (| R |	| S |), so
O(| R || F | + | S || F |) = O(| R || F |). Even a straightforward implementation
of our algorithm runs in time O(| R || F | min(| S |, | F |).
Approximate Ratio Bound Analysis. We now show that the weighted greedy
algorithm returns a combination of views with the cost not too much larger
than an optimal combination. For convenience, in this paper we denote the dth
harmonic number Hd =

∑d
i=1 1/i by H(d). As a boundary condition, we define

H(0) = 0.

Theorem 2. VS algorithm is polynomial-time ρ(n)-approximation algorithm,
where ρ(n) = ln |S| + 1.
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Proof. We have already shown that VS runs in a polynomial time in time com-
plexity analysis. We define the cost of the algorithm is the sum of the reciprocal
of the weight when the view is selected in that our problem attempt to find the
minimal views satisfying two constraints. We try to select a view with a larger
weight even though it may not cover the most uncovered features till the second
constraint is satisfied. To show that VS is a ρ(n)-approximation algorithm, we
denote V (i) as the ith view selected by VS. The algorithm incurs a cost of 1

ω(i)

when it adds V (i) to � where ω(i) is the weight of V (i) when V (i) is selected. We
spread this cost of selecting V (i) evenly among the features covered for the first
time by S(i). Let cx denote the cost allocated by to feature x, for each x ∈ S.
Each feature is assigned a cost only once, when it is covered for the first time. If
x is covered for the first time by V(i), then cx = 1

ω(i)|S(i)−(S(1)∪S(2)∪···∪S(i−1))| .
The cost of � is the sum of the cost of every feature in S after the implemen-

tation of VS, so we have
cost(�) =

∑

x∈S

cx (1)

Each element x ∈ S is in at least one set in the optimal cover �∗, and so we have
∑

Vj∈�∗

∑

x∈Sj

cx ≥
∑

x∈S

cx (2)

Combining Eq. (1) and inequality (2), we have that

cost(�) ≤
∑

Vj∈�∗

∑

x∈Sj

cx (3)

Now, we estimate the equation
∑

x∈Sj

cx. Consider any j such that Vj ∈ F and

i = 1, 2, . . . , |�|, and let ui = |Sj − (S(1) ∪ S(2) ∪ · · · ∪ S(i − 1))| be the number
of features in Sj that remain uncovered after the algorithm has selected sets
V (1), V (2), . . . , V (i − 1). We define u0 =| Sj | to be the number of features
of Sj , which are all uncovered. Let k be the least index such that uk = 0, so
that every feature in Sj is covered by at least one of sets S(1), S(2), . . . , S(k)
and some features in Sj is uncovered by S(1) ∪ S(2) ∪ · · · ∪ S(k − 1). Then,
ui−1 ≥ ui, and ui−1 − ui features of Sj are covered for the first time by Sj ,

for i = 1, 2, . . . , k. Thus,
∑

x∈Sj

cx =
k∑

i=1

(ui−1 − ui) · 1
ω(i)|S(i)−(S(1)∪S(2)∪···∪S(i−1))| .

Observe that |S(i)−(S(1)∪S(2)∪· · ·∪S(i−1))| ≥ |Sj −(S(1)∪S(2)∪· · ·∪S(i−
1))| = ui−1, because the greedy choice of S(i) guarantees that Sj cannot have
a bigger product between the weight and the amount of new features covered
than S(i) does (otherwise, the algorithm would have chosen Sj). Consequently,
we obtain
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∑

x∈Sj

cx ≤
k∑

i=1

(ui−1 − ui) · 1
ω(i) · ui−1

≤
k∑

i=1

(ui−1 − ui) · 1
ωj · ui−1

=
1
ωj

k∑

i=1

(ui−1 − ui) · 1
ui−1

=
1
ωj

k∑

i=1

ui−1∑

q=ui+1

1
ui−1

≤ 1
ωj

k∑

i=1

ui−1∑

q=ui+1

1
q

=
1
ωj

k∑

i=1

(
ui−1∑

q=1

1
q

−
ui∑

q=1

1
q
)

=
1
ωj

k∑

i=1

(H(ui−1) − H(ui)) =
1
ωj

[H(u0) − H(uk)]

=
1
ωj

[H(u0) − H(0)] =
1
ωj

H(u0)

=
1
ωj

H(| Sj |) ≤ 1
ωj

H(max | Sq |: Vq ∈ F)

(4)

From the inequality (3) and (4), we have

cost(�) ≤
∑

Vj∈�∗

∑

x∈Sj

cx ≤
∑

Vj∈�∗

1
ωj

H(max | Sq |: Vq ∈ F)

= H(max | Sq |: Vq ∈ F)
∑

Vj∈�∗

1
ωj

= H(max | Sq |: Vq ∈ F)
∑

Vj∈�∗
cost(�∗)

For harmonic progression H(n), there is ln(n + 1) ≤ H(n) =
n∑

k=1

1/k ≤
ln n + 1. Since | Sq |≤| S |, cost(�) ≤ H(|S|)cost(�∗) ≤ (ln | S | +1)cost(�∗), thus
proving the theorem. �

4 Experimental Results

In this section, we conduct extensive experiments to verify the effectiveness and
efficiency of the proposed framework on real data sets. The basic information of
data sets from UCI machine learning repository1 we used is shown in Table 3.
The amount of features and samples of both data set is suitable for our approach.
Besides, Heart Disease Data Set hardly has missing values so that we need to
randomly inject missing values, while Chronic Kidney Disease Data Set itself
has some real missing values. We generate the incomplete data sets by randomly
1 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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Table 3. Data sets used in experiments (from UCI)

Data set Features Samples

Heart disease 14 300

Chronic kidney disease 25 400

removing some values evenly to control the ratio of missing values. We generate
the test data set from the original data set with three parameters, the number
of extracted tuples (#tuple), the number of extracted features (#feature) and
the missing ratios (#missing). The default values of these parameters are 300,
13 and 0.2. The default values of θ and δ are 0.5 and 0.8, respectively. Moreover,
we choose KNN [10] to be the classification technique of basic classifiers and
comparative methods where k is set to be 3. The reason why we choose KNN is
its insensitivity to the amount of features in each base classifiers, unlike neural
networks. Experimentally, we have discovered the accuracy we acquired is the
best when k = 3. We use run time and accuracy to measure the efficiency and
effectiveness, respectively. Accuracy is defined as Accuracy = |Dright|

|D| where D

represents the original data set and Dright represents the set containing the
tuples which is classified correctly.

4.1 Comparison to Other Methods

First of all, we compared our approach with another two approaches. The former
one classification on the data set which is imputed based on Bayesian network
[11]. The latter one performs classification on the incomplete data set directly.

(a) Run Time (b) Accuracy

Fig. 1. Scalability in tuples

Varying #tuple. To test the scalability, we use Heart Disease Data Set and
vary #tuple from 150 to 300. The experimental results are shown in Fig. 1.

The experiment shows that with the increase of sample amount, the accuracy
increases while it costs more time. More samples means a better generalization
of original data set. Besides, we can observe that our framework acquires higher
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accuracy than another two methods but run time only outperforms BN [11].
DirectKNN is disturbed by the samples with missing values. The fewer amount
of samples indeed reduce the run time but sacrifices the accuracy. The results of
BN [11] are also interpretable. It first spends much to use the correlation between
features to construct Bayesian networks and then uses it to predict the possible
value, whose cost is large. Our framework just finds a suitable combination of
views which regards each sample as a entirety, but not considering the inner
relationship of features in each sample. In terms of accuracy, BN [11] utilizes the
correlation between features to impute the missing values which usually appear
in some certain features. However, when the correlation is weak and the missing
value appears evenly, the classification accuracy decreases reasonably.

(a) Run Time (b) Accuracy

Fig. 2. Scalability in features

Varying #feature. To test the scalability, we use Chronic Kidney Disease
Data Set and vary #feature from 10 to 25. The experimental results are shown
in Fig. 2.

The experiment shows that with the increase of sample feature, the accuracy
is improved significantly while it costs more time, since more features and rela-
tionships are kept to express the original data set. The comparison of run time
and accuracy between these three methods is similar as the experimental results
of varying #tuple for the same reasons. Besides, we observe that the impact of
feature amount on run time is more significant on that of the number of samples.
Because more features lead to larger computation cost especially in the phase of
filtering views for F .

Varying #missing. To test the impacts of missing ratio, we use Heart Disease
Data Set and vary #missing from 0.1 to 0.4. The results are shown in Fig. 3.

From Fig. 3, it is observed that the increase of ratio will reduce run time and
accuracy. In terms of run time, more missing values decrease the scale of F and
Bayesian networks to great extent. With regard to accuracy, its decrease with
the increase of ratio agrees with common sense since the larger missing ratio
means the fewer amount of available data.
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(a) Run Time (b) Accuracy

Fig. 3. Impacts on missing ratio

4.2 Impacts of Parameters

Our framework has two important parameters θ and δ, which affect the run time
and accuracy. Thus, we conduct experiments to analyze the impact of them.

Impacts of θ. The set of θ mainly affects the construction of F in the pre-
processing phase. We use Heart Disease Data Set and vary the value of θ from
0.1 to 0.7. The results are shown in Fig. 4.

(a) Run Time (b) Accuracy

Fig. 4. Impacts of θ

In terms of run time, the increase of θ heightens the standard to filtering
views for F , then fewer views meet the standard, which leads to the decrease of
run time. Considering accuracy, it is observed that when θ = 0.5, the accuracy
is the highest. The reason is that when θ is less than 0.5, some useless views
whose amount of sample is few added to F disturb the view selection because
of the low ability to generalize. When θ is more than 0.5, some views with more
samples but fewer features are selected preferentially which cannot represent the
data set more complicatedly and some views with suitable samples and features
are ignored. That is why in most experiments, we keep the value of θ 0.5.

Impacts of δ. The set of δ mainly affects the implementation of VS in the view
selection phase. We use Heart Disease Data Set and vary the value of δ from 0.5
to 1. The results are shown in Fig. 5.
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(a) Run Time (b) Accuracy

Fig. 5. Impacts of δ

With regard to run time, the increase of δ extends the time for calculation of
the weight of each view in F which causes the increase of run time. For accuracy,
when δ is 0.5, too few samples are not covered so the low ability to generalize
leads to the low accuracy. When δ is 0.9 or 1, some views with fewer features
but more samples are selected preferentially which can not represent the data
set more complicatedly and some views with suitable samples and features are
ignored. However, for this data set, when δ is from 0.6 to 0.8, we get the same
accuracy which means VS may select the same combination on the condition
that the view selected finally covers at least 20 % uncovered samples. Setting
δ = 0.8 is a balance action for both feature coverage and sample coverage.

We should take attention to the fact that the most suitable value of θ and δ
in this part varies due to different data sets.

4.3 Effectiveness of View Selection Algorithm

To test the effectiveness of our VS algorithm. we use Heart Disease Data Set
and the experimental results are shown in Table 4. For comparison, we randomly
generate 10 groups of views in F with the same number of the views selected
with our approach, train the learners with each group and report the run time
and accuracy. We also compare with the optimal brute-force searching algorithm.

The approximate answer obtained from VS whose accuracy is still high
spends far less time than that of the optimal solution. In addition, either the
maximal accuracy, the average one or the minimal one, the random selection of
views cannot beat VS. Both facts show the effectiveness of our VS algorithm.

Table 4. Comparison

OPT max min avg OPT ∗

Time (ms) 1521 − − − 4223

Accuracy 94 % 87.6 % 84.3 % 86 % −
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5 Conclusions

In this paper, we study the classification method of incomplete data which con-
siders different views of it. To ensure the effectiveness and efficiency, we propose
view selection problem which is proven to be NP-hard and develop an efficient
weighted greedy algorithm called VS with approximate ratio, ln|S| + 1, where
S is the feature set of original data set. Then we use a voting mechanism to
generate the final classification results. Experiments results show that our VS
performs well in classification and spend less time than an imputation-based
solution. Our future work includes taking inconsistent data into consideration
and performing more experiments and comparisons.
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