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Abstract. Since hundreds of certificate authorities (CAs) can issue
browser-trusted certificates, it can be difficult for domain owners to
detect certificates that have been fraudulently issued for their domain.
Certificate Transparency (CT) is a recent standard by the Internet Engi-
neering Task Force (IETF) that aims to construct public logs of all cer-
tificates issued by CAs, making it easier for domain owners to moni-
tor for fraudulently issued certificates. To avoid relying on trusted log
servers, CT includes mechanisms by which monitors and auditors can
check whether logs are behaving honestly or not; these mechanisms are
primarily based on Merkle tree hashing and authentication proofs. Given
that CT is now being deployed, it is important to verify that it achieves
its security goals. In this work, we define four security properties of log-
ging schemes such as CT that can be assured via cryptographic means,
and show that CT does achieve these security properties. We consider
two classes of security goals: those involving security against a malicious
logger attempting to present different views of the log to different par-
ties or at different points in time, and those involving security against
malicious monitors who attempt to frame an honest log for failing to
include a certificate in the log. We show that Certificate Transparency
satisfies these security properties under various assumptions on Merkle
trees all of which reduce to collision resistance of the underlying hash
function (and in one case with the additional assumption of unforgeable
signatures).

1 Introduction

The security of web communication via the Transport Layer Security (TLS)
protocol relies on safe distribution of public keys in the form of X.509 certificates.
Certificate authorities (CAs) are trusted third parties that endorse the public
keys of subjects by performing checks and issuing certificates. Web browsers
can accept certificates from hundreds of CAs, and relying parties are unable
to determine whether certificates were issued at the request of the subject or
fraudulently issued by the CAs, whether by mistake or due to compromise.

In recent years there have been high-profile cases of misissued certificates being
used to spoof legitimate websites. For example, in 2011 an intruder managed to
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issue itself a valid certificate for the domain google.com and its subdomains from
the prominent Dutch Certificate Authority DigiNotar [11]. This certificate was
issued in July 2011 and may have been used maliciously for weeks before the detec-
tion on August 28, 2011, of large-scale man-in-the-middle (MITM) attacks on mul-
tiple users in Iran. In another instance, the Comodo Group suffered from an attack
which resulted in the issuance of nine fraudulent certificates for domains owned by
Google, Yahoo!, Skype, and others [5].

Certificate Transparency (CT) [17,18] is an experimental protocol originally
proposed by Google and standardized by the Internet Engineering Task Force
(IETF) Public Notary Transparency working group to mitigate the threat of
fraudulently issued certificates by publicly logging certificates. CT provides an
open auditing and monitoring system which allows domain owners to verify that
no fraudulent certificates have been issued for their domains. The end goal of
Certificate Transparency is that web clients should only accept certificates that
are publicly logged and that it should be impossible for a CA to issue a certificate
for a domain without it being publicly visible. Recent incidents demonstrated the
effectiveness of CT logs: Google employees detected unrequested certificates for
two of their subdomains issued by a Symantec sub-CA Thawte [30]. The certifi-
cates were issued on September 14, 2015 and detected by September 17, 2015; the
certificates were revoked immediately, limiting the exposure of the certificates
to just three days. In another case, the Facebook security team discovered an
issuance of two certificates on multiple subdomains violating Facebook’s internal
security policies [14]. The incident was investigated and both certificates revoked
within hours, even before they were deployed to production systems.

1.1 The Web PKI and Certificate Transparency

The basic web public key infrastructure (PKI) includes several types of entities
which perform different tasks: web servers, certificate authorities, browser ven-
dors and web browsers. The Certificate Transparency framework adds several
new entities which help maintain and monitor public logs:

– Loggers or log servers maintain publicly accessible append-only logs of certifi-
cates. These certificates are received from submitters. As a new entry might
not be published immediately for operational reasoning, the logger provides
each submitter with a promise to log the certificate within a certain amount
of time; the promise is called a signed certificate timestamp (SCT).

– Submitters, submit certificates (or partially completed pre-certificates) to a
log server and receive a signed certificate timestamp from the log.

– Monitors are public or private services that watch for misbehaving logs or
suspicious certificates by periodically contacting and downloading information
from log servers. They inspect every new entry in a log, keep copies of the entire
log, and verify the consistency between published revisions of the log.

– Auditors verify the correct behaviour of a log, checking that certificates that
a logger has promised to include are present in the log. Auditors may be
standalone entities or integrated into monitors or web clients.
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In CT, the original entities from the web PKI also have some additional
tasks:

– CAs should act as submitters above.
– Web servers should include their SCT along with the certificate when commu-

nicating with clients. Web servers may choose to submit their certificate to a
log server if their CA does not do so for them.

– Web clients, upon receiving an SCT from a web server, may choose to verify
that the log named in the SCT actually has publicly logged the certificate
(thereby taking on the role of an auditor as above).

– Browser vendors may push updates that remove CAs or revoke certificates
based on claims from monitors and web servers about misbehaving CAs.
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Fig. 1. Overview over the interaction between entities in Certificate Transparency; see
Sect. 1.1 for details. Solid-line interactions and solid-line, orange entities are captured
by the model in our work while dashed-line interactions and dashed-line, gray entities
are not captured. Dotted line–connected entities (monitors and auditors or auditors
and web clients) might be the same physical entity. (Color figure online)

Figure 1 provides an overview of the involved parties and their interactions
in CT1. At the submission of a new certificate entry (step A), the logger returns
a signed certificate timestamp (SCT) (step B), which is a promise to include the
entry in the log. Every log has a published parameter called a maximum merge
delay (MMD) which indicates the maximum period between issuing a timestamp
and the inclusion of the certificate into the log.

In CT, the logger stores the entries of the log in an append-only Merkle hash
tree [24,25], a form of a tamper-evident history tree [6,7]. Recall for Merkle
trees, data is placed at the leaves of a binary tree and each intermediate node is
the hash of its two child nodes; the root of the trees acts as a fingerprint of all
included data. In CT, the root of the tree is signed and published by the logger,
and is called the signed tree head (STH). The observed fingerprints are exchanged
by all parties in the system through a so-called “gossiping” protocol [27].
1 Note that the labeling of interactions is simply for reference and does not indicate a

particular order of the displayed requests.
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Gossiping allows monitors, auditors, and web clients to share information
they receive from log servers, with the goal of collectively detecting misbehavior
of log servers while limiting the damage to user privacy. The parties who hold the
same fingerprints of a log are (cryptographically) assured that they have the same
view of the log at the point in time represented by the fingerprint. Gossiping can
be implemented through SCT feedback (where web clients send SCTs through
HTTPS servers), STH pollination (where web clients and CT auditors/monitors
use HTTPS servers as STH pools) and trusted auditor streams (where web
clients directly communicate with trusted CT auditors/monitors).

To convince other parties that promised certificates are included in a log,
and that subsequent published fingerprints are consistent, the logger employs
two types of cryptographic proofs: audit proofs and consistency proofs.

An audit proof allows an auditor to verify that a particular certificate/SCT
that a logger has promised to include is actually included in the log represented
by a fingerprint, shown in steps C and D. In CT, an audit proof is essentially an
authentication path in the Merkle tree from the leaf containing the certificate in
question to the root hash/fingerprint contained in the signed tree hash.

A consistency proof allows an auditor or monitor to verify that the log is
append-only, in particular that the log represented by a fingerprint at one point
in time t0 is a prefix of the log represented by a fingerprint at a later point in
time t1 > t0, shown in steps G and H. In CT, a consistency proof is a subset of
intermediate nodes in the Merkle tree needed to connect the two root hashes.

Monitors can also request that a logger provides them with the full set of
entries represented by a fingerprint (steps E and F). In CT, this can be verified
by recomputing the Merkle tree hash of the entries.

As a starting point for a threat model, the informational IETF draft “Attack
Model for Certificate Transparency” [15] describes potential attack scenar-
ios when Certificate Transparency is used in the context of web public-key
infrastructure.

1.2 Our Contribution

Given the practical significance of Certificate Transparency, it is important to
have a formal understanding of the security goals of CT and analyse whether CT
achieves those goals. The objective of our work is to define security goals of logging
schemes using the formalism of provable security, and attempt to prove that CT
satisfies these security goals under suitable cryptographic assumptions. Our model
of logging schemes does not assume a PKI context, so we do not assume that log
entries must have a particular syntax, and thus we leave the threats involving valid-
ity or syntax of log entries to existing analyses on certificate validity. Similarly, we
omit consideration of threats where an entity fails to act.

As noted above, we will focus on two particular threats in the CT threat model:
whether a misbehaving log server can present different views of the log and whether
a misbehaving monitor can frame an honest log server for bad behaviour. Thus, our
model will focus on two entities: the logger and the monitor/auditor.
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Definition of Logging Schemes. In Sect. 3 we formally define logging schemes,
naming operations that each entity can perform. This model does not attach any
semantic meaning to the entries being logged; in particular, we do not assume
that log entries are certificates. Subsequently, we describe the operations of Cer-
tificate Transparency as a specific instantiation of the logging scheme framework.

Security Definitions. Next, we introduce cryptographic security properties for
logging schemes in Sect. 4 that are inspired by the CT threat model but reflect
the corresponding ideas in general terms. More specifically, we treat two types
of properties. First, we define security notions which concern a malicious logger:

– entry-coll: can a malicious logger present two different sets of entries corre-
sponding to the same fingerprint?

– proof-coll: can a malicious logger present an audit proof that claims a single
fingerprint represents both a particular entry as well as a set of entries such
that the particular entry is not actually in the list of entries?

– entry-cons: can a malicious logger present two fingerprints connected by a valid
consistency proof and two sets of entries such that the entries corresponding to
the first fingerprint are not a prefix of the entries corresponding to the second
fingerprint?

Second, we define a security notion concerning a malicious monitor:

– promise-incl: can a malicious monitor frame an honest logger for not including
a promised entry when it actually has?

Security of Certificate Transparency. Finally, we analyze the security of Cer-
tificate Transparency in Sect. 5 and show that CT both prevents logger mis-
behaviour (i.e., CT satisfies the entry-coll, proof-coll, and entry-cons security
properties) as well as protection from framing of honest loggers by misbehav-
ing monitors (i.e., CT satisfies the promise-incl property.) All of these proofs are
based on properties of Merkle tree hashing and audit/consistency proofs, all of
which ultimately derive from the collision resistance of the hash function. The
last property, promise-incl, also depends on the unforgeability of the signature
scheme used by loggers.

Generality of Definitions. Our definition of a logging scheme and its security
properties are not specific to CT, and have the potential to be applied to
other constructions. In Sect. 3.3, we discuss the applicability of our definitions to
CONIKS [23], a logging scheme aimed at transparency of user keys: our logging
scheme definitions capture some aspects of CONIKS, but also highlights impor-
tant differences between the functionality and goals of CT versus CONIKS.

1.3 Related Work

New PKI Technologies. Recent certificate mis-issuances and security breaches
in CAs have motivated research in alternatives to having a trusted third party
vouching for the binding between domain name and its private key. Public key
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pinning [10] and DANE [13] are such proposals that allow domain owners to
proactively and directly state their trusted public keys for the domain. Certifi-
cate Transparency takes a reactive rather than a proactive approach: instead
of preventing mis-issuance in the first place, it aims to detect mis-issuance by
making certificates visible through a public authenticated log.

History Trees. The data structures in CT are similar to the history trees of
Crosby and Wallach [6,7]. Two of their results [6] connect with our security
notions: their Corollary 1 shows that “reconstructed hashes” that are equal imply
the entry sets from which they were constructed are equal, where “reconstructed
hashes” can mean reconstructed from the leaves directly (like in a full hash tree
computation) or from membership proofs. Their Theorem1 shows that, given a
consistency proof between two roots and a membership proof for the same index
to each root (two membership proofs total), the leaves at that index must be the
same in both trees; this is similar to our entry-cons property, though we focus on
entry sets rather than membership proofs. A limitation of Crosby’s results is that
they assume that each root was computed from an underlying entry set, but one
cannot be sure when the adversary generates roots (as in CT); our definitions
make no such assumption. We furthermore capture several extensions that CT
makes, including delays for entry inclusion and protection of honest loggers from
framing (our promise-incl property). Finally, our presentation is notably different:
Crosby’s descriptions of the history tree operations and the proofs [6, Sect. 3] are
generally descriptive rather than algorithmic, whereas we state the operations
fully algorithmically and provide complete algorithmic reductions for all proofs.

In recent years a few more approaches have emerged around the concept of
transparency logs, including revocation [19,29] (which we omit in this work as
they are not under consideration by the IETF Public Notary Transparency work-
ing group) or limitations on certificate issuance, validation, and update [1,16].
The Electronic Frontier Foundation’s Sovereign Keys Project [9] combines trans-
parency logs with cross-signing of keys. Melara et al. [23] present CONIKS, a
system focusing on key transparency in end-to-end encryption/secure messag-
ing scenarios. CONIKS eliminates the need for global third party monitors and
aims at additional privacy properties for identity–key bindings, however without
providing a formal security model or cryptographic proofs.

Merkle Trees. Introduced by Merkle [24], Merkle trees have been used in many
areas of cryptography and computer science, including in the construction of
public key signatures from hash functions [25]. Most uses of Merkle trees concern
a static dataset, but in CT we are concerned with a dynamic dataset, and in
particular the append-only nature of the dataset.

There has been some work on authentication trees and more generally signa-
tures on dynamic data sets. Bellare et al. [2,3] introduced the notion of incremen-
tal cryptography. Naor and Nissim [26] use dynamic Merkle trees in the context
of certificate revocation and updates, Li et al. [20] apply them to authenticate
index structures in outsourced databases. Villemson [31] and Ogawa et al. [28]
investigated the characteristics of (generalizations of) incremental Merkle trees.
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Cryptographic PKI Analyses. Maurer [22] introduced a formal model for pub-
lic key infrastructures (PKIs) which subsequently was further extended [4,21].
This line of work approaches the dynamic nature of PKI issuance through an
event-based system that captures the view of potential users at a certain point
in time, using a combination of events that have happened and logical rules
that infer certain conclusions from events. Our work differs from this approach
by following a game-based approach focusing on the interaction between the
parties involved. Our approach also conceptually distinguishes between values
generated by honest parties, claims by dishonest parties, and conclusions drawn
from events.

2 Cryptographic Building Blocks

Notation. We denote by �E an ordered list of entries, where () denotes the empty
list. Indexing is 0-based: �E = (e0, . . . , en−1), and we write �E[i] to denote ei

and �E[i : j] to denote the sublist (ei, . . . , ej−1). We adopt the convention that
�E[−1] = (). We write e ∈ �E to indicate that an entry e is contained in the list �E.
We let �E‖ �E′ denote the concatenation of two entry lists and write �E ≺ �E′ if
�E is a prefix of �E′. If we define P ← (t, e, σ), then we can later access fields
of P using “object-oriented” notation: P.t, P.e, P.σ. Moreover, if �P is a list
(P0, . . . , Pn−1), then the notation �P .e means the list (P0.e, . . . , Pn−1.e). The
expression k ← 2�log2(n/2)� corresponds to setting k to be the largest power of
two less than n, i.e., n

2 ≤ k = 2i < n.
We rely on the standard notion of signature schemes and existential unforge-

ability under chosen-message attacks [12], and the corresponding advantage
Adveuf-cma

SIG (A) of an adversary A breaking this notion for a scheme SIG.

Definition 1 (Hash Collision Finding). Let M be a set, let H : M → {0, 1}λ

be an unkeyed hash function, and let A be an algorithm. We say that A finds a
collision in H if A outputs a pair (m,m′) such that m �= m′ and H(m) = H(m′).

2.1 Merkle Trees

The use of hash trees for authenticating large amounts of data was first proposed
by Merkle [24,25]. Let H : {0, 1}∗ → {0, 1}λ be a hash function. In a Merkle hash
tree for �E, the values of �E are placed at the leaves of a binary tree and each
intermediate node is the hash of its two child nodes; the root of the trees acts as a
fingerprint of all the data contained in the tree; this is the output of the algorithm
MTHH( �E) in Fig. 3. Note the use of prefixes 0 and 1 in hash function calculations
provides “domain separation” between hash calculations for leaves (H(0‖ . . . ))
and intermediate nodes (H(1‖ . . . )); preventing an attacker from gluing part of
a tree into a leaf or vice versa.

A common technique is the use of an authentication path to demonstrate
that a piece of data is in a leaf of a tree corresponding to a particular root. The
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Fig. 2. Merkle tree consistency proof �C = ( �C[0], . . . , �C[3]) between roots H0 (for a tree
of size 3) and H1 (for a tree of size 6). denotes leaf nodes, denotes inner nodes,
denotes nodes corresponding to consistency proof values.

authentication path generation algorithm PathH(m, �E) and verification algorithm
CheckPathH(e,H, n, �A,m) are shown in Fig. 3.

A lesser-known technique is the use of a consistency proof to demonstrate
that the data corresponding to one root is a subset (prefix) of the data corre-
sponding to another root, used, for example, in the context of tamper-evident
history trees [6,7]. In Fig. 2, the consistency proof �C shows that the data corre-
sponding to root H0 is a prefix of the data corresponding to root H1. Consistency
proofs reconstruct each of the two roots from relevant parts of the proof and
compare them against the actual roots; the size of the two trees is essential in
verifying a consistency proof. Consistency proofs may be viewed as an authenti-
cation path from the inner node immediately above the last leaf node in the first
tree (i.e., an authentication path from H(e2) = �C[0] to root H1 in the right side
of Fig. 2). The consistency proof generation algorithm ConsProofH(m,n, �E) and
verification algorithm CheckConsProofH(n0,H0, n1,H1, �C) are shown in Fig. 3.
We have reformulated these from how they appear in the RFC [17]: ours use a
top-down recursive approach, whereas the RFC versions are bottom-up looping
algorithms; the two are equivalent, but our versions are more helpful in proving
our theorems.

2.2 Merkle Tree Security Properties

We now note some well-known facts about the collision resistance of Merkle tree
hashing and the security of authentication paths in Merkle trees [24,25]. For
completeness, full proofs are given in the full version [8].

Lemma 1 (Collision Resistance of Merkle Trees). If H is collision-
resistant, then Merkle-tree hashing using H is also collision-resistant. More pre-
cisely, if A finds a collision in MTHH, then there exists algorithm BA

1 that finds a
collision in H. Moreover, the runtime of BA

1 consists of the runtime of A, plus
at most a quadratic (in the size of the larger list) number of hash evaluations.

Lemma 2 (Authentication Paths Consistency). If H is collision-
resistant, then no CheckPathH authentication path �A can be generated
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MTHH(E) → H:

1: n ← |E|
2: if n = 1, return H(0‖E[0])
3: else (n > 1)
4: k ← 2�log2(n/2)�

5: return H(1‖MTHH(E[0 : k])
6: ‖MTHH(E[k : n])

PathH(m, E) → A:

1: n ← |E|
2: if n = 1, return ()
3: else (n > 1)
4: k ← 2�log2(n/2)�

5: if m < k
6: return PathH(m, E[0 : k])
7: ‖MTHH(E[k : n])
8: else (m ≥ k)
9: return PathH(m − k, E[k : n])

10: ‖MTHH(E[0 : k])

CheckPathH(e, H, n, A, m) → {0, 1}:

1: H ′ ← RootFromPathH(e, n, A, m)
2: return (H = H ′)

RootFromPathH(e, n, A, m) → H:
1: if n = 1, return H(0‖e)
2: k ← 2�log2(n/2)�

3: if m < k
4: � ← RootFromPathH(e, k, A[0 : |A| − 1], m)
5: r ← A[|A| − 1]
6: else (m ≥ k)
7: � ← A[|A| − 1]
8: r ← RootFromPathH(e, n − k,
9: A[0 : |A| − 1], m − k)

10: return H(1‖�‖r)

ConsProofH(m, n, E) → C :

1: // require: 0 ≤ m ≤ n ≤ |E|
2: if m = n
3: return ()
4: else (m < n)
5: return ConsProofSubH(m, E[0 : n], true)

ConsProofSubH(m, E, b) → C :

1: n ← |E|
2: if (m = n) ∧ (b = false)
3: return MTHH(E[0 : m])
4: else
5: k ← 2�log2(n)/2�

6: if m ≤ k
7: return ConsProofSubH(m, E[0 : k], b)
8: ‖MTHH(E[k : n])
9: else (m > k)

10: return ConsProofSubH(m − k, E[k : n], false)
11: ‖MTHH(E[0 : k])

CheckConsProofH(n0, H0, n1, H1, C) → b:

1: if n0 is a power of two, C ← H0‖C
2: H ′

0 ← Root0FromConsProofH(C, n0, n1)
3: H ′

1 ← Root1FromConsProofH(C, n0, n1)
4: return ((H0 = H ′

0) ∧ (H1 = H ′
1))

Root0FromConsProofH(C, n0, n1) → H:

1: k ← 2�log2(n1)/2�

2: if n0 < k
3: return Root0FromConsProofH(C [0 : |C | − 1], n0, k)
4: elsif n0 = k, return C [|C | − 2]
5: else
6: � ← C [|C | − 1]
7: r ← Root0FromConsProofH(C [0 : |C | − 1],
8: n0 − k, n1 − k)
9: return H(1‖�‖r)

Root1FromConsProofH(C, n0, n1) → H:

1: if |C | = 2, return H(1‖C [0]‖C [1])
2: k ← 2�log2(n1)/2�

3: if n0 < k
4: � ← Root1FromConsProofH(C [0 : |C | − 1], n0, k)
5: r ← C [|C | − 1]
6: else
7: � ← C [|C | − 1]
8: r ← Root1FromConsProofH(C [0 : |C | − 1],
9: n0 − k, n1 − k)

10: return H(1‖�‖r)

Fig. 3. Merkle tree algorithms

with respect to Merkle-tree hashing MTHH for an entry e not contained
in the Merkle tree. More precisely, if A outputs (e, �E, �A,m) such that
CheckPathH(e, MTHH( �E), | �E|, �A,m) = 1 and e /∈ �E, then there exists algorithm
BA
2 that finds a collision in H. Moreover, the runtime of BA

2 consists of the
runtime of A, plus at most a quadratic (in | �E|) number of hash evaluations.

3 Logging Schemes

In this section we specify the algorithms that comprise a logging scheme and
formulate CT as a logging scheme.
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3.1 Definition of Logging Schemes

Our definition of a logging scheme is based around the certificate transparency
functionality, but is designed to be potentially more general. We use non-CT
specific language (such as “fingerprint” instead of the CT-specific “signed tree
head”), and our logging scheme is not actually about certificates—any type of
object can be logged.

Definition 2 (Logging Scheme). A logging scheme LS consists of the fol-
lowing algorithms, some of which are run by a logger and some of which are run
by a monitor/auditor.

The following algorithm is used by a logger to initialize its log:

– KeyGen() $→ (st, pk, sk): A probabilistic algorithm that returns a state stand
a public key/secret key pair (pk, sk).

The following algorithms are used by a logger to add entries to its log, using a
two-step process of promising to add an entry to the log and then a batch update
actually adding the entries:

– PromiseEntry(e, t, sk) $→ P : A probabilistic algorithm that takes as input a log
entry e, a time t, and the secret key sk and outputs a promise P ; the promise
contains the entry and time as subfields P.e and P.t.

– UpdateLog(st, �P , t, sk) $→ (st′, F ): A probabilistic algorithm that takes as
input a state st, a potentially empty ordered list of promises �P to add to the
log, a time t and the secret key sk and returns an updated state st′ and a
fingerprint F (where the latter includes the indicated time, denoted as F.t)

The following algorithms are used by a logger to demonstrate various properties
to monitors/auditors:

– PresentEntries(st, F ) → �E or ⊥: A deterministic algorithm that takes as input
a state stand a fingerprint F and outputs an ordered list of log entries �E, or
an error symbol ⊥.

– ProveMembership(st, e, F ) $→ �M or ⊥: A probabilistic algorithm2 that takes as
input a state st, a log entry e, and a fingerprint F and outputs a membership
proof �M , or an error symbol ⊥.

– ProveConsistency(st, F0, F1)
$→ �C or ⊥: A probabilistic algorithm2 that takes

as input a state st and two fingerprints F0 and F1 and outputs a consistency
proof �C, or an error symbol ⊥.

The following algorithms are used by monitors/auditors to check a log:

– CheckPromise(P, pk) → {0, 1}: A deterministic algorithm that takes as input
a promise P (which includes an entry P.e) and a public key pk and outputs a
bit b ∈ {0, 1}.

2 In CT, ProveMembership and ProveConsistency are deterministic, though in prin-
ciple these could be probabilistic in a logging scheme.
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CTH,SIG.KeyGen() → (st, pk, sk):

1: E ← ()
2: st = (E)

3: (pk, sk)
$← SIG.KeyGen()

4: return (st, pk, sk)

CTH,SIG.PromiseEntry(e, t, sk) → P :
1: σ ← SIG.Signsk(t‖e)
2: return P ← (t, e, σ)

CTH,SIG.UpdateLog(st, P , t, sk) → (st′, F ):

1: for each P ∈ P do
2: if CheckPromise(P, pk) = 0, return (st, ⊥)
3: st.E ← st.E‖P .e
4: n ← |st.E|
5: H ← MTHH(st.E)
6: σ ← SIG.Signsk(t, n, H)
7: return F ← (t, n, H, σ)

CTH,SIG.PresentEntries(st, F ) → E:
1: if CheckFingerprint(F, pk) = 0, return ⊥
2: return st.E[0 : F.n]

CTH,SIG.ProveMembership(st, e, F ) → M :
1: if CheckFingerprint(F, pk) = 0, return ⊥
2: find m < F.n such that e = st.E[m]
3: if no such m exists, return ⊥
4: A ← PathH(m, E[0 : F.n])
5: return M ← (A, m)

CTH,SIG.ProveConsistency(st, F0, F1) → C:
1: if CheckFingerprint(F0, pk) = 0, return ⊥
2: if CheckFingerprint(F1, pk) = 0, return ⊥
3: return C ← ConsProofH(F0.n, F1.n, st.E)

Fig. 4. Certificate Transparency: algorithms run by loggers.

– CheckFingerprint(F, pk) → {0, 1}: A deterministic algorithm that takes as
input a fingerprint F and a public key pk and outputs a bit b ∈ {0, 1}.

– CheckEntries( �E, F, pk) → {0, 1}: A deterministic algorithm that takes as input
an ordered list of log entries �E, a fingerprint F , and a public key pk and outputs
a bit b ∈ {0, 1}.

– CheckMembership(F, e, �M, pk) → {0, 1}: A deterministic algorithm that takes
as input a fingerprint F , an entry e, a membership proof �M , and a public
key pk and outputs a bit b ∈ {0, 1}.

– CheckConsistency(F0, F1, �C, pk) → {0, 1}: A deterministic algorithm that
takes as input two fingerprints F0 and F1, a consistency proof �C, and a public
key pk and outputs a bit b ∈ {0, 1}.
Correctness of a logging scheme is defined in the natural way and is omitted

due to space constraints; see the full version [8].

3.2 Instantiation of Certificate Transparency as a Logging Scheme

Figures 4 and 5 formulate Certificate Transparency using H and SIG as a logging
scheme CTH,SIG (i.e., following Definition 2). A log entry in CT is a chain of X.509
certificates: the certificate (or partially completed pre-certificate) itself, and each
intermediate CA’s certificate leading to the root CA’s cert. We treat entries in
our formalization of logging schemes as opaque bit strings: our fomulation hence
omits any syntactical checks for the entries it manages; adding these checks is
independent of the logging properties. The promise P is called a signed certificate
timestamp (SCT). The fingerprint F is called the signed tree head (STH).
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CTH,SIG.CheckPromise(P, pk) → b:
1: return SIG.Vfypk(P.t‖P.e, P.σ)

CTH,SIG.CheckFingerprint(F, pk) → b:
1: return SIG.Vfypk(F.t‖F.n‖F.H, F.σ)

CTH,SIG.CheckEntries(E, F, pk) → b:
1: if CheckFingerprint(F, pk) = 0, return 0
2: H ′ ← MTHH(E)
3: return (|E| = F.n) ∧ (H ′ = F.H)

CTH,SIG.CheckMembership(F, e, M, pk) → b:
1: if CheckFingerprint(F, pk) = 0, return 0
2: return CheckPathH(e, F.H, F.n, M.A, M.m)

CTH,SIG.CheckConsistency(F0, F1, C, pk) → b:
1: if CheckFingerprint(F0, pk) = 0, return 0
2: if CheckFingerprint(F1, pk) = 0, return 0
3: return CheckConsProof(F0.n, F0.H, F1.n, F1.H, C)

Fig. 5. Certificate Transparency: algorithms run by monitors/auditors.

3.3 CONIKS as a Logging Scheme

CONIKS [23] is a recent transparency log scheme that aims to enable privacy-
preserving transparency logging for end-user keys, for applications such as secure
messaging. Our definition of logging scheme can capture several aspects of
CONIKS’ functionality and security, but also serves to highlight some signifi-
cant differences between CT and CONIKS.

CONIKS also uses a Merkle tree structure, but in contrast to CT uses a
Merkle prefix tree in which some attribute of an entry (e.g., the user’s identity)
determines its position. The tree root is computed both from present entries
and placeholder values for empty subtrees, allowing efficient calculation over
very large but mostly empty trees. It is signed and published by the logger as
the signed tree root (STR). Membership proofs can be performed in the standard
way using Merkle authentication paths. Signed tree roots are linked over time
using a hash chain, including the previous signed tree root. However, this does
not enable consistency proofs as in CT: verification that a key that was present
in STRi is also present in STRj requires fresh membership proof of that key’s
presence in STRj . Two core security properties of CONIKS are non-equivocation
(a provider cannot present diverging views) and privacy-preserving consistency
proofs (privacy here meaning with respect to other entries’ information).

CONIKS can be mapped onto the following notions in our definition of a log-
ging scheme. The KeyGen algorithm is run by the logger. CONIKS has no sepa-
rate notion of promise and log entry, combining PromiseEntry and UpdateLog.
CheckFingerprint will verify a signed tree root similarly. Aiming at privacy,
CONIKS does not include PresentEntries and CheckEntries. ProveMembership
and CheckMembership are supported. ProveConsistency and CheckConsistency
are not directly supported; as noted above, an auditor would need to use
ProveMembership and CheckMembership for each entry.

In terms of security properties, none of ours directly map onto CONIKS’
notions, primarily because of including CheckEntries. However, some notions
are similar. Non-equivocation is similar to proof-coll, except that it involves
two CheckMembership computations, rather than one CheckMembership and
one CheckEntries computation (our entry-coll and proof-coll together imply this
new notion). Our promise-incl property matches with a similar change from
CheckEntries to CheckMembership, and ignoring maximum merge delays. Con-
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sistency of STRs in CONIKS is quite a bit different from our entry-cons property,
as CONIKS’ involves probabilistic spot-checks using membership proofs.

4 Security Goals

For the security properties of logging schemes that can be proved cryptograph-
ically, our security definitions follow a provable security game-based approach.
We consider three properties involving security against a malicious logger, in
which the experiment acts as an honest monitor/auditor which the logger is
trying to fool. We also consider one security property involving security against
a malicious monitor/auditor, in which the experiment acts as an honest logger
which the monitor/auditor is trying to frame for bad behaviour.

Security Against a Malicious Logger. Since the fingerprint (signed tree hash
in CT) is used to concisely represent the contents of the log, the first two cryp-
tographic security properties against a malicious logger, shown in Fig. 6, concern
the ability of the logger to make the fingerprint represent different, conflicting
information. Collision resistance of entries, defined in the experiment entry-coll,
requires that it is hard for a malicious logger to come up with a single fingerprint
representing two different sets of entries. Collision resistance of proofs, formal-
ized in the experiment proof-coll, is about the difficulty for a malicious logger to
create a proof that an entry is represented by a fingerprint while simultaneously
claiming that the set of entries represented by that fingerprint does not include
that particular entry. A scheme that satisfies both of these ensures that a mali-
cious logger cannot make parties who use the same fingerprint believe different
things about the log entries represented by that fingerprint.

Expentry-coll
LS (A):

1: (E0, E1, F, pk)
$← A()

2: return 1 iff (CheckEntries(E0, F, pk) = 1) ∧ (CheckEntries(E1, F, pk) = 1) ∧ (E0 
= E1)

Expproof-coll
LS (A):

1: (e, E, F, M, pk)
$← A()

2: return 1 iff (CheckEntries(E, F, pk) = 1) ∧ (CheckMembership(e, F, M, pk) = 1) ∧ (e /∈ E)

Expentry-cons
LS (A):

1: (E0, E1, F0, F1, C, pk)
$← A()

2: return 1 iff (CheckConsistency(F0, F1, C, pk) = 1) ∧ (CheckEntries(E0, F0, pk) = 1)
∧ (CheckEntries(E1, F1, pk) = 1) ∧ (E0 
≺ E1)

Fig. 6. Security properties of a logging scheme LS against a malicious logger.

Logs are updated over time, but are meant to be append-only. However, since
logs are only represented by fingerprints, consistency proofs are used to connect
two fingerprints and are meant to prove that the set of entries represented by one
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fingerprint is a subset of the set of entries represented by a second fingerprint—
in other words, that the fingerprints are representative of an append-only log.
The final security property in Fig. 6 captures the consistency of entries, i.e.,
the difficulty for a malicious logger to remove an entry from a log: experiment
entry-cons is concerned with two fingerprints connected by a single consistency
proof. A “multi-hop” version, concerned with a chain of fingerprints connected
by consistency proofs, can easily be formulated and shown to follow directly from
the “single-hop” version.

Security Against a Malicious Monitor/Auditor. The security properties
described above are cryptographic, meaning that (under some computational
assumptions) it is not possible for a malicious logger to perform certain actions.
However, there are some security goals of CT that are not cryptographic. For
example, a log could choose to omit an entry that it has promised to log, and
no amount of cryptography can prevent it from doing so. Should a log issue a
fingerprint after the time by which it has promised to log an entry but the log
does not contain an entry, that constitutes evidence of the log’s misbehaviour.

However, to protect honest loggers, it should not be possible to frame an
honest logger for misbehaviour that did not actually happen, which is the secu-
rity guarantee formalized as inclusion of promises in experiment promise-incl in
Fig. 7. Here the experiment plays the role of an honest logger against a mali-
cious monitor/auditor, so we allow the adversary (the malicious monitor/logger)
to interact with experiment oracles that carry out the actions of an honest log,
such as adding entries or proving membership. The experiment includes a global

Exppromise-incl
LS,MMD (A):

1: T ← 0
2: Epromised ← ()

3: (st, pk, sk)
$← KeyGen()

4: (F, P, E)
$← AOTick,OPromiseEntry,OUpdateLog,OProveConsistency,OProveMembership(pk)

5: return 1 iff (CheckFingerprint(F, pk) = 1) ∧ (CheckPromise(P.e, P, pk) = 1)
∧ (CheckEntries(E, F, pk) = 1) ∧ (P.e /∈ E) ∧ (P.t + MMD ≤ F.t)

OTick():
1: T ← T + 1
2: P ← {P ∈ Epromised : P.t + MMD ≤ T}
3: if P 
= (),

4: F
$← OUpdateLog(P )

5: Epromised ← Epromised \ P
6: return (T, F )
7: else return T

OPromiseEntry(e):

1: (st, P )
$← PromiseEntry(st, e, T, sk)

2: Epromised ← Epromised || {P}
3: return P

OUpdateLog(P ):

1: (st, F )
$← UpdateLog(st, P , T, sk)

2: return F

OProveConsistency(F0, F1):

1: (st, C)
$← ProveConsistency(st, F0, F1)

2: return C

OProveMembership(e, F ):

1: (st, M)
$← ProveMembership(st, e, F )

2: return M

Fig. 7. Security properties of a logging scheme LS against a malicious monitor/auditor
framing a log for failing to include a promised entry.
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time which advances at the adversary’s command, and is parameterized by a
maximum merge delay MMD > 0, within which an honest log is expected to
include a promised entry. The list �Epromised tracks entries that the log has
promised to include; in calls to OTick the experiment (acting as the honest
log) automatically adds the list of promised entries by the end of the maximum
merge delay window.

5 Security of Certificate Transparency

We are now ready to prove the security results on Certificate Transparency,
namely that its instantiation CTH,SIG within our logging scheme frameworks
guarantees collision resistance of entities and proofs, consistency of entries, and
inclusion of promises.

Theorems 1 and 2 below connect rather immediately with the security prop-
erties of the underlying Merkle tree hash, so we omit the arguments due to space
constraints; they appear in the full version [8]. Lemmas 1 and 2 then connect the
Merkle tree hash properties to finding a collision in H, which is infeasible if H
is collision-resistant. For Theorem 3 we also provide the proof in the full version
due to space restrictions; the proof for Theorem 4 is given in AppendixA.

Theorem 1 (Collision Resistance of Entries). If hash function H is
collision-resistant, then, in Certificate Transparency (with hash function H),
no malicious logger can present different log entries for the same fingerprint.
More precisely, if A wins Expentry-coll

CTH,SIG
, then algorithm BA, which runs A and

then returns the first two components of A’s output, finds a collision in MTHH.
Moreover, the runtime of BA is the same as that of A.

Theorem 2 (Collision Resistance of Proofs). If hash function H is
collision-resistant then, in Certificate Transparency (with hash function H) no
malicious logger can present a list of log entries under some fingerprint and a
membership proof under the same fingerprint for an entry not contained in this
list. More precisely, if A wins Expproof-coll

CTH,SIG
by outputting (e, �E, F, �M, pk), then

algorithm BA, which runs A and then returns (e, �E, �M. �A, �M.m), breaks authen-
tication path consistency in the sense of Lemma 2. Moreover, the runtime of BA

is the same as that of A.

Theorem 3 (Consistency of Entries). If hash function H is collision-
resistant, then, in Certificate Transparency (with hash function H), no malicious
logger can present two lists of entries, two fingerprints, and a consistency proof
such that each list corresponds to the fingerprint, and the fingerprints are con-
nected via the consistency proof, but the first list of entries is not a prefix of the
second list of entries. More precisely, if A wins Expentry-cons

CTH,SIG
, then algorithm BA

3

given in the full version [8] finds a collision in H. Moreover, the runtime of BA
3

consists of the runtime of A, plus at most a quadratic (in the size of the second
list) number of hash evaluations.
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Theorem 4 (Inclusion of Promises). If hash function H is collision-resistant
and signature scheme SIG is existentially unforgeable under chosen-message
attacks, then, in Certificate Transparency (with hash function H and signature
scheme SIG), no malicious monitor/auditor can frame an honest logger of not
including a promised entry within the maximum merge delay. More precisely, if
algorithm A wins Exppromise-incl

CTH,SIG
, then there exist algorithms BA and CA, described

in the proof, that find a collision in MTHH or a forgery in SIG, respectively. More-
over, the runtimes of BA and CA are approximately the same as that of A.

6 Conclusion and Future Work

Certificate Transparency is a promising approach for providing assurances in the
web PKI by using untrusted auditable public logs to detect fraudulently issued
certificates. We introduced a generic model for logging schemes and captured
Certificate Transparency as one specific instance of our model. Based on the
security notions we formalized, we were able to analyze the cryptographic aspects
of CT and show how its cryptographic mechanisms prevent both undetected
misbehaviour of log servers as well as false accusations of honest loggers.

Although cryptography plays an essential role to establish the trust neces-
sary in a public and auditable logging scheme like Certificate Transparency, there
are other components involved that are difficult or even impossible to capture
in a cryptographic model. For example, under various conditions on adversary
control of the network and with various patterns of honest entity behaviour,
how long does it take for the CT gossiping protocol to propagate SCTs and
STHs to ensure detection of dishonest log behaviour? Once misbehaviour is
detected, what organizational measures should be taken to ensure an appropri-
ate response? Analyzing these components in general as well as their specific
relevance in the CT framework is an important task for future work.
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Australian Research Council (ARC) Discovery Project grant DP130104304. Felix
Günther is supported by the DFG as part of project S4 within the CRC 1119
CROSSING.

A Proof of Theorem4 (Inclusion of promises)

Proof. By definition of OTick (cf. Fig. 7), the simulated honest logger will keep
track of any promise P issued through OPromiseEntry and will include the P
through OUpdateLog by time T = P.t + MMD. As in particular MMD > 0, this
ensures that any fingerprint issued by the honest logger at time T ′ ≥ T will
include the promised entry P.e.

AssumeAwinsbyoutputting (F, P, �E), i.e.,F is a validfingerprint representing
entries �E and P is a promise for an entry e /∈ �E although P.t + MMD ≤ F.t.
This means either one of the promise P or the fingerprint F (or both) were not
issued by the simulated honest logger through an invocation of OPromiseEntry or
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OUpdateLog, or that A repeated an honest F that matches an entry list �E different
from the entry list �E′ hold by the honest logger when creating the fingerprint.

The second case constitutes a Merkle-tree hash collision (as MTHH( �E) =
MTHH( �E′), but �E �= �E′). Hence A’s advantage in winning through this case can
be bound by the advantage of an algorithm B (that simulates the oracles and
simply outputs the colliding �E and �E′) against the collision resistance of MTHH.
(Applying Lemma 1 leads to a collision in H.)

For the first case, we show how this allows constructing a signature forgery
attacker C against the euf-cma security of SIG, which works as follows. First of
all, C creates an initial state with empty list of entries. It then simulates experi-
ment Exppromise-incl

CTH,SIG,MMD for A, providing the public key pk from its euf-cma game as
input for A. It furthermore uses its euf-cma signing oracle OSign when required
to generate a signature in the simulations of the OPromiseEntry and OUpdateLog
oracles and keeps a list of all the values queried to the signing oracle.

If A halts (outputting (F, P, �E)) and wins, as argued above, at least one of P
or F was not output through C’s simulation of OPromiseEntry and OUpdateLog
(as we excluded the case of a Merkle-tree hash collision). Hence, in particular,
the according value was not queried to the euf-cma signing oracle, so C checks
which of the two values is not contained in its list of queries and outputs this as
its valid signature forgery. ��
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