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Abstract The extraction of knowledge from social networks is an area that has
experienced significant growth in recent years. Indeed, thanks to the improvement
of storage and calculation capacities, and the heterogeneity of data that can currently
be extracted, much effort has been made to go beyond traditional knowledge, by
proposing new kinds of patterns that take into account the context. However, while
many works were interested in designing new patterns of knowledge or in optimizing
existing approaches, few studies have been focused in merging patterns and on the
useful knowledge emerging from such fusions. In this work, we focus on two network
clustering approaches, able to extract two distinct kinds of patterns, and we seek to
understand both the intersections that can exist between them and the knowledge
that emerges from their fusion. The first is the classical nodes clustering approach
that consists in searching for communities into a network. The second is the search
for frequent conceptual links, a new link clustering approach that aims identifying
frequent links between groups of nodes sharing common attributes. We propose a set
of original measures that aim to evaluate the amount of shared information between
these patterns when they are extracted from a same network. These measures are
applied to three datasets and demonstrate the interest in simultaneously considering
several sources of knowledge.

1 Introduction

The domain of knowledge extraction from social networks, also called social network
mining (Getoor andDiehl 2005; Scott 2011), has experienced strong growth in recent
years. While pioneering works have proposed various methods to address classical
data mining tasks such as classification of nodes, prediction of links or clustering
of nodes, recent approaches have attempted to go beyond traditional knowledge
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patterns by defining new kinds of knowledge suitable to the context (Manyika et al.
2011). Indeed, thanks to the improvement of storage and computation capacities,
and the heterogeneity of data that can currently be extracted from online systems,
more and more works have focused on approaches combining several sources of
data, redefining traditional patterns of knowledge.

Clustering from social networks has been an active research area that has received
a lot of contributions. Indeed, in natural or social systems, entities often tend to orga-
nize themselves in groups (Croft et al. 2008). For example, we observe that sharing
common interests leads to the emergence of online communities through discus-
sion forums or the exchange of messages or files. The detection of such groups is a
good way to identify substructures that possibly have major roles in the targeted sys-
tems. Thus, the identification of these clusters and the comprehension ofmechanisms
underlying their formation are relevant challenges inmany disciplines for uncovering
relationships between the structure and the function into complex systems.

First clustering approaches exploited only the structure of the network in order
to identify some particular patterns called communities (Radicchi et al. 2004; For-
tunato 2009), namely groups of nodes densely connected. More recently, new
approaches have attempted to combine both the network structure and the properties
of nodes (Zhou et al. 2009; Stattner and Collard 2012b).

Nevertheless, the great majority of these works is conducted without taking into
account the complementarity of the knowledge that can be acquired. Indeed, while
many works were interested in designing new kinds of knowledge or in optimizing
existing approaches, few studies have been focused in the fusion of patterns and the
knowledge that could emerge from such fusions.

In this paper,we focus on twonetwork clustering approaches andwe seek to under-
stand both the intersections that can exist between them and the useful knowledge
emerging from their fusion. First, the classical node clustering approach that con-
sists in searching for communities into a network. Second, the search for frequent
conceptual links (FCL), a link clustering approach that exploits both the network
structure and the properties of nodes to identify frequent links between groups of
nodes sharing common attributes.

Our objective is to evaluate the potential relationships existing between FCL
and communities for understanding how the patterns obtained with both approaches
may overlap. For this purpose, we propose a set of original measures that aim to
evaluate the amount of shared information between these patterns when they are
extracted from the same network. These measures are then applied to three datasets
(a proximity-based network, a product co-purchasing network and a phone call net-
work) for demonstrating the interest to consider simultaneously several sources of
knowledge. For each network, we provide several examples of the knowledge result-
ing from the fusion.

The paper is organized as follows. Section2 presents the related works conducted
on the identification of clusters. Section3 describes the notions of communities and
frequent conceptual links and discusses the questions raisedwhen they are combined.
Section4 is devoted to the measures proposed to evaluate the quality of the fusion
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between communities and FCL. Section5 presents the experimental results we have
obtained by applying the measures to three datasets. Finally, Sect. 6 concludes and
presents future directions.

2 Related Works

Numerous methods for identifying clusters from networks can be found in the liter-
ature (Riadh et al. 2009; Steinhaeuser and Chawla 2010; Yang et al. 2013). While
these methods are all able to highlight groups from data arising from networks, we
observe that some factors such as the extracted knowledge or the data used vary from
one method to another. Several criteria can be used to classify these approaches. In
this section, we present the two clustering methods addressed in this paper: the iden-
tification of communities and the search for frequent conceptual links, according to
three main criteria.

(i) Extracted knowledge. The identification of communities and the search for
frequent conceptual links provide two distinct kinds of patterns. On the one hand, the
concept of community is currently the most common approach for clustering nodes
in networks. It provides an information on groups of nodesmost densely connected in
the network (Newman 2006). The associated algorithms aim to partition the network
in several connected components, called “communities”, so that the nodes in each
component have a high density of connection while nodes in different components
have a lower link density (Fortunato 2009).

On the other hand, frequent conceptual links provide an information on groups
of nodes most frequently connected in the network, in which each group is defined
as a set of nodes sharing common attributes. Here, “conceptual” means that such a
link is not a real social link, but represents a “meta-link” that is a set of social links
between two groups of nodes considered as a concept according to the formal concept
analysis area (Ganter et al. 2005). The set of frequent conceptual links extracted from
a network provides a “conceptual view”, namely a new network structure in which
a node represents a group of nodes sharing common attributes and a link represents
a frequent connection between two groups in the original network.

(ii) Clustering criterion. In the domain of group identification, the building of
clustersmay rely on various clustering criteria (Mangiameli et al. 1996; Lancichinetti
et al. 2008). In traditional network clustering, approaches attempt to identify a net-
work partition in which the number of inter-clusters links is maximized while the
number of intra-clusters links is minimized. For this purpose, they use the criterion
of modularity introduced by Newman (2006) to evaluate the quality of the partition.
The modularity measures the density of links into a group and is commonly used
as an optimisation function in some network clustering algorithms (Lehmann and
Hansen 2007; Blondel et al. 2008). Some approaches perform clustering on networks
by using different measures, such as those using Potts models (Kumpula et al. 2007).

The search for frequent conceptual links relies on the notion of support, well
known about frequent itemsets (Agrawal and Srikant 1994). It allows to evaluate the
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percentage of links in the network connecting a group of nodes satisfying a given
property A to another group of nodes satisfying a given property B. Thus, the higher
the value of support is, the higher the amount of links connecting nodes satisfying A
to nodes satisfying B is Stattner and Collard (2012b).

(iii) Source of data. In several applications, networks are modeled by links and
nodes may have various kinds of associated attributes. Such networks are called
“information networks” or “networks with content” (El Gamal and Kim 2011). For
instance, in a telecommunication network, consumers (nodes) may be identified by
attributes such as age, type of package, job status, etc. If the widemajority of network
clustering approaches does not take into account the attributes of nodes, some recent
works have proposed new definitions of community for including node properties in
the clustering task (Yoon et al. 2011). These approaches aim to provide a semantic
decomposition of the network by focusing on the “densely connected groups of nodes
with homogeneous attributes values” as explained in Zhou et al. (2009).

The search for frequent conceptual links exploits both network structure and node
attributes (Stattner andCollard 2012a). The extracting process involves twokey steps:
a clustering phase, that builds the concepts by grouping nodeswith common attributes
and an evaluation phase that exploits the network links to assess the frequency of
links between concepts.

3 Towards a Fusion of Knowledge

This section describes formally the concepts of communities and frequent conceptual
links. We first present each kind of pattern, then we discuss the useful knowledge
resulting from their fusion.

First of all, let G = (V, E) be a social network, where V is the set of nodes
(vertices) and E ⊆ V × V the set of social links (edges).

3.1 Communities in Social Networks

We define C as the set of communities extracted from the network G. We assume
that there are no overlapping communities, thus a node belongs to one and only one
community. We denote F : V → C , the function that returns, for a given node v, the
community to which it belongs.

The communities are extracted in order to maximize the modularity Q defined as
follows:

Q = 1

2|E |
∑

i j

[Wi j − kvi kv j
2|E | ] δ(F(vi ), F(v j ))
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whereWi j represents the weight of the edge between nodes vi and v j , kvi corresponds
to the degree of node vi and the δ-function is equal to 1 if F(vi ) = F(v j ) and 0
otherwise.

The method we use in our experiments is the algorithm proposed by Blondel et al.
(2008), based on modularity optimization.

3.2 Frequent Conceptual Links in Social Networks

V is defined as a relation R(A1, . . . , Ap) where each Ai is an attribute. Thus, each
vertex v ∈ V is defined by a tuple (a1, . . . , ap) where ∀q ∈ [1...p], v[Aq ] = aq , the
value of the attribute Aq in v and |R| = p.

An item is a logical expression A = x where A is an attribute and x a value. The
empty item is denoted ∅. An itemset is a conjunction of items for instance A1 = x
and A2 = y and A3 = z. An itemset which is a conjunction of k non empty items is
called a k-itemsets.

Let m and sm be two itemsets. If sm ⊆ m, we say that sm is a sub-itemset of m
and m is a super-itemset of sm. For instance sm = xy is a sub-itemset of m = xyz.

Any itemset is a sub-itemset of itself.
We denote IV the set of all itemsets built from V .

Let us consider G as a unipartite directed graph. Thus, for any itemset m in IV ,
we denote Vm the set of nodes in V that satisfy m and we define:

• them-left-hand linkset LEm as the set of links in E that start from nodes satisfying
m i.e.
LEm = {e ∈ E ; e = (a, b) a ∈ Vm}

• the m-right-hand linkset REm as the set of links in E that arrive to nodes in Vm i.e
REm = {e ∈ E ; e = (a, b) b ∈ Vm}

Definition 1 (Conceptual link) For any two elements m1 and m2 in IV , the con-
ceptual link (m1,m2) of G is the set of links connecting nodes in Vm1 to nodes in
Vm2 .

For instance, if m1 is the itemset cd and m2 is the itemset e f j , the conceptual
link (m1,m2) = (cd, e f j) includes all links in E between nodes in V that satisfy the
property cd with nodes in V that satisfy the property e f j .

Let LV be the set of conceptual links of G = (V, E) and (m1,m2) be any element
in LV .
(m1,m2) = LEm1 ∩ REm2

= {e ∈ E ; e = (a, b) a ∈ Vm1 and b ∈ Vm2}
Definition 2 (Support of conceptual link) We call support of any element l =
(m1,m2) in LV , the proportion of links in E that belong to l.
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supp(l) = |(m1,m2)|
|E |

For an itemsetm and a conceptual link l, if l = (∅,m)or l = (m,∅) then supp(l) = 0.

Definition 3 (Frequent Conceptual Link) Given a real number β ∈ [0 . . . 1], a con-
ceptual link l in LV is frequent if its support is greater than a minimum link support
threshold β,

supp(l) > β

Let FLV be the set of frequent conceptual links (FCL) in G = (V, E) according
to a given link support threshold β.

FLV =
⋃

m1∈IV ,m2∈IV
{(m1,m2) ∈ LV ; |(m1,m2)|

|E | > β}

Definition 4 (Conceptual sub-link) Let two any itemsets sm1 and sm2 be respec-
tively sub-itemsets of m1 and m2 in IV . The conceptual link (sm1, sm2) is called
conceptual sub-link of (m1,m2).

Similarly, (m1,m2) is called conceptual super-link of (sm1, sm2).
We write (sm1, sm2) ⊆ (m1,m2)

Definition 5 (Maximal frequent conceptual link) Let β be a given link support
threshold, we call maximal frequent conceptual link (MFCL), any frequent con-
ceptual link l such as, there exists no super-link l ′ of l that is also frequent.

More formally, �l ′ ∈ FLV such as l ⊂ l ′.
MFCLs provide a conceptual view of the social network about groups of nodes

that share common internal properties (or concepts according to the area of formal
concept analysis (Ganter et al. 2005)) and that are themost connected.More precisely,
the conceptual view is a graph structure in which each node is related to an itemset
(i.e. group of nodes that satisfy this itemset), and each link corresponds to a MFCL.
By this way, the conceptual view provides a semantic and reduced representation
of the initial network. More precisely, the set of the maximal frequent conceptual
links provides a conceptual and synthetic view of the social network in which only
relevant links between groups of nodes are represented.

Definition 6 (Conceptual view of the social network) Let G = (V, E) be a social
network and β the minimum support threshold. We define G∗

β , the graph (M, L), as
the conceptual view of the network G obtained with the link support threshold β.

• M is the set of itemsets, called “meta-nodes”
• L is the set of maximal frequent conceptual links.
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3.3 Merging Communities and Frequent Conceptual Links

Figure1 shows resulting patterns extracted by community extraction and search for
frequent conceptual links methods from a reference network. We can observe that
patterns extracted by both methods provide two very different kinds of knowledge.
The identification of communities extracts cluster of nodes based on the density of
internal links, while the search for frequent conceptual links extracts clusters of links
based on their frequency in the network. Obviously considering simultaneously these
two kinds of pattern can improve the knowledge of these structures. It also raises a
variety of interesting questions on the organisation of the involved structures such as:

1. Are communities composed by a single meta-node, i.e. a unique property?
2. Do the meta-nodes contain nodes that belong to a same community?
3. Do the frequent conceptual links connect nodes belonging to a same community,

or nodes belonging to different communities?

To answer these questions related to the fusion between both kinds of pattern, we
present in the next section a set of interestingness measures designed to evaluate the
quality of the merging. More precisely, the proposed measures evaluate the degree
of inclusion of communities in meta-nodes, and inversely, the degree of inclusion of
meta-nodes in communities.

Fig. 1 Communities and maximal frequent conceptual links extracted from a reference network
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4 Interestingness Measures

This section is devoted to the measures we propose for evaluating the intersections
of both patterns: communities and frequent conceptual links.

4.1 Preliminaries

We remind that G = (V, E) is a social network in which, V is the set of nodes and
E the set of links. Cardinality of the sets V and E , respectively denoted |V | and |E |
provides the number of nodes and the number of links.

C is the set of communities identified on the network by using a classical link-
based clustering techniques (Blondel et al. 2008). Cardinality |C | provides the total
number of communities identified on the network.

We note Vc the set of nodes in V that belong to the community c, i.e. Vc = {v ∈
V ; F(v) = c}.

Finally, let G∗
β = (M, L) be the conceptual view obtained by extracting maximal

frequent conceptual links from the network G. The set M is the set of meta-node
and L ⊆ M × M is the set of maximal frequent conceptual links. The extraction of
MFCL from G can be performed by algorithms proposed in (Stattner and Collard
2012b). Let us specify that the computation time related to the extraction of frequent
conceptual links exponentially increase with the number of links in the network.
However, some works have been carried out in order to reduce the computation time
by using some properties of node sets (Stattner and Collard 2013).

Letm ∈ M be a given itemset.We remind that Vm is the set of nodes inV satisfying
the property m.

In this paper, our objective is to understand the possible relationships between
the patterns extracted with methods focusing on both communities and conceptual
links. In a more semantic way, we investigate the relationships between densely
connected groups of nodes (i.e. communities or clusters) and groups of nodes sharing
common properties that are frequently connected in the whole network (i.e. frequent
conceptual links).

For this purpose, three objects have to be considered: (i) communities, that are
related to link-based clustering techniques and (ii) meta-nodes and (iii) frequent
conceptual links, that refer to the patterns extracted by the conceptual links extraction
techniques.

In this section, we present various measures, related to the homogeneity into each
kind of objects to understand how communities are included in conceptual links, and
inversely, how conceptual links are involved into communities.
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4.2 Homogeneity Rate into a Community

The homogeneity rate into a community, noted Hc, is a measure that indicates, for
a given community c ∈ C , its ability to aggregate nodes that belong to the same
meta-node, i.e. a set of nodes sharing common properties. This measure corresponds
to the fraction of meta-nodes that do not occur in the community c.

Hc = 1 − |{m ∈ M ; ∃v ∈ V with F(v) = c and v ∈ Vm}|
|M | (1)

If Hc = 0, all meta-nodes are present in community c. More semantically, nodes
in the community c satisfy all properties involved in conceptual links. Inversely, a
high Hc value indicates that nodes in community c only belong to a small fraction
of meta-nodes, i.e. nodes in community c tend to have similar properties.

For instance, the homogeneity rate in community r is Hr = 0.6, while the homo-
geneity rate in community b is Hb = 0.3 (see Fig. 2).

For considering weighting of a property into a community, we introduce Hc/m ,
the homogeneity rate of a given meta-node m into a community c. It corresponds to
the fraction of nodes satisfying property m in community c.

Hc/m = |{v ∈ V ; F(v) = c and v ∈ Vm}|
|{v ∈ V ; F(v) = c}| (2)

Thus if Hc/m = 0, nodes in meta-node m are not present in c. In a more semantic
view, the nodes satisfying propertym do not belong to community c. Inversely, when
Hc/m tends to 1, propertym is satisfied by a high percentage of nodes in community c.

For instance, the homogeneity rate of meta-node X in community r is Hr/X = 1
(see Fig. 2). In the same way, the homogeneity rate of meta-node Z in community b
is Hb/Z = 0.75.

As previously, the set of all Hc/m values obtained for each pair (c,m) provides a
|C | × |M | matrix.

Fig. 2 Meta-nodes (x , y and
z) included into communities
(r , g, o and b) from the
example of Fig. 1
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4.3 Homogeneity Rate into a Meta-node

The homogeneity rate into a meta-node, Hm , is a measure that indicates, for a given
meta-node m ∈ M , its ability to aggregate nodes of the same community. It corre-
sponds to the fraction of communities that do not occur in the meta-node m.

Hm = 1 − |{c ∈ C ; ∃v ∈ Vm with F(v) = c}|
|C | (3)

Thus, if Hm = 0, all communities are represented in themeta-nodem. In otherwords,
all communities contain nodes satisfying propertym. Inversely, when Hm tends to 1,
only a small percentage of communities is present in m, i.e. the meta-node contains
nodes of the same community.

For instance, regarding the example of Fig. 1 containing 4 communities, the homo-
geneity rate into meta-node X (see Fig. 3) is HX = 0.5, while homogeneity rate into
meta-node Z is HZ = 0.75.

To take into account the weighting, we introduce Hm/c, the homogeneity rate of a
given community c into a meta-node m. This measure indicates the fraction of nodes
of community c, in the meta-node m.

Hm/c = |{v ∈ Vm ; F(v) = c}|
|Vm | (4)

Thus, if Hm/c = 0, nodes of community c are not present in m. More semantically,
nodes in cluster c does not satisfy the property m. Inversely, when Hm/c tends to 1,
m is mostly represented in community c.

For example, starting from the example of Fig. 1, the homogeneity rate of com-
munity r in meta-node X is HX/r = 0.4 (see Fig. 3). Similarly, homogeneity rate of
community b in meta-node Z is HZ/b = 1.

Fig. 3 Communities (r , g, o and b) included into meta-nodes (x , y and z) from the example of
Fig. 1
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4.4 Homogeneity Rate into a Conceptual Link

The homogeneity rate Hl , into a conceptual link, measures for a given frequent
conceptual links l = (m1,m2), its ability to connect nodes belonging to the same
community. In other words, it indicates if nodes of the same community maintain
a frequent conceptual link. It corresponds to the fraction of similar communities
represented in both sides of the frequent conceptual links.
T1 = {c ∈ C ; ∃v ∈ V with F(v) = c and v ∈ Vm1}
T2 = {c ∈ C ; ∃v ∈ V with F(v) = c and v ∈ Vm2}

HLl = |(T1 ∩ T2)|
|(T1 ∪ T2)| (5)

Thus, for a given frequent conceptual link l = (m1,m2), a low HLl value indicates
that nodes involved in both sides of the frequent conceptual link belong to different
communities, while a high HL value indicates that a large amount of communities
represented in meta-node m1 are also represented in meta-node m2.

For example, the homogeneity rate into the conceptual link (Z ,Y ) is H(Z ,Y ) = 0.5
(see Fig. 4). In the same way, the homogeneity rate into the conceptual link (X,Y )

is H(X,Y ) = 0.
As previously, we introduce Hl/c, the homogeneity rate of a given community c

into the frequent conceptual link l = (m1,m2). More precisely, Hl/c measures the
difference in representation of a community c in meta-nodes m1 and m2.

Hl/c = 1 − |Hm1/c − Hm2/c|
max(Hm1/c, Hm2/c)

(6)

Thus, for a given frequent conceptual link l = (m1,m2), the homogeneity rate Hl/c =
1 indicates that the fraction of nodes of community c in meta-nodes m1 and m2 of l

Fig. 4 Communities (r , g, o
and b) included into frequent
conceptual links from the
example of Fig. 1
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is similar. Inversely, Hl/c = 0 indicates that at least one of the meta-nodes does not
contain nodes belonging to the community c.

For example, the homogeneity rate of community b into the frequent conceptual
link (Z ,Y ) is H(Z ,Y )/b = 1 − 0.7

1 = 0.3.

5 Experimental Results

We have conducted various set of experiments to evaluate the quality of the fusion.
The results obtained show that very homogeneous structures can be found, and
demonstrate the interest to consider simultaneously several sources of knowledge
and more particularly the communities and the frequent conceptual links.

Section5.1 describes the datasets used and their main characteristics regarding
the network structural properties, the communities and their size and the frequent
conceptual links and their properties. Section5.2 presents and discusses the results
we have obtained by applying the interestingness measures proposed on the three
datasets.

5.1 Testbed

Three datasets have been used in our experiments.

(i) The first (referred as EpiSims in the remaining of the paper) is a geographical
proximity-based social network obtained with EpiSims (Barrett et al. 2008), a
simulation tool that statistically reproduces the daily movements of individuals
in the city of Portland. In this network, two individuals are connected when they
were co-located in the same place during the simulation.

(ii) The second (referred as Amazon in the remaining of the paper) is a product co-
purchasing network (Leskovec et al. 2007), extracted from theAmazon database,
in which two products are connected when they were purchased together by a
same user.

(iii) The third (referred as Communications in the remaining of the paper) is a
connected subnetwork of a very large communication network provided by
a local mobile telephony operator (Stattner 2014) in French West Indies and
Guiana. In this network, two individuals are connected when a telephone call
was made between them.

The main characteristics of these datasets and the properties of the extracted
patterns (communities and frequent conceptual links) are described in Table1. The
identification of the communities has been performed with the Louvain Algorithm
proposed by Blondel et al. (2008), a nodes clustering method that relies only on
the structure on the network. As the Louvain Algorithm is non-deterministic we



Clustering of Links and Clustering of Nodes … 267

Table 1 Main properties of the dataset used
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focused on an extraction that represented a meaningful snapshot of communities.
The extraction of maximal frequent conceptual links has been performed with the
MFCL-Min Algorithm proposed in (Stattner and Collard 2012b). The minimum link
support threshold β was set at 0.1, namely we keep only groups that contain at least
10% of the network links.

(i) The EpiSims network is composed of 1043 nodes and 2382 links. Each node
is identified by 6 attributes: (1) age class, i.e.  age

10 � (2) gender (1-male, 2-female),
(3) worker (1-has a job, 2-has no job), (4) relationship to the head of household (1-
spouse, partner, or head of household, 2-child, 3-adult relative, 4-other), (5) contact
class (i.e.  degree

2 �) and (6) sociability (i.e. 1-coeff. clust.> 0.5, 2-else). The network
contains 29 communities, and 35Meta-nodes and 116 frequent conceptual links have
been identified.

Figure5 shows the knowledge extracted from the Episims network: (a) Communi-
ties and (b) Conceptual view by keeping only FCLwith β ≥ 0.2 for more readability.
In this figure, nodes that belong to a same community have an identical color. More-
over for simplicity, meta-nodes (properties) are denoted as follows:

(<att 1>,<att 2>, . . . , <att n>)

where <att i> corresponds to the value of the attribute i on the node. The character
‘∗’ means that the attribute may have any value.

For example, we can observe that the FCL ((∗; 2; 2; ∗; ∗; ∗), (∗; ∗; 2; ∗; ∗; ∗))

has been identified with a support equals to 0.2. It indicates that 20% of the links of
the network connect women who has no job to individuals who has no job.

(ii) TheAmazonnetwork is composed of 5001 nodes and 14981 links. Each node
is identified by 7 attributes: (1) product group (eg. Book, DVD, Video or Music),
(2) number of similar co-purchasedproducts (integer), (3) category (integer), (4)main
category (eg. Literature and Fiction, Arts and Photography, Sport, …), (5) sub cat-

(a) (b)

Fig. 5 Knolwedge from Episims network: a communities and b conceptual view with β ≥ 0.2
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(a) (b)

Fig. 6 Knolwedge from Amazon network: a communities and b conceptual view with β = 0.1

egory (like (5)), (6) number of reviews (integer) and (7) rating (integer between 1
and 5). The network contains 45 communities and 21 Meta-nodes, and 43 frequent
conceptual links have been identified.

Figure6 shows the knowledge extracted from the Amazon network: (a) Commu-
nities and (b) Conceptual view by keeping FCL links with β ≥ 0.2 for more readabil-
ity. We can observe that the FCL ((Book; ∗; ∗; ∗; ∗; 0; ∗), (Book; 5; ∗; ∗; ∗; ∗; ∗))

is identified with a support of 0.26. It indicates that 26% of the links of the Amazon
network connect books that have no-review to books that are co-purchased with five
similar products.

(iii) The Communication network is composed of 1705 nodes and 1807 links.
The data have been processed to keep only calls between users, namely removing
calls to voice mail, customer service, etc. Each node of this network is characterized
by 7 attributes.

1. localisation (“Martinique”, “Guadeloupe”, “Guyane” or “Other”),
2. class of received calls number, i.e.  #received calls

10 �,
3. class of received average calls duration, i.e.  rec. avg call duration

10 �,
4. class of outgoing calls number, i.e.  #outgoing calls

10 �,
5. class of outgoing calls average duration, i.e.  out. avg calls duration

10 �,
6. class of number of SMS sent, i.e.  #SMS sent

10 �
7. class of number of SMS received, i.e.  #SMS received

10 �.
The network contains 40 communities and 44 Meta-nodes, and 105 frequent con-
ceptual links have been identified.

Figure7 shows the knowledge extracted from the Communication network:
(a) Communities and (b) Conceptual view by keeping FCL links with β ≥ 0.2 for
more readability. We can observe that the FCL

(GU AD.; ∗; ∗; ∗; ∗; ∗; ∗), (GU AD.; ∗; 1; ∗; ∗; ∗; ∗)
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(a) (b)

Fig. 7 Knowledge from Communication network: a communities and b conceptual view with
β = 0.1

is identifiedwith a support equals to 0.23. It indicates that 23% of the links of the net-
work connect consumers located in Guadeloupe to consumers located in Guadeloupe
and having an average call duration comprised between 10 and 19min.

Note that the datasets used are relatively small because of the difficulty for extract-
ing FCL on large datasets. More particularly, in Stattner and Collard (2012b) it
has been shown that the computation time exponentially increases with the num-
ber of attributes. However, some recent works have focused on the optimisation
of the extraction process and have proposed various solutions to reduce the search
space (Stattner and Collard 2013).

5.2 Results

In our experiments,we apply the proposedmeasures to the three datasetswith the goal
to identify homogeneous structures regarding the fusion of communities and frequent
conceptual links. For this purpose we focus, for each measure, to the distribution of
the values in order to highlight the amount of situations in which the measures are
maximized.Moreover, for eachmeasurewegive some examples of interesting fusion.

5.2.1 Meta-Nodes Inside Communities

As a first step, Fig. 8 shows, for each dataset, the distribution of the homogeneity rate
Hc/m of a meta-node into a community. We remind that the homogeneity rate into a
community allows evaluating if a community consists only of nodes belonging to the
same meta-nodes, i.e. nodes satisfying common properties and involved in frequent
conceptual links as described previously in Fig. 2.
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Fig. 8 Distribution of homogeneity rate Hc/m of a meta-node into a community

We can observe that trends are very similar for the three networks. Indeed, for
each dataset the vast majority of the homogeneity rates is rather low. For instance
in the Episim network 91.13% of the Hc/m values are less than 0.5. In the Amazon
network 81.16% of the Hc/m values are less than 0.5 and in the Communications
network this proportion is 89.71%. This result suggests that a strong proportion of
communities are very heterogeneous in their structure, since they are not composed
of nodes that belong to a same meta-node. Consequently, several attributes can be
found in such communities.

However, our approach also allows highlighting that it exists a small percentage
of communities which have a high homogeneity rate. For instance, in the EpiSims
network 1.08%of the Hc/m values are higher than 0.75. These proportions are 7.93%
for the Amazon network and 4.09% for the Communications network. This result
indicates that it exists some communities very homogeneous since they are mainly
composed of nodes belonging to a same meta-node, i.e. a group of nodes that share
common attributes and that is involved in a frequent conceptual link.

Table2 shows some interesting patterns regarding the Hc/m measure. For example,
80% of the nodes in the community 24 of the EpiSims network (see line 1 Table2) is

Table 2 Examples of interesting patterns regarding Hc/m

Network Community Meta-Node Hc/m

EpiSims 24 (10 nodes) (*;*;2;*;3;*) 0.80

13 (19 nodes) (*;*;1;*;*;*) 0.73

4 (25 nodes) (*;1;*;*;*;*) 0.70

Amazon 39 (64 nodes) (*;*;*;*;*;0;*) 0.87

25 (50 nodes) (Book;*;*;*;*;*;*) 0.84

20 (46 nodes) (*;5;*;*;*;*;*) 0.72

Communication 6 (31 nodes) (GUADELOUPE;*;*;*;*;*;*) 1.00

36 (59 nodes) (GUYANE;*;*;*;*;*;*) 1.00

29 (24 nodes) (GUADELOUPE;*;*;*;*;0;*) 0.89
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composed of nodes that belong to the meta-node (∗; ∗; 2; ∗; 3; ∗), namely a group of
individuals who have no job and have between 5 and 6 connections. In the same way,
the community 29 of the Communication network is composed to 89%of individuals
located in the Guadeloupe island and sending between 0 and 9 SMS (see last line
Table2).

5.2.2 Communities Inside Meta-Nodes

In a second study, we have focused on the homogeneity rate Hm/c of a community
into a meta-node. As previously, we show on Fig. 9 the distribution of this measure
for each dataset. We remind that the homogeneity rate into a meta-node allows
evaluating if a meta-node (i.e. a group of nodes that share common properties and
that is involved in a frequent conceptual link) is solely composed of nodes that belong
to a same community. In other words, this measure assesses whether the nodes that
share common attributes are densely interconnected.

The values obtained here for the homogeneity rate Hm/c are very low whatever
is the dataset. For instance, for the EpiSims network max(Hm/c) is 0.11, while it is
0.08 for the Amazon network and 0.11 for the Communication network. This result
suggests that situations in which meta-nodes are fully homogeneous are very rare.
In other words, it seems to be unlikely that the nodes into a meta-node are densely
interconnected. Obviously, we can assume that these results vary according to the
nature of the network and the semantics of the links.

Table3 shows some examples of patterns regarding the Hm/c measure. For
instance, the first line of the table indicates that in EpiSims network 11% of nodes
satisfying property (1; 1; 2; 2; ∗; ∗) belong to community 20. In other words little
boys who are between 0 and 9 years old are involved in frequent conceptual links and
they are densely connected. In the same way, 11% of the set of subscribers located
in French Guiana whose received calls have a duration between 0 and 9min and
who have sent between 0 and 9 SMS (i.e. (GUY ANE; ∗; 0; ∗; ∗; 0; ∗)) belong to
community 28 (see line 7 Table3).

Fig. 9 Distribution of homogeneity rate Hm/c of a community into a meta-node
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Table 3 Examples of interesting patterns regarding Hm/c

Network Meta-node Community Hm/c

EpiSims (1;1;2;2;*;*) (119 nodes) 20 0.11

(1;*;2;2;*;*) (194 nodes) 19 0.10

(2;*;2;2;*;*) (196 nodes) 9 0.10

Amazon (Book;0;*;*;*;0;*) (996 nodes) 35 0.08

(*;*;*;*;General;*;*) (1071 nodes) 35 0.07

(Music;*;*;*;*;*;*) (997 nodes) 35 0.07

Communication (GUYANE;*;0;*;*;0;*) (212 nodes) 28 0.11

(GUYANE;*;*;*;1;*;*) (300 nodes) 33 0.10

(GUADELOUPE;*;1;*;1;*;*) (192 nodes) 10 0.09

5.2.3 Communities Inside Frequent Conceptual Links

In the last study, we have focused on the homogeneity rate Hl/c of a community
into a frequent conceptual link. Figure10 shows the distribution of this measure for
each dataset. We remind that the homogeneity rate into a frequent conceptual link
measures the ability for a FCL to connect nodes that belong to same communities. It
allows evaluating if a frequent conceptual link is composed, for right and left sides,
to nodes belonging to a same community as described in Fig. 4.

We can observe that the trends are very similar for the three networks. Indeed, for
each dataset the vast majority of the homogeneity rates obtained is rather high. For
instance, in the EpiSims network 87.97% of the Hl/c values are greater than 0.75.
In the Amazon and in the Communication networks, this proportion is respectively
76.24 and 71,5%. This result suggests that frequent conceptual links tend to be very
homogeneous, since equivalent percentages of nodes belonging to a same commu-
nity are found at the both sides of the pattern. In the EpiSims network, only 15.15%
of the values obtained are less than 0.5. In the Amazon and the Communication net-
works, this percentage is respectively 6,56 and 10,62%. This suggests that frequent

Fig. 10 Distribution of homogeneity rate Hl/c of a community into a frequent conceptual link
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Table 4 Examples of interesting patterns regarding Hl/c (remind support of FCL: β = 0.1)

Network Frequent conceptual link Community Hl/c

EpiSims ((*;1;*;*;*;*), (*;2;*;*;3;*)) 13 1.0000

((*;1;*;*;*;*), (*;2;1;*;*;*)) 23 0.9995

((*;2;2;2;*;*), (*;1;*;*;*;*)) 7 0.9962

Amazon ((*;*;*;*;General;*;*), (Book;*;*;*;*;0;*)) 22 0.9999

((Book;*;3;*;*;*;*), (*;*;*;*;*;0;*)) 27 0.9994

((Music;*;*;*;*;*;*), (Book;*;*;*;*;0;*)) 37 0.9989

Communication ((*;*;0;*;*;*;*), (*;*;1;*;*;0;*)) 26 0.9998

((Guadeloupe;*;0;*;1;*;*), (Guadeloupe;*;*;*;*;*;*)) 25 0.9984

((Guyane;*;*;*;*;*;*), (Guyane;*;1;*;*;*;*)) 32 0.9958

conceptual links tend to connect nodes that belong to same communities. Moreover,
this result demonstrates that a part of the intra-community links into a social network
may be involved in a frequent conceptual link.

For example, the first line of the Table4 provides relevant knowledge: First,
((∗; 1; ∗; ∗; ∗; ∗), (∗; 2; ∗; ∗; 3; ∗)) is a frequent conceptual link, i.e. at least 10% of
the links of the network connect men (∗; 1; ∗; ∗; ∗; ∗) to women who have between
4 and 5 contacts (∗; 2; ∗; ∗; 3; ∗) (we remind that the minimum link support thresh-
old was set at 0.1). Second, in each group, the percentage of nodes that belong to
community 13 is exactly the same.

6 Conclusion

In this paper, we have addressed the problem of clustering from social networks.
Unlike traditional approaches that focus separately on the design of new patterns of
knowledge suited to the context or the optimization of existing algorithms, we have
adopted in this work another point of view by focusing on the fusion of patterns and
the useful knowledge emerging from such fusions. For this purpose, we have focused
on two network clustering approaches extracting two kinds of knowledge: (i) the
clustering of nodes through the identification of communities and (ii) the clustering
of links through the search for frequent conceptual links. The main contributions of
the paper can be summarized as follows.

• We have formally described the concepts of communities and frequent conceptual
links and discussed both the problematic and the useful knowledge resulting from
their fusion.

• We have proposed a set of measures, based on the notion of homogeneity, that aim
to evaluate the amount of shared information between these patterns when they
are extracted from a same network.
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• Finally, we have applied these measures to three datasets: a proximity-based net-
work, a product co-purchasing network and a phone call network. The results
obtained have demonstrated the interest of the approach proposed since very inter-
esting merged knowledge have been identified on each network.

This work demonstrates the interest to consider simultaneously several sources of
knowledge. In future works we plan to extend the approach to other network mining
methods.

More generally, this work also raises a variety of questions in terms of visualiza-
tion, extraction algorithms and resulting meaning. For instance in our future works,
we plan to propose more complete representations of networks combining into sin-
gle visualizations several kinds of knowledge. Another interesting track should be
to propose optimized algorithms able to extract in one run several kinds knowledge.
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