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1 Introduction

The main goal of proteomic studies is to detect biomarker proteins for the early
detection of cancer. Tandem mass spectrometry (MS/MS) plays a significant role
in the discovery of these biomarker proteins. The first step of an experiment using
tandem mass spectrometry (MS/MS) is the digestion of a mixture of proteins by
an enzyme, often trypsin. Each of the proteins is separated into peptides which are
subsequently ionized. Then selected peptide ions are fragmented in the gas phase,
and the mass-to-charge ratios and abundances or intensities of the small fragmented
ions are recorded in an MS/MS spectra.

Technological improvements have led to a greater abundance of tandem mass
spectrometry data as well as an increase in the size of generated data sets [1].
Consequently, it is not feasible to manually attempt to identify the peptides present
in the sample, and hence software tools are needed to perform this task. SEQUEST
[2] is a popular software tool which uses the precursor ion mass for each observed
spectrum to find candidate peptides from a database of protein sequences which are
sufficiently close in mass to the spectrum. Each observed spectrum is preprocessed
by finding the highest intensity peaks in each of a set of pre-specified bins
and normalizing those values to obtain an observed n-dimensional vector u. The
theoretical spectrum, denoted by v, is also computed for each of the candidate
peptides, and each theoretical spectrum is then preprocessed the same way that the

R. Gill (�)
Department of Mathematics, University of Louisville, Louisville, KY 40292, USA
e-mail: ryan.gill@louisville.edu

S. Datta
Professor, Department of Biostatistics, University of Florida, Gainesville, FL, USA
e-mail: susmita.datta@ufl.edu

© Springer International Publishing Switzerland 2017
S. Datta, B.J.A. Mertens (eds.), Statistical Analysis of Proteomics, Metabolomics,
and Lipidomics Data Using Mass Spectrometry, Frontiers in Probability and the
Statistical Sciences, DOI 10.1007/978-3-319-45809-0_4

65

mailto:ryan.gill@louisville.edu
mailto:susmita.datta@ufl.edu


66 R. Gill and S. Datta

observed spectrum was preprocessed. Then, each observed spectrum is compared
with each theoretical spectrum in its candidate list by a preliminary score Sp based
on the number of predicted fragment ions that match ions in the spectrum and their
abundances as well as the number of predicted sequence ions. Finally, a further score

Xcorr D R0 � 1

151

75X

�D�75
R�

is computed for each of the top 500 candidate spectra where R� D
X

uiviC� is
the discrete cross-correlation with lag � . Here R0 is the scalar dot product between
the observed and theoretical spectra. As described in [2] and [3], Xcorr gives a
measure of spatial similarity to assess the coherence of the observed and each
theoretical spectra by not only computing R0 but also by including a correction
factor to account for background correlation between the observed and theoretical
spectra by using offset values. The highest Xcorr score is reported by SEQUEST
as a peptide-spectrum match (PSM). SEQUEST is a commercial program, but there
are alternate implementations of the original SEQUEST algorithm such as Crux [3]
and Tide [4] which are freely available and which also reportedly lead to drastic
increase in speed compared with the original SEQUEST algorithm. Software for
other database search algorithms such as X!TANDEM [5], Mascot [6], MS-Tag [7],
and MS-GF [8–10] are also available.

In spite of the developments of the above-mentioned search algorithms, there
still remain uncertainties associated with the peptide and protein identifications.
Experimental errors and lack of adequate search algorithms can, sometimes,
lead to highly erroneous peptide and protein identifications from a tandem mass
spectrometry experiment; in fact, without proper filtering, it is possible that 80–
90 % of identified proteins may not be correct [11, 12]. The situation becomes
more complicated in the presence of “degenerate” peptides. A peptide is referred
to as “degenerate” if it is generated by multiple proteins. Degenerate peptides
create additional challenges for protein identification because even if the peptide
identification were known to be correct with no uncertainty, the identity of the
protein that generated it is not clearly determined. A typical situation of degeneracy
is explained through Fig. 1 (adapted from figures in [13–15]).

Figure 1 summarizes the steps in an MS/MS experiment for three proteins P1,
P2, and P3 in red, green, and blue, respectively; each of these proteins generates
two peptides: P1 generates p1 and p2, P2 generates p3 and p4, and P3 generates p2

and p5. Since p2 is generated by two distinct proteins P1 and P3, it is referred to as a
degenerate peptide. Note that only some peptide ions are selected for fragmentation;
some might be selected multiple times like peptide p1 in Fig. 1, while others might
not be selected at all, like peptides p3 and p5. Of course, errors can occur during
peptide identification; in Fig. 1, peptide p4 is misidentified as px. This also leads to
the incorrect conclusion that protein Px is present in the sample, and the incorrect
decision that P2 is not present because of the misidentification of peptide p4 and
the fact that p3 is not sampled. Degeneracy of peptides can also be an issue at the
database search stage as the example illustrates with protein Py; if an algorithm
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Fig. 1 The steps of an MS/MS experiment for the identification of peptides and proteins by
database search methods. This figure is adapted from several sources [13–15]

includes proteins for which its peptides are present, then protein Py is incorrectly
identified as present since its peptide p1 is correctly identified. The proteins P1 and
P3 are identified, though there may be concerns about these conclusions since other
proteins generate each of the peptides used to identify the proteins.

In recent years, several efforts have been made for providing confidences to the
peptide and protein identification. This paper first describes PeptideProphet and
ProteinProphet, among the first and still among the most popular probabilistic two-
step methods for peptide and protein identification. Then we discuss a couple of
likelihood-based one-step methods (hierarchical statistical model (HSM) and nested
mixture model (NMM)) which attempt to improve on some of the weaknesses of
two-step procedures. Finally, we compare the methods reviewed in this paper in the
Discussion section.
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2 Two-Step Process

In this section, we describe a highly regarded two-step process. In this process,
peptides are identified first using database search scores such as those provided by
SEQUEST through an algorithm called PeptideProphet. Then the resulting identi-
fied peptides along with their confidences can be used to attempt to determine the
proteins which are present in the sample using an algorithm called ProteinProphet.
A brief description of each of these two algorithms is given below.

2.1 PeptideProphet

Suppose that x1, : : : , xs are database search scores for a peptide. In [16], four
SEQUEST search scores are used:

1. Xcorr0 D
(

ln.Xcorr/
ln.NL/

if L < Lc
ln.Xcorr/

ln.NC/
if L � Lc

, where L is the number of amino acids in the

peptide, NL is the expected number of fragment ions for a peptide with L amino
acids, Lc is a threshold beyond which Xcorr does not depend on the length, and
NC is the expected number of fragment ions for a peptide with more than LC

amino acids.
2. �Cn, the relative difference between the two highest Xcorr scores.
3. ln(SpRank), the natural logarithm of the rank of the preliminary score Sp.
4. dM , the absolute difference of the masses of the precursor ions for the spectrum

and the assigned peptide.

Linear discriminant analysis can be used to combine these search scores into a
single score

F .x1; : : : ; xs/ D c0 C
sX

iD1
cixi

where the weights c0, c1, : : : , cs are selected to optimize the probability of a correct
classification of the peptide assignments as being correct or incorrect based on
training data where it is known which peptide assignments are correct. See Chapter
4 of [17] for details on linear discriminant analysis as well as other linear and
nonlinear methods for classifying categorical data.

This score is used to help compute the probability that a peptide score is correct.

Let F
ˇ̌
ˇC and F

ˇ̌
ˇ� be the distributions of the discriminant scores for correct and

incorrect peptide assignments, respectively. The number of tryptic termini (NTT)
also provides useful information regarding the probability that the peptide score is

correct as discussed in [16], so let G
ˇ̌
ˇC and G

ˇ̌
ˇ� denote the NTT distributions for
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correct and incorrect peptide assignments, respectively. Then the probability that the
peptide assignment is correct given the discriminant scores can be computed using
Bayes’ formula

p
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(1)

where p .C/ and p .�/ are prior probabilities of correct and incorrect peptide
assignments, respectively. The prior probabilities used in [16] are the observed
proportions in the training data, and the conditional distributions of the discriminant
scores for the correct and incorrect assignments are modeled by a Gaussian distri-
bution with estimated mean � and variance �2 and by shifted Gamma distribution
with estimated shape, scale, and location parameters, respectively. In (1), it is
assumed that the discriminant scores and NTT distributions are independent when
conditioned on the peptide assignment status; empirical evidence is provided in [16]
to support this assumption.

An alternative to directly using the observed proportions from the training data
as the prior probabilities in (1) is to use a mixture model which simultaneously
estimates the prior and conditional probabilities based on a two-step iterative
process using the expectation-maximization (EM) algorithm [18]. Let N be the
number of spectra in the data set. Starting with initial estimates of p .C/, p .�/,
p

�
F
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�
, p

�
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�
, p

�
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�
, and p

�
G
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ˇ�

�
, the first step of each iteration of the

EM algorithm computes estimates of p
�
C

ˇ̌
ˇF; G

�
based on (1). The second step of

each iteration updates the estimates of p .C/, p .�/, p
�

F
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, p

�
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�
, p

�
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�
,

and p
�

G
ˇ̌
ˇ�

�
under the assumption that the contribution of each of the N spectra

to the distribution of correct/incorrect peptide assignments is proportional to the
current computed probability that it is correctly/incorrectly assigned. Specifically,
the prior probabilities are updated by the formulas

p .C/ D
NX

iD1
p

�
C

ˇ̌
ˇFi; Gi

�

and p .�/ D 1 � p .C/ where Fi and Gi refer to the respective values for the ith
spectrum. The parameters of the conditional distributions are computed using esti-
mates reweighted using weights proportional to the probability of a correct/incorrect
peptide assignment conditioned on the spectrum; for the Gaussian distribution
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which models the distribution of the discriminant scores for positive peptide

assignments, the estimated parameters are � D
NX

iD1
p

�
C

ˇ̌
ˇFi; Gi

�
Fi= .Np .C// and

�2 D
NX

iD1
p

�
C

ˇ̌
ˇFi; Gi

�
.Fi � �/2= .Np .C//.

2.2 ProteinProphet

Once estimates of the probabilities of the peptide assignments are obtained, then
the goal is to estimate the probability that a protein is present in the sample. The
probabilities of peptide assignments need not be made using PeptideProphet, or
even a database search method, but it is only reasonable to expect that the estimates
of the probability of the presence of the protein might be good if the estimates
of the probabilities for the peptide assignments are good. Temporarily ignore
the possibility of degenerate peptides for which there are multiple corresponding
proteins. Let Dj

i includes peptide information for the jth assignment to the ith
peptide—such as discriminant scores and number of tryptic termini as used in (1).
If the independence of events for peptide assignments is assumed, then the formula

eP D 1 �
Y

i

Y

j

�
1 � p

�
C

ˇ̌
ˇDj

i

��

gives the probability that at least one peptide assignment corresponding to the
protein is correct.

Instead, ProteinProphet [13] makes the conservative estimate that, for each
peptide, the probability of all assignments being incorrect is equal to the minimum
(one minus the maximum) of the probabilities of incorrect assignments among
all assignments. Hence, the inside product in the formula for eP is replaced by

1 � maxjp
�
C

ˇ̌
ˇDj

i

�
and, ProteinProphet [13] estimates the probability that a protein

is present in the sample using the formula

P D 1 �
Y

i

n
1 � maxjp

�
C

ˇ̌
ˇDj

i

�o
: (2)

ProteinProphet’s use of only the maximum assignment score for each peptide when
estimating the protein probabilities may be overoptimistic since high scores for
incorrect peptide identifications may occur by chance particularly when the peptides
are assigned more than once.

To adjust for multihit proteins (proteins which correspond to multiple correctly
assigned peptides), the estimated probabilities in (1) can be modified by condi-
tioning on another random variable, the estimated number of sibling peptides for
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each given peptide; it is seen in [13] that correct peptide assignments tend to
correspond to multihit proteins, while incorrect peptide assignments are more likely
to occur with proteins for which there are no correct peptide assignments. Some
further refinements are also proposed as part of the iProphet multi-level models [19]
which update the probabilities computed by PeptideProphet conditioning on number
of sibling searches, number of replicate searches, number of sibling experiments,
number of sibling ions, and number of sibling modifications via Bayes’ theorem.
Figure 1 in [19] provides a nice figure illustrating the multi-level approach.

The description of ProteinProphet presented in [13] also provides a method for
attempting to handle degenerate peptides using the EM algorithm. Let Ns be the
number of proteins that the ith peptide is assigned to, and let Ps be the probability
that the sth protein is present. Then Eq. (2) is modified so that

Pn D 1 �
Y

i

n
1 � wn

i maxjp
�
C

ˇ̌
ˇDj

i

�o

with weights

wn
i D Pn

XNs

sD1Ps

which give the probability that the ith peptide corresponds to the nth protein.
The algorithm begins by using uniform weights and then proceeds by iteratively
updating and recomputing the above equations until the values converge.

Since the intensity measurements in the spectra are subject to noise, incorrect
peptide identifications will likely lead to incorrect protein identifications. Moreover,
using knowledge of probabilities of the presence of proteins in a sample can affect
the probabilities that the peptide identification are correct, and it is clear that
appropriate inclusion of feedback in modeling peptides and proteins is critical in
making good inferences about each. In the following section, two one-step processes
are presented which attempt to simultaneously determine the proteins which are
present and the peptides which are correctly identified.

3 One-Step Processes

For the two one-step likelihood-based methods (HSM and NMM) reviewed in this
section, it is important to note that HSM handles the possibility of degenerate
peptides by assuming that a peptide will be in the sample if at least one of the
proteins that generate it is present in the sample. On the other hand, NMM does not
account for degeneracy, which can cause problems, particularly when estimating the
probabilities that proteins are present in complex high-level organisms.
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3.1 Hierarchical Statistical Model

The hierarchical statistical model (HSM) proposed in [14] assumes a parametric
multilayer joint distribution of five random vectors Y, V, Z, W, and S representing
N proteins with at least one peptide hit and M peptides assigned to at least one
spectrum.

In this model, Y D .Y1; : : : ;YN/ is a vector of indicators for the presence/absence
of the proteins in the sample where Yi D 1 indicates that the ith protein is present
in the sample. Letting � be the probability that a protein is present in the sample,
HSM assumes that Y1, : : : , YN are independent Bernoulli random variables with
probability mass function

f .yi/ D �yi.1 � �/1�yi

for i D 1; : : : ;N:
The HSM also considers a vector of independent Bernoulli variables V D

.V1; : : : ;VN/ for each protein indicating whether the number of peptide hits for the
protein exceeds a specified threshold h; in particular, Vi D 1 indicates that the ith
protein has more than h peptide hits. Then the probability mass functions for the
Bernoulli random variables can be expressed as

f
�
vi

ˇ̌
ˇyi

�
D �1

yivi.1 � �1/yi.1�vi/�0
.1�yi/vi.1 � �0/.1�yi/.1�vi/

where �1 and �0 are parameters for the Bernoulli distributions in the cases where
the protein is present or absent, respectively.

Next, Z D .Z1; : : : ;ZM/ is a vector of indicators for the presence/absence
of the peptides in the sample, and each Zi is modeled conditionally on Y with
specific parameters based on the type and number of cleavages. It is assumed

that Zj

ˇ̌
ˇY follows a Bernoulli distribution with parameters based on the type and

number of cleavages contained in a five-dimensional vector of probabilities ˛ D
.˛n; ˛s; ˛nn; ˛ns; ˛ss/ where an n in the index of a component of ˛ indicates a non-
specific cleavage and an s indicates a specific cleavage (so, for example, if a protein
with a constituent peptide that is generated with one non-specific and one specific

cleavage, then ˛ns is the probability P
�

Zj D 1
ˇ̌
ˇYi D 1

�
that the peptide will be

present in the sample given that the protein is present in the sample). Letting Cj

be the set of proteins that might generate peptide j, the conditional probability mass
function for the presence of the jth peptide is
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In the next layer of the HSM model, W D .W11; : : : ;W1T1 ; � � � ;WM1; : : : ;WMTM /

is a double-indexed vector of indicators of correct assignments of present peptides
to a spectrum where Wjk D 1 indicates that the kth assignment of the jth peptide
to a spectrum is correct and Tj is the number of assignments of the jth peptide to a
spectrum. Then the conditional probabilities that particular assignments are correct
given that the jth peptide is present is assumed to be Bernoulli with probability � so
that the conditional probability mass function of Wjk given Zj is

f
�

wjk

ˇ̌
ˇzj

�
D zj�

wjk.1 � �/1�wjk :

Finally, S D .S11; : : : ; S1T1 ; � � � ; SM1; : : : ; SMTM / is a double-indexed vector of
matching scores for each peptide and potential assignment. The HSM also allows the
density to be based on an additional factor Qjk and assumes that there are different
density functions depending on whether the assignment of the kth assignment of the
jth peptide to a spectrum is correct so that

f
�

sjk

ˇ̌
ˇwjk D w; qjk D q

�
D fq;w

�
sjkIˇqw

�

for w D 0; 1. Combining all of these components of the HSM, the joint density of
Y, V, Z, W, and S based on the model is assumed to have the form

f .y; z;w; s; v/ D
NY

iD1
f .yi/

NY

iD1
f

�
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� MY

iD1
f
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� MY

jD1

TjY

kD1
f

�
wjk
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ˇzj

�
f

�
sjk

ˇ̌
ˇwjk

�
:

The EM algorithm is used to iteratively update the parameters of the marginal and
conditional distributions and model the latent variables Y, Z, and W to attempt to
maximize the joint distribution. Finally, the joint distribution is used to obtain the

desired outputs: the conditional probabilities P
�

Zj D 1
ˇ̌
ˇS;VI O�

�
that the jth peptide

is present for j D 1; : : : ;M, and the conditional probabilities P
�

Yi D 1
ˇ̌
ˇS;VI O�

�
that

the ith protein is present for i D 1; : : : ;N using the estimated values of the model
parameters O� .

3.2 Nested Mixture Model

The nested mixture model (NMM) proposed in [21] assumes a mixture model for
the joint density of the random variables Y, P, n, and X. Here Y D .Y1; : : : ;YN/

is a vector of indicators for the presence/absence of the proteins in the sample
where Yk D 1 indicates that the kth protein is present in the sample, P D
.P1;1; : : : ;P1;n1 ; � � � ;PN;1; : : : ;PN;nN / is a double-indexed vector of indicators of
correct assignments of present peptides to a spectrum where Pk;i D 1 indicates
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that the ith peptide of the kth protein is correctly identified, nk is the number
of peptide identifications for the kth protein, n D .n1; : : : ; nN/, and X D
.x1;1; : : : ; x1;n1 ; � � � ; xN;1; : : : ; xN;nN / is a double-indexed vector of scores for each
peptide assignment. Letting 	*

1 denote the probability of a protein being present
in the model, NMM assumes that Y1, : : : , YN are independent Bernoulli random
variables with probability mass function

f .yk/ D �
	�
1

�yk
�
1 � 	�

1

�1�yk

for k D 1; : : : ;N: Letting 	1 be the probability that the ith peptide is correctly
identified given that the kth protein is present, it is also assumed that the conditional
distribution of Pk,i given Yk has probability mass function

f
�

pk;i

ˇ̌
ˇyk

�
D f1 � .1 � yk/ pk;ig	1.1�pk;i/yk.1 � 	1/pk;iyk :

Then the conditional distribution of the scores for the kth protein given Yk is modeled
by the mixture distribution

gt .xk;1; : : : ; xk;nk/ D
nkY

iD1

1X

pD0
f

�
p
ˇ̌
ˇy

�
fp .xk;i/

where f0 is the probability density function for a Normal random variable with mean
� and variance �2 and f1 is the probability density function for a shifted gamma
random variable with shape parameter ˛, scale parameter ˇ, and shift parameter
� . Finally, [21] assumes that the conditional distribution of nk given Yk follows a
truncated Poisson distribution with probability mass function

hy .nk/ D e�cjlk
�
cjlk

�nk

nkŠ
�
1 � e�cjlk

�

for nk D 1; 2; : : : , where cj represents the average number of incorrect/correct
peptide identification per unit protein length for j D 0; 1, respectively. Then
combining these components of the NMM, the joint density of Y, P, n and X is
assumed to have the form

f .y; z;w; s; v/ D
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�
:

Let  denote the vector of all model parameters. Then the EM algorithm is used to

estimate  , and these estimates are used to obtain P
�

Yk D 1
ˇ̌
ˇxk;1; : : : ; xk;nk ; nk

�
, the

probability that the kth protein is present given the scores and number of peptide
hits for that protein, and to obtain
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P
�

Pk;i D 1
ˇ̌
ˇxk;1; : : : ; xk;nk ; nk

�
, the probability that the ith peptide for the kth

protein is present given the scores and number of peptide hits for that protein.

4 Discussion

Proper inference from data produced from tandem mass spectrometry experiments
regarding proteins present in tissues and fluids can assist in providing important
biological information. Several popular probabilistic and likelihood-based methods
for protein identification from MS/MS data have been reviewed: the benchmark
two-step process of PeptideProphet followed by ProteinProphet and two likelihood-
based one-step processes HSM and NMM. It is important to note that there are
many other approaches available in the literature. See [22–24] for review of some
other two-step methods for peptide and protein identification. There are also several
other one-step protein identification procedures proposed in the literature and a
few will be discussed here briefly. ProteinFirst [25] is a two-dimensional target
decoy method which simultaneously controls the false discovery rates of proteins
and peptide-to-spectrum match levels by modifying PSM scores based on the
confidence in the protein identification score. A couple of other methods also
consider feedback from proteins when determining the peptides that are present.
An iterative procedure to compute peptide and protein probabilities simultaneously
is considered by [26] which uses the PeptideProphet results as input for confidence
concerning the peptides. Alternately, the method in [27] uses a different mechanism
for feedback, starting with peptide identification results from a database search;
these results are used to obtain a list of proteins which are further used to obtain
a peptide adjacency matrix. Then peptide identification probabilities are estimated
based on a logistic regression model and subsequently used to update the protein
list and adjacency matrix. Another approach proposed in [28] uses a tripartite graph
with three layers corresponding to the spectrum, peptide, and protein levels and
uses machine learning techniques in a single optimization procedure for protein
identification via a Barista model. The number of true proteins identified by this
method exceeds that of ProteinProphet for six different data sets in [28] over a
wide range of false discovery rate levels. A promising recent full Bayesian approach
(BHM) is proposed in [20] that incorporates the fact that proteins which share the
same biological pathway may not be independent. Instead, BHM groups the proteins
that are functionally related and uses this fact as prior information for protein
identification. Moreover, BHM fully handles the degeneracy issue and considers full
posterior inference via a Gibbs sampling scheme. Methods of integrating additional
information outside the MS/MS experiment have also been considered and are
briefly reviewed in [15].

Various criteria have been used to evaluate the performance of peptide and
protein identification procedures, and the performance of the methods has been
analyzed and compared using several data sets in the literature. In [16], a training
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dataset from [11] with ESI-MS/MS spectra generated from a control sample
with 18 purified proteins was used, and the results of PeptideProphet based on
SEQUEST database search scores are thoroughly analyzed. In this application,
peptide assignments with known validity were generated in a training dataset using
SEQUEST with a database including the sequences of the 18 control proteins and
a Drosophilia peptide database. Test data was generated using the control peptides
and a human peptide database. It is shown in Figure 3 of [16] that the estimated
distribution for the discriminant score is very close to the true distribution for the test
data. Also, the accuracy of the probability estimates of the peptide assignments for
the test data is illustrated in Figure 4 of [16] by comparing the true probability with
the computed probability. Finally, a pair of graphs in Figure 5 of [16] illustrated the
tradeoff between the fraction of identified peptide assignments which are actually
correct (sensitivity) and the fraction of identified peptide assignments which are
actually incorrect for various thresholds used to classify the peptide assignments
and the relationship between these fractions and the threshold.

Some similar analyses were also performed in [13] using the data from [11]
to evaluate the ability of ProteinProphet to make protein identifications. Figures
5 and 6 of [13] compare the true probability with the computed probability for
the presence of proteins and the relationships between the sensitivity, error rates,
and threshold for declaring a protein to be identified. One important additional
consideration in these plots was the comparison of results with or without using the
number of sibling peptides; all figures clearly showed that the results were better
when this information was included.

Comparisons have been made between PeptideProphet/ProteinProphet, HSM,
and NMM by comparing the empirical FDR (false discovery rate) versus the
estimated FDR, the sensitivity versus the specificity, and the number of true
positive proteins versus the number of false positive proteins. In [14], MS/MS
spectra data generated based on standard protein mixture [29] were studied, and
peptide and protein identification was performed using HSM, PeptideProphet, and
ProteinProphet. The results were evaluated using decoy data from Shewanella
oneidensis, and the empirical FDR was compared with the estimated FDR for each
of the methods in Figure 4 of [14]. It was found that PeptideProphet significantly
underestimates the FDR. HSM and ProteinProphet both were slightly optimistic
at low values of the empirical FDR, and conservative at high FDR. Receiver
operating characteristic curves were also presented in Figure 5 of [14] for these
methods to compare the sensitivity with the specificity (fraction of false peptides
not identified), and the sensitivity of HSM was best for sufficiently high levels of
specificity shown, followed by ProteinProphet and PeptideProphet. Additionally,
HSM and ProteinProphet were also compared in [14] for processed MS/MS spectra
data from [14] generated from a yeast (Saccharomyces cerevisiae) dataset with
peptide fragments obtained from a QSTAR mass spectrometer [30]. Database search
scores were again obtained using SEQUEST for the true data and decoy data from
Caenorhabditis elegans. It was found that ProteinProphet selects more proteins
at each threshold, and that ProteinProphet was optimistic in estimating the FDR
for low values of the empirical FDR, while HSM was always conservative in
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estimating the FDR. MS/MS spectra data generated based on standard protein
mixture [29] were also analyzed in [21], and peptide identification was performed
using PeptideProphet, ProteinProphet, HSM, and NMM with SEQUEST database
search scores. It was found that the NMM was much more conservative than the
other methods (see Figure 6b of [21]). Furthermore, it was seen that the sensitivity
of NMM far exceeded that of PeptideProphet and HSM when the specificity was
large (see Figure 6a of [21]).

Additionally in [21], NMM and PeptideProphet/ProteinProphet were compared
on another yeast dataset from [31] and scores for the peptide assignments were
computed using SEQUEST. The decoy data was created by permuting the target
sequences; [21] was unable to run HSM for this dataset because of the large protein
group sizes. Probability thresholds were selected based on the number of decoy
peptides, and it is seen in Figure 7a of [21] that the number of true peptides identified
by NMM clearly exceeded the number identified by PeptideProphet. However, when
the threshold was selected to control the number of decoy proteins, ProteinProphet
slightly outperformed NMM in terms of the number of true positive proteins for
most thresholds.

NMM and HSM were also compared in [21] for the processed MS/MS spectra
data from [14] generated from the yeast dataset. Thresholds were selected based
on the number of false positive proteins, and it is seen in Figure 8 of [21] that
the number of true detected proteins of NMM exceeded that of HSM for each
threshold (fixed number of false positives). The same data was also shown in [15],
and the number of true positives for BHM exceeded NMM and HSM for most
thresholds. The number of true positives for BHM also exceeded that of NMM and
ProteinProphet in an example in [20] and [15] on Haemophilus influenzae data from
[13] (see Figure 6 of [15]).
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