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Abstract

We generalize to multi-commutators the usual Lieb–Robinson bounds for
commutators. In the spirit of constructive QFT, this is done so as to allow the use of
combinatorics of minimally connected graphs (tree expansions) in order to estimate
time-dependent multi-commutators for interacting fermions. Lieb–Robinson
bounds for multi-commutators are effective mathematical tools to handle analytic
aspects of the dynamics of quantum particles with interactions which are
non-vanishing in the whole space and possibly time-dependent. To illustrate this,
we prove that the bounds for multi-commutators of order three yield existence of
fundamental solutions for the corresponding non-autonomous initial value prob-
lems for observables of interacting fermions on lattices. We further show how
bounds for multi-commutators of an order higher than two can be used to study
linear and non-linear responses of interacting fermions to external perturbations. All
results also apply to quantum spin systems, with obvious modifications. However,
we only explain the fermionic case in detail, in view of applications to microscopic
quantum theory of electrical conduction discussed here and because this case is
technically more involved.

vii



Chapter 1
Introduction

Lieb–Robinson bounds are upper-bounds on time-dependent commutators and were
originally used to estimate propagation velocities of information in quantum spin sys-
tems. They have first been derived in 1972 by Lieb and Robinson [LR]. Nowadays,
they are widely used in quantum information and condensed matter physics. Phe-
nomenological consequences of Lieb–Robinson bounds have been experimentally
observed in recent years, see [Ch].

For the reader’s convenience and completeness, we start by deriving such bounds
for fermions on the latticewith (possibly non-autonomous) interactions.As explained
in [NS] in the context of quantum spin systems, Lieb–Robinson bounds are only
expected to hold true for systems with short-range interactions. We thus define
Banach spaces W of short-range interactions and prove Lieb–Robinson bounds for
the corresponding fermion systems. The spaces W include density–density interac-
tions resulting from the second quantization of two-body interactions defined via a
real-valued and integrable interaction kernel v (r) : [0,∞) → R. Considering fermi-
ons with spin 1/2, our setting includes, for instance, the celebrated Hubbard model
(and any other system with finite-range interactions) or models with Yukawa-type
potentials. Two-body interactions decaying polynomially fast in space with suffi-
ciently large degree are also allowed, but theCoulombpotential is excluded because it
is not summable at large distances. Themethod of proof we use to get Lieb–Robinson
bounds for non-autonomous C∗-dynamical systems related to lattice fermions is, up
to simple adaptations, the one used in [NS] for (autonomous) quantum spin sys-
tems. Compare Theorem 4.3, Lemma 4.4, Theorem 5.1 and Corollary 5.2 with [NS,
Theorems 2.3. and 3.1.]. See also [BMNS] where (usual) Lieb–Robinson bounds
for non-autonomous quantum spin systems have already been derived [BMNS,
Theorems 4.6].

© The Author(s) 2017
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and Applications to Response Theory, SpringerBriefs in Mathematical Physics,
DOI 10.1007/978-3-319-45784-0_1

1

http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5


2 1 Introduction

Once the Lieb–Robinson bounds for commutators are established, we combine
themwith results of the theory of strongly continuous semigroups to derive properties
of the infinite-volume dynamics. These allow us to extend Lieb–Robinson bounds
to time-dependent multi-commutators, see Theorems 4.10, 4.11 and 5.4. The new
bounds on multi-commutators make possible rigorous studies of dynamical proper-
ties that are relevant for response theory of interacting fermion systems. For instance,
they yield tree-decay bounds in the sense of [BPH1, Sect. 4] if interactions decay
sufficiently fast in space (typically some polynomial decay with large enough degree
is needed). In fact, by using the Lieb–Robinson bounds for multi-commutators, we
extend in [BP5, BP6] our results [BPH1, BPH2, BPH3, BPH4] on free fermions to
interacting particles with short-range interactions. This is an important application
of such new bounds: The rigorous microscopic derivation of Ohm and Joule’s laws
for interacting fermions, in the AC-regime. See Chap. 6 and [BP4] for a historical
perspective on this subject.

Via Theorems 6.1 and 6.5, we show, for example, how Lieb–Robinson bounds for
multi-commutators can be applied to derive decay properties of the so-called AC-
conductivity measure at high frequencies. This result is new and is obtained in Chap.
6. Cf. [BP5, BP6]. Lieb–Robinson bounds for multi-commutators have, moreover,
further applications which go beyond the use on linear response theory presented in
Chap. 6. For instance, as explained in Sects. 4.5 and 5.3, they also make possible the
study of non-linear corrections to linear responses to external perturbations.

The new bounds can also be applied to non-autonomous systems. Indeed, the exis-
tence of a fundamental solution for the non-autonomous initial value problem related
to infinite systems of fermions with time-dependent interactions is usually a non-
trivial problem because the corresponding generators are time-dependent unbounded
operators. The time-dependency cannot, in general, be isolated into a bounded per-
turbation around some unbounded time-constant generator and usual perturbation
theory cannot be applied. In many important cases, the time-dependent part of the
generator is not even relatively bounded with respect to (w.r.t.) the constant part. In
fact, no unified theory of non-autonomous evolution equations that gives a complete
characterization of the existence of fundamental solutions in terms of properties of
generators, analogously to the Hille–Yosida generation theorems for the autonomous
case, is available. See, e.g., [K4, C, S, P, BB] and references therein. Note that the
existence of a fundamental solution implies the well-posedness of the initial value
problem related to states or observables of interacting lattice fermions, provided the
corresponding evolution equation has a unique solution for any initial condition.

The Lieb–Robinson bounds on multi-commutators we derive here yield the exis-
tence of fundamental solutions as well as other general results on non-autonomous
initial value problems related to fermion systems on lattices with interactions which
are non-vanishing in the whole space and time-dependent. This is done in a rather
constructive way, by considering the large volume limit of finite-volume dynamics,
without using standard sufficient conditions for existence of fundamental solutions
of non-autonomous linear evolution equations. If interactions decay exponentially
fast in space, then wemoreover show, also by using Lieb–Robinson bounds onmulti-
commutators, that the non-autonomous dynamics is smooth w.r.t. its generator on

http://dx.doi.org/10.1007/978-3-319-45784-0_4
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1 Introduction 3

the dense set of local observables. See Theorem 5.6. Note that the generator of the
(non-autonomous) dynamics generally has, in our case, a time-dependent domain,
and the existence of a dense set of smooth vectors is a priori not at all clear.

Observe that the evolution equations for lattice fermions are not of parabolic type,
in the precise sense formulated in [AT], because the corresponding generators do not
generate analytic semigroups. They seem to be rather related to Kato’s hyperbolic
case [K2, K3, K4]. Indeed, by structural reasons – more precisely, the fact that the
generators are derivations on a C∗-algebra – the time-dependent generator defines a
stable family of operators in the sense ofKato.Moreover, this family always possesses
a common core. In some specific situations one can directly show that the completion
of this core w.r.t. a conveniently chosen norm defines a so-called admissible Banach
space Y of the generator at any time, which satisfies further technical conditions
leading to Kato’s hyperbolic conditions [K2, K3, K4]. See also [BB, Sect. 5.3.] and
[P, Sect.VII.1]. Nevertheless, the existence of such a Banach space Y is a priori
unclear in the general case treated here (Theorem 5.5).

Our central results are Theorems 4.10, 4.11 and 5.4. Other important assertions
are Corollary 4.12 and Theorems 5.5, 5.6, 5.8, 5.9, 6.1 and 6.5. The manuscript is
organized as follows:

• In order to make our results accessible to a wide audience, in particular to students
inMathematicswith little Physics background,Chap. 2 presents basics ofQuantum
Mechanics, keeping in mind its algebraic formulation.

• Chapter 3 introduces the algebraic setting for fermions, in particular the CAR C∗-
algebra. Other standard objects (like fermions, bosons, Fock space, CAR, etc.) of
quantum theory are also presented, for pedagogical reasons.

• Chapter 4 is devoted to Lieb–Robinson bounds, which are generalized to multi-
commutators.We also give a proof of the existence of the infinite-volume dynamics
as well as some applications of such bounds. The tree-decay bounds on time-
dependent multi-commutators (Corollary 4.12) are proven here. However, only
the autonomous dynamics is considered in this section.

• Chapter 5 extends results of Chap. 4 to the non-autonomous case. We prove, in
particular, the existence of a fundamental solution for the non-autonomous initial
value problems related to infinite interacting systems of fermions on lattices with
time-dependent interactions (Theorem 5.5). This implies well-posedness of the
corresponding initial value problems for states and observables, provided their
solutions are unique for any initial condition. Applications in (possibly non-linear)
response theory (Theorems 5.8, 5.9) are discussed as well.

• Finally, Chap. 6 explains how Lieb–Robinson bounds for multi-commutators can
be applied to study (quantum) charged transport properties within the AC-regime.
This analysis yields, in particular, the asymptotics at high frequencies of the so-
called AC-conductivity measure. See Theorems 6.1 and 6.5.

Notation 1.1
(i) We denote by D any positive and finite generic constant. These constants do not
need to be the same from one statement to another.

http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_6
http://dx.doi.org/10.1007/978-3-319-45784-0_6
http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_3
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_6
http://dx.doi.org/10.1007/978-3-319-45784-0_6
http://dx.doi.org/10.1007/978-3-319-45784-0_6


4 1 Introduction

(ii) A norm on the generic vector space X is denoted by ‖·‖X and the identity map of
X by 1X . The C∗-algebra of all bounded linear operators on (X , ‖ · ‖X ) is denoted
by B(X ). The scalar product on a Hilbert space X is denoted by 〈·, ·〉X .
(iii) If O is an operator, ‖ · ‖O stands for the graph norm on its domain.
(iv)By a slight abuse of notation, we denote in the sequel elements Xi ∈ Y depending
on the index i ∈ I by expressions of the form {Xi }i∈I ⊂ Y (instead of (Xi )i∈I ⊂
I × Y ).



Chapter 2
Algebraic Quantum Mechanics

2.1 Emergence of Quantum Mechanics

The main principles of physics were considered as well-founded by the end of the
nineteenth century, even with, for instance, no satisfactory explanation of the phe-
nomenon of thermal radiation, first discovered in 1860 by G. Kirchhoff. In contrast
to classical physics, which deals with continuous quantities, Planck’s intuition was
to introduce an intrinsic discontinuity of energy and a unusual1 statistics (without
any conceptual foundation, in a ad hoc way) to explain thermal radiation in 1900.
Assuming the existence of a quantum of action h, the celebrated Planck’s constant,
and this pivotal statistics he derived the well-known Planck’s law of thermal radia-
tion. Inspired by Planck’s ideas, Einstein presented his famous discrete (corpuscular)
theory of light to explain the photoelectric effect.

Emission spectra of chemical elements had also been known since the nineteenth
century and no theoretical explanation was available at that time. It became clear that
electrons play a key role in this phenomenon. However, the classical solar system
model of the atom failed to explain the emitted or absorbed radiation. Following
again Planck’s ideas, N. Bohr proposed in 1913 an atomic model based on discrete
energies that characterize electron orbits. It became clear that the main principles of
classical physics are unable to describe atomic physics.

Planck’s quantum of action, Einstein’s quanta of light (photons), and Bohr’s
atomic model could not be a simple extension of classical physics, which, in turn,
could also not be questioned in its field of validity. N. Bohr tried during almost
a decade to conciliate the paradoxical–looking microscopic phenomena by defin-
ing a radically different kind of logic. Bohr’s concept of complementarity gave in
1928 a conceptual solution to that problem and revolutionized the usual vision of

1In regards to Boltzmann’s studies, which meanwhile have strongly influenced Planck’s work. In
modern terms M.K.E.L. Planck used the celebrated Bose–Einstein statistics.

© The Author(s) 2017
J.-B. Bru and W. de Siqueira Pedra, Lieb-Robinson Bounds for Multi-commutators
and Applications to Response Theory, SpringerBriefs in Mathematical Physics,
DOI 10.1007/978-3-319-45784-0_2
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6 2 Algebraic Quantum Mechanics

nature. See, e.g., [B]. For more details on the emergence of quantum mechanics, see
also [R]. Classical logic should be replaced by quantum logic as claimed [BvN] by
G. Birkhoff and J. von Neumann in 1936. See also [F].

On the level of theoretical physics, until 1925, quantum corrections were system-
atically included, in a rather ad hoc manner, into classical theories to allow explicit
discontinuous properties. Then, two apparently complementary directionswere taken
by W.K. Heisenberg and E. Shrödinger, respectively, to establish basic principles of
the new quantum physics, in contrast with the “old quantum theory” starting in 1900.
Indeed, even with the so-called correspondence principle of N. Bohr, “many prob-
lems, even quite central ones like the spectrum of helium atom, proved inaccessible
to any solution, no matter how elaborate the conversion”, see [R, p. 18].

These parallel theories elaborated almost at the same time were in competition
to be the new quantum theory until their equivalence became clear, thanks to J. von
Neumann who strongly contributed to the mathematical foundations of Quantum
Mechanics in the years following 1926. They are nowadays known in any textbook
on Quantum Mechanics as the Schrödinger and Heisenberg pictures of Quantum
Mechanics. Schrödinger’s view point is generally the most known and refers to the
approach we first explain.

2.2 Schrödinger Picture of Quantum Mechanics (S1)

Following de Broglie’s studies on (Rutherford–) Bohr’s model and Einstein’s theory
of gases, E. Schrödinger took into account the wave theory of matter in 1925. Indeed,
by learning from wave optics in Classical Physics as well as from de Broglie’s
hypothesis on the wave property of matter, he derived the celebrated Schrödinger
equation, which describes the time evolution of the wave behavior of all quantum
objects. In mathematical words, this time-dependent behavior is described by some
family {ψ (t)}t∈R of wave functions within some Hilbert space H, which depends
on the quantum system under consideration. This evolution is fixed by a (possibly
unbounded) self-adjoint operator H = H∗ acting on H: Indeed, for any initial wave
function ψ (0) ∈ H at t = 0, the wave function at arbitrary time t ∈ R is uniquely
determined by the Schrödinger equation

i∂tψ (t) = Hψ (t) , t ∈ R . (2.1)

This implies in particular that the time evolution is unitary:

ψ (t) = e−i tHψ (0) , t ∈ R . (2.2)

A typical example is given byH = L2(R3)withψ (0) being taken to be a normalized
vector ofH. In this case, |ψ (t, x) |2 is interpreted as the probability density to detect
the quantum particle at time t ∈ R and space position x ∈ R

3.



2.3 Heisenberg Picture of Quantum Mechanics (H2) 7

2.3 Heisenberg Picture of Quantum Mechanics (H2)

Quantities like position, momentum, energy, etc., are represented by self-adjoint
operators acting on H and are called observables. They refer to all properties of
the physical system that can be measured. An important one is of course the energy
observable, also named Hamiltonian, in reference to the celebrated Hamiltonian
mechanics. It is, by definition, the self-adjoint operator H in the Schrödinger equa-
tion (2.1).

In this context, the outcomes of measurements of the physical quantity associated
with an arbitrary observable B have a random character, the statistical distribution
of which is completely described by the family {ψ (t)}t∈R of wave functions solving
(2.1). At time t ∈ R, its expectation value is given by the real number

〈ψ (t) , Bψ (t)〉H = 〈ψ (0) , ei tHBe−i tHψ (0)〉H . (2.3)

See (2.2). Here, 〈·, ·〉H denotes the scalar product of H. Viewing the state as
time-dependent and the observable fixed, like in Schrödinger’s picture of Quan-
tum Mechanics, is equivalent to viewing the state as being fixed and the observable
evolving as follows:

B �→ τt (B)
.= ei tHBe−i tH , t ∈ R . (2.4)

The latter refers to Heisenberg’s view point: For every bounded Hamiltonians
H ∈ B(H), the map (2.4) defines a one-parameter continuous group {τt }t∈R acting
onB(H), the Banach spaceB(H) of all bounded linear operators onH, and satisfying
the (autonomous) evolution equation

∀t ∈ R : ∂tτt = τt ◦ δ = δ ◦ τt , τ0 = 1B(H) , (2.5)

where δ is the generator defined by

δ (B)
.= i [H, B]

.= HB − BH , B ∈ B(H) . (2.6)

Note that {τt }t∈R is a family of isomorphims of the Banach space B(H) and, for all
B1, B2 ∈ B(H),

δ(B∗
1 ) = δ(B1)

∗ and δ(B1B2) = δ(B1)B2 + B1δ(B2) . (2.7)

A linear operator δ acting on any algebra with involution (like B(H), see Sect. 2.5)
that satisfies such properties is called symmetric derivation. (The symmetry property
refers to the first equality.) Indeed, generators of groups of automorphims of C∗-
algebras (Sect. 2.5) are necessarily symmetric derivations.

In this approach the wave function is then fixed for all times. This view point took
its origin in Heisenberg’s study of the dispersion relation done in 1925. Schrödinger’s
wave mechanics dovetailed with Heisenberg’s matrix mechanics.
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Remark 2.1 (Unbounded Hamiltonians)
If H = H∗ is unbounded then it is not clear whether (2.4) defines a C0-group (that
is, a strongly continuous group) {τt }t∈R of automorphisms of B(H) or not. This fact
is, however, not important here. Indeed, one starts (S1) either with Schrödinger’s
equation and (2.4) is well-defined, (H1) or with aC0-group {τt }t∈R of automorphisms
generated by a (possibly unbounded) symmetric derivation δ, see (2.5) and (2.7). The
latter uses the semigroup theory [BR1, EN] and refers to the algebraic formulation
of Quantum Mechanics explained in Sect. 2.5.

2.4 Non-autonomous Quantum Dynamics

If Ht = H∗
t is now a time-dependent self-adjoint operator acting on some Hilbert

space H for any time t ∈ R, the Schrödinger equation

i∂tψ (t) = Htψ (t) , t ∈ R ,

formally leads to a solution

ψ (t) = Ut,0ψ (0) , t ∈ R , (2.8)

with {Ut,s}s,t∈R being, a priori, the two-parameter group of unitary operators on H
generated by the (anti-self-adjoint) operator −iHt :

∀s, t ∈ R : ∂tUt,s = −iHtUt,s , Us,s
.= 1H . (2.9)

This two-parameter family satisfies the cocycle (Chapman–Kolmogorov) property

∀s, r, t ∈ R : Ut,s = Ut,rUr,s . (2.10)

Equation (2.9) is a non-autonomous evolution equation. The well-posedness of
such non-autonomous initial value problems requires some regularity properties of
the family {Ht }t∈R of self-adjoint operators. For instance, if {Ht }t∈R ∈ C (R;B(H))

is a continuous family of bounded operators, the existence, uniqueness and even an
explicit form of the solution of (2.9) on the space B(H) (that is, in the norm/uniform
topology) is given by the Dyson–Phillips series:

Ut,s
.= 1H +

∑

k∈N
(−i)k

∫ t

s
ds1 · · ·

∫ sk−1

s
dsk Hs1 · · ·Hsk , s, t ∈ R . (2.11)

In this case, {Ut,s}s,t∈R is a norm-continuous two-parameter group of unitary opera-
tors. In particular, the norm ‖ψ (t) ‖H of (2.8) is constant for all times t ∈ R and the
statistical interpretation of this wave function is still meaningful. Moreover, since
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the map B �→ B∗ from B(H) to B(H) is continuous (in the norm/uniform topology,
see [RS1, Theorem VI.3 (e)]),

∀s, t ∈ R : ∂tU
∗
t,s = iU∗

t,sHt , U∗
s,s

.= 1H . (2.12)

(This property is not that clear in the strong topology since the map B �→ B∗ is not
continuous anymore, but it could still be proven. See as an example [BB, Lemma
68].)

However, the well-posedness of non-autonomous evolution equations like (2.9)
is much more delicate for unbounded generators. It has been studied, after the first
result of Kato in 1953 [K1], for decades by many authors (Kato again [K2, K3] but
also Yosida, Tanabe, Kisynski, Hackman, Kobayasi, Ishii, Goldstein, Acquistapace,
Terreni, Nickel, Schnaubelt, Caps, Tanaka, Zagrebnov, Neidhardt, etc.), see, e.g.,
[BB, K4, C, S, P, NZ] and the corresponding references cited therein. Yet, no uni-
fied theory of such linear evolution equations that gives a complete characterization
analogously to the Hille–Yosida generation theorems [EN] is known.

Assuming the well-posedness of the non-autonomous evolution Eq. (2.9), the
expectation value of any observable B (i.e., a self-adjoint operator acting on H)
is given, similarly to (2.3), by the real number

〈ψ (t) , Bψ (t)〉H = 〈ψ (s) ,U∗
t,s BUt,sψ (s)〉H , s, t ∈ R . (2.13)

By (2.9) and (2.12), in the Heisenberg picture of Quantum Mechanics (H2), we
observe for any family {Ht }t∈R ∈ C (R;B(H)) that

B �→ τt,s (B)
.= U∗

t,s BUt,s , s, t ∈ R ,

defines a two-parameter family {τt,s}s,t∈R of automorphisms of B(H) satisfying the
(reverse) cocycle property

∀s, r, t ∈ R : τt,s = τr,sτt,r , (2.14)

(cf. (2.10)) as well as the evolution equation

∀s, t ∈ R : ∂tτt,s = τt,s ◦ δt , τs,s = 1B(H) . (2.15)

Here, δt is the time-dependent generator defined by

δt (B)
.= i [Ht , B]

.= Ht B − BHt , B ∈ B(H) . (2.16)

ComparewithEqs. (2.5) and (2.6). Equation (2.15) isanother typeof non-autonomous
evolution equation on the Banach space B(H), the well-posedness of which is much
more easier to prove than the one of (2.9) for unbounded generators.

Indeed, non-autonomous evolution equations inmathematics usually refer to non-
autonomous initial value problems
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∀t ≥ s : ∂tUt,s = −GtUt,s , Us,s
.= 1X , (2.17)

with generators Gt acting on some Banach space X for times t ≥ s. One important
mathematical issue of (2.9) or (2.17) for unbounded generators is to find sufficient
conditions to ensure that HtUt,s orGtUt,s are always well-defined on some (possibly
time-dependent) dense subset D of H or X .

This problem does not appear in the non-autonomous initial value problem (2.15).
In particular, if the non-autonomous evolution equation

∀s, t ∈ R : ∂sτt,s = −δs ◦ τt,s , τt,t = 1B(H) ,

is well-posed for some possibly unbounded family {δt }t∈R of generators, then (2.15)
is alsowell-posed, see for instance [BB, Lemma 93]. The converse does not hold true,
in general. Indeed, in contrast with (2.9) and (2.17), there is no domain conservation
in (2.15) to take care even if {δt }t∈R is a family of unbounded generators. An example
is given in Sect. 5.1, compare in particular Corollary 5.2 (iii) with Theorem 5.5.

As a consequence, for non-autonomous dynamics theHeisenberg picture ofQuan-
tumMechanics is mathematically more natural or technically advantageous as com-
pared to the Schrödinger picture. This gives a first argument to start the quantum
formalism with the Heisenberg picture, instead of the Schrödinger one as it is done
in many elementary textbooks on quantum physics. This approach refers to the so-
called algebraic formulation of Quantum Mechanics widely used in Quantum Sta-
tistical Mechanics and Quantum Field Theory.

2.5 Algebraic Formulation of Quantum Mechanics (H1–S2)

Algebraic Quantum Mechanics is an approach, starting in the forties (cf. GNS con-
struction), which reverses the view point presented in Sects. 2.2–2.4 by taking the
Heisenberg picture ofQuantumMechanics (H1) as themore fundamental one. There-
fore, instead of starting with Hilbert spaces and the Schrödinger equation, one uses
C∗-dynamical systems, that is, a pair constituted of a C∗-algebra and a group of ∗-
automorphisms. The first generalizes the Banach space B(H) of all bounded linear
operators acting on some Hilbert space H and the second, the map (2.4). They are
defined as follows:
(i): Let X ≡ (X ,+, ·C) be a complex vector space with a product map defined on
the Cartesian product X × X by

(B1, B2) �→ B1B2 .

X is an associative and distributive algebra, when, for any B1, B2, B3 ∈ X and all
complex numbers α1,α2 ∈ C,

http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
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(B1 + B2)B3 = B1B3 + B2B3 , (B1B2)B3 = B1(B2B3) ,

B3(B1 + B2) = B3B1 + B3B2 , α1α2(B1B2) = (α1B1)(α2B2) .

In the sequel, an algebra carries, by definition, an associative and distributive product.
X is a commutative algebra if B1B2 = B2B1 for any B1, B2 ∈ X . 1 ∈ X is the unit
(or identity) ofX when B1 = 1B = B for all B ∈ X . If 1 ∈ X exists then it is unique
and X is named a unital algebra.
(ii): An involution is a map B �→ B∗ from an algebra X to X that, by definition,
satisfies, for any B1, B2 ∈ X and α1,α2 ∈ C,

(B∗
1 )

∗ = B1 , (B1B2)
∗ = B∗

2 B∗
1 , (α1B1 + α2B2)

∗ = α1B∗
1 + α2B∗

2 .

An algebra X equipped with an involution is a ∗-algebra and B ∈ X is self-adjoint
when B = B∗. In this case, by uniqueness of the unit, one checks that a unit 1 has to
be self-adjoint.
(iii): Let ‖ · ‖X be a norm on a vector space X . Then, X ≡ (X , ‖ · ‖X ) is a normed
algebra whenever X is an algebra and

‖B1B2‖X ≤ ‖B1‖X ‖B2‖X , B1, B2 ∈ X .

A normed algebra X is a Banach algebra if X is complete with respect to (w.r.t.) the
norm ‖ · ‖X . A Banach algebra X equipped with an involution such that

‖B‖X = ∥∥B∗∥∥
X , B ∈ X ,

is a Banach ∗-algebra. Then, a Banach ∗-algebra X is a C∗-algebra whenever
∥∥B∗ B

∥∥
X = ‖B‖2X , B ∈ X . (2.18)

If X is a Banach ∗-algebra, then there is a unique norm ‖ · ‖X on X such that
(X , ‖ · ‖X ) is a C∗-algebra. Note also that in C∗-algebras there is a natural notion
of spectrum, which is a real subset for any self-adjoint element.
(iv):LetX andY be twoC∗-algebras.A linearmapπ : X → Y is a∗-homomorphism
when it preserves the product and involution of the C∗-algebras, i.e., if, for all
B1, B2 ∈ X ,

π (B1B2) = π (B1)π (B2) and π
(
B∗
1

) = π (B1)
∗ .

Such maps π are automatically contractive [BR1, Proposition 2.3.1] and even iso-
metric whenπ is injective [BR1, Proposition 2.3.3]. Bijective ∗-homomorphisms are
called ∗-isomorphisms. C∗-algebras X and Y are said to be ∗-isomorphic whenever
there exists a ∗-isomorphism π : X → Y . ∗-isomorphisms from X to X are named
∗-automorphisms of the C∗-algebra X .

For more details on the theory of C∗-algebras, see, e.g., [BR1, KR1, KR2].
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Awell-known example of unitalC∗-algebra is given by the Banach spaceB(H) of
all bounded linear operators acting on someHilbert spaceH. The norm onB(H) is of
course the operator norm, as before, and the involution is defined by taking the adjoint
of operators. The complex vector space of complex-valued, measurable, bounded
functions on some set equipped with the sup-norm and the point-wise product can
also be seen as a unital commutative C∗-algebra.

We are now in position to explain the algebraic approach of QuantumMechanics,
which starts as follows.

Heisenberg Picture of Quantum Mechanics (H1). A physical system is described
by its physical properties, i.e., by a non-empty setO �= ∅ of all physical quantifies that
can be measured in this system, as well as by the relations between them. Elements
B ∈ O are called observables and are taken as self-adjoint elements of a unital2 C∗-
algebra X . Each self-adjoint element B represents some apparatus (or measuring
device) and its spectrum corresponds to all values that can come up by measuring the
corresponding physical quantity. The quantum dynamics is given by aC0-group (that
is, a strongly continuous group) τ

.= {τt }t∈R of ∗-automorphisms generated [EN, 1.2
Definition, 1.4 Theorem] by a symmetric derivation δ acting on the C∗-algebraX . In
particular, by [EN, 1.3 Lemma (ii)], it satisfies the (autonomous) evolution equation

∀t ∈ R : ∂tτt = τt ◦ δ = δ ◦ τt , τ0 = 1X ,

with δ being a possibly unbounded operator acting on X . Compare with Eqs. (2.5)–
(2.7). Recall also that symmetric derivations refer to (linear) operators satisfying
properties (2.7) on X . The pair (X , τ ) is known as a (autonomous) C∗-dynamical
system. A similar automorphism family can be defined for non-autonomous dynam-
ics by using (2.14) and (2.15) on the domain Dom(δt ) ⊆ X of a time-dependent
symmetric derivation δt for t ∈ R. See for instance Corollary 5.2 (iii). In this case,
one speaks about non-autonomous C∗-dynamical systems.

Schrödinger Picture of Quantum Mechanics (S2). States are not anymore defined
from a wave function within some Hilbert space, like in Sect. 2.2. States on the
C∗-algebra X are, by definition, continuous linear functionals ρ ∈ X ∗ which are
normalized andpositive, i.e.,ρ(1) = 1andρ(B∗ B) ≥ 0 for all B ∈ X . They represent
the state of the physical system. Observe for instance that Eq. (2.3), or (2.13) in
the non-autonomous situation, defines a continuous linear functional on the C∗-
algebra B(H) that is positive and normalized, provided ‖ψ (0) ‖H = 1. Thus, a state
ρ represents the statistical distribution of all measures of any observable B ∈ X . For
commutative C∗-algebras, it corresponds to a probability distribution. If {τt }t∈R is a
C0-group of ∗-automorphism of X , then, for any time t ∈ R and state ρ ∈ X ∗,

ρt
.= ρ ◦ τt ∈ X ∗

2The existence of a unit 1 ∈ X is assumed to simplify discussions.

http://dx.doi.org/10.1007/978-3-319-45784-0_5
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is also a state. The same holds true if the dynamicswould have been non-autonomous.
In the Schrödinger picture, the dynamics is consequently given by the family {ρt }t∈R
of states.

Therefore, in the algebraic formulation of Quantum Mechanics (H1–S2), there
is no a priori Hilbert space structure appearing in the mathematical framework, in
contrast with the approach S1–H2 presented in Sects. 2.2–2.4. In fact, by S1–H2 one
fixes a unique Hilbert space right from the beginning, whereas the use of H1–S2 can
lead to a (not necessarily unique) Hilbert space that depends on the choice of the
state.

By [H2, p. 274], I.E. Segal was the first who proposed to leave the Hilbert space
approach to consider quantum observables as elements of certain involutive Banach
algebras, now known asC∗-algebras. The relation between the algebraic formulation
and the usual Hilbert space based formulation of Quantum Mechanics has been
established via one important result obtained in the forties: The celebrated GNS
(Gel’fand–Naimark–Segal) representation of states.

Indeed, by [BR1, Lemma 2.3.10], a positive linear functional ρ over a ∗-algebra
X satisfies

ρ(B∗
1 B2) = ρ(B∗

2 B1) , B1, B2 ∈ X ,

and the Cauchy–Schwarz inequality:

|ρ(B∗
1 B2)|2 ≤ ρ(B∗

1 B1)ρ(B∗
2 B2) , B1, B2 ∈ X .

Therefore, if X is a unital C∗-algebra and ρ ∈ X ∗ is a state then

Lρ
.= {B ∈ X : ρ(B∗ B) = 0} (2.19)

is a closed left-ideal ofX , i.e., Lρ is a closed subspace such thatXLρ ⊂ Lρ, and one
can define a scalar product on the quotient X /Lρ, which can be completed to get a
Hilbert space Hρ. For more details on the GNS construction, see [BR1, KR1].

The GNS representation has led to very important applications of the Tomita–
Takesaki theory (see, e.g., [BR1, KR2]), developed in seventies, to Quantum Field
Theory and Statistical Mechanics. These developments mark the beginning of the
algebraic approach to Quantum Mechanics and Quantum Field Theory. For more
details, see, e.g., [E]. In fact, the algebraic formulation turned out to be extremely
important and fruitful for the mathematical foundations of Quantum Statistical
Mechanics. See for instance discussions of Sect. 3.5, in particular Lemmata 3.3 and
3.4. In particular, it has been an important branch of research during decades with
lots of works on quantum spin and Fermi systems. See, e.g., [BR2, I] (spin) and [AM,
BP2, BP3] (Fermi).

http://dx.doi.org/10.1007/978-3-319-45784-0_3
http://dx.doi.org/10.1007/978-3-319-45784-0_3
http://dx.doi.org/10.1007/978-3-319-45784-0_3
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2.6 Representation Theory – The Importance
of the Algebraic Approach for Infinite Systems

We discuss here how C∗-algebras can be represented by spaces of bounded operators
acting Hilbert spaces. A representation on the Hilbert spaceH of a C∗-algebra X is,
by definition [BR1, Definition 2.3.2], a ∗-homomorphismπ fromX to the unitalC∗-
algebra B(H) of all bounded linear operators acting on H. In this case, H is named
the representation (Hilbert) space and if it is finite (resp. infinite) dimensional thenwe
have afinite (resp. infinite) dimensional representation ofX . Injective representations
are called faithful.

By the Gelfand–Naimark theorem [Dix], each C∗-algebra has, at least, one faith-
ful representation. In particular, since faithful representations are isometric [BR1,
Proposition 2.3.3], any C∗-algebra can be identified with some C∗-subalgebra of the
C∗-algebra B(H) of all bounded linear operators acting on some Hilbert space H.
In fact, as mentioned in Sect. 2.5, the algebraic formulation of Quantum Mechanics
(H1–S2) leads to a Hilbert space Hρ for any state ρ, via its GNS representation. A
faithful representation can be derived in this way if there exists a state ρ for which
Lρ = {0} (2.19), i.e., if a faithful state exists for the algebra under consideration.

Uniqueness of representations of C∗-algebras is clearly wrong. Indeed, for any
representationπ : X → B(H), we can construct another one by doubling theHilbert
space H and the map π, via a direct sum H1 ⊕ H2 with H1,H2 being two copies
of H. Therefore, one uses a notion of “minimal” representations of C∗-algebras: If
π : X → B(H) is a representation of a C∗-algebra X on the Hilbert space H, we
say that it is irreducible, whenever {0} and H are the only closed subspaces of H
which are invariant w.r.t. to any operator of π(X ) ⊂ B(H).

Now, it is well-known [Na] that if a C∗-algebraX is isomorphic to the C∗-algebra
K(H) ⊂ B(H) of all compact operators on some Hilbert spaceH, then, up to unitary
equivalence,X has only one irreducible representation (the canonical one onH). The
converse is true for separable Hilbert spaces: If X is a C∗-algebra with a faithful
representation on a separable Hilbert spaceH and if all irreducible representations of
X are unitarily equivalent, thenX is isomorphic to the C∗-algebraK(H) of compact
operators on some Hilbert space H. This result is known as the Rosenberg theorem
[Ros]. In other words, one gets the following theorem:

Theorem 2.2 (Uniqueness of irreducible representations – I)
If a C∗-algebra X has a faithful representation on a separable Hilbert space, then its
irreducible representation is unique (up to unitary equivalence) iff X is isomorphic
to some C∗-algebra of compact operators on some Hilbert space.

The question whether all C∗-algebras with a unique (up to unitary equivalence)
irreducible representation is isomorphic to an algebra of compact operators on a
non-separable Hilbert space is known as “Naimark’s problem”. Indeed, this question
is highly non-trivial. It depends on the continuum hypothesis and not only on the
axioms of the Zermelo–Fraenkel set theory with the axiom of choice (ZFC) [Wea,
Chap.19].
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In the finite dimensional situation, the C∗-algebra of compact operators is of
course equal to the whole C∗-algebra of bounded operators. Therefore, Theorem 2.2
implies the following assertion.

Corollary 2.3 (Uniqueness of irreducible representations – II)
If the C∗-algebra X is isomorphic to B(H) for some finite dimensional Hilbert
space H, then its irreducible representation is unique, up to unitary equivalence.
Any isomorphism X → B(H) of C∗-algebras is such an irreducible representation.

As a consequence, in the finite dimensional situation, the algebraic and Hilbert
space based approaches turns out to be equivalent to each other. However, this is not
anymore the case in the infinite dimensional situation for unital C∗-algebras because
the C∗-algebra of all compact operators cannot have a unit:

Corollary 2.4 (Non-uniqueness of irreducible representations)
Any unital C∗-algebra X with an infinite dimensional faithful representation on
a separable Hilbert space has more than one unitarily non-equivalent irreducible
representation.

Because of Corollary 2.4, the algebraic approach is more general than the Hilbert
space based approach, in the case of infinite dimensional unital underlying C∗-
algebras. In condensed matter physics the non-uniqueness of irreducible represen-
tations is intimately related to the existence of various thermodynamically stable
phases of the same material. Because of this, no reasonable microscopic theory of
first order phase transitions is possible within the Hilbert space based approach, and
the use of the algebraic setting is imperative.

This fact was first observed by Haag in 1962 [H1], who established that the non-
uniqueness of the ground state of the BCS model in infinite volume is related to the
existence of several inequivalent irreducible representations [BR1, Definition 2.3.2]
of the Hamiltonian, see also [TW, E].



Chapter 3
Algebraic Setting for Interacting Fermions
on the Lattice

3.1 Single Quantum Particle on Lattices

All quantum particles carry an intrinsic form of angular momentum, the so–called
spin, first introduced by W. Pauli in the twenties. It is reflected by a spin quantum
number s ∈ N/2 which gives rise to the finite spin set

S
.= {−s,−s + 1, . . . s − 1, s} ⊂ N. (3.1)

In fact, S is the spectrum of the spin observable associated with the quantum particle.
If s /∈ N is half–integer then the corresponding particles are named fermionswhile

s ∈ N means by definition that we have bosons. For instance, among all elementary
particles of the standardmodel in Particle Physics, quarks and leptons (like electrons,
s = 1/2) are fermions while all the other ones – the gluon, photon, Z– andW– bosons
as well as the Higgs bosons – are bosons. Many known composite particles like
protons (s = 1/2) are fermions. Others are bosons, like for instance Helium 4.

By the celebrated spin–statistics theorem, fermionic wave functions are antisym-
metric with respect to (w.r.t.) permutations of particles, whereas the bosonic ones
are symmetric. In the sequel, we consider the fermionic case which is only defined
here via the antisymmetry of many–body wave functions (Sect. 3.2), or equivalently
by the Canonical Anti–commutation Relations (CAR) in the algebraic formulation
(Sect. 3.5). Therefore, in order to simplify notation, we omit the spin property of
quantum particles because it is completely irrelevant in all our proofs, up to obvi-
ous modifications. So, we consider the case s = 0, i.e., S

.= {0}, even if this is not
coherent with the definition explained just above of fermions in Physics.

Additionally, the host material for the quantum particle is a cubic crystal, i.e., a
lattice

L
.= Z

d × S ≡ Z
d , d ∈ N.

© The Author(s) 2017
J.-B. Bru and W. de Siqueira Pedra, Lieb-Robinson Bounds for Multi-commutators
and Applications to Response Theory, SpringerBriefs in Mathematical Physics,
DOI 10.1007/978-3-319-45784-0_3

17



18 3 Algebraic Setting for Interacting Fermions on the Lattice

This special choice is again not essential in our proofs. In fact, we could take instead
of Z

d any countable metric space L as soon as it is regular, as defined in [NS,
Sect. 3.1]. See also Sect. 4.2 for more details. (If s �= 0 then it would suffice to equip
the set L

.= Z
d × S �= Z

d with the metric of Z
d while omitting the spin variable.)

Therefore, the one–particleHilbert space representing the set of all wave functions
of any quantum particle on the lattice is given by the space

�2 (L)
.=

{
ψ : L → C such that

∑

x∈L
|ψ (x)|2 < ∞

}

of square–summable functions on the lattice L. Here, the scalar product of �2(L) is
defined by

〈ψ,ϕ〉�2(L)

.=
∑

x∈L
ψ (x)ϕ (x) , ψ,ϕ ∈ �2 (L) .

The canonical orthonormal basis of �2(L) is given by the family {ex }x∈L defined by

ex (y)
.= δx,y , x, y ∈ L. (3.2)

Here, δk,l is the Kronecker delta, that is, the function of two variables defined by
δk,l = 1 if k = l and δk,l = 0 otherwise.

In real systems, the quantum particle is contained in an arbitrary large but finite
region. Therefore, we use the notation P f (L) ⊂ 2L for the set of all finite subsets of
L and we meanwhile denote by

�2 (�)
.= {

ψ ∈ �2 (L) : ψ|�c = 0
} ⊆ �2 (L) (3.3)

the Hilbert subspace of square–summable functions on any possibly infinite sub-
set � ⊆ L with complement �c .= L\�. Clearly, the Hilbert subspace �2 (�) has
{ex }x∈� as canonical orthonormal basis and, for any � ∈ P f (L), its dimension thus
equals the volume |�| of �.

Then, as explained in Sect. 2.2, the quantum dynamics is defined by the
Schrödinger equation (2.1) for some one–particle Hamiltonian H1 acting on H =
�2 (�) for any (possibly infinite) subset � ⊆ L. A standard example of such self–
adjoint operators is given by

[H1(ψ)](x) =
∑

y∈L
h (|x − y|)ψ(y) , x ∈ �, ψ ∈ �2 (�) , (3.4)

for any function h : [0,∞) → R, the absolute value of which decreases suffi-
ciently fast at infinity. This example includes d–dimensional discrete Laplacians,
see Sect. 6.2.

http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_6
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3.2 Quantum Many–Body Systems on Lattices

Assume that quantum particles are within some (possibly infinite) subset � ⊆ L. A
priori, the Hilbert space representing the set of all wave functions of n ∈ N identical
particles is given by the Hilbert space

�2(�)⊗n .= �2(�) ⊗ · · · ⊗ �2(�) ,

the n–fold tensor product of �2(�) with scalar product defined by

〈ψ1 ⊗ · · · ⊗ ψn,ϕ1 ⊗ · · · ⊗ ϕn〉�2(�)⊗n
.= 〈ψ1,ϕ1〉�2(�) · · · 〈ψn,ϕn〉�2(�) ,

for any ψ1, . . . ,ψn,ϕ1, . . . ,ϕ1 ∈ �2 (�). A canonical orthonormal basis of �2(�)⊗n

is given by the family {
ex1 ⊗ · · · ⊗ exn

}
x1,...,xn∈�

, (3.5)

where we recall that {ex }x∈� is the (canonical) orthonormal basis of �2(�) defined
by (3.2). Because of (3.3), note that

�2(�)⊗n ⊆ �2(L)⊗n

for any � ⊆ L and n ∈ N.
In Quantum Mechanics, however, quantum particles are indistinguishable

(or indiscernible), i.e., we cannot distinguish them, even in principle. Indistinguisha-
bility is a concept already used in Classical Mechanics, for instance in Botlzmann’s
‘Combinatorial Approach’ to derive the so–called Maxwell–Boltzmann statistics.
Two classical objects are indeed indistinguishable when they share the same proper-
ties, up to their spatio–temporal location. In particular, by some form of impenetra-
bility assumption, their indistinguishability does not prevent them from being two
different individuals and so, a spatio–temporal permutation of the two objects yields
another physical state.

This property is no longer true in Quantum Mechanics. Quoting E. Schrödinger
[Sh]: “You cannot mark an electron, you cannot paint it red. Indeed, you must not
even think of it as marked.” This has an important mathematical consequence on
the modelling of composite quantum objects, the individuality of which becomes
philosophically questionable. This was implicitly used by M.K.E.L. Planck in his
famous study of thermal radiation law, but rather in ad hoc way,1 without concep-
tual foundations. For more details on that issue, including references, we strongly
recommend [FK].

In fact, the expectation value (2.3) of any observable must not depend on the
arbitrary numbering of particles. In other words, the wave function ψ(n) ∈ �2(�)⊗n

have to satisfy the equality

1He may have discovered it by working backwards from the thermal radiation law, see [FK, p. 86].

http://dx.doi.org/10.1007/978-3-319-45784-0_2
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〈ψ(n), Bψ(n)〉�2(�)⊗n = 〈Sπψ
(n), BSπψ(n)〉�2(�)⊗n (3.6)

for all B = B∗ ∈ B(�2(�)⊗n),where Sπ ∈ B(�2(L)⊗n) is the unitary operator defined
for any permutation π of n ∈ N elements by the conditions

Sπ (ψ1 ⊗ · · · ⊗ ψn) = ψπ(1) ⊗ · · · ⊗ ψπ(n) , ψ1, . . . ,ψn ∈ �2 (L) . (3.7)

This yields two drastically different situations:

(b) For any permutation π of n ∈ N elements, Sπψ
(n) = ψ(n), i.e.,ψ(n) is a symmetric

n–particle wave function. It corresponds to the boson case.
(f) For any permutation π of n ∈ N elements with sign (−1)π , Sπψ(n) = (−1)πψ(n),

i.e., ψ(n) is an antisymmetric n–particle wave function. Quantum particles are
fermions.

Indeed, in contrast with particles with integer spins (boson case), physical particles
with half–integer spins (fermion case), obey the Pauli exclusion principle, which says
that two identical fermions cannot occupy the same quantum state simultaneously.
The latter is reflected in the antisymmetry property of many–fermionwave functions.

Therefore, wemathematically distinguish fermions and bosons only with symme-
try properties of wave functions w.r.t. to permutations. In fact, as already mentioned
in Sect. 3.1, the spin dependence is, from the technical point of view of proofs, irrel-
evant here (up to obvious modifications) and without loss of generality (w.l.o.g.) we
consider fermions without taking into account its spin in our notation.

Remark 3.1 (Anyons)
By implementing the permutation symmetry property in the configuration space
before the “quantization”, in the two dimensional space R

2, one has a continuum of
(fractional) statistics ranging from the fermionic to the bosonic cases. This refers to
the existence of anyons [G, LM, Wi], which has been observed in the context of the
fractional quantum Hall effect. Anyons (like bosons as well) do not play any role in
the sequel.

Remark 3.2 (Parastatistics)
If [B, Sπ] = 0 then Eq. (3.6) trivially holds true for all states ψ(n) ∈ �2(�)⊗n . One
could thus assume that, for any permutation π of n ∈ N elements, the states ψ(n)

and Sπψ
(n) cannot be distinguished by any experiment. This view point restricts the

set of possible observables to those commuting with all permutation operators Sπ .
Different statistics, again ranging from the fermionic to the bosonic cases, can then
be found from a mathematical perspective. This refers to the so–called parastatistics
(which is invariant under the quantum dynamics). Philosophically, this view point
has the advantage to restore the individuality of quantum particles, in the classical
sense. A historical overview on this approach is given in [FK, Sect. 3.8].

Therefore, for any fixed n ∈ N, we define the orthogonal projection
Pn ∈ B(�2(L)⊗n) onto the subspace of antisymmetric n–particle wave functions in
�2(L)⊗n by
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Pn
.= 1

n!
∑

π∈Pn

(−1)πSπ (3.8)

with Sπ being the operator defined via (3.7) and where

Pn
.= {π : {1, . . . , n} → {1, . . . , n} bijective} (3.9)

denotes the set of all permutations π of n ∈ N elements. Then, for n ∈ N, the Hilbert
space representing the set of all n–fermion wave functions is given by the Hilbert
subspace

Pn�
2(�)⊗n ⊆ �2(�)⊗n

for any (possibly infinite) subset � ⊆ L.
As explained in Sect. 2.2, the quantum dynamics is defined by the Schrödinger

equation (2.1) for some Hamiltonian H⊗n acting onH = Pn�2(�)⊗n at fixed n ∈ N

and � ⊆ L. A standard example of such self–adjoint operators is given by

[H⊗n(ψ)](x) = H1 ⊗ 1�2(�) · · · ⊗ 1�2(�) + · · · + 1�2(�) ⊗ · · · ⊗ 1�2(�) ⊗ H1 + I⊗n ,

(3.10)
with the one–particle Hamiltonian H1 defined by (3.4) while I⊗n is defined by the
conditions

I⊗n Pn
(
ex1 ⊗ · · · ⊗ exn

) =
∑

1≤ j<k≤n

v
(∣∣x j − xk

∣∣) Pn
(
ex1 ⊗ · · · ⊗ exn

)

for any x1, . . . , xn ∈ � ⊆ L. I⊗n represents some interparticle forces which are char-
acterized by a function v : [0,∞) → R, the absolute value of which decreases suf-
ficiently fast at infinity.

3.3 Fermion Fock Spaces

In Quantum Statistical Mechanics we are interested in understanding the physical
behavior of macroscopic systems from the laws of QuantumMechanics. This means
here that one studies physical properties in the limit n → ∞ of infinite particles.
However, the quantum dynamics and even the mathematical framework, that is,
the Hilbert space Pn�2(�)⊗n of antisymmetric n–particle wave functions, strongly
depend on the particle number n, which may additionally be unknown. Moreover,
one is often interested in time–dependent particle numbers, as in Quantum Field
Theory.

To this end, in 1932 V.A. Fock introduced a space now known as the Fock space
defined for Fermi systems by (a priori infinite) direct sums:

http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_2
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F�
.=

⊕

n∈N0

Pn�
2(�)⊗n , with �2(�)⊗0 .= C and P0

.= 1C ,

for any (possibly infinite) subset � of L. It is an Hilbert space with scalar product
defined on F� × F� by

〈ψ,ϕ〉F�

.=
∑

n∈N0

〈ψ(n),ϕ(n)〉�2(L)⊗n , ϕ = (ϕ(n))n∈N0 ,ψ = (ψ(n))n∈N0 ∈ F�.

The element (1, 0, 0, . . .) ∈ F� is the zero–particle state, i.e., the so–called vacuum
vector of the Fock space.

For any finite subset� ∈ P f (L), recall that �2 (�) (cf. (3.3)) has dimension equal
to the volume |�| of �. Therefore, because of the antisymmetry of the n–particle
wave function in F�,

F� =
|�|⊕

n=0

Pn�
2(�)⊗n , � ∈ P f (L). (3.11)

Using some elementary combinatorics, one checks in this case that the fermion Fock
space F� is a finite dimensional Hilbert space with dimension equal to 2|�| for any
� ∈ P f (L).

For any possibly infinite subset� ⊆ L, the particle number becomes a self–adjoint
(possibly unbounded) operator N� defined by

(N�ψ)(n) .= nψ(n) , n ∈ N0 , (3.12)

on the domain

Dom(N�)
.=

⎧
⎨

⎩ψ = (ψ(n))n∈N0 ∈ F� :
∑

n∈N0

n2〈ψ(n),ψ(n)〉�2(L)⊗n < ∞
⎫
⎬

⎭ . (3.13)

Any family {H⊗n}n∈N0 of Hamiltonians acting on Pn�2(�)⊗n , like those defined
by (3.10) for n ∈ N, gives rise to an operator H� defined for any n ∈ N0 by

H�ψ(n) .= H⊗nψ(n) , ψ(n) ∈ Pn�
2(�)⊗n ⊂ F�. (3.14)

It is clearly a symmetric operator on the subspace of F� constituted of sequences
that eventually vanish. If � ∈ P f (L), it means that H� is self–adjoint, by finite
dimensionality of F�.

If � ⊆ L is an infinite subset of L, then H� is closable because it is in any case
symmetric, see [RS1, Theorem VIII.1, Sect. 8.2]. By self–adjointness of H⊗n , there
is additionally a dense set of analytic vectors [RS1, Sect.X.6] on the subspace of
F� constituted of sequences that eventually vanish. Therefore, by Nelson’s analytic
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vector theorem [RS1, Theorem X.39], H� has a self–adjoint closure, again denoted
by H�.

Therefore, in any case, we obtain from (3.14) a HamiltonianH� that again defines
a quantumdynamics on theHilbert spaceH = F� via theSchrödinger equation (2.1).
Typically, such kind of Hamiltonian conserves the particle number in the sense that

ei tH�N�e
−i tH� = N� , t ∈ R.

In this case, the expectation value of the particle number observable N� w.r.t. any
solution of the Schrödinger equation equals

〈ψ (0) , ei tH�N�e
−i tH�ψ (0)〉F�

= 〈ψ (0) ,N�ψ (0)〉F�
, ψ (0) ∈ F�.

See Eqs. (2.1), (2.2) and (2.3).
Compared to the first approach described in Sect. 3.2 it is still not clear why the

use of the Fock space can be advantageous when the particle number is conserved.
The utility of Fock spaces comes from the use of so–called creation/annihilation
operators explained below.

For more details on Fock spaces, see for instance [BR2, Sect. 5.2.1].

3.4 Creation/Annihilation Operators

Apart from the fact that the Hilbert spaces of Sect. 3.2 depend on the particle number
n, one has always to care about combinatorial issues because of the antisymmetry
of wave functions. This property of the wave function is encoded in the Fock space
in algebraic properties of the so–called creation and annihilation operators a∗

x , ax ∈
B(FL) of a fermion at lattice site x ∈ L:

(i): The annihilation operator ax ∈ B(FL) of a fermion at lattice site x ∈ L is the
(linear) operator uniquely defined by the conditions ax (1, 0, 0, . . .) = 0 and

ax (Pn (ψ1 ⊗ · · · ⊗ ψn))
.=

√
n

n!
∑

π∈Pn

(−1)π
〈
ex ,ψπ(1)

〉
�2(L)

ψπ(2) ⊗ · · · ⊗ ψπ(n)

(3.15)
for any n ∈ N and ψ1, . . . ,ψn ∈ �2 (L), where we recall that Pn is the orthogonal
projection (3.8) onto the subspace of antisymmetric n–particle wave functions and
Pn is the set of all permutations π of n elements, see (3.9).

(ii): The creation operator a∗
x ∈ B(FL) of a fermion at lattice site x ∈ L, which turns

out to be the adjoint of ax , is defined by

(
a∗
xψ

)(0) .= 0 and
(
a∗
xψ

)(n) .= √
nPn

(
ψ(n−1) ⊗ ex

)
(3.16)

http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_2
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for n ∈ N, with ψ = (ψ(n))n∈N0 ∈ FL.

Because of the antisymmetry property, note that, for any x ∈ L, a∗
x a

∗
x = 0,

which reflects the Pauli exclusion principle. In fact, straightforward computations
show that the family {ax , a∗

x }x∈L ⊂ B(FL) satisfies the celebrated Canonical Anti–
commutation Relations (CAR): For any x, y ∈ L,

axay + ayax = 0 , axa
∗
y + a∗

yax = δx,y1FL
. (3.17)

They are pivotal relations coming from the antisymmetry property of wave functions
in the fermion Fock space. For instance, one deduces from (2.18) and (3.17) that in
the C∗–algebra B(FL), for any x ∈ L,

‖ax‖4B(FL) = ‖(a∗
x ax )

2‖B(FL) = ‖a∗
x ax‖B(FL) = ‖ax‖2B(FL)

and since ax �= 0, we obtain that

‖ax‖B(FL) = ∥∥a∗
x

∥∥
B(FL)

= 1 , x ∈ L. (3.18)

For more details on creation/annihilation operators, see [BR2, Sect. 5.2.1].
Meanwhile, the particle number operator (3.12)–(3.13) in the (possibly infinite)

subset � ⊆ L can be formally written on the subspace of antisymmetric n–particle
wave functions (n ∈ N) as

N�ψ(n) =
(

∑

x∈�

nx

)
ψ(n), ψ(n) ∈ Pn�

2(�)⊗n ,

with
nx

.= a∗
x ax ∈ B(FL) (3.19)

being the so–called particle number operator at lattice site x ∈ L. Because of the
CAR (3.17), note that nx is a projection operator.

For any finite subset � ∈ P f (L), N� ∈ B(F�), by finite dimensionality of the
local fermion Fock spaceF� (see (3.11)) andwe can see this particle number operator
as

N� ≡
∑

x∈�

nx ∈ B(FL). (3.20)

In the same way, the operator H� (3.14) can be written in terms of creation and
annihilation operators. For instance, if H� is defined from the Hamiltonian (3.4)
for any n ∈ N, then it can be formally written on the subspace of antisymmetric
n–particle wave functions (n ∈ N) as

http://dx.doi.org/10.1007/978-3-319-45784-0_2
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H�ψ(n) =
⎛

⎝
∑

x,y∈�

h (|x − y|) a∗
x ay +

∑

x,y∈�

v(|x − y|)nxny

⎞

⎠ ψ(n)

for all ψ(n) ∈ Pn�2(�)⊗n and any (possibly infinite) subset � ⊆ L.
If � ∈ P f (L) is a finite subset then H� ∈ B(F�) ⊂ B(FL) can be seen as the

operator
H� ≡

∑

x,y∈�

h (|x − y|) a∗
x ay +

∑

x,y∈�

v(|x − y|)nxny , (3.21)

again by finite dimensionality of F�. This formulation of H� can easily be inter-
preted: The term a∗

x ay destroy a fermion at lattice site y to create another one at lattice
site x . It thus gives rise to fermion transport properties in the physical system and it
is related to the (usual) kinetic terms. The second term depends on the occupation
number (0 or 1) at lattice sites x and y, and yields the interaction energy. It is a
so–called density–density interaction.

3.5 The Lattice CAR C∗–Algebra

Sections3.1–3.4 was preliminary sections presenting many–fermion systems on lat-
tices in the usual context ofQuantumMechanics, as explained in Sects. 2.2–2.4. In the
sequel, however, we avoid to speak about Hilbert space structures, Fock spaces, etc.,
by using the algebraic formulation of Quantum Mechanics as explained in Sect. 2.5.
To this end, we have to define a C∗–algebra, named the lattice CAR C∗–algebra,
defined as follows:

(i): Recall that a∗
x , ax are the so–called creation and annihilation operators of a

fermion at lattice site x ∈ L. In Sect. 3.4 we explicitly define them by using the
fermion Fock space. In the algebraic approach, however, we only assume the exis-
tence of a unit 1 and a family {ax , a∗

x }x∈L satisfying the CAR: For any x, y ∈ L,

axay + ayax = 0 , axa
∗
y + a∗

yax = δx,y1. (3.22)

Compare with (3.17), by observing that the unit 1 refers to the identity map 1FL

of FL. Such commutation relations are indeed sufficient to characterize fermion
systems via the Pauli exclusion principle.

(ii): Every physical system of fermions on the lattice is associated with some finite
region � of lattice space. The set of all finite subsets of the lattice L is denoted by
P f (L) ⊂ 2L. Observables one can then measure on many–fermion systems within
any� ∈ P f (L) are finite sums of monomials of {a∗

x , ax }x∈� and 1. See (3.19)–(3.21)
for explicit examples in the Fock space representation.

For� ∈ P f (L), this yields to the local CARC∗–algebra U� as the set of all finite
sums of monomials constructed from {a∗

x , ax }x∈� and the unit 1. See Sect. 2.5 for the

http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_2
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definition of C∗–algebras. In particular, the particle number operators nx
.= a∗

x ax ,
x ∈ �, and the Hamiltonian of the fermion system are self–adjoint elements of U�.
See again (3.21) for an example of Hamiltonians in the Fock space representation.

Note that one can define annihilation and creation operators of fermions with
wave functions ψ ∈ �2(�) ⊂ �2(L) for any � ∈ P f (L) by

a(ψ)
.=

∑

x∈�

ψ(x)ax ∈ U� , a∗(ψ)
.=

∑

x∈�

ψ(x)a∗
x ∈ U�. (3.23)

Clearly, a∗(ψ) = a(ψ)∗ for all ψ ∈ �2(�) and on the canonical orthonormal basis
{ex }x∈L (3.2), a(ex ) = ax at all x ∈ �. The map ψ �→ a(ψ) (resp. ψ �→ a∗(ψ)) from
�2(�) to U� is anti–linear (resp. linear) and because of (3.22),

a(ψ)a(ϕ) + a(ϕ)a(ψ) = 0 , a(ψ)a(ϕ)∗ + a(ϕ)∗a(ψ) = 〈ψ,ϕ〉�2(L)1 (3.24)

for any ϕ,ψ ∈ �2(�) ⊂ �2(L). These CAR are a generalization of (3.22).
The relation with the local fermion Fock space F� (3.11) is now clear:

Lemma 3.3 (CAR algebras and fermion Fock spaces for finite systems) For any
� ∈ P f (L), the localCARC∗–algebraU� is∗–isomorphic to theC∗–algebraB(F�)

of bounded operators acting on F�. In particular, its dimension equals 22|�|.

Proof On the one hand, since �2 (�) has dimension |�|, for any � ∈ P f (L), we
infer from (3.23)–(3.24) and [BR2, Theorem 5.2.5] that U� is isomorphic to the
C∗–algebra of 2|�| × 2|�| complex matrices. U� has in particular dimension equal
to 22|�|. On the other hand, as explained below Eq. (3.11), for any � ∈ P f (L), the
dimension of the Fock space F� is equal to 2|�|. Therefore, U� is ∗–isomorphic to
B(F�). �

Lemma 3.3 yields a faithful representation

π� : U� → B(F�) (3.25)

of the local CAR C∗–algebra U� on the representation (Hilbert) space F� for every
� ∈ P f (L). This representation is said to be canonical when it maps a∗

x , ax to
creation and annihilation operators defined by (3.15) and (3.16) onF� for any x ∈ L.
The (canonical) representation is irreducible and named the Fock representation. For
more details on the representation theory of C∗–algebras, see Sect. 2.6.

Because of Corollary 2.3, one can equivalently use the Fock space formulation
within the usual context of QuantumMechanics or the algebraic approach, provided
� ∈ P f (L). Compare indeed Lemma 3.3 with the Heisenberg picture of Quantum
Mechanics described in Sect. 2.3. This fact is not anymore true in the infinite-volume
situation, i.e., for infinite subsets � ⊆ L , since the corresponding Fock space F�

has then infinite dimension. See Corollary 2.4.

http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_2
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(iii): Physical systems become macroscopic when they belong to finite regions � of
lattice that become arbitrarily large. Therefore, we consider a family of cubic boxes2

defined, for all L ∈ R
+
0 , by

�L
.= {(x1, . . . , xd) ∈ L : |x1|, . . . , |xd | ≤ L} ∈ P f (L) . (3.26)

Hence, {U�L }L∈R+
0
is an increasing net of C∗–algebras and the set

U0
.=

⋃

L∈R+
0

U�L (3.27)

of local elements is a normed ∗–algebra with ‖A‖U0
= ‖A‖U�L

for all A ∈ U�L and

L ∈ R
+
0 .

(iv): For physical macroscopic systems one considers the limit “� → L”. This
is named the thermodynamic limit and one gets an infinite fermion system. This
approach yields the CAR C∗–algebra U of the infinite system, which is by definition
the completion of the normed ∗–algebra U0. It is separable, by finite dimensional-
ity of U� for any � ∈ P f (L). In other words, U is the inductive limit of the finite
dimensional C∗–algebras {U�}�∈P f (L). In this construction, U0 ⊂ U can be seen as
the smallest normed ∗–algebra containing all generators {ax }x∈L.

By replacing�withL in Eq. (3.23) one can again define annihilation and creation
operators a(ψ), a∗(ψ) of fermions with wave functions ψ ∈ �2(L). These operators
are still well–defined. Indeed, because of the CAR (3.22),

‖a(ψ)‖2U = ‖a∗(ψ)‖2U = 〈ψ,ψ〉�2(L) , ψ ∈ �2(L).

Compare with (3.18). Hence, the anti–linear (resp. linear) map ψ �→ a(ψ) (resp.
ψ �→ a∗(ψ)) from �2(L) to U is norm–continuous. Again, a∗(ψ) = a(ψ)∗ for all
ψ ∈ �2(L) and the CAR (3.24) can be extended to all ϕ,ψ ∈ �2(L).

The faithful and irreducible canonical representation π� defined by (3.25) gives
rise in the infinite-volume limit to a unique faithful and irreducible (canonical) rep-
resentation πL of the CAR C∗–algebra U such that

πL(U�) = π�(U�) = B(F�) , � ∈ P f (L). (3.28)

This representation is in fact defined via the unique ∗–isomorphisms π{x}, x ∈ L,
mapping ax ∈ U to the operatorπ{x}(ax ) ≡ ax ∈ B(FL) defined by (3.15). It is again
named the Fock representation.

The Fock space FL has infinite dimension and is separable. Thus, by Corollary
2.4, we emphasize again that the Fock space formulation within the usual context
of Quantum Mechanics and the algebraic approach are not equivalent to each other.

2It is a technically convenient choice to define the thermodynamic limit, but one could also take
other Van Hove nets. See for instance [BP2, Remark 1.3].

http://dx.doi.org/10.1007/978-3-319-45784-0_2
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Again by Corollary 2.4, the C∗–algebra B(FL) has more than one unitarily non–
equivalent irreducible representation as well. Moreover, U is in some sense strictly
smaller than B(FL):

Lemma 3.4 (CAR algebras and fermion Fock spaces for infinite systems)

πL(U) =
⋃

L∈R+
0

B(F�L ) � B(FL).

Proof For any non–vanishing θ ∈ R/(2πZ), eiθNL ∈ B(FL) but π−1
L (eiθNL) = ∅,

with the particle number operator NL being the self–adjoint operator defined by
(3.12)–(3.13) for � = L. Indeed, for all � ∈ P f (L) with complement �c .= L\�
and any function ψ ∈ �2(L) ⊂ FL, a direct computation shows that

∥∥(
eiθNL − eiθN�

)
ψ

∥∥2

FL
= ∣∣eiθ − 1

∣∣2
∑

x∈�c

|ψ (x)|2 . (3.29)

Here,N� ∈ B(FL) is the particle number operator defined by (3.20) for� ∈ P f (L).
Therefore, eiθN� does not converge in B(FL) (norm topology) to eiθNL for θ �= 0.

Assume now that π−1
L (eiθNL) �= ∅. Then, by Lemma 3.3 and density of U0 in U ,

there are two families {�n}n∈N ⊂ P f (L) and {U�n }n∈N such that U�n ∈ B(F�n ) ⊂
B(FL) converges in B(FL) to eiθNL , as n → ∞. From this and (3.29), one deduces
that

(
U�n − eiθN�n

)
must converge, as n → ∞, to zero in B(FL). The latter is not

possible, otherwise eiθN� would then converge in B(FL) to eiθNL .
Therefore, for any non–vanishing θ ∈ R/(2πZ), π−1

L (eiθNL) = ∅. The assertion
then follows, by Eqs. (3.27) and (3.28). �

(v): For any non–vanishing θ ∈ R/(2πZ), the unitary operator eiθNL /∈ πL(U) (see
proof of Lemma 3.4) gives rise to a ∗–automorphism

B �→ eiθNL B e−iθNL

of B(FL) defined via (3.12) and (3.13). One says that the unitary operator eiθNL ∈
B(FL) implements a global gauge transformation, see for instance [BP1, Eq. (A.4)].
A similar ∗–automorphism exists on the CAR C∗–algebra U : For any θ ∈ R/(2πZ),
it is the unique ∗–automorphism σθ of U satisfying the conditions

σθ(ax ) = e−iθax , x ∈ L. (3.30)

Note indeed that, using the Fock representation, one verifies that

πL (σθ(B)) = eiθNL πL (B) e−iθNL , B ∈ U ,

for any θ ∈ R/(2πZ).

http://dx.doi.org/10.1007/978-3-319-45784-0_2
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A special role is played by σπ: Elements B1, B2 ∈ U satisfying σπ(B1) = B1 and
σπ(B2) = −B2 are respectively called even andodd, while elements B ∈ U satisfying
σθ(B) = B for any θ ∈ R/(2πZ) are called gauge invariant. The set

U+ .= {B ∈ U : B = σπ(B)} ⊂ U (3.31)

of all even elements and the set

U◦ .=
⋂

θ∈R/(2πZ)

{B ∈ U : B = σθ(B)} ⊂ U+ (3.32)

of all gauge invariant elements are ∗–algebras. By continuity of σθ, it follows thatU+
and U◦ are closed and hence C∗–algebras. U◦ is known as the fermion observable
algebra because it equals the C∗–algebra of all self–adjoint elements of U .

3.6 Lattice Fermi Versus Quantum Spin Systems

Quantum spin systems are models used to describe quantum phenomena appearing
at low temperatures in condensed matter physics. They are nowadays particularly
important in Quantum Information Theory. This subject appeared right from the
beginning, with the emergence of Quantum Mechanics in the twenties. A concise
introduction on its history is given in the paper [N], see also the corresponding
references therein.

For completeness, we shortly recall that quantum spin systems are infinite systems
composed of elementary finite dimensional spaces, originally referring to a spin
variable (see (3.1)). Therefore, they are constructed in a similar way as lattice Fermi
systems. Mathematically speaking, they are defined via the algebraic formulation of
Quantum Mechanics from the so–called spin C∗–algebra Q :

(i): With any lattice site x ∈ L we associate a finite dimensional Hilbert spaceHx ≡
C

N for some N ∈ N. Typically, the parameter N is the cardinal |S| of the spin set
S (3.1). Then, the algebra of local observables over � ∈ P f (L) is the subset of
self–adjoint elements of the C∗–algebra

Q�
.=

⊗

x∈�

B (Hx ) ≡ B
(

⊗

x∈�

Hx

)
.

Recall that B (Hx ) denotes the C∗–algebra of bounded linear operators on Hx for
x ∈ L. The dimension of Q� is equal to N 2|�| for any � ∈ P f (L). Compare with
the local CAR C∗–algebra U�, see in particular Lemma 3.3.

(ii): For all �(1), �(2) ∈ P f (L) with �(1) ⊂ �(2), there is a (canonical) isometric
inclusion Q�(1) ↪→ Q�(2) defined by
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A �→ A ⊗
⊗

x∈�(2)\�(1)

1Hx .

In particular, using the sequence of cubic boxes defined by (3.26) we observe that
{Q�L }L∈R+

0
is also an increasing net of C∗–algebras. Compare with the family

{U�L }L∈R+
0
.

(iii): Hence, the set
Q0

.=
⋃

L∈R+
0

Q�L

of local elements is a normed ∗–algebra with ‖A‖Q0
= ‖A‖Q�L

for all A ∈ Q�L and

L ∈ R
+
0 . Compare with the normed ∗–algebraU0 of local elements defined by (3.27).

For any finite subsets �(1), �(2) ∈ P f (L) with �(1) ∩ �(2) = ∅ we observe that

[B1, B2]
.= B1B2 − B2B1 = 0 , B1 ∈ Q�(1) , B2 ∈ Q�(2) .

Because of theCAR (3.22), such a property is also satisfied for all even local elements
B1 ∈ U�(1) ∩ U+ and B2 ∈ U�(2) ∩ U+, see (3.31). However, it is wrong in general
for Fermi systems. For instance, the CAR (3.22) trivially yield [ax , ay] = 2axay for
any x, y ∈ L.

(iv): The spin C∗–algebra Q of the lattice L is by definition the completion of
the normed ∗–algebra Q0. It is separable, by finite dimensionality of Q� for � ∈
P f (L). In other words,Q is the inductive limit of the finite dimensionalC∗–algebras
{Q�}�∈P f (L). Compare with the CAR C∗–algebra U .

Infinite-volume dynamics is then constructed via Lieb–Robinson bounds, as done
in Chaps. 4 and 5 for CAR C∗–algebras. Here, we focus on lattice Fermi systems
which are, from a technical point of view, slightly more difficult because of the
non–commutativity of their elements on different lattice sites, as explained above.
However, all the results presented in Chaps. 4 and 5 hold true for quantum spin
systems, by restricting them on the C∗–algebra U+ ⊂ U (3.31) of all even elements
and then by replacing U+ with the spin C∗–algebras Q.

http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_4
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Chapter 4
Lieb–Robinson Bounds
for Multi–commutators

Lieb–Robinson bounds for multi–commutators are studied here for fermion systems,
only. In the case of quantum spin systems, U has to be replaced by the infinite
tensor product Q of copies of some finite dimensional C∗–algebra attached to each
site x ∈ L. See Sect. 3.6. All results of this section also hold in this situation. We
concentrate our attention on fermion algebras in view of applications to microscopic
foundations of the theoryof electrical conduction [BP4,BP5].Moreover, as explained
in Sect. 3.6, the fermionic case is, technically speaking, more involved, because of
the non–commutativity of elements of the CAR algebra U sitting on different lattice
sites.

4.1 Interactions and Finite-Volume Dynamics

Following the algebraic formulation of Quantum Mechanics (Sect. 2.5), we have to
define aC0 –group (that is, a strongly continuous group) {τt }t∈R of ∗–automorphisms
of theCARC∗–algebraU . On the other hand, as explained in Sect. 3.5, every physical
system of particles belongs to some finite region �L (3.26) of lattice space, and they
become macroscopic when L → ∞. Therefore, we define the C0–group {τt }t∈R as
a limit L → ∞ of finite-volume dynamics.

We thus need to define a family of Hamiltonians HL ∈ U�L for L ∈ R
+
0 . This is

done by using the notions of interactions and potentials defined as follows:

• Interactions are by definition families � = {��}�∈P f (L) of even (cf. (3.31)) and
self–adjoint local elements�� = �∗

� ∈ U+ ∩ U� with�∅ = 0. Obviously, the set
of all interactions can be endowed with a real vector space structure:

(α1� + α2�)�
.= α1�� + α2��

© The Author(s) 2017
J.-B. Bru and W. de Siqueira Pedra, Lieb-Robinson Bounds for Multi-commutators
and Applications to Response Theory, SpringerBriefs in Mathematical Physics,
DOI 10.1007/978-3-319-45784-0_4

31
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for any interactions �, �, and any real numbers α1, α2 ∈ R.
• Bypotential,wemeanhere a collectionV .= {V{x}}x∈L of even (cf. (3.31)) and self–
adjoint elements such that V{x} = V∗

{x} ∈ U+ ∩ U{x} for all x ∈ L. Such objects
are sometimes called on–site interactions. Indeed, strictly speaking, a potential is
nothing but a special case of interaction. But, the use of this special notion allows
us to treat latter the cases for which (4.10) holds true.

Take now any interaction � and potential V. With such objects we associate the
(internal) energy observable or Hamiltonian

HL
.=
∑

�⊆�L

�� +
∑

x∈�L

V{x} , L ∈ R
+
0 , (4.1)

of the cubic box �L defined by (3.26).
Then, similar to Eqs. (2.4)–(2.6), the finite–volume dynamics corresponds to the

continuous group {τ (L)
t }t∈R of ∗–automorphisms of U defined by

τ
(L)
t (B) = ei t HL Be−i t HL , B ∈ U , (4.2)

for any L ∈ R
+
0 , interaction� andpotentialV.Obviously, its generator is the bounded

linear operator δ(L) defined on U by

δ(L)(B)
.= i

∑

�⊆�L

[��, B] + i
∑

x∈�L

[
V{x}, B

]
, B ∈ U . (4.3)

It is a symmetric derivation on U because, for all B1, B2 ∈ U ,

δ(L)(B∗
1 ) = δ(L)(B1)

∗ and δ(L)(B1B2) = δ(L)(B1)B2 + B1δ
(L)(B2) .

Compare with Eq. (2.7).
Using two functions h, v : [0,∞) → R, note that the finite-volume Hamiltonian

(4.1) associated with the interaction �(h,v) defined by

�
(h,v)
�

.= h (|x − y|) a∗
x ay + (1 − δx,y

)
h (|x − y|) a∗

yax (4.4)

+v (|x − y|) (a∗
yaya∗

x ax + (1 − δx,y
)

a∗
x ax a∗

yay
)

whenever � = {x, y} for x, y ∈ L, and �
(h,v)
�

.= 0 otherwise, is equal in this case to

HL =
∑

x,y∈�L

h (|x − y|) a∗
x ay +

∑

x,y∈�L

v(|x − y|)nxny , L ∈ R
+
0 .

Compare with (3.21) for � = �L . This gives a very important – albeit very specific
– example of a Fermi model on the lattice. For instance, it includes the celebrated
Hubbard model widely used in Physics. Other examples are given in Sect. 6.2.

http://dx.doi.org/10.1007/978-3-319-45784-0_3
http://dx.doi.org/10.1007/978-3-319-45784-0_3
http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_2
http://dx.doi.org/10.1007/978-3-319-45784-0_3
http://dx.doi.org/10.1007/978-3-319-45784-0_6
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4.2 Banach Spaces of Short–Range Interactions

The finite-volume dynamics we define in Sect. 4.1 should converge to an infinite-
volume one to be able to understand macroscopic systems. In other words, the limit
L → ∞ of the continuous group {τ (L)

t }t∈R of ∗–automorphisms defined by (4.2) has
to converge to aC0–group {τt }t∈R of ∗ –automorphisms of the CARC∗–algebraU . In
order to ensure that property (cf. Sect. 4.3), we define Banach spaces of short–range
interactions by introducing specific norms for interactions, taking into account space
decay.

Following [NOS, Eqs. (1.3)–(1.4)], we consider positive–valued and
non–increasing decay functions F : R

+
0 → R

+ satisfying the following properties:

• Summability on L.

‖F‖1,L .= sup
y∈L

∑

x∈L
F (|x − y|) =

∑

x∈L
F (|x |) < ∞ . (4.5)

• Bounded convolution constant.

D .= sup
x,y∈L

∑

z∈L

F (|x − z|)F (|z − y|)
F (|x − y|) < ∞ . (4.6)

In the case L would be a general countable set with infinite cardinality and some
metric d, the existence of such a function F satisfying (4.5)–(4.6) with d(·, ·) instead
of |· − ·| refers to the so–called regular property of L. For any d ∈ N, L

.= Z
d is in

this sense regular with the metric d(·, ·) = |· − ·|. Indeed, a typical example of such
a F for L = Z

d , d ∈ N, and the metric induced by |·| is the function

F (r)
.= (1 + r)−(d+ε) , r ∈ R

+
0 , (4.7)

which has convolution constantD ≤ 2d+1+ε ‖F‖1,L for ε ∈ R
+. See [NOS, Eq. (1.6)]

or [Si, Example 3.1]. Note that the exponential function F (r) = e−ςr , ς ∈ R
+, satis-

fies (4.5) but not (4.6). Nevertheless, for every function F with bounded convolution
constant (4.6) and any strictly positive parameter ς ∈ R

+, the function

F̃ (r) = e−ςrF (r) , r ∈ R
+
0 ,

clearly satisfies Assumption (4.6) with a convolution constant that is no bigger
than the one of F. In fact, as observed in [Si, Sect. 3.1], the multiplication of such
a function F with a non–increasing weight f : R

+
0 → R

+ satisfying f (r + s) ≥
f (r) f (s)(logarithmically superadditive function) does not increase the convolu-
tion constant D. In the sequel, (4.5)–(4.6) are assumed to be satisfied.

The function F encodes the short–range property of interactions. Indeed, an inter-
action � is said to be short–range if
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‖�‖W .= sup
x,y∈L

∑

�∈P f (L), �⊃{x,y}

‖��‖U
F (|x − y|) < ∞ . (4.8)

Since the map � → ‖�‖W defines a norm on interactions, the space of short–
range interactions w.r.t. to the decay function F is the real separable Banach space
W ≡ (W, ‖ · ‖W) of all interactions � with ‖�‖W < ∞. Note that a short–range
interaction� ∈ W is not necessarily weak away from the origin of L: Generally, the
element�x+�, x ∈ L, does not vanishwhen |x | → ∞. It turns out that all short–range
interactions� ∈ W define, in a natural way, infinite–volume quantumdynamics, i.e.,
they define C∗–dynamical systems on U . For more details, see Sect. 4.3, in particular
Theorem4.8. (Recall that C∗–dynamical systems are defined in Sect. 2.5.)

Remark 4.1 (Lattice Fermi models)
The interaction �(h,v) defined in Sect. 4.1 (see (4.4)) belongs toW as soon as h, v :
[0,∞) → R are real–valued and summable functions satisfying

sup
r∈R+

0

{ |h (r)|
F (r)

}
< ∞ and sup

r∈R+
0

{ |v (r)|
F (r)

}
< ∞ . (4.9)

Remark 4.2 (Quantum spin models)
All important spin models with no mean field term can be constructed from short–
range interactions, as defined above. As examples, we can mention the Ising model,
the (quantum) Heisenberg model, the XXZ model, the XY model, the XXZ model,
the model [AKLT], etc. See for instance [N] and references therein.

4.3 Existence of Dynamics and Lieb–Robinson Bounds

In Sect. 4.2, we define a Banach space W of short–range interactions by using a
convenient norm ‖ · ‖W for interactions, see (4.8). � ∈ W ensures the existence of
an infinite–volume derivation δ associated with� by taking the thermodynamic limit
L → ∞ of commutators involving ��, � ∈ P f (L), see (4.3). This also holds true
for all potentials V .= {V{x}}x∈L, as defined in Sect. 4.1. Every generator of a C∗–
dynamical system is a derivation, but the converse does not generally hold. We show
here that δ is the generator of a C∗–dynamical system in U when � ∈ W and for all
potentials V .= {V{x}}x∈L. Note that the interaction representing V can possibly be
outside W because we allow V to be unbounded, i.e., the case

sup
x∈L

∥∥V{x}
∥∥
U = ∞ (4.10)

is included in the discussion below.
The key ingredient in this analysis are the so–called Lieb–Robinson bounds.

Indeed, they lead, among other things, to the existence of the infinite–volume dynam-

http://dx.doi.org/10.1007/978-3-319-45784-0_2
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ics for interacting particles. By using this, we define a C∗–dynamical system in U for
any short–range interaction � ∈ W . These bounds are, moreover, a pivotal ingredi-
ent to study transport properties of interacting fermion systems later on. Thus, for
the reader’s convenience, below we review this topic in detail.

It is convenient to introduce at this point the notation

S�(�̃)
.=
{
Z ⊂ � : Z ∩ �̃ �= 0 and Z ∩ �̃c �= 0

}
(4.11)

for any set �̃ ⊂ � ⊂ L with complement �̃c .= L\�̃ , as well as

∂��
.= {x ∈ � : ∃Z ∈ SL(�) with x ∈ Z and �Z �= 0}

for any interaction �
.= {�Z}Z∈P f (L) and any finite subset � ∈ P f (L) of L. We are

now in position to prove Lieb–Robinson bounds for finite–volume fermion systems
with short–range interactions and in presence of potentials:

Theorem 4.3 (Lieb–Robinson bounds)
Let � ∈ W and V be any potential. Then, for any t ∈ R, L ∈ R

+
0 , and elements

B1 ∈ U+ ∩ U�(1) , B2 ∈ U�(2) with �(1), �(2) ∈ P f (L) and �(1) ∩ �(2) = ∅,

∥∥∥[τ (L)
t (B1) , B2]

∥∥∥
U

≤ 2D−1 ‖B1‖U ‖B2‖U
(
e2D|t |‖�‖W − 1

)
(4.12)

×
∑

x∈∂��(1)

∑

y∈�(2)

F (|x − y|) .

The constant D ∈ R
+ is defined by (4.6).

Proof The arguments are essentially the same as those proving [NS, Theorem 2.3.]
for quantum spin systems. Here, we consider fermion systems and we give the
detailed proof for completeness and to prepare its extension to time–dependent
interactions and potentials, in Theorem5.1 (i). We fix L ∈ R

+
0 , B1 ∈ U+ ∩ U�(1)

and B2 ∈ U�(2) with disjoint sets �(1), �(2)
� �L . [Note that �(1) ∩ �(2) = ∅ yields

L ≥ 1.]
Let

CB2 (�; t)
.= sup

B∈U+∩U�,B �=0

∥∥∥[τ (L)
t (B) , B2]

∥∥∥
U

‖B‖U , t ∈ R , � ∈ P f (L) .

At time t = 0, we observe that

∣∣CB2 (�; 0)∣∣ ≤ 2 ‖B2‖U 1
[
� ∩ �(2) �= ∅] ,

while, for any t ∈ R,

http://dx.doi.org/10.1007/978-3-319-45784-0_5
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CB2 (�; t) = sup
B∈U+∩U�,B �=0

∥∥∥[τ (L)
t ◦ τ

(�)
−t (B) , B2]

∥∥∥
U

‖B‖U .

Here, {τ (�)
t }t∈R is the continuous group of ∗–automorphisms defined like {τ (L)

t }t∈R
by replacing the box �L with the (finite) set � ∈ P f (L).

Consider the function

f (t)
.=
[
τ

(L)
t ◦ τ

(�(1))
−t (B1) , B2

]
, t ∈ R . (4.13)

Then, using B1 ∈ U+ ∩ U�(1) and �(1) ⊂ �L , we deduce from (4.3) and explicit
computations that

∂t f (t) = i
∑

Z∈S�L (�(1))

[
τ

(L)
t (�Z) , f (t)

]
(4.14)

−i
∑

Z∈S�L (�(1))

[
τ

(L)
t ◦ τ

(�(1))
−t (B1) ,

[
τ

(L)
t (�Z) , B2

]]
.

Let gt (B) be the solution of

∀t ≥ 0 : ∂tgt (B) = i
∑

Z∈S�L (�(1))

[τ (L)
t (�Z) , gt (B)] , g0 (B) = B ∈ U .

Since ‖gt (B) ‖U = ‖B‖U for any B ∈ U , it follows from (4.14), by variation of
constants, that

‖ f (t)‖U ≤ ‖ f (0)‖U + 2 ‖B1‖U
∑

Z∈S�L (�(1))

∫ |t |

0

∥∥∥
[
τ

(L)
±s (�Z) , B2

]∥∥∥
U
ds . (4.15)

[The sign of s in ±s depends whether t is positive or negative.] Hence, as �(1), �(2)

are disjoint, for any t ∈ R,

CB2

(
�(1); t

) ≤ 2
∑

Z∈S�L (�(1))

‖�Z‖U
∫ |t |

0
CB2 (Z;±s) ds . (4.16)

By estimating CB2 (Z; s) in a similar manner and iterating this procedure, we show
that, for every L ∈ R

+
0 , t ∈ R and all B1 ∈ U+ ∩ U�(1) , B2 ∈ U�(2) with disjoint

�(1), �(2) ⊂ �L ,

CB2

(
�(1); t

) ≤ 2 ‖B2‖U
∑

k∈N

|2t |k
k! uk , (4.17)

where, for any k ∈ N,
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uk
.=

∑

Z1∈S�L (�(1))

∑

Z2∈S�L (Z1)

· · ·
∑

Zk∈S�L (Zk−1)

1
[Zk ∩ �(2) �= ∅]

k∏

j=1

∥∥�Z j

∥∥
U .

The above series is absolutely and uniformly convergent for L ∈ R
+
0 (with fixed

�(1), �(2)
� �L ). Indeed, from straightforward estimates,

uk ≤ Dk−1 ‖�‖k
W

∑

x∈∂��(1)

∑

y∈�(2)

F (|x − y|) , (4.18)

by Eqs. (4.6) and (4.8).
Note that (4.17)–(4.18) yield (4.12), provided�(1), �(2)

� �L . This last condition
can easily be removed by taking, at any fixed L ∈ R

+
0 , an interaction �̃(L) ∈ W

defined by �̃
(L)

Z
.= �Z for anyZ ⊆ �L , while �̃

(L)

Z
.= 0 whenZ � �L . Indeed, for

all L ∈ R
+
0 , we obviously have ‖�̃(L)‖W ≤ ‖�‖W . Furthermore, for all L , L̃ ∈ R

+
0

with L̃ > L , τ̃
(L̃)
t = τ

(L)
t , where {τ̃ (L̃)

t }t∈R is the (finite–volume) group of ∗–auto
morphisms of U defined by (4.2) with L = L̃ and � = �̃(L). Therefore, it suffices
to apply (4.17)–(4.18) to the interaction �̃(L) for sufficiently large L̃ ∈ R

+
0 in order

to get the assertion without the condition �(1), �(2)
� �L . �

As explained in [NS, Theorem 3.1] for quantum spin systems, Lieb–Robinson
bounds lead to the existence of the infinite–volume dynamics:

Lemma 4.4 (Finite–volume dynamics as a Cauchy sequence)
Let � ∈ W and V be any potential. Then, for any t ∈ R, � ∈ P f (L), B ∈ U� and
L1, L2 ∈ R

+
0 with � ⊂ �L1 � �L2 ,

∥∥∥τ (L2)
t (B) − τ

(L1)
t (B)

∥∥∥
U

≤ 2 ‖B‖U ‖�‖W |t | e4D|t |‖�‖W

×
∑

y∈�L2 \�L1

∑

x∈�

F (|x − y|) .

Proof Again, the arguments are those proving [NS, Theorem 3.1] for quantum spin
systems. We give them for completeness, having also in mind the extension of the
lemma to time–dependent interactions and potentials, in Theorem5.1 (ii). We fix in
all the proof � ∈ P f (L) and B ∈ U�.

For any L ∈ R
+
0 and s, t ∈ R, define the unitary element

UL (t, s)
.= ei tV�L e−i(t−s)HL e−isV�L ∈ U�L (4.19)

with
VZ

.=
∑

x∈Z
V{x} ∈ U+ ∩ UZ , Z ∈ P f (L) .

Clearly, UL (t, t) = 1U for all t ∈ R while

http://dx.doi.org/10.1007/978-3-319-45784-0_5
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∂tUL (t, s) = −iGL (t)UL (t, s) and ∂sUL (t, s) = iUL (t, s) GL (s)

with
GL (t)

.=
∑

Z⊆�L

ei tV�L �Ze−i tV�L .

Let
τ̃

(L)
t (B)

.= UL (0, t) BUL (t, 0) , B ∈ U� .

For any t ∈ R and L ∈ R
+
0 such that � ⊂ �L ,

τ
(L)
t (B) = τ̃

(L)
t

(
ei tV�L Be−i tV�L

) = τ̃
(L)
t

(
ei tV� Be−i tV�

)

and it suffices to study the net {τ̃ (L)
t (B)}L∈R+

0
in U . The equality above is related to

the so–called “interaction picture” (w.r.t. potentials) of the time–evolution defined
by the ∗–automorphism τ

(L)
t .

Fix L1, L2 ∈ R
+
0 with � ⊂ �L1 � �L2 . Note that, for any t ∈ R,

τ̃
(L2)
t (B) − τ̃

(L1)
t (B) =

∫ t

0
∂s
{
UL2 (0, s)UL1 (s, t) BUL1 (t, s)UL2 (s, 0)

}
ds .

(4.20)
Straightforward computations yield

∂s
{
UL2 (0, s)UL1 (s, t) BUL1 (t, s)UL2 (s, 0)

}

= iUL2 (0, s)
[
GL2 (s) − GL1 (s) ,UL1 (s, t) BUL1 (t, s)

]
UL2 (s, 0)

= iUL2 (0, s) eisV�L1

[
Bs, τ

(L1)
t−s (B̃t )

]
e−isV�L1 UL2 (s, 0) , (4.21)

where, for any s, t ∈ R, we define

Bs
.= e−isV�L1

(
GL2 (s) − GL1 (s)

)
eisV�L1 and B̃t

.= e−i tV� Bei tV� . (4.22)

Thus, we infer from Eqs. (4.20)–(4.22) that

∥∥∥τ̃ (L2)
t (B) − τ̃

(L1)
t (B)

∥∥∥
U

≤
∫ |t |

0

∥∥∥
[
τ

(L1)±s−t (B±s) , B̃t

]∥∥∥
U
ds . (4.23)

[The sign of s in ±s depends whether t is positive or negative.] Note that B̃t ∈ U�

and
Bs =

∑

Z⊆�L2 , Z∩(�L2 \�L1 )�=∅
eisV�L2

\�L1 �Ze
−isV�L2

\�L1 ∈ U+ ∩ U�L2

where, for any Z ⊆ �L2 ,
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eisV�L2
\�L1 �Ze

−isV�L2
\�L1 ∈ UZ .

Now, we apply the Lieb–Robinson bounds given by Theorem4.3 to deduce that, for
any � ∈ P f (L), s, t ∈ R, B ∈ U� and L1, L2 ∈ R

+
0 with � ⊂ �L1 � �L2 ,

∥∥∥
[
τ

(L1)
s−t (Bs) , B̃t

]∥∥∥
U

2 ‖B‖U ≤ D−1
(
e2D|s−t |‖�‖W − 1

)
(4.24)

×
∑

Z⊆�L2
,

Z∩(�L2
\�L1

)�=∅, Z∩�=∅

‖�Z‖U
∑

z∈∂�Z

∑

x∈�

F (|x − z|)

+
∑

Z⊆�L2
,

Z∩(�L2
\�L1

)�=∅, Z∩� �=∅

‖�Z‖U .

Direct estimates using (4.6) and (4.8) show that

∑

Z⊆�L2 , Z∩(�L2 \�L1 )�=∅
‖�Z‖U

∑

z∈∂�Z

∑

x∈�

F (|x − z|)

≤
∑

y∈�L2 \�L1

∑

Z⊆�L2 , Z⊃{y}
‖�Z‖U

∑

z∈Z

∑

x∈�

F (|x − z|)

≤
∑

y∈�L2 \�L1

∑

z∈�L2

∑

Z⊆�L2 , Z⊃{y,z}
‖�Z‖U

∑

x∈�

F (|x − z|)

≤ ‖�‖W
∑

y∈�L2 \�L1

∑

x∈�

∑

z∈�L2

F (|y − z|)F (|x − z|)

≤ D‖�‖W
∑

y∈�L2 \�L1

∑

x∈�

F (|x − y|) , (4.25)

while, by using (4.8) only,

∑

Z⊆�L2 , Z∩(�L2 \�L1 )�=∅, Z∩� �=∅
‖�Z‖U

≤
∑

y∈�L2 \�L1

∑

x∈�

∑

Z⊆�L2 , Z⊃{x,y}
‖�Z‖U

≤ ‖�‖W
∑

y∈�L2 \�L1

∑

x∈�

F (|x − y|) . (4.26)

The lemma is then a direct consequence of (4.23)–(4.24) combined with the upper
bounds (4.25)–(4.26). �

The infinite–volume dynamics is obtained from Lemma4.4 and the completeness
of U . Indeed, from the above lemma, for all t ∈ R, τ

(L)
t converges strongly on U0
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to τt , as L → ∞. By density of U0 in the Banach space U and the fact that τ
(L)
t

are isometries for all L ∈ R
+
0 and t ∈ R, the limit τt , t ∈ R, uniquely defines a ∗–

automorphism, also denoted by τt , of the C∗–algebra U . {τt }t∈R is clearly a group of
∗–automorphisms on U . Again by the above lemma, for any element B in the dense
subset U0 ⊂ U , the convergence of τ (L)

t (B), as L → ∞, is uniform for t on compacta
and {τt }t∈R thus defines a C0 –group on U , that is, a strongly continuous group on U .

We need in the sequel an explicit characterization of the infinitesimal generator
of this C0–group. Since the generator equals (4.3) at finite–volume, one expects that
the infinitesimal generator equals on U0 the linear map δ from U0 to U defined by

δ(B)
.= i

∑

�∈P f (L)

[��, B] + i
∑

x∈L

[
V{x}, B

]
, B ∈ U0 , (4.27)

for any � ∈ W and potential V. Indeed, for any � ∈ P f (L) and local element
B ∈ U�,

∑

Z∈P f (L)

‖[�Z , B]‖U +
∑

x∈L

∥∥[V{x}, B
]∥∥

U (4.28)

≤ 2 ‖B‖U
(

|�|F (0) ‖�‖W +
∑

x∈�

∥∥V{x}
∥∥
U

)

and the series (4.27) is absolutely convergent for all B ∈ U0. Moreover, by (4.3), we
obviously have

δ(B) = lim
L→∞δ(L)(B) , B ∈ U0 . (4.29)

To prove that the closure of the linear map δ : U0 → U is the generator of the C0–
group {τt }t∈R of ∗–automorphisms we use the second Trotter–Kato approximation
theorem [EN, Chap. III, Sect. 4.9].

To this end, we first show that the (generally unbounded) operator δ on U with
dense domain Dom(δ) = U0 is closable. Observe that both±δ are symmetric deriva-
tions and δ is thus conservative [BR1, Definition 3.1.13.], by structure of the set U0

of local elements:

Lemma 4.5 (Conservative infinite–volume derivation)
Let � ∈ W and V be any potential. Then, the derivation δ defined on U0 by (4.27)
is a conservative symmetric derivation.

Proof Let B ∈ U0 satisfying B ≥ 0. By definition of U0, B ∈ U� for some � ∈
P f (L). Since U� is a unital C∗ –algebra, there is B1/2 ∈ U� ⊂ U0 such that
B1/2 ≥ 0 and (B1/2)2 = B. Therefore, the lemma follows from [BR1, Proposition
3.2.22]. �

It follows that the symmetric derivation δ is (norm–) closable:

http://dx.doi.org/10.1007/978-3-319-45784-0_4
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Lemma 4.6 (Closure of the infinite–volume derivation)
Let � ∈ W and V be any potential. Then, the derivations ±δ defined on U0 by (4.27)
are closable and their closures, again denoted for simplicity by ±δ, are conservative.

Proof ±δ are densely defined dissipative operators on the Banach space U . There-
fore, the lemma is an obvious application of [BR1, Proposition 3.1.15.]. �

In order to apply the second Trotter–Kato approximation theorem [EN, Chap.
III, Sect. 4.9], we also prove that the range Ran{(x1U ∓ δ)} of the closed operators
x1U ∓ δ are dense in the Banach space U for x > 0. This is done in the following
lemma:

Lemma 4.7 (Range of the infinite–volume derivation)
Let � ∈ W and V be any potential. Then, for any x ∈ R

+,

U0 ⊆ Ran{(x1U ∓ δ)} ⊆ U

with 1U being the identity on U . In particular, Ran{(x1U ∓ δ)} is dense in U .

Proof We only give the proof for the range of the operator x1U−δ, since the other
case uses similar arguments.

Note that ‖τ (L)
t ‖B(U) = 1 for any L ∈ R

+
0 and t ∈ R. Here, B(U) is the Banach

space of bounded linear operators acting on U . Thus, for any L ∈ R
+
0 , x ∈ R

+, and
B ∈ U , the improper Riemann integral

∫ ∞

0
e−xsτ (L)

s (B) ds
.= lim

t→∞

∫ t

0
e−xsτ (L)

s (B) ds

exists. By [EN, Chap. II, Sect. 1.10], it follows that, for any L ∈ R
+
0 and x ∈ R

+, the
resolvent (x1U − δ(L))−1 of the generator δ(L) of the group {τ (L)

t }t∈R also exists and
satisfies

(x1U−δ(L))−1(B) =
∫ ∞

0
e−xsτ (L)

s (B) ds (4.30)

for all B ∈ U . Now, take B ∈ U0, x ∈ R
+, and consider the element

BL
.= (x1U−δ(L))−1(B) ∈ U (4.31)

for some sufficiently large parameter L ∈ R
+
0 such that B ∈ U�L . Note that

τ (L)
s (U�L ) ⊂ U�L and BL ∈ U�L ⊂ U0 because of (4.30). Then, we observe that

(x1U−δ)(BL) = B + (δ(L)−δ)(BL) ,

where we recall that L ∈ R
+
0 , x ∈ R

+, and B ∈ U0. Now, by the Lumer–Phillips
theorem [BR1, Theorem 3.1.16] (see also its proof), if there is x ∈ R

+ such that

lim
L→∞

∥∥(δ−δ(L))(BL)
∥∥
U = 0 (4.32)
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for all B ∈ U0 then we obtain the assertion. Indeed, by using Lemma4.4 together
with ‖τ (L)

t ‖B(U) = 1 and (4.30), one verifies that {BL}L∈R+
0
is a Cauchy net, thus a

convergent one in U , while x1U − δ is a closed operator, by Lemma4.6.
To prove (4.32) we use Lieb–Robinson bounds (Theorem4.3) as follows: Since

BL ∈ U�L for sufficiently large L ∈ R
+
0 ,we can combine (4.3) and (4.27)with (4.30)–

(4.31) to compute that

(δ−δ(L))(BL) = i
∑

Z∈P f (L), Z∩�c
L �=∅

∫ ∞

0
e−xs

[
�Z , τ (L)

s (B)
]
ds (4.33)

for any x ∈ R
+, sufficiently large L ∈ R

+
0 , and B ∈ U0.Here,�c

L
.= L\�L . It suffices

to consider the case B �= 0. Using now Theorem4.3, similar to (4.24), one gets that,
for all s ∈ R

+ and any sufficiently large L ∈ R
+
0 such that B ∈ U� ⊂ U�L with

� ∈ P f (L),

∑

Z∈P f (L), Z∩�c
L �=∅

∥∥[�Z , τ (L)
s (B)

]∥∥
U

2 ‖B‖U (4.34)

≤ D−1
(
e2D|s|‖�‖W − 1

) ∑

Z∈P f (L), Z∩�c
L �=∅, Z∩�=∅

‖�Z‖U
∑

x∈∂�Z

∑

y∈�

F (|x − y|)

+
∑

Z∈P f (L), Z∩�c
L �=∅, Z∩� �=∅

‖�Z‖U .

Similar to Inequalities (4.25)–(4.26), we thus infer from (4.6) and (4.8) that

∑

Z∈P f (L), Z∩�c
L �=∅

∥∥[�Z , τ (L)
s (B)

]∥∥
U

2 ‖B‖U ≤ ‖�‖W e2D|s|‖�‖W
∑

y∈�c
L

∑

x∈�

F (|x − y|) ,

(4.35)
while

lim
L→∞

∑

y∈�c
L

∑

x∈�

F (|x − y|) = 0 , (4.36)

because of (4.5). Therefore, by (4.33)–(4.36), we deduce (4.32) for all x > 2D‖�‖W
and B ∈ U0. �

We now apply the second Trotter–Kato approximation theorem [EN, Chap. III,
Sect. 4.9] to deduce that δ is the generator of the group {τt }t∈R of ∗–automorphisms
and resume all the main results, so far, in the following theorem:

Theorem 4.8 (Infinite–volume dynamics and its generator)
Let � ∈ W , V be any potential, and D ∈ R

+ be defined by (4.6).
(i) Infinite–volume dynamics. The continuous groups {τ (L)

t }t∈R, L ∈ R
+
0 , defined by

(4.2) converge strongly to a C0–group {τt }t∈R of ∗–automorphisms with generator δ.
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(ii) Infinitesimal generator. δ is a conservative closed symmetric derivation which is
equal on its core U0 to

δ(B) = i
∑

�∈P f (L)

[��, B] + i
∑

x∈L

[
V{x}, B

]
, B ∈ U0 .

(iii) Rate of convergence. For any � ∈ P f (L), B ∈ U� and L ∈ R
+
0 such that � ⊂

�L ,

∥∥∥τt (B) − τ
(L)
t (B)

∥∥∥
U

≤ 2 ‖B‖U ‖�‖W |t | e4D|t |‖�‖W
∑

y∈L\�L

∑

x∈�

F (|x − y|) .

(iv) Lieb–Robinson bounds. For any t ∈ R and B1 ∈ U+ ∩ U�(1) , B2 ∈ U�(2) with
disjoint sets �(1), �(2) ∈ P f (L),

‖[τt (B1) , B2]‖U ≤ 2D−1 ‖B1‖U ‖B2‖U
(
e2D|t |‖�‖W − 1

)

×
∑

x∈∂��(1)

∑

y∈�(2)

F (|x − y|) .

Proof By Lemma4.6, the set U0 of local elements is a core of the dissipative deriva-
tion δ and one obtains (ii), see (4.27).Moreover, δ(L) (B) → δ (B) for all B ∈ U0, see
(4.29). Recall that δ(L) is the generator of the group {τ (L)

t }t∈R for any L ∈ R
+
0 . There-

fore, since one also has Lemma4.7, (i) is a direct consequence of [EN, Chap. III,
Sect. 4.9]. The third statement (iii) thus follows from Lemma4.4. (iv) is an obvious
consequence of Theorem4.3 and the first assertion (i). �

4.4 Lieb–Robinson Bounds for Multi-commutators

Recall that multi–commutators are defined by induction as follows:

[B1, B0](2) .= [B1, B0] .= B1B0 − B0B1 , B0, B1 ∈ U , (4.37)

and, for all integers k ≥ 2,

[Bk, Bk−1, . . . , B0](k+1) .= [Bk, [Bk−1, . . . , B0](k)] , B0, . . . , Bk ∈ U . (4.38)

The aim of this subsection is to extend Theorem4.8 (iv) to multi–commutators. The
arguments we use below to prove Lieb–Robinson bounds for multi–commutators
are not a generalization of the proof of Theorems4.3 or 4.8 (iv). Instead, we use
a pivotal lemma deduced from Theorem4.8 (iii), which in turn results from finite–
volume Lieb–Robinson bounds of Theorem4.3. This lemma expresses the C0–group
{τt }t∈R of Theorem4.8 (i) as telescoping series.
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To this end, it is convenient to introduce the family {χx }x∈L of ∗–automorphisms
of U , which implements the action of the group of lattice translations on the CAR
C∗–algebra U . This family is uniquely defined by the conditions

χx (ay) = ay+x , x, y ∈ L . (4.39)

We also define, for any n ∈ N0, x ∈ L, � ∈ W and potential V, a space trans-
lated finite–volume dynamics which is the continuous group {τ (n,x)

t }t∈R of ∗–
automorphisms of U generated by the symmetric and bounded derivation

δ(n,x)(B)
.= i

∑

�⊆x+�n

[��, B] + i
∑

y∈x+�n

[
V{y}, B

]
, B ∈ U .

Note that the fermion system is generally not translation invariant and, in general,

τ
(n,x)
t ◦ χx �= χx ◦ τ

(n)
t , x ∈ L, n ∈ N0 , t ∈ R .

For m ∈ N0, x ∈ L, B ∈ U�m and t ∈ R, we finally introduce the local elements

BB,t,x (m) ≡ B
(m)
B,t,x (m)

.= τ
(m,x)
t ◦ χx (B) ∈ U�m+x (4.40)

and

BB,t,x (n) ≡ B
(m)
B,t,x (n)

.= (τ
(n,x)
t − τ

(n−1,x)
t ) ◦ χx (B) ∈ U�n+x , n ≥ m + 1 .

(4.41)
The family {BB,t,x (n)}n≥m ⊂ U0 is used to define telescoping series:

Lemma 4.9 (Infinite–volume dynamics as telescoping series)
Let � ∈ W and V be any potential. Then, for any m ∈ N0, x ∈ L, B ∈ U�m and
t ∈ R: ∞∑

n=m

BB,t,x (n) = τt ◦ χx (B) . (4.42)

The above telescoping series is absolutely convergent in U with

∥∥BB,t,x (n)
∥∥
U ≤ 2 ‖B‖U ‖�‖W |t | e4D|t |‖�‖W

∑

y∈�n\�n−1

∑

z∈�m

F (|z − y|) (4.43)

for any n ≥ m + 1, while
∥∥BB,t,x (m)

∥∥
U = ‖B‖U .

Proof Since, for any N ∈ N0 so that N ≥ m,

N∑

n=m

BB,t,x (n) = τ
(N ,x)
t ◦ χx (B) , (4.44)
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it suffices to study the limit N → ∞ of the group {τ (N ,x)
t }t∈R at any fixed x ∈ L.

Similar to the proof of Theorem4.8 (i), δ(N ,x) (B) → δ (B) for all B ∈ U0, as N →
∞. By Lemma4.7 and [EN, Chap. III, Sect. 4.9], the translated groups {τ (N ,x)

t }t∈R,
N ∈ N0, converge strongly to the C0–group {τt }t∈R for any x ∈ L. In other words,
we deduce Eq. (4.42) from (4.44) in the limit N → ∞. Moreover, one easily checks
that Theorem4.3 and thus Lemma4.4 also hold for the (space translated) groups
{τ (n,x)

t }t∈R, n ∈ N0, at any fixed x ∈ L. This yields Inequality (4.43) for n > m, while∥∥BB,t,x (m)
∥∥
U = ‖B‖U , because τ

(m,x)
t is a ∗–automorphism on U�m . It follows that

∞∑

n=m+1

∥∥BB,t,x (n)
∥∥
U ≤ 2 ‖B‖U ‖�‖W |t | e4D|t |‖�‖W

∑

z∈�m

∑

n∈N

∑

y∈�n\�n−1

F (|z − y|) .

Finally, by Assumption (4.5),

∑

z∈�m

∑

n∈N

∑

y∈�n\�n−1

F (|z − y|) ≤
∑

z∈�m

∑

y∈L
F (|z − y|) = |�m | ‖F‖1,L < ∞ .

�
To extend Lieb–Robinson bounds to multi–commutators we combine Lemma4.9

with tree decompositions of sequences of clustering subsets ofL (cf. (4.53)): LetT2 be
the set of all (non–oriented) trees with exactly two vertices. This set contains a unique
tree T = {{0, 1}}which, in turn, contains the unique bond {0, 1}, i.e., T2 .= {{{0, 1}}}.
Then, for each integer k ≥ 2, we recursively define a set Tk+1 of trees with k + 1
vertices by

Tk+1
.=
{
{{ j, k}} ∪ T : j = 0, . . . , k − 1, T ∈ Tk

}
. (4.45)

Therefore, for k ∈ N and any tree T ∈ Tk+1, there is a map

PT : {1, . . . , k} → {0, . . . , k − 1} (4.46)

such that PT ( j) < j , PT (1) = 0, and

T =
k⋃

j=1

{{PT ( j), j}} . (4.47)

For any k ∈ N, T ∈ Tk+1, and every sequence
{
(n j , x j )

}k

j=0 in N0 × L with length
k + 1, we define

κT

({
(n j , x j )

}k

j=0

)
.=

k∏

j=1

1
[
(�n j + x j ) ∩ (�nPT ( j) + xPT ( j)) �= ∅] ∈ {0, 1} ,

(4.48)
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while, for all � ∈ {1, . . . , k},

S�,k
.= {π | π : {�, . . . , k} → {1, . . . , k} such that π (i) < π ( j) when i < j} .

(4.49)
Then, one gets the following bound on multi–commutators:

Theorem 4.10 (Lieb–Robinson bounds for multi–commutators – Part I)
Let � ∈ W and V be any potential. Then, for any integer k ∈ N, {m j }k

j=0 ⊂ N0,
times {s j }k

j=1 ⊂ R, lattice sites {x j }k
j=0 ⊂ L, and local elements B0 ∈ U0, {B j }k

j=1 ⊂
U0 ∩ U+ such that B j ∈ U�m j

for j ∈ {0, . . . , k},
∥∥∥
[
τsk ◦ χxk (Bk), . . . , τs1 ◦ χx1(B1), χx0(B0)

](k+1)
∥∥∥
U

≤ 2k
k∏

j=0

∥∥B j

∥∥
U
∑

T ∈Tk+1

(
κT

({
(m j , x j )

}k

j=0

)
+ �T,‖�‖W

)

with, for any α ∈ R
+
0 ,

�T,α
.=

k∑

�=1

(2α)k−�+1
∑

π∈S�,k

⎛

⎝
∏

j∈{π(�),...,π(k)}

∣∣s j

∣∣ e4Dα|s j |
⎞

⎠ (4.50)

∞∑

nπ(�)=mπ(�)+1

∑

zπ(�)∈�mπ(�)

∑

yπ(�)∈�nπ(�)
\�nπ(�)−1

· · ·

· · ·
∞∑

nπ(k)=mπ(k)+1

∑

zπ(k)∈�mπ(k)

∑

yπ(k)∈�nπ(k)
\�nπ(k)−1

κT

({
(n j , x j )

}k

j=0

) ∏

j∈{π(�),...,π(k)}
F
(∣∣z j − y j

∣∣) .

In the right–hand side (r.h.s.) of (4.50), we set n j
.= m j if

j ∈ {0, . . . , k} \ {π (�) , . . . , π (k)} .

The constant D ∈ R
+ is defined by (4.6).

Proof Fix k ∈ N, {m j }k
j=0 ⊂ N0, {s j }k

j=1 ⊂ R, {x j }k
j=0 ⊂ L and elements {B j }k

j=0 ⊂
U0 such that the conditions of the theorem are satisfied. From Lemma4.9,

[
τsk ◦ χxk (Bk), . . . , τs1 ◦ χx1(B1), χx0(B0)

](k+1)
(4.51)

=
∞∑

n1=m1

· · ·
∞∑

nk=mk

[
BBk ,sk ,xk (nk) , . . . ,BB1,s1,x1 (n1) , χx0(B0)

](k+1)
.
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Since B j ∈ U�m j
∩ U+ for j ∈ {1, . . . , k}, we infer from (4.40)–(4.41) that

[
BBk ,sk ,xk (nk) , . . . ,BB1,s1,x1 (n1) , χx0(B0)

](k+1)

=
k∏

j=1

1

[
j−1⋃

i=0

(
�n j + x j

) ∩ (�ni + xi
) �= ∅

]
(4.52)

[
BBk ,sk ,xk (nk) , . . . ,BB1,s1,x1 (n1) , χx0(B0)

](k+1)

for all integers {n j }k
j=0 ⊂ N0 with n0

.= m0 and n j ≥ m j when j ∈ {1, . . . , k}. The
conditions inside characteristic functions in (4.52) refer to the fact that the sequence
of sets {�n j }k

j=0 has to be a cluster to have a non–zero multi–commutator. Note
further that

k∏

j=1

1

[
j−1⋃

i=0

(
�n j + x j

) ∩ (�ni + xi
) �= ∅

]
≤
∑

T ∈Tk+1

κT

({
(n j , x j )

}k

j=0

)
. (4.53)

Using (4.51)–(4.53) one then shows that

∥∥∥
[
τsk ◦ χxk (Bk), . . . , τs1 ◦ χx1(B1), χx0(B0)

](k+1)
∥∥∥
U

≤ 2k ‖B0‖U
∑

T ∈Tk+1

∞∑

n1=m1

· · ·
∞∑

nk=mk

κT

({
(n j , x j )

}k

j=0

)

×
k∏

j=1

∥∥BB j ,s j ,x j

(
n j
)∥∥

U . (4.54)

This inequality combined with (4.43) yields the assertion. �

The above theorem extends Lieb–Robinson bounds to multi–commutators. Indeed,
if F(r) decays fast enough as r → ∞, then Theorem4.10 and Lebesgue’s dominated
convergence theorem imply that, for any j ∈ {0, . . . , k},

lim|x j |→∞

∥∥∥
[
τsk ◦ χxk (Bk), . . . , τs1 ◦ χx1(B1), χx0(B0)

](k+1)
∥∥∥
U

= 0 . (4.55)

The rate of convergence if thismulti–commutator towards zero is, however, a priori
unclear. Hence, to obtain bounds on the space decay of the above multi–commutator,
more in the spirit of the original Lieb–Robinsonbounds for commutators,we consider
two situations w.r.t. the behavior of the function F : R

+
0 → R

+ at large arguments:

• Polynomial decay. There is a constant ς ∈ R
+ and, for all m ∈ N0, an absolutely

summable sequence {un,m}n∈N ∈ �1(N) such that, for all n ∈ N with n > m,
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|�n\�n−1|
∑

z∈�m

max
y∈�n\�n−1

F (|z − y|) ≤ un,m

(1 + n)ς
. (4.56)

• Exponential decay. There is ς ∈ R
+ and, for m ∈ N0, a constant Cm ∈ R

+ such
that, for all n ∈ N with n > m,

|�n\�n−1|
∑

z∈�m

max
y∈�n\�n−1

F (|z − y|) ≤ Cme
−2ςn . (4.57)

For sufficiently large ε ∈ R
+, the function (4.7) clearly satisfies Condition (4.56),

while (4.56)–(4.57) hold for the choice

F (r) = e−2ςr (1 + r)−(d+ε) , r ∈ R
+
0 , (4.58)

with arbitrary ς, ε ∈ R
+. Under one of these both very general assumptions, one can

put the upper bound of Theorem4.10 in a much more convenient form. In fact, one
obtains an estimate on the norm of the multi–commutator (4.55) as a function of the
distances between the points {x0, . . . , xk}, like in the usual Lieb–Robinson bounds
(i.e., the special case k = 2). To formulate such bounds, we need some preliminary
definitions related to properties of trees.

For any k ∈ N and T ∈ Tk+1, we define the sequence dT ≡ {dT ( j)}k
j=0 in

{1, . . . , k} by

dT ( j)
.= |{b ∈ T : j ∈ b}| , j ∈ {0, . . . , k} ,

i.e., dT ( j) is the degree of the j–th vertex of the tree T . For k ∈ N and T ∈ Tk+1,
observe that

dT (0) + · · · + dT (k) = 2k . (4.59)

We also introduce the following notation:

dT ! .= dT (0)! · · · dT (k)!

for any tree T ∈ Tk+1, k ∈ N. The degree of any vertex of a tree is at least 1, by
connectedness of such a graph, and (4.59) yields

dT ! ≤ k! , k ∈ N , T ∈ Tk+1 . (4.60)

For any k ∈ N, T ∈ Tk+1, and any sequence f : N0 → R
+, note that

k∏

j=0

{ f ( j)}dT ( j) =
k∏

j=1

f ( j) f (PT ( j)) . (4.61)

This property is elementary but pivotal to estimate the remainder �T,α , defined by
(4.50), of Theorem4.10.
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Theorem 4.11 (Lieb–Robinson bounds for multi–commutators – Part II)
Let α ∈ R

+
0 , k ∈ N, {m j }k

j=0 ⊂ N0, {s j }k
j=1 ⊂ R, {x j }k

j=0 ⊂ L, and T ∈ Tk+1.
Depending on decay properties of the function F : R

+
0 → R

+, the coefficient
�T,α ∈ R

+
0 defined by (4.50) satisfies the following bounds:

(i) Polynomial decay: Assume (4.56). Then,

�T,α ≤ d
ςk
2

k∑

�=1

(2α)k−�+1
∑

π∈S�,k

⎛

⎝
∏

j∈{π(�),...,π(k)}

∥∥u·,m j

∥∥
�1(N)

∣∣s j

∣∣ e4D|s j |α
⎞

⎠

⎛

⎝
∏

j∈{0,...,k}\{π(�),...,π(k)}
(1 + m j )

ς

⎞

⎠
∏

{ j,l}∈T

1

(1 + ∣∣x j − xl

∣∣)ς(max{dT ( j),dT (l)})−1 .

(ii) Exponential decay: Assume (4.57). Then,

�T,α ≤
k∑

�=1

(
2α

eς − 1

)k−�+1 ∑

π∈S�,k

⎛

⎝
∏

j∈{π(�),...,π(k)}
Cm j

∣∣s j

∣∣ e4D|s j |α−ςm j

⎞

⎠

⎛

⎝
∏

j∈{0,...,k}\{π(�),...,π(k)}
eςm j

⎞

⎠
∏

{ j,l}∈T

exp

(
− ς

∣∣x j − xl

∣∣
√

d max{dT ( j), dT (l)}

)
.

Proof (i) Fix all parameters of the theorem. We infer from (4.50) and (4.56) that

�T,α ≤
k∑

�=1

(2α)k−�+1
∑

π∈S�,k

⎛

⎝
∏

j∈{π(�),...,π(k)}

∣∣s j

∣∣ e4D|s j |α
⎞

⎠
∞∑

nπ(�)=mπ(�)+1

· · ·
∞∑

nπ(k)=mπ(k)+1

κT

({
(n j , x j )

}k

j=0

) ∏

j∈{π(�),...,π(k)}

un j ,m j(
1 + n j

)ς .

Recall that n j
.= m j when j ∈ {0, . . . , k} \ {π (�) , . . . , π (k)}. By Hölder’s inequal-

ity, it follows that

�T,α ≤
k∑

�=1

(2α)k−�+1
∑

π∈S�,k

⎛

⎝
∏

j∈{π(�),...,π(k)}

∥∥u·,m j

∥∥
�1(N)

∣∣s j

∣∣ e4D|s j |α
⎞

⎠ (4.62)

× max
nπ(�),...,nπ(k)∈N

⎧
⎨

⎩κT

({
(n j , x j )

}k

j=0

) ∏

j∈{π(�),...,π(k)}

1(
1 + n j

)ς

⎫
⎬

⎭ .

Therefore, it suffices to bound the above maximum in an appropriate way. Using
(4.61), note that
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k∏

j=0

1(
1 + n j

)ς =
k∏

j=0

(
1

(
1 + n j

) ς

dT ( j)

)dT ( j)

=
k∏

j=1

1
(
1 + n j

) ς

dT ( j)
(
1 + nPT ( j)

) ς

dT (PT ( j))

≤
k∏

j=1

1
(
1 + n j + nPT ( j)

) ς

mT ( j)

, (4.63)

where, for k ∈ N, any tree T ∈ Tk+1, and j ∈ {1, . . . , k},

mT ( j)
.= max{dT ( j), dT (PT ( j))} .

Meanwhile, the condition

(�n j + x j ) ∩ (�nPT ( j) + xPT ( j)) �= ∅

implies √
d(n j + nPT ( j)) ≥ |x j − xPT ( j)| . (4.64)

Therefore, we infer from (4.63)–(4.64) that

max
nπ(�),...,nπ(k)∈N

⎧
⎨

⎩κT

({
(n j , x j )

}k

j=0

) ∏

j∈{π(�),...,π(k)}

1(
1 + n j

)ς

⎫
⎬

⎭

≤
⎛

⎝
∏

j∈{0,...,k}\{π(�),...,π(k)}
(1 + n j )

ς

⎞

⎠
k∏

j=1

d
ς

2

(1 + |x j − xPT ( j)|)
ς

mT ( j)

.

Combined with (4.62), this last inequality yields Assertion (i).
(ii) The second assertion is proven exactly in the same way. We omit the

details. �
We defined in [BPH1, Sect. 4] the concept of tree–decay bounds for pairs (ρ, τ ),

where ρ ∈ U∗ and τ ≡ {τt }t∈R are respectively any state and any one–parameter
group of ∗–automorphisms on the C∗–algebra U . They are a useful tool to control
multi–commutators of products of annihilation and creation operators. Such bounds
are related to cluster or graph expansions in statistical physics. For more details see
the preliminary discussions of [BPH1, Sect. 4]. As a straightforward corollary of
Theorems4.10–4.11 we give below an extension of the tree–decay bounds [BPH1,
Sect. 4] to the case of interacting fermions on lattices:

Corollary 4.12 (Tree–decay bounds)
Let � ∈ W , V be any potential, k ∈ N , m0 ∈ N0, t ∈ R

+
0 , {s j }k

j=1 ⊂ [−t, t], B0 ⊂
U�m0

, and {x j }k
j=0, {z j }k

j=1 ⊂ L such that |z j | = 1 for j ∈ {1, . . . , k}.
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(i) Polynomial decay: Assume (4.56) for m = 1. Then,

∥∥∥
[
τsk (a

∗
xk

axk+zk ), . . . , τs1(a
∗
x1ax1+z1), χx0(B0)

](k+1)
∥∥∥
U

≤ ‖B0‖U (1 + m0)
ςKk

0

∑

T ∈Tk+1

∏

{ j,l}∈T

1

(1 + ∣∣x j − xl

∣∣)ς(max{dT ( j),dT (l)})−1

with
K0

.= 2d
ς

2

(
2ς + 2

∥∥u·,1
∥∥

�1(N)
‖�‖W |t | e4D|t |‖�‖W

)
.

(ii) Exponential decay: Assume (4.57) for m = 1 . Then,

∥∥∥
[
τsk (a

∗
xk

axk+zk ), . . . , τs1(a
∗
x1ax1+z1), χx0(B0)

](k+1)
∥∥∥
U

≤ ‖B0‖U em0ςKk
1

∑

T ∈Tk+1

∏

{ j,l}∈T

exp

(
− ς

∣∣x j − xl

∣∣
√

d max{dT ( j), dT (l)}

)

with

K1
.= 2

(
eς + 2C1‖�‖W |t | e4D|t |‖�‖W

e2ς − eς

)
.

Proof For all k ∈ N, T ∈ Tk+1, and any sequence {(m j , x j
)}k

j=0 in N0 × L of length
k + 1, the following upper bounds hold for κT (see (4.48)):

κT

({(
m j , x j

)}k

j=0

)
≤ d

kς

2

k∏

j=0

(1 + m j )
ς
∏

{ j,l}∈T

1

(1 + |x j − xl |)
ς

max{dT ( j),dT (l)}
(4.65)

while

κT

({(
m j , x j

)}k

j=0

)
≤ e(m0+···+mk )ς

∏

{ j,l}∈T

exp

(
− ς

∣∣x j − xl

∣∣
√

d max{dT ( j), dT (l)}

)
.

(4.66)
Cf. proof of Theorem4.11. Therefore, the corollary is a direct consequence of The-
orems4.10 and 4.11 together with the two previous inequalities. �

Up to the powers 1/max{dT ( j), dT (l)}, Corollary4.12 gives for interacting systems
upper bounds for multi–commutators like [BPH1, Eq. (4.14)] for the free case. We
show in the next subsection how to use these bounds to obtain results similar to
[BPH1, Theorem 3.4] on the dynamics perturbed by the presence of external elec-
tromagnetic fields.

Remark 4.13
All results of this subsection depend onTheorem4.8 (iii), i.e., the rate of convergence,
as n → ∞, of the family {τ (n,x)}n∈N0 of finite–volume groups introduced in the
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preliminary discussions before Lemma4.9. It is the only information on the Fermi
system we needed here.

Remark 4.14
The Lieb–Robinson bound for multi–commutators given by Theorems4.10–4.11
at k = 1 is not as good as the previous Lieb–Robinson bound of Theorem4.8 (iv).
Nevertheless, they are qualitatively equivalent in the following sense: For interactions
with polynomial decay, the first bound also has polynomial decay, even if with lower
degree than the second one. For interactions with exponential decay, both bounds are
exponentially decaying, even if the first one has a worse prefactor and exponential
rate than the second one.

4.5 Application to Perturbed Autonomous Dynamics

Let � ∈ W and V be a potential. For any l ∈ R
+
0 , we consider a map η → W(l,η)

from R to the subspace of self–adjoint elements of U�l . In the case that interests us,
the following property holds:

∥∥W(l,η)
∥∥
U = O(η |�l |) . (4.67)

More precisely, we consider elements W(l,η) of the form

W(l,η) .=
∑

x∈�l

∑

z∈L,|z|≤1

wx,x+z(η)a∗
x ax+z , l ∈ R

+
0 , (4.68)

where {wx,y}x,y∈L are complex–valued functions of η ∈ R with

wx,y = wy,x and wx,y(0) = 0 (4.69)

for all x, y ∈ L.
Equation (4.68) has the form

W(l,η) =
∑

x∈�l

Wx (η) (4.70)

where, for some fixed radius R ∈ R
+ and any x ∈ L, Wx (η) is a self–adjoint even

element of Ux+�R that depends on the real parameter η. All results below in this
subsection hold for the more general case (4.70) as well, with obvious modifications.
Indeed, we could even consider more general perturbations with R = ∞, see proofs
of Inequality (5.33) and Theorem5.6.

We refrain from treating cases more general than (4.68) to keep technical aspects
as simple as possible. Observe that perturbations due to the presence of external
electromagnetic fields are included in the class of perturbations defined by (4.68).

http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
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In fact, as discussed in the introduction, our final aim is the microscopic quantum
theory of electrical conduction [BP4, BP5, BP6]. Indeed, at fixed l ∈ R

+
0 , W

(l,η)

defined by (4.68) is related to perturbations of dynamics caused by constant external
electromagnetic fields that vanish outside the box �l .

We assume that {wx,y}x,y∈L are uniformly bounded and Lipschitz continuous:
There is a constant K1 ∈ R

+ such that, for all η, η0 ∈ R,

sup
x,y∈L

∣∣wx,y(η) − wx,y(η0)
∣∣ ≤ K1 |η − η0| and sup

x,y∈L
sup
η∈R
∣∣wx,y(η)

∣∣ ≤ K1 .

(4.71)
These two uniformity conditions could hold for parameters η, η0 on compact sets
only, but we refrain again from considering this more general case, for simplicity.

The perturbed dynamics is defined via the symmetric derivation

δ(l,η) .= δ + i
[
W(l,η), · ] , l ∈ R

+
0 , η ∈ R . (4.72)

Recall that δ is the symmetric derivation of Theorem4.8 which generates the C0–
group {τt }t∈R onU . The second term in the r.h.s. of (4.72) is a bounded perturbation of
δ. Hence, δ(l,η) generates a C0–group {τ̃ (l,η)

t }t∈R on U , see [EN, Chap. III, Sect. 1.3].
By Lemma4.6, the (generally unbounded) closed operator δ(l,η) is a conservative
symmetric derivation and τ̃

(l,η)
t is a ∗–automorphism of U for all t ∈ R.

Let � be any interaction with energy observables

U�
�L

.=
∑

�⊆�L

�� , L ∈ R
+
0 . (4.73)

The main aim of this subsection is to study the energy increment

T(l,η,L)
t,s

.= τ̃
(l,η)
t−s (U�

�L
) − τt−s(U

�
�L

) , l, L ∈ R
+
0 , s, t, η ∈ R , (4.74)

in the limit L → ∞ to obtain similar results as [BPH1, Theorem 3.4]. This can be
done by using the (partial) Dyson–Phillips series:

T(l,η,L)
t,s − T(l,η0,L)

t,s (4.75)

=
m∑

k=1

i k
∫ t

s
ds1 · · ·

∫ sk−1

s
dsk

[
X(l,η0,η)

sk ,s , . . . ,X(l,η0,η)
s1,s , τ̃

(l,η0)
t−s (U�

�L
)
](k+1)

+im+1
∫ t

s
ds1 · · ·

∫ sm

s
dsm+1

τ̃
(l,η)
sm+1−s

([
W(l,η) − W(l,η0),X(l,η0,η)

sm ,sm+1
, . . . ,X(l,η0,η)

s1,sm+1
, τ̃

(l,η0)
t−sm+1

(U�
�L

)
](m+2)

)

for any m ∈ N, where
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X(l,η0,η)
t,s

.= τ̃
(l,η0)
t−s (W(l,η) − W(l,η0)) , l ∈ R

+
0 , s, t, η0, η ∈ R . (4.76)

By (4.69), note that T(l,0,L)
t,s = 0.

By (4.67), naive bounds on the r.h.s. of (4.75) predict that

[
X(l,η0,η)

sk ,s , . . . ,X(l,η0,η)
s1,s , τ̃

(l,η0)
t−s (U�

�L
)
](k+1) = O(|�l |k |�L |) .

To obtain more accurate estimates, we use the tree–decay bounds on
multi–commutators of Corollary4.12.

To this end, for any x ∈ L and m ∈ N, we define

D (x, m)
.= {� ∈ P f (L) : x ∈ �, � ⊆ �m + x, � � �m−1 + x

} ⊂ 2L . (4.77)

All elements of D(x, m) are finite subsets of the lattice L that contain at least two
sites which are separated by a distance greater or equal than m. Using, for any x ∈ L
and m = 0, the convention

D (x, 0)
.= {{x}} , (4.78)

we obviously have that

P f (L) =
⋃

x∈L, m∈N0

D (x, m) . (4.79)

We now consider the following assumption on interactions �:

sup
x∈L

∑

m∈N0

vm

∑

�∈D(x,m)

‖��‖U < ∞ (4.80)

for some (generally diverging) sequence {vm}m∈N0 ⊂ R
+
0 . For instance, if � ∈ W

and Condition (4.56) holds true, then one easily verifies (4.80) with vm = (1 + m)ς .
In the case (4.57) holds and� ∈ W , then (4.80) is also satisfied even with vm = emς .

We are now in position to state the first main result of this section, which is an
extension of [BPH1, Theorem 3.4 (i)] to interacting fermions:

Theorem 4.15 (Taylor’s theorem for increments)
Let l,T ∈ R

+
0 , s, t ∈ [−T,T], η, η0 ∈ R, � ∈ W , and V be any potential. Assume

(4.56) with ς > d, (4.69) and (4.71). Take an interaction � satisfying (4.80) with
vm = (1 + m)ς . Then:
(i) The map η → T(l,η,L)

t,s converges uniformly on R, as L → ∞, to a continuous

function T(l,η)
t,s of η and

T(l,η)
t,s − T(l,η0)

t,s =
∑

�∈P f (L)

i
∫ t

s
ds1τ̃

(l,η)
s1−s

([
W(l,η) − W(l,η0), τ̃

(l,η0)
t−s1 (��)

])
.
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(ii) For any m ∈ N satisfying d(m + 1) < ς ,

T(l,η)
t,s − T(l,η0)

t,s = (4.81)
m∑

k=1

∑

�∈P f (L)

i k
∫ t

s
ds1 · · ·

∫ sk−1

s
dsk

[
X(l,η0,η)

sk ,s , . . . ,X(l,η0,η)
s1,s , τ̃

(l,η0)
t−s (��)

](k+1)

+
∑

�∈P f (L)

im+1
∫ t

s
ds1 · · ·

∫ sm

s
dsm+1

τ̃
(l,η)
sm+1−s

([
W(l,η) − W(l,η0),X(l,η0,η)

sm ,sm+1
, . . . ,X(l,η0,η)

s1,sm+1
, τ̃

(l,η0)
t−sm+1

(��)
](m+2)

)
.

(iii) All the above series in � absolutely converge: For any m ∈ N satisfying
d(m + 1) < ς , k ∈ {1, . . . , m}, and {s j }m+1

j=1 ⊂ [−T,T],
∑

�∈P f (L)

∥∥∥∥
[
X(l,η0,η)

sk ,s , . . . ,X(l,η0,η)
s1,s , τ̃

(l,η0)
t−s (��)

](k+1)
∥∥∥∥
U

≤ D |�l | |η − η0|k

and

∑

�∈P f (L)

∥∥∥∥τ̃
(l,η)
sm+1−s

([
W(l,η) − W(l,η0),X(l,η0,η)

sm ,sm+1
, . . . ,X(l,η0,η)

s1,sm+1
, τ̃

(l,η0)
t−sm+1

(��)
](m+2)

)∥∥∥∥U

≤ D |�l | |η − η0|m+1 ,

for some constant D ∈ R
+ depending only on m, d,T, �, K1,�,F. The last asser-

tion also holds for m = 0.

Proof We only prove (ii)–(iii), Assertion (i) being easier to prove by very similar
arguments. For simplicity, we assume w.l.o.g. η0 = s = 0 and m ∈ N. Because of
Eqs. (4.68), (4.75), (4.76) and (4.79), we first control the multi–commutator sum

�k,L
.=

∑

x0∈L\�L

∑

m0∈N0

∑

�∈D(x0,m0)

∑

x1∈�l

∑

z1∈L,|z1|≤1

· · ·
∑

xk∈�l

∑

zk∈L,|zk |≤1∥∥∥ξx1,z1,...,xk ,zk

[
τsk (a

∗
xk

axk+zk ), . . . , τs1(a
∗
x1ax1+z1), τt (��)

](k+1)
∥∥∥
U

for anyfixed k ∈ {1, . . . , m}, T ∈ R
+
0 , {s j }k

j=1 ⊂ [−T,T] and L ∈ R
+
0 ∪ {−1}, where

we use the convention �−1
.= ∅ and

ξx1,z1,...,xk ,zk

.=
k∏

j=1

wx j ,x j +z j (η) . (4.82)

By (4.69)–(4.71), there is a constant D ∈ R
+ (depending on K1) such that
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sup
x1,z1,...,xk ,zk∈L

sup
η∈R

∣∣ξx1,z1,...,xk ,zk

∣∣ ≤ D and sup
x1,z1,...,xk ,zk∈L

∣∣ξx1,z1,...,xk ,zk

∣∣ ≤ D|η|k .

(4.83)
At fixed k ∈ {1, . . . , m} observe further that the condition ς > dk yields

max
x∈L

∑

y∈L

1

(1 + |y − x |)ς(max{dT ( j),dT (l)})−1 ≤
∑

y∈L

1

(1 + |y|) ς

k

< ∞ (4.84)

for any tree T ∈ Tk+1 and all j, l ∈ {0, . . . , k}. Using (4.80) with vm = (1 + m)ς ,
(4.83)–(4.84) and the equality

∥∥∥
[
τsk (a

∗
xk

axk+zk ), . . . , τs1(a
∗
x1ax1+z1), τt (��)

](k+1)
∥∥∥
U

=
∥∥∥
[
τsk−t (a

∗
xk

axk+zk ), . . . , τs1−t (a
∗
x1ax1+z1),��

](k+1)
∥∥∥
U

, (4.85)

we obtain from Corollary4.12 that, for any m ∈ N and k ∈ {1, . . . , m} with ς >

dk, �k,−1 ≤ D|�l ||η|k for some constant D ∈ R
+ depending only on m, d,T, �,

K1,�,F.
Hence, by Lebesgue’s dominated convergence theorem, for any k ∈ N satisfying

ς > dk, there is R ∈ R
+ such that �k,L < ε for any L ≥ R. This ensures the con-

vergence of the first k multi–commutators of (4.75) to the first k multi–commutators
of (4.81) as well as the corresponding absolute summability. Cf. Assertions (ii)–(iii).
The convergence is even uniform for η ∈ R because of the first assertion of (4.83).

Because τ̃
(l,η)
t is an isometry for any time t ∈ R, the same arguments are used to

control the multi–commutator

τ̃
(l,η)
sm+1−s

([
W(l,η) − W(l,η0),X(l,η0,η)

sm ,sm+1
, . . . ,X(l,η0,η)

s1,sm+1
, τ̃

(l,η0)
t−sm+1

(��)
](m+2)

)
(4.86)

in (4.75). By (4.71), notice additionally that there is a constant D ∈ R
+ and a family

{�(l,η)}l∈R+
0 ,η∈R ⊂ W such that

sup
η∈R

sup
l∈R+

0

∥∥�(l,η)
∥∥
W ≤ D < ∞

and, for all l ∈ R
+
0 and η ∈ R, {τ̃ (l,η)

t }t∈R is the C0–group of ∗ –automorphisms
on U associated with the interaction �(l,η) and the potential V. The norm ‖·‖W in
the last inequality, which defines the space W of interactions, is of course defined
w.r.t. the same function F to which the conditions of the theorem are imposed. This
property justifies the simplifying assumption η0 = 0 at the beginning of the proof.
This concludes the proof of Assertions (ii)–(iii).

Assertion (i) is proven in the same way and we omit the details. Note only that the
convergence of �1,L as L → ∞ is uniform for η ∈ R because of the first assertion
of (4.83). The latter implies the continuity of the map η → T(l,η)

t,s for η ∈ R. �
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A direct consequence of Theorem4.15 is that T(l,η)
t,s = O(|�l |). Note furthermore

that Theorem4.15 also holds when the cubic box �l is replaced by any finite subset
� ∈ P f (L). The assumptions of this theoremare fulfilled for any interactions�,� ∈
W with the decay function (4.7), provided the parameter ε ∈ R

+ is sufficiently large.
Theorem4.15 is thus a significant extension of [BPH1, Theorem 3.4 (i)] in the sense
that very general inter–particle interactions and the full range of parameters η ∈ R

are now allowed.
In the case of exponentially decaying interactions we can bound the derivatives

|�l |−1∂m
η T

(l,η)
t,s for all m ∈ N, uniformly w.r.t. l ∈ R

+
0 . We thus extend [BPH1, The-

orem 3.4 (ii)] for interactions � satisfying (4.80).
Under these conditions, we show below that the map η → |�l |−1T(l,η)

t,s from R

to U is bounded in the sense of Gevrey norms, uniformly w.r.t. l ∈ R
+
0 . Note that

real analytic functions (cf. [BPH1, Theorem 3.4 (ii)]) are a special case of Gevrey
functions.

Theorem 4.16 (Increments as Gevrey maps)
Let l,T ∈ R

+
0 , s, t ∈ [−T,T], � ∈ W , and V be any potential. Assume (4.57) and

take an interaction � satisfying (4.80) with vm = emς . Assume further the real ana-
lyticity of the maps η → wx,y(η), x, y ∈ L, from R to C as well as the existence of
r ∈ R

+ such that

K2
.= sup

x,y∈L
sup
m∈N

sup
η∈R

rm∂m
η wx,y(η)

m! < ∞ . (4.87)

(i) Smoothness. As a function of η ∈ R, T(l,η)
t,s ∈ C∞(R;U) and for any m ∈ N,

∂m
η T

(l,η)
t,s =

m∑

k=1

∑

�∈P f (L)

i k
∫ t

s
ds1 · · ·

∫ sk−1

s
dsk

∂m
ε

[
X(l,η,η+ε)

sk ,s , . . . ,X(l,η,η+ε)
s1,s , τ̃

(l,η)
t,s (��)

](k+1)
∣∣∣∣
ε=0

.

The above series in � are absolutely convergent.
(ii) Uniform boundedness of the Gevrey norm of density of increments. There exist
r̃ ≡ r̃d,T,�,K2,F ∈ R

+ and D ≡ DT,�,K2,� ∈ R
+ such that, for all l ∈ R

+
0 , η ∈ R and

s, t ∈ [−T,T],
∑

m∈N

r̃m

(m!)d sup
l∈R+

0

∥∥∥|�l |−1 ∂m
η T

(l,η)
t,s

∥∥∥
U

≤ D .

Before giving the proof, note first that the assumptions of Theorem4.16 are satis-
fied for any interactions �,� ∈ W with the decay function (4.58). Moreover, under
conditions of Theorem4.16, the family {|�l |−1T(l,η)

t,s }l∈R+
0
of functions of the variable

η at dimension d = 1 is uniformly bounded w.r.t. analytic norms. In particular, for
d = 1 and any state � ∈ U∗, the limit of the increment density |�l |−1�(T(l,η)

t,s ), as
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l → ∞ (possibly along subsequences), is either identically vanishing for all η ∈ R,
or is different from zero for η outside a discrete subset of R. Note that, by con-
trast, general non–vanishing Gevrey functions can have arbitrarily small support.
We discuss this with more details at the end of Sect. 5.3.

We now conclude this subsection by proving Theorem4.16. To this end, we need
the following estimate:

Proposition 4.17
There is a constant D ∈ R

+ such that, for all k ∈ N,

∑

T ∈Tk+1

max
j∈{0,...,k}max

x j ∈L
∑

x0,..., /x j ,...,xk∈L

∏

{p,l}∈T

e
− ς|x p−xl |√

d max{dT (p),dT (l)} ≤ Dk(k!)d .

The proof of this upper bound uses the fact that trees with vertices of large degree are
“rare” in a way that summing up the numbers (dT !)α for T ∈ Tk+1 and any α ∈ R

+
gives factors behaving, at worse, like Dk(k!)α . The arguments are standard results of
finite mathematics. We prove them below for completeness, in two simple lemmata.

Let k ∈ N. For any fixed sequence d = (d(0), . . . , d(k)) ∈ N
k+1 define the set

Tk+1(d) ⊂ Tk+1 by

Tk+1(d)
.= {T ∈ Tk+1 : dT ≡ (dT (0), . . . , dT (k)) = d} .

In other words, Tk+1(d) is the set of all trees of Tk+1 with vertices having their degree
fixed by the sequence d. The cardinality of this set is bounded as follows:

Lemma 4.18 (Number of trees with vertices of fixed degrees)
For all k ∈ N and d ∈ N

k+1,

|Tk+1(d)| ≤ (k − 1)!
(d(0) − 1)! · · · (d(k) − 1)! .

Proof The bound can be proven, for instance, by using so–called “Prüfer codes”.
We give here a proof based on a simplified version of such codes, well adapted to the
particular sets of trees Tk+1. At fixed k ∈ N, define the map C : Tk+1 → {0, . . . , k −
1}k−1 by

C(T )
.= (PT (2), . . . ,PT (k)) .

See (4.45)–(4.47). This map is clearly injective and if j ∈ {0, . . . , k} is a vertex of
degree dT ( j), then it appears exactly (dT ( j) − 1) times in the sequence C(T ). Note
that dT (k) = 1 for all T ∈ Tk+1. To finish the proof, fix d = (d(0), . . . , d(k)) ∈ N

k+1

and observe that if d(0) + · · · + d(k) = 2k then there are exactly

(k − 1)!
(d(0) − 1)! · · · (d(k) − 1)!

http://dx.doi.org/10.1007/978-3-319-45784-0_5
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sequences in {0, . . . , k − 1}k−1 with j ∈ {0, . . . , k} appearing exactly (d( j) − 1)
times in such sequences. If d(0) + · · · + d(k) �= 2k then such a sequence does not
exist. �

Lemma 4.19
For all k ∈ N, ∑

d(0),...,d(k)∈N
1[d(0) + · · · + d(k) = 2k] ≤ 4k .

Proof For k ∈ N, the coefficient c2k of the analytic function

z → zk+1

(1 − z)k+1
=

∞∑

m=1

cm zm

on the complex disc {z ∈ C:|z| < 1} is exactly the finite sum

∑

d(0),...,d(k)∈N
1[d(0) + · · · + d(k) = 2k] .

In particular,

∑

d(0),...,d(k)∈N
1[d(0) + · · · + d(k) = 2k] = 1

2π i

∮

|z|=1/2

1

zk(1 − z)k+1
dz ,

which combined with the inequality

∣∣∣∣∣∣∣

1

2π i

∮

|z|=1/2

1

zk(1 − z)k+1
dz

∣∣∣∣∣∣∣
≤ 4k

yields the assertion. �

By using the two above lemmata, we now prove Proposition4.17:

Proof Fix α ∈ R
+ and note first that, for all d ∈ N,

lim
g→∞

1

gd

∑

x∈L
e− α|x |

g
√

d =
∫

Rd

e− α|x |√
d dd x < ∞ .

Hence, for d ∈ N, there is a constant Sd ∈ R
+ such that

∑

x∈L
e− α|x |

g
√

d ≤ Sd gd , g ∈ N .

From this estimate and by using the Stirling–type bounds [Ro]
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gge−ge
1

12g+1
√
2πg ≤ g! ≤ gge−ge

1
12g
√
2πg , g ∈ N , (4.88)

we obtain

max
j∈{0,...,k}max

x j ∈L
∑

x0,..., /x j ,...,xk∈L

∏

{p,l}∈T

exp

(
− ς

∣∣x p − xl

∣∣
√

d max{dT (p), dT (l)}

)

≤ Sk
d

k∏

j=0

dT ( j)dT ( j)d ≤ Sk
de

dT ( j)d(dT !)d (4.89)

for all d, k ∈ N and T ∈ Tk+1. We infer from (4.60) that

∑

T ∈Tk+1

(dT !)d ≤ (k!)d−1
∑

T ∈Tk+1

(dT !) . (4.90)

We use now Lemma4.18 to get

∑

T ∈Tk+1

(dT !) =
∑

d(0),...,d(k)∈N
1[d(0) + · · · + d(k) = 2k]

∑

T ∈Tk+1((d(0),...,d(k)))

(dT !)

≤ k!
∑

d(0),...,d(k)∈N
1[d(0) + · · · + d(k) = 2k] d(0) · · · d(k)

≤ k!
∑

d(0),...,d(k)∈N
1[d(0) + · · · + d(k) = 2k] ed(0) · · · ed(k) .

We invoke (4.59) and Lemma4.19 to arrive at

∑

T ∈Tk+1

(dT !) ≤ (k!)e2k
∑

d(0),...,d(k)∈N
1[d(0) + · · · + d(k) = 2k] ≤ (k!)(4e2)k .

(4.91)
Proposition4.17 is then a consequence of (4.89), (4.90) and (4.91). �

We are now in position to prove Theorem4.16:

Proof (i) Observe that

∂m
η T

(l,η,L)
t,s = ∂m

ε (T(l,η+ε,L)
t,s − T(l,η,L)

t,s )

∣∣∣
ε=0

. (4.92)

The difference T(l,η+ε,L)
t,s − T(l,η,L)

t,s is explicitly given by a Dyson–Phillips series
involving multi–commutators (4.37)–(4.38): Use (4.75) to produce an infinite series.
As the function η → W(l,η) is, by assumption, real analytic, it follows that
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∂m
ε (T(l,η+ε,L)

t,s − T(l,η,L)
t,s )

∣∣∣
ε=0

= (4.93)

m∑

k=1

i k
∫ t

s
ds1 · · ·

∫ sk−1

s
dsk∂

m
ε

[
X(l,η,η+ε)

sk ,s , . . . ,X(l,η,η+ε)
s1,s , τ̃

(l,η)
t,s (U�

�L
)
](k+1)

∣∣∣∣
ε=0

for any m ∈ N, l ∈ R
+
0 , and s, t, η ∈ R. Set

ξx1,z1,...,xk ,zk

.= ∂m
ε

⎧
⎨

⎩

k∏

j=1

(
wx j ,x j +z j (η + ε) − wx j ,x j +z j (η)

)
⎫
⎬

⎭

∣∣∣∣∣∣
ε=0

.

By (4.87), these coefficients are uniformly bounded w.r.t. x1, z1, . . . , xk, zk and η:

sup
x1,z1,...,xk ,zk∈L

sup
η∈R

|ξx1,z1,...,xk ,zk | ≤ Dmm! (4.94)

for some constant D ∈ R
+ depending on K2 but not on m ≥ k. Bounding the above

multi–commutators exactly as done for the proof of Theorem4.15 and by taking the
limit L → ∞, we deduce from (4.92)–(4.93) that, for any m ∈ N and s, t, η ∈ R,

lim
L→∞∂m

η T
(l,η,L)
t,s =

m∑

k=1

∑

�∈P f (L)

i k
∫ t

s
ds1 · · ·

∫ sk−1

s
dsk (4.95)

∂m
ε

[
X(l,η,η+ε)

sk ,s , . . . ,X(l,η,η+ε)
s1,s , τ̃

(l,η)
t,s (��)

](k+1)
∣∣∣∣
ε=0

.

This limit is uniform for η ∈ R because of (4.94). As in Theorem4.15 (ii), the
above series in � are absolutely convergent. Moreover, the uniform convergence
of ∂m

η T
(l,η,L)
t,s , m ∈ N, together with Theorem4.15 (i) implies that the energy incre-

ment limit T(l,η)
t,s is a smooth function of η with m–derivatives

∂m
η T

(l,η)
t,s = lim

L→∞∂m
η T

(l,η,L)
t,s

for all m ∈ N and s, t, η ∈ R. Because of (4.95), Assertion (i) thus follows.
(ii) is a direct consequence of (i), Corollary4.12, and Proposition4.17 together with
(4.94) and ∫ t

s
ds1 · · ·

∫ sk−1

s
dsk ≤ (2T)k

k! . �



Chapter 5
Lieb–Robinson Bounds for Non-autonomous
Dynamics

Like in Sect. 4, we only consider fermion systems, but all results can easily be
extended to quantum spin systems (Sect. 3.6). For quantum spin systems, note that
Lieb–Robinson bounds for non-autonomous dynamics have already been considered
in [BMNS]. However, [BMNS] only proves Lieb–Robinson bounds for commutators,
while the multi-commutator case was not considered, in contrast with results of this
section. Observe also that some aspects of the non-autonomous case can be treated
in a similar way to the autonomous case. However, several important arguments can-
not be directly extended to the non-autonomous situation. Here, we only address in
detail the technical issues which are specific to the non-autonomous problem. See
for instance Corollary 5.2 (iii), Lemma 5.3, Theorems 5.5, and 5.7.

5.1 Existence of Non-autonomous Dynamics

We now consider time-dependent models. So, let �
.= {�(t)}t∈R be a map from R to

W such that
‖�‖∞

.= sup
t∈R

∥∥�(t)
∥∥
W < ∞ .

I.e., {�(t)}t∈R is a bounded family in W . We could easily extend the study of this
section to families {�(t)}t∈R which are only bounded for t on compacta. We refrain
from considering this more general case, for simplicity. Take, furthermore, any col-
lection {V(t)}t∈R of potentials. Note that (4.10) is allowed for any t ∈ R.

For all x ∈ L and � ∈ P f (L), assume the continuity of the two maps t �→ �(t)
� ,

t �→ V(t)
{x} from R to U , i.e., ��,V{x} ∈ C (R;U). For any L ∈ R

+
0 , this yields

the existence, uniqueness and an explicit expression, as a Dyson–Phillips series (cf.
(2.11)), of the solution {τ (L)

t,s }s,t∈R of the (finite-volume) non-autonomous evolutions
equations
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∀s, t ∈ R : ∂sτ
(L)
t,s = −δ(L)

s ◦ τ (L)
t,s , τ (L)

t,t = 1U , (5.1)

and
∀s, t ∈ R : ∂tτ

(L)
t,s = τ (L)

t,s ◦ δ(L)
t , τ (L)

s,s = 1U . (5.2)

Here, for any t ∈ R and L ∈ R
+
0 , the bounded linear operator δ(L)

t is defined on U by

δ(L)
t (B)

.= i
∑

�⊆�L

[
�(t)

� , B
]

+ i
∑

x∈�L

[
V(t)

{x}, B
]

, B ∈ U .

Compare this definition with (4.3). As explained in Sect. 2.4 (see in particular
Eqs. (2.15)–(2.16)), recall that the natural non-autonomous evolution equation in
Quantum Mechanics is (5.2), but, by boundedness of δ(L)

t for all times, (5.1) and
(5.2) are both satisfied.

Similar to the autonomous case, for any L ∈ R
+
0 , {τ (L)

t,s }s,t∈R is a continuous two-
parameter family of bounded operators that satisfies the (reverse) cocycle property

∀s, r, t ∈ R : τ (L)
t,s = τ (L)

r,s τ (L)
t,r . (5.3)

Its time-dependent generator δ(L)
t is clearly a symmetric derivation and τ (L)

t,s is thus
a ∗-automorphism on U for all L ∈ R

+
0 and s, t ∈ R. Moreover, similar to the

autonomous case (cf. Theorem 4.3 and Lemma 4.4), for all L ∈ R
+
0 and s, t ∈ R,

τ (L)
t,s satisfies Lieb–Robinson bounds and thus converges in the strong sense on U0,

as L → ∞:

Theorem 5.1 (Properties of non-autonomous finite-volume dynamics)
Let �

.= {�(t)}t∈R be a bounded family on W (i.e., ‖�‖∞ < ∞) and {V(t)}t∈R
a collection of potentials. For any x ∈ L and � ∈ P f (L), assume ��,V{x} ∈
C (R;U). Fix s, t ∈ R.
(i) Lieb–Robinson bounds. For any L ∈ R

+
0 , B1 ∈ U+ ∩ U�(1) , and B2 ∈ U�(2) with

�(1), �(2)
� �L and �(1) ∩ �(2) = ∅,

∥∥∥[τ (L)
t,s (B1) , B2]

∥∥∥
U

≤ 2D−1 ‖B1‖U ‖B2‖U
(
e2D|t−s|‖�‖∞ − 1

) ∑

x∈∂��(1)

∑

y∈�(2)

F (|x − y|) .

(ii) Convergence of the finite-volume dynamics. For any � ∈ P f (L), B ∈ U�, and
L1, L2 ∈ R

+
0 with � ⊂ �L1 � �L2 ,

∥∥∥τ (L2)
t,s (B) − τ (L1)

t,s (B)
∥∥∥
U

≤ 2 ‖B‖U ‖�‖∞ |t − s| e4D|t−s|‖�‖∞
∑

y∈�L2 \�L1

∑

x∈�

F (|x − y|) .
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Proof (i) The arguments are a straightforward extension of those proving Theo-
rem 4.3 to non-autonomous dynamics: Fix L ∈ R

+
0 , B1 ∈ U+ ∩U�(1) and B2 ∈ U�(2)

with disjoint sets �(1), �(2)
� �L . Similar to (4.13) and (4.14), we infer from (5.1)

and (5.2) that the derivative w.r.t. to t of the function

f (s, t)
.=

[
τ (L)

t,s ◦ τ (�(1))
s,t (B1) , B2

]
, s, t ∈ R ,

equals

∂t f (s, t) = i
∑

Z∈S�L (�(1))

[
τ (L)

t,s (�(t)
Z ), f (s, t)

]
(5.4)

−i
∑

Z∈S�L (�(1))

[
τ (L)

t,s ◦ τ (�(1))
s,t (B1) ,

[
τ (L)

t,s (�(t)
Z ), B2

]]
.

Exactly like (4.15), it follows that

‖ f (s, t)‖U ≤ ‖ f (s, s)‖U + 2 ‖B1‖U
∑

Z∈S�L (�(1))

∫ max{s,t}

min{s,t}

∥∥∥
[
τ (L)
α,s (�(α)

Z ), B2

]∥∥∥
U

dα

for any s, t ∈ R. Therefore, by using estimates that are similar to (4.16)–(4.18), we
deduce Assertion (i).
(ii) The arguments are extensions to the non-autonomous case of those proving
Lemma 4.4: Since ��,V{x} ∈ C (R;U) for any x ∈ L and � ∈ P f (L), the time-
dependent energy observables

H (t)
L

.=
∑

�⊆�L

�
(t)
� +

∑

x∈�L

V(t)
{x} , L ∈ R

+
0 , t ∈ R ,

and potentials

V(t)
Z

.=
∑

x∈Z
V(t)

{x} ∈ U+ ∩ UZ , Z ∈ P f (L) , t ∈ R ,

generate two solutions {Vs,t (HL)}s,t∈R and {Vs,t (VZ)}s,t∈R, respectively, of the non-
autonomous evolution equations

∂t
(Vs,t (X)

) = iVs,t (X)X (t) and ∂s
(Vs,t (X)

) = −i X (s)Vs,t (X) (5.5)

with X (t) = H (t)
L or V(t)

Z . These evolution families satisfy Vt,t (X) = 1U for t ∈ R as
well as the (usual) cocycle (Chapman–Kolmogorov) property

∀t, r, s ∈ R : Vs,t (X) = Vs,r (X)Vr,t (X) . (5.6)
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http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
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For any L ∈ R
+
0 and s, t,α ∈ R, we then replace (4.19) in the proof of Lemma 4.4

with
UL (t,α)

.= Vs,t (V�L )Vt,α(HL)Vα,s(V�L ) . (5.7)

By (5.6), UL (t, t) = 1U for all t ∈ R while

∂tUL (t,α) = −iGL (t)UL (t,α) and ∂αUL (t,α) = iUL (t,α) GL (α) (5.8)

with
GL (t)

.=
∑

Z⊆�L

Vs,t (V�L ) �Z Vt,s(V�L ) . (5.9)

Using the notation

τ̃ (L)
t,s (B)

.= UL (s, t) BUL (t, s) , B ∈ U� , (5.10)

for any s, t ∈ R and L ∈ R
+
0 such that � ⊂ �L , observe that

τ (L)
t,s (B) = Vs,t (HL)BVt,s(HL) = τ̃ (L)

t,s

(Vs,t (V�)BVt,s(V�)
)

. (5.11)

Note that, for any s, t ∈ R, �,Z ∈ P f (L) and B ∈ U�,

Vs,t (VZ)BVt,s(VZ) ∈ U� and
∥∥Vs,t (VZ)BVt,s(VZ)

∥∥
U = ‖B‖U . (5.12)

Hence, it suffices to study the net {τ̃ (L)
t,s (B)}L∈R+

0
with B ∈ U�. Up to straightforward

modifications taking into account the initial time s ∈ R, the remaining part of the
proof is now identical to the arguments starting from Eq. (4.20) in the proof of
Lemma 4.4. �

Corollary 5.2 (Infinite-volume dynamics)
Under the conditions of Theorem5.1, finite-volume families {τ (L)

t,s }s,t∈R, L ∈ R
+
0 ,

converge strongly and uniformly for s, t on compact sets to a strongly continuous
two-parameter family {τt,s}s,t∈R of ∗-automorphisms on U satisfying the following
properties:
(i) Reverse cocycle property.

∀s, r, t ∈ R : τt,s = τr,sτt,r .

(ii) Lieb–Robinson bounds. For any s, t ∈ R, B1 ∈ U+ ∩ U�(1) , and B2 ∈ U�(2) with
disjoint sets �(1), �(2) ∈ P f (L),

∥∥[τt,s (B1) , B2]
∥∥
U

≤ 2D−1 ‖B1‖U ‖B2‖U
(
e2D|t−s|‖�‖∞ − 1

) ∑

x∈∂��(1)

∑

y∈�(2)

F (|x − y|) .
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(iii) Non-autonomous evolution equation. If � ∈ C(R;W) then {τt,s}s,t∈R is the
unique family of bounded operators on U satisfying, in the strong sense on the dense
domain U0 ⊂ U ,

∀s, t ∈ R : ∂tτt,s = τt,s ◦ δt , τs,s = 1U . (5.13)

Here, δt , t ∈ R, are the conservative closed symmetric derivations, with common
core U0, associated with the interactions �(t) ∈ W and the potentials V(t). See
Theorem4.8.

Proof The existence of a strongly continuous two-parameter family {τt,s}s,t∈R of
∗-automorphisms satisfying Lieb–Robinson bounds (ii) is a direct consequence of
Theorem 5.1 together with the density of U0 ⊂ U and completeness of U . This
limiting family also satisfies the reverse cocycle property (i) because of (5.3).
(iii) For any B ∈ U0 ⊂ Dom(δt ), the map t �→ τt,s ◦δt (B) from R toU is continuous.
Indeed, for any B ∈ U0 and α, t ∈ R,

∥∥τα,s ◦ δα (B) − τt,s ◦ δt (B)
∥∥
U ≤ ∥∥(

τα,s − τt,s
) ◦ δt (B)

∥∥
U + ‖δα (B) − δt (B)‖U .

By applying (4.28) to the interaction �(t)−�(α) and the potentialV(t)−V(α) together
with the strong continuity of {τt,s}s,t∈R, one sees that, in the limit α → t , the r.h.s
of the above inequality vanishes when B ∈ U0 and � ∈ C(R;W). Now, because of
(5.2), for any L ∈ R

+
0 , B ∈ U0, and s, t ∈ R,

∥∥∥∥τt,s (B) − B −
∫ t

s
τα,s ◦ δα (B) dα

∥∥∥∥
U

≤
∥∥∥τt,s (B) − τ (L)

t,s (B)
∥∥∥
U

(5.14)

+
∫ t

s

∥∥(
τ (L)
α,s − τα,s

) ◦ δα (B)
∥∥
U dα

+
∫ t

s

∥∥δ(L)
α (B) − δα (B)

∥∥
U dα .

By using the strong convergence of τ (L)
t,s towards τt,s as well as (4.28) and (4.80)

together with Lebesgue’s dominated convergence theorem, one checks that the r.h.s.
of (5.14) vanishes when B ∈ U0 and L → ∞. Because of the continuity of the map
t �→ τt,s ◦ δt (B), (5.13) is verified on the dense set U0 ⊂ Dom(δt ).

To prove uniqueness, assume that {τ̂t,s}s,t∈R is any family of bounded operators
on U satisfying (5.13) on U0. By (5.1) and because τ (L)

t,s (B) ∈ U0 for any B ∈ U0,

τ̂t,s (B) − τ (L)
t,s (B) =

∫ t

s
τ̂α,s ◦ (

δα − δ(L)
α

) ◦ τ (L)
t,α (B) dα (5.15)

for any B ∈ U0, L ∈ R
+
0 and s, t ∈ R. Similar to (4.33)–(4.35), we infer from

Theorem 5.1 (i) that, for any � ∈ P f (L), B ∈ U�, α, t ∈ R and sufficiently large
L ∈ R

+
0 ,
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∥∥∥
(
δα − δ(L)

α

) ◦ τ (L)
t,α (B)

∥∥∥
U

≤ ‖�‖∞ e2D|t−α|‖�‖∞
∑

y∈�c
L

∑

x∈�

F (|x − y|) .

In particular, by (4.36), for any B ∈ U0 and α, t ∈ R,

lim
L→∞

∥∥∥
(
δα − δ(L)

α

) ◦ τ (L)
t,α (B)

∥∥∥
U

= 0 (5.16)

uniformly for α on compacta. Because of (5.15) and {τ̂t,s}s,t∈R ⊂ B(U), we then
conclude from (5.16) that, for every s, t ∈ R, τ̂t,s coincides on the dense set U0

with the limit τt,s of τ (L)
t,s , as L → ∞. By continuity, τt,s = τ̂t,s on U for any

s, t ∈ R. �

The solution of (5.13) exists under very weak conditions on interactions and poten-
tials, i.e., their continuity, like in the finite-volume case. It yields a fundamental solu-
tion for the states of the interacting lattice fermions driven by the time-dependent
interaction {�(t)}t∈R. More precisely, for any fixed ρs ∈ U∗ at time s ∈ R, the family
{ρs ◦ τt,s}t∈R solves the following ordinary differential equations, for each B ∈ U0:

∀t ∈ R : ∂tρt (B) = ρt ◦ δt (B) . (5.17)

By Corollary 5.2, the initial value problem on U∗ associated with the above infinite
system of ordinary differential equations is well-posed. Indeed, the solution of (5.17)
is unique: Take any solution {ρt }t∈R of (5.17) and, similar to (5.15), use the equality

ρt (B) − ρs ◦ τ (L)
t,s (B) =

∫ t

s
ρα

((
δα − δ(L)

α

) ◦ τ (L)
t,α (B)

)
dα

for any ρs ∈ U∗, B ∈ U0, L ∈ R
+
0 and s, t ∈ R together with (5.16) and the

weak∗-convergence of ρs ◦ τ (L)
t,s to ρs ◦ τt,s , as L → ∞, by Corollary 5.2.

Note again that (5.13) is the non-autonomous evolution equation one formally
obtains from the Schrödinger equation for automorphisms of the algebra of observ-
ables. See Sect. 2.4, in particular Eqs. (2.15) and (2.16). A similar remark can be done
for the infinite system (5.17) of ordinary differential equations.

It is a priori unclear whether {τt,s}s,t∈R solves the non-autonomous Cauchy initial
value problem

∀s, t ∈ R : ∂sτt,s = −δs ◦ τt,s , τt,t = 1U , (5.18)

on some dense domain. The generators {δt }t∈R are generally unbounded operators
acting on U and their domains can additionally depend on time. As explained in
Sect. 2.4, no unified theory of such linear evolution equations, similar to the Hille–
Yosida generation theorems in the autonomous case, is available. See, e.g., [K4, C,
S, P, BB] and the corresponding references therein.
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By using Lieb–Robinson bounds for multi-commutators, we show below in The-
orem 5.5 that the evolution equation (5.18) also holds on the dense set U0, under
conditions like polynomial decays of interactions and boundedness of the external
potential. Another example – more restrictive in which concerns the time-dependency
of the generator of dynamics, but less restrictive w.r.t. the behavior at large distances
of the potential V – for which (5.18) holds is given by Theorem 5.7 (i) in Sect. 5.3.

5.2 Lieb–Robinson Bounds for Multi-commutators

As explained in Remark 4.13, all results of Sect. 4.4 depend on Theorem 4.8
(iii). It is the crucial ingredient we need in order to prove Lemma 4.9, from which we
derive Lieb–Robinson bounds for multi-commutators. Theorem 5.1 (ii) together with
Corollary 5.2 extend Theorem 4.8 (iii) to time-dependent interactions and potentials.
This allows us to prove Lemma 4.9 in the non-autonomous case as well. It is then
straightforward to extend Lieb–Robinson bounds for multi-commutators to time-
dependent interactions and potentials.

Recall that the proof of Lemma 4.9 uses that the space translated finite-volume
groups {τ (n,x)

t }t∈R, x ∈ L, have all the same limit {τt }t∈R, as n → ∞. This also holds
in the non-autonomous case. Indeed, for any n ∈ N0, x ∈ L, every bounded family
�

.= {�(t)}t∈R on W (i.e., ‖�‖∞ < ∞), and each collection {V(t)}t∈R of potentials,
consider the (space) translated family {τ (n,x)

t,s }s,t∈R of finite-volume ∗-automorphisms
generated (cf. (5.1) and (5.2)) by the symmetric bounded derivation

δ(n,x)
t (B)

.= i
∑

�⊆�n+x

[
�

(t)
� , B

]
+ i

∑

y∈�n+x

[
V(t)

{y}, B
]

, B ∈ U .

In the autonomous case the strong convergence of these evolution families towards
{τt,s}s,t∈R easily follows from the second Trotter–Kato approximation theorem [EN,
Chap. III, Sect. 4.9]. We use the Lieb–Robinson bound of Theorem 5.1 (i) to prove
it in the non-autonomous case:

Lemma 5.3 (Limit of translated dynamics)
Let �

.= {�(t)}t∈R be a bounded family on W (i.e., ‖�‖∞ < ∞) and {V(t)}t∈R
a collection of potentials. For any y ∈ L and � ∈ P f (L), assume ��,V{y} ∈
C (R;U). Then

lim
n→∞τ (n,x)

t,s (B) = τt,s (B) , B ∈ U , x ∈ L, s, t ∈ R .

Proof For any n ∈ N0 and x ∈ L, the translated finite-volume family {τ (n,x)
s,t }s,t∈R

solves non-autonomous evolution equations like (5.1) and (5.2). Therefore, similar
to (5.15), for any n ∈ N0, x ∈ L, � ∈ P f (L), B ∈ U� and s, t ∈ R,
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τ (n,x)
t,s (B) − τ (n,0)

t,s (B) =
∫ t

s
τ (n,x)
α,s ◦ (

δ(n,x)
α − δ(n,0)

α

) ◦ τ (n,0)
t,α (B) dα . (5.19)

For sufficiently large n ∈ N0 such that � ⊂ (�n + x) ∩ �n , note that

∥∥∥
(
δ(n,x)
α − δ(n,0)

α

) ◦ τ (n,0)
t,α (B)

∥∥∥
U

≤
∑

Z∈P f (L), Z∩((�n+x)c∪�c
n) �=∅

∥∥∥
[
�(t)

� , τ (n,0)
t,α (B)

]∥∥∥
U

with Zc .= L\Z being the complement of any set Z ∈ P f (L). Then, similar to
Inequality (4.35), by using Theorem 5.1 (i), one verifies that, for any x ∈ L, � ∈
P f (L), B ∈ U�, α, t ∈ R, and sufficiently large n ∈ N0,

∥∥∥
(
δ(n,x)
α − δ(n,0)

α

) ◦ τ (n,0)
t,α (B)

∥∥∥
U

(5.20)

≤ 2 ‖B‖U ‖�‖∞ e2D|t−α|‖�‖∞
∑

y∈(�n+x)c∪�c
n

∑

z∈�

F (|z − y|) ,

while
lim

n→∞
∑

y∈(�n+x)c∪�c
n

∑

z∈�

F (|z − y|) = 0 , (5.21)

because of (4.5). We thus deduce from (5.20) and (5.21) that

lim
n→∞

∥∥∥
(
δ(n,x)
α − δ(n,0)

α

) ◦ τ (n,0)
t,α (B)

∥∥∥
U

= 0

uniformly for α on compacta. Combined with (5.19) and Corollary 5.2, this uniform
limit implies the assertion. �

With the above result and the introducing remarks of this subsection, it is now
straightforward to extend Theorem 4.10 to the non-autonomous case:

Theorem 5.4 (Lieb–Robinson bounds for multi-commutators – Part I)
Let �

.= {�(t)}t∈R be a bounded family on W (i.e., ‖�‖∞ < ∞), {V(t)}t∈R a
collection of potentials, and s ∈ R. For any y ∈ L and � ∈ P f (L), assume
��,V{y} ∈ C (R;U). Then, for any integer k ∈ N, {m j }k

j=0 ⊂ N0, times {s j }k
j=1 ⊂

R, lattice sites {x j }k
j=0 ⊂ L, and elements B0 ∈ U0, {B j }k

j=1 ⊂ U0 ∩ U+ such that
B j ∈ U�m j

for j ∈ {0, . . . , k},
∥∥∥
[
τsk ,s ◦ χxk (Bk), . . . , τs1,s ◦ χx1(B1),χx0(B0)

](k+1)
∥∥∥
U

≤ 2k
k∏

j=0

∥∥B j

∥∥
U

∑

T ∈Tk+1

(
κT

({
(m j , x j )

}k

j=0

)
+ �T,‖�‖∞

)
,
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where κT and �T,α are respectively defined by (4.48) and (4.50) for T ∈ Tk+1 and
α ∈ R

+
0 , the times {s j }k

j=1 in (4.50) being replaced with {(s j − s)}k
j=1.

Proof One easily checks that Theorem 5.1 (ii) holds for {τ (n,x)
t,s }s,t∈R at any fixed

x ∈ L and n ∈ N0. By Lemmas 5.3 and 4.9 also holds in the non-autonomous case
and the assertion follows from (4.54) with the ∗-automorphism τs j being replaced
by τs j ,s for every j ∈ {1, . . . , k}. �

By Theorems 4.11 and 5.4, we obtain Lieb–Robinson bounds for multi-
commutators as well as a version of Corollary 4.12 in the non-autonomous case.
I.e., interacting and non-autonomous systems also satisfy the so-called tree-decay
bounds.

Another application of Theorems 4.11 and 5.4 is a proof of existence of a funda-
mental solution for the non-autonomous abstract Cauchy initial value problem for
observables

∀s ∈ R : ∂s Bs = −δs(Bs) , Bt = B ∈ U0 , (5.22)

in the Banach spaceU , i.e., a proof of existence of a solution of the evolution equation
(5.18). The latter is a non-trivial statement, as previously discussed, among other
things because the domain of δs depends, in general, on the time s ∈ R. [Here, t ∈ R

is the “initial” time.]
To this end, like in (4.77)–(4.80), we add the following condition on interactions

�:

• Polynomial decay. Assume (4.56) and the existence of constants υ, D ∈ R
+ such

that
sup
x∈L

∑

�∈D(x,m)

‖��‖U ≤ D (m + 1)−υ , m ∈ N0 , (5.23)

while the sequence {un,m}n∈N ∈ �1(N) of (4.56) satisfies

∑

m,n∈N
m−υ

∣∣un,m

∣∣ < ∞ . (5.24)

As F(|x |) > 0 for all x ∈ L, note that (4.56) implies

∑

n∈N

∣∣un,m

∣∣ ≥ Dmς

for some D ∈ R
+ and all m ∈ N0. Hence, the inequality (5.24) imposes υ > ς + 1.

Then, one gets the following assertion:

Theorem 5.5 (Dynamics and non-autonomous evolution equations)
Let �

.= {�(t)}t∈R ∈ C(R;W) be a bounded family on W (i.e., ‖�‖∞ < ∞) and
{V(t)

{x}}x∈L,t∈R a bounded family on U of potentials with V{x} ∈ C (R;U) for any
x ∈ L. Assume (4.56) with ς > 2d and that (5.23) and (5.24) with � = �(t) and
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ν > ς + 1 hold uniformly for t ∈ R. Then, for any s, t ∈ R, τt,s (U0) ⊂ Dom(δs)
and {τt,s}s,t∈R solves the non-autonomous evolution equation

∀s, t ∈ R : ∂sτt,s = −δs ◦ τt,s , τt,t = 1U , (5.25)

in the strong sense on the dense set U0.

Proof 1. Let s, t ∈ R, � ∈ P f (L) and take any element B ∈ U�. As a preliminary
step, we prove that {δs ◦ τ (L)

t,s (B)}L∈R+
0

converges to δs ◦ τt,s (B), as L → ∞.
In particular, τt,s (U0) ⊂ Dom(δs). By using similar arguments as in the proof of
Theorem 5.1 (ii), it suffices to study the limit of {δs ◦ τ̃ (L)

t,s (B)}L∈R+
0
, see (5.10).

Similar to (4.23), from (5.6)–(5.11) and straightforward computations, for any
L1, L2 ∈ R

+
0 with � ⊂ �L1 � �L2 ,

∥∥∥δs ◦
(
τ̃ (L2)

t,s (B) − τ̃ (L1)
t,s (B)

)∥∥∥
U

(5.26)

≤
∫ max{s,t}

min{s,t}

∑

Z∈P f (L)

∥∥∥∥
[
τ̂ (L1,L2)

s,α (�(s)
Z ), B(L1,L2)

α , τ (L1)
t,α (B̃t )

](3)
∥∥∥∥
U

dα ,

where B̃t
.= Vt,s(V�)BVs,t (V�),

τ̂ (L1,L2)
s,α (B)

.= Vs,α(V�L2 \�L1
)τ (L2)

s,α (B)Vα,s(V�L2 \�L1
) , B ∈ U , s,α ∈ R ,

(5.27)
and

B(L1,L2)
α

.=
∑

Z⊆�L2 , Z∩(�L2 \�L1 )�=∅
Vα,s(V�L2 \�L1

)�ZVs,α(V�L2 \�L1
) ∈ U+ ∩ U�L2

.

Using (5.12), observe that, for all Z ⊆ �L2 and α, s ∈ R,

Vα,s(V�L2 \�L1
)�ZVs,α(V�L2 \�L1

) ∈ U+ ∩ UZ (5.28)

with ∥∥Vα,s(V�L2 \�L1
)�ZVs,α(V�L2 \�L1

)
∥∥
U = ‖�Z‖U . (5.29)

Similarly, for all t ∈ R,

B̃t ∈ U� and ‖B̃t‖U = ‖B‖U . (5.30)

In order to bound the sum

∑

Z∈P f (L)

[
τ̂ (L1,L2)

s,α (�(s)
Z ), B(L1,L2)

α , τ (L1)
t,α (B̃t )

](3)

(5.31)

http://dx.doi.org/10.1007/978-3-319-45784-0_4
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of multi-commutators of order three we represent it as a convenient series, whose
summability is uniform w.r.t. L1, L2 ∈ R

+
0 (� ⊂ �L1 � �L2 ). To this end, first

develop τ (L1)
t,α (B̃t ) as a telescoping series: Let m0 ∈ N0 be the smallest integer such

that � ⊂ �m0 . Then, similar to Lemma 4.9 (autonomous case) and as explained in
the proof of Theorem 5.4, for any α, t ∈ R and L1 ∈ R

+
0 ,

τ (L1)
t,α (B̃t ) =

∞∑

n=m0

B̃t,α(n) .

Here, for all integers n ≥ m0, B̃t,α(n) ∈ U�n where ‖B̃t,α(m0)‖U = ‖B‖U (see
(5.30)) and, for all n ∈ N with n > m0,

‖B̃t,α(n)‖U ≤ 2‖B‖U ‖�‖∞ |t − α| e4D|t−α|‖�‖∞ un,m0

(1 + n)ς
, (5.32)

by Theorem 5.1 (ii) and Assumption (4.56). Of course, B̃t,α(n) = 0 for any integer
n > L1 and α, t ∈ R because {τ (L1)

t,s }s,t∈R is a finite-volume dynamics. Meanwhile,
because of (5.12), Theorem 5.4 holds by replacing {τt,s}s,t∈R with {τ̂ (L1,L2)

t,s }s,t∈R at
sufficiently large L1, L2 ∈ R

+
0 (�L1 � �L2 ). Using this together with (5.23) and

(5.24) for � = �(t), Eqs. (5.28)–(5.30), Theorem 4.11, as well as the assumptions
ν > ς + 1 and ς > 2d,

∞∑

n0=m0

∑

x2∈L

∑

m2∈N0

∑

Z2∈D(x2,m)

∑

x1∈L

∑

m1∈N0

∑

Z1∈D(x1,m)

(5.33)

∥∥∥∥
[
τ̂ (L1,L2)

s,α (�(s)
Z2

),Vα,s(V�L2 \�L1
)�Z1Vs,α(V�L2 \�L1

), B̃t,α(n)
](3)

∥∥∥∥
U

≤ D ‖B‖U
∥∥u·,m0

∥∥
�1(N)

⎛

⎝
∑

m1∈N0

(m1 + 1)ς−υ

⎞

⎠

×
∑

m2∈N0

(m2 + 1)−υ

⎛

⎝
∑

n2∈N
un2,m2 + (m2 + 1)ς

⎞

⎠ < ∞ .

Similar to (5.32) and because (5.23) and (5.24) with � = �(t) hold uniformly for
t ∈ R, the strictly positive constant D ∈ R

+ is uniformly bounded for s, t,α on
compacta and L1, L2 ∈ R

+
0 (� ⊂ �L1 � �L2 ). The last sum is an upper bound of

the integrand of the r.h.s. of (5.26). Indeed, we deduce from (4.79) that

B(L1,L2)
α =

∑

x∈�L2 \�L1

∑

m∈N0

∑

Z⊆�L2 , Z∈D(x,m)

1

|Z ∩ �L2\�L1 |
Vα,s(V�L2 \�L1

)�ZVs,α(V�L2 \�L1
)
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and

∑

Z∈P f (L), Z∩�L2 �=∅
τ̂ (L1,L2)

s,α (�(s)
Z ) =

∑

x∈�L2

∑

m∈N0

∑

Z∈D(x,m)

1

|Z ∩ �L2 |
τ̂ (L1,L2)

s,α (�(s)
Z ) .

[Compare this last sum with (5.31) by using (5.28) and (5.30) to restrict the whole
sum over Z ∈ P f (L) to finite sets Z so that Z ∩ �L2 �= ∅.]

As a consequence, for any s, t ∈ R and B ∈ U0, we infer from (5.26), (5.33),
and Lebesgue’s dominated convergence theorem that {δs ◦ τ̃ (L)

t,s (B)}L∈R+
0
, and hence

{δs ◦ τ (L)
t,s (B)}L∈R+

0
, are Cauchy nets within the complete space U . By Corollary 5.2,

{τ (L)
t,s }L∈R+

0
converges strongly to τt,s for every s, t ∈ R. Recall meanwhile that

the operator δs is the closed operator described in Theorem 4.8 for the interaction
�(s) ∈ W and the potential V(s) at fixed s ∈ R. Therefore, τt,s (B) ∈ Dom(δs) and
the family {δs ◦ τ (L)

t,s (B)}L∈R+
0

converges to δs ◦ τt,s (B), i.e.,

lim
L→∞

∥∥∥δs ◦
(
τt,s (B) − τ (L)

t,s (B)
)∥∥∥

U
= 0 . (5.34)

In particular, τt,s (U0) ⊂ Dom(δs).
Now, by using (5.1) one gets that, for L ∈ R

+
0 , s, t, h ∈ R, h �= 0, and B ∈ U0,

∥∥|h|−1 (
τt,s+h (B) − τt,s (B)

) + δs ◦ τt,s (B)
∥∥
U

≤
∥∥∥δs ◦

(
τt,s (B) − τ (L)

t,s (B)
)∥∥∥

U
(5.35)

+ sup
α∈[s−|h|,s+|h|]

∥∥∥δ(L)
s ◦ τ (L)

t,s (B) − δ(L)
α ◦ τ (L)

t,α (B)
∥∥∥
U

+
∥∥∥
(
δ(L)

s − δs
) ◦ τ (L)

t,s (B)
∥∥∥
U

+2 |h|−1 sup
α∈[s−|h|,s+|h|]

∥∥∥τt,α (B) − τ (L)
t,α (B)

∥∥∥
U

.

We proceed by estimating the four terms in the upper bound of (5.35). The first one
is already analyzed, see (5.34). So, we start with the second. If nothing is explicitly
mentioned, the parameters L ∈ R

+
0 , s, t, h ∈ R, � ∈ P f (L) and B ∈ U� are fixed.

2. For any α ∈ R, observe that

∥∥∥δ(L)
s ◦ τ (L)

t,s (B) − δ(L)
α ◦ τ (L)

t,α (B)
∥∥∥
U

≤
∥∥∥
(
δ(L)

s − δ(L)
α

) ◦ τ (L)
t,α (B)

∥∥∥
U

(5.36)

+
∥∥∥δ(L)

s ◦
(
τ (L)

t,s − τ (L)
t,α

)
(B)

∥∥∥
U

.

By using first (4.27) for the interaction �(s) and potential V(s) and then Lieb–
Robinson bounds (Theorem 5.1 (i)) in the same way as (4.35), one verifies that,
for any α ∈ R and B �= 0,

http://dx.doi.org/10.1007/978-3-319-45784-0_4
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∥∥∥
(
δ(L)

s − δ(L)
α

) ◦ τ (L)
t,α (B)

∥∥∥
U

2 ‖B‖U (5.37)

≤ ∥∥�(s) − �(α)
∥∥
W e2D|t−α|‖�‖∞|�| ‖F‖1,L +

∑

x∈�

‖V(α)
{x} − V(s)

{x}‖U

+D+1
(
e2D|t−α|‖�‖∞ − 1

) ∑

x∈L\�
‖V(α)

{x} − V(s)
{x}‖U

∑

y∈�

F (|x − y|) .

By assumption, � ∈ C(R;W), {V(t)
{x}}x∈L,t∈R is a bounded family in U , and V{x} ∈

C (R;U) for any x ∈ L. So, by Lebesgue’s dominated convergence theorem, it
follows from (5.37) that

lim
h→0

sup
α∈[s−|h|,s+|h|]

∥∥∥
(
δ(L)

s − δ(L)
α

) ◦ τ (L)
t,α (B)

∥∥∥
U

= 0 . (5.38)

On the other hand, by (5.1),

sup
α∈[s−|h|,s+|h|]

∥∥∥δ(L)
s ◦

(
τ (L)

t,s − τ (L)
t,α

)
(B)

∥∥∥
U

≤
∫ s+|h|

s−|h|

∥∥∥δ(L)
s ◦ δ(L)

α ◦ τ (L)
t,α (B)

∥∥∥
U

dα ,

(5.39)
where

∥∥∥δ(L)
s ◦ δ(L)

α ◦ τ (L)
t,α (B)

∥∥∥
U

≤
∑

Z1,Z2∈P f (L)

∥∥∥∥
[
�(s)

Z1
, �(α)

Z2
, τ (L)

t,α (B)
](3)

∥∥∥∥
U

(5.40)

+
∑

Z∈P f (L)

∑

x∈L

∥∥∥∥
[
�(s)

Z ,V(α)
{x} , τ

(L)
t,α (B)

](3)
∥∥∥∥
U

+
∑

Z∈P f (L)

∑

x∈L

∥∥∥∥
[
V(s)

{x}, �
(α)
Z , τ (L)

t,α (B)
](3)

∥∥∥∥
U

+
∑

x,y∈L

∥∥∥∥
[
V(s)

{x},V
(α)
{y} , τ

(L)
t,α (B)

](3)
∥∥∥∥
U

.

Similar to (5.33), we use Theorems 4.11 (i) and 5.4 for k = 2 to derive an upper
bound for the r.h.s. of (5.40), uniformly w.r.t. large L ∈ R

+
0 and α ∈ [s − 1, s + 1].

By (5.39), it follows that

lim
h→0

sup
α∈[s−|h|,s+|h|]

∥∥∥δ(L)
s ◦

(
τ (L)

t,s − τ (L)
t,α

)
(B)

∥∥∥
U

= 0 .

Combined with (5.36) and (5.38) this yields

lim
h→0

sup
α∈[s−|h|,s+|h|]

∥∥∥δ(L)
s ◦ τ (L)

t,s (B) − δ(L)
α ◦ τ (L)

t,α (B)
∥∥∥
U

= 0 . (5.41)

http://dx.doi.org/10.1007/978-3-319-45784-0_4
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3. Similar to (4.35), one gets from Lieb–Robinson bounds (Theorem 5.1 (i)) that

∥∥∥
(
δ(L)

s − δs
) ◦ τ (L)

t,s (B)
∥∥∥
U

≤ ‖�‖∞ e2D|t−s|‖�‖∞
∑

y∈�c
L

∑

x∈�

F (|x − y|) ,

which combined with (4.36) gives

lim
L→∞

∥∥∥
(
δ(L)

s − δs
) ◦ τ (L)

t,s (B)
∥∥∥
U

= 0 . (5.42)

4. In the limit h → 0, we take Lh → ∞ such that

lim
h→0

|h|−1 sup
α∈[s−|h|,s+|h|]

∥∥∥τt,α (B) − τ (Lh)
t,α (B)

∥∥∥
U

= 0 . (5.43)

This is possible because τ (L)
t,s (B) converges to τt,s (B), uniformly for t, s on com-

pacta, by Corollary 5.2. We eventually combine (5.34)–(5.43) with Inequality (5.35)
to arrive at the assertion. �

Note that uniqueness of the solution of the non-autonomous evolution equation (5.25)
cannot be proven as done for the proof of uniqueness in Corollary 5.2 (iii). Indeed,
take any family {τ̂t,s}s,t∈R of bounded operators on U satisfying (5.25) on U0. Then,
as before in the proof of Corollary 5.2 (iii), for any B ∈ U0, L ∈ R

+
0 and s, t ∈ R,

τ (L)
t,s (B) − τ̂t,s (B) =

∫ t

s
τ (L)
α,s ◦ (

δ(L)
α − δα

) ◦ τ̂t,α (B) dα , (5.44)

by using (5.2). However, it is not clear this time whether the norm

∥∥τ (L)
α,s ◦ (

δ(L)
α − δα

) ◦ τ̂t,α (B)
∥∥
U = ∥∥(

δα − δ(L)
α

) ◦ τ̂t,α (B)
∥∥
U

vanishes, as L → ∞, even if (4.29) for δα and δ(L)
α holds true, because τ̂t,α (B) ∈

Dom(δα) can be outside U0. The strong convergence of δ(L)
α to δα on some core of δα

does not imply, in general, the strong convergence on any core of δα. The equality
(5.44) with τt,s, δs replacing τ (L)

t,s , δ(L)
s is also not clear because (5.13) is only known

to hold true on U0 and a priori not on the whole domain Dom(δα) of δα.
The non-autonomous evolution equation (5.22) of Theorem 5.5 is not parabolic

because the symmetric derivation δt , t ∈ R, is generally not the generator of an ana-
lytic semigroup. Note also that no Hölder continuity condition is imposed on {δt }t∈R,
like in the class of parabolic evolution equations introduced in [AT, Hypotheses I-II].
See also [S] or [P, Sect. 5.6.] for more simplified studies.

In fact, (5.22) is rather related to Kato’s hyperbolic evolution equations [K2, K3,
K4]. The so-called Kato quasi–stability is satisfied by the family of generators {δt }t∈R
because they are always dissipative operators, by Lemma 4.5. {δt }t∈R is also strongly
continuous on the dense set U0, which is a common core of all δt , t ∈ R. However,

http://dx.doi.org/10.1007/978-3-319-45784-0_4
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in general, even for finite range interactions � ∈ W , the strongly continuous two-
parameter family {τt,s}s,t∈R does not conserve the dense setU0, i.e., τt,s (U0) � U0 for
any s �= t . In some specific situations one can directly show that the completion of
the core U0 w.r.t. a conveniently chosen norm defines a so-called admissible Banach
spaceY ⊃ U0 of the generator at any time, which satisfies further technical conditions
leading to Kato’s hyperbolic conditions [K2, K3, K4]. See also [P, Sect. 5.3.] and
[BB, Sect. VII.1], which is used in the proof of Theorem 5.7 (i). Nevertheless, the
existence of such a Banach space Y is a priori unclear in the general case treated in
Theorem 5.5. See for instance the uniqueness problem explained just above.

Note that we only assume in Theorem 5.5 some polynomial decay for the interac-
tion with (4.7) and (5.23)–(5.24) (uniformly in time). Recall that these assumptions
are fulfilled for any interaction � ∈ W with (4.7), provided the parameter ε ∈ R

+ is
sufficiently large. In the case of exponential decays, stronger results can be deduced
from Lieb–Robinson bounds for multi-commutators. For the interested reader, we
give below one example, which is based on interactions � satisfying the following
condition:

• Exponential decay. Assume (4.57) and the existence of constants υ > ς and
D ∈ R

+ such that

sup
x∈L

∑

�∈D(x,m)

‖��‖U ≤ De−υm , m ∈ N0 , (5.45)

while ∑

m∈N
Cme−(ς+υ)m < ∞ . (5.46)

Theorem 5.6 (Graph norm convergence and Gevrey vectors)
Let �

.= {�(t)}t∈R be a bounded family on W (i.e., ‖�‖∞ < ∞), {V(t)}t∈R a
collection of potentials, and B ∈ U0. For any x ∈ L and � ∈ P f (L), ��,V{x} ∈
C (R;U). Assume that (4.57) and (5.45)–(5.46) hold for � = �(t), uniformly in
time.
(i) Graph norm convergence. As L → ∞, τ (L)

t,s (B) converges, uniformly for s, t
on compacta, to τt,s(B) within the normed space (Dom(δm

s ), ‖·‖δm
s
), where, for all

m ∈ N0, ‖·‖δm
s

stands for the graph norm of the densely defined operator δm
s .

(ii) Gevrey vectors. If {V(t)
{x}}x∈L,t∈R is a bounded family on U then, for any T ∈ R

+
0 ,

there exist r ≡ rd,T,�,V,F ∈ R
+ and D ≡ DT,�,V ∈ R

+ such that, for all s, t ∈
[−T, T], m0 ∈ N0 and B ∈ U�m0

,

∑

m∈N

rm

(m!)d

∥∥δm
s ◦ τt,s(B)

∥∥
U ≤ Dem0ς ‖B‖U .

Proof (i) The case m = 0 follows from Corollary 5.2. Let m ∈ N and B ∈ U0.
Similar to (5.26), for any sufficiently large L1, L2 ∈ R

+
0 , �L1 � �L2 ,

http://dx.doi.org/10.1007/978-3-319-45784-0_4
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http://dx.doi.org/10.1007/978-3-319-45784-0_4


78 5 Lieb–Robinson Bounds for Non-autonomous Dynamics

∥∥∥δm
s ◦

(
τ̃ (L2)

t,s (B) − τ̃ (L1)
t,s (B)

)∥∥∥
U

≤
∫ max{s,t}

min{s,t}

∑

Z1,...,Zm∈P f (L)

∥∥∥
[
τ̂ (L1,L2)

s,α (�
(s)
Zm

), . . . , τ̂ (L1,L2)
s,α (�

(s)
Z1

),

, B(L1,L2)
α , τ (L1)

t,α (B̃t )
](m+2)

∥∥∥∥
U

dα , (5.47)

see (5.27). From a straightforward generalization of (5.33) for multi-commutators
of degree m + 2 and the same kind of arguments used in point 1. of the proof of
Theorem 5.5, the r.h.s. of the above inequality tends to zero in the limit of large
L1, L2 ∈ R

+
0 (�L1 � �L2 ). This holds for every m ∈ N because the interaction has,

by assumption, exponential decay, see (4.57) and (5.45)–(5.46).
Consequently, {δm

s ◦ τ̃ (L)
t,s (B)}L∈R+

0
, and hence {δm

s ◦ τ (L)
t,s (B)}L∈R+

0
, are Cauchy

nets in U for any fixed s, t ∈ R and m ∈ N. At m = 0, the limit is τt,s(B). As the
operator δs is closed, by induction, for any m ∈ N and s, t ∈ R, τt,s(B) ∈ Dom(δm

s )

and δm
s ◦ τ (L)

t,s (B) converges to δm
s ◦ τt,s (B), as L → ∞.

(ii) For any m ∈ N, B ∈ U0, and sufficiently large L ∈ R
+
0 ,

∥∥∥δm
s ◦ τ (L)

t,s (B)
∥∥∥
U

≤
m∑

�=0

∑

π∈S�,m

∑

xπ(�)∈L
· · ·

∑

xπ(m)∈L

∑

Z1∈P f (L)

· · ·
∑

Zπ(�)−1∈P f (L)

∑

Zπ(�)+1∈P f (L)

· · ·

· · ·
∑

Zπ(m)−1∈P f (L)

∑

Zπ(m)+1∈P f (L)

· · ·
∑

Zm∈P f (L)
∥∥∥
[
�

(s)
Z1

, . . . , �
(s)
Zπ(�)−1

,V(s)
{xπ(�)}, �

(s)
Zπ(�)+1

,

. . . , �(s)
Zπ(m)−1

,V(s)
{xπ(m)}, �

(s)
Zπ(m)+1

, . . . , �(s)
Zm

, τ (L)
t,s (B)

](m+1)
∥∥∥∥
U

,

with S�,m being defined by (4.49) for � ∈ {1, . . . , m}. For � = 0, we use here
the convention S0,m

.= ∅ and all sums involving the maps π in the r.h.s. of the
above inequality disappear in this case. Similar to (5.47), Lieb–Robinson bounds for
multi-commutators imply that, if B ∈ U�m0

, m0 ∈ N0, then the r.h.s. of the above
inequality is bounded by D(m!)drmem0ς‖B‖U , uniformly for s, t on compacta, where
r ≡ rd,T,�,V,F ∈ R

+ and D ≡ DT,�,V ∈ R
+. We omit the details. By Assertion (i),

the same bound thus holds for the norm ‖δm
s ◦ τt,s(B)‖U of the limiting vector. �

The assumptions of Theorem 5.6 are satisfied for interactions �(t) ∈ W with
(4.58). Note additionally that Theorem 5.6 for s = t shows that

U0 ⊆
⋂

s∈R,m∈N
Dom

(
δm

s

) ⊂ U .

http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
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In fact, U0 is a common core for {δs}s∈R and thus the intersection of domains

⋂

s∈R,m∈N
Dom

(
δm

s

) ⊂ U

is also a common core of {δs}s∈R. Observe that, at fixed s ∈ R, the dense space

Dom
(
δ∞

s

) .=
⋂

m∈N
Dom

(
δm

s

) ⊂ U

is always a core of δs . See, e.g., [EN, Chap. II, 1.8 Proposition].

5.3 Application to Response Theory

In the present subsection we extend to the time-dependent case the assertions of
Sect. 4.5. As previously discussed, these results can be proven, also in the non-
autonomous case, for more general (time-dependent) perturbations of the form (4.70).
See also proofs of Inequality (5.33) and Theorem 5.6. Similar to Sect. 4.5, the case
of perturbations considered below is the relevant one to study linear and non-linear
responses of interacting fermions to time-dependent external electromagnetic fields.

Let � ∈ W and V be a potential. [So, these objects do not depend on time.]
For any l ∈ R

+
0 , we consider a map (η, t) �→ W(l,η)

t from R
2 to the subspace of

self-adjoint elements of U�l . Like (4.68), we consider elements of the form

W(l,η)
t

.=
∑

x∈�l

∑

z∈L,|z|≤1

wx,x+z(η, t)a∗
x ax+z , (η, t) ∈ R

2, l ∈ R
+
0 , (5.48)

where {wx,y}x,y∈L are complex-valued functions of (η, t) ∈ R
2 with

wx,y (η, t) = wy,x (η, t) and wx,y(0, t) = 0 (5.49)

for all x, y ∈ L and (η, t) ∈ R
2. We assume that {wx,y(η, ·)}x,y∈L,η∈R is a family of

continuous and uniformly bounded functions (of time): There is K1 ∈ R
+ such that

sup
x,y∈L

sup
η,t∈R

∣∣wx,y(η, t)
∣∣ ≤ K1 . (5.50)

The self-adjoint elements W(l,η)
t of U are related to perturbations of dynamics caused

by time-dependent external electromagnetic fields that vanish outside the box �l .
By the above conditions on wx,y , for all l, η ∈ R, t �→ W(l,η)

t is a continuous map
from R to B(U).

http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
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We now denote the perturbed dynamics by the family {τ̃ (l,η)
t,s }s,t∈R of ∗-

automorphisms generated by the symmetric derivation

δ
(l,η)
t

.= δ + i
[
W(l,η)

t , ·
]

, l ∈ R
+
0 , η ∈ R , (5.51)

in the sense of Corollary 5.2. [This family of ∗-automorphisms has nothing to do
with (5.10).] Recall that δ is the symmetric derivation of Theorem 4.8. The last term
in the r.h.s. of (5.51) is clearly a perturbation of δ which depends continuously on
time, in the sense of the operator norm on B(U). It is easy to prove in this case that
{τ̃ (l,η)

t,s }s,t∈R is the unique fundamental solution of (5.18). It means that {τ̃ (l,η)
t,s }s,t∈R is

strongly continuous, conserves the domain

Dom(δ
(l,η)
t ) = Dom(δ) ,

satisfies

τ̃
(l,η)
t,· (B) ∈ C1(R; (Dom(δ), ‖·‖U )) , τ̃ (l,η)

·,s (B) ∈ C1(R; (Dom(δ), ‖·‖U ))

for all B ∈ Dom(δ), and solves the abstract Cauchy initial value problem (5.18) on
Dom(δ).

To explicitly verify this, define the family {Vt,s}s,t∈R ⊂ U of unitary elements by
the absolutely summable series

Vt,s
.= 1U+

∑

k∈N
i k

∫ t

s
ds1 · · ·

∫ sk−1

s
dskW(l,η)

sk ,sk
· · ·W(l,η)

s1,s1
, (5.52)

where
W(l,η)

t,s
.= τt (W(l,η)

s ) ∈ Dom(δ) , l ∈ R
+
0 , η, s, t ∈ R .

By using this unitary family, we obtain the following additional properties of the
perturbed dynamics:

Theorem 5.7 (Properties of the perturbed dynamics)
Let � ∈ W , l ∈ R

+
0 , η, η0 ∈ R, and V be a potential. Assume Conditions (5.49) and

(5.50) with {wx,y(η, ·)}x,y∈L,η∈R being a family of continuous functions (of time).

Then, the family {τ̃ (l,η)
t,s }s,t∈R of ∗-automorphisms has the following properties:

(i) Non-autonomous evolution equation. It is the unique fundamental solution of

∀s, t ∈ R : ∂s τ̃
(l,η)
t,s = −δ(l,η)

s ◦ τ̃
(l,η)
t,s , τ̃

(l,η)
t,t = 1U .

(ii) Interaction picture. For any s, t ∈ R,

τ̃
(l,η)
t,s (B) = τ−s

(
Vt,sτt (B)V∗

t,s

)
, B ∈ U .

http://dx.doi.org/10.1007/978-3-319-45784-0_4
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(iii) Dyson–Phillips series. For any s, t ∈ R and B ∈ U ,

τ̃
(l,η)
t,s (B) = τ̃

(l,η0)
t,s (B) +

∑

k∈N
i k

∫ t

s
ds1 · · ·

∫ sk−1

s
dsk (5.53)

[
X(l,η0,η)

sk ,s,sk
, . . . ,X(l,η0,η)

s1,s,s1
, τ̃

(l,η0)
t,s (B)

](k+1)

.

Here, the series absolutely converges and

X(l,η0,η)
t,s,α

.= τ̃
(l,η0)
t,s

(
W(l,η)

α − W(l,η0)
α

)
, l ∈ R

+
0 , α, s, t, η0, η ∈ R . (5.54)

Proof Before starting, note that Assertion (i) cannot be deduced from Theorem 5.5
because the cases for which (4.10) holds for some time t ∈ R is excluded by assump-
tions of that theorem.

1. Assertion (i) could be deduced from [K2, Theorem 6.1]. Here, we use [BB, The-
orem 88] because it is proven from three conditions (B1–B3) that are elementary to
verify:

B1 (Kato quasi-stability). For any t ∈ R, the generator δ
(l,η)
t is conservative,

by Lemma 4.5, and Condition B1 of [BB, Sect. 7.1] is clearly satisfied for
λ1, . . . ,λn ∈ R

+, even with non-ordered and all real times t1, . . . , tn ∈ R.
Indeed, {δ(l,η)

t }t∈R, l ∈ R
+
0 , generate strongly continuous groups, and not only

C0 -semigroups.
B2 (Domains and continuity). {wx,y(η, ·)}x,y∈L,η∈R is by assumption a family of

continuous functions (of time) and thus, the map t �→ [W(l,η)
t , ·] from R to B(U)

is continuous in operator norm. It follows that Condition B2 of [BB, Sect. 7.1]
holds with the Banach space

Y .= (Dom(δ), ‖ · ‖δ) , (5.55)

‖ · ‖δ being the graph norm of the closed operator δ.
B3 (Intertwining condition). Since δ is a symmetric derivation with core U0 (Theo-

rem 4.8 (ii)) and W(l,η)
t ∈ U�l , for any l ∈ R

+
0 , η ∈ R, t ∈ R and B ∈ Dom(δ),

δ
([

W(l,η)
t , B

])
−

[
W(l,η)

t , δ (B)
]

=
[
δ
(
W(l,η)

t

)
, B

]
∈ U

while, by using (4.28), one verifies that

∥∥∥
[
δ
(
W(l,η)

t

)
, B

]∥∥∥
U

≤ 4‖B‖U‖W(l,η)
t ‖U

×
(

|�l |F (0) ‖�‖W +
∑

x∈�l

∥∥V{x}
∥∥
U

)
.

http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
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In particular, Condition B3 of [BB, Sect. 7.1] holds true with � = δ.

Therefore, similar to [BB, Theorem 70 (v)], we infer from an extension of [BB,
Theorem 88], which takes into account the fact that B1 holds with non-ordered real
times (see, e.g., the proof of [BB, Lemma 89]), the existence of a unique solution
{Ws,t }s,t∈R of the non-autonomous evolution equation

∀s, t ∈ R : ∂sWs,t = −δ(l,η)
s ◦ Ws,t , Wt,t = 1U , (5.56)

in the strong sense on Dom(δ) ⊂ U . Here, {Ws,t }s,t∈R is an evolution family of B (U),
that is, a strongly continuous two-parameter family of bounded operators acting on
U that satisfies the cocycle (Chapman–Kolmogorov) property

∀t, r, s ∈ R : Ws,t = Ws,rWr,t .

2. Note now that the family {Vt,s}s,t∈R was already studied in the proof of [BPH1,
Theorem 5.3] for general closed symmetric derivations δ on U : The series (5.52)
absolutely converges in the Banach space Y (5.55). Additionally, for any s, t ∈ R,

∂tVt,s = iVt,sW
(l,η)
t,t and ∂sVt,s = −iW(l,η)

s,s Vt,s

hold in the sense of the Banach space Y , and thus also in the sense of U . Therefore,
for any s, t ∈ R,

Ws,t (B) = τ−s
(
Vt,sτt (B)V∗

t,s

)
, B ∈ U . (5.57)

To show this equality, use the fact that the r.h.s. of this equation defines an evolution
family that is a fundamental solution of (5.56), see [BPH1, Eqs. (5.24)–(5.26)].

3. Since {τt }t∈R is a group of ∗-automorphisms and {Vt,s}s,t∈R is a family of uni-
tary elements of U , we deduce from (5.57) that {Ws,t }s,t∈R is a collection of ∗-
automorphisms of the C∗-algebraU . We also infer from (5.57) that the two-parameter
evolution family {Ws,t }s,t∈R solves on Dom(δ) the abstract Cauchy initial value prob-
lem

∀s, t ∈ R : ∂tWs,t = Ws,t ◦ δ
(l,η)
t , Ws,s = 1U . (5.58)

The solution of (5.58) is unique in B(U), by Corollary 5.2 (iii). We thus arrive at
Assertions (i)–(ii) with the equality

τ̃
(l,η)
t,s = Ws,t , l ∈ R

+
0 , η, s, t ∈ R . (5.59)

4. For any l ∈ R
+
0 , s, t ∈ R, η, η0 ∈ R, and B ∈ U , define
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τ̂
(l,η,η0)
t,s (B)

.= τ̃
(l,η0)
t,s (B) +

∑

k∈N
i k

∫ t

s
ds1 · · ·

∫ sk−1

s
dsk (5.60)

[
X(l,η0,η)

sk ,s,sk
, . . . ,X(l,η0,η)

s1,s,s1
, τ̃

(l,η0)
t,s (B)

](k+1)

.

This series is well-defined and absolutely convergent. Indeed, because of (5.50),
there is a constant D ∈ R

+ such that, for all l ∈ R
+
0 and η, η0 ∈ R,

sup
t∈R

∥∥δ
(l,η)
t − δ

(l,η0)
t

∥∥
B(U)

< D .

It follows that

∥∥τ̂
(l,η,η0)
t,s

∥∥
B(U)

≤ eD(t−s) , l ∈ R
+
0 , s, t ∈ R, η, η0 ∈ R . (5.61)

See, e.g., [P, Chap. 5, Theorems 2.3 and 3.1]. Now, for any l ∈ R
+
0 , s, t ∈ R, η, η0 ∈

R, and B ∈ U , note that (5.60) yields

τ̂
(l,η,η0)
t,s (B) = τ̃

(l,η0)
t,s (B) + i

∫ t

s
ds1τ̂

(l,η,η0)
s1,s

([
W(l,η)

s1
− W(l,η0)

s1
, τ̃

(l,η0)
t,s1

(B)
])

from which we deduce that {τ̂ (l,η)
t,s }s,t∈R solves (5.13), by (5.58), (5.59), (5.61) and

continuity of the maps t �→ W(l,η)
t and t �→ τ̃

(l,η0)
t,s (B) from R to U . Hence, by

Corollary 5.2 (iii), τ̂
(l,η,η0)
t,s = τ̃

(l,η)
t,s for any l ∈ R

+
0 , s, t ∈ R and η, η0 ∈ R. �

Now, by assuming the uniform Lipschitz continuity of the family

{wx,y(·, t)}x,y∈L,t∈R

of functions (of η), i.e., for all parameters η, η0 ∈ R,

sup
x,y∈L

sup
t∈R

∣∣wx,y(η, t) − wx,y(η0, t)
∣∣ ≤ K1 |η − η0| , (5.62)

we can extend Theorem 4.15 to the non-autonomous case.
To this end, for some interaction � with energy observables U�

�L
defined by (4.73)

we study the increment (4.125), which now equals

T(l,η,L)
t,s

.= τ̃
(l,η)
t,s (U�

�L
) − τt,s(U

�
�L

) , l, L ∈ R
+
0 , s, t, η ∈ R . (5.63)

By (5.49), note again that T(l,0,L)
t,s = 0. Exactly like in the proof of Theorem 4.15, we

prove a version of Taylor’s theorem for increments in the non-autonomous case:

http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
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Theorem 5.8 (Taylor’s theorem for increments)
Let l, T ∈ R

+
0 , s, t ∈ [−T, T], η, η0 ∈ R, � ∈ W , and V be any potential. Assume

(4.56) with ς > d, (5.49)–(5.50) and (5.62), with {wx,y(η, ·)}x,y∈L,η∈R being a family
of continuous functions (of time). Take an interaction � satisfying (4.80) with vm =
(1 + m)ς . Then:
(i) The map η �→ T(l,η,L)

t,s converges uniformly on R, as L → ∞, to a continuous

function T(l,η)
t,s of η and

T(l,η)
t,s − T(l,η0)

t,s =
∑

�∈P f (L)

i
∫ t

s
ds1τ̃

(l,η)
s1,s

([
W(l,η)

s1
− W(l,η0)

s1
, τ̃

(l,η0)
t,s1

(��)
])

.

(ii) For any m ∈ N satisfying d(m + 1) < ς ,

T(l,η)
t,s − T(l,η0)

t,s

=
m∑

k=1

∑

�∈P f (L)

i k
∫ t

s
ds1 · · ·

∫ sk−1

s
dsk

[
X(l,η0,η)

sk ,s,sk
, . . . ,X(l,η0,η)

s1,s,s1
, τ̃

(l,η0)
t,s (��)

](k+1)

+
∑

�∈P f (L)

im+1
∫ t

s
ds1 · · ·

∫ sm

s
dsm+1

τ̃ (l,η)
sm+1,s

([
W(l,η)

sm+1
− W(l,η0)

sm+1
,X(l,η0,η)

sm ,sm+1,sm
, . . . ,X(l,η0,η)

s1,sm+1,s1
, τ̃

(l,η0)
t,sm+1

(��)
](m+2)

)
.

(iii) All the above series in � absolutely converge: For any m ∈ N satisfying d(m +
1) < ς , k ∈ {1, . . . , m}, and {s j }m+1

j=1 ⊂ [−T, T],
∑

�∈P f (L)

∥∥∥∥
[
X(l,η0,η)

sk ,s,sk
, . . . ,X(l,η0,η)

s1,s,s1
, τ̃

(l,η0)
t,s (��)

](k+1)
∥∥∥∥
U

≤ D |�l | |η − η0|k

and

∑

�∈P f (L)

∥∥∥∥τ̃ (l,η)
sm+1,s

([
W(l,η)

sm+1
− W(l,η0)

sm+1
,X(l,η0,η)

sm ,sm+1,sm
, . . . ,X(l,η0,η)

s1,sm+1,s1
, τ̃

(l,η0)
t,sm+1

(��)
](m+2)

)∥∥∥∥
U

≤ D |�l | |η − η0|m+1

for some constant D ∈ R
+ depending only on m, d, T, �, K1,�,F. The last asser-

tion also holds for m = 0.

Proof By Theorems 4.11 and 5.4, Corollary 4.12 holds in the non-autonomous
case. Moreover, by Lemmas 5.3 and 4.9 is also satisfied in the non-autonomous case.
Therefore, the proof is an easy extension of the proof of Theorem 4.15. �

http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
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If the interaction has exponential decay, we show that the map η �→ |�l |−1T(l,η)
t,s

from R to U is bounded in the sense of Gevrey classes, uniformly w.r.t. l ∈ R
+
0 . This

corresponds to Theorem 4.16 in the non-autonomous case:

Theorem 5.9 (Increments as Gevrey maps)
Let l, T ∈ R

+
0 , s, t ∈ [−T, T], � ∈ W , and V be any potential. Assume (4.57) and

take an interaction � satisfying (4.80) with vm = emς . For all x, y ∈ L, assume
further the real analyticity of the map η �→ wx,y(η, ·) from R to the Banach space
C(R; C), which is equipped with the supremum norm, as well as the existence of
r ∈ R

+ such that

K2
.= sup

x,y∈L
sup
m∈N

sup
η,t∈R

rm∂m
η wx,y(η, t)

m! < ∞ .

(i) Smoothness. As a function of η ∈ R, T(l,η)
t,s ∈ C∞(R;U) and for any m ∈ N,

∂m
η T

(l,η)
t,s =

m∑

k=1

∑

�∈P f (L)

i k
∫ t

s
ds1 · · ·

∫ sk−1

s
dsk

∂m
ε

[
X(l,η,η+ε)

sk ,s,sk
, . . . ,X(l,η,η+ε)

s1,s,s1
, τ̃

(l,η)
t,s (��)

](k+1)
∣∣∣∣
ε=0

.

The above series in � are absolutely convergent.
(ii) Uniform boundedness of the Gevrey norm of density of increments. There exist
r̃ ≡ r̃d,T,�,K2,F ∈ R

+ and D ≡ DT,�,K2,� ∈ R
+ such that, for all l ∈ R

+
0 , η ∈ R and

s, t ∈ [−T, T],
∑

m∈N

r̃m

(m!)d sup
l∈R+

0

∥∥∥|�l |−1 ∂m
η T

(l,η)
t,s

∥∥∥
U

≤ D .

Proof Like for Theorem 5.8, the assertions are easily proven by extending the proof
of Theorem 4.16 to the non-autonomous case. �

This theorem has important consequences in terms of increment density limit

lim
l→∞|�l |−1ρ(T(l,η)

t,s )

at any fixed s, t ∈ R and state ρ ∈ U∗. This limit is to be understood as an accumu-
lation point of the bounded net {|�l |−1ρ(T(l,η)

t,s )}l>0:

Corollary 5.10 (Increment density limit)
Let ρ ∈ U∗. Under the conditions of Theorem5.9, there is a subsequence {ln}n∈N ⊂
R

+
0 such that, for all s, t ∈ [−T, T], the following limit exists

η �→ gt,s (η)
.= lim

n→∞|�ln |−1ρ(T(ln ,η)
t,s )

http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
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and defines a smooth function gt,s ∈ C∞(R). Furthermore, there exist r̃ ≡
r̃d,T,�,K2,F ∈ R

+ and D ≡ DT,�,K2,� ∈ R
+ such that, for all η ∈ R and

s, t ∈ [−T, T],
∑

m∈N

r̃m

(m!)d

∣∣∂m
η gt,s (η)

∣∣ ≤ D .

Proof Let T ∈ R
+
0 . By Theorem 5.8 (i) for η0 = 0 together with (5.49) and Corollary

5.2 (ii),

sup
l∈R+

0

sup
η∈R

sup
s,t∈[−T,T]

{
|�l |−1ρ(T(l,η)

t,s )
}

< ∞ . (5.64)

Furthermore, we infer from Theorem 5.9 that, for any m ∈ N,

sup
l∈R+

0

sup
η∈R

sup
s,t∈[−T,T]

{
|�l |−1ρ(∂m

η T
(l,η)
t,s )

}
< ∞ . (5.65)

By (5.64) and (5.65), the assertions are consequences of Theorem 5.9 combined
with the mean value theorem and the (Arzelà–) Ascoli theorem [Ru, Theorem A5].
Indeed, {ln}n∈N ⊂ R

+
0 is taken as a so-called diagonal sequence ln = l(n)

n of a family
{l(m)

n }n∈N, m ∈ N0, of sequences in R
+
0 such that, for all m ∈ N0, the m–th derivative

|�ln |−1∂m
η T

(l(m)
n ,η)

t,s uniformly converges as n → ∞. With this choice,

∂m
η gt,s (η) = lim

n→∞|�ln |−1ρ(∂m
η T

(ln ,η)
t,s ) .

�

From the above corollary, at dimension d = 1 and for s, t on compacta, the incre-
ment density limit gt,s ∈ C∞(R) defines a real analytic function. As a consequence,
the increment density limit is never zero for η outside a discrete subset of R, unless
gt,s is identically vanishing for all η ∈ R.

This mathematical property refers to a physical one. It reflects a generic alternative
between either strictly positive or identically vanishing heat production density, at
macroscopic scale, in presence of non-vanishing external electric fields. Indeed, by
taking � = � in Theorem 5.9, T(l,η)

t,s is related to the heat produced by the presence
of an electromagnetic field, encoded in W(l,η)

t . If we use cyclic processes, which
means here that W(l,η)

t = 0 outside some compact set [t0, t1] ⊂ R, then the KMS
state � ∈ U∗ applied on the energy increment T(l,η)

t1,t0 is the total heat production
(1st law of Thermodynamics) with increment density limit equal to gt1,t0(η). It is
non-negative, by the 2nd law of Thermodynamics. See [BP5] for more details on
the 1st and 2nd laws for the quantum systems considered here. Now, if gt1,t0(η) is
identically vanishing for all η ∈ R then it means that the external perturbation never
produces heat in the system, which is a very strong property. The latter is expected
to be the case, for instance, for superconductors driven by electric perturbations.
This kind of behavior should highlight major features of the system (like possibly
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broken symmetry). Hence, if the heat production density is not identically vanishing,
generically, it is strictly positive, at least at dimension d = 1, because of properties
of real analytic functions mentioned above.

For higher dimensions d > 1 and s, t on compacta, Corollary 5.10 implies that
the increment density limit gt,s ∈ C∞(R) belongs to the Gevrey class

Cω
d (R)

.=
{

f ∈ C∞(R) : sup
η∈R

∣∣∂m
η f (η)

∣∣ ≤ Dm (m!)d for any m ∈ N

}
.

If d > 1, the elements of Cω
d (R) are usually neither analytic nor quasi-analytic. In par-

ticular, functions of Cω
d (R) can have arbitrarily small support, while Cω

d (R) � Cω
d ′(R)

whenever d < d ′. Thus, the alternative above, which is related to the heat production
density in presence of external electric fields, does not follow from Corollary 5.10 for
higher dimensions d ≥ 2. However, note that, at least for the quasi-free dynamics
(also in the presence of a random potential), the heat production density is a real
analytic function of η at any dimension d ∈ N, at least for η near zero. This follows
from [BPH1, Theorem 3.4]. Therefore, the above alternative for the heat production
density may be true at any dimension, provided the interaction decays fast enough
in space (or is finite-range, in the extreme case).

Observe finally that if a Gevrey function f : R → R is invertible on some open
interval I ⊂ R then the inverse f −1 : f (I )→ R is again a Gevrey function. So,
the above theorem implies that, if the relation between applied field strength η and
the density of increment at l → ∞ is injective for some range of field strengths η,
then the applied field strength in that range is a Gevrey function of the density of
increment. For more details on Gevrey classes, see, e.g., [H].



Chapter 6
Applications to Conductivity Measures

6.1 Charged Transport Properties in Mathematics

Altogether, the classical theory of linear conductivity (including the theory of (Lan-
dau) Fermi liquids, see, e.g., [BP4] for a historical perspective) is more like a
makeshift theoretical construction than a smooth and complete theory. It is unsatis-
factory to use the Drude (or the Drude–Lorentz) model – which does not take into
account quantum mechanics – together with certain ad hoc hypotheses as a proper
microscopic explanation of conductivity. For instance, in [NS1, NS2, SE, YRMK],
the (normally fixed) relaxation time of the Drude model has to be taken as an effective
frequency–dependent parameter to fit with experimental data [T] on usual metals like
gold. In fact, as claimed in the famous paper [So, p. 505], “it must be admitted that
there is no entirely rigorous quantum theory of conductivity.”

Concerning AC–conductivity, however, in the last years significant mathematical
progress has been made. See, e.g., [KLM, KM1, KM2, BC, BPH1, BPH2, BPH3,
BPH4, BP5, BP6, W, DG] for examples of mathematically rigorous derivations of
linear conductivity from first principles of quantum mechanics in the AC–regime. In
particular, the notion of conductivity measure has been introduced for the first time
in [KLM], albeit only for non–interacting systems. These results indicate a physical
picture of the microscopic origin of Ohm and Joule’s laws which differs from usual
explanations coming from the Drude (Lorentz–Sommerfeld) model.

As electrical resistance of conductors may result from the presence of interactions
between charge carriers, an important issue is to tackle the interacting case. This is
first1 done in [BP5, BP6] for very general systems of interacting quantum particles
on lattices, including many important models of condensed matter physics like the
celebrated Hubbard model. This was out of scope of [KLM, KM1, KM2, DG, BPH1,

1With regard to interacting systems, explicit constructions of KMS states are obtained in the Ph.D.
thesis [W] for a one–dimensional model of interacting fermions with a finite range pair interaction.
But, the author studies in [W, Chap. 9] the linear response theory only for non–interacting fermions,
keeping in mind possible generalizations to interacting systems.

© The Author(s) 2017
J.-B. Bru and W. de Siqueira Pedra, Lieb-Robinson Bounds for Multi-commutators
and Applications to Response Theory, SpringerBriefs in Mathematical Physics,
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BPH2, BPH3, BPH4, W] which strongly rely on properties of quasi–free dynamics
and states.

The central issue in [BP5, BP6] is to get estimates on transport coefficients related
to electric conduction, which areuniformw.r.t. the random parameters and the volume
|�l | of the box �l where the electromagnetic field lives. This is crucial to get valuable
information on conductivity in the macroscopic limit l → ∞ and otherwise the
results presented in [BP5, BP6] would loose almost all their interest. To get such
estimates in the non–interacting case [BPH1, BPH2, BPH3, BPH4], we applied
tree–decay bounds on multi–commutators in the sense of [BPH1, Sect. 4]. The latter
are based on combinatorial results [BPH1, Theorem 4.1] already used before, for
instance in [FMU], and require the dynamics to be implemented by Bogoliubov
automorphisms. A solution to the issue for the interacting case is made possible
by the results of Sects. 4.5 and 5.3, which are direct consequences of the Lieb–
Robinson bounds for multi–commutators. Detailed discussions on the estimates for
the interacting case are found in [BP5]. See also Corollary 4.12, which is an extension
of the tree–decay bounds [BPH1, Sect. 4] to the interacting case.

In [BP6] the existence of macroscopic AC–conductivity measures for interacting
systems is derived from the 2nd law of thermodynamics, explained in Sect. 6.4. The
Lieb–Robinson bound for multi–commutators of order 3 implies that it is always
a Lévy measure, see [BP6, Theorems 7.1 and 5.2]. We also derive below other
properties of the AC–conductivity measures from Lieb–Robinson bounds for multi–
commutators of higher orders. See Sects. 6.5–6.6. In particular, we study their behav-
ior at high frequencies (Theorems 6.1 and 6.5): in contrast to the prediction of the
Drude (Lorentz–Sommerfeld) model, widely used in physics [So, LTW] to describe
the phenomenon of electrical conductivity, the conductivity measure stemming from
short–range interparticle interactions has to decay rapidly at high frequencies.

The proposed mathematical approach to the problem of deriving macroscopic con-
ductivity properties from the microscopic quantum dynamics of an infinite system of
particles also yield new physical insight, beyond classical theories of conduction: a
notion of current viscosity related to the interplay of paramagnetic and diamagnetic
currents, heat/entropy production via different types of energy and current incre-
ments, existence of (AC–) conductivity measures from the 2nd law and (possibly)
as a spectral (excitation) measure from current fluctuations are all examples of new
physical concepts derived in the course of the studies performed in [BPH2, BPH4,
BP5, BP6] and previously not discussed in the literature.

Note, however, that, by now, our results do not give explicit information on the
conductivity measure for concrete models (like the Hubbard model, for instance).
The latter belongs to “hard analysis”, by contrast with our results which are rather
on the side of the “soft analysis” (similar to the difference between knowing the
spectrum of a concrete self–adjoint operator and knowing the spectral theorem).
Moreover, our approach does not directly provide a mathematical understanding
from first principles of Ohm’s laws as a bulk property in the DC–regime, which is
one of the most important and difficult problems in mathematical physics for more
than one century. We believe, however, that our results can support further rigorous
developments towards a solution of such a difficult problem: one could, for instance,

http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_4
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try to show, for some class of models, that the conductivity measure is absolutely
continuous w.r.t. to the Lebesgue measure and that its Radon–Nikodym derivative is
continuous at low frequencies, having a well-defined zero–frequency limit.

We thus present in the following some central results of [BP5, BP6], with a few
complementary studies, as an example of an important application in mathematical
physics of Lieb–Robinson bounds for multi–commutators.

6.2 Interacting Fermions in Disordered Media

(i) Kinetic part: Let �d ∈ B(�2(L)) be (up to a minus sign) the usual d –dimensional
discrete Laplacian defined by

[�d(ψ)](x) .= 2dψ(x) −
∑

z∈L, |z|=1

ψ(x + z) , x ∈ L, ψ ∈ �2(L) .

To understand how such terms come about by starting from the usual Laplacian in
the continuum, see for instance [Ne, Sect. 2 B] which derives effective models on
lattices by using so–called Wannier functions in a band subspace. This defines a
short–range interaction �(d) ∈ W by

�
(d)
�

.= 〈ex ,�dey〉�2(L)a
∗
x ay + (

1 − δx,y
) 〈ey,�dex 〉�2(L)a

∗
yax ∈ U+ ∩ U�

whenever � = {x, y} for x, y ∈ L, and �(d)
�

.= 0 otherwise. Recall that {ex }x∈� is
the (canonical) orthonormal basis of �2(�) defined by (3.2).
(ii) Disordered media: Disorder in the crystal is modeled by a random potential asso-
ciated with a probability space (�,A�, a�) defined as follows: Let �

.= [−1, 1]L.
I.e., any element of � is a function on lattice sites with values in [−1, 1]. For x ∈ L,
let �x be an arbitrary element of the Borel σ–algebra of the interval [−1, 1] w.r.t. the
usual metric topology. A� is the σ–algebra generated by the cylinder sets

∏
x∈L �x ,

where �x = [−1, 1] for all but finitely many x ∈ L. Then, a� is an arbitrary ergodic
probability measure on the measurable space (�,A�). This means that the proba-

bility measure a� is invariant under the action

ω (y) 	→ χ(�)
x (ω) (y)

.= ω (y + x) , x, y ∈ Z
d , (6.1)

of the group (Zd ,+) of lattice translations on � and, for any X ∈ A� such that
χ(�)
x (X ) = X for all x ∈ Z

d , one has a�(X ) ∈ {0, 1}. We denote by E[ · ] the expec-
tation value associated with a�.

Then, any realization ω ∈ � and strength λ ∈ R
+
0 of disorder is implemented by

the potential V(ω) defined by

V(ω)
{x}

.= λω (x) a∗
x ax , x ∈ L . (6.2)

http://dx.doi.org/10.1007/978-3-319-45784-0_3
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(iii) Interparticle interactions: They are taken into account by choosing some short–
range interaction �IP ∈ W such that �IP

� = 0 whenever � = {x, y} for x, y ∈ L,
and

∑

�∈P f (L)

[
�IP

� , a∗
x ax

] = 0 , �IP
�+x = χx

(
�IP

�

)
, � ∈ P f (L), x ∈ L . (6.3)

Here, the family {χx }x∈L of ∗–automorphisms of U implements the action of the
group (Zd ,+) of lattice translations on the CAR C∗–algebra U , see (4.39). Observe
that this class of interparticle interactions includes all density–density interactions
resulting from the second quantization of two–body interactions defined via a real–
valued and summable function v : [0,∞) → R satisfying (4.9).
Then, by (i)–(iii), the full interaction

� = �(d) + �IP ∈ W (6.4)

and the potential V(ω) uniquely define an infinite-volume dynamics corresponding
to the C0–group τ (ω) .= {τ (ω)

t }t∈R of ∗–automorphisms with generator δ(ω). See The-
orem 4.8.
(iv) Space–homogeneous electromagnetic fields: Let l ∈ R

+, η ∈ R, and the com-
pactly supported function A ∈ C∞

0 (R;Rd) with A(t)
.= 0 for all t ≤ 0. Set E (t)

.=
−∂tA(t) for all t ∈ R. Then, the electric field at time t ∈ R equals ηE (t) inside the
cubic box �l and (0, 0, . . . , 0) outside. Up to negligible terms of order O(ld−1), this
leads to a perturbation (of the generator of dynamics) of the form (5.48), (5.51) with
complex–valued {wx,y}x,y∈L functions of (η, t) ∈ R

2 defined by wx,x+z(η, t) = 0 for
any x, z ∈ L with |z| > 1 while

wx,x±eq (η, t)
.=

(
exp

(
∓iη

∫ t

0
Eq (s) ds

)
− 1

)
〈ex ,�dex±eq 〉�2(L) = wx±eq ,x (η, t)

for any q ∈ {1, . . . , d}. Here, E(t) = (E1(t), . . . , Ed(t)) and {eq}dq=1 is the canon-
ical orthonormal basis of the Euclidean space R

d . These functions clearly satisfy
Conditions (5.49)–(5.50) and (5.62). Note that such terms can be derived from the
usual magnetic Laplacian (minimal coupling) in the continuum, as explained in [Ne,
Sect. 2I, in particular Corollary 3.1].

Thus, the system of fermions in disordered medium, the interaction of which is
encoded by (6.4), is perturbed from t = 0 onwards by space–homogeneous electro-
magnetic fields, leading to a well–defined family {τ̃ (ω,l,η)

t,s }s,t∈R of ∗–automorphisms,
as explained in Theorem 5.7.

http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_5
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6.3 Paramagnetic Conductivity

(i) Paramagnetic currents: For any pair (x, y) ∈ L2, we define the current observable
by

I(x,y)
.= i(a∗

yax − a∗
x ay) = I ∗

(x,y) ∈ U0 . (6.5)

It is seen as a current because it satisfies a discrete continuity equation. See, e.g.,
[BP5, Sect. 3.2]. For any A ∈ C∞

0 (R;Rd), l ∈ R
+, ω ∈ �, η ∈ R and t ∈ R

+
0 , these

observables are used to define a paramagnetic current increment density observable
J

(ω)
p,l (t, η) ∈ Ud :

{
J

(ω)
p,l (t, η)

}

k

.= |�l |−1
∑

x∈�l

{
τ̃

(ω,l,η)
t,0

(
I(x+ek ,x)

) − τ (ω)
t

(
I(x+ek ,x)

)}
.

Compare with Eq. (5.63).
Note that electric fields accelerate charged particles and induce so–called dia-

magnetic currents, which correspond to the ballistic movement of particles. In fact,
as explained in [BPH2, Sects. III and IV], this component of the total current cre-
ates a kind of “wave front” that destabilizes the whole system by changing its state.
The presence of diamagnetic currents leads then to the progressive appearance of
paramagnetic currents which are responsible for heat production and the in–phase
AC–conductivity of the system. Diamagnetic currents are not relevant for the present
purpose and are thus not defined here. For more details, see [BPH2, BP5, BP6].
(ii) Paramagnetic conductivity: We define the space–averaged paramagnetic trans-

port coefficient observable C(ω)
p,l ∈ C1(R;B(Rd;Ud)), w.r.t. the canonical orthonor-

mal basis {eq}dq=1 of the Euclidian space R
d , by the corresponding matrix entries

{
C(ω)

p,l (t)
}

k,q

.= 1

|�l |
∑

x,y∈�l

∫ t

0
i[τ (ω)

−s (I(y+eq ,y)), I(x+ek ,x)]ds (6.6)

for any l ∈ R
+, ω ∈ �, t ∈ R and k, q ∈ {1, . . . , d}.

By (i)–(ii), if �IP satisfies (4.56) with ς > 2d (polynomial decay) then we infer
from Theorem 5.8 that, for any A ∈ C∞

0 (R;Rd),

J
(ω)
p,l (t, η) = ηJ(ω)

p,l (t) + O (
η2

)
. (6.7)

The correction terms of order O(η2) are uniformly bounded in l ∈ R
+, ω ∈ � and

λ, t ∈ R
+
0 . By explicit computations, one checks that

J(ω)
p,l (t) =

∫ t

0
τ (ω)
t

(
C(ω)

p,l (t − s)
)
E (s) ds (6.8)

http://dx.doi.org/10.1007/978-3-319-45784-0_5
http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_5
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for any A ∈ C∞
0 (R;Rd), l ∈ R

+, ω ∈ � and t ∈ R
+
0 . The latter is the paramagnetic

linear response current. For more details, see also [BP5, Theorem 3.7]. Here, for
any D ∈ B(Rd;Ud), τ (ω)

t (D) ∈ B(Rd;Ud) is, by definition, the linear operator on
R

d defined, w.r.t. the canonical orthonormal basis {eq}dq=1 of the Euclidian space Rd ,
by the matrix entries

{
τ (ω)
t (D)

}

k,q

.= τ (ω)
t

({D}k,q
)

, k, q ∈ {1, . . . , d} .

6.4 2nd Law of Thermodynamics and Equilibrium States

(i) States: ρ ∈ U∗ is a state if ρ ≥ 0, that is, ρ(B∗B) ≥ 0 for all B ∈ U , and ρ(1) = 1.
States encode the statistical distribution of all physical quantities associated with
observables B = B∗ ∈ U . See Sect. 2.5.

For any D ∈ B(Rd;Ud), ρ (D) ∈ B(Rd) is, by definition, the linear operator
defined, w.r.t. the canonical orthonormal basis {eq}dq=1 of Rd , by

{ρ (D)}k,q .= ρ
({D}k,q

)
, k, q ∈ {1, . . . , d} .

(ii) 2nd law of thermodynamics: As explained in [LY1, LY2], different formula-
tions of the same principle have been stated by Clausius, Kelvin (and Planck), and
Carathéodory. Our study is based on the Kelvin–Planck statement while avoiding the
concept of “cooling” [LY1, p. 49]. It can be expressed as follows [PW, p. 276]:
Systems in the equilibrium are unable to perform mechanical work in cyclic
processes.
(iii) Passive states: To define equilibrium states, the 2nd law, as expressed in [PW],
is pivotal because it leads to a clear mathematical formulation of the Kelvin–Planck
notion of equilibrium: For any strongly continuous one–parameter group τ ≡ {τt }t∈R
of ∗–automorphisms of U , one obtains a well–defined strongly continuous two–
parameter family {τ (W)

t,t0 }t≥t0 of ∗–automorphisms of U by perturbing the generator
of dynamics with bounded time–dependent symmetric derivations

B 	→ i [Wt , B] , B ∈ U , t ∈ R ,

for any arbitrary cyclic process {Wt }t≥t0 of time length T ≥ 0, that is, a differentiable
family {Wt }t≥t0 ⊂ U of self–adjoint elements ofX such that Wt = 0 for all real times
t /∈ [t0, T + t0]. Then, a state  ∈ U∗ is passive (cf. [PW, Definition 1.1]) iff the work

∫ t

t0

 ◦ τ (W)
t,t0 (∂tWt ) dt

http://dx.doi.org/10.1007/978-3-319-45784-0_2
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performed on the system is non–negative for all cyclic processes {Wt }t≥t0 of any time
length T ≥ 0. By [PW, Theorem 1.1], such states are invariant w.r.t. the unperturbed
dynamics:  =  ◦ τt for any t ∈ R.

If τ = τ (ω) with ω ∈ � then, as explained in [BP5, Sect. 2.6], at least one passive
state (ω) exists. It represents an equilibrium state of the system (in a broad sense),
the mathematical definition of which encodes the 2nd law.
(iv) Random invariant passive states: We impose two natural conditions on the map
ω 	→ (ω) from the set � to the dual space U∗:

• Translation invariance. Using definitions (4.39) and (6.1), we assume that

(χ(�)
x (ω)) = (ω) ◦ χx , x ∈ L = Z

d . (6.9)

• Measurability. The map ω 	→ (ω) is measurable w.r.t. to the σ–algebra A� on �
and the Borel σ–algebra AU∗ of U∗ generated by the weak∗–topology. Note that
a similar assumption is also used to define equilibrium for classical systems in
disordered media, see, e.g., [Bo].

A map satisfying such properties is named here a random invariant state [BP6,
Definition 3.1]. Such maps always exist in the one–dimension case if the norm∥∥�IP

∥∥
W of the interparticle interaction is finite. The same is true in any dimension

if the inverse temperature β ∈ R
+ is small enough. This is a consequence of the

uniqueness of KMS, which is implied by the mentioned conditions. By using methods
of constructive quantum field theory, one can also verify the existence of such random
invariant passive states (ω), ω ∈ �, at arbitrary dimension and any fixed β ∈ R

+,
if the interparticle interaction

∥∥�IP
∥∥
W is small enough and (6.3) holds. See, for

instance, [FU, Theorem 2.1] (together with [PW, Theorem 1.4]) for the small β case
in quantum spin systems. See also [BP6, Sect. 3.3] for further discussions on this
topic.

6.5 Macroscopic Paramagnetic Conductivity

For any short–range interaction �IP ∈ W , the limit

�p (t)
.= lim

l→∞E

[
(ω)(C(ω)

p,l (t))
]

∈ B(Rd) (6.10)

exists and is uniform for t on compacta. To see this, use the usual Lieb–Robinson
bounds (Theorem 4.8 (iv)) to estimate (6.6) in the limit l → ∞. Here, for any mea-
surable D(ω) ∈ B(Rd), the expectation value E[D(ω)] ∈ B(Rd) (associated with a�)
is defined, w.r.t. the canonical orthonormal basis {eq}dq=1 of Rd , by the matrix entries

{
E

[
D(ω)

]}
k,q

.= E
[ {D}k,q

]
, k, q ∈ {1, . . . , d} .

http://dx.doi.org/10.1007/978-3-319-45784-0_4
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The function �p ∈ C1(R;B(Rd)) can be directly related to a linear response current,
as suggested by (6.7)–(6.8). See [BP6, Theorem 4.2 (p)] for more details. [If one does
not take expectation values of currents, one can also show that the limit l → ∞ of
(ω)(J(ω)

p,l ) almost everywhere exists and equals the expectation value, in the same
limit, by using the Akcoglu–Krengel ergodic theorem, see [BPH3, BP6].]

[BP6, Theorem 7.1] asserts that

�p ∈ C2(R;B(Rd))

if �IP ∈ W and (4.56) holds with ς > 2d. Now, we give a stronger version of this
result which is an application of Lieb–Robinson bounds for multi–commutators
(Theorems 4.10–4.11) of high orders. This new result on the regularity of the function
�p of time has important consequences on the asymptotics of AC–Conductivity
measures at high frequencies, see Theorem 6.5.

Theorem 6.1 (Regularity of the paramagnetic conductivity)
Let λ ∈ R

+
0 and assume that the map ω 	→ (ω) is a random invariant passive state

and �IP ∈ W satisfies (6.3).
(i) Polynomial decay: Assume �IP satisfies (4.56). Then, for any m ∈ N satisfying
d(m + 1) < ς , �p ∈ Cm+1(R;B(Rd)) and, uniformly for t on compacta,

∂m+1
t �p (t) = lim

l→∞∂m+1
t E

[
(ω)(C(ω)

p,l (t))
]

. (6.11)

(ii) Exponential decay: Assume �IP satisfies (4.57). Then, for all m ∈ N, �p ∈
C∞(R;B(Rd)) and (6.11) holds true with the limit being uniform for t on com-
pacta.

Remark 6.2 (Fermion systems with random Laplacians)
The same assertion holds for the random models treated in [BP6], i.e., for fermions
on the lattice with short–range and translation invariant (cf. (6.3)) interaction �IP ∈
W , random potentials (cf. (6.2)) and, additionally, random next neighbor hopping
amplitudes. [So, �d is replaced in [BP6] with a random Laplacian �ω,ϑ.] Similar to
what is done here, disorder is defined in [BP6] via ergodic distributions of random
potentials and hopping amplitudes.

The proof of this statement is a consequence of the following general lemma:

Lemma 6.3 Let � ∈ W and V be any potential such that

sup
x∈L

∥∥V{x}
∥∥
U < ∞ . (6.12)

Take T ∈ R
+
0 and B0, B1 ∈ U0.

(i) Polynomial decay: Assume (4.56). Then, for any m ∈ N satisfying dm < ς , U0 ⊆
Dom(δm). Moreover, if d(m + 1) < ς ,

http://dx.doi.org/10.1007/978-3-319-45784-0_4
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∑

y∈L
sup

t∈[−T,T ]
sup
x∈L

∥∥[
τt ◦ χx (B1), δ

m ◦ χy (B0))
]∥∥

U < ∞ . (6.13)

(ii) Exponential decay: Assume (4.57). Then,

U0 ⊆
⋂

m∈N
Dom

(
δm

) ⊂ U

and (6.13) holds true for all m ∈ N.

Proof (i) Because of (6.12), assume w.l.o.g. that V = 0. Take t ∈ R, n0, n1 ∈ N and
local elements B0 ∈ U�n0

and B1 ∈ U�n1
. Then, we infer from Theorem 4.8 (ii) and

(4.77)–(4.78) that, for any x, y ∈ L and n ∈ N,

∥∥[
τt ◦ χx (B1), δ

n ◦ χy (B0))
]∥∥

U
≤

∑

xn∈L

∑

mn∈N0

∑

Zn∈D(xn ,mn)

· · ·
∑

x1∈L

∑

m1∈N0

∑

Z1∈D(x1,m1)

(6.14)

∥∥∥
[
τt ◦ χx (B1),�Zn , . . . , �Z1 ,χy (B0)

](n+2)
∥∥∥
U

.

Therefore, we can directly use Lieb–Robinson bounds for multi–commutators of
order n + 2 to bound (6.14): We combine Theorems 4.10 and 4.11 (i) with Eq. (4.116)
to deduce from (6.14) that, for any x, y ∈ L and n ∈ N,

∥∥[
τt ◦ χx (B1), δ

n ◦ χy (B0))
]∥∥

U
≤ 2n+1d

ς(n+1)
2 (1 + n0)

ς ‖B1‖U ‖B0‖U (6.15)

×
(

2‖�‖W |t | e4D|t |‖�‖W ∥∥u·,n1

∥∥
�1(N)

+ (1 + n1)
ς
)

×
⎛

⎝sup
x∈L

⎛

⎝
∑

m∈N0

(1 + m)ς
∑

Z∈D(x,m)

‖�Z‖U
⎞

⎠

⎞

⎠
n

×
∑

xn∈L
· · ·

∑

x1∈L

⎛

⎝
∑

T∈Tn+2

∏

{ j,l}∈T

1

(1 + ∣∣x j − xl
∣∣)ς(max{dT ( j),dT (l)})−1

⎞

⎠

with x0
.= y ∈ L and xn+1

.= x ∈ L. If � ∈ W and Condition (4.56) holds true,
then one easily verifies (4.80) with vm = (1 + m)ς . Recall also that the condition
ς > (n + 1) d yields (4.84) with k = n + 1. Using these observations, one directly
arrives at (6.13), starting from (6.15).

Remark that U0 ⊆ Dom(δn) is proven exactly in the same way. In fact, it is easier
to prove and only requires the condition ς > nd because we have in this case multi–
commutators of only order n + 1.
(ii) The proof is very similar to the polynomial case. We omit the details. See Theorem

http://dx.doi.org/10.1007/978-3-319-45784-0_4
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4.11 (ii) and (4.66), and in the case (4.57) holds and � ∈ W , note again that Condition
(4.80) is satisfied with vm = emς . �

We are now in position to prove Theorem 6.1.

Proof Fix k, q ∈ {1, . . . , d}, t ∈ R and m ∈ N. By Theorem 4.8 (i), τ (ω) .= {τ (ω)
t }t∈R

is a C0–group of ∗ –automorphisms with generator δ(ω). It is, indeed, associated with
the interaction (6.4) and the potential defined by (6.2). If �IP satisfies (4.56), then
Condition (4.56) also holds true for the full interaction (6.4). A similar observation
can be made when �IP satisfies (4.57).

Paramagnetic current observables (6.5) are local elements, i.e., I(x,y) ∈ U0 for any
(x, y) ∈ L2. Then, by Lemma 6.3, we thus compute from (6.6) that, for any m ∈ N

such that U0 ⊆ Dom(δm),

∂m+1
t

{
E

[
(ω)(C(ω)

p,l (t))
]}

k,q
(6.16)

= − 1

|�l |
∑

x,y∈�l

E

[
(ω)

(
i[τ (ω)

−t ◦ (δ(ω))m(I(y+eq ,y)), I(x+ek ,x)]
)]

.

The last function of ω ∈ � in the expectation value E[ · ] (associated with a�) is
measurable, because ω 	→ (ω) is, by definition, a random invariant state while one
can check that the map

ω 	→ i[τ (ω)
−t ◦ (δ(ω))m(I(y+eq ,y)), I(x+ek ,x)]

from � to U is continuous, using Theorem 4.8 and the second Trotter–Kato approxi-
mation theorem [EN, Chap. III, Sect. 4.9]. Additionally, if (ω) is a passive state w.r.t.
to τ (ω) for any ω ∈ � then (ω) = (ω) ◦ τ (ω)

t , see [PW, Theorem 1.1]. Therefore, it
follows from (6.16) that

∂m+1
t

{
̄

(
C(ω)

p,l (t)
)}

k,q
(6.17)

= 1

|�l |
∑

x,y∈�l

E

[
(ω)

(
i[τ (ω)

t

(
I(x+ek ,x)

)
, (δ(ω))m(I(y+eq ,y))]

)]
.

Now, if (6.3) and (6.9) hold true, then, by using the fact that a� is also a translation
invariant probability measure (it is even ergodic), we obtain from (6.17) that, for any
m ∈ N such that U0 ⊆ Dom(δm),

∂m+1
t

{
̄

(
C(ω)

p,l (t)
)}

k,q
(6.18)

=
∑

y∈L
ξl (y)E

[
(ω)

(
i[τ (ω)

t

(
I(ek ,0)

)
, (δ(ω))m ◦ χy(I(eq ,0))]

)]

with

http://dx.doi.org/10.1007/978-3-319-45784-0_4
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ξl (y)
.= 1

|�l |
∑

x∈�l

1{y∈�l−x} ∈ [0, 1] , y ∈ L , l ∈ R
+ .

For any l ∈ R
+, the map y 	→ ξl (y) on L has finite support and, for any y ∈ L,

lim
l→∞ξl (y) = 1 . (6.19)

As a consequence, if (i) �IP satisfies (4.56) and d(m + 1) < ς or (ii) �IP satisfies
(4.57), then, by combining Lemma 6.3 with Lebesgue’s dominated convergence
theorem, one gets from (6.10) and (6.18)–(6.19) that the map

t 	→ ∂m+1
t

{
E

[
(ω)(C(ω)

p,l (t))
]}

= E

[
∂m+1
t (ω)(C(ω)

p,l (t))
]

converges uniformly on compacta, as l → ∞, to the continuous function ∂m+1
t �p ∈

C(R;B(Rd)). �

6.6 AC–Conductivity Measure

By applying [BP6, Theorems 5.2 and 5.6 (p), Remark 5.3] to the interacting fermion
system under consideration we get a Lévy–Khintchine representation of the paramag-
netic (in–phase) conductivity �p: Assume �IP satisfies (4.56) with ς > 2d (polyno-
mial decay). Then, there is a unique finite and symmetric B+(Rd) –valued measure
µ on R such that, for any t ∈ R,

�p (t) = − t2

2
¯ ({0}) +

∫

R\{0}
(cos (tν) − 1) ν−2µ (dν) . (6.20)

Here, B+(Rd) ⊂ B(Rd) stands for the set of positive linear operators on R
d , i.e.,

symmetric operators w.r.t. to the canonical scalar product of Rd with positive eigen-
values. The (in–phase) AC–conductivity measure is defined from the measure µ as
follows:

Definition 6.4 (AC–conductivity measure) We name the Lévy measure μAC, the
restriction of ν−2µ (dν) to R\{0}, the (in–phase) AC–conductivity measure.

Indeed, by [BP6, Theorems 5.1 and 5.6 (p)], one checks that μAC quantifies the
energy (or heat) production Q per unit volume due to the component of frequency
ν ∈ R\{0} of the electric field, in accordance with Joule’s law in the AC–regime:
Indeed, for any smooth electric field E (t) = E (t) �w with �w ∈ R

d , E .= −∂tA(t) and
A ∈ C∞

0 (R;R), the total heat per unit volume produced by the electric field (after
being switch off) is equal to

http://dx.doi.org/10.1007/978-3-319-45784-0_4
http://dx.doi.org/10.1007/978-3-319-45784-0_4
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Q = 1

2

∫

R

ds1

∫

R

ds2Es2Es1〈 �w,�p (s1 − s2) �w〉Rd .

If the Fourier transform Ê of E ∈ C∞
0 (R;R) has support away from ν = 0, then

Q = 1

2

∫

R\{0}
|Ê (ν) |2 〈 �w,μAC (dν) �w〉Rd .

Moreover, by using [BP6, Theorems 4.2 and 5.6 (p)] together with simple com-
putations, one checks that the in–phase linear response currents Jin, which is the
component of the total current producing heat, also called active current, is equal in
this case to

Jin(t) =
∫

R\{0}
Ê (ν) eiνt μAC (dν) �w .

By (6.20) and Definition 6.4, observe that the AC–conductivity measure μAC of the
system under consideration is a Lévy measure. This is reminiscent of experimental
observations of other quantum phenomena like (subrecoil) laser cooling [BBAC]. In
fact, an alternative effective description of the phenomenon of linear conductivity by
using Lévy processes in Fourier space is discussed in [BP6, Sect. 6].

The explicit form of the conductivity measure for concrete models (like the Hub-
bard model, for instance) is still an open problem. However, in [BP6, Sect. 5.3], we
were able to qualitatively compare the AC–conductivity measure associated with
the celebrated Drude model with the Lévy measure μAC given by Definition 6.4.
Indeed, the (in–phase) AC–conductivity measure obtained from the Drude model is
absolutely continuous w.r.t. the Lebesgue measure with the function

ν 	→ ϑT (ν) ∼ T

1 + T2ν2
(6.21)

being the corresponding Radon–Nikodym derivative. Here, the relaxation timeT > 0
is related to the mean time interval between two collisions of a charged carrier with
defects in the crystal. See for instance [BPH4, Sect. 1] for more discussions. This
measure heavily overestimatesμAC at high frequencies. Indeed, as explained in [BP6,
Sect. 5.3], by finiteness of the positive measure µ, the AC–conductivity measure
satisfies

μAC ([ν,∞)) ≤ ν−2µ ([ν,∞)) ≤ ν−2µ (R) , ν ∈ R
+ , (6.22)

provided �IP satisfies (4.56) with ς > 2d. The same property of course holds for
negative frequencies, by symmetry of µ (w.r.t. ν). Compare (6.22) with (6.21). From
Theorem 6.1, much stronger results on the frequency decay of μAC can be obtained
if the interaction �IP is fast decaying in space:

Theorem 6.5 (Moments of AC–conductivity measures)

http://dx.doi.org/10.1007/978-3-319-45784-0_4
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Let λ ∈ R
+
0 , �IP ∈ W satisfying (6.3), and assume that the map ω 	→ (ω) is a

random invariant passive state.
(i) Polynomial decay: Assume �IP satisfies (4.56) with ς > 2d. Then, for any m ∈ N

satisfying d(m + 1) < ς ,

∫

R\{0}
νm+1μAC (dν) ∈ B+(Rd) , (6.23)

i.e., the (m + 1)-th moment of the measure μAC exists.
(ii) Exponential decay: Assume �IP satisfies (4.57). Then, (6.23) holds true for all
m ∈ N.

Proof By (6.20) and Lebesgue’s dominated convergence theorem, for any t ∈ R,

∂2
t �p (t) = −

∫

R

cos (tν)µ (dν) = −
∫

R

ei tνµ (dν) ,

provided ς > 2d in (4.56) (with � = �IP). In other words, the finite and symmetric
B+(Rd)–valued measure µ on R can be seen as the Fourier transform of −∂2

t �p (t)
or, that is, as the characteristic function of µ. Therefore, by well–known properties
of characteristic functions (see, e.g., [D, Theorem 3.3.9.] for the special case n = 2
and [Kl, Theorem 15.34] for the general case n ∈ 2N0), for any even n ∈ N0, ∂2

t �p ∈
Cn(R;B(Rd)) implies that

∫

R

νnµ (dν) ∈ B+(Rd) .

If m ∈ N0 is odd, then, by the above assertion for n < m and the symmetry of the
measure µ (which follows from the symmetry of μAC), we conclude that

∫

R

νmµ (dν) = 0 ∈ B+(Rd) .

This observation combined with Theorem 6.1 and Definition 6.4 yields Assertions
(i)–(ii).

Remark 6.6 (Fermion systems with random Laplacians)
The same assertion holds for the random models treated in [BP6]. See also Remark
6.2.

This last theorem is a significant improvement of the asymptotics (6.22) of [BP6] and
is a straightforward application of Lieb–Robinson bounds for multi–commutators of
high orders (Theorems 4.10–4.11), see Lemma 6.3.
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