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Abstract. Identifying the most influential individuals can provide
invaluable help in developing and deploying effective viral marketing
strategies. Previous studies mainly focus on designing efficient algorithms
or heuristics to find top-K influential nodes on a given static social net-
work. While, as a matter of fact, real-world social networks keep evolving
over time and a recalculation upon the changed network inevitably leads
to a long running time, significantly affecting the efficiency. In this paper,
we observe from real-world traces that the evolution of social network
follows the preferential attachment rule and the influential nodes are
mainly selected from high-degree nodes. Such observations shed light on
the design of IncInf, an incremental approach that can efficiently locate
the top-K influential individuals in evolving social networks based on
previous information instead of calculation from scratch. In particular,
IncInf quantitatively analyzes the influence spread changes of nodes by
localizing the impact of topology evolution to only local regions, and
a pruning strategy is further proposed to effectively narrow the search
space into nodes experiencing major increases or with high degrees. We
carried out extensive experiments on real-world dynamic social networks
including Facebook, NetHEPT, and Flickr. Experimental results demon-
strate that, compared with the state-of-the-art static heuristic, IncInf
achieves as much as 21× speedup in execution time while maintaining
matching performance in terms of influence spread.

1 Introduction

Influence maximization (IM) is one fundamental and important problem which
aims to identify a small set of influential individuals so as to develop effective
viral marketing strategies in large-scale social networks [7]. As a matter of fact,
real-world social networks keep evolving over time. For example, in Facebook,
new people might join while old ones might withdraw, and people might make
new friends with each other. Moreover, real-world social networks are evolving in
a rather surprising speed; it is reported that as much as 1 million new accounts
are created in Twitter every day. Such massive evolution of network topology, on
the contrary, may lead to a significant transformation of the network structure,
thus raising a natural need of efficient reidentification.

Existing researches on influence maximization focus mainly on developing
effective and efficient algorithms on a given static social network. Although one
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could possibly run any of the static influence maximization methods, such as
[5,6,12], to find the new top-K influential individuals when the network is
updated, this approach has some inherent drawbacks that cannot be neglected:
(1) the running time of a specific static method can be extremely long and unac-
ceptable especially on large-scale social networks, and (2) whenever the network
topology is changed, we need to recalculate the influence spreads for all the
nodes which leads to very high costs. Can we quickly and efficiently identify the
influential nodes in evolving social networks? Can we incrementally update the
influential nodes based on previously known information instead of frequently
recalculating from scratch?

Unfortunately, the rapidly and unpredictably changing topology of a dynamic
social network poses several challenges in the reidentification of influential users.
On one hand, the interconnections between edges in real-world social graphs are
rather complicated; as a result, even one small change in topology may affect
the influence spreads of a large number of nodes, not to mention the massive
changes in large-scale social networks. It is very difficult to efficiently compute
the changes of influence spreads for all the nodes after the evolution. On the
other hand, since there are a great many nodes in large-scale social networks,
how to effectively limit the range of potential influential nodes and reduce the
amount of calculation as much as possible is a very challenging problem.

To well address these challenges, we investigate the dynamic characteristics
exhibited during the evolution of real-world social networks. Through tests on
three real-world dataset traces, Facebook [15], NetHEPT [2] and Flickr [14], we
observe that, first, the growth of social network is mainly based on the prefer-
ential attachment principle [3], that is the new-coming edges prefer to attach
to nodes with higher degree, which naturally leads to the “rich-get-richer” phe-
nomena; and second, the top-K influential nodes are mainly selected from those
high-degree nodes. Inspired by such observations, we know that the influence
changes of some nodes will have no impact on the top-K selection, and thus can
be pruned to reduce the amount of calculation. Motivated by this, we propose
IncInf, an incremental method to identify the top-K influential nodes in evolving
social networks instead of recalculating from scratch, thus significantly improves
the efficiency and scalability to handle extraordinarily large-scale networks. To
summarize, the main contributions of IncInf are as follows:

First, we design an efficient approach to quantitatively analyze the influence
spread changes from topology evolution by adopting the idea of localization. A
tunable parameter is provided to tradeoff between efficiency and effectiveness.

Second, we propose a pruning strategy which could effectively narrow the
search space into nodes only experiencing major increases or with high degrees
based on the changes of influence spread and the previous top-K information.

Third, we conduct extensive experiments on three real-world social networks.
Compared with the state-of-the-art algorithm, IncInf achieves up to 21× speedup
in execution time while providing matching influence spread. Moreover, IncInf
provides better scalability to scale up to extraordinarily large-scale networks.



234 X. Liu et al.

2 Preliminaries and Problem Statement

Social Network. A social network is formally defined as a directed graph G =
(V,E, P ) where node set V = {v1, v2, · · · , vn} denotes entities in the social
network. Each node can be either active or inactive, and will switch from being
inactive to being active if it is influenced by others nodes. Edge set E ⊂ V ×V is
a set of directed edges representing the relationship between different users. Take
Twitter as an example. A directed edge (vi, vj) will be established from node vi
to vj if vi is followed by vj , which indicates that vj may be influenced by vi. P
denotes the influence probability of edges; each edge (vi, vj) ∈ E is associated
with an influence probability p(vi, vj) defined by function p : E → [0, 1].

Independent Cascade (IC) Model. IC model is a diffusion model that has
been well studied in [5,11,12]. Given an initial set S, the diffusion process of
IC model works as follows. At step 0, only nodes in S are active, while other
nodes stay in the inactive state. At step t, for each node vi which has just
switched from being inactive to being active, it has a single chance to activate
each currently inactive neighbor vj , and succeeds with a probability p(vi, vj). If
vi succeeds, vj will become active at step t+1. If vj has multiple newly activated
neighbors, their attempts in activating vj are sequenced in an arbitrary order.
Such a process runs until no more activations are possible [11]. We use σ(S) to
denote the influence spread of set S, which is defined as the expected number of
active nodes at the end of influence propagation.

IM problem in Evolving Networks. An evolving network ζ = (G0, G1, · · · ,
Gt) is defined as a sequence of network snapshots evolving over time, where
Gt = (V t, Et, P t) is the network snapshot at time t. ΔGt = (ΔV t,ΔEt,ΔP t)
denotes the structural change of network Gt from time t to t + 1. Obviously,
we have Gt+1 = Gt

⋃
ΔGt. The influence maximization problem is defined as

follows:

Given: Social network Gt at time t, the top-K influential nodes St in Gt, and
the structural evolution ΔGt of graph Gt.

Objective: Identify the influential nodes St+1 ⊂ V t+1 of size K in Gt+1 at time
t + 1, such that σ(St+1) is maximized at the end of influence diffusion.

3 Observations of Social Network Evolution

3.1 Preferential Attachment Rule

Understanding the pattern of the network topology evolution is of primary
importance to design efficient influence maximization algorithms for evolving
social networks. We first study the preferential attachment rule [3], or in other
words, the “rich-get-richer” rule [8], which postulates that when a new node
joins the network, it creates a number of edges, where the destination node of
each edge is chosen proportional to the destination’s degree. This means that
new edges are more likely to connect to nodes with high degree than ones with
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Fig. 1. Network topology evolution pattern on Facebook.

low degree. This is reasonable in reality; Lady Gaga gains 30,000 new followers
on average every day which can never image for any common individual. The
results on the Facebook dataset are demonstrated in Fig. 1(a) where the x axis
is the degree of different nodes and the y axis is the average number of new
edges attached to nodes of different degree. Note that both the x and y axis
are in log scale. From Fig. 1(a) we can see that the degree of users in Facebook
is linearly correlated with the number of new links created. This suggests that
high-degree nodes get super-preferential treatment. Consequently, the influence
spread change should be considerably great for the influential nodes, while there
may be only small or even no change for ordinary people.

3.2 Relation Between Influence and Degree

Examining the relation between the influence and the degree of node can help
us understand the effect of degree changing on the influence spread of nodes. For
this reason, we run the static MixGreedy algorithm [5] on the final graph and
identify the top-50 influential nodes. The results on the Facebook dataset are
illustrated in Fig. 1(b) where the x axis is the rank of degrees of different nodes
(we only show the top 150). Obviously, all the selected influential nodes have a
large degree. In particular, among the 50 nodes, 48 nodes rank in top 100 of the
whole 61,096 nodes in terms of degree, and the other two nodes rank 102 and 111
respectively. While on the NetHEPT and Flickr datasets, the top-50 influential
nodes are selected from the top 1.79 % and 0.84 % nodes in degree, respectively.
This demonstrates that the top-K influential nodes are mainly selected from
those with large degrees.

4 IncInf Design

In this section, we present the detailed design of IncInf, an incremental approach
to solve the influence maximization problem on dynamic social networks. The
main idea of IncInf is to take full use of the valuable information that is inherent
in the network structural evolution and previous influential nodes, so as to sub-
stantially narrow the search space of influential nodes. In this way IncInf is able
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to incrementally identify the top-K influential nodes St+1 of Gt+1 at time t + 1
based on the previous influential nodes St at time t and the structural change
ΔGt from Gt to Gt+1, thus significantly reduces the computation complexity
and improves the efficiency.

4.1 Basic Operations of Topology Evolution

The evolution of social network, when reflected into its underlying graph, can be
summarized into six categories, which are inserting or removing a node, introduc-
ing or deleting an edge, and increasing or decreasing the influence probability of
an edge. We denote the six types of topology change as addNode, removeNode,
addEdge, removeEdge, addWeight, decWeight. The detailed descriptions and
their effects on influence spread are shown in Table 1.

Table 1. Details of six types of basic operation

Operation Description Impact on influence spread

addNode(u) add a new node u into the
current network

the influence spread of u is
set to 1

removeNode(u) delete an existing node u
from the network

the influence spread of u is
set to 0

addEdge(u, v, w) introduce a new edge
(u, v) with p (u, v) = w

the influence spread of all the
nodes that can reach u
may be increased

removeEdge(u, v) remove an existing edge
(u, v) from the network

the influence spread of all the
nodes that can reach u
may be decreased

addWeight(u, v, Δw) increase p(u, v) by Δw the influence spread of all the
nodes that can reach u
may be increased

decWeight(u, v, Δw) reduce p(u, v) by Δw the influence spread of all the
nodes that can reach u
may be decreased

It should be noted that only after the addNode operation can node u estab-
lish links (addEdge) or sever links (removeEdge) with other nodes, and node
u can only be removed when all its associated edges are deleted. Moreover,
the weight operation can be equivalently decomposed into two edge operations.
For example, addWeight(u, v,Δw) can be divided into removeEdge(u, v) and
addEdge(u, v, w + Δw), supposing the previous weight of edge (u, v) is w.

4.2 Influence Spread Changes

As discussed above, whenever an edge (u, v) is introduced into or removed from
the social network, the influence spread of all the nodes that can reach node u
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may be changed. However, as a matter of fact, the real-world social networks
exhibit small-world network characteristics and the connections between nodes
are highly complicated. As a result, even one small change in topology, such as
an edge addition or removal, may affect the influence spread of a large number
of nodes, thus introducing massive recalculations. In order to reduce the amount
of computation, we design an approach to efficiently calculate the changes on
the influence spread of nodes which adopts the localization idea [6].

The main idea of localization is to use the local region of each node to approx-
imate its overall influence spread. In particular, we use the maximum influence
path to approximate the influence spread from node u to v. Here the maximum
influence path MIP (u, v,G) from node u to v in graph G is defined as the path
with the maximum influence probability among all the paths from node u to v,
and can be formally described as follows:

MIP (u, v,G) = arg max
p∈P (u,v,G)

{prob(p)} (1)

where prob(p) denotes the propagation probability of path p and P (u, v,G)
denotes all the paths from node u to v in graph G. For a given path p =
{u1, u2, · · · , um}, the propagation probability of path p is defined as follows:

prob(p) =
m−1∏

i=1

p(ui, ui+1) (2)

Moreover, an influence threshold θ is set to tradeoff between accuracy and effi-
ciency. During the propagation process, we only consider paths whose influence
probability are larger than θ while ignoring those with smaller probability. By
doing this, the influence is effectively restricted to the local region of each node.

Similarly, in our proposal we localize the impact of topology changes on
influence spread into local regions, and thus reduce the amount of computation.
Among six types of topology change, addNode (or removeNode) is the most
straightforward since it simply sets the influence spread of the node to 1 (or
0); addWeight, decWeight as well as removeEdge are methodologically similar
to addEdge. Consequently, in the following we take addEdge as an example to
show which nodes’ influence spread need to be updated and how to determine
those changes when a new edge is added into the graph.

Consider the case when a new edge e = (u, v, w) is introduced between two
existing node u and v. We denote the graph before and after such a topology
change as Gt and Gt′

, and the current seed set is S. The detailed algorithm
is described in Algorithm 1. According to the principle of localization [6], if the
propagation probability w is smaller than the specified threshold θ, or not bigger
than the probability of MIP (u, v,Gt), edge e can be simply neglected and there
is no need to update any node’s influence spread (lines 1–3). Otherwise, the
newly-added edge e would become the MIP (u, v,Gt′

). As a result, each node i
whose maximum influence path to u has an influence probability larger than θ is
likely to experience a rise in terms of influence spread (line 4) because node i may
influence more nodes through the new edge e. So, we then check the probability
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Algorithm 1. Edge addition
Input: a new edge e = (u, v, w), graph Gt.

Output: The influence spread changes of nodes in Gt′
.

1: if w < θ or w ≤ prob(MIP (u, v, Gt)) then
2: return;
3: end if
4: for each node i with prob(MIP (i, u, Gt)) > θ do
5: for each node j with prob(MIP (v, j, Gt)) > θ do
6: if prob(MIP (i, j, Gt)) < θ and

prob(MIP (i, j, Gt′
)) > θ then

7: deltaInf [i]+ = prob(MIP (i, j, Gt′
)) × (1 − prob(j, S))

8: end if
9: if prob(MIP (i, j, Gt)) > θ and

prob(MIP (i, j, Gt′
)) > θ then

10: deltaInf [i]+ = (prob(MIP (i, j, Gt′
)) − prob(MIP (i, j, Gt))) × (1 −

prob(j, S))
11: end if
12: end for
13: end for

of the maximum influence path from i to v and its successors in Gt and Gt′
.

Based on the two probabilities, we divide the problem into two small cases:
The first case is when the probability of maximum influence path from i to

j in Gt is smaller than θ while that in Gt′
is larger than θ (lines 5–6). Here j

denotes the node whose probability of MIP (v, j,Gt) is larger than θ. In such
a case, node i build a new path to j through the new edge e which increases
the influence spread of i by prob(MIP (i, j,Gt′

))× (1− prob(j, S)) (line 7). Here
prob(j, S) is the probability of that node j is influenced by the current seed set
S, which is defined as follows:

prob(j, S) =

{
1, if j ∈ S

1 − ∏
w∈n(j) 1 − prob(w,S) · p(w, j), if j /∈ S

Here n(j) denotes the in-neighbour set of j.
The second case is when the probability of maximum influence path from

i to j is larger than θ in both Gt and Gt′
(lines 9–11). In this case, the influ-

ence increase of node i is (prob(MIP (i, j,Gt′
)) − prob(MIP (i, j,Gt))) × (1 −

prob(j, S)).
We treat the network dynamics from Gt to Gt+1 as a finite change stream

c1, c2, · · · , ci, · · · where each change ci is one of the six topology changes we
described above. When all the changes in the change stream are processed, we
can obtain the influence spread change for all the nodes.
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4.3 Potential Top-K Influential Users Identification

From the preferential attachment rule, we know that the influence spread changes
of those high-degree nodes should be much greater than the ordinary nodes.
Moreover, according to the power-law distribution, such high-degree nodes only
account for a small part of the whole nodes. Consequently we can pick out nodes
only experiencing major increases or with high degrees because these nodes are
of great potential to become the top-K influential nodes in Gt+1. Then we only
calculate the actual influence spread for these selected nodes while ignoring the
others. In this way, a large percent of nodes are pruned and the search space
is largely narrowed. It should be noted that a smart pruning strategy is of key
importance since a poor selection might either affect the efficiency or reduce the
accuracy in terms of influence spread. We describe the details of our pruning
strategy as follows:

(1) In the ith iteration, if the influence spread of the previous influential
node St

i increases in Gt+1, the chosen nodes are those with a larger influence
spread change than deltaInf [St

i ];
In most cases, the influential nodes will attract a good many of new nodes

and establish new links. Thus, their influence spreads will increase drastically.
In such a case, the nodes whose influence spread changes are smaller than the
influential nodes are completely impossible to become the most influential node
in Gt+1. Therefore, when the influence spread of the previous influential nodes
increase, we only select those whose influence spread changes are larger than the
influential nodes in Gt. According to the preferential attachment rule, such a
pruning method can greatly narrow the search space and reduce the amount of
computation.

(2) In the ith iteration, if the influence spread of the previous influential node
St
i decreases in Gt+1, in addition to item (1), the nodes are further selected to

hold a sufficiently large degree or experience a sufficiently great increase. In order
to formally define “large degree” and “great increase”, here we set an threshold
η to tradeoff between running time and influence spread. Here the nodes with
sufficiently large degrees (or great increase) are defined as the set of node vj
whose degree (or degree increase ratio) is among the top η percent of all nodes
in Gt+1. The degree increase ration of vj is defined as degreet+1

j /degreetj where
degreetj denotes the degree of node vj in graph Gt.

It should be noted that although the case the influence spread of a pre-
vious influential node decreases during the evolution rarely happens, we con-
sider it here for completeness. In this case, the amount of nodes satisfying item
(1) is relatively large which leads to mass computation and need to be fur-
ther pruned. In order to select only the most potential nodes, we additionally
select the nodes with large degree or large increase because a node with small
degree has only very low probability to become an influential node in reality.
Consequently, the search space is strictly circumscribed and the computational
complexity is greatly reduced.

After the potential nodes are selected, we calculate the actual influence spread
of these nodes in Gt+1 and select the one with the maximum influence spread in
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Algorithm 2. IncInf
Input: Gt, St, and Gt+1.
Output: the top-K influential nodes St+1 in Gt+1.
1: Initialize St+1 = ∅;
2: for i = 1 to K do
3: for each topology change cj from Gt to Gt+1 do
4: calculate the influence spread change deltaInf [·];
5: end for
6: select a set of potential nodes as pn according to pruning strategy;
7: for each node vl ∈ pn do
8: calculate the marginal influence spread σSt+1(vj);
9: end for

10: select vmax = arg maxvj∈pn (σSt+1(vj));
11: St+1 = St+1 ∪ vmax;
12: end for

each iteration. Algorithm2 outlines the design of our proposed algorithm IncInf.
IncInf iterates for K round (line 2) and in each round select one node providing
the maximum marginal influence spread. Lines 3–5 calculate the influence spread
change of each node caused by the topology evolution. Nodes with great potential
to become top-K influential are selected (line 6) and their influence spread are
computed in Gt+1 (lines 7–9). Then the node providing the maximal marginal
gain will be selected and added to the St+1 (lines 10–11).

5 Experiments

5.1 Experimental Setup

We use three real-world social networks Facebook [15], NetHEPT [2], and Flickr
[14], and each dataset includes multiple snapshots of different time stamps.
Table 2 summarizes the statistical information of these datasets. We compare
our algorithm with four static algorithms: MixGreedy, ESMCE, MIA and
Random. MixGreedy is an improved greedy algorithm proposed by Chen
et al. in [5]. ESMCE is a power-law exponent supervised estimation approach
proposed in [12]. MIA is a heuristic that uses local arborescence structures of each

Table 2. Summary information of the real-world social networks

Datasets Nodes Edges

Initial Final Growth Initial Final Growth
Number Number Number Number

Facebook 12,364 61,096 394 % 73,912 905,665 1125 %

NetHEPT 5,802 29,555 409 % 57,765 352,807 511 %

Flickr 1,620,392 2,570,535 58.6 % 17,034,807 33,140,018 94.5 %
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node to approximate the influence propagation [6]. Random is a basic heuristic
that randomly selects K nodes from the whole datasets.

The propagation probability of the IC model is selected randomly from 0.1,
0.01, and 0.001 for each network snapshot, and we run simulations 10000 times
and take the average influence spread. The pruning threshold η is set to 5 % and
we aim to find the top 50 influential nodes from each dataset. The experiments
are conducted on a PC with Intel Core i7 920 CPU @2.67 GHz and 6 GB RAM.

5.2 Efficiency Study

The time costs of different algorithms are illustrated in Fig. 2 where we record the
total time cost for each snapshot of the three datasets. The experimental results
show that the time costs of our algorithm on each snapshot are obviously less
than those of static algorithms. Obviously, MixGreedy takes the longest time
among four kinds of influence maximization algorithms. It takes MixGreedy
more than as much as 6 h to identify the top 50 influential nodes on the final
NetHEPT dataset, while the time is even longer on the larger dataset Facebook.
Moreover, MixGreedy is not feasible to run on the largest dataset Flickr due to
the unbearably long running time. ESMCE, benefiting from its sampling esti-
mation method, runs much faster than MixGreedy, but it still takes as much
as 3511 s on average to run on the five snapshots of Flickr. Compared with two
greedy algorithms, the heuristic MIA performs much better. It only takes MIA
23.8 s to run on the final Facebook graph. When running on the Flickr dataset
with as much as 2.5 M nodes and 33 M edges, however, its speedup is far from
satisfactory, since it still needs more than 45 min to finish. While our proposed
algorithm, IncInf, outperforms all the static algorithms in terms of efficiency. In
particular, IncInf is almost four orders of magnitude faster than the MixGreedy
algorithm on the Facebook dataset. While compared with the MIA heuristic, the
speedup of IncInf is 8.41× and 6.94× on the Facebook and NetHEPT datasets,
respectively; What’s more, when applied on the largest dataset Flickr, IncInf
can achieve as much as 20.65× speedup on average. This is because IncInf only
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Fig. 2. The time costs of different algorithms on three real-world datasets.
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computes the incremental influence spread changes and adaptively identifies the
influential nodes based on the previous influential nodes and the current influence
spread changes. The experimental results clearly validate the efficiency advan-
tage of our incremental algorithm IncInf. Without doubt, Random runs the fast
among all the algorithms. However, as we will show in Sect. 5.3, its accuracy
is much worse and unacceptable when developing real-world viral marketing
strategies.

5.3 Effectiveness Study

Figure 3 shows the experimental results. MixGreedy outperforms all the other
algorithms in terms of influence spread. However, the efficiency issue limits its
application to large-scale dataset such as Flickr. The performance of ESMCE,
MIA and IncInf almost match MixGreedy on the Facebook dataset, while on
NetHEPT, the gaps become larger but remain acceptable (only 3.4 %, 4.7 % and
5.1 % lower than MixGreedy on average). When applied to the Flickr dataset,
ESMCE performs the best since ESMCE strictly control the error threshold by
iterative sampling. Compared with MIA, IncInf shows very close performance
and is only 2.87 % lower on average of all five snapshots, which demonstrates
the effectiveness of our proposal. Random, as the baseline heuristic, clearly per-
forms the worst on all the graphs. The influence spread of Random is only
15.6 %, 12.1 % and 10.9 % of that of IncInf on Facebook, NetHEPT and Flickr,
respectively.
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Fig. 3. The influence spread of different algorithms on three datasets.

6 Related Work

Although Influence maximization on static networks has attracted a lot of atten-
tions [5,6,13], studies on dynamic social networks still remains largely unex-
plored to date. Habiba et al. [10] propose a dynamic social network model which
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is different from ours. In their proposal, the network keeps evolving during the
process of influence propagation, and their goal is to find the top-K influen-
tial nodes over such a dynamic network. Chen et al. [4] extend the IC model
to incorporate the time delay aspect of influence diffusion among individuals in
social networks, and consider time-critical influence maximization, in which one
wants to maximize influence spread within a given deadline. While in [9], the
authors consider a continuous time formulation of the influence maximization
problem in which information or influence can spread at different rates across
different edges. Charu Aggarwal et al. [1] try to discover influential nodes in
dynamic social networks and they design a stochastic approach to determine the
information flow authorities with the use of a globally forward approach and a
locally backward approach.

7 Conclusion

In this paper, we consider the influence maximization problem in evolving social
networks, and propose an incremental algorithm, IncInf, to efficiently identify
top-K influential nodes. Taking advantage of the structural evolution of net-
works and previous information on individual nodes, IncInf substantially reduces
the search space and adaptively selects influential nodes in an incremental way.
Extensive experiments demonstrate that IncInf significantly reduces the execu-
tion time of state-of-the-art static influence maximization algorithm while main-
taining satisfying accuracy in terms of influence spread.
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