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Abstract. Record linkage is the process of matching records from multiple
databases that refer to the same entities and it has become an increasingly impor‐
tant subject in many application areas, including business, government, and
health. When we collect data which is about people from these areas, integrating
such data across organizations can raise privacy concerns. To prevent privacy
breaches, ideally records should be linked in a private way such that no informa‐
tion other than the matching result is leaked in the process, this technique is called
privacy-preserving record linkage (PPRL). Scalability is one of the main chal‐
lenges in PPRL, therefore, many private blocking techniques have been devel‐
oped for PPRL. They are aimed at reducing the number of record pairs to be
compared in the matching process by removing obvious non-matching pairs
without compromising privacy. However, they vary widely in their ability to
balance competing goals of accuracy, efficiency and security. In this paper, we
propose a novel private blocking approach for PPRL based on dynamic k-anon‐
ymous blocking and Paillier cryptosystem. In dynamic k-anonymous blocking,
our approach dynamically generates blocks satisfying k-anonymity and more
accurate values to represent the blocks with varying k. We also propose a novel
similarity measure method which performs on the numerical attributes and
combines with Paillier cryptosystem to measure the similarity of two blocks in
security, which provides strong privacy guarantees that none information reveals.
Experiments conducted on a public dataset of voter registration records validate
that our approach is scalable to large databases and keeps a high quality of
blocking. We compare our method with other techniques and demonstrate the
increases in security and accuracy.

Keywords: Record linkage · Private blocking · k-anonymity · Paillier
cryptosystem · Scalability

1 Introduction

Nowadays, large amounts of data from several domains like businesses, government
agencies and research projects has been generated, collected and stored. Matching
records that relate to the same entities from several databases has been recognized to be
of increasing importance in many application domains. However, when data about indi‐
viduals or sensitive attributes is to be integrated across organizations, privacy has to be
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considered. Therefore, we need to protect these data from unauthorized disclosure. For
example, in a decentralized healthcare system, where the personal medical records are
distributed among several hospitals, it is critical to integrate the information of a patient
without disclosing his/her sensitive attributes. Thus, making sure that privacy of indi‐
viduals is maintained whenever databases are linked across organizations is vital.

Privacy-Preserving Record Linkage (PPRL) [1] is the process of identifying records
from multiple data sources that refer to the same individuals, without revealing other
information besides the matched records. PPRL has been widely used in many fields.
For example, Microsoft has acquired Yahoo, by applying record linkage technique on
their client databases, we cannot only obtain common clients between them but also
acquire the potential new clients from Yahoo, which has significant business value for
Microsoft. However, the client databases are confidential, exposing client data to other
companies would cause heavy loss. Therefore comparing client databases without data
disclosure excepting matched records is crucial.

Considering the growing large volumes of available data, developing PPRL which
are scalable to large databases is necessary. Therefore, blocking techniques are devel‐
oped. Blocking techniques are used to divide records into mutually exclusive blocks and
only the records within the same block can be linked. A naive pair-wise comparison of
two databases in record linkage has a quadratic complexity in their sizes. Thus, blocking
techniques [2] reduce a large number of potential comparisons by removing as many
record sets as possible that correspond to non-matches.

Private blocking [3] aims to generate candidate record pairs which are remained to
perform PPRL without revealing any sensitive information that can be used to infer
individual records and their attribute values. The k-anonymity and Paillier cryptosystem
are two main privacy techniques which are applied on private blocking. Although many
previous private blocking techniques have used these two privacy techniques [3, 4],
there still exist some drawbacks to be solved. In [3], the Two-Party Private Blocking
(TPPB) method avoids the use of a third party and cryptographic techniques, and instead,
trades off privacy for blocking quality. In [4], Inan et al. suggest creating forming gener‐
alized hierarchies (FGH) for reducing the cost of PPRL. However, the forming hierar‐
chies may cause the blocks over-generalization and reduce the accuracy of blocking.
We propose a novel private blocking technique based on dynamic k-anonymous
blocking and Paillier cryptosystem which can deal with the problems above. Our
approach accurately creates blocks without revealing any private information and takes
less time than previous approaches which apply cryptographic techniques.

The contributions of this paper are: (1) we propose a novel dynamic k-anony‐
mous blocking algorithm which generates k-anonymous blocks and more accurate
values to represent the blocks with varying k, the values are called representative
values (RVs) in the following text. (2) We apply a cryptographic technique Paillier
cryptosystem on the RVs of each block without revealing any information, which
provides stronger privacy than previous approaches. And we propose a novel measure
method which performs on the numerical attributes and combines with Paillier cryp‐
tosystem to measure the similarity of two blocks in security. (3) Experimental eval‐
uation conducted on a real-world dataset shows our method has an advantage of
keeping a high accuracy even k becoming very large. This advantage is meaningful
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because it is acknowledged that blocks become more secure with the increasing k.
We compare our method with other techniques and demonstrate the increases in
security and accuracy.

The remainder of this paper is organized as follows. In the following section we
mention some previous works related to ours. In Sect. 3 we introduce definitions and
background. In Sect. 4 we describe our approach. In Sect. 5 we analyze the privacy of
our approach. In Sect. 6 we show its experimental evaluation. Finally we summarize
our findings in Sect. 7.

2 Related Work

Due to the growing size of databases, various private blocking methods have been
developed in recent years. Most methods rely on the use of a third party. Al-Lawati et al.
[5] proposed a secure three-party blocking protocol in 2005 which achieves high
performance PPRL by using secure hash encoding for computing the TF-IDF distance
measure in a secure fashion. Inan et al. [4] proposed a hybrid approach that combines
generalization and cryptographic techniques to solve the PPRL problem in 2008. An
approach to PPRL was proposed by Karakasidis et al. [6] in 2011 that a secure blocking
based on phonetic encoding algorithms. The records that have similar (sounding) values
are divided into the same block. In 2012 a k-anonymous private blocking approach based
on a reference table was proposed by Karakasidis et al. [7] for three-party PPRL tech‐
niques. Durham [8] proposed a framework for PPRL using Bloom filters in 2012.
Recently, Karakasidis [9] proposed a novel privacy preserving blocking technique based
on the use of reference sets and Multi-Sampling Transitive Closure for Encrypted Fields
(MS-TCEF). As to the two-party techniques, Inan et al. [10] in 2010 presented an
approach for PPRL based on differential privacy. The approach combines differential
privacy and cryptographic methods to solve the PPRL problem in a two-party protocol.
A two-party approach based on the use of Bloom filters for approximate private matching
was developed by Vatsalan et al. [11] in 2012. Vatsalan [3] proposed an efficient Two-
party private blocking based on privacy techniques k-anonymous clustering and public
reference values.

The methods in [3, 4] are closest to our approach. However the approach in [3] uses
public reference values as the RVs, although the attributes values of records are not
revealed, to a certain degree, public reference values also expose some information about
corresponding block. And when k becomes very large, the public reference values cannot
sufficiently represent the blocks causing the quality of blocking reduces heavily. The
approach in [4] uses forming generalized hierarchies to generate k-anonymous blocks,
which may make the RVs over-generalization and reduces the accuracy of generating
candidate pairs. We create blocks using dynamic k-anonymous blocking instead of
forming hierarchies, which generates the RVs more accurately and flexibly. Applying
Paillier cryptosystem provides a stronger guarantee of privacy, which takes less time
than previous approaches that apply cryptographic techniques.
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3 Preliminaries

3.1 Problem Formulation

We assume two databases DA and DB are to be matched, potentially each record from
DA needs to be compared with each record from DB, resulting in a maximum number of
|DA| × |DB| comparisons between two databases. Private blocking contributes to
removing obvious non-matching pairs and generating candidate record pairs without
revealing any information about the originating plaintexts, which reduces the complexity
of comparisons. Considering the privacy, the process of private blocking is different
from the traditional blocking. In private blocking, the records of one database should
not be exposed to other parties. Further details involved in private blocking are outlined
as follows [12]:

Blocking Key Selection. The blocking key is the criteria by which the records are
partitioned.
Block Partitioning. Once a blocking key has been selected, this blocking key is as an
input to partition each database respectively by the same principle where the output is
a set of blocks and their RVs.
Candidate Blocks Generation. Given the blocks of each database, through measuring
the similarity between the RVs, we can decide whether the records in two blocks
compare, then the candidate record pairs would be generated.

3.2 K-anonymity

We now give the definitions of k-anonymity [13].

• Explicit Identifier is a set of attributes, such as name and social security number
(SSN), containing information that explicitly identifies record owners;

• Quasi Identifier (QI) is a set of attributes that could potentially identify record owners;
• Sensitive Attributes consists of sensitive person-specific information such as disease,

salary, and disability status;
• Non-Sensitive Attributes contains all attributes that do not fall into the previous three

categories.

To prevent record linkage through QI, Samarati and Sweeney proposed [13] the
notion of k-anonymity:

k-anonymity: If one record in table T has some value QI, at least k − 1 other records
also have the value QI. Table T is k-anonymity with respect to the QI.

In other words, the minimum group size on QI is at least k. In a k-anonymous table,
each record is indistinguishable from at least k − 1 other records with respect to QI.
Consequently, the probability of linking a victim to a specific record through QI is at
most 1/k. Consider a table T contains no sensitive attributes (such as the voter list). An
attacker could possibly use the QI in T to link to the sensitive information in an external
source. A k-anonymous T can still effectively prevent this type of record linkage without
revealing the sensitive information. In this paper, the RVs are QI.
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3.3 Paillier Cryptosystem

The Paillier cryptosystem [14], named and invented by Pascal Paillier in 1999, is a
probabilistic asymmetric algorithm for public-private key cryptosystem. The scheme is
an additive homomorphic cryptosystem, this means that, given only the public key and
the encryption of m1 and m2, one can compute the encryption of m1 + m2. More formally,
let  and  be the Paillier encryption and decryption functions with keys kpub

and kpriv, m1 and m2 be messages, c(m1) and c(m2) be ciphertexts such that
. So Homomorphic addition can be

expressed by operators “·” and “+” as follow:

(1)

4 Proposed Solution

Our proposed solution conducts private blocking by dynamic k-anonymous blocking
and Paillier cryptosystem. It is composed of three parts: Data Preparation, Local k-
anonymous Blocks Construction and Candidate Blocks Generation. The framework is
described in Fig. 1.

Agree on the Paremeter Select Blocking Key

Dynamic Generating k-
anonymous Blocks

Dynamic Generating 
RVs for Each Block

Encrypt RVs for Each 
Block

Measure the Similarity 
between Blocks

k-anonymity

Paillier 
Cryptosystem

Data Preparation

Local k-anonymous Blocks Construction

Candidate Blocks Generation

Fig. 1. The framework of our approach

4.1 Data Preparation

In data preparation, we agree on the parameters used in our approach and select one or
more attributes as blocking keys.

Agree on the Parameter. We assume three participants in our method Alice, Bob and
Charlie. Alice and Bob are the owners of databases DA and DB who participate in the
protocol to perform private blocking on their databases. Charlie is used to generate
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candidate blocks or in other words decide whether to compare the records in two blocks.
Alice and Bob agree on the parameter k that the minimum number of elements in a block.

Select Blocking Key. Blocking key is used to partition the records into blocks. Selecting
an appropriate blocking key is necessary. To protect the privacy of blocks, our approach
generates blocks satisfied k-anonymity, in other words each block contains at least k
records. The method in [3] also uses k-anonymity and select Given name and Surname as
blocking keys. However, when k becomes large, the RVs in method [3] cannot suffi‐
ciently represent the blocks causing the quality of blocking reduces heavily. To avoid the
deficiency above, our approach selects the numerical attributes such as age, zip code or
salary as the blocking key. The numerical attributes represent the blocks more accurately
and flexibly with varying k. They also take less time than other attributes.

4.2 Local k-anonymous Blocks Construction

The local blocks construction phase partitions the records into blocks by blocking key.
To construct blocks on distinct data sources without leaking any private information,
our approach utilizes k-anonymity and Paillier cryptosystem privacy techniques. We
generate k-anonymous blocks and obtain the RVs of each block using dynamic k-anon‐
ymous blocking algorithm.

Dynamic Generating k-anonymous Blocks. We suppose AN (numerical attribute) is
selected to be the blocking key, then we form blocks on the databases of Alice and Bob
respectively. The blocks are divided by the values of blocking key, and each value of
blocking key construct one block. After this, we obtain equivalence classes and sort
them by the blocking key values (BKVs). Considering privacy, we merge equivalence
classes until the number of records in a block being at least k. It provides k-anonymous
privacy characteristics, as each record in the database can be seen as similar to at least
k − 1 other records. Algorithm 1 (which is executed independently by Alice and Bob)
shows the main steps involved in the merging of equivalence classes to create k-anon‐
ymous blocks (Algorithm 1, lines 4–7).

Dynamic Generating RVs for Each Block. We assume L is a block satisfied k-
anonymity, and x, y are the smallest and biggest BKVs in L. The RVs are composed by
[x, y]. Then, the BKVs of each record in block L is replaced by [x, y], more specifically
each record in block L has at least k − 1 records with the same BKVs. Therefore, the
block L is k-anonymity respecting to [x, y] and [x, y] is the RVs of the block L.

Comparing the approach in [4], which uses forming generalized hierarchies may lead
to the RVs over-generalization and reduce the accuracy of generating candidate blocks,
our approach dynamically adjusts the RVs with the change of k and has a good influence
on keeping high accuracy even k becoming very large. Algorithm 1 shows the main steps
involved in dynamic generating the RVs of each block (Algorithm 1, line 8).
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Algorithm 1: Dynamic k-anonymity Blocking

Input:
- E: Equivalence classes divided and sorted by AN {E1, E2, E3,…, En}
- Minimum number of elements in a block k
Output:
-

AL : Set of k-anonymous blocks {
1AL , 

2AL , 
3AL ,…, 

AmL }

- ][ AmLV : RVs of 
AmL

1:      i=1; j=1; 
AjL =Ø

2:      while i ≤ n do:
3:         Kset= Ø
4:  while 

AjL ≤ k do:

5:  
AjL =

AjL iE

6: Kset.add(Ei . AN)
7:            i++
8:          ][ AjLV = [Kset[0], Kset[size-1]]

9:          j++

4.3 Candidate Blocks Generation

After generating k-anonymous blocks and corresponding RVs, we need to decide candi‐
date blocks to eliminate record pairs that are expected to be non-matches. To protect the
privacy of RVs and generate candidate blocks, Algorithm 2 shows the process that
encrypts the RVs with Paillier and performs a novel measure method on the encrypted
RVs to measure the similarity between blocks. And Fig. 2 shows the process of gener‐
ating candidate blocks in privacy, from which we know that our approach is absolute
security with none information revealing.

Paillier public-private 
key pair generation

Decrypt the results of 
secure computation, 
and generate candidate 
blocks

Encrypt the RVs of 
each block by 
Paillier cryptosystem

Secure computation 
between the RVs 
from A and B

Encrypt the RVs of 
each block by 
Paillier cryptosystem

Alice Charlie           Bob

  Public                                                    Public 
key                                                         key 

Encrypted RVs from A

Results of
secure computation 

Fig. 2. The process of generating candidate blocks in privacy
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Encrypt RVs for Each Block. To measure the similarity between blocks, the RVs of
blocks should be released by at least one data owner. Before releasing, the RVs in both
A and B are encrypted by Paillier to guarantee privacy.

Charlie generates Paillier public-private key and send the public key to A and B.
Then, A and B respectively encrypt their RVs with the public key (Algorithm 2, lines
3–5). We assume that the RVs of block LA (from A) is [a, b] and the RVs of block LB
(from B) is [c, d]. The RVs are encrypted as follow:

(2)

(3)

Measure the Similarity Between Blocks. After getting encrypted RVs in A and B, we
pass the encrypted RVs in A to part B. In part B who lacks the private key, Bob cannot
infer the plaintexts of records in A.

As to the party B, Bob has gained the encrypted RVs from A, then he uses the
encrypted RVs of two blocks from A and B to decide whether two blocks match. We
design a novel similarity measure method which combines with Paillier cryptosystem
to measure the similarity between blocks (Algorithm 2, lines 7–16). The novel similarity
measure method is expressed as follow:

(4)

According to the Homomorphic addition in Paillier cryptosystem:

(5)

We can express our measure method as:

(6)

Our novel similarity measure method combines well with the Paillier cryptosystem.
We perform the secure computation c(m1)·c(m2) which designed in (6) in party B and
send the results to C. Then C decrypts the results by the private key to get real results.
Through judging the real results by (4), we could decide whether two blocks become
candidate blocks. Therefore, in the whole process, our approach is absolute safe with
none information revealing.

The last step PPRL conducts on each candidate record pairs individually by using a
private matching technique, which should not reveal any information regarding the
sensitive attributes and non-matches (this step is outside of our approach).
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Algorithm2: Generating Candidate Blocks

Input:
- )( ALV : RVs of each block in A {[a1, b1], [a2, b2],…,[ an, bn]}

- )( BLV : RVs of each block in B {[c1, d1], [c2, d2],…,[ cm, dm]}

Output:
- Candidate blocks match or non-match
1:     for i=1; i ≤ n; i++ do
2: for j=1; j ≤ m; j++ do
3: )( iac − = )( ik aEnc

pub
− ; )( ibc = )( ik bEnc

pub

;

4:                )( jcc − = )( jk cEnc
pub

− ; )( jdc = )( jk dEnc
pub

;

5:                )( jdc − = )( jk dEnc
pub

− ;

6:                send c ( ai ) and c (bi ) to B
7:              S1 = c (bi ) ⋅ c ( cj ); S2 = c (dj ) ⋅ c ( ai );
8:               S3 = c (bi ) ⋅ c ( dj );
9: send S1, S2, S3 to C

10: if 0)( 1 <sDec
privk

or 0)( 2 <sDec
privk

then

11: return non-match;
12: else if 0)( 3 <sDec

privk
then

13:  return match;
14:          break;
15:   else
16: return match;

5 Privacy Analysis

In this section we will discuss the privacy guarantees offered by our approach. We
assume Alice, Bob and Charlie will follow the protocol honestly, but may try to infer
private information based on messages they receive during the process without collusion
[15]. Next we summarize the information that our approach discloses to each of the
participants.

Alice: This party does not receive any messages regarding Bob’s database.
Bob: This party receives encrypted RVs of blocks from A. With the protection of
Paillier cryptosystem, B cannot infer the real values from A.
Charlie: This party does not receive any messages regarding the RVs of blocks in A
or B but receives the encrypted results of secure computation from B. After decrypting
the encrypted results with private key, the real results only show final results without
revealing the specific information from A and B. For example, C only knows the result
of b-c and does not know the respective value of b and c.
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6 Experiments

To perform the experimental analysis, we selected a publicly available dataset of real
personal identifiers, derived from the North Carolina voter registration list (NCVR). The
database NCVR contains 375,314 records. We selected attribute Age as the blocking
key. For blocking evaluation, we need to generate two different sizes of datasets which
are 10,000 and 100,000. Therefore, we respectively sampled 10,000 and 100,000
number of records randomly drawing from NCVR for Alice. Then we generated datasets
for B composed of 10,000 and 100,000 records as well. Of these records, 8000 (80000)
were randomly selected from NCVR (excluding those in A), while 2000 (20000) were
randomly selected from A. The goal was to privately identify the 2000 (20000) matching
records between A and B. Our experiments also perform on datasets of different sizes,
we sampled 0.1 %, 1 %, 10 % and 100 % of records in the full database twice each for
A and B. All tests were conducted on a computer server with a 64-bit, 8.0G of RAM
Intel Core (3.30 GHz) CPU.

6.1 Evaluation Measures

We use the following measures to evaluate the performance of private blocking tech‐
niques in terms of complexity and quality of blocking. Complexity is evaluated by the
total time required for blocking. We utilize reduction ratio (RR) and pair completeness
(PC) as evaluation metrics for private blocking approaches [15]. Specifically, suppose
c is the number of candidate record pairs produced by the private blocking, cm is the
number of true matches among c candidate pairs, n = |DA|·|DB| is the number of all
possible pairs and nm is the number of true matches among all pairs. Then, RR and PC
are defined as follows:

(7)

6.2 Performance Evaluation

We compare our approach with previous two approaches TPPB [3] and FGH [4]. The
approach TPPB generates candidate blocks satisfying k-anonymity and uses public
reference values as the RVs of blocks. Since each block consists of at least k records,
only when revealing one reference value from each block can guarantee k-anonymity
privacy. If several reference values are released by a block, the k-anonymity privacy
would not be guaranteed. As to FGH, it generates k-anonymous blocks by forming
generalized hierarchies.

We set the parameters of two approaches according to the settings provided by the
authors [3, 4]. We compared three private blocking techniques on two different sizes of
datasets which are 10,000 and 100,000 to measure the change of RR, PC and blocking
time against k. The changing trends of RR, PC and blocking time against k are similar
in two datasets. We also measure the blocking time with different dataset sizes for the
three approaches. Then, we discuss the results of our experiments.
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RR with Varying k. Figure 3 shows the RR with varying k in three approaches. Our
approach and FGH keep a high RR with the increasing k. When k increases to 1000, RR
is still above 0.86 in the smaller dataset. Towards TPPB, at first RR reduces when k is
less than 200. Then, with k becoming bigger, RR increases and at last RR almost closes
to 1. It can be explained that when k becomes larger, in TPPB, representing a block by
only one reference value is not sufficient to represent all the values in block, which might
lead to the number of candidate blocks reduces and the RR increases.

Fig. 3. RR with different values for k (a) Dataset Size = 10,000 (b) Dataset Size = 100,000

PC with Varying k. Because of the reason above, some true candidate blocks being
missed with the increasing k, therefore the PC reduces heavily in TPPB as shown in
Fig. 4. In FGH, PC also reduces heavily with the reason that the bigger the k the higher
level in the VGHs the records are generalized which may cause over-generalization.
With regard to our approach, PC is always 1 on both datasets. This owns to our good
similarity measure method.

Fig. 4. PC with different values for k (a) Dataset Size = 10,000 (b) Dataset Size = 100,000

Blocking Time with Varying k. To the aspect of blocking time in Fig. 5, the blocking
time reduces with k in three approaches because the number of resulting blocks (n/k)
becomes less as k gets bigger. As shown in Fig. 5, the blocking time of our approach is
more than the other two approaches. It is because that our approach applies Paillier
cryptosystem.
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Fig. 5. Blocking Time with different values for k (a) Dataset size = 10,000 (b) Dataset
size = 100,000

Blocking Time with Varying Database Sizes. In Fig. 6, we compare the blocking time
for three approaches with different dataset sizes. Our approach takes a little more time
than the others with different dataset sizes. All the three approaches do not consider the
communication cost. Through inferring, we can get the knowledge that all encrypted
RVs are totally transmitted at most 500 times in our approach, which far less than the
communication cost of previous approaches applying cryptographic techniques.

Fig. 6. Blocking Time with different dataset sizes for the three approaches

Hence, we conclude that our approach performs better in accuracy and privacy with
a little loss of efficiency.

7 Conclusion

We present a novel scalable private blocking technique which is more accurate and
secure than previous approaches. Dynamic k-anonymity blocking guarantees that each
block has at least k records and meanwhile generates more accurate RVs with varying
k. We also propose a novel similarity measure method which combines with Paillier
cryptosystem and guarantees absolute security without revealing any information. As
experiments show, our approach exhibits high performance both in accuracy and
security with a little loss of blocking time. A limitation in our approach is the application
of Three-Party Private Blocking. In future work, we plan to extend our approach to
Multi-Party Private Blocking that is applicable for several datasets.

212 S. Han et al.



Acknowledgment. This work is supported by the National Basic Research 973 Program of China
under Grant No. 2012CB316201, the National Natural Science Foundation of China under Grant
No. 61472070.

References

1. Vatsalan, D., Christen, P., Verykios, V.S.: A taxonomy of privacy-preserving record linkage
techniques. Inf. Syst. 38(6), 946–969 (2013)

2. Christen, P.: A survey of indexing techniques for scalable record linkage and deduplication.
IEEE Trans. Knowl. Data Eng. 24, 1537–1555 (2011)

3. Vatsalan, D., Christen, P., Verykios, V.S.: Efficient two-party private blocking based on
sorted nearest neighborhood clustering. In: ACM CIKM (2013)

4. Inan, A., Kantarcioglu, M., Bertino, E., Scannapieco, M.: A hybrid approach to private record
linkage. In: ICDE, pp. 496–505 (2008)

5. Al-Lawati, A., Lee, D., McDaniel, P.: Blocking-aware private record linkage. In: IQIS, pp.
59–68 (2005)

6. Karakasidis, A., Verykios, V.S.: Secure blocking + secure matching = secure record linkage.
J. Comput. Sci. Eng. 5, 223–235 (2011)

7. Karakasidis, A., Verykios, V.S.: Reference table based k-anonymous private blocking. In:
27th Annual ACM Symposium on Applied Computing, Trento (2012)

8. Durham, E.: A framework for accurate, efficient private record linkage. Ph.D. Thesis,
Vanderbilt University (2012)

9. Karakasidis, A., Verykios, V.S.: Scalable blocking for privacy preserving record linkage. In:
ACM KDD, Sydney (2015)

10. Inan, A., Kantarcioglu, M., Ghinita, G., Bertino, E.: Private record matching using differential
privacy. In: EDBT, Lausanne, Switzerland, pp. 123–134 (2010)

11. Vatsalan, D., Christen, P.: An iterative two-party protocol for scalable privacy-preserving
record linkage. In: Aus DM, CRPIT, Sydney, Australia, vol. 134 (2012)

12. Durham, E.A.: A framework for accurate, efficient private record linkage. Ph.D. thesis,
Graduate School of Vanderbilt University, Nashville (2012)

13. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness
Knowl. Based Syst 10, 557–570 (2002)

14. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

15. Kuzu, M., Inan, A.: Efficient privacy-aware record integration. In: ACM EDBT (2013)

Scalable Private Blocking Technique 213


	Scalable Private Blocking Technique for Privacy-Preserving Record Linkage
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Formulation
	3.2 K-anonymity
	3.3 Paillier Cryptosystem

	4 Proposed Solution
	4.1 Data Preparation
	4.2 Local k-anonymous Blocks Construction
	4.3 Candidate Blocks Generation

	5 Privacy Analysis
	6 Experiments
	6.1 Evaluation Measures
	6.2 Performance Evaluation

	7 Conclusion
	Acknowledgment
	References


