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Abstract The modularization of large graphs or community detection in networks
is usually approached as an optimization problem of a quality function or criterion,
for instance, the modularity of Newman-Girvan. There exist other clustering criteria,
with their own properties leading to different solutions. In this paper we present six
linearmodularization criteria in relational notation such as theNewman-Girvanmod-
ularity, Zahn-Condorcet, Owsiński-Zadrożny, the Deviation to Uniformity index, the
Deviation to Indetermination index and the Balanced-Modularity. We use a generic
version of Louvain algorithm to approach the optimal partition of the criteria with
real networks of different sizes. We have found that those partitions present impor-
tant differences concerning the number of clusters. The relational formalism allows
us to justify these differences from a theoretical point of view. Moreover, this nota-
tion enables to easily identify the criteria having a resolution limit (a phenomenon
which causes the criterion to fail to identify modules smaller than a given scale).
This finding is confirmed in artificial benchmark LFR graphs.

1 Introduction

Networks are studied in numerous contexts such as biology, sociology, online social
networks, marketing, etc. Graphs are mathematical representations of networks,
where the entities are called nodes and the connections are called edges. Very large
graphs are difficult to analyse and it is often profitable to divide them in smaller
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homogeneous components easier to handle. The process of decomposing a network
has received different names: graph clustering (in data analysis), modularization,
community structure identification. The clusters can be called communities or mod-
ules; in this paper we use those words as synonyms.

Assessing the quality of a graph partition requires a modularization criterion. This
function will be optimized to find the best partition. Various modularization criteria
were formulated in the past to address different practical applications. Those criteria
differ in the definition given to the notion of community or cluster.

To understand the differences between the optimal partitions obtained by each
criterion we show how to represent them using the same basic formalism. In this
paper we use the Mathematical Relational Analysis (MRA) to express six linear
modularization criteria. Linear criteria are easy to handle, for instance, the Louvain
method can be adapted to linear quality functions (see Campigotto et al. (2014)). The
six criteria studied are: the Newman-Girvan modularity, the Zahn-Condorcet crite-
rion, the Owsiński-Zadrozny criterion, the Deviation to Uniformity, the Deviation
to Indetermination index and the Balanced Modularity (details in Sect. 3). The rela-
tional representation makes clear the properties of those modularization criteria. It
allows to easily identify the criteria suffering from a resolution limit, first discussed
by Fortunato and Barthelemy (2006). We will complete this theoretical study by
some experiments on real and synthetic networks, demonstrating the effectiveness
of our classification.

In this paper, we deal onlywith linear criteria. Nevertheless, it is important tomen-
tion that thanks to the formalism of the MRA it is also possible to express non-linear
criteria in relational notations. For instance, we can mention some very well-known
criteria such as the Mancoridis-Gansner criterion (see Mancoridis et al. (1998)) in
cluster-programming, the Ratio-Cuts by Wei and Cheng (1989), the Michalski crite-
rion (seeMichalski and Stepp (1983) and its relational notation given inDecaestecker
(1992)), etc. The interested reader can see Conde-Céspedes and Marcotorchino
(2012) and Conde-Céspedes (2013).

This paper is organized as follows: Sect. 2 presents the Mathematical Relational
Analysis approach and introduces the property of balance for linear criteria and its
relation to the property of resolution limit. In Sect. 3, six linearmodularization criteria
in the relational formalism are formulated. Next, Sect. 4 discusses some experiments
on real and artificial graphs to confirm the theoretical properties found previously.

2 Relational Analysis Approach

There is a strong link between the Mathematical Relational Analysis1 and graph
theory: a graph is a mathematical structure that represents binary relations between
objects belonging to the same set. Therefore, a non-oriented and non-weighted graph
G = (V, E), with N = |V | nodes and M = |E | edges, is a binary symmetric relation
on its set of nodes V represented by its adjacency matrix A as follows:

1For more details about Relational Analysis theory see Marcotorchino and Michaud (1979) and
Marcotorchino (1984).
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aii ′ =
{
1 if there exists an edge between i and i ′ ∀(i, i ′) ∈ V × V

0 otherwise
(1)

We denote the degree di of node i the number of edges incident to i . It can be
calculated by summing up the terms of the row (or column) i of the adjacencymatrix:
di = ∑

i ′ aii ′ = ∑
i ′ ai ′i = ai. = a.i . We denote δ = 2M

N 2 the density of edges of the
whole graph.

Partitioning a graph implies defining an equivalence relation on the set of nodes
V , that means a symmetric, reflexive and transitive relation. Mathematically, an
equivalence relation is represented by a square matrix X of order N = |V |, whose
entries are defined as follows:

xii ′ =
{
1 if i and i ′ are in the same cluster ∀(i, i ′) ∈ V × V

0 otherwise
(2)

Modularizing a graph implies to findX as close as possible toA. Amodularization
criterion F(X) is a function which measures either a similarity or a distance between
A and X. Therefore, the problem of modularization can be written as a function to
optimize F(X) where the unknown X is subject to the constraints of an equivalence
relation. In fact, the problem of modularization can be written in the general form:

Max
X

(F(X)) (3)

subject to the constraints of an equivalence relation:

xii ′ ∈ {0, 1} Binary
xii = 1 ∀i Reflexivity

xii ′ − xi ′i = 0 ∀(i, i ′) Symmetry
xii ′ + xi ′i ′′ − xii ′′ ≤ 1 ∀(i, i ′, i ′′) Transitivity

The exact solving of this 0 − 1 linear program due to the size of the constraints is
impractical for big networks. So, heuristic approaches are the only reasonable way
to proceed.

We define as well X̄ and Ā as the inverse relation of X and A respectively. Their
entries are defined as x̄i i ′ = 1 − xii ′ and āi i ′ = 1 − aii ′ respectively. In the following
we denote κ the optimal number of clusters, that means the number of clusters of the
partition X which maximizes the criterion F(X).

2.1 Linear Balanced Criteria

Every linear criterion is an affine function of X, therefore in relational notation it can
be written as:
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F(X) =
N∑

i=1

N∑
i ′=1

Φ(aii ′)xii ′ + K , (4)

whereΦ(aii ′) denotes any function depending only on the original data (for instance
the adjacency matrix) and K denotes any constant depending only on the original
data. Therefore, K does not intervene in the optimization problem.

Definition 1 (Property of linear balance). A linear criterion is balanced if it
can be written in the following general form:

F(X) =
N∑

i=1

N∑
i ′=1

φ(aii ′)xii ′ +
N∑

i=1

N∑
i ′=1

φ̄(aii ′)x̄i i ′ + K . (5)

where φ(.) and φ̄(.) are non negative functions depending only on the original
data and verifying

∑N
i=1

∑N
i ′=1 φi i ′ > 0 and

∑N
i=1

∑N
i ′=1 φ̄i i ′ > 0.

So, they can not be all null simultaneously.

By replacing x̄ by its definition 1 − xii ′ , Eq. (5) can be rewritten as follows:

F(X) =
N∑

i=1

N∑
i ′=1

(φi i ′ − φ̄i i ′)xii ′ + K . (6)

2.1.1 Interpretation of Functions φ(.) and φ̄(.)

At this point, we can give the intuition behind functions φ(.) and φ̄(.). From expres-
sion (6) we deduce the importance of the property of balance for linear criteria. If
the criterion is a function to maximize, the presence and/or absence of the terms φi i ′

and φ̄i i ′ has the following impact on the optimal solution:

• If φ̄i i ′ = 0 ∀i, i ′ the solution that maximizes F(X) is the partition where all nodes
are clustered together in a single cluster, so κ = 1 and xii ′ = 1 ∀(i, i ′) and
F(X) = ∑N

i=1

∑N
i ′=1 φi i ′ .

• If φi i ′ = 0 ∀i, i ′ then the optimal solution that maximizes F(X) is the partition
where all nodes are separated, so κ = N and xii ′ = 0 ∀ i �= i ′ and xii = 1∀i there-
fore F(X) = ∑N

i=1

∑N
i ′=1 φ̄i i .

In other words, the optimization of a linear criterion who does not verify the
property of balance will either cluster all the nodes in a single cluster or isolate
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each node in its own cluster, therefore forcing the user to fix the number of clusters
in advance.

We can deduce from the previous paragraphs that the values taken by the functions
φ and φ̄ create a sort of balance between the fact of generating as many clusters as
possible, κ = N , and the fact generating only one cluster, κ = 1.

In the following we will call the quantity
∑N

i=1

∑N
i ′=1 φ(aii ′)xii ′ the term of pos-

itive agreements and the quantity
∑N

i=1

∑N
i ′=1 φ̄(aii ′)x̄i i ′ the term of negative agree-

ments.

2.2 Different Levels of Balance

We define two levels of balance for all linear balanced criterion:

Definition 2 (Property of local balance). A balanced linear criterion whose
functions φi i ′ and φ̄i i ′ depend only upon the pair (i, i ′) (therefore not depending
on global properties of the graph) has the property of local balance.

Some remarks about Definition 2:

• When we talk about global properties we refer to the total number of nodes, the
total number of edges or other properties describing the global structure of the
graph.

• For the particular case of local balance where φi i ′ + φ̄i i ′ = K (that is φi i ′ and φ̄i i ′

sum up to a constant), we can conclude that whereas φi i ′ increases φ̄i i ′ decreases
and vice versa.

Let us consider the special case where φ(aii ′) = aii ′ , the general term of the
adjacency matrix. A null model is a graph with the same total number of edges and
nodes and where the edges are randomly distributed. Let us denote the general term
of the adjacency matrix of this random graph φ̄(aii ′). A criterion based on a null
model considers that a random graph does not have community structure. The goal
of such a criterion is to maximize the deviation between the real graph, represented
by φ(aii ′) and the null model version of this graph, represented by φ̄(aii ′) as shown
in Eq. (6). Since the original graph and the null model have the same number of edges
M , we have

∑N
i=1

∑N
i ′=1 φi i ′ = ∑N

i=1

∑N
i ′=1 φ̄i i ′ = 2M . If this constraint causes φ̄i i ′

to depend upon the total number of edges M , then a criterion based on a null model
does not verify the property of local balance. Consequently, it is not scale invariant
because it depends on a global characteristic of the graph.

The definition of null model for linear criteria can be generalized as follows:
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Definition 3 (Criterion based on a null model). A balanced linear criterion
that seeks tomaximize the deviation between the real graph and a nullmodel is a
criterion based on a null model. In its formulation, the real graph is represented
by φ(aii ′) whereas the null model is represented by φ̄(aii ′). The functions φi i ′

and φ̄i i ′ satisfy the following condition:

N∑
i=1

N∑
i ′=1

φi i ′ =
N∑

i=1

N∑
i ′=1

φ̄i i ′

such that the functions φi i ′ and φ̄i i ′ depend on global properties of the graph.

The global properties of the graph can be, for example, the total number of edges
or the total number of nodes.

We can deduce from Definitions2 and 3 that a linear criterion cannot be locally
balanced and based on a null model at the same time.

In the particular case where φ̄ decreases with the size of the network, it becomes
negligible for large graphs. As explained previously, if this term tends towards zero,
the optimization of the criterionwill tend to group the nodesmore easily. For instance,
a single edge between two sub-graphs would be interpreted by the criterion as a sign
of a strong correlation between the two clusters, and optimizing the criterion would
lead to the merge of the two clusters. Such a criterion is said to have a resolution
limit.

The resolution limit was introduced by Fortunato and Barthelemy (2006), where
the authors studied the resolution limit of the modularity of Newman-Girvan. They
demonstrated that modularity optimization may fail to identify modules smaller than
a given size which depends on global characteristics of the graph. Even weakly
interconnected complete sub-graphs—the best identifiable communities—would be
merged by this kind of optimization criteria if the network is sufficiently large.
According to Kumpula et al. (2007) the resolution limit is present in any modu-
larization criterion based on global optimization of intra-cluster edges and extra-
community links and on a comparison to any null model.

In Sect. 4, we will show how criteria having a resolution limit fail to detect certain
groups of densely connected nodes.

3 Modularization Criteria in Relational Notation

Graph clustering criteria depend strongly on the meaning given to the notion of
community. In this section, we describe six linear modularization criteria and their
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relational coding in Table1. We assume that the graphs we want to modularize are
scale-free, that means that their degree distribution follows a power law.

1. The Zahn-Condorcet criterion (1785, 1964): C.T. Zahn was the first who stud-
ied the problem of finding an equivalence relation X, which best approximates a
given symmetric relation A in the sense of minimizing the distance of the sym-
metric difference (Zahn 1964). The criterion defined by Zahn corresponds to the
dual Condorcet’s criterion (Condorcet 1785) introduced in Relational Consensus
whose relational coding was given by Marcotorchino and Michaud (1979). This
criterion requires that every node in each cluster be connected with at least as half
as the total nodes inside the cluster. Consequently, for each cluster the fraction of
within cluster edges is at least 50% (see Conde-Céspedes (2013)) and Appendix
for proof).

2. The Owsiński-Zadrożny criterion (1986) (see Owsiński and Zadrożny (1986))
it is a generalization of Condorcet’s function. It has a parameter α, which allows,
according to the context, to define the minimal percentage of required within-
cluster edges: α. For α = 0.5 this criterion is equivalent to Condorcet’s criterion.
The parameter α defines the balance between the positive agreements term and
the negative agreements term. For each cluster the density of edges is at least α%
(see Conde-Céspedes(2013)).

3. The Newman-Girvan criterion (2004) (see Newman and Girvan (2004)): It is
the best known modularization criterion, called sometimes simply modularity. It
relies upon a null model. Its definition involves a comparison of the number of
within-cluster edges in the real network and the expectednumber of such edges in a

Table 1 Relational notation of linear modularity functions

Criterion Relational notation

Zahn-Condorcet (1785, 1964) FZC (X) =
N∑

i=1

N∑
i ′=1

(aii ′ xii ′ + āi i ′ x̄i i ′ )

Owsiński-Zadrożny (1986) FZ O Z (X) =
N∑

i=1

N∑
i ′=1

((1 − α)aii ′ xii ′ + αāi i ′ x̄i i ′ )

with 0 < α < 1

Newman-Girvan (2004) FN G(X) = 1

2M

N∑
i=1

N∑
i ′=1

(
aii ′ − ai.a.i ′

2M

)
xii ′

Deviation to Uniformity (2013) FUNIF(X) = 1

2M

N∑
i=1

N∑
i ′=1

(
aii ′ − 2M

N 2

)
xii ′

Deviation to Indetermination (2013) FDI (X) = 1

2M

N∑
i=1

N∑
i ′=1

(
aii ′ − ai.

N
− a.i ′

N
+ 2M

N 2

)
xii ′

The Balanced Modularity (2013) FB M (X) =
N∑

i=1

N∑
i ′=1

(
(aii ′ − Pii ′ ) xii ′ + (āi i ′ − P̄ii ′ )x̄i i ′

)
where Pii ′ = ai.a.i ′

2M and P̄ii ′ =
(

āi i ′ − (N−ai.)(N−a.i ′ )
N2−2M

)
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randomgraphwhere edges are distributed following the independence structure (a
network without regard to community structure). In fact, themodularity measures
the deviation to independence.
As mention in the previous section, this criterion, based on a null model and it has
a resolution limit (see Fortunato and Barthelemy (2006)). In fact, as the network

becomes larger M −→ ∞, the term φ̄i i ′ = ai.a.i ′

2M
tends to zero since the degree

distribution follows a power law.
4. The Deviation to Uniformity (2013) This criterion maximizes the deviation to

the uniformity structure, it was proposed in Conde-Céspedes (2013). It compares
the number of within-cluster edges in the real graph and the expected number
of such edges in a random graph (the null model) where edges are uniformly
distributed, thus all the nodes have the same degree equal to the average degree
of the graph. This criterion is based on a null model and it has a resolution limit.
indeed δ −→ 0 as N −→ ∞.

5. The Deviation to Indetermination (2013) Analogously to Newman-Girvan
function, this criterion compares the number of within-cluster edges in the real
network and the expected number of such edges in a random graph where edges
are distributed following the indetermination structure2 (a graphwithout regard to
community structure) (Marcotorchino andConde-Céspedes 2013;Marcotorchino
2013). The Deviation to Indetermination is based on a null model, therefore it has
a resolution limit.

6. The Balanced modularity3 (2013)This criterion, introduced inConde-Céspedes
and Marcotorchino (2013), was constructed by adding to the Newman-Girvan
modularity a term taking into account the absence of edges Ā. Whereas Newman-
Girvan modularity compares the actual value of aii ′ to its equivalent in the case

of a random graph
ai.a.i ′

2M
, the new term compares the value of āi i ′ to its version

in case of a random graph
(N − ai.)(N − a.i ′)

N 2 − 2M
. It is based on a null model and it

has a resolution limit.

The six linear criteria of Table1 verify the property of balance, so it is not nec-
essary to set in advance the number of clusters. Table2 specifically focuses on the
fonctions φi i ′ and φ̄i i ′ for each criterion.

From Tables1 and 2 one can easily deduce that two criteria: Zahn-Condorcet
and Owsiński-Zadrożny verify the property of local balance. Furthermore, Table2
clearly shows that the functions φi i ′ and φ̄i i ′ add up to a constant Kii ′ for these two
criteria. The quantity φ̄i i ′ decreases with the size of the graph for all criteria that have
a resolution limit.

2There exists a duality between the independence structure and the indetermination structure
(Marcotorchino 1984, 1985; Ah-Pine and Marcotorchino 2007).
3Although the name of this criterion contains the word balanced, its definition is not related to the
property of balance given in Definition1.
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Table 2 Balance property for linear criteria

Criterion General balance

Local
balance

Null model Comment

Zahn-Condorcet X φi i ′ + φ̄i i ′ = aii ′ + āi i ′ = 1.

Owsiński-Zadrożny X φi i ′ + φ̄i i ′ = (1 − α)aii ′ + αāi i ′ .

Newman-Girvan X
N∑

i=1

N∑
i ′=1

φ̄i i ′ =
N∑

i=1

N∑
i ′=1

ai.a.i ′

2M
= 2M .

Deviation to uniformity X
N∑

i=1

N∑
i ′=1

φ̄i i ′ =
N∑

i=1

N∑
i ′=1

2M

N 2 = 2M

Deviation to
indetermination

X
N∑

i=1

N∑
i ′=1

(
ai.

N
+ a.i ′

N
− 2M

N 2

)
= 2M

Balanced modularity X
N∑

i,i ′=1

N∑
i ′=1

p̄i i ′ =
N∑

i=1

N∑
i ′=1

āi i ′ = N 2 − 2M

4 The Impact of Merging Two Clusters

Wemodularized five real networks of different sizes: Jazz (Gleiser and Danon 2003),
Internet (Hoerdt and Magoni 2003), Web nd.edu (Albert et al. 1999), Amazon (Yang
and Leskovec 2012)4 and Youtube (Mislove et al. 2007). We ran a generic version
of Louvain Algorithm (see Campigotto et al. (2014) and Blondel et al. (2008)) until
achievement of a stable value of each criterion. The number of clusters obtained for
each network is shown in Table3.

Table3 shows that the Zahn-Condorcet and Owsiński-Zadrożny criteria generate
many more clusters than the other criteria having a resolution limit, for which the
number of clusters is rather comparable. Moreover, this difference increases with the
network size. Notice that the number of clusters for the Owsiński-Zadrożny criterion
decreases with α, that is the minimal required fraction of within-cluster edges, so the
criterion becomes more flexible.

In order to explain these differences we measure the impact of merging two
clusters on the value of each criterion. Let us suppose we want to merge two clusters
C1 and C2 in the network of sizes n1 and n2 respectively. Let us suppose as well they
are connected by l edges as shown in Fig. 1.

Let us denote CF the contribution of merging two clusters to the value of a
criterion F . The contribution CF can be easily calculated from (6) (for the proof see
Conde-Céspedes (2013)):

CF =
n1∑

i∈C1

n2∑
i ′∈C2

(φi i ′ − φ̄i i ′) (7)

4The data was taken from http://snap.stanford.edu/data/com-Amazon.html.

http://snap.stanford.edu/data/com-Amazon.html
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Table 3 Ref: Zahn-Condorcet (ZC), Owsiński-Zadrożny (OZ), Deviation to Uniformity (UNIF),
Newman-Girvan (NG), Deviation to Indetermination (DI) and Balanced Modularity (BM)

Network Jazz Internet Web nd.edu Amazon Youtube

N ∼ 198 70k 325k 334k 1M

M ∼ 3k 351k 1M 925k 3M

δ 0,14 1.44 × 10−04 2.77 × 10−05 1.65 × 10−05 4.64 × 10−06

Criterion κ κ κ κ κ

ZC 38 40,123 201,647 161,439 878,849

OZ α = 0.4 34 30,897 220,967 121,370 744,680

OZ α = 0.2 23 24,470 184,087 77,700 601,800

UNIF 20 173 711 265 51,584

NG 4 46 511 250 5,567

DI 6 39 324 246 13,985

BM 5 41 333 230 6,410

Fig. 1 Two sub graphs of the entire network we want to merge

• If C > 0 the merger of the two clusters increases the value of the criterion.
• If C < 0 the merger of the two clusters decreases the value of the criterion.

Equation (7) shows that the decision of merging or not the two clusters depends

on a comparison between the quantity
n1∑

i∈C1

n2∑
i ′∈C2

φi i ′ and the quantity
n1∑

i∈C1

n2∑
i ′∈C2

φ̄i i ′ .

Giving the fact that both are positive, it is the one with the highest value that decides
to merge or not to merge. Thus, whereas the first one is for fusion the second one is
against the fusion.

Table4 shows the explicit expression of the contribution for the linear criteria
described below.5

5The contribution for the Balanced Modularity will be given later.
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Table 4 Contribution of merging two clusters for linear criteria

Criterion: F CF =
n1∑

i∈C1

n2∑
i ′∈C2

(φi i ′ − φ̄i i ′ )

Zahn-Condorcet CZC =
(

l − n1n2

2

)
Owsiński-Zadrożny CO Z = (l − n1n2α) 0 < α < 1

Deviation to uniformity CUNIF = (l − n1n2δ)

Newman-Girvan CN G =
(

l − n1n2
d1

avd2
av

2M

)

Deviation to indetermination CDI =
(

l − n1n2

(
d1

av

N
+ d2

av

N
− 2M

N 2

))

where dav =
∑N

i∈V ai.

N
is the average degree of the whole graph, d1

av =
∑n1

i∈C1
ai.

n1

and d2
av =

∑n2
i ′∈C2

a.i ′

n2
are the average degrees of C1 and C2 respectively.

We can remark from Table4 that for the five criteria the contribution compares
“the number of edges between C1 and C2: l” to the quantity in bold. We can see
as well that the contribution for locally balanced criteria depends only upon local
properties: l, l̄, n1, n2. In fact, locally balanced criteria are scale invariant. In con-
trast, for the other criteria having a resolution limit the contribution depends and
is decreasing on the global size of the network. We remark as well that for three
criteria: Newman-Girvan, Deviation to Indetermination and Balanced Modularity
the contribution depends on the degree distribution of the two clusters. According
to Barabasi and Albert (1999) many real networks fall into the class of scale-free
networks, meaning that their degree distribution follows a power-law. In a scale-free
network a few nodes called hubs have many connexions whereas most nodes have
few connexions.

4.1 Impact on the Optimal Number of Clusters

From the previous results we can deduce the main characteristics of the optimal
partition found by the optimization of each criterion (see Table5). In addition, we
remark the following facts:

• The Zahn-Condorcet criterion:According toTable4 formerging the two clusters
C1 and C2, these ones must be connected by at least as many edges as the half of

the maximum possible number of edges,6 that is l >
n1n2

2
.

6This result is a consequence of the rule this criterion relies on: “The rule of absolute majority of
Condorcet” in voting theory.
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Table 5 Summary by criterion

Criterion Characteristics of the optimal partition

Zahn-Condorcet • The density of edges of each cluster is at least equal to 50%

• No resolution limit

• For real networks the optimal partition contains many small
clusters or single nodes

Owsiński-Zadrożny • It gives the choice to define the minimum required
within-cluster density, α

• For α = 0.5 the Owsiński-Zadrożny criterion ≡ the
Zahn-Condorcet criterion

• No resolution limit

• The optimal partition depends on the parameter α

Deviation to uniformity • A particular case of Owsiński-Zadrożny criterion with α = δ

• The density of within cluster edges of each cluster is at least
the global density δ

• It has a resolution limit

Newman-Girvan • It depends on the degree distribution

• It has a resolution limit

• The optimal partition has no single nodes

Deviation to indetermination • It depends on the degree distribution

• It has a resolution limit

Balanced modularity • It depends on the degree distribution

• It has a resolution limit

• The Owsiński-Zadrożny criterion: Formerging the two clustersC1 andC2, these
ones must be connected by at least as α% as the maximum possible number of
edges.

• The Deviation to Uniformity: According to Table4 for the merge to take place
the fraction of edges betweenC1 andC2 must be at least equal to the global density
of the whole graph.

• Newman-Girvan criterion: FromTable4we can deduce that the optimal partition
does not have clusters with a single node (this result was already demonstrated in
Brandes et al. (2008)). In fact, if C1 has only one node with only one connection
to C2, thus n1 = 1, d1

av = 1, l = 1 and consequently the contribution is always

positive: CN G =
(
1 −

∑n2
i=1 ai.

2M

)
> 0.

• Balanced Modularity: It is easy to understand the behavour of the contribution
of Balanced Modularity when we compare it to those of Newman-Girvan and
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Deviation to Indetermination (see Conde-Céspedes (2013) for proof).7 Indeed, we
demostrated in Conde-Céspedes (2013) that:

CB M = 2CN G + n1n2
(d1

av − dav)(d2
av − dav)

2M(1 − δ)
(8)

and

CB M = 2CDI + n1n2

(
2 − 1

δ

)
(d1

av − dav)(d2
av − dav)

N 2(1 − δ)
. (9)

Although the contribution for the Balanced Modularity is increasing in both the
contribution of Newman Girvan CN G and in the contribution of Deviation to Inde-
terminationCDI , in both casesCB M has an additional term that we can treat as reg-

ulator:
(

n1n2
(d1

av−dav)(d2
av−dav)

2M(1−δ)

)
and

(
n1n2

(
2 − 1

δ

) (d1
av−dav)(d2

av−dav)

N 2(1−δ)

)
respectively.

These two regulators have opposite sign for real networks. In fact, the coefficient(
2 − 1

δ

)
of the second regulator is almost surely negative for real graphs because

the density δ << 0.5 for scale-free networks. That is why the Balanced Modular-
ity behaves as a regulator between both criteria: Newman-Girvan and Balanced
Modularity. However, when the network size increases N −→ ∞ and M −→ ∞
the regulator terms tend to zero.

Only ground-truth overlapping communities are defined on real networks in
Table3. This fact makes difficult to judge the quality of the obtained partitions
because we can not directly compare a partition to overlapping communities. That
is why in the next section we will consider artificial networks with a predefined
community structure.

7These expressions are deduced from the two following expressions of Balanced Modularity in
terms of Newman-Girvan and Deviation to Indetermination criteria:

FB M = 2FN G +
N∑

i=1

N∑
i ′=1

(
(ai. − dav)(a.i ′ − dav)

2M(1 − δ)

)
xii ′

and

FB M = 2FDI +
(
2 − 1

δ

) N∑
i=1

N∑
i ′=1

(
(ai. − dav)(a.i ′ − dav)

N 2(1 − δ)

)
xii ′ .
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5 Experiments with Artificial Networks

In order to judge the quality of the partitions obtained by each criterion we generated
benchmark LFR graphs8 (see Lancichinetti et al. (2008)) of different sizes 1000,
5000, 10000, 50000, 100000 and 500000. The input parameters are the same as
those considered in Lancichinetti and Fortunato (2009). The average degree is 20,
the maximum degree 50, the exponent of the degree distribution is –2 and that of the
community size distribution is –1. In order to test the existence of resolution limit
we chose small communities sizes, ranging from 10 to 50 nodes, and low values of
mixing parameter, 0.10, 0.20 et 0.30. Figure2 shows the average number of clusters
for 100 runs of the generic Louvain algorithm.

In Fig. 2 it is hard to see the curve of the real number of clusters (in black) beacuse
it is almost overlapped with those of OZ1 and OZ2.

Figure2 shows clearly the difference between the behavior of those criteria having
a resolution limit (NG, DU, DI and BM) and the behavior of criteria locally defined
(ZC and OZ). As the size of the network increases the four criteria suffering from
resolution-limit detect fewer clusters than those predefined. The number of clusters
is rather comparable for these four functions, one reason can be the fact that the term
of negative agreements tends to zero when the network gets bigger. Conversely, the
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Fig. 2 Average number of cluster for artificial LFR graphs (logarithmic scale). The curve of the
real number of clusters (in black) it is almost overlapped with that of OZ1 and OZ2

8LFR graphs are benchmark graphs introduced in Lancichinetti et al. (2008) that aim to reproduce
as much as possible the structure that reflects the real properties of nodes and communities found
in real networks. These artificial graphs have predefined community structure based on the mixing
parameter of each node. As stated in Lancichinetti et al. (2008), for each node the mixing parameter
is the fraction of its links it shares with the nodes of the network outside its community.
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Fig. 3 The average Normalized Mutual Information (NMI) on the graphs in Fig. 2 (logarithmic
scale)

number of clusters of criteria locally defined increases nearly at the same rate as the
real number of clusters. Whereas OZ with high α identifies more clusters than those
predefined, the criterion which best approaches the real number of clusters is OZ
with low values of α = 0.2 and α = 0.1.

Figure3 shows the Normalized Mutual Information9 (NMI) for the partitions in
Fig. 2.

9The normalized mutual information (NMI) is a measure of similarity of two partitions. It was
originated in information theory to measure the departure from independence between two random
variables. Given a set of objects V and two partitions P1 and P2 defined on V , intuitively, the mutual
information measures the information that P1 and P2 share. It is normalized between 0 and 1. It is
worth 0 if the two partitions are independent and 1 if they are identical. Let p and q be the total
number of clusters of partitions P1 and P2 respectively. The NMI is calculated as follows:

N M I (P1, P2) = 2I (P1, P2)

H(P1) + H(P2)

where:

• I (P1, P2) = ∑p
u=1

∑q
v=1 puv ln

(
puv

pu. p.v

)
is the mutual information of partitions P1 and P2. I

tells how much we learn about P1 if we know P2 and vice versa. The quantity puv = nuv

N is the
fraction of objects who belong simultaneously to cluster u of partition P1 and to cluster v of
partition P2. Analogously puv = nu.

N is the fraction of objects who belong to cluster u of partition
P1 and puv = n.v

N is the fraction of objects who belong to cluster v of partition P2 and |V | = N .

In the case nuv = 0 we assume ln
(

puv

pu. p.v

)
= 0.

• H(P1) = − ∑p
u=1 pu. ln pu. represents the Shanon entropy of P1 and H(P2) =

− ∑q
v=1 p.v ln p.v represents the Shanon entropy of P2 (see Shannon (1948)).
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Figure3 shows that the average NMI decreases with the network size for criteria
having a resolution limit. Moreover, they almost overlap. Conversely, the NMI of the
criteria locally defined seem to increase with the network size. The criterion with the
highest NMI is OZ with low values of α, 0.1 and 0.2.

Figure4 shows the average Normalized Mutual Information for the mixing para-
meter ranging from 0.1 to 0.8 for different network sizes.

Figure4 shows that for all the criteria previously presented the NMI decreases
as the mixing parameter increases. This figure demonstrates once more the differ-
ences between the behavior of criteria with resolution limit and that of the criteria
locally defined. For the first ones the quality decreases abruptly beyond mixing para-
meter equal to 0.6. For the second ones, the quality seems to decrease at a lower
rate. However, it is important to remark that the quality of criteria with a resolution
limit decreases not only with the mixing parameter but also with the network size.
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Converserly, the behavior of the NMI of locally defined criteria seem to have the
same behavour independtly of the size of the whole network.

Another point to remark is that even when the mixing parameter is high all the
criteria find a community structure. In fact, the pre-defined communities in the LFR
graphs are based on mixing parameter, whereas all the criteria analysed in this article
have their own definition of graph with no community structure which is not based
on the mixing parameter.

Table5 presents a summary of the results found by the previous analysis.

6 Conclusions

We have presented six linear modularization criteria in relational notation, Zahn-
Condorcet, Owsiński-Zadrożny, the Newman-Girvan modularity, the Deviation to
Uniformity index, the Deviation to Indetermination index and the Balanced-
Modularity. This notation allowed us to easily identify the criteria suffering from
a resolution limit. We found that the first two criteria had a local definition, whereas
the others, based on a null model, had a resolution limit. These findings were con-
firmed by modularizing real and artificial graphs using a generic version of the
Louvain algorithm. We compared the number of clusters found by the six criteria
and the NormalizedMutual information for artificial graphs. The results showed that
criteria based on a local definition had a better performance than those based on a
null model when the size of the graph increases, experimentally the crition having the
best behavior was Owsiński-Zadrożny with low values of parameter α. However, it is
important to remark that these results are based on a particular kind of graphs, more
precisely, graphs with a low mixing parameter, small communities,10 node degrees
and community sizes distributed according to a power law.

Acknowledgments This work is supported by REQUEST and Open Food System projects.

Appendix

Theorem 1 (The density of clusters obtained by maximization of Zahn-Condorcet
criterion is least 50%). Given a connected, non-oriented and unweighted graph G =
(V, E), the optimal partition obtained by optimizing the Zahn-Condorcet criterion
has the following property: the number of within-cluster edges of each cluster is at
least as half as the possible maximum existing within-cluster edges, that is to say the
number of existing edges in the case the cluster is a clique. Furthermore, every node
in each cluster is connected with at least as half as the total nodes inside the cluster.

10What we call small are communities ranging from 10 to 50 nodes, that is the same sizes considered
by the authors of LFR graphs (see Lancichinetti and Fortunato (2009)).
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Proof. Considering the constraints of reflexivity and symmetry of the relational vari-
able xii ′ (i.e. xii = 1∀i and xii ′ = xi ′i ), the expression of Zahn-Condorcet criterion
in Table2 can be written as follows:

FZC(X) = ∑
i>i ′(aii ′ − āi i ′)xii ′ + N 2 − 2M − N .

where:

• ∑
i>i ′ aii ′ xii ′ is the number of within-cluster edges for all clusters.

• ∑
i>i ′ āi i ′ xii ′ is the number of missing within-cluster edges for all clusters.

If we denote E j the number of within edges of cluster j , the total number of

missing edges for the cluster j will be
(

n j (n j −1)
2 − E j

)
. So, the criterion Zahn-

Condorcet will become:

FZC(C ) = ∑κ
j=1

(
E j −

(
n j (n j −1)

2 − E j
))

+ N 2 − 2M − N ,
or
FZC(C ) = ∑κ

j=1(2E j − n j (n j −1)
2 ) + N 2 − 2M − N .

the term (2E j − n j (n j −1)
2 ) represents the contribution of cluster j to the value of the

criterion. For each cluster of the optimal partition this term must be positive or null.
Otherwise it would be possible to obtain a better partition by isolating each node in
cluster j (the contribution to the value of the criterion by a cluster of an isolated node
is null). This implies:

(2E j − n j (n j −1)
2 ) ≥ 0, or E j ≥ n j (n j −1)

4 .

So, each cluster j has a density of at least 50%.
This result can be extended to every node of each cluster of the optimal partition.

In fact, let us suppose that there is a cluster j containing a node n0 which is connected
with less than half of the total nodes in the cluster. Let us denote E j0 the connexions

of n0 to nodes in C j . So, E j0 <= (n j −1)
2 .

It is always possible to obtain a better partition by isolating n0. In fact, the con-
tribution of the two resulting clusters after isolation of node n0 is:

2(E j − E j0) − (n j −1)(n j −2)
2

this last expression is greater than the contribution of cluster j , given by (2E j −
n j (n j −1)

2 ), if n0 is connected with less than half of nodes in C j .
This also proves why the partitions obtaining by optimizing Zahn-Condorcet

criterion contain sometimes clusters of isolates nodes. �
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