
Ioannis Askoxylakis
Sotiris Ioannidis
Sokratis Katsikas
Catherine Meadows (Eds.)

 123

LN
CS

 9
87

9

21st European Symposium
on Research in Computer Security
Heraklion, Greece, September 26–30, 2016, Proceedings, Part II

Computer Security –
ESORICS 2016

Lecture Notes in Computer Science 9879

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Ioannis Askoxylakis • Sotiris Ioannidis
Sokratis Katsikas • Catherine Meadows (Eds.)

Computer Security –

ESORICS 2016
21st European Symposium on Research in Computer Security
Heraklion, Greece, September 26–30, 2016
Proceedings, Part II

123

Editors
Ioannis Askoxylakis
Institute of Computer Science
Foundation for Research and
Technology - Hellas

Heraklion
Greece

Sotiris Ioannidis
Institute of Computer Science
Foundation for Research and
Technology - Hellas

Heraklion
Greece

Sokratis Katsikas
Norwegian University of Science and
Technology

Gjøvik
Norway

Catherine Meadows
Naval Research Laboratory
Washington, DC
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-45740-6 ISBN 978-3-319-45741-3 (eBook)
DOI 10.1007/978-3-319-45741-3

Library of Congress Control Number: 2016950583

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains papers selected for presentation and publication at the 21st

European Symposium on Research in Computer Security, ESORICS, held September
26–30, in Heraklion, Greece.

Out of 285 submissions from 40 countries, the conference accepted 60 papers,
resulting in an acceptance rate of 21 %. These papers cover a wide range of topics in
security and privacy, including data protection, systems security, network security,
access control, authentication, and security in such emerging areas as cloud computing,
cyber-physical systems, and the Internet of Things. The papers were reviewed and then
discussed online by a 105-member Program Committee, along with 313 external
reviewers.

ESORICS 2016 would not have been possible without the contributions of the many
volunteers who devoted their time and energy to make this happen. We would like to
thank the Program Committee and the external reviewers for their hard work in
evaluating the papers. We would also like to thank the ESORICS Steering Committee
and its Chair Pierangela Samarati; the Publicity Chairs, Manolis Stamatogiannakis and
Youki Kadobayashi; the Local Arrangement Committee, Nikolaos Petroulakis,
Andreas Miaoudakis, and Panos Chatziadam, for arranging the beautiful location in
Crete; the workshop chair, Javier Lopez, and all workshop co-chairs, who organized
workshops co-located with ESORICS. We also give thanks to the many institutions for
their support of ESORICS: the Horizon 2020 projects SHARCS and Virtuwind, the
Hellenic Authority for Communication Security and Privacy (ADAE), the European
Agency for Network and Information Security (ENISA), Huawei Technologies Co.,
Bournemouth University, and the CIPSEC project.

Finally, we would like to give our thanks to the authors who submitted their papers
to ESORICS. They, more than anyone else, are what makes this conference possible.

Welcome to ESORICS 2016!

July 2016 Ioannis Askoxylakis
Sotiris Ioannidis
Sokratis Katsikas

Catherine Meadows

Organization

General Chairs

Ioannis Askoxylakis Hellenic Authority for Communication Security
and Privacy (ΑDΑΕ) & FORTH, Greece

Sotiris Ioannidis FORTH, Greece

Program Chairs

Sokratis K. Katsikas Norwegian University of Science and Technology,
Norway

Catherine Meadows Naval Research Laboratory, USA

Workshops Chair

Javier Lopez University of Malaga, Spain

Program Committee

Gail-Joon Ahn Arizona State University, USA
Magnus Almgren Chalmers University of Technology, Sweden
Manos Antonakakis Georgia Institute of Technology, USA
Alessandro Armando DIBRIS - University of Genoa, Italy
Michael Backes Saarland University and Max Planck Institute

for Software Systems, Germany
Giampaolo Bella Università degli studi di Catania, Italy
Carlo Blundo Università degli Studi di Salerno, Italy
Stefan Brunthaler SBA Research, Austria
Rainer Böhme University of Innsbruck, Austria
Christian Cachin IBM Research - Zurich, Switzerland
Liqun Chen Hewlett Packard Labs, UK
Tom Chothia University of Birmingham, UK
Sherman S.M. Chow Chinese University of Hong Kong, Hong Kong
Cas Cremers University of Oxford, UK
Frédéric Cuppens Telecom Bretagne, France
Nora Cuppens-Boulahia Telecom Bretagne, France
Mads Dam KTH, Sweden
Sabrina De Capitani

di Vimercati
Università degli Studi di Milano, Italy

Hervé Debar Télécom SudParis, France
Roberto Di Pietro Bell Labs, France

Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Pavlos Efraimidis Democritus University of Thrace, Greece
Hannes Federrath University of Hamburg, Germany
Bao Feng Huawei, China
Simone Fischer-Hübner Karlstad University, Sweden
Riccardo Focardi Università Ca’ Foscari, Italy
Simon Foley University College Cork, Ireland
Sara Foresti Università degli Studi di Milano, Italy
Katrin Franke Norwegian University of Science and Technology,

Norway
Felix Freiling Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Dieter Gollmann Hamburg University of Technology, Germany
Dimitris Gritzalis Athens University of Economics and Business, Greece
Stefanos Gritzalis University of the Aegean, Greece
Joshua Guttman Worcester Polytechnic Institute & MITRE, USA
Gerhard Hancke City University of Hong Kong, China
Marit Hansen Unabhängiges Landeszentrum für Datenschutz

Schleswig-Holstein, Germany
Feng Hao Newcastle University, UK
Xinyi Huang Fujian Normal University, China
Michael Huth Imperial College London, UK
Aaron D. Jaggard U.S. Naval Research Laboratory, USA
Sushil Jajodia George Mason University, USA
Vasilios Katos Bournemouth University, UK
Dogan Kesdogan Universität Regensburg, Germany
Kwangjo Kim Korea Advanced Institute of Science

and Technology-KAIST, South Korea
Steve Kremer Inria Nancy - Grand Est, France
Ralf Küsters University of Trier, Germany
Junzuo Lai Singapore Management University, Singapore
Costas Lambrinoudakis University of Piraeus, Greece
Peeter Laud Cybernetica AS, Estonia
Adam J. Lee University of Pittsburgh, USA
Ninghui Li Purdue University, USA
Yingjiu Li Singapore Management University, Singapore
Antonio Lioy Politecnico di Torino, Italy
Peng Liu The Pennsylvania State University, USA
Javier Lopez University of Malaga, Spain
Pratyusa K. Manadhata Hewlett-Packard Laboratories, USA
Luigi V. Mancini Università di Roma “La Sapienza”, Italy
Heiko Mantel TU Darmstadt, Germany
Olivier Markowitch Université Libre de Bruxelles (ULB), Belgium
Fabio Martinelli IIT-CNR, Italy
Antonio Maña University of Malaga, Spain
John Mitchell Stanford University, USA

VIII Organization

Aikaterini Mitrokotsa Chalmers University of Technology, Sweden
Refik Molva EURECOM, France
Charles Morisset Newcastle University, UK
Flemming Nielson Technical University of Denmark, Denmark
Rolf Oppliger eSECURITY Technologies, Switzerland
Stefano Paraboschi Università di Bergamo, Italy
Dusko Pavlovic University of Hawaii, USA
Roberto Perdisci University of Georgia, USA
Olivier Pereira Université catholique de Louvain, Belgium
Günther Pernul Universität Regensburg, Germany
Wolter Pieters Delft University of Technology, The Netherlands
Michalis Polychronakis Stony Brook University, USA
Joachim Posegga University of Passau, Germany
Kui Ren State University of New York at Buffalo, USA
Mark Ryan University of Birmingham, UK
Peter Y.A. Ryan University of Luxembourg, Luxembourg
Andrei Sabelfeld Chalmers University of Technology, Sweden
Rei Safavi-Naini University of Calgary, Canada
Pierangela Samarati Università degli Studi di Milano, Italy
Ravi Sandhu University of Texas at San Antonio, USA
Ralf Sasse ETH Zürich, Switzerland
Nitesh Saxena University of Alabama at Birmingham, USA
Andreas Schaad Huawei European Research Center, Germany
Steve Schneider University of Surrey, UK
Joerg Schwenk Ruhr-Universität Bochum, Germany
Basit Shafiq Lahore University of Management Sciences, Pakistan
Ben Smyth Huawei, France
Einar Snekkenes Norwegian University of Science and Technology,

Norway
Willy Susilo University of Wollongong, Australia
Krzysztof Szczypiorski Warsaw University of Technology, Poland
A Min Tjoa Vienna University of Technology, Austria
Aggeliki Tsohou Ionian University, Greece
Jaideep Vaidya Rutgers University, USA
Vijay Varadharajan Macquarie University, Australia
Luca Viganò King’s College London, UK
Michael Waidner Fraunhofer SIT and TU Darmstadt, Germany
Cong Wang City University of Hong Kong, China
Edgar Weippl SBA Research, Austria
Christos Xenakis University of Piraeus, Greece
Meng Yu University of Texas at San Antonio, USA
Ben Zhao University of California at Santa Barbara, USA
Jianying Zhou Institute for Infocomm Research, Singapore
Sencun Zhu The Pennsylvania State University, USA

Organization IX

Additional Reviewers

Ahmed, Tahmina
Akand, Mamun
Ali, Mohammed
Aliberti, Giulio
Aminanto, Muhamad Erza
Anagnostopoulos, Marios
Anand, S. Abhishek
Asghari, Hadi
Asif, Hafiz
Axelsson, Stefan
Bacis, Enrico
Balliu, Musard
Bardas, Alexandru G.
Batten, Ian
Baumann, Christoph
Bayou, Lyes
Bello, Luciano
Berrang, Pascal
Bhatt, Sandeep
Biswas, Bhaskar
Blanco-Justicia, Alberto
Bruni, Alessandro
Bugiel, Sven
Calzavara, Stefano
Carbone, Roberto
Carmichael, Peter
Cha, Sang Gil
Chang, Bing
Chen, Ping
Chen, Rongmao
Cheng, Yuan
Choi, Rakyong
Chu, Cheng Kang
Chu, Cheng-Kang
Ciampi, Michele
Cianfriglia, Marco
Clarke, Dylan
Cohn-Gordon, Katriel
Coletta, Alessio
Costa, Gabriele
Costantino, Gianpiero
Cuvelier, Edouard

Dai, Ting
Davies, Philip
De Gaspari, Fabio
De Meo, Federico
Dehnel-Wild, Martin
Denzel, Michael
Dimitriadis, Antonios
Djoko, Judicael
Dreier, Jannik
Drogkaris, Prokopios
Drosatos, George
Elkhiyaoui, Kaoutar
Emms, Martin
Engelke, Toralf
Espes, David
Fahl, Sascha
Farràs, Oriol
Fett, Daniel
Fuchs, Ludwig
Garratt, Luke
Garrison, William
Gay, Richard
Geneiatakis, Dimitris
Georgiopoulou,

Zafeiroula
Giannetsos, Thanassis
Giustolisi, Rosario
Gottschlich, Wolfram
Grohmann, Bjoern
Guan, Le
Guanciale, Roberto
Guarnieri, Marco
Gupta, Maanak
Gyftopoulos, Sotirios
Hallberg, Sven M.
Hallgren, Per
Han, Jinguang
Hassan, Sabri
Haupert, Vincent
He, Yongzhong
Hedin, Daniel
Henricksen, Matt

Hitaj, Briland
Horst, Matthias
Hu, Wenhui
Huang, Heqing
Huang, Qiong
Hummer, Matthias
Iliadis, John
Imran-Daud, Malik
Iovino, Vincenzo
Iwaya Horn, Leonardo
Jackson, Dennis
Jager, Tibor
Jarecki, Stanislaw
Jasser, Stefanie
Jiang, Hemin
Journault, Anthony
Kamm, Liina
Kandias, Miltos
Karegar, Farzaneh
Karopoulos, George
Koshutanski, Hristo
Koutsiamanis,

Remous Aris
Krishnan, Ram
Kuchta, Veronika
Kunz, Michael
Kywe, Su Mon
Köhler, Olaf Markus
Lai, Russell W.F.
Lancrenon, Jean
Laube, Stefan
Lauer, Sebastian
Leichter, Carl
Lerman, Liran
Li, Depeng
Li, Yan
Li, Yuping
Lim, Hoon Wei
Lindemann, Jens
Lindner, Andreas
Liu, Jianghua
Liu, Naiwei

X Organization

Liu, Ximing
Liu, Xing
Luhn, Sebastian
Lyvas, Christos
Ma, Jinhua
Magkos, Emmanouil
Magri, Bernardo
Manoharan, Praveen
Manulis, Mark
Marktscheffel, Tobias
Martinovic, Ivan
Marwah, Manish
Marx, Matthias
McCorry, Patrick
Mehrnezhad, Maryam
Meng, Weizhi
Merlo, Alessio
Meyer, Maxime
Min, Byungho
Moataz, Tarik
Mogire, Nancy
Mohamed, Manar
Mohammadi, Esfandiar
Montoya, Lorena
Moore, Nicholas
Mowbray, Miranda
Mueller, Johannes
Mykoniati, Maria
Mylonas, Alexios
Möser, Malte
Müller, Tilo
Müller, Tobias
Nelson, Mark
Nemati, Hamed
Neupane, Ajaya
Nguyen, Binh
Nuñez, David
Ntantogian, Christoforos
Önen, Melek
Pagnin, Elena
Palmieri, Paolo
Panico, Agostino
Pankova, Alisa
Park, Jaehong
Parra Rodriguez, Juan D.
Parra-Arnau, Javier

Peroli, Michele
Peters, Thomas
Petrovic, Slobodan
Pham, Vinh
Pitropakis, Nikolaos
Pridöhl, Henning
Puchta, Alexander
Pulls, Tobias
Quaglia, Elizabeth
Radomirovic, Sasa
Rafnsson, Willard
Ranise, Silvio
Rao, Prasad
Reif, Sebastian
Reinecke, Philipp
Rekleitis, Evangelos
Ren, Chuangang
Reuben, Jenni
Rial, Alfredo
Ribeiro De Mello,

Emerson
Ribes-González, Jordi
Ricci, Sara
Richthammer, Hartmut
Rios, Ruben
Rizomiliotis, Panagiotis
Rocchetto, Marco
Rochet, Florentin
Roenne, Peter
Roth, Christian
Rothstein Morris, Eric
Ruan, Na
Salas, Julián
Saracino, Andrea
Schmitz, Guido
Schranz, Oliver
Schreckling, Daniel
Schöttle, Pascal
Seidel, Peter-Michael
Sgandurra, Daniele
Shafienejad, Masoumeh
Shah, Ankit
Shahandashti, Siamak
Sharifian, Setareh
Sheikhalishahi, Mina
Shi, Jie

Shirvanian, Maliheh
Shojaie, Bahareh
Shrestha, Babins
Shrestha, Prakash
Shulman, Haya
Sideri, Maria
Siim, Sander
Sjösten, Alexander
Soria-Comas, Jordi
Sorniotti, Alessandro
Sprick, Barbara
Squarcina, Marco
Stamatelatos, Giorgos
Stamatiou, Yannis
Staudemeyer, Ralf C.
Stergiopoulos, George
Stüttgen, Johannes
Su, Dong
Sy, Erik
Sänger, Johannes
Taheri, Somayeh
Tasch, Markus
Tasidou, Aimilia
Teheri, Somayeh
Teixeira, André
Tempesta, Mauro
Thoma, Cory
Thompson, Matthew
Truderung, Tomasz
Tsalis, Nikolaos
Tsoumas, Bill
Tupakula, Udaya
Verderame, Luca
Virvilis, Nick
Vrakas, Nikos
Walter, Marie-Therese
Wang, Bolun
Wang, Gang
Wang, Guilin
Wang, Ruoyu
Weber, Alexandra
Weber, Michael
Wei, Zhuo
Williams, David
Wolff, Marcus
Wu, Shuang

Organization XI

Wu, Wei
Wundram, Martin
Wüchner, Tobias
Xiao, Gaoyao
Xing, Xinyu
Xu, Jia
Xu, Ke
Yahia, Muzamil
Yaich, Reda

Yang, Guomin
Yang, Weining
Yautsiukhin, Artsiom
Yerukhimovich, Arkady
Yfantopoulos, Nikos
Yu, Jiangshan
Yu, Xingjie
Yuen, Tsz Hon
Zang, Wanyu

Zavatteri, Matteo
Zerkane, Salaheddine
Zhang, Liang Feng
Zhang, Weiquan
Zhao, Yongjun
Zhou, Lan
Zimmer, Ephraim

XII Organization

Contents – Part II

Leakage Management and Obfuscation

Towards Efficient Evaluation of a Time-Driven Cache Attack
on Modern Processors . 3

Andreas Zankl, Katja Miller, Johann Heyszl, and Georg Sigl

More Practical and Secure History-Independent Hash Tables 20
Michael T. Goodrich, Evgenios M. Kornaropoulos,
Michael Mitzenmacher, and Roberto Tamassia

On Manufacturing Resilient Opaque Constructs Against Static Analysis. 39
Brendan Sheridan and Micah Sherr

Secure Multiparty Computation

Robust Password-Protected Secret Sharing . 61
Michel Abdalla, Mario Cornejo, Anca Nitulescu, and David Pointcheval

Compiling Low Depth Circuits for Practical Secure Computation 80
Niklas Buescher, Andreas Holzer, Alina Weber,
and Stefan Katzenbeisser

Secure Computation of MIPS Machine Code . 99
Xiao Wang, S. Dov Gordon, Allen McIntosh, and Jonathan Katz

Secure Logging

Insynd: Improved Privacy-Preserving Transparency Logging 121
Roel Peeters and Tobias Pulls

Secure Logging Schemes and Certificate Transparency 140
Benjamin Dowling, Felix Günther, Udyani Herath, and Douglas Stebila

Economics of Security

Banishing Misaligned Incentives for Validating Reports
in Bug-Bounty Platforms . 161

Aron Laszka, Mingyi Zhao, and Jens Grossklags

Efficient Numerical Frameworks for Multi-objective
Cyber Security Planning . 179

MHR. Khouzani, P. Malacaria, C. Hankin, A. Fielder, and F. Smeraldi

http://dx.doi.org/10.1007/978-3-319-45741-3_1
http://dx.doi.org/10.1007/978-3-319-45741-3_1
http://dx.doi.org/10.1007/978-3-319-45741-3_2
http://dx.doi.org/10.1007/978-3-319-45741-3_3
http://dx.doi.org/10.1007/978-3-319-45741-3_4
http://dx.doi.org/10.1007/978-3-319-45741-3_5
http://dx.doi.org/10.1007/978-3-319-45741-3_6
http://dx.doi.org/10.1007/978-3-319-45741-3_7
http://dx.doi.org/10.1007/978-3-319-45741-3_8
http://dx.doi.org/10.1007/978-3-319-45741-3_9
http://dx.doi.org/10.1007/978-3-319-45741-3_9
http://dx.doi.org/10.1007/978-3-319-45741-3_10
http://dx.doi.org/10.1007/978-3-319-45741-3_10

E-voting and E-commerce

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 201
Ilias Giechaskiel, Cas Cremers, and Kasper B. Rasmussen

DRE-ip: A Verifiable E-Voting Scheme Without Tallying Authorities 223
Siamak F. Shahandashti and Feng Hao

When Are Three Voters Enough for Privacy Properties? 241
Myrto Arapinis, Véronique Cortier, and Steve Kremer

Efficient Zero-Knowledge Contingent Payments in Cryptocurrencies
Without Scripts . 261

Wacław Banasik, Stefan Dziembowski, and Daniel Malinowski

Security of the Internet of Things

LeiA: A Lightweight Authentication Protocol for CAN 283
Andreea-Ina Radu and Flavio D. Garcia

Privacy, Discovery, and Authentication for the Internet of Things 301
David J. Wu, Ankur Taly, Asim Shankar, and Dan Boneh

Secure Code Updates for Mesh Networked Commodity Low-End
Embedded Devices . 320

Florian Kohnhäuser and Stefan Katzenbeisser

Authenticated Key Agreement Mediated by a Proxy Re-encryptor
for the Internet of Things . 339

Kim Thuat Nguyen, Nouha Oualha, and Maryline Laurent

Data Privacy

Information Control by Policy-Based Relational Weakening Templates 361
Joachim Biskup and Marcel Preuß

Quantifying Location Privacy Leakage from Transaction Prices 382
Arthur Gervais, Hubert Ritzdorf, Mario Lucic, Vincent Lenders,
and Srdjan Capkun

A Formal Treatment of Privacy in Video Data . 406
Valerie Fetzer, Jörn Müller-Quade, and Tobias Nilges

Security of Cyber-Physical Systems

On Attacker Models and Profiles for Cyber-Physical Systems. 427
Marco Rocchetto and Nils Ole Tippenhauer

XIV Contents – Part II

http://dx.doi.org/10.1007/978-3-319-45741-3_11
http://dx.doi.org/10.1007/978-3-319-45741-3_12
http://dx.doi.org/10.1007/978-3-319-45741-3_13
http://dx.doi.org/10.1007/978-3-319-45741-3_14
http://dx.doi.org/10.1007/978-3-319-45741-3_14
http://dx.doi.org/10.1007/978-3-319-45741-3_15
http://dx.doi.org/10.1007/978-3-319-45741-3_15
http://dx.doi.org/10.1007/978-3-319-45741-3_15
http://dx.doi.org/10.1007/978-3-319-45741-3_15
http://dx.doi.org/10.1007/978-3-319-45741-3_15
http://dx.doi.org/10.1007/978-3-319-45741-3_15
http://dx.doi.org/10.1007/978-3-319-45741-3_15
http://dx.doi.org/10.1007/978-3-319-45741-3_15
http://dx.doi.org/10.1007/978-3-319-45741-3_15
http://dx.doi.org/10.1007/978-3-319-45741-3_16
http://dx.doi.org/10.1007/978-3-319-45741-3_17
http://dx.doi.org/10.1007/978-3-319-45741-3_17
http://dx.doi.org/10.1007/978-3-319-45741-3_18
http://dx.doi.org/10.1007/978-3-319-45741-3_18
http://dx.doi.org/10.1007/978-3-319-45741-3_19
http://dx.doi.org/10.1007/978-3-319-45741-3_20
http://dx.doi.org/10.1007/978-3-319-45741-3_21
http://dx.doi.org/10.1007/978-3-319-45741-3_22

Towards the Automated Verification of Cyber-Physical Security Protocols:
Bounding the Number of Timed Intruders . 450

Vivek Nigam, Carolyn Talcott, and Abraão Aires Urquiza

Safeguarding Structural Controllability in Cyber-Physical Control Systems . . . 471
Cristina Alcaraz and Javier Lopez

Attacks

The Beauty or The Beast? Attacking Rate Limits of the Xen Hypervisor 493
Johanna Ullrich and Edgar Weippl

Autocomplete Injection Attack . 512
Nethanel Gelernter and Amir Herzberg

Breaking into the KeyStore: A Practical Forgery Attack
Against Android KeyStore . 531

Mohamed Sabt and Jacques Traorè

Attribute-Based Cryptography

Traceable CP-ABE with Short Ciphertexts: How to Catch People Selling
Decryption Devices on eBay Efficiently. 551

Jianting Ning, Zhenfu Cao, Xiaolei Dong, Junqing Gong, and Jie Chen

Server-Aided Revocable Attribute-Based Encryption 570
Hui Cui, Robert H. Deng, Yingjiu Li, and Baodong Qin

Online/Offline Public-Index Predicate Encryption for Fine-Grained Mobile
Access Control . 588

Weiran Liu, Jianwei Liu, Qianhong Wu, Bo Qin, and Kaitai Liang

Author Index . 607

Contents – Part II XV

http://dx.doi.org/10.1007/978-3-319-45741-3_23
http://dx.doi.org/10.1007/978-3-319-45741-3_23
http://dx.doi.org/10.1007/978-3-319-45741-3_24
http://dx.doi.org/10.1007/978-3-319-45741-3_25
http://dx.doi.org/10.1007/978-3-319-45741-3_26
http://dx.doi.org/10.1007/978-3-319-45741-3_27
http://dx.doi.org/10.1007/978-3-319-45741-3_27
http://dx.doi.org/10.1007/978-3-319-45741-3_28
http://dx.doi.org/10.1007/978-3-319-45741-3_28
http://dx.doi.org/10.1007/978-3-319-45741-3_29
http://dx.doi.org/10.1007/978-3-319-45741-3_30
http://dx.doi.org/10.1007/978-3-319-45741-3_30

Contents – Part I

Network and Web Security

Understanding Cross-Channel Abuse with SMS-Spam Support
Infrastructure Attribution . 3

Bharat Srinivasan, Payas Gupta, Manos Antonakakis,
and Mustaque Ahamad

Toward an Efficient Website Fingerprinting Defense 27
Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz,
and Matthew Wright

Proactive Verification of Security Compliance for Clouds
Through Pre-computation: Application to OpenStack 47

Suryadipta Majumdar, Yosr Jarraya, Taous Madi,
Amir Alimohammadifar, Makan Pourzandi, Lingyu Wang,
and Mourad Debbabi

Authentication

Comparing Password Ranking Algorithms on Real-World
Password Datasets . 69

Weining Yang, Ninghui Li, Ian M. Molloy, Youngja Park,
and Suresh N. Chari

Scalable Two-Factor Authentication Using Historical Data 91
Aldar C.-F. Chan, Jun Wen Wong, Jianying Zhou, and Joseph Teo

On the Implications of Zipf’s Law in Passwords . 111
Ding Wang and Ping Wang

Encrypted Search

PPOPM: More Efficient Privacy Preserving Outsourced Pattern Matching . . . 135
Jun Zhou, Zhenfu Cao, and Xiaolei Dong

An Efficient Non-interactive Multi-client Searchable Encryption
with Support for Boolean Queries . 154

Shi-Feng Sun, Joseph K. Liu, Amin Sakzad, Ron Steinfeld,
and Tsz Hon Yuen

Efficient Encrypted Keyword Search for Multi-user Data Sharing 173
Aggelos Kiayias, Ozgur Oksuz, Alexander Russell, Qiang Tang,
and Bing Wang

http://dx.doi.org/10.1007/978-3-319-45744-4_1
http://dx.doi.org/10.1007/978-3-319-45744-4_1
http://dx.doi.org/10.1007/978-3-319-45744-4_2
http://dx.doi.org/10.1007/978-3-319-45744-4_3
http://dx.doi.org/10.1007/978-3-319-45744-4_3
http://dx.doi.org/10.1007/978-3-319-45744-4_4
http://dx.doi.org/10.1007/978-3-319-45744-4_4
http://dx.doi.org/10.1007/978-3-319-45744-4_5
http://dx.doi.org/10.1007/978-3-319-45744-4_6
http://dx.doi.org/10.1007/978-3-319-45744-4_7
http://dx.doi.org/10.1007/978-3-319-45744-4_8
http://dx.doi.org/10.1007/978-3-319-45744-4_8
http://dx.doi.org/10.1007/978-3-319-45744-4_9

Detection and Monitoring

Membrane: A Posteriori Detection of Malicious Code Loading by Memory
Paging Analysis . 199

Gábor Pék, Zsombor Lázár, Zoltán Várnagy, Márk Félegyházi,
and Levente Buttyán

Mobile Application Impersonation Detection Using Dynamic
User Interface Extraction . 217

Luka Malisa, Kari Kostiainen, Michael Och, and Srdjan Capkun

A Machine Learning Approach for Detecting Third-Party Trackers
on the Web . 238

Qianru Wu, Qixu Liu, Yuqing Zhang, Peng Liu, and Guanxing Wen

Cryptography for Cloud Computing

Privately Outsourcing Exponentiation to a Single Server: Cryptanalysis
and Optimal Constructions . 261

Céline Chevalier, Fabien Laguillaumie, and Damien Vergnaud

Attribute-Based Signatures for Supporting Anonymous Certification 279
Nesrine Kaaniche and Maryline Laurent

Privacy Preserving Computation in Cloud Using Noise-Free Fully
Homomorphic Encryption (FHE) Schemes . 301

Yongge Wang and Qutaibah M. Malluhi

Lightweight Delegatable Proofs of Storage . 324
Jia Xu, Anjia Yang, Jianying Zhou, and Duncan S. Wong

Anonymous RAM. 344
Michael Backes, Amir Herzberg, Aniket Kate, and Ivan Pryvalov

Efficient Sanitizable Signatures Without Random Oracles. 363
Russell W.F. Lai, Tao Zhang, Sherman S.M. Chow,
and Dominique Schröder

Operating Systems Security

Intentio Ex Machina: Android Intent Access Control via an Extensible
Application Hook . 383

Carter Yagemann and Wenliang Du

Hey, You, Get Off of My Image: Detecting Data Residue
in Android Images . 401

Xiao Zhang, Yousra Aafer, Kailiang Ying, and Wenliang Du

XVIII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-45744-4_10
http://dx.doi.org/10.1007/978-3-319-45744-4_10
http://dx.doi.org/10.1007/978-3-319-45744-4_11
http://dx.doi.org/10.1007/978-3-319-45744-4_11
http://dx.doi.org/10.1007/978-3-319-45744-4_12
http://dx.doi.org/10.1007/978-3-319-45744-4_12
http://dx.doi.org/10.1007/978-3-319-45744-4_13
http://dx.doi.org/10.1007/978-3-319-45744-4_13
http://dx.doi.org/10.1007/978-3-319-45744-4_14
http://dx.doi.org/10.1007/978-3-319-45744-4_15
http://dx.doi.org/10.1007/978-3-319-45744-4_15
http://dx.doi.org/10.1007/978-3-319-45744-4_16
http://dx.doi.org/10.1007/978-3-319-45744-4_17
http://dx.doi.org/10.1007/978-3-319-45744-4_18
http://dx.doi.org/10.1007/978-3-319-45744-4_19
http://dx.doi.org/10.1007/978-3-319-45744-4_19
http://dx.doi.org/10.1007/978-3-319-45744-4_20
http://dx.doi.org/10.1007/978-3-319-45744-4_20

NaClDroid: Native Code Isolation for Android Applications. 422
Elias Athanasopoulos, Vasileios P. Kemerlis, Georgios Portokalidis,
and Angelos D. Keromytis

AsyncShock: Exploiting Synchronisation Bugs in Intel SGX Enclaves 440
Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza

Stay in Your Cage! A Sound Sandbox for Third-Party Libraries
on Android. 458

Fabo Wang, Yuqing Zhang, Kai Wang, Peng Liu, and Wenjie Wang

Android Permission Recommendation Using Transitive Bayesian
Inference Model . 477

Bahman Rashidi, Carol Fung, Anh Nguyen, and Tam Vu

Information Flow

Spot the Difference: Secure Multi-execution and Multiple Facets 501
Nataliia Bielova and Tamara Rezk

On Reductions from Multi-Domain Noninterference to the Two-Level Case . . . 520
Oliver Woizekowski and Ron van der Meyden

Flexible Manipulation of Labeled Values for Information-Flow
Control Libraries. 538

Marco Vassena, Pablo Buiras, Lucas Waye, and Alejandro Russo

Software Security

Let’s Face It: Faceted Values for Taint Tracking . 561
Daniel Schoepe, Musard Balliu, Frank Piessens, and Andrei Sabelfeld

IFuzzer: An Evolutionary Interpreter Fuzzer Using Genetic Programming . . . 581
Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos

Automated Multi-architectural Discovery of CFI-Resistant Code Gadgets 602
Patrick Wollgast, Robert Gawlik, Behrad Garmany, Benjamin Kollenda,
and Thorsten Holz

Author Index . 621

Contents – Part I XIX

http://dx.doi.org/10.1007/978-3-319-45744-4_21
http://dx.doi.org/10.1007/978-3-319-45744-4_22
http://dx.doi.org/10.1007/978-3-319-45744-4_23
http://dx.doi.org/10.1007/978-3-319-45744-4_23
http://dx.doi.org/10.1007/978-3-319-45744-4_24
http://dx.doi.org/10.1007/978-3-319-45744-4_24
http://dx.doi.org/10.1007/978-3-319-45744-4_25
http://dx.doi.org/10.1007/978-3-319-45744-4_26
http://dx.doi.org/10.1007/978-3-319-45744-4_27
http://dx.doi.org/10.1007/978-3-319-45744-4_27
http://dx.doi.org/10.1007/978-3-319-45744-4_28
http://dx.doi.org/10.1007/978-3-319-45744-4_29
http://dx.doi.org/10.1007/978-3-319-45744-4_30

Leakage Management and Obfuscation

Towards Efficient Evaluation of a Time-Driven
Cache Attack on Modern Processors

Andreas Zankl1(B), Katja Miller1, Johann Heyszl1, and Georg Sigl2

1 Fraunhofer Research Institution AISEC, Munich, Germany
{andreas.zankl,katja.miller,johann.heyszl}@aisec.fraunhofer.de

2 Technische Universität München, Munich, Germany
sigl@tum.de

Abstract. Software implementations of block ciphers are widely used
to perform critical operations such as disk encryption or TLS traffic
protection. To speed up cipher execution, many implementations rely
on pre-computed lookup tables, which makes them vulnerable to cache-
timing attacks on modern processors. For time-driven attacks, the overall
execution time of a cipher is sufficient to recover the secret key. Testing
cryptographic software on actual hardware is consequently essential for
vulnerability and risk assessment. In this work, we investigate the effi-
cient and robust evaluation of cryptographic software on modern proces-
sors under a time-driven attack. Using a practical case study, we dis-
cuss necessary adaptations to the original attack and identify promising
new micro-architectural side-channels for it. To leverage the leakage of
multiple side-channels, we propose a simple, heuristic way to combine
their corresponding attacks. As an additional benefit, combined attacks
simplify a comprehensive evaluation of cryptographic software across
multiple different processors. We finally formulate practical evaluation
suggestions based on the results of our case study.

Keywords: ARM · New side-channels · Efficient evaluation · Vulnera-
bility testing · Exploiting performance events · Rank estimation · AES

1 Introduction

Block ciphers are commonly used to protect bulk data. Their implementations
provide high throughput and consequently focus on fast execution time. In soft-
ware, processing steps can be saved by using pre-computed lookup tables. The
transformation tables of AES are a prominent example of this speed-up tech-
nique. The disadvantage of lookup tables is that if they are accessed depending
on a secret (e.g. a key), they can introduce a timing side-channel when the soft-
ware is executed on a processor with cache. In the past, this gave rise to the field
of cache attacks. In literature, cache attacks are typically split into three groups:
access-driven, trace-driven, or time-driven. Access-driven cache attacks allow a
spy program to precisely learn the part of the processor cache (e.g. which cache
line) that was accessed by a victim program [18]. In trace-driven cache attacks,
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-45741-3 1

4 A. Zankl et al.

the spy is able to observe the results of a sequence of cache requests issued by
the victim (e.g. hit, miss, miss, ...) [1]. For time-driven cache attacks, the spy
requires only the overall time the victim needs to complete a cipher run [6–8].

In this work we focus on the time-driven cache attack proposed by Bern-
stein in 2005 [6], because it is a well-studied attack with minimalistic assump-
tions about the hardware under attack. It has been applied in settings ranging
from mobile phones [14,15] and embedded systems [22,23] to virtual machines
used in cloud computing [2]. As the attack relies on execution time measure-
ments, the resolution and quality of the timing source is crucial to the suc-
cess of the attack. In the original publication [6], time is measured with a
hardware-based clock cycle counter. Similarly, Spreitzer and Plos [15], Spreitzer
and Gérard [14], and Weiß et al. [22,23] successfully use the cycle count register
of ARM Cortex-A8/-A9 processors in the attack. Atici et al. [5] use a level 1 (L1)
data cache (D-cache) miss counter on various x86 processors in an adaptation of
Bernstein’s attack targeted at the last round of AES. In other work, Tiri et al. [17]
use an L1 cache miss counter to verify their analytical model for time-driven
cache attacks on multiple not further specified processors. Uhsadel et al. [19]
investigate the L1/L2 D-cache miss counters as well as a clock cycle counter
on x86 processors and apply them in the time-driven cache attack proposed by
Bonneau and Mironov [8]. These publications show that so-called hardware per-
formance events like clock cycles and cache misses are valuable side-channels
for time-driven cache attacks. As a consequence, these performance events are
also critical in an evaluation context, because they allow to construct a worst-
case attack scenario. The more an implementation is resistant against attacks
using high resolution performance events, the better it withstands less power-
ful attacker models that are more likely in practice. In addition, the better the
side-channel source, the fewer measurements are required to identify leaks in the
implementation.

Because of these benefits, we investigate hardware performance events known
from literature and new events that have not yet been analyzed in the context of
Bernstein’s attack. For a fair comparison of the events, the original attack needs
to be adapted, because it does not reliably determine the remaining entropy of
the secret key after the attack. We therefore extend it with a recent key rank
estimation algorithm. To further improve evaluation efficiency and robustness,
we propose a new and heuristic way of combining multiple attacks. The combi-
nation of attacks is strongly advisable given that all of the performance events in
our tests leak information about the secret key. Combined attacks thereby help
to construct an improved worst-case test scenario, as they leverage the leakage of
multiple performance events while filtering out noisy or poor-quality ones. Given
that not all events leak equally on every processor, combined attacks can be used
as a global measure to simplify testing across multiple different processors. For
our case study, we use the modified attack by Bernstein to test a vulnerable
AES implementation taken from the OpenSSL library on an ARM Cortex-A9
processor. Based on the results, we provide practical evaluation suggestions. To
the best of our knowledge, our work is the first that discusses Bernstein’s cache

Towards Efficient Evaluation of a Time-Driven Attack on Modern Processors 5

attack exclusively in an evaluation context and provides efficient ways to deter-
mine the vulnerability of a software component to the attack.

The rest of the paper is organized as follows. Background information about
the time-driven cache attack by Bernstein is provided in Sect. 2. The application
of key rank estimation and its benefits to the attack are discussed in Sect. 3. Our
proposal for attack combination is given in Sect. 4. The selection of hardware
performance events is discussed in Sect. 5. We shortly present our measurement
setup in Sect. 6 before we discuss the results of our case study in Sect. 7. Based on
the results, we provide practical suggestions in Sect. 8 before we finally conclude
in Sect. 9. Further details about the AES implementation under attack are given
in Appendix A.

2 Bernstein’s Time-Driven Cache Attack

In 2005, Bernstein [6] proposed a profiled time-driven cache attack and success-
fully applied it to the T-table-based AES implementation that is part of the
OpenSSL library v0.9.7a. The attack is embedded in a client-server scenario,
with the client being the spy and the server being the victim. The attack itself
consists of four phases: the learn phase, the attack phase, the correlation phase,
and the brute-force key search phase.1

The learn phase is the profiling phase of the attack. The spy knows the
secret key k and sends a set of plaintexts to the victim. The responses of the
victim contain the overall encryption times. By randomly choosing the inputs
and keeping track of the corresponding processing times, the spy creates a cache
profile of the lookup tables under the known key k. This is possible, because
the lookup indices in the first round of AES are given by the XOR of plaintext
and initial key: p⊕k. The cache profile is written as matrix CPk[b][v] with one
row for each input byte in the plaintext (indexed by b) and one column for each
byte value (indexed by v). For AES, CP has the shape 16×256. Every timing
measurement is added b times to CP, while the plaintext is used to index the
matrix. The input byte positions determine the row, the input byte values spec-
ify the column. After all measurements have been added, the average timing is
computed for each matrix element and subtracted by the total average of all tim-
ings. After sufficient timing observations, the cache profile contains information
about which input bytes and values cause longer or shorter processing times.
Since the key k is known in this phase, the cache profile indicates which parts
of the lookup tables are cached and which are not cached on average in the first
round of AES. In the original work, the known key k is set to zero and the key
length is 128 bits. In the attack phase, an unknown key k̃ is used by the victim.
The spy again sends a set of plaintexts, keeps track of the processing times and
creates a second cache profile CPk̃[b][v], now for the unknown key.

In the correlation phase, the spy permutes the profile of the attack phase and
correlates it with the one from the learn phase. Permutation is done by accessing
the attack profile with indices that are XOR’ed with a possible key hypothesis
1 Naming convention borrowed from the work by Neve et al. [13].

6 A. Zankl et al.

h: CPk̃[b][v ⊕ h], h ∈ {0, ... , 255}. The correlation is then calculated for each
row in the profiles. The profile of the learn phase will be similar to the profile
of the attack phase, if permuted by the correct key hypothesis hc: CPk[b][v] ≈
CPk̃[b][v⊕hc]. In this case the correlation will peak. The underlying assumption
is that in the first round of AES the same parts of the lookup tables are cached or
not cached. This causes both profiles to capture the same cache state and allows
the correlation phase to compare them. The correlation values for each key byte
b and each hypothesis value h are then entered in the correlation matrix C[b][h].
The final step in this phase eliminates hypotheses with low correlation using a
variance-based threshold decision. A brute-force key search phase is added to
assemble key candidates from all left-over hypotheses and to test them against a
known plaintext-ciphertext pair. For this step, the attack code iterates over the
most likely key candidates and stops when the correct key has been found.

The original attack by Bernstein has a success rate limit that is determined
by the cache line size of the target processor and the lookup table entry size of
the cipher implementation. If multiple table entries fit on one cache line, they all
exhibit the same timing behavior when accessed by the processor. This causes
the values of each input byte to form groups with similar timing values in the
cache profiles. The number of values per group, which equals the number of
table entries per cache line, is denoted as L in this paper. For each hypothesis of
a group, the correlation phase generates similar correlation values. As a conse-
quence, a single hypothesis becomes indistinguishable from other members of its
group and all of them have to be tested in the brute-force step. This introduces
a minimum brute-force effort that cannot be reduced further with the original
attack. More information about Bernstein’s attack including the success rate
limit can be obtained from the work by Neve et al. [13].

3 Key Rank Estimation in Bernstein’s Attack

Instead of using the threshold decision in the correlation phase to eliminate
unlikely key byte hypotheses, we implement a key rank estimation algorithm,
which ranks the correct key against all other key candidates. The rank of the
correct key represents the true brute-force effort an attacker would have to spend
to recover it. Key rank estimation is necessary during evaluation, because the
original threshold decision might eliminate the correct key byte hypothesis from
each list. This can happen, if there is little statistical information for one key
byte in the measurements. If a correct hypothesis is eliminated, the brute-force
step cannot recover the key and fails. In this case there is no resulting brute-force
effort that can be evaluated or compared to other attacks. As a consequence,
attacks that are marginally successful will hardly ever show useful results. In
an evaluation, this must be avoided, because the attack effort is required to
determine the current level of security. Especially for testing an implementation
on multiple different systems and comparing the results obtained from them, the
attack effort must always be available.

In literature, the adverse impact of the threshold decision is noted by
Spreitzer and Gérard [14], who rank key candidates instead of eliminating

Towards Efficient Evaluation of a Time-Driven Attack on Modern Processors 7

hypotheses with the threshold. In their work they discuss the key rank tech-
niques proposed by Veyrat-Charvillon et al. [20,21]. In contrast, we implement
the key rank estimation algorithm proposed by Glowacz et al. [10], because it
has an improved time and memory efficiency and scales better to larger key sizes.
Since the algorithm expects probabilities instead of correlations, two transforma-
tion steps have to be done. First, we calculate Pearson’s correlation coefficient
instead of taking the original values from the correlation phase. This is neces-
sary, because the original values are not bound to the interval [-1, 1]. With the
standard formula for Pearson’s correlation coefficient we obtain

C′[b][h] =

∑255
j=0 CPk[b][j] · CPk̃[b][j ⊕ h]

√∑255
j=0 CPk[b][j]2 ·

√∑255
j=0 CPk̃[b][j ⊕ h]2

. (1)

C′[b][h] denotes the new correlation matrix with key byte position b and key
byte hypothesis h. The second step is to convert the correlation coefficients
to probabilities. Using the formula proposed by Gérard and Standaert [11] we
obtain

P[b][h] = normalize
(
e2·C′[b][h]

)
, (2)

which is a simplified Bayesian extension of the correlation coefficient distribu-
tion approximated with Fisher’s transform. P[b][h] denotes the final probability
matrix, which is the input to the key rank estimator. The function normalize
scales all values such that each row b in P sums up to 1. The output of the
estimation algorithm is the estimated rank r of the secret key that is limited by
an upper (u) and a lower (l) estimation bound, all given in log2. An attacker
would face an estimated brute-force effort of 2r, but at least 2l and at most 2u,
to recover the secret key. For a precise estimation, the bound tightness (u − l)
must be kept small. We choose the estimation precision such that (u − l) ≤
1.07 for all estimations in our experiments. As this is sufficiently small for our
discussions, we only refer to the estimated key rank r (or the log2 thereof) in
subsequent sections.

4 Proposal for Attack Combination

In the original work by Bernstein, multiple attacks are combined by assigning
weights to leftover key byte hypotheses depending on the lengths of the lists they
are on. This approach does not work with key rank estimation, because key byte
hypotheses are not removed from their lists anymore. We therefore propose a
new method for attack combination using the multiplication and normalization
step discussed by Mather et al. [12]. To illustrate our method we start with M
separate attacks. First, their probability matrices Pm[b][h], m ∈ {0, ... ,M − 1}
are calculated as previously explained. Combining two attacks n and n + 1 is
done by multiplying the probability matrices Pm element-wise and normalizing
the rows of the resulting matrix PComb such that they again sum up to 1. The
multiplication and normalization step is defined as

PComb[b][h] = normalize (Pn[b][h] · Pn+1[b][h]) . (3)

8 A. Zankl et al.

This step affects probabilities differently based on their values. In theory, an
attack with no information about a key byte will yield a uniform probability dis-
tribution for all 256 hypotheses values. All probabilities in one row of P will have
the value 1

256 . To illustrate the combination effects, assume an attack m0 was
given with a probability for the correct hypothesis phc

> 1
256 . If this attack is com-

bined with an attack m1 with a uniform probability distribution, the combined
attack will exhibit the identical probability values as m0. If attack m1 contains
a probability phc

> 1
256 , then after the normalization step the combined attack

exhibits a phc
that is higher than the maximum of m0 and m1. This is desirable,

because the correct hypothesis is easier to find in the brute-force search. If attack
m1 contains a probability phc

< 1
256 , the combined attack exhibits a phc

that is
smaller than the one in m0. This should be avoided, as it increases the brute-
force effort. Naturally, it is best to combine only those attacks that improve the
probabilities of the correct hypotheses. If all “bad” attacks would yield a uni-
form probability distribution and all “good” attacks would exhibit a phc

> 1
256 ,

combination can be done by simply multiplying and normalizing all available
probability matrices. Our practical experiments, however, show that bad attacks
often have a slight non-uniform probability distribution with phc

< 1
256 . Including

them in the combination would degrade the combined attack.
We thus propose a heuristic filter approach that excludes bad attacks from

the combination. In the first step, all M attacks are ranked according to the
sum of their L highest probabilities for a given key byte b. The reason why the L
highest probabilities are taken into account is that on a processor where L lookup
table entries fit on one cache line, good attacks arrange the hypotheses of one
key byte into groups of size L. All hypotheses within a group have almost equal
probabilities and are indistinguishable in the rest of the attack. Bad attacks do
not exhibit this behavior in our experiments and are thus less likely to get a high
rank, if the first L probabilities are considered. More details about the value L
in Bernstein’s original attack are provided in Sect. 2. Given the ranking of all M
attacks, we start with attack m1st that has the largest sum and combine it with
attack m2nd that has the second largest sum. We decide to keep the combination,
if the probabilities of the L most likely hypotheses from attack m1st increase
in the combined attack. Otherwise, the combination is discarded and attack
m1st is combined with m3rd. This step is repeated until all available attacks are
processed. After the filter and combination step, the combined probabilities for
key byte b are stored in matrix PComb[b][h], which is eventually used to estimate
the key rank of the combined attack.

This method assumes that the best out of M available attacks (the one with
the largest sum) is always a good one. This is consistent with our experiments,
where good attacks have a higher deviation from the uniform distribution than
bad attacks. In addition, considering L probabilities at once makes the filter
step more robust against bad attacks. The combination step helps to achieve a
better overall attack, which is desirable when evaluating software in a worst-case
scenario. The advantage of our heuristic approach is that it allows to automat-
ically combine multiple attacks by only providing the value L, which is easily

Towards Efficient Evaluation of a Time-Driven Attack on Modern Processors 9

derived from the cache line size of the processor and the lookup table entry size
of the tested implementation. The simplicity of our approach is based on the
observations about “good” and “bad” attacks, its effectiveness is shown by our
practical experiments.

5 Performance Events on ARM Processors

Performance events provide detailed insight into the micro-architecture of a
processor while it is working on a task. They are typically needed for debugging
and performance evaluations on real hardware. Because of the fine granular-
ity with which a processor can be observed, performance events can be powerful
side-channels for the profiled cache attack by Bernstein. Previous literature illus-
trated that clock cycle and cache miss events allow to successfully perform the
attack. Since these events are only a small subset of performance events that are
typically available, we propose a more comprehensive study.

Table 1. Selection of performance events
and corresponding descriptions according to
the ARM manuals [3,4].

ID Lit. Description

A
R
M

v
7
-A

/
R

03h
√

Level 1 D-cache refill

04h - Level 1 D-cache access

05h - Level 1 data TLB refill

06h - Load instructions

11h
√

CPU cycles

CCNT
√

Clock cycle counter

C
o
rt
e
x
-A

9

50h - Coherent linefill miss

61h - D-cache stall cycles

65h - D-cache eviction requests

72h - Load/store instructions

85h - Data micro TLB stall cycles

Table 2. Selection of ARMv7-
A/R processor cores and avail-
able hardware counters.

Core #

Cortex-A5 2

Cortex-A7/8 4

Cortex-A9/15/17 6

Cortex-R4/5 3

Cortex-R7 8

10 A. Zankl et al.

Our target platform is an ARM Cortex-A9 processor, which belongs to the
ARMv7-A/R architecture family. The ARMv7-A/R reference manual [4] defines
hardware performance events that can be measured on all compliant processors.
The ARM Cortex-A9 MPCore reference manual [3] specifies events that are
additionally available on the Cortex-A9. Each event is identified by an event ID
and can be counted by one of the hardware counters present on every processor
core. Table 1 shows the two selections of performance events we analyze in our
case study. The first set of events is common to all ARMv7-A/R compliant
processors, the second one is specific to the ARM Cortex-A9. The events are
displayed with their event IDs and descriptions as found in the reference manuals.
All events previously used in literature in the context of Bernstein’s attack are
labeled with

√
in the table, illustrating that most events are used for the first

time.
Measuring multiple performance events in parallel is possible but limited by

the number of hardware counters available. Table 2 shows a selection of current
ARMv7-A/R processor cores and the number of available hardware counters
taken from the corresponding MPCore reference manuals. Each counter can be
configured to capture a specific event. The counter is then enabled and contin-
uously counts occurrences of the configured hardware event. Configuration and
access to the counter values is realized through registers of the co-processor 15.
By default, this is only allowed from privileged (e.g. kernel) code. As the goal
of our work is an efficient evaluation and not an improved attack, this poses
no limitation. The subsequent paragraphs in this section discuss the selection of
performance events in more detail. They are organized in categories clock cycles,
cache, TLB, and memory access.

Clock Cycles. The clock cycle event labeled CCNT is counted by the register
called PMCCNTR, which does not occupy any of the available hardware counters.
The event is known from literature and for the purpose of comparison, we include
it in our event selection. In addition, the clock cycle event can also be measured
through event ID 11h. We analyze it in our experiments to compare it to the
CCNT.

Cache. Cache miss events have also been investigated in Bernstein’s attack.
To provide a link to previous literature, we analyze level 1 data cache misses
(03h). In addition, we include events that have a close relation to L1 D-cache
misses. Those events are cache requests that miss coherently in all processor cores
(50h), clock cycles the processor core is stalled because of a pending request from
a cache miss (61h), and the number of cache eviction requests that are caused
by cache misses (65h). All of them are likely to show similar key-dependent
variations as those expected for L1 D-cache miss events.

TLB. Similar to the processor cache, the translation lookaside buffer (TLB)
is also involved in fetching data from main memory. It is used by the memory
management unit to speed up translations of virtual addresses. Since TLBs are
buffers with limited size, lookups can result in hits or misses. On the ARM
Cortex-A9, the micro TLB is a first level TLB that is separated into instruction

Towards Efficient Evaluation of a Time-Driven Attack on Modern Processors 11

and data part. The main TLB is a unified second level TLB, which catches
the misses in the underlying micro TLBs. Because of the similarities to the
processor cache, we include TLB-related events in our experiments. In particular,
we measure misses in the data micro or main TLB (05h) and stall cycles caused
by misses in the data micro TLB (85h).

Memory Access. Based only on the ARM reference manuals, it is difficult
to conclude whether some events are applicable to the selected cache attack.
Either not enough information is provided in the event descriptions or events are
by definition counted approximately rather than precisely or the final counting
behavior is defined by the processor implementation itself. Because of these
uncertainties, we analyze memory read and write operations causing accesses
to at least the L1 data or unified cache (04h) as well as the number of load
respectively load and store instructions (06h and 72h). Note that the tested
AES software performs a constant number of memory accesses as discussed in
Appendix A.

6 Measurement Setup

For our practical case study, we implement a client-server setup as proposed
in the original attack by Bernstein. The client, or spy, establishes a network
connection to the victim, which is running on a Linux server system (kernel
v3.19.0) featuring an ARM Cortex-A9 quad-core processor. The measurements
are performed with enabled L1 and L2 caches, program flow prediction, cache
pre-fetcher and cache critical word first filling. We choose a full Linux operating
system and leave all hardware acceleration features enabled to provide a realistic
setting for our evaluation.

Direct access to the performance monitoring registers of the co-processor 15 is
by default only allowed from kernel mode. User space access can either be enabled
in the PMUSERENR register or realized by exposing the performance counter sub-
system of the kernel with the perf tool set. While perf enables convenient
user access to all the events tested in this work, using it adds another potential
source of measurement noise. We avoid this by enabling direct user access in the
PMUSERENR register with a custom system call. This has to be done once and
gets reset when the system is powered off. As we conduct our experiments in an
evaluation rather than an attack context, such low-level control over the target
system is given.

As some of the measured performance events occur in core-private caches or
TLBs, we force the victim program to run on one specific processor core. This is
done with the taskset program from the Linux utilities. Restricting the victim
to one core is no disadvantage but even beneficial. Letting the victim program
float between processor cores adds noise to the measured performance events,
which (1) prolongs the measurement phase until a stable attack success rate is
achieved and (2) is no worst-case attack scenario that we aim to establish for this
evaluation. During the measurements, the target system is idling and the victim
program is competing for resources with itself and the system processes that

12 A. Zankl et al.

run in the background. The AES-128 implementation under attack is written
in ARM assembly, uses a 1 kiB lookup table, and executes a constant and key-
value-independent number of instructions during encryption. More details about
the implementation are given in Appendix A.

For every attack we take two sets of 30 · 106 (≈ 224.84) measurements, one
for the learn phase and one for the attack phase. In the learn phase, we use a
zero key, in the attack phase we use a random one. The attack is then performed
with additional key rank estimation. For each of the selected performance events,
we repeat this process 33 times in order to achieve a reasonable statistical sig-
nificance for our practical experiments. We choose 33 repetitions to keep the
measurement effort manageable. In the last step, the estimated key ranks of all
33 attacks are averaged for each event to form the final key ranks presented in
the next section.

7 Discussion of Practical Results

Table 3 shows the attack results for the performance events in our case study.
The left side of the table displays event IDs, coverage in previous literature, and
descriptions. The right side of the table shows the average estimated key ranks
in log2 that are achieved using the corresponding performance events. The com-
bination ARMv7 combines attacks from all tested ARMv7-A/R compliant events
according to our method proposed in Sect. 4. The combination ALL combines
all available attacks and additionally includes the events specific to the ARM
Cortex-A9.
The first and most interesting observation from Table 3 is that all analyzed per-
formance events reduce the entropy of the secret key. The average key ranks
range between 2120 and 251. This is a significantly lower effort compared to
searching for a full-entropy 128-bit key with an expected average key rank of
2127. The best attacks with the current event selection are based on events 11h
and CCNT, which both count clock cycles. A further reduction of key entropy
is only achieved by combining multiple attacks. The key ranks of the combina-
tions ARMv7 and ALL fall below those of the CCNT by 22 and 23, respectively.
Although these improvements might seem moderate, they show that our pro-
posed combination and filter method indeed excludes poor-quality side-channels
and constructively combines the available leakage to improve the overall result.
Events with poor attack results, such as 03h, 50h, and 65h, do not degrade the
ARMv7 and ALL combinations. Instead, the available side-channels improve the
already good attack results retrieved from the CCNT measurements. The improve-
ment is more significant, if fewer measurements are available to the attack. This
is illustrated in Fig. 1, which shows the attack results over an increasing number
of measurements.
Every plot in the figure shows the average estimated key ranks in log2 as the
y-coordinate and the number of measurements as the x-coordinate. Note that
the plots end at 15·106 measurements to better illustrate the early attack stages,
in which fewer measurements are available. In this phase the combined attacks

Towards Efficient Evaluation of a Time-Driven Attack on Modern Processors 13

Fig. 1. Estimated key ranks over an increasing number of measurements. Top plot
shows results for ARMv7-A/R events, bottom plot shows ranks for Cortex-A9 events.
Combined attacks ARMv7 and ALL are plotted with dashed lines and marked with bold
labels.

14 A. Zankl et al.

Table 3. Estimated key ranks achieved with the selected performance events.

ARMv7 and ALL clearly exhibit the lowest average key ranks and consequently
the best attack results in our experiments. Compared to the CCNT, the average
key rank of the ARMv7 combination is smaller by up to 211. The average rank
of the ALL combination falls below the one of the CCNT by up to 216. These
improvements decrease with more measurements, as previously noted. Further
observations from both Table 3 and Fig. 1 are discussed in the following para-
graphs.

Clock Cycles. The clock-cycle-based events 11h and CCNT yield low average
key ranks of 257 and 251, respectively. We assume that the CCNT shows slightly
better results, because once enabled, it is accessible with only one read request to
the co-processor 15. All other events are counted such that their corresponding
hardware counter has to be selected first in order to read its current value. This
additional request to the co-processor 15 adds noise to the measurements, but is
necessary if multiple events are counted in parallel. Because of its superior attack
results and because it does not occupy any of the limited hardware counters in
the processor, the PMCCNTR register is clearly recommended to measure the clock
cycle event on our target system.

Cache. Among the cache-miss-related performance events, the D-cache stall
cycles (61h) yield the best attack result with an average key rank of 267. In con-
trast, cache misses, coherent linefill misses, and data eviction requests (03h, 50h,
and 65h) do not exhibit average key ranks below 2116. One possible explanation
is that stall cycles incorporate additional and more fine-grained key-dependent

Towards Efficient Evaluation of a Time-Driven Attack on Modern Processors 15

variations that are not reflected in the total number of cache misses or eviction
requests counted by the other events.

TLB. The results of the TLB refill and TLB stall cycle events (05h and 85h)
show that translation lookaside buffers offer a potent side-channel source for the
implemented attack. These events perform superior to most cache-miss-related
events on our target system. With an average key rank of 283 compared to 291,
the D-micro TLB stall cycles yield better results than the L1 D-TLB refills. We
assume that the stall cycles again contain more exploitable information and that
less noise in the micro TLB renders their results more successful.

Memory Access. The attacks based on L1 D-cache accesses as well as load and
store instructions (04h, 06h, and 72h) are successful, which is counter-intuitive
given that the number of memory accesses in the tested AES implementation
is constant and independent of the key value. This suggests that these events
incorporate key-dependent variations such that the attack is able to reduce the
secret key entropy. Since detailed information about the implementation of these
events is not publicly available, further investigations are necessary to identify
the source of their leakage.

Combined Attacks. The additional, Cortex-A9 specific events added to the ALL
combination improve the average key rank of the ARMv7 combination by at most
29. This maximum difference is shown in Fig. 1 before the attacks reach the 5·106

measurements mark. When more measurements are added, the improvement
becomes approximately 21, as illustrated in Table 3. Given our event selection,
this shows that good results can already be obtained using generic ARMv7-A/R
events. On the other hand, combinations of platform-specific events not analyzed
in this work may still be able to outperform ARMv7-A/R generic combinations.

8 Practical Evaluation Suggestions

Our case study shows that hardware performance events offer a promising pool
of side-channels that can be exploited in the profiled cache attack by Bernstein.
For a fair and complete assessment of the leakage contained in the events, key
rank estimation has proven to be a useful tool. Although it adds complexity,
determining the attack effort is unreliable in practice with the original approach.
To control the computational cost, one can adapt the estimation bound tightness
to one’s specific requirements.

Within our selection of performance events, each one allows to reduce the
entropy of the secret key. Among these events, clock cycles provide the best
results on our ARM Cortex-A9 test system. If minimum measurement and post-
processing effort are required, the evaluation can be limited to the CCNT. It is
a high-resolution side-channel source that is available on all ARMv7-A/R com-
pliant processor cores. It consequently allows to compare the leakage behavior
of multiple systems in a simple way. However, further studies are necessary to
verify that it also performs best on other ARM-Cortex-based systems. For now,
we strongly recommend to consider more than just the clock cycle event.

16 A. Zankl et al.

Since attacking multiple performance events increases the measurement and
post-processing effort, a minimum selection of events with maximum leakage
is desirable. The lack of detailed information in the public ARM manuals and
the uncertainty of how a processor actually counts certain events show that
an optimal choice of performance events is not trivial to make. According to
our case study, the ARMv7-A/R compliant performance events provide good
results on the selected test system. Their combination is only slightly inferior
compared to the combination of all tested events, including those specific to the
ARM Cortex-A9. To maintain platform independence, we recommend to limit
the tested events to ARMv7-A/R compliant ones. If fewer hardware counters are
available on the processor under test, the results displayed in Table 3 and Fig. 1
can be a starting point for reducing the number of measured events. In order to
compare the leakage behavior of multiple processors, we suggest to combine the
attacks of each system with our proposed method. The resulting combinations
represent robust overall attacks, regardless of which specific event leaks the most
information on each processor. This allows to get a comprehensive view of the
vulnerability of a cipher implementation on a range of different systems.

9 Conclusion

In this work, we studied the evaluation of a block cipher implementation on
a modern processor with the profiled time-driven cache attack proposed by
Bernstein. The application of key rank estimation as well as the combination
of multiple attacks are generic extensions that might also be of interest in other
cache attack work. In our case study, we identified new micro-architectural side-
channels on our ARM-based test system that can successfully be exploited in
Bernstein’s attack. Since performance counters are not only available on ARM
systems, we assume that new side-channels can also be found on other modern
(e.g. x86) processors. As all tested events in the case study leak information
about the secret key, the practical results strongly suggest that even more per-
formance events might be exploitable than those analyzed both in literature
and in our work. Together with the fact that the counting behavior of certain
events is not properly documented and is even defined by the final processor
implementation, a comprehensive study of performance events across multiple
processors is a promising direction for future work. Furthermore, it is an open
question whether a more effective filter approach exists that better separates
good and bad attacks in the combination step. Eventually, these directions may
lead to an optimal choice of events needed to evaluate the profiled cache attack
by Bernstein with maximum efficiency.

Acknowledgements. This work was funded by the German Federal Ministry of
Education and Research (BMBF) in the project SIBASE through grant number
01IS13020C.

Towards Efficient Evaluation of a Time-Driven Attack on Modern Processors 17

A AES T-table Implementation

The profiled time-driven cache attack by Bernstein targets a software imple-
mentation of AES that uses so-called transformation tables. These T-tables are
proposed by Daemon and Rijmen [9] to speed up AES in software. The tables
reduce a round of AES to 16 table lookups and 16 XOR operations with 4-byte
operands. The encryption process uses four 1 kiB T-tables T0..3 for all rounds
except the initial and the last one, which lacks the MixColumns transformation.
Encryption using T-tables is illustrated in Eq. 4. Note that it does not define
the initial state, s(0), and the final one, s(R), because of their different treatment
in the cipher. The cipher state in round r ∈ {1, ... , R − 1}, R ∈ {10, 12, 14} is
given as s(r)i..i+3 whereas the round key is given as k(r)

i..i+3 , with (i..i+3) denoting a
consecutive 4-byte chunk of the state and the round key, respectively. The initial
state s(0) is a simple XOR operation between the plaintext p and the initial key
k(0), s(0) = p ⊕ k(0).

s(r)0..3 = T0[s
(r−1)
0] ⊕ T1[s

(r−1)
5] ⊕ T2[s

(r−1)
10] ⊕ T3[s

(r−1)
15] ⊕ k(r)

0..3

s(r)4..7 = T0[s
(r−1)
4] ⊕ T1[s

(r−1)
9] ⊕ T2[s

(r−1)
14] ⊕ T3[s

(r−1)
3] ⊕ k(r)

4..7

s(r)8..11 = T0[s
(r−1)
8] ⊕ T1[s

(r−1)
13] ⊕ T2[s

(r−1)
2] ⊕ T3[s

(r−1)
7] ⊕ k(r)

8..11

s(r)12..15 = T0[s
(r−1)
12] ⊕ T1[s

(r−1)
1] ⊕ T2[s

(r−1)
6] ⊕ T3[s

(r−1)
11] ⊕ k(r)

12..15

(4)

In order to reduce the storage space required by the T-table implementation,
three of the T-tables can be exchanged for 12 extra rotations per round of AES.
This is because each entry of a T-table is the byte-wise rotation of the same entry
of any other table. The rotation factor remains constant for each table. Hence,
we can rewrite Eq. 4 as follows, assuming T = T0 is the only table available.
The function ror(v,n) rotates the 4-byte value v by n number of bytes cyclically
to the right.

s
(r)
0..3 = T[s

(r−1)
0] ⊕ ror(T[s

(r−1)
5], 1) ⊕ ror(T[s

(r−1)
10], 2) ⊕ ror(T[s

(r−1)
15], 3) ⊕ k

(r)
0..3

s
(r)
4..7 = T[s

(r−1)
4] ⊕ ror(T[s

(r−1)
9], 1) ⊕ ror(T[s

(r−1)
14], 2) ⊕ ror(T[s

(r−1)
3], 3) ⊕ k

(r)
4..7

s
(r)
8..11 = T[s

(r−1)
8] ⊕ ror(T[s

(r−1)
13], 1) ⊕ ror(T[s

(r−1)
2], 2) ⊕ ror(T[s

(r−1)
7], 3) ⊕ k

(r)
8..11

s
(r)
12..15 = T[s

(r−1)
12] ⊕ ror(T[s

(r−1)
1], 1) ⊕ ror(T[s

(r−1)
6], 2) ⊕ ror(T[s

(r−1)
11], 3) ⊕ k

(r)
12..15

(5)

In our experiments we test a 1 kiB T-table implementation of AES that fol-
lows Eq. 5. It is part of the OpenSSL software library v1.0.2 and written in
ARM assembly. The code is located under crypto/aes/asm/aes-armv4.pl in
the GitHub repository of the library [16]. As suggested by the equation, the
chosen implementation uses a constant and key-value-independent number of
instructions. The only conditional branch in the code is used to realize the AES
encryption loop. For each plaintext that is encrypted with AES-128, the proces-
sor performs 144 T-table lookups with ldr instructions and 16 S-box lookups
with ldrb instructions, which are needed in the last encryption round. As it

18 A. Zankl et al.

is common to many T-table-based implementations of AES, the secret key is
leaked only through the table lookups themselves, because it is used to compute
the indices of the tables.

References

1. Acıiçmez, O., Koç, Ç.K.: Trace-driven cache attacks on AES (Short Paper). In:
Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 112–121. Springer,
Heidelberg (2006)

2. Apecechea, G.I., Inci, M.S., Eisenbarth, T., Sunar, B.: Fine grain Cross-VM attacks
on Xen and VMware are possible! Cryptology ePrint Archive, Report 2014/248
(2014). http://eprint.iacr.org/

3. ARM: ARM Cortex-A9 MPCore Technical Reference Manual, June 2012. Revision
r4p1

4. ARM: ARM Architecture Reference Manual ARMv7-A and ARMv7-R Edition,
May 2014. Revision C.c

5. Atici, A., Yilmaz, C., Savas, E.: An approach for isolating the sources of infor-
mation leakage exploited in cache-based side-channel attacks. In: 2013 IEEE 7th
International Conference on Software Security and Reliability-Companion (SERE-
C), pp. 74–83, June 2013

6. Bernstein, D.J.: Cache-timing attacks on AES. Tech. rep., The University of Illinois
at Chicago (2005). http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

7. Bogdanov, A., Eisenbarth, T., Paar, C., Wienecke, M.: Differential cache-collision
timing attacks on AES with applications to embedded CPUs. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 235–251. Springer, Heidelberg (2010)

8. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer,
Heidelberg (2006)

9. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag New York Inc.,
Secaucus (2002)

10. Glowacz, C., Grosso, V., Poussier, R., Schueth, J., Standaert, F.X.: Simpler and
more efficient rank estimation for side-channel security assessment. Cryptology
ePrint Archive, Report 2014/920 (2014). http://eprint.iacr.org/

11. Gérard, B., Standaert, F.-X.: Unified and optimized linear collision attacks and
their application in a non-profiled setting. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 175–192. Springer, Heidelberg (2012)

12. Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA attacks: pushing DPA
beyond the limits of a desktop computer. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 243–261. Springer, Heidelberg (2014)

13. Neve, M., Seifert, J.P., Wang, Z.: A refined look at bernstein’s aes side-
channel analysis. In: Proceedings of the 2006 ACM Symposium on Information,
Computer and Communications Security, ASIACCS 2006, pp. 369–369. ACM,
New York (2006)

14. Spreitzer, R., Gérard, B.: Towards more practical time-driven cache attacks. In:
Naccache, D., Sauveron, D. (eds.) WISTP 2014. LNCS, vol. 8501, pp. 24–39.
Springer, Heidelberg (2014)

15. Spreitzer, R., Plos, T.: On the applicability of time-driven cache attacks on mobile
devices. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873,
pp. 656–662. Springer, Heidelberg (2013)

http://eprint.iacr.org/
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://eprint.iacr.org/

Towards Efficient Evaluation of a Time-Driven Attack on Modern Processors 19

16. The OpenSSL Project: OpenSSL (2015). https://github.com/openssl/openssl
17. Tiri, K., Acıiçmez, O., Neve, M., Andersen, F.: An analytical model for time-driven

cache attacks. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 399–413.
Springer, Heidelberg (2007)

18. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on aes, and counter-
measures. J. Cryptology 23(2), 37–71 (2010)

19. Uhsadel, L., Georges, A., Verbauwhede, I.: Exploiting hardware performance coun-
ters. In: 5th Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
2008, pp. 59–67, August 2008

20. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013)

21. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013)

22. Weiß, M., Heinz, B., Stumpf, F.: A cache timing attack on AES in virtualization
environments. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 314–328.
Springer, Heidelberg (2012)

23. Weiß, M., Weggenmann, B., August, M., Sigl, G.: On cache timing attacks con-
sidering multi-core aspects in virtualized embedded systems. In: Yung, M., Zhu,
L., Yang, Y. (eds.) INTRUST 2014. LNCS, vol. 9473, pp. 151–167. Springer,
Switzerland (2014)

https://github.com/openssl/openssl

More Practical and Secure History-Independent
Hash Tables

Michael T. Goodrich1, Evgenios M. Kornaropoulos2(B),
Michael Mitzenmacher3, and Roberto Tamassia2

1 Department of Computer Science, University of California, Irvine, USA
goodrich@acm.org

2 Department of Computer Science, Brown University, Providence, USA
{evgenios,rt}@cs.brown.edu

3 School of Engineering and Applied Science, Harvard University, Cambridge, USA
michaelm@eecs.harvard.edu

Abstract. Direct-recording electronic (DRE) voting systems have been
used in several countries including United States, India, and the
Netherlands to name a few. A common flaw that was discovered by
the security researchers was that the votes were stored sequentially
according to the time they were cast, which allows an attacker to
break the anonymity of the voters. Subsequent research pointed out
the connection between vote storage and the privacy property history-
independence. In a weakly history-independent data structure, every pos-
sible sequence of operations consistent with the current set of items is
equally likely to have occurred. In a strongly history-independent data
structure, items must be stored in a canonical way, i.e., for any set of
items, there is only one possible memory representation. Strong history-
independence implies weak history-independence but considerably con-
strains the design choices of the data structures. In this work, we present
and analyze an efficient hash table data structure that simultaneously
achieves the following properties:
– It is based on the classic linear probing collision-handling scheme.
– It is weakly history-independent.
– It is secure against collision-timing attacks. That is, we consider adver-

saries that can measure the time for an update operation, but cannot
observe data values, and we show that those adversaries cannot learn
information about the items in the table.

– All operations are significantly faster in practice (almost 2x faster for
high load factors) than those of the commonly used strongly history-
independent linear probing method proposed by Blelloch and Golovin
(FOCS’07), which is not secure against collision-timing attacks.

To our knowledge, our hash table construction is the first data structure
that combines history-independence and protection against a form of
timing attacks.

Keywords: Hash table · History-independence · Timing attack · Vote
storage

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 20–38, 2016.
DOI: 10.1007/978-3-319-45741-3 2

More Practical and Secure History-Independent Hash Tables 21

1 Introduction

Hashing is a classic technique [21] for implementing a dynamic dictionary of
key-value items supporting the following operations:

– insert(k, v): Insert item1 (k, v).
– find(k): Return the value with key equal to k, or null if none exists.
– delete(k): Delete the item with key equal to k.

The are many applications of such a data structure and it is well-known that
hashing can achieve O(1) expected-time performance for each operation (e.g.,
see [16]). In such a scheme, the items are stored in an array, T , according to
a mapping derived from a hash function, hash(·), such that the item (k, v) is
ideally stored in the cell T [hash(k)]. If multiple items map to the same cell, then
we say that a collision has occurred, and we need some way of resolving the
collision. One of the classic collision resolution methods is linear probing [21].
In this scheme, one simply incrementally searches the next cells in the array,
T [hash(k) + 1], T [hash(k) + 2], and so on, modulo the size of T , until one finds
an empty cell. Linear probing achieves O(1) expected time performance if the
ratio of the number of occupied cells to the total number of cells, which is known
as the load factor, is a constant strictly less than 1 (e.g., see [16,21]). Although
this is a classic hashing scheme, its use is nevertheless ubiquitous in computing
today, including many instances where security and privacy are essential. Thus,
we are interested in this paper in hash table schemes that can provide measurable
protections against various security and privacy attacks.

History-Independence. The property of history-independence was introduced
by Naor and Teague [29] by extending a related structural obliviousness property
by Micciancio [25]. The goal of history-independence is to design a data structure
so that an adversary who examines the computer memory will only discover the
current contents of the data structure but will not learn anything about the
sequence of operations that led to the current state of the data structure. History-
independence comes in two flavors [29]—in weakly history-independence (WHI),
the adversary can examine the memory only once, whereas in strongly history-
independence (SHI), the adversary may examine the memory multiple times.
Several history-independent data structures have been proposed. Blelloch and
Golovin [7] present a SHI hash table based on linear probing. The work of Naor
et al. [28] presents a SHI Cuckoo Table that performs insertions and deletions in
O(log n) time, with high probability, where n is the current number of elements
in the table. Buchbinder et al. [8] show time complexity separation between the
weak and the strong notions of history-independent data structure. Our focus
in this paper is on the WHI framework, as we feel it is has a more realistic risk
scenario. Moreover, by a lower bound due to Hartline et al. [18], in order for
a data structure to be SHI, it must have a canonical memory representation,
which is a fairly restrictive requirement that seems to conflict with protections
against the next type of attack that we consider in this paper.
1 We assume that keys are unique, but all of our results extend to the setting where

insertion of an already allocated key with a new value replaces the current value.

22 M.T. Goodrich et al.

Vote Storage. The DRE AccuVote-TS voting machine was used by 10 % of the
voters in the 2006 US general election. Security flaws were found both in the
software [22] and the hardware [12] of the device. For example, Kohno et al. [22]
found that each vote is written sequentially to the file that stores the votes, which
can break the anonymity of the system. An attacker with some side-channel
information can link the ballot to a voter based on the order that the votes are
stored. The same privacy flaw was also found in the Indian Electronic Voting
Machines that have been used for national elections of India since 2004. The
work by Wolchok et al. [33] reports that votes are stored in the order cast. Later
work recognized the connection of the above privacy issue with the notion of
history-independence and suggested the use of strongly history-independent data
structures [6,26,27]. In fact, in March 2015 the United States Election Assistance
Committee approved the next generation of Voluntary Voting System Guidelines
where they specify that ballot images must be recorded in a randomized order by
the DRE for the election (Sect. 2.4.4.2 in [1]). Given that the voting machines
are examined usually after the election process, i.e. post-election audits [2,31],
the notion of weak history-independence seems to be more appropriate than the
stronger notion of strong history-independence.

Memory Attacks. Beyond voting machines, there are other cases where
an adversary can obtain access to a snapshot of the working memory and
weak history-independence can be usefully applied. A direct memory access
attack, or DMA attack, is an attack where the adversary with physical access
to the machine bypasses all security measures of the operating system and
directly accesses the memory via the high-speed expansion ports. Tools such
as “Inception” [24] mount a DMA attack over PCI interfaces and acquire a com-
plete image of the working memory. Cold boot attacks [17] allow the attacker to
dump the image of the memory to an external medium, which can even iden-
tify and reconstruct the cryptographic keys from the acquired image and thus
overcome disk encryption. In application scenarios such as ballot storage [26] or
hospital admission management [4] such leakage might violate desired privacy.

Other History-Independent Systems. Bajaj and Sion proposed a history-
independent file system named HIFS [3] that provides history-independence
across both file system and disk layers of the storage stack. We note here that
HIFS deploys the SHI hash table from [7], which is significantly slower than our
WHI construction. A direct substitution, followed by some minor changes, would
significantly speed up their design while maintaining suitable privacy guarantees
for many applications. Unfortunately, the history-independence of HIFS [3] is
not guaranteed for flash storage devices. The reason is that the block placement
algorithms in flash storage devices are managed internally (in a non-history-
independent manner) in order to maximize performance and lifetime of the stor-
age. To remedy that, Chen and Sion proposed history-independent schemes that
are tailored for flash-based block devices [10]. Another system, Ficklebase [4],
suggests the use of history-independent data structures within a relational data-
base architecture for the underlying database storage engine in order to avoid
unwanted recovery of deleted information through forensic analysis.

More Practical and Secure History-Independent Hash Tables 23

Timing Attacks. Another type of attack that can cause a data structure to leak
information is a timing attack. In such a side-channel attack, an adversary does
not get direct access to the memory layout of a data structure or to the operands
of the executed operation, but he can nevertheless precisely time the execution
of data structure operations. Such attacks typically come in two forms—in the
first form, an attacker passively observes the timing of data structure operations
performed by others, and in the second form, he is allowed to directly interact
with the data structure, e.g., to form malicious inputs that cause errors or sig-
nificant time delays that can reveal information put into the data structure by
others.

In the first type of attack, the eavesdropping adversary gains knowledge
about the private data using the duration of an abstract-data-type operation of
the data structure. An example of such a real-world attack is presented in [13],
where an attacker can measure the execution time of an insertion in a B-tree in
order to detect a node split. Using this split detection information, the attacker
can recover values from the database table that is under attack. As a means to
formally characterize such attacks, Lipton and Naughton [23] define a clocked
adversary to be an eavesdropping attacker who can accurately time operations
of a data structure and who succeeds if he can distinguish whether the system
is in a state s1 or state s2 given just the timing information.

For the second type of timing attack, an adversary utilizes the predictable
time performance of known data structure implementations to mount an active
attack. For example, Crosby and Wallach [11] introduce algorithmic complexity
attacks, where an adversary provides inputs to a data structure so as to trigger
its worst case performance. In addition, Bethea and Reiter [5] introduce timing-
unpredictability, which is used to quantify the uncertainty of an attacker about
the time performance of future operations.

Our Results. In Sect. 3, we present and analyze the first efficient hash table
data structure that defends against the above information leakage attacks. Our
construction, denoted as WHI, achieves the following properties:

– It is weakly history-independent.
– It is secure against collision-timing attacks (see Definition 3 below).
– Operations find, insert and delete are significantly faster in practice than the

strongly history-independent linear probing scheme of [7].

In Table 1, we qualitatively compare our WHI scheme to several previous
linear-probing hashing schemes that achieve some degree of history-independence
or defend against collision-timing attacks, noting that none of them achieves
protection against both types of attacks. We review these other schemes in Sect. 4
and we provide the results of experimental comparisons in Sect. 5.

24 M.T. Goodrich et al.

Table 1. Privacy properties of hashing with linear probing

History-Independence Secure Against

Collision-Timing

Attacks

Strong HI Weak HI

First-Come-First-Served (FCFS) - - ✓

Last-Come-First-Served (LCFS) [30] - - ✓

Robin Hood, Tie-Break w. FCFS/LCFS [9] - - ✓

Robin Hood, Tie-Break w. Key Sort ✓ ✓ -

Blelloch & Golovin [7] ✓ ✓ -

WHI (This work) - ✓ ✓

2 Security Model

2.1 History-Independence

An Abstract Data Type (ADT) is a mathematical model of a data structure
that describes the type of the data stored, the operations that can be performed
on the data as well as the parameters of each operation. In this work, a data
structure is associated with a set of items that is also called the logical state
of an ADT, or simply state. An ADT operation deterministically transforms
the state of the data structure. A sequence of operations S is an ordered list
of ADT operations of the data structure as defined by the corresponding ADT.
A memory representation of an ADT, or simply a representation, is a mapping
of the state of the data structure into the memory. In general, there can be
multiple memory representations for a given state. An implementation of a data
structure is a function F : M × O → M , where M is the set of all possible
memory representations and O is the set of all possible ADT operations.

Following the terminology of Hartline et al. [18], let a and b denote the
memory representation of states A and B respectively. Let S be a sequence of
operations then by A

S−→ B we indicate that the sequence of operations S takes
state A to state B. Let also Pr[a S−→ b] denote the probability that starting from
memory representation a of state A, the sequence of operations S run by the
corresponding implementation yields memory representation b of state B. The
initially empty memory representation is denoted as �.

Definition 1 (Hartline et al. [18]). A data structure is weakly history-
independent if, for any two sequences of operations S1 and S2 that take the
data structure from the initialization to state A, the distribution over the mem-
ory after sequence S1 is performed is identical to the distribution after sequence
S2 is performed. That is:

(� S1−→ A) ∧ (� S2−→ A) ⇒ ∀a ∈ A,Pr[� S1−→ a] = Pr[� S2−→ a].

More Practical and Secure History-Independent Hash Tables 25

Definition 2 (Hartline et al. [18]). A data structure is strongly history-
independent if, for any two (possibly empty) sequences of operations S1 and
S2 that take a data structure from state A to state B, the distribution over the
memory representations of B after sequence S1 is performed on representation a
is identical to the distribution after sequence S2 is performed on representation
a. That is:

(A S1−→B) ∧ (A S2−→B) ⇒ ∀a ∈ A,∀b ∈ B,Pr[a S1−→b] = Pr[a S2−→b].

2.2 Collision-Timing Attack

For an adversary with timing capabilities, the duration of an insert/delete opera-
tion in a hash table can reveal significant information. In our motivating scenario
for this security notion, the attacker cannot read the data transferred in the com-
munication channel between the user and the cloud provider (i.e., the encrypted
channel) but he can accurately time the interaction between the two entities.
We model the desired security property by introducing a game where the adver-
sary picks two input items that collide in the hash table, the cloud provider
inserts/deletes only one of them. The goal of the adversary is to distinguish
which of the two items was processed relying solely only the execution time of
the operation. We consider a hash table secure against collision-timing attacks
if the adversary succeeds in the above game with negligible probability.

Our model only deals with the timing of colliding items. In order not to leak
whether a collision occurs, one would have to deploy a hash table for which
the execution time is not affected by collisions. Notice that it is particularly
challenging to decouple the time performance of a hash table from the occurrence
of collisions. One may think that in order not to leak whether collision occurs it
is enough to have constant worst-case time performance for updates. This is not
necessarily true since there can be maintenance actions in the hash table, that
take constant time but reveal whether a collision took place.

Finding Colliding Items. As shown in the work of Lipton and Naughton [23],
there is a straightforward process for an adversary to generate a pair of colliding
items, i.e., a collision-discovery attack, even if the hash function is not known. As
a first step, we describe a process from [23] that checks whether two items collide.
Let t0 be the time it takes to insert item u0 to an empty hash table, similarly let
t1 be the time it takes to insert u1 to an empty table. Now we insert u1 in a hash
table that already contains u0 and check whether the time for insertion is larger2

than t1, if yes then the items u0, u1 collide. In order to find which pair of items
to test for a collision, we can simply generate Ω(

√
m) random items, where m

is the table size. Indeed, assuming that the hash function distributes the items

2 In the work of [23] the authors define a clocked adversary that has access to a clock
that is accurate to within ε and can discover the difference between two measure-
ments t0 and t1 with O(ε/|t1 − t0|) repetitions of the corresponding operations. For
the ease of exposition we assume that our measurements are always accurate (i.e.
ε = 0) therefore no repetitions are required.

26 M.T. Goodrich et al.

to the m bins uniformly at random, we can use the birthday-paradox and show
that within this set of items there is a pair of colliding items with probability
roughly 1/2. Given that collision-discovery attacks for hash tables are difficult to
avoid in practice, we focus on preventing information leakage from the eviction
strategy, i.e., a collision-timing attack.

Security Definition. We indicate with λ the security parameter and with Op
an update operation of the hash table, Op ∈ {insert, delete}. We indicate with
a ∈ A a memory representation of the state A of the hash table and with u0, u1

two items from the universe of input keys, K. With the term HT we denote
an implementation of the hash table that has access to a source of randomness,
e.g., a pseudorandom generator G. A memory representation is called admissible
with respect to the implementation HT and the hash function hash(), if it can
be reached with non-zero probability. We define an evidence of admissibility of
a, denoted as evda, a pair consisting of (1) a sequence of operations Sa and (2) a
random tape rnda such that if Sa is applied to an empty hash table using rnda

when necessary, then the hash table reaches memory representation a. We use a
game-based definition to describe the security of our setup. The game is denoted
with PRV-CTAA

HT (λ) and is shown in Fig. 1, where CTA stands for collision-
timing attack. The game begins with an algorithm run by adversary A. When A
finishes executing, the game performs further steps with A’s output to produce
the challenge for A. The adversary processes the challenge and outputs a bit,
which is returned by the game.

PRV-CTAA
HT (λ):

1. (a, hash, evda,Op, u0, u1) ← A(1λ), where hash(u0) = hash(u1)
2. if evda is not an evidence of admissibility of a return 0
3. Initialize the implementation HT with memory

representation a and G(λ)
4. Choose at random a bit b ∈ {0, 1}
5. Execute operation Op according to HT with input argument ub

and record the execution time in tb

6. b′ ← A(tb)
7. return (b = b′)

Fig. 1. Indistinguishability game for the security of a hash table against collision-timing
attacks.

Indistinguishability game PRV-CTA assumes a powerful adversary that is
allowed to choose the memory representation of the hash table, i.e. the state, the
allocation of the items to the cells of the table as well as its hash function hash().
We denote as advantage of A the quantity 2 · Pr

(
PRV-CTAA

HT (λ) = 1
) − 1.

Definition 3. Let λ be the security parameter and let HT be an implementation
of a hash table. We say that implementation HT is secure against collision-
timing attacks if for all PPT adversaries A, the advantage A in game PRV-
CTAA

HT (λ) is negligible.

More Practical and Secure History-Independent Hash Tables 27

3 Weakly History-Independent Linear Probing

In this section, we describe a weakly history-independent dictionary that is based
on an open addressing hash table. For the proofs see the full version [15]. Let T
be a hash table of size m and let K be the universe of keys. We hash the set of
keys U ⊆ K into T using hash function hash() and handle collisions with linear
probing. In the following, the symbol ⊥ indicates an empty cell and arithmetic
over cell indices is modulo m. A cluster of T is a maximal contiguous sequence
of nonempty cells of T .

Profile of a Set. Following the terminology of [20], we define the following sets
and values for a cell i of T :

– Hi: set of items of U that hash to cell T [i], of size hi = |Hi|;
– Pi: set of items of U that probed cell T [i], of size pi = |Pi|.

The above quantities are a function of the set U and of hash(), but for
succinctness we do not denote that explicitly. Clearly, we have Hi ⊆ Pi. Also,
if pi ≥ 1, then exactly one of the items in Pi ends up in cell T [i] while the
remaining pi − 1 items probe the next cell T [i + 1]. This observation yields the
following recurrence relation (same relation as in [20] but different notation):

Pi+1 = Hi+1 ∪ (Pi − {vi}) and pi+1 = hi+1 + max(pi − 1, 0), (1)

where vi indicates the item allocated in T [i]. Sequence (p0, . . . , pm−1) is called
the profile of set U . Note that set Pi depends on both the performed sequence of
operations and on the eviction strategy between colliding items. In contrast, the
profile of U does not depend on the eviction strategy [20], since it only counts
the number of items that probed a cell. Using the above fact one can easily show
that the profile is also independent of the order in the sequence of operations.

Intuition. In our insertion algorithm, we use a randomized eviction strategy.
Suppose pi ≥ 1 items have probed the i-th cell so far. When a new item u probes
the i-th cell, it evicts the current item with probability 1/(pi + 1). Hence, each
cell is a reservoir sample [32] of size 1, so that every item probing that cell has
an equal likelihood of being stored there.

We show that this technique gives a weakly history-independent insertion
process. The challenge is that, to delete an item u from a cell i, we must construct
a memory representation that is consistent with u never having been inserted.
Note that algorithm find(u) simply performs a linear forward scan starting from
hash(u) until we either find u or an empty cell.

3.1 Insertion

We use an auxiliary table, P [], to keep track of the profile, where P [i] = pi. All
entries in P [] are initially set to 0. We assume that the hash table can access
random values on the fly as we need them by means of method getRand(s), which
returns a random integer in the range {1, . . . , s}.

28 M.T. Goodrich et al.

Analysis. Let T be a hash table with linear probing where insertions are per-
formed with Algorithm1. As defined before, a memory representation is called
admissible if it can be reached with non-zero probability.

Algorithm 1. WHI.insert(u)
Input : an item u to be inserted

1 i ← hash(u)
2 while T [i] �= ⊥ do
3 P [i] ← P [i] + 1

// Item u is stored in T [i] with probability 1/pi

4 r ← getRand(P [i])
5 if r = 1 then
6 Swap the content of T [i] and u
7 end
8 i ← i + 1
9 end

10 P [i] ← 1
11 T [i] ← u

Lemma 1. Let U be a set of items and let R be the random variable over the set
of admissible representations of U in table T . Let S be a sequence of insert oper-
ations, according to Algorithm1, that insert the items of U . Then the probability
that R takes value ρ given that we follow S is given by:

Pr(R = ρ) =
m−1∏

j=0

1
max(pj , 1)

.

The next lemma follows immediately from Lemma 1.

Lemma 2. A hash table with linear probing where only insertions are per-
formed, according to Algorithm1, is weakly history-independent.

We note here that since the notion of history-independence was originally
formed under an information-theoretic security framework, for consistency with
previous work, our lemmas above assume the availability of true randomness.

It is straightforward to relax both strong and weak history-independence def-
initions to a semantically secure framework and extend our results accordingly.
In this case, denoting with λ the security parameter, getRand would be derived
from the output of a cryptographic pseudorandom generator with security para-
meter λ [14] to which the hash table, but not the adversary, has oracle access.
In practice, we implement getRand by means of the secure hardware random
number generator provided by modern microprocessors.

3.2 Deletion

To delete an item u from the hash table we must change the memory represen-
tation, with the right probability, so that it is as though u was never inserted.

More Practical and Secure History-Independent Hash Tables 29

Algorithm. The deletion method is shown in Algorithms 2–3. Given that item u
is allocated in cell T [i] and that it hashes to cell hash(u) we have to: (1) decrease
by one the values of P [hash(u)], P [hash(u) + 1], . . . , P [i] and (2) cover the gap
at T [i] by picking an item uniformly at random among the items that probed
T [i]. The above two steps are repeated, in case we create an additional gap by
covering the first one.

Algorithm 2. WHI.delete(u)
Input : an item u to be deleted

1 i ← hash(u)
2 while T[i] �= ⊥ do

// Reverse the effect of u on table P
3 P [i] ← P [i] − 1
4 if T[i] = u then
5 T [i] ← ⊥

// Fill the gap at cell T [i]
6 CoverGap(i)
7 return
8 end
9 i ← i + 1

10 end

Algorithm 3. CoverGap
Input : the index ig of the gap in T

1 if P [ig] = 0 then
2 return
3 end
// There are pig items that probed T [ig]. Cover with the

rightmost.
4 cnt ← P [ig]
5 i ← ig + 1
6 while T[i] �= ⊥ do
7 P [i] ← P [i] − 1
8 if the item in T [i] probed cell T [ig] then
9 cnt ← cnt − 1

10 if cnt = 0 then
// Cover the gap at T [ig], recurse for the new gap at

T [i]
11 T [ig] ← T [i]
12 T [i] ← ⊥
13 CoverGap(i)
14 return
15 end
16 end
17 i ← i + 1
18 end

An interesting question is how to pick an item to cover the gap. One approach
is to scan the cells from T [i+1] until the end of the cluster and choose one of the

30 M.T. Goodrich et al.

items of Pi uniformly at random. The above randomized approach is correct but
requires additional randomness and can potentially lead to a significant number
of moves between the allocated items. Our technique takes advantage of the fact
that in an admissible memory representation of U , the relative order of the items
that probed T [i] is a random permutation. Therefore, by picking the item of T [i]
placed furthest from T [i] in the cluster, the “rightmost” item or else the pi-
th eligible item to cover the gap, is equivalent to sampling uniformly at random
among the items of set Pi. Besides maintaining the weak history-independence of
our construction, the benefit of this technique is twofold in terms of performance.
By recursively choosing items as far to the right as possible from the gap we
reduce the number of moves between the allocated items, and we do not require
any randomness for the deletion process. In Algorithm 2, we locate and delete the
item u; an action that creates a gap. Let T [ig] be the cell where u was allocated
before the deletion. Algorithm 3 covers the gap in T [ig] with the rightmost item
that probed cell T [ig].

Line 8 of Algorithm 3 checks whether the item in cell T [i] probed cell T [ig]
on its way to cell T [i]. This can be implemented as follows, if the distance of
the hashed location hash(T [i]) from the start of the cluster is less than or equal
to the distance of cell T [ig] from the start of the cluster, then the item in T [i]
probed cell T [ig].

Analysis. We build our WHI proof based on two lemmas. Given a sequence of
insertions S, we first prove that the relative order of Hi in the resulting memory
representation is a random permutation. Using this, we prove the more general
statement that the relative order of Pi in the resulting memory representation is
a random permutation. Thus, by picking the rightmost item of Pi in the memory
representation, we cover the gap with a randomly chosen item from Pi. Finally,
by recursively covering the gaps in this manner, we create the same probability
distribution over the memory representation as if the deleted item was never
inserted.

Lemma 3. Let U be a set of items, let π1, π2 be two permutations of Hi ⊆ U and
let S be a sequence of insertions of U according to Algorithm1. For a location
i in the hash table, let Ri be the random variable that represents the relative
order of set Hi associated with cell T [i] in the resulting memory representation
ρ. Then, by inserting the items of U into T according to S, we have:

Pr(Ri = π1) = Pr(Ri = π2)

Lemma 4. Let U be a set of items, let π1, π2 be two permutations of Pi ⊆ U and
let S be a sequence of insertions of U according to Algorithm1. For a location
i in the hash table, let R′

i be the random variable that represents the relative
order of set Pi associated with cell T [i] in the resulting memory representation
ρ. Then, by inserting the items of U into T according to S, we have:

Pr(R′
i = π1) = Pr(R′

i = π2)

The next theorem summarizes the history-independence of our construction.

More Practical and Secure History-Independent Hash Tables 31

Theorem 1. The linear probing hash table implementation described by
Algorithms 1, 2 and 3 is a weakly history-independent data structure that per-
forms searches, insertions and deletions in O(1) expected time.

3.3 Protection Against Collision-Timing Attacks

Section 2.2 gives the definition of security against collision-timing attacks for the
case of general hash table implementation. We consider now the case where the
hash table follows a linear probing approach.

When using linear probing, the execution time of a find, insert, or delete
operation of the hash table depends on two factors, (1) whether the input item
collides with an item that is already in the hash table and (2) on the eviction
strategy in case there is a collision. The work of Lipton et al. [23] addresses
the first timing factor for hash tables with chaining as well as for hash tables
with open addressing. The authors propose attacking strategies that only use the
execution time to discover if two given items collide in a hash table as well as a
method to generate a pair of colliding items for a given hash table. In the same
spirit, the adversary of PRV-CTA chooses two items that hash to the same cell.
In case the items were allowed to hash to different cells, then it would be trivial
for the adversary to win game PRV-CTA. Specifically, it would be enough for
the adversary to pick a memory representation in which u0 hashes to an empty
cell while u1 hashes to the beginning of a long cluster of consecutive items. Thus
we turn our attention to the second timing factor, that is on the eviction policy.

Due to the nature of linear probing, the insertion/deletion process will probe
the same cells regardless of whether u0 or u1 is chosen in PRV-CTA. Therefore,
what can potentially make a hash table insecure with respect to PRV-CTA is
the eviction policy. Hash tables that are secure according to Definition 3 should
follow an eviction policy that is oblivious to the value of the items. The SHI linear
probing scheme proposed in [7] is not secure against collision-timing attacks since
a priority function that takes the values of the two items as an input (See [29] for
a thorough treatment of the subject) is necessary to decide which item to evict.

We note here that the definition of security against collision-timing attacks
is formed under a semantically-secure framework, thus we use the notion of a
cryptographic PRNG G with a given security parameter λ in our analysis.

Theorem 2. Let WHI be the implementation of a hash table where the insertion
and deletion methods follow Algorithms 1, 2 and 3. If G is a pseudorandom
number generator then the implementation WHI is secure against collision-timing
attacks according to Definition 3.

3.4 Analysis of Individual Displacement

In a hash table with linear probing, the individual displacement of an item is the
distance between (a) the location where the item hashes to and (b) the location
where the item is placed.

32 M.T. Goodrich et al.

In this section, we derive the asymptotic performance of the individual dis-
placement in the case of our WHI linear probing variation. In case the individual
displacement is large the algorithm find has to scan a large number of cells in
order to locate the requested item which slows down the performance of the oper-
ation. We note that the techniques we use are standard but the analysis appears
novel. In particular, we focus on the distribution of the individual displacement
in the case n/m → α for 0 < α < 1. We note that the total displacement is inde-
pendent of the insertion policy (as long as the policy falls within the standard
class of policies; see e.g. [20]); hence the average displacement is the same for all
policies, but the distribution of displacements is not. Our starting point is the
Eq. (1): pi+1 = hi+1 + max(hi − 1, 0). Given a table with load α, it is helpful to
start by obtaining a distribution on the entries of the profile. That is, let ηk be
the fraction of bins with a count of k in the asymptotic regime as the number of
bins grows to infinity. Thus, we have ηk = #{i : pi = k}/m.

Asymptotically, we can use the standard Poissonization approach of letting
the hi be distributed as independent Poisson random variables with parameter α.
In this case, the pi form a simple Markov chain, and we can consider its stationary
distribution; this gives us the asymptotic distribution for ηk. In particular, a cell
i has pi = 0 only if the previous cell has pi−1 = 0 or pi−1 = 1 and no items hash
to i, hence, η0 = (η0 + η1) Pr(hi = 0) ⇒ η0 = (η0 + η1)e−α.

More generally, for k ≥ 1, we find

ηk+1 = ηk
1 − e−αα

e−α
− η0

αk

k!
−

k−1∑

l=1

ηl
αk−l+1

(k − l + 1)!
. (2)

From these equations, we can numerically derive the distribution using the
fact that

∑n
k=0 ηk = 1. For the individual displacement, we work with a random

item u, and compute the limiting distribution of its displacement. Let Xq be a
random variable that takes value 0 with probability 1/q and value 1 otherwise.
Let also Zk be the random variable that takes as a value the displacement of
u given that phash(u) = k. For a given k ≥ 1 we have the following recursive
function:

Zk = Xk

⎛

⎝1 +
n−k+1∑

j=0

Zk−1+je
−α αj

j!

⎞

⎠ . (3)

That is, with probability 1/k there is no displacement because u is stored in the
cell it hashed to; otherwise, 1 is added to the displacement and it moves to the
next cell, which has Zk−1+j items that probed it, where j is the number of items
that hash to that cell.

As Zk is conditioned on the event that for cell hash(u) we have that phash(u) =
k, the displacement of u is a random variable Du given by:

Du =
n−1∑

k=0

Zk+1ηk (4)

More Practical and Secure History-Independent Hash Tables 33

Using Eqs. (2) and (3) one can numerically derive the distribution of the
individual displacement of u for a fixed α. In Sect. 5 we show the sample variance
of the individual displacement for various load factors and compare it to the
variance of other linear probing schemes.

4 Previous Linear Probing Schemes

The standard linear probing scheme is a first-come-first-served (FCFS) policy,
since previously allocated items do not move during an insertion. Poblete and
Munro [30] propose a last-come-first-served (LCFS) policy, where an incoming
item has higher priority than those previously allocated. These two policies are
easily seen not to be weakly history-independent, since the resulting memory
representation clearly depends on the order of updates.

Consider, instead, an alternative scheme inspired by the well-known Fisher-
Yates random shuffling algorithm. That is, in the case of collision occurring in the
insertion of an item, u, place the item u in the first available cell found by linear
probing under the FCFS rule. Then swap u with a uniformly randomly chosen
item from range of cells T [hash(u)] to the last cell of the cluster (wrapping around
the beginning of T if needed). Let us call this eviction technique,“Random-Swap”
it is easy to see that this variation is not weakly history-independent either.

In Robin Hood hashing [9], when we probe an occupied cell T [i] during the
insertion of an item u, we swap u into T [i] if u is further from its desired cell
than the current occupant (and we then probe T [i + 1] for the remaining item).
Ties occur when u and T [i] are equidistant from their desired cell. Different
tie-breaking techniques give different security properties to the resulting con-
struction. If we break ties based on the arrival time (“Robin Hood, Tie-Break
w. FCFS/LCFS” in Table 1) then the scheme is secure against collision-timing
attacks since the evictions do not depend on the value but it is not history-
independent. Suppose, instead, that we break ties fairly, by randomly choosing
between the two items with probability 1/2, to split the “arrow” in half, using
the Robin Hood metaphor. One might think that this fair-split strategy allows
Robin Hood hashing to be weakly history-independent, but that is not the case.

Lemma 5. FCFS, LCFS, Random-Swap, Robin Hood where ties break with
FCFS, Robin Hood where ties break with LCFS, and Robin Hood where ties
break with fair-split are (1) secure against collision-timing attacks but (2) not
weakly history-independent, even in an insertion-only scenario.

If we follow a Robin Hood hashing and break ties by choosing the larger/
smaller value (“Robin Hood, Tie-Break w. Key Sort” in Table 1, also addressed as
“age-rules” in [29]), then the scheme becomes strongly history-independent but it
is not secure against collision-timing attacks. Note that one has to design a new
appropriate deletion process that respects the SHI property of the above RH varia-
tion, in this work we only consider the insertion process of this scheme (see Sect. 5).
Finally the strongly history-independent linear probing technique from [7] is also
not secure against collision-timing attacks.

34 M.T. Goodrich et al.

Lemma 6. Robin Hood hashing where ties break with key-sort as well as the
SHI scheme of [7] are (1) strongly history-independent but (2) not secure against
collision-timing attacks.

The above observations are summarized in Table 1. The proposed linear prob-
ing scheme of this work is the first that satisfies both privacy properties.

5 Evaluation

We have implemented the strongly history independent linear probing scheme
of [7], denoted as SHI, and our WHI linear probing scheme in C++ and conducted
experiments to compare the performance of the two history independent tech-
niques. The values in the (key, value) pairs consist of 10-character strings. All
experiments were performed in the same machine running OSX 10.10.5 with
Quad Core 2.6 GHz Intel Core i7 processor and 8 GB RAM. We used Intel’s on-
chip hardware random generator, instruction RdRand, that is available in “Ivy
Bridge” processors [19].

Method find. The first set of experiments, depicted in Fig. 2, addresses the
performance of method find. We focus on the displacement, i.e., the distance
of an item from its hashed location, which affects the performance of find. For
completeness, we also show the results for Robin-Hood hashing, which is known
to minimize the variance of the displacements among all linear probing algo-
rithms. We use a table of size m = 107 and we initialize the data structures

Load Factor
0.6 0.7 0.8 0.9

M
ax

im
um

 D
is

pl
ac

em
en

t (
Lo

g-
S

ca
le

)

25

50
75

125

250

500

1000

2500

5000

10,000
Distribution of Maximum Displacement, m=107

SHI
WHI
RH

(a)

Load Factor
0.6 0.7 0.8 0.9

V
ar

ia
nc

e
(L

og
-S

ca
le

)

10-6

10-5

10-4

10-3Variance of Individual Displacement, m=107

SHI
WHI
RH

(b)

Fig. 2. Comparison of the displacement of items in Robin Hood (where ties-break with
FCFS), SHI [7] and WHI (our scheme). The plot summarize results from experiments
run 100 times on a table of size m = 107 with varying load factors: (a) maximum
displacement; (b) variance of individual displacement.

More Practical and Secure History-Independent Hash Tables 35

up to load factors α = 0.6, 0.7, 0.8, 0.9 by inserting the same set of unique ran-
domly generated items in the same randomly chosen order to all hash tables.
After the initialization, we record the displacement of each item and compute
the sample variance and the maximum displacement. The above process was
repeated for 100 distinct initializations. The box-plot of the maximum displace-
ment, Fig. 2(a), shows that the average maximum displacement of WHI is much
smaller than that of SHI. As another data point, in a similar experiment with
a table of size m = 107, for load α = 0.9 the maximum recorded displacement
for WHI is 476 whereas for SHI it is 2228. Finally, in the plot of Fig. 2(b) shows
that the variance of the individual displacement for WHI is much lower than that
for SHI.

Methods insert and delete. The second set of experiments, depicted in Fig. 3,
addresses the performance of methods insert and delete. In this experiment we use
a table of size m = 105 and initialize the data structures up to a fixed load factor,
i.e. α = 0.6 − 0.9 by inserting the same set of unique randomly generated items
in the same randomly chosen order. After the initialization we perform 103 find
calls that take as an input a randomly chosen item among those that are already
in the table in order to warm-up the cache. Then we perform an insertion (resp.
deletion) of a randomly generated (resp. chosen) item and record the number of
cycles executed by the method. We obtain the number of cycles as the difference
between processor time stamps by means of instruction rdtsc. The above process

Load Factor
0.6 0.7 0.8 0.9

N
um

be
r

of
 C

yc
le

s
(L

in
ea

r-
S

ca
le

)

0

5000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

60,000
Timing Single Operation, m=105

 SHI Delete
 WHI Delete
 SHI Insert
 WHI Insert
 RH Insert

(a)
Load Factor

0.6 0.7 0.8 0.9

R
at

io
 S

H
I P

er
fo

rm
an

ce
 to

 W
H

I P
er

fo
rm

an
ce

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4
Overall Comparison, m=105

 find (avgMaxDisplacement)
 insert (NumberOfCycles)
delete (NumberOfCycles)

(b)

Fig. 3. Comparison of methods insert and delete in Robin Hood (where ties-break with
FCFS), SHI [7] and WHI (our scheme). Plot (a) summarizes the experiments conducted
103 times on a table of size m = 105 with varying load factors. In each experiment,
we measured the number of CPU cycles executed by a single call of method insert or
delete. Plot (b) depicts the ratio between the performance of SHI to WHI.

36 M.T. Goodrich et al.

was repeated 103 times for various values of α. Figure 3(a) presents the sample
mean of the number of cycles, showing that our WHI scheme is significantly faster
than SHI. For comparison, we also include the performance of the variation of
Robin Hood linear probing where ties break in a FCFS fashion. This variation
gives the fastest insertion process over all Robin Hood variations since we don’t
move items in case of a tie.

Overall Comparison. As an overall comparison Fig. 3(b) shows the ratio of
SHI’s performance to WHI’s performance for each of the above operations. Each
line represents an operation (i.e. find, insert, delete) and each data point of the
line represents the ratio of SHI performance (in terms of average maximum dis-
placement or number of cycles) to WHI’s performance. It is clear that the average
maximum displacement of WHI is significantly smaller compared to SHI, which
translates to a faster worst-case time performance for find method. Specifically,
the average maximum displacement of an item for the SHI eviction strategy is
almost 4 times higher than the average maximum displacement of WHI, for high
load factors. As for the update operations, WHI performs almost 2x faster than
SHI for high load factors.

6 Conclusion and Discussion

In this paper, we have presented a linear probing hashing scheme that is weakly
history-independent and secure against collision-timing attacks. According to our
evaluation, all three methods of the proposed hash table (find, insert, delete) are
much faster than those of the strongly history-independent analogue proposed
by Blelloch and Golovin [7]. Our results suggest that weakly history-independent
data structures can be more efficient than strongly history-independent ones in
real-world privacy-preserving applications such as ballot storage and hospital
admissions management.

Acknowledgments. This work was supported in part by the U.S. National Science
Foundation under grants CCF–1535795, CCF–1320231, CNS–1228485, CNS–1228598,
and CNS–1228639, and by the Kanellakis Fellowship at Brown University.

References

1. Voluntary Voting System Guidelines, Ver. 1.1, vol. 1. Technical report,
United States Election Assistance Commission (2015). www.eac.gov/assets/1/
Documents/VVSG.1.1.VOL.1.FINAL.pdf

2. Aslam, J.A., Popa, R.A., Rivest, R.L.: On auditing elections when precincts have
different sizes. In: Proceedings of the USENIX EVT (2008)

3. Bajaj, S., Sion, R.: Ficklebase: looking into the future to erase the past. In: Pro-
ceedings of 29th IEEE ICDE, pp. 86–97 (2013)

4. Bajaj, S., Sion, R.: HIFS: history independence for file systems. In: Proceedings of
20th ACM CCS, pp. 1285–1296 (2013)

www.eac.gov/assets/1/Documents/VVSG.1.1.VOL.1.FINAL.pdf
www.eac.gov/assets/1/Documents/VVSG.1.1.VOL.1.FINAL.pdf

More Practical and Secure History-Independent Hash Tables 37

5. Bethea, D., Reiter, M.K.: Data structures with unpredictable timing. In: Backes,
M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 456–471. Springer,
Heidelberg (2009)

6. Bethencourt, J., Boneh, D., Waters, B.: Cryptographic methods for storing ballots
on a voting machine. In: Proceedings of 14th NDSS, pp. 209–222 (2007)

7. Blelloch, G.E., Golovin, D.: Strongly history-independent hashing with applica-
tions. In Proceedings of 48th IEEE FOCS, pp. 272–282 (2007)

8. Buchbinder, N., Petrank, E.: Lower and upper bounds on obtaining history inde-
pendence. Inf. Comput. 204(2), 291–337 (2006)

9. Celis, P., Per-Ake Larson, J., Munro, I.: Robin hood hashing. In: Proceedings of
26th IEEE FOCS, pp. 281–288 (1985)

10. Chen, B., Sion, R.: Hiflash: a history independent flash device. CoRR,
abs/1511.05180 (2015)

11. Crosby, S.A., Wallach, D.S.: Denial of service via algorithmic complexity attacks.
In: Proceedings of 12th USENIX Security Symposium (2003)

12. Feldman, A.J., Alex Halderman, J., Felten, E.W.: Security analysis of the Diebold
AccuVote-TS voting machine. In: Proceedings of the USENIX EVT (2007)

13. Futoransky, A., Saura, D., Waissbein, A.: Timing attacks for recovering private
entries from database engines. In: BlackHat USA (2007)

14. Goldreich, O.: The Foundations of Cryptography, Basic Techniques, vol. 1.
Cambridge University Press, Cambridge (2001)

15. Goodrich, M.T., Kornaropoulos, E.M., Mitzenmacher, M., Tamassia, R.: More
practical and secure history-independent hash tables. Cryptology ePrint Archive,
Report 2016/134 (2016). http://eprint.iacr.org/2016/134

16. Goodrich, M.T., Tamassia, R.: Algorithm Design and Applications, 1st edn. Wiley
(2014). ISBN:1118335910, 9781118335918

17. Alex Halderman, J., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W.,
Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember:
cold boot attacks on encryption keys. In: Proceedings of 17th USENIX Security
Symposium, pp. 45–60 (2008)

18. Hartline, J.D., Hong, E.S., Mohr, A.E., Pentney, W.R., Rocke, E.: Characterizing
history independent data structures. Algorithmica 42(1), 57–74 (2005)

19. Hofemeier, G.: Intel Digital Random Number Generator (DRNG) software imple-
mentation guide. Technical report (2012)

20. Janson, S.: Individual displacements for linear probing hashing with different inser-
tion policies. ACM Trans. Algorithms 1, 177–213 (2005)

21. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. 3,
2nd edn. Pearson (1998)

22. Kohno, T., Stubblefield, A., Rubin, A.D., Wallach, D.S.: Analysis of an electronic
voting system. In: Proceedings of 25th IEEE S&P, pp. 27–40 (2004)

23. Lipton, R.J., Naughton, J.F.: Clocked adversaries for hashing. Algorithmica 9(3),
239–252 (1993)

24. Maartmann-Moe, C.: Inception: a physical memory manipulation and hacking tool
exploiting PCI-based DMA

25. Micciancio, D.: Oblivious data structures: applications to cryptography. In: Pro-
ceedings of 29th ACM STOC, pp. 456–464 (1997)

26. Molnar, D., Kohno, T., Sastry, N., Wagner, D.: Tamper-evident, history-
independent, subliminal-free data structures on PROM storage-or-how to store
ballots on a voting machine. In: Proceedings of IEEE S&P, pp. 365–370 (2006)

http://eprint.iacr.org/2016/134

38 M.T. Goodrich et al.

27. Moran, T., Naor, M., Segev, G.: Deterministic history-independent strategies for
storing information on write-once memories. In: Arge, L., Cachin, C., Jurdziński,
T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 303–315. Springer,
Heidelberg (2007)

28. Naor, M., Segev, G., Wieder, U.: History-independent cuckoo hashing. In: Aceto,
L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 631–642. Springer, Heidelberg
(2008)

29. Naor, M., Teague, V.: Anti-presistence: history independent data structures. In:
Proceedings of 33rd ACM STOC, pp. 492–501 (2001)

30. Poblete, P.V., Munro, J.I.: Last-come-first-served hashing. J. Algorithms 10(2),
228–248 (1989)

31. Rivest, R.L., Shen, E.: A Bayesian method for auditing elections. In: Proceedings
of USENIX EVT/WOTE (2012)

32. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1),
37–57 (1985)

33. Wolchok, S., Wustrow, E., Halderman, J.A., Prasad, H.K., Kankipati, A.,
Sakhamuri, S.K., Yagati, V., Gonggrijp, R.: Security analysis of India’s electronic
voting machines. In: Proceedings of 17th ACM CCS, pp. 1–14 (2010)

On Manufacturing Resilient Opaque Constructs
Against Static Analysis

Brendan Sheridan and Micah Sherr(B)

Georgetown University, Washington DC 20057, USA
msherr@cs.georgetown.edu

Abstract. Opaque constructs have developed into a commonly used
primitive in obfuscation, watermarking, and tamper-proofing schemes.
However, most prior work has based the resilience of these primitives
on a poorly defined reduction to a known NP-complete problem. There
has been little scrutiny of the adversarial model and little discussion of
how to generate instances that are always hard. In this paper, we offer
what we believe to be the first complete algorithm for generating resilient
opaque constructs against static analysis. We base their resilience on the
complexity of 3SAT instances with cn clauses for c = 6 and n distinct
variables. We draw on existing theoretical bounds to show that these
instances always require exponential time to defeat under formal notions
of resolution complexity.

This paper also explores in-depth the security of opaque constructs in
real-world settings. We argue that the common theoretical model used
in prior work (as well as our resilient opaque construction scheme) is too
optimistic. It does not offer practical obfuscation against an adversary
who tolerates some small false positive rate. We offer a heuristic-based
attack to demonstrate this issue. Our results suggest that opaque con-
structs should be viewed with a high degree of skepticism until they can
be proven secure under more useful theoretical models.

1 Introduction

Code obfuscation is the process of transforming source or machine code such that
the original functionality is maintained, but is hard to discern from inspection
of the transformed code. Traditionally, obfuscation was employed to confuse a
human reader with the goal of preventing reverse-engineering or hiding certain
functionality. This adversarial setting spawned an ecosystem of sophisticated
automated obfuscation, and conversely, increasingly sophisticated de-obfuscation
and analysis techniques. Currently, an effective obfuscation scheme must not only
make the code unreadable, but also difficult to analyze for both targeted and
generalized adversarial analysis.

Opaque predicates [9] were introduced to formalize the notion that an effec-
tive obfuscation scheme must be able to conceal at least one bit of information
from an adversary. Informally, the runtime value of the opaque predicate should
be known a priori by the obfuscater based on asymmetric information involved
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 39–58, 2016.
DOI: 10.1007/978-3-319-45741-3 3

40 B. Sheridan and M. Sherr

in its creation, but difficult for an adversary to determine without that same
information. This primitive allows an obfuscation scheme to naturally obscure
the control flow of a program by simply inserting opaque predicates into con-
ditional branch tests. Since the obfuscater can predict the runtime value of the
predicate, they can structure the program branching accordingly whereas an
adversary must consider both possible values and their associated control flow.
This same primitive has similarly been used in software watermarking [20], the
embedding of information that can later be used to identify the original author
via public key cryptography, as well as tamper-proofing, the goal of obfuscation
such that modifying the functionality is difficult [7].

Unfortunately, while these primitives have seen heavy use, their theoretical
basis is very weak. Most commonly, they base their hardness on a reduction
to a NP-complete problem. This is an unfortunately common fallacy because
these problems are only known to be hard in the worst case. Moreover, since
these problems are being artificially generated, there is no inherent guarantee
that any of them will be hard in practice. There is an extensive line of work
originating from the study of satisfiability problems in artificial intelligence (AI)
which suggests that natural choices for generation algorithms actually produce
instances that can be solved in polynomial time on average [5,10,24]. However,
this line of work has also established that it is possible to construct instances
that are always hard with careful parameter selection. We seek to formally apply
this line of work to the obfuscation context in order to strengthen the theoretical
basis of opaque constructs.

Using opaque predicates to construct an actual obfuscation scheme is largely
beyond the scope of this work. To simplify discussion and establish context, we
primarily focus on formalizing and extending the work of Moser et al. [19] on
obfuscation in the context of static analysis. The authors offer an impressive
engineering contribution, fully implementing their x86 binary rewriting scheme
and defeating state-of-the-art semantics-aware malware detectors with reason-
able overhead. However, they claim their scheme is provably hard to analyze for
any static code analyzer based only on an informal reduction from their obfusca-
tion primitive to a 3-satisfiability problem (3SAT) [17]. We believe this assertion
to be accurate, but seek to formalize it by more narrowly defining static analy-
sis, giving an algorithm for picking appropriate 3SAT instances, and explicitly
proving the reduction as well as the original theorem. In the Appendix, we also
examine alternative problems on which to base the primitive, but it is currently
unclear if any candidate is a fundamentally better choice than 3SAT due to open
problems in cryptography and complexity.

While our main focus is the theoretical strength of the obfuscation primitive,
we also offer extensions to the overall obfuscation scheme. Notably, we will show
how the ability to obfuscate a single bit, consistent with the original obfuscation
primitive, can be generalized to securely and efficiently encrypt the data section.
This technique systematically defeats problems the original authors encountered
when testing against commercial, regular expression based, malware detectors.

On Manufacturing Resilient Opaque Constructs Against Static Analysis 41

As a second major contribution, we offer a critique of this model and explore
its efficacy in the real-world. We present a heuristic attack against an obfusca-
tion scheme employing our resilient predicates. Analyzing its effectiveness and
efficiency, we find that targeted heuristic approaches can defeat the theoretically
resilient construct with high probability. Our results reveal weaknesses in the
commonly used model for opaque constructs and suggest the need for increased
skepticism over the use of opaque constructs in obfuscation schemes.

2 Problem and Definitions

Code obfuscation is applicable in a wide variety of contexts. To simplify discus-
sion, we adopt the use-case of Moser et al. [19]. The authors were interested in
exploring the limits of static analysis for malware detection, where malware is
simply defined as malicious code. The obfuscator is given a piece of (presum-
ably malicious) machine code and must transform the program using opaque
constructs such that its functionality remains the same and its runtime perfor-
mance is not drastically altered. The transformed code should be difficult to
identify as the original code. The static adversary, in turn, seeks to identify the
obfuscated code given only the original code. For our purposes, it is unneces-
sary to restrict the behavior of the adversary. However, most prior work first
seeks to remove binary obfuscation from the program to allow disassembly, then
uses semantic analysis to identify known malicious functionality. Figure 1 gives
a graphical representation of this use-case.

Fig. 1. Malware detection use-case where the obfuscator seeks to hide the malicious
nature of the program using opaque constructs and the static adversary seeks to find
malicious functionality.

It should be noted that this overall problem more generally falls under black-
box obfuscation and the general case is suspected to be impossible for for-
mal hardness guarantees [2]. Our problem is, more simply, to generate resilient
opaque primitives. More specifically, it is to generate opaque constructs in poly-
nomial time that can be evaluated in linear time but are resilient with exponen-
tial resolution complexity.

42 B. Sheridan and M. Sherr

Definition 1. A construct is said be opaque at point p in a program if its value
q is known at obfuscation time with exponentially high probability (w.h.p). We
denote an opaque predicate P q

p and an opaque variable V q
p , and we drop the

subscript of both when the execution point is obvious from context.

This definition slightly weakens the original definition from Collberg et al. [9]
for convenience purposes. The original contains no notion of probability. How-
ever, we show that the probability of one of our constructs failing is exponentially
small with respect to n, so it should not be a concern in practice. We discuss the
issue in more detail in AppendixA. We also discuss how obfuscation schemes
should avoid compounding this probability in Sect. 4. We concern ourselves only
with constant opaque constructs, i.e., those for which q is independent of p. How-
ever, prior work has shown how to construct dynamic opaque predicates based
on several constant opaque predicates [9,19].

Definition 2. Given a program, P , an obfuscation transformation, T , and a
positive scalar-valued complexity measuring function, E, the potency of T mea-
sures the complexity increase in the result program, P ′. Formally, the potency of
T on the program P , Tpot(P), is given by Tpot(P) ≡ E(P ′)/E(P) − 1.

Abstractly, the potency of an obfuscation transformation measures how com-
plex or unreadable the resulting program is compared to the original. By con-
vention, E increases with the logical complexity of the input program so an
obfuscator should seek to maximize potency. However, the concrete definition is
dependent on E. It is natural to draw on various software engineering metrics
to measure readability and complexity, but they are often context dependent
and subjective, with no de facto standard. Collberg et al. [8] give a taxonomy of
potential choices.

Fortunately, since we are primarily interested in the obfuscation primitive
itself rather than any motivating obfuscation scheme, it suffices to assume that
the inclusion of the primitive increases the complexity of the resulting program,
E(P ′). For ease of discussion, we assume that the primitive is used as a branch
condition and the goal of the deobfuscator is to remove unreachable branches.

Definition 3. The resilience of an opaque predicate is formally the time and
space required by an automatic deobfuscater to effectively reduce the potency of
an obfuscation transformation, T .

To distinguish our model from the more relaxed approximation-based meth-
ods for static analysis commonly employed in software verification research, we
offer a more restricted definition of static analysis. However, we note that prior
research in this context makes no such distinction.

Definition 4. We define complete static analysis as any algorithm which
takes program code as input and enumerates all possible execution paths of the
given code unless it can prove via resolution strategy that a branch will never be
taken.

On Manufacturing Resilient Opaque Constructs Against Static Analysis 43

This definition is consistent with the traditional notion of a complete static
analyzer, that is, one which returns no false-positives. We have only augmented it
to include a notion of computational complexity that is dependent on resolution
complexity. This is, to our knowledge, the most appropriate and formal notion
of complexity available.

One might argue that a more appropriate goal is resilience against a sound
static analyzer, that is, one which sacrifices false-positives but does not allow
false-negatives (it is easy to see that soundness and completeness are competing
goals since an analysis that is both sound and complete would cover the halting
problem). In fact, we argue in Sect. 5 that the requirement of complete static
analysis is unrealistic.

Unfortunately, it is difficult to formalize the notion of sound static analysis in
this context. Any such notion would likely also be contingent on stealth (since
detecting obfuscation is reasonable grounds to flag a program), and we argue
informally that stealth is most likely unachievable.

Importantly, our definition is consistent with the prior work in this context,
which assumes the analyzer must cover all possible execution paths unless it can
prove a path will never be taken [4,19].

Definition 5. A resolution strategy is any algorithm that proves unsatisfia-
bility via resolution reduction. We call the size of the resulting proof the reso-
lution complexity.

Our assumption that resolution complexity is representative of computational
complexity is common in AI research and consistent with prior work on random
3SAT hardness [5,10,24]. We are unaware of any more formal lower-bounds for
the complexity of artificially generated NP-complete instances.

Definition 6. 3-satifiability or 3SAT is the boolean satisfiability problem,
given a boolean expression in the form

∧m
i=1(Xi,1

∨
Xi,2

∨
Xi,3) and assign-

ment of n boolean variables and their negation to the m clauses, Xi,j ∈
{x1, x2, ..., xn, x1, x2, ..., xn}, of determining if the expression is satisfiable for
some truth value assignment of each variable. It is known to be NP-complete in
the number of the variables [17]. By convention, we say that m = c × n so we
can refer to the ratio of clauses to variables, or density, as c.

For simplicity in our analysis, we also adopt the notion of a random 3SAT
problem consistent with the works by Kamath et al. [16] and Chvátal and
Szemerédi [5].

Definition 7. A random 3SAT problem is defined by the random distribution
used to create it. Each clause is chosen independently by choosing three distinct
variables uniformly at random and independently negating each with probability
1/2; the variables are then assigned to Xi,1,Xi,2, and Xi,3 accordingly.

44 B. Sheridan and M. Sherr

3 Generating Opaque Constructs

This section gives our first main contribution: algorithms for constructing theo-
retically strong opaque constructs and proofs of their resilience against complete
static analysis. To start, we must first outline the intended usage of an opaque
predicate instance. Algorithm 1 shows the intended inclusion of an opaque pred-
icate in an obfuscation scheme. The 3SAT instance is naturally encoded into a
boolean statement that is evaluated at runtime. Each variable in the statement
is set randomly at runtime during the call to evaluate. For an opaque predicate,
P f , the obfuscater knows w.h.p. that this branch will never be followed. However,
the adversary cannot discount the possibility without proving the statement’s
unsatisfiability. This formulation is taken directly from Moser et al. [19].

Algorithm 1. Runtime evaluation of opaque predicate
/* index variables and their inverses */

S[] ← [x1, x2, ..., xn, x1, x2, ..., xn]
/* input Xi,j: constructed predicate */

satisfied ← evaluate(S, Xi,j)
...
if (satisfied) then

branch

Function evaluate(S, Xi,j)
Input: S− index variables
Input: Xi,j− opaque predicate
Output: satisfied− boolean indicating if predicate was satisfied
/* assign boolean values randomly */

for i in 0..n − 1 do
S[i] ← rand(true, false)
S[n + i] ← ¬V [i]

/* record satisfaction in predicate */

satisfied ← true
for i in 0..Xi,j-1 do

if ¬S[Xi,1] ∧ ¬S[Xi,2] ∧ ¬S[Xi,3] then
satisfied ← false

return satisfied

Lemma 1. The runtime evaluation indicated by Algorithm 1 takes O(n) time
given a predicate with O(n) clauses.

Proof. The algorithm performs two loops with a constant number of operations in
each body. This first is over n explicitly and the second is over the number of clauses
which we have specified is O(n). The entire algorithm therefore runs in O(n).

On Manufacturing Resilient Opaque Constructs Against Static Analysis 45

Algorithm 2 gives our method for producing opaque predicates. Special atten-
tion should be paid to the choice of density c = 6. Maintaining the appropri-
ate ratio of clauses to variables allows us to directly apply known resolution
complexity bounds. Moser et al. did not explicitly specify their algorithm for
predicate generation, but we can reasonably assume they did not maintain this
ratio because they discuss changing the number of clauses in their performance
section without any mention of the number of variables.

We show that our formulation is efficient, correct, and resilient.

Algorithm 2. 3SAT based method for generating strong opaque predicates
Function generate predicate(n)

Input: n− number of 3SAT variables
Output: Xi,j− 2D array of variable assignments for each variable(j) in each

clasue(i)
/* maintain minimum clause/variable ratio */

num clauses ← n × 6
/* randomly set each clause */

for i in 0..num clauses-1 do
/* chose boolean indices at random */

choose x1, x2, and x3 from 0..n-1
/* negate each with Pr=1/2 */

for j in 1..3 do
if rand(true, false) then

Xi,j ← xi

else
Xi,j ← xi + n

return Xi,j

Lemma 2. Algorithm 2 generates a valid opaque predicate, P f , and runs in
O(n).

Proof. The algorithm enumerates each clause in the expression and explicitly
constructs it based on Definition 7. We can therefore say that it is a valid random
3SAT instance by construction. A valid opaque predicate P f must also evaluate
to false w.h.p. By construction, every set of variable assignments has uniform
probability of satisfying a random 3SAT instance. Therefore, w.l.o.g. consider
the specific assignment of true to each variable, {x1 = ... = xn = true}. The
probability of a randomly chosen clause being satisfied by this assignment is the
probability that at least one of the chosen variables is not negated, 1− (1/2)3 =
7/8. Since all clauses are constructed independently, the probability of all clauses
being satisfied is thus (7/8)cn. Given our choice of c = 6, (7/8)6n ≈ (1/2)1.16n

for any positive integer n, so the probability of the predicate being satisfied at
runtime clearly grows exponentially small with respect to n.

46 B. Sheridan and M. Sherr

Since our algorithm merely enumerates each clause, making a constant num-
ber of random decisions for each, we can conclude that it runs in O(m). We have
explicitly set m = 6n so it runs in O(m) = O(n).

Lemma 3. Any complete static analysis of the opaque predicate controlled
branch from Algorithm 1 must consider both execution paths unless it can prove
that the boolean statement is unsatisfiable and will never be followed.

Proof. This follows directly from our definition of complete static analysis. We
require that a complete static analysis algorithm consider all possible execution
paths. Unless the adversary can prove that the boolean statement will never
evaluate to false, it must consider the possibility that the branch will be followed
and include it in their analysis.

Lemma 4. Opaque predicates generated by Algorithm 2 are resilient with expo-
nential resolution complexity.

Proof. From Definition 2, resilience is the time and space required to remove
a predicate from the static analysis. Lemma 3 states that a branch cannot be
eliminated without proving that the opaque predicate always evaluates to false.
Therefore the problem of reducing branching complexity is equivalent to prov-
ing the unsatisfiability of our opaque predicate construction and the associated
random 3SAT instance with c > 6. Here, we can draw on a lower bound from
Chvátal and Szemerédi [5]. The authors proved that, for every choice of positive
integers c and k such that k ≥ 3 and c2−k ≥ 0.7, the unsatisfiability resolution
proof for a randomly chosen family of cn clauses of size k over n variables gen-
erates at least (1 + ε)n clauses. Since we are working with 3SAT, k = 3 and this
theorem applies for c ≥ 5.6. We have deliberately chosen c = 6 corresponding
to �5.6� so that this result can be applied directly. Because any resolution proof
of our predicates requires at least exponential space, we can say that they are
resilient with exponential resolution complexity.

Next, we show how to use our opaque predicates to trivially generate opaque
variables of arbitrary constant length and a given value, q. Note that q is not
somehow encoded in the variable itself, but rather passed into the runtime eval-
uation. This may seem counterintuitive because our overall goal is to hide infor-
mation from the adversary and the information is clearly human readable in
this form. However, preventing things like human readability is the responsibil-
ity of the overall obfuscation scheme. Here, it suffices to provide the promised
resilience against complete static analysis and trust that the calling obfuscation
scheme uses the primitive appropriately. This is consistent with our abstract
interpretation of potency from Sect. 2. We do show that these variables exhibit
the same resilience and correctness guarantees as our predicates.

Lemma 5. Algorithm 3 generates valid opaque variables, V q and runs in O(n)
given a constant bit-length l.

On Manufacturing Resilient Opaque Constructs Against Static Analysis 47

Algorithm 3. Generating opaque variables from opaque predicates
Function generate variable(n, l)

Input: l− desired bit-length
Input: n− number of 3SAT variables
Output: V − array of opaque predicates
/* generate predicate for each bit */

for i in 0..l-1 do
V [i] ← generate predicate(n)

return V

Function evaluate variable(q, l, V)
Input: q− desired variable value
Input: l− bit-length of variable
Input: V − opaque variable
Output: Q− evaluated value of variable
/* bool array to represent bits of q */

Q[]
for i in 0..l-1 do

Q[i] ←evaluate predicate(V [i]) ⊕ q[i]

return Q

Proof. Each bit of q is simply xor’ed with the evaluation of an opaque predi-
cate; thus, it suffices to show that none of these predicates are satisfied w.h.p.
Lemma 2 gives us that the probability of any single predicate being satisfied
by a random assignment is (7/8)6n. Therefore the probability that any of these
predicates are satisfied is

∑l
i=1

(
7
8

)
6n ≈ l · 2−1.16n, which clearly still grows

exponentially small w.r.t. n.
The methods simply perform l different instances of generate predicate and

evaluate predicate respectively. Lemmas 1 and 2 state that these both run in
O(n). We have required that l is constant so both methods run in O(n).

Lemma 6. Opaque variables generated by Algorithm 3 are resilient with expo-
nential resolution complexity.

Proof. Here, our measure of potency is the possible 2l possible values of V q

that a static adversary must consider. Clearly, since each bit of V can take
the value 0 or 1 based on the result of the xor with an opaque predicate, the
adversary cannot reduce the potency of the variable without defeating one of the
opaque predicates. We have from Lemma 4 that each predicate is resilient with
exponential resolution complexity so we can say that these opaque variables also
have exponential resolution complexity.

4 Obfuscation Scheme Extensions

We next offer a simple extension to the original obfuscation scheme given
by Moser et al. [19]. We also discuss how one might intelligently scale the number

48 B. Sheridan and M. Sherr

of variables, n, and the density, c, based on the desired properties of the overall
obfuscation scheme.

4.1 Encrypting Data Against Complete Static Analysis

One notable shortcoming of the original obfuscation scheme is that it is poten-
tially vulnerable to the simple data section pattern matching used by commercial
virus scanners. Opaque variables cannot be readily used to hide data patterns
from a heuristic-based adversary and the linear space increase associated with
using an opaque variable for the entire data section is unappealing in practice.

Moser et al. contend that this is a non-issue because an obfuscater can sim-
ply encrypt the data section using a unique key stored in the binary, unpacking
the data accordingly at runtime. We argue that this is inconsistent with their
goal of defeating static analysis. Given a secret key näıvely stored in the binary
as well as a known or unobfuscated encryption algorithm, even a static adver-
sary can simply decrypt the data section before applying a pattern matching
strategy. However, to defeat a static adversary, it suffices to hide the secret key
with an opaque variable. Algorithm 4 gives a straightforward key generation
algorithm based on this intuition. The key can be used in any stateless sym-
metric encryption scheme, SE = (K, E ,D), such as CTR-C with AES [14]. The
actual cryptography is interchangeable and the resilience of the scheme derives
simply from the resilience of our opaque variables shown in Lemma 6.

Algorithm 4. K− Opaque key generation
Function generate key(n)

Input: n− number of 3SAT variables
Output: K− opaque cryptographic key
K ←$ Zp

V ← generate variable(n, |K|)
K ← evaluate variable(K, |K|, V)
return K

Lemma 7. Algorithm 4 takes O(n) time to generate a constant-length opaque
key from a cryptographic key of the same length. The resulting key has exponen-
tial resolution complexity.

Proof. We assume here that an appropriate constant-length key is supplied or
is trivial to select. We have from Lemma 5 that generate variable and evalu-
ate variable both run in O(n) given a constant bit length variable. generate key
simply applies both to the constant length cryptographic key so it must also run
in O(n).

We also have from Lemma 6 that the resulting variable (in this case the key)
is a valid opaque construct with exponential resolution complexity.

On Manufacturing Resilient Opaque Constructs Against Static Analysis 49

4.2 Choosing Opaque Construct Parameters

There are several tradeoffs arising from our opaque construct generation
algorithms that can be controlled via the number of 3SAT variables, n, and
the ratio of clauses to variables, c.

First, we can exponentially increase the resilience of our constructs by increas-
ing n. This comes at a linear O(n) cost in the size of the transformed code, the
runtime of the generation algorithm, and the runtime of the opaque evaluation.

The second is a very subtle property of random 3SAT refutation. Although
we are guaranteed exponential resolution complexity for any positive integer
c ≥ 5.6 and increasing c decreases the probability that our construct will ever be
incorrectly evaluated, there is a hidden drawback to allowing c to be much larger
than 6. In practice, large values of c make the resulting 3SAT instance very over-
constrained and easier to resolve. For example, Crawford and Auton [11] showed
experimentally that the growth rate of their algorithm was approximately 2n/17

for c = 4.3 compared to only 2n/57 for c = 10. Selman et al. [24] later showed
this is due to a monotonically decreasing behavior in the search space above the
critical point of roughly c = 4.3. As such, we feel it is wise to choose c as close
to the theoretically proven lower bound as possible.

4.3 Compounding Effects

There is an error probability compounding effect resulting from the use of mul-
tiple opaque constructs. Since an error in any single construct affects the overall
correctness of the transformed code, one should consider the probability of any
single construct failing when bounding the error probability of their obfuscation
scheme. Fortunately, this probability can be calculated explicitly as in Lemma 5
and the scaling is very favorable. It suffices to choose n sufficiently large to
exercise the exponential scaling.

5 Heuristic Attacks

Given the strong formal guarantees described in the previous sections, we next
take a different tack and explore the efficacy of opaque constructs in practice.
That is, we ask a more fundamental question: are these theoretical constructs
actually useful?

A major weakness of the formal model considered by Moser et al. [19] and
adopted by us in the proceeding sections is that it envisions an unrealistic adver-
sary. Malware detectors (unlike compilers) are typically uninterested in precisely
proving that a transformation is safe. They intentionally tolerate some small false
positive rate, sacrificing completeness for soundness.

Such detectors often employ heuristic strategies against which our construc-
tion would not be provably resilient. In what follows, we highlight this poten-
tial problem by offering an effective attack against the predicates we previously
proved were resilient with exponential resolution complexity against complete
static analysis.

50 B. Sheridan and M. Sherr

We start by giving a heuristic based algorithm designed to correctly identify
predicates generated by Algorithm 2 in polynomial time. We show that, assuming
our heuristic can correctly identify instances of random 3SAT, we can identify
our generated opaque predicates with perfect recall in polynomial time. We also
show that the probability of incorrectly identifying a satisfiable predicate as
opaque is bounded by a small constant, making the chance that we change the
functionality of the program similarly small.

Algorithm 5 gives our heuristic-based detection strategy. First, the algorithm
tests to see if the predicate is controlled by a random 3SAT instance: we näıvely
verify that the predicate is a 3SAT instance and we also test whether the observed
literals follow the expected uniform distribution; the details of which of are
discussed in Sect. 5.1. If either test fails, we abandon analysis of the predicate
since our generation algorithm only produces random 3SAT instances.

If the predicate has been determined to be a random 3SAT instance, the
algorithm then tests the estimated value of c to determine if c̃ > 6. If so, the
tester can be extremely confident that the branch will never be followed because
we know that random 3SAT instances with sufficient values of c are unsatisfiable
w.h.p. Thus, the branch can be safely removed without altering the program’s
functionality.

Algorithm 5. Heuristic method for defeating opaque predicates generated
by Algorithm 2
Function check predicate(s)

Input: s−boolean formula controlling branch
/* check if 3SAT instance */

for each clause in s do
if variables �= 3 then

return

/* check for uniform distribution using χ2-test for uniformity */

if χ2 test(s) > uniformity threshold then
return

/* count the unique variables in s */

ñ ←count(s)
/* check estimated value of c */

c̃ ←clauses(s)/ñ
if c̃ < 6 then

return

/* if all tests pass, assume opaque */

remove(branch(s))
remove(s)

Lemma 8. Algorithm 5 runs in polynomial time.

On Manufacturing Resilient Opaque Constructs Against Static Analysis 51

Proof. The algorithm simply steps once through a series of tests and each test
runs in polynomial time so the algorithm as a whole must also run in polynomial
time.

Next, we would like to account for the potential skew in the observed value
of ñ, and consequently skew in the estimated value of c, c̃. Since the attack sees
only the generated predicate, it can potentially underestimate the actual number
of variables in the generating distribution. Formally,

Definition 8. We consider the result of Algorithm 5 to be a true-positive if
the true value of c = 6 and the branch and predicate are appropriately removed.

Given this definition, we can actually show that an opaque predicate will
always be correctly identified.

Lemma 9. The recall of Algorithm 5 is exactly 1, i.e. TPR = 1.

Proof. By Definition 8, a false-negative can only occur when c = 6. By construc-
tion, the predicate and branch are only removed when c̃ < 6. Since, also by con-
struction, c̃ = cn / ñ, they are removed when ñ ≤ n. Clearly, we will never observe
more than n variables because there are only n variables in the distribution. Thus,
our algorithm can never mistakenly reject an opaque predicate generated by Algo-
rithm 2 provided that it successfully passed the uniformity test.

We would also like to show that the possibility of incorrectly identifying
a satisfiable predicate as opaque is appropriately small. To do so, we use the
Satisfiability Threshold Conjecture for random 3SAT. It states that there exists
a single density, c, such that generated instances with density ≤ c are satisfiable
whereas generated instances with density > c are unsatisfiable w.h.p. The best
known upper bound for this conjecture is c = 4.51 [3] so we will conservatively
consider the probability that a given predicate with c = 4.51 is determined to be
opaque and incorrectly removed. We do not distinguish between our generated
opaque predicates and predicates that coincidentally have c > 4.51 because,
regardless, it is safe to remove a predicate and branch that will never be satisfied.

Lemma 10. The probability that Algorithm 5 removes a satisfiable branch is
guaranteed to be small, i.e., P {c ≤ 4.51} < 5.33 × 10−6.

Proof. From Algorithm 5, we remove a predicate when the estimated value of c,
c̃ ≥ 6. We have assumed that c = 4.51 and c̃ is calculated with c̃ = cn / ñ so we
would like to bound the probability that ñ / n ≤ 4.51 / 6. Let Y be an indicator
variable for the absence of the i-th variable from the generating distribution in
the predicate. We can say that ñ = n − ∑

Y , so we would like to bound the
probability that

∑
Y ≥ .25n. Applying Markov’s inequality gives us a very loose

but sufficient bound, i.e.

Yi =

{
1 if xi does not appear
0 otherwise

=⇒ P
{∑

Y ≥ .25n
}

≤ E(
∑

Y)
.25n

52 B. Sheridan and M. Sherr

and we can calculate E (
∑

Y) directly by linearity of expectation. The proba-
bility that a particular variable, xi, is left out of every clause is

P {Yi = 1} =
(

n − 3
n

)cn

=⇒ E
(∑

Y
)

= n

(
n − 3

n

)cn

Substituting in, we are left with a monotonically increasing function for n ≥ 3,

P
{∑

Y ≥ .25n
}

≤ 4
(

n − 3
n

)4.51n

< 5.33 × 10−6

5.1 Distribution Testing

The testing of the distribution is, theoretically, the weak-point of this detection
strategy. However, we will argue that it is reasonable to assume its effectiveness
in practice. We first address the non-adversarial setting. That is, we assume
all input boolean formulas are generated via some random distribution and we
need only distinguish between uniform and non-uniform distributions. This is a
standard use-case for a χ2-test and fairly trivial given a sufficiently large sample.

In Fig. 2, we compare average p-values as a function of n to truncated normal
distributions with increasing variance. Although there is some skew due to the
sampling without replacement in random 3SAT generation, we see, as expected,
that there is a very drastic fall-off in all the non-uniform distributions.

To ensure a sufficiently large sample, it suffices to remove 3SAT instances
that can be solved in small constant time. For example, we found experimentally
that, given c = 6, we could consistently solve instances with n < 58 in under
a minute using eight processors and a simple 3SAT solver. In contrast, all the
distributions we tested had already suitably diverged by n = 10.

One could make this classification problem arbitrarily hard by using a gen-
erating distribution that more closely approximates uniformity. However, the
resulting misclassified 3SAT instances effectively approximate the frequency dis-
tribution of a random 3SAT instance. Since proofs for the unsatisfiable threshold
primarily rely on the frequency distribution, they should be fairly insensitive to
such instances. We leave formally bounding this insensitivity as a future research
direction.

5.2 Potential Defenses

Of course, the assumption that all input instances are randomly generated is
arguably optimistic. A simple defense against this heuristic attack might entail
inserting artificially generated formulas that resemble random 3SAT but are
known to be satisfiable. In the AI context, this could be considered the problem
of generating hard satisfiable instances in the over-constrained region. Our con-
text adds the additional constraint that these instances cannot be too tightly

On Manufacturing Resilient Opaque Constructs Against Static Analysis 53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

p-
va

lu
e

n

Distribution Classification Comparison

Uniform
σ2=1
σ2=2
σ2=3
σ2=4
σ2=5

Fig. 2. Mean p-values for uniform distribution and truncated normal distributions with
different variance values as a function of n, c=6. Error bars show standard error of the
sample size r, std-dev/

√
r.

clustered (otherwise they can be identified and removed heuristically). We argue
that there is no such known method.1

Finding satisfiable random 3SAT instances in the over-constrained region by
brute-force is intractable since candidates are unsatisfiable with exponentially
high probability. As such, it is typical to start with some truth assignment and
select only clauses which satisfy the truth assignment. The resulting instances
are called planted 3SAT.

Unfortunately, this skews the distribution of variables and their negation
(since the form that agrees with the truth assignment is more likely to appear
in viable clauses). Even in the general form, where the frequency distribution
used to select clauses is allowed to vary arbitrarily, there are known algorithms
for solving planted 3SAT in polynomial time w.h.p [6]. Moreover, experimen-
tal results show that all satisfiable instances in the over-constrained region are
tightly clustered, suggesting that they could be easily solved even if they were
not generated with a planted assignment.

Since there are no known algorithms that meet the resulting satisfiable 3SAT
generation criteria and any such algorithm would represent a considerable break-
through in AI community, we conjecture that any such defense against a targeted
heuristic attack is infeasible.

1 Moser et al. [19] mention this strategy as part of a proposed heuristic-based defense,
but they offered no specific construction scheme so we cannot make a direct com-
parison.

54 B. Sheridan and M. Sherr

5.3 Discussion

In summary, Algorithm 5 defeats our theoretically strong opaque construct gen-
eration algorithm by iteratively and w.h.p. removing unsatisfiable branches,
effectively “unraveling” its opaqueness.

We suspect the effectiveness of our heuristic attack against a provably
resilient opaque construct is indicative of inaccuracies in the commonly used
assumptions for modeling static analysis. Specifically, the assumption that the
static analyzer must prove unsatisfiability of a predicate in order to remove it
is too strong. In practice, it is sufficient, and computationally much easier, to
determine the value of the predicate with some high probability. This issue seems
fundamentally at odds with the correctness of a constant opaque predicate, which
calls into question the practical utility of opaque constructs for obfuscation.

We conjecture that all opaque construct generation schemes are vulnerable to
similar targeted heuristic attacks because generating instances of a hard problem
with known solutions naturally limits the instances to some subset of the problem
space with measurable properties. Recent experimental results, which we discuss
next in Sect. 6, seem to support this conjecture.

6 Related Work

The concept of an opaque predicate was first introduced by Collberg et al. [9].
However, in addition to resilience and cost, the authors also design their obfus-
cation scheme around a poorly defined stealth metric. Consequently, they base
their main primitive on the hardness of precise flow-sensitive alias analysis. More
specifically, their scheme builds a set of complex dynamic structures with a set
of implicit invariants. The invariants are known a priori but difficult to ver-
ify statically so they can be tested at runtime as an opaque predicate. Precise
flow-sensitive alias analysis is known to be undecidable in general [23], but this
formulation is only known to be NP-hard in the worst case [15]. They argue
informally that this is not dissimilar to data structures kept by real applica-
tions, achieving stealth. However, it is unclear how to scale this scheme since
each opaque predicate requires an invariant. They offer a second scheme based
on the potential interleaving of parallel regions, but it suffers from the same
faults in addition to being architecture specific and potentially indeterminate on
a loaded operating system. In contrast, we seek to achieve a scalable scheme that
is proven to be NP-complete in the average case. We have also abandoned the
stealth metric because we suspect it is unachievable even against static analysis.

Unfortunately, the feasibility of stealth remains an open question, largely
dependent on its formalization. Probably the most intuitive definition is that
an obfuscated function should behave as a “virtual black box”, meaning that an
adversary cannot compute anything with the obfuscated function that they could
not compute with oracle access to the same function. This definition implic-
itly includes both resilience and stealth, but was shown to be impossible in
general [2]. The result is not necessarily applicable to obfuscation primitives
which can be specialized functions lending themselves to obfuscation, but it does

On Manufacturing Resilient Opaque Constructs Against Static Analysis 55

imply that there is no clever way to apply said primitives to achieve the virtual
black box property for an arbitrary application. This work partially motivates
our conservative focus on opaque predicates themselves as well as resilience only
against static analysis. However, our work is only tangentially related since we
intentionally avoid the impossible general case.

Heuristic-based approaches to stealthy opaque predicates have produced an
academic arms race. Most continue to base their resiliency on pointer alias analy-
sis, but offer no formal definition of stealth [7,13,20,22]. These techniques remain
vulnerable to targeted detection [12], and were recently shown to be detectable
in general with dynamic analysis by Ming et al. [18]. We diverge from this line of
work by abandoning the goal of stealth and focusing on resilience against static
analysis, giving us arguably weaker properties, but ones that can be formally
proven.

There are several notable exceptions to the trend of using pointer alias analysis
as a basis for resilience. Ogiso et al. [21] and later Borello and Mé [4] both base their
hardness on the related problem of inter-procedural analysis. Or, more specifically,
the problem of determining if there exists an execution path such that a given func-
tion pointer points to a given function at a given point of the program. This formu-
lation naturally reduces to 3SAT, making the problem NP-complete and analysis
of the entire program NP-hard. Unfortunately, the inter-procedural focus does not
lend itself to a scalable self-contained obfuscation primitive, nor is this formulation
known to be NP-complete in the average case. Our approach seeks to guarantee
both of these properties. It is most similar to the work of Moser et al. [19], who
similarly base their hardness on 3SAT but make the encoding explicit and self-
contained. We seek mainly to improve on their theoretical contribution by proving
that a deliberate 3SAT instance selection algorithm produces opaque predicates
that are NP-complete in the average case.

7 Conclusions

Opaque constructs are a commonly employed primitive in obfuscation, water-
marking, and tamper-proofing schemes. However, their theoretical basis has his-
torically been very weak. We have proven the resilience and correctness of ran-
dom 3SAT based opaque constructs under formal notions of resolution complex-
ity and complete static analysis. However, in doing so we have revealed some
weaknesses in the commonly used model and potentially opaque constructs as
an obfuscation primitive in general. We suggest that future research apply more
skepticism to the use of opaque constructs in obfuscation schemes since their
theoretical basis remains dubious.

Acknowledgments. We are grateful for the helpful comments and suggestions from
the anonymous reviewers. This work is partially funded from National Science Foun-
dation (NSF) grants CNS-1445967, CNS-1527401, and CNS-1149832. Any opinions,
findings, and conclusions or recommendations expressed herein are those of the authors
and do not necessarily reflect the views of the NSF.

56 B. Sheridan and M. Sherr

Appendix

A Alternative Sources of Hardness

Random 3SAT may seem like a strange source of hardness given that our goal is
simply to hide information from the static analyzer. However, the information
must be known at runtime and the obfuscator cannot use traditional means to
store a key without also making it available to the static analyzer. Therefore,
more traditional means of encryption are inapplicable in this setting. Below, we
briefly describe the relative merits and drawbacks of some alternate choices:

Integer factorization: As the basis of most modern cryptography, integer factor-
ization was naturally one of our first considerations. Unfortunately, we found no
natural way to incorporate the problem into an opaque predicate. We conjecture
that trap-door functions in general are unsuitable because the opaque construct
still needs to be evaluated at runtime without adding any additional knowledge
to the system.

Primality testing: Collberg et al. [9] mention primality testing as a possible basis
for opaque predicates The strategy being to pick a prime during obfuscation and
have the runtime evaluation try to evenly divide the prime by a random number.
Naturally, an adversary cannot guarantee the division will fail without proving
that the number is prime. Unfortunately, it has since been proven that primality
testing can always be done in polynomial time [1], making it too weak to serve
as a hardness basis.

One-way functions: A one-way function is more natural than a trap-door function
since we can apply it to a chosen input during obfuscation and compare that
result to the result of a random input evaluated at runtime. However, if the
generating value is included in the set of possible runtime inputs, there is at
least one potential collision. Typically, the resulting correctness bound is weaker
than our 3SAT based construction.

Flow-sensitive alias analysis: Alias analysis is the basis primarily employed by
Collberg et al. [9]. It has the arguable advantage of naturally resembling normal
code. This would make it a better candidate for meeting some formal notion of
“stealth”. However, since no one has proposed a usable metric of stealth and
recent impossibility results suggest it is not obtainable, we do not feel stealth is
an appropriate goal. Alias analysis also has the advantage of provable correct-
ness but it comes at the cost of scalability since it’s unclear how to generate
an arbitrary number of the deliberately crafted invariants used to guarantee
correctness.

Race conditions: Another possible basis briefly mentioned by Collberg et al. [8]
takes advantage of concurrency and the intractability of precise race detection.
Intuitively, an attacker might be able to insert a data race into a concurrent
program and be fairly confident of the outcome on a particular platform. Static
analysis, in contrast would not be able to reliably find the data race, let alone

On Manufacturing Resilient Opaque Constructs Against Static Analysis 57

determine its outcome. This has (often unintentionally) been a source of hardness
in reverse engineering programs for the purpose of porting them to a different
platform. Unfortunately, this basis would require that the original program be
concurrent and might violate correctness on platforms other than the particu-
lar one targeted. Even ignoring these problems, scaling would be problematic
because its unclear how to reliably generate appropriate data races in general.

Random 3SAT: The main advantage of using random 3SAT for our hardness
basis was the large body of existing work from the AI context on satisfiability
and provably hard instance generation [3,5,10,24]. Resolution complexity is an
arguably weak hardness conjecture because it states only that actually proving
satisfiability is hard. As we showed in Sect. 5, a less restricted adversary can
still make a very accurate guess. However, our assumptions were consistent with
prior work and we failed to find any stronger hardness conjectures that were
applicable in this context.

References

1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. Math. 2, 781–793 (2002)
2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,

Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)
3. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satis-

fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Swansea (2009)

4. Borello, J.-M., Mé, L.: Code obfuscation techniques for metamorphic viruses. J.
Comput. Virol. 4(3), 211–220 (2008)

5. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4),
759–768 (1988)

6. Coja-Oghlan, A., Krivelevich, M., Vilenchik, D.: Why almost all satisfiable k-CNF
formulas are easy. In: 2007 Conference on Analysis of Algorithms, AofA 2007, pp.
95–108. Discrete Mathematics and Theoretical Computer Science (2007)

7. Collberg, C., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation -
tools for software protection. Trans. Softw. Eng. 28(8), 735–746 (2002)

8. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations
(1997)

9. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: ACM POPL. ACM (1998)

10. Cook, S.A., Mitchell, D.G.: Finding hard instances of the satisfiability problem: a
survey, pp. 1–17. American Mathematical Society (1997)

11. Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in ran-
dom 3-SAT. Artif. Intell. 81(1–2), 31–57 (1996)

12. Preda, M.D., Madou, M., De Bosschere, K., Giacobazzi, R.: Opaque predicates
detection by abstract interpretation. In: Johnson, M., Vene, V. (eds.) AMAST
2006. LNCS, vol. 4019, pp. 81–95. Springer, Heidelberg (2006)

13. Darwish, S., Guirguis, S., Zalat, M.: Stealthy code obfuscation technique for soft-
ware security. In: International Conference on Computer Engineering and Systems
(ICCES), pp. 93–99 (2010)

14. Goldwasser, S., Bellare, M.: Lecture notes on cryptography (2001)

58 B. Sheridan and M. Sherr

15. Horwitz, S.: Precise flow-insensitive may-alias analysis is NP-hard. ACM Trans.
Program. Lang. Syst. 19(1), 1–6 (1997)

16. Kamath, A., Motwani, R., Palem, K., Spirakis, P.: Tail bounds for occupancy and
the satisfiability threshold conjecture. In: FOCS (1994)

17. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, New York (1972)

18. Ming, J., Xu, D., Wang, L., Wu, D.: Loop: Logic-oriented opaque predicate detec-
tion in obfuscated binary code. In: CCS (2015)

19. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Computer Security Applications Conference (ACSAC), pp. 421–430 (2007)

20. Myles, G., Collberg, C.: Software watermarking via opaque predicates: Implemen-
tation, analysis, and attacks. Electron. Commer. Res. 6(2), 155–171 (2006)

21. Ogiso, T., Sakabe, Y., Soshi, M., Miyaji, A.: Software obfuscation on a theoretical
basis and its implementation. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 86(1), 176–186 (2003)

22. Preda, M., Giacobazzi, R.: Control code obfuscation by abstract interpretation. In:
Software Engineering and Formal Methods (SEFM), pp. 301–310 (2005)

23. Ramalingam, G.: The undecidability of aliasing. ACM Trans. Program. Lang. Syst.
16(5), 1467–1471 (1994)

24. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems.
Artif. Intell. 81(1–2), 17–29 (1996)

Secure Multiparty Computation

Robust Password-Protected Secret Sharing

Michel Abdalla, Mario Cornejo(B), Anca Nitulescu, and David Pointcheval

ENS, CNRS, INRIA, and PSL Research University, Paris, France
{michel.abdalla,mario.cornejo,anca.nitulescu,david.pointcheval}@ens.fr

Abstract. Password-protected secret sharing (PPSS) schemes allow a
user to publicly share its high-entropy secret across different servers and
to later recover it by interacting with some of these servers using only
his password without requiring any authenticated data. In particular,
this secret will remain safe as long as not too many servers get cor-
rupted. However, servers are not always reliable and the communication
can be altered. To address this issue, a robust PPSS should additionally
guarantee that a user can recover his secret as long as enough servers
provide correct answers, and these are received without alteration. In
this paper, we propose new robust PPSS schemes which are significantly
more efficient than the existing ones. Our contributions are two-fold:
First, we propose a generic technique to build a Robust Gap Threshold
Secret Sharing Scheme (RGTSSS) from some threshold secret sharing
schemes. In the PPSS construction, this allows us to drop the verifiable
property of Oblivious Pseudorandom Functions (OPRF); Then, we use
this new approach to design two new robust PPSS schemes that are quite
efficient, from two OPRFs. They are proven in the random-oracle model,
just because our RGTSSS construction requires random non-malleable
fingerprints, which is provided by an ideal hash function.

Keywords: Password-Protected Secret Sharing · Robust Gap Thresh-
old Secret Sharing Scheme · Oblivious Pseudorandom Functions

1 Introduction

Nowadays, cloud storage is quite popular with zettabytes of data spread all over
the world. Even if providers give some backup guarantees, they cannot always
prevent compromises, and so the data are subject to leakage, with possibly huge
consequences if the data are sensitive (financial, economic, medical, etc.). Clearly,
the provider can encrypt the data before storing them, but this is not an end-to-
end protection for the user: the provider itself has access to the data. For better
security, the user should encrypt the data before sending them to the cloud. But
this leads to a key management issue: Users have to remember their secret keys!

Humans cannot remember large secret keys, but just low-entropy passwords
(and not too many). Such a password is definitely not enough to deterministically
derive a symmetric encryption key, since a simple offline dictionary attack would
allow the recovery. On the other hand, there are techniques using passwords that
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 61–79, 2016.
DOI: 10.1007/978-3-319-45741-3 4

62 M. Abdalla et al.

are not vulnerable to such offline dictionary attacks, like password authenticated
key exchange (PAKE) [7]. For these PAKE protocols, the best attacks require
the adversary to be online, and to make the exhaustive search by interacting
with the honest parties, hence the idea to combine PAKE with secret sharing, in
order to achieve the best of the two worlds. This allows the recovery of a high-
entropy symmetric key by interacting with several servers while just using a
low-entropy password [18,22], without relying on any authenticated data, where
the best attacks are online dictionary attacks.

Password-Protected Secret Sharing. A (t, n)-password-protected secret shar-
ing (PPSS) is a protocol that allows a user to reconstruct a high-entropy secret
from a single (human-memorable) password, by communicating with at least t+1
honest servers (among n possible ones).

This framework formalized in [2] first defines a secure initialization phase
where the secret is processed together with the password, and some server infor-
mation, in order to distribute the secret among n independent servers. Only
public information (to enable the later reconstruction) is eventually stored on
each server. We however stress that this public information does not have to be
authentic for the later security. Then, during the reconstruction phase, the user
can recover his secret by interacting with any subset of t+1 honest servers using
just his password. If the public information has been altered, the knowledge of
the password will be enough to detect it. However, in [2] they prove their scheme
secure in the random-oracle model assuming an additional PKI. Whereas this
assumption of a safe PKI makes sense during the initialization phase, which can
be run in a safe environment, it is not reasonable to make this assumption for
the reconstruction phase, which will be executed many times on various weak
devices.

A PPSS protocol satisfies the following properties: (i) the user can retrieve
the data by executing the reconstruction protocol with the same password as
the one used in the initialization phase and it is guaranteed to succeed as long
as at least t + 1 honest servers are available. (ii) An attacker who controls up to
t servers cannot learn any information about the secret other than doing an
online dictionary attack with another server. Two additional properties have
been defined: Soundness and Robustness. The first guarantees that even if the
adversary compromises all the servers, and provides consistent but fake public
information, it cannot make the user reconstruct and accept a secret differ-
ent from the one originally stored by the user. On the other hand, robustness
guarantees the recovery of the secret as long as the user communicates without
disruptions with at least t + 1 honest servers.

We stress that the adversary can control all the communication network by
blocking, delaying, altering, or duplicating any flow. As such, no server is trusted,
and no PKI is assumed either, since the only authenticated data we allow is a
short password that the user can remember.

Robust Password-Protected Secret Sharing 63

Contributions. Our PPSS protocol follows the methodology from [23]: it is
based on the use of pseudorandom functions (PRFs) evaluated on the password
to mask the shares of the secret. These evaluations are performed, in an obliv-
ious way, with servers that own the PRF keys, hence the so-called oblivious
pseudorandom functions (OPRFs).

Our main contribution is the efficient realization of the robustness in only one
round of communication with each server, possibly in a concurrent way. We also
avoid any complex zero-knowledge proof. This comes from the fact that we do
not need to distinguish between correct and incorrect shares at each individual
evaluation with a server as in [23]. Compared to the later solution with ZK proofs
given in [24], our scheme needs only a single global check at the very end, during
the secret reconstruction, which significantly reduces the communication costs.

Actually, we propose a new efficient method to convert some Secret Shar-
ing Schemes into (t�, tr, n)-Robust Gap Threshold Secret Sharing Schemes
(RGTSSS) that guarantees to efficiently identify the correct values (and recon-
struct the secret) if at least tr shares are correct. However, if at most t�−1 shares
are correct, the protocol leaks no information about which shares are correct.
Our construction is more general and with similar efficiency than using error-
correcting code such as Reed-Solomon [27]. Such a (t�, tr, n)-RGTSSS allows
constructing a sound and robust PPSS scheme: If the number of correct servers’
answers is above the threshold tr, the user can efficiently identify the valid ones
and reconstruct the secret. If the number of answers is strictly below another
threshold t�, no information about the secret is leaked. It is indeed important
that not too few correct shares can be detected as correct as this could result in
offline dictionary attacks. For instance, in the case where shares could be individ-
ually checked, a dishonest server could easily mount an offline dictionary attack.
With our new primitive, even t� − 1 corrupted servers cannot perform an offline
dictionary attack as they would still need to interact with at least one additional
server. The main difference to [23] is in the way to achieve robustness: We ask a
bit more from the secret sharing scheme, but much less from the OPRF, allowing
more efficient constructions for the latter, which highly improves on the global
efficiency.

While similar to [24] in terms of server interaction efficiency for the PRF
evaluation, our technique takes advantage of the RGTSSS to optimize the secret
reconstruction. The scheme proposed by [24] has one significant drawback: the
client is supposed to specify the exact set of servers involved in the secret recovery
from the beginning, which may lead to frequent failures as the servers may
misbehave. Moreover, in case of such a failure, the user is unable to detect the
cheating servers. To overcome this drawback when a large number of servers are
involved in the protocol, our approach makes use of the robustness feature of
the secret sharing scheme to ensure the recovery of the secret and the detection
of dishonest servers.

We propose two efficient OPRF constructions: The first one is based on the
One-More Gap Diffie-Hellman assumption and its efficiency is quite similar to

64 M. Abdalla et al.

the one in [24]. Secondly, we introduce a new oblivious evaluation of the Naor-
Reingold PRF [25], based on the sole DDH assumption.

For this new construction, we compare very favorably to other oblivious eval-
uations of the Naor-Reingold PRF: our protocol simply uses ElGamal encryp-
tion [17] in prime order groups with simple zero-knowledge proofs, whereas for
example the scheme in [23] has to work in composite order groups with Paillier
encryption [26] and more complex zero-knowledge proofs.

By combining these building bricks, we eventually reach efficient PPSS
schemes that satisfy Soundness and Robustness properties. The two proposed
solutions are eventually proven in the Random-Oracle Model (ROM) [4], as our
RGTSSS construction requires random non-malleable fingerprints. This can be
achieved by using a hash function that is modeled as a random oracle [4].

Related Work. A threshold secret sharing scheme allows a user to distribute a
secret among different participants preventing a sole party breaking the security
or obstructing the reconstruction. This idea was introduced by Shamir [28] and
Blakey [9]. This concept was later generalized by using two thresholds, a upper
and a lower one to set the size of the sets to reconstruct and to preserve privacy
respectively. In Shamir’s secret sharing scheme, the privacy threshold is defined
as t and the reconstruction threshold as t + 1. When this gap is higher, then
the secret sharing scheme is called ramp scheme. Ramp schemes to achieve a
robust secret sharing scheme have been extensively studied, we refer the reader
to [8,14]. While this is well-known that the Shamir secret sharing scheme can be
made robust using Reed-Solomon error correcting codes, our approach is more
general with similar efficiency.

The first formal definition of Password Protected Secret Sharing was intro-
duced by Bagherzandi et al. [2]. They proved their scheme secure in the random-
oracle model assuming an additional PKI. Moreover, if an adversary is able to
obtain the keypair of one server, the adversary can perform an offline attack.
Later, Camenisch et al. [12] introduce a protocol of password-authenticated
secret sharing that also assumes a PKI and only two servers. Both protocols
contradict the requirement to be password-only, since they assume additional
authenticated data. Whereas this assumption of a safe PKI makes sense dur-
ing the initialization phase, which can be run in a safe environment, it is not
reasonable to make this assumption for the reconstruction phase, which will be
executed many times on various weak devices. Later, Camenisch et al. [10] intro-
duce a (t, n)-PPSS (called TPASS, for Threshold Password-Authenticated Secret
Sharing) in the Universal Composability (UC) framework [13] that is password-
only during the reconstruction phase. However, in this protocol all servers jointly
validate if the password matches or not. Yi et al. [29] propose a more efficient
TPASS based on distributing the password, a secret and a digest of the secret.
Nevertheless, in the recovering protocol, at least t servers execute a broadcasting
protocol to generate and return the ElGamal encryptions of both the secret and
the digest. Then the users verify it matches.

Robust Password-Protected Secret Sharing 65

Camenisch et al. [11] present a very lightweight protocol with a similar con-
struction to our work, yet with differences. Since this protocol does not rely on
robust secret sharing scheme nor zero-knowledge, it is not possible to identify
which shares are valid. Then, if in the end the validation fails, the protocol must
restart with a different set of servers contradicting the requirement of robustness
and leading to a possible Denial-of-Service (DoS) attack.

Jarecki et al. [23] have been the first to design a PPSS scheme that is both
password-only during the reconstruction phase and robust, to avoid easy DoS
attacks. It makes use of a Verifiable Oblivious Pseudorandom Function (VOPRF)
that assures robustness by providing computation guarantees from the servers:
the user actually knows which server has tried to cheat, or which communication
links have been altered. Recently, the work [24] improves the performance of
this password-only PPSS on the cost of dropping the robustness property. Their
protocol is relaxing the verifiable property of the OPRF, giving up the ability
to discard incorrect computations during interactions with servers. This can be
a good alternative for a small number n of servers, the only setting that allows
checking in a reasonable time different subsets of servers until finding a non-
corrupted one.

2 Security Model

In order to analyze the security ofPPSSprotocols, we first provide a formal descrip-
tion of the security model. This is a game-based security definition, in the same
vein as [5,6] for key distribution schemes and [3] for password-authenticated key
exchange. It adapts the PPSS definition from [2] and the security model from [23].
We define security in terms of a key derivation mechanism or indistinguishabil-
ity of the actual secret from a random one, as in [23], since our goal is to later use
the secret as a symmetric key. In particular, we do not want to rely on a PKI or
any authenticated public values, hence our model description is similar to security
models for PAKE.

2.1 Password-Protected Secret Sharing

Participants and Parameters. We assume a fixed set of participants involved
in the protocol, each of which is either a user or a server. The set of all partici-
pants is the union of the nonempty disjoint and finite sets, User ∪ Server.

Each user U ∈ User holds two threshold values t� and tr, where tr is the
number of shares required to recover the secret and t� is the number of shares
that start leaking some information about the secret, as well as some password
pw chosen independently and uniformly from a dictionary D of cardinality #D.

Each server S ∈ Server holds a secret key sk, and possibly an associated
public key pk. However we stress that even if there is a public key pk, authenticity
cannot be assumed a priori during the reconstruction phase since users will just
have to remember their passwords and nothing else that would be required to
authenticate additional data.

66 M. Abdalla et al.

Initialization. The goal of the user U is to generate a key K so that he later
can recover it with the help of tr servers among n available servers, just using
his password. He thus runs an initialization protocol with n servers, using their
public keys, his password and some random coins. He ends up with a random
key K and some additional information PInfo: nobody else than U has any
information about K, however PInfo can be made public.

Secret Reconstruction. While the initialization phase assumes that all the
servers are honest, the public keys are authentic, and the data are not modified
during the communication, for the reconstruction phase, the adversary controls
the network and can forward, alter, delay, replay, or delete any message. The
adversary can also provide fake public data: nothing is authenticated anymore!

Anyway, just using his password, the user U should be able to recover K,
with the help of the servers, in a verifiable/robust way, even if some information
in PInfo is not guaranteed to be correct.

Each participant (either user or server) can run several executions of the
protocol, possibly concurrently, we thus denote an instance i of player P as P i.
Each instance may be activated once only: the adversary is given oracle accesses
to interact with all the user’s and server’s instances that are stateful interactive
polynomial-time Turing machines.

2.2 The Adversarial Model

During the reconstruction phase, the adversary is given total control of the
network. It is thus given access to the following oracles:

– Execute(U i, {Sjk
k }): This query models a passive attack. This makes an

instance U i to interact with several instances of servers {Sjk
k } as they would do

during the reconstruction protocol. The adversary gets the entire transcript;
– Send(P i,m): This query models an active attack. This sends a message m to

the instance P i. A specific message Startjk to a user’s instance U i makes it
initiate a communication with the server’s instance Sj

k.

The security goal is to guarantee the privacy of the secret key K reconstructed
by the user. This is usually modeled by an indistinguishability game, with access
to a Test-query, where b is a global secret random bit:

– Test(U i): This query characterizes the indistinguishability of the key K com-
puted by instance U i. If this instance has not yet completed the reconstruction,
the answer is undefined; if the reconstruction failed, the answer is ⊥; oth-
erwise, the answer is either the real reconstructed value if b = 1 or a random
one (always the same for user U , but independent of the real one) if b = 0.

The adversary eventually outputs its guess b′ for the bit b. One can note that
in the random case (b = 0), which models the ideal executions, a user U always
terminates with the same key, or fails. This means that the adversary should not
be able to make him accept a different key.

Robust Password-Protected Secret Sharing 67

In addition to control the network and the communications, the adversary can
corrupt servers, and get back their secret keys, due to, e.g., a poorly-administered
server, compromise of a host computer, or cryptanalysis. This is modeled by the
Corrupt-query:

– Corrupt(Sk): This outputs the secret key skk of the server Sk.

2.3 Semantic Security

Definition. Once the initialization phase is completed for many users, with
random passwords uniformly and independently drawn from a dictionary D, the
security game models the indistinguishably of the secret keys, a.k.a. semantic
security, the adversary can ask as many oracle queries (Execute, Send, Test, and
Corrupt), as it wants, in any order it wants, in order to guess the bit b: it outputs
its guess b′. We measure the quality of an adversary A by its advantage

Adv(A) = Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0] = 2 × Pr[b′ = b] − 1.

Trivial Attacks. Two kinds of “on-line dictionary attacks” are unavoidable:

– if the adversary guesses the correct password, it will be able to reconstruct
the actual secret K after qc corruption queries and tr − qc interactions with
honest servers. Even after just t� − qc interactions, it may come up with t�
shares, which may leak some information about the actual secret key: it there-
after asks for an Execute-query, and tests the instance involved in this session,
to distinguish the real case from the random case. Its success probability is
however upper-bounded by qs/(t� − qc) × 1/#D, where qs is the number of
server instances involved during the attack, qc the number of Corrupt-queries,
and #D the size of the password dictionary.

– whereas the initialization phase was assumed to be done with authentic server
public keys, for the reconstruction phase, the adversary can send totally fake
public keys in PInfo that it generated itself from a randomly chosen password
pw. It thus also knows the secret keys and can simulate the view of the user by
emulating all the servers. If the password guess was correct, the user should
successfully terminate, whereas a wrong guess would lead to inconsistent infor-
mation. Its success probability is therefore upper-bounded by qu/#D, where
qu is the number of user instances involved in the attack.

2.4 Secure PPSS

As a consequence, we will say a (tr, n)-PPSS scheme is (t�, ε, t)-secure if for any
adversary A, running within time t, asking at most qc < t� Corrupt-queries and
invoking at most qu user instances and qs server instances,

Adv(A) ≤ 1
#D ×

(
qs

t� − qc
+ qu

)

+ ε.

68 M. Abdalla et al.

In [23], they proposed such a protocol that achieves the optimal t�-security, for
t� = tr, but at the cost of verifiable oblivious pseudorandom functions. Our goal
is to build much more efficient protocols, possibly with a larger gap between t�
and tr.

Correctness. To be viable, a password-protected secret sharing must guarantee
that at least tr honest servers should allow the user that plays with his password
pw to recover his secret K.

Soundness. As guaranteed by our security model, when a user terminates with
a key K ′, this is the correct key K in almost all the cases, unless the adversary
guesses the password. More precisely, when playing with the correct password
pw, the user should end up with K ′ ∈ {K,⊥}:

Pr[K ′ �∈ {⊥,K}] ≤ 1
#D ×

(
qs

t� − qc
+ qu

)

+ ε.

Robustness. While one cannot avoid Denial-of-Service (DoS) attacks, since the
adversary can simply block any communication, an important property, already
required by [23], is the so-called robustness: even if the adversary alters many
messages, as soon as tr communications with servers are unmodified the user
can efficiently recover its secret.

The general issue with robustness is that when the user has interacted with
n servers but only tr shares are valid, the cost of trying all the tr-subsets is
exponential! In [23], they addressed this issue by making some inner protocols
secure against malicious servers, with additional zero-knowledge proofs of honest
behavior, but this is at a high communication cost. Our goal is to provide this
property at a much lower cost.

3 High-Level Description

We review the well-known computational assumptions and the classical building
blocks in the full version [1]. Our general construction follows the one from [23],
with first an initialization phase and then a reconstruction phase.

Each server Si owns a key-pair (ski, pki) that defines a PRF Fi, with public
parameters defined by pki and a secret key defined by ski. For a password pw ∈ D,
the user asks for an oblivious evaluation of πi = Fi(pw) to n servers, where
Π = (pki)i is the tuple of the public keys of the involved servers. The secret
key K is then split into shares (s1, . . . , sn) and some extra public information
PInfo, specific to the user, is derived from it and distributed to all servers. This
information allows the user to later recover his secret, in a robust way.

We stress that, during this initialization phase, (pki)i are all the true public
keys, and (πi)i are the correct evaluations of the PRFs. However, during the
reconstruction phase, the values provided by the servers are sent through an

Robust Password-Protected Secret Sharing 69

insecure channel and they might be altered by the adversary: the user inter-
acts with at least tr servers, that provide him PInfo, and help him to compute
each πi = Fi(pw) in an oblivious way. We assume that the user received the
same value PInfo from at least tr servers, and then the user keeps the majority
value. Using PInfo and enough evaluations πi, the user can extract enough shares
among (s1, . . . , sn) and reconstruct a value K. He can then verify whether this
is the expected secret key, from the majority PInfo which is however not con-
sidered authentic. We can note that there are two crucial tools for this generic
construction:

– a pseudorandom function F that can be evaluated in an oblivious way: the
server input is the secret key sk and the user input is the password pw, and the
user only gets the output Fsk(pw), but none of the players learn any additional
information about the other player’s input;

– a (t�, tr, n)-threshold secret sharing scheme that allows to share a secret among
n players so that any subset of tr shares allows efficient reconstruction of the
secret, while t� − 1 shares do not leak any information.

An additional non-malleable commitment scheme [16] will provide the soundness,
by limiting the ability for an adversary to present a modified PInfo, whereas it
controls all the communications.

However, in order to achieve the robustness to the PPSS protocol, we need
to make sure that when tr communications with the servers are unmodified, the
user can reconstruct the secret: either one can detect alterations of the com-
munications during the oblivious evaluations of the PRF, which is the approach
followed by [23] with Verifiable Oblivious PRFs (VOPRFs), or one can efficiently
reconstruct a secret from any set of shares that contains at least tr valid shares,
which is our approach with Robust Gap Threshold Secret Sharing Scheme.

4 A Robust Gap Threshold Secret Sharing Scheme

Our technique can generically apply to most threshold secret sharing schemes,
with two algorithms ShareGen and Reconstruct that respectively share a secret
into n parts and reconstruct it from tr shares (while no information leaks from
tr−1 shares, which look independent random elements). One can for example use
the classical Shamir’s secret sharing scheme [28] to which we will add this new
robustness feature, at the cost of having a threshold gap secret sharing scheme
that is enough to get a robust PPSS scheme (for details about secret sharing
schemes see the full version [1]).

4.1 Intuition

The valid shares are denoted (s1, . . . , sn) and the fingerprints of these shares
(σ1, . . . , σn). At the same time of the share distribution, the product S of all
fingerprints modulo an integer N is published. In order to reconstruct the secret,
having received m candidate shares, one computes its fingerprints (τ1, . . . , τm)

70 M. Abdalla et al.

and the product of them T =
∏

τi. The ratio T /S mod N will cancel out the
fingerprints of all the correct share values leading to the ratio T ′/S ′ mod N ,
where S ′ is the product of the fingerprints of the valid shares that the receiver
does not have in the list of candidates and T ′ the product of the fingerprints
of the candidates that are invalid. From S ′, one could easily check for every
candidate, whether it is in this product or not, and therefore identify which
candidate is correct or not.

Of course, S ′ has to be computed with good precision to allow the last verifi-
cation, but not too much in order to avoid individual checks or any unnecessary
leakage of information. The computations are thus performed modulo N , for a
well-chosen value.

4.2 Description

We now explain how one can detect the valid shares when the fingerprints are
either correct or random.

Initialization. We assume we have a set of n initial values (s1, . . . , sn), and
their k-bit string fingerprints (σ1, . . . , σn). As fingerprint function we use a hash
function F : {0, 1}∗ → {0, 1}k modeled as a random oracle.

In the following, we will be given a set of m candidate shares, whose fin-
gerprints are (τ1, . . . , τm): these fingerprints are either correct (the same as in
the list (σ1, . . . , σn) or random for incorrect candidate shares). From this set of
candidate shares, if at least tr are correct, we want to efficiently identify the cor-
rect values (to recover the secret in a threshold secret sharing scheme, hence the
r-subscript in tr). However, if at most t� − 1 are correct, the protocol should not
leak any information about which candidates are valid and which are not (hence
the �-subscript in t�, the number of shares that start leaking information).

From the initial set (σ1, . . . , σn) of size n and the threshold tr, one chooses
a prime number N such that 22k(n−tr)+1 < N ≤ 22k(n−tr)+2, computes the
product S =

∏n
i=1 σi mod N , and publishes SSInfo = (S, N).

Reconstruction. Given the SSInfo = (S, N) and fingerprints (τ1, . . . , τm) of
the m ≤ n candidates, which are either correct (at least tr of them) or random
(all the other ones), one computes the ratio γ =

∏m
i=1 τi/S mod N , which can

be written as γ = T ′/S ′ mod N , where T ′ is the product of the fingerprints of
the invalid candidates and S ′ the product of the fingerprints of the values that
are not in the list of the candidates, both over the integers. Then, we know that
T ′ < 2k(m−tr) ≤ 2k(n−tr) and S ′ < 2k(n−tr).

Unfortunately, using the following result from [19], we can only recover the
irreducible fraction T ′′/S ′′ of γ, where all the small common factors of T ′/S ′

were canceled out, with T ′′ ≤ T ′ < 2k(n−tr) and S ′′ ≤ S ′ < 2k(n−tr), under
appropriate conditions.

Robust Password-Protected Secret Sharing 71

Theorem 1 (Numerical Rational Number Reconstruction). Let z = x
y mod N

such that −X ≤ x ≤ X and 0 < y ≤ Y . If N is relatively prime to y and
2XY < N then the solution is unique and it is possible to recover x and y
efficiently by using two-dimensional lattice theory.

Considering X = 2k(n−tr) − 1 and Y = 2k(n−tr) − 1, we indeed have 2XY ≤
2(2k(n−tr) − 1)(2k(n−tr) − 1) < N and X > 0, Y > 0, hence we can efficiently
recover T ′′ and S ′′ from γ. Now, if τi is the fingerprint of a valid share, it should
be canceled out in T ′, but there might still be some small factors in common
between τi and T ′′ (we assume that the size of the common part is less than
half of the size of τi). On the other hand, if τi is the fingerprint of a random
invalid share, it should not be completely canceled out in T ′. However, there is
still a chance that some small factors have been canceled out, leading to T ′′ in
the irreducible form (we assume that less than half of it cancels). Hence, our
decision algorithm is the following one: we denote ti the bit size of | gcd(T ′′, τi)|;
if ti ≥ k/2, this is an invalid share, otherwise this is a valid share.

In Fig. 1, we present experimental results that validate this decision algorithm
for 128-bit fingerprints. It clearly shows that for a valid τi, ti is a small number
(half of them equal to 1) and for an invalid τi, ti is a large number (44% of them
is equal to 2k). We have computed 221 times the value of gcd(T ′′, τi) and in case
of Fig. 1a, the highest bit size of ti is 35 (much less than 64). On the other hand,
in Fig. 1b the least value is 96 (much more than 64). A more fine analysis can
be found in the full version [1].

Information Leakage. On the opposite, we would like to evaluate the infor-
mation leaked by S when there are at most t� − 1 valid values. More precisely,
given S, is it possible to distinguish t� − 1 valid values for the shares from
t� − 1 random values? We focus on a tr-threshold secret sharing scheme, for
a k-bit secret and k-bit shares. Then, the entropy of the tuple (σ1, . . . , σn)
is k(tr − 1). Since S reveals the product of the k-bit fingerprints modulo
N , with N < 22k(n−tr)+2, the remaining entropy on the shares is at least
k(tr −1)−2k(n− tr)−2 = k(3tr −2n−1)−2. If this is greater than k(t� −1), no
one can distinguish t� −1 random values from t� −1 correct values for the shares:

Fig. 1. Length in bits of gcd(T ′′, τi) for a fingerprint of size 128-bits and 32 shares

72 M. Abdalla et al.

we thus need k(3tr − 2n− 1)− 2 ≥ k(t� − 1). When k > 2, this essentially means
t� ≤ 3tr − 2n: by choosing t� = 3tr − 2n, we are safe. For example, one can take
tr = 	3n/4
 and t� = �n/4�. And the same argument, with 2k-bit secret and
shares but still k-bit fingerprints, leads to tr = 	2n/3
 and t� = �n/3�, which
makes sense for a 256-bit secret key and 128-bit fingerprints.

5 Our Password-Protected Secret Sharing Protocols

Thanks to our new (t�, tr, n)-RGTSSS, we do not need to use a VOPRF, as
in [23], which is at the cost of complex zero-knowledge proofs. We can now
describe our general structure of PPSS protocol, using an OPRF as black-box.
We thereafter provide two instantiations, with two appropriate OPRFs, in the
same vein as the ones proposed in [23], using similar computational assumptions
(see the full version [1]):

– the first OPRF relies on the CDH evaluation, similar to the protocol 2HashDH,
but without NIZKs. The PPSS construction is then quite similar to [24].

– the second OPRF is an oblivious evaluation of the Naor-Reingold PRF [25].
Then, in the PPSS, the gain of the zero-knowledge proofs by the server is
quite significant.

5.1 General Description

As already presented in the high-level description, our protocols are in two
phases: the initialization phase which is assumed to be executed in a safe environ-
ment and the reconstruction phase during which the password only is considered
correct, while all the other inputs can be faked by the adversary.

Initialization. We assume that each server Si owns a key pair (ski, pki) that
defines a PRF Fi, with public parameters defined by pki and a secret key defined
by ski, that admits an OPRF protocol to allow a user with input m to evaluate
Fi(m) without leaking any information on m to the server.

We additionally use a (t�, tr, n)-robust gap threshold secret sharing scheme
and a non-malleable commitment scheme (see the full version [1]). Since we
already are in the random-oracle model for the PRF, we can implement the com-
mitment scheme with a simple second-preimage-resistant hash function HCom,
which allows a better efficiency. The user U first chooses a secret password pw:

1. the user interacts with n servers to obliviously evaluate πi = Fi(pw), and
Π = (pki)i is the tuple of the public keys of the involved servers;

2. for a random value R = K‖r, where K is the random secret key the user
wants to reconstruct and r some random coins for the commitment. The user
generates (s1, . . . , sn,SSInfo) ← ShareGen(R), so that any subset of tr shares
among {s1, . . . , sn} can efficiently recover R;

3. then, the user builds σi = πi ⊕ si, for i = 1, . . . , n, and sets Σ = (σi)i;

Robust Password-Protected Secret Sharing 73

4. the user generates Com = HCom(pw,Π,Σ,SSInfo,K; r). We denote by PInfo =
(Π,Σ,SSInfo,Com) the public information that the user will need later to
recover his secret K;

5. the user thus gives PInfo to all the servers.

We stress that during this initialization phase, all the values of Π are the real
public keys and (πi)i are the correct evaluations of the PRFs. On the opposite,
during the reconstruction phase, all the values in PInfo will be provided by the
servers, but through the adversary, who might alter them.

Reconstruction. For the reconstruction, the user interacts with at least tr
servers, that provide him PInfo = (Π,Σ,SSInfo,Com), and help him to compute
πi = Fi(pw) for several values of i, using pki from Π. No information is trusted
anymore, and so the reconstruction phase perform several verifications:

1. the user first limits the oblivious evaluations of πi = Fi(pw) to the servers
that sent the same majority tuple PInfo = (Π,Σ,SSInfo,Com). If the number
of such servers is less than tr, one aborts with K ←⊥;

2. for all these πi (or similarly, all the i he kept), the user computes si = σi ⊕πi,
using σi from Σ (from PInfo);

3. using these {si} with at least tr correct shares, and SSInfo (from PInfo), with
RGTSSS, the user reconstructs the shared secret R (or aborts with K ←⊥ if
the reconstruction fails);

4. the user parses the secret R as K‖r, and checks, from PInfo, whether Com =
HCom(pw,Π,Σ,SSInfo,K; r);

5. if the verification succeeds, K is the expected secret key, otherwise the user
aborts with K ←⊥.

5.2 Protocol I: One-More-Gap-Diffie-Hellman-Based PRF

Our first instantiation is based on CDH-like assumptions in the random-oracle
model. The arithmetic is in a finite cyclic group G = 〈g〉 of prime order q. We
need a full-domain hash function H1 onto G, and another hash function H2 onto
{0, 1}�2 . The commitment scheme uses a simple hash function HCom = H3 onto
{0, 1}�3 .

For a private key sk = x ∈ Zq, we consider the pseudorandom function
Fx(m) = H2(m, gx,H1(m)x), for any bitstring m ∈ {0, 1}∗, where the public
key is pk = y = gx. In the full version [1], we prove this is indeed a PRF, as
already shown in [23].

In addition, it admits an oblivious evaluation, that does not leak any infor-
mation, thanks to the three simulators Sim, SimU and SimS , as presented
in Fig. 2: Sim simulates an honest transcript, SimU simulates an honest user
interacting with a malicious server, and SimS simulates an honest server with a
malicious user. These simulators will be used by our simulator in the full secu-
rity proof. They generate perfectly indistinguishable views to the adversary, but
they require CDHg(y, ·) and DDHg(y, ·, ·) evaluation, and thus oracle access when

74 M. Abdalla et al.

the secret keys are not known. Since the indistinguishability of the PRF relies
on the CDHg(y, ·) assumption, the overall security relies on the One-More Gap
Diffie-Hellman (OMGDH) assumption (see the full version [1]) as shown in the
last step of the proof.

User Server
m pk = y = gx sk = x

α
$← Z

∗
q , A ← H1(m)α A

If B = 1, then abort B B ← Ax

C ← B1/α, R ← H2(m, y,C)
Sim

α
$← Z

∗
q

A ← gα A

B B ← yα

SimU

A
$← G A

B

¬DDHg(y,A, B)
=⇒ fail

SimS

A

B B ← CDHg(y, A)

Fig. 2. Secure oblivious evaluation of the PRF based on OMGDH

Theorem 2. For any adversary A, against the Protocol I, that corrupts no more
than qc servers, involves at most qs instances of the servers, qu instances of the
user, and asks at most q1, q2, q3 queries to H1, H2, H3, respectively

Adv(A) ≤
(

qu +
4qs

n − 4qc

)

× 1
#D + ε.

where ε = n × Succomgdh(q1, qs, t, n · qu + q2) + (q23 + 2) · 2−�3/4.

Security Proof. The complete and detailed proof of the Theorem is given in the
full version [1]. The rough idea is the following: in the real attack game, we focus
on a unique user, against a static adversary (the corrupted servers are known
right after the initialization, and before any reconstruction attempt). All the
parameters are honestly generated, the simulator knows the secret informations
to answers the queries, and two random keys K0 (random) and K1 (real), as well
as a bit b, are selected randomly to answer Test-queries. In the final game, we
simulate all the answers to the adversary without using a password. A random
value will be chosen at the very end of the simulation and used as a password in
order to decide if some bad events should have occurred, which will immediately
upper-bound the advantage of the adversary.

We first modify the way Execute-queries are answered, using Sim that per-
fectly simulates honest transcripts user-servers, and we set user’s key to K1.

Robust Password-Protected Secret Sharing 75

Then, we deal with Send-queries to the honest user, trying to exclude the
cases of a fake public information PInfo′ (sent by the majority of servers): first,
we do as before if the commitment Com′ in PInfo′ is different from the expected
value C generated during the initialization, but eventually we set K ←⊥. This
would just make a difference for the adversary if Com′ indeed contains the good
password pw, which is defined as the event PWinC. This event PWinC can be
evaluated using the list of queries asked to H3. Then, a similar argument applies
when a wrong PInfo′ is sent, but with a correct Com, under the binding propriety
of the commitment H3.

Once we have fixed this, and we trust the public values, we can use SimU ,
that perfectly simulates a flow A from the user to a server, and can decide on
the honest behavior of the servers. Then SimU accepts with K ← K1 in the
honest case or aborts with K ←⊥ otherwise. Hence, we remark that we answer
Send-queries without calling the H1 or H2 oracles, but just using K1, and no
secret sharing reconstruction is used anymore.

Next step is to replace all the shares in the initialization phase by random
and independent values. We know that until the adversary does not get more
than t� = n/4 of these shares, it cannot detect whether they are random or
correct. We define the event PWinF to be the bad event, where the adversary
has enough evaluations of the PRF to notice the change. Again, our simulator is
able to decide the event PWinF by checking whether pw has been queried with
the right inputs to H2, and how many times. We eventually replace the hash
value Com in the initialization phase by a random Com.

One can note that, in the end, the password pw is not used anymore during
the simulation, but just to determine whether the events PWinC or PWinF hap-
pened. In addition, K1 does not appear anymore during the initialization phase,
hence one cannot make any difference between K0 and K1: SuccA = 1/2 in the
last game. As a consequence, Adv(A) ≤ Pr[PWinC] + Pr[PWinF] + ε, where ε
comes from the collisions or guesses in the random oracles. To evaluate the two
events PWinC or PWinF to happen, we choose a random password pw at the very
end only: Pr[PWinC] is clearly upper-bounded by qu/#D, since qu is the maxi-
mal number of fake commitment attempts containing the right pw that can be
different from the expected ones; PWinF means that the adversary managed to
get n/4 − qc evaluations of the PRFs under the chosen pw, since it can evaluate
on its own the values under the qc corrupted servers. But unless the adversary
gets more evaluations than the number qs of queries asked to the servers (which
can be proven under the OMGDH assumption), the number of bad passwords
(for which the knows at least n/4 − qc evaluations of the PRFs) is less than
qs/(n/4 − qc). So the probability that the chosen pw is such a bad password is
less than qs/(n/4 − qc) × 1/#D.

5.3 Protocol II: DDH-Based PRF

Our second instantiation makes use of the Naor and Reingold [25] pseudorandom
function. We consider the group G = 〈g〉 of prime order q that is a safe prime:
q = 2s+1. In the multiplicative group of scalar Z∗

q , we consider the cyclic group

76 M. Abdalla et al.

User Server
x = (x1, x2, . . . , x�) ∈ {0, 1}� pk, {ci = Encpk(ai)} sk ∈ Zs

also seen as an �-bit scalar in Zs

α
$← Gs, C ← Encpk(α×a0

∏
ai

xi)
C

{
Proof(α, xi)

}

D ← Decsk(C)
If G = 1, then abort G G ← gD

R ← G1/α

Fig. 3. Secure oblivious evaluation of the NR-PRF

Gs of order s (this is the group of elements in Z
∗
q with Jacobi symbol equals to

+1). In both groups, the DDH assumption can be made.
The PRF key is a tuple a = (a0, a1, . . . , a�)

$← (Gs\{1})�+1, and Fa(x) =
ga0

∏
a
xi
i , where x = (x1, x2, . . . , x�) ∈ {0, 1}�. This function has been proven

to be a PRF under the DDH assumption [25] on �-bit inputs. It also admits
a simple oblivious evaluation (just the messages C and G from Fig. 3), using
a multiplicatively homomorphic encryption scheme in Gs, such as ElGamal for
(Encpk,Decsk), which allows the computation of C from x, α, and the ciphertexts
{ci}i. Unfortunately, without additional proofs, this is not secure against mali-
cious users, since it works only for honest inputs x ∈ {0, 1}�. Hence the more
involved protocol presented in Fig. 3 that makes use of a zero-knowledge proof
of knowledge of (xi)i ∈ {0, 1}� and α ∈ Gs. This can be efficiently done under
the sole DDH assumption. Whereas our oblivious evaluation of the PRF is in
the standard model, overall, the PPSS protocol based on this OPRF is in the
random-oracle model as it makes use of the RGTSSS. As a consequence, one
could replace the interactive ZK proofs by NIZK proofs “à la Schnorr”. This
would reduce the number of flows to only 2. The full proof of our protocol II
(including the DDH-based OPRF) can be found in the full version [1].

6 Comparisons

We can assume that PInfo is stored in the Cloud, it does not need to be sent by
each server, then the global communication is linear in n. More precisely, our
first protocol is quite similar to the one from [24]. Of course, we did not provide
any security result in the UC framework [13], but our ultimate goal was the
same as [23]: an efficient robust password-protected secret sharing scheme, in a
BPR-like security model [3]. To this aim, there is no reason to use UC-secure
building blocks, but tailored primitives.

Our algebraic OPRF structure is more efficient than the one in [20], since
their construction makes use of Oblivious Transfers (OT) and expensive public-
key operations. In the online setting, this kind of protocols are almost infeasible,

Robust Password-Protected Secret Sharing 77

as the number of desired OTs is not known in advance while our zero-knowledge
proofs are much simpler to use. Given the work of Ishai et al. [21], a better effi-
ciency can be achieved, considering each OT evaluation at the cost of a private-
key operation. In our case, the main cost in communication is that of a single
zero-knowledge proof.

Our second protocol, based on this oblivious evaluation and with an addi-
tionally CRS turns out to be much more efficient than the one from [23]. Even if
it uses the same Naor-Reingold PRF, the oblivious evaluation is much more effi-
cient and relies on the DDH assumption only. Our full construction only makes
use of ElGamal and Cramer-Shoup encryption schemes, and no Paillier’s encryp-
tion [26] nor Cramer-Shoup signature [15] that require both stronger assump-
tions, such as the strong-RSA assumption and the decisional composite residuos-
ity assumption, and much larger parameters, which lead to huge communication
load. The main reason comes from the relaxation on the OPRF: since we do
not need verifiability of server’s computations, it does not have to make any
zero-knowledge proof, which allows us to use a much more efficient OPRF.

Acknowledgments. We are grateful to Stanislaw Jarecki for his valuable comments
on this work. This work was supported in part by the European Research Council
under the European Community’s Seventh Framework Programme (FP7/2007-2013
Grant Agreement no. 339563 – CryptoCloud).

References

1. Abdalla, M., Cornejo, M., Nitulescu, A., Pointcheval, D.: Robust password-
protected secret sharing. Cryptology ePrint Archive, Report 2016/123 (2016).
http://eprint.iacr.org/2016/123

2. Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing.
In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM CCS 2011, pp. 433–444. ACM
Press, October 2011

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000)

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

6. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party
case. In: 27th ACM STOC, pp. 57–66. ACM Press, May/June 1995

7. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Pri-
vacy, pp. 72–84. IEEE Computer Society Press, May 1992

8. Bishop, A., Pastro, V., Rajaraman, R., Wichs, D.: Essentially optimal robust secret
sharing with maximal corruptions. Cryptology ePrint Archive, Report 2015/1032
(2015). http://eprint.iacr.org/2015/1032

http://eprint.iacr.org/2016/123
http://eprint.iacr.org/2015/1032

78 M. Abdalla et al.

9. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS 1979
National Computer Conference, vol. 48, pp. 313–317 (1979)

10. Camenisch, J., Lehmann, A., Lysyanskaya, A., Neven, G.: Memento: how to recon-
struct your secrets from a single password in a hostile environment. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 256–275. Springer,
Heidelberg (2014)

11. Camenisch, J., Lehmann, A., Neven, G.: Optimal distributed password verification.
In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 182–194. ACM Press,
October 2015

12. Camenisch, J., Lysyanskaya, A., Neven, G.: Practical yet universally composable
two-server password-authenticated secret sharing. In: Yu, T., Danezis, G., Gligor,
V.D. (eds.) ACM CCS 2012, pp. 525–536. ACM Press, October 2012

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

14. Cheraghchi, M.: Nearly optimal robust secret sharing. Cryptology ePrint Archive,
Report 2015/951 (2015). http://eprint.iacr.org/2015/951

15. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
In: ACM CCS 1999, pp. 46–51. ACM Press, November 1999

16. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable com-
mitment. In: 30th ACM STOC, pp. 141–150. ACM Press, May 1998

17. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

18. Ford, W., Kaliski Jr., B.S.: Server-assisted generation of a strong secret from a pass-
word. In: Proceedings of the 9th IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises, pp. 176–180. IEEE Com-
puter Society, Washington, DC (2000)

19. Fouque, P.-A., Stern, J., Wackers, J.-G.: CryptoComputing with rationals. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidelberg (2003)

20. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005)

21. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

22. Jablon, D.P.: Password authentication using multiple servers. In: Naccache, D.
(ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 344–360. Springer, Heidelberg (2001)

23. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg
(2014)

24. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-Efficient and Composable
Password-Protected Secret Sharing. Cryptology ePrint Archive, Report 2016/144
(2016). http://eprint.iacr.org/

25. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press, October
1997

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

http://eprint.iacr.org/2015/951
http://eprint.iacr.org/

Robust Password-Protected Secret Sharing 79

27. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. 8(2), 300–304 (1960)

28. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979)

29. Yi, X., Hao, F., Chen, L., Liu, J.K.: Practical threshold password-authenticated
secret sharing protocol. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS. LNCS, vol. 9326, pp. 347–365. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24174-6 18

http://dx.doi.org/10.1007/978-3-319-24174-6_18
http://dx.doi.org/10.1007/978-3-319-24174-6_18

Compiling Low Depth Circuits for Practical
Secure Computation

Niklas Buescher1(B), Andreas Holzer2, Alina Weber1,
and Stefan Katzenbeisser1

1 Technische Universität Darmstadt, Darmstadt, Germany
buescher@seceng.informatik.tu-darmstadt.de

2 University of Toronto, Toronto, Canada

Abstract. With the rise of practical Secure Multi-party Computation
(MPC) protocols, compilers have been developed that create Boolean
or Arithmetic circuits for MPC from functionality descriptions in a
high-level language. Previous compilers focused on the creation of size-
minimal circuits. However, many MPC protocols, such as GMW and
SPDZ, have a round complexity that is dependent on the circuit’s depth.
When deploying these protocols in real world network settings, with net-
work latencies in the range of tens or hundreds of milliseconds, the round
complexity quickly becomes a significant performance bottleneck.

In this work, we present ShallowCC, a compiler extension that cre-
ates depth minimized Boolean circuits from ANSI-C. We first introduce
novel optimized building blocks that are up to 50% shallower than previ-
ous constructions. Second, we present multiple high- and low-level depth
minimization techniques and implement these in the existing CBMC-
GC compiler. Our experiments show significant depth reductions over
hand-optimized constructions (for some applications up to 2.5×), while
maintaining a circuit size that is competitive with size-minimizing com-
pilers. Evaluating exemplary functionalities in a GMW framework, we
show that depth reductions lead to significant speed-ups in any real-
world network setting. For an exemplary biometric matching application
we report a 400× speed-up in comparison with a circuit generated from
a size-minimizing compiler.

1 Introduction

In the thirty years since Yao’s seminal paper [33], Secure Multiparty Computa-
tion (MPC) has transitioned from purely theoretic construction to a practical
tool. In MPC, two or more parties jointly evaluate a function over their inputs in
such a way that each party keeps its input hidden from the other parties. Thus,
MPC provides a generic way to construct Privacy-Enhancing Technologies, which
protect sensitive data during processing steps in untrusted environments. In the
last decade, many new protocols and optimizations made MPC practical for var-
ious applications. Nevertheless, MPC is still multiple orders of magnitude slower
than classic computation.

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 80–98, 2016.
DOI: 10.1007/978-3-319-45741-3 5

Compiling Low Depth Circuits for Practical Secure Computation 81

The performance of most MPC protocols usually depends on the complexity
of either a Boolean or an Arithmetic circuit representing the functionality to be
computed. Unfortunately, the manual construction of efficient circuits is a com-
plex, error-prone, and time-consuming task. Therefore, multiple compilers, for
example CBMC-GC [17], Frigate [26], KSS [22], or the SecreC Compiler [4], have
been developed that compile a functionality described in a high-level language
into circuits satisfying the requirements of MPC protocols.

The creation of circuits from a high-level functionality shares similarities with
hardware synthesis. Yet, hardware synthesis tools differ in two factors. First, no
layout or space considerations have to be made when designing circuits for MPC.
Second, the costs for different types of gates differ significantly. For example, in
classic logic synthesis, Boolean NAND gates are favored over XOR gates due to
their placement costs. However, in many MPC protocols the evaluation costs of
all non-linear gates (e.g., AND, NAND and OR) are equivalent to each other,
while the evaluation of linear gates (e.g., XOR) is essentially free [14]. Therefore,
previous works on MPC compilers mainly focussed on producing circuits with a
minimal number of non-linear gates.

Nevertheless, many practically relevant MPC protocols, such as BGW [3],
GMW [14], Sharemind [4], SPDZ [9] and TinyOT [28] have a round complexity
that is proportional to the circuit depth. Hence, for these MPC protocols it is
crucial to also consider the circuit depth as a major optimization goal, because
every layer in the circuit increases the protocol’s runtime by the round trip
time (RTT) between the computing parties. This is of special importance, as
latency is the only computational resource that has reached its physical bound-
ary. (For computational power and bandwidth, parallel resources can always be
added.) Thus, asymptotically it is much more vital to minimize the depth of cir-
cuits, rather than speeding-up the computational efficiency. To illustrate these
thoughts, the performance of a state-of-the-art implementation of the GMW
protocol [14], such as ABY [11], shows that more than 10 million non-linear
gates per second can be computed on a single core of a commodity CPU. At
the same time, the network latency between Asia and Europe1 is in the range of
a hundred milliseconds. In this setting, the evaluation time of any circuit with
less than 100,000 parallel gates per circuit level will increase by at least one
order of magnitude. Therefore, it is worthwhile to investigate optimization and
compilation techniques for the automatic creation of low depth Boolean circuits.

Even though this work focusses on depth-minimized Boolean circuits, MPC
protocols using Arithmetic circuits or FHE schemes can also profit from the
ideas presented here, as they require Boolean circuits for all control flow opera-
tions. Moreover, we note that a shallower and broader circuit allows for better
parallelization in MPC protocols with constant round complexity, for example
in Parallel Yao’s Garbled Circuits [6].

1 Even though, MPC is often benchmarked in a LAN setting, the WAN setting is the
more natural deployment model of MPC.

82 N. Buescher et al.

Contribution. In this work, we present ShallowCC, a compiler that takes
ANSI-C as input and automatically generates low depth Boolean circuits, opti-
mized for MPC protocols that favor a minimal number of non-linear gates.
Our approach for the generation of depth minimized circuits is threefold. First,
we present and investigate minimization techniques that operate on the source
code level. This involves the detection of sequential reductions, which can be
regrouped in a tree based manner. We refer to reductions as the aggregation of
multiple programming variables into a single result variable, e.g., minima com-
putation over an array. We also present techniques to detect consecutive arith-
metic operations, which can be instantiated more efficiently by a dedicated cir-
cuit rather than a composition of multiple individual arithmetic building blocks.
Second, we present depth and size optimized constructions of major building
blocks, e.g., adder and multiplexer, required for the synthesis of larger circuits.
These hand-optimized building blocks have a depth that is significantly smaller
than depth-minimized blocks presented in recent works [10,30]. An overview of
significant improvements is given in Table 1. Third, we adapt multiple low level
optimization methods that minimize circuit depth on the gate level. Finally, we
contribute an implementation of our ideas as an extension to the open-source
CBMC-GC compiler.

Table 1. Depth of Building Blocks. Comparison of the depth of the here presented
building blocks with the previously known best constructions.

Operation Previous work [30] This work

n-bit Addition 2 log2(n) + 1 log2(n) + 1

n-bit Multiplication 3 log2(n) + 4 2 log2(n) + 3

m:1 Multiplexer log2(m) �log2(�log2(m + 1)�)�

Comparing with the hand optimized computations, e.g., computation of the
Manhattan distance [10], we report depth reductions between 30 % and 60 %.
Comparing with previous compilers, we report circuits, e.g., a privacy preserving
biometric matching functionality, that are up 400 times shallower. Evaluating
the depth minimized circuits with the GMW protocol [14], we observe speed-ups
of the online protocol run time that are proportional to the depth savings, even
for RRTs below 10ms. For example, we observe a speed-up of 400 times for the
aforementioned biometric matching functionality.

Outline. Next, we discuss related work. An introduction into circuit design is
given in Sect. 3. In Sect. 4 we present ShallowCC and its minimization techniques.
An evaluation of ShallowCC is given in Sect. 5.

2 Related Work

Along with the early development of practical frameworks for MPC, circuit com-
pilers have been developed, mainly because the manual creation of circuits for

Compiling Low Depth Circuits for Practical Secure Computation 83

privacy preserving applications requires expertise in hardware synthesis and can
be an error prone task with circuits scaling to billions of gates. Here, we first dis-
cuss compilers for the creation of Boolean circuits mainly tailored towards Yao’s
Garbled Circuits, before discussing compilers for arithmetic circuits. Moreover,
an overview of optimized circuit libraries is given.

Boolean circuit compilers. The development of compilers for MPC started with
the Fairplay framework by Malkhi et al. [25]. Fairplay compiles a domain spe-
cific hardware description language (SFDL) into a gate list for the use in Yao’s
Garbled Circuits. Henecka et al. [16] presented the TASTY compiler with a
domain specific language (DSL) that supports basic data types and arithmetic
operations to allow the efficient combination of Garbled Circuits with additively
homomorphic encryption. The PAL compiler by Mood et al. [27] also relies on
Fairplay’s SFDL input format, but aims at low-memory devices as the compi-
lation target. The KSS compiler by Kreuter et al. [22] is the first compiler that
shows scalability up to a billion of gates. KSS compiles circuits from a domain
specific hardware language and employs advanced optimization methods, e.g.,
constant propagation or dead gate elimination. ObliVM by Liu et al. [23] is a
framework for Java that enables the automatized combination of oblivious data
structures with MPC. Songhori et al. [31] presented Tiny Garble, which uses
commercial hardware synthesis tools to compile circuits from VHDL. One the
one hand, this approach allows to use a broad range of existing functionalities
in hardware synthesis, but also shows the least degree of abstraction, by requir-
ing the developer to have experience in hardware design. Zahur and Evans [35]
presented a compilation approach, named Obliv-C, that compiles a DSL into
executable C code, thus, combining compiler and execution environment. Very
recently, Mood et al. [26] presented the Frigate compiler, which aims at very fast
and extensively tested compilation of another DSL.

The CBMC-GC compiler by Holzer et al. [17] is the first compiler that cre-
ates Boolean circuits for MPC from ANSI-C. CBMC-GC utilizes the Bounded
Model Checker CBMC, originally used for the verification of C code, to reliably
compile a large subset of C to circuits. ParCC, presented by Buescher et al. [6],
is a source-to-source compiler, which extends CBMC-GC by the capability to
compile parallel circuits. The PCF compiler by Kreuter et al. [21] is compiles C
using the intermediate representation of the portable LCC compiler.

Mood et al. [26] give an overview on many of the aforementioned compilers
and benchmark their performance. The authors indicate limited robustness of
many existing compilers, as most have been developed for research purposes.
We observe that all compilers apply various optimization methods, yet all aim
at the creation of size and not depth minimal circuits.

Arithmetic circuit compilers. Multiple compilers that aim at the creation of cir-
cuits for use in secret sharing based MPC have been developed. Early compilers
are the FairplayMP compiler by Ben-David et al. [2] and the VIFF compiler by
Damgard et al. [8], which both compile a DSL. The Sharemind framework by

84 N. Buescher et al.

Bogdanov et al. [4] is nowadays the most advanced compiler for MPC. It com-
piles a DSL, implements a broad range of functionalities and supports multiple
MPC protocols during runtime. The Picco compiler by Zhang et al. [36] compiles
ANSI-C into interpretable arithmetic circuits, yet has not been open sourced.

Optimized circuit libraries. Kolesnikov and Schneider [19,20] presented first size
optimized low-level building blocks, e.g., adder and multiplexer, for their use in
Yao’s Garbled Circuits. Zahur and Evans [34] presented optimized circuit struc-
tures for more advanced building blocks, such as stacks and queues. Schneider
and Zohner [30] identified the need of low depth circuits for a fair comparison
between GMW und Yao’s Garbled Circuits and presented multiple depth mini-
mized building blocks. Most recently, Demmler et al. [10] presented a library of
low depth circuits exported from a commercial hardware synthesis tool. In this
work, we compare our results with these hand optimized circuits.

3 Preliminaries in Digital Circuit Design for MPC

Digital circuit design, also known as logic synthesis, deals with the construc-
tion and optimization of digital circuits. Common optimization goals are the
reduction of the placement costs and the signal delay under several physical
constraints. In circuit design for MPC, however, many of the classical design
criteria (e.g., signal amplification) can be omitted, because the created circuits
are evaluated ‘virtually’ in software. In this work, we investigate the creation of
Boolean circuits based on gates with two input wires, as these provide the most
general circuit description. In the following paragraphs, we describe the used
notation, as well as some basic concepts applied in logic synthesis.

Notation. We use snX to notate the total number of non-linear gates of a circuit,
also referred to as size, and dnX to denote the circuit’s depth in the number of
non-linear gates. Furthermore, we denote bit strings in capital letters, e.g. X,
and denote their negation with X. We refer to single bit at position i within a
bit string with Xi. The Least-Significant Bit (LSB) is X0. Moreover, we denote
the Boolean XOR gate with ⊕, AND with · and OR with +. When useful, we
abbreviate the AND gate A · B with AB.

Half- and Full-Adder. Arithmetic building blocks are constructed of smaller
building blocks, namely Half-Adders (HA) and Full-Adders (FA). A Half-Adder
is a combinatorial circuit that takes two bits A and B and computes their sum
S = A⊕B and carry bit Cout = A·B. A Full-Adder allows an additional carry-in
bit Cin as input. The sum is computed by XOR-ing all inputs S = A⊕B ⊕Cin,
the carry-out bit can be computed by Cout = (A ⊕ Cin)(B ⊕ Cin) ⊕ Cin [20].
Both, the HA and FA have size snX = 1 and depth dnX = 1.

Compiling Low Depth Circuits for Practical Secure Computation 85

Carry-Save Adder. In the early 1960s [12], Carry-Save Addition was introduced
to compute the sum of k numbers in logarithmic depth. The main component of
a Carry-Save Addition is the 3:2 Carry-Save Adder (CSA). A 3:2 CSA reduces
the sum of three numbers A+B +C to the sum of two numbers X +Y in small
constant depth [29]. A CSA for three n-bit values A,B and C can be instantiated
by n parallel FAs. This instantiation has a depth of one and allows to compute
the partial sums X and Y for k numbers with depth dnXCSA(k) = �log2(k)−1� [30].

Parallel Prefix Circuit. A parallel prefix circuit is used in depth minimizing
adders and computes n outputs O1, . . . , On from n inputs X1, . . . , Xn for an
arbitrary associative two-input operator ◦ as follows [15]:

O1 = X1, O2 = X1 ◦ X2, . . . , On = X1 ◦ X2 · · · ◦ Xn.

All outputs can then be computed with at most logarithmic depth when applying
the operator ◦ in a tree structure over all inputs, e.g., O4 = (X1◦X2)◦(X3◦X4).

Two’s complement. The two’s complement is the common representation of
signed numbers in hardware. In the two’s complement, negative numbers are
represented by flipping all bits and adding one. In the following sections, we
assume a two’s complement representation, when referring to negative numbers.

4 Creation of Low Depth Circuits

In this section, we present the design of our compiler extension ShallowCC as
well as multiple depth minimization techniques. ShallowCC is built on top of
CBMC-GC, which, even though being the first compiler for ANSI-C, creates
circuits that are still competitive in size [26]. CBMC-GC is open sourced, well
documented and shows great reliability due to is origin in model checking. More-
over, it implements powerful minimization techniques on the gate level that make
it an optimal candidate to implement the ideas presented in this section.

ShallowCC follows CBMC-GC’s compilation approach and adopts them for
depth minimization as illustrated in Fig. 1. Adaptations and extensions are
marked in gray. The compiler reads ANSI-C code with a special naming conven-
tion for input arguments and output variables (see [17] for code examples). First,

Fig. 1. ShallowCC’s compilation chain from ANSI-C to Boolean circuits.

86 N. Buescher et al.

unsigned max_abs(int a[], unsigned len) {
unsigned i, max = abs(a[0]);
for(i = 1; i < len; i++)

if(abs(a[i]) > max)
max = abs(a[i]);

return max;
}

Listing 1. Exemplary function that computes the maximum norm.

the code is preprocessed to detect and transform reduction statements on the
source code level (see Sect. 4.1). In the second and third step all bounded loops
and recursions are unrolled using symbolic execution and the resulting code is
transformed into Single Static Assignment (SSA) form. In the fourth step, the
SSA form is used to detect and annotate successive composition of arithmetic
statements (see Sect. 4.1). Afterwards, all statements are instantiated with hand-
optimized building blocks (see Sect. 4.2), before a final gate-level minimization
takes place (see Sect. 4.3).

4.1 Code Level Minimization Techniques

In the following paragraphs we discuss two techniques that operate on the source
code level to decrease the circuit depth.

Reduction Statements. We refer to a reduction as the compression of multiple
programming variables into a single result variable, e.g., the sum of an array.
Consider the code example in Listing 1. This code computes the maximum norm
of a vector. It iterates over an integer array, computes the absolute value of
every element and then reduces all elements to a single value, namely their
maximum. A straight forward translation of the maximum computation leads to
a circuit consisting of len−1 sequentially aligned comparators and multiplexers,
as illustrated in Fig. 2a. However, the same functionality can be implemented
with logarithmic depth when using a tree structure, as illustrated in Fig. 2b.
Thus, when optimizing circuits for depth, it is worthwhile to rewrite sequential
reductions. To relieve the programmer from this task, ShallowCC automatically
replaces sequential reductions found in loop statements by tree-based reductions.

Since detecting reductions in loop statements is a common task in automa-
tized parallelization, we adapt the recent work on parallel circuits by Buescher
and Katzenbeisser [6]. The authors use the parallelization framework Par4all [1]
to detect parallelism on source code level. As a side product, Par4all also iden-
tifies and annotates sequential reductions. We extend the techniques presented
in [6] to parse these reduction annotations and to rewrite the code during the
preprocessing phase with clang (source-to-source compilation). For this, we first
identify the loop range and reduced variable to instantiate a code template that
computes the reduction in a tree structure. This optimization improves the depth
of reductions over m elements from O(m) to O(logm). To give an example, for

Compiling Low Depth Circuits for Practical Secure Computation 87

a minimum computation of a 32-bit integer array with 100 elements, we observe
a depth reduction from 592 to 42 non-linear gates, cf. Sect. 5.3.

(a) Sequential circuit (b) Tree circuit

Fig. 2. Maximimum search circuit, consisting of comparators and multiplexers.

Carry-Save Networks (CSNs). CSNs are efficient circuit constructions for mul-
tiple successive arithmetic operations that outperform their individual composi-
tion in size and depth. Consider the following lines of code as an example:

unsigned a, b, c, d;
unsigned t = a + b;
unsigned sum = t + c + d;

A straight forward compilation, as in CBMC-GC, leads to a circuit consisting
of three binary adders: sum = ADD(ADD(ADD(a,b), c), d). However, if it is
possible to identify that a sum of four independent operands is computed, a CSA
with four inputs can be initiated instead: sum = CSA(a,b,c,d). This reduces the
circuit’s depth in this example from 18 to 7 non-linear gates.

Detecting these operations on the gate level is feasible, for example with the
help of pattern matching, yet impractically costly considering that circuits reach
sizes in the range of billions of gates. Therefore, ShallowCC aims at detecting
these successive statements before their translation to the gate level. We do this
by utilizing the capabilities of the bounded model checker CBMC [7] that Shal-
lowCC is built upon. CBMC compiles C code into the SSA form, where each
variable is written only once. The SSA form allows efficient data flow analyses
and as such, also the search for successive arithmetic operations. Our detec-
tion algorithm consists of two parts. First, a breadth-first search from output
to input variables is initiated. Whenever an arithmetic assignment is found, a
second backtracking algorithm is initiated to identify all preceding (possibly
nested) arithmetic operations. This second algorithm stops whenever a guarded
or non-arithmetic statement is found. Once all preceding inputs are identified,
the initial assignment can be replaced by a CSN. After every replacement, the
search algorithm continues its search towards the input variables. We note that
this greedy replacement approach is depth minimizing, yet not necessarily size
optimal, since intermediate results in nested statements may be computed mul-
tiple times. A trade-off between size and depth is possible by only instantiating
CSNs for non-nested arithmetic statements.

Quantifying the improvements, assuming that the addition of two numbers
requires a circuit of depth dnXAdd, we observe that by sequential composition m > 2

88 N. Buescher et al.

numbers can be added with depth (m − 1) · dnXAdd. When using a tree-based
structure the same sum can be computed with a depth of �log2(m)� · dnXAdd.
However, when using a CSA, m numbers can be added with a depth of only
�log2(m)−1�+dnXAdd. Furthermore, multiplications and additions can be merged
in a single CSN, as every multiplication internally consists of additions of partial
products, cf. Sect. 4.2. For the exemplary computation of a 5×5 matrix multi-
plication, we observe an improvement in depth of more than 60 %, cf. Sect. 5.3.

4.2 Optimized Building Blocks

Optimized building blocks are an essential part when designing complex circuits.
They facilitate efficient compilation, as they can be highly optimized once and
subsequently instantiated at practically no cost during compilation. In the fol-
lowing paragraphs, we present new depth and size optimized building blocks
constructed from Boolean gates for basic arithmetic and control flow operations.

Adder. An n-bit adder takes two bit strings A and B of length n, representing
two (signed) integers, as input and returns their sum as an output bit string S of
length n+1. The standard adder is the Ripple Carry Adder (RCA) that consists
of a successive composition of n FAs. This leads to a linear circuit size and depth
snXRCA = dnXRCA = O(n). Parallel Prefix Adders (PPAs) are widely used in logic
synthesis to achieve faster addition under size trade-offs by using a tree based
prefix network with logarithmic depth. PPAs have been investigated for their use
in MPC [10,30]. Surprisingly, and to the best of our knowledge, none of these
constructions challenged the textbook design of PPAs, which never considered
the ‘free’ XOR cost model. In the full version of this paper2, we prove that it is
possible to replace one of the two non-linear gates by an XOR gate in every layer
of the a PPA. Applying this design to the Sklansky adder, which shows the least
depths of all PPAs (see taxonomy of Harris [15]), we achieve a construction with
a depth of dnXSk (n) = �log2(n)�+1 and a size of snXSk = n�log2(n)� for an input bit
length of n and output bit length of n+1. In Table 2 a depth and size comparison
of the standard Ripple-Carry adder, the Ladner-Fischer adder, as proposed in
[30], the here optimized Sklansky adder, and an alternative to the Sklansky
adder, namely the Brent-Kung adder [15] is given for different bit-widths. We
observe that the RCA provides the least size and the Sklansky adder the least
depth. The Brent-Kung adder provides a trade-off between size and depth. Both
of our optimized constructions significantly outperform the previous best known
depth-minimized construction in size and depth.

Subtractor. A subtractor can be implemented with one additional non-linear
gate by using the two’s complement representation a − b = a + b + 1, with b
being the negated binary representation [19]. The addition of negative numbers
in the Two’s complement is equivalent to an addition of positive numbers. Hence,
the subtractor profits to the same degree from the optimized addition.

2 Full version available at http://www.seceng.de/people/buescher/.

http://www.seceng.de/people/buescher/

Compiling Low Depth Circuits for Practical Secure Computation 89

Table 2. Adders. Comparison of circuit size snX and depth dnX of the standard RCA,
the previously best known depth-optimized adder [30] and our newly optimized Brent-
Kung and Sklansky adder.

depth dnX size snX

Bit-width n 16 32 64 n 16 32 64

Ripple-Carry n − 1 15 31 63 n − 1 15 31 63

Ladner-Fischer [10,30] 2�log(n)� + 1 9 11 13 1.25n�log(n)� + 2n 113 241 577

Brent-Kung-opt 2�log(n)� − 1 7 9 11 3n 48 96 192

Sklansky-opt �log(n)� + 1 5 6 7 n�log(n)� 64 160 384

Multiplier. A multiplier takes two input strings of length n as input and returns
their product in form of an output bit string of length 2n. The standard approach
for multipliers is the ‘school’ method. Here n partial products of length n are
computed and then added. This approach leads to a quadratic size snXMUL,s =
2n2 − n and linear depth dnXMUL,s = 2n − 1, cf. [30].

A faster addition of the partial products can be achieved when using Carry-
Save Adders (CSAs, cf. Sect. 3). Such a tree based multiplier consists of three
steps: First, the computation of all n×n partial products, then their aggregation
in a tree structure using CSAs, before the final sum is computed using a two-
input adder. The first step is computed with a constant depth of dnXPP = 1, as
only one single AND gate is required. For the last step, two bit strings of length
2n−1 have to be added. Using our Sklanksy adder, this addition can be realized
in dnXSk (n) = �log2(2n−1)�+1. The second phase allows many different designs,
as the CSAs can arbitrarily be composed. The fastest composition is the Wallace
tree [32], which leads to a depth of dnXCSA(n) = log2(n) for MPC. Combing all
three steps, a multiplication can be realized with a depth of dnXWa(n) = dnXPP +
dCSA(n) + dnXSk (2n − 1) = 2 log2 n + 3.

In Table 3 we present a comparison of the multipliers discussed above with
the depth optimized one presented in [30]. Compared with this implementation,
we are able reduce the depth by at least a third for any bit-width.

Table 3. Multipliers. Comparison of circuit depth d and size s of the school method,
the multiplier given in [30] and our optimized Wallace construction.

depth dnX size snX

Bit-width n 16 32 64 n 16 32 64

Standard 2n − 1 45 93 189 n2 − n 496 2016 8128

MulCSA [30] 3�log2(n)� + 4 16 19 22 ≈ 2n2 + 1.25n log2(n) 578 2218 8610

Wallace-opt 2�log2(n)� + 3 11 13 15 ≈ 2n2 + n log2(n) 512 2058 8226

90 N. Buescher et al.

Multiplexer. A multiplexer (MUX) is the most important building block for the
control and data flow of any MPC application. MUXs are used to represent
conditionals and dynamic array access. A 2:1 n-bit MUX consists of two input
bit strings D0 and D1 of length n and a control input bit C. The control input
decides which of the two input bit strings is propagated to the output bit string
O of the same bit length. Kolesnikov and Schneider [20] presented a construction
of a 2:1 MUX that only requires one single non-linear gate for every pair of input
bits by computing the output as O = (D0 ⊕ D1)C ⊕ D0. This leads to a circuit
size of snXMUX(n) = n and depth of dnXMUX(n) = 1. A 2:1 MUX can be extended to
a m:1 MUX that selects between m input strings D0,D1, . . . , Dm using log2(m)
control bits C=C0, C1, . . . Clog(m) by tree based composition of 2:1 MUXs leading
to a circuit of size snXMUX tree(m,n) = (m− 1) · snXMUX(n) with logarithmic depth
dnXMUX tree(m,n) = log2(m) [30].

We propose a further depth reduction by a logarithmic factor when construct-
ing the multiplexer in disjunctive normal form (DNF) over all combinations of
choices. Every conjunction of the DNF encodes a single choice together with
the associated data wire. For MPC, this construction leads to a very low depth,
because the disjunctive ORs can be replaced by XORs, as all choices are mutually
exclusive. For example, a 4:1 MUX is constructed by:

O = D0C0C1 ⊕ D1C0C1 ⊕ D2C0C1 ⊕ D3C0C1.

Thus, the depth of a m:1 MUX can be reduced to the depth of one conjunc-
tion dnXMUX DNFd(m,n) = �log2(�log2(m)� + 1)�. Unfortunately, a näıve imple-
mentation of a n-bit m:1 MUXDNFd, as described above, increases the size to
snXMUX DNFd(m,n) = mn·log(m). Since this size increase can be quite significant
for larger m, we propose a second construction, referred to as MUXDNFs. The
idea is first to compute every choice conjunction, before AND-gating them with
the data inputs, leading to a depth of dnXMUX DNFs(m,n) = �log2(�log2(m)�)�+1.
Now, every conjunction can be computed size efficiently, by avoiding the
duplicated computations of choice combinations, e.g., the choices C0C1C2 and
C0C1C2 require both the computation of C1C2, which can be merged. This
reduces the size to:

snXMUX DNFs(m,n) = m +
m

20
+

m

21
+ · · · +

m

2m−2
+ mn < 2m + mn.

In Table 4 a comparison of the three MUXs is given for a different number of
inputs m and a typical bit-width of 32 bits. In summary, we improved the depth
of MUXs by a logarithmic factor with a moderate increase in size.

4.3 Gate Level Minimization Techniques

Minimizing the circuit on the gate level is the last step in ShallowCC’s compi-
lation chain. We first give a high level description of CBMC-GC’s optimization
flow, before discussing the adaptations made for ShallowCC.

Compiling Low Depth Circuits for Practical Secure Computation 91

Table 4. Multiplexers. Exemplary comparison of circuit depth d and size s a of m:1
multiplexers for a different number of inputs m of bit-width n = 32.

depth dnX size snX

Input choices m 8 128 1024 m 8 128 1024

MUXTree �log(m)� 3 7 10 (m − 1) · n 244 4,064 31,968

MUXDNFd �log2(�log2(m) + 1�)� 2 3 4 mn · �log(m)� 768 28,672 320,000

MUXDNFs �log2(�log2(m)�)� + 1 3 4 5 2m+mn 272 1,088 34,000

Finding a minimal circuit for a given functionality is known to be ΣP
2 com-

plete [5]. Therefore, CBMC-GC follows an heuristic approach when minimiz-
ing circuits: First, structural hashing is applied to identify and remove dupli-
cated sub circuits. Then, a fixed-point optimization algorithm is initiated (the
algorithm runs until no further improvements are made), which itself consists of
two alternating phases. In the first phase, a template based circuit rewriting is
executed, which applies Boolean theorems to reduce the circuit size. For example,
the Idempotent law X +X = X forms a template, namely an OR gate with the
same inputs can safely be removed. In the second phase SAT sweeping is applied,
which identifies unused gates with the help of a SAT solver. For ShallowCC, we
left the structural hashing and SAT sweeping unmodified, as both help to reduce
the circuit complexity. Instead, we adapt the template based rewriting phase.

The circuit rewriting in CBMC-GC only considers patterns that are size
decreasing and have a depth of at most two binary gates. For depth reduction,
as required in ShallowCC, however, it is useful to also consider deeper circuit
structures, as well as patterns that are size preserving but depth decreasing. For
example, sequential structures, X = A + (B + (C + (D + E)) can be replaced
by tree based structures X = ((A + B) + C) + (D + E) with no change in
circuit size. Therefore, in ShallowCC we extend the rewriting phase by several
depth minimizing patterns, which are not necessarily size decreasing. In total 21
patterns changed, resulting in more than 70 patterns that are searched for (see
full version of this paper for a list of example patterns). Furthermore, we extend
the formerly fixed-depth pattern matching algorithm by a recursive search to
deeper sequential structures, as in the example above. To apply the new patterns
in an efficient manner, we modify CBMC-GC’s fixed point algorithm such that
the algorithm only terminates if no further size and depth improvements are
made or a user defined time limit is reached. Moreover, for performance reasons,
the rewriting first only applies fixed depth patterns, before applying the search
for deeper sequential structures.

Quantifying the improvements of individual patterns is almost impossible.
This is because the heuristic approach commonly allows multiple patterns to
be applied at the same time and every replacement has an influence on future
applicability of further patterns. Nevertheless, the whole set of patterns that we
identified is very effective, as circuits before and after gate level minimization
differ up to a factor of 20× in depth, cf. Sect. 5.3.

92 N. Buescher et al.

5 Evaluation

The evaluation of ShallowCC in split in three parts. First, we compare
ShallowCC with existing depth and size minimized circuits from recent works.
Then, we exemplarily evaluate the different optimization techniques of Shal-
lowCC to illustrate their effectiveness. Finally, we show that the depth mini-
mized circuits, even under size trade-offs, significantly reduce the online time
of the GMW protocol for different network configurations. We begin with a
discussion of the benchmarked functionalities.

5.1 Functionalities

For comparison purposes, we focus on functionalities that have been used before
to benchmark MPC. The evaluated functionalities include basic building blocks
as well as more complex applications, such as biometric matching.

Arithmetic building blocks and floating point operations. Due to their impor-
tance in almost every computational problem, we benchmark arithmetic build-
ing blocks individually. For multiplication we follow the example of [26] and
distinguish results for output bit strings of length n and of length 2n (overflow
free) for n-bit input strings. Floating point calculations are necessary for all
applications where numerical precision is required, e.g., privacy preserving sta-
tistics. We abstain from implementing hand-optimizing floating point circuits,
but instead rely on ShallowCC’s capabilities to compile a IEEE-754 compliment
software floating point implementation written in C.

Distances. Various distances are used in privacy preserving protocols. The
Hamming distance between two bit strings is the number of pairwise differences
in every bit position. Due to its application in biometrics, the Hamming dis-
tance has often been used for benchmarking MPC compilers, e.g., [17,22,26,31].
The Hamming distance can be parametrized by the bit length of the input
strings. The Manhattan distance distM = |x1 −x2|+ |y1 − y2| between to points
a = (x1, y1) and b = (x2, y2) is the distance along a two dimensional space, when
only allowing horizontal or vertical moves. The Euclidian distance between two
points is defined as distE =

√
(x1 − x2)2 + (y1 − y2)2. Due to the complexity

of the square root function, it is common in MPC to benchmark the squared
Euclidian distance [30].

Matrix-vector/matrix multiplication. Algebraic operations such a matrix mul-
tiplications are building blocks for many privacy-preserving applications and
have repeatedly been used before to benchmark MPC [10,17,21]. Being a purely
arithmetic task, its a good showcase to illustrate the automatic translation of
arithmetic operations into CSNs with very low depth.

Compiling Low Depth Circuits for Practical Secure Computation 93

Oblivious arrays. Oblivious data structures are a major building block for the
implementation of privacy preserving algorithms. The most general data struc-
ture is the oblivious array that hides the accessed index. Here, we only benchmark
the array read operation, as its circuit is more complex and thus, interesting than
the write operation [18].

Biometric matching. In biometric matching a party matches one biometric sam-
ple against the other’s party database of biometric templates. Example scenarios
are face-recognition or fingerprint-matching [13]. One of the main concepts is the
computation of a distance, e.g., Euclidean, between the sample and all database
entries. Once all distances have been computed, the minimal distance determines
the best match. For the following experiments, we fix the dimension of a sample
to d = 4, as it has been used before in MPC benchmarking [6,11].

5.2 Circuit Comparison

We implemented all the aforementioned functionalities in C and compiled them
with ShallowCC on an Intel Xeon E5-2620-v2 CPU with a minimization time
limit of 10 min. To illustrate the used sources codes, we refer the reader to the full
version of this paper. The resulting circuit dimensions for different parameters
and bit-widths are given in Table 5. Furthermore, the circuit size, when compiled
with the size minimizing Frigate compiler and CBMC-GC v0.93 is given, as well
as a comparison with the depth-minimized circuit constructions of [10,30]. The
results for Frigate, [10,30] are taken from the publications.

Comparing the depth of the circuits compiled by ShallowCC with the hand
minimized circuits of [10,30] we observe a depth reduction at least 30 % for most
functionalities. The only exception are the floating point operations, which do not
reach the same depth as given in [10]. This is because floating point operations
mostly consist of bit operations, which can significantly be hand optimized on a
gate level, but are hard to optimize when complied from a high-level implemen-
tation in C. When comparing circuit sizes, we observe that ShallowCC is com-
piling circuits that are competitive in size to the circuits compiled from the size
minimizing compilers. A negative exception is the addition, which shows a signif-
icant trade off between depth and size. However, the instantiation of CSNs allows
ShallowCC to compensate these trade-offs in applications with multiple additions,
e.g., the matrix multiplication. In Sect. 5.4 we analyze these trade-offs in more
detail. In summary, ShallowCC is compiling ANSI-C code to Boolean circuits that
outperform hand crafted circuits in depth, with moderate increases in size.

5.3 Evaluation of the Optimizations Techniques

In Table 6 an evaluation of the different optimization techniques for various exam-
ple functionalities is given. For every functionality the same source code is com-
piled twice, once with the specified optimization technique enabled and once with-
out. Obviously, not all optimizations apply to all functionalities, therefore, we only
investigate a selection of functionalities that profit from the different optimization

94 N. Buescher et al.

Table 5. Comparison of circuit size snX and depth dnX compiled by the size minimiz-
ing Frigate [26], CBMC-GC v0.93 [17] compiler, the best, manually depth minimized
circuits given in [10,30] and the circuits compiled by ShallowCC. Improvements are
computed in comparison with the previous work [10,30]. The ‘-’ indicates that no
results were given. Marked in bold face are cases with significant depth reductions.

size minimized depth minimized improv

Frigate CBMC-GC Prev. [10,30] ShallowCC

Circuit n snX snX dnX snX dnX snX dnX dnX

Building Blocks

Add n → n 32 31 31 31 232 11 159 5 54%

Sub n → n 32 31 61 31 232 11 159 5 54%

Mul n → 2n 32 2,082 4,600 67 2,218 19 2,520 15 21%

Mul n → n 64 4,035 4,782 67 - - 4,350 16 -

Arithmetics

Div 32 1,437 2,787 1,087 7,079 207 5,030 192 7%

Matrix 5x5 32 128,252 127,225 42 - - 128,225 17 -

FloatAdd 32 - 2,289 164 1,820 59 2,437 62 -5 %

FloatMul 32 - 3,499 134 3,016 47 3,833 54 -14 %

Distances

Hamming-160 1 719 371 9 - - 281 7 -

Hamming-1600 1 4,691 7,521 31 - - 1,021 12 -

2D-Euclidian 16 - 826 47 1,171 29 1,343 19 34%

2D-Euclidian 32 - 3,210 95 3,605 34 5,244 23 32%

2D-Manhatten 16 - 187 31 296 19 275 13 31%

2D-Manhatten 32 - 395 63 741 23 689 16 30%

Privacy Preserving Protocols

BioMatch-32 16 - 88,385 1,101 - - 90,616 55 -

BioMatch-1024 16 - 2.9M 35,821 - - 2.9M 90 -

Ob.Array-32 8 - 803 66 248 5 538 3 40%

Ob.Array-1024 32 - 100,251 2,055 32,736 10 65,844 4 60%

techniques. The CSN detection shows its strengths for arithmetic functionalities.
For example, the 5x5 matrix multiplication shows a depth reduction of 60 %, when
optimizations are enabled. This is because the computation of a single vector ele-
ment can be grouped into one CSN. The detection of reductions is a very specific
optimization, yet, when applicable, the depth saving can be significant. When com-
puting the minima of 100 integers, a depth reduction of 92 % is visible. Note that
in this test the circuit size itself is unchanged, as only the order of multiplexers is
changed. Gate level minimization is the most important optimization technique for
all functionalities, which do not use all bits available in every program variable. In

Compiling Low Depth Circuits for Practical Secure Computation 95

Table 6. Comparison of circuit dimensions when compiled by ShallowCC with different
optimization techniques enabled or disabled.

w/o optimization w/ optimization Improvement

Circuit n size snX depth dnX size snX depth dnX size snX depth dnX

Optimization: Carry-Save Networks CSNs

Matrix 5x5 32 143,850 42 128,225 17 11% 60%

4D-EuclidianDst 16 2,993 40 2,459 20 18% 50%

Optimization: Reduction

Minima-100 16 5,742 594 5,742 42 0% 92%

BioMatch-1024 16 2,9M 7,181 2,9M 90 0% 98%

Optimization: Gate level minimization

Hamming-160 1 5,389 77 281 7 95% 88%

FloatAdd 32 10,054 194 2,431 74 75% 61%

these cases constant propagation applies, which leads to significant reductions in
size anddepth, as exemplary shown for thefloatingpoint addition and computation
of the Hamming distance. In general, when applicable, the optimization methods
significantly improve the compiled circuits of ShallowCC.

5.4 Protocol Runtime

To show that depth minimization improves the online time of MPC protocols,
we evaluate a selection of circuits in the ABY framework [11]. ABY provides a
state-of-the-art two-party implementation of the GMW protocol [14] secure in
the semi-honest model. We extended the ABY framework by an adapter to parse
ShallowCC’s circuit format. For our experiments, we connected two machines,
which are equipped with an AMD FX 8350 CPU and 16 GB of RAM, running
Ubuntu 15.10 over a 1 Gbit ethernet connection in a LAN. To simulate different
network environments we made used of the Linux network emulator netem.

In this experiment the online protocol runtimes of size and depth minimized
circuits for different RTTs are compared. We omit timings of the pre-processing
setup phase, as this pre-computation can take place independently of the eval-
uated circuits and with any degree of parallelism. We ran this experiment for
different RTTs, starting with zero delay up to a simulated RTT of 80 ms.

The first functionality that we investigate is the biometric matching applica-
tion with a database of 1024 entries. Here, we compare the circuits generated by
CBMC-GC and ShallowCC. The resulting circuit dimensions are given in Table 5.
The results, which are averaged over 10 runs, are given inFig. 3a.Weobserve speed-
ups of ShallowCC’s circuit over CBMC-GC’s circuit of a factor between 2 and 400,
when increasing the RTT from ∼1 ms to 80 ms. A further comparison of size and
depth optimized circuits is given in the full version of this paper.

The second functionality that we evaluate is the array read (MUX), which
allows to analyze a size-depth trade-off. We compiled the read access to an array

96 N. Buescher et al.

Fig. 3. GMW protocol runtime of depth and size minimized functionalities. (a) com-
pares the BioMatch functionality compiled with CBMC-GC and ShallowCC. (b) com-
pares the depth-minimzed DNF and size-minimzed tree 1024:1 multiplexer, for a single
and parallel execution. The resulting run times are plotted for different RTTs. We
observe that the depth optimized circuits significantly outperform the size optimized
circuits for any RTT > 1ms.

with 1024× 32 bit integers. We compare the tree based MUX, as proposed in
[30] with depth dnX = 10 and size snX = 32, 736 with our depth optimized
MUXDNFd, which has a depth of dnX = 4 and size snX = 65, 844 after gate
level minimization. Each circuit is evaluated with ABY individually, as well as
100 times in parallel. This allows to also investigate whether single instruction
multiple data (SIMD) parallelism, which is favored in GMW [11], has a signifi-
cant influence on the results. The resulting online runtimes for both circuits are
illustrated in Fig. 3b. All data points are averaged over 100 runs. We observe that
for almost every network configuration beyond 1 ms RTT, the depth optimized
circuits outperform their size optimized counterparts by a factor of two. The rea-
son for the factor of two is, that the GMW protocol requires one communication
round for the input sharing as well as one round for the output sharing, which
leads to 6 communication rounds in total for the MUXDNFd and 12 rounds for
the tree MUX. Moreover, we observe that here applied data parallelism shows
no significant effect on the speed-up gained through depth reduction.

In conclusion, the experiments support our introductory statement that
depth minimization is of uttermost importance to gain further speed-ups in
round-based MPC.

6 Conclusion

In this work we presented ShallowCC, the first depth-minimizing compiler that
compiles a high-level language to Boolean circuits for MPC. We proposed and
implemented multiple optimization techniques and presented newly optimized
building blocks. ShallowCC is capable of compiling circuits that are up to 2.5
times shallower than hand optimized circuits and up to 400 times shallower
than circuits compiled from size optimizing compilers, while still maintaining a
competitive circuit size.

Compiling Low Depth Circuits for Practical Secure Computation 97

We note that ShallowCC is currently missing the support of an interpreted or
mixed-mode language, which allows the efficient evaluation of very large appli-
cations. However, we are convinced that the combination of a mixed-mode inter-
preter, e.g., [21,24,26,35], with ShallowCC is mostly an engineering task rather
than a research challenge and therefore leave it for future work.

Acknowledgments. This work has been co-funded by the DFG as part of project S5
within the CRC 1119 CROSSING, by the DFG as part of project A.1 within the RTG
2050 “Privacy and Trust for Mobile User”, and by an Erwin Schrödinger Fellowship
(Austrian Science Fund (FWF): J3696-N26).

References

1. Amini, M., Creusillet, B., Even, S., Keryell, R., Goubier, O., Guelton, S.,
McMahon, J.O., Pasquier, F.-X., Péan, G., Villalon, P.: Par4All: from convex
array regions to heterogeneous computing. In: Workshop on Polyhedral Compi-
lation Techniques (2012)

2. Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: a system for secure multi-party
computation. In: ACM CCS (2008)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: ACM STOC (1988)

4. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

5. Buchfuhrer, D., Umans, C.: The complexity of boolean formula minimization. J.
Comput. System Sci. 77, 1 (2011)

6. Büscher, N., Katzenbeisser, S.: Faster secure computation through automatic par-
allelization. In: USENIX Security (2015)

7. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

8. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

9. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

10. Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni,
S.: Automated synthesis of optimized circuits for secure computation. In: ACM
CCS (2015)

11. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

12. Earle, J.: Latched carry-save adder. IBM Techn. Discl. Bull. 7(10), 909–910 (1965)
13. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:

Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009)

14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: ACM
STOC (1987)

15. Harris, D.: A taxonomy of parallel prefix networks. In: IEEE ASILOMAR (2003)

98 N. Buescher et al.

16. Henecka, W., Kögl, S., Sadeghi, A., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: ACM CCS (2010)

17. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations
in ANSI C. In: ACM CCS (2012)

18. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 506–525.
Springer, Heidelberg (2014)

19. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009)

20. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

21. Kreuter, B., Shelat, A., Mood, B., Butler, K.: PCF: A portable circuit format for
scalable two-party secure computation. In: USENIX Security (2013)

22. Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious
adversaries. In: USENIX Security (2012)

23. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient ram-model
secure computation. In: IEEE S&P (2014)

24. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: Oblivm: a programming frame-
work for secure computation. In: IEEE S&P (2015)

25. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computa-
tion system. In: USENIX Security (2004)

26. Mood, B., Gupta, D., Carter, H., Butler, K., Traynor, P.: Frigate: a validated,
extensible, and efficient compiler and interpreter for secure computation. In: IEEE
European Symposium on Security and Privacy (2016)

27. Mood, B., Letaw, L., Butler, K.: Memory-efficient garbled circuit generation for
mobile devices. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 254–268.
Springer, Heidelberg (2012)

28. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

29. Paterson, M.S., Pippenger, N., Zwick, U.: Optimal carry save networks
30. Schneider, T., Zohner, M.: GMW vs. Yao? efficient secure two-party computation

with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
275–292. Springer, Heidelberg (2013)

31. Songhori, E.M., Hussain, S.U., Sadeghi, A., Schneider, T., Koushanfar, F.: Tiny-
garble: Highly compressed and scalable sequential garbled circuits. In: IEEE S&P
(2015)

32. Wallace, C.S.: A suggestion for a fast multiplier. IEEE Trans. Electron. Comput.
13(1), 14–17 (1964)

33. Yao, AC.-C.: Protocols for secure computations (Extended Abstract). In: Annual
Symposium on Foundations of Computer Science, FOCS 1982 (1982)

34. Zahur, S., Evans, D.: Circuit structures for improving efficiency of security and
privacy tools. In: IEEE S&P (2013)

35. Zahur, S., Evans, D.: Obliv-c: a language for extensible data-oblivious computation.
IACR Cryptology ePrint Archive 2015 (2015)

36. Zhang, Y., Steele, A., Blanton, M.: PICCO: a general-purpose compiler for private
distributed computation. In: ACM CCS (2013)

Secure Computation of MIPS Machine Code

Xiao Wang1(B), S. Dov Gordon2, Allen McIntosh3, and Jonathan Katz1

1 University of Maryland, College Park, USA
{wangxiao,jkatz}@cs.umd.edu

2 George Mason University, Fairfax, USA
gordon@gmu.edu

3 Applied Communication Sciences, Basking Ridge, USA
amcintosh@appcomsci.com

Abstract. Existing systems for secure computation require program-
mers to express the program to be securely computed as a circuit, or in
a domain-specific language that can be compiled to a form suitable for
applying known protocols. We propose a new system that can securely
execute native MIPS code with no special annotations. Our system allows
programmers to use a language of their choice to express their programs,
together with any off-the-shelf compiler to MIPS; it can be used for
secure computation of “legacy” MIPS code as well.

Our system uses oblivious RAM for fetching instructions and perform-
ing load/store operations in memory, and garbled universal circuits for
the execution of a MIPS CPU in each instruction step. We also explore
various optimizations based on an offline analysis of the MIPS code to be
executed, in order to minimize the overhead of executing each instruction
while still maintaining security.

1 Introduction

Systems for secure two-party computation allow two parties, each with their
own private input, to evaluate an agreed-upon program on their inputs while
revealing nothing other than the result of the computation. This notion orig-
inated in the early 1980s [25], and until recently was primarily of theoretical
interest, with research focusing entirely on the design and analysis of low-level
cryptographic protocols. The situation changed in 2004 with the introduction of
Fairplay [18], which provided the first implementation of a protocol for secure
two-party computation in the semi-honest setting. Since then, there has been
a flurry of activity implementing two-party protocols with improved security
and/or efficiency [1,4,9–11,13–17,19,20,26].

Many (though not all) of these implementations provide an end-to-end sys-
tem that, in principle, allows non-cryptographers to write programs that can
automatically be compiled to some intermediate representation (e.g., a boolean
circuit) suitable for use by back-end protocols that can securely execute programs
expressed in that representation. In practice, however, such systems have several
drawbacks. First of all, the user cannot write the program in a language of their

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 99–117, 2016.
DOI: 10.1007/978-3-319-45741-3 6

100 X. Wang et al.

choice; just as there is no programming language that is best for every applica-
tion, there is no domain-specific language for secure computation that is best for
every purpose. Second, existing domain-specific languages [10,16,17,20,26] can
be hard to learn and use, or are simply limited in terms of expressiveness. For
example, Secure Computation API (SCAPI) [4] does not provide a high-level
language to specify the function to compute. Sharemind [2] fails to support con-
ditional statements branching on private variables according to the user manual.
Obliv-C [26], an extension of C, requires the programmer to use special anno-
tations along with an extended set of keywords for secret values and branching
statements. Even if the language is a subset of a standard language (such as
ANSI C [10]), the programmer must still be aware of limitations and which fea-
tures of the language to avoid; moreover, legacy code will not be supported.
Finally, compilers from high-level languages to boolean circuit representations
(or other suitable representations) can be slow; as discussed in detail in Sect. 5.1,
some previous compilers [13,14] require more than 2000 s just to compile a pro-
gram for matrix multiplication of dimension 16 into a circuit representation,
not even including any cryptographic operations. Furthermore, most compilers
requires recompiling the program when the input size changes.

Motivated by these drawbacks, we explore in this work the design of a sys-
tem for secure execution, in the semi-honest setting, of native MIPS machine
code. That is, the input program to our system—i.e., the program to be securely
computed—is expressed in MIPS machine code, and our system securely exe-
cutes this code. We accomplish this via an emulator that securely executes each
instruction of a MIPS program; the emulator uses oblivious RAM [7] for fetching
the next instruction as well as for performing load/store operations in memory,
and relies on a universal garbled circuit for executing each instruction. Our sys-
tem addresses all the problems mentioned earlier:

– Programmers can write their programs in a language of their choice, and
compile them using any compiler of their choice, so long as they end up with
MIPS machine code. Legacy MIPS code is also supported.

– Because our system does not require compilation from a domain-specific lan-
guage to some suitable intermediate representation, such as boolean circuits,
we can use fast, off-the-shelf compilers and enjoy the benefits of all the
optimizations such compilers already have. The number of instructions we
securely execute is identical to the number of instructions executed when
running the native MIPS code (though, of course, our emulator introduces
overhead for each instruction executed).

Our code is open sourced online1.
Our primary goal was simply to develop a system supporting secure execution

of native MIPS code. In fact, though, because of the way our system works—
namely, via secure emulation of each instruction—we also gain the benefits of
working in the RAM model of computation (rather than in a boolean-circuit
model), as in some previous work [8,16,17]. In particular, the total work required

1 https://github.com/wangxiao1254/Secure-Computation-of-MIPS-Machine-Code.

https://github.com/wangxiao1254/Secure-Computation-of-MIPS-Machine-Code

Secure Computation of MIPS Machine Code 101

for secure computation of a program using our system is proportional (modulo
polylogarithmic factors) to the actual number of instructions executed in an
insecure run of that same program on the same inputs; this is not true when using
a circuit-based representation, for which all possible program paths must be
computed even if they are eventually discarded. Working in the RAM model even
allows for computation time sublinear in the input length [8] (in an amortized
sense); we show an example of this in Sect. 5.3.

Performance. Our goal is generality, usability, and portability; we expressly
were not aiming to develop a yet-more-efficient implementation of secure com-
putation. Nevertheless, for our approach to be viable it must be competitive with
existing systems. We describe a number of optimizations that rely on an offline
analysis of the (insecure) program to be executed; these can be done before the
parties’ inputs are known and before execution of any protocol between them
begins. We view these optimizations as one of the main contributions of our
work, as they improve the performance by as much as a factor of 30× on some
programs, bringing our system to the point where it is feasible. In fact, for certain
applications we are only ∼25 % slower than ObliVM [17] (see Sect. 5.3).

Trade-off between efficiency and usability. Our work explores part of the
spectrum between efficiency and usability for secure-computation systems. Most
work in this area has concentrated on the former, focusing on optimizing the
back-end protocol, implementation aspects, or improved compilation time. Here,
we are expressly interested in maximizing usability, envisioning, e.g., a non-
expert user maintaining a large code base, perhaps written in several languages,
who occasionally wishes to run some of this code securely. Such a user might
gladly sacrifice run-time efficiency in order to avoid re-writing their code in the
domain-specific language of the moment. To support this level of generality, the
only feasible approach is to securely compute on a low-level language. One goal
of our work is to explore how much efficiency must be sacrificed in order to
achieve this level of generality.

Related and concurrent works. Songhori et al. [21] explored using hardware-
optimization techniques to reduce the size of boolean circuits and demonstrated
a circuit containing MIPS-I instructions. However, the goal of their work was
different: they aim to minimize the size of a single universal circuit for private
function evaluation (PFE), while we aim to optimize the emulation of an entire
public MIPS program. In particular, they do not investigate optimizations to
accelerate execution of the program, something that is a key contribution of our
work. Fletcher et al. [5] designed an interpreter based on the Turing machines,
using static analysis on the program to improve the efficiency. Their levelization
technique shares some similarities to some of our techniques. However their sys-
tem does not support general RAM computation, therefore is simpler than our
setting.

Concurrently, Keller [12] recently built a system that executes C code over
the SPDZ protocol. Their high level idea is similar to our basic system: using a
universal circuit for ALU and ORAM for memory access. However, they didn’t

102 X. Wang et al.

explore how to use static analysis to further accelerate the system, as in our
optimized system described in Sect. 4.

2 Preliminaries

We briefly describe some background relevant to our work.

Secure computation and garbled circuits. Protocols for two-party compu-
tation allow two parties, each with their own private input, to compute some
agreed-upon function on their inputs while revealing nothing to either party
other than the result of the computation. In this paper we exclusively focus on
the semi-honest model, where both parties are assumed to execute the proto-
col correctly, but each may try to infer additional information about the other
party’s input based on their own view of the protocol transcript.

Our emulator uses as a building block Yao’s garbled-circuit protocol [25] for
secure two-party computation, which assumes the function to be computed is
represented as a boolean circuit. At a high level, the protocol works as follows:
one party, acting as a garbled-circuit generator, associates two random crypto-
graphic keys with each wire in the circuit. One of these keys will represent the
value 0 on that wire, and the other will represent the value 1. The circuit gener-
ator also computes a garbled table for each gate of the circuit; the garbled table
for a gate g allows a party who knows the keys associated with bits bL, bR on the
left and right input wires, respectively, to compute the key associated with the
bit g(bL, bR) on the output wire. The collection of garbled gates constitutes the
garbled circuit for the original function. The circuit generator sends the garbled
circuit to the other party (the circuit evaluator) along with one key for each
input wire corresponding to its own input. The circuit evaluator obtains one key
for each input wire corresponding to its input using oblivious transfer. Given
one key per input wire, the circuit evaluator can “evaluate” the garbled circuit
and compute a single key per output wire.

If the circuit generator reveals the mapping from the keys on each output wire
to the bits they represent, then the circuit evaluator can learn the actual output
of the original function. However, it is also possible for the circuit generator to
use the output wires from one garbled circuit as input wires to a subsequent
garbled circuit (for some subsequent computation being done), in which case
there is no need for this decoding to take place. In fact, this results in a form of
“secret sharing” that we use in our protocol; namely, the sharing of a bit b will
consist of values (w0, w1) held by one party, while the other party holds wb.

Oblivious RAM (ORAM). Oblivious RAM [7] allows a “client” to read/write
an array of data stored on a “server,” while hiding from the server both the the
data and the data-access pattern. By default, ORAM only hides information
from the server; to hide information from both parties, we adopt the method of
Gordon et al. [8] and share the client state between the two parties, who can
then use the shares as input to a secure computation that outputs a memory
address to read, while also updating both users’ shares of the state.

Secure Computation of MIPS Machine Code 103

In this work, we use ORAM to store both the MIPS program (so parties
are oblivious of the instruction being fetched) as well as the contents of main
memory (so parties are oblivious about the location of memory being accessed).
Note that in the former case, the data is public and read-only, whereas in the
latter case the data needs to be kept hidden from both parties (in general), and
may be both read and written. We refer to the ORAM storing instructions as
the “instruction bank,” and the ORAM storing data as the “memory bank.”

Security of our emulator. Although we do not provide any proofs of security
in this work, an argument as in [8] can be used to prove that our construc-
tion is secure (in the semi-honest model) with respect to standard definitions of
security [6], with one important caveat: our system leaks the total number of
instructions executed in a given run of the program. This is a consequence of
the fact that we allow loop conditions based on private data, something that is
simply disallowed in prior work. Leaking the running time may leak information
about the parties’ private inputs; note, however, that this can easily be prevented
by using padding to ensure that the running time is always the same. In Sect. 4.3,
we will discuss how to reduce this leakage while improving the efficiency at the
same time.

3 Basic System Design

In this section we describe the basic design of our system. We describe the
overall workflow in Sect. 3.1. In Sect. 3.2, we review relevant aspects of the MIPS
architecture, and in Sect. 3.3, we give a high-level overview of how our system
works. We provide some low-level details in Sects. 3.4 and 3.5. We defer until
Sect. 4 a discussion of several important optimizations that we apply.

3.1 Overall Workflow

Our system enables two parties to securely execute a program described in a
MIPS code. Our system works in the following steps:

– It first performs an offline static analysis of the MIPS code to produce a set
of CPU circuits and instruction banks, one for each step of the computation.
In our basic system described in this section, the offline analysis is rather
simple; a more complex analysis, described in Sect. 4, can be used to improve
performance.

– During the online phase, the two parties securely execute each instruction,
using ORAM to access the appropriate inputs at each step.

As our back-end for secure computation (namely, generation/execution of the
garbled circuits, and fetching of inputs using ORAM) we use ObliVM [17]. How-
ever, other frameworks [3,21,26] could also potentially be used (in conjunction
with other ORAM implementations).

104 X. Wang et al.

3.2 MIPS Architecture

A MIPS program is an array of instructions, each 32 bits long. In the basic MIPS
instruction set (i.e., in MIPS I), there are about 60 instruction types, includ-
ing arithmetic instructions, memory-related instructions, and branching instruc-
tions. Instruction types refer to the operations performed during a CPU cycle.
On the other hand, an instruction consists of instruction type and operands. For
example, ADD is an instruction type, but ADD $1, $2, $2 is an instruction.

For our purposes, we can view the state of the MIPS architecture during pro-
gram execution as consisting of (1) the program itself (i.e. the array of instruc-
tions), (2) the values stored in a set of 32-bit registers, which include 32 general-
purpose registers plus various special registers including one called the program
counter, and (3) values stored in main memory. To execute a given program, the
input(s) are loaded into appropriate positions in memory, and then the following
steps are repeated until a special exit instruction is executed:

– Instruction fetch (IF): fetch the instruction according to the program counter.
– Instruction decode (ID): fetch 2 registers according to the instruction.
– Execute (EX): execute the instruction and update the program counter.
– Memory access (MEM): perform load/store operations on memory, if required

(depending on the instruction).
– Write back (WB): write a value to one register.

3.3 Overview of Our System

At a high level, two parties use our system to securely execute a MIPS program
by maintaining secret shares of the current state, and then updating their shares
by securely emulating each of the steps listed above until the program terminates.
We describe each of these next.

We currently support about 37 instruction types (see Table 1), which are suf-
ficient for all the programs used in our experiments. It is easy to add instruction
types to our system as needed, using 2–3 lines of code (in the ObliVM framework)
per instruction. In our basic system described here, every supported instruction
is included in the garbled circuit for every step, thus increasing the run-time of
each emulated MIPS cycle. In our optimized system described in Sect. 4, only

Table 1. Set of instruction types currently supported in our system. More instructions
can be added easily.

Types Instruction Type

R Type ADDU MOVZ MOVN SLLV SRLV MFLO SLL SRL SRA AND

MTLO MFHI MTHI MULT SUBU SLTU OR XOR NOR DIV

I Type BGEZAL SLTIU XORI ANDI BLEZ JR ORI BNE

ADDIU BLTZAL BGEZ BLTZ BGTZ BEQ LUI

J Type J JAL

Secure Computation of MIPS Machine Code 105

instructions that can possibly be executed at some step are included in the gar-
bled circuit for that step, so there is no harm in including support for as many
instructions types as desired.

Secret sharing the MIPS state. As mentioned previously, the MIPS state
contains the array of program instructions, registers, and memory; all three com-
ponents are secret shared between the two parties and, in addition, the program
instructions and memory are stored in (separate) ORAMs. (Even though the
program instructions are known to both parties, it is important that neither
party learns which instruction is fetched in any instruction cycle, as this leaks
information about the inputs.) The registers could, in principle, also be stored
in ORAM, but since there are only 32 registers a trivial ORAM (i.e., a linear
scan over all registers) is always better.

By default, all components are secret shared using the mechanism described
in Sect. 2. Although this results in shares that are 80–160× larger than the
original value (because ObliVM creates garbled circuits with 80-bit keys), this
sharing is more efficient for evaluating garbled circuits on those shared values.
However, when the allocated memory is larger than 12MB, we switch to a more
standard XOR-based secret-sharing scheme, adding an oblivious-transfer step
and an XOR operation inside the garbled circuit to reconstruct the secret.

Secure emulation. The parties repeatedly update their state by performing a
sequence of secure computations in each MIPS instruction cycle. For efficiency,
we reordered the steps described in the previous section slightly. In the secure
emulation of a single cycle, the parties:

1. Obliviously fetch the instruction specified by the shared program counter
(the IF step).

2. Check whether the program has terminated and, if so, terminate the protocol
and reconstruct the output.

3. Securely execute the fetched instruction, and update the registers appropri-
ately (this corresponds to the ID, EX, and WB steps).

4. Obliviously access/update the memory and securely update a register if the
instruction is a load or store operation (this corresponds to the MEM and WB
steps).

We stress that the parties should not learn whether they are evaluating an arith-
metic instruction or a memory instruction, and must therefore execute steps 3
and 4 in every cycle, even if the step has no effect on the shared MIPS state.
Our improved design in Sect. 4 provides a way of securely bypassing step 4 on
many cycles.

3.4 Setup

Before executing the main loop, we load the MIPS code into the (shared) instruc-
tion memory and the users’ inputs into the (shared) main memory.

Loading the MIPS code. In our baseline system design, we load the full
program (i.e., array of instructions) into an ORAM. Therefore, when emulating

106 X. Wang et al.

each step we incur the cost of accessing an ORAM containing instructions from
the entire program. In Sect. 4, we describe improvements to this approach.

In our current implementation, we do not load any code executed before
main() is called, e.g., library start-up code, code for managing dynamic libraries,
or class-constructor code. The latter is not needed for executing MIPS programs
compiled from C code, but would be needed for executing MIPS code generated
from object-oriented languages. Note, however, that such operations are data-
independent, and can be simulated by the parties locally. Adding support for
loading such code would thus be easy to incorporate in our system.

Loading user inputs. We assume a public upper bound on the input size of
each party. Each party starts with their input in a local file. When emulation
begins, the parties initialize an empty ORAM supporting the maximum input
sizes, and the parties’ inputs are secret shared and written to some agreed-upon
(non-overlapping) segments of memory. The parties also initialize their shares
of the register space with pertinent information such as the address and length
of the input data. Since no annotation is used, we need to find a way to specify
which party each input belongs to. In our system, each party organizes their
input as an array, which is passed to the function to compute in an fixed order:
generator’s array comes first; evaluator’s array comes second, followed by the
length of two arrays.

Secure computation of MIPS code

Input: reg[], pc,ORAMinst[],ORAMMEM[]

Computation:

1. inst := FetchInstruction(pc, ORAMinst)
2. terminateBit := testTerminate(inst, reg)

3. if (terminateBit) GOTO line 7

4. ALU(inst, pc, reg)
5. MEM(inst, reg, ORAMMEM)

6. GOTO line 1
7. Reconstruct the output (in reg or ORAMMEM).

Fig. 1. Overview of secure computation of a MIPS program. Boxed lines are executed
outside of secure computation.

3.5 Main Execution Loop

We use ORAMinst[], ORAMMEM[], reg[], pc, and inst to denote, respectively, the
(shared) instruction bank, (shared) memory bank, (shared) registers, (shared)
value of the program counter, and (shared) current instruction. As shown in
Fig. 1, secure execution of a MIPS program involves repeated calls of three pro-
cedures: instruction fetch, ALU computation, and memory access.

Secure Computation of MIPS Machine Code 107

Secure computation of the MIPS ALU

Input: inst, pc, reg[]

ALU:

1. rs := inst[21:25], funct := inst[0:5],rd := inst[11:15]
rt := inst[16:20], op := inst[26:31],imm := inst[0:15], . . .

2. reg rs := reg[rs], reg rt := reg[rt]
3. if op == R Type and funct == ADD

reg rd := reg rs + reg rt
else if op == I Type and funct == ADDI

reg rt := reg rs + immediate
else if . . . // more arithmetic operations

4. if op == R Type then pc := pc + 4
else if op == I Type and funct == BNE

if reg rs! = reg rt
pc := pc + 4 + 4× imm

else if . . . // more cases that update pc
5. if op == R Type then reg[rd] := reg rd

else reg[rt] := reg rt

Fig. 2. This functionality takes the current instruction, program counter, and regis-
ters as input. Depending on the type of the instruction, it performs computation and
updates the registers, as well as updating the program counter.

Secure memory access

Input: inst, reg[], ORAMMEM[]
MEM:

1. rs:=inst[21:25], op:=inst[26:31],
rt:=inst[16:20], imm:=inst[0:15]

2. addr := imm+reg[rs]
3. If op is a load operation code:

reg[rt] := ORAMMEM[addr]
4. If op is a store operation code:

ORAMMEM[addr] := reg[rt]

Testing termination

Input: inst, reg[31]
testTerminate:

1. terminate := false
2. If inst is BEQ $0,$0,-1

terminate := true
3. If inst is jr $31 and

reg[31] == 0
terminate := true

4. Reveal the bit terminate.

Fig. 3. (a) This functionality takes the instruction, the registers, and the memory as
input and accesses the memory and registers according to the instruction. (b) This
functionality takes the current instruction and the registers as input. It returns true if
these indicate program termination.

Instruction fetch. In the basic system, we put the entire MIPS program into
an ORAM. Therefore, fetching the next instruction is simply an ORAM lookup.

ALU computation. The MIPS ALU is securely computed using a universal
garbled circuit. As shown in Fig. 2, this involves five stages:

108 X. Wang et al.

1. Parse the instruction and get fields including operation code, function code,
register addresses, and the immediate value. (We use inst[s:e] to denote the
s-th bit to the e-th bits of inst.)

2. Retrieve values reg rs = reg[rs] and reg rt = reg[rt] from the registers.
3. Perform arithmetic computations.
4. Update the program counter.
5. Write the updated value back to the registers.

The first step is free due to the secret sharing we use and the fact that here we
are using a circuit model of computation. The fourth step is very cheap. The
second and fifth steps require 3 accesses to the register space in total, which we
have implemented using a circuit with 3552 AND gates.

Memory access. Memory-related instructions can either load a value from
memory to a register, or store a value from a register to memory. As shown in
Fig. 3a, in order to hide the instruction type, every memory access requires one
read and one write to the memory ORAM, as well as a read and a write to the
registers. The cost of this component depends on how large the memory is, and
is often the most expensive part of the entire computation.

Checking for termination. In our basic implementation, we execute a secure
computation on each cycle in order to determine whether the program has ter-
minated. (See Fig. 3b.) This is done by checking the current instruction and the
contents of the final register (used for storing the return value). Revealing this
bit to both parties requires one round trip in each instruction cycle.

4 Improving the Basic Design

The construction described in Sect. 3 requires us to perform a secure emulation
of the full MIPS architecture for every instruction cycle. Even if we restrict
our system to only include a small number of instruction types, we still have
to execute many unnecessary instructions in every step: if a single expensive
instruction appears anywhere in the program, our basic system would execute
this expensive instruction at every step, even though the result is usually ignored.
Even worse is the fact that the presence of load/store instructions necessitates
expensive accesses to the memory ORAM in every instruction cycle.

4.1 Mapping Instructions to Steps

We improve the efficiency of our system by identifying unnecessary computation.
First, we perform static analysis of the MIPS binary code and compute, for every
step of the program execution, the set of instructions that might possibly be
executed in that step. Then, using this information, we automatically generate a
small instruction bank and ALU circuit tailored for each time step. This allows
us to improve performance, without affecting security in various ways.

Computing instruction sets for each time step. To compute a set of
instructions that might be executed at each time step, we walk through the

Secure Computation of MIPS Machine Code 109

binary code, spawning a new thread each time we encounter a branching instruc-
tion. Each thread steps forward, tagging the instructions it encounters with an
increasing time step, and spawning again when it encounters a branch. We ter-
minate our analysis if all threads halt, or if the set of all instructions tagged
with current time step L is the same as the set of instructions tagged with some
previous time step k < L. It is easy to verify that one of these two conditions
will eventually be met. Now, the set of instructions that should be executed at
time step i < L contains all instructions tagged with time step i.

During the execution, our emulator chooses a circuit according to the fol-
lowing deterministic sequence of time steps: 1, 2, ..., L, k+1, ..., L, k+1, ..., L, ...,
until the termination condition is satisfied. In Sect. 5.1, we will discuses in detail
how long such static analysis takes on programs of different sizes.

To illustrate this procedure, we provide a very simple example in Fig. 4a.
Although there are eight instructions in the code snippet, at most two instruc-
tions can possibly be executed in any time step. When the code contains loops,
as shown in Fig. 4b, a single instruction might appear in multiple time steps.
In this case, our analysis will only terminate when we repeat some prior state,
resulting in an instruction set that is identical to one that we previously con-
structed. In particular, the set of instructions for time step 2k + 4 is the same
as the one for time step k + 3.

This analysis does not result in an optimal assignment of instructions to time
steps, because it ignores data values. We leave it to future work to explore better
methods of performing the mapping of instructions to time steps. On the other
hand, because of this it is easy to see that no private information is leaked since
the set of instructions corresponding to some time step t includes all possible
instructions that could ever be executed at step t for any possible set of inputs.

Instruction mapping makes sure that for each step only the instruction types
that can possibly be executed in that step will be included. Therefore, in the opti-
mized system, adding support for more instructions will not impact the perfor-
mance. In particular, although we have not implemented the full MIPS instruc-
tion set, doing so would have no impact on the performance results described in
Sect. 5 because the unnecessary instructions are automatically excluded by our
emulator.

Constructing smaller instruction banks. After performing the above analy-
sis, we can initialize a set of instruction banks in the setup stage, one for each
time step, to replace the single, large instruction bank used in Sect. 3. When
fetching an instruction during execution, we can simply perform an oblivious
fetch on the (smaller) instruction bank associated with the current time step.

When we employ this optimization, using näıve ORAM to store the set of
possible instructions for each time step becomes inefficient. Originally, instruc-
tions were in contiguous portions of memory, so N instructions could be placed
into an ORAM of size N . Now, each instruction set contains only a small num-
ber of instructions, say n < N , while their address values still span the original
range. If we use ORAM to store them, its size would have to be N instead of n.
Therefore, we use an oblivious key-value store for the set of instructions at each

110 X. Wang et al.

Example 1
main:

MULT $1, $2, $3 //step 1

BNE $1, $2, else //step 2

Instruction 1 //step 3

Instruction 2 //step 4

J endif //step 5

else:

Instruction 3 //step 3

Instruction 4 //step 4

Instruction 5 //step 5

endif:

Example 2
main:

ADD $1,$2,$3 //step 1

lo:

Ins. 1 //step 2, k+3, 2k+4

...

Ins. k //step k+1, 2k+2

BNE $1,$2,lo //step k+2, 2k+3

post-lo:

Ins. k+1 //step k+3, 2k+4

...

Ins. 2k+1 //step 2k+3

Fig. 4. (a) Assigning instructions to time steps. MULT instruction is not included in any
ALU circuit but step 1. (b) An example demonstrating how we map instructions to
time steps in a program with loops.

time step. Since the size of each instruction bank is very small for the programs
we tested, we implemented an oblivious key-value structure using a simple linear
scan; for larger programs with more instructions it would be possible to design
a more-complex oblivious data structure with sub-linear access time.

Constructing smaller ALU circuits. Once we have determined the set of
possible instructions for a given time step, we can reduce the set of instruction
types required by that time step. In the offline phase, before user inputs are
specified, we generate a distinct garbled ALU circuit for each time step (using
ObliVM) supporting exactly the set of possible instructions in that time step.
During online execution, our emulator uses the appropriate garbled ALU circuit
at each time step.

Skipping unnecessary memory operations. The same idea also allows us
to reduce the number of memory operations. There are two types of memory
operations: (1) store operations that read a value from a register and write it
to memory, and (2) load operations that read a value from memory and write
it to a register. When performing the static analysis, we compute two flags for
each time step, indicating if any load or store operation could possibly occur
in that step. During the run-time execution, our emulator skips the load/store
computation depending on the values of these flags.

Improving accesses to the register space. We can additionally improve
the efficiency of register accesses. Since register values are hard-coded into the
instructions, they can be determined offline, before the user inputs are specified.
(This is in contrast to memory accesses, where the addresses are loaded into the
registers and therefore cannot be determined at compile time.) For example, the
instruction ADD $1, $2, $4 needs to access registers at location 1, 2, and 4.
During the offline phase, we compute for each time step the set of all possible

Secure Computation of MIPS Machine Code 111

register accesses at that time step. Then, in the online phase, only those registers
need be included in the secure emulation for that time step.

4.2 Padding Branches

The offline analysis we just described provides substantial improvements on real
programs. For example, as we show in Sect. 5.2 for the case of set intersection, this
analysis reduces the cost of instruction fetch by 6× and reduces the ALU circuit
size by 1.5×. This is because the full program has about 150 instructions, while
the largest instruction bank after performing our binary analysis contains just 31
instructions; for more than half of the time steps, there are fewer than 20 possible
instructions per time step. On the other hand, there is only a small reduction in
the time spent performing load and store operations, because these operations
are possible in nearly every time step. Load and store operations are by far the
most costly instructions to emulate. For example, reading a 32-bit integer from
an array of 1024 32-bit integer requires 43K AND gates. So it is important to
reduce the number of times we unnecessarily perform these operations.

Before presenting further improvements, it is helpful to analyze the effect of
what has already been described. Consider again the simple example in Fig. 4b.
Here, with only a single loop, it is easy to calculate how many instructions
will be assigned to any particular time step. If the loop has k instructions, and
there are n instructions following the loop, then in some time step we might
have to execute any of n/k + 1 instructions. This should be compared with the
worst-case, where we perform no analysis and simply assume that we could be
anywhere among the n + k instructions in the program. When k is large and
n is small—i.e., if most of the computation occurs inside this loop—our binary
analysis provides substantial savings.

Unfortunately, this example is overly simplistic, and in more realistic exam-
ples our binary analysis might not be as effective. Let’s consider what happens
when there is a branch inside the loop, resulting in two parallel blocks of lengths
k1 and k2. If the first instruction in the loop is reached for the first time at time
step x, then it might also be executed at time steps x+k1, x+k2, x+k1+k2, . . .,
and, more generally, at every time step x + (i · k1) + (j · k2) for i, j ∈ Z. If k1
and k2 are relatively prime, then every i · k1 time steps, and every j · k2 time
steps, we add another instruction to the instruction set. It follows that in fewer
than k1 · k2 time steps overall, we can be anywhere in the loop! Furthermore, at
that point we might exit the loop on any step, so that after executing fewer than
k1 · k2 +n time steps, we might be anywhere from the start of the loop until the
end of the program, and we no longer benefit from our analysis at all.

This motivates the idea of padding parallel blocks with NOPs so the length
of one is a multiple of the other. Using the same example of a single if/else
statement inside a loop, if the two branches have equal length (i.e., k1 = k2), then
at any time step we will never have more than two instructions from inside the
loop—one from each branch—assigned to the same time step. We provide further
discussion about the performance improvement in Sect. 5, using set intersection
as an example.

112 X. Wang et al.

4.3 Checking Termination Less Frequently

In our basic system, we test for termination of the program in every instruction
cycle, which incurs a round of communication each time. This overhead becomes
significant, especially after we performed the optimizations mentioned in the
previous sections. For example, for a program with T cycles, our basic system
needs (ro + 1)T roundtrips, where ro is the number of roundtrips needed by an
ORAM access.

In order to avoid such overhead, we modified the system to check for termi-
nation only every C instruction cycles, for C a user-specified constant. In every
cycle, the parties still compute shares of the bit indicating if the program has
terminated, but they do not reconstruct that bit in clear. Instead, memory and
register accesses take this bit as input, and do not update the memory or regis-
ters if the program has terminated. This ensures that the MIPS state, including
registers and memory, will not change after termination, even if additional cycles
are executed.

Note that the parties execute up to C − 1 extra instruction cycles, but the
amortized cost of checking for termination is decreased by a factor of C. One can
thus set C depending on the relative speeds of computation and communication
to minimize the overall running time. Now for a program with T cycles, and
no memory accesses, the total number of roundtrips is no × ro + �T/C�, where
no < T . In addition to reducing number of roundtrips, such optimization also
reduces the leakage. Instead of leaking total number of cycles T , only �T/C� is
leaked.

5 Performance Analysis

Experimental Setup. Our emulator takes MIPS binaries as input and allows
two parties to execute that code securely. All binaries we used were generated
from C code using a GCC 4.7.3 compiler with -O2 -std=c99 --save-temps
flags. When specified, we added NOPs to the binary by hand to explore the
potential speedup introduced by padding; for all other examples, including
binary search, decision trees, and Dijkstra’s shortest-path algorithm, we directly
used the binaries generated by the GCC compiler without adding any padding.
More detailed performance analysis and results for the last two examples can be
found in the extended version [22].

All times reported are based on two machines of type c4.4xlarge with
3.3 GHz cores and 30 GB memory running in the same region of an Amazon EC2
cluster. Two machines are connected by ethernet with about 1.1 Gbps band-
width. We did not use parallel cores, except possibly by the JVM for garbage
collection. In all our results, we report the time used by the circuit generator,
which is the bottleneck in the garbled-circuit protocol. Note that our system is
based on ObliVM, with a garbling rate of about 600K AND gates per second.
A better garbled circuits implementation can therefore improve the absolute
running time. Therefore we report different metrics for a better comparison.

Secure Computation of MIPS Machine Code 113

Table 2. Total running time for computing the size of a set intersection.

Input size Memory Instruction ALU Setup Total

per party Access Fetch Computation Cost

64 Elements Baseline 18.7 s 25.3 s 14.2 s 0.1 s 58.4 s

+Inst. Mapping 5.4 s 3.6 s 3.8 s 0.1 s 12.9 s

+Padding 0.5 s 0.4 s 1.8 s 0.1 s 2.8 s

256 Elements Baseline 175.9 s 93.6 s 54.5 s 0.2 s 324.1 s

+Inst. Mapping 51.9 s 14.4 s 14.5 s 0.2 s 81.0 s

+Padding 4.9 s 1.3 s 6.6 s 0.2 s 13.0 s

1024 Elements Baseline 2477.4 s 375.2 s 215.2 s 0.4 s 3068.2 s

+Inst. Mapping 782.5 s 59.4 s 58.7 s 0.4 s 901.0 s

+Padding 76.3 s 5.5 s 26.3 s 0.4 s 108.5 s

Metrics. Since our emulator uses ALU circuits and instruction banks with dif-
ferent sizes at each time step, and since it may skip memory operations altogether
in some time steps, the cost varies between different time steps. Therefore, we
report the total cost of execution, amortized over all time steps. We ran each
experiment 10 times. Since the standard derivation is never greater than 5% of
the mean, we report the mean of 10 runs if not specified.

5.1 Time for Static Analysis and Compilation

Our system takes MIPS binary code, generated by an off-the-shelf compiler, as
input. In all the experiments we ran, our system used less than 0.6 s for the
static analysis mapping instructions to time steps, including generation of the
code for the CPU circuits for all time steps. Following this step, we run the
ObliVM compiler on the code for these CPU circuits; this never took more than
1.5 s for all circuits in any of our examples. Note that compilation time does not
include any cryptographic operations; all cryptographic operations, e.g., garbled
circuits, oblivious transfer, etc., are all done at runtime, reported separately in
the following subsections.

If the program is written in a way such that input size is not fixed at compile
time, then we can perform our static analysis and optimization on the binary
without prior knowledge of input size. This means that: (1) We only need to
perform our static analysis once for all input sizes. (2) The running time of our
static analysis is independent of the input size.

The compilation time in our system is within the same range or smaller
than systems that report compilation time. For example, two compilers by
Kreuter et al. [13,14] both take more than 2000 s to compile a circuit computing
matrix multiplication of dimension 16. The time is even higher for larger matri-
ces. In our case, the compilation time is within 2.0 s, independent of the size of
the matrices.

114 X. Wang et al.

5.2 The Effect of Our Optimizations

In this section, we explore the impact of different optimizations on the per-
formance of our emulator. We consider the cost for each component of our
emulation, i.e., Instruction Fetch, ALU Computation, and Memory Access. We
compare three different approaches:

– Baseline. This is the basic system (cf. Sect. 3) with no static analysis.
– +Instruction Mapping. For each time step we compute the set of possi-

ble instructions at that time step, and use a smaller instruction bank and
ALU circuit for each cycle, reduce register accesses, and bypass loads/stores
whenever possible, as described in Sect. 4.1.

– +Padding. The program is padded (manually) with NOPs as described in
Sect. 4.2.

For evaluation we use a program that computes the size of the intersection
of two sets. Each party has a sorted array of 32-bit integers as input and wants
to compute how many elements are shared by both parties. We report the total
running time of the system in Table 2. For all running times shown, including
the baseline, we incorporated the optimization that checks termination less fre-
quently, as described in Sect. 4.3.

As shown in Table 2, using static analysis decreases the time used for memory
access by 3×, the cost of instruction fetching by 6×, and the time for ALU
computation by 3.5×. Using padding gives a further 10× improvement on both
instruction-fetch and memory-access time, along with an additional 2× speedup
in ALU computation. In total, our optimizations achieve a roughly 28× speedup
compared to our baseline system. The cost of instruction fetching is reduced
by 67×, the cost of memory access is reduced by 33×, and the cost of ALU
computation is cut by 8×.

5.3 Performance of Binary Search

Binary search, where one party holds an array of integers while the other party
holds a query, serves as an interesting test case for exploring the (amortized)
speedup provided by working in the RAM model of computation. Secure RAM-
based computation of binary search was considered by Gordon et al. [8] and
Wang et al. [24], both of whom used hand-crafted circuits.

For testing our system, we wrote C code for binary search using a standard
iterative implementation (see Fig. 5b), with no annotations or special syntax,
and then compiled this to a MIPS binary using GCC. In Fig. 5a, we show the
performance of our system when emulating the resulting MIPS binary, when
using ObliVM with Circuit ORAM [23] or trivial ORAM as the back-end. In
addition, we implemented secure binary search using ObliVM directly as well
as via a “trivial” circuit that simply performs a linear scan. Since we only care
about the amortized cost, setup time is excluded in all cases. As we can see
in Fig. 5a, our emulator with Circuit ORAM outperforms the one with trivial
ORAM once the array contains >216 32-bit integers, and outperforms a linear

Secure Computation of MIPS Machine Code 115

(a) Performance of secure binary search.

int BS(int *a,int *b,int l) {

int key=b[0];

int imin=0,imax=l-1;

while (imax >= imin) {

int imid = (imin+ imax)/2;

if (a[imid] >= key)

imax = imid - 1;

else

imin = imid + 1;

}

return imin;

}

(b) C Code used for binary search.

Fig. 5. Binary search example. One party holds an array of 32-bit integers, while the
other holds a value to search for.

scan when the array contains >219 32-bit integers. We can also see that our
emulator is only 25% slower than ObliVM, which requires the programmer to
use the domain-specific language supported by ObliVM.

6 Conclusion

In this work, we designed and implemented an emulator that allows two parties
to securely execute native MIPS code. Our work fills an important gap in the
trade-off between efficiency and generality: by supporting MIPS code, we allow
programmers with no knowledge or understanding of secure computation to
write and securely execute code of their choice. Contrary to what one might
expect, we show that this approach can yield reasonable performance once several
automated optimizations are applied. For some programs, our optimized system
is competitive with implementations based on state-of-the-art domain-specific
languages for secure computation.

There are still many interesting, unexplored optimizations that would fur-
ther improve the efficiency of our approach: (1) In this work, we demonstrate
the potential advantages of padding with NOP instruction, but it remains an
interesting challenge to automate and optimize this step. (2) It is also interest-
ing to explore how taint analysis, and other more complex analysis of binary
files, can improve the performance by allowing us to further avoid oblivious
memory accesses and unnecessary secure computation in the ALU. Our work
demonstrates the feasibility of the most general approach to secure computa-
tion, opening an avenue for further research and helping to fill a gap in the
growing array of options for performing secure computation.

Acknowledgements. The authors thank Elaine Shi for helpful discussions in the
early stages. This research was developed with funding from the Defense Advanced

116 X. Wang et al.

Research Projects Agency (DARPA). Work of Xiao Wang and Jonathan Katz was
additionally supported in part by NSF awards #1111599 and #1563722. The views,
opinions, and/or findings contained in this work are those of the authors and should
not be interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014)

2. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

3. Demmler, D., Schneider, T., Zohner, M.: ABY–a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

4. Ejgenberg, Y., Farbstein, M., Levy, M., Lindell, Y.: SCAPI: the secure computation
application programming interface. Cryptology ePrint Archive, Report 2012/629
(2012)

5. Fletcher, C.W., van Dijk, M., Devadas, S.: Towards an interpreter for efficient
encrypted computation. In: Proceedings of the 2012 ACM Workshop on Cloud
Computing Security Workshop (2012)

6. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

7. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

8. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM CCS, pp. 513–524. ACM Press, October
2012

9. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) ACM CCS, pp. 451–462. ACM Press, October 2010

10. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations
in ANSI C. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS, pp. 772–783.
ACM Press, October 2012

11. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: Usenix Security Symposium (2011)

12. Keller, M.: The oblivious machine - or: how to put the c into mpc. Cryptology
ePrint Archive, Report 2015/467 (2015). http://eprint.iacr.org/

13. Kreuter, B., Mood, B., Shelat, A., Butler, K.: PCF: a portable circuit format for
scalable two-party secure computation. In: Usenix Security Symposium (2013)

14. Kreuter, B., Shelat, A., Shen, C.H.: Billion-gate secure computation with malicious
adversaries. In: USENIX Security Symposium (2012)

15. Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In: ACM CCS 2015, pp. 579–590. ACM Press (2015)

16. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient RAM-model
secure computation. In: IEEE Security & Privacy (2014)

17. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: Oblivm: a programming frame-
work for secure computation. In: IEEE Security & Privacy (2015)

http://eprint.iacr.org/

Secure Computation of MIPS Machine Code 117

18. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay: a secure two-party compu-
tation system. In: USENIX Security Symposium (2004)

19. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

20. Rastogi, A., Hammer, M.A., Hicks, M.: Wysteria: a programming language for
generic, mixed-mode multiparty computations. In: 2014 IEEE Symposium on Secu-
rity and Privacy, pp. 655–670. IEEE Computer Society Press, May 2014

21. Songhori, E.M., Hussain, S.U., Sadeghi, A.R., Schneider, T., Koushanfar, F.: Tiny-
Garble: highly compressed and scalable sequential garbled circuits. In: IEEE Secu-
rity & Privacy (2015)

22. Wang, X., Gordon, S.D., McIntosh, A., Katz, J.: Secure computation of mips
machine code. Cryptology ePrint Archive, Report 2015/547 (2015). http://eprint.
iacr.org/2015/547

23. Wang, X.S., Chan, T.H., Shi, E.: Circuit oram: on tightness of the goldreich-
ostrovsky lower bound. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. ACM (2015)

24. Wang, X.S., Huang, Y., Chan, T.H.H., Shelat, A., Shi, E.: SCORAM: oblivious
RAM for secure computation. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS,
pp. 191–202. ACM Press, November 2014

25. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

26. Zahur, S., Evans, D.: Obliv-c: a language for extensible data-oblivious computation.
Cryptology ePrint Archive, Report 2015/1153 (2015)

http://eprint.iacr.org/2015/547
http://eprint.iacr.org/2015/547

Secure Logging

Insynd: Improved Privacy-Preserving
Transparency Logging

Roel Peeters1 and Tobias Pulls2(B)

1 ESAT/COSIC and iMinds, KU Leuven, Leuven, Belgium
roel.peeters@esat.kuleuven.be

2 Department of Mathematics and Computer Science,
Karlstad University, Karlstad, Sweden

tobias.pulls@kau.se

Abstract. Service providers collect and process more user data then
ever, while users of these services remain oblivious to the actual process-
ing and utility of the processed data to the service providers. This leads
users to put less trust in service providers and be more reluctant to share
data. Transparency logging is about service providers continuously log-
ging descriptions of the data processing on their users’ data, where each
description is intended for a particular user.

We propose Insynd, a new cryptographic scheme for privacy-
preserving transparency logging. Insynd improves on prior work by (1)
increasing the utility of all data sent through the scheme thanks to our
publicly verifiable proofs: one can disclose selected events without having
to disclose any long term secrets; and (2) enabling a stronger adversar-
ial model: Inysnd can deal with an untrusted server (such as commodity
cloud services) through the use of an authenticated data structure named
Balloon. Finally, our publicly available prototype implementation shows
greatly improved performance with respect to related work and compet-
itive performance for more data-intensive settings like secure logging.

1 Introduction

In general, transparency logging allows service providers to show that they are
compliant with a certain policy that can be imposed by legislation, sector regu-
lations or internal procedures; but just as well through service level agreements
for businesses to keep tabs on subcontractors [10,18]. For personal data, pri-
vacy regulations such as the EU General Data Protection Regulation empower
users by granting them the right to obtain transparency about their data being
processed and by improving their ability to hold the service providers account-
able for their actions. Conceptually, through transparency logging, users that
wish to know what is happening with their personal data after disclosure to a
service provider can see whether or not the processing is inline with the prior
agreed upon policy. This could, e.g., be a hospital with a privacy policy for
processing patient data. Each access and modification to the patient’s health
record is logged for the patient. If patients discover someone prying, they can
file a complaint with the hospital’s ombudsperson.
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 121–139, 2016.
DOI: 10.1007/978-3-319-45741-3 7

122 R. Peeters and T. Pulls

In the setting of transparency logging [18] as depicted in Fig. 1, the author
generates events intended for recipients that describe data processing by the
author as it takes place. Events are stored at a server : an intermediate party
that primarily serves to offload storage of events for authors. The recipient can
then at a later point in time get insights into the author’s data processing by
consulting the events intended for him or her. With these insights, the recipient
can hold the author accountable for its actions and if deemed necessary take
remediation measures, e.g., file a complaint or switch service providers. Note
that this paper focuses on a transparency logging scheme, which is only about
the generation, storage and retrieval of events, not on what should be logged
to describe data processing, or how policies should be structured to enable the
comparison with stated data processing.

AuthorRecipient data disclosure

server

retrieve events

generate events

match? policy

Fig. 1. Recipient comparing actual data processing of its data with the data processing
that was agreed upon in the policy prior to data disclosure.

A transparency logging tool must provide security and privacy. The integrity
of the stored events has to be guaranteed, as this is where the recipient bases its
insights on to hold the author accountable. This means that it should be impos-
sible to alter or delete any events after being stored at the server without being
detectable. Data privacy and confidentiality of the stored events are important
because the mere existence of events already reveals information, e.g., a patient
visiting the hospital. This means that when a transparency logging tool does
not consider privacy, one should deploy another transparency enhancing tool for
monitoring data processing on the stored events from the first to make sure that
data derived from these events are not used instead of the original data.

When users want to take action based upon the messages logged for them,
they will inavoidably break some of the privacy properties. What we aim for with
Insynd, our proposed cryptographic transparency logging tool, is to limit the pri-
vacy breaches to the events disclosed, i.e., enable selective disclosure, and as such
greatly increase the utility of the transparency logging tool. Instead of having recip-
ients reveal long term secrets, recipients can generate publicly verifiable proofs
which allow them to disclose the content of stored events such that the content
and other properties cannot be refuted. Furthermore, Insynd also improves on the
scheme that was proposed by Pulls et al. [18] by allowing for a stronger adversarial

Insynd: Improved Privacy-Preserving Transparency Logging 123

model. While some trust in authors is inevitable (forward security), since authors
generate descriptions of their own processing, servers (e.g., commodity cloud ser-
vices) should not have to be trusted. We primarily achieve the stronger adversary
model through the use of Balloon [16], an authenticated data structure that was
designed specifically for this setting. Lastly, our performance benchmarks show
speeds comparable to state-of-the-art secure logging schemes. In summary, our con-
tributions are:

– Increased utility of a transparency logging scheme through our publicly ver-
ifiable proofs: recipients and authors can produce publicly verifiable proofs
of all data sent through Insynd, convincing a third-party of who sent what
particular message to whom at approximately what time.

– A new transparency logging scheme in our stronger adversarial model where
the server does not need to be trusted through the use of Balloon [16]. The
resulting scheme also provides publicly verifiable consistency: anyone can ver-
ify that all events stored in a Balloon are consistent.

– A publicly available performant proof-of-concept implementation of Insynd
using modern cryptographic primitives and benchmark code.

This paper is structured as follows. Section 2 states our assumptions and
goals. Section 3 gives a high-level overview of our ideas. Section 4 presents Insynd
in detail. Section 5 evaluates Insynd’s properties. Section 6 presents related work.
Section 7 shows the performance of our implementation.

2 Assumptions and Goals

We assume a setting with three parties: author, server and recipients. The author
and recipients only have limited storage capabilities, while the server has high
storage capabilities. The author is considered forward secure: the author is ini-
tially trusted until the time of compromise and the adversary, by compromising
the author, gains no advantage towards breaking any of the security and pri-
vacy properties related to the events stored before compromise. The server is
considered compromised from the start. Recipients are considered honest.

For communication, we assume a secure channel between the author and the
server (such as TLS), and a secure and anonymous channel for recipients (such
as TLS over Tor [9]) to communicate with the author and server. We explicitly
consider availability out of scope, that is, the author and server will always
reply (however, their replies may be malicious). For time-stamps, we assume the
existence a trustworthy time-stamping authority [7].

For the core security and privacy properties: secrecy, forward integrity with
deletion-detection and forward unlinkability of events, we make use of the model
of Pulls et al. [18], with some modifications to account for possible informa-
tion leakage through our introduced publicly verifiable proofs1 and our stronger
1 Since state is kept by the author instead of the server (which is assumed to be

untrusted), the CorruptServer oracle is replaced by a CorruptAuthor oracle. To
account for information leakage, additional oracles such as GetState, DecryptEvent
and RecipientEvent are introduced.

124 R. Peeters and T. Pulls

adversarial setting. The full updated model is available in the extended version
of this paper [17]. Secrecy is vital for recipients since events may contain sensitive
personal data. Forward integrity with deletion-detection ensures that events are
tamper evident: any modifications (including deletion) can be detected. Finally,
forward unlinkability of events ensures that prior generated events do not leak
information such as the number of events that belong to a particular recipient.

In addition to the core security and privacy properties, we provide publicly
verifiable consistency and a number of publicly verifiable proofs to increase the
utility of the data sent through the transparency logging scheme. Publicly veri-
fiable consistency can be seen as a form of publicly verifiable deletion-detection
and forward integrity for all events produced by the author at a server. Insynd
allows for publicly verifiable proofs of (1) the author of an event, (2) the recipient
of an event, (3) the message sent in an event, and (4) the time an event existed
at a server. While a recipient is always able to produce these proofs, the author
has to decide during event generation if it wishes to save material to be able to
create these proofs. Each proof is an isolated disclosure and a potential violation
of a property of Insynd, like secrecy and forward unlinkability of events.

3 Ideas

To protect the privacy of the recipients, the author turns all descriptions for
recipients into events consisting of an identifier and a payload, where the iden-
tifiers are unlinkable to each other and the payloads contain the encrypted
descriptions for the recipient. It should be noted that the entire events must
be unlinkable to each other, hence the encryption scheme must also provide key
privacy [2]. Later on the recipient must be able to retrieve its relevant events
and decrypt the logged descriptions. For each event, the author updates the
symmetric event linking key for the recipient in question using a forward-secure
sequential key generator (SKG) in the form of an evolving hash chain [3,13,19].
The recipient can do the same to link the relevant event identifiers together.

To provide the publicly verifiable proofs of message and recipient, we need to
go into the details of the used encryption scheme and how the event linking key
and nonce for encryption are derived from the forward secure sequential key. We
make use of an IND-CCA22 public-key authenticated encryption scheme [1] in a
non-traditional manner. A public key authenticated encryption scheme allows a
sender to encrypt a message for a receiver using the receiver’s public key and its
own private key, such that the receiver can decrypt the message using its own
private key and the sender’s public key. In this way, both sender and receiver can
decrypt the message and be assured that only someone who knows either private
key can have created the ciphertext. To avoid a deterministic encryption scheme,
a nonce is usually included for each message to be encrypted. Instead of taking
the author’s private key as input, we generate a fresh ephemeral public private
key pair for each message, send along the public key and append the private key
2 Every publicly verifiable proof is an isolated disclosure, hence the encryption scheme

must provide secrecy even when the adversary has access to a decryption oracle.

Insynd: Improved Privacy-Preserving Transparency Logging 125

to the message to be encrypted. As such the recipient can prove, by revealing
the ephemeral private key and the nonce, that the ciphertext contains the said
plaintext. The author can do the same if it stores the ephemeral private key at
the time of creating the event. We define the following algorithms, based on the
algorithms of the public key authenticated encryption scheme Π = {(sk, pk) ←
KeyGen(1λ), c ← Encn

pk(m), m ← Decn
sk(c, pk)}:

– (c, pk′) ← Encn
pk(m): Encrypts a message m using an ephemeral key-pair

(sk′, pk′) ← KeyGen(1λ), the public key pk, and the nonce n. The resulting
ciphertext c is Encn

pk′(m||sk′). Returns (c, pk′).
– (m, sk′) ← Decn

sk(c, pk
′): Decrypts a ciphertext c using the private key sk,

public key pk′, and nonce n where p ← Decn
sk(c, pk

′). If decryption fails p = ⊥,
otherwise p = m||sk′. Returns p.

– m ← Decn
sk′,pk(c, pk

′): Decrypts a ciphertext c using the private key sk′, public
key pk, and the nonce n where p ← Decn

sk′(c, pk). If decryption fails p =
⊥, otherwise p = m||sk∗. If sk′ = sk∗ and corresponds to pk′, returns m,
otherwise ⊥.

The event linking key k′ and nonce n for encryption are derived from the
current authentication key k (Fig. 2). The event linking key is used to prove the
recipient of the event. By deriving the event linking key from the nonce, we prove
that the recipient corresponds to the decrypted message.

k0

n0

k′
0

k1

n1

k′
1

k2

n2

k′
2

k3

n3

k′
3

...

Fig. 2. Deriving the event key k′ and nonce n. Each arrow represents a one-way relation,
e.g., from k it is easy to compute n, but the other way around is hard.

Through using Balloon [16], an authenticated data structure that was
designed for the setting of transparency logging with an untrusted server, we can
support our stronger adversarial model and provide publicly verifiable proofs of
consistency. Balloon allows for efficient publicly verifiable proofs of both mem-
bership and non-membership of keys. This is needed, since otherwise a recipient
cannot distinguish between a server denying service and the lack of an event with
a specific identifier. The main advantage of Balloon compared to other authen-
ticated data structures that have this property3, is that the author only needs
to keep constant storage (instead of storing a copy of the data structure) and
that proof generation is more efficient for the server. The main algorithms from
Balloon that are used by Insynd are:

3 For a more in-depth discussion, we refer the reader to Pulls and Peeters [16].

126 R. Peeters and T. Pulls

– B.query (Membership) and B.verify (Membership) to generate as well
as verify (non-)membership proofs.

– B.query (Prune), B.verify (Prune), B.update*, and B.refresh to insert a
new set of events into a Balloon and generate a new snapshot, which commits
the author to all the events that are stored until now.

The full algorithm descriptions can be found in [17]. To support a forward-
secure author (preventing it from creating snapshots that delete or modify events
inserted prior to compromise), Balloon requires trusted monitors and a perfect
gossiping mechanism for the snapshots. Monitors continuously reconstruct the
Balloon and compare calculated snapshots with those gossiped (spread simulta-
neously to all recipients) by the author. We relax these requirements by linking
snapshots together and periodically timestamping these; and by introducing for-
ward integrity with deletion-detection for each recipient.

To provide forward integrity with deletion detection, we rely on the author
keeping an evolving forward-secure state for each recipient. By enabling the
recipient to query for this state and verifying the response, it is impossible for
the author to alter events for this recipient (sent to the server prior to the time
of compromise) as it will not be able to generate a valid state to send to the
recipient. During recipient registration, cryptographic key material will be set
up for the recipient: an asymmetric key-pair, for encryption and decryption, and
a symmetric key to be able to link relevant events together. For each recipient,
the current values of the forward-secure SKG and the forward-secure sequential
aggregate authenticator (FssAgg) [12] over the relevant event values are kept in
the author’s state.

4 Insynd

Now we will go into the details of the different protocols that make up Insynd.
Figure 3 shows five protocols between an author A, a server S, and a recipi-
ent R. The protocols are setup (pink box), register (blue box), insert (yellow
box), getEvent (red box), and getState (green box). The following subsections
describe each protocol in detail.

4.1 Setup and Registration

The author and server each have signature key pairs, (Ask,Avk) and (Ssk,Svk),
respectively. We assume that Avk and Svk are publicly attributable to the respec-
tive entities, e.g., by the use of some trustworthy public-key infrastructure. For
the author, the key pair is generated using the B.genkey algorithm of Balloon,
as this key pair is also used to sign the snapshots, which are part of Balloon.

Author-Server Setup. The purpose of the setup protocol (pink box in Fig. 3)
is for the author and the server to create a new Balloon, stored at the server,
with two associated uniform resource identifiers (URIs): one for the author AURI,

Insynd: Improved Privacy-Preserving Transparency Logging 127

A

Snapshots

BSD sh, sh+1

State for BSD

pk ki, vi

S Balloon Events Snapshots

BSD < ex >, u sh, sh+1

R

se
tu
p:
A UR

I

S U
RI
, S
ig
n S s

k
(A

UR
I
||S U

RI
)

Si
gn
A s
k
(A

UR
I
||S U

RI
),
s0in

se
rt

: u
Π
(q
),
α(

q)sh
+
1

BSD

register: pk, n

Encnpk k0||v0||BSD||SignAsk
(k0||v0||BSD||pk)

)

getState: pk, n

Encnpk x||sh||sh−1||SignAsk
(x||sh||pk))

getEvent: e IDi
, s
j

Π
(q), α(q), s

h , s
h−

1

Fig. 3. Insynd consists of five protocols (coloured boxes), between an author A, server
S, and recipient R. A solid line indicates the start of protocol and a dashed line a
response. (Color figure online)

and one for the server SURI. At the former the recipient can later on query for its
current state, while at the latter it can retrieve stored events. The result of this
protocol, the Balloon setup data (BSD), commits both the author and the server
to the newly created Balloon.

The protocol is started by the author sending its AURI to the server. The
server replies with SURI and SignSsk

(AURI||SURI). The signature commits the server
to the specified Balloon. Upon receiving the reply from the server, the author
verifies the server’s signature. If this verifies, the author creates an empty Balloon
(auth(D0), s0) ← B.setup(D0,Ask,Avk) for an empty data structure D0. The
author sends SignAsk

(AURI||SURI) together with the initial snapshot s0 to the
server to acknowledge that the new Balloon is now set up. Once the server
receives this message, it verifies the author’s signature and can complete the
setup of the empty Balloon now that it has s0. The two signatures, the two
URIs, and the initial snapshot s0 together form the BSD.

Recipient Registration. The purpose of the register protocol (blue box in
Fig. 3) is to enable the author to send messages to the recipient later on, and at
the same time have the author commit to the recipient on how these messages
will be delivered. Before running the protocol, the recipient is assumed to have
generated its encryption key pair (pk, sk).

The protocol is initiated by the recipient sending its public key together
with a nonce to the author. The author generates the initial authentication

128 R. Peeters and T. Pulls

key k0 ← Rand(|Hash(·)|) and authenticator value v0 ← Rand(|Hash(·)|) for this
recipient and stores these values in its state table for BSD. The state table contains
the current authentication key ki and authenticator value vi for each recipient’s
public key that is registered in the Balloon for BSD. By generating a random v0,
the state of newly registered recipients is indistinguishable from the state of
recipients that have already one or more events created for them.

The author returns to the recipient k0, v0, BSD, and the following signature:
SignAsk

(k0||v0||BSD||pk). The signature covers the public key of the recipient
to bind the registration to a particular public key (and hence recipient). The
signature (that commits the author) is necessary to prevent the author from
fully refuting that there should exist any messages for this recipient. The reply
to the recipient is encrypted by the author under the provided public key and
nonce. On receiving the reply, the recipient decrypts the reply, verifies all three
signatures (two in BSD), and stores the decrypted reply. The recipient now has
everything it needs to retrieve its relevant events and state later on.

4.2 Event Generation

An event e = (eID, eP) consists of an identifier and a payload. The event identi-
fier eID identifies the event in a Balloon and is used by the recipient to retrieve
an event. The event payload eP contains the encrypted message from the author.
The nonce n, used for encrypting the event payload, and the event key k′, used for
generating the event identifier, are derived from the recipient’s current authen-
tication key k (which the author retrieves from its state table):

n ← Hash(1||k) and k′ ← Hash(n) (1)

For deriving the nonce, a prefix 1 is added to k to distinguish between deriving
the nonce and updating the authentication key, which is done as follows:

ki ← Hash(ki−1) (2)

The event identifier is generated by computing a MAC on the recipient’s public
key using the event key:

eID ← MACk′(pk) (3)

This links the event to a particular recipient, which can be used for publicly veri-
fiable proofs of recipient. The event payload is generated by encrypting the mes-
sage under the recipient’s public key and the generated nonce: eP ← Encn

pk(m).
Since k′ is derived from n, this links the event identifier and event payload
together and can be used for publicly verifiable proofs of message.

After generating the event, the author updates its state table, effectively over-
writing previous values. First the current authenticator value v for the recipient,
which aggregates the entire event, is updated using an FssAgg [12]:

vi ← Hash
(
vi−1||MACki−1(e)

)
(4)

Then the recipient’s current authentication key is updated using Eq. 2.

Insynd: Improved Privacy-Preserving Transparency Logging 129

Insert. The purpose of the insert protocol (yellow box in Fig. 3) is for an
author to insert a set of generated events u into a Balloon kept by the server.
The author sends u to the server and gets back a proof that the events can
be correctly inserted. If this proof verifies, the author creates a new snapshot,
committing to the current version of the Balloon.

Upon receiving u, the server runs:

(Π(u), α(u)) ← B.query(u,Dh, auth(Dh),Avk)(Prune)

to generate a proof Π(u) and answer α(u) and sends these back to the author.
To verify the correctness of the server’s reply, the author runs:

{accept, reject} ← B.verify(u, α,Π, sh,Avk)(Prune)

where sh is the latest snapshot generated by the author. If the verification fails,
the author restarts the protocol. Next, the author runs:

(sh+1, upd) ← B.update*(u,Π, sh,Ask,Avk)

to create the next snapshot sh+1 (which is also stored in upd). The author stores
the snapshot in its snapshot table for BSD, and sends upd to the server. The
server verifies the snapshot and then runs:

(Dh+1, auth(Dh+1), sh+1) ← B.refresh(u,Dh, auth(Dh), sh, upd,Avk)

to update the Balloon. Finally, the server stores the snapshot sh+1 and events u
in its Balloon table for BSD.

Snapshots and Gossiping. Balloon assumes perfect gossiping of snapshots.
In order to relax this requirement, we modify the snapshot construction. This
modification was inspired by CONIKS [15], which works in a setting closely
related to ours and links snapshots together into a snapshot chain. We redefine
a snapshot as:

sh ←
(
i, ci, r, t, SignAsk

(i||ci||r||sh−1||t)
)

Note that h is an index for the number of updates to Balloon, while i is an index
for the number of events in the Balloon. The snapshot sh contains the latest
commitment ci on the history tree and root r on the hash treap for auth(Dh),
fixing the entire Balloon4. The previous snapshot sh−1 is included to form the
snapshot chain. Finally, an optional timestamp t from a trusted time-stamping
authority is included both as part of the snapshot and in the signature. The
timestamp must be on (i||ci||r||sh−1). How frequently a timestamp is included
in snapshots directly influences how useful proofs of time are. Timestamping of
snapshots is irrelevant for our other properties.

Gossiping of snapshots is done by having the author and server making all
snapshots available, e.g., on their websites. Furthermore, the latest snapshots
are gossiped to the recipients as part of the getState and getEvent protocols
(described next). Since snapshots are both linked and occasionally timestamped,
this greatly restricts adversaries in the forward-security model.
4 Balloon is the composition of a history tree and hash treap [16].

130 R. Peeters and T. Pulls

4.3 Event Reconstruction

A recipient uses two protocols to reconstruct its relevant messages sent by the
author: getEvent and getState. After explaining how to get the relevant events
and the current state, we show how recipient can verify the consistency of its
retrieved messages.

Getting Events. The purpose of the getEvent protocol (red box in Fig. 3) is for
a recipient to retrieve an event with a given identifier and an optional snapshot.
The server replies with the event (if it exists) and a proof of membership. Before
running this protocol, the recipient generates the event identifier it is interested
in, by using Eqs. 1–3 together with the data it received from the author during
registration.

Upon receiving the event identifier eID and optional snapshot sj from the
recipient, the server runs for q = (eID, sj):

(
Π(q), α(q)

)
← B.query(q,Dh, auth(Dh),Avk)(Membership)

If no snapshot is provided, the server uses the latest snapshot sh. Allowing
the recipient to query for any snapshot sj , where j ≤ h, is important for
our publicly verifiable proofs of time. The server replies to the recipient with
(Π(q), α(q), sh, sh−1). Including the two latest snapshots sh and sh−1 is part of
our gossiping mechanism and allows for fast verification at the recipient without
having to download all snapshots separately. The recipient verifies the reply by
verifying the last snapshot and running:

{accept, reject} ← B.verify(q, α,Π, sh,Avk)(Membership)

Getting State. The getState protocol (green box in Fig. 3) plays a central
role in determining the consistency of the events retrieved from the server.

The recipient initiates the protocol by sending its public key pk and a nonce
n ← Rand(|Hash(·)|) to the author. Upon receiving the public key and nonce,
the author validates the public key and sets x ← (ki, vi), with ki and vi being
the current state for pk, retrieved from its state table. The author replies with
Encn

pk

(
x||sh||sh−1||SignAsk

(x||sh||pk)). This reply also covers the two latest snap-
shots sh and sh−1, as part of the gossiping mechanism and a signature of the
author over (x||sh||pk). With this signature the author commits itself to its reply
for the recipient with respect to the latest snapshot. The recipient decrypts the
reply, verifies the signature and latest snapshot.

The reply to the claimed recipient is encrypted using the provided public key
and nonce to ensure that only the recipient with corresponding the private key
can decrypt it. Since the encryption is randomised with the nonce and ephemeral
key-pair generation (note that the length of the plaintext is fixed), no third
party in possession of the recipient’s public key can determine if new events are
generated for the recipient. The nonce also ensures the freshness of the reply.

Insynd: Improved Privacy-Preserving Transparency Logging 131

Verifying Consistency. A recipient can verify the consistency of the messages
contained in its events as follows. First, it requests all its events until the server
provides a non-membership proof. Next, the recipient retrieves its current state
from the author. Note that in order to be able to verify the consistency of
the received messages it is essential that the latest snapshot received during
getEvent for the last downloaded message (for which a non-membership proof
is received) and the latest snapshot received during getState are identical.

With the list of events downloaded and the reply x from getState, the
recipient can now use Algorithm 1 to decrypt all events and verify the consistency
of the messages sent by the author. First all events (in the order of insertion)
are decrypted using the nonce and authentication key generation determined by
Eqs. 1 and 2 and the calculated state (Eq. 4) is updated. Finally the calculated
state is compared to the x.

Algorithm 1. Verify message consistency for a recipient.
Require: pk, sk, k0, v0, the reply x from getState, an ordered list l of events.
Ensure: true if all events are authentic and the state x is consistent with the events

in l, otherwise false.
1: n ← Hash(1||k), k ← k0, v ← v0 � n is the event nonce, k and v the computed state
2: for all e ∈ l do � in the order events were inserted
3: p ← Decnsk(e

P)

4: if p ?
= ⊥ then

5: return false � failed to decrypt event
6: n ← Hash(1||k), k ← Hash(k), v ← Hash

(
v||MACk(e)

)
� computed right to left

7: return x ?
= (k, v) � state should match calculated state

4.4 Publicly Verifiable Proofs

Similar to Balloon, Insynd allows for publicly verifiable consistency. On top of this,
Insynd allows for four types of publicly verifiable proofs: author, time, recipient,
and message. These proofs can be combined to, at most, prove that the author had
sent a message to a recipient at a particular point in time. While the publicly verifi-
able proofs of author and time can be generated by anyone, the publicly verifiable
proofs of recipient and message can only be generated by the recipient (always)
and the author (if it has stored additional information at the time of generating
the event).

Author. To prove who the author of a particular event is, i.e., that an author
created an event, we rely on Balloon. The proof is the output from B.query
(Membership) for the event. Verifying the proof uses B.verify (Membership).

132 R. Peeters and T. Pulls

Time. To prove when an event existed. The granularity of this proof depends on
the frequency of timestamped snapshots. The proof is the output from B.query
(Membership) for the event from a timestamped snapshot sj that shows that
the event was part of the data structure fixed by sj . Verifying the proof involves
using B.verify (Membership) and whatever mechanism is involved in verify-
ing the timestamp from the time-stamping authority. Note that a proof of time
proves that an event existed at the time as indicated by the time-stamp, not
that the event was inserted or generated at that point in time.

Recipient. To prove who the recipient of a particular event is. This proof
consists of:

1. the output from B.query (Membership) for the event, and
2. the event key k′ and public key pk used to generate the event identifier eID.

Verifying the proof involves using B.verify (Membership), calculating ẽID ←
MACk′(pk), and comparing it to the event identifier eID.

The recipient can always generate this proof, while the author needs to store
the event key k′ and public key pk at the time of event generation. If the author
stores this material, then the event is linkable to the recipient’s public key. If
linking an event to a recipient’s public key is not adequately attributing an event
to a recipient (e.g., due to the recipient normally being identified by an account
name), then the register protocol should also include an extra signature linking
the public key to additional information, such as an account name.

Message. The publicly verifiable proof of message includes a publicly verifiable
proof of recipient, which establishes that the ciphertext as part of an event was
generated for a specific public key (recipient). The proof is:

1. the output from B.query (Membership) for the event,
2. the nonce n needed for decryption and used to derive the event key k′,
3. the public key pk used to generate eID, and
4. the ephemeral secret key sk′ that is needed for decryption.

Verifying the proof involves first verifying the publicly verifiable proof of
recipient by deriving k′ = Hash(n). Next, the verifier can use Decn

sk′,pk(c, pk’) to
learn the message m.

The recipient can always generate this proof, while the author needs to store
the nonce n, public key pk, and the ephemeral private key sk’ at event generation.
Note that even thought we allow the author to save the ephemeral key material to
produce publicly verifiable proofs of message, the author is never allowed to do so
for the encrypted replies to the getState or register protocols.

5 Evaluation

The proof sketches use the model in the extended version of this paper [17].

Insynd: Improved Privacy-Preserving Transparency Logging 133

5.1 Security and Privacy Properties

Theorem 1. For an IND-CCA2 secure public-key encryption scheme, Insynd
provides computational secrecy of the messages contained in events.

This follows trivially from the definition of IND-CCA2 security.

Theorem 2. Given an unforgeable signature algorithm, an unforgeable one-time
MAC, and an IND-CCA2 secure public-key encryption algorithm, Insynd pro-
vides computational deletion-detection forward integrity in the random oracle
model.

Proof (sketch). This follows from the use of the FssAgg authenticator by Ma
and Tsudik [12], which is provably secure in the random oracle model for an
unforgeable MAC function.

The register protocol establishes the initial key and value for the forward
secure SKG and FssAgg authenticator. These values, together with the BSD
and the public key of the recipient, are signed by the author and returned to
the recipient. Assuming an unforgeable signature algorithm, this commits the
author to the existence of state. The recipient gets the current state using the
getState protocol for its public key and a fresh nonce. The reply from the author
is encrypted under the recipient’s provided public key and the nonce provided
by the recipient. The nonce ensures the freshness of the reply, preventing the
adversary from caching replies from the getState protocol made prior to com-
promise of the author (using the GetState oracle). The current authenticator
value and authentication key are updated (and overwritten) by using the FssAgg
construction and a forward secure SKG. Note that for each FssAgg invocation,
the key for the MAC is unique and derived from the output of a hash function
for which the adversary has no information on the input. This means that an
unforgeable one-time MAC function is sufficient.

The adversary does not learn any authenticator values and keys through the
GetState, DecryptEvent or RecipientEvent oracles. This is due to the use of
an IND-CCA2 encryption scheme, and the values k′ and n in the proofs Π are
derived from the current authentication key at that time using a random oracle.

��
Theorem 3. For a key-private IND-CCA2 secure public-key encryption algo-
rithm, Insynd provides computational forward unlinkability of events within one
round of the insert protocol in the random oracle model.

Proof (sketch). For events created with the CreateEvent’ oracle the adversary
has access to the following information: eID = MACk′(pk) and eP = Encn

pk(m) for
which k′ = Hash(n) and n = Hash(1||k) where k is the current authentication
key for the recipient at the time of generating the event.

By assuming the random oracle model, the key to the one-time unforgeable
MAC function and the nonce as input of the encryption are truly random. Hence
the adversary that does not know the inputs of these hashes, n and k respectively,
has no advantage towards winning the indistinguishability game. We will now

134 R. Peeters and T. Pulls

show that the adversary will not learn these values n and k, even when given
the author’s entire state (pk, k, v) for all recipients and access to the GetState,
DecryptEvent or RecipientEvent oracles. From the previous proof we already
know that the adversary does not learn any authenticator values and keys from
the latter three oracles. Hence, it will also not learn any n values for events
generated with the CreateEvent’ oracle, since there is no direct link between
the values ni of multiple events for the same recipient. Instead n is derived from
the recipient’s current authentication key k at that time, using a random oracle.

The state variable k is generated using a forward-secure sequential key gen-
erator in the form of an evolving hash chain. Since the encryption scheme of
events is key private, the adversary does not learn anything from all the recip-
ients’ public keys pk. Finally, we need to show that the adversary will not be
able to link events together from the state variable v. If v = v0, then v is
random. Otherwise, vi = Hash

(
vi−1||MACki−1(ei−1)

)
. The MAC is keyed with the

previous authentication key ki−1, which is either the output of a random oracle
(if i > 1) or random (k0). This means the adversary does not know the output
of MACki−1(e

j
i−1) that is part of the input for the random oracle to generate v. ��

5.2 Publicly Verifiable Proofs

Consistency. Assuming a collision resistant hash function, an unforgeable sig-
nature algorithm, monitors, and a perfect gossiping mechanism for snapshots,
this follows directly from the properties of Balloon (Theorem 3 of [16]). How-
ever, our gossiping mechanisms are imperfect. We rely on the fact that (1) recip-
ients can detect any modifications on their own events and (2) snapshots are
chained together and occasionally timestamped, to deter the author from creat-
ing inconsistent snapshots. The latter one ensures that at least fork consistency
as defined by Mazières and Shasha [14] is achieved. This means that in order to
remain undetected the adversary needs to maintain a fork for every recipient it
disclosed modified snapshots to.

Author. Assuming a collision resistant hash function and an unforgeable sig-
nature algorithm, the proof of author cannot be forged. A proof of author for
an event is the output from B.query (Membership) for the event. Theorem 2
in [16] proves the security of a membership query in a Balloon. For an unforge-
able signature algorithm, the existence of a signature is therefore non-repudiable
evidence of the snapshot having been created with the signing key.

Time. Assuming a collision resistant hash function, an unforgeable signature
algorithm and a secure time-stamping mechanism, the proof of author cannot
be forged. A proof of time depends on the time-stamping mechanism, which is
used in the snapshot against which the proof of author was created.

Recipient. Assuming a collision resistant hash function, an unforgeable signa-
ture algorithm and an unforgeable one-time MAC function, the proof of recipient

Insynd: Improved Privacy-Preserving Transparency Logging 135

cannot be forged. A proof of recipient consists of a proof of author, a public key
pk, and an event key k′. The proof of author fixes the event, which consists of
an event identifier eID and an event payload eP . Now that the output of MAC
function is fixed by the event identifier eID = MACk′(pk), for the adversary to
come up with a different pk and k′, it has to break the unforgeability of the
one-time MAC function.

Message. Assuming a collision and pre-image resistant hash function, an
unforgeable signature algorithm and an unforgeable one-time MAC function,
the proof of message cannot be forged. From the proof of message, the proof of
recipient can be derived by computing the event key k′ ← Hash(n). The proof
of recipient fixes the payload eP , the recipient’s public key pk and the nonce n,
since the prover provided a pre-image to k′. The payload consists of the cipher-
text c and the ephemeral public key pk′, which also fixes the corresponding sk′.
The prover provides sk′, which can easily be verified to be correct. This fixes all
the input to our deterministic decryption function.

6 Related Work

In the setting of transparency logging, we build further upon the model and
scheme by Pulls et al. [18] and Balloon [16] as introduced before. The scheme
by Pulls et al. is based on hash- and MAC-chains, influenced by the secure log
design of Schneier and Kelsey [19].

Ma and Tsudik [12] proposed a publicly verifiable FssAgg scheme by using an
efficient aggregate signature scheme. The main drawbacks are a linear number of
verification keys with the number of runs of the key update, and relative expen-
sive bilinear map operations. Similarly, Logcrypt by Holt [11] also needs a linear
number of verification keys with key updates. The efficient public verifiability, of
both the entire Balloon and individual events, of Insynd comes from taking the
same approach as (and building upon) the History Tree system by Crosby and
Wallach [8] based on authenticated data structures. The main drawback of the
work of Crosby and Wallach, and to a lesser degree of Insynd, is the reliance on
a gossiping mechanism. Insynd takes the best of both worlds: the public verifia-
bility from authenticated data structures based on Merkle trees, and the private
all-or-nothing verifiability of the privately verifiable FssAgg scheme from the
secure logging area. Users do not have to rely on perfect gossiping of snapshots,
while the existence of private verifiability for recipients deters an adversary from
abusing the lack of a perfect gossiping mechanism to begin with. This is similar
to the approach of CONIKS [15], where users can verify their entries in a data
structure as part of a privacy-friendly key management system. In CONIKS,
users provide all data (their public key and related data) in the data structure
concerning them. This is fundamentally different to Insynd, where the entire
point of the scheme is for the author to inform recipients of the processing per-
formed on their personal data. Therefore, the private verifiability mechanism for
Insynd needs to be forward-secure with regard to the author.

136 R. Peeters and T. Pulls

PillarBox is a fast forward-secure logging system by Bowers et al. [6]. Beyond
integrity protection, PillarBox also provides a property referred to as “stealth”
that prevents a forward-secure adversary from distinguishing if any messages are
inside an encapsulated buffer or not. This indistinguishability property is similar
to our forward unlinkability of events property. PillarBox has also been designed
to be fast with regard to securing logged messages. The goal is to minimise
the probability that an adversary that compromises a system will be able to
shut down PillarBox before the events that (presumably) were generated as a
consequence of the adversary compromising the system are secured.

Pond and WhisperSystem’s Signal5 are prime examples of related secure
asynchronous messaging systems. While these systems are for two-way com-
munication, there are several similarities, such as dedicated servers for stor-
ing encrypted messages. Both Pond and Signal use the Signal protocol (previ-
ously known as Axolotl) [20]. The Signal protocol is inspired by the Off-the-
Record (OTR) Messaging protocol [5] and provides among other things forward
secrecy. Note that the goal of Insynd is for messages to be non-repudiable, unlike
Pond, Signal and OTR that specifically want deniability. Insynd achieves non-
repudiation through the use of Balloon and how we encrypt messages.

7 Performance

We implemented Insynd in the Go programming language, making use of the
NaCl [4] library for the cryptographic building blocks. The performance bench-
mark focuses on the insert protocol since the other protocols are less frequently
used. The source code and steps to reproduce our benchmark are publicly avail-
able at http://www.cs.kau.se/pulls/insynd/.

Figure 4 presents our benchmark, based on averages after 10 runs using Go’s
built-in benchmarking tool. We used a Debian 7.8 (x64) installation on a laptop
with an Intel i5-3320M quad core 2.6 GHz CPU and 7.7 GB DDR3 RAM to run
both the author and server. Note that the proofs of correct insertion into Balloon
between author and server are still generated and verified.

Clearly, the smaller the message are, the more events can be sent (and the
more potential recipients that can be served) per second. With at least 100 events
to insert per run, we get ≈7000 events per second with 1 KiB messages. Using the
same data as in Fig. 4a, Fig. 4b shows the goodput (the throughput excluding
the event overhead of 112 bytes per event) for the different message sizes. At
≈800 100-KiB-messages per second (around at least 200 events to insert), the
goodput is ≈80 MiB/s. 10 KiB messages offer a trade-off between goodput and
number of events, providing 4000 events per second with ≈40 MiB/s goodput.

Insynd improves greatly on related work on transparency logging, and shows
comparable performance to state-of-the-art secure logging systems. Ma and
Tsudik [12], for their FssAgg schemes, achieve event generation (signing) in
the order of milliseconds per event (using significantly older hardware than us).

5 https://whispersystems.org, accessed 2016-07-06.

http://www.cs.kau.se/pulls/insynd/
https://whispersystems.org

Insynd: Improved Privacy-Preserving Transparency Logging 137

(a) Events per second in a 220 Balloon. (b) Goodput in a 220 Balloon.

Fig. 4. A performance benchmark related to inserting events. The x-axis specifies the
number of events to insert per run of the insert protocol.

Marson and Poettering [13], with their seekable sequential key generators, gen-
erate key material in a few microseconds. Note that for both these schemes,
messages are not encrypted and hence the performance results only take into
account the time for providing integrity protection. The performance results of
Insynd, together with the two following schemes, include the time to encrypt
messages in addition to providing integrity protection. Pulls et al. [18], for their
transparency logging scheme, generate events in the order of tens of milliseconds
per event. For PillarBox, Bowers et al. [6] generate events in the order of hun-
dreds of microseconds per event, specifying an average time for event generation
at 163 μs when storing syslog messages. Syslog messages are at most 1 KiB, so
the average for Insynd of 142 μs at 7000 events per second is comparable.

8 Conclusions

Insynd is a cryptographic scheme for privacy-preserving transparency logging
where messages are sent through an authenticated data structure (Balloon). The
main contribution of Insynd is to provide publicly verifiable proofs of recipient
and message of events within the setting of transparency logging, which dictates
that events should be encrypted and unlinkable towards non-recipients. This
significantly increases the utility of a transparency logging scheme as it enables
users to take action without having to disclose everything that was logged for
them. On top of this, Insynd improves further on existing transparency logging
schemes by combining concepts from authenticated data structures, forward-
secure key generation from the secure logging area, and on-going work on secure
messaging protocols. Insynd provably achieves the security and privacy proper-
ties for a transparency logging scheme, as defined within the general framework
of Pulls et al. [18], which was adjusted to take into account our publicly verifiable
proofs and stronger adversarial model that assumes a forward-secure author and
an untrusted server. Furthermore, our freely available proof of concept imple-
mentation shows that Insynd offers comparable performance for event generation
to state-of-the-art secure logging systems like PillarBox [6].

138 R. Peeters and T. Pulls

Acknowledgements. We would like to thank Rasmus Dahlberg, Simone Fischer-
Hübner, Stefan Lindskog, and Leonardo Martucci for their valuable feedback. Tobias
Pulls has received funding from the Seventh Framework Programme for Research of
the European Community under grant agreement no. 317550 and the HITS research
profile funded by the Swedish Knowledge Foundation.

References

1. An, J.H.: Authenticated encryption in the public-key setting: Security notions and
analyses. IACR Cryptology ePrint Archive 2001, 79 (2001)

2. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

3. Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003)

4. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533,
pp. 159–176. Springer, Heidelberg (2012)

5. Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why
not to use PGP. In: WPES, pp. 77–84. ACM (2004)

6. Bowers, K.D., Hart, C., Juels, A., Triandopoulos, N.: PillarBox: combating
next-generation malware with fast forward-secure logging. In: Stavrou, A., Bos,
H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 46–67. Springer,
Heidelberg (2014)

7. Buldas, A., Laud, P., Lipmaa, H., Villemson, J.: Time-stamping with binary linking
schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 486–501.
Springer, Heidelberg (1998)

8. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper-evident logging.
In: USENIX Security Symposium, pp. 317–334. USENIX (2009)

9. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: USENIX Security Symposium, pp. 303–320. USENIX (2004)

10. FIDIS WP7: D 7.12: Behavioural Biometric Profiling and Transparency Enhancing
Tools. Future of Identity in the Information Society, March 2009

11. Holt, J.E.: Logcrypt: forward security and public verification for secure audit logs.
In: Australasian Workshops on Grid Computing and e-Research. ACS (2006)

12. Ma, D., Tsudik, G.: A new approach to secure logging. TOS 5(1), 1–21 (2009)
13. Marson, G.A., Poettering, B.: Even more practical secure logging: tree-based seek-

able sequential key generators. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014,
Part II. LNCS, vol. 8713, pp. 37–54. Springer, Heidelberg (2014)

14. Mazières, D., Shasha, D.: Building secure file systems out of byzantine storage. In:
Symposium on Principles of Distributed Computing, pp. 108–117. ACM (2002)

15. Melara, M.S., Blankstein, A., Bonneau, J., Felten, E.W., Freedman, M.J.:
CONIKS: a privacy-preserving consistent key service for secure end-to-end com-
munication. In: USENIX Security Symposium, pp. 383–398. USENIX (2015)

16. Pulls, T., Peeters, R.: Balloon: a forward-secure append-only persistent authen-
ticated data structure. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS. LNCS, vol. 9327, pp. 622–641. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24177-7 31

17. Pulls, T., Peeters, R.: Insynd: Improved privacy-preserving transparency logging.
Cryptology ePrint Archive, Report 2015/150 (2015)

http://dx.doi.org/10.1007/978-3-319-24177-7_31
http://dx.doi.org/10.1007/978-3-319-24177-7_31

Insynd: Improved Privacy-Preserving Transparency Logging 139

18. Pulls, T., Peeters, R., Wouters, K.: Distributed privacy-preserving transparency
logging. In: WPES, pp. 83–94. ACM (2013)

19. Schneier, B., Kelsey, J.: Cryptographic support for secure logs on untrusted
machines. In: USENIX Security Symposium, pp. 53–62. USENIX (1998)

20. Unger, N., Dechand, S., Bonneau, J., Fahl, S., Perl, H., Goldberg, I., Smith, M.:
Sok: secure messaging. In: 2015 IEEE Symposium on Security and Privacy, SP
2015, San Jose, CA, USA, 17–21 May 2015. IEEE Computer Society (2015)

Secure Logging Schemes
and Certificate Transparency

Benjamin Dowling1, Felix Günther2(B), Udyani Herath1, and Douglas Stebila3

1 Queensland University of Technology, Brisbane, Australia
2 Technische Universität Darmstadt, Darmstadt, Germany

guenther@cs.tu-darmstadt.de
3 McMaster University, Hamilton, ON, Canada

Abstract. Since hundreds of certificate authorities (CAs) can issue
browser-trusted certificates, it can be difficult for domain owners to
detect certificates that have been fraudulently issued for their domain.
Certificate Transparency (CT) is a recent standard by the Internet Engi-
neering Task Force (IETF) that aims to construct public logs of all cer-
tificates issued by CAs, making it easier for domain owners to moni-
tor for fraudulently issued certificates. To avoid relying on trusted log
servers, CT includes mechanisms by which monitors and auditors can
check whether logs are behaving honestly or not; these mechanisms are
primarily based on Merkle tree hashing and authentication proofs. Given
that CT is now being deployed, it is important to verify that it achieves
its security goals. In this work, we define four security properties of log-
ging schemes such as CT that can be assured via cryptographic means,
and show that CT does achieve these security properties. We consider
two classes of security goals: those involving security against a malicious
logger attempting to present different views of the log to different par-
ties or at different points in time, and those involving security against
malicious monitors who attempt to frame an honest log for failing to
include a certificate in the log. We show that Certificate Transparency
satisfies these security properties under various assumptions on Merkle
trees all of which reduce to collision resistance of the underlying hash
function (and in one case with the additional assumption of unforgeable
signatures).

1 Introduction

The security of web communication via the Transport Layer Security (TLS)
protocol relies on safe distribution of public keys in the form of X.509 certificates.
Certificate authorities (CAs) are trusted third parties that endorse the public
keys of subjects by performing checks and issuing certificates. Web browsers
can accept certificates from hundreds of CAs, and relying parties are unable
to determine whether certificates were issued at the request of the subject or
fraudulently issued by the CAs, whether by mistake or due to compromise.

In recent years there have been high-profile cases of misissued certificates being
used to spoof legitimate websites. For example, in 2011 an intruder managed to
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 140–158, 2016.
DOI: 10.1007/978-3-319-45741-3 8

Secure Logging Schemes and Certificate Transparency 141

issue itself a valid certificate for the domain google.com and its subdomains from
the prominent Dutch Certificate Authority DigiNotar [11]. This certificate was
issued in July 2011 and may have been used maliciously for weeks before the detec-
tion on August 28, 2011, of large-scale man-in-the-middle (MITM) attacks on mul-
tiple users in Iran. In another instance, the Comodo Group suffered from an attack
which resulted in the issuance of nine fraudulent certificates for domains owned by
Google, Yahoo!, Skype, and others [5].

Certificate Transparency (CT) [17,18] is an experimental protocol originally
proposed by Google and standardized by the Internet Engineering Task Force
(IETF) Public Notary Transparency working group to mitigate the threat of
fraudulently issued certificates by publicly logging certificates. CT provides an
open auditing and monitoring system which allows domain owners to verify that
no fraudulent certificates have been issued for their domains. The end goal of
Certificate Transparency is that web clients should only accept certificates that
are publicly logged and that it should be impossible for a CA to issue a certificate
for a domain without it being publicly visible. Recent incidents demonstrated the
effectiveness of CT logs: Google employees detected unrequested certificates for
two of their subdomains issued by a Symantec sub-CA Thawte [30]. The certifi-
cates were issued on September 14, 2015 and detected by September 17, 2015; the
certificates were revoked immediately, limiting the exposure of the certificates
to just three days. In another case, the Facebook security team discovered an
issuance of two certificates on multiple subdomains violating Facebook’s internal
security policies [14]. The incident was investigated and both certificates revoked
within hours, even before they were deployed to production systems.

1.1 The Web PKI and Certificate Transparency

The basic web public key infrastructure (PKI) includes several types of entities
which perform different tasks: web servers, certificate authorities, browser ven-
dors and web browsers. The Certificate Transparency framework adds several
new entities which help maintain and monitor public logs:

– Loggers or log servers maintain publicly accessible append-only logs of certifi-
cates. These certificates are received from submitters. As a new entry might
not be published immediately for operational reasoning, the logger provides
each submitter with a promise to log the certificate within a certain amount
of time; the promise is called a signed certificate timestamp (SCT).

– Submitters, submit certificates (or partially completed pre-certificates) to a
log server and receive a signed certificate timestamp from the log.

– Monitors are public or private services that watch for misbehaving logs or
suspicious certificates by periodically contacting and downloading information
from log servers. They inspect every new entry in a log, keep copies of the entire
log, and verify the consistency between published revisions of the log.

– Auditors verify the correct behaviour of a log, checking that certificates that
a logger has promised to include are present in the log. Auditors may be
standalone entities or integrated into monitors or web clients.

142 B. Dowling et al.

In CT, the original entities from the web PKI also have some additional
tasks:

– CAs should act as submitters above.
– Web servers should include their SCT along with the certificate when commu-

nicating with clients. Web servers may choose to submit their certificate to a
log server if their CA does not do so for them.

– Web clients, upon receiving an SCT from a web server, may choose to verify
that the log named in the SCT actually has publicly logged the certificate
(thereby taking on the role of an auditor as above).

– Browser vendors may push updates that remove CAs or revoke certificates
based on claims from monitors and web servers about misbehaving CAs.

LoggerSubmitter

Monitor

Auditor

Web server Web client

(A) certificate

(B) SCT

(C) check SCT

(D) audit proof

(E
)
request

full
log

(F
)
entries,

ST
H

(G
)

ycnetsisnoc
kcehc

(H
)
co

ns
is
te

nc
y

pr
oo

f

certificate,
SCT

certificate,
SCT

certificate,
SCT

SCT: signed certificate timestamp
STH: signed tree head

Fig. 1. Overview over the interaction between entities in Certificate Transparency; see
Sect. 1.1 for details. Solid-line interactions and solid-line, orange entities are captured
by the model in our work while dashed-line interactions and dashed-line, gray entities
are not captured. Dotted line–connected entities (monitors and auditors or auditors
and web clients) might be the same physical entity. (Color figure online)

Figure 1 provides an overview of the involved parties and their interactions
in CT1. At the submission of a new certificate entry (step A), the logger returns
a signed certificate timestamp (SCT) (step B), which is a promise to include the
entry in the log. Every log has a published parameter called a maximum merge
delay (MMD) which indicates the maximum period between issuing a timestamp
and the inclusion of the certificate into the log.

In CT, the logger stores the entries of the log in an append-only Merkle hash
tree [24,25], a form of a tamper-evident history tree [6,7]. Recall for Merkle
trees, data is placed at the leaves of a binary tree and each intermediate node is
the hash of its two child nodes; the root of the trees acts as a fingerprint of all
included data. In CT, the root of the tree is signed and published by the logger,
and is called the signed tree head (STH). The observed fingerprints are exchanged
by all parties in the system through a so-called “gossiping” protocol [27].
1 Note that the labeling of interactions is simply for reference and does not indicate a

particular order of the displayed requests.

Secure Logging Schemes and Certificate Transparency 143

Gossiping allows monitors, auditors, and web clients to share information
they receive from log servers, with the goal of collectively detecting misbehavior
of log servers while limiting the damage to user privacy. The parties who hold the
same fingerprints of a log are (cryptographically) assured that they have the same
view of the log at the point in time represented by the fingerprint. Gossiping can
be implemented through SCT feedback (where web clients send SCTs through
HTTPS servers), STH pollination (where web clients and CT auditors/monitors
use HTTPS servers as STH pools) and trusted auditor streams (where web
clients directly communicate with trusted CT auditors/monitors).

To convince other parties that promised certificates are included in a log,
and that subsequent published fingerprints are consistent, the logger employs
two types of cryptographic proofs: audit proofs and consistency proofs.

An audit proof allows an auditor to verify that a particular certificate/SCT
that a logger has promised to include is actually included in the log represented
by a fingerprint, shown in steps C and D. In CT, an audit proof is essentially an
authentication path in the Merkle tree from the leaf containing the certificate in
question to the root hash/fingerprint contained in the signed tree hash.

A consistency proof allows an auditor or monitor to verify that the log is
append-only, in particular that the log represented by a fingerprint at one point
in time t0 is a prefix of the log represented by a fingerprint at a later point in
time t1 > t0, shown in steps G and H. In CT, a consistency proof is a subset of
intermediate nodes in the Merkle tree needed to connect the two root hashes.

Monitors can also request that a logger provides them with the full set of
entries represented by a fingerprint (steps E and F). In CT, this can be verified
by recomputing the Merkle tree hash of the entries.

As a starting point for a threat model, the informational IETF draft “Attack
Model for Certificate Transparency” [15] describes potential attack scenar-
ios when Certificate Transparency is used in the context of web public-key
infrastructure.

1.2 Our Contribution

Given the practical significance of Certificate Transparency, it is important to
have a formal understanding of the security goals of CT and analyse whether CT
achieves those goals. The objective of our work is to define security goals of logging
schemes using the formalism of provable security, and attempt to prove that CT
satisfies these security goals under suitable cryptographic assumptions. Our model
of logging schemes does not assume a PKI context, so we do not assume that log
entries must have a particular syntax, and thus we leave the threats involving valid-
ity or syntax of log entries to existing analyses on certificate validity. Similarly, we
omit consideration of threats where an entity fails to act.

As noted above, we will focus on two particular threats in the CT threat model:
whether a misbehaving log server can present different views of the log and whether
a misbehaving monitor can frame an honest log server for bad behaviour. Thus, our
model will focus on two entities: the logger and the monitor/auditor.

144 B. Dowling et al.

Definition of Logging Schemes. In Sect. 3 we formally define logging schemes,
naming operations that each entity can perform. This model does not attach any
semantic meaning to the entries being logged; in particular, we do not assume
that log entries are certificates. Subsequently, we describe the operations of Cer-
tificate Transparency as a specific instantiation of the logging scheme framework.

Security Definitions. Next, we introduce cryptographic security properties for
logging schemes in Sect. 4 that are inspired by the CT threat model but reflect
the corresponding ideas in general terms. More specifically, we treat two types
of properties. First, we define security notions which concern a malicious logger:

– entry-coll: can a malicious logger present two different sets of entries corre-
sponding to the same fingerprint?

– proof-coll: can a malicious logger present an audit proof that claims a single
fingerprint represents both a particular entry as well as a set of entries such
that the particular entry is not actually in the list of entries?

– entry-cons: can a malicious logger present two fingerprints connected by a valid
consistency proof and two sets of entries such that the entries corresponding to
the first fingerprint are not a prefix of the entries corresponding to the second
fingerprint?

Second, we define a security notion concerning a malicious monitor:

– promise-incl: can a malicious monitor frame an honest logger for not including
a promised entry when it actually has?

Security of Certificate Transparency. Finally, we analyze the security of Cer-
tificate Transparency in Sect. 5 and show that CT both prevents logger mis-
behaviour (i.e., CT satisfies the entry-coll, proof-coll, and entry-cons security
properties) as well as protection from framing of honest loggers by misbehav-
ing monitors (i.e., CT satisfies the promise-incl property.) All of these proofs are
based on properties of Merkle tree hashing and audit/consistency proofs, all of
which ultimately derive from the collision resistance of the hash function. The
last property, promise-incl, also depends on the unforgeability of the signature
scheme used by loggers.

Generality of Definitions. Our definition of a logging scheme and its security
properties are not specific to CT, and have the potential to be applied to
other constructions. In Sect. 3.3, we discuss the applicability of our definitions to
CONIKS [23], a logging scheme aimed at transparency of user keys: our logging
scheme definitions capture some aspects of CONIKS, but also highlights impor-
tant differences between the functionality and goals of CT versus CONIKS.

1.3 Related Work

New PKI Technologies. Recent certificate mis-issuances and security breaches
in CAs have motivated research in alternatives to having a trusted third party
vouching for the binding between domain name and its private key. Public key

Secure Logging Schemes and Certificate Transparency 145

pinning [10] and DANE [13] are such proposals that allow domain owners to
proactively and directly state their trusted public keys for the domain. Certifi-
cate Transparency takes a reactive rather than a proactive approach: instead
of preventing mis-issuance in the first place, it aims to detect mis-issuance by
making certificates visible through a public authenticated log.

History Trees. The data structures in CT are similar to the history trees of
Crosby and Wallach [6,7]. Two of their results [6] connect with our security
notions: their Corollary 1 shows that “reconstructed hashes” that are equal imply
the entry sets from which they were constructed are equal, where “reconstructed
hashes” can mean reconstructed from the leaves directly (like in a full hash tree
computation) or from membership proofs. Their Theorem1 shows that, given a
consistency proof between two roots and a membership proof for the same index
to each root (two membership proofs total), the leaves at that index must be the
same in both trees; this is similar to our entry-cons property, though we focus on
entry sets rather than membership proofs. A limitation of Crosby’s results is that
they assume that each root was computed from an underlying entry set, but one
cannot be sure when the adversary generates roots (as in CT); our definitions
make no such assumption. We furthermore capture several extensions that CT
makes, including delays for entry inclusion and protection of honest loggers from
framing (our promise-incl property). Finally, our presentation is notably different:
Crosby’s descriptions of the history tree operations and the proofs [6, Sect. 3] are
generally descriptive rather than algorithmic, whereas we state the operations
fully algorithmically and provide complete algorithmic reductions for all proofs.

In recent years a few more approaches have emerged around the concept of
transparency logs, including revocation [19,29] (which we omit in this work as
they are not under consideration by the IETF Public Notary Transparency work-
ing group) or limitations on certificate issuance, validation, and update [1,16].
The Electronic Frontier Foundation’s Sovereign Keys Project [9] combines trans-
parency logs with cross-signing of keys. Melara et al. [23] present CONIKS, a
system focusing on key transparency in end-to-end encryption/secure messag-
ing scenarios. CONIKS eliminates the need for global third party monitors and
aims at additional privacy properties for identity–key bindings, however without
providing a formal security model or cryptographic proofs.

Merkle Trees. Introduced by Merkle [24], Merkle trees have been used in many
areas of cryptography and computer science, including in the construction of
public key signatures from hash functions [25]. Most uses of Merkle trees concern
a static dataset, but in CT we are concerned with a dynamic dataset, and in
particular the append-only nature of the dataset.

There has been some work on authentication trees and more generally signa-
tures on dynamic data sets. Bellare et al. [2,3] introduced the notion of incremen-
tal cryptography. Naor and Nissim [26] use dynamic Merkle trees in the context
of certificate revocation and updates, Li et al. [20] apply them to authenticate
index structures in outsourced databases. Villemson [31] and Ogawa et al. [28]
investigated the characteristics of (generalizations of) incremental Merkle trees.

146 B. Dowling et al.

Cryptographic PKI Analyses. Maurer [22] introduced a formal model for pub-
lic key infrastructures (PKIs) which subsequently was further extended [4,21].
This line of work approaches the dynamic nature of PKI issuance through an
event-based system that captures the view of potential users at a certain point
in time, using a combination of events that have happened and logical rules
that infer certain conclusions from events. Our work differs from this approach
by following a game-based approach focusing on the interaction between the
parties involved. Our approach also conceptually distinguishes between values
generated by honest parties, claims by dishonest parties, and conclusions drawn
from events.

2 Cryptographic Building Blocks

Notation. We denote by �E an ordered list of entries, where () denotes the empty
list. Indexing is 0-based: �E = (e0, . . . , en−1), and we write �E[i] to denote ei

and �E[i : j] to denote the sublist (ei, . . . , ej−1). We adopt the convention that
�E[−1] = (). We write e ∈ �E to indicate that an entry e is contained in the list �E.
We let �E‖ �E′ denote the concatenation of two entry lists and write �E ≺ �E′ if
�E is a prefix of �E′. If we define P ← (t, e, σ), then we can later access fields
of P using “object-oriented” notation: P.t, P.e, P.σ. Moreover, if �P is a list
(P0, . . . , Pn−1), then the notation �P .e means the list (P0.e, . . . , Pn−1.e). The
expression k ← 2�log2(n/2)� corresponds to setting k to be the largest power of
two less than n, i.e., n

2 ≤ k = 2i < n.
We rely on the standard notion of signature schemes and existential unforge-

ability under chosen-message attacks [12], and the corresponding advantage
Adveuf-cma

SIG (A) of an adversary A breaking this notion for a scheme SIG.

Definition 1 (Hash Collision Finding). Let M be a set, let H : M → {0, 1}λ

be an unkeyed hash function, and let A be an algorithm. We say that A finds a
collision in H if A outputs a pair (m,m′) such that m �= m′ and H(m) = H(m′).

2.1 Merkle Trees

The use of hash trees for authenticating large amounts of data was first proposed
by Merkle [24,25]. Let H : {0, 1}∗ → {0, 1}λ be a hash function. In a Merkle hash
tree for �E, the values of �E are placed at the leaves of a binary tree and each
intermediate node is the hash of its two child nodes; the root of the trees acts as a
fingerprint of all the data contained in the tree; this is the output of the algorithm
MTHH(�E) in Fig. 3. Note the use of prefixes 0 and 1 in hash function calculations
provides “domain separation” between hash calculations for leaves (H(0‖ . . .))
and intermediate nodes (H(1‖ . . .)); preventing an attacker from gluing part of
a tree into a leaf or vice versa.

A common technique is the use of an authentication path to demonstrate
that a piece of data is in a leaf of a tree corresponding to a particular root. The

Secure Logging Schemes and Certificate Transparency 147

H0

C [2] C [0]

E0

H1

C [2]

C [0] C [1]

C [3]

E1

Fig. 2. Merkle tree consistency proof �C = (�C[0], . . . , �C[3]) between roots H0 (for a tree
of size 3) and H1 (for a tree of size 6). denotes leaf nodes, denotes inner nodes,
denotes nodes corresponding to consistency proof values.

authentication path generation algorithm PathH(m, �E) and verification algorithm
CheckPathH(e,H, n, �A,m) are shown in Fig. 3.

A lesser-known technique is the use of a consistency proof to demonstrate
that the data corresponding to one root is a subset (prefix) of the data corre-
sponding to another root, used, for example, in the context of tamper-evident
history trees [6,7]. In Fig. 2, the consistency proof �C shows that the data corre-
sponding to root H0 is a prefix of the data corresponding to root H1. Consistency
proofs reconstruct each of the two roots from relevant parts of the proof and
compare them against the actual roots; the size of the two trees is essential in
verifying a consistency proof. Consistency proofs may be viewed as an authenti-
cation path from the inner node immediately above the last leaf node in the first
tree (i.e., an authentication path from H(e2) = �C[0] to root H1 in the right side
of Fig. 2). The consistency proof generation algorithm ConsProofH(m,n, �E) and
verification algorithm CheckConsProofH(n0,H0, n1,H1, �C) are shown in Fig. 3.
We have reformulated these from how they appear in the RFC [17]: ours use a
top-down recursive approach, whereas the RFC versions are bottom-up looping
algorithms; the two are equivalent, but our versions are more helpful in proving
our theorems.

2.2 Merkle Tree Security Properties

We now note some well-known facts about the collision resistance of Merkle tree
hashing and the security of authentication paths in Merkle trees [24,25]. For
completeness, full proofs are given in the full version [8].

Lemma 1 (Collision Resistance of Merkle Trees). If H is collision-
resistant, then Merkle-tree hashing using H is also collision-resistant. More pre-
cisely, if A finds a collision in MTHH, then there exists algorithm BA

1 that finds a
collision in H. Moreover, the runtime of BA

1 consists of the runtime of A, plus
at most a quadratic (in the size of the larger list) number of hash evaluations.

Lemma 2 (Authentication Paths Consistency). If H is collision-
resistant, then no CheckPathH authentication path �A can be generated

148 B. Dowling et al.

MTHH(E) → H:

1: n ← |E|
2: if n = 1, return H(0‖E[0])
3: else (n > 1)
4: k ← 2�log2(n/2)�

5: return H(1‖MTHH(E[0 : k])
6: ‖MTHH(E[k : n])

PathH(m, E) → A:

1: n ← |E|
2: if n = 1, return ()
3: else (n > 1)
4: k ← 2�log2(n/2)�

5: if m < k
6: return PathH(m, E[0 : k])
7: ‖MTHH(E[k : n])
8: else (m ≥ k)
9: return PathH(m − k, E[k : n])

10: ‖MTHH(E[0 : k])

CheckPathH(e, H, n, A, m) → {0, 1}:

1: H ′ ← RootFromPathH(e, n, A, m)
2: return (H = H ′)

RootFromPathH(e, n, A, m) → H:
1: if n = 1, return H(0‖e)
2: k ← 2�log2(n/2)�

3: if m < k
4: � ← RootFromPathH(e, k, A[0 : |A| − 1], m)
5: r ← A[|A| − 1]
6: else (m ≥ k)
7: � ← A[|A| − 1]
8: r ← RootFromPathH(e, n − k,
9: A[0 : |A| − 1], m − k)

10: return H(1‖�‖r)

ConsProofH(m, n, E) → C :

1: // require: 0 ≤ m ≤ n ≤ |E|
2: if m = n
3: return ()
4: else (m < n)
5: return ConsProofSubH(m, E[0 : n], true)

ConsProofSubH(m, E, b) → C :

1: n ← |E|
2: if (m = n) ∧ (b = false)
3: return MTHH(E[0 : m])
4: else
5: k ← 2�log2(n)/2�

6: if m ≤ k
7: return ConsProofSubH(m, E[0 : k], b)
8: ‖MTHH(E[k : n])
9: else (m > k)

10: return ConsProofSubH(m − k, E[k : n], false)
11: ‖MTHH(E[0 : k])

CheckConsProofH(n0, H0, n1, H1, C) → b:

1: if n0 is a power of two, C ← H0‖C
2: H ′

0 ← Root0FromConsProofH(C, n0, n1)
3: H ′

1 ← Root1FromConsProofH(C, n0, n1)
4: return ((H0 = H ′

0) ∧ (H1 = H ′
1))

Root0FromConsProofH(C, n0, n1) → H:

1: k ← 2�log2(n1)/2�

2: if n0 < k
3: return Root0FromConsProofH(C [0 : |C | − 1], n0, k)
4: elsif n0 = k, return C [|C | − 2]
5: else
6: � ← C [|C | − 1]
7: r ← Root0FromConsProofH(C [0 : |C | − 1],
8: n0 − k, n1 − k)
9: return H(1‖�‖r)

Root1FromConsProofH(C, n0, n1) → H:

1: if |C | = 2, return H(1‖C [0]‖C [1])
2: k ← 2�log2(n1)/2�

3: if n0 < k
4: � ← Root1FromConsProofH(C [0 : |C | − 1], n0, k)
5: r ← C [|C | − 1]
6: else
7: � ← C [|C | − 1]
8: r ← Root1FromConsProofH(C [0 : |C | − 1],
9: n0 − k, n1 − k)

10: return H(1‖�‖r)

Fig. 3. Merkle tree algorithms

with respect to Merkle-tree hashing MTHH for an entry e not contained
in the Merkle tree. More precisely, if A outputs (e, �E, �A,m) such that
CheckPathH(e, MTHH(�E), | �E|, �A,m) = 1 and e /∈ �E, then there exists algorithm
BA
2 that finds a collision in H. Moreover, the runtime of BA

2 consists of the
runtime of A, plus at most a quadratic (in | �E|) number of hash evaluations.

3 Logging Schemes

In this section we specify the algorithms that comprise a logging scheme and
formulate CT as a logging scheme.

Secure Logging Schemes and Certificate Transparency 149

3.1 Definition of Logging Schemes

Our definition of a logging scheme is based around the certificate transparency
functionality, but is designed to be potentially more general. We use non-CT
specific language (such as “fingerprint” instead of the CT-specific “signed tree
head”), and our logging scheme is not actually about certificates—any type of
object can be logged.

Definition 2 (Logging Scheme). A logging scheme LS consists of the fol-
lowing algorithms, some of which are run by a logger and some of which are run
by a monitor/auditor.

The following algorithm is used by a logger to initialize its log:

– KeyGen() $→ (st, pk, sk): A probabilistic algorithm that returns a state stand
a public key/secret key pair (pk, sk).

The following algorithms are used by a logger to add entries to its log, using a
two-step process of promising to add an entry to the log and then a batch update
actually adding the entries:

– PromiseEntry(e, t, sk) $→ P : A probabilistic algorithm that takes as input a log
entry e, a time t, and the secret key sk and outputs a promise P ; the promise
contains the entry and time as subfields P.e and P.t.

– UpdateLog(st, �P , t, sk) $→ (st′, F): A probabilistic algorithm that takes as
input a state st, a potentially empty ordered list of promises �P to add to the
log, a time t and the secret key sk and returns an updated state st′ and a
fingerprint F (where the latter includes the indicated time, denoted as F.t)

The following algorithms are used by a logger to demonstrate various properties
to monitors/auditors:

– PresentEntries(st, F) → �E or ⊥: A deterministic algorithm that takes as input
a state stand a fingerprint F and outputs an ordered list of log entries �E, or
an error symbol ⊥.

– ProveMembership(st, e, F) $→ �M or ⊥: A probabilistic algorithm2 that takes as
input a state st, a log entry e, and a fingerprint F and outputs a membership
proof �M , or an error symbol ⊥.

– ProveConsistency(st, F0, F1)
$→ �C or ⊥: A probabilistic algorithm2 that takes

as input a state st and two fingerprints F0 and F1 and outputs a consistency
proof �C, or an error symbol ⊥.

The following algorithms are used by monitors/auditors to check a log:

– CheckPromise(P, pk) → {0, 1}: A deterministic algorithm that takes as input
a promise P (which includes an entry P.e) and a public key pk and outputs a
bit b ∈ {0, 1}.

2 In CT, ProveMembership and ProveConsistency are deterministic, though in prin-
ciple these could be probabilistic in a logging scheme.

150 B. Dowling et al.

CTH,SIG.KeyGen() → (st, pk, sk):

1: E ← ()
2: st = (E)

3: (pk, sk)
$← SIG.KeyGen()

4: return (st, pk, sk)

CTH,SIG.PromiseEntry(e, t, sk) → P :
1: σ ← SIG.Signsk(t‖e)
2: return P ← (t, e, σ)

CTH,SIG.UpdateLog(st, P , t, sk) → (st′, F):

1: for each P ∈ P do
2: if CheckPromise(P, pk) = 0, return (st, ⊥)
3: st.E ← st.E‖P .e
4: n ← |st.E|
5: H ← MTHH(st.E)
6: σ ← SIG.Signsk(t, n, H)
7: return F ← (t, n, H, σ)

CTH,SIG.PresentEntries(st, F) → E:
1: if CheckFingerprint(F, pk) = 0, return ⊥
2: return st.E[0 : F.n]

CTH,SIG.ProveMembership(st, e, F) → M :
1: if CheckFingerprint(F, pk) = 0, return ⊥
2: find m < F.n such that e = st.E[m]
3: if no such m exists, return ⊥
4: A ← PathH(m, E[0 : F.n])
5: return M ← (A, m)

CTH,SIG.ProveConsistency(st, F0, F1) → C:
1: if CheckFingerprint(F0, pk) = 0, return ⊥
2: if CheckFingerprint(F1, pk) = 0, return ⊥
3: return C ← ConsProofH(F0.n, F1.n, st.E)

Fig. 4. Certificate Transparency: algorithms run by loggers.

– CheckFingerprint(F, pk) → {0, 1}: A deterministic algorithm that takes as
input a fingerprint F and a public key pk and outputs a bit b ∈ {0, 1}.

– CheckEntries(�E, F, pk) → {0, 1}: A deterministic algorithm that takes as input
an ordered list of log entries �E, a fingerprint F , and a public key pk and outputs
a bit b ∈ {0, 1}.

– CheckMembership(F, e, �M, pk) → {0, 1}: A deterministic algorithm that takes
as input a fingerprint F , an entry e, a membership proof �M , and a public
key pk and outputs a bit b ∈ {0, 1}.

– CheckConsistency(F0, F1, �C, pk) → {0, 1}: A deterministic algorithm that
takes as input two fingerprints F0 and F1, a consistency proof �C, and a public
key pk and outputs a bit b ∈ {0, 1}.
Correctness of a logging scheme is defined in the natural way and is omitted

due to space constraints; see the full version [8].

3.2 Instantiation of Certificate Transparency as a Logging Scheme

Figures 4 and 5 formulate Certificate Transparency using H and SIG as a logging
scheme CTH,SIG (i.e., following Definition 2). A log entry in CT is a chain of X.509
certificates: the certificate (or partially completed pre-certificate) itself, and each
intermediate CA’s certificate leading to the root CA’s cert. We treat entries in
our formalization of logging schemes as opaque bit strings: our fomulation hence
omits any syntactical checks for the entries it manages; adding these checks is
independent of the logging properties. The promise P is called a signed certificate
timestamp (SCT). The fingerprint F is called the signed tree head (STH).

Secure Logging Schemes and Certificate Transparency 151

CTH,SIG.CheckPromise(P, pk) → b:
1: return SIG.Vfypk(P.t‖P.e, P.σ)

CTH,SIG.CheckFingerprint(F, pk) → b:
1: return SIG.Vfypk(F.t‖F.n‖F.H, F.σ)

CTH,SIG.CheckEntries(E, F, pk) → b:
1: if CheckFingerprint(F, pk) = 0, return 0
2: H ′ ← MTHH(E)
3: return (|E| = F.n) ∧ (H ′ = F.H)

CTH,SIG.CheckMembership(F, e, M, pk) → b:
1: if CheckFingerprint(F, pk) = 0, return 0
2: return CheckPathH(e, F.H, F.n, M.A, M.m)

CTH,SIG.CheckConsistency(F0, F1, C, pk) → b:
1: if CheckFingerprint(F0, pk) = 0, return 0
2: if CheckFingerprint(F1, pk) = 0, return 0
3: return CheckConsProof(F0.n, F0.H, F1.n, F1.H, C)

Fig. 5. Certificate Transparency: algorithms run by monitors/auditors.

3.3 CONIKS as a Logging Scheme

CONIKS [23] is a recent transparency log scheme that aims to enable privacy-
preserving transparency logging for end-user keys, for applications such as secure
messaging. Our definition of logging scheme can capture several aspects of
CONIKS’ functionality and security, but also serves to highlight some signifi-
cant differences between CT and CONIKS.

CONIKS also uses a Merkle tree structure, but in contrast to CT uses a
Merkle prefix tree in which some attribute of an entry (e.g., the user’s identity)
determines its position. The tree root is computed both from present entries
and placeholder values for empty subtrees, allowing efficient calculation over
very large but mostly empty trees. It is signed and published by the logger as
the signed tree root (STR). Membership proofs can be performed in the standard
way using Merkle authentication paths. Signed tree roots are linked over time
using a hash chain, including the previous signed tree root. However, this does
not enable consistency proofs as in CT: verification that a key that was present
in STRi is also present in STRj requires fresh membership proof of that key’s
presence in STRj . Two core security properties of CONIKS are non-equivocation
(a provider cannot present diverging views) and privacy-preserving consistency
proofs (privacy here meaning with respect to other entries’ information).

CONIKS can be mapped onto the following notions in our definition of a log-
ging scheme. The KeyGen algorithm is run by the logger. CONIKS has no sepa-
rate notion of promise and log entry, combining PromiseEntry and UpdateLog.
CheckFingerprint will verify a signed tree root similarly. Aiming at privacy,
CONIKS does not include PresentEntries and CheckEntries. ProveMembership
and CheckMembership are supported. ProveConsistency and CheckConsistency
are not directly supported; as noted above, an auditor would need to use
ProveMembership and CheckMembership for each entry.

In terms of security properties, none of ours directly map onto CONIKS’
notions, primarily because of including CheckEntries. However, some notions
are similar. Non-equivocation is similar to proof-coll, except that it involves
two CheckMembership computations, rather than one CheckMembership and
one CheckEntries computation (our entry-coll and proof-coll together imply this
new notion). Our promise-incl property matches with a similar change from
CheckEntries to CheckMembership, and ignoring maximum merge delays. Con-

152 B. Dowling et al.

sistency of STRs in CONIKS is quite a bit different from our entry-cons property,
as CONIKS’ involves probabilistic spot-checks using membership proofs.

4 Security Goals

For the security properties of logging schemes that can be proved cryptograph-
ically, our security definitions follow a provable security game-based approach.
We consider three properties involving security against a malicious logger, in
which the experiment acts as an honest monitor/auditor which the logger is
trying to fool. We also consider one security property involving security against
a malicious monitor/auditor, in which the experiment acts as an honest logger
which the monitor/auditor is trying to frame for bad behaviour.

Security Against a Malicious Logger. Since the fingerprint (signed tree hash
in CT) is used to concisely represent the contents of the log, the first two cryp-
tographic security properties against a malicious logger, shown in Fig. 6, concern
the ability of the logger to make the fingerprint represent different, conflicting
information. Collision resistance of entries, defined in the experiment entry-coll,
requires that it is hard for a malicious logger to come up with a single fingerprint
representing two different sets of entries. Collision resistance of proofs, formal-
ized in the experiment proof-coll, is about the difficulty for a malicious logger to
create a proof that an entry is represented by a fingerprint while simultaneously
claiming that the set of entries represented by that fingerprint does not include
that particular entry. A scheme that satisfies both of these ensures that a mali-
cious logger cannot make parties who use the same fingerprint believe different
things about the log entries represented by that fingerprint.

Expentry-coll
LS (A):

1: (E0, E1, F, pk)
$← A()

2: return 1 iff (CheckEntries(E0, F, pk) = 1) ∧ (CheckEntries(E1, F, pk) = 1) ∧ (E0
= E1)

Expproof-coll
LS (A):

1: (e, E, F, M, pk)
$← A()

2: return 1 iff (CheckEntries(E, F, pk) = 1) ∧ (CheckMembership(e, F, M, pk) = 1) ∧ (e /∈ E)

Expentry-cons
LS (A):

1: (E0, E1, F0, F1, C, pk)
$← A()

2: return 1 iff (CheckConsistency(F0, F1, C, pk) = 1) ∧ (CheckEntries(E0, F0, pk) = 1)
∧ (CheckEntries(E1, F1, pk) = 1) ∧ (E0
≺ E1)

Fig. 6. Security properties of a logging scheme LS against a malicious logger.

Logs are updated over time, but are meant to be append-only. However, since
logs are only represented by fingerprints, consistency proofs are used to connect
two fingerprints and are meant to prove that the set of entries represented by one

Secure Logging Schemes and Certificate Transparency 153

fingerprint is a subset of the set of entries represented by a second fingerprint—
in other words, that the fingerprints are representative of an append-only log.
The final security property in Fig. 6 captures the consistency of entries, i.e.,
the difficulty for a malicious logger to remove an entry from a log: experiment
entry-cons is concerned with two fingerprints connected by a single consistency
proof. A “multi-hop” version, concerned with a chain of fingerprints connected
by consistency proofs, can easily be formulated and shown to follow directly from
the “single-hop” version.

Security Against a Malicious Monitor/Auditor. The security properties
described above are cryptographic, meaning that (under some computational
assumptions) it is not possible for a malicious logger to perform certain actions.
However, there are some security goals of CT that are not cryptographic. For
example, a log could choose to omit an entry that it has promised to log, and
no amount of cryptography can prevent it from doing so. Should a log issue a
fingerprint after the time by which it has promised to log an entry but the log
does not contain an entry, that constitutes evidence of the log’s misbehaviour.

However, to protect honest loggers, it should not be possible to frame an
honest logger for misbehaviour that did not actually happen, which is the secu-
rity guarantee formalized as inclusion of promises in experiment promise-incl in
Fig. 7. Here the experiment plays the role of an honest logger against a mali-
cious monitor/auditor, so we allow the adversary (the malicious monitor/logger)
to interact with experiment oracles that carry out the actions of an honest log,
such as adding entries or proving membership. The experiment includes a global

Exppromise-incl
LS,MMD (A):

1: T ← 0
2: Epromised ← ()

3: (st, pk, sk)
$← KeyGen()

4: (F, P, E)
$← AOTick,OPromiseEntry,OUpdateLog,OProveConsistency,OProveMembership(pk)

5: return 1 iff (CheckFingerprint(F, pk) = 1) ∧ (CheckPromise(P.e, P, pk) = 1)
∧ (CheckEntries(E, F, pk) = 1) ∧ (P.e /∈ E) ∧ (P.t + MMD ≤ F.t)

OTick():
1: T ← T + 1
2: P ← {P ∈ Epromised : P.t + MMD ≤ T}
3: if P
= (),

4: F
$← OUpdateLog(P)

5: Epromised ← Epromised \ P
6: return (T, F)
7: else return T

OPromiseEntry(e):

1: (st, P)
$← PromiseEntry(st, e, T, sk)

2: Epromised ← Epromised || {P}
3: return P

OUpdateLog(P):

1: (st, F)
$← UpdateLog(st, P , T, sk)

2: return F

OProveConsistency(F0, F1):

1: (st, C)
$← ProveConsistency(st, F0, F1)

2: return C

OProveMembership(e, F):

1: (st, M)
$← ProveMembership(st, e, F)

2: return M

Fig. 7. Security properties of a logging scheme LS against a malicious monitor/auditor
framing a log for failing to include a promised entry.

154 B. Dowling et al.

time which advances at the adversary’s command, and is parameterized by a
maximum merge delay MMD > 0, within which an honest log is expected to
include a promised entry. The list �Epromised tracks entries that the log has
promised to include; in calls to OTick the experiment (acting as the honest
log) automatically adds the list of promised entries by the end of the maximum
merge delay window.

5 Security of Certificate Transparency

We are now ready to prove the security results on Certificate Transparency,
namely that its instantiation CTH,SIG within our logging scheme frameworks
guarantees collision resistance of entities and proofs, consistency of entries, and
inclusion of promises.

Theorems 1 and 2 below connect rather immediately with the security prop-
erties of the underlying Merkle tree hash, so we omit the arguments due to space
constraints; they appear in the full version [8]. Lemmas 1 and 2 then connect the
Merkle tree hash properties to finding a collision in H, which is infeasible if H
is collision-resistant. For Theorem 3 we also provide the proof in the full version
due to space restrictions; the proof for Theorem 4 is given in AppendixA.

Theorem 1 (Collision Resistance of Entries). If hash function H is
collision-resistant, then, in Certificate Transparency (with hash function H),
no malicious logger can present different log entries for the same fingerprint.
More precisely, if A wins Expentry-coll

CTH,SIG
, then algorithm BA, which runs A and

then returns the first two components of A’s output, finds a collision in MTHH.
Moreover, the runtime of BA is the same as that of A.

Theorem 2 (Collision Resistance of Proofs). If hash function H is
collision-resistant then, in Certificate Transparency (with hash function H) no
malicious logger can present a list of log entries under some fingerprint and a
membership proof under the same fingerprint for an entry not contained in this
list. More precisely, if A wins Expproof-coll

CTH,SIG
by outputting (e, �E, F, �M, pk), then

algorithm BA, which runs A and then returns (e, �E, �M. �A, �M.m), breaks authen-
tication path consistency in the sense of Lemma 2. Moreover, the runtime of BA

is the same as that of A.

Theorem 3 (Consistency of Entries). If hash function H is collision-
resistant, then, in Certificate Transparency (with hash function H), no malicious
logger can present two lists of entries, two fingerprints, and a consistency proof
such that each list corresponds to the fingerprint, and the fingerprints are con-
nected via the consistency proof, but the first list of entries is not a prefix of the
second list of entries. More precisely, if A wins Expentry-cons

CTH,SIG
, then algorithm BA

3

given in the full version [8] finds a collision in H. Moreover, the runtime of BA
3

consists of the runtime of A, plus at most a quadratic (in the size of the second
list) number of hash evaluations.

Secure Logging Schemes and Certificate Transparency 155

Theorem 4 (Inclusion of Promises). If hash function H is collision-resistant
and signature scheme SIG is existentially unforgeable under chosen-message
attacks, then, in Certificate Transparency (with hash function H and signature
scheme SIG), no malicious monitor/auditor can frame an honest logger of not
including a promised entry within the maximum merge delay. More precisely, if
algorithm A wins Exppromise-incl

CTH,SIG
, then there exist algorithms BA and CA, described

in the proof, that find a collision in MTHH or a forgery in SIG, respectively. More-
over, the runtimes of BA and CA are approximately the same as that of A.

6 Conclusion and Future Work

Certificate Transparency is a promising approach for providing assurances in the
web PKI by using untrusted auditable public logs to detect fraudulently issued
certificates. We introduced a generic model for logging schemes and captured
Certificate Transparency as one specific instance of our model. Based on the
security notions we formalized, we were able to analyze the cryptographic aspects
of CT and show how its cryptographic mechanisms prevent both undetected
misbehaviour of log servers as well as false accusations of honest loggers.

Although cryptography plays an essential role to establish the trust neces-
sary in a public and auditable logging scheme like Certificate Transparency, there
are other components involved that are difficult or even impossible to capture
in a cryptographic model. For example, under various conditions on adversary
control of the network and with various patterns of honest entity behaviour,
how long does it take for the CT gossiping protocol to propagate SCTs and
STHs to ensure detection of dishonest log behaviour? Once misbehaviour is
detected, what organizational measures should be taken to ensure an appropri-
ate response? Analyzing these components in general as well as their specific
relevance in the CT framework is an important task for future work.

Acknowledgements. Benjamin Dowling and Douglas Stebila are supported by
Australian Research Council (ARC) Discovery Project grant DP130104304. Felix
Günther is supported by the DFG as part of project S4 within the CRC 1119
CROSSING.

A Proof of Theorem4 (Inclusion of promises)

Proof. By definition of OTick (cf. Fig. 7), the simulated honest logger will keep
track of any promise P issued through OPromiseEntry and will include the P
through OUpdateLog by time T = P.t + MMD. As in particular MMD > 0, this
ensures that any fingerprint issued by the honest logger at time T ′ ≥ T will
include the promised entry P.e.

AssumeAwinsbyoutputting (F, P, �E), i.e.,F is a validfingerprint representing
entries �E and P is a promise for an entry e /∈ �E although P.t + MMD ≤ F.t.
This means either one of the promise P or the fingerprint F (or both) were not
issued by the simulated honest logger through an invocation of OPromiseEntry or

156 B. Dowling et al.

OUpdateLog, or that A repeated an honest F that matches an entry list �E different
from the entry list �E′ hold by the honest logger when creating the fingerprint.

The second case constitutes a Merkle-tree hash collision (as MTHH(�E) =
MTHH(�E′), but �E �= �E′). Hence A’s advantage in winning through this case can
be bound by the advantage of an algorithm B (that simulates the oracles and
simply outputs the colliding �E and �E′) against the collision resistance of MTHH.
(Applying Lemma 1 leads to a collision in H.)

For the first case, we show how this allows constructing a signature forgery
attacker C against the euf-cma security of SIG, which works as follows. First of
all, C creates an initial state with empty list of entries. It then simulates experi-
ment Exppromise-incl

CTH,SIG,MMD for A, providing the public key pk from its euf-cma game as
input for A. It furthermore uses its euf-cma signing oracle OSign when required
to generate a signature in the simulations of the OPromiseEntry and OUpdateLog
oracles and keeps a list of all the values queried to the signing oracle.

If A halts (outputting (F, P, �E)) and wins, as argued above, at least one of P
or F was not output through C’s simulation of OPromiseEntry and OUpdateLog
(as we excluded the case of a Merkle-tree hash collision). Hence, in particular,
the according value was not queried to the euf-cma signing oracle, so C checks
which of the two values is not contained in its list of queries and outputs this as
its valid signature forgery. ��

References

1. Basin, D.A., Cremers, C.J.F., Kim, T.H.J., Perrig, A., Sasse, R., Szalachowski, P.:
ARPKI: attack resilient public-key infrastructure. In: Ahn, G.J., Yung, M., Li, N.
(eds.) ACM CCS 2014, pp. 382–393. ACM Press, November 2014

2. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: the case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg (1994)

3. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: incremen-
tality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 163–192. Springer, Heidelberg (1997)

4. Braun, J., Kiefer, F., Hülsing, A.: Revocation and non-repudiation: when the first
destroys the latter. In: Katsikas, S., Agudo, I. (eds.) EuroPKI 2013. LNCS, vol.
8341, pp. 31–46. Springer, Heidelberg (2014)

5. Comodo Group: Comodo fraud incident, 31 Mar 2011. https://www.comodo.com/
Comodo-Fraud-Incident-2011-03-23.html

6. Crosby, S.A.: Efficient Tamper-Evident Data Structures for Untrusted Servers.
Ph.D. thesis, Rice University, Houston, Texas, USA (2009)

7. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper-evident logging.
In: 18th USENIX Security Symposium 2009, pp. 317–334. USENIX Association
(2009). http://www.usenix.org/events/sec09/tech/full papers/crosby.pdf

8. Dowling, B., Günther, F., Herath, U., Stebila, D.: Secure logging schemes and Cer-
tificate Transparency (full version). Cryptology ePrint Archive, Report 2016/452
(2016). http://eprint.iacr.org/2016/452

9. Electronic Frontier Foundation: Sovereign Keys. https://www.eff.org/
sovereign-keys

https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
http://www.usenix.org/events/sec09/tech/full_papers/crosby.pdf
http://eprint.iacr.org/2016/452
https://www.eff.org/sovereign-keys
https://www.eff.org/sovereign-keys

Secure Logging Schemes and Certificate Transparency 157

10. Evans, C., Palmer, C., Sleevi, R.: Public Key Pinning Extension for HTTP. RFC
7469 (Proposed Standard), April 2015. http://www.ietf.org/rfc/rfc7469.txt

11. Fox, I.T.: Black Tulip: Report of the investigation into the DigiNotar certifi-
cate authority breach, August 2012. http://www.rijksoverheid.nl/bestanden/
documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-
tulip-update.pdf

12. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

13. Hoffman, P., Schlyter, J.: The DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698 (Proposed
Standard), August 2012. http://www.ietf.org/rfc/rfc6698.txt

14. Huang, D.: Early impacts of Certificate Transparency, April 2016. https://
www.facebook.com/notes/protect-the-graph/early-impacts-of-certificate-
transparency/1709731569266987/

15. Kent, S.: Attack model and threat for Certificate Transparency, October 2015.
https://tools.ietf.org/html/draft-ietf-trans-threat-analysis-03

16. Kim, T.H., Huang, L., Perrig, A., Jackson, C., Gligor, V.D.: Accountable key
infrastructure (AKI): a proposal for a public-key validation infrastructure. In:
22nd International World Wide Web Conference (WWW) 2013, pp. 679–690. ACM
(2013)

17. Laurie, B., Langley, A., Kasper, E.: Certificate Transparency. RFC 6962 (Experi-
mental), June 2013. http://www.ietf.org/rfc/rfc6962.txt

18. Laurie, B.: Certificate transparency. ACM Queue Secur. 12(8), 10 (2014)
19. Laurie, B., Kasper, E.: Revocation Transparency (2012). http://www.links.org/

files/RevocationTransparency.pdf
20. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index

structures for outsourced databases. In: ACM SIGMOD International Conference
on Management of Data 2006, pp. 121–132. ACM (2006)

21. Marchesini, J.C., Smith, S.: Modeling public key infrastructures in the real world.
In: Chadwick, D., Zhao, G. (eds.) EuroPKI 2005. LNCS, vol. 3545, pp. 118–134.
Springer, Heidelberg (2005)

22. Maurer, U.M.: Modelling a public-key infrastructure. In: Bertino, E., Kurth, H.,
Martella, G., Montolivo, E. (eds.) Computer Security – ESORICS ’96. LNCS, vol.
1146, pp. 325–350. Springer, Heidelberg (1996)

23. Melara, M.S., Blankstein, A., Bonneau, J., Felten, E.W., Freedman, M.J.:
CONIKS: bringing key transparency to end users. In: USENIX Security 2015, pp.
383–398. USENIX Association (2015)

24. Merkle, R.C.: Secrecy, authentication, and public key systems. Technical report
1979–1, Information Systems Laboratory, Stanford University, June 1979

25. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

26. Nissim, K., Naor, M.: Certificate revocation and certificate update. In: USENIX
Security 1998. USENIX Association (1998)

27. Nordberg, L., Gillmor, D., Ritter, T.: Gossiping in CT, August 2015. https://tools.
ietf.org/html/draft-ietf-trans-gossip-00

28. Ogawa, M., Horita, E., Ono, S.: Proving properties of incremental merkle trees. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 424–440. Springer,
Heidelberg (2005)

29. Ryan, M.D.: Enhanced certificate transparency and end-to-end encrypted mail. In:
NDSS 2014, The Internet Society, February 2014

http://www.ietf.org/rfc/rfc7469.txt
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
http://www.ietf.org/rfc/rfc6698.txt
https://www.facebook.com/notes/protect-the-graph/early-impacts-of-certificate-transparency/1709731569266987/
https://www.facebook.com/notes/protect-the-graph/early-impacts-of-certificate-transparency/1709731569266987/
https://www.facebook.com/notes/protect-the-graph/early-impacts-of-certificate-transparency/1709731569266987/
https://tools.ietf.org/html/draft-ietf-trans-threat-analysis-03
http://www.ietf.org/rfc/rfc6962.txt
http://www.links.org/files/RevocationTransparency.pdf
http://www.links.org/files/RevocationTransparency.pdf
https://tools.ietf.org/html/draft-ietf-trans-gossip-00
https://tools.ietf.org/html/draft-ietf-trans-gossip-00

158 B. Dowling et al.

30. Somogyi, S., Eijdenberg, A.: Improved digital certificate security, September 2015.
http://googleonlinesecurity.blogspot.de/2015/09/improved-digital-certificate-
security.html

31. Villemson, J.: Size-efficient interval time stamps. Ph.D. thesis, Tartu (2002)

http://googleonlinesecurity.blogspot.de/2015/09/improved-digital-certificate-security.html
http://googleonlinesecurity.blogspot.de/2015/09/improved-digital-certificate-security.html

Economics of Security

Banishing Misaligned Incentives for Validating
Reports in Bug-Bounty Platforms

Aron Laszka1(B), Mingyi Zhao2, and Jens Grossklags2

1 University of California, Berkeley, USA
laszka@berkeley.edu

2 Pennsylvania State University, University Park, USA

Abstract. Bug-bounty programs have the potential to harvest the
efforts and diverse knowledge of thousands of white hat hackers. As a
consequence, they are becoming increasingly popular as a key part of the
security culture of organizations. However, bug-bounty programs can be
riddled with myriads of invalid vulnerability-report submissions, which
are partially the result of misaligned incentives between white hats and
organizations. To further improve the effectiveness of bug-bounty pro-
grams, we introduce a theoretical model for evaluating approaches for
reducing the number of invalid reports. We develop an economic frame-
work and investigate the strengths and weaknesses of existing canonical
approaches for effectively incentivizing higher validation efforts by white
hats. Finally, we introduce a novel approach, which may improve effi-
ciency by enabling different white hats to exert validation effort at their
individually optimal levels.

Keywords: Bug-bounty programs · Vulnerability discovery ·
Economics of security · White hat hackers · Misaligned incentives ·
Crowdsourcing

1 Introduction

In recent years, many organizations have launched independent bug-bounty pro-
grams (e.g., Google and Facebook) or have joined bug-bounty platforms, such
as HackerOne, Cobalt or Bugcrowd, that facilitate programs for them. These
programs allow independent security researchers, so-called white hats, to evalu-
ate the security of a website or software within a set of predefined rules. White
hat hackers are encouraged to submit reports for potential vulnerabilities, which
after validation by the organization will be rewarded, for example, with monetary
bounties. The benefits of these programs are at least twofold. First, the orga-
nizations’ products are examined by the large and diverse population of white
hat hackers, which would be prohibitively expensive to employ directly. White
hats’ efforts effectively complement the usage of automated web vulnerability
scanners, which have been shown to have only limited coverage [8,26]. Second,
the public nature of the majority of these programs can signal to third parties
the commitment of organizations towards continual security improvements.
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 161–178, 2016.
DOI: 10.1007/978-3-319-45741-3 9

162 A. Laszka et al.

The scale of bug-bounty programs is sizable and growing. For example, on
HackerOne, more than 20000 security vulnerabilities have been reported and
fixed for hundreds of organizations as of May 2016. These contributions are based
on reports from over 2500 different white hat hackers, who received bounties
totaling over $7.3 M.

However, the public nature of the majority of the programs also poses a
challenge since virtually anyone can participate, and organizations may be over-
whelmed by low-value reports [28]. In fact, bug-bounty platforms acknowledge
that the key challenge “companies face in running a public program at scale is
managing noise, or the proportion of low-value reports they receive” [13]. These
low-value reports include spam (i.e., completely irrelevant reports), false pos-
itives (i.e., issues that do not actually exist or have no security impact), and
out-of-scope reports. For the purpose of our work, we will refer to all of these
issues as invalid reports.

Invalid reports may be the result of imprecise research approaches or lack of
thorough validation by white hats. For example, some hackers utilize automated
vulnerability scanners in the discovery process, which typically have a high false-
positive rate [8]. Since filtering out false positives is costly, some hackers may
prefer to send the outputs of an automated scanner to the bug-bounty program.
Further, some discoveries may initially appear to be valid, while they are actually
not. For example, a hacker needs to read the participation rules for a program
and validate whether an identified issue is out-of-scope. Another important facet
is that the hacker needs to demonstrate that a discovered flaw can really lead to
a security problem. Finally, writing a good report for a valid discovery requires
effort, and can also be seen as a part of the validation process.

In practice, the number of invalid reports is significant. For example, for
Bugcrowd’s public programs, 34.5 % of all submissions were marked invalid (from
January 2013 to June 2015) [7]. HackerOne reported that 54 % of all submissions
were marked as invalid before the platform started to proactively improve the
signal-to-noise ratio (in 2015) [13].

As a direct response, bug-bounty platforms have started to offer multiple
policies that participating organizations can use for reducing the number of
invalid reports. For example, HackerOne has introduced “Signal Requirements”
and “Rate Limiter” mechanisms, which organizations can use to increase the
quality of reports [13]. The former allows only those hackers to submit reports
who maintain a given ratio of valid to invalid submissions, while the latter limits
the number of reports that a hacker can make in some time interval. These
policies aim to incentivize hackers to engage in consistent efforts to validate their
reports. According to HackerOne [13], these measures together have decreased
the percentage of invalid reports to around 25 %.

Unfortunately, policies may also prevent some hackers, who could contribute
valid reports, from participating and may force others to waste effort by being
overly meticulous. Consequently, strict policies will result not only in a reduced
number of invalid reports, but also in a lower number of valid reports. In sum-
mary, finding the right policies and their optimal configuration is a challenging

Banishing Misaligned Incentives for Validating Reports 163

problem since white hat hackers need to be incentivized to produce and submit
valid reports, but at the same time, discouraged from submitting invalid reports.

With our work, we provide the first theoretical framework for modeling these
policies, finding their optimal configuration, and comparing them with each
other. In addition to modeling existing policies, we also propose a new policy,
which directly rewards hackers for their accuracy. For each policy, we provide
theoretical results on how hackers react to the implementation of the policy,
and then complement our analytic results with numerical analyses comparing
the policies.

The remainder of this paper is organized as follows. In Sect. 2, we discuss
related work on bug-bounty programs, and vulnerability discovery. In Sect. 3, we
introduce our economic model of bug-bounty programs. In Sect. 4, we study a set
of canonical policies for decreasing the number of invalid reports. In Sect. 5, we
present numerical results on these policies. Finally, in Sect. 6, we offer concluding
remarks and outline future work.

2 Related Work

2.1 Bug Bounty and Vulnerability Markets

There has been a long-standing interest for using market approaches to address
software security problems. Böhme established a terminology for organiza-
tional principles of vulnerability markets by comparing bug bounties, vulner-
ability brokers, exploit derivatives and cyber-insurance [5]. Among these market
approaches, bug bounties have received strong attention from both industry and
academia. Schechter proposed a testing competition in which multiple testers
report security defects to a software company for reward [24]. Ozment further
extended Schechter’s testing competition into a vulnerability auction to improve
its efficiency and better defend against attacks [19]. In both mechanisms, the
amount of reward grows linearly with time, and resets to the initial value every
time a report is accepted. This reward policy enables the firm to minimize the
cost while still offering a fair price for the vulnerabilities discovered by the testers.
The reward level at a given time can also serve as a measurement of software
security. However, these two mechanisms did not fully consider the problem of
invalid reports, which cause high cost for today’s bug-bounty programs and the
participating organizations. Schechter proposed to require testers to pay the
transaction costs of processing reports [24]. However, this idea would prevent
many hackers from submitting reports and thus is not implemented in reality.
Our research focuses on real bug-bounty programs and their policies, thus com-
plements these early proposed mechanisms.

In recent years, researchers have conducted multiple empirical analyses on
bug-bounty programs. Finifter et al. empirically studied the Google Chrome
vulnerability reward program (VRP) and the Mozilla Firefox VRP [11], and
suggested that VRPs are more cost-effective compared to hiring full-time secu-
rity researchers in terms of finding security flaws. Zhao et al. conducted a com-
prehensive study of two bug bounty ecosystems, Wooyun and HackerOne, to

164 A. Laszka et al.

understand their characteristics, trajectories and impact [28]. They quantita-
tively discussed the low signal-to-noise ratio problem which is the focus of this
paper. Maillart et al. empirically studied reward distribution and hacker enroll-
ments of public bounty programs on HackerOne and found that growing rewards
cannot match the increasing difficulty of vulnerability discovery, and thus hack-
ers tend to switch to newly launched programs to find bugs more easily [18].
Similar to [28], they suggested that a bounty program manager should try to
enroll as many hackers as possible to deplete the number of vulnerabilities more
effectively. However, this leads to a significant increase of invalid submissions,
which we aim to address in this paper.

For other types of market-based vulnerability discovery mechanisms, Kannan
and Telang theoretically demonstrated that unregulated vulnerability mar-
kets almost always perform worse than regulated ones, or even non-market
approaches [15]. They further found that offering rewards for benign vulner-
ability discoverers is socially beneficial. Frei et al. studied a security ecosystem
including discovers, vulnerability markets, criminals, vendors, security informa-
tion providers and the public, based on 27,000 publicly disclosed vulnerabilities
to examine the risk and impact of such an ecosystem [12]. They found that
between 10 % and 15 % of the vulnerabilities of major software vendors are han-
dled by commercial vulnerability markets, and exploits become available faster
than patches on average. Ransbotham et al. empirically examined the effec-
tiveness of vulnerability markets and concluded that market-based disclosure
restricts the diffusion of vulnerability exploits, reduces the risk of exploitation,
and decreases the volume of exploitation attempts [22]. Algarni and Malaiya
analyzed data of several existing vulnerability markets and showed that the
black market offers much higher prices for zero-day vulnerabilities, and govern-
ment agencies make up a significant portion of the buyers [1]. Bacon et al. have
proposed a more general market design that contains bug hunters, developers,
and users [4]. Bug bounty, and vulnerability markets in general have also caused
debates regarding their ethics. A recent panel discussion of such issues and their
implications can be found in [10]. Finally, Libicki et al. conducted a compre-
hensive study of vulnerability markets and their relevance to cyber security and
public policy [17].

2.2 Empirical Analysis of Software Vulnerability Discovery

Previous work has studied various software vulnerability datasets to understand
vulnerability discovery. Rescorla studied the ICAT dataset of 1,675 vulnerabil-
ities and found very weak or no evidence of vulnerability depletion. He thus
suggested that the vulnerability discovery efforts might not provide much social
benefit [23]. This conclusion is being challenged by Ozment and Schechter, who
showed that the pool of vulnerabilities in the foundational code of OpenBSD is
being depleted with strong statistical evidence [20,21]. Ozment also found that
vulnerability rediscovery is common in the OpenBSD vulnerability discovery his-
tory [20]. Therefore, they gave the opposite conclusion, i.e., vulnerability hunting
by white hats is socially beneficial. More recently, Shahzad et al. [25] conducted

Banishing Misaligned Incentives for Validating Reports 165

a large-scale study of the evolution of the vulnerability life cycle using a com-
bined dataset of NVD, OSVDB and FVDB. Their study provided three positive
signs for increasing software security: (1) monthly vulnerability disclosures are
decreasing since 2008, (2) exploitation difficulty of the identified vulnerabilities
is increasing, and (3) software companies have become more agile in responding
to discovered vulnerabilities.

More recently, researchers started to pay attention to the behaviors of vul-
nerability discoverers. One finding is that vulnerability discoverers are rather
heterogeneous. Edmundson et al. conducted a code review experiment for a
small web application with 30 subjects [9]. One of their findings is that none of
the participants was able to find all 7 Web vulnerabilities embedded in the test
code, but a random sample of half of the participants could cover all vulnerabil-
ities with a probability of about 95 %, indicating that a sufficiently large group
of white hats is required for finding vulnerabilities effectively. Zhao et al. con-
ducted an initial exploratory study of white hats on Wooyun [27] and uncovered
the diversity of white hat behaviors regarding productivity, vulnerability type
specialization, and discovery transitions. Huang et al. uncovered that hackers at
various levels of experience exist in the vulnerability disclosure ecosystem [14].
They found that hackers with different levels of accuracy have diverse strate-
gies in selecting to which programs to contribute [14]. In this paper, we account
for these studies by evaluating the effectiveness of bug bounty policies for both
homogeneous and heterogeneous white hat hackers.

3 Model

In this section, we introduce our economic model of bug-bounty programs. Note
that we will focus on features that are relevant to invalid reports and policies
for limiting them. A list of symbols used in this paper can be found in Table 1.

Notation. We use uppercase letters to denote constants (e.g., V) and functions
(e.g., Di(ti)), lowercase letters to denote variables (e.g., b), and bold font to
denote vectors (e.g., t). We use Lagrange’s notation (i.e., the prime notation) for
derivatives of single variable functions (i.e., D′

i(ti) denotes the first derivative of
Di(ti)). For multivariable functions, we use Leibniz’s notation (e.g., d

dbUO(b, t,v)
denotes the first derivative of UO(b, t,v) with respect to b). Finally, we use −1 to
denote the inverse of a function (e.g., D−1

i (ti) is the inverse of function Di(ti)).
In our model, we consider an organization that runs a bug-bounty program

and hackers that may participate in the program. We group hackers who have the
same productivity and preferences together into hacker types. Since hackers of the
same type will respond in the same way to the policies set by the organization,
we study their choices as a group instead of as individuals.

The number of potential vulnerabilities discovered by hackers of type i is

Di(ti), (1)

166 A. Laszka et al.

where ti is the amount of time hackers of type i spend on discovery. We assume
that Di(0) ≡ 0 and that Di is a non-negative, increasing, and strictly concave
function of ti. That is, we assume that the marginal productivity of discovery
is decreasing, which is supported by experimental results and existing models
(e.g., [2,6,29]).

On average, Φi · Di(ti) of these discoveries are actual vulnerabilities and
(1 − Φi)Di(ti) of them are invalid (0 < Φi < 1). The number of potential
vulnerabilities that are validated (i.e., confirmed to be valid or to be invalid) by
hackers of type i is

Ii(vi), (2)

where vi is the amount of time hackers of type i spend on validating their dis-
coveries. We assume that Ii(0) ≡ 0 and that Ii is a non-negative, increasing,
unbounded, and strictly concave function of vi. The rationale behind the con-
cavity assumption is that some discoveries are easier to validate, and a rational,
utility-maximizing hacker starts validation with the easier ones. Finally, we obvi-
ously have that

vi ≤ I−1
i (Di(ti)) . (3)

That is, a hacker will not waste time on validation once he has finished with all
of his discoveries.

After validating his Ii(vi) discoveries, the hacker will report all Φi · Ii(vi)
discoveries that he has confirmed to be valid vulnerabilities. Further, he will also
report all Di(ti) − Ii(vi) unvalidated discoveries, of which Φi · (Di(ti) − Ii(vi))
are valid and (1 − Φi) (Di(ti) − Ii(vi)) are invalid. Hence, the number of valid
reports made by hackers of type i is

Φi · Di(ti), (4)

Table 1. List of symbols

Symbol Description

Constants and Functions

V average value of a valid report for the organization

C average cost of processing a report for the organization

Wi value of time for hackers of type i

Φi fraction of discoveries by hackers of type i that are valid vulnerabilities

Di(ti) number of potential vulnerabilities discovered by hackers of type i

Ii(vi) number of discoveries validated by hackers of type i

Variables

b average bounty paid for a valid report

ti time spent on vulnerability discovery by hackers of type i

vi time spent on validating discoveries by hackers of type i

α accuracy threshold imposed on participating hackers

ρ report-rate threshold imposed on participating hackers

δ validation reward for participating hackers

Banishing Misaligned Incentives for Validating Reports 167

while the number of invalid reports is

(1 − Φi) (Di(ti) − Ii(vi)) . (5)

The utility of hackers of type i is

UHi
(b, ti, vi) = b · Φi · Di(ti) − Wi · (ti + vi), (6)

where b is the average bounty that the organization pays for a valid report, and
Wi > 0 is the hacker’s utility for spending time on other activities. In other
words, Wi is the opportunity cost of the hacker’s time.

The organization’s utility is

UO(b, t,v) =
∑

i

(V − b)ΦiDi(ti)
︸ ︷︷ ︸

net value of valid reports

−C · (ΦiDi(ti)
︸ ︷︷ ︸

valid reports

+ (1 − Φi) (Di(ti) − Ii(vi))
︸ ︷︷ ︸

invalid reports

)

︸ ︷︷ ︸
cost of processing reports

,

(7)
where V > 0 is the average value of a valid report for the organization, and
C > 0 is the average cost of processing a report. Note that V can incorporate a
variety of factors, such as a difference between the processing costs of valid and
invalid reports, cost of patching a vulnerability, etc. By letting V̂ = V − C, we
can express the organization’s utility as

UO(b, t,v) =
∑

i

(V̂ − b)ΦiDi(ti) − C · (1 − Φi) (Di(ti) − Ii(vi)) . (8)

4 Analysis

In this section, we provide theoretical results on our bug-bounty model, and
study how hackers respond to various policies. First, as a baseline case, we study
the model without any policy against invalid reports. Then, we study two poli-
cies, accuracy threshold and report-rate threshold, which model existing practical
approaches for limiting invalid reports. Finally, we propose a novel policy, vali-
dation reward, which incentivizes hackers to validate their discoveries instead of
imposing strict limits on their actions.

4.1 Without an Invalid-Report Policy

First, we consider a baseline case, in which the organization does not have a pol-
icy for limiting invalid reports. In this case, the organization’s choice is restricted
to adjusting the bounty paid for valid reports. The following proposition char-
acterizes the hackers’ response to the bounty value chosen by the organization.

Proposition 1. Without an invalid-report policy, hackers of type i will spend

t∗i (b) =

{
(D′

i)
−1

(
Wi

b·Φi

)
if D′

i(0) > Wi

b·Φi

0 otherwise
(9)

time on vulnerability discovery and v∗
i = 0 time on validating their discoveries.

168 A. Laszka et al.

Proof. First, it is easy to see that the maximum of

UHi
(b, ti, vi) = b · Φi · Di(ti) − Wi · (ti + vi) (10)

is always attained at vi = 0. In other words, hackers have no incentive to validate
their discoveries, and their optimal decision is v∗

i = 0 for every type i.
Second, to find the optimal ti for the hackers, we take the first derivative of

their utility UHi
with respect to ti:

d

dti
UHi

(b, ti, 0) = b · Φi · D′
i(ti) − Wi. (11)

The maximum of UHi
is attained either at the lower bound ti = 0 or when the

first derivative is equal to 0:

d

dti
UHi

(b, ti, 0) = 0 (12)

b · Φi · D′
i(ti) − Wi = 0 (13)

D′
i(ti) =

Wi

b · Φi
. (14)

Since Di(ti) is strictly concave, we have that D′
i(ti) is strictly decreasing. Con-

sequently, if D′
i(0) ≤ Wi

b·Φi
, then Eq. (14) cannot have a positive solution ti > 0,

and the maximum utility is attained at the lower bound t∗i = 0.
On the other hand, if D′

i(0) > Wi

b·Φi
, then there exists a unique solution

t̃i = (D′
i)

−1
(

Wi

b · Φi

)

(15)

to Eq. (14). Furthermore, it is easy to see that ti = 0 cannot be an optimum in
this case, since an infinitesimal increase to ti = 0 would lead to a higher payoff
due to d

dti
UHi

(b, 0, 0) = b ·Φi ·D′
i(0)−Wi > 0. Thus, t∗i = t̃i is the unique optimal

choice in this case. ��

4.2 Accuracy Threshold

Second, we consider programs that accept reports only from those hackers who
maintain a sufficiently high ratio of valid reports (e.g., invitation-only programs
or the “Signal Requirements” mechanisms of HackerOne [13]). We model these
programs using a policy that imposes a restriction on the participating hackers’
accuracy. We define accuracy formally as the following ratio:

number of valid reports
number of valid reports + number of invalid reports

(16)

=
Φi · Di(ti)

Φi · Di(ti) + (1 − Φi)(Di(ti) − Ii(vi))
(17)

=
Φi · Di(ti)

Di(ti) − (1 − Φi)Ii(vi)
. (18)

Banishing Misaligned Incentives for Validating Reports 169

Please recall that Ii(vi) ≤ Di(ti) by definition, which ensures that accuracy
cannot exceed 1.

Based on the above definition of accuracy, we formalize the accuracy-
threshold policy as follows.

Definition 1 (Accuracy-Threshold Policy). Under an accuracy-threshold
policy with threshold α ∈ [0, 1], the hackers’ choices must satisfy

Φi · Di(ti)
Di(ti) − (1 − Φi)Ii(vi)

≥ α. (19)

The following proposition characterizes the hackers’ responses to the
accuracy-threshold policy when α > Φi (when α ≤ Φi their responses are obvi-
ously the same as without a policy).

Proposition 2. Under an accuracy-threshold policy, if α > Φi, hackers of type i
will spend

t∗i (b, α) =

⎧
⎨

⎩

0 if D′
i(0) ≤ Wi

b·Φi−Wi
1

I′
i
(0)

α−Φi
α·(1−Φi)

t̃i otherwise
(20)

time on vulnerability discovery, where t̃i is the unique solution to

D′
i(t̃i)

⎛

⎝b · Φi − Wi
1

I ′
i

(
I−1
i

(
Di(t̃i) α−Φi

α·(1−Φi)

))
α − Φi

α · (1 − Φi)

⎞

⎠ = Wi. (21)

In addition, they will spend

v∗
i (b, α) = I−1

i

(

Di(t∗i)
α − Φi

α · (1 − Φi)

)

(22)

time on validating their discoveries.

Note that even though we cannot express the solution of Eq. (21) in closed form,
it can be found easily numerically since the left-hand side is strictly decreasing or
negative (see the proof for details). Furthermore, this also holds for the remaining
propositions (Propositions 3 and 4).

Proof. Similar to the case without any policy, hackers are interested in mini-
mizing their time spent on validating their discoveries. Consequently, for any
given ti, hackers will choose the minimum validation effort v∗

i that satisfies the
accuracy-threshold constraint. Hence, we have

Φi · Di(ti)
Di(ti) − (1 − Φi)Ii(v∗

i)
= α (23)

Φi · Di(ti) = α · Di(ti) − α · (1 − Φi)Ii(v∗
i) (24)

Ii(v∗
i) = Di(ti)

α − Φi

α · (1 − Φi)
(25)

v∗
i = I−1

i

(

Di(ti)
α − Φi

α · (1 − Φi)

)

. (26)

Note that I−1
i exists since Ii is strictly increasing.

170 A. Laszka et al.

Next, we study the optimal t∗i for the hackers. Using the above characteriza-
tion of v∗

i , we can express the hackers’ utility as a function of b and ti:

UHi
(b, ti) = b · Φi · Di(ti) − Wi ·

(

ti + I−1
i

(

Di(ti)
α − Φi

α · (1 − Φi)

))

. (27)

In order to find the utility-maximizing ti, we take the first derivative of the
hackers’ utility with respect to ti:

d

dti
UHi = b · Φi · D′

i(ti) − Wi

− Wi ·
(
I−1

i

)′
(

Di(ti)
α − Φi

α · (1 − Φi)

)
· D′

i(ti)
α − Φi

α · (1 − Φi)
(28)

=D′
i(ti)

⎛

⎝b · Φi − Wi
1

I ′
i

(
I−1

i

(
Di(ti)

α−Φi
α·(1−Φi)

)) α − Φi

α · (1 − Φi)

⎞

⎠− Wi. (29)

Recall that Di(ti) is a strictly increasing function of ti by definition. Since
α−Φi

α·(1−Φi)
≥ 0, the argument of I−1

i is increasing in the formula above, which
implies that the argument of I ′

i is also increasing because I−1
i is an increasing

function. Since I ′
i is a strictly decreasing function, the value of I ′

i is decreas-
ing, which implies that the fraction 1

I′
i(...)

in the formula above is an increasing
function of ti. Consequently, we have

d

dti
UHi

= D′
i(ti)︸ ︷︷ ︸

strictly decreasing

(

b · Φi − Wi
1

I ′
i (. . .)

︸ ︷︷ ︸
increasing

α − Φi

α · (1 − Φi)
︸ ︷︷ ︸
non-negative

)

︸ ︷︷ ︸
decreasing

− Wi︸︷︷︸
constant

. (30)

Since D′
i(ti) is always positive, the first term is either decreasing or negative.

Therefore, the following equation has at most one solution for ti:

d

dti
UHi

= 0. (31)

Using an argument similar to the one used in the proof of Proposition 1, we
can show that if the above equation has a solution t̃i, then the unique optimal
choice is t∗i = t̃i; otherwise, the unique optimal choice is t∗i = 0. Since the
first term on the right-hand side of Eq. (30) is either decreasing or negative,
d

dti
UHi

= 0 does not have a solution if and only if d
dti

UHi
is negative at ti = 0.

Therefore, t∗i = 0 is the unique optimal choice if and only if

0 ≥ D′
i(0)

(

b · Φi − Wi
1

I ′
i

(
I−1
i

(
Di(0)
︸ ︷︷ ︸

=0

α−Φi

α·(1−Φi)

))
α − Φi

α · (1 − Φi)

)

− Wi (32)

Wi ≥ D′
i(0)

(

b · Φi − Wi
1

I ′
i

(
I−1
i (0)

︸ ︷︷ ︸
=0

)
α − Φi

α · (1 − Φi)

)

(33)

Banishing Misaligned Incentives for Validating Reports 171

Wi ≥ D′
i(0)

(

b · Φi − Wi
1

I ′
i(0)

α − Φi

α · (1 − Φi)

)

(34)

D′
i(0) ≤ Wi

b · Φi − Wi
1

I′
i(0)

α−Φi

α·(1−Φi)

. (35)

��

4.3 Report-Rate Threshold

Next, we consider programs that limit the number of reports that each hacker
can submit in some fixed time interval (e.g., the “Rate Limiter” mechanism
of HackerOne [13]). We model these programs using a policy that imposes a
restriction on the participating hackers’ submission rate Di(ti) − (1 − Φi)Ii(vi).
In practice, programs impose these limitations on each hacker individually. To
model this, we will assume in this subsection that each hacker type contains only
a single hacker. Note that scaling up the analysis to a multitude of hackers is
trivial, since hackers having the same parameters will make the same choices, so
we can simply add their report numbers together.

We define the rate-threshold policy as follows.

Definition 2 (Rate-Threshold Policy). Under a rate-threshold policy with
threshold ρ > 0, the hackers’ choices must satisfy

Di(ti) − (1 − Φi)Ii(vi) ≤ ρ. (36)

The following proposition characterizes the hackers’ responses to the rate-
threshold policy.

Proposition 3. Under a rate-threshold policy, hackers of type i will spend

t∗i (b, ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if D′
i(0) ≤ Wi

b·ρ
D−1

i (ρ/Φi) if D′
i

(
D−1

i (ρ/Φi)
) ≥ Wi

b·Φi−Wi·(I−1
i)′

(ρ/Φi)
1

1−Φi

t̃i otherwise

(37)

time on vulnerability discovery, where t̃i is the unique solution to d
dti

UHi
= 0.

In addition, they will spend

v∗
i (b, ρ) =

{
0 if Di(t∗i) ≤ ρ

I−1
i

(
Di(t

∗
i)−ρ

1−Φi

)
otherwise

(38)

time on validating their discoveries.

The proof of Proposition 3 can be found online in the extended version of
the paper [16].

172 A. Laszka et al.

4.4 Validation Reward

One of the primary reasons for the large number of invalid reports is the mis-
alignment of incentives: hackers are only interested in increasing the number of
valid reports, while organizations are also interested in decreasing the number
of invalid reports. Existing approaches try to solve this problem by imposing
constraints on the hackers’ choices (e.g., imposing a threshold on their accuracy
or on their report rate). Here, we propose a novel, alternative approach, which
incentivizes hackers to reduce the number of invalid reports by rewarding their
validation efforts. The advantage of this approach is that it does not impose strict
constraints on the hackers’ choices, but instead aligns their incentives with those
of the organization, and allows the hackers to optimize their productivity.

A validation-reward policy can be formulated in multiple ways. For example,
the organization could slightly lower bounties for valid reports, but give a bonus
based on the submitter’s accuracy. Alternatively, it could raise bounties, but
deduct from the payment based on the submitter’s rate of invalid reports. Here,
we will study the latter approach since it allows us to align the hackers’ incentives
with those of the organization in a very straightforward way.

In practice, this policy can be easily implemented in the same way as an accu-
racy or rate threshold, by keeping track of each hacker’s valid and invalid reports.
Similar to the rate-threshold policy, we will assume for ease of presentation that
each hacker type contains only a single hacker.

We define the validation-reward policy as follows.

Definition 3 (Validation-Reward Policy). Under a validation-reward policy
with incentive δ > 0, a hacker’s utility is

UHi
(b, δ, ti, vi) = b · Φi · Di(ti) − Wi · (ti + vi) − δ · (1 − Φi)(Di(ti) − Ii(vi)), (39)

and the organization’s utility is

UO(b, δ, t,v) =
∑

i

(V̂ − b)Φi · Di(ti) − (C − δ)(1 − Φi) (Di(ti) − Ii(vi)) . (40)

The following proposition characterizes the hackers’ responses to the
validation-reward policy.

Proposition 4. Let

v̂i =

{
0 if I ′

i(0) ≤ Wi

δ·(1−Φi)

(I ′
i)

−1
(

Wi

δ·(1−Φi)

)
otherwise.

(41)

Under a validation-reward policy, hackers of type i will spend

t∗i (b, δ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ṽi = 0 and D′
i(0) ≤ Wi

b·Φi−δ·(1−Φi)

0 if ṽi > 0 and D′
i(0) ≤ Wi

b·Φi− Wi
I′
i
(0)

t̃i otherwise

(42)

Banishing Misaligned Incentives for Validating Reports 173

time on vulnerability discovery, where t̃i is the unique solution to d
dti

UHi
= 0.

In addition, they will spend

v∗
i (b, δ) = min

{
v̂i, I

−1
i (Di(t∗i))

}
(43)

time on validating their discoveries.

The proof of Proposition 4 can be found online in the extended version of
the paper [16].

5 Numerical Results

In this section, we present numerical results on our bug-bounty model in order
to evaluate and compare the policies introduced in Sect. 4. First, in Sect. 5.1, we
consider homogeneous hackers by instantiating our model with a single hacker
type, and we study the hackers’ responses. Second, in Sect. 5.2, we consider
heterogeneous hackers and evaluate policies based on the organization’s utility.

5.1 Homogeneous Hackers

For the vulnerability-discovery function D(t), we use an instance of Anderson’s
thermodynamic model [3]: D(t) = ln(10 · t + 1). Note that we added 1 to the
argument so that D(0) = 0. We instantiate the remainder of our model with the
following parameters: V = 10, C = 1, and a single hacker type with W1 = 1,
Φi = 0.2, and I1(v1) = ln(20 · v1 + 1). Notice that these hackers are assumed
to be relatively good at validating their discoveries since I1 grows faster than
D. Finally, note that we have experimented with other reasonable parameter
combinations as well, and found that the results remain qualitatively the same.

Figure 1 shows the hackers’ responses to various policies and the resulting
utilities for the organization and the hackers. First, Fig. 1(a) shows that without
any policy, the organization attains maximum utility at b = 2.07: with lower
bounties, hackers dedicate significantly less time to vulnerability discovery (zero
time when b < 0.31), while with higher bounties, the cost of running the program
becomes prohibitively high. In Figs. 1(b), (c), and (d), we set the bounty value
to b = 2.07 and study the effects of varying the policy parameters.

Figure 1(b) shows that the accuracy-threshold policy is very effective and
robust: the organization’s utility increases steeply with the threshold α, reaches
a 70 % improvement at α = 0.74, and declines negligibly after that. In contrast,
the rate-threshold policy is considerably less reliable (Fig. 1(c)): the organiza-
tion’s utility is improved by 55 % at ρ = 0.2, but it decreases rapidly as the
threshold decreases or increases, and it may reach significantly lower values than
without a policy. Thus, the organization must implement this policy with great
care in order to avoid suppressing productivity. Finally, Fig. 1(d) shows that the
validation-reward policy is robust: even though the organization’s utility does
not increase until the threshold reaches δ < 0.66, it increases steeply after that,
reaching and maintaining a 69 % improvement.

174 A. Laszka et al.

0 2 4 6
0

1.4

Bounty b

0.2 0.4 0.6 0.8 1
0

1.4

Accuracy threshold α

(a) Without an Invalid-Report Policy (b) Accuracy-Threshold Policy

0 0.5 1 1.5 2
0

1.4

Report-rate threshold ρ

0 0.1 0.2
0

1.4

Validation reward δ

(c) Rate-Threshold Policy (d) Validation-Reward Policy

t v UO UH

Fig. 1. The organization’s and the hackers’ utilities (dashed and dotted lines) and
the times spent on vulnerability discovery and validation (solid and dash-dotted lines)
under various policies as functions of the bounty value.

5.2 Heterogeneous Hackers

Now, we add a second type of hackers, who are worse at validating their discov-
eries, which we model by letting I2(v2) = ln(2.5 · v2 + 1) (all other parameters
are the same as for the first type). Since we now have multiple hacker types, who
may have different responses and utilities, we will plot only the organization’s
utility for clarity of presentation.

Figure 2 shows the organization’s utility under various policies with two
types of hackers. Similar to Fig. 1(c), Fig. 2(b) shows that the rate-threshold
policy must be implemented carefully since overzealous limiting may signifi-

Banishing Misaligned Incentives for Validating Reports 175

0.5

1

2

4

6
0

1

2

T
hr

es
ho

ld
α

Bounty b

U
ti
li
ty

U
O

0

0.5

1

2

4

6
0

1

2

T
hr

es
ho

ld
ρ

Bounty b

U
ti
li
ty

U
O

(a) Accuracy-Threshold Policy (b) Rate-Threshold Policy

0

0.5

1

2

4

6
0

1

2

R
ew

ar
d
δ

Bounty b

U
ti
li
ty

U
O

0

1

2

(c) Validation-Reward Policy

Fig. 2. The organization’s utility under various policies as a function of the bounty
value and policy parameter.

cantly decrease the organization’s utility, while lenient limiting is ineffective. On
the other hand, the accuracy-threshold and validation-reward policies (Figs. 2(a)
and (c)) have large “plateaus” around the optimal values, which make them
more robust to changes in configuration or parameter values. Nonetheless, if the
bounty value is very low, even these policies – especially the validation-reward
policy – may be too strict and deter hackers from participating.

Figure 3 shows the organization’s maximum attainable utility under various
policies with two types of hackers. For each policy and bounty value, we searched
over possible values of the policy parameter space (i.e., α = 0.2, 0.21, . . . , 1;
ρ = 0, 0.05, . . . , 5; or δ = 0, 0.012, . . . , 1.2) and plotted the maximum utility.
Since the two hacker types differ only in their validation performance, the utility
values without a policy shown by Fig. 3 are proportional to the values shown
by Fig. 1(a), and the maximum is again attained at b = 2.07. Compared to
this baseline, the accuracy-threshold, rate-threshold, and validation-reward poli-
cies can attain 31 %, 13 %, and 52 % improvement, respectively. However, if the
bounty value is not high enough, none of the policies can improve the organiza-
tion’s utility. Finally, offering validation rewards outperforms the other policies

176 A. Laszka et al.

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

1.5

2

2.5

Bounty b

O
rg

a
n
iz

a
ti
o
n
’s

u
ti
li
ty

U
O

Without a Policy

Accuracy Threshold

Rate Threshold

Validation Reward

Fig. 3. The organization’s maximum attainable utility under various policies as a func-
tion of the bounty value.

significantly, since it is able to incentivize heterogeneous hackers to operate at
their individual maxima instead of forcing them towards a uniform strategy.

6 Conclusion

In this paper, we provided the first theoretical framework for modeling policies
for reducing the number of invalid reports in bug-bounty programs. Using our
framework, we investigated a set of canonical policies, and studied the hackers’
responses to these policies, showing that each type has a unique response to each
policy. In addition to studying existing policies, we also proposed a new policy
that incentivizes hackers without restricting their actions.

Based on numerical analyses, we found that all of the considered policies may
substantially improve an organization’s utility, which explains their widespread
use [13]. However, their effectiveness and reliability vary significantly. We found
that the rate-threshold policy is not only less effective than the other two, but it
must also be configured more carefully. In contrast, the accuracy-threshold and
validation-reward policies are less sensitive to changes in parameter and config-
uration values, and they can also be more effective. However, without adequate
bounties, even these policies might “backfire” and actually deter hackers from

Banishing Misaligned Incentives for Validating Reports 177

dedicating time to vulnerability discovery. Finally, we found that the validation-
reward policy may significantly outperform the other two when hackers are not
homogeneous, since it allows hackers to operate at their individual optima.

In future work, we plan to extend our model and analyses by considering
combinations of policies. In other words, we will consider organizations that
implement multiple policies at the same time. Building on our current analysis,
we will study how hackers respond to various policy-combinations, and we will
explore which combinations are the most effective and robust.

Acknowledgements. This work was supported in part by FORCES (Foundations Of
Resilient CybEr-Physical Systems), which receives support from the National Science
Foundation (NSF award numbers CNS-1238959, CNS-1238962, CNS-1239054, CNS-
1239166).

References

1. Algarni, A., Malaiya, Y.: Software vulnerability markets: discoverers and buyers.
Int. J. Comput. Inf. Sci. Eng. 8(3), 71–81 (2014)

2. Alhazmi, O., Malaiya, Y.: Modeling the vulnerability discovery process. In: 16th
IEEE International Symposium on Software Reliability Engineering (ISSRE)
(2005)

3. Anderson, R.: Security in open versus closed systems - The dance of Boltzmann,
Coase and Moore. In: Open Source Software Economics (2002)

4. Bacon, D., Chen, Y., Parkes, D., Rao, M.: A market-based approach to software
evolution. In: 24th ACM SIGPLAN Conference Companion on Object Oriented
Programming, Systems, Languages, and Applications (2009)

5. Böhme, R.: A comparison of market approaches to software vulnerability disclo-
sure. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 298–311. Springer,
Heidelberg (2006)

6. Brady, R., Anderson, R., Ball, R.: Murphy’s law, the fitness of evolving species, and
the limits of software reliability. Technical Report 471, University of Cambridge,
Computer Laboratory (1999)

7. Bugcrowd: The state of bug bounty, July 2015
8. Doupé, A., Cova, M., Vigna, G.: Why Johnny can’t pentest: an analysis of black-

box web vulnerability scanners. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010.
LNCS, vol. 6201, pp. 111–131. Springer, Heidelberg (2010)

9. Edmundson, A., Holtkamp, B., Rivera, E., Finifter, M., Mettler, A., Wagner, D.:
An empirical study on the effectiveness of security code review. In: Jürjens, J.,
Livshits, B., Scandariato, R. (eds.) ESSoS 2013. LNCS, vol. 7781, pp. 197–212.
Springer, Heidelberg (2013)

10. Egelman, S., Herley, C., van Oorschot, P.: Markets for Zero-Day Exploits: Ethics
and Implications. In: New Security Paradigms Workshop (2013)

11. Finifter, M., Akhawe, D., Wagner, D.: An empirical study of vulnerability rewards
programs. In: USENIX Security Symposium (2013)

12. Frei, S., Schatzmann, D., Plattner, B., Trammell, B.: Modeling the security ecosys-
tem - The dynamics of (in)security. In: Economics of Information Security and
Privacy (2009)

13. HackerOne: Improving public bug bounty programs with signal requirements.
HackerOne Blog, March 2016. https://hackerone.com/blog/signal-requirements

https://hackerone.com/blog/signal-requirements

178 A. Laszka et al.

14. Huang, C., Liu, J., Fang, Y., Zuo, Z.: A study on web security incidents in China
by analyzing vulnerability disclosure platforms. Comput. Secur. 58, 47–62 (2016)

15. Kannan, K., Telang, R.: Market for software vulnerabilities? Think again. Manage.
Sci. 51(5), 726–740 (2005)

16. Laszka, A., Zhao, M., Grossklags, J.: Optimal policies for bug bounty programs
(extended version) (2016). http://aronlaszka.com/papers/laszka2016banishing.pdf

17. Libicki, M., Ablon, L., Webb, T.: The Defenders Dilemma: Charting a Course
Toward Cybersecurity. Rand Corporation (2015)

18. Maillart, T., Zhao, M., Grossklags, J., Chuang, J.: Given enough eyeballs, all bugs
are shallow? Revisiting Eric Raymond with bug bounty markets. In: Workshop on
the Economics of Information Security (WEIS) (2016)

19. Ozment, A.: Bug auctions: Vulnerability markets reconsidered. In: Workshop on
the Economics of Information Security (WEIS) (2004)

20. Ozment, A.: The likelihood of vulnerability rediscovery and the social utility of
vulnerability hunting. In: Workshop on the Economics of Information Security
(WEIS) (2005)

21. Ozment, A., Schechter, S.: Milk or wine: Does software security improve with age?
In: USENIX Security Symposium (2006)

22. Ransbotham, S., Mitra, S., Ramsey, J.: Are markets for vulnerabilities effective?
MIS Q. 36(1), 43–64 (2012)

23. Rescorla, E.: Is finding security holes a good idea? IEEE Secur. Priv. 3(1), 14–19
(2005)

24. Schechter, S.E.: How to buy better testing. In: Davida, G.I., Frankel, Y., Rees, O.
(eds.) InfraSec 2002. LNCS, vol. 2437, pp. 73–87. Springer, Heidelberg (2002)

25. Shahzad, M., Shafiq, M., Liu, A.: A large scale exploratory analysis of software vul-
nerability life cycles. In: International Conference on Software Engineering (2012)

26. Van Goethem, T., Piessens, F., Joosen, W., Nikiforakis, N.: Clubbing seals: Explor-
ing the ecosystem of third-party security seals. In: 21st ACM SIGSAC Conference
on Computer and Communications Security (CCS) (2014)

27. Zhao, M., Grossklags, J., Chen, K.: An exploratory study of white hat behaviors in
a web vulnerability disclosure program. In: 2014 ACM CCS Workshop on Security
Information Workers (2014)

28. Zhao, M., Grossklags, J., Liu, P.: An empirical study of web vulnerability discovery
ecosystems. In: 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS) (2015)

29. Zhao, M., Liu, P.: Empirical analysis and modeling of black-box mutational fuzzing.
In: Caballero, J., Bodden, E., Athanasopoulos, E. (eds.) ESSoS 2016. LNCS, vol.
9639, pp. 173–189. Springer, Heidelberg (2016)

http://aronlaszka.com/papers/laszka2016banishing.pdf

Efficient Numerical Frameworks
for Multi-objective Cyber Security Planning

MHR. Khouzani1(B), P. Malacaria1, C. Hankin2, A. Fielder2, and F. Smeraldi1

1 Queen Mary University of London, London, UK
arman.khouzani@qmul.ac.uk

2 Imperial College London, London, UK

Abstract. We consider the problem of optimal investment in cyber-
security by an enterprise. Optimality is measured with respect to the
overall (1) monetary cost of implementation, (2) negative side-effects
of cyber-security controls (indirect costs), and (3) mitigation of the
cyber-security risk. We consider “passive” and “reactive” threats, the
former representing the case where attack attempts are independent of
the defender’s plan, the latter, where attackers can adapt and react to
an implemented cyber-security defense. Moreover, we model in three
different ways the combined effect of multiple cyber-security controls,
depending on their degree of complementarity and correlation. We also
consider multi-stage attacks and the potential correlations in the success
of different stages. First, we formalize the problem as a non-linear multi-
objective integer programming. We then convert them into Mixed Integer
Linear Programs (MILP) that very efficiently solve for the exact Pareto-
optimal solutions even when the number of available controls is large.
In our case study, we consider 27 of the most typical security controls,
each with multiple intensity levels of implementation, and 37 common
vulnerabilities facing a typical SME. We compare our findings against
expert-recommended critical controls. We then investigate the effect of
the security models on the resulting optimal plan and contrast the merits
of different security metrics. In particular, we show the superior robust-
ness of the security measures based on the “reactive” threat model, and
the significance of the hitherto overlooked role of correlations.

1 Introduction

A cyber-security plan is a set of defensive measures (a.k.a., controls) that are
applied across an enterprise to improve its overall state of security. There are
many cyber-security measures to choose from, and each measure can be imple-
mented at multiple levels of intensity. Examples of these security controls (taken
from the list of top-20 critical measures by the UK’s Centre for the Protection
of National Infrastructure [22]) include: “Inventory of Authorized and Unautho-
rized Devices”, “Inventory of Authorized and Unauthorized Software”, “Secure
Configurations for Hardware and Software on Mobile Devices, Laptops, Work-
stations, and Servers”, “Malware Defenses”, “Wireless Access Control”, and so
on. Each cyber-security measure addresses a specific set of vulnerabilities. For
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 179–197, 2016.
DOI: 10.1007/978-3-319-45741-3 10

180 MHR. Khouzani et al.

instance, while “Access Control” can mitigate “OS Command Injection”, it has
no effect on “DDoS attacks”. Hence a cyber-security plan should be composed
of a combination of the measures to provide a well-rounded defense against the
range of vulnerabilities that the enterprise faces.

Implementation of each cyber-security measure is not cost-free: it requires
monetary investment (direct costs) and can also negatively affect the perfor-
mance of an enterprise (indirect costs). Therefore, an exhaustive implementa-
tion of controls at maximum intensity is likely neither economically feasible nor
managerially desirable. In reality, organizations have to deal with cyber-security
risk within a limited budget and must be wary of the potential side-effects of
the security measures on their existing business processes. Therefore, the miti-
gation in the security risks has to be judiciously balanced with the direct and
indirect costs. A selection analysis should consider the set of controls as well as
vulnerabilities jointly. This is because an approach that takes investment deci-
sions for each vulnerability or control separately, ignores the relative importance
of the vulnerabilities, and does not optimally use the complementary effects of
the controls, and hence, may fail to reach a best overall trade-off. Choosing a
desirability metric for a plan is itself a challenging task:

1. The three sources of costs (security, direct and indirect) are not easily com-
binable. For instance, the investment costs are incurred deterministically and
at the present, while the security losses are probabilistic in nature and, if at
all, will occur at an unknown future time. Also the monetary conversion is
not as clear for indirect costs as for the other two, for instance, it is hard to
put a monetary value on the annoyance felt by the staff as a result of a more
restrictive access control or a stricter password policy.

2. The trade-off preferences cannot be exactly arbitrated “a priori”. For instance,
even a “security-concerned” enterprise may choose a different plan if “almost”
the same security risk mitigation can be achieved at a much lower direct or
indirect cost. Likewise, an enterprise that is very sensitive to indirect costs or
extra investment may reconsider if a slight increase in these costs can abate
the security risk by a relatively significant amount.

To address these issues we adopt a multi-objective optimization framework.
Specifically, we simultaneously minimize the security risk, indirect, and direct
costs of the enterprise (the latter within the budget). The “solution” of this three-
objective optimization is the set of Pareto-optimal (or non-inferior, or simply,
Pareto) plans, that are the solutions with the guarantee that no other plan can
simultaneously improve all of these three costs (at least one of them strictly).

Of these three costs, the security risk is the most challenging to model. The
effect of an individual security measure (at each implementation intensity) can
be represented by its “effectiveness” against different vulnerabilities. That is, the
reduction in the success probability of exploitation attempts of each vulnerability
when only that control is implemented (stand-alone). Complicating the matter
is the fact that, often, the same vulnerability can be (partially) mitigated by
more than one security measure. Then a modeling question is how to capture
the combined efficacy of controls on their overlapping vulnerabilities.

Efficient Numerical Frameworks for Multi-objective Cyber Security Planning 181

The simplest approach is an “additive” model, where it is assumed that, per
each vulnerability, the (blocking) efficacies of controls are added up, heeding
that, logically, none of the overall blocking probabilities should exceed 100 %.
This capping of the combined efficacies introduces a degree of non-linearity in
the model, but one that can be easily dealt with, as we will show later.

Although computationally the simplest, this model bears the underlying
assumption that defensive mechanisms have positive externalities on each others’
efficacies. In particular, it potentially allows 100 % efficacy when multiple con-
trols are combined, which is rather unrealistic. A more relaxed modeling assump-
tion is that each control affects the common vulnerabilities independently. Hence,
when a vulnerability is attempted, the success chance is the product of success-
fully bypassing each of its pertaining controls. We will thus refer to this model
as “multiplicative”. This model is ostensibly nonlinear in the decision variables,
and hence, solving the resulting nonlinear integer program accurately can be
very inefficient. However, as we will see later, it can be converted into a Mixed
Integer Linear Program (MILP) which is much more efficient to solve accurately.

A problem with the previous two models is that they ignore the possible
correlations in the defensive mechanisms of security measures. Due to such cor-
relations, it can be argued that if an attempted exploitation bypasses one of the
controls, it will be a strong indication for bypassing the other affecting measures
as well. The “independent” blocking probabilities in the heart of multiplica-
tive model, although better than the additive model, can still be a significant
over-estimation of the overall effectiveness of a security plan. In this paper, we
introduce a novel non-linear model, which we call “best-of”, that captures such
correlations. In particular, the combined effectiveness of implemented controls
on a common vulnerability is taken to be (only) the highest effectiveness among
them. We then develop a technique to convert the resulting nonlinear integer
program into a MILP that is surprisingly quite efficient to solve.

Another challenge in modeling the security losses is anticipating the distrib-
ution of exploitation attempts across vulnerabilities. One approach is to use the
histogram of the past attempts (retrieved from the logs of the enterprise itself
or of any similars), or the publicly available statistics of attacks (e.g. [14]). We
will refer to this model as the “passive” threat. In reality, the distribution of the
attempts may adapt to the implementation of security controls: if a vulnerability
is now well-mitigated, then the attempts may shift to other less protected ones.
We will refer to this case as “reactive” threat, and establish a connection with
a sequential game between the enterprise and attackers. For both passive and
reactive cases, we provide methods to solve for the exact Pareto-optimal plans
efficiently by converting the nonlinear optimizations into appropriate MILPs.

Finally, we will present a case study and numerical evaluations using our
frameworks and a database of major security controls and vulnerabilities. We
first compare the derived optimal plans of each model against the expert recom-
mended list of critical controls, which reveals a general consistency, with the best
match observed for the “best-of”–“reactive” model. Subsequently, we compare
the optimal plans as well as the achieved utilities across our different security

182 MHR. Khouzani et al.

risk models. In particular, we observe that the “reactive” threat provides a more
robust (and hence more favorable) notion of security risk in the sense that, opti-
mization with respect to reactive threat does not lead to a terribly sub-optimal
performance with respect to passive threat, however, the opposite is not true: an
optimal plan with respect to passive threat can lead to terrible performance with
respect to reactive threat, even for relatively high values of investment budget.

Contributions and Related Works. The main contributions of this work
are:

– By reducing the model to MILP we make it possible to compute optimal
solutions for cyber-security: the state space we consider in our case study is
enormous, of the order of 1014 possible plans, and our MILP finds the optimal
solution in seconds. The closest work in the cyber-security literature [24] takes
instead days to converge and crucially lacks a guarantee of optimality.

– Our case study represents the largest cyber-security modeling to date. The
data used in the experiments has been extracted from official government
organizations’ publications like [4,5,17] as well as the publicly available data-
bases of CVE, CWE and CWSS.

Quantitative risk assessment and mitigation in cyber-security has been a the-
matic topic of research in security, that has in part lead to established methodolo-
gies such as Magerit and NIST800-30 among others [21]. Works that explicitly
investigate the problem of investment portfolios in cyber-security include [1–
3,7,8,11–13,15,16,18–20,24]. Compared with these references, our work presents
a wider modeling framework both in terms of the way controls can be combined
(additive, multiplicative, best-of) and in terms of the attacker capabilities and
threat types (passive, reactive). Also of the above works only [13,16,24] are based
on real world data and only [13,24] model indirect costs. Compared with these
last two works their solutions are based on Tabu Search (TS) and genetic algo-
rithms (GA) respectively, and are inherently more inefficient than the solutions
here presented and they do not provide any guarantee of optimality within their
framework. Also issues like robustness are largely neglected.

2 Modeling and Notations

Let C represent the set of (cyber-security) controls, each with potentially multiple
intensity levels of implementation. We will use Lc = {1, . . . , Lc} to denote the
set of available implementation levels of control c. A cyber-security plan or a
cyber-security investment portfolio x = (xc) is a vector in X := ×c∈C({0}∪Lc),
where xc = l ∈ {0} ∪ Lc represents the decision to implement control c at level
l, with zero representing the lack of implementation of that control.

Let B ∈ R
+ be the (hard) constraint on the total cyber-security budget of

the enterprise. Let D, I,R : X → R
+ respectively denote the (total) direct cost,

(total) indirect cost, and the (aggregate) “security risk” of the enterprise given a

Efficient Numerical Frameworks for Multi-objective Cyber Security Planning 183

security plan. As we proceed, we explicitly describe each of these functions. But
first, we give a high-level description of the problem of cyber-security investment
as a (constrained) multi-objective integer programming:

min
x∈X

(D(x), I(x), R(x)) s.t.: D(x) ≤ B (1)

Let dc(l) ∈ R
+ be the direct cost of implementing control c ∈ C at level

l ∈ {0} ∪ Lc, with the obvious convention that dc(0) = 0. The direct cost is a
combination of the (one-time) investment (for obtaining the required hardware,
software or staff), and the recurrent monetary expenses associated with the
implementation. For controls that are already in place, i.e., existing controls,
only the recurrent expenses must be considered. Similarly, let ic(l) ∈ R

+ be
the indirect cost of implementing control c ∈ C at level l ∈ {0} ∪ Lc, where
ic(0) = 0. The indirect costs are those related to reduced performance (due to
introduced overhead on resources), lowered morale (e.g. due to restricting access,
false positives, stricter password policies), etc., that are not easily convertible to
monetary losses. Using these notations, we simply have:

D(x) =
∑

c∈C
dc(xc), I(x) =

∑

c∈C
ic(xc) (2)

We will denote the set of vulnerabilities of the enterprise by V. Let ecv(l) be
the stand-alone effectiveness of control c at implementation level l ∈ {0} ∪ Lc

on vulnerability v, that is, ecv(l) is the probability that an exploitation attempt
on vulnerability v is blocked when “only” control c at implementation level l
is present. Then scv(l) := 1 − ecv(l) will represent the success probability of an
attempt at exploitation of vulnerability v when no other control than c at level
l is implemented. Trivially, ecv(0) = 0 ∀c ∈ C and ∀v ∈ V.

Let Cv be the set of controls that can affect vulnerability v, i.e., Cv := {c ∈ C :
ecv(l) > 0 for some l ∈ Lc}. If for a vulnerability v, we have ‖Cv‖ > 1, then the
combined effectiveness of the controls on v needs to be modeled. In particular,
let Sv : X → [0, 1] represent the success probability of an exploitation attempt
on vulnerability v ∈ V given a cyber-security plan. We provide three different
candidates for Sv(x), in decreasing order of “complementary” effects among the
defensive mechanisms of the controls (using the convention: a+ := max{a, 0}):

Additive: Sv(x) =
(
1 −

∑

c∈Cv

ecv(xc)
)+ (3)

Multiplicative: Sv(x) =
∏

c∈Cv

scv(xc) (4)

Best-of: Sv(x) = min
c∈Cv

scv(xc) (5)

Let Λv be the random variable representing the losses to the enterprise when
vulnerability v ∈ V is “successfully” exploited, and let λv be its expected value.
These losses are due to the interruption in availability, integrity and/or confi-
dentiality of data assets or services of the enterprise (e.g. tampering or theft of

184 MHR. Khouzani et al.

intellectual property, financial or client data, disruption of operations, etc.) as
well as the secondary causes of losses such as reputation damage, loss of clients,
legal fees, and so on.1 We assume a “risk-neutral” decision-maker, and hence take
the expected value of losses due to successful exploitations to be the measure of
the security risk. In order to represent the expected losses, we need to anticipate
the rate with which different vulnerabilities will be target of exploitation. This
rate may depend on the profile of the enterprise and may also change in the face
of the implemented security plan. Let π : X → Δ(V) represent this relation,
where Δ(V) represents the set of all probability distributions over the set of vul-
nerabilities V. In particular, let π(v;x) be the rate at which vulnerability v ∈ V
is attempted, given that the implemented plan is x. Then the security risk of
the (risk-neutral) enterprise in (1) can be written as:

R(x) =
∑

v∈V
π(v;x)Sv(x)λv (6)

Modeling π requires anticipating the behavior of the attackers. In what follows,
we consider two models for this behavior: “passive” and “reactive” threats.

Passive Threat. In this model, the probability distribution of the attacks is
assumed given and that it “stays unchanged” irrespective of the implemented
plan. In particular, let P ∈ ΔV be the distribution of attempts across vulner-
abilities, and we have π(v;x) = P(v), ∀x ∈ X . Then the expected loss (as the
risk-neutral measure of security risk) is:

R(x) =
∑

v∈V
P(v)Sv(x)λv (7)

where Sv(x) comes from (3), (4) or (5), depending on the combination model.

Reactive Threat. As we mentioned, the distribution of exploitation attempts
on vulnerabilities may evolve in the face of the new implemented security plan.
In particular, the attempts on well-protected vulnerabilities may shift to less
protected vulnerabilities. The most pessimistic scenario is the assumption that
the attempts will shift to a vulnerability that has the most “effective impact”,
i.e., in (6):

∑
v∈argmax(Sv(x)λv)

π(v;x) = 1. Then, the corresponding expected
loss (as the risk-neutral measure of security risk) is:

R(x) = max
v∈V

(Sv(x)λv) (8)

Next, we show that this notion of security is closely related to a sequential game.

1 The loss Λv is enterprise dependent through their evaluation of different sources of
disruption: An energy company may be primarily concerned with the availability of
their service while a banking firm would assign a large weight to integrity of its data.

Efficient Numerical Frameworks for Multi-objective Cyber Security Planning 185

Connection to Game Theory. Consider the following non-zero-sum sequen-
tial two-player game of “perfect information”:

Players: The enterprise ‘e’ (the leader), and the attacker ‘a’ (the follower).
Action spaces: The action of the enterprise is its cyber-security investment
plan, x. The attacker decides on which one of the vulnerabilities to try to exploit
(if any). This can be represented by an indicator y. Hence, the action spaces are
respectively X and Y := {y ∈ {0, 1}V :

∑
v∈V y(v) ≤ 1}. The enterprise also has

a constraint, defining its set of feasible actions: the total direct cost of its action
has to be within its budget, which the attacker may not know the value of.

Information structure & strategies: The enterprise (the leader) makes the
first “move”, and its action and strategy spaces coincide. The attacker (the
follower) observes the “move” of the enterprise x (hence the label: “perfect
information”) and, after re-assessing the effectiveness of attempts on each of the
vulnerabilities, makes its decision of which one to attempt. Hence, a strategy of
the attacker, denoted by σ, is a function σ : X → Y. We will use the notation:
σv(x) to represent σ(v;x), that is, σv(x) ∈ {0, 1} ∀v ∈ V, and

∑
v∈V σv(x) ≤ 1.

Payoffs. The negative payoff of the enterprise (which it wants to minimize)
is a weighted sum of the three costs. Specifically, let wd, wi, and wr be the
weights of the (total) direct and indirect costs and the security damage to the
enterprise, respectively, where wd, wi ≥ 0, and wr > 0. Referring to (2) and (6),
the expected cost of the enterprise ue : X × Y → R

+ is therefore: ue(x, σ(x)) =
wd

∑
c∈C dc(xc) + wi

∑
c∈C ic(xc) + wr

∑
v∈V σv(x)Sv(x)λv. The payoff of the

attacker (which it wants to maximize) is (linearly) proportional to the expected
security losses of the enterprise due to successful exploitations. In particular,
letting ua : X × Y → R

+ represent the expected payoff of the attacker, we
can write: ua(x, σ(x)) = w′

r

∑
v∈V σv(x)Sv(x)λv, for some w′

r > 0, whose exact
value may not be known to the enterprise. Note that we assumed exploitation
attempts are costless for the attacker. We have the following result:

Proposition 1. Any strategy of the enterprise in a Subgame Perfect Nash Equi-
librium (SPNE) of the above non-zero-sum sequential two player game with “per-
fect information” is a Pareto-optimal solution to the multi-objective problem of
(1) where the security cost is according to the “reactive threat” model in (8).

Proof. Denoting the attacker’s best response correspondence by σ∗, we have:

σ∗(x) ∈ arg max
σ

w′
r

∑

v∈V
σv(x)Sv(x)λv,

which implies
∑

v∈V σ∗
v(x)Sv(x)λv = maxv∈V (Sv(x)λv). Now, using backward

induction (for subgame perfection), the problem of the enterprise becomes:

min
x∈X

[

wd

∑

c∈C
dc(xc) + wi

∑

c∈C
ic(xc) + wr max

v∈V
(Sv(x)λv)

]

, s.t.
∑

c∈C
dc(xc) ≤ B.

Finally, any solution of the above single optimization is also a Pareto-optimal
solution of the multi-objective problem in (8). 	

186 MHR. Khouzani et al.

It is worthwhile to note that the set of SPNE stays the same even if the game
is converted to a zero-sum game in which the payoff of the attacker (to be maxi-
mized) is exactly the same as the total cost of the defender, i.e., if ua(x, σ(x)) =
ue(x, σ(x)) = wd

∑
c∈C dc(xc) + wi

∑
c∈C ic(xc) + wr

∑
v∈V σv(x)Sv(x)λv. That

is, if the attacker wanted to also maximize the investment and indirect costs of
the defender, the optimization problem of the enterprise would not change at
all. To see this, note that once the enterprise makes its implementation decision,
the attacker cannot affect either the direct or indirect costs of the enterprise.
Interestingly, this still holds even if the attacker has its own weights on dif-
ferent components of its overall payoff, i.e., if ua(x, σ(x)) = w′

d

∑
c∈C dc(xc) +

w′
i

∑
c∈C ic(xc) + w′

r

∑
v∈V σv(x)Sv(x)λv, for instance, if the attacker emphati-

cally cares about the investment and indirect costs of the enterprise.2

Justifiability of Perfect Information Assumption. The full observability
of the action of the enterprise may be unjustifiable in its literal interpretation.
However, the critical point here is the much slower variability of security plans
and much faster adaptability of attacks. Specifically, once the security plan is
implemented, it will not be modified over a relatively long horizon. Hence, the
enterprise can be thought of as having committed to its investment decision. In
contrast, the exploitation attempts on different vulnerabilities can explore and
“learn” the most effective vulnerability. If the transitory learning phase of the
attacker is negligible, then the formalism of perfect information is applicable.

3 Solving the Multi-Objective Optimization

An approach to find the Pareto solutions of multi-objective-optimizations
(MOO), including multi-objective integer programs (MOIP) and multi-objective
combinatorial optimizations (MOCO) as its sub-branches, is through scalariza-
tion. Here, we provide a brief overview. The reader may consult the survey papers
and textbooks on MOO for more detailed treatment, e.g. [6,10,23].

In scalarization methods, the MOO is transformed into (parametric)
instances of single-objective optimization problems, the optimal solution of each
is also a Pareto-optimal solution of the original MOO problem. The most widely
known method is the “linear scalarization”, where a weighted sum of the indi-
vidual objectives constitutes the new objective function to be optimized. Specif-
ically, consider a general n-objective optimization problem of minx∈X (Fi(x)),
i = 1, . . . , n. Then a series of single-objective optimizations parametrized by
the weight coefficients is constructed as follows: minx∈X

∑n
i=1 wiF̃i(x), where

wi > 0 and
∑n

i=1 wi = 1, where F̃i is a carefully chosen affine transformation

2 The assumptions that attacks are costless and the reward is linearly proportional to
the security damage to the enterprise is important for this observation, and the fact
that the attacks do not affect the indirect costs, for instance, through the assumption
that if an exploitation attempt fails there is no damage associated with it.

Efficient Numerical Frameworks for Multi-objective Cyber Security Planning 187

(i.e., normalization) of Fi.3 Clearly, any solution of the weighted optimization is
on the Pareto-front of the original multi-objective problem (because otherwise,
there is an alternative solution that simultaneously improves all of the objective
functions and at least one of them strictly, which contradicts the optimality in
the scalarized problem).4 The Pareto-optimal solutions are found by “sweeping”
the weights over the entire simplex with some granularity, solving each of the
single objective optimizations, and storing any “new” solution found.

In our problem, if the weights of the direct, indirect and security costs are
respectively wd, wi, wr ≥ 0, such that wd + wd + wi = 1, then, ignoring normal-
ization for brevity, the resulting single objective optimizations (SOO) is:

min
x∈X

[wdD(x) + wiI(x) + wrR(x)] s.t.: D(x) ≤ B. (9)

The form of R(x) in part comes from (7) or (8) depending on the threat model,
in which the success rates of each attempted vulnerability comes from (3), (4)
or (5) depending on the model for combining efficacies of the controls. Each
of these optimizations is an instance of a non-linear integer program, which is
NP-hard to solve in general. Exploring the entire set of possible plans can be
computationally infeasible since the number of plans is

∏
c∈C(Lc + 1), which

grows exponentially in the number of controls (this is, for instance, over 1014

for our case study in Sect. 4). In what follows, we describe a series of tricks that
help convert each of these nonlinear integer programs into mixed integer linear
programs (MILPs) by introducing carefully designed auxiliary variables.5

3.1 Conversions to (binary) MILP

Common to all of our models is the introduction of binary decision variables as
follows: xcl ∈ {0, 1} for each c ∈ C and l ∈ Lc, which represents whether control c
is implemented at level l ∈ Lc. Using this notation, we first enforce that logically
at most only one of the implementation levels per each control is selected:

(
xcl ∈ {0, 1} ∀l ∈ Lc,∀c ∈ C

)
,

(∑

l∈Lc

xcl ≤ 1, ∀c ∈ C
)
. (10)

Recall that Lc := {1, . . . , Lc}, and in particular, it did not include level 0. Then
the direct and indirect costs can be represented in linear form as follows:

D(x) =
∑

c∈C

∑

l∈Lc

dc(l)xcl, I(x) =
∑

c∈C

∑

l∈Lc

ic(l)xcl. (11)

Note that dc(l) and ic(l) are now just coefficients of the xcl variables.
3 The normalization is for numerical efficiency, such that the range of the objective

functions becomes comparable, hence increasing the chances that a uniform sweeping
of the weights even with a small number of steps finds all the Pareto solutions.

4 Note, however, that finding all Pareto solutions is not guaranteed in this method.
5 An alternative scalarization approach is the “epsilon-constraint” method. All of our

MILP conversions can be modified for that method in a straightforward manner.

188 MHR. Khouzani et al.

3.2 Additive Model in (3)

For the passive threat, the expected security damage in the additive model is:

R(x) =
∑

v∈V
Pv

(
1 −

∑

c∈Cv

ecv(xc)
)+

λv. (12)

In order to get rid of the non-linearity introduced by the “positive part” relation,
we introduce auxiliary real-valued6 variables yv’s for each v ∈ V such that:
yv ≥ 0 and yv ≥ 1 − ∑

c∈C
∑

l∈Lc
ecv(l)xcl. Note that these two inequalities

and the goal of the minimization guarantee that at the solution, we have: yv =
(1 − ∑

c∈C
∑

l∈Lc
ecv(l)xcl)+, as desired. Therefore, we can replace the security

cost with
∑

v∈V Pvyvλv. Hence, we have the following simple proposition:

Proposition 2. Each of the scalarized single-objective optimizations in (9) for
the additive–passive risk model is equivalent to the following MILP:

min
(xcl,yv)

[

wd

∑

c∈C

∑

l∈Lc

dc(l)xcl + wi

∑

c∈C

∑

l∈Lc

ic(l)xcl + wr

∑

v∈V
(Pvλvyv)

]

s.t. : (10),
∑

c∈C

∑

l∈Lc

dc(l)xcl ≤B,
(
yv ≥ 0, yv ≥ 1 −

∑

c∈C

∑

l∈Lc

ecv(l)xcl : ∀v∈V
)
.

For the reactive threat, the expected security damage as the security risk
is: R(x) = maxv∈V

{(
1 − ∑

c∈Cv
ecv(xc)

)+
λv

}
. This can be made linear by

simply introducing (only) one auxiliary variable z and imposing z ≥ 0 and
z ≥ (1 − ∑

c∈C
∑

l∈Lc
ecv(l)xcl)λv for “all” v ∈ V. This yields:

Proposition 3. Each of the scalarized single objective optimizations in (9) for
the additive–reactive risk model is equivalent to the following MILP:

min
(xcl,z)

[
wd

∑

c∈C

∑

l∈Lc

dc(l)xcl + wi

∑

c∈C

∑

l∈Lc

ic(l)xcl + wrz
]

s.t. : (10),
∑

c∈C

∑

l∈Lc

dc(l)xcl ≤B, z ≥ 0,
(
z ≥ (

1 −
∑

c∈C

∑

l∈Lc

ecv(l)xcl

)
λv ∀v ∈ V

)
.

3.3 Multiplicative Model in (4)

For the multiplicative model, we provide a modification of the method proposed
in [19] and modify it for reactive threats too. First, we extend the optimization
variables xcl to explicitly include level zero for each control as well. Hence the
“logical” choice constraint, as opposed to (10), becomes:

(
xcl ∈ {0, 1} ∀l ∈ Lc ∪ {0},∀c ∈ C

)
,

(∑

l∈Lc∪{0}
xcl = 1, ∀c ∈ C

)
. (13)

6 Hence, “mixed” integer linear program, as opposed to pure integer linear program.

Efficient Numerical Frameworks for Multi-objective Cyber Security Planning 189

Now, for each vulnerability v ∈ V, we introduce
∑

c∈Cv
(1 + Lc) positive real-

valued auxiliary (“flow”) variables yvcl ≥ 0, one for each l ∈ Lc ∪ {0} per each
control c ∈ Cv, with the following interpretation: yvcl is the fraction (“flow”) of
the exploitation attempts on vulnerability v that is “handled” by control c at
level l. Let Cv, the set of controls that can affect vulnerability v, be enumerated
as follows: Cv = {cv

1, . . . , c
v
|Cv|} (the order is immaterial). The total fraction of the

exploitation attempts on vulnerability v that is to be handled by the first control
in Cv is 1. That is, for each v ∈ V, we impose:

∑
l∈Lc∪{0} yvcl = 1 where c = cv

1. A
portion of these exploitation attempts gets blocked by controls cv

1, depending on
which level it is implemented at, and the “surviving” fraction has to be handled
by the next control in Cv. Hence, for each v ∈ V, we have the following flow-like
constraint:

∑
l∈Lc∪{0} yvclscv(l) =

∑
l∈Lc′ ∪{0} yvc′l, where c′ = cv

i and c = cv
i−1

for all i = 2, . . . , |Cv|. Note that scv(l) is just a coefficient in this linear equality
constraint, and recall the convention that scv(0) = 1 for all v ∈ V, c ∈ Cv. The
overall probability of success of exploitation attempts of vulnerability v is the
fraction that survives the last control in Cv, that is,

∑
l∈Lc∪{0} yvclscv(l) where

c = cv
|Cv|. Enforcing that only the implemented controls have their blocking effect

on the vulnerabilities translates to the following constraint: yvcl ≤ xcl ∀v ∈ V,
∀c ∈ Cv, ∀l ∈ Lc ∪ {0}. This constraint along with (13) ensures that only one
level per control is implemented (including level zero) and only the flow-variable
corresponding to the implemented level can be nonzero. Now, recursively putting
the equalities together will recover the multiplicative form of the overall success
probability of exploitation of v. Putting all ingredients together, we have:

Proposition 4. Each of the scalarized single objective optimizations in (9) for
the multiplicative–passive risk model is equivalent to the following MILP:

min
(xcl,ycvl)

[
wd

∑

c∈C

∑

l∈Lc

dc(l)xcl + wi

∑

c∈C

∑

l∈Lc

ic(l)xcl + wr

∑

v∈V
Pvλv

∑

l∈Lc∪{0}
c=cv|Cv |

yvclscv(l)
]

s.t. : (13),
∑

c∈C

∑

l∈Lc

dc(l)xcl ≤ B,
(
0 ≤ yvcl ≤ xcl : ∀v ∈ V, ∀c ∈ Cv, ∀l ∈ Lc ∪ {0}

)
,

(∑

l∈Lc∪{0}
yvcl = 1 : c = cv1 , ∀v ∈ V

)
, (14)

∑

l∈Lc′ ∪{0}
yvc′l =

∑

l∈Lc∪{0}
yvclscv(l) : c′ = cvi , c = cvi−1, ∀i = 2, . . . , |Cv|, ∀v ∈ V.

For the reactive threat model, we can introduce an extra variable z and enforce:
z ≥ λv

∑
l∈Lc∪{0} yvclscv(l) where c = cv

|Cv| for all v ∈ V, along with the rest of
the constraints in (14), and change the objective function to the following:

min
(xcl,ycvl,z)

[
wd

∑

c∈C

∑

l∈Lc

dc(l)xcl + wi

∑

c∈C

∑

l∈Lc

ic(l)xcl + wrz
]

(15)

190 MHR. Khouzani et al.

3.4 “Best-of” Model in (5)

For each vulnerability v ∈ V define the set of (flow-based) positive auxiliary
variables yv,c,l ≥ 0 for each c ∈ {0} ∪ Cv and l ∈ Lc, that is, a flow is con-
sidered for each control that affects vulnerability v, along with a “no-control”
flow yv,0,0. For each v ∈ V, we impose the total “in-flow” corresponding to vul-
nerability v to be one, i.e.,

∑
c∈{0}∪Cv,l∈Lc

yv,c,l = 1. We will also impose the
logical “selection” constraints: yv,c,l ≤ xcl such that, if a control is not imple-
mented, the corresponding flows will be zero. Then, in (5), we can simply replace
Sv(x) = minc∈Cv

scv(xc) with
∑

c∈{0}∪Cv,l∈Lc
yv,c,lscv(l), where we also define

s0v(0) = 1 as coefficients of yv,0,0. To see that this conversion indeed works, note
that when the total sum of the positive flow variables is constant, the minimiza-
tion problem, trying to minimize the “out-flow” per each vulnerability, chooses
the “pathway” with the highest available reduction, i.e. lowest flow coefficient,
exactly as the “best-of” model intends. Putting together:

Proposition 5. Each of the scalarized single objective optimizations in (9) for
the best-of–passive risk model is equivalent to the following MILP:

min
(xcl,ycvl)

[
wd

∑

c∈C

∑

l∈Lc

dc(l)xcl + wi

∑

c∈C

∑

l∈Lc

ic(l)xcl + wr

∑

v∈V
Pvλv

∑

c∈Cv∪{0}
l∈Lc

yvclscv(l)
]

s.t. :
∑

c∈C

∑

l∈Lc

dc(l)xcl ≤ B,
(
0 ≤ yvcl ≤ xcl, ∀v ∈ V,∀c ∈ Cv,∀l ∈ Lc

)
,

(∑

c∈Cv∪{0}
l∈Lc

yvcl = 1, ∀v∈V
)
,

(∑

l∈Lc

xcl ≤ 1, ∀c∈C
)
,

(
xcl ∈ {0, 1}, ∀l ∈ Lc,∀c∈C)

.

For the “reactive” threat model, the only difference is that the security risk (the
third summation in the objective function) is replaced with the extra auxiliary
(real-valued) variable z that needs to satisfy the following (linear) constraints:
z ≥ λv

∑
c∈Cv∪{0},l∈Lc

yvclscv(l), ∀v ∈ V.

3.5 From Vulnerabilities to Attacks

The expected losses (λ’s) are more accurately related to attacks as opposed
to vulnerabilities. For instance, consider an attack A whose success requires
successful exploitation of two vulnerabilities v1 and v2, as part of the stages of
the attack, and if successful inflicts an expected damage of λA. Since λA is only
inflicted when both vulnerabilities are successfully exploited, it is not possible to
separate the expected loss among v1 and v2 separately. We provide two different
models for considering attacks that involve exploiting multiple vulnerabilities
and describe how our developed MILPs can be extended to them.

3.6 Independence Across Vulnerabilities

Let A represent the set of attacks, where the expected inflicted loss if attack
A ∈ A is successful is λA. Consider the multiplicative model in which the effect of

Efficient Numerical Frameworks for Multi-objective Cyber Security Planning 191

controls on a vulnerability was assumed to be independent. Now assume further
that the successful exploitation of different vulnerabilities comprising an attack
are also independent events. Then, the expected security damages will be:

R(x) =
∑

A∈A
PAλA

∏

v∈A

∏

c∈Cv

scv(xc) =
∑

A∈A
PAλA

∏

c∈Cv

∏

v∈A

scv(xc)

This shows that, by introducing flow variables yAcl for each attack, and perform-
ing a pre-processing by computing scA(xc) :=

∏
v∈A scv(xc), the same formula-

tion as in Proposition 4 can be applied with scv(l) replaced by scA(l).

3.7 Correlations Across Vulnerabilities

The success of exploitation attempts across different vulnerabilities comprising
an attack may have positive correlations. These correlations arise due to skills or
resources of the attackers: a successful exploitation of a stage of an attack can be
a signal about the higher abilities/resources of the attacker. A model that reflects
these correlations is the following: the success chance of carrying out an attack
is determined by the lowest probability of success across the vulnerabilities that
comprise that attack. Now, combining this model with the “best-of” model that
takes the correlations across defensive mechanism of controls, we get:

R(x) =
∑

A∈A
PAλA min

v∈A
min
c∈Cv

scv(xc) =
∑

A∈A
PAλA min

c∈Cv

min
v∈A

scv(xc)

Therefore, by introducing auxiliary variables yAcl per attacks A ∈ A as opposed
to per vulnerabilities, and performing a pre-processing scA(l) := minv∈A scv(l),
we can apply the same formulation as in Proposition 5 with scv(l) replaced by
scA(l).

3.8 Parameter Uncertainties

The most likely source of uncertainty in the parameters of our models is arguably
the effectiveness of the controls against each of the vulnerabilities at different
implementation levels, i.e., ecv(l)’s. Suppose that each of these parameters are
given as an uncertainty interval [ecv(l), ecv(l)] a subset of [0, 1], with the inter-
pretation that the true (realized) value of the parameter can be anywhere in that
interval with an unknown distribution. Collating all the efficacy parameters as
[ecv], we can show the uncertainty intervals by their lower and upper end in a
concise way as: [ecv] � [ecv] � [ecv], where � denotes element-wise inequalities.

One way to deal with the uncertainty is to optimize for the “worst” combined
realization of the uncertain parameters. Consider the optimizations in (9), with
the uncertain parameters [ecv] also as variables. Then finding optimal plans with
respect to worst case of the uncertainties in efficacies can be expressed as follows:

min
x∈X

[

max
[ecv]�[ecv]�[ecv]

{
wdD̃(x) + wiĨ(x) + wrR̃(x, [ecv])

}]

s.t.: max
[ecv]�[ecv]�[ecv]

{D(x) − B} ≤ 0 (16)

192 MHR. Khouzani et al.

We have the following observation, which we skip the proof of for brevity: For
all of the security risk models in this paper, (16) is equivalent to:

min
x∈X

[
wdD̃(x) + wiĨ(x) + wrR̃(x, [ecv])

]
s.t.: D(x) ≤ B

4 Numerical Evaluations

In this section, we first use our frameworks to investigate a list of the most
important security controls for a typical SME (Small and Medium Enterprise)
given a realistic set of parameters. As a soft method of validation, we compare
the controls that most consistently appear in the Pareto-optimal plans against
the top critical cyber-security controls as recommended by experts and policy
organizations, specifically, SANS [17] and GCHQ [4,5]. Subsequently, we provide
some comparisons among the different security models.7

Parameters for our Case Study: The vulnerabilities that a typical SME faces
can be generally categorized into three groups: I-“Software Vulnerabilities”, II-
“Social Engineering” (e.g. phishing, pretexting, baiting), and III-“Network Vul-
nerabilities”. We incorporated a wide range of vulnerabilities from each of these
categories. In total, we consider 37 most common vulnerabilities (Table 1 in the
Appendix of our tech. report [9]) which we collected from a combination of the
publicly available databases such as the Critical Weakness Enumeration (CWE)
and the Common Attack Pattern Enumeration and Classification (CAPEC).

Recall that the “Impact” score for each vulnerability in our models, i.e., Iv,
designated the expected damage inflicted on the SME in case of a successful
exploitation of that vulnerability. To obtain relative values for Iv, from the vul-
nerability descriptions in the “Common Weakness Scoring System (CWSS)”, we
derived a score for the impact of each vulnerability on three sources of damage:
(1) “Data Losses”, damages as a result of a compromise in the confidentiality
or integrity of data; (2) “Business Disruption”, losses due to compromise in the
availability of services, and (3) “Reputation Damage”. For each vulnerability,
we considered a weighted average of these three damages as its overall impact.
We also estimated the passive probability of exploitation by combining some rel-
evant features from the Common Weakness Scoring System (CWSS) database.
Specifically, features regarding their “System Requirement Score” (e.g. “required
privilege”), “Technical Requirement Score” (e.g. “likelihood of discovery” and
“ease of execution”), and “Environmental Factor Score” (e.g. “exploitability”
and “accessibility of information”), were combined to give a measure of the “rel-
ative ease” to exploit each vulnerability and hence get a measure of the overall
rate of attempts on each vulnerability. The general trend was similar to the
measurement reports of [14].

For cyber-security controls, we need each control to be an actionable process
as a single independent measure that can be used to help mitigate vulnerabilities
7 Due to space limit, some of our evaluations were relegated to our technical report [9].

Efficient Numerical Frameworks for Multi-objective Cyber Security Planning 193

in the system. We derived our controls from the “SANS Top 20 Critical Security
controls”, but we separated some of the controls that were in fact represented
by a composition of multiple investment decisions. Therefore, overall, we take
into account 27 distinct controls, each with multiple levels of implementation,
leading to 75 distinct controls. We estimated and normalized costs parameters
(both direct and indirect costs) reported in Table 2 in our tech. report [9]. We also
gathered estimates of the efficacy parameters based on the defensive mechanism
of each measure in the face of the exploitation requirements of each vulnerability
(Table 3 in our tech. report [9]).

Validation. Our overall objective is to provide a cyber-security investment
framework which is accurate, credible and relevant to the real world. A rigorous
validation should take the form of a field validation in the style of clinical trials.
However, at this stage, for both economical and security reasons, this approach
is not feasible. In reflecting about what can constitute a reasonable validation
of our framework we have decided to concentrate on expert advice, in particular
the available recommendations from government agencies. These agencies have
studied thousands of cyber-security incidents over many years and as such we
consider their advice credible and relevant. In particular, we consult with the
SANS institute “The Critical Security Controls for Effective Cyber Defense” [17],
and the “10 Steps to Cyber Security” [5] and “Common Cyber Attacks: Reducing
The Impact” by GCHQ [4].

A subset of the critical controls is common among all of these documents.
For instance from the SANS institute the core of recommended controls are the
“5 quick wins” [17]: I- Application whitelisting (found in CSC-2); II- Use of stan-
dard, secure system configurations (found in CSC-3); III- Patching application
software within 48 hours (found in CSC-4); IV- Patching system software within
48 hours (found in CSC 4); and V- Reducing the number of users with adminis-
trative privileges (found in CSC 3 and CSC 12)”. A similar set of critical controls
is recommended by the latest GCHQ advice [4]: I- Boundary firewalls and Inter-
net gateways; II- Malware protection; III- Patch management; IV- Whitelisting
and execution control; V- Secure configuration; VI- Password policy; VII- User
access control; It is hence interesting to compare our results with these sets of
recommendations and in particular their intersection: I- Patch management; II-
Application whitelisting; III- Secure configuration; IV- User access control.

To make a meaningful comparison we have organized the controls appearing
in our solutions in a “prevalence ordering”. The “most prevalent” controls are
the ones that appear across the most number of Pareto-optimal plans for a large
range of parameters: we take this as a measure of the relative importance of
each cyber-security control. In particular, For each of our models, we computed
the number of times each cyber-security control (at any of its implementation
levels) appears in the plan across all Pareto-optimal solutions. We then “ranked”
the controls based on this measure of prevalence in decreasing order. The result-
ing ranks are provided in Table 1 in the Appendix. We observed that overall,
“patching”, “firewalls” and “whitelisting” appear among the top controls for

194 MHR. Khouzani et al.

all cases and there is a general consistency with the official recommendations.
The best match with the official recommendations pertains to the “Best-of –
Reactive” model. This reinforces the intuition that the “Best-of” combination of
controls concentrates on the contributions of the most effective controls, and the
“Reactive” threat concentrates on the most critical vulnerabilities. This observa-
tion also underlines the importance of taking into account the hitherto ignored
correlations in the defensive mechanisms of the security controls.

The consistency of our results and the official advice is an encouraging first
step. In the longer term we expect our mathematical framework to guide and
eventually possibly replace expert advice. Another advantage is that we can
customize our data to specific organizations and particular threats and so pro-
vide better “individualized” investment portfolios than a generic one-size-fit-all
recommendation. We can also extend and edit the data with new controls and
attacks as the threat scenarios evolve. Our solutions can be efficiently computed
for large sets of controls and attacks, way beyond human manual capabilities.
Our framework and the resulting tools hence open the door for customizable and
accurate quantitative cyber-security advice.

A note on the computational efficiency of our frameworks. It is worth
noting that, with their distinct implementation levels, we are considering 75
distinct security controls, which lead to an order of 1014 distinct cyber-security
plans. With this size of the problem, an exhaustive search for finding Pareto-
optimal plans is outright impractical. Generic heuristic methods such as “Genetic
Algorithms” and “Tabu Search” as used in works like [13,24] will also take “days”
to converge, and even after convergence, there is no guarantee of optimality. In
contrast, our MILP-based frameworks, using a generic MILP solver (Matlab’s
intlinprog in our case on a typical laptop) solve for an “exact” optimal solution
over the following time scales: “additive” (both passive and reactive): fraction of
a second; “Multiplicative” (both “passive” and “reactive”): less than a minute;
and surprisingly, for the “Best-of” model, about a second for the “passive” case,
and less than 10 seconds for the reactive case.

Conclusions and future works. Decision support for cyber-security is a com-
plex multi-objective problem. We modeled a large set of possible vulnerabilities
and mitigations, and demonstrated how to efficiently compute Pareto-optimal
solutions using Mixed Integer Linear Programming conversions. Many challenges
remain, e.g. taking into account the costs of attacks, custom combined efficacies
of controls, better approaches to deal with parameter uncertainties, combin-
ing learning and optimization, and stronger model validation. Some of these
problems are within the realm of optimization engineering, others require more
real-world data, which will be direction of our future work.

Acknowledgment. This work was supported by EPSRC project EP/K005820/1.

Efficient Numerical Frameworks for Multi-objective Cyber Security Planning 195

Appendix

Table 1. Order of prevalence of controls among Pareto-optimal plans, for different
security models. In the column-headers, the initials “A.”, “M.” and “B.” stand for
“Additive”, “Multiplicative” and “Best-of”, also, “P.” and “R.” designate “Reactive”
and “Passive”, respectively. The table is ordered with respect to the Best-of prevalence
rank, as it shows the best match with expert recommendation.

Cyber-security control B.R M.R A.R B.P M.P A.P

Deployment of Network Firewalls 1 1 1 2 2 2

Deploy Web Application Firewalls 2 2 4 4 3 3

Anti-Malware Software 3 7 6 3 4 5

Automated Patching Tools 4 3 2 1 1 1

Use of Secure Config. for OS 5 5 7 5 10 9

Application Whitelisting 6 4 3 10 8 8

Network Data Encryption 7 6 5 7 6 4

Strong Secure Password Policy 8 15 20 13 12 17

User Access Controls 9 12 17 6 7 13

Secure Configuration Controls for All Devices 10 24 26 9 15 22

Penetration Testing 11 13 13 27 27 12

Automated Vulnerability Scanning Tools 12 11 11 17 13 18

Automated Inventory Scanning & Management 13 8 8 16 14 11

Segmentation of Network Based on Trust Levels 14 17 22 23 23 19

Host Based IPS 15 9 16 12 5 7

Deploy DLP Based Systems 16 22 24 8 16 25

Execution Control on Removable Media 17 21 15 18 17 21

Employ Wireless Devices Authentication Config. 18 23 25 19 18 26

Employ Port Scanning & Control Tools 19 25 21 20 19 23

Deploy Network Based IDS 20 20 19 14 20 20

Deploy Network Based Proxies 21 16 14 21 21 14

Deployment of VLANs for Sensitive Operations 22 26 27 22 22 27

Website Whitelisting 23 27 18 11 11 16

Network Log Reporting 24 14 12 24 24 10

Account Management Controls 25 19 23 25 25 24

User Training & Education 26 18 10 26 26 15

Incident Handling & Response Policies 27 10 9 15 9 6

196 MHR. Khouzani et al.

References

1. Anderson, R., Moore, T.: The economics of information security. Science
314(5799), 610–613 (2006)

2. Butler, S.A.: Security attribute evaluation method: a cost-benefit approach. In:
Proceedings of the 24th International Conference on Software Engineering. ACM
(2002)

3. Cavusoglu, H., Raghunathan, S., Yue, W.T.: Decision-theoretic and game-theoretic
approaches to it security investment. J. Manag. Inf. Syst. 25(2), 281–304 (2008)

4. CESG: Common cyber attacks: Reducing the impact. https://www.gov.uk/
government/uploads/system/uploads/attachment data/file/400106/Common
Cyber Attacks-Reducing The Impact.pdf. Accessed on 13 April 2016

5. CESG (UK’s Nat. Tech. Authority for Inf. Assurance): 10 Steps to Cyber Security.
https://www.cesg.gov.uk/10-steps-cyber-security. Accessed on 13 April 2016

6. Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective
optimization. Ann. Oper. Res. 154(1), 29–50 (2007)

7. Dewri, R., Poolsappasit, N., Ray, I., Whitley, D.: Optimal security hardening using
multi-objective optimization on attack tree models of networks. In: Proceedings
of the 14th ACM Conference on Computer and Communications Security. ACM
(2007)

8. Gupta, M., Rees, J., Chaturvedi, A., Chi, J.: Matching information security vul-
nerabilities to organizational security profiles: a genetic algorithm approach. Decis.
Support Syst. 41(3), 592–603 (2006)

9. Khouzani, M., Malacaria, P., Hankin, C., Fielder, A., Smeraldi, F.: Efficient numer-
ical frameworks for multi-objective cyber security planning: Technical report.
http://www.eecs.qmul.ac.uk/∼khouzani/Papers/ESORICS16Techrep.pdf

10. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engi-
neering. Struct. Multi. Optim. 26(6), 369–395 (2004)

11. Nagurney, A., Nagurney, L.S., Shukla, S.: A supply chain game theory frame-
work for cybersecurity investments under network vulnerability. In: Daras, N.J.,
Rassias, M.T. (eds.) Computation, Cryptography, and Network Security, pp. 381–
398. Springer, Switzerland (2015)

12. Ojamaa, A., Tyugu, E., Kivimaa, J.: Pareto-optimal situaton analysis for selection
of security measures. In: Military Communications Conference. IEEE (2008)

13. Panaousis, E., Fielder, A., Malacaria, P., Hankin, C., Smeraldi, F.: Cybersecurity
games and investments: a decision support approach. In: Poovendran, R., Saad, W.
(eds.) GameSec 2014. LNCS, vol. 8840, pp. 266–286. Springer, Heidelberg (2014)

14. Passeri, P.: HACKMAGEDDON, information security timelines and statistics.
http://www.hackmageddon.com. Accessed on 19 April 2016

15. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using
bayesian attack graphs. IEEE Trans. Dependable Secure Comput. 9(1), 61–74
(2012)

16. Rees, L.P., Deane, J.K., Rakes, T.R., Baker, W.H.: Decision support for cyberse-
curity risk planning. Decis. Support Syst. 51(3), 493–505 (2011)

17. SANS: The critical security controls for effective cyber defense. https://www.sans.
org/media/critical-security-controls/CSC-5.pdf. Accessed on 13 April 2016

18. Sarala, R., Zayaraz, G., Vijayalakshmi, V.: Optimal selection of security counter-
measures for effective information security. In: Padma Suresh, L., Panigrahi, B.K.
(eds.) ICSCS 2015. AISC, vol. 398, pp. 345–353. Springer, Heidelberg (2015)

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/400106/Common_Cyber_Attacks-Reducing_The_Impact.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/400106/Common_Cyber_Attacks-Reducing_The_Impact.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/400106/Common_Cyber_Attacks-Reducing_The_Impact.pdf
https://www.cesg.gov.uk/10-steps-cyber-security
http://www.eecs.qmul.ac.uk/~khouzani/Papers/ESORICS16Techrep.pdf
http://www.hackmageddon.com
https://www.sans.org/media/critical-security-controls/CSC-5.pdf
https://www.sans.org/media/critical-security-controls/CSC-5.pdf

Efficient Numerical Frameworks for Multi-objective Cyber Security Planning 197

19. Sawik, T.: Selection of optimal countermeasure portfolio in IT security planning.
Decis. Support Syst. 55(1), 156–164 (2013)

20. Schechter, S.E.: Computer security strength & risk: a quantitative approach. Ph.d.
thesis, Harvard University Cambridge, Massachusetts (2004)

21. Syalim, A., Hori, Y., Sakurai, K.: Comparison of risk analysis methods: Mehari,
magerit, nist800-30 and microsoft’s security management guide. In: International
Conference on Availability, Reliability and Security. IEEE (2009)

22. UK’s Department for Business, Innovation & Skills: Cyber Essentials Scheme.
https://www.gov.uk/government/publications/cyber-essentials-scheme-overview.
Accessed on 7 January 2016

23. Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: a
survey. J. Multi Criteria Decis. Anal. 3(2), 83–104 (1994)

24. Viduto, V., Maple, C., Huang, W., López-Peréz, D.: A novel risk assessment and
optimisation model for a multi-objective network security countermeasure selection
problem. Decis. Support Syst. 53(3), 599–610 (2012)

https://www.gov.uk/government/publications/cyber-essentials-scheme-overview

E-voting and E-commerce

On Bitcoin Security in the Presence of Broken
Cryptographic Primitives

Ilias Giechaskiel(B), Cas Cremers, and Kasper B. Rasmussen

University of Oxford, Oxford, UK
{ilias.giechaskiel,cas.cremers,kasper.rasmussen}@cs.ox.ac.uk

Abstract. Digital currencies like Bitcoin rely on cryptographic prim-
itives to operate. However, past experience shows that cryptographic
primitives do not last forever: increased computational power and
advanced cryptanalysis cause primitives to break frequently, and moti-
vate the development of new ones. It is therefore crucial for maintaining
trust in a cryptocurrency to anticipate such breakage.

We present the first systematic analysis of the effect of broken primi-
tives on Bitcoin. We identify the core cryptographic building blocks and
analyze the ways in which they can break, and the subsequent effect on
the main Bitcoin security guarantees. Our analysis reveals a wide range
of possible effects depending on the primitive and type of breakage, rang-
ing from minor privacy violations to a complete breakdown of the cur-
rency. Our results lead to several observations on, and suggestions for,
the Bitcoin migration plans in case of broken or weakened cryptographic
primitives.

1 Introduction

Cryptocurrencies such as Bitcoin rely on cryptographic primitives for their guar-
antees and correct operation. Such primitives typically get weakened over time,
due to progress in cryptanalysis and advances in the computational power of
the attackers. It is therefore prudent to expect that, in time, the cryptographic
primitives used by Bitcoin will be partially, if not completely, broken.

In anticipation of such breakage, the Bitcoin community has created a wiki
page that contains draft contingency plans [46]. However, such plans are hand-
wavy and incomplete at best: no adequate transition mechanism has been built
into Bitcoin, and no plans for partial breakage (or weakening of a primitive) have
been considered. Primitives rarely break abruptly, but instead they break grad-
ually. With hash functions, for example, it is common that first a single collision
is found. This is then later generalized to multiple collisions, and only later do
arbitrary collisions become feasible to compute. In parallel, the complexity of
attacks decreases to less-than-brute-force, and computational power increases.
Finally, quantum computing will make some attacks easier, e.g., by Grover’s
pre-image attack [20], or Shor’s algorithm for discrete log computation [40].

Hence, even if such attacks are years away from being practical, it is crucial
to anticipate the impact of broken primitives, so that appropriate contingency
plans can be put in place. Our work contributes towards filling this gap.
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 201–222, 2016.
DOI: 10.1007/978-3-319-45741-3 11

202 I. Giechaskiel et al.

Fig. 1. The blockchain data structure. This forms the basis of the public, append-only
ledger where all transactions are recorded.

Contributions. We provide the first systematic analysis of the impact of bro-
ken primitives on Bitcoin. By analyzing the failure of primitive properties, both
in isolation and in combination, we describe precisely the range of consequences
different breaks have, and pinpoint their exact cause. For example, the flexibil-
ity of the coinbase transaction is the reason why mining becomes trivial if an
adversary can easily compute pre-images of SHA256 hashes. In our analysis, we
introduce an oracle model for hash functions that unifies and extends several
existing types of breakage, allowing us to analyze more realistic attacks. Our
investigations raise concerns about the currently specified migration plans for
Bitcoin, being overly conservative in some respects, while inadequate in oth-
ers. To that end, we make concrete suggestions regarding future iterations of the
cryptocurrency in response to entirely broken and partially weakened primitives.

Overview. We provide background in Sect. 2 and propose our adversary model
in Sect. 3. We next analyze the effects of broken primitives: hashing in Sect. 4,
signature schemes in Sect. 5, and combinations of primitive breaks in Sect. 6. We
revisit the current Bitcoin implementation and its contingency plans in Sect. 7.
We discuss related work in Sect. 8 and conclude in Sect. 9.

2 Background

In this section, we give a description of Bitcoin, the popular peer-to-peer (P2P)
cryptocurrency introduced in 2008 by Satoshi Nakamoto [34]. Figure 1 shows a
high-level view of the main component of Bitcoin—the blockchain—which will
guide this section. The blockchain is a public log of all Bitcoin transactions that
have occurred, combined together in components called blocks. Transactions use
a scripting language that determines the owners of coins (Sect. 2.1), and it is up to
miners to ensure that only valid transactions occur. To ensure that nobody can
change or remove past transactions, miners have to solve a hard computational
puzzle, known as a Proof-of-Work (Sect. 2.2). The final component of Bitcoin is
its underlying P2P network which enables distributed communication (Sect. 2.3).
We do not consider components outside the main protocol, such as wallets.

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 203

2.1 Transactions and Scripts

Bitcoin is an electronic cash system [34], so transactions to transfer coins between
users are central to its structure. A transaction is a list of inputs—unspent
transactions in the blockchain—and a list of outputs—addresses to which to
transfer the coins, whose unit is a “satoshi”, equal to 10−8 Bitcoins or BTCs.
To ensure that only the owner can spend his coins, each input and output is
accompanied by a script. For outputs, this “locking” script contains the condi-
tions under which the output can be redeemed (scriptPubKey), while for inputs,
an “unlocking” script contains a cryptographic signature (scriptSig) as proof
that these conditions have been met. These scripts are sequences of instructions
that get executed by special nodes called miners. To prevent Denial-of-Service
(DoS) attacks exploiting computationally intensive instructions, most nodes only
accept the five standard scripts:

1. Public-Key. The unlocking script must sign the transaction under this key.
2. Pay-to-Public-Key-Hash (P2PKH). The unlocking script must provide a pub-

lic key which hashes to the given value, and must then sign the transaction.
3. Multi-Signature. An M-of-N (N ≤ 15) multi-signature scheme provides N

public keys, and requires M signatures in the unlocking script.
4. Pay-to-Script Hash (P2SH). This script is the hash of a non-P2SH standard

transaction. The unlocking script provides the full script hashing to this value
and any necessary signatures. This script is typically used to shorten the
length of multi-signature transactions.

5. Data Output (OP RETURN). The output cannot be redeemed, but can be
used to store up to 40 arbitrary bytes, such as human-readable messages.

For a transaction to be valid, it must contain all the required fields, all
signatures must be correct, and the scripts must be standard. This is a task
that miners undertake for a small fee. Though some non-standard scripts can be
accepted by some miners for a higher fee, we do not cover these in our analysis.

2.2 Mining and Consensus

To ensure that no coin is used more than once, every transaction is made public
through a global, append-only ledger called the blockchain, consisting of blocks
combining transactions in a Merkle Tree [33]. New blocks become a part of the
blockchain through a process called mining: miners need to find a value (nonce)
such that the hash of a block’s header is less than a given target h(hdr||nonce) <
T . The idea behind this proof-of-work (PoW) scheme is that the probability of
creating the next block is proportional to the miner’s computational power, and
because miners receive transaction fees, they are incentivized to do the work,
which includes validating transactions and blocks. A summary is shown in Fig. 2,
with the full procedure at [45].

Due to the probabilistic nature of mining, the presence of adversaries, and
networking delays, miners may disagree on the current state of the blockchain.
This is known as a fork. To deal with this issue, there are hard-coded blocks

204 I. Giechaskiel et al.

Fig. 2. Procedure to verify a block’s cryptographic primitives.

included in the clients, known as checkpoints, starting from the first block,
called the genesis block. In addition, honest (non-adversarial) miners work on
the longest blockchain they become aware of, when other nodes announce new
blocks and transactions. This way, nodes eventually reach consensus [10,17].

These temporary forks enable double spending: an adversary can have differ-
ent transactions in different branches of the fork using the same inputs but dif-
ferent outputs. However, because the probability of “deep” forks where branches
differ in the top N blocks drops exponentially in N , receivers usually wait for
multiple confirmation blocks. If a miner or a group of collaborating miners (called
a pool) is in control of a high enough proportion of the total computational power
(51 % [29], or even less [16]), then they can possibly destabilize the system.

2.3 Network

The last key component is the Peer-to-Peer (P2P) network for distributed oper-
ation. Transactions and blocks are broadcast by nodes to their peers, and then
relayed further to flood the network if they meet the relay policies (to prevent
DoS attacks). Not every node is a miner or necessarily has access to the full
chain: “lightweight” clients that use Simple Payment Verification (SPV) only
download headers and the relevant transactions (with the corresponding Merkle
Trees).

Over time, the need for extensions or bugfixing motivates protocol changes.
Since not all nodes upgrade at the same time, this may introduce forks. If
the validation rules in the upgrade become stricter, then the protocol remains
backwards-compatible, resulting in a softfork. A hardfork, on the other hand, is
not backwards-compatible, and thus requires the entire network to upgrade, as
old software would reject new transactions and blocks as invalid.

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 205

3 System and Adversary Model

In this section we describe our Bitcoin model and discuss the adversary’s goals
and powers in the presence of broken cryptographic primitives. We distinguish
between 4 entities: senders, receivers, miners, and networking nodes. Senders
and receivers, collectively referred to as users, wish to exchange Bitcoins via
transactions. They care about the amount of money under their control, but not
about the details of the underlying system.

Transactions are transmitted via the underlying P2P network. Miners have
their own (possibly different) copy of the blockchain, and have different hashing
capacities. For our model, we consider pools as single miners with a large hashing
capability. We distinguish between two adversary roles: user and miner. As a
user, the adversary aims to make money, either by successfully double spending
or by spending from another user’s wallet. As a miner, the adversary controls
a proportion α < 0.5 of the mining power. We assume the adversary controls a
proportion β of the nodes in the P2P network, so that he can attempt to split
the network temporarily in the presence of a suitable vulnerability, but cannot
be confident that such attempt will succeed.

We consider the economic aspects of Bitcoin out of scope, and we also do
not consider developers as a threat. Finally, we do not investigate adversarial
attacks of an individual miner against his own pool, thus allowing us to consider
pools as single entities of more mining power.

4 Broken Hashing Primitives

In this section we look at the cryptographic hash functions in Bitcoin, and ana-
lyze the effect of a break in one of the properties of first and second pre-image
and collision resistance. We generalize these into a single property called chosen-
format bounded pre-image resistance.

4.1 Hashing in Bitcoin

In the original Bitcoin paper [34], the concrete primitives used are not specified:
there were no “addresses” but just public keys, and the hash used for mining
and the Merkle tree was just referred to as a hash function. The current Bitcoin
implementation, going back to at least version 0.1.0 [35] uses two hash functions.

Main Hash. This hash function has an output of 256 bits and requires applying
SHA256 twice: HM (x) = SHA256 (SHA256 (x)). It is the hash used for mining
(Proof-of-Work): miners need to find a nonce such that the double SHA256 hash
of a block header is less than a “target” hash. It is also used to hash transactions
within a block into a Merkle Tree, a structure which summarizes the transactions
present within a block. Finally, it is the hash used for transactions signed with
a user’s private key (see [39] for details).

Address Hash. The second hash function is used as part of the Pay-to-Public-
Key-Hash (P2PKH) and the Pay-to-Script-Hash (P2SH) scripts. Its output is 160
bits, and it is concretely instantiated as HA(x) = RIPEMD160 (SHA256 (x)).

206 I. Giechaskiel et al.

4.2 Modeling Hash Breakage

In this section we analyze how hashes break in terms of their building blocks,
and introduce our oracle model for their breakage.

Identifying Hashing Building Blocks. A good cryptographic hash function
h(x) should offer three properties:

1. Pre-image resistance Given y it is hard to find x with h(x) = y.
2. Second pre-image resistance Given x1, it is hard to find x2 �= x1 with h(x1) =

h(x2).
3. Collision resistance It is hard to find distinct x1 �= x2 such that h(x1) =

h(x2).

where “hard” refers to computational infeasibility. This is because hash functions
have a fixed-length output, so collisions always exist.

We consider attacks against HA and HM abstractly, so that our arguments
can be extended for any future version that uses the same structure. Currently,
HA and HM are built using RIPEMD160 and SHA256. To relate the attacks we
discover back to the concrete primitives in Sect. 7, we show in Appendix A that
for collisions and second pre-images, only one of the two nested hashes needs to
be broken, while for pre-images both need to be broken.

Modeling Hash Breakage Variants. The three properties discussed above do
not accurately capture all types of breakages, which typically exploit the internal
structure of the hash function. Thus, an adversary might have more control over
the structure of the pre-image or the target value. For example, mining expects
the hash to be smaller than a given target, a property which cannot be expressed
using traditional pre-image oracles, as we show in Sect. 4.3.

For this reason, we introduce a more general oracle model to enable our
analysis. We call the oracle a chosen-format bounded pre-image oracle P , which
on input (a, b, yl, yh, i[, s]) returns an xi such that yl ≤ h(a||xi||b) ≤ yh or ⊥ if
none exists. Thus, the oracle returns a value Xi = a||xi||b such that its beginning
and end are caller-supplied, and its hash is within a given target range. Moreover,
the oracle is deterministic such that the same xi is returned each time and
xi �= xj for i �= j. If given the optional parameter s, the returned xi has size
s bits. That is to say, the oracle can be called multiple times to get different
pre-images, and the user is also able to specify the length of the pre-image in
bits.

In Appendix B, we motivate these parameters and show that our oracle
captures breakages in the three properties. We summarize our results in Table 1.

4.3 Main Hash

In this section we analyze the main hash HM , which is used for mining, in Merkle
Trees, and with signatures. We discuss all three use-cases separately.

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 207

Table 1. Summary of the effects on Bitcoin for different types of hash breakage.

Breakage Address hash (HA) Main hash (HM)

Collision Repudiate payment Steal and destroy coins

Second pre-image Repudiate payment Double spend and steal coins

Pre-image Uncover address Complete failure of the blockchain
(2n calls)

Bounded pre-image All of the above Complete failure of the blockchain
(n calls)

4.3.1 Mining
We first investigate pre-image attacks against the block headers under three dif-
ferent attack scenarios, before turning to collision and second pre-image attacks.

Attack 1: Pre-Image against Fixed Merkle Root. We show that the prob-
ability that an adversary with access to a pre-image oracle can break mining is
negligible. Miners search for block headers whose n-bit hash is below a target,
which we assume starts with d zeros. This assumption only introduces up to
1 bit of extra work, as there is always a unique d with T ≤ 2d < 2T , for any
target T .

If the adversary controls b ≤ n bits of the input, there are 2b possible inputs
to the hash function. These need to map to one of the 2n−d values in the range
[0, 0d1n−d), and will be uniformly distributed across 2n values. This gives the
expected number of b-bit pre-images as E[# pre-images] = 2b · (2n−d)/(2n) =
2b−d. The adversary can only query the pre-image oracle for specific target
hashes. Because there are 2b−d b-bit pre-images, distributed across the 2n−d

values, the probability that a given hash in [0, 0d1n−d) has a b-bit pre-image is:
P [correct pre-image] = (2b−d)/(2n−d) = 2b−n. This probability does not depend
on d, as one might expect. This is because by increasing d to reduce the number of
valid hashes, the adversary also reduces the expected number of b-bit pre-images.
Assuming the adversary is allowed 2a queries to the oracle, the probability of
breaking mining becomes P [success] = 2a · 2b−n = 2a+b−n.

To calculate b, we explore all fields in the block header. The version number
(nVersion), as well as the hashes of the previous block header (hashPrevBlock),
and of the current Merkle root hash (hashMerkleRoot) are fixed. However,
the adversary has partial control over the remaining fields in the header. For
the timestamp field (nTime), the value can be within 7200 seconds of the cur-
rent median/average, giving the adversary approximately 13 bits of freedom.
Moreover, the adversary has complete control over the 32 bits of the nonce
(nNonce). The nBits field 0xAABBCCDD describes the target difficulty as
0xBBCCDD · 2560xAA−3, with the protocol only checking that the produced
number is at most the target value given by the consensus. At the time of writing,
the target value is 0x180928f0, granting the adversary 28 bits of freedom.

Together the fields give b = 73. With n = 256, and allowing 280 calls to the
oracle, the probability of success is only 280+73−256 = 2−103, which is negligible.

208 I. Giechaskiel et al.

Attack 2: Pre-Image against Variable Merkle Root. By varying the
Merkle root, an adversary can break mining, though by the discussion of Attack
1, this cannot be achieved by simply reordering or excluding transactions. Instead
the adversary must work backwards, by querying the oracle for a target Merkle
hash and repeatedly querying the oracle to reconstruct the entire Merkle tree.
This would normally fail, as the transactions generated would not be valid due
to incorrect signatures, but Bitcoin does not enforce a minimum number of
transactions in a block. Hence, miners can mine blocks with just the coinbase
transaction which generates new coins, and which has a variable-length input of
up to 100 bytes that is controlled by miners [39]. A malicious miner with access
to the pre-image oracle can then:

1. Pick an arbitrary target T and get a pre-image for HM (a||x||b) = T where
the desired x is the hashMerkleRoot field, and a, b are the remaining fields
in a block header. Because the root is 256 bits, there is a pre-image with
high-probability, but if not, repeat with some other random target T ′.

2. Pick a length l for the script, and fix all other fields for the coinbase trans-
action. Solve HM (a′||y||b′) = x where a′, b′ are the remaining fields for the
coinbase transaction. Because the number of free bytes is up to 100, there is
an l-bit pre-image y with high probability. The miner then generates a coin-
base transaction using a′, y, b′ and combines it into a block using a, b. This
block will have a hash of T as desired.

Attack 3: Bounded Pre-Image. An adversary with access to our chosen-
format, bounded pre-image oracle P can break mining with half as many calls
to the oracle compared to the above attack using the simple pre-image oracle
(Attack 2). Indeed, this is accomplished by calling P on (hdr,⊥, 0, yt, 0, s), where
yt is the target hash, hdr is the beginning of the block header, and s = 32 is the
size of the required nonce such that 0 ≤ HM (hdr||nonce) ≤ yt.

Collisions, Second Pre-Images. Collisions and second pre-images are only
useful for mining if the pre-images start with d zeros. Assuming the pre-images
contain valid transactions and signatures, a miner can fork the chain, but this
only occurs with negligible probability.

4.3.2 Merkle Trees
Altering existing blocks. A similar argument as for mining (Attack 1) shows
that an adversary cannot find a valid second pre-image of an entire block except
with negligible probability. Pre-images do not give the adversary new informa-
tion, as they already accompany the hash value. Collisions are also not useful,
as both values are attacker-controlled and cannot alter existing blocks.

Attacking new blocks. For new blocks and transactions, an adversary with
sufficient network control can use a collision or second pre-image to split the net-
work, reject both blocks or reverse transactions, thus enabling double-spending.
This can occur even with invalid pre-images: a similar situation occurred when
some miners generated invalid blocks which were not detected by clients [1].
Pre-images are again not useful, as they always accompany the hashed value.

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 209

4.3.3 Main Hash Usage in Signatures
In Bitcoin, signatures are over messages hashed with HM . Therefore, a second
pre-image attack or a collision on HM can be used to destroy and possibly steal
coins: an adversary can ask for a signature on an innocuous transaction (e.g.,
pay 1 satoshi to address X), but transmit a malicious one instead (e.g., pay 100
BTC to address Y) since there are enough bytes that the adversary controls to
guarantee success with high probability.

Though external to the protocol, signatures of HM are also used by Bitcoin
developers to transmit alerts. A pre-image attack again does not give useful
information to the adversary, as the pre-image always accompanies the signature.
Collisions are also not useful, as the adversary cannot sign them. However, a
second pre-image allows the adversary to reuse an old signature on a new alert.

4.4 Address Hash

The address hash is used in two contexts. First, in Bitcoin addresses, using Pay-
to-Public-Key-Hash (P2PKH) scripts: an address is essentially y = HA(p) =
RIPEMD160 (SHA256 (p)) where p is the public key (together with a check-
sum [4]). Payments to addresses only use the hashed value y, but transactions
to addresses require the full public key p and the signature on the transaction.
The second use is in Pay-to-Script-Hash (P2SH) scripts. A P2SH is y = HA(s)
where s is a standard script, typically a multi-signature transaction. Payments
to a P2SH script do not reveal the pre-image, but transactions spending the
coins require it and the signatures of the corresponding parties. We discuss them
jointly, since the only difference between a P2PKH and a P2SH in this context
is the number of required signatures.

Pre-image. For previously spent outputs, or for reused addresses, HA is already
accompanied by its pre-image. A pre-image thus can only reveal the public key(s)
for unspent outputs. This has minimal privacy consequences since public keys
are not tied to real identities, but it could enable an offline attack on the key.
Assuming that the key was not chosen with bad randomness and there is no
weakness in the signature scheme, the probability of success is still negligible.

Second pre-image. A second pre-image gives the adversary access to a different
public key or script with the same hash. However, because the adversary does
not control the corresponding private key, he cannot use this to change existing
transactions or create new ones. This is because pre-images (whether a key or a
script) are only revealed and verified when spent in transactions.

Collision. Collisions are similar, though in this case both public keys are under
the adversary’s control, and again the adversary does not have access to the
private keys. In both scenarios, there is a question of non-repudiation external
to the protocol itself: by presenting a second pre-image of a key used to sign a
transaction, a user/adversary can claim that his coins were stolen.

210 I. Giechaskiel et al.

Table 2. Effects of a broken signature scheme.

Breakage Effect

Selective forgery Steal coins from public key

Integrity break Claim payment not received

Repudiation -

5 Broken Signature Primitives

In this section we describe the use of digital signatures in Bitcoin, and analyze
how a break in their unforgeability, integrity, or non-repudiation impacts Bitcoin.
We summarize our results in Table 2.

5.1 Digital Signatures in Bitcoin

Bitcoin’s digital signature scheme is the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) with the secp256k1 [43] parameters, and is used to sign the
main hash HM of transactions. These signatures can be over different parts
of the message based on the hashtype [39], leading to transaction malleability
attacks [13], as the same transaction can be encoded multiple ways without
invalidating the signature. The signature scheme is also used for alerts by devel-
opers to announce critical information. The signature is over the main hash HM

of the entire alert structure. The effects on alerts are not summarized in the
table as they are external to the protocol.

5.2 Modeling Signature Breakage Variants

The security of digital signature schemes is usually discussed in terms of three
properties, which we define as follows:

1. Unforgeability No-one can sign a message m that validates against a public
key p without access to the secret key s.

2. Integrity A valid signature {m}s does not validate against any m′ �= m.
3. Non-repudiation A valid signature {m}s does not validate against any public

key p′ �= p.

where there is an implicit “except with negligible probability”, due to hashing.
These properties are linked and a breakage in one usually implies a breakage

in the others. In addition, they are often discussed in a much more abstract way:
non-repudiation refers to the property that the signature proves to all parties
the origin of the signature, but in this case we introduce it in a way that is more
akin to Duplicate Signature Key Selection (DSKS) attacks [9].

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 211

5.3 Broken Signature Scheme Effects

We now analyze a break in each of these properties separately, starting with the
last two, as neither of them can lead to an attack on their own.

Integrity. In order for a break in the integrity of the signature scheme to be
useful in Bitcoin, a signature of HM (m) must also be valid for HM (m′). This
involves HM in a non-trivial way, so we discuss this further in Sect. 6, but note
that transaction malleability can cause the issuer of a transaction to think that
his payment was not confirmed [13].

Non-repudiation. For non-repudiation, we note that for transactions, even if
a signature verifies under a different key, the address hashes of the two public
keys must match. A break thus involves HA, so we discuss this case further in
Sect. 6. For the alert mechanism, however, if given a message m and a public
key p, one can find p′ (with its secret key s′) such that {m}s′ validates against
p, then an adversary can send fake alert messages. This can have an external
impact on Bitcoin, for instance by asking users to manually shut down clients.

Unforgeability. When it comes to unforgeability, we can distinguish between
various types of breaks [19]: Total break to recover the private key, universal
forgery to forge signatures for all messages, selective forgery to forge signature
on a message of the adversary’s choice, and existential forgery to produce a valid
signature that is not already known to the adversary.

Because the message to be signed must be the hash of a valid transaction,
an existential forgery is not sufficient since the probability that it corresponds
to a valid message is negligible. Selective forgery on the other hand can be used
to drain a victim’s wallets. From this perspective, selective forgery and a total
break have the same effect. However, as we discuss later, the type of breakage
influences how to upgrade to a new system. It is worth noting that an adversary

Table 3. The effects of a multi-breakage: combining broken hashes and signatures.

Signature property

Hash property Selective forgery Integrity break Repudiation

Address hash (HA)

Collision Repudiate transaction - Change existing paymenta

Second pre-image Steal all coins - Change existing payment

Pre-image Steal all coins - -

Bounded pre-image All of the above - Change existing payment

Main hash (HM)

Collision Steal coins Steal coinsa -

Second pre-image Steal coins Double spenda -

Pre-image - - -

Bounded pre-image Steal coins All of the above -
aAchieving this requires a slight modification of the definitions. See text for details.

212 I. Giechaskiel et al.

does not necessarily have access to a user’s public key, since addresses that have
not been reused are protected by the address hash HA.

6 Multi-Breakage

In this section we analyze how combinations of breakages in different primitives
can impact Bitcoin. Because HA and HM are not used together, we only consider
a break in the signature algorithm in combination with a break in one of the two
hashes. Since the extra power of our oracle is not needed, we discuss breakage in
terms of the three traditional properties. The results are summarized in Table 3.

6.1 Address Hash and Signature Scheme

Signature Forgery. Combining a selective forgery with a first or second pre-
image break of the address hash can be used to steal all coins that are unspent.
Generating two public keys p, p′ with HA(p) = HA(p′) (collision) whose signa-
tures the adversary can forge does not have a direct impact, since the adversary
controls both addresses. However, it appears as if two different users are attempt-
ing to use the same coin, thus raising a question of repudiation, which we discuss
in Sect. 7.

Signature Integrity. As the messages signed for alerts or transactions do not
involve HA, this combination does not increase the adversary’s power.

Signature Repudiation. A pre-image attack on HA is not useful as the public
key is already known. For a second pre-image, assume that given a message m
(the hash of a transaction) and a public key p, an oracle returns p′ such that
HA(p) = HA(p′) and the signature of m under p also validates against p′. Since
the same signature validates for both keys, an adversary can replace p by p′ in the
unlocking script. Though this does not give the adversary immediate monetary
gain, a transaction in the blockchain has been partially replaced.

For collisions, assume that given a message m, an oracle returns two public
keys p, p′ such that HA(p) = HA(p′) and the signature of m under p validates
under p′. If the adversary does not have access to the private keys, he cannot
sign the transaction. Otherwise, the effect is identical to the second pre-image
case, where the adversary can replace part of a transaction in the blockchain.

6.2 Main Hash and Signature Scheme

Signature Forgery. As explained in Sect. 4.3, none of the potential attacks
using the hash HM required a break in the signature scheme. The partial excep-
tions were mining under a pre-image break, alerts with collisions, and trans-
actions with second pre-image or collision breaks. We discuss each possibility
below.

For mining, a pre-image attack is useful when working backwards from a
fixed target to get a pre-image for the Merkle root, and turn it into a tree of

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 213

transactions. The problem identified in Sect. 4.3 was that there is only negligible
probability that the transactions refer to valid, unspent outputs, so a forgery
does not solve this issue. For alerts, collisions require forgery. Though the effect
of signing and transmitting two different alert messages with the same hash
is unclear, it could potentially be used to cause external effects to Bitcoin by
making the different messages ask the users to take different actions. Finally,
for transactions, collisions and second pre-images on their own can be used to
destroy coins, or steal coins. If the adversary can also forge signatures, he is
guaranteed to be able to steal coins no matter what address they went to, as
long as it is not protected by the address hash.

Signature Integrity. A collision or a second pre-image attack trivially breaks
the integrity of the scheme as messages are always hashed, and reduces to the
case discussed in Sect. 4.3, so we modify the definitions slightly to consider a
joint break in the two algorithms.

A collision integrity oracle given a public key p produces m,m′ such that
the signature of HM (m) is also valid for HM (m′). The adversary can ask for
a signature on an innocent transaction, but transmit the malicious one with
the still valid signature. Unlike in the regular collision case, the two hashes
HM (m) and HM (m′) are different. Hence, the adversary cannot just replace the
transaction in the block, but he can opt never to transmit the innocent one
instead.

A second pre-image integrity oracle given a public key p and a message m
produces m′ such that the signature of HM (m) is also valid for HM (m′). This
case also resembles the break on just HM , but, again, because the hashes are
not equal, the adversary cannot simply replace an existing transaction, unless it
has not yet been confirmed in a block. This can split the network and destroy
coins.

Signature Repudiation. The non-repudiation property of the signature
scheme necessarily involves a break of HA, as was explained in Sect. 5.3. This
combination therefore does not increase the adversary’s power.

7 Current Bitcoin Implementation

In this section, we revisit the current Bitcoin implementation, its choice of prim-
itives and contingency plans, using observations from the previous sections.

7.1 Current Cryptographic Primitives

In the current version of Bitcoin, HA(x) = RIPEMD160 (SHA256 (x))), and
HM (x) = SHA256 (SHA256 (x)). Because there are no critical breaks for HA, a
break in RIPEMD160 is not cause for concern. Moreover, because HM only uses
SHA256, an attack against SHA256 is equivalent to an attack against HM . We
can thus summarize the effect of concrete primitive breakage in Table 4.

214 I. Giechaskiel et al.

Table 4. Effects of concrete primitive breakage on the current version of Bitcoin.

Breakage Effect

SHA256

Collisions Steal and destroy coins

Second pre-image Double spend and steal coins

Pre-image Complete failure

Bounded pre-image All of the above

RIPEMD160

Any of the above Repudiate payments

ECDSA

Selective forgery Steal coins

Integrity break Claim payment not received

Repudiation -

7.2 Existing Contingency Plans

A break of the primitives has interested the community from the early days of
Bitcoin. Informal recommendations by Satoshi in forums [36,37] evolved into a
“wiki” page which describes contingency plans for “catastrophic failure[s]” [46].
Such a failure for primitives is defined in terms of an adversary that can defeat
the algorithm with “a few days of work” [46], and the focus is on notifying users
(since alerts may be compromised), and protecting the OP CHECKSIG operation
to prevent people from stealing coins.

Concretely, for a “severe, 0-day failure of SHA-256” [46], the plans propose
switching to a new hashing algorithm H ′, and hard-coding known public keys
with unspent outputs as well as the Merkle root of the blockchain under H ′.
For a broken signature scheme, if the attacker cannot recover the private key,
and there is a drop-in replacement using the same key-pair, the plan is to sim-
ply switch over to the new algorithm. Otherwise, the new version of Bitcoin
“should automatically send old transactions somewhere else using the new algo-
rithm” [46].

7.3 Potential Migration Pitfalls

The contingency plans suggest that “code for all of this should be prepared” [46],
but no such mechanism currently exists. Moreover, no plans are in place for a
break in RIPEMD160. Since sudden breaks are unlikely, neither is cause for
immediate concern, but should be included in future plans.

Broken SHA256. By our analysis, it is clear that new transactions should not
use a broken hash. However, existing historical transactions and blocks cannot
be altered, except in a majority mining attack. Thus, hard-coding public keys,
and rehashing the entire blockchain are more prudent than necessary. It should
be noted that a sudden migration necessitates a hardfork for Bitcoin.

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 215

Broken ECDSA. For a broken ECDSA, a transition is indeed easy if there is a
drop-in replacement and the private key is safe. Otherwise, a gradual transition
scheme is necessary as users will need to manually switch over to a new key pair.

7.4 Recommendations

In this section we make recommendations to more properly anticipate primitive
breakage. Recognizing that there are financial considerations in addition to the
technical ones, we do not propose a full upgrade mechanism, but merely make
suggestions to the Bitcoin developers and community.

First of all, our analysis reinforces the idea that users should not reuse
addresses, not just for privacy reasons, but also because they protect against
some types of primitive breakage. For instance, if the signature scheme is bro-
ken, addresses are still protected by the hash.

The plans for a sudden breakage should address when to freeze the blockchain,
and whether to roll back transactions in the case of a sudden break. Moreover,
the centralized approach of hard-coding well-known keys is perhaps not entirely
in line with Bitcoin’s decentralized philosophy and can lead to lost coins. If keys
are to be hard-coded, there is a trade-off between complexity and risking making
coins unspendable: developers must decide whether the migration would occur
at once, or whether periodic alert-like messages would be used to distribute new
key pairs periodically. An alternative and perhaps better approach would be to
use Zero-Knowledge Proofs to tie the old address still protected by their hash
to the new public key.

Given that sudden breaks are unlikely, there is a need for a separate plan for
weakened primitives. Based on our analysis, we recommend the following:

– Introduce a minimum number of transactions per block to increase the dif-
ficulty of performing the pre-image attack against the mining header target
(Proof-of-Work or PoW) using the coinbase transaction.

– To migrate from old addresses, whether due to a weakened hash or signature
scheme, introduce new address types using stronger hashing and signature
schemes. This can be achieved with a softfork by making transactions appear
to old clients as “pay-to-anybody”, akin to how P2SH was introduced.

– Instead of using nested hashes for HA, HM , combine primitives in a way that
increases defense-in-depth (see related work in Sect. 8).

– Given that HM has multiple use-cases, consider whether each of its functions
should have a different instantiation, whether through distinct primitives, by
pre-pending different values, or by using an HMAC with different keys.

– Since alerts are external to the Bitcoin mechanism itself, send alerts using
a new signature and hash scheme to new clients, and duplicate the message
using old primitives for old clients.

– Consider a hardfork in response to a weakened HM , with re-designed headers
and transactions, and without any use of the old primitives.

A softfork is insufficient for properly upgrading a weakened hash function
HM = H1 to the stronger H2, because HM forms the core of the PoW scheme.

216 I. Giechaskiel et al.

Specifically, since any changes must be backwards compatible, the old validation
rules must still apply, so for every new block, H1(hdr) < T , where the target T
is still calculated by the same algorithm. New blocks would also need to satisfy
some additional constraint H2(hdr′) < T ′, where the target T ′ is calculated
independently and hdr′ is the block header, possibly excluding some fields. As a
result, new clients would have to solve two PoW computational puzzles. Though
every instance of H1 (transaction, Merkle root, etc.) could be accompanied by
an instance of H2, fundamentally blocks and transactions are identified by their
H1 hash, which an attacker could exploit. There are also questions of incentives,
and whether new iterations of Bitcoin would still use a PoW scheme, but this is
left as future work.

8 Related Work

Since no other systematic analysis exists regarding primitive breakage for Bit-
coin, we consider papers which have focused on Bitcoin security in general, and
also explore related work focusing on the security of the primitives themselves.

Bitcoin. Multiple papers have identified or formalized properties such as stabil-
ity and anonymity in Bitcoin and other cryptocurrencies [10,17,44]. Anonymity
and privacy issues have also been explored extensively [3,8,41,42].

Research on adversarial miners has shown that there are infinitely many Nash
equilibria for mining strategies [29], and some strategies allow miners control-
ling α < 50% of the power to gain disproportionate rewards [12,15,16]. Other
research has demonstrated that double spending attacks are practical against
Bitcoin fast payment scenarios [24,25], with some further focus on causing a
network split [18] or isolating victims from other peers in the P2P nework [21].

[5] focuses on the economics of Bitcoin, including the effect of a history revi-
sion, which is discussed in the contingency plans [46]. [13] investigated transac-
tion malleability attacks which were prevalent in 2014.

Cryptographic Primitives. For combining hashes, [23] shows simultaneous
collisions for multiple hash functions are not much harder to find than individ-
ual ones. [22] shows that even when the underlying compression functions behave
randomly but collisions are easy to generate, finding collisions in the concate-
nated hash h1(x)||h2(x) and the XOR hash h1(x) ⊕ h2(x) requires 2n/2 queries.
However, when the hash functions use the Merkle-Damg̊ard (MD) construc-
tion, there is a generic pre-image attack against the XOR hash with complexity
Õ

(
25n/6

)
[30].

Neither MD hashes [11] nor h (h (x)) [14] behave as random oracles. MD
hash functions also behave poorly against pre-image attacks, allowing one to
find second pre-images of length 260 for RIPEMD160 in 2106 � 2160 time [27]. If
an adversary can further find many collisions on an MD construction, he can also
find pre-images that start with a given prefix (Chosen Target Forced Prefix) [26].
This notion can be extended to Chosen Target Forced Midfix attacks and it was
proven that at least 22n/3/L1/3 queries to the compression function are needed
where L is the maximum length of the pre-image [2].

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 217

Attacks against RIPEMD160 pre-images [38] and collisions [32] as well as
SHA256 collisions [31] and pre-images [28] only work for a reduced number of
rounds, and typically only incrementally improve upon brute-force solutions.
Certain ECDSA parameters can lead to Duplicate Signature Key Selection,
where an adversary can create a different key P ′ that validates against a correct
signature under a key P [9]. Implementations of ECDSA can also be vulnerable
to side-channel attacks [47], an attack which has also been practically demon-
strated against Bitcoin [6]. Finally, [7] showed how hash collisions break the
security of protocols like TLS, IPSec, and SSH.

9 Conclusions

We presented the first systematic analysis of the effect of broken primitives
on Bitcoin. Our analysis reveals that some breakages cause serious problems,
whereas others are inconsequential. The main vectors of attack involve collisions
on the double SHA256 hash or attacking the signature scheme, which directly
enable coin stealing. In contrast, a break of the hash used in addresses has
minimal impact, since they do not meaningfully protect the privacy of a user.
Our analysis has also uncovered more subtle attacks. For example, the existence
of another public key with the same hash as an address in the blockchain enables
parties to claim that they did not make a payment. Such attacks show that
an attack on a cryptographic primitive can have social rather than technical
implications. We leave the economic impact of such attacks and the extension
of our results to other altcoins or blockchain-based schemes as future work.
Because our analysis abstracts away from the concrete primitives, our general
results extend to future versions that use a similar structure.

We uncovered a worrying lack of defense-in-depth in Bitcoin. In most cases, the
failure of a single property in one cryptographic primitive is as bad as multiple fail-
ures in several primitives at once. For future versions of Bitcoin, we recommend
including various redundancies such as properly combined hash functions, and
requiring a minimum number of transactions per block. Bitcoin’s migration plans
are currently under-specified, and offer at best an incomplete solution if primi-
tives get broken. We offer some initial guidelines for making the cryptocurrency
more robust, both for a sudden break, but also in response to weakened primi-
tives. However, future discussions should directly involve the Bitcoin developers
and community to propose plans that would be in line with their expectations.

Appendix

A Breaking Nested Functions

In this section, we investigate the three main hashing properties, for a function
h = h1 ◦ h2 which is a composition of two hash functions. We show that for
collisions and second pre-images, only one of the two nested hashes needs to be
broken, while for pre-images both need to be broken.

218 I. Giechaskiel et al.

Pre-image resistance. h is broken only when both h1 and h2 are broken. In
one direction, assume that we have a pre-image algorithm for h, that returns x
on input y. Then, to find a pre-image for y under h2, run the algorithm on h1(y)
for output x. If h2(x) = y, then x is a pre-image for y under h2. Else h2(x) �= y
and (h2(x), y) forms a collision (or second pre-image) for h1. Conversely, if there
is an algorithm for both h1 and h2 pre-images, then to get a pre-image of y
under h, one finds a pre-image x1 of y under h1, and then a pre-image x2 of x1

under h2. x2 is then a pre-image of y under h.

Second pre-image resistance. h is only as strong as the inner function h2.
In one direction, assume that given x1 one can find x2 �= x1 such that h2(x1) =
h2(x2). Then clearly h(x1) = h(x2).1 In the other direction, assuming that given
x1, one can find x2 �= x1 such that h(x1) = h(x2), then either h2(x1) = h2(x2)
for a second pre-image attack on h2 or h2(x1) �= h2(x2) for a collision (and
second pre-image of h2(x1)) on h1.

Collision resistance. h is again only as strong as h2. A collision (x1, x2) for
h2 is clearly a collision for h, and a collision (x1, x2) for h is either a collision for
h2 or (h2(x1), h2(x2)) is a collision for h1.

B Generalizing Hash Oracles

In this section, we first motivate the parameters in our oracle model and then
show that our oracle generalizes traditional primitive breakage. We remind the
reader that our oracle P on input (a, b, yl, yh, i[, s]) returns an xi [of size s] such
that yl ≤ h(a||xi||b) ≤ yh or ⊥ if none exists, with xi �= xj when i �= j.

First of all, specifying a, b, and the length of the input forces pre-images and
collisions to follow the format of transactions and block headers. Using bounds on
the target range is necessary to describe some attacks against the proof-of-work
(PoW) scheme. In addition, the oracle needs an index parameter to ensure that
the adversary is polynomially bounded: when there is no length restriction on the
pre-image, there are potentially infinitely many pre-images, and exponentially
many for a fixed-length input. Finally, xi �= xj for i �= j so that the adversary
can access as many distinct pre-images as desired. These returned values are
distinct, without gaps, i.e., if the oracle returns ⊥ on i it should also return ⊥
on i + 1, so that the adversary can stop querying the oracle after receiving a
⊥. We now show how an adversary with access to P can break the three hash
properties.

Pre-image. Getting a pre-image of y amounts to calling P on (⊥,⊥, y, y, 0), so
the adversary can break pre-image resistance with a single call to the oracle.

Second pre-image. Getting a second pre-image given x is almost identical, but
potentially requires two oracle calls: call P on (⊥,⊥, h(x), h(x), 0), and if that
returns x, call P on (⊥,⊥, h(x), h(x), 1).
1 The same can be said if h1 is vulnerable to second pre-image attacks and h2 is

vulnerable to first pre-image attacks.

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 219

Collision. Getting a collision is not as straightforward. Let h : {0, 1}∗ → {0, 1}n
be the hash function in question. First of all, it is not always the case that every
y ∈ {0, 1}n has a pre-image (let alone two), even though probabilistically this
holds true for a well-designed hash function. For instance, consider h′, where
h′(x) = 1 when h(x) = 0, and h′(x) = h(x) otherwise. Then, h′ is strong if h is
strong, but does not hit 0. However, by exploiting the pigeonhole principle and
binary search, one can make lg(n) calls to the oracle to generate a collision.

The idea is to call P on (⊥,⊥, yl, yh, yh − yl + 2). If the oracle returns any-
thing but ⊥, there are more pre-images than possible hashes within the range
[yl, yh]. Then, one can perform a binary search with initial yl = 0n, yh = 1n to
determine a value y that has at least 2 pre-images.

Chosen-prefix collision. To get a chosen-prefix collision, i.e. given p find two
values x �= x′ such that h(p||x) = h(p||x′), one performs the same procedure as
for getting a normal collision, but with a = p.

References

1. Alert, B.: Some miners generating invalid blocks, 4 July 2015. https://bitcoin.org/
en/alert/2015-07-04-spv-mining. Accessed: 11 Feb 2016

2. Andreeva, E., Mennink, B.: Provable chosen-target-forced-midfix preimage resis-
tance. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 37–54.
Springer, Heidelberg (2012)

3. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in Bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013)

4. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Crypto-Currencies, 1st
edn. O’Reilly Media Inc. (2014)

5. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make Bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012)

6. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah.. Just a Little Bit”:
a small amount of side channel can go a long way. In: Batina, L., Robshaw, M.
(eds.) CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014)

7. Bhargavan, K., Leurent, G.: Transcript collision attacks: breaking authentication
in TLS, IKE, and SSH. In: Annual Network and Distributed System Security Sym-
posium (NDSS) (2016)

8. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in Bit-
coin P2P network. In: ACM Conference on Computer and Communications Secu-
rity (CCS) (2014)

9. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-
station (STS) protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154–170. Springer, Heidelberg (1999)

10. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J., Felten, E.: SoK:
research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE
Symposium on Security and Privacy (SP) (2015)

11. Nguyên, P.Q., Stern, J., Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-
Damg̊ard revisited: how to construct a hash function. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)

https://bitcoin.org/en/alert/2015-07-04-spv-mining
https://bitcoin.org/en/alert/2015-07-04-spv-mining

220 I. Giechaskiel et al.

12. Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding
attack in Bitcoin digital currency. ArXiv e-prints 1402.1718 (2014). http://arxiv.
org/abs/1402.1718

13. Decker, C., Wattenhofer, R.: Bitcoin transaction Malleability and MtGox. In:
Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 313–
326. Springer, Heidelberg (2014)

14. Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To hash or not to hash again?
(in)differentiability results for H 2 and HMAC. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg (2012)

15. Eyal, I.: The miner’s dilemma. In: IEEE Symposium on Security and Privacy (SP)
(2015)

16. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 431–449.
Springer, Heidelberg (2014)

17. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (2015)

18. Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering with the deliv-
ery of blocks and transactions in Bitcoin. In: ACM Conference on Computer and
Communications Security (CCS) (2015)

19. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. (SICOMP) 17(2), 281–308
(1988)

20. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Annual
ACM Symposium on Theory of Computing (STOC) (1996)

21. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s
peer-to-peer network. In: USENIX Security Symposium (USENIX Security) (2015)

22. Hoch, J.J., Shamir, A.: On the strength of the concatenated hash combiner when
all the hash functions are weak. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 616–630. Springer, Heidelberg (2008)

23. Joux, A.: Multicollisions in iterated hash functions. application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

24. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Čapkun, S.: Misbehavior
in Bitcoin: a study of double-spending and accountability. ACM Trans. Inf. Syst.
Secur. (TISSEC) 18(1), 2 (2015)

25. Karame, G.O., Androulaki, E., Čapkun, S.: Double-spending fast payments in
Bitcoin. In: ACM Conference on Computer and Communications Security (CCS)
(2012)

26. Kelsey, J., Kohno, T.: Herding hash functions and the nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

27. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

28. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 244–263. Springer, Heidelberg (2012)

http://arxiv.org/abs/1402.1718
http://arxiv.org/abs/1402.1718

On Bitcoin Security in the Presence of Broken Cryptographic Primitives 221

29. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin
in the presence of adversaries. In: Workshop on the Economics of Information
Security (WEIS) (2013)

30. Leurent, G., Wang, L.: The sum can be weaker than each part. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 345–367. Springer,
Heidelberg (2015)

31. Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: new attacks on
reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013)

32. Mendel, F., Peyrin, T., Schläffer, M., Wang, L., Wu, S.: Improved cryptanalysis of
reduced RIPEMD-160. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 484–503. Springer, Heidelberg (2013)

33. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

34. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

35. Nakamoto, S.: Bitcoin source code v0.1.0: Util.h. (2009). https://github.com/
trottier/original-bitcoin/blob/4184ab26345d19e87045ce7d9291e60e7d36e096/src/
util.h. Accessed: 11 Feb 2016

36. Nakamoto, S.: Dealing with SHA-256 collisions (msg #6), 14 June 2010. https://
bitcointalk.org/index.php?topic=191.msg1585#msg1585. Accessed: 11 Feb 2016

37. Nakamoto, S.: Hash() function not secure (msg #28), 16 July 2010. https://
bitcointalk.org/index.php?topic=360.msg3520#msg3520. Accessed: 11 Feb 2016

38. Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage attacks on step-reduced
RIPEMD-128 and RIPEMD-160. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt
2010. LNCS, vol. 6584, pp. 169–186. Springer, Heidelberg (2011)

39. Okupski, K.: Bitcoin developer reference working paper (2015). http://enetium.
com/resources/Bitcoin.pdf. Accessed: 11 Feb 2016

40. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
Quantum Inf. Comput. 3(4), 317–344 (2003)

41. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In:
Altshuler, Y., Elovici, Y., Cremers, A.B., Aharony, N., Pentland, A. (eds.) Security
and Privacy in Social Networks, pp. 197–223. Springer, New York (2013)

42. Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013)

43. Standards for Efficient Cryptography: Sec 2: Recommended elliptic curve domain
parameters version 2.0 (2010). http://www.secg.org/sec2-v2.pdf

44. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-
tralized digital currencies. Cryptology ePrint Archive, Report 2015/464 (2015).
https://eprint.iacr.org/2015/464

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://github.com/trottier/original-bitcoin/blob/4184ab26345d19e87045ce7d9291e60e7d36e096/src/util.h
https://github.com/trottier/original-bitcoin/blob/4184ab26345d19e87045ce7d9291e60e7d36e096/src/util.h
https://github.com/trottier/original-bitcoin/blob/4184ab26345d19e87045ce7d9291e60e7d36e096/src/util.h
https://bitcointalk.org/index.php?topic=191.msg1585#msg1585
https://bitcointalk.org/index.php?topic=191.msg1585#msg1585
https://bitcointalk.org/index.php?topic=360.msg3520#msg3520
https://bitcointalk.org/index.php?topic=360.msg3520#msg3520
http://enetium.com/resources/Bitcoin.pdf
http://enetium.com/resources/Bitcoin.pdf
http://www.secg.org/sec2-v2.pdf
https://eprint.iacr.org/2015/464

222 I. Giechaskiel et al.

45. Wiki, B.: Protocol rules, 11 March 2014. https://en.bitcoin.it/wiki/Protocol rules.
Accessed: 11 Feb 2016

46. Wiki, B.: Contingency plans, 15 May 2015. https://en.bitcoin.it/wiki/Contin
gency plans. Accessed: 11 Feb 2016

47. Yarom, Y., Benger, N.: Recovering OpenSSL ECDSA nonces using the
FLUSH+RELOAD cache side-channel attack. Cryptology ePrint Archive, Report
2014/140 (2014). https://eprint.iacr.org/2014/140

https://en.bitcoin.it/wiki/Protocol_rules
https://en.bitcoin.it/wiki/Contingency_plans
https://en.bitcoin.it/wiki/Contingency_plans
https://eprint.iacr.org/2014/140

DRE-ip: A Verifiable E-Voting Scheme Without
Tallying Authorities

Siamak F. Shahandashti(B) and Feng Hao(B)

School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
{siamak.shahandashti,feng.hao}@ncl.ac.uk

Abstract. Nearly all verifiable e-voting schemes require trustworthy
authorities to perform the tallying operations. An exception is the DRE-i
system which removes this requirement by pre-computing all encrypted
ballots before the election using random factors that will later cancel
out and allow the public to verify the tally after the election. While the
removal of tallying authorities significantly simplifies election manage-
ment, the pre-computation of ballots necessitates secure ballot storage,
as leakage of precomputed ballots endangers voter privacy. In this paper,
we address this problem and propose DRE-ip (DRE-i with enhanced pri-
vacy). Adopting a different design strategy, DRE-ip is able to encrypt
ballots in real time in such a way that the election tally can be pub-
licly verified without decrypting the cast ballots. As a result, DRE-ip
achieves end-to-end verifiability without tallying authorities, similar to
DRE-i, but with a significantly stronger guarantee on voter privacy. In
the event that the voting machine is fully compromised, the assurance on
tallying integrity remains intact and the information leakage is limited to
the minimum: only the partial tally at the time of compromise is leaked.

1 Introduction

Direct-recording electronic (DRE) machines have been extensively used for vot-
ing at polling stations around the world. In a typical process, a registered voter
obtains a token after being authenticated at the polling station. She then enters
a private booth and presents the token to a DRE machine. The token is for one-
time use and allows the voter to cast only one vote. Usually, the DRE machine
has a touch screen to record the vote directly from the voter (hence the name
DRE). The machine may tally the votes in real time, or store the votes and tally
later. In either case, the machine works like a black box: if an attacker maliciously
changes the votes (or the tally thereof), this is likely to go unnoticed.

Lack of assurance on tallying integrity is commonly regarded as a critical
weakness of such DRE machines. To address this problem, several cryptographic
protocols are proposed in the literature. The seminal work by Chaum in 2004 [16]
involves using visual cryptography to allow voters to verify the integrity of an
election. The assurance on the integrity includes guarantees that the votes are
cast as intended, recorded as cast, and tallied as recorded. The fulfilment of all
three constitutes the widely-accepted notion of end-to-end (E2E) verifiability.
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 223–240, 2016.
DOI: 10.1007/978-3-319-45741-3 12

224 S.F. Shahandashti and F. Hao

Chaum’s solution inspired a class of voting systems providing E2E verifia-
bility. Prominent examples include MarkPledge [28], Prêt à Voter [29], Scant-
egrity [14] (and its predecessor PunchScan [21]), Helios [1], and STAR-Vote [4].
These systems are based on different voting media including physical ballots,
optical scanners, DREs and web browsers. They use different tallying techniques,
based on mix-nets or homomorphic encryption. But all these schemes allow indi-
vidual voters to verify if their votes have been cast as intended and recorded as
cast, and any observer to verify if all votes have been tallied as recorded.

In this paper we limit our attention to DRE-based elections. We focus on
DRE as it has already been widely deployed for national elections worldwide.
Today, nearly all of the deployed DRE systems work like a black box and offer
no guarantee on integrity; consequently, their use has been abandoned in several
countries such as the Netherlands, Germany and Ireland. However, in many other
countries, these (unverifiable) DRE machines continue to be extensively used.
We believe there is an urgent need to address this real-world problem.

Apart from Chaum’s system called Votegrity, other existing E2E verifiable
schemes for DRE-based elections include MarkPledge [28], VoteBox [31], STAR-
Vote [4], and vVote [18]. These systems may differ significantly in details, but
they share some common features. They all offer integrity assurance by introduc-
ing a set of trustworthy tallying authorities (TAs). Instead of the DRE directly
recording the vote, the machine encrypts the vote on the fly under the joint
public key of the TAs. Each TA is responsible for safeguarding a share of the
decryption key. When voting is closed, a quorum of TAs jointly perform the
tallying process which involves decryption of the ballots (or tally thereof) in a
publicly-verifiable manner.

The addition of external TAs however introduces difficulties in the imple-
mentation. In theory, the TAs should be selected from parties with conflicting
interests. They should have the expertise to independently manage their own
key shares and perform cryptographic operations, and if they delegate their key
management tasks, the delegates need to be trusted as well. A comparatively
high level of cryptographic and computing skills is expected from the TAs. Fur-
thermore, the quorum should be set sufficiently large such that collusion among
the TAs is infeasible, but at the same time, sufficiently small such that the
process is error-tolerant, since non-availability of TA keys will render the elec-
tion result non-computable. Reconciling the two is not an easy task. As reported
by real-world experience of building E2E verifiable voting based on Helios, the
implementation of the TAs proved to be “one particularly difficult issue” [2].

Hao et al. investigated if it was possible to achieve E2E verifiability for a
DRE-based election without involving any TAs [24]. They proposed a TA-free
E2E verifiable voting system, called DRE-i (DRE with integrity). In DRE-i, the
machine directly records the voter’s choice as in the existing practice of current
DRE-based elections. However, the machine is required to publish additional
audit data on a public bulletin board, to enable every voter to verify the integrity
of the voting process. In DRE-i, the encryption of votes is based on a variant of
the ElGamal encryption scheme: instead of using a fixed public key for encryp-

DRE-ip: A Verifiable E-Voting Scheme Without Tallying Authorities 225

tion as in standard ElGamal, DRE-i uses a dynamically constructed public key
for encrypting ballots. The system removes the need for TAs by pre-computing
encrypted ballots in a structured manner such that after the election, multipli-
cation of all the published ciphertexts cancels out the random factors that were
introduced during the encryption process, and permits anyone to verify the tally.

DRE-i demonstrates that the role of the TAs is not indispensable in achieving
E2E verifiability in a DRE-based election. However, its pre-computation strategy
inevitably introduces the requirement of ensuring that the pre-computed data
is securely stored and accessed during the voting phase. Furthermore, it means
that it is possible for an adversary that breaks into the secure storage module
to potentially compromise the privacy of all ballots. The authors of DRE-i [24]
suggest to use tamper-resistant hardware to protect the pre-computed data in
sensitive elections. However, the use of tamper-resistant hardware may signifi-
cantly drive up the cost of each DRE machine. Furthermore, designing secure
API for tamper-resistant hardware is a challenging problem on its own.

It remains an open problem as whether it is possible to achieve the best of
both worlds, i.e. strong assurance on the integrity of a DRE-based election with-
out involving any TAs, and simultaneously, a strong guarantee on the privacy of
votes without depending on tamper-resistant hardware.

In this paper, we provide a positive answer to this question and present a new
E2E verifiable voting system, which we call DRE-ip (DRE-i with enhanced pri-
vacy). Instead of pre-computing ciphertexts, DRE-ip adopts a more conventional
approach, as in other existing DRE-based verifiable systems (see e.g. [4,31]), to
encrypt the vote on the fly during voting. DRE-ip achieves E2E verifiability
without TAs, but at the same time provides a significantly stronger privacy
guarantee than DRE-i.

Our Contributions. We present DRE-ip, an end-to-end verifiable DRE-based
voting system that encrypts ballots in real-time, but requires no TAs to decrypt
ballots in the tallying phase. We consider intrusive attacks in which the adversary
is able to control an arbitrary number of voters and gets read access to the DRE
machine for an arbitrary period during the voting phase. We prove that under
such attacks, DRE-ip guarantees that elections with the same non-adversarial
tally (i.e. tally of the votes neither controlled nor observed by the adversary)
remain indistinguishable based on the decision Diffie-Hellman assumption. This
shows that in the event of an intrusive attack, only the privacy of the ballots
cast during the attack period is lost – a loss which is inevitable – and the
ballots cast outside the attack period are guaranteed to remain private. DRE-
ip constitutes the first verifiable DRE-based system that removes the need for
tallying authorities without introducing new assumptions.

Related Work. In his seminal work on anonymous communications, Chaum put
forward e-voting as an application of his technique [15]. This prompted consid-
erable research on e-voting, among which is the work of Benaloh [10] that pro-
posed a formal definition of ballot secrecy. Later, Benaloh and Tuinstra argued

226 S.F. Shahandashti and F. Hao

for receipt-freeness [9], and Juels, Catalano, and Jakobsson put forward coercion-
resistance [25] as progressively stronger notions of privacy. On the other hand,
verifiability has evolved as a property guaranteeing the integrity of e-voting
systems. Earlier works considered individual verifiability. The notion of univer-
sal verifiability emerged in later works and Sako and Kilian explicitly formalized
it [30]. Finally, through the works of Chaum [16] and Neff [28], notions of verifia-
bility were refined into that of end-to-end verifiability, which includes guarantees
that the votes are cast as intended, recorded as cast, and tallied as recorded.
End-to-end verifiability has now become a widely-accepted security requirement
for e-voting schemes. Accordingly, in this paper, we limit our attention to end-
to-end verifiable voting schemes.

There has been a renewed interest in academic research on e-voting in the past
fifteen years and a number of end-to-end verifiable schemes have been designed
and used in practice. Among the more influential schemes are Votegrity, proposed
by Chaum [16], and MarkPledge, proposed by Neff [28], which are the first
end-to-end verifiable schemes. Many other schemes follow similar approaches,
including Prêt à Voter [29], a tailored variant of which, vVote, has been used in
state elections in Victoria, Australia [18], Scantegrity [14], which was trialled in
local elections in Takoma Park, Maryland, USA [13], and STAR-Vote [4], which is
scheduled for deployment in elections in Travis County, Texas, USA [26]. Other
schemes that have been used in internal university or party elections include
PunchScan [21], Bingo Voting [11], Helios [1], Wombat [7], and DRE-i [24].

2 Preliminaries

In this section, we review the preliminaries required for description of DRE-ip,
including the notation and cryptographic setting we use.

Notation. Following the notation introduced by Camenisch and Stadler [12], we
use Pk{λ : Γ = γλ} to denote a non-interactive proof of knowledge of (a secret)
λ such that (for publicly-known Γ and γ): Γ = γλ. Where the context is clear,
we shorten the notation to Pk{λ}. We use Pwf{A : X,Y,Z} to denote a proof of
well-formedness of A with respect to X, Y , and Z. Where the context is clear,
we shorten the notation to Pwf{A}.

2.1 Cryptographic Setting

We assume a DSA-like multiplicative cyclic group setting, where p and q are large
primes that satisfy q | p−1. We work in the subgroup Gq of order q of the group
Z

�
p and assume that g is a generator of Gq. Alternatively, our proposed system

can be implemented over an elliptic curve in an ECDSA-like group setting.
The decision Diffie-Hellman (DDH) assumption [19] is defined as follows:

Assumption 1 (DDH). For randomly chosen a, b ∈ Z
�
q and R ∈ Gq, given

(g, ga, gb, Ω) where Ω ∈ {gab, R}, it is hard to decide whether Ω = gab or
Ω = R.

DRE-ip: A Verifiable E-Voting Scheme Without Tallying Authorities 227

Zero knowledge proofs, first proposed by Goldwasser, Micali, and Rackoff [22],
prove the truth of a statement without conveying any other information, i.e. they
guarantee that whatever the verifier can feasibly compute after seeing a proof,
they could have computed on their own. Subsequent work by Bellare and Goldre-
ich [5] refined the definition of zero knowledge proofs to distinguish them from
proofs of knowledge. Intuitively speaking, proofs of knowledge are guaranteed to
be generated by a prover with explicit knowledge of a quantity. In our protocol,
the Fiat-Shamir heuristic is employed to construct non-interactive proofs [20].
Consequently, our security proofs are in the Random Oracle Model [6].

3 Our Proposed Solution: DRE-ip

DRE-ip requires a secure and publicly-accessible bulletin board (BB) and incor-
porates voter-initiated auditing to achieve end-to-end verifiability. We assume
the DRE has append-only write access to the BB over an authenticated chan-
nel. We assume voting is conducted in supervised polling stations and there are
procedures in place to ensure the “one person, one vote” principle, including
secure voter registration and authentication. At the time of voting, a voter is
authenticated first and issued a token, unlinked to her identity. She then enters
a private voting booth and authenticates herself to the DRE using the token.
Up to here, the assumptions and mechanisms are similar to those of DRE-i.

We describe DRE-ip for the case where there are only two candidates, i.e.
for vi representing the vote of the i-th ballot, we have vi ∈ {0, 1}. In DRE-ip
the setup establishes two generators g1 and g2, whose logarithmic relationship is
unknown. The DRE keeps track of the running tally t =

∑
vi for the cast votes

vi, and the sum s =
∑

ri for random ri generated on the fly.
To achieve individual verifiability, DRE-ip incorporates Benaloh-style voter-

initiated auditing [8], i.e. the voter gets the option to audit the ballot composed
by the DRE to gain confidence in that the DRE is preparing the ballots according
to her choice. If a ballot is audited, it cannot be used to cast a vote. Therefore,
the set of all ballots B at the closing of the voting phase will be comprised of
the audited ballots A and the cast ballots C, i.e. B = A ∪ C.

Voting Phase. This phase involves the voter, the DRE, and the BB:

1. The voter enters the booth, initiates voting, and keys in her vote vi ∈ {0, 1}.
2. The DRE generates random ri ∈ Z

�
q , calculates

Ri = gri
2 , Zi = gri

1 gvi
1 , Pwf{Zi : g1, g2, Ri},

and provides a signed receipt including the unique ballot index i and the
ballot content Ri, Zi, and Pwf{Zi} to the voter.

3. The voter observes that the first part of the receipt is provided, and chooses
to either audit the ballot or confirm her vote.

228 S.F. Shahandashti and F. Hao

In case of audit:

4. The DRE adds i to A, provides a signed receipt of audit, clearly marked
audited, including ri and vi to the voter.

5. The voter takes and keeps the receipt, and verifies that vi reflects her choice.
If the verification succeeds, voting continues to Step 1; otherwise, the voter
should raise a dispute immediately.

In case of confirmation:

4. The DRE adds i to C, updates the tally and the sum:

t =
∑

j∈C

vj and s =
∑

j∈C

rj ,

and provides a signed receipt of confirmation, clearly marked confirmed, to
the voter, and securely deletes ri and vi.

5. The voter leaves the booth with her receipts.

6. The DRE posts on the BB all the receipts provided to the voter.
7. The voter verifies that her receipts match those on the BB.

Tallying Phase. This phase involves the DRE, the BB, and the public:

1. The DRE posts on the BB the final tally t and the final sum s.
2. The public:

– verify all the well-formedness proofs on the BB (well-formedness verifica-
tion);

– verify that for all the audited ballots on the BB: Ri and Zi included
in the first part of the receipt are consistent with ri and vi included
in the second part (and with the system parameters g1 and g2) (audit
consistency verification); and

– verify that the following equations hold (tally verification):
∏

j∈C

Rj
?= gs

2 and
∏

j∈C

Zj
?= gs

1g
t
1. (1)

If at any point during the voting or tallying phases, any of the verifications
carried out by the voter or the public does not succeed, the election staff should
be notified and we assume that there are procedures in place dealing with such
verification failures. These include voter verifications in Steps 5 (in case of audit)
and 7 of the voting phase and public verifications in Step 2 of the tallying phase.

Figure 1 shows the DRE-ip bulletin board. An audited receipt (with index i)
and a confirmed receipt (with index j) are shown. Each receipt has two parts:
the first part is provided to the voter before she decides to either audit or confirm
her ballot and includes similar information for all receipts; the second part is
provided after the voter makes her decision and includes different information
based on her choice. Both parts of the receipt are signed by the DRE.

The proof of well-formedness Pwf{Zi : g1, g2, Ri} can be implemented as a
non-interactive proof of knowledge

DRE-ip: A Verifiable E-Voting Scheme Without Tallying Authorities 229

t, s

g1, g2Initial:
Receipts:

Final:

...

...

audited, ri, vi

confirmed
...

i : Ri, Zi, Pwf{Zi}

j : Rj , Zj , Pwf{Zj}

Fig. 1. DRE-ip bulletin board

Pwf{Zi} = Pk{ri : (Ri = gri
2 ∧ Zi = gri

1) ∨ (Ri = gri
2 ∧ Zi/g1 = gri

1)}.

This proof guarantees that Zi ∈ {gri
1 , gri

1 g1}, or equivalently vi ∈ {0, 1}.
Such a proof can be realized based on Schnorr proofs of knowledge of discrete

logarithm [32]. Starting with a Schnorr proof, one can apply techniques proposed
by Cramer, Damg̊ard, and Schoenmakers [17] to construct proofs of disjunctive
knowledge, conjunctive knowledge, and combinations of both. The Fiat-Shamir
heuristic [20] is then applied to make the constructed proofs non-interactive. The
index i of the ballot is embedded in the proof (as an input to the hash function)
to bind the proof to the ballot.

In practice, truncated hash functions may be used to calculate a short digest,
e.g. 4 alphanumeric characters long, of each part of the receipt, so that the voter
can easily compare the digests on their receipts with those on the bulletin board.
In this case, voters are expected to verify the receipts before leaving the polling
station and we assume facilities are provided for them to do so in the station.

4 Security of DRE-ip

In this section we provide proofs to show that DRE-ip is end-to-end verifiable
and ensures ballot secrecy under both non-intrusive and intrusive attacks.

4.1 End-to-End Verifiability

We discuss the integrity (i.e. correctness) of the election tally in DRE-ip and
show how DRE-ip achieves end-to-end verifiability: we prove that, assuming all
proofs of well-formedness are proofs of knowledge, votes are tallied as recorded
if public verification succeeds; furthermore, we demonstrate how voter-initiated
auditing guarantees that votes are recorded as cast, and cast as intended.

We assume the bulletin board is secure, in particular it is append-only and
publicly accessible. Besides, there should be a mechanism to establish an authen-
ticated channel between authorized DRE(s) and the bulletin board, to ensure
that only an authorized DRE can append new values to the BB, and also that
such values are not modified in transit. This can be achieved using standard

230 S.F. Shahandashti and F. Hao

techniques such as digital signatures. Furthermore, we assume that the number
of voters is less than the size of the group q.

Recall that public verification in DRE-ip, i.e. Step 2 of the tallying phase,
includes three types of verification: well-formedness verification, audit consis-
tency verification, and tally verification. The following theorem shows that if
well-formedness and tally verifications succeed, DRE-ip achieves the tallied-as-
recorded property, that is, DRE-ip guarantees that the tally on the bulletin
board is the correct tally of all the confirmed ballots on the bulletin board.

Theorem 1. In DRE-ip, assuming that all proofs of well-formedness are proofs
of knowledge, if the public well-formedness and tally verifications succeed, then
the reported tally t is the correct tally of all the confirmed votes on the BB.

The proof is rather straightforward and hence omitted here. In short, one can
demonstrate how the proofs of well-formedness and the first tally verification
check (i.e. the first of the two in Eq. 1) collectively guarantee that the second
tally verification equation (i.e. the second of the two in Eq. 1) holds if and only
if t =

∑
i∈C

vi, where C denotes the set of confirmed votes. Hence, if well-
formedness and tally verifications are carried out successfully, the reported tally
t is guaranteed to be the correct tally of all the confirmed votes on the BB.

Voter initiated auditing includes the following checks: first, by observing the
first part of the receipt is provided before deciding to either audit or confirm
a ballot, the voter makes sure that the DRE commits to the first part of the
ballot; second, by checking that the receipts match what is published on the
BB, the voter makes sure that her interaction with the machine is captured
faithfully on the bulletin board. The public verification of the consistency of the
audited ballots, i.e. the audit consistency verification, guarantees that DRE has
been successful in responding to the challenges made by voter initiated auditing.
Hence, the individual verification and the public audit consistency verification
collectively ensure that the votes are cast as intended and recorded as cast.
Theorem 1 ensures that votes are tallied as recorded.

4.2 Ballot Secrecy

Ballot secrecy corresponds to the natural expectation from a voting system to
protect the secrecy of cast ballots. We consider a definition of ballot secrecy
which requires that an adversary controlling the voting behaviour of a group of
dishonest voters should not be able to distinguish between any two elections,
regardless of how honest voters vote, as long as the two elections have the same
partial tally of honest votes. This definition originates from Benaloh [10, p. 74].

We assume a secure setup phase; that is, we assume that the discrete loga-
rithm of g2 in base g1 is either not known to any party or securely deleted after
the two generators are computed. We also assume secure deletion of values xi,
yi, and vi after each vote is cast1.
1 See, for instance, [23] and the references within for an overview of available solutions

to secure data deletion.

DRE-ip: A Verifiable E-Voting Scheme Without Tallying Authorities 231

We consider an intrusive adversary that apart from the ability to determine
an arbitrary number of votes, gets read access to the DRE storage for a period
during the voting phase. The adversary is able to read the publicly available
information on the bulletin board, which includes the total tally. Besides, we
assume that the adversary can control an arbitrary number of voters, hence in
effect cast an arbitrary number of votes. The adversary is able to observe the
votes cast during the access period and also read the running (partial) tally t
and (partial) sum s.

Let us call the votes cast or observed by the adversary the adversarial votes.
Knowledge of the adversarial votes along with the total and partial tallies enables
the adversary to find out the tally of the non-adversarial votes cast before and
after the adversarial access period. We prove that under the DDH assumption,
this is the only information the adversary gains about the non-adversarial votes.
In particular, we show that any two elections in which the non-adversarial votes
cast before and after the adversarial access period have the same partial tal-
lies are indistinguishable to the adversary. Note that in DRE-i, in case of an
adversarial access to the voting machine storage, the privacy of the ballots cast
outside the adversarial access period is also lost. Therefore, while DRE-i falls
victim to such intrusive attacks, DRE-ip guarantees vote privacy under under
such attacks.

We first consider two elections in which all votes are the same except for two
votes that are swapped. We show that the bulletin boards of these two elections
remain indistinguishable to the adversary as long as these two votes are non-
adversarial votes both cast either before or after the adversarial access period.
More formally, we have:

Lemma 1. In DRE-ip, assuming that all proofs of well-formedness are zero
knowledge, if the DDH assumption holds, then an adversary that determines
an arbitrary number of votes and gets temporary read access to the DRE storage
cannot distinguish between two bulletin boards in which two votes both cast either
before or after the adversarial access period are swapped.

The proof of the lemma comes in Appendix A. The proof considers an adver-
sary that not only can determine an arbitrary number of votes except two votes
vi and vj , but gets access to DRE storage for an arbitrary period. Assuming
that such an adversary is able to distinguish the bulletin boards in which vi and
vj are swapped, we show how it can be used to break the DDH assumption.
Basically, the proof shows that the sum s does not leak any extra information
other than what the tally t does.

Given Lemma 1, we expand it to prove that any two elections with the same
non-adversarial partial tallies of the votes cast before and after the adversarial
access period remain indistinguishable to an adversary who controls an arbi-
trary number of votes. This shows that the only knowledge the adversary can
gain about the non-adversarial votes cast before and after the adversarial access
period is that disclosed by the partial and total tallies.

232 S.F. Shahandashti and F. Hao

Theorem 2. In DRE-ip, assuming that all proofs of well-formedness are zero
knowledge, if the DDH assumption holds, then an adversary that determines an
arbitrary number of votes and gets temporary read access to the DRE storage
cannot gain any knowledge about the non-adversarial votes cast before and after
the adversarial access period other than their partial tallies.

Proof. To prove this theorem, we show that under the DDH assumption, given
any two sets of non-adversarial votes cast before and after the adversarial access
period with the same partial tallies, one can simulate two corresponding bul-
letin boards that are indistinguishable to an adversary that chooses an arbitrary
number of adversarial votes.

First, note that any two given sets of non-adversarial votes with the same
partial tally differ on an even number of votes, say 2d. This means that with
d “swaps” one set of these votes can be converted to the other, where in each
swap, for some i and j, the i-th vote is replaced with the j-th one, and vice
versa. In Lemma 1 we proved that the bulletin boards before and after each
swap remain indistinguishable to the adversary under DDH. Consequently, the
bulletin boards corresponding to the two given sets of non-adversarial votes
remain indistinguishable to the adversary and the proof is complete. ��

We discussed the case for a single adversarial access period, but the above
theorem guaranteeing ballot secrecy can be easily extended to cover attacks
involving multiple adversarial access periods.

5 Comparison

In this section we look at how DRE-ip compares with other DRE-based verifi-
able e-voting systems. In particular, we consider Chaum’s Votegrity [16], Neff’s
MarkPledge [28], VoteBox [31], STAR-Vote [4], DRE-i [24], and vVote [18].

Votegrity is based on visual cryptography and uses onion encryption. Mark-
Pledge employs a purpose-designed encryption scheme that allows challenge-
response-style individual verifiability. VoteBox and STAR-Vote are both based
on exponential ElGamal encryption which allows homomorphic tallying. In
vVote, ballots are encrypted using elliptic curve ElGamal and later decrypted
individually after mixing. DRE-i on the other hand uses encryption that does not
admit to a fixed decryption key. DRE-ip basically uses the exponential ElGamal
encryption in which no party knows the decryption key. All these systems con-
sider voter registration and voter authentication outside their scope and assume
they are carried out correctly and securely.

In general, systems that require tallying authorities, i.e. Votegrity, Mark-
Pledge, VoteBox, STAR-Vote, and vVote, assume a minimum number of them
are available at the tallying phase to compute the election tally. DRE-i and
DRE-ip do not require such an assumption to guarantee availability.

To guarantee integrity, all systems we consider rely on a secure bulletin board
and on a sufficient number of voters carrying out individual verification. Systems

DRE-ip: A Verifiable E-Voting Scheme Without Tallying Authorities 233

that require tallying authorities, i.e. Votegrity, MarkPledge, VoteBox, STAR-
Vote, and vVote, also require that the tallying authorities perform the decryption
of the tally correctly. In a verifiable system, this is enforced by requiring the
tallying authorities to produce universally verifiable proofs of correct decryption.
Hence, we consider assumptions underlying all the systems to guarantee integrity
to be comparable, whether the system requires tallying authorities or not.

To guarantee privacy, all systems we consider assume a secure setup phase
to generate and distribute system parameters and keys, as well as secure ran-
dom number generators to produce the randomness required for probabilistic
encryption. Furthermore, all systems assume that the captured votes and any
ephemeral secrets generated for the cryptographic operations during the voting
phase are securely erased. Votegrity is based on decryption mix-nets and requires
that the tallying authorities do not collude to compromise voter privacy. Mark-
Pledge and vVote employ re-encryption mix-nets to shuffle encrypted ballots
before decryption, and assume that the tallying authorities do not decrypt bal-
lots before mixing although they are available on the bulletin board. VoteBox
and STAR-Vote require that the tallying authorities do not collude to decrypt
individual ballots. DRE-i does not require this assumption, but instead relies on
a secure ballot storage mechanism to keep the pre-computed ballots safe after the
setup phase. DRE-ip does not require trust assumptions on tallying authorities
or ballot storage.

Table 1 summarizes the main similarities and differences in terms of their
underlying security assumptions between the voting systems we consider.

Let us now compare the computation complexity of DRE-ip with that of
the other DRE-based verifiable e-voting systems. We do not consider Votegrity,
MarkPledge, and vVote since they use mix-nets and their computation com-
plexity depend on how these verifiable mix-nets are implemented. All calcula-
tions are based on a two-candidate election, encryption implemented based on
exponential ElGamal, and one TA if present. Note that having multiple TAs
increases the complexity of tally calculation and verification for all the schemes
requiring tallying authorities. We assume in all systems that the TA, if present,
provides proofs of correct decryption as required by end-to-end verifiability. We

Table 1. Selected security assumptions for DRE-based verifiable e-voting systems.
TA: tallying authority, VIA: voter-initiated auditing, BB: bulletin board, RNG: random
number generation, �: assumption is required, �: assumption is not required.

System Availability Integrity Privacy

Reliable Sufficient Secure Secure Secure Secure Secure ballot Trustworthy

TA(s) VIA BB setup RNG deletion storage TA(s)

Votegrity � � � � � � � �
MarkPledge � � � � � � � �
VoteBox � � � � � � � �
STAR-Vote � � � � � � � �
DRE-i � � � � � � � �
vVote � � � � � � � �
DRE-ip � � � � � � � �

234 S.F. Shahandashti and F. Hao

also assume that the simultaneous multiple exponentiation (SME) technique [27]
is used to optimize computations. Using SME, a term of the form gxhy costs
equivalent to around 1.2 exponentiations to calculate.

The systems considered here use two types of well-formedness proof in gen-
eral. The first type consists of proofs of (knowledge and) equality of two discrete
logarithms and are of the general form

Pk{λ : Γ1 = γλ
1 ∧ Γ2 = γλ

2 }. (2)

Consider an exponential ElGamal encryption scheme with key pair (k,K = gk)
in which a message m is encrypted to the ciphertext (R = gr, C = Krgm). The
proof

Pwf{m : g,K, (R,C)} = Pk{k : K = gk ∧ C/gm = Rk}
which is of the form of Eq. 2 can be used as a proof of correct decryption, e.g.
in systems like VoteBox and STAR-Vote. Such a proof, when realized as a Fiat-
Shamir non-interactive Schnorr proof and optimized using the SME technique,
requires 2 exponentiations to generate, and (equivalent to) around 2.4 exponen-
tiations to verify. Algorithms for generation and verification of such proofs are
transcribed in the full version of this paper [33].

The second type consists of disjunctive proofs of equality (and knowledge) of
either one pair of discrete logarithms or the other, and are of the general form

Pk{λ : (Γ1 = γλ
1 ∧ Γ2 = γλ

2) ∨ (Γ3 = γλ
3 ∧ Γ4 = γλ

4)} (3)

Such proof can be constructed as a disjunction of two conjunctive proofs of
the form of Eq. 2. These proofs can be used to prove well-formedness of the
ballots in all the systems we consider. In DRE-ip, the ballot well-formedness
proof Pwf{Zi : g1, g2, Ri} is of this form. This proof, when realized as a Fiat-
Shamir non-interactive Schnorr proof and optimized using the SME technique,
requires (equivalent to) around 4.4 exponentiations to generate, and (equivalent
to) around 4.8 exponentiations to verify. Algorithms for generation and verifica-
tion of such proofs are transcribed in the full version of this paper [33].

Table 2. Computation complexity of selected DRE-based verifiable e-voting systems.
B, A, C: all, audited, confirmed ballots, e: exponentiation, m: multiplication.

System Ballot Well-formedness and Tally Tally

calculation consistency verification calculation verification

VoteBox 6.4|B| e (6.8|A| + 4.8|C|) e |C| m + 3 e |C| m + 2.4 e

STAR-Vote 6.4|B| e (6.8|A| + 4.8|C|) e |C| m + 3 e |C| m + 2.4 e

DRE-i 10.8|B| e (9.6|A| + 4.8|C|) e |B| m + 1 e

DRE-ip 6.4|B| e (6.8|A| + 4.8|C|) e 2|C| m + 2 e

DRE-ip: A Verifiable E-Voting Scheme Without Tallying Authorities 235

VoteBox and STAR-Vote both encrypt the vote under exponential ElGa-
mal, which involves similar computation as that of DRE-ip. In DRE-ip, cal-
culating Ri and Zi take 1 exponentiation each, and calculating Pwf{Zi} takes
around 4.4 exponentiations. Hence, ballot calculation takes around 6.4 exponen-
tiations per ballot in VoteBox, STAR-Vote, and DRE-ip. In DRE-i, two proofs of
well-formedness are (pre-)calculated for each ballot and hence ballot calculation
requires 10.8 exponentiations per ballot.

In all four systems, checking well-formedness of a confirmed ballot consists
of verifying a proof of the second type discussed above, so it takes around 4.8
exponentiations per confirmed ballot. Consistency verification of an audited bal-
lot consists of checking well-formedness of the ballot plus verifying whether the
revealed audit information is consistent with the ballot. In VoteBox, STAR-Vote,
and DRE-ip, the computation involved is similar. In DRE-ip for example, Ri and
Zi are recalculated based on the revealed values of ri and vi and the result is
compared against reported values of Ri and Zi on the BB. This takes 2 expo-
nentiations, and hence consistency verification takes around 6.8 exponentiations
per audited ballot. In DRE-i, there is an extra proof of the second type discussed
above to verify for each audited ballot and hence consistency verification takes
around 9.6 exponentiations per audited ballot.

In VoteBox and STAR-Vote, tally calculation requires all confirmed vote
encryptions to be multiplied, the result decrypted, and finally a proof of correct
decryption generated. Decryption and generating the proof of correct decryption
require 1 and 2 exponentiations, respectively. These calculations are obviously
carried out by the TAs. In DRE-i and DRE-ip, tallies are kept track of and
reported by the DRE, so no extra calculation is needed.

Tally verification in VoteBox and STAR-Vote consists of multiplying con-
firmed vote encryptions and verifying the proof of correct decryption. The latter
costs around 2.4 exponentiations as discussed above. In DRE-i, a tally verifi-
cation equation is checked which requires multiplication of all vote encryptions
and 1 exponentiation. In DRE-ip, two tally verification equation are checked
which require multiplication of all Ri and also all Zi for confirmed ballots and
an exponentiation per equation.

Table 2 summarizes the computation complexity of different operations in
the systems we discussed above. Note that our calculations above and figures
listed in the table do not include the cost of validating the inputs to the verifi-
cation algorithms to ensure that they belong to the right cryptographic groups.
In elliptic curve based implementations of the systems discussed above, such
validations incur negligible cost.

6 Extension to Multiple Candidates

Although we have described DRE-ip for two candidates only, there are two rather
standard ways to extend it to support multiple candidates (see e.g. [3,24]). Here
we discuss voting for 1 out of n candidates for n ≥ 3.

A straightforward method is to essentially run a separate parallel DRE-ip
system for each candidate. Let vij represent the vote in ballot i and candidate

236 S.F. Shahandashti and F. Hao

Table 3. Computation complexity of DRE-ip supporting voting for 1 out of n ≥ 3
candidates. B, A, C: all, audited, confirmed ballots, e: exponentiation, m: multiplication.

DRE-ip Ballot Well-formedness and Tally

extension calculation consistency verification verification

Parallel (6.4n + 2)|B| e ((6.8n + 2.4)|A| + (4.8n + 2.4)|C|) e 2n|C| m + 2n e

Encoded (2.4n + 1.6)|B| e ((2.4n + 2)|A| + 2.4n|C|) e 2|C| m + 2 e

j. 1 out of n votes include a vij = 1 vote for one candidate and vij = 0 votes
for all other candidates. Hence, an extra proof of well-formedness is required to
guarantee that only one of the votes vij over all values of j is 1. The i-th ballot
in this case will be in the form of a (3n + 1)-tuple: ((Rij , Zij ,Pwf{Zij})n

j=1, π),
where π represents the extra proof. Since for each j the well-formedness proof
Pwf{Zij} already guarantees that vij ∈ {0, 1}, it would be sufficient for the extra
proof to only show that

∑n
j=1 vij = 1. Interestingly, given the values Rij = g

rij

2 ,
this proof can be easily constructed as the proof of knowledge

Pk{σi : (
n∏

j=1

Zij)/g1 = gσi
1 ∧

n∏

j=1

Rij = gσi
2 }, where σi =

n∑

j=1

rij .

This is a proof of the first type discussed above (i.e. of the form of Eq. 2). Ballot
generation for such a parallel DRE-ip systems costs n times that of a two-
candidate DRE-ip plus 2 extra exponentiations to generate the extra proof, i.e.
6.4n + 2 exponentiations per ballot in total. Verifying the extra proof takes 2.4
exponentiations, thus well-formedness and consistency verification cost 4.8n+2.4
exponentiations per confirmed ballot and 6.8n+2.4 exponentiations per audited
ballot. Tally verification costs n times that of a two-candidate DRE-ip.

Another method is to extend DRE-ip and encode a vote for candidate j as
vi = M j−1, where M is an upper bound on the number of voters. The i-th ballot
in this case will be in the form of a triple (Ri, Zi,Pwf{Zi}), where Ri = gri

2 and
Zi = gri

1 gMj−1

1 . The ballot well-formedness proof Pwf{Zi} will be a 1-out-of-n
disjunctive proof, rather than 1-out-of-2, and it can be realized as follows:

Pk{ri :
n∨

j=1

(Ri = gri
2 ∧ Zi/gMj−1

1 = gri
1)}.

This is an extended version of a proof of the second type discussed above (i.e. of
the form of Eq. 3). Generation of such a proof costs 2 + 2.4(n − 1) = 2.4n − 0.4
exponentiations and verifying it 2.4n exponentiations. Ballot calculation in such
an “encoded” DRE-ip system costs 2.4n + 1.6 exponentiations per ballot. Well-
formedness and consistency verification for the system cost 2.4n exponentiations
per confirmed ballot and 2.4n + 2 exponentiations per audited ballot. Tally ver-
ification cost is similar to that of a two-candidate DRE-ip.

DRE-ip: A Verifiable E-Voting Scheme Without Tallying Authorities 237

Table 3 summarizes the computation complexity for the two extensions. Over-
all, while parallel DRE-ip is more modular and hence more straightforward to
implement, encoded DRE-ip is more efficient. A similar observation seems to
hold for extended versions of VoteBox, STAR-Vote, and DRE-i.

7 Concluding Remarks

In this paper we revisited the design of the DRE-i voting system and proposed a
new system: DRE-ip. On the theoretical level, we have shown that it is possible
to have verifiable DRE-based voting systems in which the privacy of the ballots
does not rely on trustworthy tallying authorities or trusted hardware. On the
practical level, we have shown that DRE-ip provides an efficient and practical
verifiable DRE-based voting solution able to preserve the privacy of the ballots
even if the adversary gets temporary read access to the voting machine during the
voting phase. Designing a system without tallying authorities that can efficiently
support more complex electoral systems such as single transferable vote (STV)
or write-in candidates remains an open problem.

Acknowledgement. The authors wish to thank Changyu Dong and the anonymous
reviewers of ESORICS 2016 for their valuable comments. The authors are supported
by the ERC Starting Grant No. 306994.

A Proof of Lemma 1

We first consider the following assumption and prove that it is implied by DDH:

Assumption 2. For randomly chosen a, b ∈ Z
�
q , given (g, gb, gab, Ω) where Ω ∈

{ga, ga+1}, it is hard to decide whether Ω = ga or Ω = ga+1.

Lemma 2. The DDH assumption implies Assumption 2.

Proof. Taking h = gb as the new generator, and assuming x = a and y = b−1,
we have g = hy, gb = h, gab = hx, and ga = hxy. Therefore, the assumption
can be rewritten as follows for generator h: for randomly chosen x, y ∈ Z

�
q , given

(h, hx, hy, Ω), where Ω ∈ {hxy, hxy+1}, it is hard to decide whether Ω = hxy or
Ω = hxy+1. This assumption is proven to be implied by DDH by Hao et al. [24]
and hence the proof is complete. ��
Now we show that Lemma 1 holds under Assumption 2.

Proof (of Lemma 1). Let A be an adversary that, after determining a number of
votes and obtaining temporary access to the voting machine, distinguishes the
two bulletin boards. We construct an algorithm D that given g, gb, gab, and a
challenge Ω ∈ {ga, ga+1} distinguishes which Ω is given.

Consider an abridged bulletin board resulting from removing the well-formed-
ness proofs. Let us call this the bare bulletin board. Let the adversary determine

238 S.F. Shahandashti and F. Hao

any subset of votes other than the swapped votes vi and vj . A has access to
the bulletin board. Furthermore, A has temporary access to the voting machine
which means it can observe some votes vk and their respective secret values
rk, and also the value of s =

∑k
�=1 r� for the duration of its access. Therefore,

apart from simulating the values on the bulletin board, D ought to provide the
adversary with the values of rk and s =

∑k
�=1 r� for a subset of the votes cast

or audited during the adversarial access period.
D simulates the bare bulletin board as follows. We describe how confirmed

ballots are constructed. Audited ballots can be easily calculated since rk and vk

are known to D for all k /∈ {i, j}. Recall that ballots i and j are confirmed ballot,
both cast either before or after the adversarial access period.

D posts g1 = g and g2 = gb as the initial parameters on the bulletin board. For
all k /∈ {i, j}, D simply chooses rk randomly and generates the ballot according
to the protocol. D generates random αi and αj and calculates the i-th and j-th
ballots as follows. First, D sets

Ri = (gb)αigab, Zi = gαiΩ, Rj = (gb)αj/gab, Zj = gαj+1/Ω.

Assuming implicitly that ri = αi + a and rj = αj − a, we can see that Ri and
Rj are well-formed since:

Ri = (gb)αigab = (gb)αi+a = gri
2 , Rj = (gb)αj/gab = (gb)αj−a = g

rj

2 .

Now if Ω = ga, then we have

Zi = gαiΩ = gαi+a = gri
1 , Zj = gαj+1/Ω = gαj−ag = g

rj

1 g1.

On the other hand, if Ω = ga+1, then we have

Zi = gαiΩ = gαi+ag = gri
1 g1, Zj = gαj+1/Ω = gαj−a = g

rj

1 .

In other words, Ω = ga corresponds to a bulletin board with vi = 0 and vj = 1,
and Ω = ga+1 corresponds to a bulletin board with vi = 1 and vj = 0, with all
other votes being identical in the two bulletin boards.

Since all the votes other than vi and vj are known to D, it can calculate the
partial tallies of the votes other than vi and vj cast before, during, and after
the adversarial access period. In addition, we have either vi = 0 and vj = 1, or
vi = 1 and vj = 0, hence vi + vj = 1. So whether both vi and vj are cast before
or after the adversarial access period, the partial tallies of all votes (including vi

and vj) cast before, during, and after the the adversarial access period can be
easily calculated by D.

A similar argument holds for the random values: all random values except
for ri and rj are known to D, and for ri and rj we implicitly have:

ri + rj = (αi + a) + (αj − a) = αi + αj

which means that ri + rj is known to D. Hence following a similar reasoning,
whether both vi and vj are cast before or after the adversarial access period,

DRE-ip: A Verifiable E-Voting Scheme Without Tallying Authorities 239

the partial sums of all random values (including ri and rj) for votes cast before,
during, and after the the adversarial access period can be easily simulated by D.

Thus, D is able to simulate all the elements of a bare bulletin board and
the internal DRE information revealed to the A during the adversarial access
period. Since the well-formedness proofs are assumed to be zero knowledge, they
can be simulated in the Random Oracle Model for ballots i and j, and the
simulated proofs remain indistinguishable from real proofs. Consequently, D is
able to simulate a full bulletin board corresponding to one of the two cases, with
Ω = ga corresponding to the case where vi = 0 and vj = 1, and Ω = ga+1

corresponding to vi = 1 and vj = 0, with all other votes being identical in the
two bulletin boards. Now if A is able to distinguish the two cases, D will be able
to distinguish whether Ω = ga or Ω = ga+1, and hence the proof is complete. ��

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium,
vol. 17, pp. 335–348 (2008)

2. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.-J.: Electing a univer-
sity president using open-audit voting: analysis of real-world use of Helios. In:
EVT/WOTE 2009, p. 10. USENIX (2009)

3. Baudron, O., Fouque, P.-A., Pointcheval, D., Stern, J., Poupard, G.: Practical
multi-candidate election system. In: ACM Symposium on Principles of Distributed
Computing, PODC 2001, pp. 274–283. ACM (2001)

4. Bell, S., Benaloh, J., Byrne, M.D., DeBeauvoir, D., Eakin, B., Fisher, G., Kortum,
P., McBurnett, N., Montoya, J., Parker, M., Pereira, O., Stark, P.B., Wallach,
D.S., Winn, M.: STAR-Vote: a secure, transparent, auditable, and reliable voting
system. USENIX J. Election Technol. Syst. 1(1), 18–37 (2013)

5. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM (1993)

7. Ben-Nun, J., Llewellyn, M., Riva, B., Rosen, A., Ta-Shma, A., Wikström, D.: A new
implementation of a dual (paper and cryptographic) voting system. In: EVOTE
2012: 5th International Conference on Electronic Voting, pp. 315–329 (2012)

8. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In:
USENIX Workshop on Accurate E-Voting Technology (EVT), p. 14 (2007)

9. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: ACM Symposium
on Theory of Computing, STOC 1994, pp. 544–553. ACM (1994)

10. Benaloh, J.D.C.: Verifiable Secret-Ballot Elections. Ph.d. thesis, Department of
Computer Science, Yale University (1987)

11. Bohli, J.-M., Müller-Quade, J., Röhrich, S.: Bingo voting: secure and coercion-free
voting using a trusted random number generator. In: Alkassar, A., Volkamer, M.
(eds.) VOTE-ID 2007. LNCS, vol. 4896, pp. 111–124. Springer, Heidelberg (2007)

12. Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

13. Carback, R., Chaum, D., Clark, J., Conway, J., Essex, A., Herrnson, P., Mayberry,
T., Popoveniuc, S., Rivest, R., Shen, E., Sherman, A., Vora, P.: Scantegrity II
municipal election at Takoma Park: the first E2E binding governmental election
with ballot privacy. In: USENIX Security Symposium, pp. 291–306 (2010)

240 S.F. Shahandashti and F. Hao

14. Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R., Ryan, P.,
Shen, E., Sherman, A., Vora, P.: Scantegrity II: end-to-end verifiability by voters of
optical scan elections through confirmation codes. IEEE Trans. Inf. Foren. Secur.
4(4), 611–627 (2009)

15. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

16. Chaum, D.L.: Secret-ballot receipts: true voter-vrifiable elections. IEEE Secur.
Priv. 2(1), 38–47 (2004)

17. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

18. Culnane, C., Ryan, P.Y.A., Schneider, S., Teague, V.: vVote: a verifiable voting
system. ACM Trans. Inf. Syst. Secur. 18(1), 3:1–3:30 (2015)

19. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

21. Fisher, K., Carback, R., Sherman, A.T.: Punchscan: introduction and system def-
inition of a high-integrity election system. In: Workshop on Trustworthy Elections
(WOTE) (2006)

22. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

23. Hao, F., Clarke, D., Zorzo, A.: Deleting secret data with public verifiability. IEEE
Trans. Dependable Secure Comput. PP(99), 1 (2015)

24. Hao, F., Kreeger, M.N., Randell, B., Clarke, D., Shahandashti, S.F., Lee, P.H.-J.:
Every vote counts: ensuring integrity in large-scale electronic voting. USENIX J.
Election Technol. Syst. 2(3), 1–25 (2014)

25. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Privacy in Electronic Society, WPES 2005, pp. 61–70. ACM (2005)

26. Lim, A.: Travis County, TX developing electronic voting system with a paper trail.
Government Technology, July 2014. www.govtech.com. Accessed October 2015

27. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

28. Neff, C.A.: Practical high certainty intent verification for encrypted votes (2004).
http://citeseer.ist.psu.edu

29. Ryan, P., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a voter-
verifiable voting system. IEEE Trans. Inf. Foren. Secur. 4(4), 662–673 (2009)

30. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995)

31. Sandler, D., Derr, K., Wallach, D.S.: VoteBox: a tamper-evident, verifiable elec-
tronic voting system. In: USENIX Security Symposium, vol. 4, p. 87 (2008)

32. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

33. Shahandashti, S.F., Hao, F.: DRE-ip: a verifiable e-voting scheme without tallying
authorities. Cryptology ePrint Archive, Report 2016/670 (2016). http://eprint.
iacr.org/2016/670

http://www.govtech.com
http://citeseer.ist.psu.edu
http://eprint.iacr.org/2016/670
http://eprint.iacr.org/2016/670

When Are Three Voters Enough
for Privacy Properties?

Myrto Arapinis1(B), Véronique Cortier2, and Steve Kremer2

1 University of Edinburgh, Edinburgh, UK
marapini@inf.ed.ac.uk

2 LORIA, CNRS & Inria Nancy & Université de Lorraine, Nancy, France

Abstract. Protocols for secure electronic voting are of increasing soci-
etal importance. Proving rigorously their security is more challenging
than many other protocols, which aim at authentication or key exchange.
One of the reasons is that they need to be secure for an arbitrary number
of malicious voters. In this paper we identify a class of voting protocols
for which only a small number of agents needs to be considered: if there
is an attack on vote privacy then there is also an attack that involves at
most 3 voters (2 honest voters and 1 dishonest voter).

In the case where the protocol allows a voter to cast several votes
and counts, e.g., only the last one, we also reduce the number of ballots
required for an attack to 10, and under some additional hypotheses, 7
ballots. Our results are formalised and proven in a symbolic model based
on the applied pi calculus. We illustrate the applicability of our results
on several case studies, including different versions of Helios and Prêt-à-
Voter, as well as the JCJ protocol. For some of these protocols we can
use the ProVerif tool to provide the first formal proofs of privacy for an
unbounded number of voters.

1 Introduction

Electronic voting has been adopted in several countries, such as the United
States, Estonia, Australia, Norway, Switzerland, and France, to conduct legally
binding elections (or at least trials for some of them). Electronic voting systems
should ensure the same properties than the traditional paper ballots systems,
despite the fact that malicious users may easily intercept ballots and try to
forge fake ones. One crucial property is vote privacy: no one should know how a
particular voter voted. Symbolic models have been very successful in the analysis
of more traditional protocols that aim at confidentiality or authentication. Many
decision techniques and several tools have been developed (see [1–3] to cite only
a few) which have been successfully applied to a large number of case studies
including widely deployed protocols such as TLS [4]. Vote privacy in symbolic
models can be expressed through a rather simple and natural property [5]: an
attacker should not be able to distinguish the situation where Alice votes 0 and
Bob votes 1 from the situation where the votes are swapped:

VAlice(0) | VBob(1) ≈ VAlice(1) | VBob(0)
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 241–260, 2016.
DOI: 10.1007/978-3-319-45741-3 13

242 M. Arapinis et al.

Despite its apparent simplicity, this property is difficult to check for several rea-
sons. Firstly, most existing decision techniques apply to reachability properties
(such as authentication and confidentiality) but not to indistinguishability prop-
erties. Another major difficulty comes from the fact that e-voting systems involve
less standard cryptographic primitives and sometimes even specially designed,
ad-hoc primitives (like for the protocol used in Norway [6]). Typical primitives
in e-voting are homomorphic encryption, zero-knowledge proofs, reencryption
mixnets, etc. Some techniques and tools [7–10] for indistinguishability properties
have recently been developed to automatically check indistinguishability prop-
erties and some of them can handle part of the primitives needed in e-voting.
For example, ProVerif and Akiss have both been successfully applied to analyse
some voting protocols [5,10–14]. However, a third source of difficulty is the fact
that voting systems are typically parametrized by the number of voters: both
the bulletin board and the tally processes have to process as many ballots as
they receive. This is typically modeled by considering processes parametrized by
the number of voters. Even though parameterized protocols can be encoded in
a formalism such as the applied pi calculus, such encodings are complicated and
generally beyond the capabilities of what automated tools support. ProVerif,
which to the best of our knowledge is the only tool that supports verification of
indistinguishability properties for an unbounded number of sessions (i.e. allow-
ing replication) generally fails to prove vote privacy. One exception is a case
study of the Civitas voting system by Backes et al. [11] using ProVerif. The
other tools for indistinguishability (e.g. SPEC [8], Akiss [10], and APTE [9]) can
only handle a finite number of sessions. So case studies have to consider a finite
number of voters [10,12–14] unless proofs are conducted by hand [13,15].

Contributions. Our main contribution is a reduction result for a reasonably
large class of voting protocols. If there is an attack on privacy for n voters,
we show that there also exists one that only requires 3 voters: 2 honest voters
are necessary to state the privacy property and then 1 dishonest is sufficient to
find all existing attacks. This result significantly simplifies security proofs: there
is no longer need to consider arbitrarily many voters, even in manual proofs.
Moreover, this result allows the use of automated tools for checking equivalence
properties and justifies previous proofs conducted for a fixed number of voters
(provided at least one dishonest voter was considered).

Several protocols assume voters may revote several times. This is for example
the case of Helios or Civitas. Revoting is actually crucial for coercion-resistance
in Civitas. When revoting is allowed, this should be reflected in the model by
letting the ballot box accept an unbounded number of ballots, and retaining only
the valid ones according to the revote policy. This aspect is typically abstracted
in any existing formal analysis. We show that we can simplify the analysis by
reducing the total number of ballots to 10 for typical revoting policies (e.g. the
last vote counts) and typical tally functions. Altogether, our result amounts in a
finite model property: if there is an attack on privacy on n voters that may vote
arbitrarily, then there is an attack that only requires 3 voters and at most 10
ballots. We can further reduce the number of ballots to 7 for a class of protocols

When Are Three Voters Enough for Privacy Properties? 243

that has identifiable ballots, that is ballots that reveal the corresponding public
credentials. Of course, only 3 ballots are sufficient when revoting is disallowed.

Our result holds in a rather general setting provided that the e-voting system
can be modeled as a process in the applied-pi calculus [16]. Of course, this
reduction result cannot hold for arbitrary systems. For example, if the tally phase
checks that at least 4 ballots are present then at least 4 voters are necessary to
conduct an attack. So we model what we think to represent a “reasonable” class
of e-voting systems. The process modeling the voter may be an arbitrary process
as long as it does not depend on credentials of other voters and provided voters
do not need to interact once the tally phase has started. This corresponds to
the “vote and go” property, that is often desirable for practical reasons, but also
excludes some protocols such as [17]. Once the vote is casted the authorities
proceed as follows.

– The bulletin board (if there is one) performs only public actions such as pub-
lishing a received ballot, possibly removing some parts and possibly after some
public tests, i.e. tests that anyone could do as well. Typical public tests are
checks of signature validity, well-formedness of the ballots, or validity of zero-
knowledge proofs. Alternatively, we may consider an arbitrary bulletin board
in case it is corrupted since it is then part of the adversarial environment.

– Next, a revote policy is applied. We consider two particular revote policies: the
policy which selects the last ballot, which is the most common one, and the
policy that selects the first one, which encodes the situation where revoting is
prohibited.

– Finally, the tally is computed according to some counting function. We con-
sider in particular two very common functions: the multiset and the additive
counting functions. The multiset counting function returns the votes in an
arbitrary order and corresponds for example to the output of a decryption
mixnet. The additive counting function returns the number of votes received
by each candidate.

We believe that these conditions are general enough to capture many existing
e-voting schemes.

Applications. To illustrate the applicability of our result, we re-investigate sev-
eral existing analyses of e-voting protocols. First, we consider several versions of
the Helios protocol [18], both in its mixnet and homomorphic versions. These
versions also include the Belenios [19] protocol. We are able to use the ProVerif
tool to show privacy for the mixnet versions of these protocols for a bounded
number of voters and ballots. Our reduction result allows immediately to con-
clude that vote privacy also holds for an arbitrary number of voters. The homo-
morphic version of Helios is out of reach of existing tools due to the presence of
associative and commutative symbols. However, our reduction result does apply,
which means that the manual proof of Helios conducted in [13] did not need to
consider arbitrarily many voters and could be simplified. In case one wishes to
adapt this proof to Belenios [19], our reduction result would alleviate the proof.
The Prêt-à-Voter [20] protocol (PaV) has been analysed using ProVerif for 2

244 M. Arapinis et al.

honest voters [12]. Adding a third, dishonest, voter, we can apply our result
and obtain the first proof of vote privacy for an arbitrary number of voters.
Unfortunately, ProVerif did not scale up to verify automatically the protocol
in presence of a dishonest voter. We were also able to apply our result (and a
proof using ProVerif) to a protocol by Moran and Naor and to the JCJ protocol
implemented in Civitas (without a ProVerif proof).

Related work. To our knowledge, the only other reduction result applying to
voting protocols was proposed by Dreier et al. [21]. Their result states that it
is sufficient to prove vote privacy for two honest voters when the protocol is
observationally equivalent to a protocol consisting of the parallel composition
(not sharing any secret) of a partition of the set of voters. Applicability has
however only been shown to examples where this trivially holds, e.g. [17,22] as
these protocols use completely public tallying mechanisms. In general, proving
the required equivalence does not seem easier than proving directly vote secrecy.
Moreover, it does not apply to some well known protocols such as Helios since
a dishonest voter is needed to mount the vote replay attack [13].

The results of [23,24] show how to reduce the number of agents, in the case of
trace properties [23] and equivalence properties [24]. The major difference with
our work is that [23,24] simply reduce the number of agent identities while the
number of sessions (or processes) remains the same. In contrast, we do not only
reduce the number of voter identities but also the number of ballots the ballot
box needs to process, yielding a simpler process.

2 Modelling Security Protocols

As usual in symbolic protocol analysis we model protocol messages as terms.
Protocols are modelled in a process calculus, similar to the applied pi calcu-
lus [16].

2.1 Messages

We assume an infinite set of names N = {a, b, k, n, . . .} (which are used to rep-
resent keys, nonces, . . .) and an infinite set of channels Ch = {c, c1, ch, ch1, . . .}
(which are used to represent communication channels). We also consider a set of
variables X = {x, y, . . .}, and a signature Σ consisting of a finite set of function
symbols.

Terms are defined as names, variables, and function symbols applied to other
terms. In particular, a channel is not a term. Let N ⊆ N and X ⊆ X , the set
of terms built from N and X by applying function symbols in Σ is denoted by
T (Σ,N ∪ X). We write fv(t) (resp. fn(t)) for the set of variables (resp. names)
occurring in a term t. A term is ground if it does not contain any variable.

Example 1. We model asymmetric encryption, signatures, and pairs by the sig-
nature

Σaenc
def
= {aenc/3, adec/2, pk/1, sig/2, checksig/2, getmsg/1, vk/1, 〈·, ·〉/2, π1/1, π2/1}

When Are Three Voters Enough for Privacy Properties? 245

wheref/idenotesthatf hasarity i.Considertermt
def= 〈pk(sk), aenc(pk(sk), r,m)〉

where sk, r,m ∈ N . The term t represents a pair consisting of the public key
pk(sk) associated to the private key sk and the encryption of message m with pub-
lic key pk(sk) using randomness r. To improve readability, we may sometimes write
〈t1, . . . , tn〉 instead of 〈t1, 〈. . . 〈tn−1, tn〉 . . .〉〉.

We denote by � = [t1, . . . , tn] the list of terms t1, . . . , tn and by t0 :: � the list
obtained by adding the term t0 to the head of the list, i.e., t0 :: � = [t0, t1, . . . , tn].
Sometimes we interpret lists as multisets and we write �1 =# �2 for the equality
of the multisets corresponding to these lists.

A substitution is a partial function from variables to terms. The substitution
σ that maps xi to ti (1 ≤ i ≤ n) is denoted {x1 	→ t1, . . . , xn 	→ tn} and we write
dom(σ) = {x1, . . . , xn} for the domain of σ. We denote by ∅ the substitution
whose domain is empty. We always suppose that substitutions are acyclic. As
usual we extend substitutions to terms and write tσ for the application of σ to
term t.

To model algebraic properties of cryptographic primitives, we define an equa-
tional theory by a finite set E of equations u = v with u, v ∈ T (Σ,X). We
define =E to be the smallest equivalence relation on terms, that contains E and
that is closed under application of function symbols and substitutions of terms
for variables.

Example 2. Continuing Example 1 we define the equational theory Eaenc by the
following equations.

adec(xk, aenc(pk(xk), xr, xm)) = xm checksig(sig(x, y), vk(y)) = ok
πi(〈x1, x2〉) = xi (i ∈ {1, 2}) getmsg(sig(x, y)) = x

Then we have that adec(sk, π2(t)) =Eaenc m.

To illustrate our calculus we consider the Helios e-voting protocol as running
example. The Helios protocol relies on zero knowledge proofs. We next specify
the equational theory for the particular zero knowledge proofs built by the Helios
participants.

Example 3. The Helios zero knowledge proofs can be modelled by the signature

Σzkp
def
= {zkpE/3, checkzkpE/2, okzkpE/0} ∪ {zkpmDM/3, checkzkpmDM/3, okzkpmDM/0}m∈N

In case of homomorphic tally, the voters should also prove that their vote is
valid, which can be modeled in a similar way. When submitting an encrypted
vote, voters are required to prove that the encryption is well-formed, that is
to say, that they know the corresponding plaintext and randomness. This is
reflected by the following equation.

checkzkpE(zkpE(xr, xv, aenc(xpk, xr, xv)), aenc(xpk, xr, xv)) = okzkpE.

In the decryption mixnets-based variant of the Helios protocol, the talliers output
a zero knowledge proof of correct mix and decryption. Such a proof establishes

246 M. Arapinis et al.

that the output of the decryption mixnet is indeed a permutation of the content
of the encrypted ballots received as input. This is captured by the following
infinite set of equations. For all m ∈ N, and all {i1, . . . , im} = {1, . . . , m},

checkzkpm
DM(zkpm

DM(xk, xciph, xplain), xciph, xplain) = okzkpm
DM

with xciph = (aenc(pub(xk), xr1, xv1), . . . , aenc(pub(xk), xrm, xvm)) and
xplain = (xvi1 , . . . , xvim).

In all the examples of this section, we will consider the signature Σ = Σaenc∪
Σzkp and the equational theory E = Eaenc ∪ Ezkp.

We say that a symbol + is associative and commutative (AC in short) w.r.t.
an equational theory E if E contains the two equations:

x + y = y + x x + (y + z) = (x + y) + z

2.2 Processes

We model protocols using a process calculus. Our plain processes are similar to
plain processes in applied pi calculus [16] and are defined through the grammar
given in Fig. 1 where c is a channel, t, t1, t2 are terms, x is a variable, n is either
a name or a channel, and i ∈ N is an integer. The terms t, t1, t2 may contain
variables.

P,Q := 0
P | Q
νn.P
!P
if t1 = t2 then P else Q
c(x).P
c〈t〉.Q
i : P

Fig. 1. Syntax of plain processes

The process 0 does nothing. P | Q
behaves as the parallel execution of processes
P and Q. νn.P restricts the scope of n. When
n is a name, it typically represents a freshly
generated, secret value, e.g., a key or a nonce,
in P . When n is a channel, it declares a
private channel, that cannot be accessed by
the adversary. Replication !P behaves as an
unbounded number of copies of P . The con-
ditional if t1 = t2 then P else Q behaves as
P if t1 and t2 are equal in the equational the-
ory and as Q otherwise. The process c(x).P

inputs a message t on channel c, binds it to x and then behaves as P where x
has been replaced by t. c〈t〉.Q outputs message t on channel c before behaving
as Q. Our calculus also introduces a phase instruction, in the spirit of [24,25],
denoted i : P . We denote by Phase(P) the set of phases that appears in P , that
is the set of j such that j : Q occurs in P . By a slight abuse of notations, we
write Phase(P) < Phase(Q) if any phase in Phase(P) is smaller than any phase
in Phase(Q).

As usual, names and variables have scopes, which are delimited by restrictions
and inputs. We write fv(P), bv(P), fn(P) and bn(P) for the sets of free and
bound variables, and free and bound names of a plain process P respectively.

When Are Three Voters Enough for Privacy Properties? 247

Example 4. A voter in Helios proceeds as follows. She computes her ballot by
encrypting her vote with the public key pk(skE) of the election. The corre-
sponding secret key is shared among several election authorities, which is not
modeled here. Then she casts her ballot together with her identity and a zero
knowledge proof through an authenticated channel. All this information will be
published on a public bulletin board. The process V (pk(skE), cred, id, v) models
the actions of a voter with identity id and credential cred casting a ballot for
candidate v:

V (pk(skE), cred, id, v) def= νr. bb〈〈id, sig(bal, cred), prf 〉〉

where bal = aenc(pk(skE), r, v) and prf = zkpE(r, v, bal). The authenticated
channel is modelled by a signature although Helios relies on a login/password
mechanism.

Extended processes keep track of additional information during an execution:
the names that have been bound, the currently active processes that are running
in parallel, the history of messages that were output by the process and the
current phase.

Definition 1 (Extended process). An extended process is a tuple (E ;P;Φ; i)
where:

– E is a set of names and channels that are restricted in P and Φ;
– P is a multiset of plain processes with fv(P) = ∅;
– Φ = {x1 	→ u1, . . . , xn 	→ un} is a ground substitution where u1, . . . , un repre-

sent the messages previously output to the environment.
– i is an integer denoting the current phase.

Example 5. The following extended process models two honest Helios voters idA

and idB ready to cast their ballots vA and vB respectively in a first phase, and
the Helios tallying authorities Tal ready to tally the cast ballots in a second
phase

Helios(vA, vB) def= (E0, 1 : VA | 1 : VB | 2 : Tal, ∅, 1)

where E0 is a set of names with credA, credB ∈ E0,

VA
def= V (pk(skE), credA, idA, vA) and VB

def= V (pk(skE), credB , idB , vB)

model the two honest voters where V is defined in Example 4, and

Tal
def= bb(xbA).bb(xbB).T

for some process T modelling the tallying authorities.

Given A = (E ;P;Φ; i), we define the set of free and bound names of A as
fn(A) = (fn(P) ∪ fn(Φ)) � E , and bn(A) = bn(P) ∪ E . Similarly free and bound

248 M. Arapinis et al.

variables are defined as fv(A) = (fv(P) ∪ dom(Φ)), and bv(A) = bv(P). An
extended process A is closed if fv(A) = dom(Φ).

The operational semantics of our calculus is defined by a labelled transition
system which allows to reason about processes that interact with their environ-
ment. The transition relation A

�−→ B relates two ground extended processes A
and B and is decorated by a label �, which is either an input (c(M)), an output
(νx.c〈x〉), or a silent action (τ). Silent actions are standard, while visible input
and output actions are interactions with the adversary on public channels. An
output label νx.c〈x〉 reflects that messages are output “by reference”: the label
contains the variable added to dom(Φ) which maps to the ground message that
was output. The input label c(M) contains the term M used by the adversary to
compute the message: M may be constructed from previous outputs (addressed
through variables in dom(Φ)), but is not allowed to use private names. The
transition relation is formally defined in the companion technical report [26].

Notations. Given a set S we denote by S∗ the set of all finite sequences of
elements in S. We may also write ũ for the finite sequence u1, . . . , un. Let A be
the alphabet of actions (in our case this alphabet is infinite and contains the
special symbol τ). For every w ∈ A∗, the relation w−→ on processes is defined in
the usual way, i.e., we write A

w−→ A′ when w = �1�2 · · · �n and A
�1−→ A1

�2−→
. . .

�n−→ A′. For s ∈ (A�{τ})∗, the relation s=⇒ on processes is defined by: A
s=⇒ B

if, and only if there exists w ∈ A∗ such that A
w−→ B and s is obtained by erasing

all occurrences of τ from w.

Example 6. Continuing our running example we illustrate the operational
semantics by the following transitions

Helios(vA, vB)
νyA.bb〈yA〉
=======⇒ νyB .bb〈yB〉

=======⇒ phase 2
====⇒ (E ;T ;Φ; 2) where

– E = E0 ∪ {rA, rB},
– Φ = {yA 	→ 〈idA, sig(balA, credA), prfA〉, yB 	→ 〈idB , sig(balB , credB), prfB 〉}

where balC = aenc(pk(skE), rC , vC) and prf C = zkpE(rC , vC , balC) for C ∈
{A,B}.

A frame ϕ = νE .Φ consists of a set of names E and a substitution Φ =
{x1 	→ u1, . . . , xn 	→ un}. The names E are bound in ϕ and can be α-converted.
Moreover names can be added (or removed) to (from) E as long as they do
not appear in Φ. We write ϕ =α ϕ′ when frames ϕ and ϕ′ are equal up to α-
conversion and addition/removal of unused names. In this way two frames can
always be rewritten to have the same set of bound names. When A = (E ;P;Φ; i)
is an extended process, we define φ(A) def= νE .Φ.

Given a frame ϕ = νE .Φ an attacker can construct new terms building on
the terms exposed by ϕ. For this the attacker applies a recipe on the frame. A
recipe R for a frame ϕ is any term such that fn(R)∩E = ∅ and fv(R) ⊆ dom(Φ).
An attacker is unable to distinguish two sequences of messages if he cannot
construct a test that distinguishes them. This notion is formally captured by
static equivalence [16] of frames.

When Are Three Voters Enough for Privacy Properties? 249

Definition 2 (Static equivalence). Two frames ϕ1 =α νE .Φ1 and ϕ2 =α

νE .Φ2 are statically equivalent, noted ϕ1 ∼ ϕ2 when dom(Φ1) = dom(Φ2), and
for all recipes M and N of ϕ1 we have that MΦ1 =E NΦ1 iff MΦ2 =E NΦ2.

Note that in the above definition the frames ϕ1 and ϕ2 have the same set of
recipes as they bind the same names E and their substitutions have the same
domain.

Example 7. Let Φ be the substitution of Example 6 and

Φ′ = {yA 	→ 〈idA, sig(bal′A, credA), prf ′
A〉, yB 	→ 〈idB , sig(bal′B , credB), prf ′

B 〉}
where bal′C = aenc(pk(skE), rC , vD) and prf ′

C = zkpE(rC , vD, bal′C) for C,D ∈
{A,B} with C �= D. Since adec(skE, π1(π1(getmsg(yA))))Φ =E vA, but
adec(skE, π1(π1(getmsg(yA))))Φ′ �=E vA, we have that

νskE.νrA.νrB .Φ ∼E νskE.νrA.νrB .Φ′ while νrA.νrB .Φ �∼E νrA.νrB .Φ′

Indeed, an attacker may distinguish between these two frames as soon as he has
the secret key skE, by simply decrypting the ballots.

Given two extended processes A1 and A2, we often write A1 ∼ A2 for φ(A1) ∼
φ(A2). Given an extended process A we define its set of traces as

traces(A) def= {(tr, B) | A
tr=⇒ B}

We can now define what it means for an attacker to be unable to distinguish
two processes even if he is allowed to actively interact with them. This notion
of indistinguishability is naturally modelled by trace equivalence.

Definition 3 (Trace equivalence). Let A and B be two closed extended
processes. A is trace included in B, written A � B, if for every trace (tr, A′) ∈
traces(A) there exists B′ such that (tr, B′) ∈ traces(B) and A′ ∼ B′. A and B
are trace equivalent, denoted A ≈ B, if A � B and B � A.

Intuitively, as the sequence of visible actions in the labels encode the adver-
sary’s actions the definition requires that for the same interaction with the adver-
sary the protocols produce indistinguishable outputs.

3 Modelling E-Voting Protocols

In this section we explain how we formally model e-voting protocols and state
the assumptions needed for our results.

Since many e-voting protocols use zero-knowledge proofs, we consider a sig-
nature Σ with zkp, checkzkp, okzkp ∈ Σ and we assume an equational theory
that can be described by an AC-convergent (possibly infinite) rewrite theory
such that the only rules in which zkp, checkzkp, and okzkp occur, are of the
form:

checkzkp(zkp(U1, . . . , Um), V1, . . . , Vn) → okzkp

250 M. Arapinis et al.

where zkp, checkzkp, okzkp do not occur in the Ui, Vj . Since the terms Ui, Vj are
left unspecified, this captures most existing zero-knowledge proofs. In particular,
it covers the zero-knowledge proofs considered in Example 3.
A voting protocol is a family of processes {Πnh,nd,m(Crh

nh
, Crd

nd
,Kpv,

Kpb)}nh,nd,m∈N where

– nh and nd are the number of honest and dishonest voters respectively;
– Crh

nh
(resp. Crd

nd
) is the set of nh (resp. nd) voting credentials which determines

the set of honest eligible voters (resp. dishonest eligible voters), such that
Crh

nh
∩ Crd

nd
= ∅. Each credential c̃r ∈ Crh

nh
∪ Crd

nd
is a sequence of terms;

– m is the number of ballots accepted during the tally;
– Kpv (resp. Kpb) is the set of all private (resp. public) material.

As usual it is sufficient to consider voting processes that model only the
honest voters and the tally (the dishonest voters are left unspecified as part of
the environment, and their credentials are public). We may assume w.l.o.g. that
the tally process starts with a fresh phase and first reads the ballots on the
board. Formally, we assume that voting processes are of the form:

Πnh,nd,m(Crh
nh

, Crd
nd

,Kpv,Kpb)
def= V (˜cr1) | V (˜cr2) | · · · | V (˜crnh

) |
tall : bb(x1).bb(xm).Tn,m(Crn,Kpv,Kpb)

where Crn = Crh
nh

∪ Crd
nd

, and for all i ∈ {1, . . . , nh}, c̃ri ∈ Crh
nh

. Furthermore,
we require that Phase(V) < tall, Phase(Tn,m) = ∅ and Tn,m(Crn,Kpv,Kpb)
contains at most one output which is performed on the channel tal. We note
that from the above structure of a voting process it follows that all traces are
prefixes of traces of the form

tr′·phase tall·bb(RB1). . .bb(RBm)·νy.tal〈y〉.
V (c̃r) models an honest voter, whose credentials are c̃r. Tn,m(Crn,Kpv,Kpb) is
the remainder of the tallier process. It is parameterised by the number m of
ballots it accepts and the number n of eligible voters. We require that V (c̃r) be
independent of n and m and does not use any other credentials, i.e. fn(V (c̃r)) ∩
Crn ⊆ {c̃r}. These are the only restrictions on the voter process and we believe
them to be reasonable and natural.

An e-voting protocol proceeds in two phases: vote casting and tallying. Dur-
ing the vote phase all voters simply cast their ballots. The tally phase proceeds
as follows. First m ballots are input. Then a public test is applied to these bal-
lots to carry out a first validity check, e.g. verify some zero knowledge proofs
ensuring that the ballots are well formed. Next, the revote policy is applied to
remove votes cast by a same voter, e.g., keep only the last one. Finally, the
process performs the tally and outputs the result.

3.1 Public Tests

As explained above, the ballot box may apply public tests to the casted ballots.
Public tests are Boolean combinations over atomic formulas of the form M = N

When Are Three Voters Enough for Privacy Properties? 251

where M,N ∈ T (Σ,X), i.e. they do not contain any names. An atomic formula
is satisfied when M =E N and we lift satisfaction to tests as expected.

We assume a family of tests {Testm}m∈N where m is the number of casted
ballots that are tested and Testm contains m distinguished variables x1, . . . , xm

to be substituted by the ballots. We write Testm([B1, . . . , Bm]) = � when the
test Testm{x1 	→ B1, . . . , xm 	→ Bm} is satisfied. Finally we say that a test is
voting-friendly whenever satisfaction is preserved on sublists of ballots, that is
Testm([B1, . . . , Bm]) = � implies Testh([Bi1 , . . . , Bih]) = � for any 1 ≤ i1 <
· · · < ih ≤ m.

We believe this condition to be natural. It discards contrived tests that would
accept a ballot only if another ballot is present. Conversely, we may consider tests
that discard lists with duplicate ballots.

Example 8. The public test applied by the tallying authorities in the Helios
protocol consists of two parts. First, a local test that checks the zero knowl-
edge proofs of each submitted ballot, and second, a global test that checks
that encrypted votes are pairwise distinct. This is to avoid the replay attack
mentioned in [13]. Such checks are formally reflected by the family of tests
{Testm}m∈N with

Testm([B1, . . . , Bm]) def=
∧i=m

i=1 lTest(Bi)
∧i�=j

i,j∈{1,...,m} gTest(Bi, Bj)

lTest(B) def=
{� if B = 〈id, bal, prf 〉 and checkzkpE(getmsg(bal), prf) =E okzkpE

⊥ otherwise

gTest(B,B′) def=

⎧
⎨

⎩

� if B = 〈id, bal, prf 〉 and B′ = 〈id′, bal′, prf ′〉
and getmsg(bal) �= getmsg(bal′)

⊥ otherwise

3.2 Revote Policies

Many e-voting protocols offer voters the possibility to cast several votes, keeping
eventually only one vote per voter, e.g. the last submitted ballot. Which vote
is kept depends on the particular policy. Re-voting intends to guarantee some
protection against coercion. We formalize the notion of policy as a function
Policyn,m which takes a list of m terms (intuitively, the vote and credential) and
a set of n credentials (honest and dishonest) and returns the sublist of selected
terms to be tallied. A protocol will depend on a family of such policy functions
{Policyn,m}n,m∈N. We consider two particular, but standard revote policies. The
most usual one selects the last cast vote:

Policyn,m
last ([V1, . . . , Vm], Crn) def= [Vi1 , . . . , Vik]

where each Vij = (v, c̃r) is the last occurence of the credential c̃r ∈ Crn in the
list [V1, . . . , Vm]. We also consider the policy which only keeps the first vote of
each voter:

Policyn,m
first ([V1, . . . , Vm], Crn) def= [Vi1 , . . . , Vik]

252 M. Arapinis et al.

where each Vij = (v, c̃r) is the first occurence of the credential c̃r ∈ Crn in
the list [V1, . . . , Vm]. Such a policy typically models the norevote policy (a voter
cannot revote).

3.3 Extracting Ballots and Counting Votes

A voting protocol should tally the ballots “as expected”. Formally, what is
expected can be formalized through an extract and a counting function.

Given a ballot B, and two sets of terms Kpb and Kpv representing the
public and private material, the extraction function Extract returns the cor-
responding vote and credential, or ⊥ when a ballot is not well formed.,
i.e., Extract(B,Kpv,Kpb) ∈ (V × Crn) ∪ {⊥}. Moreover, we lift the extract
function to lists of m ballots by applying the function pointwise, i.e.,
Extractm([B1, . . . , Bm],Kpv,Kpb)

def=

[Extract(B1,Kpv,Kpb), . . . ,Extract(Bm,Kpv,Kpb)]

Similar extract functions have been introduced in [27] to define ballot privacy.

Example 9. The Extract function for the Helios protocol decrypts the encrypted
vote and associates it with the signature associated to the ballot:

Extract(B, {skE}, {pk(skE)}) def=
{

(v, (id, cred)) if B = 〈id, bal, prf 〉 and bal =E sig(aenc(pk(skE), r, v), cred)
⊥ otherwise

Similarly the counting function defines how the protocol is supposed to tally
the votes. The function Count� takes as input a list of � pairs (v, cr) ∈ V × Cr
and returns a list of terms as the election result.

Definition 4. Let {Count�}�∈N be a family of counting functions. {Count�}�∈N

is voting-friendly if for all m,n and lists of terms W1 of size m, W2 of size n
we have that

1. if W1 =# W2 then Countm(W1) =# Countn(W2);
2. if Countm(W1) =# Countn(W2)

then Countm+1((v1, cr1) ::W1) =# Countn+1((v2, cr2) ::W2) iff v1 = v2

The first assumption requires that the result does not depend on the order in
which votes are provided (intuitively, only valid votes are kept at this stage). We
believe this property to be natural and it excludes contrived counting functions
that would, e.g., only keep votes at even positions. The second assumption states
that we may count “step by step”. This is more restrictive since it excludes the
majority function, i.e., the function that only outputs the name of the candidate
that received most votes. But, it captures the most common result functions,
namely the multiset and the additive counting functions.

When Are Three Voters Enough for Privacy Properties? 253

Example 10. The multiset counting function typically arises in mixnet based
tallies, which simply output the list of votes (intuitively once votes have been
shuffled).

Count1Mix([V1])
def= [v] and CountmMix([V1, . . . , Vm]) def= v ::Countm−1

Mix ([V2, . . . , Vm])

where V1 = (v, c̃r) and m > 1. The additive counting function can be defined
similarly. For simplicity consider a binary vote, where we just want to count the
number of 1’s:

Count1HE([V1])
def= v and CountmHE([V1, . . . , Vm]) def= v + Countm−1

HE ([V2, . . . , Vm])

where V1 = (v, c̃r), m > 1 and + is an AC symbol. Both functions are voting-
friendly.

3.4 Properties

When verifying security properties of e-voting protocols it is common to only
consider processes whose runs satisfy a particular property. For instance, vote
secrecy is typically expressed as the indistinguishability of two processes mod-
elling the situations where two honest voters swap their votes. We need however
to ensure that these two honest voters have indeed cast their votes successfully to
avoid trivial attacks. Indeed, in a run where the attacker blocks one of these vot-
ers, but not the other, the election result will be different and the two processes
would be distinguished. Therefore when checking vote secrecy one typically adds
a check that guarantees that the two honest votes are counted. We simply require
that a check check([b1, . . . , bm]) applied to a list ballots [b1, . . . , bm] satisfies the
two following requirements:

– If check([b1, . . . , bm]) holds then we can identify two (intuitively honest) ballots
bi1 , bi2 such that check holds for any sublist containing bi1 and bi2 .

– If check([b1, . . . , bm]) does not hold then it does not hold either for any sublist
of these ballots or if some ballots are replaced by invalid ones (that is replaced
by ⊥).

How such a check is implemented is left unspecified, it could be by listening to
private channels, successively checking signatures, etc.

3.5 E-Voting Processes

As often when considering trace equivalence (e.g. [10,24]), we assume processes to
be deterministic. More precisely, we require the vote phase to be determinate: if
the same sequence of labels leads to two different processes then the two resulting
frames have to be statically equivalent. This typically holds for standard voting
processes since the voter’s behaviour is deterministic. For the tallying phase
we slightly relax this notion and require what we call almost determinate. This
relaxed notion only requires that there exists an output of a tally (among all

254 M. Arapinis et al.

possible outputs, as the particular tally may be chosen non-deterministically)
that ensures static equivalence. This allows us to capture some non-deterministic
behaviors such as mixnet tally.

Definition 5. An e-voting protocol {Πnh,nd,m(Crh
nh

, Crd
nd

,Kpv,Kpb)}nh,nd,m∈N

is almost determinate if for any set of names E0, any initial attacker
knowledge Φ0, any m,nh, nd ∈ N, and any traces (tr, A1), (tr, A2) ∈
traces(E0,Π

nh,nd,m(Crh
nh

, Crd
nd

,Kpv,Kpb), Φ0, 0) we have that

∀A′
1. A1

νx.tal〈x〉
=====⇒ A′

1 ⇒ ∃A′
2. A2

νx.tal〈x〉
=====⇒ A′

2 and A′
1 ∼ A′

2

We can now put all the pieces together and link e-voting protocols to the
notions of public tests, revote policies, extraction and counting functions and
properties.

Definition 6. An e-voting protocol {Πnh,nd,m(Crh
nh

, Crd
nd

,Kpv,Kpb)}nh,nd,m∈N is
voting friendly w.r.t. check, {Testm}m∈N, {Policyn,m}n,m∈N, Extract, {Count�}�∈N

if it is almost determinate, if {Testm}m∈N, {Policyn,m}n,m∈N, Extract, are
voting-friendly, and if for any set of names E0, any initial attacker knowledge
Φ0, any m,nh, nd, and any trace (tr′·νx.phase tall.bb(RB1). . .bb(RBm), A1) of
(E0,Π

nh,nd,m(Crh
nh

, Crd
nd

,Kpv,Kpb), Φ0, 0), the resulting list of ballots BB =
[B1, . . . , Bm] (where Bi = RBiφ(A1)) satisfies the following properties.

1) The tally is successful (that is (νy.tal〈y〉, A2) ∈ traces(A1)) if and only if
BB passes the test and the check (Testm(BB) = � and check(BB) = �)

2) Whenever the tally produces an output (that is (νy.tal〈y〉, A2) ∈
traces(A1)) then it outputs a triple yφ(A2) = 〈res, nvotes, zkp〉 where

– res is the result computed by counting the votes once the extraction function
and the revote policy have been applied on the bulletin board;

– nvotes is the number of votes that has been counted;
– zkp is a (valid) zero-knowledge proof that would not be valid for any other list

of ballots different from BB;
– either res is the only result the tally can produce from BB (typically in the

homomorphic case) or the tally can produce any permutation of it (typically
in the mixnet case).

A fully formal definition can be found in the companion technical report [26].
We believe most existing protocols satisfy these requirements.

For many protocols ballots can be associated to the public credentials that
were used to cast them. This is the case for Helios and some of its variants
where ballots either contain the voter identity (in the original Helios) or are
signed using private credentials (in the Belenios system). As we will see in the
next section we can get tighter bounds for this class of protocols. Formally we
define protocols with identifiable ballots as follows.

When Are Three Voters Enough for Privacy Properties? 255

Definition 7. An e-voting protocol {Πnh,nd,m(Crh
nh

, Crd
nd

,Kpv,Kpb)}nh,nd,m∈N

has identifiable ballots if for all nh, nd,m ∈ N, for any trace

(tr′·νx.phase tall.bb(RB1). . .bb(RBm)·νy.tal〈y〉, A)

of Πnh,nd,m(Crh
nh

, Crd
nd

,Kpv,Kpb)) there exists a recipe R and a variable x such
that

∀1 ≤ i ≤ m. if Extract([RBiφ(A)],Kpv,Kpb) = (V, c̃r) then Riφ(A) = pub(c̃r)

where Ri = R{x 	→ RBi}.

4 Main Results

Throughout the section we consider two voting protocols

{Πnh,nd,m
i (Crh

nh
, Crd

nd
,Kpv,Kpb)}nh,nd,m∈N

for 1 ≤ i ≤ 2 which are voting-friendly for checki, {Testm}m∈N,
{Policyn,m}n,m∈N, Extractmi , {Count�i}�∈N. Note that we assume the same public
test for both protocols. Moreover we assume that nh ≥ 2 and m ≥ nh + nd.

Let E0 be a set of names, and Φ0 a ground substitution representing the
initial attacker knowledge. {Anh,nd,m

0 }nh,nd,m∈N and {Bnh,nd,m
0 }nh,nd,m∈N are

two families of extended processes defined as follows

Anh,nd,m
0

def= (E0 ∪ Crh
nh

,Πnh,nd,m
1 (Crh

nh
, Crd

nd
,Kpv,Kpb), Φ0, 0) ∀nh, nd,m ∈ N

Bnh,nd,m
0

def= (E0 ∪ Crh
nh

,Πnh,nd,m
2 (Crh

nh
, Crd

nd
,Kpv,Kpb), Φ0, 0) ∀nh, nd,m ∈ N

Our reduction results apply to equivalences of the form Anh,nd,m
0 ≈ Bnh,nd,m

0 for
all m,nh, nd. Vote privacy is typically modelled in this way [5]. The proofs of
the results presented in this section could not be included due to lack of space,
but are available in the technical report [26].

Our first result states that attacks on such equivalences require at most 3
voters.

Proposition 1. If Akh,kd,�
0 �≈ Bkh,kd,�

0 then A
2,k′

d,�
0 �≈ B

2,k′
d,�

0 for k′
d = 0 or

k′
d = 1.

Note that this case does not yet bound the number of ballots to be considered.
In particular, when re-voting is allowed the attacker may a priori need to submit
several ballots in order to distinguish the two processes. In other words, the ballot
box is still parameterized by the number of ballots to be received. However,
whenever we assume that Π1 and Π2 do not allow voters to revote, we can
deduce immediately that 3 ballots suffice to capture any attack. More formally,
we encode this situation by letting k = � and considering the re-vote policy that
only keeps the first vote of each voter.

256 M. Arapinis et al.

Theorem 1. If {Policyn,m}n,m∈N = {Policyn,m
first }n,m∈N and Akh,kd,k

0 �≈ Bkh,kd,k
0

where k = kh +kd, then A
2,k′

d,k′

0 �≈ B
2,k′

d,k′

0 for k′
d = 0 or k′

d = 1 and k′ = 2+k′
d.

Intuitively, the case where k′
d = 0 corresponds to the case where an attacker

can distinguish the processes playing only with two honest voters. This case for
instance arises when analyzing a naive protocol where each voter simply signs
his vote, hence offering no anonymity at all. The case where k′

d = 1 corresponds
to the case where the attacker computes a vote which depends on the honest
votes. The above results state that an attacker does not need more then one
ballot in that case. An example of such an attack is the vote copy attack on
Helios described in [13]. We could actually encode any attack with 2 voters into
an attack with 3 voters by letting the adversary play like a useless, honest, voter.
This would require however to formalize the fact that the attacker may always
simulate an honest voter, that is, the voting process.

We now consider the case where re-voting is allowed. In this case we can
bound the number of ballots that need to be considered to 4+2k (for k number
of voters in total).

Proposition 2. If Akh,kd,�
0 �≈ Bkh,kd,�

0 , then there exists �min ≤ 4+2k such that
Akh,kd,�min

0 �≈ Bkh,kd,�min

0 where k = kh + kd.

Combining the reductions on the number of voters and the number of ballots
we obtain the following theorem.

Theorem 2. If Akh,kd,�
0 �≈ Bkh,kd,�

0 , then there exists k′
d ∈ {0, 1}, �min ≤ 4+2k

such that A
2,k′

d,�min

0 �≈ B
2,k′

d,�min

0 where k = 2 + k′
d.

This is an immediate consequence of Propositions 1 and 2 and yields a bound
of 4+2×3=10. When protocols have identifying ballots (Definition 7) we can
tighten our reduction of the number of ballots: we only need to consider 4 + k
ballots.

Corollary 1. If Π1 and Π2 have identifying ballots and Akh,kd,�
0 �≈ Bkh,kd,�

0 ,
then ∃�min ≤ 4 + k. Akh,kd,�min

0 �≈ Bkh,kd,�min

0 where k = kh + kd.

This is a corollary of the proof of Proposition 2. With identifiable ballots, we
know that the ballots selected by the revoting policy on the left and on the right
hand-side are the same. Again, we combine this result with the reduction on the
number of voters.

Theorem 3. If Π1 and Π2 have identifying ballots and Akh,kd,�
0 �≈ Bkh,kd,�

0 then
∃k′

d ∈ {0, 1}, �min ≤ 4 + k such that A
2,k′

d,�min

0 �≈ B
2,k′

d,�min

0 where k = 2 + k′
d.

This follows from Corollary 1 and Proposition 1 and yields a bound of 4+3=7
ballots.

When Are Three Voters Enough for Privacy Properties? 257

5 Case Studies

We apply our results on several case studies: several versions of Helios [18,19,28]
and Prêt-à-Voter [20], as well as the JCJ protocol [29] implemented in the Civitas
system [30]. For some of these protocols we show that the ProVerif verification
tool [1] can be used to perform a security proof that, thanks to our results, is
valid for an arbitrary number of voters and ballots.

For the other protocols, ProVerif is not able to verify the protocols, either
due to the fact that equational theories with AC symbols are not supported
by ProVerif or simply because of a state explosion problem. In these cases we
show that our results nevertheless apply. Given recent progress in automated
verification for equivalence properties [9,10,31] we hope that verification of some
of these protocols will be possible soon. Our results would also be useful to
simplify proofs by hand.

The results in this section are summarized in Fig. 2. Our hypotheses were
always satisfied wherever applicable. For several protocols, we could not conduct
the analysis with ProVerif, either because the equational theory is out of reach
of the tool or because we had to stop ProVerif execution after a couple of hours.
The case studies are further detailed in the companion report [26]. The results
in this section rely on ProVerif scripts available at http://3voters.gforge.inria.fr.

3 ballots
(Theorem 1)
Hyp ProVerif

PaV (DM) � �
PaV (RM) � ×
Helios mix (weeding) � �
Helios mix (id in zkp) � �
Helios hom (weeding) � ×
Helios hom (id in zkp) � ×
Belenios mix � �
Belenios hom � ×

(a) Protocols without revoting.

7 ballots
(Theorem 3)

10 ballots
(Theorem 2)

Hyp ProVerif Hyp ProVerif
Helios mix (weeding) � � � ×
Helios mix (id in zkp) � � � ×
Helios hom (weeding) � × � ×
Helios hom (id in zkp) � × � ×
Belenios mix � � � ×
Belenios hom � × � ×
JCJ � × � ×

(b) Protocols with revoting.

Fig. 2. Summary of application of our results on case studies. A × in the “ProVerif”
column indicates that we could not successfully run the analysis with ProVerif.

6 Conclusion

In this paper we propose reduction results for e-voting protocols that apply to
vote privacy. We believe they also apply to stronger properties such as receipt-
freeness. Our first reduction result states that whenever there is an attack, there
is also an attack with only two honest voters and at most one dishonest voter.
This considerably simplifies the proofs and encodings otherwise needed to verify
such protocols using automated verification tools. We moreover consider the

http://3voters.gforge.inria.fr

258 M. Arapinis et al.

case where the protocol allows a voter to cast multiple votes and selects one
vote according to a given re-vote policy, e.g. select the last vote casted. In that
case verifying privacy is still complicated even when restricted to three voters.
We therefore show a second reduction result that allows to consider at most
10 ballots. In case the protocol has identifiable ballots we reduce the number
of necessary ballots to 7. We have shown that the hypotheses of our theorems
are satisfied by many protocols: several variants of Helios, Prêt-à-Voter, as well
as Civitas. For several of these protocols we were able to apply automated tool
verification and provide the first automated proofs for an unbounded number
of voters and ballots. For the decryption mixnets-based PaV protocol, we even
provide the first proof of vote privacy.

An interesting direction for future work is to further tighten the bound on the
number of ballots, possibly characterizing properties enjoyed by voting protocols.
We also foresee to show similar reduction results for other properties of e-voting,
such as verifiability. Given that the result is stated in a symbolic model, we also
plan to investigate if the result can be transposed to a computational model.

Acknowledgments. This work has received funding from the European Research
Council (ERC) under the EU’s Horizon 2020 research and innovation program (grant
agreement No 645865-SPOOC) and the ANRproject SEQUOIA ANR-14-CE28-0030-01.

References

1. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
14th Computer Security Foundations Workshop (CSFW 2001), pp. 82–96. IEEE
Computer Society (2001)

2. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions is
NP-complete. In: Proceedings of the 14th Computer Security Foundations Work-
shop (CSFW 2001), pp. 174–190. IEEE Computer Society (2001)

3. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and inse-
curity decision in presence of exclusive or. In: Proceedings of the 18th Annual Sym-
posium on Logic in Computer Science (LICS 2003), pp. 271–280. IEEE Computer
Society (2003)

4. Bhargavan, K., Corin, R., Fournet, C., Zalinescu, E.: Cryptographically verified
implementations for TLS. In: Proceedings of the 15th ACM Conference on Com-
puter and Communications Security (CCS 2008), pp. 459–468, October 2008

5. Kremer, S., Ryan, M.D.: Analysis of an electronic voting protocol in the applied pi
calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer,
Heidelberg (2005)

6. Gjøsteen, K.: Analysis of an internet voting protocol, Cryptology ePrint Archive,
Report 2010/380 (2010)

7. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. In: 20th Symposium on Logic in Computer Science
(LICS 2005), pp. 331–340, June 2005

8. Tiu, A., Dawson, J.E.: Automating open bisimulation checking for the spi calculus.
In: Proceedings of the 23rd Computer Security Foundations Symposium (CSF
2010), pp. 307–321. IEEE Computer Society (2010)

When Are Three Voters Enough for Privacy Properties? 259

9. Cheval, V., Comon-Lundh, H., Delaune, S.: Trace equivalence decision: negative
tests and non-determinism. In: Proceedings of the 18th ACM Conference on Com-
puter and Communications Security (CCS 2011), ACM, October 2011

10. Chadha, R., Ciobâcă, Ş., Kremer, S.: Automated verification of equivalence prop-
erties of cryptographic protocols. In: Seidl, H. (ed.) Programming Languages and
Systems. LNCS, vol. 7211, pp. 108–127. Springer, Heidelberg (2012)

11. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: 21st IEEE Computer Security Foun-
dations Symposium (CSF 2008), pp. 195–209. IEEE Computer Society (2008)

12. Arapinis, M., Bursuc, S., Ryan, M.D.: Reduction of equational theories for ver-
ification of trace equivalence: re-encryption, associativity and commutativity. In:
Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust. LNCS, vol.
7215, pp. 169–188. Springer, Heidelberg (2012)

13. Cortier, V., Smyth, B.: Attacking and fixing helios: an analysis of ballot secrecy.
J. Comput. Secur. 21(1), 89–148 (2013)

14. Arapinis, M., Cortier, V., Kremer, S., Ryan, M.: Practical everlasting privacy. In:
Basin, D., Mitchell, J.C. (eds.) POST 2013 (ETAPS 2013). LNCS, vol. 7796, pp.
21–40. Springer, Heidelberg (2013)

15. Cortier, V., Wiedling, C.: A formal analysis of the Norwegian E-voting protocol.
In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust. LNCS, vol.
7215, pp. 109–128. Springer, Heidelberg (2012)

16. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of the 28th ACM Symposium on Principles of Programming Languages
(POPL 2001), pp. 104–115. ACM (2001)

17. Okamoto, T.: Receipt-free electronic voting schemes for large scale elections. In:
Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 25–35. Springer, Heidelberg (1998)

18. Adida, B.: Helios: web-based open-audit voting. In: 17th Conference on Security
Symposium (SS 2008), pp. 335–348. USENIX Association (2008). http://dl.acm.
org/citation.cfm?id=1496711.1496734

19. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for helios
under weaker trust assumptions. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014,
Part II. LNCS, vol. 8713, pp. 327–344. Springer, Heidelberg (2014)

20. Ryan, P.Y.A., Schneider, S.A.: Prêt-à-voter with re-encryption mixes. In: Goll-
mann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp.
313–326. Springer, Heidelberg (2006)

21. Dreier, J., Lafourcade, P., Lakhnech, Y.: Defining privacy for weighted votes, single
and multi-voter coercion. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS
2012. LNCS, vol. 7459, pp. 451–468. Springer, Heidelberg (2012)

22. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993)

23. Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. Sci.
Comput. Program. 50(1–3), 51–71 (2004)

24. Cortier, V., Dallon, A., Delaune, S.: Bounding the number of agents, for equivalence
too. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 211–232.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49635-0 11

25. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. J. Logic Algebraic Program. 75(1), 3–51 (2008)

http://dl.acm.org/citation.cfm?id=1496711.1496734
http://dl.acm.org/citation.cfm?id=1496711.1496734
http://dx.doi.org/10.1007/978-3-662-49635-0_11

260 M. Arapinis et al.

26. Arapinis, M., Cortier, V., Kremer, S.: When are three voters enough for privacy
properties? Cryptology ePrint Archive, Report 2016/690, (2016). http://eprint.
iacr.org/2016/690

27. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: A comprehensive
analysis of game-based ballot privacy definitions. In: Proceedings of the 36th IEEE
Symposium on Security and Privacy (S&P 2015), pp. 499–516. IEEE Computer
Society, May 2015

28. Bulens, P., Giry, D., Pereira, O.: Running mixnet-based elections with helios. In:
2011 Electronic Voting Technology Workshop/Workshop on Trustworthy Elections,
EVT/WOTE 2011, USENIX Association (2011)

29. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
ACM Workshop on Privacy in the Eectronic Society (WPES 2005), pp. 61–70.
ACM (2005)

30. Clarkson, M., Chong, S., Myers, A.: Civitas: toward a secure voting system. In:
29th IEEE Symposium on Security and Privacy (S&P 2008), pp. 354–368. IEEE
Computer Society (2008)

31. Cheval, V., Blanchet, B.: Proving more observational equivalences with ProVerif.
In: Basin, D., Mitchell, J.C. (eds.) POST 2013 (ETAPS 2013). LNCS, vol. 7796,
pp. 226–246. Springer, Heidelberg (2013)

http://eprint.iacr.org/2016/690
http://eprint.iacr.org/2016/690

Efficient Zero-Knowledge Contingent Payments
in Cryptocurrencies Without Scripts

Wac�law Banasik, Stefan Dziembowski, and Daniel Malinowski(B)

University of Warsaw, Warsaw, Poland
Daniel.Malinowski@crypto.edu.pl

Abstract. One of the most promising innovations offered by the crypto-
graphic currencies (like Bitcoin) are the so-called smart contracts, which
can be viewed as financial agreements between mutually distrusting par-
ticipants. Their execution is enforced by the mechanics of the currency,
and typically has monetary consequences for the parties. The rules of
these contracts are written in the form of so-called “scripts”, which are
pieces of code in some “scripting language”. Although smart contracts
are believed to have a huge potential, for the moment they are not widely
used in practice. In particular, most of Bitcoin miners allow only to post
standard transactions (i.e.: those without the non-trivial scripts) on the
blockchain. As a result, it is currently very hard to create non-trivial
smart contracts in Bitcoin.

Motivated by this, we address the following question: “is it possible
to create non-trivial efficient smart contracts using the standard trans-
actions only?” We answer this question affirmatively, by constructing
efficient Zero-Knowledge Contingent Payment protocol for a large class
of NP-relations. This includes the relations for which efficient sigma pro-
tocols exist. In particular, our protocol can be used to sell a factorization
(p, q) of an RSA modulus n = pq, which is an example that we imple-
mented and tested its efficiency in practice.

As another example of the “smart contract without scripts” we show
how our techniques can be used to implement the contract called “trad-
ing across chains”.

1 Introduction

Cryptographic currencies (also dubbed the cryptocurrencies) are a very inter-
esting concept that emerged in the last few years. The most prominent of them,
and by far the largest one (in terms of capitalization), is Bitcoin, introduced
in 2009 [32]. The main property of these currencies is that their security does
not rely on any single trusted third party. The list of transactions in the system
is written on a public ledger that is maintained jointly by the users. Another

This work was supported by the WELCOME/2010-4/2 grant founded within the
framework of the EU Innovative Economy Operational Programme and by the Polish
National Science Centre grant 2014/13/B/ST6/03540.

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 261–280, 2016.
DOI: 10.1007/978-3-319-45741-3 14

262 W. Banasik et al.

reason why these currencies are so interesting is that they allow the users to per-
form much more than simple money transfers between each other. Namely, sev-
eral cryptocurrencies, including the Bitcoin, implement an idea of the so-called
smart-contracts. Such contracts can be viewed as distributed protocols executed
between a number of parties. Typically, they have financial consequences, i.e.,
the users contribute money to them, and these funds are later distributed among
the participants according to contract rules. Moreover, these contracts are “self-
enforcing”, which means that their execution is guaranteed by the rules of the
underlying cryptocurrency. In particular, once a party enters into such a con-
tract she cannot “change her mind” and withdraw her invested funds unless the
contract specifically allows her to do so.

To be more specific, consider a contract called the Zero Knowledge Contin-
gent Payment [16], which is an example on how Bitcoin contracts can provide
a solution for the so-called fair exchange problem (see, e.g., [34]). It is exe-
cuted between two parties: the Seller and the Buyer. The Buyer is looking for
a value x ∈ {0, 1}∗, that he does not know, but he is able to specify the con-
ditions of x that make it valuable for him. Namely, he can describe a function
f : {0, 1}∗ → {true, false} (in a form of a polynomial-time computer program,
say), such that every x satisfying f(x) = true, has a value B100 for him (here
“B” denotes Bitcoin currency unit). Obviously (assuming that P �= NP), find-
ing x such that f(x) = true is much harder than verifying that f(x) = true
holds. Hence, in many cases it makes a lot of sense for the Buyer to pay for
x. As an example: think of a Buyer that wants to buy a factorization p, q
of an RSA modulus N . He would then define f : N × N → {true, false} as
f(p, q) := true iff ((p · q = N) ∧ p �= 1 ∧ q �= 1).

Imagine now that the Buyer is approached by a Seller, who is claiming that
he knows x such that f(x) = true and he is willing to sell it. If this happens
over the Internet, and the parties do not trust each other then they face the
following problem: shall the Seller first send x to the Buyer who later pays to
him (after verifying that indeed f(x)), or the other way around: shall the Buyer
first pay and get x from the Seller? Clearly in the first case a malicious Buyer
can refuse to pay B100 to the Seller (after receiving x), and in the latter a
malicious Seller may not send x to the Buyer (after receiving the payment). Is
there a way to sell x in such a way that none of the parties can cheat the other
one? Unfortunately, it turns out (see, e.g., [33]), that this fundamental problem,
called the fair exchange cannot be in general solved without a trusted third
party. This is exactly where the contracts come to play. Intuitively, thanks to
this feature of the cryptocurrencies, the users can use the ledger as a trusted
entity that allows them to perform the exchange x for B100 simultaneously.
Technically (but still very informally), this is done by placing a contract C on
the ledger that has the following semantics: “The Buyer has to put aside B100.
This money can be claimed by the Seller only by posting x such that f(x) = true
on the ledger. If he does not do it within time t, then B100 goes back to the
Buyer.” Now, everybody who observes the ledger can easily verify if the contract

Efficient Zero-Knowledge Contingent Payments 263

obligations were respected by the parties, and decide whether B100 should be
now “transferred” from the Buyer to the Seller or not.

Another interesting example of a contract is so-called trading across chains
[12] where users can exchange in a secure and fair way money between different
cryptographic currencies. More advanced examples include, the rapidly-adjusted
micro-payments, the assurance contracts [12], the multiparty lotteries [4,6], or
general secure multiparty computation protocols [2,11,27]. Some experts pre-
dict that the smart contracts will revolutionize the digital economy. It is even
envisioned that in the future these contracts may be used to maintain large dis-
tributed autonomous corporations that would operate without any trusted party
control [22].

1.1 Contracts: From Theory to Practice

The above description ignores many technical details, and in particular it does
not mention how the contracts are written. The transactions that are used in
the contracts contain the so-called scripts. In Bitcoin the scripts are written
in the so-called Bitcoin script language [13], which is not Turing-complete, and
hence not every condition can be expressed in it. A serious obstacle when imple-
menting the Bitcoin contracts in real life is that in practice it is currently very
hard to post on the ledger a transaction corresponding to a non-trivial contract.
Technically, to write a transaction on the ledger one broadcasts it over Bitcoin
network and hopes that one of the miners (which are the entities that are main-
taining the ledger) will include it into a new block that he mines. This gives the
miners power to decide which transactions are included into the blockchain and
which are not. Unfortunately, currently most of the miners do not include more
complicated transactions into the blockchain. The reasons for this are: (1) such
transactions tend to be longer than the “standard” ones, and space in the block
is scarce, and (2) writing the transactions is tricky and error-prone, and most
of the mining pool operators agreed to disallow them in order to prevent the
users from loosing money. Technically deciding whether to accept a transaction
or not is done by computing a boolean function isStandard() that evaluates
to true only if the transaction is “standard”, and otherwise it evaluates to false.
The vast majority of the miners will include a transaction T in a new block only
if isStandard(T)= true (more on this can be found, e.g., in [5], Chap. 5). Up
to our knowledge, the only mining pool that currently accepts the non-standard
transactions is Eligius that mines less than 1 % of blocks.

Another problem with running the smart contracts in Bitcoin is that the
Bitcoin scripting language contains a feature, called the transaction malleabil-
ity, that makes it tricky to implement several natural contracts (for more
on this see the extended version of this paper [7], or, e.g., [3]). Although
some techniques of dealing with this problem are known [3], they are often
hard to use, since they make the contracts unnecessarily complicated (and
make the transactions longer), and sometimes force the parties to invest
more money than would normally be needed (by requiring them to put aside

264 W. Banasik et al.

so-called deposits). One interesting new tool for dealing with this problem is the
OP CHECKLOCKTIMEVERIFY instruction [38] that was recently deployed.

After Bitcoin was deployed several other cryptocurrencies were proposed. The
most interesting one from the point of view of the smart contracts, is Ethereum,
which permits to use the Turing-complete scripts. The aforementioned problem
of the high time consumption associated with the evaluation of the complicated
scripts is solved in Ethereum in the following way. Each step of the computation
of a script costs some small amount of money (the currency used for this is
called ether), and the script evaluates as long as there are enough funds for
this. Ethereum has recently been deployed in real life. It is, however, still a
very young project and it is unclear how successful it will be in the real life.
Moreover, as recently observed by Luu et al. [29] Ethereum may be susceptible
to attacks where the adversary wastes miners’ computational resources, which,
in turn means that the miners might have incentives not to verify the correctness
of the scripts. This, at least in theory, puts the whole Ethereum security model
at risk.

Some of the other new cryptocurrencies go in the opposite direction by remov-
ing the possibility of having scripts at all. Sometimes this is a price for hav-
ing additional interesting features in a currency. One example is the Zerocash
[10], where the key new feature is the real anonymity (obtained by using the
zero-knowledge techniques). Another, slightly different example is the Lightning
system, which is a new proposal for micropayments constructed on top of the
Bitcoin financial system, that also allows only standard transactions between
the parties.

1.2 Our Contribution: Contracts Without Scripts

These observations lead to the following natural question: can we efficiently
construct non-trivial contracts using only the standard transactions? In this
paper we answer this affirmatively. We show (in Sect. 3.2) a general technique
for efficiently solving the Zero-Knowledge Contingent Payment problem using
only standard transactions for any f such that the corresponding language {x :
f(x) = true} has an efficient zero-knowledge proof of knowledge of a special (but
very broad) form, that, in particular, includes the sigma-protocols (see, e.g.,
[20]). We define this class of protocols in Sect. 3.3, but for a moment let us only
say that it includes many natural languages. As an example we show an efficient
protocol for selling a factorization of an RSA modulus, which is a problem that we
already discussed at the beginning of this section. We implemented our protocol
and confirmed its efficiency (see Sect. 3.4). In our construction we do not rely
on any costly cryptographic mechanisms such as the generic secure multiparty
computation protocols, or the generic zero-knowledge schemes. Instead, we use
the standard and simple cut-and-choose technique. Our techniques can also be
used to solve, in a similar way, the “trading across chains” problem. Because of
the lack of space this is shown in the extended version of this paper [7].

Our protocols are proven secure in the random oracle model, and are based on
standard cryptographic assumptions, an assumption that time-lock encryption

Efficient Zero-Knowledge Contingent Payments 265

of [37] is secure, plus one additional assumption about the strong unforgeability
of the Elliptic Curve DSA (ECDSA) signatures used in Bitcoin. We describe this
assumption in more detail in Sect. 2. Our protocols have an exponentially small
probability of error (i.e.: the probability that the adversary cheats), assuming
that we are allowed to use so-called multisig transactions, i.e., transactions that
can be spent by providing signatures with respect to k public keys (out of n ≥ k
possible public keys). Currently such transactions are considered standard for
n ≤ 15. We note that if one does not want to use such transactions, then our
solution also works, but the error probability is inversely proportional to the
running time of the parties.

Related work. As already mentioned, the Zero-Knowledge Contingent Pay-
ment protocol has been described before in [16] and recently implemented [31]
for selling a proof of a sudoku solution. When viewed abstractly, our construc-
tion is a bit similar to the one of [16]. There are some important differences,
though. Firstly, the protocol of [16] uses some non-standard scripts. Secondly,
it is vulnerable to the “malleability attacks”: the refund transaction depends on
an identifier of the txn transaction, and becomes meaningless if txn is mauled.
Finally, the protocol of [16] uses generic zero knowledge protocols, or can be used
only for very simple problems (like selling the sudoku solution), while we rely
on much simpler and more efficient methods (in particular: the cut-and-choose
technique).

2 Preliminaries

Definitions. We will sometimes model the hash functions as random oracles,
see [9]. A signature scheme consists of a key generation algorithm SignGen, a
signing algorithm Sign, and a verification algorithm Vrfy. For a formal definition
of a signature scheme see [26], or the extended version of this paper [7]. The
standard security notion for signatures is the existential unforgeability under
a chosen message attack. In this paper we need a stronger security definition,
namely the strong existential unforgeability under a chosen message attack. This
is formally defined in [1,18]. Essentially, the definition is as follows. Consider the
standard chosen-message attack during which the adversary interacts with a
signing oracle that knows some secret key sk . We say that A mauls a signature
if he is able to produce an output (ẑ, σ̂) such that σ̂ is a valid signature on ẑ
with respect to the public key pk (that corresponds to sk), and σ̂ has not been
sent to A before. A signature scheme is existentially strongly unforgeable under a
chosen message attack (or: non-malleable) if for any polynomial-time adversary
the probability that he mauls a signature is negligible.

We will use (public key and private key) encryption schemes, defined in a
standard way (see [26] or [7].) We say that a public-key encryption scheme is
additively homomorphic if for every valid public key pk and private key sk the
set of valid messages for pk is an additive group (Hpk ,+). Moreover, we require
that there exists an operation ⊗ : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗ ∪{⊥}, such that for

266 W. Banasik et al.

every valid (pk , sk) and every pair z0, z1 ∈ Hpk we have that Decsk (Encpk (z0) ⊗
Encpk (z1)) = z0 + z1 (where Enc and Dec are the encryption and decryption
algorithms, respectively).

Our protocols also rely on the time-lock commitment schemes [17,37] (for
the definition of the standard commitment schemes see, e.g., [26], or [7]). Infor-
mally, (Commit,Open) is a time-locked commitment if it is a standard commit-
ment scheme, except that the receiver can open the commitment by himself
(even if the sender is not cooperating). Such forced opening requires a significant
computational effort. Moreover it is required that this process cannot be paral-
lelized. Every time-lock commitment comes with two parameters: τ0 and τ1 (with
τ0 ≤ τ1), where τ0 denotes the time (in seconds, say) that everybody, including
very powerful adversaries, needs to force open the commitment, and τ1 denotes
time needed by the honest users to force open the commitment. We will call such
a commitment scheme (τ0, τ1)-secure. Of course, this is not a formal mathemat-
ical definition (as it refers to “real time”), but for the purpose of this paper we
can stay on this informal level. Later, in Sect. 3.4 we assume that τ1 = 10 · τ0,
but this choice is slightly arbitrary, and for real practical applications one would
need to perform a more careful analysis of what is the reasonable ratio between
τ0 and τ1 that one can assume.

For a description of the area of zero-knowledge the reader may consult, e.g.,
[24] (a brief introduction also appears in [7]). In our paper we actually need a
stronger notion, namely the zero-knowledge proofs of knowledge [8]. Such proofs
are defined only if L is in NP, and hence for every x ∈ L there exists an NP-
witness w that serves as a proof that x ∈ L. We assume that P knows x and
require that the prover not only proves that x ∈ L, but also convinces the verifier
that he knows the corresponding witness w. Defining formally the property of
a prover “knowing” some value is a bit tricky, and we do not do it here (see,
e.g., [24] for such a definition). Very informally, it is usually defined as follows:
for every (possibly malicious) prover P ∗ there exists a polynomial-time machine,
called the knowledge extractor, that can interact with P ∗ (possibly even rewind-
ing it), and at the end it outputs x. The definition that we use here is more
restrictive. First, suppose without loss of generality, that the last two messages
in the protocol are: a challenge c sent by the verifier to the prover, and provers
response r. We require (cf. Sect. 3.3) that the extractor extracts the witness after
being given transcripts of two accepting executions that are identical except that
that the challenge messages are different (and the response messages may also be
different). This class of protocols includes our protocol for selling the factoriza-
tion of the RSA modulus. It is also similar to the sigma-protocols (see, e.g., [20]),
except that it may have more rounds than 3, but on the other hand we require
that the zero-knowledge property holds also against the malicious verifier. Note
that some sigma-protocols, including the Schnorr protocol, are conjectured to
be secure also in this case. Observe also that we can easily get rid of the “honest
verifier” assumption by requiring the verifier to make his message equal to a
hash of some message (chosen by him) [21]. Hence, our method can be used also
to efficiently “sell” a witness of any relation for which an efficient sigma-protocol
exists.

Efficient Zero-Knowledge Contingent Payments 267

Instantiations. As explained in the introduction, Bitcoin uses an Elliptic Curve
Digital Signature Algorithm (ECDSA) [19,25], which is a variant of the Digital
Signature Algorithm (DSA). More concretely, it uses the Secp256k1 curve [14],
but to be able to state our theorems in an asymptotic way we will be more
general and define our protocol over arbitrary elliptic curve. The description of
this algorithm appears in [7].

As it turns out, these signatures are not strongly unforgeable: if (r, s) is a valid
signature on some message z, then also (r,−s mod p) (where p is the order over
which the elliptic curve G is defined) is a valid signature with respect the same
public key (see, e.g., [7] for more on this). In order to make our signature scheme
strongly-unforgeable we follow the guidelines from [39]. Namely, we assume that
the only “legal” signatures have a form (r, s) such that s ≤ (p − 1)/2. To this
end, we simply assume that, whenever our protocol gets as input an ECDSA
signature (r, s) with s > (p − 1)/2, it converts it to one with s ≤ (p − 1)/2
by computing s := −s mod p. An ECDSA scheme with only “legal” signatures
being the ones with s ≤ (p − 1)/2 will be called a positive ECDSA.

We can now informally state our strong unforgeability assumption as fol-
lows: “The positive ECDSA defined over Secp256k1 is strongly unforgeable under
chosen-message attack” (or equivalently: the only way to maul the signatures
defined over Secp256k1 is to negate the s). Note that this statement is informal,
and in order to formalize it we would need to express it in an asymptotic way.
See [7] for more on this, and on the general issue of the malleability of Bitcoin
transactions.

We will use the additively-homomorphic public key encryption scheme intro-
duced by Pascal Paillier [35]. Below, we describe only the properties of this
scheme that are needed in this work. For more details the reader can consult, e.g.,
[35]. The public key pk of this encryption scheme contains a modulus n = p · q,
where p and q are large distinct random primes of the same length. The Pail-
lier encryption scheme is homomorphic over (Zn,+). It is semantically secure
under the Decisional composite residuosity assumption [35]. In the sequel we
will assume that (AddHomGen,AddHomEnc,AddHomDec) is a Paillier encryp-
tion scheme. The elements on which we will perform the addition operations
will be the exponents in the elliptic curve group of the ECDSA scheme. Hence,
we need Zn to be larger than G, and, for the reasons that will become clear later,
it will be convenient to have n � |G|. We therefore assume that on input 1λ the
algorithm AddHomGen produces as output (pk , sk) such that the corresponding
group Zn satisfies n > 2 · |G|4.

We use very standard commitment schemes that are based on the hash func-
tions, and are secure in the random oracle model. Let H be a hash function. In
order to commit to x ∈ {0, 1}∗ the committer chooses random r ∈ {0, 1}λ (where
1λ is the security parameter) and produces as output Commit(x) = H(x||r). In
order to open the commitment it is enough to reveal (x, r). The fact that the
scheme is binding follows from the collision-resistance of H. The hiding property
follows from the fact that we model H as the random oracle (and hence H(x||r)
does not reveal any information about x).

268 W. Banasik et al.

We use the classic timed commitments of [37]. In order to commit to a mes-
sage x ∈ {0, 1}� (for some �) the committer chooses an RSA modulus n, i.e., he
selects two random primes p and q of length λ (where 1λ is the security parame-
ter) and sets n = pq. He then computes ϕ(n) = (p−1)(q−1). Let t be some para-
meter. The committer takes random y ∈ Z∗

n and computes z := y2t

mod n. Since
he knows ϕ(n) he can compute it efficiently by first computing e = 2t mod ϕ(n)
(doing this using the standard square-and-multiply algorithm takes log2 t squar-
ing modulo n), and then letting z := ye mod n. Finally, he computes H(z) and
outputs y and H(z) ⊕ x, where H : Z∗

n → {0, 1}� is a hash function. On the
other hand, it is conjectured [37] that an adversary, who does not know ϕ(n)
needs to perform t squarings to compute z (and hence to compute x). Also, no
practical methods of parallelizing the problem of computing z is known. It is also
easy to see that this algorithm is a commitment in a standard sense, i.e., if the
committer is cooperating with the receiver then he can open the commitment
efficiently (by sending (p, q) to the receiver). To set the parameter t let c be the
number of squarings that the honest receiver can do in one second. We then let
t = τ1 · c (where τ1 is the parameter of the timed commitment scheme).

A short description of the Bitcoin transaction syntax. We now briefly
describe the syntax of the Bitcoin transactions. A more complete description can
be found, e.g., in [5,7,15]. Since we do not use the non-standard transactions we
will provide a simplified description that ignores this feature of Bitcoin. The users
in Bitcoin are identified by their public keys in the ECDSA signature scheme
(SignGen,Sign,Vrfy). Each such a key pk is called an address. In the simplest
case transaction T simply sends some amount Bx (where x can be smaller than
one) from an address pk0 (called an input of T) to an address pk1 (called the
output of T). The amount Bx will also be called the value of T . Transaction
T must contain a pointer to another transaction T ′ that appeared earlier on
the ledger and has value at least Bx, and whose destination is pk0. We say
that T redeems T ′. Transaction T is valid only if T ′ has not been redeemed
by some other transaction before. Hence, in the simplest case a transaction
contains a following tuple [T] := (TXid(T ′), value : Bx, from : pk0, to : pk1),
where TXid(T ′) denotes the identifier of T ′ (we will define it in a moment),
and [T] is called a simplified transaction T . Of course, in order for [T] to have
any meaning it needs to be signed with the private key sk0 corresponding to
pk0. Hence, the complete transaction T has a form ([T],Signsk0

([T])), and is
valid if all the conditions described above hold, and the signature on [T] is
valid with respect to pk0. The TXid(T) is defined simply as a SHA256 hash of
([T],Signsk0

([T]))).
Another standard type of the transactions are the so-called multisig

transactions. In this case [T] has a form (TXid(T ′), value : Bx, from :
pk0, to “k-out-of-n” : pk1, . . . , pkn) where n ≤ 15. It is signed by pk0. It can
be spent by a transaction T ′′ that is signed by k signatures with respect to k
different public keys from the set pk1, . . . , pkn. More precisely the transaction

Efficient Zero-Knowledge Contingent Payments 269

T ′′ has to have a form ([T ′′], σi1 , . . . , σik
), where 1 ≤ i1 < · · · < ik ≤ n and for

every 1 ≤ j ≤ k holds Vrfypkij
([T ′′], σij

) = ok.

3 The Protocols

Our model. We will consider two-party protocols, executed between a Buyer
B and a Seller S. If a party is malicious then she may not follow the protocol (in
other words: we consider the active security settings). The parties are connected
by a secure (i.e. secret and authenticated) channel. Such a channel can be easily
obtained using the standard techniques, provided that the parties know each
others public keys. Observe that in order to do any financial transfers in Bitcoin
they anyway need to know each other keys (let (skB , pkB) be the ECDSA key
pair of the Buyer, and let (skS , pkS) the key pair of the Seller), and the par-
ticipating parties can use the same key pairs for establishing the secure channel
between each other. How exactly these public keys pkB and pkS are exchanged
is beyond the scope of this paper.

The security definition. We now outline a construction of our protocol in
which the Seller sells to the Buyer x such that f(x) = true (for some public
f : {0, 1}∗ → {true, false}). We assume that the “price” of x is Bd, and that,
before an execution of the protocol starts, there is some unspent transaction T0

on the blockchain whose value is Bd, and whose output is pkB (i.e.: it can be
spent by the Buyer). The parties initially share the following common input:
a security parameter 1λ, a price Bd for the secret x, parameters a, b ∈ N such
that a > b, an elliptic curve group (G,O, g,+) for an ECDSA signature scheme,
such that log2 |G|� = λ, and parameters (τ0, τ1). We say that the SellWitnessf
protocol is ε-secure if the following properties hold: (1) except with probability
ε+μ(λ) (where μ is negligible), if an honest Buyer loses his funds then he learns
x′ s.t. f(x′) = true, (2) except with negligible probability, if an honest Seller
does not get Buyer’s funds then the Buyer learns no information about x. We
construct a protocol SellWitnessf (for a large class of functions f) in Sect. 3.3.
First, however, we give an outline of our construction. The necessary ingredients
are defined and constructed in Sects. 3.1 and 3.2.

Outline of the construction. Our protocol consists of several stages. The
main idea can be described as follows (we start with describing an “idealized”
protocol and then we show how to modify it to make it efficient and practical).
Imagine that the parties first create, in a distributed way, an ECDSA key pair
(sk , pk) such that the private key sk is secret-shared between the parties, and the
public key pk is known to both of them. Then, the Buyer prepares a transaction
T1 that sends the output of T0 to the public key pk . Obviously for a moment the
Buyer has to keep T1 private, as posting T1 on the ledger would put his money
at risk (as spending money from T1 requires cooperation of the Seller). He now

270 W. Banasik et al.

creates a simplified transaction1 [T2] that redeems T1 and sends the output to
the public key pkS of the Seller. Then, the parties jointly sign [T2] with the
shared private key sk in such a way that the signature σ = Signsk ([T2]) is known
only to the Seller. Note that this is possible without revealing T1 to the Seller, as
the only thing that is needed from T1 is its transaction identifier, which happens
to be equal to the hash H(T1) of T1 (in the random oracle model H(T1) clearly
reveals no information about T1).

Let us now briefly analyze the situation after these steps are executed: the
Buyer knows T1, and the Seller knows T2 that spends T1 (but she does not know
T1, so for a moment she cannot make any use of T2). The key idea now is: the
Seller will make a commitment to the signature σ in such a way that opening
this commitment will automatically reveal x (and she will convince the Buyer
that the commitment was formed in this way). Now the Buyer can post T1 on
the ledger, and wait until the Seller redeems it. The only way in which she can do
it, is to publish σ (here we use the assumption that the signatures are strongly
unforgeable), so the Buyer can be sure that he learns x.

This construction is similar to the one described in [16]. Unfortunately, in
practice there are several problems with it. Firstly, there is no way for the Buyer
to “force” the Seller to publish σ, and hence the Buyer’s money can be locked
forever in T1. We solve this problem using the time-locked commitments. The
Seller has to commit with such a commitment to her private share of sk , so
that it can be unlocked by the Buyer after some time. In this way he can get
his money back by signing a transaction T ′

2 that redeems T1 and sends the
money to his key pkB . As described in Sect. 1, an alternative solution is to use
the OP CHECKLOCKTIMEVERIFY instruction. We describe this solution in the
extended version of this paper [7].

Secondly, the currently-known protocols for distributed signing with the
ECDSA signatures are rather complicated and involve costly generic zero-
knowledge techniques [30] (see also [23]). Also, the generic zero-knowledge would
need to be used to prove that the timed commitment above is indeed a commit-
ment to Seller’s share in sk .

Our solution to this problem is to use the standard technique, called cut-and-
choose (see, e.g., [28]). Informally, the idea here is to perform a number a of inde-
pendent executions of a protocol. Then the Buyer tells the Seller to “uncover”
a − b (for some parameter b < a) of them, by opening all her commitments
related to these executions. It is easy to see that, if all the opened commitments
were correct, then most probably a significant fraction of the remaining b (“non-
uncovered”) executions will also be correct. Since some executions may still be
incorrect, we will thus create T1 as a multisig transaction (so it can be spent with
less than b signatures). This is done in Sects. 3.1 and 3.2. Thirdly, we need to
describe how to create the commitment to σ in the last step that requires proving
that “opening this commitment will automatically reveal x”. We do it as follows:
we require that the Seller commits to F (σ) (where F is some hash function),

1 Recall (cf. Sect. 2) that a “simplified transaction” means a transaction without a
signature.

Efficient Zero-Knowledge Contingent Payments 271

1. The parties run a times the SharedKGen protocol to generate secret-shared signing keys.
2. The Buyer selects b of these keys and uses GenMsgT to produce transactions T1 and T2.
3. The parties run theUSG protocol to sign T2 using all a shared keys and the Seller generates

commitments. Then the Buyer checks the Seller on the unselected a − b executions.
– The single signing iteration is performed using the KSignGen procedure.

4. Using the Zero Knowledge protocol (and again the cut-and-choose technique) the Seller
proves that by revealing any signature the Buyers will extract the witness x from it.

5. The Buyer broadcasts T1. Then the Seller uses the signatures to broadcast T2 and the Buyer
can extract the witness x (or solve the timed commitment to get his funds back).

Fig. 1. The outline of the SellWitnessf protocol and the subprotocols.

and then we use again the cut-and-choose technique (on the elements of F (σ))
to prove that if the whole F (σ) is opened then x is revealed. Technically, this
is done by showing that revealing F (σ) opens commitments to messages from a
zero-knowledge proof of knowledge of x. For the details see Sect. 3.3. The outline
of the SellWitnessf protocol and the subprotocols is presented on Fig. 1.

3.1 The Two-Party ECDSA Key Generation Protocol

The first ingredient of our scheme is a protocol in which two parties, the Seller
and the Buyer, generate a (public key, private key) key pair for the ECDSA
signatures, in such a way that the secret key is secret-shared between the Seller
and the Buyer. To be more precise, fix an elliptic curve (G,O, g,+) constructed
over a field Zp and recall that the secret key in the ECDSA signatures is a private
integer d ∈ Z|G|. We construct a two-party protocol, that we call SharedKGen,
in which both parties take as input a security parameter 1λ and at the end they
both know an ECDSA public key pk = d · g (where d is secret), and additionally
the Seller knows dS ∈ Z|G| and the Buyer knows dB ∈ Z|G| such that dS ·dB = d
(mod |G|) is a secret-sharing. The protocol is very similar to the classic actively-
secure key generation protocols for the discrete log signatures [36]. Because of
the lack of space it is presented in the extended version of this paper [7].

3.2 The Unique Signature Generation Protocol

After the parties generate a key pairs (sk1, pk1), . . . , (ska, pka) using the
SharedKGen protocol, they perform an additional procedure, called unique signa-
ture generation (USG) protocol, whose goal is to sign a message z ∈ {0, 1}∗ with
respect to these keys. The message z is chosen by the Buyer and may depend on
the public keys that were generated in the SharedKGen phase, and on the Buyer’s
private randomness. During the execution of the USG protocol a−b private keys
are “uncovered” (here b < a is some parameter), i.e., they are reconstructed by
the parties. At the end of the execution they are discarded and the output of
the protocol depends only on the key pairs whose private keys were not uncov-
ered. Let (ŝk1, p̂k1), . . . , (ŝkb, p̂kb) denote these key pairs. Each p̂ki is known to

272 W. Banasik et al.

both parties, and each ŝki remains secret and is shared between the parties (as
a pair (d̂i

S , d̂i
B) of shares). Moreover the Seller knows the ECDSA signatures

σ̂1, . . . , σ̂b on z with respect to p̂k1, . . . , p̂k b (respectively). The Buyer does not
know these signatures, but we require that the Seller is committed (again: using
COM) to each F (σ̂i), where F is a hash function (modeled as a random oracle).
Let Γ1, . . . , Γb denote the commitments created this way. Finally, we want the
Buyer to be able to “force open” the values d̂1S , . . . , d̂b

S after some time τ1, so that
he can reconstruct the private keys ŝk1, . . . , ŝk b and sign any message that he
wants using these keys. This is achieved using a (τ0, τ1)-secure time-locked com-
mitment scheme TLCOM = (TLCommit,TLForceOpen). Let Φ1, . . . , Φb denote
the timed-commitments that were created this way.

To explain informally our security requirements, first let us say what are the
goals of a malicious Seller. One obvious goal is to produce a signature on some
message z∗ �= z (with respect to some p̂k i). A more subtle (and more specific
to our applications) goal for the Seller is to learn some signature σ∗

i on z (with
respect to one of p̂k1, . . . , p̂k b) other than σ̂1, . . . , σ̂b. Finally, she could try to
time-commit to some value other than d̂i

S (so that, after time τ1 passes, the
Buyer cannot reconstruct ŝk i). Formally, we say that the malicious Seller S∗

breaks the key i (for i = 1, . . . , b) if the Buyer did not abort the protocol and
one of the following holds:

– after the execution of the protocol S∗ produces as output (σ̂∗
i , ẑi) such that

σ̂∗
i is a valid signature on ẑi �= z with respect to p̂k i,

– after the execution of the protocol S∗ produces as output σ̂∗
i such that σ̂∗

i is
a valid signature on z with respect to p̂k i, and S∗ opens the commitment Γi

to a value different than F (σ̂∗
i),

– the value di∗
B that results from forced opening of Φi is such that d̂i

S · di∗
B �= d̂i.

Now, consider a malicious Buyer. Informally, his goal is to learn any valid sig-
nature on z with respect to any key p̂k1, . . . , p̂k b. If he does not succeed in this,
then another goal that he could try to achieve is to learn at least one of the
F (σ̂i)’s. Recall also that the secrets of the Seller are time-locked. Hence after
time τ0 the Buyer can easily “break” the protocol, and our definition has to take
care of it. Formally, we say that a malicious Buyer B∗ wins if the Seller did not
abort the protocol and before time τ0 one of the following holds:

– the B∗ produces as output a signature on z∗ (either z∗ = z or z∗ �= z) that is
valid with respect to one of the p̂k i’s,

– the B∗ learns some information about one of the F (σ̂i)’s.

We say that a USG protocol is (ε, b̂)-secure if (a) for every polynomial-time
malicious Seller the probability that she breaks at least b̂ keys is at most ε+μ(λ),
where μ is negligible, and (b) for every polynomial-time malicious Buyer the
probability that he wins is negligible.
The implementation of the USG protocol. Our USG protocol is depicted
on Fig. 2. We assume that before it is executed the parties run the SharedKGen

Efficient Zero-Knowledge Contingent Payments 273

procedure a times (on input 1λ). We denote these executions as SharedKGeni(1λ)
for i = 1, . . . , a. As a result of each execution SharedKGeni, both parties learn
the public keys pk i and they secret-share the corresponding secret keys sk i (let
(di

S , di
B) be the respective shares).

The USG protocol uses as a subroutine the protocol KSignGen from Fig. 3.
This protocol allows the parties to sign a message z using the secret key that
is secret shared d = dS · dB . First they jointly create signing randomness K.
Then the Seller creates a new key in the Paillier encryption scheme and sends
the encryption of his share dS of the signing key d to the Buyer. The Buyer
calculates the encryption of the unfinished signature (using the homomorphic
properties of the Paillier cryptosystem) and sends it to the Seller. Then the
Seller decrypts it and completes the signature σ. At the end the Seller commits
to F (σ) and creates a timed commitment to dS . We now have the following
lemma, its proof appears in [7].

Lemma 1. Suppose Paillier encryption is semantically secure, COM and
TLCOM are secure commitment schemes, and the ECDSA scheme used in the
construction of the USG is Strongly Unforgeable signature scheme. Then the USG

protocol constructed on Fig. 2 is (ε, b̂)-secure for ε = (b/a)b̂.

1. The Buyer chooses a random subset J ⊂ {1, . . . , a}, such that |J | = a − b. Let {j1, . . . , jb}
denote the set {1, . . . , a} \ J .

2. The Buyer chooses a message z to be signed and sends it to the Seller.
3. For i = 1 to a the parties execute the KSignGen(1λ) procedure depicted on Fig. 3. As a result

of each such execution, the Seller is committed to Si = F (σi) and timed-committed to di
S .

4. The Buyer sends J to the Seller.
5. For every j ∈ J the Seller opens the commitments to Sj and dj

S , and sends σj , kj
S and sk j

AH

to the Buyer.
6. The Buyer aborts if any of the commitments did not open correctly. Otherwise he verifies if the

following holds (for every j ∈ J): (a) Vrfypkj (z, σj) = ok, (b) F (σj) = Sj , (c) dj
S · dj

B · g =

pk j , and (d) Dec
sk

j
AH

(cj
S) = dj

S ,

7. If the verification fails then the Buyer aborts. If he did not abort then the parties use as out-
put the values that were not open in Step 5. More precisely, the parties set (ŝk i, p̂k i, σ̂i) :=
(sk ji , pk ji , σji).

Fig. 2. The USG protocol.

3.3 The Construction of the SellWitnessf Protocol

In this section we show how to use the USG protocol to construct the
SellWitnessf protocol (defined in Sect. 3). Our assumption is that f has a
zero-knowledge proof of knowledge protocol, that we denote F , in which the
Seller can prove that she knows an x such that f(x) = true. Additionally
F consist of two phases: SetupF and ChallengeF . Let the values AF and BF
denote the views of the Seller and the Buyer (respectively) after executing

274 W. Banasik et al.

reyuBrelleS
sample: kS ← Z

∗
|G|

compute: KS := kS · g Commit(KS)

KB

sample: kB ← Z
∗
|G|,

compute: KB := kB · g

Open(KS)
K := kS · KB

if K = O then abort
K := kB · KS

if K = O then abort

The parties now know pk , K ∈ G. The corresponding discrete logs of these values are
multiplicatively shared between the parties as pairs (dS , dB) and (kS , kB).

parse K as (x, y)
r := x mod |G|
if r = 0 then abort

parse K as (x, y)
r := x mod |G|
if r = 0 then abort

(pkAH, skAH) :=

AddHomGen(1λ)
cS := AddHomEncpkAH(dS) pkAH, cS

c0 := (kB)−1 · H(z) mod |G|
c1 := AddHomEncpkAH(c0)

t := (k−1
B) · r · dB mod |G|

c2 := c1 ⊗ (cS)t

samples u ← {1, . . . , |G|2}
cB := c2⊗AddHomEncpkAH(u·|G|)s0 := AddHomDecskAH(cB)

s := (kS)−1 · s0 mod |G|
if s = 0 then abort
σ := (r, s)
if Vrfypk (z, σ) = ⊥ then abort
S = F (σ)

cB

Γi := Commit(S)
Φ := TLCommit(dS)

Γi, Φ

Fig. 3. The KSignGen(1λ) procedure. Recall that G is an elliptic curve group for
ECDSA, and (AddHomGen,AddHomEnc,AddHomDec) is a Paillier encryption scheme
which is additively homomorphic over Zn, where n > 2 · |G|4.

the SetupF phase. In the ChallengeF phase the Buyer generates a challenge
message cF = GenChallengeF (BF) and sends it to the Seller. Then the Seller
calculates the response rF = GenResponseF (x,AF , cF) and sends it to the
Buyer. At the end the Buyer accepts according to the output of the function
VerifyResponseF (BF , cF , rF) ∈ {true, false}. The fact that F is a proof of knowl-
edge is formalized as follows: we require that there is also a function ExtractF
s.t. ExtractF (BF , c1F , r1F , c2F , r2F) = x′ and f(x′) = true if only VerifyResponseF
(BF , ci

F , ri
F) = true for i = 1, 2 and c1F �= c2F . That means that the witness

x′ can be computed from the correct answers to two different challenges. We
also assume that from the point of view of the Seller the challenge cF is chosen
uniformly from the set XAF . Without loss of generality we also assume that
XAF = {0, 1}.

Efficient Zero-Knowledge Contingent Payments 275

The parties use the USG protocol, so we have to describe how the Buyer
produces the message z to be signed. Given the public keys ˆpk1, . . . ,

ˆpk b the
Buyer first creates a transaction T1 that takes Bd from his funds and sends
them to a multisig escrow “b-out-of-(2b − 1)” using public keys ˆpk1, . . . ,

ˆpk b

and b − 1 times his own public key pkB . The Buyer does not broadcast T1

yet. Then he creates a transaction T2 that spends the transaction T1 and sends
all the funds (Bd minus fee) to the public key pkS owned by the Seller. The
simplified transaction z := [T2] is the message that the parties later sign. We
call this procedure GenMsgT . We assume that each Si from the USG protocol is
divided into 2λ parts Si,1, . . . , Si,2λ each of size λ. Additionally we assume that
each part Si,j is committed separately. To explain the idea behind our protocol
assume for simplicity that b = 1. Recall that at the end of the USG protocol the
Buyer knows the transaction T1 that sends his funds to the key secret-shared
between the Seller and the Buyer. Both parties know the transaction T2 that
is redeeming the transaction T1 and sends the money to the Seller. The Seller
knows the signature σ on T2, but she cannot use T2 yet, because the Buyer did
not broadcast T1. When the Buyer learns σ then he will be able to learn the
secret random values S1, . . . , S2λ to which the Seller is committed. Additionally
after some (long) time the Buyer will learn the secret key needed to redeem T1

when only he force-opens the time-locked puzzle hiding dS .
Now the Seller and the Buyer will use cut-and-choose technique again. They

run 2λ times the first part SetupF of the zero knowledge proof of knowledge F of
the x satisfying f . Each time the Seller calculates the responses ri

0 and ri
1 to the

challenges c = 0 and c = 1. The Seller encrypts ri
0 and ri

1 using the same key Si

to get γi
0 and γi

1 and she commits to each ciphertext. Then the Buyer selects λ
indices j1, . . . , jλ and challenges the Seller on them using c1, . . . , cλ ∈ {0, 1}. The
Seller opens commitments to Sj1 , . . . , Sjλ and to γj1

c1 , . . . , γ
jλ
cλ

(the Seller opens
only one of γjk

0 , γjk

1) and the Buyer uses secrets Sjk to decrypt γjk
ck

and verify
the response. If the Buyer verifies everything without an error, then the Seller
opens the commitments to γk

0 and γk
1 (but not Sk) for k �= j1, . . . , jλ.

Now the Buyer broadcasts the transaction T1. The Seller can spend it by
revealing σ — in that case the Buyer can compute Sk, decrypt γk

0 and γk
1 to

learn responses rk
0 and rk

1 and from them extract the value x. And if the Seller
does nothing then after some time the Buyer will solve his time-locked puzzle,
learn the secret key and take his funds back. The SellWitnessf protocol is depicted
on Fig. 4. We have the following lemma, its proof appears in [7].

Lemma 2. Suppose Paillier encryption and symmetric encryption are semanti-
cally secure, COM and TLCOM are secure commitment schemes, and the ECDSA
scheme used in the construction of the USG is Strongly Unforgeable signature
scheme. Assume additionally that there is a zero knowledge proof F of knowl-
edge of x s.t. f(x) = true of the required form. Then the SellWitnessf constructed
on Fig. 4 is ε-secure for ε =

(
b
a

)b
.

276 W. Banasik et al.

1. The parties execute the USG protocol using the provided parameters. The Buyer will generate
transaction T2 to be signed as defined earlier in the procedure GenMsgT .

2. For i = 1 to b:
a) For j = 1 to 2λ: the parties execute the Setupi,j

F phase and the Seller and the Buyer learns
Ai,j

F and Bi,j
F respectively.

b) For j = 1 to 2λ: the Seller calculates the two challenges (in random order) that
can be chosen by the Buyer ci,j

1 and ci,j
2 . Then she calculates the responses ri,j

k =
GenResponseF (x, Ai,j

F , ci,j
k) for k = 1, 2.

c) For j = 1 to 2λ: The Seller uses the secret Si,j as a key in the symmetric cypher and
encrypts γi,j

k = EncSi,j (ci,j
k , ri,j

k) for k = 1, 2. Then she commits to γi,j
k for k = 1, 2.

d) The Buyer chooses random subset J i ⊂ {1, . . . , 2λ} of size λ. Then he sends to the Seller
(j, ci,j

B := GenChallengeF (Bi,j
F)) for j ∈ J i.

e) For j ∈ J i: the Seller opens her commitment to Si,j and checks that ci,j
B = ci,j

k for k = 1
or k = 2. She opens the commitments to γi,j

k for only this k.
f) For j J∈� i: the Seller opens her commitments to γi,j

k for k = 1, 2.
g) The Buyer verifies all the commitments.
h) For j ∈ J i: the Buyer decrypts (ci,j , ri,j) = DecSi,j (γi,j

k). Then he checks that ci,j =
ci,j

B and VerifyResponseF (Bi,j
F , ci,j

B , ri,j) = true.
3. The Buyer broadcasts T1 and the parties wait until it becomes final.
4. The Seller broadcasts T2 using the signatures σ̂1, . . . , σ̂b to get her payment.
5. The Buyer uses signatures σ̂i to calculate secrets Si,j . Then he decrypts all the values γi,j to get

all the challenges and responses ci,j
k , ri,j

k . At the end using any pair of responses he calculates
x′ = ExtractF (Bi,j

F , ci,j
1 , ri,j

1 , ci,j
2 , ri,j

2).
6. If the Seller do not redeem the Buyer’s transaction then the Buyer force-opens time-locked

puzzles Φi and uses any of the opened values di
S to get his funds back.

Fig. 4. The SellWitnessf protocol.

Prover Verifier
y sample: x ← Z

∗
n,

if x > n/2 then
set x = n − x,
compute: y = x2 mod nif y is not a square in Zn then set r0, r1 ← Z

∗
n,

otherwise calculate both square roots of y that
are smaller than n/2 and store them in r0, r1 in
a random order Commit(r0),Commit(r1)

x

if x2 �= y mod n or x > n/2 then abort,
let b ∈ {0, 1} be such that rb = x b,Open(rb) accept if and only if

rb = x and the open-
ing of the commitment
verified correctly

Fig. 5. The ZKFactorization(n) protocol

3.4 Protocol for Selling a Factorization of an RSA Modulus

In this section we use the SellWitness protocol to construct the protocol for selling
a factorization of an RSA modulus. To do it, we introduce the ZKFactorization
protocol depicted on Fig. 5 — a zero knowledge proof of knowledge of the

Efficient Zero-Knowledge Contingent Payments 277

factorization of the RSA modulus. We now have the following lemma, whose
proof appears in [7].

Lemma 3. Assume that the commitment scheme is hash based and we model
the hash function as a programmable oracle. Then the protocol ZKFactorization
depicted on Fig. 5 is a zero knowledge proof of knowledge of the factorization of
the RSA modulus.

Implementation of the protocol for selling a factorization of an RSA
modulus. We have created a prototype implementation of the protocol for sell-
ing a factorization of an RSA modulus. The main part of the protocol is writ-
ten in C++, it is using the Crypto++ library for cryptographic functions. The
Bitcoin related functionality is written in Java using the bitocinj library. The
communication between C++ and Java is operated by Apache Thrift. The imple-
mentation is only a proof of concept but we were able to verify the feasibility and
efficiency of the protocol. The current version of the protocol can be found on
github.com/SellWitness/ZKFactorization. When using the ZKFactorization pro-
tocol in the SellWitness protocol we were able to simplify the main protocol a
little. In the ZKFactorization protocol the Seller sends the commitments to the
square roots of y but now it is not necessary because we do similar step in the
SellWitness protocol. This is why the only messages exchanged between the par-
ties before the Buyer sends the challenge are: first the Buyer sends yi,j , then the
Seller calculates the square roots ri,j

0 , ri,j
1 of y, encrypts them γi,j

k = EncSi,j (ri,j
k)

and commits to both ri,j
k . In the implementation we use the following parameters:

a = 512, b = 8 and λ = 1024. We use b = 8 because it means “b-out-of-(2b−1)”
multisig transactions, and this kind of multisig transaction are standard in Bit-
coin (for greater b they would be non-standard). We set λ = 1024, so the

128 256 512 768 1,024
0

20

40

60

80

value of a

(i) Step 1: λ = 1024, b = 1

0

2.5 · 10−3

5 · 10−3

7.5 · 10−3

1 · 10−2

time [s]
prob. of cheating

128 256 512 768 1,024
0

20

40

60

80

value of a

(ii) Step 1: λ = 512, b = 8

10−17

10−12

10−7

time [s]
prob. of cheating

Fig. 6. The running time of the Step 1 and the probability that the Seller successfully
cheats the Buyer in the Step 1 of the SellWitness protocol for the following fixed para-
meters: (i) λ = 1024 and b = 1 (i.e. using only standard single-signature transactions),
and (ii) λ = 512 and b = 8 (i.e. using multi-signature transactions with the greatest
parameters that are standard in Bitcoin) and different values of a. The running time
of Step 1 is proportional to a and does not depend on other parameters. Using greater
b gives much better security.

https://github.com/SellWitness/ZKFactorization

278 W. Banasik et al.

64 256 512 768 1,024
0

1

2

3

4

value of λ

(i) Step 2: a = 512, b = 1

time [s]

64 256 512 768 1,024
0

8

16

24

32

value of λ

(ii) Step 2: a = 1024, b = 8

time [s]

Fig. 7. The running time of the Step 2 of the SellWitness protocol for the following
fixed parameter: (i) a = 512 and b = 1 (i.e. using only standard single-signature
transactions), and (ii) a = 1024, and b = 8 (i.e. using multi-signature transactions with
the greatest parameters that are standard in Bitcoin) and different values of λ. The
running time of Step 2 is proportional to b·λ and does not depend on a. The probability
of successfully cheating (by either the Buyer or the Seller) in step 2 is negligible in λ.

ZKFactorization protocol is executed b · 2λ = 8 · 2048 times. Fortunately this
phase does not require any costly public key cryptography operations and there-
fore it is still very efficient. We set a = 512 and b = 8, and hence the probability
of cheating is at most (b/a)b = 2−48. The running time of our protocol (i.e. the
time until the Buyer broadcasts T1) for this configuration (and primes of size
about 512 bits each) is about 1 min — the running time of the USG protocol is
about 33 s and Step 2 in the SellWitnessf protocol takes about 28 s. The numbers
are an average over 10 runs of the algorithm using a single thread on a standard
personal computer. We note that the running time could be improved by using
multiple threads. Additional measurements are presented on Figs. 6 and 7.

We run our protocol on a single machine, and local testing blockchain
(testnet-box) and hence posting on blockchain, and communication between the
parties was almost immediate (our current implementation takes 12 rounds, and
the total communication size is about 60 MB). However, since we use the time-
lock commitment schemes we need a conservative estimate on how much time
would the execution of our protocol take on real blockchain, and when the par-
ties are running in different physical locations. As in our protocol the parties
have to wait for two transactions to be included into the blockchain, we have to
assume that the whole protocol may take up to two hours2. Taking into account
time needed to post messages on the blockchain the running our protocol takes
on average 2 h, we have to have at least τ0 = 5 h, so τ1 should be set to 50 h. Our
tests has shown that an honest user (on an standard personal computer) can
compute about 219 squares (modulo n of size λ = 1024 bits) per second. That
is why in our protocol we set the hardness of the timed commitment to t = 237.

2 It takes on average 10 min for a transaction to be included into the blockchain but
the users are advised to wait for 6 blocks (≈1 h) on top of the transaction.

Efficient Zero-Knowledge Contingent Payments 279

References

1. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Fair
two-party computations via bitcoin deposits. In: Böhme, R., Brenner, M.,
Moore, T., Smith, M. (eds.) FC 2014 Workshops. LNCS, vol. 8438,
pp. 105–121. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44774-1 8.
http://dx.doi.org/10.1007/978-3-662-44774-1 8. ISBN: 978-3-662-44773-4

3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: On
the malleability of bitcoin transactions. In: Brenner, M., Christin, N.,
Johnson, B., Rohloff, K. (eds.) FC 2015 Workshops. LNCS, vol. 8976,
pp. 1–18. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48051-9.
http://dx.doi.org/10.1007/978-3-662-48051-9. ISBN: 978-3-662-48050-2

4. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy,
pp. 443–458. IEEE Computer Society Press, Berkeley (2014). doi:10.1109/SP.2014.
35

5. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Crypto-Currencies, 1st
edn. O’Reilly Media, Inc., Sebastopol (2014). ISBN: 1449374042, 9781449374044

6. Back, A., Bentov, I.: Note on fair coin toss via Bitcoin. CoRR abs/1402.3698 (2014).
http://arxiv.org/abs/1402.3698

7. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient Zero-Knowledge Contin-
gent Payments in Cryptocurrencies Without Scripts. Cryptology ePrint Archive
(2016). http://eprint.iacr.org/2016/451.pdf

8. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

9. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
Fairfax (1993)

10. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy, pp. 459–474. IEEE Computer Society Press,
Berkeley (2014). doi:10.1109/SP.2014.36

11. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44381-1 24

12. Bitcoin Wiki: Constract
13. Bitcoin Wiki: Script
14. Bitcoin Wiki: Secp256k1
15. Bitcoin Wiki: Transaction
16. Bitcoin Wiki: Zero Knowledge Contingent Payment
17. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.

LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)
18. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on com-

putational diffie-hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

19. Brown, D.R.L.: Standards for Efficient Cryptography SEC 2: Recommended Ellip-
tic Curve Domain Parameters, Version 2.0 (2010)

http://dx.doi.org/10.1007/978-3-662-44774-1_8
http://dx.doi.org/10.1007/978-3-662-44774-1_8
http://dx.doi.org/10.1007/978-3-662-48051-9
http://dx.doi.org/10.1007/978-3-662-48051-9
http://dx.doi.org/10.1109/SP.2014.35
http://dx.doi.org/10.1109/SP.2014.35
http://arxiv.org/abs/1402.3698
http://eprint.iacr.org/2016/451.pdf
http://dx.doi.org/10.1109/SP.2014.36
http://dx.doi.org/10.1007/978-3-662-44381-1_24

280 W. Banasik et al.

20. Damgard, I.: On Sigma-Protocols (2015). http://www.cs.au.dk/∼ivan/Sigma.pdf
21. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification

and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

22. Filippi, P.D.: Tomorrow’s apps will come from brilliant (and risky) Bitcoin code.
Wired magazine

23. Goldfeder, S., Gennario, R., Kalodner, H., Bonneau, J., Felten, E.W., Kroll, J.A.,
Narayanan, A.: Securing bitcoin wallets via a new DSA/ECDSA threshold signa-
ture scheme (manuscript, 2015)

24. Goldreich, O.: Foundations of Cryptography, vol. 1. Cambridge University Press,
New York (2006). ISBN: 0521035368

25. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

26. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (Chapman & Hall/Crc
Cryptography and Network Security Series). Chapman & Hall/CRC, Boca Raton
(2007). ISBN: 1584885513

27. Kumaresan, R., Moran, T., Bentov, I.: How to use bitcoin to play decentralized
poker. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA, pp.
195–206. ACM, 12–16 October 2015. doi:10.1145/2810103.2813712. http://doi.
acm.org/10.1145/2810103.2813712. ISBN: 978-1-4503-3832-5

28. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011)

29. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: ACM CCS 2015, pp. 706–719. ACM Press (2015)

30. MacKenzie, P., Reiter, M.K.: Two-party generation of DSA signatures. Eng-
lish. Int. J. Inf. Secur. 2(3–4), 218–239 (2004). doi:10.1007/s10207-004-0041-0.
http://dx.doi.org/10.1007/s10207-004-0041-0. ISSN: 1615-5262

31. Maxwell, G.: The first successful Zero-Knowledge Contingent Payment (2016)
32. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009). http://

bitcoin.org/bitcoin.pdf
33. Pagnia, H., Gartner, F.C.: On the impossibility of fair exchange without a trusted

third party. Technical report Darmstadt University of Technology (1999)
34. Pagnia, H., Vogt, H., Gärtner, F.C.: Fair Exchange. Comput. J. 46(1), 55–75

(2003). doi:10.1093/comjnl/46.1.55. http://dx.doi.org/10.1093/comjnl/46.1.55
35. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

36. Pedersen, T.P.: A Threshold cryptosystem without a trusted party (Extended
Abstract) (Rump Session). In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS,
vol. 547, pp. 522–526. Springer, Heidelberg (1991)

37. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
Crypto. Technical report Cambridge, MA, USA (1996)

38. Todd, P.: OP CHECKLOCKTIMEVERIFY. Bitcoin Improvement Proposal 0062.
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

39. Wuille, P.: Bitcoin Improvement Proposal 062: Dealing with malleability

http://www.cs.au.dk/~ivan/Sigma.pdf
http://dx.doi.org/10.1145/2810103.2813712
http://doi.acm.org/10.1145/2810103.2813712
http://doi.acm.org/10.1145/2810103.2813712
http://dx.doi.org/10.1007/s10207-004-0041-0
http://dx.doi.org/10.1007/s10207-004-0041-0
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1093/comjnl/46.1.55
http://dx.doi.org/10.1093/comjnl/46.1.55
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

Security of the Internet of Things

LeiA: A Lightweight Authentication
Protocol for CAN

Andreea-Ina Radu(B) and Flavio D. Garcia(B)

School of Computer Science,
University of Birmingham, Birmingham, UK

{a.i.radu,f.garcia}@cs.bham.ac.uk

Abstract. Recent research into automotive security has shown that
once a single vehicle component is compromised, it is often possible
to take full control of the vehicle. This paper proposes LeiA, a light-
weight authentication protocol for the Controller Area Network (CAN).
This protocol allows critical vehicle Electronic Control Units (ECUs) to
authenticate each other providing compartmentalisation and preventing
a number of attacks e.g., where a compromised CD player is able to accel-
erate the vehicle. LeiA is designed to run under the stringent time and
bandwidth constraints of automotive applications and is backwards com-
patible with existing vehicle infrastructure. The protocol is suitable to
be implemented using lightweight cryptographic primitives yet providing
appropriate security levels by limiting the usage of every key in the sys-
tem. The security of LeiA is proven under the unforgeability assumption
of the MAC scheme under chosen message attacks (uf-cma).

1 Introduction

The automotive industry has recently faced a massive transformation which has
enabled serious security threats [4,8,15]. The increasing number of (wireless)
interfaces available in today’s cars exposes it to new attack vectors. Modern
Cars have dozens and sometimes even over a hundred of Electronic Control Units
(ECUs). While more technology is being introduced in modern vehicles, trans-
forming them into smart, connected cars, the underlying security infrastructure
has struggled to keep up with the pace of these changes.

The Controller Area Network (CAN), standardised in [13], is the most com-
monly used serial bus nowadays. Its purpose is to connect the ECUs of a car, and
allow them to communicate without a source or destination address. As the in-
vehicle network has been traditionally considered a safe, trusted environment,
and there were no wireless interfaces, resilience against cyber-attacks has not
been of prime concern. Also, the security of ECUs, which provide a significant
part of the functionality of a modern vehicle, has been overlooked. The CAN bus
is a broadcast network, whereby any message sent can be read by all connected
ECUs. By design, it does not provide security features, such as confidentiality
(messages are not encrypted, therefore they can be eavesdropped), or authen-
ticity (the source or destination of a message is unknown) [18]. Most attacks
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 283–300, 2016.
DOI: 10.1007/978-3-319-45741-3 15

284 A.-I. Radu and F.D. Garcia

presented in the literature could be prevented if authentication was present on
the network, or at least their impact would be localised and mitigated.

While transitioning from mostly mechanical systems to complex systems with
digital components, manufacturers overlooked the possibility of a cyber-attacker
in their designs. The KeeLoq block cipher, used by various car manufacturers
in anti-theft mechanisms, was first attacked by Bogdanov in [2]. Later, this
attack was improved in [5,12,14]. Verdult et al. proposed an attack against the
Megamos Crypto [21,24] and Hitag2 [22] vehicle immobilisers. These attacks
allow an adversary to start the vehicle without the car key. Automotive remote
keyless entry systems have also been shown to use weak key management and
cryptographic primitives, enabling an eavesdropping adversary to clone the car
key [7].

Koscher et al. [15] provide an extensive description of attack vectors under
the assumption that an attacker has direct access to the vehicle, focusing on
the security of the in-vehicle networks. Their research shows it is possible to
compromise the radio, instrument panel cluster, HVAC, BCM (which controls
door locks, interior and exterior lights, horn, windows, wipers, ignition), as well
as safety-critical functionality of the engine and brakes. They launched a generic
denial of service attack which disabled communication on the CAN bus and froze
the instrument panel cluster. Part of the attacks were then tested on the road,
proving their viability in a real-world scenario.

The work of Koscher et al. raises a key issue: how would an attacker get access
to the vehicle. Under the assumption that prior physical access to the vehicle
is deemed as an unrealistic scenario, Checkoway et al. [4] explore the external
attack surface of automotive vehicles. They successfully used the entertainment
system, radio, Bluetooth interface, Tire Pressure Monitoring System (TPMS)
and cellular network to compromise a vehicle. They also identified weaknesses
and exploited a PassThru device, used for servicing and diagnostics by dealer-
ships. They have shown that a malicious PassThru device can be used to send
CAN messages to a vehicle and install malware onto the car’s telematics unit.

Miller et al. [17] provide an extensive analysis of the wireless interfaces of
a Jeep Cherokee as potential attack surfaces. Most notably, they took advan-
tage of vulnerabilities in the Jeep’s UConnect system, which provides a cellular
connection to the vehicle, and showed how they could completely control the
vehicle over the Internet. They were able to control the car’s dashboard func-
tions, steering, brakes, heating system, radio, windshield wipers, the car’s digital
display and transmission. They demonstrated the attacks live, on the road, for
Wired [8].

Ultimately, these attacks all rely on the fact that messages can be sent on
the CAN network by a malicious attacker or a compromised ECU, and they
are accepted by all other ECUs as if they were legitimate. The lack of source
authentication is an enabler for all these types of attacks. While vehicles are
designed to tolerate random failures, they cannot currently cope with malicious
cyber-attacks. The lock-down of components is not a viable solution, both from

LeiA: A Lightweight Authentication Protocol for CAN 285

a legislative point of view (e.g., right-to-repair legislation) or from the economic
point of view of the manufacturer.

The AUTOSAR [1] specifications are a set of standards for ECU software
functionality. The purpose of the standard is to reduce the development cost of
ECU software and increase its scalability. The 4.2 release of the specification
includes provisions for security on CAN. It provides interfaces and guidelines for
authentication of messages, but leaves the implementation up to the manufac-
turer. The documents introduce the Secure On-board Communication module
and provide guidelines for implementing authentication. They recommend using
128-bit keys, 64-bit MACs, and counters or timestamps to provide freshness.
The MAC computation should be based on the data identifier, the data to be
sent and the freshness value.

Our contribution. This paper proposes LeiA, the first AUTOSAR compli-
ant, lightweight authentication protocol in the literature. The protocol respects
the requirements laid out to become a standard in the automotive industry,
as described in the Secure On-board Communication Module Specification,
AUTOSAR Release 4.2.

LeiA does not require additional hardware components or substantial imple-
mentation costs thus is less expensive than previously proposed solutions, while
providing higher security levels. The protocol has been designed by taking into
consideration real-world requirements and limitations of the CAN bus such as
limited bandwidth, short data frames and publisher-subscriber broadcast archi-
tecture where newly arrived messages overwrite older ones in the receiver’s buffer.

Furthermore, LeiA is fully backwards compatible with existing CAN con-
figuration, and is designed such that it can be flexibly implemented, providing
different security vs bandwidth, computational overhead trade-offs.

Finally, we have proven the protocol to provide secure authentication under
the unforgeability assumption of the MAC scheme under chosen plaintext
attacks. Since we use the same MAC scheme for key diversification, we have
the additional requirement that the produced MAC values are indistinguishable
from the output of the key generation function.

Related work. CANAuth [19] and LiBrA-CAN [9] are two protocols for light-
weight authentication over CAN. Both solutions make use of the CAN+ proto-
col, an improvement of the existing CAN. The CAN+ protocol was introduced
by Ziermann et al. in [23]. It takes advantage of the fact that additional data
can be sent in time intervals where the nodes conforming to the original CAN
protocol do not listen. Therefore, CAN+ is backwards compatible and allows
CAN-conform nodes to operate undisturbed alongside CAN+ nodes. This solu-
tion allows the transmission of 16 CAN+ bits, for one CAN bit transmitted.

Both solutions require replacing the CAN transceivers, and therefore imply
a large cost for the manufacturers. Also, the logistics that would be involved in
upgrading vehicles already in use are unclear.

Several solutions which do not require modified hardware have been pro-
posed. We discuss them below and highlight their differences in respect with our
proposed protocol, LeiA.

286 A.-I. Radu and F.D. Garcia

MaCAN is an authenticated protocol described in [10]. It is designed specif-
ically for the CAN bus and takes into account the network’s constraints, such
as message length and available resources. MaCAN authenticates 4-byte mes-
sages with 4-byte MACs, in bidirectional communication. Timestamps are used
as source of freshness, therefore, a time server is added into the system, which
broadcasts a timestamp at regular intervals. Also, a key server is added, which
shares a symmetric long term key with each security-enabled node. The key
server mediates the establishment of keys between two nodes that want to
securely communicate. In the case multiple nodes need to be able to verify the
authenticity of a message, they propose using group keys. Bruni et al. give a
formal analysis of the MaCAN protocol in [3]. They formally prove the secrecy
of both long term keys and session keys used by the protocol. However, they
found an attack through which one node is left unauthenticated and proposed a
corrected version of the protocol. MaCAN introduces two new elements in the
network, a time server and a key server. In LeiA, we remove the need for these
components by using counters, instead of the time server, and by having each
node derive the session keys locally, instead of having a key server.

LCAP was proposed by Hazem et al. in [11] and is a lightweight broad-
cast authentication protocol, which closely follows the CAN specification. The
authors propose the use of a “magic number”, which is appended to the message,
instead of MACs. The number is part of a chain, which is obtained by applying
a transformation function on an initial value, multiple times. Given the end of
the chain, the sender and receiver can both verify if a value belongs to it. The
magic number is 2 bytes in length. Handshakes are used in order to establish
the secure channel and keep the nodes synchronised. This requires a significant
number of CAN message identifiers be added to the network (five new IDs for
each sender-receiver pair). The advantage of LCAP is that it only uses 2 bytes of
the payload in order to achieve the authentication property, thus having a small
overhead for authenticated message exchange. However, due to the high number
of new IDs to be introduced in the network configuration, LCAP requires a large
address space. Also, the channel setup and soft/hard synchronisation functions
require a significant number of messages to be exchanged, thus adding to the
overhead.

CaCAN has been introduced in [16], by Kurachi et al. Their approach is
to use a monitor node, which authenticates the other nodes in the network.
It detects and destroys unauthorised data frames by overwriting them with an
error frame in real time. Challenge-response authentication is used in order to
establish the secure channel. This approach requires a modified CAN controller,
the monitor node, to be fitted in every car. Also, as is the general case with
centralised authorities, if the monitor node is compromised or removed, the entire
network is compromised as well.

Overview. This paper is organised as follows. Section 2 introduces standard
security definitions, most of it is (adapted) from the literature. Section 3 provides
the design and specification of our protocol. We give a formal security evaluation
in Sect. 4. In Sect. 5 we discuss how we deal with the shortcomings of CAN and

LeiA: A Lightweight Authentication Protocol for CAN 287

we provide guidelines for implementing the protocol in practise. We conclude in
Sect. 6.

2 Security Notions and Adversarial Model

An authentication protocol is an interactive cryptographic protocol executed
between a prover P and a verifier V. In an initial phase, both parties run a
setup(η) function, which produces a shared secret s and, potentially, public
parameters ns. After an execution of the protocol, V outputs the identity of the
prover, id, and the message data. We say that the protocol has completeness
error α if for all secrets s generated by setup(η), the honestly executed protocol
rejects the identity and message with a probability at most α.

We will show that our protocol is secure against active attacks. These allow
the adversary A to interact with the honest prover a polynomial amount of
times. Then, A interacts with the verifier only, and wins if the verifier returns
accept. The adversary interacts with V only once. An authentication protocol is
(t,Q, η)-secure against active adversaries if every probabilistic polynomial time
(PPT) adversary A, running at most t times and making Q queries to the honest
prover, has probability at most ε to win the above game.

We first need to introduce some notation. Let F2 = {0, 1} be the field of two
elements (or the set of Booleans). Fl

2 denotes a bitstring of length l and F
∗
2 is a

bitstring of arbitrary length. ‖ stands for the concatenation of two bitstrings.

Execution environment. Let n be the number of identifiers in the system, and
I = {id0, . . . , idn−1} be the set of all identifiers. Let P = {P0, . . . , Pn−1} be the
set of all protocol participants, where participant Pi knows the secret parameter
si and public parameters ns.

Definition 1 (Protocol setup). Let the function setup : η → (s, ns) be the
initialisation procedure of the protocol parties, where η is the security para-
meter and (s, ns) is a tuple formed by the secret parameter s and the public
parameters ns.

Definition 2 (Authentication oracles). Let Π = {π(si) | si ∈ s} be a set of
oracles such that π(si) emulates party Pi of the authentication protocol.

Definition 3 (Protocol output). Let output : P → I × F
∗
2 be the protocol

output function of a protocol participant Pi and outputs a tuple (idj , data)
corresponding to the last successful protocol instance of Pi, where idj ∈ I is the
identity of sender and data is the message that was sent.

We will now introduce the security notions for symmetric key authentica-
tion protocols. Most of it is standard, most of the definitions proposed here are
adapted from [20].

Definition 4 (Matching conversations [20]). We define matching conver-
sations as a successful execution of the authentication protocol, between two
parties.

288 A.-I. Radu and F.D. Garcia

We introduce the authentication game AuthΠ(η,A) and give a formal def-
inition below. The public and secret parameters are generated by calling the
setup(η) function. Then adversary A interacts with the oracles π(si) which emu-
late the protocol participants which respond according to the protocol descrip-
tion. At some point the adversary A terminates. A wins if there is a party Pi

which has accepted, and thus outputs, (idj , data) while Pi and Pj did not have
any matching conversation.

We denote by AdvAuth
MAC (η,A) the advantage of the adversary A in breaking

the authentication protocol.

Experiment AuthΠ(η,A)
ns, s ← setup(η)
BΠ(ns,s)(η, ns)
winif ∃ i, j, data : output(Pi) = (idj , data) is the output of
a party Pi and, parties Pi and Pj did not have any matching
conversation.

Definition 5 (Authentication Protocol Security). An authentication pro-
tocol is said to be secure if for all PPT adversaries A, the probability that A
wins the game AuthΠ(η,A) is a negligible function of η:

AdvAuth
MAC (η,A) ≤ ε(η)

Message Authentication Codes

A message authentication code is a set of three algorithms {KG, MAC, Verify},
with associated key space K, message space M and MAC space Φ.

The standard security notion for a MAC is unforgeability under a chosen
message attack (uf-cma). The secret key K is generated by calling the key gen-
eration algorithm KG of the MAC. Then, adversary B makes up to Q queries to
the MAC(K, ·) and Verify(K, ·, ·) algorithms. At some point, B terminates and
outputs a tuple (m, φ), where m ∈ M is a message and φ ∈ Φ is a MAC. Adver-
sary B wins if it did not query MAC(K,m) and φ verifies for message m, under
the secret key K.

We denote by Advuf–cma
MAC (η,B, Q) the advantage of the adversary B in forging

a messaged under a chosen message attack for MAC, on the security parameter η.

Experiment UF–CMAMAC(η,B, Q)
K ← KG(1η)
Invoke BMAC(K,·),Verify(K,·,·) which can make up to Q queries
to MAC(K, ·) and Verify(K, ·, ·).
(m, φ) ← BMAC(K,·),Verify(K,·,·)

winif
1. Verify(K,m, φ) = accept
2. A did not already request MAC(K,m)

LeiA: A Lightweight Authentication Protocol for CAN 289

Definition 6 (UF–CMA Security). We say that MAC is (t,Q, η)-secure
against uf–cma adversaries if for any adversary B running in time t the experi-
ment above, we have:

Advuf–cma
MAC (η,B, Q) ≤ ε(η)

Assumption 1 (MAC indistinguishability from random). We assume
that the output of the MAC algorithm is computationally indistinguishable from
random and, the output of the key generation (KG) function of the MAC algo-
rithm and the output of the MAC function have the same distribution.

Adversarial model. We consider a Dolev-Yao adversary [6], who controls the
network. In particular, she can passively monitor the network, reading all data
passing through the CAN and send messages with any id. She can also send error
frames to destroy current data or remote frames. However, in practise, the CAN
error handling limits the attacker’s capabilities in this respect.

3 LeiA: A Lightweight Authentication Protocol for CAN

This section outlines the design of LeiA, with a detailed description of each
function of the authentication protocol.

The CAN bus uses a publish-and-subscribe architecture model, where one
ECU can broadcast a message with a certain identifier (idi). The identifier is not
a way to identify the source or destination of a message, therefore, our protocol
provides unidirectional authentication, with a method of signalling if any of the
subscribed ECUs have gone out of sync/authentication failed.

Each protocol participant which needs to authenticate data, will need to store
a tuple 〈idi,Kidi

, eidi
,Ke

idi
, cidi

〉 per relevant CAN identifier, where:

– the identifier idi is a CAN ID;
– the key Kidi

is a 128-bit long term symmetric key that is used to derive the
session key;

– the epoch eidi
is a 56-bit counter; the value is incremented at every vehicle

start-up or when the counter cidi overflows; participates in the generation of
the session key;

– the session key Ke
idi

is a 128-bit key used for generating the MAC; re-generating
the session key when the epoch eidi

changes ensures that only a small amount
of data is authenticated under the same key; also, if the session key becomes
compromised, the attacker can compute valid MACs only until the epoch
changes (limited time);

– the counter cidi
is a 16-bit counter included in the Message Authentication

Code (MAC) and is sent within the Data Frame containing the MAC, in
order to provide freshness.

The long term keys and epochs are assumed to be stored in tamper-resistant
memory. Updating the set of keys (e.g. if adding or replacing a node in the net-
work) should require direct physical access to the involved nodes and, therefore,

290 A.-I. Radu and F.D. Garcia

could only be done by an authorised repairs shop. How exactly this is done is
beyond the scope of this paper.

We describe below the functions of the protocol for a pair of nodes: sender
S, which is the broadcaster of messages with the identifier idi, and receiver R,
which is the node subscribed to messages broadcast on the identifier idi.

The authentication protocol LeiA has an associated key space K ∈ F
128
2 ,

message space M ∈ F
∗
2 and MAC space Φ ∈ F

64
2 .

Protocol setup. The function setup : η → (s, ns) is the initialisation procedure
of the ECUs, where η is the security parameters and (s, ns) is a tuple formed by
the secret parameter s and the public parameters ns. The secret parameter s =
〈Kid0 , . . . Kidn−1〉 is computed by running the key generation algorithm KG(1η)
of the MAC for each identity idi, with Kidi ∈ K. The public parameters are ns =
〈(cid0 , eid0), . . . , (cidn−1 , eidn−1)〉, where cidi

∈ F
16
2 is the counter and eidi

∈ F
56
2 is

the epoch. Both the counter and epoch are initialised to zero, for each identity
idi. The session key generation function is then called for each identity idi, in
order to generate the session key Ke

idi
.

Session key generation (Fig. 1). Let session key gen : K × F
56
2 → K be the

session key generation function. This function takes as input a long term sym-
metric key Kidi

and an epoch eidi
, both associated with an identity idi, and

outputs the session key Ke
idi

computed as follows:

1. increment epoch: eidi ← eidi + 1
2. apply the MAC algorithm on the epoch:

Ke
idi

← MAC(Kidi
, eidi

)

3. reset counter to zero: cidi ← 0

Session key generation

session key gen(Kidi, eidi)

idi, Kidi, eidi idi, Kidi, eidi
Sender Receiver

increase eidi increase eidi

Ke
idi

= MAC(Kidi, eidi) Ke
idi

= MAC(Kidi, eidi)

reset cidi reset cidi

Fig. 1. Session key generation between sender S and receiver R for message with
identifier idi.

LeiA: A Lightweight Authentication Protocol for CAN 291

Sending authenticated messages

idi, Ke
idi
, cidi idi, Ke

idi
, cidi

Sender Receiver

update counters()

cidi, data

cidi,MAC(Ke
idi
, cidi, data)

update counters()

Verify MAC

Fig. 2. Message authentication between sender S and receiver R for message with
identifier idi.

Sending authenticated messages (Fig. 2). In order to send an authenticated
message, the sender first needs to update the counter cidi

. If cidi
overflows, then

the epoch eidi
is incremented and cidi

is reset to 0 (see Algorithm 1). It then
calls the MAC algorithm which takes as input the session key Ke

idi
, the counter

cidi and the message data, and produces as output a MAC φ ∈ Φ computed as:

φ = MAC(Ke
idi

, cidi
, data)

The sender then transmits the counter, data and MAC. After reading the
values, the receiver updates the counters and verifies the MAC.

Algorithm 1. update counters() function
Require: counter cidi

, epoch eidi
, LTSK Kidi

Ensure: cidi
and eidi

are incremented accordingly
1: if cidi

= 0xFFFF then
2: if eidi

= 0xFFFFFFFFFFFFFF then
3: eidi

← 0x00000000000000
4: else
5: eidi

← eidi
+ 1

6: end if
7: cidi

← 0x0000
8: call session key gen(Kidi

, eidi
)

9: else
10: cidi

← cidi
+ 1

11: end if

292 A.-I. Radu and F.D. Garcia

Resynchronisation
resync(Ke

idi
, cidi, eidi, data)

idi, Ke
idi
, cidi , eidi idi, Ke

idi
, cidi , eidi

Sender Receiver

AUTH FAIL

update counters()

cidi, eidi

cidi,MAC(Ke
idi
, cidi, eidi)

check eS cS > eR cR

Verify MAC of e

update eidi ← eS, cidi ← cS
Ke

idi
← session key gen(Kidi, eidi)

cidi, data

cidi,MAC(Ke
idi
, cidi, data)

where:
- stands for concatenation
- eS and cS are epoch and
counter received from Sender
- eR and cR are epoch and
counter stored by Receiver

Verify MAC of data

Fig. 3. Message authentication failure and resynchronisation procedure, between
sender S and receiver R for message with identifier idi.

Resynchronisation (Fig. 3). If a MAC cannot be verified, the receiver sends an
AUTH FAIL signal to the sender. When an AUTH FAIL message is read, the sender
S broadcasts a message containing its current epoch value, a MAC of the epoch
and counter cidi , then proceeds with normal data transmission. This will help
the receiver nodes resynchronise their epoch and counter.

R will only update eidi
and cidi

if the values are higher (eidi
received can

be equal to eidi
stored) than the stored ones. If the new counter is lower than

the receiver’s counter, it means there is an attacker performing a replay attack,
therefore the data is discarded and the counter not incremented.

Most common cause for a MAC to fail verification, in the context of the CAN,
is the de-synchronisation of counter cidi

and epoch eidi
values. Not all nodes join

the network at the same time, therefore the counters will be outdated and the
receiver will need to request the current values from the sender. A complete
protocol outline is given in Fig. 4.

4 Security Analysis

This section analyses the security of LeiA under the unforgeability assumption
of the MAC scheme under chosen message attacks.

LeiA: A Lightweight Authentication Protocol for CAN 293

Protocol outline

idi, Kidi, cidi, eidi idi, Kidi, cidi, eidi
Sender Receiver

session key gen(Kidi, eidi)

update counters()

cidi, data

cidi,MAC(Ke
idi
, cidi, data)

update counters()

yes noVerify MAC

resync(Ke
idi
, cidi, eidi, data)

Fig. 4. Communication between sender S and receiver R for message with identifier idi
– LeiA protocol outline: first, the session keys are generated by both participants; then,
S can send authenticated message to R; R verifies the MAC of the received message;
if the verification fails, the resynchronisation is initialised, otherwise, the message is
accepted.

Theorem 2. The LeiA authentication protocol is secure with respect to
Definition 5 (see Sect. 2).

Proof. Assume that there is an adversary A that breaks the AuthΠ(η,A) secu-
rity of the authentication protocol LeiA. Then, we build an adversary B that
breaks the (t,Q, η)-security of the UF–CMAMAC scheme.

At the beginning, the adversary B randomly picks one target identifier id� and
a target epoch e�. Then, B runs the protocol setup function for each identity idi.

The adversary B executes A. For this, B needs to emulate oracles π(Kidi
).

Emulating party Pi means generating the session key, and keeping track of the
counters cidi

and epochs eidi
, as specified in the protocol description. The session

key for an identity is regenerated every time the associated epoch is incremented.
The adversary A has access to the oracles in Π.

When transitioning from e� − 1 to e�, for identity id�, B will not use the
MAC algorithm, as described in the protocol, to generate the session key Ke�

id� .
Instead, whenever a MAC needs to be computed under the key Ke�

id� , the adver-
sary will use the MAC(·, ·) oracle from the UF–CMAMAC game. Note that due
to Assumption 1, this will be indistinguishable from the case of using the key
generation algorithm KG(·). For all other cases, it will compute it herself, by
running the MAC algorithm.

At some point, A terminates. With non-negligible probability, there must
exist a Pi which outputs an identity idj and a message m, without having a
matching conversation between Pi and Pj . In order for Pi to produce this output,

294 A.-I. Radu and F.D. Garcia

it means A has sent a message m = (c‖data) and a MAC φ = MAC(Ke
id,m)

which Pi has verified, and therefore this must be a valid MAC.
If idj = id� and e = e�, the adversary B will output (m, φ); otherwise, it will

output a tuple of random strings. As the identity id� and epoch e� are chosen at
random before the setup(η) phase, the probability that A also attacks id� and
e� is:

P(Ke�

id� = Ke
idj

) =
1
n

· 1
256

and we recall that n is the number of identifiers in the system.
In order to win the UF–CMAMAC game, the adversary needs:

1. Verify(Ke�

id� ,m, φ) = accept;
2. the MAC φ was never queried to the MAC oracle.

Condition 1. holds because φ is a valid MAC, as it was verified by party Pi.
Condition 2. holds because the MAC was never queried to the MAC oracle, as
Pi and Pj do not have a matching conversation.
�

5 Dealing with the Shortcomings of CAN

As some of the ECUs are involved in safety-critical functions such as acceleration
and ABS, latency is of prime concern. Any solution aiming at providing extra
security features, such as authentication, cannot introduce significant latency. To
this end, lightweight cryptography is best suited. Furthermore, many ECUs have
limited memory available, therefore the implementation of the protocol should
be compact as well. For this reason, our solution uses a MAC algorithm for two
different purposes: authenticating data and deriving session keys.

In order to compensate for the modest security provided by lightweight cryp-
tographic primitives, we do not use the long term secret key directly, but generate
session keys, which are used to authenticate the messages exchanged. A session
key is used to authenticate at most 216 messages, after which a new session key
is derived. This limits the amount of key-dependent data an attacker has access
to. In case a session key is compromised, an attacker can use it either until 216

messages have been authenticated, or until the vehicle is restarted, whichever
comes first.

LeiA makes use of the extended identifier data frames. It uses the Extended
Identifier 18-bit field in order to send the 16-bit counter and a 2-bit command
code, as explained below (Fig. 5). The 29-bit identifier data frames co-exist with
the 11-bit data frames without interfering with the arbitration process of CAN,
as the priority of a message is decided based on the 11-bit Identifier field.
We define three transmission channels over CAN:

Data Channel
All ids which are used to transmit data and signals constitute the data chan-
nel. The data is transmitted within the payload field of the frame. The
counter cidi

which is used to generate the MAC is placed in the extended
identifier field. The two leftmost bits are the command code 00, and signal
that data is being transmitted in the frame.

LeiA: A Lightweight Authentication Protocol for CAN 295

Extended identifier
S
o
F

Identifier
S
R
R

I
D
E

2 bit command code

16 bit counter

R
T
R

r
s
v
d
DLC Data/MAC CRC EoF

A
C
K

I
F
S

Fig. 5. Extended Data Frame CAN 2.0B (29-bit identifier) – placement of command
code and counter within Extended Identifier field.

Authentication Channel
All ids which are used to transmit MACs make up the Authentication Chan-
nel. The MACs are transmitted on a different identifier than the data. We
propose this id be a fixed offset from the base id on which the data is sent.
It should be as close as possible to the base id, in order to avoid scheduling
issues caused by arbitration. In our example, idMAC = iddata + 1. This will
avoid messages with the same identifier being overwritten in the CAN con-
troller buffer. The counter is placed in the extended identifier field. The two
leftmost bits, which represent the command code, are defined as follows:

01: the data frame contains a MAC of data;
10: the data frame contains an epoch value eidi

;
11: the data frame contains a MAC of an epoch eidi

.
Authentication Error Channel (AEC)

Each node connected to CAN has an Authentication Error Channel, AEC.
This is used for resynchronisation purposes. The AUTH FAIL signal is sent
on the AEC. Nodes which are broadcasters of messages with idi become
subscribers of the AEC of the nodes listening to idi. The AUTH FAIL signal
is defined as a set of two messages. The first data frame contains the id
of the message which failed MAC verification (idfailed), concatenated with
the lower 53 bits of the AEC epoch counter (lsb53(eidAEC

)). Sending the
epoch within the data frame ensures the receiving nodes can verify they have
the correct values, and a resynchronisation procedure for the AEC is not
needed. The second message contains the MAC of the previous one, as shown
in Fig. 6. Sending an AUTH FAIL signal is considered a rare event, therefore
overwriting messages within the buffer are not of concern, in contrast to data
transmission. Thus, we can use the same identifier (idAEC) for both message
types.

Table 1 shows a small example of an extended communication matrix. The
identifiers highlighted are the additional identifiers introduced by LeiA. Identi-
fiers 0x005, 0x011 and 0x016 correspond to the Authentication Channel, while
identifiers 0x7FD, 0x7FE and 0x7FF correspond to the Authentication Error
Channel.

The procedures of sending authenticated messages and re-synchronisation,
complete with command code placement are shown in Figs. 7 and 8.

The CAN bus has a static configuration. Due to this, LeiA can be imple-
mented in two ways, depending on the functionality of the ECU. As described
above, the protocol requires each message to be accompanied by a MAC. If

296 A.-I. Radu and F.D. Garcia

cidAEC

S
o
F

idAEC

S
R
R

I
D
E

2 bit command code

16 bit counter

R
T
R

r
s
v
d
DLC Data/MAC CRC EoF

A
C
K

I
F
S

where:
data = idfailed lsb53(eidAEC

)
MAC = MAC(Ke

idAEC
, cidAEC , idfailed, lsb53(eidAEC))

Fig. 6. Data frame structure for AUTH FAIL signal.

Table 1. Extended communication matrix example. ‘S’ stands for Sender and ‘R’ for
Receiver.

Sending authenticated messages

idi, Ke
idi
, cidi idi, Ke

idi
, cidi

Sender Receiver

update counters()

00 cidi, data

01 cidi,MAC(Ke
idi
, cidi, data)

update counters()

Verify MAC

Fig. 7. Message authentication between sender S and receiver R for message with
identifier idi, with command code.

LeiA: A Lightweight Authentication Protocol for CAN 297

Resynchronisation
resync(Ke

idi
, cidi, eidi, data)

idi, Ke
idi
, cidi , eidi idi, Ke

idi
, cidi , eidi

Sender Receiver

AUTH FAIL

update counters()

10 cidi , eidi

11 cidi ,MAC(Ke
idi
, cidi, eidi)

check eS cS > eR cR

Verify MAC of e

update eid = = cS
=

i
← eS, cidi ← cS

Ke
idi

← session key gen(Kidi, eidi)

00 cidi , data

01 cidi ,MAC(Ke
idi
, cidi, data)

where:
- stands for concatenation
- eS and cS are epoch and
counter received from Sender
- eR and cR are epoch and
counter stored by Receiver

Verify MAC of data

Fig. 8. Message authentication failure and resynchronisation procedure, between
sender S and receiver R for message with identifier idi, with command code place-
ment.

applied to all ECUs, this doubles the communication overhead. However, for
nodes not involved in safety-critical functions, the protocol can be implemented
such that one MAC is sent after n messages, where n can be decided based on
the node’s security requirements. This allows manufacturers to choose a most
suitable trade-off between security and bandwidth for their vehicles.

The CAN is an architecture which is highly susceptible to denial of service
(DoS) attacks. LeiA is not a solution that tackles this issue, as it is out of
the scope of our goals. However, DoS attacks do not affect the security of the
protocol. In fact, under LeiA, messages that are not correctly authenticated are
not parsed, saving ECUs time and computation energy.

In the case an attacker fully compromises and takes control of an ECU, for
the ids the node broadcasts or listens on, the attacker will unavoidably be able
to generate valid MACs, but not for any other id. This is not a problem of our
protocol but an inherit limitation of using symmetric key cryptography.

An attacker can collect some AUTH FAIL answers from the sender, knowing
one of the receiver nodes is offline. When the receiver node joins the network
and sends the AUTH FAIL signal, as it does not have the correct counter and
epoch values, the attacker sends a stored answer. The receiver will accept the

298 A.-I. Radu and F.D. Garcia

message, provided the stored counter and epoch are lower than the received ones.
However, due to the design of CAN, the initial AUTH FAIL signal is also received
by the sender node, which will send the correct epoch and counter values. The
attacker can destroy these frames, but S will broadcast them again, due to the
error handling mechanism of CAN. After a number of destroyed frames, the
CAN flags the attacker as error passive, meaning it cannot destroy other frames.
Therefore, the correct message of S will be transmitted and the receiver node
will be able to update its values accordingly. Communication then resumes under
the protocol.

We would like to emphasize that all other proposed authentication protocols
from the literature are susceptible to DoS attacks and do not deal with attackers
taking full control over an ECU.

Next we elaborate on how LeiA satisfies the requirements laid out by
AUTOSAR 4.2, Secure On Board Communication Module. Regarding fresh-
ness, the specification states both sending and receiving sides need to maintain
a Freshness Value (e.g. counter, timestamp). In LeiA, this is achieved by the
16-bit counters cidi

, placed in the Extended Identifier field of a Data Frame.
AUTOSAR recommends the use of 128-bit keys, which LeiA respects though
Kid. It also states that, depending on the authentication algorithm chosen,
the Message Authentication Code can be truncated, with a minimum recom-
mended length of 64-bit. As described in our protocol, we use 64-bit MACs,
which fit in the 8-byte Payload Field of a Data Frame. Furthermore, the stan-
dard requires the MAC to be calculated based on the id, data and complete
freshness value. In LeiA, the MAC is computed based on the session key Ke

idi
,

which is uniquely associated with an identifier idi, the counter cidi
and the

data to be transmitted. Regarding MAC verification failure, SecOC requires
the receiver to attempt to verify for a number of times (defined by the parame-
ter SecOCFreshnessCounterSyncAttempts), after which the data is dropped.
LeiA uses the resync procedure, in order to keep the protocol in synch, and
avoid a possible internal denial of service attack due to the de-synchronisation
of counters.

6 Conclusion

We have proposed a new lightweight authentication protocol for CAN, LeiA,
that allows ECUs to authenticate each other, therefore preventing a number of
attacks presented in the literature. We have proven the protocol secure under the
unforgeability assumption of the MAC scheme under a chosen message attack.
LeiA has been designed to run under the stringent time and bandwidth con-
straints of automotive applications, and is backwards compatible with existing
CAN configuration. LeiA is the first AUTOSAR compliant lightweight authen-
tication protocol available in the literature. Also, our protocol achieves higher
security levels than previously proposed solutions, without the need of addi-
tional hardware components or substantial implementation costs. Finally, we
have taken into consideration the real-world requirements and constraints of the

LeiA: A Lightweight Authentication Protocol for CAN 299

CAN bus, and discussed how we mitigated and overcame them. The properties
of LeiA make it suitable for deployment in automotive applications as it strikes
the right balance between practicality, cost, latency and security.

Acknowledgements. This research was partly sponsored by EPSRC, through indus-
trial CASE award 14220107. The authors are thankful to Paul Sanderson and David
Battersby for their support.

References

1. AUTOSAR: AUTOSAR Specification 4.2. http://www.autosar.org/specifications/
release-42/

2. Bogdanov, A.: Linear slide attacks on the keeloq block cipher. In: Pei, D., Yung,
M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 66–80. Springer,
Heidelberg (2008)

3. Bruni, A., Sojka, M., Nielson, F., Nielson, H.R.: Formal security analysis of the
MaCAN protocol. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739,
pp. 241–255. Springer, Heidelberg (2014)

4. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T., et al.: Comprehensive experimen-
tal analyses of automotive attack surfaces. In: 20th USENIX Security Symposium
(USENIX Security 2011), San Francisco (2011)

5. Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and slide attacks on KeeLoq.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg
(2008)

6. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–208 (1983)

7. Garcia, F.D., Oswald, D., Kasper, T., Pavlidès, P.: Lock it and still lose it - on
the (in)security of automotive remote keyless entry systems. In: 25nd USENIX
Security Symposium (USENIX Security 2016). USENIX Association (to appear,
2016)

8. Greenberg, A.: Hackers Remotely Kill a Jeep on the Highway - with me in it (2015).
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

9. Groza, B., Murvay, S., van Herrewege, A., Verbauwhede, I.: LiBrA-CAN: a light-
weight broadcast authentication protocol for controller area networks. In: Pieprzyk,
J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 185–200.
Springer, Heidelberg (2012)

10. Hartkopp, O., Reuber, C., Schilling, R.: MaCAN - message authenticated CAN.
In: 10th International Conference on Embedded Security in Cars (ESCAR 2012),
Berlin, Germany, vol. 6 (2012)

11. Hazem, A., Fahmy, H.A.: LCAP - a lightweight CAN authentication protocol for
securing in-vehicle networks. In: 10th International Conference on Embedded Secu-
rity in Cars (ESCAR 2012), Berlin, Germany, vol. 6 (2012)

12. Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A practical
attack on KeeLoq. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
1–18. Springer, Heidelberg (2008)

13. ISO: 11898–1: 2003 - Road Vehicles - Controller Area Network. International Orga-
nization for Standardization, Geneva, Switzerland (2003)

http://www.autosar.org/specifications/release-42/
http://www.autosar.org/specifications/release-42/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

300 A.-I. Radu and F.D. Garcia

14. Kasper, M., Kasper, T., Moradi, A., Paar, C.: Breaking KeeLoq in a flash: on
extracting keys at lightning speed. In: Preneel, B. (ed.) AFRICACRYPT 2009.
LNCS, vol. 5580, pp. 403–420. Springer, Heidelberg (2009)

15. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., et al.: Experimental Security Analysis
of a Modern Automobile. In: 31st IEEE Symposium on Security & Privacy (S&P
2010), pp. 447–462. IEEE (2010)

16. Kurachi, R., Matsubara, Y., Takada, H., Adachi, N., Miyashita, Y., Horihata,
S.: CaCAN - centralised authentication system in CAN. In: 12th International
Conference on Embedded Security in Cars (ESCAR 2014) (2014)

17. Miller, C., Valasek, C.: Remote Exploitation of an Unaltered Passenger Vehicle
(2015). http://illmatics.com/Remote%20Car%20Hacking.pdf

18. Studnia, I., Nicomette, V., Alata, E., Deswarte, Y., Kaâniche, M., Laarouchi, Y.:
Survey on security threats and protection mechanisms in embedded automotive
networks. In: 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems
and Networks Workshop (DSN-W 2013), pp. 1–12. IEEE (2013)

19. Van Herrewege, A., Singelee, D., Verbauwhede, I.: CANAuth - a simple, back-
ward compatible broadcast authentication protocol for CAN bus. In: ECRYPT
Workshop on Lightweight Cryptography 2011 (2011)

20. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

21. Verdult, R., Garcia, F.D.: Cryptanalysis of the megamos crypto automotive immo-
bilizer. In: USENIX; login, vol. 40(6), pp. 17–22. USENIX Association (2015)

22. Verdult, R., Garcia, F.D., Balasch, J.: Gone in 360 seconds: Hijacking with Hitag2.
In: 21st USENIX Security Symposium (USENIX Security 2012), pp. 237–252
(2012)

23. Ziermann, T., Wildermann, S., Teich, J.: CAN+: A new backward-compatible
controller area network (CAN) Protocol with up to 16x Higher Data Rates. In:
Design, Automation & Test in Europe Conference & Exhibition (DATE 2009), pp.
1088–1093. IEEE (2009)

24. Verdult, R., Garcia, F.D., Ege, B.: Dismantling megamos crypto: wirelessly lock-
picking a vehicle immobilizer. In: 22nd USENIX Security Symposium (USENIX
Security 2013), pp. 703–718. USENIX Association (2015)

http://illmatics.com/Remote%20Car%20Hacking.pdf

Privacy, Discovery, and Authentication
for the Internet of Things

David J. Wu1(B), Ankur Taly2, Asim Shankar2, and Dan Boneh1

1 Stanford University, Stanford, USA
dwu4@cs.stanford.edu

2 Google, Mountain View, USA

Abstract. Automatic service discovery is essential to realizing the full
potential of the Internet of Things (IoT). While discovery protocols like
Multicast DNS, Apple AirDrop, and Bluetooth Low Energy have gained
widespread adoption across both IoT and mobile devices, most of these
protocols do not offer any form of privacy control for the service, and
often leak sensitive information such as service type, device hostname,
device owner’s identity, and more in the clear.

To address the need for better privacy in both the IoT and the mobile
landscape, we develop two protocols for private service discovery and pri-
vate mutual authentication. Our protocols provide private and authentic
service advertisements, zero round-trip (0-RTT) mutual authentication,
and are provably secure in the Canetti-Krawczyk key-exchange model. In
contrast to alternatives, our protocols are lightweight and require min-
imal modification to existing key-exchange protocols. We integrate our
protocols into an existing open-source distributed applications frame-
work, and provide benchmarks on multiple hardware platforms: Intel
Edisons, Raspberry Pis, smartphones, laptops, and desktops. Finally, we
discuss some privacy limitations of the Apple AirDrop protocol (a peer-
to-peer file sharing mechanism) and show how to improve the privacy of
Apple AirDrop using our private mutual authentication protocol.

1 Introduction

Consider a smart home with dozens of IoT devices: an alarm system, a nanny
camera, health monitoring devices, house controls (e.g., lighting, heating), and
electronics. Many of these devices need to be controlled by multiple people,
including residents, guests, employees, and repairmen. The devices must be easily
discoverable by all these people.

To provide a good experience, IoT devices advertise the services they
offer using a service discovery mechanism. Examples include Multicast DNS
(mDNS) [24,25], Apple Bonjour [3], Bluetooth Low Energy (BLE) [5], and
Universal Plug-N-Play (UPnP) [6]. These mechanisms require only a broad-
cast communication channel between the devices (unlike older discovery proto-
cols [4,27,57] that need a directory service). Moreover, these protocols adhere to

The full version of this paper with complete proofs is available at http://arxiv.org/
abs/1604.06959.

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 301–319, 2016.
DOI: 10.1007/978-3-319-45741-3 16

http://arxiv.org/abs/1604.06959
http://arxiv.org/abs/1604.06959

302 D.J. Wu et al.

the zero configuration networking charter (Zeroconf) [2] and can operate with
minimal user intervention.

Privacy is an important feature often missing in zero-configuration service
discovery protocols (e.g., Zeroconf) [37,38,40,49]. Services broadcast extensive
information about themselves in the clear to make it easy for clients to discover
them. Advertisements often include sensitive information such as service type,
device hostname, and the device owner’s identity. This poses a threat when the
service is running on a private device (e.g., an alarm system or a smart watch).
Identities obtained from personal devices can be used for user profiling, tracking,
and launching social engineering attacks. A recent study [40] revealed that 59 %
of all devices advertise their owner’s name in the clear, which is considered
harmful by more than 90 % of the device owners. Indeed, one would not want
random visitors, or passerbys, to “discover” the alarm system in their home.
Only authorized clients, such as the home owner and her family, a technician,
or local police, should be able to discover this device.

In this work, we address this problem by building a new discovery and authen-
tication mechanism that respects the privacy of both sides.

Private service discovery. Our goal is to ensure that services are only discover-
able by an authorized set of clients. This problem is challenging as on one hand,
services want to advertise themselves only after confirming that the client trying
to discover them is authorized to see them. On the other hand, clients want
to reveal their identity only after verifying that the service they are talking to
is the desired one. In particular, a client device, such as a smartphone, should
not simply identify itself to every device in the wild that requests it. This leads
to a chicken-and-egg problem reminiscent of the settings addressed by secret
handshakes and hidden credentials [11,12,31,35,36,46].

Private mutual authentication. A closely related privacy problem arises dur-
ing authentication between mutually suspicious entities. Most existing mutual
authentication protocols (SIGMA [23,41], JFK [10], and TLS [28]) require one
of the parties (typically the server) to reveal its identity to its peer before the
other, effectively making that party’s identity public to anyone who communi-
cates with it. This is undesirable when the participants are personal end-user
devices, where neither device is inclined to reveal its identity before learning that
of its peer. Private mutual authentication is the problem of designing a mutual
authentication protocol wherein each end learns the identity of its peer only if
it satisfies the peer’s authorization policy.1

An application. Our private discovery protocols apply broadly to many identi-
fication and key-exchange settings. Here we describe a common mobile-to-mobile
example: peer-to-peer file sharing. Protocols such as AirDrop and Shoutr have
become popular among mobile users for sharing photos and other content with
their friends. These peer-to-peer protocols typically work by having a participant

1 While protocols like SIGMA-I [23,41] and TLS 1.3 [43,50] can ensure privacy against
passive adversaries, they do not provide privacy against active attackers.

Privacy, Discovery, and Authentication for the Internet of Things 303

start a sharing service and making it publicly discoverable. The other device then
discovers the service and connects to it to complete the file transfer. While this
offers a seamless sharing experience, it compromises privacy for the device that
makes itself discoverable—nearby devices on the same network can also listen
to the advertisement and obtain identifiers from it. A private service discovery
mechanism would make the service advertisement available only to the intended
devices and no one else. The AirDrop protocol offers a “contacts-only” mode for
additional privacy, but as we show in Sect. 2.1, this mechanism leaks significant
private information. The private discovery protocols we develop in this paper
provide an efficient solution to these problems.

1.1 Our Contributions

This paper presents private mutual authentication and service discovery pro-
tocols for IoT and mobile settings. Given the network connectivity constraints
implicit to these settings, our protocols do not require devices to maintain con-
stant connectivity to an external proxy or directory service in the cloud. Fur-
thermore, the protocols do not require the participants to have an out-of-band
shared secret, thereby allowing devices with no pre-existing relationships to dis-
cover each other (in accordance with their respective privacy policies).

Protocol construction. Our protocols are designed for distributed public-
key infrastructures, such as the Simple Distributed Security Infrastructure
(SDSI) [51]. Each principal has a public and private key-pair (for a signature
scheme), and a hierarchical human-readable name bound to its public key by a
certificate chain. The key primitive in our design is an encryption scheme that
allows messages to be encrypted under an authorization policy so that it can be
decrypted only by principals satisfying the policy. Using this primitive, we design
a mutual authentication protocol where one party sends its identity (certificate
chain) encrypted under its authorization policy. This protects the privacy of that
party. The other party maintains its privacy by revealing its identity only after
verifying the first party’s identity. The same primitive is also used to construct a
private service discovery protocol by having a service encrypt its advertisement
under its authorization policy before broadcasting.

The service advertisements in our discovery protocol carry a signed semi-
static Diffie-Hellman (DH) key. The signature provides authenticity for the
advertisements and protects clients from connecting to an impostor service. The
semi-static DH key enables clients to establish a secure session with the service
using zero round-trips (0-RTT), similar to what is provided in TLS 1.3 [43,50].

The authorization policies considered in this work are based on name prefixes.
For instance, a technician Bob from HomeSecurity Corp. may have the name
HomeSecurityCorp/Technician/Bob, and a home security system might have a
policy that only users whose name starts with HomeSecurityCorp/Technician
are allowed to discover it. Encrypting messages under a prefix-based autho-
rization policy is possible using a prefix encryption scheme [44], which can be
constructed using off-the-shelf identity-based encryption (IBE) schemes [19,20].

304 D.J. Wu et al.

Protocol analysis. We give a full specification of our private mutual authentica-
tion and service discovery protocols in Sects. 4 and 5. We also discuss a range
of practical issues related to our protocol such as replay protection, ensuring
perfect forward secrecy, and amortizing the overhead of the prefix encryption.
In the full version [54], we provide a rigorous proof of the security and privacy
of both protocols in the Canetti-Krawczyk key-exchange model [22,23,41].

Implementation and evaluation. We implemented and deployed our protocols in
the Vanadium open-source distributed application framework [1]. We measured
the end-to-end latency overhead for our private mutual authentication protocol
on an Intel Edison, a Raspberry Pi, a smartphone, a laptop, and a desktop.
On the desktop, the protocol completes in 9.5 ms, which corresponds to a 1.8x
slowdown over the SIGMA-I protocol that does not provide mutual privacy.
On the Nexus 5X and the Raspberry Pi, the protocol completes in just over
300 ms (about a 3.8x slowdown over SIGMA-I), which makes it suitable for user-
interactive services such as AirDrop and home security system controls that do
not have high throughput requirements.

For the discovery protocol, a service’s private discovery message consists of
approximately 820 bytes of data. Since mDNS broadcasts support up to 1300
bytes of data, it is straightforward to deploy our discovery protocol over mDNS.
Based on our benchmarks, our protocols are practical on a range of IoT devices,
such as thermostats (e.g., Nest), security systems (e.g., Dropcam), and smart
switches (e.g., Belkin Wemo). All of these devices have hardware comparable
to a Pi or an Intel Edison. In fact, the Intel Edison is marketed primarily as
a platform for building IoT applications. Moreover, as our AirDrop analysis
demonstrates, many of the privacy issues we describe are not limited to only the
IoT setting. Indeed, in Sect. 6.4, we show how our private mutual authentication
and discovery protocols can be efficiently deployed to solve privacy problems in
peer-to-peer interactions on smartphones. On more constrained processors such
as the ARM Cortex M0, however, we expect the handshakes to take several
seconds to complete. This makes our protocols less suitable in Cortex M0 appli-
cations that require fast session setup. Nonetheless, our protocols are sufficient
for a wide range of existing IoT and mobile scenarios.

2 Desired Protocol Features

In this section, we define the privacy properties and features that we seek in our
protocols. We begin with a case study of Apple’s AirDrop protocol, and use it
to motivate our privacy concerns and desired features.

2.1 Case Study: Apple AirDrop

AirDrop is a protocol for transferring files between two devices running recent
versions of OS X or iOS. It is designed to work whenever two AirDrop-enabled
devices are close to each other and even when they do not have Internet access.

Privacy, Discovery, and Authentication for the Internet of Things 305

AirDrop uses both Bluetooth Low Energy (BLE) and Apple’s peer-to-peer WiFi
technology (awdl) for device discovery and file transfer.

To receive files, devices make themselves discoverable by senders. AirDrop
offers two modes for making devices discoverable: everyone, which makes the
device discoverable by all nearby devices, and contacts-only (default), which
makes the receiving device discoverable only by senders in its contacts. The
contacts-only mode is meant to be a privacy mechanism and can be viewed as a
solution to the private service discovery problem for the “contacts-only” policy.

Protocol overview. We analyzed the AirDrop protocol to understand its privacy
properties and see how it solves the chicken-and-egg problem of private mutual
authentication. We describe the protocol in the full version of this paper.

Privacy weaknesses in Apple AirDrop. Our analysis indicates that AirDrop
employs two main privacy checks in contacts-only mode. First, a receiving device
responds only if the sender’s identifier (received over BLE) matches one of its
contacts, and second, a communication channel is established (via TLS 1.2 with
client authentication2) between a sender and receiver only if their respective
certificates match a contact on their peer’s device. While necessary, these checks
are insufficient to protect the privacy of the sender and receiver. Below, we enu-
merate some of the privacy problems with the existing protocol.

– Sender and receiver privacy and tracking. The use of TLS 1.2 with client
authentication causes both the sender and receiver to exchange certificates in
the clear. This makes their identities, as specified by their certificates, visible
to even a passive eavesdropper on the network. Moreover, the public keys in
the certificates allow the eavesdropper to track the sender and receiver in the
future. Protecting the privacy of both parties against active attackers, requires
private mutual authentication, as constructed in Sect. 4.

– Sender impersonation. Another privacy problem is that the sender’s iden-
tifier advertised over BLE can be forged or replayed by an attacker to trick an
honest receiver into matching it against its contacts. Based on the receiver’s
response, the attacker learns whether the receiver has the sender in their con-
tacts, and moreover, could try to initiate a TLS session with the receiver to
obtain its certificate. To protect against this kind of impersonation attack,
discovery broadcasts must provide some kind of authenticity, as in Sect. 5.

2.2 Protocol Design Goals

The privacy properties of AirDrop are insufficient to solve the private service
discovery problem. While our case study in Sect. 2.1 focuses exclusively on the
AirDrop protocol, most existing key-exchange and service discovery protocols do
not provide robust privacy and authenticity guarantees. We survey some of these
alternative protocols in Sect. 8. At a high level, our primary privacy objectives,

2 All AirDrop-enabled devices have an RSA public and private key pair and an iCloud
certificate for the owner’s identity.

306 D.J. Wu et al.

which should hold in the presence of both passive and active network attackers,
are as follows:

– Mutual privacy. The protocols must ensure that the identities and any iden-
tifying attributes of the protocol participants are only revealed to authorized
recipients. For service discovery, this applies to both the service being adver-
tised and the clients trying to discover it.

– Authentic advertisements. Service advertisements should be unforgeable
and authentic. Otherwise, an attacker may forge a service advertisement to
determine if a client is interested in the service.

Finally, to ensure that our protocols are applicable in both IoT and peer-to-peer
settings, we impose additional constraints on the protocol design:

– No out-of-band pairing for participants. The protocol should not require
participants to exchange certain information or secrets out-of-band. This is
especially important for the discovery protocol as the service may not know
all the clients that might try to discover it in the future.

– No cloud dependency during protocol execution. The protocol should
not rely on an external service in the cloud, such as a proxy or a directory
service. Protocols that depend on cloud-based services assume that the par-
ticipating devices maintain reliable Internet access. This assumption fails for
many IoT devices, including devices that only communicate over Bluetooth,
or ones present in spaces where Internet access is unreliable.

3 Preliminaries

In this section, we describe our identity and authorization model, as well as
introduce the cryptographic primitives we use in our constructions.

Identity and authorization model. We define our protocols for a generic distrib-
uted public-key infrastructure, such as SDSI [51]. We assume each principal has a
public and private key-pair for a signature scheme and one or more hierarchically-
structured human-readable names bound to its public key via a certificate chain.
For instance, a television set owned by Alice might have a certificate chain bind-
ing the name Alice/Devices/TV to it. Our protocols are agnostic to the specific
format of certificates and how they are distributed.

Principals authenticate each other by exchanging certificate chains and pro-
viding a signature on a fresh (session-specific) nonce. During the authentica-
tion protocol, a principal validates its peer’s certificate chain, and extracts the
name bound to the certificate chain. Authorization decisions are based on this
extracted name, and not the public key. For example, Alice may authorize all
principals with names matching the prefix pattern Alice/Devices/* to access
her television set. In this work, we consider prefix-based authorization policies.
These prefix-based policies can be used to support group-based access control
policies by viewing “subdomains” (e.g., Alice/Family) as groups.

Privacy, Discovery, and Authentication for the Internet of Things 307

3.1 Cryptographic and Protocol Building Blocks

We write Zp to denote the group of integers modulo p. For a distribution D,
we write x ← D to denote that x is drawn from D. For a finite set S, we write
x

r←− S to denote that x is drawn uniformly at random from S.

Identity-based encryption and prefix encryption. Identity-based encryption
(IBE) [19,20,26,53] is a generalization of public-key encryption where public
keys can be arbitrary strings, or identities. We give more details in the full ver-
sion [54]. Prefix encryption [44] is a generalization of IBE where the secret key
skid for an identity id can decrypt all ciphertexts encrypted to any identity
id′ that is a prefix of id (in IBE, decryption succeeds only if id = id′). Prefix
encryption allows for messages to be encrypted under a prefix-based policy such
that the resulting ciphertext can only be decrypted by principals satisfying the
policy.

It is straightforward to construct prefix encryption from IBE. The follow-
ing construction is adapted from the Lewko-Waters scheme [44]. The key for an
identity id = s1/s2/ · · · /sn consists of n different IBE keys for the following
sequence of identities: (s1), (s1/s2), . . . , (s1/s2/ · · · /sn). Encryption to an iden-
tity id′ is just IBE encryption to the identity id′. Given a secret key skid for id,
if id′ is a prefix of id, then skid contains an IBE identity key for id′.

The syntax of a prefix encryption scheme is very similar to that of an
IBE scheme. Secret keys are still associated with identities, but ciphertexts
are now associated with prefix-constrained policies. In the following, we write
PE.Enc(mpk, π,m) to denote an encryption algorithm that takes as input the
public key mpk, a message m, a prefix-constrained policy π, and outputs a
ciphertext ct. When there is no ambiguity, we will treat mpkas an implicit
parameter to PE.Enc. We write PE.Dec(skid,ct) for the decryption algorithm
that takes in a ciphertext ct and a secret key skid (for an identity id) and out-
puts a message if id matches the ciphertext policy π, and a special symbol ⊥
otherwise.

Other cryptographic primitives. We write {m}k to denote an authenticated
encryption [13,15,52] of a message m under a key k, and KDF(·) to denote a key-
derivation function [29,42]. We describe these additional primitives as well as the
cryptographic assumptions (Hash Diffie-Hellman and Strong Diffie-Hellman [9])
we use in our security analysis in the full version.

Key-exchange model. We analyze the security of our private mutual authentica-
tion and privacy service discovery protocols in the Canetti-Krawczyk [22,23,41]
key-exchange model, which models the capabilities of an active network adver-
sary. We defer the formal specification of this model and our generalization of it
to the service discovery setting to the full version.

308 D.J. Wu et al.

4 Private Mutual Authentication Protocol

In this section, we describe our private mutual authentication protocol and dis-
cuss some of its features and limitations. We use the identity and authorization
model described in Sect. 3.

Protocol execution environment. In our setting, each principal has a sign-
ing/verification key-pair and a set of names (e.g., Alice/Devices/TV) bound
to its public verification key via certificate chains. For each name, a principal
possesses an identity secret key (for the prefix encryption scheme) extracted
for that name. The secret key extraction is carried out by IBE root authorities
(who possess the IBE master secret key msk), which may coincide with certifi-
cate authorities. Finally, each principal also has one or more prefix-constrained
authorization policies.

In our protocol description, we refer to the initiator of the protocol as the
client and the responder as the server. For a party P , we write idP to denote a
certificate chain binding P ’s public key to one of its identities. For a message m,
we write sigP (m) to denote P ’s signature on m. We refer to each instantiation
of the key-exchange protocol as a “session,” and each session is identified by a
unique session id, denoted sid.

Protocol specification. Our starting point is the 3-round SIGMA-I proto-
col [23,41] which provides mutual authentication as well as privacy against pas-
sive adversaries. Similar to the SIGMA-I protocol, our protocol operates over a
cyclic group G of prime order where the Hash-DH [9] assumption holds. Let g be
a generator of G. We now describe our private mutual authentication protocol.
The message flow is illustrated in Fig. 1.

1. To initiate a session with id sid, the client C chooses x
r←− Zp, and sends

(sid, gx) to the server.
2. Upon receiving a start message (sid, gx) from a client, the server S chooses

y
r←− Zp, and does the following:

(a) Encrypt its name idS using the prefix encryption scheme under its policy
πS to obtain an encrypted identity ctS ← PE.Enc(πS , idS).

(b) Derive authenticated encryption keys (htk, atk) = KDF(gx, gy, gxy) for the
handshake and application-layer messages, respectively.

(c) Compute a signature σ = sigS(sid,ctS , gx, gy) on its encrypted identity
and the ephemeral session state, and encrypt (ctS , σ) using htk to obtain
a ciphertext c.

The server replies to the client with (sid, gy, c).
3. When the client receives a response (sid, gy, c), it derives the keys (htk, atk) =

KDF(gx, gy, gxy). It tries to decrypt c with htk and aborts if decryption fails.
It parses the decrypted value as (ctS , σS) and checks whether its identity
idC satisfies the server’s policy πS (revealed by ctS). If the client satis-
fies the server’s policy, it decrypts ctS using its identity key skC to obtain
the server’s identity idS . If idS satisfies the client’s policy πC and σS is a
valid signature on (sid,ctS , gx, gy) under the public key identified by idS ,

Privacy, Discovery, and Authentication for the Internet of Things 309

Fig. 1. Message flow between the client C (with certificate idC and policy πC) and
the server S (with certificate idS and policy πS) for the private mutual authentication
protocol. Both the client and the server possess a secret signing key. The associated ver-
ification keys are bound to their identities via the certificates idC and idS , respectively.
For a message m, sigC(m) and sigS(m) denote the client’s and server’s signature on
m, respectively. Both the client and server know the master public key for the prefix-
based encryption scheme, and the client possesses a secret key skC for the prefix-based
encryption scheme for the identity associated with its certificate idC .

the client replies to the server with the session id sid and an encryption c′ of
(idC , sigC(sid, idC , gx, gy)) under htk. Otherwise, the client aborts.

4. Upon receiving the client’s response (sid, c′), the server tries to decrypt c′

using htk and aborts if decryption fails. It parses the decrypted value as
(idC , σC) and verifies that idC satisfies its policy and that σC is a valid
signature on (sid, idC , gx, gy) under the public key identified by idC . If so,
the handshake completes with atk as the shared session key and where the
client believes it is talking to idS and the server believes it is talking to idC .
Otherwise, the server aborts.

4.1 Protocol Analysis

In this section, we highlight some properties of our private mutual authentication
protocol. In the full version [54], we also discuss policy privacy, unlinkability, and
caching the encrypted certificate chains.

Comparison with SIGMA-I. Our authentication protocol is very similar to the
SIGMA-I key-exchange protocol [41, Sect. 5.2], but with the following key dif-
ference: the server’s certificate, idS , is sent encrypted under a prefix encryption
scheme. Moreover, instead of deriving separate MAC and encryption keys from
the shared DH key, we combine the two primitives by using an authenticated
encryption scheme. Since we have only added an additional layer of prefix encryp-
tion to the certificates, each party’s signature verification key is still bound to
its identity as before. Thus, the proof that the SIGMA-I protocol is a secure
key-exchange protocol [23, Sect. 5.3] (with perfect forward secrecy) translates to
our setting.

Identity privacy. The identity of the server is sent encrypted under its prefix
policy, so by security of the prefix encryption scheme, it is only revealed to clients
that satisfy the policy. Conversely, an honest client only reveals its identity after
it has verified that the server’s identity satisfies its policy. We formally define

310 D.J. Wu et al.

our notion of mutual privacy and show that the protocol in Fig. 1 achieves this
notion in the full version. In contrast, the SIGMA-I protocol does not provide
such a guarantee as the identity of the server is revealed to active adversaries.

Security theorem. We state the security theorem for our private mutual authen-
tication protocol here, but defer the formal proof to the full version [54].

Theorem 4.1 (Private Mutual Authentication). The protocol in Fig. 1 is a
secure and private key-exchange protocol in the Canetti-Krawczyk key-exchange
model assuming the Hash Diffie-Hellman assumption in G and the security of
all underlying cryptographic primitives.

5 Private Service Discovery Protocol

In this section, we describe our private service discovery protocol. The primary
goal is to make a service discoverable only by parties that satisfy its authoriza-
tion policy. Additionally, once a client has discovered a service, it should be able
to authenticate to the server using zero round-trips (0-RTT), i.e., include appli-
cation data on the first flow of the handshake. 0-RTT protocols are invaluable
for IoT since devices are often constrained in both computation and bandwidth.

The key idea in our design is to have the service include a fresh DH share and
a signature in its advertisement. The DH share allows 0-RTT client authentica-
tion, and the signature provides authenticity for the service advertisement. Next,
the service encrypts its advertisement under its policy πS before broadcasting to
ensure that only authorized clients are able to discover it. A similar mechanism
for (non-private) 0-RTT authentication is present in OPTLS and the TLS 1.3
specification [43,50], although OPTLS only provides server authentication.

Protocol specification. Our protocol works over a cyclic group G of prime order
p with generator g where the Strong-DH and Hash-DH assumptions [9] hold.
The private discovery protocol can be separated into a broadcast protocol and
a 0-RTT mutual authentication protocol. Each broadcast is associated with a
unique broadcast identifier bid and each session with a unique session identifier
sid. The protocol execution environment is the same as that described in Sect. 4.
The basic message flow for the private discovery protocol is illustrated in Fig. 2.

Service broadcast message. To setup a new broadcast with broadcast id
bid, the server S chooses a fresh DH exponent s

r←− Zp, and encrypts
(idS , gs, sigS(bid, idS , gs)) using the prefix encryption scheme under its autho-
rization policy πS to obtain a broadcast ciphertext ctS . The server broadcasts
(bid,ctS).

0-RTT mutual authentication. Upon receiving a broadcast (bid,ctS), a client
performs the following steps to establish a session sid with the server:

Privacy, Discovery, and Authentication for the Internet of Things 311

1. The client C checks that its identity idC satisfies the server’s authorization
policy πS (included with ctS). If so, it decrypts ctS using its prefix encryp-
tion secret key and parses the decrypted value as (idS , gs, σS). It verifies that
idS satisfies its policy πC and that σS is a valid signature on (bid, idS , gs)
under the public key identified by idS . If any step fails, the client aborts.

2. Next, the client chooses an ephemeral DH exponent x
r←− Zp. It

derives authenticated encryption keys (htk, htk′, eadk) = KDF(gs, gx, gsx),
where htk and htk′ are used to encrypt handshake messages, and
eadk is used to encrypt any early application data the client wants
to include with its connection request. The client encrypts the tuple
(idS , idC , sigC(bid, sid, idS , idC , gs, gx)) under htk to obtain a ciphertext c1
and any early application data under eadk to obtain a ciphertext c2. It sends
(bid, sid, gx, c1, c2) to the server.

3. When the server receives a message from a client of the form
(bid, sid, gx, c1, c2), it first derives the encryption keys (htk, htk′, eadk) =
KDF(gs, gx, gsx), where s is the DH exponent it chose for broadcast bid. Then,
it tries to decrypt c1 with htk and c2 with eadk. If either decryption fails, the
server aborts the protocol. Otherwise, let (id1, id2, σ) be the message obtained
from decrypting c1. The server verifies that id1 = idS and that id2 satisfies
its authorization policy πS . Next, it checks that σ is a valid signature on
(bid, sid, id1, id2, g

s, gx) under the public key identified by id2. If all these
checks pass, the server chooses a new ephemeral DH exponent y

r←− Zp and
derives the session key atk = KDF(gs, gx, gsx, gy, gxy).3 The server encrypts
the tuple (bid, sid, id1, id2) under htk′ to obtain a ciphertext c′

1, and any appli-
cation messages under atk to obtain a ciphertext c′

2. It replies to the client
with (bid, sid, gy, c′

1, c
′
2).

4. When the client receives a response message (bid, sid, gy, c′
1, c

′
2), it first

decrypts c′
1 using htk′ and verifies that c′

1 decrypts to (bid, sid, idS , idC). If
so, it derives atk = KDF(gs, gx, gsx, gy, gxy) and uses atk to decrypt c′

2. The
handshake then concludes with atk as the shared session key.

5.1 Protocol Analysis

We now describe some of the properties of our private service discovery protocol
in Fig. 2. We give a more detailed discussion in the full version of this paper.

0-RTT security. The security analysis of the 0-RTT mutual authentication pro-
tocol in Fig. 2 is similar to that of the OPTLS protocol in TLS 1.3 [43] and
relies on the Strong-DH and Hash-DH assumptions [9] in the random oracle
model [14]. Note that in contrast to the OPTLS protocol which only provides
client authentication, our protocol provides mutual authentication.
3 In this step, the server samples a fresh ephemeral DH share gy that is used to derive

the application-traffic key atk. This is essential for ensuring perfect forward secrecy
for all subsequent application-layer messages (encrypted under atk). We discuss the
perfect forward secrecy properties of this protocol in Sect. 5.1.

312 D.J. Wu et al.

Fig. 2. Basic message flow between the client C (with certificate idC and policy πC)
and the server S (with certificate idS and policy πS) for the private discovery protocol.
The client can also include early application data in the first flow of the 0-RTT mutual
authentication protocol.

Replay attacks. One limitation of the 0-RTT mode is that the early-application
data is vulnerable to replay attacks. A typical replay-prevention technique (used
by QUIC [47]) is to have the server maintain a list of client nonces in the 0-RTT
messages and reject duplicates for the lifetime of the service advertisement.

Authenticity of broadcasts. Because the service broadcasts are signed, a client
is assured of the authenticity of a broadcast before establishing a session with a
service. This ensures that the client will not inadvertently send its credentials to
an impostor service. However, an adversary that intercepts a service broadcast
and recovers the associated semi-static DH exponent can replay the broadcast
for an honest client. If the client then initiates a session using the DH share from
the replayed advertisement, the adversary compromises the client’s privacy. To
protect against this kind of replay attack, the server should include an expiration
time in its broadcasts, and more importantly, sign this expiration.

Forward secrecy. Since the server’s semi-static DH share persists across sessions,
perfect forward secrecy (PFS) is lost for early-application data and handshake
messages sent during the lifetime of each advertisement. To mitigate this risk
in practical deployments, it is important to periodically refresh the DH-share in
the server’s broadcast (e.g., once every hour). The refresh interval corresponds
to the window where forward secrecy may be compromised.

While PFS is not achievable for early-application and handshake messages
for the lifetime of a service’s broadcast, PFS is ensured for all application-layer
messages. In particular, after processing a session initiation request, the server
responds with a fresh ephemeral DH share that is used to derive the session key
for all subsequent messages. In the full version, we show that the security of the
session is preserved even if the server’s semi-static secret is compromised but the
ephemeral secret is uncompromised. This method of combining a semi-static key
with an ephemeral key also features in the OPTLS [43] and QUIC [47] protocols.

Identity privacy. As was the case in our private mutual authentication proto-
col from Sect. 4, privacy for the server’s identity is ensured by the prefix-based
encryption scheme. Privacy for the client’s identity is ensured since all handshake

Privacy, Discovery, and Authentication for the Internet of Things 313

messages are encrypted under handshake traffic keys htk and htk′. We formally
state and prove mutual privacy for the protocol in the full version.

Security theorem. We conclude by stating the security theorem for our private
service discovery protocol. We give the formal proof in the full version [54].

Theorem 5.1 (Private Service Discovery). The protocol in Fig. 2 is a
secure and private service discovery protocol in a Canetti-Krawczyk-based model
of key-exchange in the random oracle model, assuming the Hash Diffie-Hellman
and Strong Diffie-Hellman assumptions in G, and the security of the underlying
cryptographic primitives.

6 Protocol Evaluation and Deployment

In this section, we describe the implementation and deployment of our private
mutual authentication and service discovery protocols in the Vanadium frame-
work [1]. We benchmark our protocols on a wide range of architectures: an Intel
Edison (0.5 GHz Intel Atom), a Raspberry Pi 2 (0.9 GHz ARM Cortex-A7), a
Nexus 5X smartphone (1.8 GHz 64-bit ARM-v8A), a Macbook Pro (3.1 GHz
Intel Core i7), and a desktop (3.2 GHz Intel Xeon).

Vanadium. We implement our private mutual authentication and service discov-
ery protocols as part of the Vanadium framework for developing secure, distrib-
uted applications. The Vanadium identity model is based on a distributed PKI.
All principals in Vanadium possess an ECDSA P-256 signing and verification
key-pair. Principals have a set of human-readable names bound to them via cer-
tificate chains, called blessings. Blessings can be extended locally and delegated
from one principal to another. Interactions between parties are encrypted and
mutually authenticated based on the blessings bound to each end.

We implement our protocols to enhance the privacy of the Vanadium discov-
ery framework. Our entire implementation is in Go (with wrappers for interfacing
with third-party C libraries).

6.1 Identity-Based Encryption

The key primitive we require for our protocols is prefix-based encryption, which
we can construct from any IBE scheme (Sect. 3.1). For our experiments, we imple-
mented the Boneh-Boyen (BB2) scheme [19, Sect. 5] over the 256-bit Barreto-
Naehrig (bn256) [48] pairings curve. We chose the BB2 IBE scheme for its effi-
ciency: it only requires a single pairing evaluation during decryption. We apply
the Fujisaki-Okamoto transformation [32] to obtain CCA-security. For the under-
lying symmetric encryption scheme in the Fujisaki-Okamoto transformation, we
use the authenticated encryption scheme from NaCl [16,17]. All of our crypto-
graphic primitives are chosen to provide at least 128 bits of security. In the full
version, we give some microbenchmarks of the different IBE operations on several
devices and describe how we integrate IBE into the Vanadium infrastructure.

314 D.J. Wu et al.

6.2 Private Mutual Authentication

We implemented the private mutual authentication protocol from Sect. 4 within
the Vanadium RPC system as a means to offer a “private mode” for Vanadium
services. We implemented the protocol from Fig. 1 that allows caching of the
encrypted server certificate chain. The implementation uses a prefix encryption
primitive implemented on top of our IBE library.

Benchmarking. We measure the end-to-end connection setup time for our pro-
tocol on various platforms. To eliminate network latency, we instantiate a server
and client in the same process. Since the encrypted server certificate chain can be
reused across multiple handshakes, we precompute it before executing the pro-
tocol. Both the client and the server use a prefix-based policy of length three.
Note that the encryption and decryption times in our prefix encryption scheme
are not affected by the length of the policy.

Results. We compare the performance of our protocol to the traditional SIGMA-
I protocol in Table 1. The end-to-end latency on the desktop is only 9.5 ms,
thanks to an assembly-optimized IBE implementation. The latency on smaller
devices is typically around a third of a second, which is quite suitable for user-
interactive applications like AirDrop. Even on the Intel Edisons (a processor
marketed specifically for IoT), the handshake completes in just over 1.5 s, which
is still reasonable for many applications. Moreover, with an optimized imple-
mentations of the IBE library (e.g., taking advantage of assembly optimizations
like on the desktop), these latencies should be significantly reduced.

The memory and storage requirements of our protocol are very modest and
well-suited for the computational constraints of IoT and mobile devices. Specif-
ically, the pairing library is just 40 KB of code on the ARM processors (and 64
KB on x86). The public parameters for the IBE scheme are 512 bytes, and each
IBE secret key is just 160 bytes. For comparison, a typical certificate chain (of
length 3) is about 500 bytes in Vanadium. Also, our protocols are not memory-
bound, and in particular, do not require much additional memory on top of the
existing non-private SIGMA-I key-exchange protocol supported by Vanadium.

Table 1. Private mutual authentication benchmarks.

Intel Edison Raspberry Pi 2 Nexus 5X Laptop Desktop

SIGMA-I 252.1 ms 88.0 ms 91.6 ms 6.3 ms 5.3 ms

Private mutual auth. 1694.3 ms 326.1 ms 360.4 ms 19.6 ms 9.5 ms

Slowdown 6.7x 3.7x 3.9x 3.1x 1.8x

6.3 Private Discovery

We also integrated the private discovery protocol from Sect. 5 into Vanadium.

Privacy, Discovery, and Authentication for the Internet of Things 315

Benchmarks. We benchmark the cryptographic overhead of processing service
advertisements, and measure the size of the service advertisements. Process-
ing service advertisements requires a single IBE decryption and one ECDSA
signature verification. For instance, on the Nexus 5X smartphone, which is a
typical client for processing service advertisements, the cost is approximately
236 ms (IBE decryption) + 11 ms (ECDSA signature verification) = 247 ms.

The advertisement size can also be estimated analytically from the structure
shown in Fig. 2. Our implementation of prefix encryption (PE.Enc) has a cipher-
text overhead of 208 bytes on top of the plaintext. The Diffie-Hellman exponent
(gs) is 32 bytes, the broadcast id (bid) is 16 bytes, the ECDSA signature is 64
bytes, and a certificate chain (idS) of length three is approximately 500 bytes in
size. The overall service advertisement is about 820 bytes.

Deployment. We deploy our service discovery protocol within the Vanadium
discovery framework. The protocol allows services to advertise themselves while
restricting visibility to an authorized set of clients. The Vanadium discovery API
allows services to advertise over both mDNS and BLE. An mDNS TXT record has
a maximum size of 1300 bytes [24,25], which suffices for service advertisements.

When the policy has multiple prefixes, our advertisements would no longer
fit in a single mDNS TXT record. Furthermore, BLE advertisement payloads are
restricted to 31 bytes [5], which is far too small to fit a full service advertisement.
In the full version [54], we show how an auxiliary service can be used to host the
encrypted advertisements, and thus, enable private service discovery over BLE
and other similarly space-constrained advertisement protocols.

6.4 Fixing AirDrop

Recall from Sect. 2.1 that during an AirDrop file exchange in contacts-only mode,
a hash of the sender’s identity is advertised over BLE and matched by potential
receivers against their contacts. If there is a match, the receiver starts a service
that the sender can connect to using TLS (version 1.2). In the TLS handshake,
the sender and receiver exchange their certificates in the clear, which makes them
visible to eavesdroppers on the network. This privacy vulnerability can be fixed
using the private mutual authentication protocol from Sect. 4. In particular, once
the receiver matches the sender’s hash against one of its contacts, it uses the
prefix encryption scheme to encrypt its identity under the name of the contact
that matched the sender’s hash. We provide more details in the full version [54].

7 Extensions

In the full version, we describe several ways to extend our protocols. These
include ways to hide the server’s authorization policy and allowing non-IBE
roots to manage and issue prefix encryption keys for their subdomains.

316 D.J. Wu et al.

8 Related Work

Private mutual authentication. The term “private authentication” was first
introduced by Abadi and Fournet [7,8]. However, the protocols in [8] require
the authorization policy to be specified by a set of public keys and do not scale
when the set of public keys is very large. Many other cryptographic primitives
have also been developed for problems related to private mutual authentication,
including secret handshakes [11,12,36], oblivious signature-based envelopes [46],
oblivious attribute certificates [45], hidden credentials [21,31,35], and more.

Secret handshakes and their extensions are protocols based on bilinear pair-
ings that allow members of a group to identify each other privately. A key limita-
tion of secret handshakes is that the parties can only authenticate using creden-
tials issued by the same root authority. Oblivious signature-based envelopes [46],
oblivious attribute certificates [45] and hidden credentials [21,31,35] allow a
sender to send an encrypted message that can be decrypted only by a recipient
that satisfies some policy. Hidden credentials additionally hide the sender’s pol-
icy. Closely related are the cryptographic primitives of attribute-based encryp-
tion [18,33] and predicate encryption [34,39], which allow more fine-grained con-
trol over decryption capabilities.

The protocols we have surveyed here are meant for authentication, and not
authenticated key-exchange, which is usually the desired primitive. Integrating
these protocols into existing key-exchange protocols such as SIGMA or TLS 1.3
is not always straightforward and can require non-trivial changes to existing
protocols. In contrast, our work shows how IBE-based authentication can be very
naturally integrated with existing secure key-exchange protocols (with minimal
changes) to obtain private mutual authentication. Moreover, our techniques are
equally applicable in the service discovery setting, and can be used to obtain
0-RTT private mutual authentication.

Service discovery. There is a large body of work on designing service discovery
protocols for various environments—mobile, IoT, enterprise and more; we refer
to [57] for a survey. Broadly, these protocols can be categorized into two groups:
“directory-based” protocols and “directory-free” protocols.

In directory-based discovery protocols [4,27,55], there is a central directory
that maintains service information and controls access to the services. Clients
query directories to discover services while services register with the directory
to announce their presence. While directory-based protocols allow for central-
ized management and tend to be computationally efficient, their main drawback
is that they force dependence on an external service. If the directory service is
unavailable then the protocol ceases to work. Even worse, if the directory service
is compromised, then both server and client privacy is lost. Besides, mutually
suspicious clients and servers may not be able to agree on a common directory
service that they both trust. In light of these downsides, we designed decentral-
ized, peer-to-peer protocols in this work.

Directory-free protocols, such as [37,38,56,58], typically rely on a shared key
established between devices in a separate, out-of-band protocol. The shared key

Privacy, Discovery, and Authentication for the Internet of Things 317

is then used to encrypt the private service advertisements so that only paired
devices can decrypt. Other protocols like UPnP [30] rely on public key encryp-
tion, where each device maintains a set of public keys for the peers it is willing
to talk to. In contrast, key-management in our IBE-based solution is greatly
simplified—devices do not have to maintain long lists of symmetric or public
keys. Our protocol is similar to the Tryst protocol [49], which proposes using an
anonymous IBE scheme for encrypting under the peer’s name (based on using a
mutually agreed upon convention). A distinguishing feature of our protocol over
Tryst is the support for prefix-based authorization policies.

Acknowledgments. We thank Mart́ın Abadi, Mike Burrows, and Adam Langley for
many helpful comments and suggestions. This work was supported by NSF, DARPA, a
grant from ONR, the Simons Foundation, and an NSF Graduate Research Fellowship.
Opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of DARPA.

References

1. Vanadium. http://vanadium.github.io/
2. IETF zero configuration networking (zeroconf) (2004). https://datatracker.ietf.

org/doc/charter-ietf-zeroconf
3. Bonjour printing specification version 1.2 (2013)
4. Jini(TM) network technology specifications - Apache river version 2.2.0 (2013)
5. Bluetooth specification version 4.2 (2014)
6. UPnP(TM) device architecture 2.0 (2015)
7. Abadi, M.: Private authentication. In: PETS, pp. 27–40 (2003)
8. Abadi, M., Fournet, C.: Private authentication. Theoret. Comput. Sci. 322, 427–

476 (2004)
9. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and

an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001)

10. Aiello, W., Bellovin, S.M., Blaze, M., Canetti, R., Ioannidis, J., Keromytis, A.D.,
Reingold, O.: Just fast keying: key agreement in a hostile internet. ACM Trans.
Inf. Syst. Secur. 7(2), 242–273 (2004)

11. Ateniese, G., Kirsch, J., Blanton, M.: Secret handshakes with dynamic and fuzzy
matching. In: NDSS (2007)

12. Balfanz, D., Durfee, G., Shankar, N., Smetters, D.K., Staddon, J., Wong, H.-C.:
Secret handshakes from pairing-based key agreements. In: 2003 IEEE S&P 2003,
pp. 180–196 (2003)

13. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

14. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS, pp. 62–73 (1993)

15. Bellare, M., Rogaway, P., Wagner, D.: EAX: a conventional authenticated-
encryption mode. IACR Cryptology ePrint Archive, 2003:69 (2003)

16. Bernstein, D.J.: Cryptography in NaCl (2009)
17. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-

graphic library. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533,
pp. 159–176. Springer, Heidelberg (2012)

http://vanadium.github.io/
https://datatracker.ietf.org/doc/charter-ietf-zeroconf
https://datatracker.ietf.org/doc/charter-ietf-zeroconf

318 D.J. Wu et al.

18. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE S&P, pp. 321–334 (2007)

19. Boneh, D., Boyen, X.: Efficient Selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

20. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

21. Bradshaw, R.W., Holt, J.E., Seamons, K.E.: Concealing complex policies with
hidden credentials. In: ACM CCS, pp. 146–157 (2004)

22. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001)

23. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-exchange
protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161.
Springer, Heidelberg (2002)

24. Cheshire, S., Krochmal, M.: DNS-Based Service Discovery. RFC 6763 (Proposed
Standard), February 2013

25. Cheshire, S., Krochmal, M.: Multicast DNS. RFC 6762 (Proposed Standard), Feb-
ruary 2013

26. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

27. Czerwinski, S.E., Zhao, B.Y., Hodes, T.D., Joseph, A.D., Katz, R.H.: An architec-
ture for a secure service discovery service. In: MobiCom, pp. 24–35 (1999)

28. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), August 2008

29. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness extrac-
tion and key derivation using the CBC, cascade and HMAC modes. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)

30. Ellison, C.M.: Home network security. Intel Technol. J. 6(4), 37–48 (2002)
31. Frikken, K.B., Atallah, M.J., Li, J.: Hidden access control policies with hidden

credentials. In: ACM WPES, p. 27 (2004)
32. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-

tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

33. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554 (2013)

34. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015)

35. Holt, J.E., Bradshaw, R.W., Seamons, K.E., Orman, H.K.: Hidden credentials. In:
ACM WPES, pp. 1–8 (2003)

36. Jarecki, S., Kim, J.H., Tsudik, G.: Authentication for paranoids: multi-party secret
handshakes. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989,
pp. 325–339. Springer, Heidelberg (2006)

37. Kaiser, D., Waldvogel, M.: Adding privacy to multicast DNS service discovery. In:
IEEE TrustCom, pp. 809–816 (2014)

38. Kaiser, D., Waldvogel, M.: Efficient privacy preserving multicast DNS service dis-
covery. In: IEEE CSS (2014)

Privacy, Discovery, and Authentication for the Internet of Things 319

39. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

40. Könings, B., Bachmaier, C., Schaub, F., Weber, M.: Device names in the wild:
investigating privacy risks of zero configuration networking. In: IEEE MDM, pp.
51–56 (2013)

41. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003)

42. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010)

43. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. IACR Cryptology
ePrint Archive, 2015:978 (2015)

44. Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (2014)

45. Li, J., Li, N.: OACerts: oblivious attribute certificates. IEEE Trans. Dependable
Sec. Comput. 3(4), 340–352 (2006)

46. Li, N., Wenliang, D., Boneh, D.: Oblivious signature-based envelope. Distrib. Com-
put. 17(4) (2005). Extended abstract in ACM PODC 2003

47. Lychev, R., Jero, S., Boldyreva, A., Nita-Rotaru, C.: How secure and quick is quic?
Provable security and performance analyses. In: IEEE Symposium on Security and
Privacy, pp. 214–231 (2015)

48. Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for cryp-
tographic pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010)

49. Pang, J., Greenstein, B., McCoy, D., Seshan, S., Wetherall, D.: Tryst: the case for
confidential service discovery. In: HotNets (2007)

50. Rescorla, E.: The transport layer security (TLS) protocol version 1.3, July 2015
51. Rivest, R.L., Lampson, B.: SDSI - a simple distributed security infrastructure.

Technical report (1996)
52. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM CCS, pp.

98–107 (2002)
53. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,

Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

54. Wu, D.J., Taly, A., Shankar, A., Boneh, D.: Privacy, discovery, and authentication
for the Internet of Things. CoRR, abs/1604.06959 (2016). http://arxiv.org/abs/
1604.06959

55. Zhu, F.W., Mutka, M.W., Bivalkar, A., Demir, A., Yue, L., Chidambarm, C.:
Toward secure and private service discovery anywhere anytime. Front. Comput.
Sci. China 4(3), 311–323 (2010)

56. Zhu, F.W., Mutka, M.W., Ni, L.M.: PrudentExposure: a private and user-centric
service discovery protocol. In: IEEE PerCom, pp. 329–340 (2004)

57. Zhu, F.W., Mutka, M.W., Ni, L.M.: Service discovery in pervasive computing envi-
ronments. IEEE Pervasive Comput. 4(4), 81–90 (2005)

58. Zhu, F.W., Mutka, M.W., Ni, L.M.: A private, secure, and user-centric information
exposure model for service discovery protocols. IEEE Trans. Mob. Comput. 5(4),
418–429 (2006)

http://arxiv.org/abs/1604.06959
http://arxiv.org/abs/1604.06959

Secure Code Updates for Mesh Networked
Commodity Low-End Embedded Devices

Florian Kohnhäuser(B) and Stefan Katzenbeisser

Security Engineering Group, Technische Universität Darmstadt, Darmstadt, Germany
{kohnhaeuser,katzenbeisser}@seceng.informatik.tu-darmstadt.de

Abstract. Mesh networked low-end embedded devices are increasingly
used in various scenarios, including industrial control, wireless sensing,
robot swarm communication, or building automation. Recently, more
and more software vulnerabilities in embedded systems are disclosed, as
they become appealing targets for cyber attacks. In order to patch these
systems, an efficient and secure code update mechanism is required. How-
ever, existing solutions are unable to provide verifiable code updates for
networked commodity low-end embedded devices. This work presents a
novel code update scheme which verifies and enforces the correct instal-
lation of code updates on all devices in the network. After update distri-
bution and installation, devices mutually attest and verify each others’
software state. Devices being in an untrustworthy state are excluded
from the network. In this way, the scheme enforces software integrity as
well as software up-to-dateness on all devices in the network. Issuing a
secure code update, the network operator is able to learn the identity
of all trustworthy and all untrustworthy devices. We demonstrate that
the proposed scheme is applicable to a wide range of existing commodity
low-end embedded systems. Furthermore, we show that the scheme is
practically usable in networks with tens of thousands of devices.

1 Introduction

The continuous cost reduction and miniaturization of electronic devices com-
mences a new technological revolution of omnipresent embedded devices. Trends
like the Internet of Things, Smarter Planet, Industry 4.0, or Smart Cities aim at
applying networked embedded systems in virtually every aspect of our life. Wire-
less technologies like IEEE 802.11s, IEEE 802.15.4, ZigBee, Z-Wave, or Blue-
tooth facilitate the establishment of large mesh networks consisting of numerous
embedded systems. In a mesh network, all devices cooperate in the distribution
of data in the network, forming a decentralized and self-organized network topol-
ogy. Nowadays, wireless mesh networked embedded devices are already widely
used in industrial control, wireless sensor networks, home automation, building
automation, military communication, or community networks. These systems
often perform security or safety-critical tasks, or process privacy-sensitive infor-
mation. In addition, they commonly lack effective security mechanisms due to
their low production costs as well as their small and simple system architecture.
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 320–338, 2016.
DOI: 10.1007/978-3-319-45741-3 17

Secure Code Updates for Mesh Networked Embedded Devices 321

These circumstances made them appealing targets for cyber attacks. Conse-
quently, many software vulnerabilities in embedded systems have been revealed
lately [10,17,31]. In order to fix such vulnerabilities, it is vital that low-end
embedded devices provide secure code update mechanisms.

A secure code update scheme for the above described application must pro-
vide several features. First, it has to ensure that devices verify the novelty,
integrity, and authenticity of code updates before installation. This feature is
necessary to prevent misuse of the code update mechanism, e.g., by downgrad-
ing a software or installing malicious code. Second, the scheme must ensure that,
appropriately executed, it restores the integrity of the software state on a device,
even if the device was compromised before. Thus, an attacker who exploited a
vulnerability in the old software to compromise and gain control over a device
is removed from the device. However, compromised devices can simply deny the
execution of code updates or execute them inappropriately without restoring
software integrity. Therefore, after code update execution, the scheme must ver-
ify whether all devices are in a trustworthy, i.e., an unmodified and up-to-date,
software state. To reduce potential damage caused by compromised devices, the
secure code update scheme should exclude untrustworthy devices from the net-
work. Furthermore, the scheme must be scalable, as it should allow for an efficient
update of all devices in large mesh networks. Moreover, it should be applicable to
already existing commodity low-end embedded devices. In this way, the scheme
can be retrofitted to currently deployed systems. Finally, a network operator
issuing a secure code update should eventually be informed about the integrity
of the software state of all devices in the network.

However, to the best of our knowledge, there is no solution which satisfies
all these requirements. Software- and PoSE-based (Proofs of Secure Erasure)
approaches are applicable to commodity devices, but rely on strong security
assumptions which are hard to achieve in practice [2,14,19,30,35]. Additionally,
they allow a verifier to attest only one device but not a group of devices, as
they rely on the assumption that during attestation an adversary is unable to
communicate with any other party, except for the verifier. By contrast, hardware-
based solutions provide much stronger security guarantees by relying on secure
hardware modules. Yet, security architectures which are applicable to low-end
embedded systems such as TyTAN, SMART, TrustLite, or SANCUS are still in
research stage [8,13,21,28]. These architectures have only been implemented as
prototypes and their future availability in commodity devices is uncertain.

Contributions. In this work, we present a novel secure code update scheme for
wireless mesh networked commodity low-end embedded devices. As opposed to
existing hardware-based approaches, we require only minimal assumptions on
secure hardware, which makes our scheme applicable to many existing low-end
embedded devices. Nevertheless, by relying on lightweight secure hardware, we
achieve much stronger security guarantees than existing software- and PoSE-
based approaches. This, in particular, allows us to provide secure code updates
for groups of devices. Our scheme allows only fresh and authenticated updates
to be installed on devices. During a proper code update execution, each device

322 F. Kohnhäuser and S. Katzenbeisser

verifies its local software integrity and ensures that only unmodified and up-
to-date software runs on the device. To enforce a proper execution of the code
update, neighboring devices mutually verify each others’ genuine and up-to-date
software state and establish secure channels only if the verification succeeds.
Thus, compromised devices can either refuse an appropriate execution of the code
update, whereupon they are excluded from the network, or perform a correct
code update, whereby any present malware gets eliminated. Issuing a secure
code update for the network, the operator is able to learn the identity of all
trustworthy and all untrustworthy network devices. We implemented the scheme
on exemplary low-end embedded systems that are interconnected via ZigBee.
Simulation results demonstrate that our scheme scales well and is practically
usable in networks with tens of thousands of devices.

Structure. In Sect. 2, we summarize existing work. Section 3 presents our system
model, device requirements, and our adversary model. In Sect. 4, we show how
the device requirements can be implemented on commodity devices. Section 5
describes our secure code update scheme. In Sect. 6, we evaluate the performance
of the proposed scheme. Finally, Sect. 7 concludes this work.

2 Related Work

Code Updates. The process of updating software or firmware present in
embedded devices is referred to as over-the air programming (OTA), firmware
over-the-air (FOTA), code update, software update, or firmware update. Com-
mon research topics are transmission reliability, transmission scalability, update
size minimization, and energy efficiency [12,16,23,32]. Moreover, several papers
explicitly focus on security aspects and use digital signatures to ensure code
update freshness, authenticity, and integrity [18,25,38]. In addition, these works
offer features like denial-of-service resilience, extra small or efficient signatures,
or support for multiple code update initiators with different privileges. However,
conventional code update techniques only perform unidirectional verification.
Embedded systems verify the integrity and authenticity of code updates, but
the initiator of the code update is unable to verify whether embedded systems
indeed install the code update appropriately.

Remote Attestation. Remote attestation is a mechanism that allows a third
party to verify the software state of a remote system. Consequently, by perform-
ing remote attestation after the execution of a code update, its correct instal-
lation can be verified. Software-based attestation mechanisms do not require
secure hardware and thus can be applied in commodity low-end embedded sys-
tems or legacy systems [9,22,26,34]. However, they rely on various assumptions
like exact time measurements, optimal protocol implementation and execution,
or the adversary being passive during attestation. Those assumptions are hard
to achieve in practice [2]. By contrast, hardware-based attestation mechanisms
provide much stronger security guarantees by relying on secure hardware. As
standardized and commercial secure hardware components like ARM TrustZone,

Secure Code Updates for Mesh Networked Embedded Devices 323

TPM, Intel TXT, or Intel SGX are too complex and too expensive to be used
in low-end embedded systems, new security architectures, such as SMART [13],
SANCUS [28], TrustLite [21], or TyTan [8], have recently been proposed. Never-
theless, these architectures have only been implemented as prototypes and their
future availability in commodity low-end embedded devices is uncertain. In addi-
tion, their remote attestation mechanisms only target the attestation of a single
device, which is impractical in mesh network scenarios due to a large commu-
nication overhead. We are only aware of two approaches that address efficient
attestation of multiple embedded devices. SMATT [29] verifies multiple devices
at once by comparing their integrity measurements. On the downside, SMATT
requires identical devices, relies on special copy-proof memory, and only enables
a probabilistic attack detection rate. SEDA [3] is an efficient and scalable attes-
tation scheme for large heterogeneous embedded system networks. Yet, as SEDA
relies on secure hardware that is not available in commodity devices, it is not
applicable to currently deployed systems. Regarding secure code updates, SEDA
provides only a brief protocol extension that leaves several design decisions open
(e.g., protection against rollback attacks) and lacks desirable features (e.g., the
exclusion of compromised devices from the network).

Secure Code Updates. Work on secure code updates specifically addresses
the problem of verifying that a code update has been securely distributed and
correctly installed on a remote embedded system. Seshadri et al. [35] applied
a software-based approach to ensure an untampered execution of the software
update protocol on a single remote device. However, as already mentioned,
software-based solutions provide questionable security guarantees due to their
strong assumptions [2]. Perito and Tsudik [30] pursued a different approach and
introduced the concept of Proofs of Secure Erasure (PoSE) to secure software
updates. PoSE allow a device to prove to a remote party that it is free of mali-
cious code by attesting that it has erased all its memory. In a second step, cleaned
devices download the software update and send a MAC of the downloaded code
to the verifier to prove the storage of the software update. Recently, Karame et
al. [19] enhanced this concept by combining PoSE with All or Nothing Trans-
forms to reduce the time and energy overhead. Nevertheless, both software and
PoSE-based approaches rely on the strong assumption that a device proving its
correct code update installation is only able to communicate with the verifier,
and no other party. Thus, both approaches are impractical for updating multiple
networked devices, since they can only provide security if the adversary is not
physically present and has not gained control of more than one device in the
network.

3 System Requirements and Adversary Model

System Model. We consider a mobile wireless mesh network that consists
of various interconnected commodity low-end embedded devices. The devices
can be of different type and model, having, for instance, varying computational
power, storage capacity, or security functionalities. Devices in the network can

324 F. Kohnhäuser and S. Katzenbeisser

move, but the network topology is assumed to remain static during a single run
of the secure code update protocol. We assume that all correctly functioning
devices are reachable in the network. Unreachable devices are ignored and they
are temporarily regarded as compromised, since it is uncertain whether they will
ever contribute to the network again. We further assume that each device Di gets
initialized and deployed by a trusted network operator O once (see Sect. 5.1).

After deployment, the goal of O is to perform a secure and efficient code
update for all devices in the network. Devices conducting a secure code update
should ensure that only authentic, untampered, and fresh code updates are
installed and that the installation establishes software integrity, thereby undoing
potential manipulations made by an attacker. Devices that refuse a correct instal-
lation should be identified as manipulated and excluded from the network. This
prevents compromised devices from eavesdropping, manipulating transmitted
data, or communicating with a remote attacker. Finally, O should get a report
listing all devices that are in a trustworthy, i.e., an up-to-date and unmodified,
software state. During code update execution, we assume O to be connected to
at least one device in the network.

Hardware Security Requirements. Our secure code update solution requires
the following properties from each device Di:

(1) Immutable Code: A static non-volatile write-protected memory region R
which contains code and data;

(2) Secure Storage: A device-dependent unique secret SK that can only be
accessed during the execution of code in R;

(3) Uninterruptible Execution: Once code in R gets executed, execution cannot
be interrupted until the control flow intentionally leaves R.

In Sect. 4, we discuss how these properties can be implemented on commod-
ity low-end embedded devices. We will see that many existent devices provide
hardware features that allow for the implementation of these requirements.

Adversary Model. We assume that an adversary has full control over the
execution state of a compromised device, and can read all readable storage and
write to all writable storage. Furthermore, the adversary has complete control
over the communication medium, i.e., all messages sent between devices can be
eavesdropped and manipulated. In addition, we assume that the adversary can
be physically present and introduce additional hardware to the network.

In contrast, we assume that the adversary does not perform physical attacks
on the hardware of the embedded devices. In particular, we presume that the
adversary cannot bypass any of the hardware protections described above. More-
over, we do not consider Denial of Service (DoS) attacks in the immediate vicinity
of the attacker, since there is no defense against a physically present attacker
who cuts the wire or jams the wireless communication medium. We would like
to point out that the described limitations on the adversary’s capabilities are
common for hardware-based attestation or code update schemes [3,8,13,21,28].

Secure Code Updates for Mesh Networked Embedded Devices 325

4 Requirements on COTS Low-End Embedded Systems

In the following, we demonstrate how each of the stated hardware security
requirements (see Sect. 3) can be implemented on existing commercial off-the-
shelf (COTS) low-end embedded devices.

1st Requirement: Immutable Code. Nowadays, it is common for commod-
ity low-end embedded devices to provide protection of Flash memory. On some
devices, the Flash memory can be separated into multiple sections which have
dedicated lock bits for read protection, write protection, and also interrupt pre-
vention [4]. Most commonly, the Flash memory is divided into one boot loader
section (BLS) and one application section. If the device at hand offers this fea-
ture, we propose so store the code region R in the BLS and the rest of the
program in the application section. Afterwards, we advise to set the lock bits in
a way that write access to the BLS is denied. This makes R immutable. Other
devices provide a more fine-grained Flash protection, where memory regions of
different sizes can be marked as read-only memory (ROM) or potentially also as
execute-only memory (XOM) [36]. If the device at hand offers XOM or ROM, we
propose to protect R using the strongest supported memory protection available
on the device, i.e., XOM if available and ROM otherwise. Note that once Flash
protection is set, it can only be unset by physically accessing the system. This
process typically involves the erasure of the entire Flash memory [4,36].

2nd Requirement: Secure Storage. If the particular device offers separable
memory (e.g., a BLS) with lock bits, we suggest that R and the protected secret
SK are stored in an extra section, isolated from the application code. Next, we
propose to configure the lock bits in a way that read access to the separated
section is denied if it is performed by code stored outside the separated memory
region [4]. Thus, SK can only be read during the execution of R. If the partic-
ular device offers XOM, we propose that SK is stored in XOM using constants
that are loaded into the CPU by MOV instructions during execution. Since the
content of XOM cannot be read out, SK only gets revealed during the execution
of R. If the particular device only supports ROM, we suggest to store the code
region R in the boot loader and enforce that R immediately gets executed when
the device starts. Consequently, in order to execute R, the device must restart.
In addition, we propose to store SK in a secure key storage whose access can
intentionally be denied until the next device restart. In this way, code in R can
read out SK once during device start and afterwards deny access to SK. As R is
immutable and immediately gets executed when the device starts, an attacker is
unable to access SK. A secure key storage which provides this functionality is, for
instance, an SRAM PUF. Previous works have shown that the SRAM modules
present in several low-end embedded devices can be used as PUF instances, so
that cryptographic keys can be derived from the SRAM start-up values [20,33].
Note that the start-up values can be deleted after they have been read out, so
keys are only accessible at boot time. A further possible key storage is memory
which provides the functionality to hide blocks, e.g., EEPROM block hide [36].

326 F. Kohnhäuser and S. Katzenbeisser

Once an EEPROM block is hidden, it is not accessible until the next reboot of
the device.

3rd Requirement: Uninterruptible Execution. If the device at hand pro-
vides separable memory with lock bits, we suggest to set the lock bits of a
separated memory section containing R such that interrupts are denied during
the execution of code in that section. On other devices, we propose to store
both the interrupt vector table (IVT) and a default interrupt handler in write-
protected memory (i.e., XOM or ROM). All interrupts in the IVT are config-
ured to refer to the default interrupt handler. When an interrupt occurs and
the default interrupt handler gets executed, it checks whether the interrupt was
triggered during the execution of code in R. If this is the case, the default inter-
rupt handler denies interrupt processing. If this is not the case, the interrupt
handler redirects execution to a user-defined interrupt handler which processes
the particular interrupt [15]. A further approach is to let the default interrupt
handler clean up sensitive data before control is handed over to the particular
user-defined interrupt handler [37]. Both approaches impose no restrictions, since
custom interrupts can still be deployed by modifying the user-defined interrupt
handlers.

Summary. This section has shown various measures to implement the three
required device properties on low-end embedded systems. Because the described
measures are frequently available, our scheme is applicable to a wide range of
commodity low-end embedded devices. In the full version of the paper, we pro-
vide an overview of popular low-end embedded development devices and show
which of the described security mechanisms are available on each device [1].

5 Secure Code Update Scheme

Our secure code update scheme comprises two phases: an offline phase (see
Sect. 5.1) and an online phase (see Sect. 5.2). The offline phase is executed once,
before the initial deployment of all devices. In the offline phase, each low-end
embedded device Di is initialized by the trusted network operator O. After the
devices have been deployed, the online phase is executed repeatedly, once for
every code update. In the online phase, O issues a secure code update for all
devices in the network.

5.1 Offline Phase

For the purpose of authenticating devices and for implementing a challenge-based
protocol to attest and verify appropriate update installations, we use public-key
cryptography. In the offline phase, O thus generates a unique identifier i and
a unique signature key pair, consisting of a public key PKi and a private key
SKi, for each device Di. SKi is stored in a protected storage, which can only be
accessed during the execution of code in the static protected memory region R
(see device requirements in Sect. 3). Furthermore, each device is equipped with a
device certificate DCi and a software certificate SCi, both signed by O with SKO

Secure Code Updates for Mesh Networked Embedded Devices 327

Table 1. Notation

O Trusted network operator SKi Secret signing key of entity i

R Static protected code region PKi Public signing key of entity i

Di Device with identity i DCi Device certificate of entity i

SHi Secret ECDH key of entity i SCi Software certificate of entity i

PHi Public ECDH key of entity i CUc Code update for device class c

(DCi.sig,SCi.sig). DCi stores the device class c of Di, the public key PKi of Di,
and the identifier i. SCi lists all memory regions on Di where the code update
routine and the firmware is stored. In addition, SCi provides hash values over
the data of these memory regions (SCi.hash). Thus, SCi can be used to verify
the integrity of the installed software on Di. In order to indicate the freshness
of the software, SCi also stores a software version number (SCi.ver). Moreover,
each device initially stores the public key of the trusted network operator PKO

in R. SCi and DCi are stored in a mutable and unprotected memory region.
Additionally, O equips each device with the functionality to perform a secure

code update. Our scheme relies on the untampered execution of code that attests
the integrity of the local software state. For this reason, code that implements
the attestation routine is stored in R, while the rest of the code (including
the actual code update functionality) is stored in a mutable and unprotected
memory region (see Fig. 1). Table 1 summarizes relevant definitions used in the
offline and the online phase.

5.2 Online Phase

The online phase consists of four different stages. In the first stage, O prepares
a code update package, which is distributed in the network and installed on the
devices. In the second stage, devices invoke the execution of the attestation rou-
tine in R. The attestation routine verifies the integrity of the installed software
and ensures that a device passes execution to an unmodified and up-to-date soft-
ware. Additionally, the attestation routine generates an attest which proves a
trustworthy software state by certifying an untampered and complete execution
of the attestation routine. In the third stage, neighboring devices verify each
others’ software integrity attest. If the verification is successful, devices estab-
lish a secure channel. As untrustworthy devices are unable to attest their valid
software integrity, they cannot establish communication channels and thus are
excluded from the network. In the fourth stage, O obtains an installation report,
which exhibits the software state of all devices in the network. Figure 1 shows
the memory layout of the code update scheme and illustrates the control flow
throughout all stages. In the following, we will explain each stage in detail.

Stage 1: Code Update Distribution and Installation. The online phase
starts with O preparing a code update package cupkg. Cupkg includes an ascend-
ing version number cupkg.no and a signature by O, in order to prevent replay

328 F. Kohnhäuser and S. Katzenbeisser

Fig. 1. Illustration of memory layout and control flow of the online phase.

attacks and tampering with the code update package. Since devices in the net-
work may be heterogeneous, cupkg must be able to address multiple device
classes. For each device class c in the network, cupkg contains a software cer-
tificate SCc. SCc specifies the correct software configuration for a device of type
c, after the installation of the code update. In addition, all contained SCs store
the current cupkg version number (SC.ver = cupkg.no). Furthermore, for each
device class c that should be updated, cupkg contains code update data CUc.
CUc comprises the binary code of the update and installation instructions (e.g.,
addresses where to store the binary code during installation).

After preparing cupkg, O sends a code update request followed by cupkg to
an arbitrary device in the network. This causes the recipient device to execute
stage one in the code update routine (see Fig. 1). Next, the code update rou-
tine receives cupkg and stores it in a free memory region. Devices that received
cupkg check whether it contains a valid signature by O and whether its version
number is higher than the last received cupkg version number. If both checks
pass, devices send a code update request to their immediate neighboring devices
and subsequently forward cupkg to them. In this way, a flooding propagation
of cupkg is initiated (see Fig. 2). Since efficient and secure code disseminations
in wireless mesh networks are well-understood [12,16,18,23,25,32,38], we will
not dwell on the distribution of cupkg, but instead assume that eventually each
device in the network receives cupkg. This also includes scenarios in which cupkg
is too large to fit into the free memory of devices and must be transmitted in
multiple smaller chunks.

Devices that received, verified, and forwarded cupkg to their neighbors check
whether cupkg comprises a new code update for their device class. Thereto, each
device Di examines whether cupkg contains a CUk for the local target device class
specified in DCi. If this is the case, a device uses the installation instructions in
CUk to install the update binary code. Note that, since the code update routine
is stored in mutable memory, the update routine itself may also be updated
during update installation. Furthermore, all devices in the network update their
local software certificate to the new software certificate for their device class and
issue an attestation of the local software configuration (see next stage).

Secure Code Updates for Mesh Networked Embedded Devices 329

Fig. 2. Cupkg distribution in stage
1 and swstate message exchange in
stage 3.

Fig. 3. Establishment of secure chan-
nels in stage 3 in presence of an adver-
sary DA.

We propose that devices also invoke the execution of the code update routine
on fatal errors that render devices non-functional. This allows O to recover
devices whose software accidentally became misconfigured or defective remotely.

Stage 2: Local Software Integrity Attestation. In order to attest an untam-
pered and up-to-date software state, devices invoke the execution of the attes-
tation routine. Since the attestation routine is stored in the protected memory
region R (see Fig. 1), this process requires a reboot on certain commodity devices
(see Sect. 4). As illustrated in Algorithm1, the attestation routine starts with
the retrieval of the protected secret signing key SK. Next, the authenticity of
the software certificate SC is ensured by verifying whether SC was signed by
O. If this is the case, SC is used to check the local software integrity (denoted
by the execution of CheckCodeIntegrity()). Consequently, hash values over all
memory regions that are listed in SC are taken and compared to the expected
reference values specified in SC.hash. If all measurements match their reference
value, the verification of the software integrity is successful. Upon a successful
verification, the device generates a new Elliptic curve Diffie-Hellman (ECDH)
key pair (SH,PH) [24] and computes attest by signing PH and SC.ver with SK.
Afterwards, it is ensured that no information about the secret signing key SK
gets leaked (denoted by the execution of HideSecret()). As shown in Sect. 4, this
may involve the erasure of certain memory regions or the execution of specific
instructions on some commodity devices. Finally, the firmware is executed and
SH, PH, and attest are passed to the firmware (see Fig. 1). The entry point
of the firmware is hardcoded in R. This ensures that the control flow is indeed
passed to the firmware, whose integrity was just verified, and not to malicious
code that hides somewhere in memory. However, if the verification of the soft-
ware integrity is unsuccessful, stage one in the code update routine is executed
all over again. In this way, devices are able to recover from situations where O
accidentally distributed a buggy cupkg.

We would like to point out, that a valid attest proves that D runs a firmware
as well as a code update routine whose integrity was successfully verified using
a software certificate with the version SC.ver. One reason for this are the three
device properties (see Sect. 4). They prevent an adversary from tampering with

330 F. Kohnhäuser and S. Katzenbeisser

Algorithm 1. Execution of AttestationRoutine() (located in R).
1: procedure AttestationRoutine(SC)
2: SK ← RetrieveSecret()
3: if Verify(PKO; SC.sig; SC.content) and CheckCodeIntegrity(SC.hash) then
4: (SH, PH) ← GenKey()
5: attest ← Sign(SK; PH||SC.ver)
6: HideSecret(SK)
7: StartFirmware(SH, PH, attest)
8: else
9: HideSecret(SK)

10: StartCodeUpdateRoutine()
11: end procedure

the attestation routine, accessing SK outside of the attestation routine, and
interrupting the execution of the attestation routine. Another reason is the design
of the attestation routine, which prevents an adversary from generating a valid
attest while not executing the attestation routine from the beginning. This is
due to the first instructions of the attestation routine which retrieve SK and
thus must initially be executed to sign attest correctly. However, executing the
attestation routine from the beginning leads to its execution in entirety (see third
device property). This inevitably executes code which ensures that no informa-
tion about SK gets leaked, that the software integrity of D conforms to SC, and
that the firmware, and no unverified code, gets executed next. Tampering with
the input of the attestation routine is also not promising for the adversary. The
only mutable data that the attestation routine relies on is SC. However, SC’s
integrity is verified before it is used to check the local software integrity. Using
old SCs as input for the attestation routine, devices can pass the local software
integrity verification with an outdated software state. Nevertheless, as we will
see in the next stage, this will be detected during the verification of attest by
neighboring nodes.

Stage 3: Mutual Integrity Verification and Setup of Shared Secrets. In
the third stage, each device looks for immediate neighbor devices in the network.
If a device Di finds a neighbor Dn whose software state has not yet been veri-
fied, it invokes a mutual verification. Thereto, Di generates a swstatei message
comprising attesti, PHi, and DCi, and sends this message to Dn. Upon receiving
swstatei, Dn generates a swstaten message and sends it to Di (see Fig. 2). Next,
both devices invoke the execution of stage three in their code update routines
(see Fig. 1) to verify each others’ integrity of the software state and to establish
a shared secret. Algorithm 2 illustrates this process in pseudocode.

In order to verify the software state of Dn, Di initially checks DCn using
PKO. Next, Di verifies whether attestn corresponds to the received PHn and the
latest software version, which Di stores in its local software certificate (SCi.ver).
A successful verification ensures that Dn is in a software state that corresponds
to an SC from O’s latest cupkg. Thus, it ensures the integrity as well as the
up-to-dateness of Dn’s software state. In addition, verifying attestn confirms the

Secure Code Updates for Mesh Networked Embedded Devices 331

Algorithm 2. Software integrity verification of a neighbor device Dn on Di.
1: procedure VerifyNeighborSoftwareIntegrity(swstaten)
2: attestn, DCn, PHn := swstaten
3: key ← ⊥
4: if Verify(PKO; DCn.sig; DCn.content)
5: and Verify(DCn.PKn; attestn; PHn||SCi.ver)
6: then key ←KeyExchange(SHi, PHn)
7: return key
8: end procedure

integrity and the authenticity of PHn. If the verification of DCn and attestn is
successful, Di uses its own secret ECDH key SHi and Dn’s public ECDH key
PHn to perform a key exchange and establish a shared secret key. Note that if
Dn’s verification of Di’s software state is likewise successful, both parties agree
on the same key. However, if any of the verifications fail, Di regards the software
state of Dn as untrustworthy and does not reconstruct a shared secret. Next,
the attestation routine returns and passes key to the firmware (see Fig. 1). If the
verification failed, the firmware causes Di to send Dn a message that indicates a
failure. Nevertheless, Dn can re-request a mutual integrity verification with Di

to recover from connection breaks or other avoidable errors. If the verification
was successful on both sides, Di and Dn use key to establish a confidential
and authenticated channel. This channel is used for any further communication
between both parties. In this way, devices whose software is in an untrustworthy
state are effectively excluded from communication. An adversary may try to pass
the mutual software state verification by replaying a swstate messages recorded
from a trustworthy device. However, in doing so, the adversary is not in the
possession of the SH that correspond to the replayed swstate message. For this
reason, the adversary is not able to reconstruct the correct key and the attack will
be detected during the establishment of the secure channel. Figure 3 illustrates a
scenario in which a compromised device DA is unable to attest its software state
towards its neighboring devices and thus is unable to establish a communication
channel with them.

Stage 4: Installation Reporting. The fourth stage starts with O requesting
an installation report from the network. For this purpose, O initially uses the
approach explained in stage three to establish a secure channel with an arbitrary
trustworthy device Di in the network. In order to pass the integrity verification
by Di, O generates a signature key pair, issues a DC that authenticates the
generated key, and uses the key to compute attest. Next, O sends Di a request
for an installation report over the established channel. Devices that receive a
report request invoke the execution of stage four in their code update routines
(see Fig. 1). The report request is used to construct a spanning tree whose root
is O. Thereto, Di broadcasts the request over secure channels to all trustwor-
thy neighboring devices, which in turn broadcast the request. Broadcasting is
repeated until the report request reaches leaf nodes in the spanning tree, i.e.,
nodes whose neighbors all have received the request. Leaf nodes then generate

332 F. Kohnhäuser and S. Katzenbeisser

an installation report, which initially contains the identifier of the particular leaf
node. Afterwards, the installation report incrementally gets propagated back to
the root of the spanning tree. At each hop, a node aggregates the report from its
child nodes, includes its own identifier, and then forwards the aggregated report
to its parent node. Above a certain number of aggregated identifiers, it is useful
to encode the report as an n-bit array, where a flipped bit at position k indicates
that Dk is in a trustworthy state. Eventually, the installation report gets trans-
mitted from Di to O. Since O knows the identifiers of all deployed devices, O can
also assess the precise identifiers of all untrustworthy devices. This may serve as
a first step towards physically locating and recovering compromised devices.

Nevertheless, listing the precise identifiers of all devices in the network causes
a considerable transmission overhead in large mesh networks with many devices.
If O does not require detailed information about the identity of trustworthy
and untrustworthy devices, it is reasonable to implement a more coarse-grained
report type. For instance, O could initially only request for the total number of
trustworthy devices or the number of trustworthy devices per device class.

6 Evaluation

Setup. We implemented the proposed secure code update scheme on Stellaris
EK-LM4F120XL microcontrollers. The Stellaris is a low-cost embedded system
from Texas Instrument which features an 80 MHz ARM Cortex-M4F micro-
processor and provides 256 kB of protectable Flash memory. To enable wire-
less mesh connectivity based on the ZigBee standard, we equipped the Stellaris
microcontrollers with CC2530 BoosterPacks from Anaren. In the following, we
consider a homogeneous network of Stellaris microcontrollers in a static network
topology. We measured network and computational delays of our implementa-
tion in small real word mesh networks. In order to evaluate the scalability of
the secure code update scheme, we simulated large-scale networks based on our
measurements. We found out that the network topology plays an important role
for the code update runtime. This is due to the high communication costs for
the transmission of the binary code updates.

We implemented the key exchange using Elliptic Curve Diffie-Hellman (EC-
DH) with Curve25519 [6]. For the signature scheme, we used an Edwards-
curve Digital Signature Algorithm (EdDSA) called Ed25519, which is based on
Curve25519 [7]. We implemented the hash function using SHA-512, while the
secure and authentic channel uses AES in Galois/Counter Mode (AES-GCM).
In the full paper [1], we outline measurements of the network performance and
the cryptographic implementations.

Storage Consumption. Compared to a näıve code update approach that only
distributes the binary code of the update but provides no security, our scheme
requires additional storage for data. In fact, each device must store SC (ca.
212 byte), DC (100 byte), PKO (32 byte), SK (64 byte), ECDH keys (96 byte),
and shared secrets (32 byte per neighbor). Hence, with k being the number of
neighboring devices, the storage overhead for data adds up to 504 + 32 · k bytes.

Secure Code Updates for Mesh Networked Embedded Devices 333

Fig. 4. Single device runtime perfor-
mance with varying code update sizes.

Fig. 5. Single device runtime performance
with a varying number of neighbors.

Another storage consumption arises due to the size of the code. Our ref-
erence implementation, which we use throughout this performance evaluation,
requires 66 kB of protected storage in R. However, almost all the storage is spent
for the implementation of the Ed25519 signature scheme. By using an Ed25519
implementation that is particularly suited for low-memory systems [5], we were
able to reduce the size of R to 7.7 kB, albeit increasing the runtime for crypto-
graphic operations.1 This smaller implementation makes our scheme applicable
to all commodity low-end embedded devices listed in the full paper [1], since
all of them offer at least 8 kB of protectable Flash memory. Reusing the sig-
nature scheme in R, further 15.1 kB of code in mutable memory are consumed
to implement, among others, the network communication, the key exchange,
and the encryption and decryption for the secure channel. In total, our refer-
ence implementation consumes 81.1 kB and our code size optimized implementa-
tion consumes 22.9 kB of storage. This is an acceptable overhead of respectively
31.6 % and 8.9 % of the totally available storage on the Stellaris platform.

Single Device Secure Code Update Runtime. We simulated the runtime of
our code update scheme under various conditions and compared it to a conven-
tional code update approach. The conventional code update approach distributes
and installs code updates and ensures the authenticity, integrity, and freshness
of updates on the devices. However, it does not exclude devices that are in an
untrustworthy software state from the network and also provides no report listing
all trustworthy devices for the network operator.

Figure 4 compares the runtime on a single device between our secure code
update approach and the conventional code update approach with varying code
update sizes. It shows the runtime of both approaches in seconds as well as
the percentage overhead of our secure approach. The mesh network consists of
1024 nodes which are arranged in a binary tree topology. Since devices in the
network require different amounts of time to perform the code update, e.g.,
some devices transmit a smaller installation report or they need not forward

1 Yet, existing works have shown that a signature scheme which achieves about the
same runtime performance than our reference implementation can be implemented
in less than 4 kB of code by using platform dependent assembler directives [11,27].

334 F. Kohnhäuser and S. Katzenbeisser

Fig. 6. Network runtime performance
with varying network sizes.

Fig. 7. Network runtime performance
with varying network sizes.

the new code update to neighboring devices, we averaged the runtime over all
devices in the network. The figure illustrates that the size of the code update
has a linear impact on the code update runtime. This is almost entirely due to
the transmission time of the code update. In fact, the runtime overhead of our
secure approach is nearly independent of the code update size, as it increases
only slightly from 0.7 s with a 1 kB code update to 1.1 s with a 160 kB code
update. For that reason, the runtime overhead decreases from 22.0 % down to
1.4 % with an increasing size of the code update.

Figure 5 shows the runtime for a 30 kB code update on a single device with
a varying number of neighbor devices. We distributed the code update to the
measured device first, which is why all surrounding neighbor devices are supplied
with the code update during protocol execution. This causes a linear increase of
the code update runtime. However, the additional runtime of our secure update
approach also increases linearly with the number of neighbor devices. This is
due to the time neighboring devices require to mutually verify each others’ soft-
ware state during protocol execution. Thus, with a varying number of neighbor
devices, the runtime overhead remains rather constant at circa 4 %.

Network Secure Code Update Runtime. We further evaluated the total
runtime required to perform a secure code update with all nodes in the mesh
network. Figure 6 shows the total runtime for a 30 kB code update with varying
numbers of nodes, using the secure or the conventional code update approach.
The network topology is arranged as a binary tree or a 4-ary tree. The figure
demonstrates that due to the tree network topologies, the code update runtime
increases logarithmically with the number of devices in the network. We config-
ured our secure update scheme to report the precise device ids of all trustworthy
devices to the network operator. As this causes the installation report to grow
proportional with the network size, the gap between the runtime of our secure
approach and the conventional approach increases considerably when the net-
work contains more than 100.000 devices. In such large network, our secure code
update scheme performs better if the network is arranged in a broader but flat-
ter network topology, as this decreases the average size of the report (e.g., it
increases the number of leaf nodes that must only transmit their own id to the

Secure Code Updates for Mesh Networked Embedded Devices 335

parent node). Therefore, in networks with more than 106.000 devices, our code
update scheme performs better in a 4-ary tree network topology than in a binary
tree topology. Nevertheless, for smaller networks, the runtime overhead is quite
low in tree network topologies. To be precise, the runtime overhead remains
below 2 % for up to 25.000 devices and is less than 5 % for up to 100.000 devices.

However, mesh networks could also embrace unfavorable topologies. Figure 7
depicts the total runtime performance for a 30 kB secure code update in a net-
work with a chain topology and a star topology. The star topology is constituted
of three device chains branching off a central star device. Figure 7 shows that in
such an inconvenient network topology, the runtime for a code update attains
extremely high values. This is caused by the long transmission time for the code
update and the installation report. Nevertheless, even in the worst case, which
is the chain topology, the overhead of our secure approach compared to the con-
ventional approach is below 2 % for up to 4.000 devices and less than 11 % for
up to 30.000 devices in the network.

We would like to stress that the overhead is largely introduced by transmit-
ting the precise ids of trustworthy devices to the network operator. If we instead
configure our scheme to report only the total number of trustworthy devices to
the operator, the network runtime overhead becomes almost negligible compared
to the conventional approach. In fact, this way, the runtime overhead is less than
1.5 % for 10 devices and less than 0.35 % for networks with 500.000 devices.

7 Conclusion

In this work, we presented a novel secure code update scheme for large mesh
networks composed of commodity low-end embedded devices. Our scheme offers
desirable security features for the application scenario of patching software vul-
nerabilities in these systems. Properly executed, our scheme enforces that after
code update installation a device runs only unmodified and up-to-date software.
Devices that refuse a proper execution of our scheme, and thus run outdated or
compromised software, are detected by their neighboring devices and excluded
from the network. Issuing a secure code update, the network operator learns
which devices are in a trustworthy and which devices are in an untrustworthy
software state. We demonstrated that our scheme is applicable to a broad range
of popular low-end embedded systems without requiring any hardware modifi-
cations. Therefore, our solution can be retrofitted to many currently deployed
systems. In addition, we showed that the scheme scales well and is practically
usable in networks with tens of thousands of devices. Compared to a conven-
tional code update, which offers none of the described security features, our
scheme imposes a runtime overhead of 2.1 % in the best case and 11.9 % in the
worst case for a network with 30.000 devices and a firmware update size of 30 kB.
Thus, our solution is also well suited for future developments, where we expect
low-end embedded device networks to increase in size.

336 F. Kohnhäuser and S. Katzenbeisser

Acknowledgment. This work has been co-funded by the LOEWE initiative (Hesse,
Germany) within the NICER project and the DFG as part of project P3 within
CROSSING.

References

1. Secure Code Updates for Mesh Networked Commodity Low-End Embed-
ded Devices –Full Version. http://www.seceng.informatik.tu-darmstadt.de/assets/
kohnhaeuser/esorics16full.pdf

2. Armknecht, F., Sadeghi, A.R., Schulz, S., Wachsmann, C.: A security framework
for the analysis and design of software attestation. In: ACM SIGSAC Conference
on Computer & Communications Security (CCS) (2013)

3. Asokan, N., Brasser, F., Ibrahim, A., Sadeghi, A.R., Schunter, M., Tsudik, G.,
Wachsmann, C.: SEDA: scalable embedded device attestation. In: ACM SIGSAC
Conference on Computer & Communications Security (CCS) (2015)

4. Atmel: Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V Datasheet (2014)
5. Beer, D.: Curve25519 and Ed25519 for low-memory systems (2014). http://www.

dlbeer.co.nz/oss/c25519.html
6. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,

Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006)

7. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Crypt. Eng. 2, 77–89 (2012)

8. Brasser, F., El Mahjoub, B., Sadeghi, A.R., Wachsmann, C., Koeberl, P.: TyTAN:
tiny trust anchor for tiny devices. In: Design Automation Conference (DAC) (2015)

9. Butterworth, J., Kallenberg, C., Kovah, X., Herzog, A.: Bios chronomancy: fixing
the core root of trust for measurement. In: ACM SIGSAC Conference on Computer
& Communications Security (CCS) (2013)

10. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D., Antipolis, S.: A large-scale
analysis of the security of embedded firmwares. In: USENIX Security (2014)

11. De Clercq, R., Uhsadel, L., Van Herrewege, A., Verbauwhede, I.: Ultra low-power
implementation of ECC on the ARM Cortex-M0+. In: Design Automation Con-
ference (DAC) (2014)

12. Dong, W., Chen, C., Bu, J., Liu, W.: Optimizing relocatable code for efficient
software update in networked embedded systems. ACM Trans. Sens. Netw. (TOSN)
11(2), 22–34 (2014)

13. Eldefrawy, K., Tsudik, G., Francillon, A., Perito, D.: SMART: secure and minimal
architecture for (establishing dynamic) root of trust. In: NDSS (2012)

14. Francillon, A., Nguyen, Q., Rasmussen, K.B., Tsudik, G.: Systematic treatment of
remote attestation. In: IACR Cryptology ePrint Archive (2012)

15. Freesale Semiconductor: Using the Kinetis Flash ExecuteOnly Access Control Fea-
ture - 6.3 Entry into execute-only code on the ARM Cortex-M4 core (2015)

16. Hagedorn, A., Starobinski, D., Trachtenberg, A.: Rateless deluge: over-the-air pro-
gramming of wireless sensor networks using random linear codes. In: IEEE Inter-
national Conference on Information Processing in Sensor Networks (2008)

17. Hanna, S., Rolles, R., Molina-Markham, A., Poosankam, P., Fu, K., Song, D.: Take
two software updates and see me in the morning: the case for software security
evaluations of medical devices. In: Proceedings of the 2nd USENIX Workshop on
Health Security and Privacy (HealthSec) (2011)

http://www.seceng.informatik.tu-darmstadt.de/assets/kohnhaeuser/esorics16full.pdf
http://www.seceng.informatik.tu-darmstadt.de/assets/kohnhaeuser/esorics16full.pdf
http://www.dlbeer.co.nz/oss/c25519.html
http://www.dlbeer.co.nz/oss/c25519.html

Secure Code Updates for Mesh Networked Embedded Devices 337

18. He, D., Chen, C., Chan, S., Bu, J.: SDRP: a secure and distributed reprogramming
protocol for wireless sensor networks. IEEE Ind. Electron. 59, 4155–4163 (2012)

19. Karame, G.O., Li, W.: Secure erasure and code update in legacy sensors. In: Conti,
M., Schunter, M., Askoxylakis, I. (eds.) TRUST 2015. LNCS, vol. 9229, pp. 283–
299. Springer, Heidelberg (2015)

20. Katzenbeisser, S., Kocabaş, Ü., Rožić, V., Sadeghi, A.-R., Verbauwhede, I., Wachs-
mann, C.: PUFs: myth, fact or busted? a security evaluation of physically unclon-
able functions (PUFs) cast in silicon. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 283–301. Springer, Heidelberg (2012)

21. Koeberl, P., Schulz, S., Sadeghi, A.R., Varadharajan, V.: TrustLite: a security
architecture for tiny embedded devices. In: ACM European Conference on Com-
puter Systems (2014)

22. Kovah, X., Kallenberg, C., Weathers, C., Herzog, A., Albin, M., Butterworth, J.:
New results for timing-based attestation. In: IEEE Security and Privacy (S&P)
(2012)

23. Kulkarni, S., Wang, L.: Energy-efficient multihop reprogramming for sensor net-
works. ACM Trans. Sens. Netw. (TOSN) 5, 16 (2009)

24. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for
authenticated key agreement. Des. Codes Crypt. 28, 119–134 (2003)

25. Law, Y.W., Zhang, Y., Jin, J., Palaniswami, M., Havinga, P.: Secure rateless del-
uge: pollution-resistant reprogramming and data dissemination for wireless sensor
networks. EURASIP J. Wirel. Commun. Network. 2011, 5–22 (2011)

26. Li, Y., McCune, J.M., Perrig, A.: VIPER: verifying the integrity of PERipherals’
firmware. In: ACM SIGSAC Conference on Computer & Communications Security
(CCS) (2011)

27. Mackay, K.: Micro-ECC. http://kmackay.ca/micro-ecc/
28. Noorman, J., Agten, P., Daniels, W., Strackx, R., Van Herrewege, A., Huygens,

C., Preneel, B., Verbauwhede, I., Piessens, F.: Sancus: low-cost trustworthy exten-
sible networked devices with a zero-software trusted computing base. In: USENIX
Security (2013)

29. Park, H., Seo, D., Lee, H., Perrig, A.: SMATT: smart meter ATTestation using
multiple target selection and copy-proof memory. Computer Science and its Appli-
cations, vol. 203, pp. 875–887. Springer, Heidelberg (2012)

30. Perito, D., Tsudik, G.: Secure code update for embedded devices via proofs of
secure erasure. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 643–662. Springer, Heidelberg (2010)

31. Rios, B.: Owning a Building: Exploiting Access Control and Facility Management
Systems. Black Hat ASIA (2014)

32. Rossi, M., Bui, N., Zanca, G., Stabellini, L., Crepaldi, R., Zorzi, M.: SYNAPSE++:
code dissemination in wireless sensor networks using fountain codes. IEEE Trans.
Mob. Comput. 9, 1749–1765 (2010)

33. Schrijen, G.J., van der Leest, V.: Comparative analysis of SRAM memories used as
PUF primitives. In: Conference on Design, Automation & Test in Europe (DATE)
(2012)

34. Seshadri, A., Luk, M., Perrig, A.: SAKE: software attestation for key establishment
in sensor networks. Distributed computing in sensor systems. LNCS, vol. 5067, pp.
372–385. Springer, Heidelberg (2008)

35. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: SCUBA: secure code
update by attestation in sensor networks. In: Proceedings of the 5th ACM workshop
on Wireless security, ACM (2006)

http://kmackay.ca/micro-ecc/

338 F. Kohnhäuser and S. Katzenbeisser

36. Texas Instruments: Stellaris LM4F120H5QR Microcontroller Data Sheet (2013)
37. Texas Instruments: Software IP Protection on MSP432P4xx Microcontrollers -10.1

Interrupt Handling in IP Protected Secure Zone (2015)
38. Ugus, O., Westhoff, D., Bohli, J.M.: A ROM-friendly secure code update mecha-

nism for WSNs using a stateful-verifier τ -time signature scheme. In: Proceedings
of the Second ACM Conference on Wireless Network Security, ACM (2009)

Authenticated Key Agreement Mediated
by a Proxy Re-encryptor for the Internet

of Things

Kim Thuat Nguyen1(B), Nouha Oualha1, and Maryline Laurent2

1 CEA, LIST, Communicating Systems Laboratory,
91191 Gif-sur-yvette Cedex, France

{kimthuat.nguyen,nouha.oualha}@cea.fr
2 Institut Mines-Telecom, Telecom SudParis, UMR CNRS 5157 SAMOVAR,

9 Rue Charles Fourier, 91011 Evry, France
maryline.laurent@telecom-sudparis.eu

Abstract. The Internet of Things (IoT) is composed of a wide range
of heterogeneous network devices that communicate with their users
and the surrounding devices. The secure communications between these
devices are still essential even with little or no previous knowledge about
each other and regardless of their resource capabilities. This particular
context requires appropriate security mechanisms which should be well-
suited for the heterogeneous nature of IoT devices, without pre-sharing
a secret key for each secure connection.

In this work, we first propose a novel symmetric cipher proxy re-
encryption scheme. Such a primitive allows a user to delegate her decryp-
tion rights to another with the help of a semi-trusted proxy, but with-
out giving this latter any information on the transmitted messages and
the user’s secret keys. We then propose AKAPR, an Authenticated Key
Agreement mediated by a Proxy Re-encryptor for IoT. The mechanism
permits any two highly resource-constrained devices to establish a secure
communication with no prior trust relationship. AKAPR is built upon
our proposed proxy re-encryption scheme. It has been proved by ProVerif
to provide mutual authentication for participants while preserving the
secrecy of the generated session key. In addition, the scheme benefits
from the lightness of our proxy re-encryption algorithm as it requires no
expensive cryptographic operations such as pairing or modular exponen-
tiation.

Keywords: Authenticated key agreement · Proxy re-encryption ·
Security · Internet of Things

1 Introduction

The Internet of Things (IoT) paradigm implies a network of heterogeneous
devices (things) that evolves constantly in terms of complexity and scale. Accord-
ing to Garner’s forecast [1], the number of active wireless devices will exceed 25
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 339–358, 2016.
DOI: 10.1007/978-3-319-45741-3 18

340 K.T. Nguyen et al.

billions of units by 2020. More connected devices mean more attack vectors and
more difficulties to protect these devices. In addition, IoT security issues concern
not only civil applications (e.g. monitoring live home temperature and humid-
ity) but also critical applications, for instance, the Internet-connected cars or the
remote patient monitoring in healthcare. These applications can be compromised
when secure channels are not properly implemented. Hence, secure communica-
tions between IoT devices become no longer an option, but a requirement.

Due to limited resources and highly interconnected objects, there is a strong
need to design lightweight and scalable key establishment protocols. The existing
solutions that require the pre-distribution of secret keys cannot be envisioned.
Indeed, we cannot pre-share every time a common secret key in each device
because the number of connected devices composing the network is very impor-
tant. If the key pre-distribution is not considered, most of the existing schemes
require expensive cryptographic operations to establish a session key between
entities that do not share common credentials a priori such as ECDH-based
approaches [26]. Indeed, Sciancalepore et al. [26] propose a key agreement pro-
tocol with implicit certificates in the context of IoT. Their approach requires
four costly operations in order to negotiate a common key between two parties.
In addition, the negotiation algorithm always produces the same key for a given
couple of devices, which can be vulnerable to known-key attacks. Many other
efforts (e.g. in [23,24]) have been undertaken to reduce the overhead of standard
security protocols so that they can fit in low power computing sensor platforms.
However, these solutions still require the executions of costly cryptographic oper-
ations on such platforms.

The aforementioned heavyweight computations can be handled by a resource-
rich server. Server-assisted approaches for key establishment protocols have been
proposed in this respect for IoT. As such, Fouladgar et al. [17] introduce an
adaption and an extension of TLS (Transport Layer Security) handshake to
the Wireless Sensor Network. Their solution describes an ECDH key establish-
ment between a constrained sensor node and an external entity mediated by
a partially trusted gateway. Such solution requires only two costly operations
on the constrained node side. However, the gateway is able to launch a man-
in-the-middle attack and to establish a common Diffie-Hellman key with each
party without anyone noticing. Saied et al. [25] propose a lightweight collab-
orative key agreement based on Diffie-Hellman (DH) key establishment. Their
idea is to delegate the heavyweight cryptographic calculation of DH values to
the resource-unconstrained trusted proxies in neighborhood. Such mechanism
requires a sufficient number of non-colluding neighbors in proximity. Besides, it
may seem unpractical, since the two end nodes, which do not share any relation,
may not be in possession of a secure established link with those common prox-
ies. Several works attempt to build a common secret key for any two entities
using the DTLS (Datagram TLS) protocol in the context of IoT. Their app-
roach is to delegate partially [18,29] or totally the DTLS handshake [20] to a
third party. Such mechanism removes the overhead of intensive calculations for
the constrained-devices. However, the third party can read all communications

AKAPR for the Internet of Things 341

between sensor nodes and the Internet hosts. This feature is not desirable in
certain scenarios especially when we do not trust the server. We remove such
inconvenience by applying a lightweight proxy re-encryption mechanism in our
proposed key establishment mechanism.

Lighter proxy re-encryption schemes can help to design scalable key establish-
ment mechanisms. The proxy can translate a ciphertext encrypted under one key
to another but is not allowed to learn anything on either keys. There exists many
PRE schemes in the literature (e.g. in [2,7,19,22]). Their applications are diverse
such as encrypted mail forwarding system, secure data storage on semi-trusted
servers. In this paper, we present an application of PRE to build a server-assisted
key agreement protocol where the server is unable to recover not only the secret
keys of communicating parties but also the negotiated session keys.

Our contribution: In this work, we first propose a lightweight proxy re-
encryption that uses a symmetric cipher to encrypt data. Our scheme is able to
convert a ciphertext from one key to another without placing trust entirely on the
proxy and without computing heavyweight computational operations. Second,
based on the proposed re-encryption scheme, we build an efficient authenticated
key agreement mediated by a proxy re-encryptor, namely AKAPR, for IoT ser-
vices. The scheme allows us to establish common secret keys between devices,
even highly resource-constrained ones (e.g. class 1 devices [9]). Third, we present
a formal security validation of AKAPR using ProVerif [6]. The results show that
AKAPR provides mutual authentication for participants and ensures the secrecy
of the generated session keys.

Paper outline: The rest of this paper is organized as follows. Section 2 provides
several notations and recalls cryptographic definitions of a proxy re-encryption
scheme. We present a novel lightweight proxy re-encryption construction in
Sect. 3. Section 4 describes in detail our proposed authenticated key agreement
AKAPR for IoT. Section 5 provides an informal security analysis of AKAPR
against common attacks with a formal security validation done by the crypto-
graphic verifier ProVerif [6]. Finally, the conclusion remarks are given in Sect. 6.

2 Preliminaries

2.1 Notations and Abbreviation

The definitions and terms used throughout the rest of this paper are presented
in Table 1.

Definition 1 (Symmetric cipherproxyre-encryption).Asymmetric cipher
proxy re-encryption consists of five algorithms (KeyGen,ReKeyGen,Encrypt,
Decrypt,Reencrypt) with the following functionalities:

– KeyGen(k) → (idA, idB , skA, skB). Given a security level parameter k, output
the identifiers and the secret keys for two entities A and B. These keys are to
be used in the encryption and decryption processes.

342 K.T. Nguyen et al.

Table 1. Abbreviations

Abbreviation Definition

s||t Concatenation of two strings s and t

PRE Proxy re-encryption

KDC Key Distribution Center

I Initiator

R Responder

DG Delegatee

KDF Key Derivation Function

MAC Message Authentication Code

WSN Wireless Sensor Network

– ReKeyGen(idA, idB , skA, skB) → rkA→B. Given the identifiers and secret keys
of A and B, output the re-encryption key rkA→B.

– Encrypt(idA, skA,M, idB) → CA. Given the identifiers (idA, idB), the secret
key skA and a message M , return the ciphertext CA.

– Reencrypt(rkA→B , CA) → CB. Given a ciphertext CA encrypted by the entity
A and the re-encryption key rkA→B, return a ciphertext CB to be decrypted
by B.

– Decrypt(idB , skB , CB , idA) → M . Given a secret skB and a ciphertext CB and
the identifiers (idA, idB), return the plaintext M .

3 The Basic Idea: Lightweight Bi-directional Proxy
Re-encryption Scheme with Symmetric Cipher

In this section, we first specify general definitions and the most useful properties
of a PRE scheme. We present subsequently several related PRE propositions in
the literature. Then, the concrete description of our proposed symmetric cipher
PRE scheme is given which is followed by a comparison with related solutions
in terms of supported properties and performance.

3.1 Properties of a Proxy Re-encryption Scheme

In a proxy re-encryption scheme, Alice can delegate the decryption right on an
encryption to Bob with the help of a semi-trusted proxy (i.e. An entity that acts
and returns correct results according to demanded tasks but can be untrusted
when processing sensitive data). In general, the proxy uses a prior provided
secret, namely, proxy key or re-encryption key, to translate a ciphertext dedi-
cated to Alice to another one dedicated to Bob. However, it cannot gain any
information on the secret keys of Alice or Bob and is unable to read the content
of the encrypted messages.

AKAPR for the Internet of Things 343

Proxy re-encryption schemes are characterized according to different criteria.
The works in [19] and [7] provide several properties by which to compare different
proxy re-encryption schemes. We briefly redefine these desirable properties as
follows.

– Uni-directionality: The proxy re-encryption scheme is said to be unidirectional
if the re-encryption key of the proxy can be used in only one direction. In
contrast, a bidirectional proxy re-encryption scheme permits the re-encryption
key to be used to translate encrypted messages from Alice to Bob and vice
versa.

– Non-Interactivity: In a non-interactive scheme, Alice can generate a re-
encryption key, while offline, from its secret key and Bob’s public values with-
out the participation of the Key Distribution Center (KDC), the proxy, or
Bob. On the other hand, interactive schemes require the participation of par-
ties (including KDC) to generate the re-encryption keys.

– Multiple-use: Some proxy re-encryption schemes can re-encrypt a ciphertext
multiple times. For example, Bob can demand a re-encryption of a cipher-
text re-encrypted for him which is previously intended to Alice to obtain a
ciphertext dedicated to Charlie without actually decrypting the message. Such
scheme is called mutiple-use. In opposition, a single-use proxy re-encryption
scheme permits the proxy to perform only one re-encryption on a ciphertext.

– Non-transitivity: In a non-transitive scheme, the proxy cannot combine pro-
vided re-encryption keys to re-delegate decryption rights. For example, given
three entities A, B and C, the proxy is unable to construct the re-encryption
key rkA→C from A to C from the two supplied re-encryption keys rkA→B and
rkB→C .

– Collusion resistance: In a proxy re-encryption scheme, it is desirable that Bob
even colluding with the proxy, can not guess the secret key of Alice.

3.2 Existing Approaches on Proxy Re-encryption

Blaze et al. [7] first proposed the notion of proxy cryptography where Alice
(A) can securely delegate her decryption rights or her digital signatures to

Table 2. Two existing approaches of a proxy re-encryption scheme

Type Typical operations of a proxy re-encryption scheme Examples

PRA A PR B
EpubA

(M) EpubB
(M)

[7], [2], [19,22]

PRS A PR B
EskA

(M) EskB
(M)

[13,27]

Meaning of abbreviations: PRA: Proxy re-encryption schemes that employ asymmet-
ric ciphers; PRS: Proxy re-encryption schemes that employ symmetric ciphers; E: An
encryption function; M: Message; pubX : public key of the entity X; skX : secret key
of the entity X; PR: the proxy.

344 K.T. Nguyen et al.

another party Bob (B) with the help of a proxy. Many works on proxy re-
encryption schemes have been proposed in the literature. We classify these
schemes into two categories as depicted in Table 2: (a) Proxy re-encryption
schemes that employ asymmetric ciphers (public key cryptography) to encrypt
the message and (b) Proxy re-encryption schemes that employ symmetric ciphers
to encrypt the message. Most of the proposed schemes use a public key prim-
itive to encrypt the message. In [7], the authors propose the very first proxy
re-encryption scheme based on Elgamal cryptosystem [15]. Alice first gener-
ates the ciphertext CA = (m.gr, gar) on message m using its pair of pub-
lic/private key (skA = a, pkA = ga). The proxy uses subsequently the re-
encryption key rkA→B = b/a to obtain gbr = (gar)rkA→B . Hence, B receives
the new ciphertext CB = (m.gr, gbr) encrypted under his secret key. This
scheme is bidirectional, transitive and exposed to collusion attacks. As such,
the proxy can compute (rkA→B)−1 to obtain the re-encryption key in the oppo-
site direction from B to A. In addition, the proxy can combine the two re-
encryption keys rkA→B and rkB→C to get the valid re-encryption key from A
to C (rkA→C = a/c = (a/b) . (b/c)). Such property is sometimes unwanted. Fur-
thermore, if the proxy colludes with one party, it is trivial for them both to
learn the secret key of the other party. Ateniese et al. [2] proposed an unidi-
rectional pairing-based proxy re-encryption scheme that fixes the above issues.
They use a proxy key in the form of rkA→B = ga/b. Such configuration pro-
vides non-transitivity and collusion-resistance properties. Indeed, the posses-
sion of (rkA→B = ga/b, rkB→C = gb/c) does not permit the proxy to find out
rkA→C = ga/c due to the Decisional Diffie-Hellman Problem [8]. In addition,
colluding with Bob does not help the proxy to discover the secret key of Alice
and vice versa since having ga/b and b does not help him to recover a due to
the Discrete Logarithm Problem. From then onwards, many schemes based on
pairing operations have been proposed including Identity-based (IBE) proxy re-
encryption schemes [19,22]. They are proved to be secure under chosen cipher-
text attack (CCA) assumption. Pairing-free proxy re-encryption schemes exist,
for example [11,12], but multiple modular exponentiations are still required.

There are several propositions on proxy re-encryption that employ symmetric
ciphers to encrypt the message such as [13,27]. The main advantage of symmetric
cipher proxy re-encryption approach is the lightness of the employed symmetric
cryptographic operations in terms of complexity and memory usage. In [13],
Cook et al. propose two conversion functions for symmetric ciphers. In their first
attempt, they assume that Alice shares with Bob a secret key kab. In addition,
Alice and the proxy must share ka. Then, Alice sends Eka

(Ekab
(M)) to the

proxy. The proxy decrypts the obtained ciphertext with ka and sends the result
Ekab

(M) to Bob. Hence, Bob does not need to share a key with the proxy and
yet he can still get the message M . However, this assumes Alice and Bob must
always share a common secret. Such assumption is not trivial when there exists
a significant number of devices in the network, such as in the context of IoT.
In their second attempt (termed as CK to be used in Table 3), the authors
provide the proxy the key kp = ka ⊕ kb, built from the secret keys (ka, kb) of A

AKAPR for the Internet of Things 345

and B, respectively. A computes C = M ⊕ ka and sends it to the proxy. The
proxy performs the conversion by computing C ′ = kp ⊕ C = kb ⊕ M . B can
then decrypts C ′ to get the message using its secret key kb. This approach is
efficient but not secure. Indeed, B can easily retrieve the secret key of A by
computing kb ⊕ C ⊕ C ′ = ka. In [27], Syalim et al. propose a pure symmetric
cipher proxy re-encryption algorithm. However, this approach requires that A
and B share common secret keys a priori. Moreover, it is assumed that the proxy
cannot collude with any previous users since a compromised user can recover the
current encryption key if he/she has the re-encryption key.

3.3 Our Proposed Lightweight Proxy Re-encryption

In this section, we present in detail our proposed symmetric cipher proxy
re-encryption. A symmetric cipher proxy re-encryption consists of five algo-
rithms (KeyGen,ReKeyGen,Encrypt, Decrypt,Reencrypt). In addition, we define
(Enc,Dec) as the encryption and decryption algorithms of a symmetric encryp-
tion scheme. A key distribution center (KDC) is responsible for providing keying
material. As such, KDC runs the two algorithms KeyGen and ReKeyGen to gener-
ate the needed security parameters. We suppose that Alice (A) desires to delegate
the decryption right of a ciphertext CA encrypted under her secret key to Bob
(B) with the help of the proxy (PR). Figure 1 describes the message exchanges
of our proposed PRE scheme. The procedure is detailed as follows.

A PR B
EncKt (M), t.h(skA||idB) EncKt (M), t.h(skB ||idA)−1

Compute rkA→B .(t.h(skA||idB)) = t.h(skB ||idA)−1

Fig. 1. Our proposed symmetric cipher proxy re-encryption scheme

– KeyGen(k) → (idA, idB , skA, skB): Given the security parameter k, this algo-
rithm outputs the identifiers (idA, idB) and the secret keys (skA, skB) for A
and B, respectively.

– ReKeyGen(idA, skA, idB , skB) → rkA→B : Given the identifiers and the secret
keys of A and B, this algorithm returns the re-encryption key rkA→B =
(h(skA||idB).h(skB ||idA))−1, where h : {0, 1}∗ → Zp is a hash function
that converts a string to a number on Zp. As we shall see, our construction
results in the fact that rkA→B = rkB→A. This property makes our proxy-
encryption scheme bidirectional meaning that the proxy only needs to store
one re-encryption key to re-encrypt messages from A to B and vice versa.

– Encrypt(idA, skA,M, idB) → CA: Given the identifier of B and a message M ,
A uses its identifier idA and its secret key skA to generate a ciphertext CA.
A first chooses a random number t ← Zp. Then, it generates a symmetric key
Kt ← KDF (t), where KDF is a Key Derivation Function. Finally, it outputs
the ciphertext CA = (EncKt

(M), t.h(skA||idB)).

346 K.T. Nguyen et al.

– Reencrypt(rkA→B , CA) → CB : Upon receiving the ciphertext CA = (C1, C2),
PR keeps C1 unchanged while multiplying C2 with the re-encryption key
rkA→B to obtain the new ciphertext CB = (EncKt

(M), t.h(skB ||idA)−1).
– Decrypt(idB , skB , CB , idA) → M : Upon receiving CB = (C ′

1, C
′
2) =

(EncKt
(M), t.h(skB ||idA)−1), B first calculates the value of l = h(skB ||idA)

from its secret key and the identifier of A. Then, it obtains the value of t by
multiplying l to C ′

2. From t, B generates the symmetric key Kt ← KDF (t).
Then, it gets the message M by decrypting C ′

1 using the generated key Kt:
M = DecKt

(EncKt
(M)).

Correctness. The correctness of our proposed scheme is straightforward.

3.4 Comparison of Our PRE Scheme to Related Work

In Table 3, we compare several proxy re-encryption schemes in related work
with our scheme based on the properties provided in Sect. 3.1. In comparing
with asymmetric cipher PRE schemes, our scheme is much lighter in terms of
computational cost. Indeed, the proposed construction does not necessitate any
pairing or exponentiation operation. On the other hand, while providing equiva-
lent performance compared with symmetric cipher proxy re-encryption schemes,
our scheme is more robust against attacks from compromised receiver, semi-
honest proxy and their corporation. We argue that our scheme provides most of
the desirable properties as described in the following.

Table 3. Comparison of our scheme and related work

Property BBS [7] AFG [2] GG [19] CH [11] CK [13] SN [27] Ours

Type PRA PRA PRA PRA PRS PRS PRS

Directionality bi-d uni-d uni-d bi-d bi-d bi-d bi-d

Non-interactivity No No Yes No No No No

Multiple-use Yes No Yes Yes Yes No No

Non-transitivity No Yes Yes No No Yes Yes

Collusion resistance No Yes Yes No No No Yes

Pairing-free Yes No No No Yes Yes Yes

Exponentiation-free No No No No Yes Yes Yes

Meaning of abbreviations: bi-d: Bidirectional; uni-d: Unidirectional; PRA: Proxy
re-encryption scheme that uses asymmetric ciphers; PRS: Proxy re-encryption
scheme that uses symmetric ciphers.

First, our scheme is bidirectional since rkA→B = rkB→A. This can be an
advantage in the considered scenario (e.g. IoT) where the proxy has to store
only one proxy key for any pair of devices. Second, in our construction, only
KDC can provide the re-encryption key because it is generated from the secret
keys of participants. This property makes our scheme interactive. However, the

AKAPR for the Internet of Things 347

scheme can be made partially non-interactive such that A and B can negotiate a
new proxy re-encryption key even when KDC is offline. In fact, A may generate
a new secret key sk′

A and compute k1 = h(sk′
A||idB).h(skA||idB). B generates

also a new secret key sk′
B and compute k2 = h(sk′

B ||idA).h(skB ||idA). k1, k2 are
then sent to the proxy. The latter can now obtain the new proxy re-encryption
key by computing 1/(k1.k2.rkA→B) in Zp. Finally, as each proxy key is generated
specifically for a pair of users, the proxy can only re-encrypt the ciphertext a
single time. Such construction makes our scheme unconditionally non-transitive
and collusion-resistant. Indeed, providing rkA→B = (h(skA||idB).h(skB ||idA))−1

and rkB→C = (h(skB ||idC).h(skC ||idB))−1, the only way that the proxy can
get rkA→C is to have the secret keys of A and C due to one-way property of
hash function. Even if B colludes with the proxy, they only have the value of
h(skA||idB) which is only used in the communication between A and B. Such
knowledge will not help them to find out A’s secret key skA. In addition, to
obtain rkA→C , they still need both the secret keys of A and C.

4 Lightweight Authenticated and Mediated Key
Agreement for IoT

In this section, we present the application of our PRE scheme presented in
Sect. 3.3 to obtain a very lightweight key establishment mechanism. Our pro-
tocol is relevant even with highly resource-constrained devices in the context
of IoT. The first subsection presents the network architecture and our consid-
ered scenarios. The second subsection provides the security assumptions needed
for the description of the protocol. Then, we describe concretely the message
exchanges of our proposal.

4.1 Network Architecture and Scenario Description

Figure 2 describes the network architecture of our proposal. The considered net-
work of things consists of a number of tiny nodes communicating with each other
and with an unconstrained resource border router (or gateway). The gateway
is the bridge between the sensor network and the outside world. It may take
part in the communication between two entities in a passive (transparent to the
communicating parties) or active (as a mediator in the communication process)
manners.

Our key establishment protocol involves the four following actors:

– Two parties: an Initiator (I) and a Responder (R), which respectively initiates
the communication and responds to incoming requests.

– A partial trusted party, named as Delegatee (DG), which is responsible for
assisting the key establishment process between I and R. In fact, DG is pro-
vided with a re-encryption key that allows it to translate the ciphertext from I
to R. In addition, it is considered as a semi-trusted party that acts and returns
correct results according to the protocol but can be curious on transmitted
messages.

348 K.T. Nguyen et al.

R1

GW

R2

I2

GW

DG

KDC

I1

Fig. 2. Network architecture and considered scenarios (→: KDC provides keying mate-
rial for all actors in the system. Examples of scenario: (1) →: The external user I1 ini-
tiates a key agreement process (mediated by DG) with the resource-constrained sensor
node R1; (2) →: Two unknown resource-constrained nodes (I2 and R2) initiate a key
agreement process with the help of DG and then GW.)

– A trusted Key Distribution Center (KDC), which is responsible for generating
keying material and acts as the root of trust of the whole system. Besides, KDC
is also in charge of delegation credential management and distribution.

In our considered scenario, I and R can be both resource-constrained devices.
At the beginning, KDC provisions the keying material for all users on the system.
Hence it can stay offline until the security parameters need to be refreshed.
On the other hand, DG must stay online and participate actively in the key
establishment procedure. Our motivation is that DG acts as a partially-trusted
third party helping the constrained devices to negotiate session keys without
obtaining any knowledge about these keys.

As depicted in Fig. 2, the initiator can be an external entity requesting for
information of the Responder - a sensor platform device lying in a Wireless Sensor
Networks (WSN). The key negotiation process is assisted by DG. In addition,
when I and R are in the same WSN, DG can provide the delegation keys for
the border router (or gateway) so that the key agreement process can be done
locally. Note that the gateway is also considered semi-trusted as a consequence
of which it only knows the delegation keys and is not able to recover the secret
keys of I and R. We provide more details on the security analysis of our proposal
in Sect. 5.

AKAPR for the Internet of Things 349

4.2 Security Assumptions and Notations

We suppose that I and R possess their own secret keys (skI and skR, accord-
ingly). However, they do not have any common secrets a priori. On the other
hand, DG shares with each communicating entity X a secret symmetric key
Kxd which is employed to protect the integrity of the traffic between X and
DG. As a result, DG shares the secret keys Kid and the secret key Krd with
I and R, respectively. In addition, we use an incremental counter in both
communicating parties to mitigate the replay attacks. For example, we main-
tain the counter CTIR in I’s side for all exchanges with R. If this is the
first time that I communicates with R, CTIR is set to 0. It is increased by
1 after every successful key agreement. Furthermore, for each entity X, we
denote its identifier as idX . Such identifier must be unique for each entity.
We also define (Enc,Dec) as the encryption and decryption algorithms of a
symmetric encryption scheme. While, (AEnc,ADec) is an authenticated encryp-
tion algorithm such that AEncK1,K2(M) = EncK1(M)||MACK2(EncK1(M)) and
ADecK1,K2(EncK1(M)||MACK2(EncK1(M))) = M , for each message M and two
secret keys K1,K2. Each key agreement exchange of order i between I and R
(Message i, for i = 1, 2, 3) has two components EDi and MACi(K). EDi defines
the appended security parameters and the encrypted data, while MACi(K)
denotes the MAC of EDi computed with the symmetric key K.

In addition, two hash function h : {0, 1}∗ → Zp and H : {0, 1}∗ → {0, 1}n
are also defined, where n is an integer number generated from the input security
level. These functions are modeled as random oracles [5]. Such oracle produces a
random value for each new query. Of course, if an input is asked twice, identical
answers are returned. In this work, we also use a Key Derivation Function (KDF)
for generating a symmetric key. KDF is based on a solid pseudorandom number
generator (PRNG) (e.g. in [3]). This function is initialized with several secret
values, called seeds. An attacker with the knowledge of PRNG output should
not be able to guess the seeds other than by exhaustive guessing.

4.3 AKAPR Message Sequence Chart

The proposed key establishment protocol AKAPR consists of four messages as
depicted in Fig. 3. The key negotiation process is mediated by DG. The detailed
description of the key agreement process is given as follows.

Message 1 from I to DG: To start a new session, I first increases CTIR by
one, where CTIR denotes the current counter of I for all communications with
R. CTIR is set to zero if this is the first time I communicates with R. Next, it
generates a session identifier SID at random (e.g. SID = H(idI ||idR||w), where
w is randomly chosen in Zp). Then, I chooses at random two fresh numbers Ni

and t from Zp. The ephemeral authentication keys AK = (AKe, AKa) are then
generated from idI , idR and t using a key derivation function (KDF). To con-
struct the Message 1, I concatenates the session identifier SID, its identifier idI
and R’s identifier idR to (Ni, CTIR). The concatenation is then encrypted using
the algorithm AEnc. As we shall see, the resulting ciphertext is the encryption

350 K.T. Nguyen et al.

and MAC of the concatenation by the pair of keys (AKe, AKa). This guarantees
that the attacker (including DG) cannot modify the encrypted text of the con-
catenation. Second, I masks the value of t by multiplying it with the hashed value
h(skI ||idR), where skI is the secret key of I. As we shall see, the result of such
multiplication is randomly distributed in Zp since the two used operands are
also randomly generated in Zp. Then, the first five components of the message
(SID, idI , idR,AEncAKe,AKa

(idI ||idR||Ni||CTIR), t.h(skI ||idI)) is completed by
a MAC computed with Kid, to form the Message 1.

Message 2 from DG to R: Upon receiving the Message 1 from I, DG first ver-
ifies that SID is fresh. We suppose that DG stores a list of SID values for each
pair of I and R. Next, DG validates that the message has not been modified by an
attacker by verifying its MAC using Kid. If the verification holds, DG is also cer-
tain that the Message 1 has not been replayed. Then, it modifies the fifth compo-
nent of the encryption part (ED1) in the Message 1 with the delegation key dkIR.
Indeed, it multiplies t.h(skI ||idR) with dkIR = (h(skI ||idR).h(skR||idI))−1 to
obtain t.h(skR||idI)−1. DG now concatenates the obtained result to the first four
components of the Message 1 to form ED2. The encryption part of the Message 2,
ED2 = (SID, idI , idR,AEncAKe,AKa

(idI ||idR||Ni||CTIR), t.h(skR||idI)−1), is
then appended with a MAC computed with Krd.

Message 3 from R to I: When receiving the Message 2 from DG, R first verifies
the authenticity of the message by employing its shared key with DG, Krd.
Then, by multiplying the hashed value of its secret key skR and the identifier
of I (idI) to the fifth part of ED2, (t.h(skR||idI)−1), it obtains t, which is a
number on Zp. From t, I generates the secret ephemeral authentication keys
AK = KDF (idI , idR, t) = (AKe, AKa). Next, it decrypts the fourth part of the
Message 2 using (AKe, AKa) to get the value of (idI , idR, Ni1, CT ′). It verifies
subsequently that CT ′ is superior or equal to its counter number CTRI to be
sure about the freshness of the Message 2 (see Sect. 5.1). The counter value of
R, CTRI , is now set to the value of CT ′. To construct the Message 3, R first
chooses randomly Nr from Zp. Next, it increases CTRI by one. R now encrypts
the concatenation of (SID, idR, idI , Ni1, t, Nr) with the generated key AKe. The
encrypted data is then appended with the session identifier SID to obtain the
encryption part. The latter is finally integrity protected with a MAC based on
the generated secret key AKa.

Message 4 from I to R: After receiving the Message 3 from R, I first approves
the authenticity of the message using AKa. Next, it decrypts the encrypted part
by employing the secret key AKe to get the values of (SID1, idR, idI , Ni2, t1,
Nr1, CTRI1). I verifies that (SID1, Ni2, t1) is equal to the generated values
(SID,Ni, t). It also verifies that CTRI1 = CTIR + 1. Finally, the session keys
are generated from the values (CTRI1, Ni, Nr1) and the identifiers of I and R:
Ks = KDF (CTRI1, idI , idR, Ni, Nr1). I macs the concatenation of (SID, idI ,
idR, Ni, Nr1) using the session key Ks and sends directly to R the hashed value
appended with the session identifier SID as a key confirmation message.

AKAPR for the Internet of Things 351

I DG R

Message 1: SID, idI , idR,AEncAKe,AKa (idI ||idR||Ni

||CTIR), t.h(skI ||idR),MAC1(Kid)

Message 2: SID, idI , idR,AEncAKe,AKa (idI ||idR||Ni

||CTIR), t.h(skR||idI)−1,MAC2(Krd)

Message 3: SID,EncAKe (SID||idR||idI ||Ni1||t||Nr||CTRI),MAC3(AKa)

Message 4: SID,MACKs (SID||idI ||idR||Ni||Nr1)

incr(CTIR), SID = H(idI , idR, CTIR),

Ni
$←− Zp, t

$←− Zp,
AK = KDF (idI , idR, t) = (AKe, AKa)

Compute t.h(skI ||idR).dkIR = t.h(skR||idI)−1

Get t = h(skR||idI).(t.h(skR||idI)−1),
AK = KDF (idI , idR, t) = (AKe, AKa)

(idI , idR, Ni1, CT ′) ← ADecAKe,AKa (AEncAKe,AKa (idI ||idR||Ni||CTIR)),
Verify if !(CT ′ < CTRI), then let CTRI = CT ′ and

generate Nr
$←− Zp, incr(CTRI)

Get (SID, idR||idI ||Ni2||t1||Nr1||CTRI1)
= DecAKe (EncAKe (idR||idI ||Ni1||t||Nr||CTRI))
Verify if Ni2 = Ni, CTIR + 1 = CTRI1 and t1 = t,
then generate Ks = KDF (CTRI1, idI , idR, Ni, Nr1)

Generate Ks = KDF (CTRI , idI , idR, Ni1, Nr),
Verify if (Message 4) = MACKs (SID||idI ||idR||Ni1||Nr)

Fig. 3. Lightweight Secure Key Agreement for IoT (Meaning of abbreviations: dkIR =
(h(skI ||idR).h(skR||idI))−1; incr(CT): CT = CT + 1; Message i = (EDi,MACi(K))
for i = 1, 2, 3, e.g. ED1 = (idI , idR, AEncAKe,AKa(idI ||idR||Ni||CTIR), t.h(skI ||idR)),
MAC1(Kid) = MACKid(ED1). Security keys needed for each participant: I
(CTIR, skI ,Kid), DG (Kid,Krd, dkIR), R (CTRI , skR,Krd).)

Upon receiving the Message 4, R first generates the session key Ks from the
identifiers (idI , idR), the obtained Ni1 in the Message 2, the generated value Nr

and its counter number CTRI . Then, it calculates a MAC from the concatena-
tion of (SID, idI , idR, Ni1, Nr) using the generated session key Ks. If the latter
is identical to the received Message 4, I and R can now start secure communica-
tions, e.g. using standard security protocols such as DTLS-PSK [16] where the
pre-shared keys are provided beforehand by our proposal.

5 Security Analysis

In this section, we first provide an informal security analysis of AKAPR by
describing its resistance against common security attacks. Then, we validate the
security of AKAPR using the cryptographic protocol analyzing tool ProVerif [6].

5.1 Resistance Against Attacks

Our proposal is resistant to the following attacks:

– Replay attack: This attack is mitigated by the used counter numbers (CTIR,
CTRI) and the random numbers (Ni, Nr) at run-time. The replays of messages
1 and 2 are detected thanks to the counter numbers (CTIR, CTRI). Indeed,
for any new session, I increases the value of CTIR by one. This value is then
encrypted inside the Message 1. Upon receiving the Message 2, R can be sure
about the freshness of this message by comparing its counter number CTRI

with CT ′. If the latter is inferior than CTRI then the message is detected as

352 K.T. Nguyen et al.

replayed. On the other hand, the freshness of the Messages 3 and 4 are assured
by the pair of random values Nr and Ni since they are newly generated for each
session. DG can also prevent replay attacks by keeping the session identifier
SID. Because CTIR is increased by one for each communication, the latter
will vary in each session.

– Denial-of-service attack (DoS): The Dos attacks aiming at each participant are
reduced in our proposal because all exchanges between parties are authenti-
cated. Indeed, each message is appended with an authentication code (MAC)
that permits the receiving party to verify if the message is altered during the
transmission. Further operations are canceled if the verification fails.

– Man in the middle attack (MITM): The attacker cannot impersonate any
party in our protocol since each message is protected by the secret keys that
are unknown to him. As such, the Message 1 and the Message 2 are encrypted-
then-maced by (AKe,Kid) and (AKe,Krd), respectively. The Message 3 is
encrypted then maced by the ephemeral secret keys AK = (AKe, AKa), while,
the Message 4 is protected by the new generated session key Ks.

– Key escrow attack: DG is a blind participant in the key agreement proce-
dure. It aids the key negotiation without having any knowledge on the agreed
session key and the secret keys of I and R. Indeed, although DG partic-
ipates in the key negotiation process, it possesses only the delegation key
dkIR = (h(skI ||idR).h(skR||idI))−1) for each pair of Initiator and Responder.
In addition, without knowing the secret key of I and R, DG cannot distin-
guish dkIR, t.h(skR||idI) and t.h(skI ||idR)−1 from a random number on Zp.
The only actor that can intercept message exchanges between I, R and DG
is the KDC. However, we have assumed that KDC is a totally trusted party
which is responsible for the keying material generations and stays offline.

– Collusion attack: This feature inherits the collusion-resistance property of the
proposed PRE scheme in Sect. 3. As such, even if DG colludes with one party,
it cannot retrieve the secret key of the other party thanks to the one-way
property of the hash function h. Indeed, if R collaborates with DG, they will
get the values of t, AK,Ni and Nr. However, only the messages dedicated for
R of I are affected. In fact, DG can only have the value of h(skI ||idR) which
does not help him to find the secret key of I, skI . If DG colludes with I, I can
then decrypt itself the Message 3, which contains no secret information of R.
The colluding parties can achieve the value of h(skR||idI). However, they are
unable to guess the secret skR of R thanks again to the one-way property of
hash functions.

The above security attacks except the MITM attacks, are usually impossible
to be detected by an automatic software verifier (e.g. ProVerif [6]). In practice,
the latter is used to verify if the essential security properties, such as mutual
authentication and secret key protection, are provided in the testing crypto-
graphic protocol. We provide more details on such software verification in the
next section.

AKAPR for the Internet of Things 353

5.2 Formal Security Validation with ProVerif

In this section, we present a formal verification of AKAPR using ProVerif [6].
Our verification ensures that the proposed protocol provides the secrecy of the
generated session keys and the authentication of participants.

ProVerif is an automatic verifier for cryptographic protocols defined in the
Dolev-Yao model [14]. In such model, the attacker is an active eavesdropper,
capable of obtaining any message passing in the network, initiating a conversa-
tion with any other users and impersonating as a legitimate receiver. It is only
limited by the restrictions of the cryptographic methods used. In other words,
the cryptographic primitives is considered idealized in the sense that they are
unbreakable without knowing the employed secret keys.

In Listing 1.2, we provide the ProVerif verification code of our protocol
AKAPR while respecting the description written in Sect. 4.3. A protocol descrip-
tion in ProVerif is divided into three parts: the declarations, the process macros
and the main process. As described in Lines 1–44, the declaration part consists of
the user types, the security properties, the cryptographic primitive functions and
the list of defined events and queries. We define the types, the communication
channel and the identifiers of the participating parties in Lines 1–6. The tables
specified in Lines 8–11 are employed to model the storage of keys in a server.
Only I, R and DG can use these tables to get the associations between host
names and keys. Note that we use the table ctr(host,Zp) to store the counter
value of a specific host. To describe the synchronization of the counter values in
both sides (I and R), we model only the ideal situation where there is no failed
session between them. In such case, the counter values of I and R are equal. The
detailed synchronization process is described in Lines 52–54, 68, 87 and 90 of
Listing 1.2. Furthermore, the secrecy assumptions are specified in Lines 13–16.
For example, sk I and K id define the secret key of I and its shared key with
DG. These keys are kept secret to the attackers. Then, Lines 18–30 describe
the cryptographic functions needed in our protocol. For example, the function
(kdf h(Zp, host) : Zp) generates the hashed value h(aZpNumber||aHostName). On
the other hand, the function (mask(Zp,Zp) : Zp) denotes a simple multiplication
on Zp. Other functions are self-explained according to the protocol specifica-
tion as depicted in Sect. 4. As we shall see, the correctness of the re-encryption
process is modeled in Lines 32–35 based on the commutativity of multiplica-
tion on Zp. Finally, we introduce a list of events and queries in Lines 37–44.
For example, the event beginRkey(host, host, key) represents the request from I
to create a trusted session with R. The defined events play as reference points
for the protocol execution order.

In ProVerif, we can ensure the authentication by testing the correspondence
assertions between the aforementioned events. Indeed, we verify the mutual
authentication between I and R using queries defined in Lines 43–44. For exam-
ple, the first query in Line 43 says that, if event endRkey(host, host, key) occurs
then, event beginRkey(host, host, key) must have occurred before. Furthermore,
our second interest of this protocol modeling is to verify the secrecy of the nego-
tiated session key K s. To do so, I and R choose a random number in each side

354 K.T. Nguyen et al.

and output the ciphertext encrypted with K s. Then, they challenge the attacker
to find the encrypted data by the queries specified in Lines 41–42. The attacker
can obtain the underlying data if and only if having the secret key K s since the
cryptographic primitives are considered as black-boxes in ProVerif.

The second part of AKAPR ProVerif program describes the process macros
for participants I, R and DG. They are specified in Lines 46–74, Lines 76–99
and Lines 101–109, respectively. These macros present the operations of I,
R and DG during AKAPR execution. Note that in lines 57, 71, 86 and 98,
we insert the events that we specified earlier. The other four process macros
processDK, processKD, processK and processCTR fill the four tables of secret keys
defined in Lines 8–11.

In the last part of Listing 1.2, we specify the main process (Lines 127–141)
of the AKAPR ProVerif program. It instantiates the keying materials needed,
inserts these keys to the right tables and runs the defined macros unlimited
times.

The output of the program when running with ProVerif is summarized in
Listing 1.1.

1 RESULT event (endIkey (x 72 , y 73 , z)) ==> event (beg inIkey (x 72 ,
y 73 , z)) i s t rue .

2 RESULT event (endRkey (x 3724 , y 3725 , z 3726)) ==> event (
beginRkey (x 3724 , y 3725 , z 3726)) i s t rue .

3 RESULT not a t tacke r (s e c r e t I [! 1 = v 7305]) i s t rue .
4 RESULT not a t tacke r (secretR []) i s t rue .

Listing 1.1. AKAPR verification results

The result in Lines 1–2 informs us that AKAPR provides mutual authentica-
tion of the two participants I and R. As such, the proved correspondence property
in Line 1 implies that R authenticates I by the fact that I can correctly retrieve
the session key Ks. On the other hand, Line 2 shows that I authenticates R since
the latter can obtain the correct ephemeral key AK after receiving the Message 2.
In addition, Lines 3–4 show the results of the queries not attacker(secretI[]) and
not attacker(secretR[]) returned by ProVerif. As we shall see, these results are
true, which means that the secrecy of the random values secretI and secretR
are preserved by the protocol. In other words, the secrecy of the session key
generated by AKAPR is also preserved.

The above ProVerif verification has several limitations. Indeed, in ProVerif,
the hypothesis of perfect cryptography is considered, meaning that the only way
to decrypt an encrypted message is to use the right secret key. Besides, in Line
18–35, we have to model the modular multiplication and its commutative prop-
erty required in the re-encryption process by defining several new functions. This
is necessary because real modular multiplication cannot be handled by ProVerif.
In fact, ProVerif verification might not terminate when dealing with protocols
that use algebraic operations such as modular multiplication or Exclusive-or.
In addition, several security protocols that are conceptually safe, but are found
flawed when considering algebraic properties as described in [21]. As a result, one

AKAPR for the Internet of Things 355

can complete the above formal verification using other tools such as CryptoVerif
[10], CL-Atse [28] or OFMC [4], which support most of algebraic properties and
provide more realistic assumptions, e.g. the hypothesis of perfect cryptography
is not required.

6 Conclusion

In this paper, we first introduced a novel proxy re-encryption scheme that
requires only symmetric cipher to encrypt data. We showed that although our
scheme is bidirectional and single-use, it provides the most important features:
non-transitivity and collusion-resistance. Furthermore, the scheme is much more
efficient when compared with related solutions that use asymmetric approaches.
Second, we proposed a novel authenticated delegation-based and lightweight key
agreement protocol to be used in the Internet of Things. This protocol is built
upon the proposed proxy re-encryption scheme. The security of our solution has
been formally validated by ProVerif. In addition, thanks to the used symmetric
primitives, the proposed key agreement mechanism is very lightweight since it
does not require any expensive cryptographic operations such as pairing opera-
tion or modular exponentiation. The proposed protocol can be applied even in
class 1 devices with extremely resource-constrained profile.

Appendix

1 type host .
2 type key .
3 type mkey .
4 type Zp .
5 f r e e c : channel .
6 f r e e I , R: host .
7
8 tab l e msKey(host , Zp) .
9 tab l e transMsKey (host , host , Zp) .

10 tab l e keys (host , mkey) .
11 tab l e c t r (host , Zp) .
12
13 not at tacke r (new K id) .
14 not a t tacke r (new K rd) .
15 not a t tacke r (new sk I) .
16 not a t tacke r (new sk R) .
17
18 fun addone (Zp) : Zp .
19 fun enc (b i t s t r i n g , key) : b i t s t r i n g .
20 reduc f o r a l l x : b i t s t r i n g , y : key ; denc (enc (x , y) , y) = x .
21 fun mac(b i t s t r i n g , mkey) : b i t s t r i n g .
22 fun kdf AK(host , host , Zp) : key .
23 fun mkdf AK(host , host , Zp) : mkey .
24 fun kdf h (Zp , host) : Zp .
25 fun kd f fn (Zp , host , host , Zp , Zp) : key .
26 fun mkdf fn (Zp , host , host , Zp , Zp) : mkey .
27 fun mask(Zp , Zp) : Zp .
28 fun kd f rk (Zp , Zp) : Zp .
29 fun inv (Zp) : Zp .
30 fun s id gen (host , host , Zp) : b i t s t r i n g .
31
32 reduc f o r a l l r : Zp , k1 : Zp , k2 : Zp ;
33 reenc (mask(r , k1) , kd f rk (k1 , k2)) = mask(r , inv (k2)) .
34 reduc f o r a l l r : Zp , k : Zp ;
35 unmask (mask(r , inv (k)) , k) = r .
36
37 event beg inIkey (host , host , key) .
38 event endIkey (host , host , key) .
39 event beginRkey (host , host , key) .
40 event endRkey (host , host , key) .
41 query at tacke r (new s e c r e t I) ;
42 at tacke r (new secretR) .

356 K.T. Nguyen et al.

43 query x : host , y : host , z : key ; event (endRkey (x , y , z)) ==> event (beginRkey (x , y
, z)) .

44 query x : host , y : host , z : key ; event (endIkey (x , y , z)) ==> event (beg inIkey (x , y
, z)) .

45
46 l e t p r o c e s s I =
47 new s e c r e t I : b i t s t r i n g ;
48 in (c , hostR : host) ;
49 get keys(=I , kid) in
50 new Ni : Zp ;
51 new t : Zp ;
52 get c t r (=I , c t i 0) in
53 l e t c t i : Zp = addone (c t i 0) in
54 i n s e r t c t r (I , c t i) ;
55 l e t AK e : key = kdf AK(I , hostR , t) in
56 l e t AK a : mkey = mkdf AK(I , hostR , t) in
57 event beginRkey (I , hostR , AK e) ;
58 new w: Zp ; l e t SID : b i t s t r i n g = s id gen (I , hostR , w) in
59 l e t e1 : b i t s t r i n g = enc ((I , hostR , Ni , c t i) , AK e) in
60 l e t me1 : b i t s t r i n g = mac(e1 , AK a) in
61 get msKey(=I , k i) in
62 l e t tb : Zp = mask(t , kdf h (ki , hostR)) in
63 l e t mac1 : b i t s t r i n g = mac ((SID , I , hostR , e1 , me1 , tb) , kid) in
64 out (c , (SID , I , hostR , e1 , me1 , tb , mac1)) ;
65 in (c , (=SID , e2 : b i t s t r i n g , mac2 : b i t s t r i n g)) ;
66 i f mac ((SID , e2) , AK a) = mac2 then
67 l e t (=SID , =hostR , =I , =Ni , =t , Nrp : Zp , c t rp : Zp) = denc (e2 , AK e) in
68 i f (c t rp = addone (c t i)) then
69 l e t K s : key = kd f fn (ct rp , I , hostR , Ni , Nrp) in
70 l e t m Ks : mkey = mkdf fn (ct rp , I , hostR , Ni , Nrp) in
71 event beg inIkey (I , hostR , K s) ;
72 l e t mac3 : b i t s t r i n g = mac ((SID , I , hostR , Ni , Nrp) , m Ks) in
73 out (c , (SID , mac3)) ;
74 out (c , enc (s e c r e t I , K s)) .
75
76 l e t processR =
77 new secretR : b i t s t r i n g ;
78 in (c , (SID : b i t s t r i n g , hos t I : host , =R, e4 : b i t s t r i n g , me4 : b i t s t r i n g , tbp : Zp ,

mac4 : b i t s t r i n g)) ;
79 get keys(=R, krd) in
80 i f mac ((SID , hostI , R, e4 , me4 , tbp) , krd) = mac4 then
81 get msKey(=R, kr) in
82 l e t tp : Zp = unmask (tbp , kdf h (kr , hos t I)) in
83 l e t AK ep : key = kdf AK(hostI , R, tp) in
84 l e t AK ap : mkey = mkdf AK(hostI , R, tp) in
85 i f mac(e4 , AK ap) = me4 then
86 event endRkey (hostI , R, AK ep) ;
87 get c t r (=R, c t r) in
88 l e t (=hostI , =R, Nip : Zp , =c t r) = denc (e4 , AK ep) in
89 new Nr : Zp ;
90 i n s e r t c t r (R, addone (c t r)) ;
91 l e t e5 : b i t s t r i n g = enc ((SID , R, hostI , Nip , tp , Nr) , AK ep) in
92 l e t mac5 : b i t s t r i n g = mac ((SID , e5) , AK ap) in
93 out (c , (SID , e5 , mac5)) ;
94 in (c , (=SID , mac6 : b i t s t r i n g)) ;
95 l e t K s : key = kd f fn (addone (c t r) , hostI , R, Nip , Nr) in
96 l e t m Ks : mkey = mkdf fn (addone (c t r) , hostI , R, Nip , Nr) in
97 i f mac ((SID , hostI , R, Nip , Nr) , m Ks) = mac6 then
98 event endIkey (hostI , R, K s) ;
99 out (c , enc (secretR , K s)) .

100
101 l e t processDG =
102 in (c , (SID : b i t s t r i n g , hos t I : host , hostR : host , e7 : b i t s t r i n g , td : Zp , mac7 :

b i t s t r i n g)) ;
103 get keys(=hostI , kd1) in
104 i f mac ((SID , hostI , hostR , e7 , td) , kd1) = mac7 then
105 get transMsKey(=hostI , =hostR , dk i r) in
106 l e t tdr : Zp = reenc (td , dk i r) in
107 get keys(=hostR , kd2) in
108 l e t m7: b i t s t r i n g = mac ((SID , hostI , hostR , e7 , tdr) , kd2) in
109 out (c , (SID , hostI , hostR , e7 , td , m7)) .
110
111 l e t processDK =
112 in (c , (h i : host , hr : host , k : Zp)) ;
113 i f (h i <> I) && (hr <> R) then i n s e r t transMsKey (hi , hr , k) .
114
115 l e t processKD =
116 in (c , (h : host , k : mkey)) ;
117 i f (h <> I) && (h <> R) then i n s e r t keys (h , k) .
118
119 l e t processK =
120 in (c , (h : host , r : Zp)) ;
121 i f (h <> I) && (h <> R) then i n s e r t msKey(h , r) .
122
123 l e t processCTR =
124 in (c , (h : host , r : Zp)) ;
125 i f (h <> I) && (h <> R) then i n s e r t c t r (h , r) .
126
127 proce s s
128 new sk I : Zp ;

AKAPR for the Internet of Things 357

129 new sk R : Zp ;
130 new K id : mkey ;
131 new K rd : mkey ;
132 new cpt : Zp ;
133 i n s e r t c t r (I , cpt) ;
134 i n s e r t c t r (R, cpt) ;
135 i n s e r t msKey(I , s k I) ;
136 i n s e r t msKey(R, sk R) ;
137 i n s e r t keys (I , K id) ;
138 i n s e r t keys (R, K rd) ;
139 l e t dgIR : Zp = kdf rk (kdf h (sk I , R) , kdf h (sk R , I)) in
140 i n s e r t transMsKey (I , R, dgIR) ;
141 ((! p r o c e s s I) | (processR) | (! processDG) | (! processK) | (! processKD) | (!

processDK) | (! processCTR))

Listing 1.2. ProVerif code of AKAPR

References

1. Gartner inc., forecast: The internet of things, worldwide (2013)
2. Ateniese, G., Kevin, F., Green, M., Hohenberger, S.: Improved proxy re-encryption

schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. (TISSEC) 9(1), 1–30 (2006)

3. Barker, E.B., Kelsey, J.M.: Recommendation for random number generation using
deterministic random bit generators (revised) (2007)

4. Basin, D., Mödersheim, S., Viganò, L.: An on-the-fly model-checker for security
protocol analysis. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 253–270. Springer, Heidelberg (2003)

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73. ACM (1993)

6. Blanchet, B.: Automatic verification of correspondences for security protocols. J.
Comput. Secur. 17(4), 363–434 (2009)

7. Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

8. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

9. Bormann, C., Ersue, M., Keranen, A.: Terminology for constrained-node networks.
Internet Engineering Task Force (IETF), RFC, 7228 (2014)

10. Cadé, D., Blanchet, B.: Proved generation of implementations from computation-
ally secure protocol specifications1. J. Comput. Secur. 23(3), 331–402 (2015)

11. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM Conference on Computer and Communications Secu-
rity, pp. 185–194. ACM (2007)

12. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS,
vol. 6055, pp. 316–332. Springer, Heidelberg (2010)

13. Cook, D.L., Keromytis, A.D.: Conversion functions for symmetric key ciphers. J.
Inf. Assur. Secur. 2, 41–50 (2006)

14. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–208 (1983)

15. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

16. Eronen, P., Tschofenig, H.: Pre-shared key ciphersuites for transport layer security
(TLS). Technical report, RFC 4279, December 2005

358 K.T. Nguyen et al.

17. Fouladgar, S., Mainaud, B., Masmoudi, K., Afifi, H.: Tiny 3-TLS: a trust delegation
protocol for wireless sensor networks. In: Buttyán, L., Gligor, V.D., Westhoff, D.
(eds.) ESAS 2006. LNCS, vol. 4357, pp. 32–42. Springer, Heidelberg (2006)

18. Granjal, J., Monteiro, E., Silva, J.S.: End-to-end transport-layer security for
internet-integrated sensing applications with mutual and delegated ECC public-
key authentication. In: 2013 IFIP Networking Conference, pp. 1–9. IEEE (2013)

19. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

20. Hummen, R., Shafagh, H., Raza, S., Voig, T., Wehrle, K.: Delegation-based authen-
tication and authorization for the IP-based internet of things. In: 2014 Eleventh
Annual IEEE International Conference on Sensing, Communication, and Network-
ing (SECON), pp. 284–292. IEEE (2014)

21. Lafourcade, P., Terrade, V., Vigier, S.: Comparison of cryptographic verification
tools dealing with algebraic properties. In: Degano, P., Guttman, J.D. (eds.) FAST
2009. LNCS, vol. 5983, pp. 173–185. Springer, Heidelberg (2010)

22. Matsuo, T.: Proxy re-encryption systems for identity-based encryption. In: Takagi,
T., Okamoto, E., Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575,
pp. 247–267. Springer, Heidelberg (2007)

23. Ray, S., Biswas, G.P.: Establishment of ECC-based initial secrecy usable for ike
implementation. In: Proceedings of World Congress on Expert Systems (WCE)
(2012)

24. Raza, S., Shafagh, H., Hewage, K., Hummen, R., Voigt, T.: Lithe: lightweight
secure CoAP for the internet of things. IEEE Sens. J. 13(10), 3711–3720 (2013)

25. Ben Saied, Y., Olivereau, A., Zeghlache, D., Laurent, M.: Lightweight collaborative
key establishment scheme for the internet of things. Comput. Netw. 64, 273–295
(2014)

26. Sciancalepore, S., Capossele, A., Piro, G., Boggia, G., Bianchi, G.: Key manage-
ment protocol with implicit certificates for IoT systems. In: Proceedings of the
2015 Workshop on IoT Challenges in Mobile and Industrial Systems, pp. 37–42.
ACM (2015)

27. Syalim, A., Nishide, T., Sakurai, K.: Realizing proxy re-encryption in the symmet-
ric world. In: Abd Manaf, A., Zeki, A., Zamani, M., Chuprat, S., El-Qawasmeh,
E. (eds.) ICIEIS 2011, Part I. CCIS, vol. 251, pp. 259–274. Springer, Heidelberg
(2011)

28. Turuani, M.: The CL-Atse protocol analyser. In: Pfenning, F. (ed.) RTA 2006.
LNCS, vol. 4098, pp. 277–286. Springer, Heidelberg (2006)

29. Van den Abeele, F., Vandewinckele, T., Hoebeke, J., Moerman, I., Demeester, P.:
Secure communication in IP-based wireless sensor networks via a trusted gate-
way. In: 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), pp. 1–6. IEEE (2015)

Data Privacy

Information Control by Policy-Based Relational
Weakening Templates

Joachim Biskup(B) and Marcel Preuß(B)

Technische Universität Dortmund, Dortmund, Germany
{joachim.biskup,marcel.preuss}@cs.tu-dortmund.de

Abstract. We conceptually design, formally verify and experimentally
evaluate a sophisticated information control mechanism for a relational
database instance. The mechanism reacts on access requests for data pub-
lishing or query answering with a granularity of either the whole instance
or individual tuples. The reaction is based on a general read access per-
mission for the instance combined with user-specific exceptions expressed
as prohibitions regarding particular pieces of information declared in
a confidentiality policy. These prohibitions are to be enforced in the
sense that the user should neither be able to get those pieces directly
nor by rational reasoning exploiting the interaction history and back-
ground knowledge about both the database and the control mechanism.
In an initial off-line phase, the control mechanism basically determines
instance-independent weakening templates for individual tuples and gen-
erates a policy-compliant weakened view on the stored instance. During
the system-user interaction phase, each request to receive data of the
database instance is fully accepted but redirected to the weakened view.

Keywords: Distortion · Confidentiality · Background knowledge ·
History-awareness · Information control · Read access · Relational data-
base · Query access · View generation · Weakened information

1 Introduction

Early versions of access control deal with objects as containers on the layer of an
operating system. Basically, the control intercepts any request issued by a process
to read, write or execute the content of a container and then either accepts
or denies the request. The decision is taken according to previously granted
access rights, but without inspecting the actual content of the container. Access
control primarily aims at enforcing requirements of confidentiality, integrity and
availability. In this article, we focus on confidentiality regarding processes of a
single user or a group of potentially colluding users. Accordingly, requests to
read or, more generally, to receive data are our main concern.

Since early days, many refinements of access control have been proposed and
have come into operation. In particular, the concepts of granularity, history-
awareness and content-sensitivity are important for access control on the layer
of a database management system. Going even further, managing data can be
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 361–381, 2016.
DOI: 10.1007/978-3-319-45741-3 19

362 J. Biskup and M. Preuß

seen as the fundament of providing knowledge or some kind of belief, by assigning
some well-defined meaning to raw data. Typically, such semantics are defined for
the syntax of a formal logic. For example, first-order logic is employed for query
answering in a relational database management system. Dealing with sophisti-
cated notions of information – whether seen as knowledge or as belief – rather
than with raw data might be even more ambitious, leading to a further layer
of a knowledge-and-belief management system. Accordingly, access control for
such a system demands for further concepts, namely of information control and
entailment.

If a process running on behalf of an intelligent agent issues access requests, the
results of an accepted access might be further exploited by computational ratio-
nal reasoning, in order to determine the information actually gained. Roughly
described, this gain is the new information inferred by reasoning about recently
directly received data together with the already previously held information.
Hence, the control has to confine the information content of data delivered such
that any information gain by a “too curious” receiver does not comprise infor-
mation to be kept confidential.

To still achieve best availability of information, the control should then be
further enhanced by more sophisticated reactions on a request: rather than sim-
ply either accepting or denying a request, the control can react by a larger range
of options, including the mediation of distorted data. However, distortions might
lead to new vulnerabilities by so-called meta-inferences. Accordingly, on the layer
of a multi-(intelligent-)agent system, it is necessary to also deal with adversarial
reasoning including meta-inferences based on advanced background knowledge
about the protection mechanism.

During this development rather straightforward access control gradually
matured to highly sophisticated inference control. Unfortunately, the increase
of functionality comes along with a decline of efficiency and scalability. One
line of answers to this challenge is known as confidentiality/privacy-preserving
data publishing [11], which in particular includes the technique of value gener-
alization by k-anonymization as a special case of information weakening. In a
first precomputation offline phase, the control system generates a sanitized view
such that all concerns regarding inferences are already provably captured. In a
second system-user interaction phase, access to the original data is completely
prohibited, but full read access rights on the view are granted.

A particular instantiation of this approach applied to relational databases
even goes a step further. In this instantiation [5], access rights for receiving
data are expressed by the combination of (i) a general permission to see the
tuples of a fixed database instance and (ii) exceptions in the form of user-specific
prohibitions to acquire specific pieces of information. These forbidden pieces are
expressed as queries in terms of the database schema and declaratively stated in a
confidentiality policy. Notably, a security officer should declare such prohibitions
independently of the actual instance. Given a confidentiality policy and the
database instance, the control system splits the offline phase into two stages,
which can be roughly rephrased as follows:

Information Control by Policy-Based Relational Weakening Templates 363

– For each forbidden piece of information listed in the policy, the system gen-
erates a suitable weakening by individually assigning a disjunctive and thus a
less informative template to it, such that all these templates seen together with
any non-distorted data are totally non-interferential regarding the information
to be kept confidential.

– In any sequence inspecting each actual tuple of the instance in turn, the system
checks whether the tuple is related to one or more of the disjunctive templates
generated from the policy, and if this is the case the system replaces the tuple
by the set of all pertinent templates.

Our contributions generalize and substantially extend that particular instan-
tiation of confidentiality/privacy-preserving data publishing:

– We propose a generic approach consisting of first generating weakening tem-
plates from the policy and afterwards applying these templates on the instance
tuple-wise, whether dynamically and interactively while reacting on query
requests, or statically for defining a view.

– We design and verify a powerful method to handle a priori knowledge, in
particular in the form of relational data dependencies.

– We employ a flexible scheme to declare and enforce prohibitions.
– We reduce the conceptual requirements to graph problems for which well-

established scalable graph algorithms are known.

In the remainder of this article, we first introduce an example in Sect. 2.
In Sect. 3, we briefly summarize basic notions and present the new generic app-
roach. In Sect. 4, we refine the generic approach for data dependencies as a priori
knowledge. Moreover, in Sect. 5, we discuss the practical efficiency on the basis
of an experimental evaluation of a prototype implementation. Finally, we further
relate our contributions to previous work and conclude in Sect. 6.

2 Running Example

We consider a simple relation instance r over a schema R(A,B,C), so far with-
out any data dependencies. For confining the interactions with some user, the
security officer declares a confidentiality policy ppol with the prohibitions shown
in Fig. 1a, formalized as sentences of first-order logic as any other items. This
confidentiality requirement implies in particular that the user should neither be
able to infer that the hidden instance contains any of the listed ground facts,
nor should he be able to reason that the instance contains any ground fact that
entails some of the listed existential facts. But the requirement still accepts that
the user infers the validity of strict disjunctions of the listed items, as long as
the user cannot strengthen such a disjunction to just one disjunct, i.e., to one of
the prohibited items.

Accordingly, in the first stage of the weakening method, the prohibited items
are suitably clustered into mutually independent groups in order to define for
each of these groups a weakening template in the form of the disjunction of the

364 J. Biskup and M. Preuß

ppol = { R(a, a, a), R(a, b, a), R(a, b, c), R(a, b, d), R(a, b, e), R(a, c, a),

(∃X)R(a, e, X), (∃X)R(b, e, X), (∃X) R(c, e, X), (∃X) R(b,X, e) }
ppol

{ R(a, b, c), R(a, b, d) }
{ (∃X)R(b, X, e), (∃X)R(b, X, d)A }
{ (∃X)R(a, e, X), (∃X) R(a, f, X)A }

{ R(a, a, a), R(a, c, a) }
{ R(a, b, a), R(a, b, e) }
{ (∃X) R(b, e, X), (∃X)R(c, e, X) }

r = { (a, b, c), (a, f, g), (b, a, e), (b, b, d), (b, d, f), (g, e, i), (g, h, i) }
r

R(b, d, f)

R(g, e, i)

R(g, h, i)

R(a, b, c) ∨ R(a, b, d)

(∃X)R(a, e,X) ∨ (∃X)R(a, f, X)

(∃X)R(b, X, d) ∨ (∃X)R(b, X, e)

¬ [R(a, a, a) ∨ R(a, c, a)]

¬ [R(a, b, a) ∨ R(a, b, e)]

¬ [(∃X)R(b, e, X) ∨ (∃X) R(c, e,X)]

(∀X)(∀Y)(∀Z) [

(X ≡ a ∧ Y ≡ b ∧ Z ≡ c) ∨
(X ≡ a ∧ Y ≡ b ∧ Z ≡ d) ∨
(X ≡ a ∧ Y ≡ e) ∨
(X ≡ a ∧ Y ≡ f) ∨
(X ≡ b ∧ Z ≡ d) ∨
(X ≡ b ∧ Z ≡ e) ∨
(X ≡ b ∧ Y ≡ d ∧ Z ≡ f) ∨
(X ≡ g ∧ Y ≡ e ∧ Z ≡ i) ∨
(X ≡ g ∧ Y ≡ h ∧ Z ≡ i) ∨
¬R(X,Y, Z)]

Fig. 1. Groups for weakening templates generated from a confidentiality policy, a data-
base instance, and the resulting confidentiality-preserving weakened view

group members. In case that the clustering leaves some items isolated, suitable
further items are added, in our example (∃X)R(a, f,X)A and (∃X)R(b,X, d)A.
Figure 1b and c show the resulting groups, though at this stage the partitioning
into the two parts is not relevant.

The weakening method computes that partitioning only in the second stage,
when the stored instance r as shown in Fig. 1d is treated: one part contains the
templates that are entailed by the instance; the other part contains the remain-
ing templates. Finally, the weakening method generates the confidentiality-
preserving weakened view that consists of three kinds of sentences, as shown
in Fig. 1e (though in the presence of a priori knowledge, we might need to deal
with a fourth kind of totally refused knowledge).

– positive knowledge about the instance, R(b, d, f), R(g, e, i) and R(g, h, i);
– disjunctive knowledge, the templates of the first part;
– negative knowledge, a first sentence capturing all facts not entailing the other

knowledge and further sentences capturing all templates of the second part.

Information Control by Policy-Based Relational Weakening Templates 365

3 Generic Approach

Stored Data. We consider data stored by means of a relational database man-
agement system, for which a single relational schema is declared. A schema
comprises a relation symbol (table name) R, a finite set of attributes (column
names) A = {A1, . . . , An}, each of which has the same infinite domain Dom of
constants, and some set SC of semantic constraints. In the running example we
have three attributes A, B and C and, so far, an empty set of constraints.

The system maintains a database instance r, which is a finite set of tuples
over A with values in Dom, satisfying the semantic constraints in SC. Intuitively,
such an instance is treated as being complete in the following sense: each tuple
in r represents a fact that is true in some fictitious “real world”; whereas, by
Closed World Assumption (CWA), each other tuple over A with values in Dom
represents a possible fact which is false in that world. Figure 1d shows an example
of a database instance, leaving the CWA implicit.

We follow a foundation of the relational model of data in terms of first-
order logic with equality, as also used in [3]. Syntactically, the logic is specified
by a language L over ≡, R, A, Dom, variables, propositional connectives and
first-order quantifiers in the usual way. Semantically, for this logic we treat a
database tuple (a1, . . . , an) as a ground fact R(a1, . . . , an) ∈ L and a database
instance as a finite Herbrand interpretation of L with the infinite universe Dom
assuming unique names. Using an instance in this way, we can inductively assign
a truth value to each sentence in L . This foundation also provides us with
the pertinent notions of satisfaction and entailment : an instance r, seen as an
Herbrand interpretation of the kind described above, satisfies a sentence Φ ∈ L
(r is a model of Φ, r |= Φ) iff the truth evaluation according to r returns the
truth value true; a set S ⊆ L of sentences entails a sentence Φ ∈ L (S |= Φ)
iff each instance r satisfying S also satisfies Φ.

Given an instance r = {(a1,1, . . . , a1,n), . . . , (am,1, . . . , am,n)} consisting of m
tuples (aj,1, . . . , aj,n), we can formalize our completeness assumption, specified
above in natural language, by the following sentence in L , denoted by Comp(r):

(∀X1) . . . (∀Xn)[
∨

(aj,1,...,aj,n)∈r

(
∧

i∈{1,...,n}
Xi ≡ aj,i) ∨ ¬R(X1, . . . , Xn)].

The control system should be effective for any fixed instance r. But the user is
assumed to have some a priori knowledge prior ⊆ L that includes the semantic
constraints SC, i.e., only instances with r |= prior are seen as being possible.
Extending the running example in Sect. 4 below, we will consider the a priori
knowledge shown in Fig. 2b.

Confidentiality Policy. Confidentiality requirements are expressed in the form
of user-specific prohibitions. Syntactically, most generally each prohibition would
just be a sentence Ψ in L . However, facing the well-known difficulty of the
computational unsolvability of the general entailment problem for the full first-
order logic language L , in this work we restrict prohibitions to sentences in the

366 J. Biskup and M. Preuß

sublanguage Lexist of existential facts. A security officer is assumed to declare
all prohibitions as a finite subset ppol ⊆ Lexist. The prohibitions dealt within
the running example are gathered in the confidentiality policy shown in Fig. 1a.

More formally, an existential fact is a sentence of the form
(∃Xi1) . . . (∃Xim)R(t1, . . . , tn) with pairwise different variables Xi1 , . . . , Xim and
terms tij = Xij for ij ∈ {i1, . . . , im} ⊆ {1, . . . , n} and ti ∈ Dom otherwise. Such
a sentence corresponds to a subtuple where the components for the attributes
in {Ai1 , . . . , Aim} are dropped. We also see ground facts as elements of Lexist.
The entailment problem for existential facts, i.e., whether for some Ψ1 and Ψ2

in Lexist we have Ψ1 |= Ψ2, is known to be easily solvable by a simple term
matching, namely if and only if the following holds: whenever Ψ2 has a constant
a ∈ Dom for an attribute A, then Ψ1 has the same constant for that attribute.
Consequently, we have both Ψ1 �|= Ψ2 and Ψ2 �|= Ψ1 if and only if at least one of
the following alternatives holds: Ψ1 and Ψ2 have different constants a1 �= a2 on
some attribute A, or Ψ1 has a constant a1 for some attribute A1 but Ψ2 has a vari-
able there and, vice versa, Ψ2 has a constant a2 for a different attribute A2 �= A1

but Ψ1 has a variable there. Each Ψ ∈ Lexist determines its sphere (of ground
facts) defined by Sp(Ψ) := {Φ |Φ is ground fact in L and Φ |= Ψ}. Obviously,
we have Ψ1 |= Ψ2 if and only if Sp(Ψ1) ⊆ Sp(Ψ2). Moreover, even if both Ψ1 �|= Ψ2

and Ψ2 �|= Ψ1, the spheres might be overlapping, i.e., Sp(Ψ1)∩Sp(Ψ2) �= ∅, namely
if only the second alternative discussed above holds.

Semantically, a prohibition sentence Ψ ∈ ppol intuitively requires the follow-
ing: from the point of view of the user, it should always appear to be possible
that the prohibition sentence Ψ is not true [12]. More formally, the view gen-
eration mechanism to be designed gets three inputs, namely (i) the actually
stored database instance r, together with (ii) the (assumed) a priori knowledge
prior with r |= prior , and (iii) a confidentiality policy ppol with prior �|= Ψ for
each Ψ ∈ ppol . Thus in the running example the input consists of the database
instance shown in Fig. 1d, the empty a priori knowledge, and the confidentiality
policy shown in Fig. 1a.

Given the inputs, the mechanism should return a consistent weakened view
v(r, prior , ppol) on r such that for all prohibition sentences Ψ ∈ ppol there exists
an alternative instance rΨ that

1. satisfies the a priori knowledge prior, i.e., rΨ |= prior ,
2. does not satisfy Ψ , i.e., rΨ �|= Ψ , and
3. generates the same weakened view, i.e., v(r, prior , ppol) = v(rΨ , prior , ppol).

Since the view v(r, prior , ppol) will be both a joint weakening of all these alter-
native instances and consistent, it should not entail any prohibition sentence
Ψ ∈ ppol . In particular, this implies that for all Φ ∈ Sp(Ψ) we should have
v(r, prior , ppol) �|= Φ. Notably, in general the latter property is only necessary
for achieving our strong notion of semantic confidentiality, but it is not sufficient
to guarantee the third property of indistinguishability.

Information Control by Policy-Based Relational Weakening Templates 367

Weakened Views. We aim at designing a control mechanism that applied to
any possible instance r generates a sanitized view by weakening the information
content of individual tuples as far as needed to preserve confidentiality. Such a
view will again be formally specified in terms of the first-order logic language
L , in particular employing the sublanguage L ∨

exist of strict and non-redundant
disjunctions over Lexist, i.e., all sentences of the form Ψ1 ∨ Ψ2 ∨ . . . ∨ Ψk such
that k ≥ 2, Ψi ∈ Lexist and Ψi �|= Ψj for i �= j.

As far as needed for confidentiality, a tuple/ground fact R(a1, . . . , an) in the
stored instance is disjunctively weakened by replacing it in a context-free way by
a disjunction Ψ1 ∨ Ψ2 ∨ . . . ∨ Ψk taken from a predefined finite set of templates
T ⊂ L ∨

exist such that R(a1, . . . , an) |= Ψ1 ∨ . . . ∨ Ψk. In fact, in order to con-
veniently capture many simultaneous threats to confidentiality, the replacement
is performed with all such disjunctions. To avoid unnecessary distortions, the
disjunctions should only be formed by prohibitions of the confidentiality policy.
Moreover, all disjunctions for all tuples seen together should be mutually inde-
pendent in the following sense: for each two different disjunctions Ψ1∨Ψ2∨. . .∨Ψk

and Ψ̄1 ∨ Ψ̄2 ∨ . . . ∨ Ψ̄k̄ we have Ψi �|= Ψ̄j and Ψ̄j �|= Ψi.
Lines 1 to 6 of the left side of Fig. 1e indicate that the last three tuples

of the example database instance remain undistorted, whereas the first four
tuples are replaced by suitable disjunctions. Each of the distorted tuples entails
a prohibition sentence and is thus replaced by the disjunction of the pertinent
group for templates shown in Fig. 1b.

All replacements have to be reflected in a corresponding partial completeness
assertion. Now, a tuple/ground fact Φ is treated as false if at least one of the fol-
lowing two properties holds: (i) Φ does neither entail an unreplaced tuple/ground
fact nor an existential fact occurring in the weakening disjunctions; (ii) Φ does
entail an existential fact occurring in T but not in the weakening disjunctions.
If G is the set of unreplaced ground facts and R ⊆ T is the set of weakening
disjunctions used for replacements, then the completeness assertion is expressed
by the following two sentences in L , denoted by Comp(G,R, T):

(∀X1) . . . (∀Xn)[
∨

R(a1,...,an)∈G (
∧

i∈{1,...,n} Xi ≡ ai)
∨ ∨

(∃Xi1)...(∃Xim)R(t1,...,tn) occurs in R (
∧

i∈{1,...,n} with ti∈Dom Xi ≡ ti)
∨ ¬R(X1, . . . , Xn)],

(∀X1) . . . (∀Xn)[
∨

(∃Xi1)...(∃Xim)R(t1,...,tn) occurs in T but not in R
(
∧

i∈{1,...,n} with ti∈Dom Xi ≡ ti) ⇒ ¬R(X1, . . . , Xn)].

Lines 7 to 9 of the left side of Fig. 1e show an equivalent reformulation of the
second completeness assertion, and the right side of Fig. 1e exemplifies the first
completeness assertion.

For some syntactically possible tuples the exact status of being either true or
false deliberately remains unknown. Instead, the status is only determined up to
the specified entailment relationships to disjunctions in T , and in this sense the
view might become only partially complete. Moreover, we will have to ensure

368 J. Biskup and M. Preuß

that a weakened view is consistent even under consideration of the semantic
constraints SC and possibly further a priori knowledge.

Two-Stage Weakening Method for View Generation. To achieve the
goal of employing weakened views to enforce the confidentiality requirements
of the prohibition sentences by means of context-free replacements of ground
facts by weakening disjunctions, we propose the following two-stage weakening
method. Given a database instance r, the a priori knowledge prior , and a con-
fidentiality policy ppol such that prior �|= Ψ for all Ψ ∈ ppol , a weakened view
v(r, prior , ppol) is created as follows:

Stage 1 (independent of r) Safe Templates
Determine a finite set T ⊂ L ∨

exist with the following properties:

Property 1. T covers ppol , i.e., for each prohibition sentence Ψ ∈ ppol there
is a template τ ∈ T such that Ψ |= τ .

Property 2. The templates in T are independent, i.e., for each two different
elements Ψ1 ∨ Ψ2 ∨ . . . ∨ Ψk and Ψ̄1 ∨ Ψ̄2 ∨ . . . ∨ Ψ̄k̄ of T we have Ψi �|= Ψ̄j and
Ψ̄j �|= Ψi.

Property 3. T is non-interferential under prior , i.e., for each finite set G of
ground facts Φ such that Φ �|= τ for all τ ∈ T , for each finite set R ⊆
T such that R = { τ | τ ∈ T and there exists Φ ∈ D : Φ |= τ} for some
set D of ground facts, and for each Ψ ∈ Lexist occurring in T , we have
G ∪ R ∪ {Comp(G,R, T)} ∪ prior �|= Ψ .

Stage 2 (dependent on r) Weakened View
Define and (to block any information gain from the syntactic appearances) suit-
ably normalize the following outputs:

1. positive knowledge:
v(r, prior , ppol)+ := {Φ |Φ ∈ r and for all τ ∈ T : Φ �|= τ};

2. disjunctive knowledge:
v(r, prior , ppol)∨ := { τ | τ ∈ T and there exists Φ ∈ r : Φ |= τ};

3. negative knowledge:
v(r, prior , ppol)− := Comp(v(r, prior , ppol)+, v(r, prior , ppol)∨, T).

Quite obviously, the task of achieving the non-interferential Property 3 of T
is the only conceptually difficult one. However, Stage 1 can be executed as a pre-
computation without even having an actual instance so far. In many applications
we expect the costs to be affordable, at least under some reasonable restrictions.
This claim will be further treated in the remaining sections.

Regarding the running example, still not considering a priori knowledge, in
Stage 1 the safe templates are determined by the groups shown in Fig. 1b and c,
which are straightforwardly formed by putting together two prohibitions that
differ in exactly one attribute with constants. As explained before, the weakened
view of our running example generated in Stage 2 is shown in Fig. 1e as follows:
lines 1 to 3 of the left side form the positive knowledge; lines 4 to 6 of the left
side comprise the disjunctive knowledge; and lines 7 to 9 of the left side together
with the right side yield the negative knowledge.

Information Control by Policy-Based Relational Weakening Templates 369

Total Refusals. In some cases, it is impossible to achieve the wanted weakening
of information only by means of weakening disjunctions. Intuitively, such an
unfortunate event can be caused by a prohibition sentence Ψ that in some sense
is conflicting with the a priori knowledge such that every candidate for a covering
template is not safe, i.e., including it into the set T to be determined would
violate the non-interferential property. We escape from this seemingly hopeless
situation by complementing the set of templates T with a set C ⊂ Lexist of
such conflicting prohibition sentences and by adapting the generic approach
accordingly, as sketched in the following. In Stage 1, we now require that

1. ppol is covered by T ∪ C,
2. the independence property also applies for C, and
3. the non-interferential property is adapted by (i) considering sets G of ground

facts that additionally do not entail any prohibition sentence in C, (ii) mod-
ifying the definition of R accordingly, and (iii) inserting the clauses corre-
sponding to C into the first completeness sentence (thus excluding the ground
facts in their spheres from known to be not true).

And in Stage 2, we generate an additional output v(r, prior , ppol)? := C repre-
senting refused knowledge, meaning that any nontrivial information about the
truth value of a ground fact in the sphere of an element of C is totally refused.
Accordingly, we (i) strengthen the positive knowledge into v(r, prior , ppol)+? by
additionally requiring that no prohibition sentence in C is entailed, (ii) change
the disjunctive knowledge into v(r, prior , ppol)∨? by insisting that only those
Φ ∈ r are replaced that do not entail a prohibition sentence in C, and (iii)
modify the negative knowledge into v(r, prior , ppol)−? as just outlined.

Information Control. The output of the weakening method can be employed
in essentially two ways: The weakened view v(r, prior , ppol) is used for data
publishing and thus the anticipated user is granted the full read access right to
it, whereas all rights on the actually stored instance r are revoked. Alternatively,
the anticipated user keeps his previously granted rights for reading or querying,
but his requests are redirected to the weakened view. In the latter case we can
even easily implement content-dependent query access rights with the granularity
of single tuples/ground facts. More specifically, a query request regarding the
(truth evaluation by the instance) of a ground fact Φ is handled as follows:

– If Φ ∈ v(r, prior , ppol)+?, then return Φ.
– If v(r, prior , ppol)−? |= ¬Φ, then return ¬Φ.
– If Φ |= Ψ for some Ψ ∈ v(r, prior , ppol)? = C, then return mum (a refusal).
– Otherwise, implying that there exists τ ∈ v(r, prior , ppol)∨? such that Φ |= τ ,

then return the pertinent weakening disjunctions in v(r, prior , ppol)∨?.

For each possible tuple/ground fact Φ exactly one of the four cases applies.
Moreover, the third case applies for all tuples – whether in r or not – that entail
an element in the refused knowledge. Similarly, the fourth case applies not only
for the replaced tuples of r but also for all tuples – whether in r or not – that

370 J. Biskup and M. Preuß

entail an element in the disjunctive knowledge about r without being affected
by the second completeness sentence. Furthermore, since the fact of a refusal
is explicitly indicated, a total refusal is only slightly related to simple tuple
suppressions, which cannot be recognized in general.

Basic Assurance. To complete the presentation of our generic approach to
generate weakened views, we formally verify the following assurance.

Theorem 1. The weakening method of Subsect. 3.4 always returns a view that
complies with the semantic confidentiality property defined in Subsect. 3.2.

Proof. We consider appropriate inputs r, prior and ppol such that Stage 1 of the
method successfully determines a finite set T of templates together with a set C
of conflicting prohibitions with the required properties and Stage 2 defines the
view v := v(r, prior , ppol). Let then Ψ ∈ ppol be a prohibition sentence. The non-
interferential Property 3 guarantees that v+? ∪ v∨? ∪{v−?} ∪ prior �|= Ψ . Hence,
there exists an alternative instance rΨ such that rΨ |= v+?∪v∨?∪{v−?}∪prior ,
but rΨ �|= Ψ . Define vΨ := v(rΨ , prior , ppol) to be the view generated for rΨ . It
remains to show that v = vΨ .

In fact, the mutually exclusiveness of the four cases for a query request implies
that r and rΨ can only differ in tuples for which the fourth case applies. Regard-
ing that case, rΨ |= v∨? means that for each disjunction τ ∈ v∨? there exists
a tuple/ground fact Φ ∈ rΨ such that Φ |= τ . So, we verify that rΨ does not
satisfy any further disjunctions in T .

Assume indirectly that there is some τ = Ψ1 ∨ . . . ∨ Ψk ∈ T \ v∨? such that
rΨ |= τ . On the other hand, since τ �∈ v∨? and by step 2 of Stage 2, none of the
existential facts Ψi of τ does occur in any of the disjunctions in v∨?. Hence, since
rΨ |= v−?, the second completeness sentence in v−? implies that for all Φ ∈ rΨ

we have Φ �|= Ψi for each Ψi of τ , and thus rΨ �|= τ , resulting in a contradiction.��
The non-interferential Property 3 of Stage 1 is also necessary to uniformly

guarantee semantic confidentiality of the view constructed in Stage 2 for all
situations. For assume that there are G, R, D and Ψ violating that property.
Then the construction of Stage 2 for the instance r := G ∪ D would return a
view that entails Ψ , and thus semantic confidentiality could not be achieved.

Availability, Admissibility and Interchangeability. In general formal con-
fidentiality has to be balanced with and complemented by further possibly con-
flicting goals. First of all, we comply with availability by weakening information
only if seen to be (locally) necessary. Moreover, best availability is achieved if
the templates in T are as short as possible, i.e., are disjunctions of length 2, and
additional prohibitions to complete a clustering are avoided as far as possible.

However, favoring better confidentiality than formally required, we might
want to generate longer templates. Furthermore, as already discussed in [5], a
weakening disjunction used as replacing template should be admissible in some
application-oriented sense. In the next section, we will instantiate admissibility

Information Control by Policy-Based Relational Weakening Templates 371

by interchangeability (of length 2), requiring that a template should be formed
from two existential facts that only differ in one attribute with constants.

4 Data Dependencies as a Priori Knowledge

As captured by the non-interferential Property 3 of Stage 1, controlling informa-
tion requires us to consider the a priori knowledge. Of course, for arbitrary a priori
knowledge expressed in first-order logic we cannot algorithmically decide in gen-
eral whether or not the crucial non-entailment actually holds. Thus, to come up
with algorithmic solutions, we have to suitably restrict the expressiveness of the a
priori knowledge that we aim to consider. In this section, we elaborate an example
of such a restriction, focussing on single-premise tuple-generating dependencies as
an important class of sentences capturing background knowledge about an appli-
cation. Other examples would have to be treated in a similar way.

A single-premise tuple-generating dependency (called dependency for short)
is a sentence Γ in the underlying first-order logic L of the syntactic form

(∀X1) . . . (∀Xk) [R(t1, . . . , tn) ⇒ (∃Y1) . . . (∃Yl)R(t̄1, . . . , t̄n)],

where X1, . . . , Xk, Y1, . . . , Yl are pairwise different variables, each universally
quantified variable Xi occurring exactly once in R(t1, . . . , tn) and at most once in
R(t̄1, . . . , t̄n), each existentially quantified variable Yj occurring exactly once in
R(t̄1, . . . , t̄n), and – preferably to avoid an overall refusal – in both R(t1, . . . , tn)
and R(t̄1, . . . , t̄n) at least one constant of Dom occurs. We will extract from Γ
two existential facts in Lexist, basically by taking the existential closure of each
of the atomic formulas occurring in Γ :

prem∃(Γ) := (∃X1) . . . (∃Xk) R(t1, . . . , tn) and

concl∃(Γ) := (∃Xī1) . . . (∃Xīk) (∃Y1) . . . (∃Yl)R(t̄1, . . . , t̄n).

Instead of converting originally universally quantified variables into existentially
quantified ones, we might want to replace them by constants, basically by apply-
ing a constant substitution σ : {X1, . . . , Xn } → Dom:

premσ(Γ) := R(t1, . . . , tn)[σ] and
conclσ(Γ) := (∃Y1) . . . (∃Yl)R(t̄1, . . . , t̄n)[σ].

A dependency establishes knowledge about the relationships between the
validity of one single fact with another single fact, and can be used for reasoning
in two ways. By forward chaining, knowing the validity of a fact that can be
unified with the premise, we can infer the validity of the fact resulting from
applying the unifier involved to the conclusion. By backward chaining, knowing
the non-validity of a fact unifiable with the conclusion – as possibly enabled by
our treatment of partial completeness sentences – we can infer the non-validity
of the fact resulting from applying the unifier involved with the premise.

372 J. Biskup and M. Preuß

Regarding weakened views, basically, we have to avoid in an instance-
independent way that for some possible instance such kinds of reasoning enable
the adversary to exploit what we call an interference of a dependency with a
prohibition: namely, to infer from the validity of both a weakening disjunction
Ψ1 ∨ Ψ2 of two prohibitions and a dependency Γ – together with the validity of
positive or negative knowledge – that either Ψ1 or Ψ2 is not valid, i.e., that the
other one is entailed. Technically, it can be shown that this unwanted effect can
happen under three conditions: (i) a prohibition Ψ entails the existential closure
prem∃(Γ) of a dependency Γ ; (ii) the sphere Sp(Ψ) of a prohibition and the
sphere of the existential closure concl∃(Γ) of the conclusion of a dependency Γ
have a nonempty intersection (which includes the case that concl∃(Γ) entails
Ψ); and (iii) a prohibition Ψ at the same time equals the existential closure of
the conclusion of some dependency and for some constant substitution σ, Ψ [σ]
entails the existential closure prem∃(Γ) of the premise of a dependency Γ .

These conditions will be blocked (step 1 below) by extending the policy
with both the existential closure of the premise and the existential closure of
the conclusion of the dependency Γ involved, thus excluding their spheres from
published positive or negative knowledge. Unfortunately, in some cases this main
measurement has to be complemented by further ones (steps 3 and 4/5 below).
In a nutshell, the refinement for data dependencies proceeds as follows:

Refined Stage 1 (independent of r) Safe Templates

1. extend the policy by implicit prohibitions caused by a single dependency;
2. clean the policy from semantically redundant prohibitions;
3. reject conflicting prohibitions and establish total refusals instead;
4. partition the set of dependencies according to interactions with prohibitions;
5. respecting the partitioning, cluster prohibitions into admissible groups;
6. if possible, add synthetic prohibitions for completing a partial match;
7. reject prohibitions remained isolated and establish additional total refusals;
8. form templates of T as disjunctions, one for each group of the clustering.

We will only briefly explain the many subtle details by means of an example,
reusing the confidentiality policy and the database instance of Sect. 2.

0. Input: The input is now given in Fig. 2. One can easily see that the given
instance r complies with the given a priori knowledge prior .

1. Policy extension: As a basic step to achieve the most crucial non-
interferential Property 3, the given confidentiality policy ppol is exhaustively
extended according to each dependency in the given a priori knowledge prior .
The dependencies Γ1, Γ2, Γ3 and Γ5 immediately interfere with ppol , and thus
we have to add prem∃(Γi) and concl∃(Γi) for i = 1, 2, 3, 5. Afterwards, the
dependency Γ4 interferes with an added element, due to a suitable constant sub-
stitution of concl(Γ4) = (∃X)R(g, e,X) and (∃X)(∃Y)R(X, e, Y), requiring to
add prem∃(Γ4) and concl∃(Γ4) as well. This leads to the extended policy

ppolprior = ppol ∪ { (∃X)R(a,X, c), (∃X)R(X, d, f), (∃X)R(X, a, e),
(∃X)R(a,X, d), (∃X)R(X, b, e), (∃X)R(a,X, a),
(∃X)(∃Y)R(X, e, Y), (∃X)R(g, h,X), (∃X)R(g, e,X)}.

Information Control by Policy-Based Relational Weakening Templates 373

r = { (a, b, c), (a, f, g), (b, a, e), (b, b, d), (b, d, f), (g, e, i), (g, h, i) }
r prior

prior = { Γ1 = (∀X) [R(a,X, c) ⇒ R(X,d, f)]

Γ2 = (∀X) [R(X,d, f) ⇒ R(X, a, e)]

Γ3 = (∀X) [R(a,X, d) ⇒ R(X, b, e)]

Γ4 = (∀X) [R(g, h, X) ⇒ R(g, e,X)]

Γ5 = (∀X) [R(a,X, a) ⇒ (∃Y) R(X, e, Y)] }
prior

ppol = { R(a, a, a), R(a, b, a), R(a, b, c), R(a, b, d), R(a, b, e), R(a, c, a),

(∃X) R(a, e, X), (∃X)R(b, e, X), (∃X) R(c, e, X), (∃X)R(b, X, e) }
ppol

Fig. 2. Example input with a priori knowledge for refined weakening method

2. Policy cleaning: We then ensure the independence Property 2 of Stage 1
but without affecting the covering Property 1 of Stage 1. To do so, the extended
policy ppolprior is cleaned by removing those elements that entail another ele-
ment, which is still kept. Thus, the policy is reduced to the “core” subset of its
weakest sentences. This leads to the cleaned (extended) confidentiality policy

p̂polprior = { (∃X)R(b,X, e), (∃X)R(a,X, c), (∃X)R(X, d, f),
(∃X)R(X, a, e), (∃X)R(a,X, d), (∃X)R(X, b, e),
(∃X)R(a,X, a), (∃X)(∃Y)R(X, e, Y), (∃X)R(g, h,X)}.

3. Rejecting prohibitions and establishing refusals: If a prohibition of
p̂polprior is entailed by conclσ(Γ) for some constant substitution σ for some
dependency Γ , then it always needs to be rejected. This results in the set of
conflicting prohibitions to be refused:

C = { (∃X)R(b,X, e), (∃X)R(X, d, f),
(∃X)R(X, a, e), (∃X)R(X, b, e), (∃X)(∃Y)R(X, e, Y) }.

4. Partitioning dependencies: To decisively ensure the crucial non-
interferential Property 3, we have to take provisions against unwanted joint
effects of two or more dependencies. Accordingly, we partition the given a priori
knowledge prior with respect to p̂polprior , with the intention to block forming
templates of prohibitions that are affected by dependencies of the same partition.

The dependencies Γ1 and Γ2 need to be in the same partition, as the exis-
tential closure of the conclusion of Γ1 implies the existential closure of the
premise of Γ2. Further, Γ3 also needs to be in this partition, because there
is the prohibition (∃X)R(b,X, e) ∈ p̂polprior , for which both implications
conclσ2(Γ2) |= (∃X)R(b,X, e) and conclσ3(Γ3) |= (∃X)R(b,X, e) hold under

374 J. Biskup and M. Preuß

constant substitutions σ2 and σ3 with σ2(X) = σ3(X) = b. Similarly, the depen-
dencies Γ4 and Γ5 need to be in the same partition, as p̂polprior contains the pro-
hibition (∃X)(∃Y)R(X, e, Y) with both conclσ4(Γ4) |= (∃X)(∃Y)R(X, e, Y)
and conclσ5(Γ5) |= (∃X)(∃Y)R(X, e, Y) under arbitrary constant substitutions
σ4 and σ5. As a consequence, the algorithm creates the partitioning P = {P1, P2}
with P1 = {Γ1, Γ2, Γ3} and P2 = {Γ4, Γ5}.

R(a, f, g)

R(b, b, d)

(∃X) R(a,X, a) ∨ (∃X)R(a, X, c)

(∃X) R(g, c, X) ∨ (∃X) R(g, h, X)

{ (∃X)R(X, a, e),

(∃X)R(X, b, e),

(∃X)R(X, d, f),

(∃X)(∃Y)R(X, e, Y),

(∃X)R(a, X, d),

(∃X)R(b, X, e) }

(∀X)(∀Y)(∀Z) [

(Y ≡ a ∧ Z ≡ e) ∨
(Y ≡ b ∧ Z ≡ e) ∨
(Y ≡ d ∧ Z ≡ f) ∨
(Y ≡ e) ∨
(X ≡ a ∧ Z ≡ a) ∨
(X ≡ a ∧ Z ≡ c) ∨
(X ≡ a ∧ Z ≡ d) ∨
(X ≡ a ∧ Y ≡ f ∧ Z ≡ g) ∨
(X ≡ b ∧ Z ≡ e) ∨
(X ≡ b ∧ Y ≡ b ∧ Z ≡ d) ∨
(X ≡ g ∧ Y ≡ c) ∨
(X ≡ g ∧ Y ≡ h) ∨
¬R(X, Y, Z)]

Fig. 3. Inference-proof weakened view for inputs of Fig. 2

5. Admissible clustering: To prepare the clustering by means of an effi-
cient graph algorithm, the prohibitions in the set p̂polprior \ C are used
as vertices to generate an indistinguishability-graph. Although the prohibi-
tions (∃X)R(a,X, c) and (∃X)R(a,X, d) are obviously interchangeable, the
indistinguishability-graph does not contain an edge connecting the correspond-
ing vertices of the graph, as both of these prohibitions entail an existen-
tial closure of a premise of the same partition P1 due to prem∃(Γ1) =
(∃X)R(a,X, c) and prem∃(Γ3) = (∃X)R(a,X, d). Then we employ a suit-
able graph algorithm to compute a clustering as a maximum matching on the
considered indistinguishability-graph, getting (in this simple example trivially)
M = { { (∃X)R(a,X, a), (∃X)R(a,X, c) } }.

6. Adding synthetic prohibitions. To tentatively maintain the covering Prop-
erty 1, the prohibition (∃X)R(g, h,X), which is uncovered by the matching M ,
is admissibly paired with the additional synthetic prohibition (∃X)R(g, c,X).

7. Rejecting isolated prohibitions: To decisively maintain the covering Prop-
erty 1, we still have to treat the prohibition (∃X)R(a,X, d), which remains iso-
lated so far. Each interchangeable additional prohibition must differ either in

Information Control by Policy-Based Relational Weakening Templates 375

the constant symbol at first position or in the constant symbol at the third posi-
tion, and in both of these cases a dependency of prior would interfere with it.
Accordingly, the prohibition (∃X)R(a,X, d) is additionally rejected and added
to the set of conflicting prohibitions C, to be used for total refusals.

8. Forming templates: We form a disjunction for each group of the clustering.

Stage 2 of the weakening method: We get the view given in Fig. 3.

Theorem 2. The output T of the refined Stage 1 complies with the required
properties of the generic weakening method, namely (i) covering the confiden-
tiality policy ppol , (ii) having mutually independent templates, and (iii) being
non-interferential under the a priori knowledge prior.

Proof. Elaborated arguments following the explanations given for the example.

Fig. 4. Experiment 1: Varying existential quantification in confidentiality policy

5 Experimental Evaluation and Practical Efficiency

To experimentally confirm the practical efficiency of the generic approach under
the refinement for data dependencies we provided a prototype implementation
and performed several experiments. The prototype is implemented in Java 8,
except for the C++ implementation of the matching algorithm. All experiments
were run under Ubuntu 14.04 on a machine with 2 CPU sockets, each of which is
equipped with an “Intel Xeon E5-2690” with 8 physical cores running at 2.9 GHz.
As each CPU core can logically handle two threads due to hyperthreading, the
machine has a total number of 32 logical CPU cores. To benefit from the modern
hardware, the algorithms used for cleaning the policy, partitioning the a priori
knowledge and constructing the weakened view have been parallelized (but we
could not find a suitable parallelization for the maximum matching algorithm).

To compute a maximum matching (cf. [13,15]), the prototype benefits from
the “Boost”-library [8]. Although a maximum matching on a general graph

376 J. Biskup and M. Preuß

T
a
b
le

1
.
P
a
ra

m
et

er
s

o
f
ex

p
er

im
en

ts
(v

a
ry

in
g

p
a
ra

m
et

er
va

lu
es

in
b
o
ld

fa
ce

)

P
a
ra

m
e
te
r

E
x
p
e
ri
m
e
n
t
1

E
x
p
e
ri
m
e
n
t
2

E
x
p
e
ri
m
e
n
t
3

E
x
p
e
ri
m
e
n
t
4

E
x
p
e
ri
m
e
n
t
5

R
e
la
t
io

n
in

s
t
a
n
c
e
:

N
u
m
be

r
o
f
tu

p
le
s

1
0
6

1
0
6

1
0
6

1
0
6

1
0
6

N
u
m
be

r
o
f
co

n
st
a
n
ts

u
se
d

2
0

2
0

2
0

2
0

2
0

In
st
a
n
ce

g
e
n
e
ra

ti
o
n

fu
ll
y
ra

n
d
o
m

fu
ll
y
ra

n
d
o
m

ra
n
d
o
m
/
ch

a
se
d

ra
n
d
o
m
/
ch

a
se
d

ra
n
d
o
m
/
ch

a
se
d

C
o
n
fi
d
e
n
t
ia
li
ty

p
o
li
c
y
:

N
u
m
be

r
o
f
p
ro

h
ib
it
io
n
s

1
,
4
,
7
,
1
0

×
1
0
4

1
,
4
,
7
,
1
0

×
1
0
4

1
,
4
,
7
,
1
0

×
1
0
4

1
,
4
,
7
,
1
0

×
1
0
4

1
,
4
,
7
,
1
0

×
1
0
4

N
u
m
be

r
o
f
co

n
st
a
n
ts

u
se
d

1
2

fr
o
m

1
0

t
o

2
2

1
2

1
2

1
2

E
x
is
te
n
ti
a
l
q
u
a
n
ti
fi
ca

ti
o
n

fr
o
m

0
%

t
o

1
2
%

5
%

5
%

5
%

5
%

P
o
li
c
y

g
e
n
e
ra

ti
o
n

fu
ll
y
ra

n
d
o
m

fu
ll
y
ra

n
d
o
m

fu
ll
y
ra

n
d
o
m

fu
ll
y
ra

n
d
o
m

fu
ll
y
ra

n
d
o
m

A
p
r
io

r
i
k
n
o
w
le
d
g
e
:

N
u
m
be

r
o
f
d
e
p
e
n
d
e
n
c
ie
s

-
-

fr
o
m

1
0
0

(
2
0
0
)
t
o

2
5
0
0

1
2
0
0

1
2
0
0

C
o
n
st
a
n
ts

u
se
d

-
-

a
s
fo
r
in
st
a
n
c
e

a
s
fo
r
in
st
a
n
c
e

a
s
fo
r
in
st
a
n
c
e

U
n
iv
e
rs
a
l
q
u
a
n
ti
fi
ca

ti
o
n

-
-

1
5
%

fr
o
m

5
%

t
o

2
9
%

1
5
%

U
n
iv
e
rs
a
l
v
a
r
ia
b
le
s
in

co
n
c
l.

-
-

1
0
%

5
%

le
s
s
t
h
a
n

a
b
o
v
e

1
0
%

E
x
is
te
n
ti
a
l
v
a
ri
a
b
le
s
in

co
n
c
l.

-
-

5
%

5
%

5
%

K
n
o
w
le
d
g
e
g
e
n
e
ra

ti
o
n

-
-

ra
n
d
o
m
/
c
o
rr
e
c
te
d

ra
n
d
o
m
/
c
o
rr
e
c
te
d

ra
n
d
o
m
/
c
o
rr
e
c
te
d

P
a
r
a
ll
e
li
z
a
t
io

n
:

N
u
m
be

r
o
f
th

re
a
d
s

6
4

6
4

6
4

6
4

fr
o
m

1
(
2
)
t
o

2
5

E
x
p
la
n
a
t
io

n
s
:

e
x
is
te
n
ti
a
l
q
u
a
n
ti
fi
ca

ti
o
n
:
fo
r
e
a
ch

a
tt
ri
b
u
te
,
th

e
p
e
rc
e
n
ta

g
e
o
f
e
x
is
te
n
ti
a
l
fa
c
ts

u
se
d
a
s
a
p
ro

h
ib
it
io
n
w
h
ic
h
h
a
v
e
a
n
e
x
is
te
n
ti
a
ll
y
q
u
a
n
ti
fi
e
d
v
a
ri
a
b
le

in
th

a
t
a
tt
ri
b
u
te

u
n
iv
e
rs
a
l
q
u
a
n
ti
fi
ca

ti
o
n
:
fo
r
e
a
ch

a
tt
ri
b
u
te
,
th

e
p
e
rc
e
n
ta

g
e
o
f
p
re
m
is
e
s
o
f
a
d
e
p
e
n
d
e
n
c
y
w
h
ic
h
h
a
v
e
a
u
n
iv
e
rs
a
ll
y
q
u
a
n
ti
fi
e
d
v
a
ri
a
b
le

in
th

a
t
a
tt
ri
b
u
te

u
n
iv
e
rs
a
l
v
a
ri
a
b
le
s
in

co
n
c
lu
si
o
n
:
fo
r
e
a
ch

a
tt
ri
b
u
te
,
th

e
w
a
n
te
d

p
e
rc
e
n
ta

g
e
o
f
c
o
n
c
lu
si
o
n
s
o
f
a

d
e
p
e
n
d
e
n
c
y

w
h
ic
h

h
a
v
e
a

u
n
iv
e
rs
a
ll
y

q
u
a
n
ti
fi
e
d

v
a
ri
a
b
le

in
th

a
t
a
tt
ri
b
u
te
,
su

b
je
c
t
th

a
t
th

e
d
e
p
e
n
d
e
n
c
y
h
a
s
e
n
o
u
g
h

su
ch

v
a
ri
a
b
le
s

e
x
is
te
n
ti
a
l
v
a
ri
a
b
le
s
in

co
n
c
lu
si
o
n
:
fo
r
e
a
ch

a
tt
ri
b
u
te
,
th

e
p
e
rc
e
n
ta

g
e
o
f
c
o
n
c
lu
si
o
n
s
o
f
a
d
e
p
e
n
d
e
n
c
y
w
h
ic
h
h
a
v
e
a
n
e
x
is
te
n
ti
a
ll
y
q
u
a
n
ti
fi
e
d
v
a
ri
a
b
le

in
th

a
t
a
tt
ri
b
u
te

ra
n
d
o
m
n
e
ss

:
a
lw

a
y
s
c
o
u
p
le
d

w
it
h

th
e
re
m
o
v
a
l
o
f
se
m
a
n
ti
c
(a

ll
y
e
q
u
iv
a
le
n
t)

d
u
p
li
c
a
te
s

Information Control by Policy-Based Relational Weakening Templates 377

G = (V,E) can be computed in O(
√|V | · |E|) (cf. [19]), common implementa-

tions as provided by “LEDA” [16] or “Boost” [8] prefer an algorithm performing
in O(|V | · |E| · α(|E|, |V |)) with α(|E|, |V |) ≤ 4 for any feasible input.

We only outline and briefly comment on five experiments, in each of them
varying one specific generation parameter. We always employ the schema
R(A,B,C,D,E) and fix the generation parameters of the database instances
(but not the instances themselves!): complying with the schema, having about
1 000 000 tuples, using 20 constants in Dom as an active domain, and for each
repetition being fully randomly generated and then chased to enforce compliance
with the a priori knowledge. Moreover, we always vary the following parame-
ter of the confidentiality policy: having either 10 000, 40 000, 70 000 or 100 000
semantically different prohibitions, in each case being fully randomly generated.
Table 1 provides an overview about the parameters considered. In the figures
below, each evaluation curve is based on the average results of 100 experiments.

Experiment 1 studies the impact of allowing arbitrary existential facts
(corresponding to subtuples) rather than only ground facts (corresponding to
full tuples) in the confidentiality policy, thus leading to improved flexibility to
declare prohibitions. First of all, the results shown in Fig. 4 clearly indicate the
practical feasibility of our weakening method, which needs at most 1 min for
both stages together. If about so much time is needed at all, then it is spent in
the instance-independent first stage, in particular for the matching computation,
while for the instance-dependent second stage only a few seconds suffice.

Experiment 2 deals with the number of constants affected by prohibitions.
Figure 5 indicates an increase of the runtime nearly linear in that number at the
beginning, but a somehow surprising pique for the matching computation.

Experiment 3 starts investigating the runtime consequences of taking care of
data dependencies, at the beginning varying the number of dependencies con-
sidered. Figure 6 confirms that introducing a priori knowledge essentially affects
the overall runtime, but fortunately still keeps it practically feasible. For the
instance-dependent second stage the runtime even decreases when more depen-
dencies are considered, among others caused by the strong impact of clean-
ing the policy. Moreover, Fig. 6d shows that the impact of rejecting conflicting

Fig. 5. Experiment 2: Varying number of constants used in confidentiality policy

378 J. Biskup and M. Preuß

Fig. 6. Experiment 3: Varying number of dependencies in a priori knowledge

Fig. 7. Experiment 4: Varying universal quantification in a priori knowledge

prohibitions is acceptable. And Fig. 6e and f indicate the behavior of partition-
ing the dependencies, which causes increasing costs but nevertheless keeps the
number of the resulting partitions manageably bounded.

Experiment 4 serves for a closer look on the syntactic structure of data depen-
dencies in terms of the occurring quantifications. Intuitively, a data dependency
is the more powerful the more universally quantified variables are used. As can
be seen from Fig. 7 among others, if we vary the percentage of universal vari-
ables as indicated, then at about a percentage of 20 % the interferential effects

Information Control by Policy-Based Relational Weakening Templates 379

Fig. 8. Experiment 5: Varying number of threads

substantially grow leading in Stage 1 to more runtime needed for (parallelized)
partitioning and thus overall as well, whereas the task of Stage 2 becomes easier.

Experiment 5 inspects the merits of parallelization. The curves shown in
Fig. 8 indicate that we profit nearly optimally from parallelization, reducing the
runtime to a half when the number of threads is doubled.

6 Conclusion

Our contribution constitutes a successful compromise between several poten-
tially conflicting requirements: strong semantic confidentiality in terms of indis-
tinguishability according to a declared policy representing pieces of information
prohibited to be gained from interactions of data transfer, background knowledge
and rational reasoning; expressive language for a “too curious” user’s assumed a
priori knowledge about the database content; flexible language for declaring pro-
hibitions; uniform applicability for both data publishing and query answering;
high availability of only correct information; application-dependent admissibility
of weakening distortions; conformity to completeness assumptions regarding the
actually stored data; and last but not least practical feasibility and scalability.

Though the concrete weakening method is novel, both its aims and its
structure have been inspired by various previous work in the already very
wide field of confidentiality preservation. Though often neglected, the ambitious
aim of semantic confidentiality has already been considered in early work on
confidentiality-preserving statistical databases, see [9], has explicitly and uni-
formly been used for the framework of Controlled Interaction Execution [2], and
is in the spirit of many other approaches as highlighted by [12]. The further aim of
providing only correct but if necessary explicitly weakened information has a long
research tradition as well, in particular including the seminal work on refusals
in information systems [17] and the extensive research on k-anonymity [14,18].

The structure of our weakening method generalizes a more special case [5] and
is related to k-anonymization [14,18] by replacing sensitive data in a context-free
way. Accordingly, our method also shares their complexity restrictions identified
in [1,7]. Basically, the optimization problem for k-anonymization by maximum

380 J. Biskup and M. Preuß

generalizations of values in the form of complete suppressions, aiming at a mini-
mum number of suppressed values, is NP-hard when choosing k ≥ 3, but solvable
in polynomial time for k = 2. In contrast to the work on k-anonymity, we explic-
itly and formally deal with a priori knowledge, as throughout the framework
of Controlled Interaction Execution [2], which also includes a view generation
method based on distortion by lying [6]. The specific technique to deal with
dependencies as a priori knowledge is related to similar efforts in the field of
database fragmentation [4,10], another example of a weakening approach.

References

1. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D.,
Zhu, A.: Anonymizing tables. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS,
vol. 3363, pp. 246–258. Springer, Heidelberg (2005)

2. Biskup, J.: Inference-usability confinement by maintaining inference-proof views of
an information system. Int. J. Comput. Sci. Eng. 7(1), 17–37 (2012)

3. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a
decidable relational submodel. Ann. Math. Artif. Intell. 50(1–2), 39–77 (2007)

4. Biskup, J., Preuß, M.: Database fragmentation with encryption: under which
semantic constraints and a priori knowledge can two keep a secret? In: Wang,
L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964, pp. 17–32. Springer, Heidelberg
(2013)

5. Biskup, J., Preuß, M.: Inference-proof data publishing by minimally weakening a
database instance. In: Prakash, A., Shyamasundar, R. (eds.) ICISS 2014. LNCS,
vol. 8880, pp. 30–49. Springer, Heidelberg (2014)

6. Biskup, J., Wiese, L.: A sound and complete model-generation procedure for con-
sistent and confidentiality-preserving databases. Theoret. Comput. Sci. 412(31),
4044–4072 (2011)

7. Blocki, J., Williams, R.: Resolving the complexity of some data privacy problems.
In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010. LNCS, vol. 6199, pp. 393–404. Springer, Heidelberg (2010)

8. Boost Graph Library: Maximum cardinality matching (2014). http://www.boost.
org/doc/libs/1 55 0/libs/graph/doc/maximum matching.html

9. Denning, D.E.: Cryptography and Data Security. Addison-Wesley, Reading (1982)
10. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi,

S., Samarati, P.: Fragmentation in presence of data dependencies. IEEE Trans.
Dependable Sec. Comput. 11(6), 510–523 (2014)

11. Fung, B.C.M., Wang, K., Fu, A.W.-C., Yu, P.S.: Introduction to Privacy-Preserving
Data Publishing - Concepts and Techniques. Chapman & Hall/CRC, Boca Raton
(2010)

12. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12(1), 5.1–5.47 (2008)

13. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Algo-
rithms and Combinatorics, 5th edn. Springer, Heidelberg (2012)

14. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: �-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1) (2007)

15. Magun, J.: Greedy matching algorithms: an experimental study. ACM J. Exp.
Algorithmics 3(6) (1998)

http://www.boost.org/doc/libs/1_55_0/libs/graph/doc/maximum_matching.html
http://www.boost.org/doc/libs/1_55_0/libs/graph/doc/maximum_matching.html

Information Control by Policy-Based Relational Weakening Templates 381

16. Mehlhorn, K., Näher, S.: LEDA: a platform for combinatorial and geometric com-
puting. Cambridge University Press, Cambridge (1999)

17. Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without
revealing secrets. ACM Trans. Database Syst. 8(1), 41–59 (1983)

18. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(5), 557–570 (2002)

19. Vazirani, V.V.: A theory of alternating paths and blossoms for proving correctness
of the O(

√|V | · |E|) general graph maximum matching algorithm. Combinatorica
14(1), 71–109 (1994)

Quantifying Location Privacy Leakage
from Transaction Prices

Arthur Gervais1(B), Hubert Ritzdorf1, Mario Lucic1, Vincent Lenders2,
and Srdjan Capkun1

1 ETH Zurich, Zurich, Switzerland
arthur.gervais@inf.ethz.ch

2 Armasuisse, Thun, Switzerland

Abstract. Large-scale datasets of consumer behavior might revolution-
ize the way we gain competitive advantages and increase our knowledge in
the respective domains. At the same time, valuable datasets pose poten-
tial privacy risks that are difficult to foresee. In this paper we study the
impact that the prices from consumers’ purchase histories have on the
consumers’ location privacy. We show that using a small set of low-priced
product prices from the consumers’ purchase histories, an adversary can
determine the country, city, and local retail store where the transaction
occurred with high confidence. Our paper demonstrates that even when
the product category, precise time of purchase, and currency are removed
from the consumers’ purchase history (e.g., for privacy reasons), infor-
mation about the consumers’ location is leaked. The results are based
on three independent datasets containing thousands of low-priced and
frequently-bought consumer products. The results show the existence of
location privacy risks when releasing consumer purchase histories. As
such, the results highlight the need for systems that hide transaction
details in consumer purchase histories.

1 Introduction

Making data publicly available creates unexpected privacy risks. Recent exam-
ples include AOL’s release of users’ search keywords [30], which has led to the
identification of users and their profiles [1]. Data released by Netflix was de-
anonymized by leveraging IMDB and dates of user ratings [28], showing that
the release of data cannot be analyzed in isolation. The privacy risks of com-
bining different public records have led to several [36] de-anonymization attacks.
Recent studies of anonymized mobility data showed that mobility traces can be
de-anonymized by leveraging a few observations [19]. One source of consumer
information involves their spending patterns. To date however, it was unclear to
what extent consumer prices leak information about the respective purchase.

Consumer purchase histories are typically recorded by store chains with loy-
alty programs and are used to compute consumer spending profiles [6]. Banks,
payment card issuers, and point-of-sale system providers collect this data at dif-
ferent levels of granularity. In a number of scenarios, it might be desirable to
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 382–405, 2016.
DOI: 10.1007/978-3-319-45741-3_20

Quantifying Location Privacy Leakage from Transaction Prices 383

Fig. 1. Framework overview for quantifying location privacy leakage from consumer
price datasets.

share this data within different departments of a company, across companies,
or with the public [7]. Before disclosure, the data is sanitized so that it does
not leak sensitive data, such as personally identifiable information and that it
(partially or fully) hides location information. In new digital currency systems
such as Bitcoin [33] and Ripple [10], transaction values are stored on a public
ledger. Irrespective of whether transaction values are made available so that a
system can fulfill its functions or are being disclosed for research purposes, it is
important to understand the privacy implications of such disclosures.

In this paper we focus on quantifying location disclosure resulting from the
release of prices from consumer’s purchase histories. Intuitively, the price distri-
bution for a product differs from country to country, which allows us to identify
possible purchase locations. We focus on consumer products which are gener-
ally inexpensive (≤ 25 USD) and frequently-bought. More precisely, based on
global prices (leveraging the Numbeo dataset [9]), we show that given access to
a few consumer prices (and even without the product categories, precise times
of purchase or currency), an adversary can determine the country in which the
purchase occurred. Similarly, given the country, the city can be determined and
within a city (leveraging the Chicago dataset [11]), the local store can be identi-
fied. We further demonstrate that it is possible to distinguish purchases among
store chains (leveraging the Kaggle dataset [7]).

We present a generic framework (cf. Fig. 1) that allows the modeling and
quantitative evaluation of location leakage from consumer price datasets. In our
framework we model the adversarial knowledge, composed of a public dataset
of consumer prices and location-specific information. We assume that the adver-
sary has access to the individual product prices of a purchase (similar to the
Kaggle dataset) and a coarse-grained value of the purchase time. In order to
make the framework more flexible, our model supports different prior knowledge

384 A. Gervais et al.

scenarios, e.g., the adversary additionally has access to the merchant category
(e.g., knowledge that the product was bought in a market or a restaurant) or the
product category (e.g., apples). Furthermore, we model the adversarial attack
by detailing the corresponding probability functions. In particular, we point out
how the adversary leverages multiple product prices in order to increase the
probability of identifying the correct location.

Within our framework, we quantify the location privacy of consumer pur-
chases in relation to different dimensions. For example, we measure how well
the adversary estimates the location probability of the purchases with the F1-
score [35], capturing the test’s accuracy. Furthermore, we use mutual informa-
tion [18] to quantify the absolute location privacy loss of consumers, based on
the considered price dataset. In addition, we capture the relative privacy loss by
measuring the reduction in entropy. The proposed metrics are independent of the
choice of adversarial strategy and therefore allow us to quantitatively measure
the privacy loss induced from any price dataset known to the adversary.

We apply our framework to three real-world datasets: (i) the Numbeo
dataset [9] contains, after outlier filtering, crowd-sourced real-world consumer
prices from 112 countries and 23 US cities for 23 distinct product categories; (ii)
the Chicago dataset [11] contains 24 million prices for 28 product categories cap-
turing on average of 6304 products sold in Dominick’s stores within the Chicago
metropolitan area; finally, (iii) the Kaggle dataset [7] contains 350 million pur-
chases from 311,541 consumer across 134 store chains.

Our evaluation shows that in order to infer the country based on a vector
of purchases, an adversary often needs to observe less than 30 prices. Similarly,
after having identified the country of the purchases and given roughly 30 prices,
we show that we can reliably predict among 23 major cities within the United
States. Finally, when the adversary narrowed down the coarse location, such as
the Chicago metropolitan area, we show that based on a regional price dataset,
and given a vector of purchases, an adversary can distinguish with high confi-
dence among local stores using 100 purchases. For comparison, a weaker adver-
sary with access only to coarse-grained time, i.e., the day of the purchase and
price information, requires 50 purchases to identify the country. Furthermore, to
establish practical utility of our methodology, we evaluate it on a dataset of pur-
chase records (Kaggle [7]) and show that an adversary requires approximately
250 purchases to distinguish with high confidence among 134 store chains.

The main contributions of this paper are as follows:

– We propose a generic quantitative framework for evaluating attacks against
the location privacy of consumer purchases. We validate our framework on
three independent price datasets of real-world consumer prices and show that
location information can be extracted reliably.

– We introduce three privacy metrics to capture the performance of the adver-
sary in the attack as well as the extent to which location privacy of consumers
is reduced when the adversary has access to a specific dataset of purchases.

To the best of our knowledge, this is the first work to infer the location of
a purchase based on the price value in consumer purchases. The remainder of

Quantifying Location Privacy Leakage from Transaction Prices 385

this paper is organized as follows. In Sect. 2, we model purchase history and
describe the adversarial model. In Sect. 3, we present the datasets selected for
our evaluation in Sect. 4. We survey the related work in Sect. 5 and conclude the
paper in Sect. 6.

2 Model

In this section we introduce our system and adversarial model. We present the
privacy metrics that quantify the probability of location disclosure based on the
assumption that the adversary has access to a part of a consumer’s purchase
history.

2.1 System Model

A consumer interacts with merchants and performs purchases of one or more
products. This interaction leaves a trace of purchase activity as a sequence of
purchase events. We model each of the consumer’s purchase events together with
their contextual information as e: {consumer u, value v, product p, product
category c, location l, time t}, where v is the price value spent on product p of
product category c at location l and time t. In our model, one purchase event is
limited to one product, similar to the data contained in the Kaggle dataset. In
addition, the price value is given in a global currency, which usually is different
from the local currency of the purchase (e.g., the original price is SEK, but
recorded in USD). The trace of purchases performed by the target consumer U ,
given as a series of purchase events, is denoted by SU :{e1, e2, . . . , en}. We define
the following functions to represent the adversarial knowledge:

Location Probability: It describes the prior probability of a purchase
event taking place in a specific location, e.g., P (USA) is the prior probability
with which a random purchase event e has e.l = USA. We define L as the set
of all considered locations.

Category Probability: Given location l, P (c | l) describes the condi-
tional probability of a purchase event to belong to a certain product cate-
gory, e.g., P (Milk | USA) is the conditional probability with which a random
event e from the USA has e.c = milk. This conditional probability models
the product category preferences in a location. We define C as the set of all
considered product categories.

Value Probability: Given location l and product category c, P (v | l, c)
describes the conditional probability of a purchase event at a given price value.
It models the price distributions for different product categories in different
locations, e.g., P (1.5 | USA,Milk) is the conditional probability with which
milk can be bought in the USA for 1.5 worth of a global currency.

The adversary can now model the spending behavior and identify likely can-
didate locations. Specifically, the adversary computes the posterior probability

386 A. Gervais et al.

that a single price value v for a product category c originated from a location l.
The computation involves the prior and the conditional probabilities described
above and the application of Bayes’ theorem:

P (l | c, v) =
P (l) · P (c, v | l)

P (c, v)
(1)

In order to infer the location without knowing the product category, the
adversary computes the probability that a price value v originates from location l:

P (l | v) =
P (l) · P (v | l)

P (v)
(2)

2.2 Adversarial Model

The adversary’s goal is to identify the location of the events in SU . In this section
we present two different adversaries: (1) an adversary with complete knowledge
and (2) an adversary with only public knowledge.

Adversary with Complete Knowledge. The ideal adversary represents a
strong adversary with complete access to global purchase events. In particular,
the adversary has access to the following prior knowledge:

Global Purchase History: The complete series of purchase events in
the history of global purchases1, denoted by HG. The adversary computes
the posterior probability of a location based on HG.

History for Target Consumer: The adversary might have access to
prior information about the target consumer’s purchase history, denoted by
HU . This could help the adversary to optimize the model for the target
consumer2.

Based on this knowledge, the ideal adversary computes the probabilities in
Eqs. 1 and 2.3

Adversary with Public Knowledge. Our second adversarial model is a more
realistic one, where the adversary only makes use of public information.

Population: Given the population at each location, the adversary estimates
the location probability P (l).

Product Basket: A product basket indicates which products an average
consumer purchases during a year, both in terms of quantity and monetary
amount. We leverage the product basket in order to estimate the probability
of a product category given the location (P (c | l))4.

1 The area of the attacker’s interest can be restricted, e.g., when the adversary knows
that its victim is somewhere in that restricted area.

2 For example, by only considering the locations of previous purchases.
3 The intermediate steps are given in the Appendix A.
4 We currently use a single product basket for all locations.

Quantifying Location Privacy Leakage from Transaction Prices 387

Price Dataset: For each location and product category combination, a price
value distribution D is available, e.g., the Numbeo or the Chicago dataset.
The adversary can use the distribution to estimate P (v | l, c). We define
D(l, c, v) as the number of occurrences of price value v for product cate-
gory c in location l and D(l, c) as the number of price values for product
category c and location l.
Since D might be imperfect, the adversary can have incomplete or incorrect

knowledge about the price value probabilities (i.e. unknown or rounded prod-
uct prices). In this case the adversary should perform additive smoothing,
which assigns a small probability α to each event [26]. On the contrary, if the
adversary has or assumes complete knowledge of the price value probabilities,
additive smoothing is not required.

The adversary with public knowledge computes the following probabilities:

P (l) =
Population(l)

∑

l′∈L

Population(l′)
(3)

P (c | l) =
Basket(l, c)

∑

c′∈C

Basket(l, c′)
(4)

P (v | l, c) =
D(l, c, v) + α

D(l, c) + α · |SU | (5)

In order to compute the probabilities defined earlier in Eqs. 1 and 2, the
adversary requires access to either P (l | c, v) or P (l | v). Next, we describe
how the adversary computes these probabilities and we define the adversary’s
knowledge.

2.3 Knowledge Scenarios

As mentioned, the adversary’s objective is to identify the location of the events
in SU . The adversary is given a finite set of events SU on which the attack is
executed—the adversary is not allowed to choose or request new purchase events
e. We consider an adversary with public knowledge and distinguish among three
distinct adversarial knowledge scenarios, each consisting of a subset of the public
knowledge. Depending on the knowledge scenario, the adversary might not have
access to all information from a purchase event e. Therefore, we define a family
of functions Vscenario(e) = V (e) that filter, depending on the given scenario, the
public knowledge accessible to the adversary.

Price: This scenario corresponds to an adversary that has access to multi-
ple purchase events e, only the corresponding price value and a notion of the
purchase time e.t. The adversary is not aware of the product e.p or the product
category e.c. The precision of the purchase time depends on further specifications
of the scenario. More formally, Vprice(e) = {e.v, e.t}. Given the public knowledge
modeled by Eqs. 3, 4 and 5, the adversary computes the posterior probability

388 A. Gervais et al.

P (l | v) of a price value v from location l. The intermediate steps for computing
P (v | l) and P (v) are detailed in the Appendix A in Eqs. 10 and 12.

Price_Merchant: Similar to the former knowledge scenario, the adver-
sary here has access to SU , a series of multiple purchase events. In this scenario,
however, the adversary knows the price value e.v of the event as well as which
merchant category m sold the product. Formally, for each purchase event e,
Vprice_merchant(e) = {e.v, e.t,m}, where Vprice_merchant requires a function
M(e) = m. We consider three merchant categories: restaurant, market and local
transportation. The Vprice_merchant(e) function estimates the merchant cat-
egory m from the product category e.c of the respective event5. Analogously,
using Eq. 1, the adversary computes the probability of a location, based on the
merchant and the price value:

P (l | m, v) =
P (l) · P (m, v | l)

P (m, v)
(6)

where P (m, v | l) is computed as follows:

P (m, v | l) =
∑

c∈M−1(m)

P (c, v | l) (7)

Price_Product-Category: This scenario corresponds to the most
knowledgeable adversary with public knowledge. Similarly to the former sce-
narios, the adversary receives multiple purchase events SU . In addition, the
adversary has access to the product category e.c as well as the price value e.v.
Note that e.c implicitly assumes knowledge of the merchant, resulting in more
formally Vprice_product-category(e) = {e.v, e.t, e.c}.

Given the public knowledge described in Sect. 2.2, the adversary computes
the probability P (l | c, v) of a purchase event with product category c and price
value v originating in location l. The intermediate steps for computing P (c, v | l)
and P (c, v) are detailed in the appendix in Eqs. 11 and 13.

In the following section we provide an intuitive perspective on the probabil-
ities P (l | v) and P (l | c, v).

2.4 Conditional Probability Intuition

P (l | v) is the probability of a location, given a price value in a purchase event.
An example plot based on our evaluation can be found in Fig. 2. We have chosen
the purchase event e with a price value of e.v = 1 Euro and estimated the location
of the price. The figure shows that the most likely location for 1 Euro is France,
closely followed by Germany, Italy and Spain. The plot also shows P (l | c, v)
for a purchase event with e.v = 1 Euro and the product category is milk. The
most likely country is again France, followed by Germany and Italy. Surprisingly,
China ranks as 5th. This can be explained by the fact that (i) some prices from

5 In the following we refer to the merchant category as merchant.

Quantifying Location Privacy Leakage from Transaction Prices 389

Fig. 2. Probability distribution of P (l | v) and P (l | c, v), given 1 Euro and milk.

China in the dataset were erroneously reported in Euros and (ii) that the location
probability P (l) influences the overall outcome, and, since China’s population
is considerable, there is an increased probability of purchases occurring there.
Overall we observed that the probability distribution changes when the product
category is known, i.e., France is more likely to have a 1 Euro price for milk,
than a 1 Euro price in general.

2.5 Multiple Purchase Events

Up to this point, the analysis has been based on a single purchase event. To
naturally combine multiple purchase events, we assume that the purchase events
are conditionally independent, given the location l. Therefore, the probability of
a location l, given a set of purchase events SU , is calculated as follows:

P (l | SU) = P (l | V (e1), V (e2), . . . , V (en))

=
P (l) · ∏

e∈SU

P (V (e) | l)

P (V (e1), . . . , V (en))

(8)

The intermediate steps for computing P (l | SU) can be found in the appendix in
Eq. 18. We experimentally verified the conditional independence of V (e) given
l for the three knowledge scenarios and therefore Eq. 8 applies equally to the
different adversarial knowledge scenarios. Note that we effectively weaken the
adversary by considering the products of different purchases independent from
each other.

2.6 Privacy Metrics

We introduce three privacy metrics in order to capture the privacy of consumers
revealing their purchase histories across different dimensions: We (i) measure the

390 A. Gervais et al.

performance of the adversary in identifying the true location with the F1-score.
Then, (ii) using the notion of mutual information [18], we quantify the absolute
privacy loss of the consumer due to the adversary’s knowledge of a price dataset.
Finally, (iii) we use the relative reduced entropy as a relative privacy metric6.

F1-score: The objective of the adversary is to assign the purchase events to
the correct location. In the worst case, the adversary is forced to randomly guess
among all possible locations. If the adversary, however, can estimate location
probabilities more accurately, location privacy is reduced. Our problem cor-
responds to a multi-class classification problem and we therefore quantify the
adversarial performance by averaging the F1-score [35] of each individual class.
The F1-score corresponds to the harmonic mean of recall and precision, measur-
ing the test’s accuracy.

Mutual Information: A purchase event dataset enables the adversary to
infer the distribution of prices among locations. Therefore, we want to measure
how much privacy consumers lose when their purchase events are revealed and
when the adversary has access to a dataset of purchase events. We quantify this
privacy objective by measuring the absolute reduced location entropy given the
purchase events. To this extent, we use the Mutual Information [18], denoted
by I(l, V (e)), which measures how much the entropy of the locations is reduced
given the purchase events (cf. Eq. 9).

I(l, V (e)) =
∑

l∈L,e∈SU

P (l, V (e)) · log2
P (l, V (e))

P (l)P (V (e))
(9)

Relative Reduced Entropy: Recall that the mutual information quan-
tifies what we call the absolute privacy loss. In fact, there is an inherent ran-
domness in the price distribution among locations. It is important to capture to
what extent the original uncertainty about the locations can be reduced when a
dataset of purchase events is given. The relative reduced entropy therefore cap-
tures the relative privacy, as the complement of the fraction of the conditional
entropy over the location entropy. Given H(l) = I(l, V (e)) + H(l | V (e)), we
compute the relative reduced entropy as 1 − H(l|V (e))

H(l) over all purchase events.
The proposed evaluation metrics are independent of a particular adversarial

strategy. In return, the output of the privacy leakage quantification only depends
upon the employed dataset of purchase events. In the next section we present
the datasets utilized for our experimental evaluation.

3 Datasets

There are only a couple of datasets accurately accumulating the worldwide prod-
uct price information. For individual products (e.g., a Big Mac [5] or Starbucks

6 Defined as the complement of the fraction of conditional entropy over the location
entropy.

Quantifying Location Privacy Leakage from Transaction Prices 391

coffee [8]), the average price values per country are available. Because a product
often appears multiple times with different price values in the same country or
city, the average is not a good estimator for elaborate studies. In the following,
we describe the three independent price datasets considered in our work.

The first dataset, Numbeo [9], is a crowd-sourced dataset containing world-
wide price values per product category, city and country. It is the most complete
dataset of worldwide harvested prices available to our knowledge. We restricted
our analysis to 23 frequently bought product categories, and split the Numbeo
dataset into two separate datasets: (i) two years of data as the Numbeo dataset
and (ii) five months of data as the Numbeo test dataset (cf. Table 3). Numbeo
performs sanity checks on the crowdsourced inputs, and we additionally filtered
extreme outlier [3]7 from the data to account for possible mistakes from crowd-
sourced data. We identified 112 countries, with a total of 328,720 price values.
Note that the provided data mostly contains prices from the US (18%) and
India (14%).

The second dataset, referred to as the Chicago dataset [11], covers 84 stores
in the Chicago metropolitan area over a period of five years. The data is sourced
on a weekly basis from Dominick’s supermarket stores. We sample 85weeks with
the most data, each containing on average 283,181 prices, spanning 28 product
categories for an average of 6304 different products.

The third dataset originates from Kaggle [7], a Machine Learning competi-
tion platform. The dataset contains 350 million purchase events from 311,539
consumers across 134 store chains. The data is anonymized, but contains the indi-
vidual product price, product category, date of purchase and purchase amount.
Most purchase events cost less than 25 USD. The country of the dataset is
not disclosed, but purchase prices are given in USD and purchase amounts are
described in the imperial system.

In order to estimate the location probability, an adversary requires the knowl-
edge of the population in each location. On the country granularity, we use the
data available from the World Bank [12] for the year 2013, while for the US city
granularity we used the data from the US Census Bureau [37].

As described in Sect. 2.2, we increase the knowledge of the adversary with
the product basket. A product basket details which and how many products an
average person purchases, both in terms of quantity and monetary amount. We
leverage a national product basket [4] from 2010 containing over 300 product
categories in order to infer the ratio in which different products are bought over
the year.

4 Experimental Evaluation

In this section we evaluate the adversarial models designed in Sect. 2.2. We start
by presenting the assumptions and choices made for the evaluation.

7 price < 25thpercentile − 3 · interquartile range, and
price > 75thpercentile + 3 · interquartile range.

392 A. Gervais et al.

4.1 Experimental Considerations

With respect to the value probability P (v | l, c), we assume that the frequency of
price values in the Numbeo dataset reflects the frequency of real-world purchase
events with the corresponding price values. This is a natural assumption and
is further motivated by the fact that e.g., Numbeo contributors likely entered
the most popular price values for the considered product categories. Because our
datasets contain a limited amount of products and product categories, our analy-
sis is naturally confined to the available products. Note that, if the adversary
knows the product categories of the purchases, e.g. milk, other categories such
as apples can be ignored, which allows precise predictions with knowledge about
few products. In order to compute the product category probability, P (c | l), we
only consider one national product basket and apply it to every country. Note
that we do not use the product basket as an indicator of how much money is
spent on average by a person, but rather as an indicator in which ratio products
are bought.

Sampling Price Values: Given a location l, we generate synthetic con-
sumer purchase events by sampling price values from the respective dataset. For
the three datasets we consider adversaries with complete knowledge of the price
values. In addition we instantiate an adversary with incomplete knowledge with
the Numbeo test dataset. Given the product basket of the location l we compute
the probability of a product category being sampled (cf. Eq. 4). Thus, we sample
each product category with the product category probability P (c | l). For each
location we repeat the sampling of the price values n = 1000 times and average
the result.

Additive Smoothing Parameter: In the case of an adversary with
incomplete knowledge, we make use of additive smoothing to avoid zero probabil-
ities when aggregating the probabilities of multiple purchase events for locations
(see Sect. 2.2). We choose a smoothing parameter α = 0.01 which provides us
with the best results on our data (cf. appendix Fig. 6).

In the following, we evaluate up to three knowledge scenarios (cf. Sect. 2.3) for
four location granularities: (i) across 112 countries worldwide; (ii) across 23 cities
within the United States; (iii) across 84 stores within the Chicago metropolitan
area; (iv) we distinguish among 134 store chains in a country.

4.2 Country Granularity

The adversary has to distinguish 112 candidate countries for each purchase event.
We quantify the privacy given the three privacy metrics defined in Sect. 2.6.
In particular, we performed our study in two settings. First, (i) we assumed
that the adversary does not have complete knowledge. This means that the
adversary receives purchase events from the Numbeo test dataset and estimate
their location based on the Numbeo dataset. In the second case, (ii) the adversary
assumes complete knowledge of price values, and therefore, the sampled prices
are included in the price dataset which is adversarial knowledge.

Quantifying Location Privacy Leakage from Transaction Prices 393

0 10 20 30 40 50
Number of Purchase Events

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1-
sc
or
e

Price Knowledge Scenario
Price Merchant Knowledge Scenario
Price Product-Category Knowledge Scenario

Fig. 3. F1-score for identifying the country given purchase events sampled from the
Numbeo test dataset, corresponding to incomplete knowledge. We are not overfitting as
we successfully classify new prices based on previously known prices.

Figure 3 shows the F1-score for the first case based on the number of pur-
chase events accessible to the adversary. Given one purchase event, the price,
price_merchant and price_product-category knowledge scenario achieve an
average of 0.38, 0.41 and 0.49 respectively. The high F1-score after one pur-
chase event shows, that even one event allows a decent prediction. We observe
that the adversary is more likely to identify the correct location when it knows
the product category of the purchase event. On the contrary, if the adversary has
access to 10 purchase events, the respective F1-scores are 0.80, 0.85 and 0.90. In
other words, 10 purchase events significantly improve the ability of the adversary
to identify the location of the purchase events. The reported values are averaged
over n = 1000 iterations.

0 10 20 30 40 50
Number of Purchase Events

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1-
sc
or
e

Price Knowledge Scenario
Price Merchant Knowledge Scenario
Price Product-Category Knowledge Scenario

Fig. 4. F1-score for identifying the country given purchase events sampled from the
Numbeo dataset, corresponding to complete knowledge. Averaging does not hide poorly
performing countries (cf. appendix).

Figure 4 corresponds to the second case, where the adversary assumes com-
plete knowledge of the price values. We observe that the adversary can distin-
guish more accurately between the possible locations. The F1-scores are averaged

394 A. Gervais et al.

Table 1. Mutual information and relative reduced entropy for the three knowledge
scenarios when estimating the country, city, store or chain of purchase events. The
respective abbreviations P., PM., PPC. stand for Price, Price Merchant and Price
Product-Category knowledge scenario respectively.

112 countries 23 US cities 84 stores 134 chains
Knowledge
scenarios

P PM PPC P PM PPC P PPC P PPC

Mutual
informa-
tion

0.539 0.841 1.703 0.368 0.572 1.164 0.280 0.569 0.456 2.256

Relative
reduced E.

0.114 0.178 0.360 0.101 0.157 0.319 0.044 0.089 0.068 0.337

over all considered countries. For each considered country in the price knowledge
scenario, we verify that averaging does not hide poorly performing countries (cf.
Fig. 7 in the appendix).

Table 1 presents the results of the mutual information and the rela-
tive reduced entropy for each knowledge scenario. We observe that the
price_product-category knowledge scenario reduces the entropy more signif-
icantly than the other knowledge scenarios. Naturally, this is because the
price_product-category knowledge scenario provides the adversary with more
information than the price knowledge scenario, thus effectively reducing uncer-
tainty when identifying the location.

4.3 US City Granularity

In this section we analyze an adversary that aims to distinguish among the
purchase events of 23 US cities. As before, we quantify the privacy based on the
three privacy metrics defined in Sect. 2.6. We sample and test purchase events
on the Numbeo dataset only, since our test dataset does not contain sufficiently
many purchase events per considered US city.

Figure 10 illustrates the F1-score depending on the number of purchase
events. We observe, that after 10 purchase events, the F1-score is greater than 0.7.
Therefore, our methodology also provides accurate estimations on a city granu-
larity. Table 1 reports the mutual information and relative reduced entropy when
estimating the US city. We observe that the relative reduced entropies of country
and city granularity match across the knowledge scenarios. This exemplifies the
usefulness of the relative reduced entropy to highlight similarities across different
price datasets.

4.4 Chicago Metropolitan Granularity

In this section, we analyze an adversary that aims to distinguish among the
purchase events of 84 Dominick’s stores within the Chicago metropolitan area.

Quantifying Location Privacy Leakage from Transaction Prices 395

We sample the price values from the Chicago dataset, and assume an adversary
with complete knowledge; we therefore do not apply additive smoothing. We
consider the location prior probability P (l) to be uniform, because we do not
have reliable store popularity information for the Chicago area.

In Fig. 11 we can observe that the adversary can identify a local store given
100 purchase events with high confidence. We expected a weaker result, since all
stores are operated by the same chain, implying relatively similar price struc-
tures. We ran our attack on each of the 85weeks with most data, averaged the
results and report the standard deviation as shown in the blue area of Fig. 11.

Table 1 shows that the Chicago price dataset reveals less information about
the considered locations than the Numbeo dataset. This observation holds for
both knowledge scenarios, and is consistent with the result that more price points
are required to localize purchase events within the Chicago area.

4.5 Store Chain Granularity

The large-scale Kaggle dataset does not provide precise location information of
purchase events, but allows the adversary to distinguish among 134 store chains.
Knowing the store chain of purchase events effectively reduces the possible loca-
tions of the purchases. Note, that the prices of Kaggle are distributed over a
year and the adversary therefore does not know the precise time of the purchase
events.

We uniformly sample purchase events of different consumers and perform
our attack on the Kaggle dataset. Figure 5 reveals that given approximately 250
price values we achieve an F1-score of over 0.95 for the origin of the purchase
events. Note, that the price_product-category knowledge scenario is particularly
strong due to many product categories. This is reflected by the particularly high
Mutual Information (cf. Table 1).

0 50 100 150 200 250
Number of Purchase Events

0.0

0.2

0.4

0.6

0.8

1.0

F
1-
sc
or
e

Price Knowledge Scenario
Price Product-Category Knowledge Scenario

Fig. 5. F1-score for identifying the store chain. The purchase events are sampled from
the Kaggle dataset.

Given these results, we conclude, that our framework and methodology apply
to a wide variety of different price datasets and allow us to quantitatively com-

396 A. Gervais et al.

pare their respective privacy leakage. In the following, we extract further insights
from our data to strengthen the attack.

4.6 Most Revealing Product Category

In this section we investigate which of the 23 considered product categories
from the Numbeo dataset leak more information. This is a useful insight since
an adversary would pick purchase events of this product category in order to
increase the probability of correctly identifying their location. Therefore, with
the mutual information we measure the extent to which the location entropy is
reduced, given the purchase events of a particular product category. Contrary to
the previous analysis, we evaluate the mutual information per product category
based on the price_product-category knowledge scenario defined in Sect. 2.3.
More specifically, we compute the mutual information using only purchase events
of a particular product category.

The results of the evaluation can be found in Fig. 13. According to this metric,
the most revealing product categories are milk, a one-way ticket for local trans-
portation, and a loaf of white bread. On the contrary, the product categories
that disclose less information about a location are oranges, chicken breasts and
rice.

4.7 Required Time Precision

Previously, we assumed that knowledge of the exact currency conversion rates
is required to compare non-localized purchase events. Exact currency conversion
rates, however, require a precise knowledge of the purchase event times. In this
section, we show that our attack does not require the exact currency conversion
rates, but also works if the adversary knows only the date or even week of the
purchase, i.e. it has an uncertainty of 24 h or 7 days in relation to the conversion
rates. We therefore relax the requirements on the time precision.

Due to the conversion rate differences, the adversarial estimation of P (v | l, c)
is inaccurate. To compensate for the conversion rate differences, the adversary
can use a price tolerance. We study two options for the tolerance: a static toler-
ance and a dynamic tolerance. For the static tolerance, the adversary estimates
P (v | l, c) in the presence of uncertainty by considering price values in the inter-
val [v − tols, v + tols] where the static tolerance tols is a small amount in global
currency (e.g., 0.02 USD). The dynamic tolerance value told is a percentage-wise
estimate of uncertainty (e.g., 2%). To estimate P (v | l, c) the adversary considers
price values from the interval [v · (1 − told), v · (1 + told)].

We evaluated the attack to infer the country of purchase events with impre-
cise purchase times and compensated the time error with different tolerance val-
ues. To simulate imprecise purchase times, we converted the adversarial knowl-
edge using conversion rates of 30 different days from the year 2014 and then
converted the non-localized purchase events SU using the previous days’ conver-
sion rates. As before, we computed the F1-score to evaluate the quality of the
estimated P (l | SU).

Quantifying Location Privacy Leakage from Transaction Prices 397

For static and dynamic tolerance values, we found that the attack is still
accurate, i.e. reaches an F1-score above 95% with less than 50 purchase events.
A higher tolerance value has two opposing effects: (i) it compensates for differ-
ences in currency conversion rates and increases the number of correctly consid-
ered price values; (ii) a higher tolerance, however, also increases the number of
incorrectly considered price values which fall into larger intervals. Therefore, the
tolerance value presents a trade off between the true-positive and true-negative
rate. Our experimental results reflect this trade off both for static and dynamic
tolerance values (cf. Appendix B). Based on our experimental results we propose
a dynamic tolerance of 2% for a 24 h time imprecision.

We also evaluated the uncertainty of one week on the currency conversion
rates. We used real-world currency conversion rates that were seven days apart
from each other. Figure 14 shows the result of this experiment for the differ-
ent knowledge scenarios and a dynamic tolerance value of 2% on the Numbeo
dataset. We conclude that our attack does not require precise purchase event
times.

5 Related Work

Location Privacy. Blumberg [16] et al. provide a non-technical discussion of
location privacy, its issues and implications. Gruteser and Grunwald [23] ini-
tiate major research in the area of the anonymization approaches to location
privacy. Further, Narayanan et al. [29] investigate location privacy from a the-
oretical standpoint and present a variety of cryptographic protocols motivated
by and optimized for practical constraints while focusing on proximity testing.
Shokri et al. [34] propose a formal framework for quantifying location privacy
in the case where users expose their location sporadically. They model vari-
ous location-privacy-preserving mechanisms, such as location obfuscation and
fake location injections. This work is orthogonal to ours, since in our setting
the consumers are not willingly revealing their locations. Voulodimos et al. [38]
address the issue of privacy protection in context-aware services through the use
of entropy as a means of measuring the capability of locating a user’s where-
abouts and identifying personal selections. Narayanan [28] and Shmatikov pro-
pose statistical de-anonymization attacks against high-dimensional micro-data.
We do not rely on their methods, since we are not aiming to de-anonymize the
consumers. De Montjoye et al. [39] show that consumers can be uniquely identi-
fied within credit card records with only a few spatiotemporal triples containing
location, time and price value. Contrary to their work, we focus on the price
values and we localize instead of identify consumers.

Payment systems. The privacy implications of public transaction prices have
been widely ignored. One prominent example is Bitcoin [17,33], where transac-
tions are exchanged between peers by means of pseudonyms. The actual transac-
tion prices are archived and publicly available. The literature features many dif-
ferent methods for analyzing the privacy implications of Bitcoin, e.g., by means

398 A. Gervais et al.

of appropriate heuristics [13], tainting [22], or other techniques [21,32]. Reid and
Harrigan [31] analyze the flow of Bitcoin transactions in a small part of the Bit-
coin log, and show that external information like publicly-announced addresses,
can be used to link identities and organizations to some transactions. In [27] the
authors propose Zerocoin, a cryptographic extension to Bitcoin that augments
the protocol to allow for fully anonymous currency transactions using a distrib-
uted ECash scheme. To the best of our knowledge only two contributions [14,15]
have aimed to hide the transaction prices in Bitcoin.

Price rigidity. Herrmann and Moeser [24] perform a quantitative analysis on
price variability and conclude that prices are often rigid for several weeks. Pricing
strategies for identical brands, however, vary significantly among retailers. Their
observations match the studies of the Big Mac index [5] (the Economist), the
Starbucks coffee index [8] (the Wall Street Journal) and the Ikea Billy Bookshelf
index [2] (Bloomberg). The former studies show that prices of identical products
from a single brand vary across locations. Dutta et al. [20] find that retail prices
respond promptly to direct cost changes as well as upstream manufacturers’
costs. Hosken and Reiffen [25] find that each product has a price mode—a price
that the product stays at most of the time. Note that Hosken’s non-public dataset
contains nearly as many price observations as our Numbeo dataset.

6 Conclusion

Having a systematic methodology to reason quantitatively about the privacy
leakage from datasets containing price relevant information is a necessary step
to avoid privacy leakages. While further tests with more datasets will help to
generally claim that price values alone can reveal the location of a purchase,
our empirical results provide evidence that with relatively few purchase events
it is possible to identify a consumer’s location. In this paper, we have raised the
following two questions: How much location information is leaked by consumer
purchase datasets? How can it be quantified with the considered adversarial
model and knowledge? In our proposed framework, we have modeled several
adversaries and quantified the privacy leakage according to different dimensions.
We make extensive use of Bayesian inference in our framework to model the
different attack strategies. Our framework can be easily applied to any price
dataset of consumer purchases and allows one to compare the privacy leakage
of different datasets. We applied our methodology to three real-world datasets
and achieve comparable results. The results presented in this paper strongly
motivate the need for careful consideration when sharing price datasets and
should be considered when designing public ledger cryptocurrencies.

Quantifying Location Privacy Leakage from Transaction Prices 399

Appendix A: Probability Calculations

In the following we clarify the individual steps for calculating the probabilities
derived in Sect. 2.

P (v) =
∑

l∈L

P (l, v) =
∑

l∈L

∑

c∈C

P (l, c, v)

=
∑

l∈L

∑

c∈C

P (l) · P (c | l) · P (v | l, c)
(10)

P (c, v) =
∑

l∈L

P (l, c, v)

=
∑

l∈L

P (l) · P (c | l) · P (v | l, c)
(11)

P (v | l) =
P (l, v)
P (l)

=

∑

c∈C

P (l, c, v)

P (l)

=
∑

c∈C

P (c | l) · P (v | l, c)
(12)

P (c, v | l) =
P (l, c, v)

P (l)
=

P (l) · P (c | l) · P (v | l, c)
P (l)

= P (c | l) · P (v | l, p)
(13)

P (l | v) =
P (l) · P (v | l)

P (v)

=
P (l) · ∑

c∈C

[P (c | l) · P (v | l, c)]
∑

l′∈L

∑

c∈C

[P (l′) · P (c | l′) · P (v | l′, c)]

=
P (l) · ∑

c∈C

[P (c | l) · P (v | l, c)]
∑

l′∈L

P (l′) · ∑

c∈C

[P (c | l′) · P (v | l′, c)]

(14)

=

Population(l)∑

l′∈L

Population(l′) · ∑

c∈C

[Basket(l,c)∑

c′∈C

Basket(l,c′) · D(l,c,v)
D(l,c)]

∑

l′∈L

Population(l′)∑

l′′∈L

Population(l′′) · ∑

c∈C

[Basket(l′,c)∑

c′∈C

Basket(l′,c′) · D(l′,c,v)
D(l′,c)]

(15)

P (l | c, v) =
P (l) · P (c, v | l)

P (c, v)

=
P (l) · [P (c | l) · P (v | l, p)]

∑

l′∈L

[P (l′) · P (c | l′) · P (v | l′, c)]

(16)

400 A. Gervais et al.

=

Population(l)∑

l′∈L

Population(l′) · Basket(l,c)∑

c′∈C

Basket(l,c′) · D(l,c,v)
D(l,c)

∑

l′∈L

[Population(l′)∑

l′′∈L

Population(l′′) · Basket(l′,c)∑

c′∈C

Basket(l′,c′) · D(l′,c,v)
D(l′,c)]

(17)

P (l | SU) = P (l | V (e1), V (e2), . . . , V (en))

=

∏

i=1..n

P (V (ei))

P (V (e1), V (e2), . . . , V (en))∏

i=1..n

P (l | V (ei))

P (l)n−1

=
P (l) · ∏

e∈SU

P (V (e) | l)

P (V (e1), . . . , V (en))

(18)

Appendix A.1: Probability Calculations

Based on its knowledge, the ideal adversary computes the following probabilities
by computing the fractions of events.

P (l) =
|{e|e ∈ HG : e.l = l}|

|HG| (19)

P (v) =
|{e|e ∈ HG : e.v = v}|

|HG| (20)

P (c, v) =
|{e|e ∈ HG : e.c = c ∧ e.v = v}|

|HG| (21)

P (v | l) =
|{e|e ∈ HG : e.l = l ∧ e.v = v}|

|{e|e ∈ HG : e.l = l}| (22)

P (c, v | l) =
|{e|e ∈ HG : e.l = l ∧ e.c = c ∧ e.v = v}|

|{e|e ∈ HG : e.l = l}| (23)

Appendix B: Further Experimental Results

Appendix B.1: Required Time Precision

Figure 8 shows, that a larger tols will improve the overall F1-score, but more
purchase events are needed to filter out the false positives. Similarly, for the
dynamic tolerance in Fig. 9, a higher value for told provides a better prediction
for many purchase events, but a worse prediction for few purchase events. The
figures show the experiments for the price_product-category knowledge scenario,
however, we note that the results are analogous to the other scenarios. Based on
these results we propose a dynamic tolerance of 2% in the case of a 24 h time
imprecision on the conversion rate.

Quantifying Location Privacy Leakage from Transaction Prices 401

0 5 10 15 20 25 30
Number of Purchase Events

0.0

0.2

0.4

0.6

0.8

1.0

F
1-
sc
or
e

α =0.001
α =0.010
α =0.100
α =1.000

Fig. 6. Comparison of different α-
parameters for additive smoothing based
on the price_product-category knowledge
scenario.

0 10 20 30 40 50
Number of Purchase Events

0.0

0.2

0.4

0.6

0.8

1.0

F
1-
sc
or
e

Fig. 7. F1-score of each individual country
for the price knowledge scenario. The pur-
chase events are sampled from Numbeo. We
observe that no country performs poorly.

0 5 10 15 20 25
Number of Purchase Events

0.0

0.2

0.4

0.6

0.8

1.0

F
1-
sc
or
e

Static Tolerance Values
0.005 USD
0.010 USD
0.020 USD
0.050 USD

Fig. 8. Using static tolerance values to
compensate for imprecise time infor-
mation (one day uncertainty) in the
price_product-category knowledge sce-
nario.

0 5 10 15 20 25
Number of Purchase Events

0.0

0.2

0.4

0.6

0.8

1.0

F
1-
sc
or
e

Dynamic Tolerance Values
0.5 %
1.0 %
2.0 %
5.0 %

Fig. 9. Using dynamic tolerance val-
ues to compensate for imprecise time
information (one day uncertainty) in
the price_product-category knowledge sce-
nario.

0 5 10 15 20 25
Number of Purchase Events

0.0

0.2

0.4

0.6

0.8

1.0

F
1-
sc
or
e

Static Tolerance Values
0.005 USD
0.010 USD
0.020 USD
0.050 USD

Fig. 10. F1-score for identifying the US
city given purchase events for different
knowledge scenarios. The purchase events
are sampled from the Numbeo dataset.

0 5 10 15 20 25
Number of Purchase Events

0.0

0.2

0.4

0.6

0.8

1.0

F
1-
sc
or
e

Dynamic Tolerance Values
0.5 %
1.0 %
2.0 %
5.0 %

Fig. 11. F1-score and standard deviation
over 85 weeks for identifying the store in
the price knowledge scenario. Data sampled
from the Chicago dataset among 84 stores.

Appendix B.2: Motivating Example

Since products appear in a multitude of price values, it is at first unclear how
accurately price values can identify a location. To illustrate why purchases can
be localized, we focus on an example of the product category domestic beer (0.5 L
bottle), which can be bought in nearly every country. The price values are taken
from the Numbeo dataset [9]. Figure 12 shows the distribution of price values of

402 A. Gervais et al.

beer in USD for four countries. We observe that ranges of prices clearly differ
for India and the other countries, while prices in Australia are more likely to
be higher than in the US and Canada, where distributions of prices are similar.
Given a beer price above 3 USD, in this case, it is highly likely that the purchase
has not occurred in India.

Fig. 12. Distribution of domestic beer prices (0.5 L) in 4 countries from Numbeo in
USD.

Appendix C

See Figures 13, 14, Tables 2 and 3.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Mutual Information

Oranges, Market

Chicken Breasts, Market

Rice (white), Market

Tomato, Market

Domestic Beer, Restaurant

Eggs, Market

Imported Beer, Restaurant

Local Cheese, Market

Imported Beer, Market

Apples, Market

Potato, Market

Domestic Beer, Market

Fast Food Combo Meal, Restaurant

Lettuce, Market

Water, Restaurant

Cappuccino (regular), Restaurant

Coke/Pepsi, Restaurant

Cigarettes (Marlboro), Market

Wine (Mid-Range), Market

Water, Market

Loaf of White Bread, Market

One-way Ticket, Local Transportation

Milk (regular), Market

Fig. 13. The higher the mutual informa-
tion, the more revealing is the product
category.

0 10 20 30 40 50
Number of Purchase Events

0.0

0.2

0.4

0.6

0.8

1.0

F
1-
sc
or
e

Price Knowledge Scenario
Price Merchant Knowledge Scenario
Price Product-Category Knowledge Scenario

Fig. 14. Dynamic tolerance of 2 % with
one week time uncertainty on the Numbeo
dataset while estimating the country. Pre-
cise time allows an F1-score of 0.95 after 10
purchase events whereas a one week time
uncertainty achieves an F1-score of 0.63.

Quantifying Location Privacy Leakage from Transaction Prices 403

Table 2. Product categories of the Numbeo dataset.

Category and merchant Unit Prices

Market product categories

Apples 1 kg 11876

Chicken Breasts 1 kg 11893

Cigarettes (Marlboro) 1 pack 12712

Domestic Beer One 0.5 L bottle 10243

Eggs 12 units 14617

Imported Beer One 0.33 L bottle 9484

Lettuce 1 head 8966

Loaf of White Bread 0.5 kg 14633

Local Cheese 1 kg 10975

Milk (regular) 1 L 17197

Oranges 1 kg 10289

Potato 1 kg 10891

Rice (white) 1 kg 10924

Tomato 1 kg 10539

Water 1.5 L bottle 12762

Wine (Mid-Range) 1 bottle 11893

Restaurant product categories

Cappuccino (regular) 1 unit 21539

Coke/Pepsi One 0.33 L bottle 21351

Fast Food Combo Meal 1 unit 21794

Domestic Beer One 0.5 L bottle 19128

Imported Beer One 0.33 L bottle 18048

Water One 0.33 L bottle 21691

Local transportation categories

One-way Ticket 1 unit 15275

Table 3. Statistics about the three price datasets

Numbeo dataset (2 years)

Number of countries 112

Number of prices 328,720

Number of cities in the US 23

Number of prices in the US cities 11,686

Number of distinct product categories 23

Numbeo test dataset (5months)

Number of countries 47

Number of prices 40,968

Number of distinct product categories 23

Chicago dataset (5 years)

Number of stores 84

Number of total prices in top 85weeks 24,070,437

Average number of prices per week 283,181 ± 6790

Number of distinct product categories 28

Average number of products per week 6304 ± 461

Kaggle dataset (1 year)

Number of store chains 134

Number of purchase events 349,655,789

Number of consumers 311,539

Number of distinct product categories 836

404 A. Gervais et al.

References

1. A Face Is Exposed for AOL Searcher No. 4417749 (2006). http://www.nytimes.
com/2006/08/09/technology/09aol.html

2. Ikea Billy Bookshelf Index, Bloomberg (2009). http://www.bloomberg.com/apps/
news?pid=newsarchive&sid=a.K4T4ypP9ko

3. NIST/SEMATECH e-Handbook of Statistical Methods (2013). http://www.itl.
nist.gov/div898/handbook/

4. Anonymized for review (2015)
5. Big Mac Index, The Economist (2015). http://www.economist.com/content/

big-mac-index
6. Consumer panel data and retail scanner data across the United States (2015).

http://research.chicagobooth.edu/nielsen/
7. Kaggle, Acquire Valued Shoppers Challenge (2015). https://www.kaggle.com/c/

acquire-valued-shoppers-challenge
8. More (or Less) Brew for your Buck, Starbucks coffee price (2015). http://online.

wsj.com/news/articles/SB10001424127887324048904578319783080709860
9. Numbeo, database of user contributed data about cities and countries worldwide

(2015). http://www.numbeo.com
10. Ripple, cryptocurrency (2015). https://ripple.com/
11. Store-level scanner data collected at Dominick’s Finer Foods (2015). http://

research.chicagobooth.edu/kilts/marketing-databases/dominicks/dataset
12. World Population, The world bank (2015). http://data.worldbank.org/indicator/

SP.POP.TOTL?order=wbapi_data_value_2009+wbapi_data_value+wbapi_
data_value-first&sort=asc

13. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013). http://eprint.iacr.org/2012/596.pdf

14. Androulaki, E., Karame, G.O.: Hiding transaction amounts and balances in bitcoin.
In: Holz, T., Ioannidis, S. (eds.) Trust 2014. LNCS, vol. 8564, pp. 161–178. Springer,
Heidelberg (2014)

15. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy (SP). IEEE (2014)

16. Blumberg, A.J., Eckersley, P.: On locational privacy, and how to avoid losing it
forever. EEF (2009)

17. Bonneau, J., Miller, A., Clark, J., Naryanan, A., Kroll, J.A., Felten, E.W.: SoK:
bitcoin and second-generation cryptocurrencies. In: IEEE Security and Privacy,
May 2015

18. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley and Sons,
Hoboken (2012)

19. de Montjoye, Y.-A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the
crowd: the privacy bounds of human mobility. Sci. Rep. 3 (2013)

20. Dutta, S., Bergen, M., Levy, D.: Price flexibility in channels of distribution: evi-
dence from scanner data. J. Econ. Dyn. control 26(11), 1845–1900 (2002)

21. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men
with no names. In: Proceedings of the 2013 Conference on Internet Measurement
Conference, IMC 2013, pp. 127–140. ACM, New York (2013)

22. Gervais, A., Karame, G., Capkun, S., Capkun, V.: Is bitcoin a decentralized cur-
rency? IEEE Secur. Priv. Mag. 12, 54–60 (2014)

http://www.nytimes.com/2006/08/09/technology/09aol.html
http://www.nytimes.com/2006/08/09/technology/09aol.html
http://www.bloomberg.com/apps/news?pid=newsarchive&sid=a.K4T4ypP9ko
http://www.bloomberg.com/apps/news?pid=newsarchive&sid=a.K4T4ypP9ko
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
http://www.economist.com/content/big-mac-index
http://www.economist.com/content/big-mac-index
http://research.chicagobooth.edu/nielsen/
https://www.kaggle.com/c/acquire-valued-shoppers-challenge
https://www.kaggle.com/c/acquire-valued-shoppers-challenge
http://online.wsj.com/news/articles/SB10001424127887324048904578319783080709860
http://online.wsj.com/news/articles/SB10001424127887324048904578319783080709860
http://www.numbeo.com
https://ripple.com/
http://research.chicagobooth.edu/kilts/marketing-databases/dominicks/dataset
http://research.chicagobooth.edu/kilts/marketing-databases/dominicks/dataset
http://data.worldbank.org/indicator/SP.POP.TOTL?order=wbapi_data_value_2009+wbapi_data_value+wbapi_data_value-first&sort=asc
http://data.worldbank.org/indicator/SP.POP.TOTL?order=wbapi_data_value_2009+wbapi_data_value+wbapi_data_value-first&sort=asc
http://data.worldbank.org/indicator/SP.POP.TOTL?order=wbapi_data_value_2009+wbapi_data_value+wbapi_data_value-first&sort=asc
http://eprint.iacr.org/2012/596.pdf

Quantifying Location Privacy Leakage from Transaction Prices 405

23. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: Proceedings of the 1st International Conference
on Mobile Systems, Applications and Services, pp. 31–42. ACM (2003)

24. Herrmann, R., Möser, A.: Price variability or rigidity in the food-retailing sec-
tor? theoretical analysis and evidence from german scanner data. Technical report
(2003)

25. Hosken, D., Reiffen, D.: Patterns of retail price variation. RAND J. Econ., 128–146
(2004)

26. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval,
vol. 1. Cambridge University Press, Cambridge (2008)

27. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy (SP), pp.
397–411. IEEE (2013)

28. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: IEEE Symposium on Security and Privacy, SP 2008. IEEE (2008)

29. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location
privacy via private proximity testing

30. Pass, G., Chowdhury, A., Torgeson, C.: A picture of search. In: Proceedings of
the 1st International Conference on Scalable Information Systems, InfoScale 2006.
ACM, New York (2006)

31. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system
32. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph

(2013). http://eprint.iacr.org/2012/584.pdf
33. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009)
34. Shokri, R., Theodorakopoulos, G., Danezis, G., Hubaux, J.-P., Le Boudec, J.-Y.:

Quantifying location privacy: the case of sporadic location exposure. In: Fischer-
Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 57–76. Springer,
Heidelberg (2011)

35. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

36. Sweeney, L.: Simple demographics often identify people uniquely. Health (San Fran-
cisco) 671, 1–34 (2000)

37. U.S. Census Bureau, Population Division. Annual Estimates of the Resident Pop-
ulation for Incorporated Places of 50,000 or More, Ranked by July 1, 2013 (2014)

38. Voulodimos, A.S., Patrikakis, C.Z.: Quantifying privacy in terms of entropy for
context aware services. Identity Inf. Soc. 2(2), 155–169 (2009)

39. Singh, V.K., Pentland, A.S., de Montjoye, Y.-A., Radaelli, L.: Unique in the shop-
ping mall: on the reidentifiability of credit card metadata. Science 347, 536–539
(2015)

http://eprint.iacr.org/2012/584.pdf

A Formal Treatment of Privacy in Video Data

Valerie Fetzer1, Jörn Müller-Quade1, and Tobias Nilges2(B)

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
2 Aarhus University, Aarhus, Denmark

tobias.nilges@cs.au.dk

Abstract. Video surveillance has become prevalent both in public
spaces, e.g. to prevent crimes, and in private areas, e.g. in order to assist
the staff in assisted living communities. This leads to privacy concerns
regarding the ability of third parties to create profiles and track individ-
uals, possibly across several services.

Usually, techniques such as pixelation and silhouettes are used to
anonymize individuals. However, no formal treatment of privacy for video
data has been proposed and current anonymization techniques are sim-
ply “best practice”. To resolve this unsatisfactory state of affairs, we
initiate a formal treatment of privacy in video data and propose a game-
based notion for privacy in video data that is inspired by cryptographic
security games.

We show for an exemplary video privacy scheme that this scheme
satisfies our notion with good parameters. In order to evaluate these
parameters, we conduct a user study where the users essentially play the
role of the adversary in the privacy game. Our approach can be used as
a blueprint to evaluate the privacy of other video privacy schemes.

1 Introduction

The advent of video mass surveillance [16,25] in public requires an increased
effort to maintain the privacy of individuals, especially since all the collected
data can be combined from different sources, allowing tracking of individuals
over large time and space intervals [17]. It is obvious that this data can be
used to solve crimes after they happened, but it can also be used as a deterrent
to prevent crimes [31]. Nevertheless, innocent citizens are captured on video,
and they should be protected against misuse of the collected video data by
anonymization.

Video surveillance is not only used in public, but also as a helpful tool in
assisted living homes and retirement homes [1,13]. In this setting, privacy is even
more important, because the daily lives of the residents are monitored, including
their private rooms. However, providing privacy in such an environment is even
more difficult, since an operator of such a surveillance system might learn the
habits of the residents and has a lot more side information about the individuals
than an operator in public surveillance scenarios.

Over the years it has become apparent that it is notoriously difficult to define
privacy. This difficulty spawns from the conflicting goals of releasing anonymous
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 406–424, 2016.
DOI: 10.1007/978-3-319-45741-3 21

A Formal Treatment of Privacy in Video Data 407

data: on the one hand the individuals want to remain private, on the other
hand the released data should give the receiver of the data some utility. In the
context of databases, notions such as k-anonymity [27], l-diversity [19] and t-
closeness [23] tried to formally capture anonymity of individuals in a database,
but all of these notions have some drawbacks [19,23]. The first formal guarantee
for database privacy was presented by Dwork [12] with the notion of differential
privacy, albeit only for real-valued data. Even in these scenarios, finding an
adequate level of privacy and utility turns out to be non-trivial [20].

For privacy in video data, the state of the art is even worse: we largely rely
on techniques such as bounding boxes, blurring, pixelation, edge detection and
silhouettes [9,32] that seem to be good heuristics to give at least some privacy
to individuals. Nevertheless, to the best of our knowledge, formal models for
privacy in video data have not been proposed so far. This is at least in part
due to the difficulty of formally defining the content of images or video data.
Without a way to formally describe the features that are shown in the data, it
is also very difficult to formally argue about the features that are hidden by the
above mentioned heuristics.

Our contribution. We propose a formal security notion for privacy in video data
that is applicable to many scenarios. In particular, this notion is also applicable
to scenarios where the operator has a lot of side information about the individuals
that are shown in the anonymized videos1. The privacy notion is inspired by
cryptographic security notions, but evaluated empirically so that we can achieve
a good understanding of the privacy of the anonymization algorithm/heuristic.

In more detail, we first define an anonymization scheme with respect to a
set of features that it does not hide. This formally captures the utility of the
anonymization scheme. Given such an anonymization scheme, we define a game-
based security definition for privacy in video data, indistinguishability under
individual selection and anonymization (IND-ISA), that is inspired by semantic
security for encryption (IND-CPA) [14]. Overly simplified, we let an adversary
choose two individuals from a set of individuals, for which he believes that he can
distinguish the anonymized videos. The adversary is given an anonymized video
of one of the individuals, and he has to decide which of the individuals is shown
in the video. Privacy holds with respect to a parameter ε, i.e. an adversary wins
if he decides correctly with probability greater than 1

2 + ε. The aforementioned
notion is impossible to satisfy due to a trivial attack, but we propose a relaxed
variant that is actually satisfiable.

We then exemplarily investigate the scenario of an assisted living commu-
nity, where a possibly malicious operator controls several video cameras, similar
to [18]. We focus on the case of individuals that fall to the floor, where the oper-
ator has to decide if the individual is actually falling down or just sitting down.

1 We focus on hiding information about individuals in video data. This does not
directly translate into anonymity. Instead, it limits the number of features that are
available to identify individuals, which in turn can lead to (some form of) anonymity,
depending on the scenario.

408 V. Fetzer et al.

As a dataset, we use the publicly available [6]. Previously, a silhouette view has
been proposed to provide privacy in this scenario [13]. We therefore implement
an algorithm that creates a silhouette view and prepare a user study where the
users essentially play the role of the adversary in the privacy game.

Our results from the evaluation of the user study show that our anonymiza-
tion algorithm satisfies our privacy notion in the investigated scenario with
ε = 0.04, i.e. the users’ answers were essentially as good as random guesses2.
Our analysis (although based on a very limited dataset) shows that the intuitive
idea of using a silhouette view can provide privacy in complex scenarios. But we
also show that great care has to be taken when applying the same algorithm to
other situations. The same algorithm applied to videos of people sitting down
allows to identify the individuals in the videos with significantly higher prob-
ability. Our analysis shows that this is due to the fact that the individuals in
the anonymized video first take several steps and then sit down, whereas in the
individuals in the other videos directly fall to the floor. These steps provides
enough information to increase ε to 0.25, which means that the adversary can
(with high probability) identify an individual with probability close to 75%.

Related work. Automatic surveillance systems have seen a rise in the last years,
an overview of automated visual surveillance systems can be found in [29]. Senior
et al. [26] develop the PrivacyCam, where a processing unit in the camera
itself takes measures to ensure privacy before sending the video data to the
central server. Similarly, Cavallera [5] proposes an architecture of a privacy-
preserving video surveillance system, which segments the video stream into
privacy-preserving behavioral video data and personal video data. Thorpe et
al. [28] also develop a model to split a video stream into an anonymized and a
non-anonymized stream. Winkler and Rinner [33] invent the TrustCam, a cam-
era with hardware security support, to ensure privacy protection in hardware.
The same authors [34] also give an overview about security requirements and
privacy protection techniques in the context of visual sensor networks.

Chen et al. [8] present a work that is concerned with the effectiveness of
anonymization by only replacing the face of a person with a black box. The
authors come to the conclusion that this is by no means satisfactory. A similar
result is obtained by Neustaedter et al. [24]. They study a scenario where the
privacy of a person working at home should be preserved in a video conference
with colleagues at work through blurring the image. The authors find that the
blur has to be so intense that the video conference is not worthwhile.

A wide range of techniques for video anonymization have been developed,
e.g. [2,3,7,10]. However, there have been very few studies about the quality of
anonymization techniques. One of the few studies is the work of Birnstill et al. [4].
They conduct a user study to empirically evaluate different anonymization tech-
niques. The techniques silhouette, pixelization, gray blurring, color blurring and

2 Please note that we only had a limited dataset available. In real scenarios, the
operators of surveillance systems should be able to obtain a larger dataset and more
representative results.

A Formal Treatment of Privacy in Video Data 409

edge detection are evaluated with regard to utility and privacy protection. It is
empirically shown that the utility of all techniques is very high and most of the
techniques achieve acceptable privacy protection. The quality of the anonymiza-
tion techniques, however, is only indicated through the opinions of the partici-
pants of the user study, no formal definition of video anonymization quality has
been introduced.

2 Defining Privacy for Video Anonymization Algorithms

Our main goal is to define a security notion for anonymization algorithms on
video data. Towards this goal, we first have to define an abstract notion of such
an algorithm. Lacking a better term, in the following we will use “anonymize”
to describe the process of applying an algorithm to video data that removes
certain features. This “anonymization” does not in itself provide anonymity for
the individuals in the video data.

In general, the motivation behind anonymization of video data is to give
privacy to the individual(s) that are shown in the video, while still allowing a
third party to use the anonymized video for a specific purpose. Put differently, an
anonymization method finds a trade-off between the conflicting goals of providing
complete anonymity to the individual on the one hand and providing optimal
utility of the video data to a third party on the other. Utility of video data is
very hard to formalize, but it is possible to test whether a video allows to learn
a certain set of features (e.g. height, physique, etc.).

Thus, for our formalization, we take into account both the privacy and the
utility of the data. We do so by explicitly stating a set of features that the
anonymization algorithm will not hide3. A similar approach was recently taken
in the context of database privacy by Kifer and Machanavajjhala [21]. However,
they explicitly state the data that is supposed to be hidden, while we define
the features that are not hidden. In most countries, collecting video data must
already be justified by a specific purpose, e.g. observing thefts. This purpose
implicitly specifies the features that are necessary to accomplish the task. Con-
trary to database privacy, where the utility of the data is unclear at the time of
anonymization, all other information in the video data can be removed by the
anonymization process.

Explicitly stating the features of an algorithm that remain unchanged allows
to decide whether a specific algorithm is suitable for the given scenario, both
with respect to the privacy of the individuals and the utility for the third party.
Please note the fundamental difference between e.g. an encryption scheme and
an anonymization scheme: the anonymization scheme provides anonymity only
in certain scenarios, where the features that remain in the clear do not jeopardize
anonymity. In particular, the same algorithm cannot be used blindly in related
scenarios without careful consideration (cf. Sect. 4.4).
3 One might argue that it is very difficult to explicitly state all features that are not

hidden, but we show in Sect. 4.4 that a good approximation seems to be sufficient
in most cases.

410 V. Fetzer et al.

Each anonymization scheme is defined with respect to a set of features that
will not be hidden after anonymizing a video.

Definition 1. A set of features F is defined as a set of tuples (f,D), where f
denotes the name of the feature, and D the domain of this specific feature. We
write F(v) to denote the specific manifestations of the features in video v.

Consider for example the features Age and Height. Then DAge could be
[0, 100] and DHeight could be [30, 220]. For a specific video v, F(v) could be
e.g. {(Age, 32), (Height, 178)}. In the following we define the abstract notion
of an anonymization scheme. The anonymization algorithm has to preserve the
features in the set FAS, which implicitly defines the utility of the scheme.

Definition 2. An anonymization scheme AS consists of two algorithms
(PGen,Anonymize) and an associated feature set FAS.

– PGen() outputs a set of public parameters pp.
– Anonymize(pp, v) outputs an anonymized video ṽ such that FAS(ṽ) = FAS(v).

In some cases the anonymization algorithm might add some noise to the
preserved features, e.g. the age of an individual might be harder to decide in
the anonymized video. This would mean that the equality of FAS(ṽ) and FAS(v)
does not hold, instead the features in FAS(ṽ) are from a smaller domain than
FAS(v). This influences both utility and privacy of the anonymization scheme.
On the one hand, partially hiding some of the features in FAS will increase the
privacy. On the other hand, the utility of the anonymized video decreases. We do
not consider this in our formal definition, since the exact loss of utility/gain of
privacy is very hard to quantify, which in turn might make it a lot harder to work
with a definition covering this case. One can interpret our definition as a “better
safe than sorry” variant, that gives more privacy at the cost of some utility. But
verifying the utility of an anonymization scheme in a real world scenario should
be fairly simple.

It is obvious that the above definition of an anonymization scheme does not
give any privacy. Instead, we want to define a security notion for anonymization
schemes analogous to the notion of indistinguishability under chosen plaintext-
attack (IND-CPA) in the context of semantically secure encryption [14]. Infor-
mally, IND-CPA states that an adversary cannot even learn a single plaintext bit
of an encrypted message. For the purpose of defining a formal security notion for
privacy in video data, a similar approach would yield a desirable level of privacy:
an adversary cannot identify an individual in an anonymized video. However, in
contrast to an encrypted message, an anonymized video still has to provide some
non-trivial utility (otherwise we could just encrypt it). We will show that this
enforces a weaker notion of security, compared to a direct translation of IND-
CPA to the scenario of video anonymization.

First, let us briefly recall the IND-CPA security game for an encryption
scheme ES. The experiment executes the key generation of the encryption scheme
(depending on the security parameter k) and sends the resulting public key pk

A Formal Treatment of Privacy in Video Data 411

to the adversary A. The adversary is now allowed to choose two messages m0

and m1, for which he believes that he can distinguish the respective ciphertexts.
He sends both messages to the experiment, which in turn randomly selects a
bit b and encrypts mb. This encrypted message c = Enc(pk,mb) is then given to
the adversary. The adversary now has to output a bit b′ indicating whether the
encrypted message is m0 or m1. The adversary wins this game if b = b′. This
game is formalized in Fig. 1.

Experiment Expind−cpa
ES,A (k)

(pk, sk) ← ES.KeyGen(1k)

(m0,m1) ← A(pk, 1k)

b ← {0, 1}
c ← ES.Enc(pk,mb)

b′ ← A(pk, c)

return b = b′

Fig. 1. The IND-CPA security game for encryption schemes.

Obviously, an adversary can always guess the random bit. Therefore the
security requirement states that an adversary only breaks the security of an
encryption scheme if his chance of winning the game is bigger or equal to 1

2+ε(k),
where ε(k) is a non-negligible function in the security parameter.

2.1 From IND-CPA to IND-ISA

Our goal is to provide a security notion that basically states that an adversary
cannot guess which individual is shown in the anonymized video. As indicated
above, we cannot directly apply the approach of the IND-CPA notion to pri-
vacy in video data, as we will show in the following. Imagine a security game
where the experiment first samples some parameters for the anonymization algo-
rithm, then the adversary is allowed to choose two arbitrary videos. He receives
an anonymized version of one of the videos, and then has to decide what the
underlying video was. This is basically the IND-CPA game with video data. The
crucial difference between encryption and anonymization is that we require some
utility from the anonymized video. In particular, there has to exist at least one
predicate or feature in both videos that has to be recognizable (otherwise we
would have no utility). Now an adversary can just select two videos that dif-
fer in this predicate, which will result in the adversary winning the game with
probability 1.

We thus have to restrict the adversary’s power to prevent this trivial attack.
This means in particular that the adversary may only indirectly select the video:
the video that the experiment anonymizes differs from all the videos that the
adversary has at his disposal. While this might seem to be a strong restriction, we

412 V. Fetzer et al.

argue that this is the case in all scenarios where anonymization is required. The
adversary might have some knowledge–not just in the form of video data–about
the individual(s) that appear in the anonymized video, but he should obviously
not have access to the exact same video without anonymization. The adversary
can still choose videos based on individuals for which he believes that he can
distinguish the anonymizations, e.g. due to the height, clothing or physique of
the individuals.

Additionally, we have to restrict the choice of videos with respect to the fea-
ture set FAS of the anonymization algorithm. To obtain a meaningful notion,
we require that the experiment picks only videos that are indistinguishable with
respect to these features; the videos can be completely arbitrary with respect
to all other features. An anonymization algorithm satisfying our notion thus
implies that the adversary cannot distinguish the anonymized videos depend-
ing on all the other features, i.e. these features are effectively removed by the
anonymization algorithm.

We model the requirement of videos that are indistinguishable with respect
to FAS by defining an extraction algorithm Ext. This algorithm extracts the
features included in FAS from a given video.

Definition 3. An extraction algorithm Ext for a feature set FAS gets as input
a video v and returns the manifestations FAS(v).

We are now ready to propose the notion of indistinguishability under indi-
vidual selection and anonymization, or IND-ISA. The adversary selects two indi-
viduals from a set of individuals, the experiment selects two videos containing
the individuals and uses the extractor Ext to verify that the videos are indeed
indistinguishable with respect to FAS. It then anonymizes one video at random
and sends it to the adversary, who has to guess which individual is shown in
the video. This notion captures the goal of hiding the identity of an individual,
even if the adversary is allowed to select the individuals that the experiment has
to choose from. The game is depicted in Fig. 2. Let A denote the adversary, I
denote the set of individuals and V the set of videos from which the experiment
can choose to create an anonymized challenge. We write V|i to denote the subset
of V showing individual i ∈ I.

Remark 1. In some scenarios, it might be possible to allow the adversary to
actually choose two videos directly and only require that the features that are
not hidden have to be identical. While this yields a stronger notion of privacy, we
believe that such a notion is hard to achieve in general. Our notion on the other
hand provides a (weaker) guarantee, but is applicable in most realistic scenarios.

Remark 2. Obviously, IND-ISA only states that given two videos with the same
manifestations of features regarding FAS an adversary cannot distinguish the
anonymized videos. This does not necessarily guarantee anonymity: in a sce-
nario where one individual has a specific set of feature manifestations that no
other individual shares, the anonymized video might still leak the identity. Thus,
in order to achieve anonymity of individuals in a specific scenario, it has to be

A Formal Treatment of Privacy in Video Data 413

Experiment Expind−isa
AS,A
(pp) ← AS.PGen()

(i0, i1) ← A(pp)

return 0 if i0 = i1 or i0, i1 /∈ I

v0 ← V|i0
v1 ← V|i1

return 0 if Ext(FAS, v0) �= Ext(FAS, v1)

b ← {0, 1}
ṽ ← AS.Anonymize(pp, vb)

b′ ← A(pp, ṽ)

return b = b′

Fig. 2. The IND-ISA privacy game for video anonymization schemes.

ensured that at least two individuals with the same feature manifestations actu-
ally exist.

In comparison to standard cryptographic notions, it is at the very least
unclear how to achieve asymptotic security. Instead, we measure the success
probability of an adversary with a statistical parameter ε that is supposed to
indicate his success probability in comparison to simply guessing the result. We
defer a detailed discussion on the parameter ε to Sect. 3, where we propose a
method to determine ε. Given the definition of IND-ISA, we are able to define
the privacy of an anonymization scheme.

Definition 4. We say an anonymization scheme AS is ε−IND-ISA-secure, if
any adversary wins Expind−isa

AS,A with probability at most 1
2 + ε averaged over all

videos in V.
At first sight, the above definition of privacy for anonymization schemes

might seem very weak, because we only require an average distinguishing advan-
tage. In particular, there might exist an adversary that identifies an individual in
a certain video with very high probability. This lies in stark contrast to the clas-
sical cryptographic security notions, but it still gives us a meaningful measure
of the quality of an anonymization scheme.

3 On Obtaining IND-ISA-Secure Anonymization
Schemes

Before we describe our anonymization scheme and discuss the results, let us first
elaborate on how one can actually obtain IND-ISA security. The main problem
that we face is that we have no underlying cryptographic assumptions or statis-
tical data on the image to work with, on which we could base the security for
an algorithm.

414 V. Fetzer et al.

Our idea is to take an empirical approach to verify the security of a spe-
cific algorithm. Instead of assuming hardness of some underlying assumption,
we actually implement the IND-ISA game with videos and an anonymization
scheme. In contrast to cryptographic games, where we make no assumptions
about the adversary apart from possibly polynomial efficiency, we now use a
“constructive” approach.

The approach that we use for our example implementation is as follows: We
create a user study, in which users essentially take the role of the adversary (a
human adversary is the most likely case in real world scenarios). Using a sta-
tistical analysis, it is possible to measure the indistinguishability of anonymized
videos in a meaningful way. Given enough participants for such a study, we
can make a fairly good assumption on the IND-ISA security of the anonymiza-
tion algorithm. We propose the following method to determine the value ε. The
user study is basically a Bernoulli process, i.e. the game that the user plays is
independent of the games that other users played. This means that the results
should be distributed according to a binomial distribution. We can thus sum up
all the answers from the study and compute the Clopper-Pearson interval [11]
with confidence e.g. 95% and p = 1

2 . This results in two values [a, b], and we set
ε = max{b − 1

2 , 0}. Taking the value b of the interval corresponds to a “worst-
case” choice for the parameter ε.

Another approach based on the same idea is to use learning algorithms to play
the IND-ISA game, e.g. PAC learning [30]. This would yield several advantages
over the approach with user studies: first of all it is much cheaper and less time
consuming than a user study while additionally shedding light on the question
whether an adversary can learn to distinguish the anonymized videos over time.
We leave this research direction as an open question for future work.

In the following section, we give two examples of such studies with somewhat
surprising results.

4 An IND-ISA-Private Anonymization Scheme

In the following we will present an exemplary instantiation of an anonymization
scheme applied to two real world scenarios to illustrate our approach. In order to
do so, we first have to define an anonymization scheme according to Definition 2
and a scenario to apply it to.

4.1 Scenario

In recent years, supporting the staff of an assisted living community with privacy
preserving video surveillance has been the focus of research, both with respect
to feature recognition and privacy [1,13,18,22,35]. In a little more detail, the
idea is to enhance the apartments of an assisted living community with video
cameras that help the staff detecting accidents and emergencies. One line of
research focuses on fully automated systems that incorporate e.g. fall detection
algorithms [13]. However, the detection rate is not perfect and in the case of

A Formal Treatment of Privacy in Video Data 415

an emergency a falling resident must be detected, which inevitably leads to
possibly many false positive alarms. Another aspect is the problem that in some
countries fully automated systems are not allowed to make decisions without
human verification. Thus, in a realistic scenario an operator has to access the
video data and can evaluate whether an emergency arises. This operator can
observe the individuals in their private rooms, therefore anonymization methods
have to be applied to ensure privacy of the residents.

We study two situations that are closely related: an individual falling to the
floor and an individual sitting down. These situations are difficult to distinguish
by an algorithm and therefore sometimes require human verification. We assume
that the operator knows the individuals that are shown by the surveillance sys-
tem, but he only sees the anonymized video of the presumed fall. The video data
recorded before the incident and afterwards cannot be accessed by the operator.
Further, the operator is supposed to verify that the individual fell or recognize
an error by the algorithm. This implies that the anonymization scheme must
provide enough utility to make this distinction.

4.2 Anonymization Scheme

In the literature, the anonymization technique of choice for this scenario is a
silhouette view. On the one hand, it still allows to discern the movements of
an individual, on the other hand most features like colors and environment are
removed. However, there is no formal treatment regarding the validity of this
approach. We thus implemented an anonymization algorithm that realizes a
blurred silhouette view of a video. The blurring is added to remove the exact
outline of the individual, which might give away too much information. The
implementation is based on the OpenCV library and written in C++.

The generation of the public parameters for our anonymization scheme ASsil
is implicit, they are included in the anonymization algorithm Anonymize. It pro-
ceeds in three steps:

1. For each frame: calculate the silhouette view by means of background sub-
traction

2. For each frame: blur the image with median filter and Gaussian blur
3. Normalize the whole video by zooming to the relevant section and then scaling

the video to a fixed width

The public parameters ppsil are the parameters used for each step: in the first
step any parameters that are needed to produce the silhouette view, for the
second step the parameters for the median filter and Gaussian blur and in the
last step the width the video is scaled to. Figure 3 shows the intermediate results
of the algorithm when applied to an example video.

In accordance with our definition of anonymization schemes, our algorithm
must be defined with respect to a feature set FASsil

. Finding a formal spec-
ification for the feature set is highly nontrivial, because some features are a
superset of other features. These features are therefore also distinguishable after

416 V. Fetzer et al.

(a) The raw image (b) After silhouette extrac-
tion

(c) After blurring (d) After normalizing

Fig. 3. An example for the use of ASsil. In (a) the original image can be seen, picture
(b) and (c) are intermediate steps and the finished anonymization is shown in (d). The
video data is taken from Gorelick et al. [15].

anonymization. Thus, we define a rather coarse feature set that should cover
all distinguishable features, but might include some features that are actually
hidden by the scheme ASsil. In the following, let

FASsil
= {physique, movements, accessories}.

Note that it is e.g. possible to derive knowledge about the age from the
sequence of movements and the physique of an individual. By accessories we
mean objects like an umbrella, a bag or a walking aid.

4.3 Dataset

We use a dataset due to Charfi et al. [6]. It contains 191 videos of individuals
walking, falling down and sitting down. The resolution of the videos is 320 ×
240 px and the frame rate is 25 frames/second. Only 60 of these videos were
suitable for our study. The amount was further limited because the number of
videos of each individual fluctuates. There are only four videos of one individual
falling down, and 3 videos of another individual sitting down. The videos of
falling and sitting individuals were used as the set V in the IND-ISA game.
Videos of individuals walking through the room were given the users to get
some background information on the individuals. Therefore the four individuals
of the dataset add up to the set I in the IND-ISA game.

A Formal Treatment of Privacy in Video Data 417

The camera is placed in a corner of the room, comparable to the installation
in a real assisted living community. The room contains a table, a chair and a
sofa. In some videos, a carpet or blanket is put on the floor. Based on this dataset
we can test several aspects.

– Is it possible to discern whether an individual is falling down or sitting down?
This is one situation that might occur if an automated system misclassifies a
situation and describes the utility of the data.

– Is it possible to identify an individual if one knows only the video of the person
falling down? This reflects our definition of privacy in video data.

Our user study covers both of these aspects. We cut the videos that we wanted
to anonymize such that they only show the respective action, i.e. an individual
falling down or sitting down4.

4.4 User Study

We prepared a user study that evaluated two aspects. On the one hand, users
had to decide whether an individual was falling down or sitting down in an
anonymized video. On the other hand, we let each user play the IND-ISA privacy
game for the anonymization scheme ASsil based on the aforementioned video
dataset. The study was conducted similar to our proposal from Sect. 3. Each
user was shown four videos of different individuals that walk through a room
(cf. Fig. 4), i.e. these individuals represent the set I of the IND-ISA game. These
individuals were (supposedly) chosen in a way that they were indistinguishable
with respect to FASsil

(because we did not have a feature extraction that could
have been used). The user had to select two of the four videos, i.e. individuals,
for which he believed he could distinguish an anonymized version.

After the selection the user was shown one anonymized video of one of the
selected persons falling down or sitting down, respectively. Then the user had to
decide which person was anonymized in the video. Answer options were “Person
X”, “Person Y” and “I don’t know”, where X and Y were replaced with the letters
corresponding to the chosen persons. We added the “I don’t know”-option to get
a better understanding of how the users felt when seeing the anonymized video.
For the analysis, we assumed that in the case of the “I don’t know”-option an
IND-ISA-adversary would just guess an option with probability 1

2 . Additionally,
the user had the option to describe the feature(s) that helped him identify the
individual.

We let each user play several games (four, respectively two) with new
anonymized videos to increase the number of samples that we could use, which
in turn breaks the independence of the sequential games. Thus, if we use the app-
roach from Sect. 3 to compute the value ε, the result is less accurate, because
we introduce learning effects. Due to the structure and low sample size of our
user study, however, it is not possible to quantify these learning effects in a
4 Our discussion in Sect. 4.5 elaborates on the problems that arise when cutting the

videos.

418 V. Fetzer et al.

Person A Person B Person C Person D

Fig. 4. Parts of the videos that provide the user of the study with some knowledge
about the individuals which he has to distinguish. Each video shows the corresponding
individual walking around.

meaningful way, so we stick to the same approach to compute ε in this exam-
ple implementation. Usually, one would have to calculate the multidimensional
confidence interval with respect to several identically distributed games.

All in all, we obtained results from 248 users, but only 103 users answered
the complete study. The results show that the anonymization method is suitable
to discern between individuals falling down and individuals sitting down. The
detection rate of individuals sitting down in the anonymized videos was 100%,
and the detection rate of individuals falling down was between 97% and 99%.
Our results concerning the privacy of the individuals are summarized in the
following two paragraphs.

Evaluation of the Fall Detection Study. Due to the small amount of avail-
able videos, we let each user play four games with individuals falling down.
Figure 5 shows images from the anonymized videos. The set of videos that was
used for the anonymization is disjoint from the set of videos that the users saw
in order to select their “challenge” identity in the IND-ISA game.

An analysis of the data shows that, generally, the users had difficulties in
identifying the correct individual in the anonymized video. Averaged over all four
games, 60% of the users selected the “I don’t know”-option, with values ranging
from 52 to 69 %. Of all the users that identified an individual, averaged over all
four games, the answers were close to uniformly distributed (19 % selected the

Person A Person B Person C Person D

Fig. 5. Images of some of the anonymized videos used in the fall detection study. Each
anonymized video shows the corresponding individual falling down.

A Formal Treatment of Privacy in Video Data 419

Individuals
Game 1 Game 2 Game 3 Game 4

[1] [2] IDK [1] [2] IDK [1] [2] IDK [1] [2] IDK

A,B 3 3 4 4 12 5 3 8 9 2 3 12

A,C 9 10 41 6 20 22 10 8 20 3 4 31

A,D 0 7 2 2 1 6 4 5 6 4 3 6

B,C 3 6 28 5 6 23 5 2 23 3 2 25

B,D 0 1 1 1 1 3 0 1 4 2 1 5

C,D 4 6 2 1 1 8 6 1 11 7 3 5

Total 19 33 78 19 41 67 28 25 73 21 16 84

Fig. 6. This table shows the number of answers for each of the four games. Each game
is split into 6 separate games due to the choices of individuals by the users. [1] and [2]
specify the first individual and the second individual from the first column, respectively.
Correct answers are written in bold font.

correct answer, 21 % the wrong answer, 60 % did not recognize the individual).
A more detailed breakdown is shown in Fig. 6.

While the first game might be interpreted as an indication that it is possible
to identify the individuals, we have to consider that the sample size is very small.
When we look at the actual detection rates for each possible pair of choices by
the users, we observe that except for one pair of individuals in the first game
(Individuals A and D), the answers are nearly uniformly distributed. The users
that selected this constellation of individuals described that the gait and speed
of movements of the individuals convinced them that the anonymized video
showed the correct individual. Upon inspection of the videos, we noticed that
the anonymized video shows the individual taking two steps before falling to the
floor.

There are several possible interpretations. On the one hand, the sample size is
far too small to rule out a statistical fluke (9 users, 7 correct answers). Addition-
ally, the users’ answers with regard to the identifiable feature have to be taken
with a grain of salt, because many users claimed to have identified individuals
according to e.g. gait, even in cases where they chose the wrong individual. On
the other hand, in combination with the results from the videos of individuals
sitting down (cf. Sect. 4.4), we believe that the two steps shown in the video are
indeed enough information to correctly identify an individual.

We now want to fix a value for ε. As mentioned above, we will ignore learn-
ing effects and just calculate ε as described in Sect. 3. We split the “I don’t
know”-answers evenly between correct and incorrect guesses, which results in
a success probability of 49.01% based on our study, i.e. the wrong answer
is given with 50.99%. By computing the Clopper-Pearson confidence inter-
val [11] for the success probability we get the interval [44.56% , 53.47%]. Thus,
ε = 0.5347 − 0.5 = 0.0347, which rounds up to ε = 0.04.

Evaluation of the Sitting Detection Study. In comparison to the fall
detection study, we had less videos available so that we let each user play only

420 V. Fetzer et al.

Person A Person B Person C Person D

Fig. 7. Parts of some of the anonymized videos used in the sitting detection study.
Each video shows the corresponding individual sitting down in anonymized form.

two games. Apart from this and the fact that the individuals sit down in the
anonymized videos, the setup is identical to the fall detection study. Examples
for the anonymized videos used in the sitting detection study are shown in Fig. 7.

Our results are shown in Fig. 8. On average, 55 % of the users identified
the correct individual, but only 18 % identified the wrong individual, leaving
27 % of undecided users. Looking closer into the data, it seems as if the first
game was more or less uniformly distributed averaged over all 6 possible choices
of the users, but in the second game 75 % of the users selected the correct
individual. Even worse, a closer look at the individual games shows that the
users identified some individuals with probability (close to) 1, even for certain
choices of individuals in game 1.

Most users claimed to have identified the individuals due to the walking
style in the videos. In comparison to the videos that show individuals falling
down, nearly all anonymized videos include two steps taken by the individual
before sitting down. As in the previous study, this seems to give the users a high
probability in identifying the anonymized individual.

Obviously, the value ε is much worse than in the previous case. Again, we
distribute the “I don’t know”-answers evenly between the right and the wrong
answers. The success probability of an IND-ISA-adversary is therefore 69% and

Individuals
Game 1 Game 2

[1] [2] IDK [1] [2] IDK

A,B 4 6 11 2 12 3

A,C 4 20 21 2 32 8

A,D 2 1 3 0 5 0

B,C 17 7 5 0 27 7

B,D 1 0 3 4 2 1

C,D 12 0 2 0 11 2

Total 40 34 46 8 89 21

Fig. 8. This table shows the number of answers for both games. Each game is split into
6 separate games due to the choices of individuals by the users. [1] and [2] specify the
first individual and the second individual from the first column, respectively. Correct
answers are written in bold font.

A Formal Treatment of Privacy in Video Data 421

the error probability 31%. The calculation of the Clopper-Pearson interval yields
[62.02%, 74.22%]. Thus, ε = 0.7422−0.5 = 0.2422, which rounds up to ε = 0.25.

4.5 Discussion

We believe that the main reason that users could identify an individual in an
anonymized video was that the anonymized videos included one or two steps of
the individual. We cut the videos in this way to help the users identify the action,
but our results concerning the privacy show that this allows the identification of
anonymized individuals with high probability.

Intuitively, this already follows from the definition of the privacy game IND-
ISA and our anonymization scheme: the anonymization scheme does not hide
sequences of movements, therefore the IND-ISA game would require us to select
videos that are indistinguishable with respect to these movements. From an
adversarial point of view, seeing an individual walk will not give him much
information about an individual falling down (in our scenario). However, if the
anonymized video includes, apart from the falling or sitting individual, some
steps of the individual, the adversary can use his knowledge to identify this
individual. When we selected videos that include both walking and falling down,
we did not (manually) check whether the individuals were indistinguishable with
respect to the walking movements. Our results clearly show that the individuals
are not indistinguishable in that regard. We believe that removing the part of
the videos that shows the steps of the individuals would greatly reduce the users’
ability to identify the individuals and yield a smaller value for ε. In turn, the
measured utility of the anonymization might drop a bit.

This highlights a very important aspect of anonymizing video data: even
if an anonymization method is very good in one scenario, it is not possible
to incorporate it into another scenario without considering all aspects of the
anonymization process.

To finish our evaluation, we want to discuss a value εt that describes the
anonymity of individuals in the above described scenario, i.e. an operator is
shown anonymized videos of alleged falls of individuals. The overall identification
probability in this scenario is dependent on the accuracy of the fall detection
system. If we assume the detection algorithms of Charfi et al. [6], a fall is correctly
detected with probability 99.6%. Thus, despite the poor performance of the
anonymization due to videos showing the walking movements, the privacy of the
individuals in the scenario is very close to εt = 0.04.

5 Conclusion and Future Work

Currently, privacy in video data is only argued on a very informal level, and
the applied anonymization algorithms are more or less chosen because they
are “best practice”. As our second example showed, this can be a dangerous
way to approach privacy in complex systems. We started a formal treatment
of the problem of privacy in video data and laid a formal foundation for future

422 V. Fetzer et al.

research in this area. We believe that an interdisciplinary effort is required to find
widely applicable anonymization algorithms, together with good formal guaran-
tees. This is due to the fact that for anonymization methods, we need knowledge
from security/cryptography, feature recognition and machine learning. Addi-
tionally, a large dataset for the evaluation of the anonymization schemes seems
essential, because it is not possible to create large amounts of realistic videos in
software.

Using the approach that we presented, it is possible to define a set of candi-
dates for IND-ISA secure anonymization algorithms that cover a wide range of
applications. Being able to abstract from the anonymization method allows the
design of provably private video surveillance systems. The system itself can be
proven private, while the anonymization algorithm is then chosen according to
the scenario in which the surveillance system is used. Thus, the security analysis
is simplified and modularized.

References

1. Abowd, G.D., Bobick, A.F., Essa, I.A., Mynatt, E.D., Rogers, W.A.: The aware
home: a living laboratory for technologies for successful aging. In: Proceedings of
AAAI Workshop and Automation as a Care Giver, pp. 1–7 (2002)

2. Bamba, B., Liu, L.: Privacygrid: supporting anonymous location queries in mobile
environments. Technical report, Defense Technical Information Center (2007)

3. Berger, A.M.: Privacy mode for acquisition cameras and camcorders. US Patent
6,067,399 (2000)

4. Birnstill, P., Ren, D., Beyerer, J.: A user study on anonymization techniques
for smart video surveillance. In: 2015 12th IEEE International Conference on
Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2015)

5. Cavallaro, A.: Adding privacy constraints to video-based applications. In: Euro-
pean Workshop on the Integration of Knowledge, Semantics and Digital Media
Technology (2004)

6. Charfi, I., Miteran, J., Dubois, J., Atri, M., Tourki, R.: Definition and performance
evaluation of a robust SVM based fall detection solution. In: Eighth International
Conference on Signal Image Technology and Internet Based Systems (SITIS), pp.
218–224. IEEE (2012)

7. Chen, D., Chang, Y., Yan, R., Yang, J.: Tools for protecting the privacy of specific
individuals in video. EURASIP J. Adv. Sig. Process. 2007(1), 075427 (2007)

8. Chen, D., Chang, Y., Yan, R., Yang, J.: Protecting personal identification in video.
In: Senior, A. (ed.) Protecting Privacy in Video Surveillance, pp. 115–128. Springer,
London (2009)

9. Chinomi, K., Nitta, N., Ito, Y., Babaguchi, N.: Prisurv: privacy protected video
surveillance system using adaptive visual abstraction. In: Satoh, S., Nack, F., Etoh,
M. (eds.) MMM 2008. LNCS, vol. 4903, pp. 144–154. Springer, Heidelberg (2008)

10. Cichowski, J., Czyzewski, A.: Reversible video stream anonymization for video
surveillance systems based on pixels relocation and watermarking. In: IEEE Inter-
national Conference on Computer Vision Workshops (ICCV Workshops), pp. 1971–
1977 (2011)

11. Clopper, C.J., Pearson, E.S.: The use of confidence or fiducial limits illustrated in
the case of the binomial. Biometrika 26(4), 404–413 (1934)

A Formal Treatment of Privacy in Video Data 423

12. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

13. Fleck, S., Straßer, W.: Smart camera based monitoring system and its application
to assisted living. Proc. IEEE 96(10), 1698–1714 (2008)

14. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

15. Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time
shapes. Trans. Pattern Anal. Mach. Intell. 29(12), 2247–2253 (2007)

16. Haering, N., Venetianer, P.L., Lipton, A.: The evolution of video surveillance: an
overview. Mach. Vis. Appl. 19(5–6), 279–290 (2008)

17. Hampapur, A., Brown, L., Connell, J., Ekin, A., Haas, N., Lu, M., Pankanti, S.:
Smart video surveillance: exploring the concept of multiscale spatiotemporal track-
ing. IEEE Sig. Process. Mag. 22(2), 38–51 (2005)

18. Huber, M., Müller-Quade, J., Nilges, T., Thal, C.: A provably privacy pre-
serving video surveillance architecture for an assisted living community. In: GI-
Jahrestagung, pp. 563–574 (2014)

19. Kifer, D., Gehrke, J.: L-diversity: privacy beyond k-anonymity. In: ICDE, p. 24
(2006)

20. Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceedings
of the 2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2011, pp. 193–204. ACM, New York (2011)

21. Kifer, D., Machanavajjhala, A.: Pufferfish: a framework for mathematical privacy
definitions. ACM Trans. Database Syst. 39(1), 3:1–3:36 (2014)

22. Kleinberger, T., Becker, M., Ras, E., Holzinger, A., Müller, P.: Ambient intelligence
in assisted living: enable elderly people to handle future interfaces. In: Stephanidis,
C. (ed.) UAHCI 2007 (Part II). LNCS, vol. 4555, pp. 103–112. Springer, Heidelberg
(2007)

23. Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-anonymity
and l-diversity. In: ICDE, pp. 106–115 (2007)

24. Neustaedter, C., Greenberg, S., Boyle, M.: Blur filtration fails to preserve privacy
for home-based video conferencing. ACM Trans. Comput. Hum. Interact. (TOCHI)
13(1), 1–36 (2006)

25. Norris, C., McCahill, M., Wood, D.: The growth of CCTV: a global perspective
on the international diffusion of video surveillance in publicly accessible space.
Surveill. Soc. 2(2/3), 110–135 (2002)

26. Senior, A., Pankanti, S., Hampapur, A., Brown, L., Tian, Y.L., Ekin, A., Connell,
J., Shu, C.F., Lu, M.: Enabling video privacy through computer vision. IEEE Secur.
Priv. 3(3), 50–57 (2005)

27. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(5), 557–570 (2002)

28. Thorpe, C., Li, F., Li, Z., Yu, Z., Saunders, D., Yu, J.: A coprime blur scheme
for data security in video surveillance. IEEE Trans. Pattern Anal. Mach. Intell.
35(12), 3066–3072 (2013)

29. Valera, M., Velastin, S.A.: Intelligent distributed surveillance systems: a review.
In: IEEE Proceedings - Vision, Image and Signal Processing, vol. 152, pp. 192–204.
IET (2005)

30. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
31. Welsh, B.C., Farrington, D.P.: Evidence-based crime prevention: the effectiveness

of CCTV. Crime Prev. Community Saf. 6(2), 21–33 (2004)

424 V. Fetzer et al.

32. Wickramasuriya, J., Datt, M., Mehrotra, S., Venkatasubramanian, N.: Privacy
protecting data collection in media spaces. In: Proceedings of the 12th Annual
ACM International Conference on Multimedia, pp. 48–55. ACM (2004)

33. Winkler, T., Rinner, B.: Privacy and security in video surveillance. In: Atrey, P.K.,
Kankanhalli, M.S., Cavallaro, A. (eds.) Intelligent Multimedia Surveillance, pp.
37–66. Springer, Heidelberg (2013)

34. Winkler, T., Rinner, B.: Security and privacy protection in visual sensor networks:
a survey. ACM Comput. Surv. (CSUR) 47(1), 2 (2014)

35. Wood, A.D., Stankovic, J.A., Virone, G., Selavo, L., He, Z., Cao, Q., Doan, T.,
Wu, Y., Fang, L., Stoleru, R.: Context-aware wireless sensor networks for assisted
living and residential monitoring. IEEE Netw. 22(4), 26–33 (2008)

Security of Cyber-Physical Systems

On Attacker Models and Profiles
for Cyber-Physical Systems

Marco Rocchetto1(B) and Nils Ole Tippenhauer2

1 iTrust, Singapore University of Technology and Design, Singapore, Singapore
macro rocchetto@sutd.edu.sg

2 ISTD, Singapore University of Technology and Design, Singapore, Singapore

Abstract. Attacker models are a fundamental part of research on secu-
rity of any system. For different application scenarios, suitable attacker
models have to be chosen to allow comprehensive coverage of possible
attacks. We consider Cyber-Physical Systems (CPS), that typically con-
sist of networked embedded systems which are used to sense, actuate, and
control physical processes. The physical layer aspects of such systems add
novel attack vectors and opportunities for defenses, that require extended
models of attackers’ capabilities. We develop a taxonomy to classify and
compare attacker models in related work. We show that, so far, there are
no commonly used attacker models for such CPS. In addition, concepts
of what information belongs in an attacker model are widely different
among the community. To address that problem, we develop a frame-
work to classify attacker models and use it to review related work on
CPS Security. Using our framework, we propose a set of attacker profiles
and show that those profiles capture most types of attackers described in
the related work. Our framework provides a more formal and standard-
ized definition of attacker model for CPS, enabling the use of well-defined
and uniform attacker models in the future.

1 Introduction

In recent years, security of Cyber-Physical Systems (CPS) has received increasing
attention by researchers from the domain of computer science, electrical engineer-
ing, and control theory [15,24,28,31]. We use the term CPS to refer to systems
that consist of networked embedded systems, which are used to sense, actuate,
and control physical processes. Examples of such CPS include industrial water
treatment facilities, electrical power plants, public transportation infrastructure,
or even smart cars. All those systems have seen a rapid increase in automation
and connectivity, which threatens to increase vulnerability to malicious attacks.

In contrast to the domain of information security , where the Dolev-Yao
attacker model [11] (DY) is widely used for protocol analysis, the state-of-the-
art for CPS security does not have a common terminology for attacker mod-
els. Instead, attacker-models are usually defined ad-hoc for the specific setting
considered. Even if the topic has been broadly discussed in the CPS research
community (e.g., in [15,28,31]) only a small number of tentative works [18,37]
have tried to overcome this problem.
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 427–449, 2016.
DOI: 10.1007/978-3-319-45741-3 22

428 M. Rocchetto and N.O. Tippenhauer

In this work, we provide a comprehensive overview of work on CPS attacks.
We find that in most cases, the authors show how to attack the system without
defining attacker models [2,3,16] or propose their own attacker model(s) depend-
ing on the system they are considering (e.g., [8]) or leave to the users the (non
trivial) problem of defining their own attacker models [2]. In general, authors
often prefer to use their own attacker model with an ad hoc set of constraints on
the attacker. In addition, we review attempts to provide more general attacker
models or frameworks, e.g., [18,37].

Based on our findings of related work, we show commonalities and differ-
ences in existing attempts to generalize attacker models for CPS, and provide
recommendations for future attacker models in that direction.

We summarize our main contributions as follows:

– We define and apply a taxonomy of 10 different features to classify and com-
pare attacker models in related work

– We provide a detailed overview of work discussing attacks and attackers on
CPS

– We propose an attacker framework and a more formal and standardized defi-
nition of attacker model for CPS

– Using that framework, we extract attacker profiles from related work, analyze
those profiles, and propose six attacker profile archetypes that distill common
intuition behind related work

In addition, we developed a complementary tool to support our review of the
related work. The tool allows the application of our taxonomy to classify related
work, comparisons between profiles and export filters, and contains the results
of our analysis. The tool is called APE (Attacker Profile Examiner) available
at [29].

Structure. In Sect. 2, we describe the scope of our review and aspects con-
sidered. We review the literature in Sect. 3 (attacks on CPS, categorizations of
attackers, (semi-) formal model of attacker). In Sect. 4 we analyze the related
works, showing a list of commonalities and metrics that we use to categorize the
related work. We propose an attacker model framework in Sect. 5, apply it to
the related work to obtain their attacker profiles, and analyze those profiles and
propose a set of our own profiles. We conclude the paper in Sect. 6.

2 Scope and Taxonomy for Related Work Review

We start by defining the scope of our related work review, we then provide
definitions which help us to classify the related work. Finally, we present the
taxonomy we use to summarize related work.

2.1 Scope of Our Review

We review the related work on: (i) attacks on CPS and their ad-hoc attacker mod-
els, (ii) works which profile attackers for CPS and (iii) works on generic attacker

On Attacker Models and Profiles for Cyber-Physical Systems 429

models for CPS. We start by reviewing works that discuss specific attackers
who target or leverage the physical layer in their attacks (mechanical, electrical
interactions). These works are found in the domain of public infrastructure (e.g.,
water [2] and power [20]). To limit the scope, we do not focus on attacks that are
only related to physical-layer wireless communication (e.g., key establishment,
jamming, anti-jamming, friendly jamming).

In addition, we review works that provide profiles for different attackers on
CPS, and works that consider more generic attacker models that include the
physical layer.

2.2 Terminology

Interestingly, we did not find general definitions of central terms related to mod-
els for CPS attackers. In [7], there is a first attempt in providing general defin-
itions for CPS security but the authors focus on attacks and properties rather
than attacker model. For that reason, we now provide a short description of the
central terminology we use in the remainder of this work.

A System under attack is an interacting or connected group of components
(soft- and hardware, humans) forming a unified whole and serving a common
purpose.

An Attacker is a group of human actors that collaborate to achieve a goal
related to the system under attack.

An Attacker Profile describes templates or classes of attackers. These profiles
are a generic description of the setting and intuition, and not an exhaustive
listing of possible actions, motivations, or capabilities of the attacker.

An Attacker Model (together with compatible system models) will ideally
fully characterize the possible interactions between the attacker and the system
under attack. In particular, the model will define constraints for the attacker
(e.g. finite computational resources, no access to shared keys)

A System Model characterizes relevant components of the system under
attack, to a level of detail that allows to determine all possible interaction of
the attacker with the system. We will not go into the details of the system
model since our work focuses on the attacker. Therefore, we will not distin-
guish between system models which consider (or not) risk or threat linked to
components of the system.

An Attack Model characterizes all potential interactions between the attacker
and a specific configuration of the system under attack and the specification of
the goal that the attacker wants to achieve with respect to the system under
attack. One can consider an attack model as an instantiation of the attacker
model on a specific scenario (i.e., system configuration).

2.3 Taxonomy

In our review of related work, we systematically analyze and summarize the
attacker models (or related models) that are used to describe the attacker. In
particular, we focus on the following aspects:

430 M. Rocchetto and N.O. Tippenhauer

1. If different attacker profiles are discussed, and how many
2. The dimensions used by authors to define the attacker
3. The number of actions types available to the attacker
4. Use of a system model (or constraints on the type of system)
5. Validation of attack(er) models
6. Generality of model (i.e., specific for one CPS or general attacker model)
7. Supporting case studies (and if they are ad-hoc, real)
8. Whether the authors considered time in their models
9. Terminology used by authors for the model, and how it fits to our

terminology
10. The main research goal of the reviewed work

3 Review of Attacker Definitions in Related Work

The idea of attacker models for CPS has been explored from different perspec-
tives. In this section, we provide a review of related works that focus on a spe-
cific case study or attacks which can be exploited on a CPS or a class of CPS
(Sect. 3.1). We then review common informal and semi-formal attacker profiles
that are often used in research and by the public (Sect. 3.2). Afterwards, we
review CPS-related attacker models (Sect. 3.3). We emphasize the key points we
have used in our taxonomy. For a more detailed description of our review we
refer to our tool available at [29].

3.1 Attacks on CPS

In the following, we provide a review of works which focuses on specific attacks
or (class of) CPS.
Amin et al. In [2], the authors perform security threat assessment of networked
control systems and Supervisory Control and Data Acquisition (SCADA) sys-
tems with regulatory and supervisory control layers. Authors do not define a
model of the system and their technique is specific for one case study. No dimen-
sions are explicitly considered, some assumptions are made on the knowledge of
the attacker and his resources. Specific actions for the attacker are not discussed,
attacks are considered as a general action.
Esfahani et al. In [12], the authors propose an approach for the identification
of security flaw in of electric power transmission systems. The authors do not
discuss profiles, dimensions or actions of the attacker model because the study
is focused on the modeling of the system and the aim is to perform risk analysis.
Krotofil et al. In [17], the authors discuss the importance of time in security
attacks to CPS. The discussion is specific for electric power grid. An attacker
model (called adversary model in the paper) is defined with DoS and false data
injection attacks as only actions. The only dimension of the attacker model is
identified with his goals. Authors apply their results to one case study.
Lin et al. In [19], the authors study vulnerabilities of distributed energy routing
processes by attack simulation. Authors focus on false data injection attacks and

On Attacker Models and Profiles for Cyber-Physical Systems 431

analyze their impact on the system model. The attacker model (called threat
model in [19]) can modify data and compromise component injecting malicious
codes. Authors consider the attacker’s knowledge of the system and ability to
attack the system (node compromise).
Liu et al. In [20], the authors define a new attack class against electric power
systems. The basic idea is that an attacker can inject malicious measurements
(attack) without being detected by any of the existing techniques for bad mea-
surement detection. Authors describe how to formally represent a system model
of a power grid and test their attacks against two ad-hoc examples.
Taormina et al. In [33], the authors define how to simulate cyber-physical
attacks on water distribution systems. EPANET [35] (a numerical modeling envi-
ronment) is used to define the system model along with the properties of each
component. The attacker model is informally defined by two actions: direct and
indirect attacks. These actions represent the knowledge of physical and virtual
attacks. The effectiveness of the technique is motivated on one case study.
Urbina et al. In [36], the authors discuss practical MitM (Man in the Middle)
attacks on ICS Fieldbus communications. They perform such an attack on a
water treatment testbed. The attacker model consists in a description of his
main characteristics which are divided into two different dimensions: objective
and resources.

3.2 Attacker Profiles

A number of authors defined, formally or semi-formally, attacker profiles. In the
following, we provide a summary of that related work.
Cardenas et al. In [5], the authors informally discuss some challenges for secur-
ing CPS. They start by identifying the lack of terminology and attacker models
for CPS. Authors informally define four attacker profiles (adversary models in
the paper) with respect to two dimensions. The authors highlight the impor-
tance of defining which are the specific attacks targeting CPS. No formal attack
model or case studies are provided.
Cardenas et al. In [7], the authors address the problem of sensor network secu-
rity focusing on SCADA systems. They propose a taxonomy for security of sensor
networks discussing security properties, the attacker model (threat model in [7]).
They distinguish between insider and outsider attacks and several dimensions
and sub-dimensions to rank the attacker (attacker profiles). Skills, costs and
distance are discussed in the paper. Authors do not define specific actions of
the attacker since they focus on the system model but they discuss a number of
attacks.

The physical distance between the attacker and the target (for wireless net-
works) is discussed in [8,27,32]. In particular, in [8], the authors define an
insider attacker and locality dimension to describe attackers for securing wireless
authentication.
Corman et al. In a talk at the RSA conference [9] in 2012, the authors presented
an high-level definition of several attacker profiles which they call adversaries.

432 M. Rocchetto and N.O. Tippenhauer

The authors defined several dimensions. Authors do not define a set of possible
attacks but provide some examples. Finally, we highlight that the work is not
published and no or a few details about profiles and the model in general are
provided.
Heckman. In [15] a comprehensive informal proposal of several attacker profiles
is presented in an industrial white paper. The author shows several dimensions to
categorize different attacker profiles. Even if the categorization describes several
different attacker profiles, there is no formal definition of attacker model and
there is no clear distinction between terrorists and hacktivists, and between basic
users and cybercriminals. Furthermore, the categorization does not consider any
physical aspect of the attacker focusing on cyber actions only. The author uses
the dimensions to rate the threat risk of each attacker profiles over one ad-hoc
case study.

A similar categorization for cyber attacker is defined in [28]. The authors
performed an extensive description of concrete metrics to categorize an attacker.
The work focuses on a subset of profiles without going too much into the details
of the dimensions distinguishing these profiles.

3.3 Formal Models for Attackers

We now provide an overview of related work on formal models for CPS attackers.
Adepu et al. In [1], the authors defines how to model a CPS along with an
attacker. The study focuses on a specific CPS (a water treatment system) and
the dimensions that are used to define the attacker can be summarized as:
components of the CPS (the target), the property an attacker wants to violate
and performance (impact of the attack). Actions are defined as steps of the
attack model.
Basin et al. In [4], the authors present a formal model for modeling and reason-
ing on security protocols that are using physical-layer properties such as the dis-
tance between communication partners. The authors define several dimensions
(time, agent locations, and physical properties of the communication network)
to describe physical properties of CPS (such as the physical distance between
communication partners). They then define the intruder as set of nodes of the
formalized CPS. Authors apply their model to four case studies.
Le May et al. In [13,18], the authors formally define a framework for the
identification of attacks in CPS. The authors define a set of abstract components
to describe an attack execution graphs (AEG) and an attacker model. The AEG
represents potential attack steps against the system, together with a formal
definition of the attacker using a set of six dimensions. This formalization has
been implemented in a framework called ADVISE where users can define their
own attacker models, e.g., defining the knowledge of the attacker with respect
to the AEG. Some attacker profiles are defined with respect to cost, payoff and
detection.
McEvoy et al. In [22], the authors present a variant of π-calculus to prove
security properties in the context of intrusion detection for SCADA systems.

On Attacker Models and Profiles for Cyber-Physical Systems 433

Authors define how to model a SCADA network along with an attacker model
(called agent-based adversary capability model in the paper). In contrast with
the DY model, the intruder is not the source and sink of all communications
but he can communicate by request. The dimensions considered are: distance,
topology of the network related to attacker actions and skills, the attacker can
subvert any process.
Mo et al. A survey on CPS security, but specific for power grid, is presented
in [24]. The authors formally describe how to model a power grid and provide
a description of possible attackers’ actions and goals. There is no mention to
attacker profiles but several general actions to describe the attacker are provided.
Finally, we notice that the terms adversary, attack and attacker model are used
as synonyms in the paper.
Orojloo et al. In [25], authors define an approach for modeling and evaluating
the security of CPS. They propose a model, based on semi-Markov chain, which
aims at predicting possible attacker’s decisions with respect to the search of both
cyber and physical attacks. The authors define five different dimensions. Finally,
they show how their technique can concretely be used against a simple ad hoc
case study.
Teixeira et al. In [34], authors define an approach for the modeling of
attacks and scenarios in network controlled system. They describe how to
define an attacker model using three main dimensions (along with several sub-
dimensions): knowledge, disclosure resources and disruption resources available
to the attacker. The authors take into account the stealthiness of an attacker.
The attacker model is general but constrained to networked controlled systems
and is tested on one test case.
Vigo. In [37], the author presents a formal definition of an attacker model for
CPS. The attacker model is presented along with a system model. The attacker
is define as a set of pairs representing locations in the network topology and
capabilities. Capabilities are defined as a set of tuples expressing actions, cost
(energy/time) and range (with respect to the topology) of the attacker. The
attacker is believed to perform two types of attacks: physical, against a device
and cyber against the communications

4 Discussion of Attackers in Related Work

We now summarize our findings, and show the results of applying our taxonomy
to the related work in Table 1. Then, we discuss each aspect of the taxonomy in
detail.
Profiles, Dimensions, and Actions. Seven works explicitly use different
attacker profiles, seventeen define dimensions and the vast majority use actions
to characterize the attacker. Just two works define a system model and perform
risk analysis without explicitly considering an attacker model. This shows the
trend of defining an attacker model to perform security analysis on CPS and, at
the same time, that there exist various way to model the attacker.

434 M. Rocchetto and N.O. Tippenhauer

Table 1. Summary of taxonomy of related work on attacker models and profiles for CPS

Publication #
P

ro
fi
le

s

#
D

im
en

si
o
n
s

#
A

ct
io

n
s

S
y
st

em
M

o
d
el

in
g

V
a
li
d
a
ti

o
n

G
en

er
ic

/
S
p
ec

ifi
c

#
T
es

t
C

a
se

s

T
im

e

T
er

m
in

o
lo

g
y

u
se

d

O
u
r

te
rm

in
o
lo

g
y

Research Goal

Amin et al. [2] 1 2 1 � � S 1 � AtkM AtkM Threat
Assessment

Esfahani et al. [12] 0 0 0 � � S 1 � SM SM Risk Analysis

Krotofil et al. [17] 0 1 1 � � S 1 � AdM AtM Security
Analysis

Lin et al. [19] 0 1 1 � � S 1 � TM AtM Attack
Simulation

Liu et al. [20] 0 3 1 � � S 2 � SM SM Attack
Simulation

Taormina et al. [33] 0 2 1 � � S 1 � AtM AtM Attack
Simulation

Urbina et al. [36] 1 4 1 � � S 1 � AtM AtkM Testing

Adepu et al. [1] 0 1 1 � � S 1 � AtM AtM Security
Analysis

Cardenas et al. [5] 4 2 1 � � G 0 � AdM AtP Overview

Cardenas et al. [7] 2 4 1 � � G 0 � TM AtM Risk Analysis

Corman et al. [9] 4 4 0 � � G 0 � Ad AtP Risk Analysis

Heckman [15] 9 5 0 � � G 1 � TM AtP Risk Analysis

Basin et al. [4] 0 2 2 � � G 4 � IM AtM Security
Analysis

Le May et al. [18] 4 8 0 � � G 2 � AdP AtM Risk Analysis

McEvoy et al. [22] 0 2 3 � � G 1 � Ad AtM Intrusion
Detection

Mo et al. [24] 0 0 8 � � G 0 � AtM AtM Survey

Orojloo et al. [25] 0 5 0 � � G 1 � SM SM Quantitative
Evaluation

Teixeira et al. [34] 0 4 0 � � G 1 � AdM AtM Security
Analysis

Vigo [37] 0 2 5 � � G 0 � AtM AtM Definition

�= argument discussed, �= not discussed, At=Attacker, I=Intruder,
Ad=Adversary, T=Threat, S=System, Atk=Attack, M=Model, P=Profile

One common aspect of the related work is that the attacker actions should
consider all the actions of the usual cyber attacks, e.g., read the network commu-
nication (sniffing) and modifying all or some of the messages (spoofing) with the

On Attacker Models and Profiles for Cyber-Physical Systems 435

ability of injecting new values. The authors commonly assume that the attacker
should not be identified with the network itself but, instead, be located some-
where in the network. In other words, following the rules defined by the topology
of the network. This gives to the attacker the possibility to divert a node and
then to decrypt (encrypt) the network traffic if the node contains the proper key.
System Modeling, Validation, and Test Cases. Roughly half of the
reviewed papers define how to create a model of a CPS, but only a few (six)
validate their model against an attacker model. Considering validation, simula-
tion, and implementation, we note that in general, only three papers show their
results on more than one test case.
Time. Most of the works take into account the notion of time as an important
feature to perform attacks since a CPS very often has different (sequential and/or
parallel) phases. An attack then has to be carefully timed to go through some of
these phases in a particular order or to not be detected by intrusion detection
systems.
Terminology. We note that there is no common terminology and attacker,
attack and threat model are usually used as synonyms. In Table 1 we propose
a mapping from the various terminologies used in the papers to the one we
proposed in Sect. 2.2.
Summary. From our review, we notice that the actions for the attacker model
for CPS have been defined in a common way, i.e., all the papers share the same
actions or the same intuitions on this aspect. However, they apply those actions
to different definitions of the concept of attacker models. We can group the
reviewed papers into two different categories, (i) the ones which use different
attacker profiles with different properties (e.g., to distinguish between insider and
a nation-state attackers) and (ii) the ones which define a set of dimensions, e.g.,
knowledge, to define one specific attacker model. Both groups aim at identifying a
set of useful characteristics of the attacker but the former, as showed in Table 1
is more focused on risk analysis and tries to handle several different attacker
instantiations while the latter is more system-specific and focuses on one generic
description of the attacker model.

One might ask which is the best way to define an attacker model or if there
exist a way to define one general attacker model in the context of CPS (e.g.,
as the DY model for security protocols); or if CPS are so heterogeneous that
we should define a variety of different profiles for the attacker. In the remainder
of this section, we provide insights to answer to these questions by discussing
different attacker profiles and dimensions found in the related work. We believe
that a common understanding of what are thought to be the key aspects of
the attacker model (in the context of CPS) can be useful for the identification
of a common definition. In Sect. 5 we propose a first steps in this direction by
providing an attacker framework and a more formal definition of attacker model
and profile.

436 M. Rocchetto and N.O. Tippenhauer

4.1 Profiles

The following classification is a collection of all the attacker profiles we have
found in the literature. The boundary between the different attacker profiles are
not well defined, and sometimes it is hard to classify a specific real-life attacker
as one specific profile.
Basic user [9,15], also known as script kiddie, unstructured hacker, hobbyist or
even crackers. Someone who uses already established and potentially automated
techniques to attack a system. This attacker has average access to hardware,
software, and Internet connectivity, similar to what an individual can obtain
through purchase with personal funds or by theft from an employer.
Insider [5,7,15,18], which for example can be disgruntled employees or a social
engineering victims. The employment position or the system privileges he owns
(e.g., user, supervisor, administrator) are tightly related to the damage he can
cause to the target. This type of attacker is of high importance for systems
that are mainly protected through air-gaps between the system network and the
outside world (often used in CPS).
Hacktivist [5,9,15]. A portmanteau word which combines hacker and activist,
as defined in [10]. This class of attackers uses their hacking abilities to promote
a political agenda. Often related to freedom of information (e.g., Anonymous).
Terrorist [5,15,18], also known as cyber-terrorist. Is a politically motivated
attacker who uses computers and information technology in general to cause
severe disruption or widespread fear [10,21].
Cybercriminal [5,7,9,15,18], sometimes generally called black hat hacker or
structured hacker. An attacker with an extensive security knowledge and skills.
This category of attackers takes advantage of known vulnerabilities, and poten-
tially has the knowledge and intention of finding new zero-day vulnerabilities.
The cyber-criminals’ goals can range from blackmailing to espionage (industrial,
foreign) or sabotage.
Nation-State [9,15,18], an attacker sponsored by a nation/state. Possibly
belonging to (or that used to belong to) a state organization for carrying out
offensive cyber operations [26]. His targets usually are public infrastructure sys-
tems, mass transit, power or water systems, and general intelligence.

4.2 Dimensions

By assigning quantitative or qualitative scores on the dimensions, a large set
of potential attacker configurations could be described. We now define a set of
dimensions extracted from the related work. The application of those definitions
to the related work is summarized in Table 2. Note that we have standardized
the names used for dimensions. Therefor, the names of the dimensions in Table 2
might be different from the one used in the related work. For readability and
lack of space we do not go into the details of the mapping which is defined in
the APE.

On Attacker Models and Profiles for Cyber-Physical Systems 437

Table 2. Dimensions proposed in the related work

A
im

-P
h
y
si

c
a
l

A
im

-V
ir

tu
a
l

R
e
so

u
rc

e
s

O
ff
e
n
si

v
e

D
is

ta
n
c
e

S
y
st

e
m

M
a
n
p
o
w

e
r

T
o
o
ls

C
re

d
e
n
ti

a
ls

C
a
m

o
u
fl
a
g
e

M
o
ti

v
a
ti

o
n

T
a
rg

e
t

A
ss

e
t

A
im

H
o
n
e
st

y

D
e
te

rm
in

a
ti

o
n

L
ik

e
li
h
o
o
d

K
n
o
w

le
d
g
e

A
tt

a
c
k

S
te

p

F
in

a
n
c
ia

l
S
u
p
p
o
rt

P
sy

c
h
o
lo

g
y

R
e
w

a
rd

E
a
sy

O
f
A

c
c
e
ss

P
h
y
si

c
a
l

N
e
tw

o
rk

D
is

c
lo

su
re

R
e
so

u
rc

e
s

D
is

ru
p
ti

o
n

R
e
so

u
rc

e
s

A
im

-V
ir

tu
a
l
(A

v
a
il
a
b
il
it
y
)

P
ro

to
c
o
ls

Adepu et al. [1] � �

Amin et al. [2] � � �

Basin et al. [4] � �

Cardenas et al. [5] � �

Cardenas et al. [7] � � � �

Corman et al. [9] � � � �

Esfahani et al. [12]

Heckman [15] � � � � �

Krotofil et al. [17] � �

Le May et al. [18] � � � � � � � � � �

Lin et al. [19] �

Liu et al. [20] � �

McEvoy et al. [22] � �

Mo et al. [24]

Orojloo et al. [25] � � � � �

Taormina et al. [33] � �

Teixeira et al. [34] � � � �

Urbina et al. [36] � � � �

Vigo [37] � �

– Financial support, expresses the budget that an attacker has to perform his
attacks.

– Manpower available, is used to differentiate between lone attackers and (small
to large) groups. This dimension expresses quantitatively the human resources
available to perform the attack.

– Tools (Resources) available, also known as attacklets, or actions in abstract
definition of attacker model, defines which types of tools are available to the
attacker. This dimension can be used to better understand which are the
countermeasures needed to protect a CPS.

– Camouflage or preference to stay hidden, expresses the aim and/or the ability
of the attacker to not be tracked down after or while performing an attack.

– Distance to the CPS. An attacker can be located in another country, within
WiFi range or possibly have direct access to the system.

– Knowledge, defines the knowledge of the attacker. It may refer to the knowl-
edge of the System, the technical knowledge (distinguish between Physical,
Network and Protocols) and attack knowledge (Offensive) which can be con-
sidered as sub-dimensions. In addition, some of the authors consider the Cre-
dentials dimension as related to the knowledge of the system.

438 M. Rocchetto and N.O. Tippenhauer

Note here that the knowledge of the attacker is intuitively always considered.
However, sometimes the knowledge (of the system or attacks) is hard-coded
into the system model and not explicitly considered as part of the attacker
model.

– Attack, defines which type of attack an attacker can perform, e.g., white, gray
or black box attack. This dimension can be used to determine whether obfus-
cation should be take into consideration as a protection against a particular
attacker profile.

– Target (e.g., CPS, valves, pumps, access points, information) identifies which
physical and logical parts of the system under attack are targeted by an
attacker profile.

– Motivations and Aim, which can be considered as a sub-dimension of target,
refer to the objective of the attacker. In some work, the authors details the
aim distinguishing between Physical or Virtual components of the system.

5 Profiles and a Generic Attacker Framework

In this section, we propose the draft of a formalized attacker framework that is
designed to encompass commonly used informal attacker models in other works.
The framework allows to define attacker profiles characterized by a number of
dimensions.

The idea behind our framework is that an attacker model can be described by
a set of dimensions. These dimensions can be instantiated to define an attacker
profile which characterize the key aspects of an attacker. We cannot prove that
our framework is complete, however, we have considered, expanded and struc-
tured all the aspects extrapolated from our review, i.e., the ones in Table 2.

5.1 Attacker Framework, Profile, Model, and System Model

From our literature review in Sect. 3, we found that attacker models are often
defined on different layer of abstractions. Before going into the details of our
framework, we propose a terminology to differentiate between those different
layers, and show how they are related (see Fig. 1).

Fig. 1. Proposed hierarchy of attacker framework, profiles, attack models and system
models.

An attacker framework is defined as a set of different, structured dimen-
sions which quantitatively represent a characteristic of an attacker. A metric

On Attacker Models and Profiles for Cyber-Physical Systems 439

is associated to each dimensions and when the dimensions are instantiated, the
framework produces an attacker profile. An attacker profiles is then an instanti-
ation of the set of dimensions defined by the attacker framework. For the sake of
readability, we provide the details of each dimension and sub-dimension in the
AppendixA.

Correspondingly, we define a system framework as a paradigm which pro-
vides different aspects (dimensions) of a CPS. By instantiating these aspects we
produce a system model. In practice, system models are often only considering a
small subset of the system under consideration due to the involved complexity.
Such reduced system models are nevertheless useful to define the scope of the
analysis. When we combine attacker profiles and system model (e.g., we run the
attacker profiles against a system model) searching for attacks, we obtain an
attack model.

There is a strong connection between the DY model and the attacker models
we have found in our literature review. One intuitive question is how we position
the DY model in our definitions. The DY model is defined as a set of actions
(e.g., encryption, decryption, concatenation), usually formalized as set of deduc-
tion rules. However, a set of constraints over the attacker capabilities is usually
defined along with the actions. To give some examples, in the verification of secu-
rity protocols, the DY is usually identified with the network (i.e., he can read all
the messages that are passing through the network) and perfect cryptography is
often assumed. In our review, the DY model is always defined along with some
constrains. As an example, the attacker’s position on the network topology is
considered in [4]. These constraints can be defined in one or more profiles of the
DY attacker model. Due to lack of space we will not go into the details of the
DY profile. A more detailed discussion on an extension of the DY (with physical
layer interactions) that takes into account some of the dimensions of our frame-
work can be found in [30]. In the remainder of this section, we standardize the
attacker profiles proposed in the related work.

5.2 Mapping Profiles in Related Work to Our Profiles

In order to standardize the attacker profiles we have first mapped the profiles
in the related work into our framework as showed in Table 3. Using WEKA [14]
(a machine learning tool) we have applied several machine learning algorithm
for clustering the profiles (results reported at [29]). However, the results show
that there is no general agreement between different authors on the definition of
the same or similar profiles (with an incorrectly clustered instances parameter
above 47%). The only exceptions are the insider profiles which are correctly
clustered together. We have then defined six archetypal profiles, based on the
descriptions in the related work, and showed that they are generalization of the
ones proposed in the related work.

We now define a profile distance metric to measure the distance between two
attacker profiles, and analyzed how well the profiles of related work cluster, and
fit to our generic profiles as defined in Sect. 5.3.

440 M. Rocchetto and N.O. Tippenhauer

Table 3. Categorization of attacker profiles found in the related work

Dimensions C
a
rd

e
n
a
s

[5
]
C

y
b
e
rc

ri
m

in
a
l

C
a
rd

e
n
a
s

[5
]
In

si
d
e
r

C
a
rd

e
n
a
s

[5
]
N

a
ti

o
n
S
ta

te

C
a
rd

e
n
a
s

[5
]
T
e
rr

o
ri

st

C
o
rm

a
n

[9
]
A

d
a
p
ti

v
e
P
e
rs

is
te

n
t

C
o
rm

a
n

[9
]
H

a
ck

ti
v
is

t

C
o
rm

a
n

[9
]
O

rg
a
n
iz

e
d
C

ri
m

e

C
o
rm

a
n

[9
]
S
k
id

d
ie

H
e
ck

m
a
n

[1
5
]
H

a
ck

ti
v
is

t

H
e
ck

m
a
n

[1
5
]
H

o
b
b
y
is

t

H
e
ck

m
a
n

[1
5
]
In

si
d
e
r

H
e
ck

m
a
n

[1
5
]
N

a
ti

o
n
S
ta

te

H
e
ck

m
a
n

[1
5
]
O

rg
a
n
iz

e
d
C

ri
m

e

H
e
ck

m
a
n

[1
5
]
S
c
ri

p
tK

id
d
ie

H
e
ck

m
a
n

[1
5
]
S
tr

u
c
tu

re
d
H

a
ck

e
r

H
e
ck

m
a
n

[1
5
]
T
e
rr

o
ri

st

H
e
ck

m
a
n

[1
5
]
U

n
st

ru
c
tu

re
d
H

a
ck

e
r

L
e

M
a
y

[1
8
]
D

is
g
ru

n
tl

e
d
E

m
p
lo

y
e
e

L
e

M
a
y

[1
8
]
L
o
n
e
H

a
ck

e
r

L
e

M
a
y

[1
8
]
N

a
ti

o
n
S
ta

te

L
e

M
a
y

[1
8
]
S
y
st

e
m

A
d
m

in
is

tr
a
to

r

L
e

M
a
y

[1
8
]
T
e
rr

o
ri

st

U
rb

in
a

[3
6
]
In

si
d
e
r

Knowledge � �� �� �� � � � � � �� �� �� �� � � �
Offensive �� �� � � � � � � �� �� � � �
Physical

Network �
Software �
System � �� � � � � �
Source code

Protocols �
Credentials � �� � � � � ��
Resources �� � � �� �� � � � �� � � � �� � �� �� � �� �� � ��
Distance � � � � � � �
Manpower � �
Effort

Tools � �� �� � �
Financial

support

� � � � � �
Psychology �� �� �� � �� � � �� � � � � � � �� � �� �� � � �� �� ��
Honesty �
Periodicity

Camouflage � �� � � �
Aim-Physical � ��
Integrity �
Confidentiality �
Availability � �
Determination � � �� � �� � �� � �� � � � � �
Strategy �� � � � � � � � �
Aim-Virtual � � � �� � � �� ��
Integrity �
Confidentiality � � � �� �
Availability � � � � � � �

A metric on each dimensions is expressed on the (strict) partially ordered set [�<��<�]

On Attacker Models and Profiles for Cyber-Physical Systems 441

5.3 Attacker Profile Archetypes

In Table 4, we give a more rigorous definition of the six common attacker profiles
(we described in Sect. 4.1) using our framework.

As it can be seen in Table 4, the honesty dimension is the same on all the
archetype. This is because all but one work [15] only consider dishonest attacker
profiles. Our terrorist profile is classified with low knowledge of offensive skills.
Changing this metric to an higher metric leads to a mismatch between the ter-
rorist profiles in the literature and the archetype.

Table 4. Categorization of proposed attacker profile archetypes

K
n
o
w

le
d
g
e

O
ff
en

si
v
e

P
h
y
si

ca
l

N
et

w
o
rk

S
o
ft

w
a
re

S
y
st

em

S
o
u
rc

e
co

d
e

P
ro

to
co

ls

C
re

d
en

ti
a
ls

R
es

o
u
rc

es

D
is

ta
n
ce

M
a
n
p
o
w

er

E
ff
o
rt

T
o
o
ls

F
in

a
n
ci

a
l
su

p
p
o
rt

P
sy

ch
o
lo

g
y

H
o
n
es

ty

P
er

io
d
ic

it
y

C
a
m

o
u
fl
a
g
e

S
tr

a
te

g
y

D
et

er
m

in
a
ti
o
n

A
im

-P
h
y
si

ca
l

In
te

g
ri

ty

C
o
n
fi
d
en

ti
a
li
ty

A
v
a
il
a
b
il
it
y

A
im

-V
ir

tu
a
l

In
te

g
ri

ty

C
o
n
fi
d
en

ti
a
li
ty

A
v
a
il
a
b
il
it
y

B �
C �� �� � � �� � � � � �� � � �� � �� �� � �� �� � �� � � � � � �� � �
H �� �� � � � � � � � �� � �� � �� � �� � � �� �� � � � � � �� � � �
I �� � � � �� � � � � �� � � �� �� � �� � � �� � �� �� �� �� �� �� � �� ��
N �� � � � � � � � � � � � � � � �� � � � � � � �� � � � � �� �
T � � � � � � � � � �� � �� � �� �� �� � � � � � �� � � � �� � �� ��
B=BasicUser, C=Cybercriminal, H=Hacktivist, I=Insider, N=NationState,
T=Terrorist. A metric on each dimensions is expressed on the (strict) partially
ordered set [�<��<�]

1. Basic User. Represents the lower bound of our profiles with all the dimensions
set to the lowest value. Usually, attacks from this type of profile are believed
to be very frequent. However, in the case of CPS might not be the case.

2. Cybercriminal. Advanced knowledge of network attacks but low of physical
layer attacks. Advanced tools and average financial support.

3. Hacktivist. Similar to the cybercriminal but with a lower financial support
but higher manpower support.

4. Insider. It is the only profile which has an advance knowledge of the system
because it has physical access to it. He has a structured strategy to perform
his attacks. His aim are physical properties of the system (e.g., damage the
system to attack its availability. He acts alone, with low budgets but with
dedicated tools.

5. Nation-State. On average the most powerful profile between the archetypes.
High offensive skills and tools, high resources and determination. The stealth-
iness of the attacks is very important.

6. Terrorist. Low offensive skills and average resources. The attacks mainly tar-
gets the physical availability of the system and their stealthiness is not impor-
tant.

442 M. Rocchetto and N.O. Tippenhauer

5.4 Validation of Proposed Profiles and Discussion

Motivated by the results obtained by the machine learning clustering phase, we
investigated if our archetypes generalize the related work. We used the Euclidean
distance on a n-dimensional space to calculate the distance between profiles as√∑n

i=1 (qi − pi)
2, where two profiles p and q are represented as two points in an

Euclidean n-dimensional space: p = (p1, . . . , pn) and q = (q1, . . . , qn). Each point
is defined by the metric associated to a dimension, mapping the poset [�<��<�]
to [1 < 2 < 3] (1, 2, 3 ∈ N).

In 21 cases out of 23, our profile archetype correctly matches to the expected
profile (see Table 5). That implies that (a) attacker models in related work are
based on commonly used implicit profiles, and (b) our profiles are closely approx-
imating the underlying intuition behind the commonly used profiles. That result
now allows to relate attacker profiles from related work with each other, and
could be used to complement those profiles with additional missing information
based on our archetypes.

There are two cases in which the expected mapping is not found. In [15] the
authors do not distinguish between a terrorist and a Nation-State profiles. In
fact, the nearest profile to Heckman [15] Terrorist is Nation-State. Furthermore,
the difference between an Hacktivist and Nation-State and Terrorist is not well
defined. As [15] is an industrial white paper, it could be that the author’s views
are somewhat diverging from the academic security community. In addition, we
note that there are six cases in which a profile has the same distance to multiple
archetypes. In that case, the archetypes cannot be distinguished only by the
subset of dimensions considered by the profile analyzed. That could indicate that
(a) the profiles in the related work are vaguely defined, or (b) our dimensions
do not yet appropriately capture all aspects intended by the original authors.

5.5 APE (Attacker Profile Analyzer)

To support our work we developed APE, an interactive command-line tool, using
Python. The tool is available as open source at [29]. APE allows the application
of our taxonomy to classify related work, definition of own attacker profiles using
our framework, and comparisons between profiles. Profiles can be exported to
several different formats (e.g. WEKA .arff), and the profiles we defined in this
paper are part of the tool.

We envision that other researchers can use our framework and APE to define
constraints during the security analysis, verification, or testing of CPS. Most
of the related work (e.g., in [4,18,37]) base their analysis on some constraints
(the same applies for security protocols when the DY is assumed to control the
network). One relevant example is the physical distance between the attacker
and the CPS which has a severe impact on the physical layer interactions of
the attacker. This and other dimensions have been used in a number of works
(e.g., [1,4,15,18]) to show different security flaws or attacks based on different
profiles. Our framework supports the modeler or the security analyst in the
generation of such constraints. In addition to theoretical analysis, our tool can

On Attacker Models and Profiles for Cyber-Physical Systems 443

Table 5. Distance of attacker profiles from related work to our proposed six profiles.
Columns represent the first, second, . . . , sixth best fit and the respective distance
metric value.

Profile #1 #2 #3 #4 #5 #6

Cardenas [5]
Cybercriminal

C (1.0) H (1.0) I (1.73) T (1.73) N (3.0) B (3.16)

Cardenas [5] Insider I (1.0) H (3.60) C (3.74) T (4.12) B (4.24) N (4.24)

Cardenas [5]
NationState

N (0.0) I (1.0) H (1.0) T (1.0) B (1.0) C (2.0)

Cardenas [5] Terrorist T (2.44) N (3.0) I (3.16) H (3.46) C (3.74) B (5.29)

Corman [9]
AdaptivePersistent

N (1.41) I (2.0) T (2.0) H (2.44) C (2.44) B (3.74)

Corman [9] Hacktivist H (1.41) C (1.41) I (2.0) T (2.0) N (3.46) B (4.24)

Corman [9]
OrganizedCrime

T (2.0) I (2.0) C (2.44) H (2.44) N (2.82) B (3.74)

Corman [9] Skiddie B (1.73) T (1.73) I (1.73) H (2.64) N (3.0) C (3.31)

Heckman [15]
Hacktivist

N (1.41) C (2.0) T (2.23) H (2.44) I (2.82) B (4.24)

Heckman [15] Hobbyist B (1.73) C (2.0) I (2.23) H (2.64) T (3.0) N (3.31)

Heckman [15] Insider I (1.0) C (1.41) H (1.73) T (1.73) B (2.64) N (2.64)

Heckman [15]
NationState

N (1.41) H (2.0) C (2.23) I (2.82) T (3.16) B (4.47)

Heckman [15]
OrganizedCrime

N (1.73) C (2.0) H (2.23) I (2.64) T (3.31) B (4.12)

Heckman [15]
ScriptKiddie

B (2.0) I (2.0) C (2.23) T (2.44) H (2.82) N (3.74)

Heckman [15]
StructuredHacker

C (1.41) N (1.73) H (2.0) I (2.23) T (3.60) B (3.87)

Heckman [15] Terrorist N (1.41) C (2.44) H (2.82) T (3.31) I (3.46) B (4.89)

Heckman [15]
UnstructuredHacker

H (1.41) T (1.73) C (2.0) I (2.23) B (2.23) N (2.64)

Le May [18]
Disgruntled
Employee

I (2.0) H (2.82) C (3.0) T (3.46) N (3.87) B (4.12)

Le May [18]
LoneHacker

C (1.73) H (2.0) T (3.16) N (3.31) B (3.87) I (4.0)

Le May [18]
NationState

N (1.41) C (2.23) H (2.82) T (3.87) I (4.79) B (5.09)

Le May [18] System
Administrator

I (1.73) H (3.87) C (4.0) T (4.58) N (4.69) B (5.09)

Le May [18] Terrorist T (2.23) H (2.23) C (2.23) B (3.0) N (3.60) I (4.0)

Urbina [36] Insider I (4.58) N (5.56) H (6.16) C (6.24) T (6.63) B (7.0)

#Expected 21 0 0 2 0 0

B=BasicUser, C=Cybercriminal, H=Hacktivist, I=Insider, N=NationState,
T=Terrorist, (Float)=Euclidean distance, X(x.x)=Expected mapping

444 M. Rocchetto and N.O. Tippenhauer

Fig. 2. Features available in Attacker Profile Examiner

be used to output constraints that can be applied when concretely testing a CPS
(Fig. 2).

6 Conclusion

In this work, we discussed attacker models for security research, in particular
for CPS. We started with a literature review, and defined a taxonomy of 10
different features that we applied to the literature. This lead us to the identifi-
cation of discrepancies and commonalities between different works. We grouped
the reviewed papers into two main classes (discussing profiles and dimensions):
publications that aim at profiling attackers, and that propose an attacker model.
We argued that these classes and dimensions should be the starting point for a
definition of a comprehensive attacker model. We then defined an attacker frame-
work and mapped the 23 attacker profiles from related work into that framework,
and defined a distance metric that allows us to compute overlap/discrepancies
between attacker models in related work. We used machine learning approaches
to cluster the attacker models from related work, but did not obtain good results
so far. We then manually constructed 6 attacker profiles, and show that they
match the profiles from the literature in 21/23 cases.

We wrote a tool to capture our attacker framework, and profiles proposed
by us and the related work. The tool showcases some of the benefits of more
structured approaches to attacker models: we use it to compare different profiles,
export profiles to tools such as WEKA, and produce structured representations
such as the tables in this work.

Acknowledgments. This work was supported by the National Research Foundation
of Singapore under grant NRF2014NCR-NCR001-40.

A Appendix: Subdimensions

We now summarize each top-most dimension: knowledge, resources, and phychol-
ogy. Each metric is defined between square brackets with the following order:
[1 < 2 < 3].

Finally, in AppendixA.4 we clarify the relation between a subset of our
dimensions and time.

On Attacker Models and Profiles for Cyber-Physical Systems 445

A.1 Knowledge

The knowledge dimension ([low, medium, high]) represents the understanding of
the system under attack and the expertise of the attacker (as in, [11,18,37] to
give some examples). The dimension is structured as follows.

– Offensive ([basic, intermediate, advanced]), determines the expertise of
the attacker with regard to the attacks known, e.g., attack methodologies,
attack patterns [23]. It is composed by three sub-dimensions: Physical ([basic,
intermediate, advanced]), Network ([basic, intermediate, advanced]) and
Software ([basic, intermediate, advanced]) which can be used to define the
offensive knowledge with a finer granularity considering different expertise of
the attacker.

– System ([basic, intermediate, advanced]), expresses the knowledge of
the system under attack/analysis, e.g., the set of components of a
CPS [37] or entities in a security protocol [11]. It is composed by
three sub-dimensions: Source code ([blackBox, grayBox,whiteBox]), Proto-
cols ([blackBox, grayBox,whiteBox]), and Credentials ([user, supervisor,
admin]) which can be used to define the knowledge with respect to the these
three general aspects of the system (e.g., CPS).

A.2 Resources

The resource dimension ([low, medium, high]) represents the resources available
to the attacker [15,28,32]. It can be used to limit the practical capabilities of the
attacker. This dimension is widely accepted in our related work. This dimension
is structured in the following different sub-dimensions.

– Distance ([far, near, physicalAccess]), expresses the physical distance of
the attacker with respect to the target and may limit his interactions with
the system. This is particularly important with respect to CPS which can be
isolated from the Internet or when using WiFi networks, e.g., [32].

– Manpower ([low, medium, high]), represents the human resources available to
the attacker, e.g., to distinguish between lone attackers and (small to large)
groups.

– Tools ([basic, intermediate, advanced]), also know as attacklets, defines
which types of tools are available to the attacker for performing the attack.

– Financial support ([low, medium, high]), expresses which is the budget that an
attacker has in order to perform an attack. Discriminating between attacker
with low or high budget can be helpful, e.g., for risk assessments.

– Effort ([low, medium, high]), defines the effort an attacker will put into his
attacks. How deeply the attacker will explore possible/different attacks of the
system.

A.3 Psychology

The psychology dimension ([weak, average, strong]) represents a set of aspects
which are not directly related to the knowledge or resources of the attacker.

446 M. Rocchetto and N.O. Tippenhauer

These aspects are related to the motivations or behavioral aspects of the
attacker [5,6,15,18]. This dimension is structured in the following different sub-
dimensions.

– Aim ([knowledge, manipulation, damage]), identifies which parts of the sys-
tem are more likely to be interesting for the attacker. There are two sub-
dimensions which discriminates between virtual and physical components:
Virtual ([knowledge, manipulation, damage]) and Physical ([knowledge,
manipulation, damage])

– Periodicity ([once, anytime, continuous]), defines which is the frequency with
which an attacker will try to attack the system. Some system are more incline
to be attacked than other, for example, if a CPS is exposed on the Internet
the periodicity of attacks will be higher with respect to a CPS isolated from
the Internet.

– Determination ([firstAttempt, severalAttempts, untiring]), Defines how
long the attacker will perform the attacks on the system. As an example, the
effort of the attacker should grow after each assessment performed on a system.

– Honesty ([malicious, benign]), discriminates between benign (White Hat
attackers or “honest but curious” [15]) and malicious attackers (Black Hat).

– Camouflage ([visible, stealthy, invisible]), is the ability or preference of
an attacker to stay hidden.

– Strategy ([random, brute-force, structured]), refers to the attack strategy
adopted by the attacker. Random if an attacker will randomly select some
attacks or some attack patterns. Brute-force when the attacker tries all possible
attack pattern and structured when an optimal subset of attack patter is chosen.

– Aim-Physical and Aim-Virtual ([low, medium, high]), represent the objective
of the attacker with respect to physical and virtual components. They are both
divided into the three sub-dimensions: Integrity, Confidentiality, Availability.

A.4 Time

As depicted in Fig. 3, different aspects related to time have been captured as a
combination of the three dimensions: effort, periodicity and determination.

The effort represents how deeply the attacker will try to attack the system
during each attack. The determination is the duration of each attack and the
periodicity expresses the distribution of attacks over time.

Fig. 3. Time related metrics

On Attacker Models and Profiles for Cyber-Physical Systems 447

References

1. Adepu, S., Mathur, A.: An investigation into the response of a water treatment
system into cyber attacks. In: IEEE Symposium on High Assurance Systems Engi-
neering (HASE) (2015)

2. Amin, S., Litrico, X., Sastry, S., Bayen, A.: Cyber security of water SCADA sys-
tems; Part I: analysis and experimentation of stealthy deception attacks. IEEE
Trans. Control Syst. Technol. 21(5), 1963–1970 (2013)

3. Amin, S., Litrico, X., Sastry, S., Bayen, A.: Cyber security of water SCADA sys-
tems; Part II: attack detection using enhanced hydrodynamic models. IEEE Trans.
Control Syst. Technol. 21(5), 1679–1693 (2013)

4. Basin, D., Capkun, S., Schaller, P., Schmidt, B.: Formal reasoning about physical
properties of security protocols. Trans. Inf. Syst. Secur. (TISSEC) 14(2), 16 (2011)

5. Cárdenas, A.A., Amin, S.M., Sinopoli, B., Giani, A., Perrig, A., Sastry, S.S.: Chal-
lenges for securing cyber physical systems. In: Workshop on Future Directions in
Cyber-physical Systems Security, DHS, July 2009

6. Cárdenas, A.A., Baras, J.S., Evaluation of classifiers: practical considerations for
security applications. In: AAAI Workshop on Evaluation Methods for Machine
Learning (2006)

7. Cárdenas, A.A., Roosta, T., Sastry, S.: Rethinking security properties, threat mod-
els, and the design space in sensor networks: a case study in SCADA systems. Ad
Hoc Netw. 7(8), 1434–1447 (2009)

8. Chang, S.-Y., Hu, Y.-C., Liubook, Z.: Securing wireless medium access control
against insider denial-of-service attackers. In: Proceedings of Conference on Com-
munications and Network Security (CNS) (2015)

9. Corman, J., Etue, D.: Adversary ROI.: Evaluating security from the threat actor’s
perspective (2012)

10. Denning, D.E.: Activism, hacktivism, and cyberterrorism: the internet as a tool
for influencing foreign policy. In: Ronfeldt, D. (ed.) Networks and Netwars:
The Future of Terror, Crime, and Militancy. RAND Corporation, Santa Monica
(2001)

11. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theor. 29(2), 198–207 (1983)

12. Esfahani, P., Vrakopoulou, M., Margellos, K., Lygeros, J., Andersson, G., Cyber
attack in a two-area power system: impact identification using reachability. In:
American Control Conference (ACC), pp. 962–967, June 2010

13. Ford, M.D., Keefe, K., LeMay, E., Sanders, W.H., Muehrcke, C.: Implementing
the ADVISE security modeling formalism in möbius. In: IEEE/IFIP Conference
on Dependable Systems and Networks (DSN) (2013)

14. Hall, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18
(2009)

15. Heckman, R.: Attacker classification to aid targeting critical systems
for threat modelling and security review (2005). www.rockyh.net/papers/
AttackerClassification.pdf. Accessed 23 Oct 2015

16. Knapp, E.D., Samani, R.: Applied Cyber Security and the Smart Grid. Elsevier
Syngress, Boston (2013)

17. Krotofil, M., Cárdenas, A.A., Manning, B., Larsen, J., CPS: driving cyber-physical
systems to unsafe operating conditions by timing dos attacks on sensor signals.
In: Proceedings of the Computer Security Applications Conference (ACSAC), pp.
146–155. ACM (2014)

www.rockyh.net/papers/AttackerClassification.pdf
www.rockyh.net/papers/AttackerClassification.pdf

448 M. Rocchetto and N.O. Tippenhauer

18. LeMay, E., Ford, M.D., Keefe, K., Sanders, W.H., Muehrcke, C.: Model-based secu-
rity metrics using adversary view security evaluation (ADVISE). In: Proceedings
of Conference on Quantitative Evaluation of Systems, QEST (2011)

19. Lin, J., Yu, W., Yang, X., Xu, G., Zhao, W.: On false data injection attacks against
distributed energy routing in smart grid. In: Proceedings of the Conference on
Cyber-Physical Systems (ICCPS) (2012)

20. Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estimation
in electric power grids. ACM Trans. Inf. Syst. Secur. (TISSEC) 14, 13 (2011)

21. Matusitz, J.: Cyberterrorism: postmodern state of chaos. Inf. Secur. J. Glob. Per-
spect. 17(4), 179–187 (2008)

22. McEvoy, T.R., Wolthusen, S.D.: A formal adversary capability model for SCADA
environments. In: Xenakis, C., Wolthusen, S. (eds.) CRITIS 2010. LNCS, vol. 6712,
pp. 93–103. Springer, Heidelberg (2011)

23. MITRE. Common attack pattern enumeration and classification (capec)
24. Mo, Y., Kim, T.-H., Brancik, K., Dickinson, D., Lee, H., Perrig, A., Sinopoli, B.:

Cyber-physical security of a smart grid infrastructure. Proc. IEEE 100(1), 195–209
(2012)

25. Orojloo, H., Azgomi, M.A.: A method for modeling and evaluation of the secu-
rity of cyber-physical systems. In: ISC Conference on Information Security and
Cryptology (ISCISC) (2014)

26. Ottis, R.: Theoretical model for creating a nation-state level offensive cyber capa-
bility. In: European Conference on Information Warfare and Security (2009)

27. Papadimitratos, P., Poturalski, M., Schaller, P., Lafourcade, P., Basin, D.,
Capkun, S., Hubaux, J.-P.: Secure neighborhood discovery: a fundamental element
for mobile ad hoc networking. IEEE Commun. Mag. 46(2), 132–139 (2008)

28. Parker, T., Shadow, E., Stroz, E., Devost, M.G., Sachs, M.H.: Cyber Adversary
Characterization: Auditing the Hacker Mind. Syngress Publishing Inc., Rockland
(2004)

29. Rocchetto, M., Tippenhauer, N.O.: APE (Attacker Profile Examiner) (2016).
http://research.scy-phy.net/ape/

30. Rocchetto, M., Tippenhauer, N.O., CPDY: extending the Dolev-Yao attacker with
physical-layer interactions. In: Proceedings of the International Conference on For-
mal Engineering Methods (ICFEM) (2016). Preprint available on arXiv

31. SPaCIoS. Deliverable 3.3.2: Methodology and technology for vulnerability-driven
security testing (final version) (2014). http://www.spacios.eu

32. Steinmetzer, D., Schulz, M., Hollick, M., Lockpicking physical layer key exchange:
weak adversary models invite the thief. In: Proceedings of the ACM Conference
Wireless Security (WiSeC) (2015)

33. Taormina, R., Galelli, S., Tippenhauer, N.O., Salomons, E., Ostfeld, A.: Simula-
tion of cyber-physical attacks on water distribution systems with EPANET. In:
Proceedings of Singapore Cyber Security R&D Conference (SG-CRC), January
2016

34. Teixeira, A., Pérez, D., Sandberg, H., Johansson, K.H.: Attack models and sce-
narios for networked control systems. In: Proceedings of the Conference on High
Confidence Networked Systems (HiCoNS), pp. 55–64. ACM (2012)

35. United States Environmental Protection Agency. Epanet: Software that models the
hydraulic and water quality behavior of water distribution piping systems. www.
epa.gov/nrmrl/wswrd/dw/epanet.html

http://research.scy-phy.net/ape/
http://www.spacios.eu
www.epa.gov/nrmrl/wswrd/dw/epanet.html
www.epa.gov/nrmrl/wswrd/dw/epanet.html

On Attacker Models and Profiles for Cyber-Physical Systems 449

36. Urbina, D., Giraldo, J., Tippenhauer, N.O., Cardenas, A.: Attacking fieldbus com-
munications in ICS: applications to the SWaT testbed. In: Proceedings of Singapore
Cyber Security R&D Conference (SG-CRC), January 2016

37. Vigo, R.: The cyber-physical attacker. In: Ortmeier, F., Daniel, P. (eds.) SAFE-
COMP Workshops 2012. LNCS, vol. 7613, pp. 347–356. Springer, Heidelberg (2012)

Towards the Automated Verification
of Cyber-Physical Security Protocols:

Bounding the Number of Timed Intruders

Vivek Nigam1(B), Carolyn Talcott2, and Abraão Aires Urquiza1

1 Federal University of Paráıba, João Pessoa, Brazil
vivek@ci.ufpb.br, abraauc@gmail.com
2 SRI International, Menlo Park, USA

clt@csl.sri.com

Abstract. Timed Intruder Models have been proposed for the
verification of Cyber-Physical Security Protocols (CPSP) amending the
traditional Dolev-Yao intruder to obey the physical restrictions of the
environment. Since to learn a message, a Timed Intruder needs to wait
for a message to arrive, mounting an attack may depend on where Timed
Intruders are. It may well be the case that in the presence of a great num-
ber of intruders there is no attack, but there is an attack in the presence
of a small number of well placed intruders. Therefore, a major challenge
for the automated verification of CPSP is to determine how many Timed
Intruders to use and where should they be placed. This paper answers
this question by showing it is enough to use the same number of Timed
Intruders as the number of participants. We also report on some prelim-
inary experimental results in discovering attacks in CPSP.

1 Introduction

The Dolev-Yao intruder model is one of the cornerstones for the success of pro-
tocol verification being used in most verification tools. The protocol security
literature contains a number of properties about the Dolev-Yao intruder, many
of them vital for automated verification. For instance, it has been shown that
protocol security verification is complete when considering only a single Dolev-
Yao intruder in the following sense: if there is an attack in the presence of one or
more (colluding) Dolev-Yao intruders, then the same attack with a single Dolev-
Yao intruder is possible [4]. Such result greatly simplifies the implementation of
tools as it is enough to use only one Dolev-Yao intruder.

However, for the important class of Cyber-Physical Security Protocols
(CPSP), the Dolev-Yao intruder model is not suitable. CSPS normally rely on
the physical properties of the environment where sessions are carried out to
establish some physical properties. For example, Distance Bounding Protocols
are used to infer an upper-bound on the distance between two players V , the
verifier, and P , the prover. It works as follows:

V −→ P : m
P −→ V : m′

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 450–470, 2016.
DOI: 10.1007/978-3-319-45741-3 23

Towards the Automated Verification of Cyber-Physical Security Protocols 451

Fig. 1. The dots are protocol participants and the crosses are intruders.

The verifier sends a challenge m remembering the time t1, when this message is
sent. The prover responds to the challenge, m′, and by measuring the round-trip
time of the challenge response round, the verifier can compute (using assump-
tions on the transmission channel used) an upper bound on the distance to the
prover.

It is easy to check that the Dolev-Yao intruder is not suitable for CPSP ver-
ification, as the Dolev-Yao intruder does not obey the physical properties of the
system. As the Dolev-Yao intruder controls the network, he can receive the chal-
lenge m and instantaneously respond m′ to the verifier’s challenge. There have
been, therefore, proposals to amend the Dolev-Yao intruder model to CSPS [3,16]
in the form of Timed Dolev-Yao models. These have been used to prove general
decidability of important properties of CSPS [3,15] and prove the security of
protocols using theorem provers.

In contrast with the traditional Dolev-Yao intruder, who is the whole net-
work, a timed intruder is placed at some location and in order to learn a message,
must wait until the message arrives to that location. A consequence of this is
that a greater number of colluding intruders may not do as much damage as a
smaller number of intruders that are better placed. For example, consider Fig. 1.
With a distribution of intruders shown to the left, there may not be an attack as
it might take too long for intercepting and forwarding messages among intrud-
ers (illustrated by the dashed lines), while there may be an attack with the
distribution of intruders shown to the right.

The main contribution of this paper is to answer the question: How many
intruders are enough for verification and where should they be placed? We prove
that it is enough to consider one intruder per protocol participant, thus bounding
the number of timed intruders. This result greatly simplifies automated CSPS
verification as the specifier no longer has to guess how many timed intruders to
consider and where to place them.

Our second contribution is a general specification language, which extends
strand spaces [25] by allowing for the symbolic representation of time. Instead of
instantiating time variables and time constraints with explicit values, the seman-
tics of our language accumulates symbolic time constraints. An execution using
symbolic time constraints corresponds to a set of possible concrete executions,
considerably reducing state-space. We implemented a prototype of our language
in Maude [8] with SMT support. Our preliminary experiments show that it is
possible to find attacks traversing few states. While we do not claim (yet) to
have a complete tool, our first results are promising.

452 V. Nigam et al.

This paper is structured as follows: Sect. 2 specifies the syntax of our pro-
tocol specification language and its semantics extending Strand Spaces [25]. We
introduce the Timed Intruder Model in Sect. 3. Section 4 contains the definition
of the Timed Intruder Completeness problem and a solution to it. We revisit
some examples in Sect. 5 briefly commenting on our prototype implementation.
Finally we conclude by reviewing related and future work in Sect. 6.

2 A Specification Language for Cyber-Physical Security
Protocols

We start first by specifying the syntax of our CPSP specification language with
symbolic time variables and symbolic time constraints. We exemplify the spec-
ification of protocols using our language. Then, we formalize the operational
semantics of our language by extending Strand Spaces [25] to include time
variables.

2.1 Syntax

Message Expressions. We assume a message signature Σ of constants, and func-
tion symbols. Constants include nonces, symmetric keys and player names. The
set of messages is constructed as usual using constants, variables and at least
the following function symbols:

sk(p) Denoting the secret key of the player p;
pk(p) Denoting the public key of the player p;
enc(m, k) Encryption function denoting the encryption of m using key k;
{m1,m2, . . . ,mn} Tuple function denoting a list of messages m1,m2, . . . ,mn;

where c1, c2, . . . range over constants, n1, . . . , nn range over nonces, k1, k2, . . .
range over symmetric keys, p1, p2 . . . range over player names, v1, v2, . . . range
over variables, and m1,m2, . . . range over messages. For example, the message
enc({v1, enc(c, k)}, pk(p)) denotes the encryption using the public key of p of the
pair of messages v1 (not instantiated) and enc(c, k). We define (pk(p))−1 = sk(p)
and k−1 = k if k is a symmetric key. We also write interchangeably the singleton
tuple {m} and m.

For a given scenario with some protocol session instances, we are going to
distinguish the players that are participating in the protocol sessions, e.g., as ver-
ifiers and as provers, which we call protocol participants (briefly participants),
from the Timed Intruders which are not participating explicitly in the proto-
col sessions in the given scenario, but are simply manipulating messages and
possibly interacting with the participants. The symbols p1, p2 . . . will range over
participant names while ti1, ti2, . . . will range over the names of such Timed
Intruders.

Towards the Automated Verification of Cyber-Physical Security Protocols 453

Time Expressions. We also assume a time signature Ξ which is disjoint to the
message alphabet Σ. It contains:

r1, r2, . . . A set of numbers;
tt1, tt2, . . . , A set of time variables including the special variablecur;
+, −, ×, /, floor, ceiling, . . . A set of arithmetic symbols and other function symbols.

Time Expressions are constructed inductively by applying arithmetic sym-
bols to time expressions. For example ceiling((2+ tt+cur)/10) is a Time Expres-
sion. The symbols tr1, tr2, . . . range over Time Expressions. We do not constrain
the set of numbers and function symbols in Ξ. However, in practice, we allow
only the symbols supported by the SMT solver used. All examples in this paper
will contain SMT supported symbols (or equivalent). Finally, the time variable
cur will be a keyword in our protocol specification language denoting the current
global time.

Definition 1 (Symbolic Time Constraints). Let Ξ be a time signature. The
set of symbolic time constraints is constructed using time expressions. Let tr1, tr2
be time expressions, then

tr1 = tr2, tr1 ≥ tr2 tr1 > tr2, tr1 < tr2, and tr1 ≤ tr2

are Symbolic Time Constraints.

For example, cur+10 < floor(tt−5) is a Time Constraint. The symbols tc1, tc2, . . .
will range over Time Constraints.

Finally, we let b1, b2, . . ., range over boolean expressions, which include timed
comparison constraints. We also allow for checking whether two messages m1

and m2 can be unified, e.g., {v1, v2} :=: {p1, k1} evaluates to true as they can
be unified by the substitution {v1 �→ p1, v2 �→ k1}.

Definition 2 (Timed Protocols). The set of Timed Protocols, PL, is com-
posed of Timed Protocol Roles, pl, which are constructed by using commands as
specified by the following grammar, where b is a boolean expression:

pl := nil Empty Protocol
| (new v), pl Fresh Constant
| (+m), pl Message Output
| (+m # tc), pl Timed Message Output
| (−m), pl Message Input
| (−m # tc), pl Timed Message Input
| (if b then pl1 else pl2) Conditional
| (if b # tc then pl1 else pl2) Timed Conditional

We explain some examples intuitively before we formalize the semantics of
our language in the following section. We will elide nil whenever it is clear from
the context.

454 V. Nigam et al.

Example 1. The following program specifies the verifier of a (very simple) dis-
tance bounding protocol:

(new v), (+v # tt = cur), (−v # cur ≤ tt + 4)

It creates a fresh constant and sends it to the prover, remembering the current
global time by assigning it to the time variable tt. Finally, when it receives the
response v it checks whether the current time is less than tt + 4.

Example 2. Timed conditionals can be used to specify the duration of opera-
tions, such as checking whether some message is of a given form. In practice,
the duration of these operations can be measured empirically to obtain a finer
analysis of the protocol [6].

For example, consider the following protocol role:

(new v), (+v), (−{venc, vmac} # tt0 = cur),
if (vmac :=: enc(venc, kM)) # tt1 = tt0 + ttMac

then (if (venc :=: enc(v, kE)) # tt2 = tt1 + ttEnc)
then (+done # cur = tt2) else (+error # cur = tt2))

else (+error # cur = tt1)

This role creates a fresh value v and sends it. Then it is expecting a pair of two
messages vmac and venc, remembering at time variable tt0 when this message
is received. It then checks whether the first component vmac is of the form
enc(venc, kM)), i.e., it is the correct MAC. This operation takes ttmac time units.
The time variable tt1 is equal to the time tt0 + ttmac, i.e., the time when the
message was received plus the MAC check duration. If the MAC is not correct,
an error message is sent exactly at time tt1. Otherwise, if the first component,
vMAC , is as expected, the role checks whether the second component, venc, is
an encryption of the form enc(v, kE)), which takes (a longer) time ttenc. If so it
sends the done message, otherwise the error message, both at time tt2 which is
tt1 + ttenc.

We will need to identify a particular command in a Timed Protocol Role. We
use a string of the form i1.i2.i3.in, called position and denoted by ī, where
each ij ∈ {1, 2} to specify a path in the control flow of the Timed Protocol. For
example, 1.1.1.1.2 in Example 2 leads to (+error # cur = tt1). We denote by
PS(pl) the set of strings representing the paths in the Timed Protocol Role pl.

2.2 Timed Strand Spaces and Bundles

We formalize the semantics of Timed Protocols by extending Strand Spaces and
Bundles [25] to include time constraints and a network topology.

Network Topology. Messages take time to travel between agents, both honest
players and intruders. The network model is specified by representing the time a
message needs to travel from any agent a to any agent b, specified by td(a, b) using

Towards the Automated Verification of Cyber-Physical Security Protocols 455

a function that takes two names and returns a number. Typically, td(a, a) = 0,
that is the time for a message sent from a player to reach himself is 0, but we
do not need to enforce this. We also assume the following axiom for all players
a, a1, . . . , an, a′ (with 1 ≤ n):

td(a, a′) ≤ td(a, a1) + td(a1, a2) + · · · + td(an, a′) (1)

That is, it is faster for a message to travel directly from a to a′, then to first
travel through a1, . . . , an. This is similar to the usual triangle inequality in basic
geometry.

A given scenario with some protocol session instances includes the proto-
col participants (or simply participants), P = {p1, . . . , pn} and a set of Timed
Intruders I = {ti1, . . . , tim}, who may be manipulating messages. The Network
Topology is composed by two disjoint functions td = tdP �tdI defined as follows:

td(a, b) =
{
tdP(a, b) if a, b ∈ P
tdI(a, b) otherwise

Thus, tdP specifies the time messages take to travel among participants, while
tdI specifies the time messages take to travel between Timed Intruders, between
a Timed Intruder and a participant and between a participant and a Timed
Intruder.

Remark 1. Here we are assuming that two agents share a single transmission
channel. We leave to future work how to incorporate different transmission chan-
nels. One way to do so is to add another parameter to td, which would imply
the addition of more axioms. If multiple transmission channels are allowed, then
it may well be the case that Eq. 1 does not hold as some participants might use
much faster transmission channels. While we leave a more careful analysis of such
cases to future work, we strongly believe that our completeness theorem (Theo-
rem 1) still holds (see Remark 2) as one can assume that intruders communicate
among themselves using the fastest available transmission medium.

The following definitions extend Strands and Bundles to include time vari-
ables capturing the semantics of Timed Protocols. A Timed Protocol Role is
ground if it does not contain variables.

Definition 3. A Timed Strand Space is a set Π and a trace mapping tr : Π −→
P ×GPL, where P is the set of player names {p1, . . . , pn} and GPL is the set of
Ground Timed Protocol Roles. We denote by tr(s)1 the player name and tr(s)2
the Timed Protocol Role of a strand s ∈ Π.

For the remainder we fix a Timed Strand Space [Π, tr].

Definition 4. The Timed Strand Space Graph, G = 〈N ,⇒ ∪ →〉, has nodes N
and edges ⇒ and → as defined below.

1. A node n is a tuple 〈p, s, ī〉@tt with s ∈ Π, p = tr(s)1, ī ∈ PS(tr(s)2) is a
string identifying a command in the Timed Protocol, and tt is a time variable
timestamping the node n. The set of nodes is denoted by N ;

456 V. Nigam et al.

2. If n = 〈p, s, ī〉@tt, we denote by term(n), the command at position ī in tr(s)2;
3. If n1 = 〈p, s, ī〉@tt1 and n2 = 〈p, s, ī.j〉@tt2 are in N , then there is an edge

n1 ⇒ n2;
4. For two nodes n1, n2 ∈ N , there is an edge n1 → n2 if and only if term(n1) is

of the form +m or +m # tc1 and term(n2) is of the form −m or −m # tc2;
5. If a node n ∈ N , term(n) = new c, then c originates on n, that is, all nodes

n′ such that term(n′) contains c are such that n (⇒ ∪ →)∗ n′, where (·)∗ is
the reflexive and transitive closure operator.

Definition 5. Let td be a Network Topology and let C = 〈NC ,→C ∪ ⇒C〉 be a
subgraph of G = 〈N ,⇒ ∪ →〉. The Timed Constraint Set of C over td, denoted
by T C(C, td), is the smallest set of Time Constraints specified as follows:

1. If n = 〈p, s, ī〉@tt ∈ NC, such that term(n) is of the form ±m # tc or
if b # tc, then tc′ ∈ T C(C, td) where tc′ is the Time Constraint obtained by
replacing cur by tt;

2. If 〈p, s, ī〉@tt1 ⇒C 〈p, s, ī.j〉@tt2, then tt2 ≥ tt1 ∈ T C(C, td);
3. If 〈p1, s1, ī1〉@tt1 →C 〈p2, s2, ī2〉@tt2, then tt2 ≥ tt1 + td(p1, p2) ∈ T C(C, td).

Intuitively, the ⇒ specifies the sequence of actions carried out by a protocol
session participant, while the → specifies the interactions between protocol sess-
sion participants. However, not all timed strand space graph will correspond to
possible executions. Thus, we introduce Timed Bundle which is a subset of the
Timed Strand space graph, playing a similar role of Bundles for Strand Spaces.

Definition 6. Let td be a Network Topology. Let →C⊆→ and ⇒C⊆⇒ and sup-
pose C = 〈NC ,→C ∪ ⇒C〉 is a sub-graph of 〈N ,⇒ ∪ →〉. C is a Timed Bundle
over td if:

1. C is finite and acyclic;
2. n2 ∈ NC is Message Input or a Timed Message Input, then there is a unique

n1 ∈ NC such that n1 →C n2;
3. n2 ∈ NC and n1 ⇒ n2, then n1 ∈ NC, and n1 ⇒C n2;
4. n = 〈p, s, ī〉 is a node such that term(n) is of the form if b or if b # tc and

b is evaluated to true, then n ⇒C 〈p, s, ī.1〉 and n �C 〈p, s, ī.2〉; otherwise
n ⇒C 〈p, s, ī.2〉 and n �C 〈p, s, ī.1〉;

5. the Timed Constraint Set of C over td is satisfiable, i.e., there is a substitution
σ, called model of T C(C, td), replacing all time variables in T C(C, td) by Real
numbers so that all inequalities in T C(C, td) are true.

Example 3. The following is a graphical representation for a Timed Bundle using
the Distance Bounding Protocol described in Example 1:

Towards the Automated Verification of Cyber-Physical Security Protocols 457

It involves two participants p1 and p2 which simply exchange a fresh value c.1 Its
Timed Constraint Set should be satisfiable for the assumed Network Topology
specified by the function td:

{
tt5 ≥ tt4, tt3 ≥ tt2, tt2 ≥ tt1, tt = tt2, tt4 ≥ tt2 + td(p1, p2), tt3 ≥ tt5 + td(p2, p1), tt3 ≤ tt + 4

}

Notice that the use of the time symbols in this representation means that this
single object specifies a possibly infinite collection of executions of the Dis-
tance Bounding Protocol, where the time symbols are instantiated by concrete
timestamps taken from the set of non-negative Real numbers R

+. This com-
pact representation greatly reduces the state space during automated protocol
verification. In our prototype implementation, we use an SMT solver to check
whether the set of Time Constraints is satisfiable or not.

Finally, consider the following specification (new v), (−v). This specification
creates a fresh constant and then expects v as input. Since this is a fresh constant
and is never sent, it will never be received. The condition (5) in Definition 4
captures this restriction, as it disallows an → edge to 〈p, (−v)〉

3 Timed Intruder Model

The Timed Intruder Model is similar to the usual Dolev-Yao Intruder Model
in the sense that it can compose, decompose, encrypt and decrypt messages
provided it has the right keys. However, unlike the Dolev-Yao intruder, a Timed
Intruder is constrained by the physical properties of the systems, namely, an
intruder is not able to learn any message instantaneously, instead, must wait
until the message arrives.

A Timed Intruder Set is a set of intruder names I = {ti1, . . . , tin} a set of
initially known keys KP , which contain all public keys, all private keys of all
the intruders, all symmetric keys initially shared between intruders and hon-
est players, and may contain “lost keys” that an intruder learned previously
by, for instance, succeeding in some cryptoanalysis. Recall that Timed Intrud-
ers are situated at locations specified by the Network Topology. For instance,
td(p1, ti1) = tdI(p1, ti1) = 4 denotes that the timed needed for a message to
travel from participant p1 to intruder ti1 is 4.

Definition 7. An intruder trace is one of the following, where ti is a Timed
Intruder Name, tt, tt1, tt2, tt3 are time variables, and m,m1, . . . ,mn,m′

1, . . . ,m
′
p

are messages:

– Text Message: 〈ti,+t〉@tt, where t is a text constant;
– Flushing: 〈ti,−m〉@tt;

1 For readability we display graph nodes using the player’s id paired with the node
term, rather than using the strand identifier and trace position.

458 V. Nigam et al.

– Forward: 〈ti,−m,+m〉@(tt1, tt2) denoting the strand 〈ti,−m〉@tt1 ⇒ 〈ti,+m〉
@tt2;

– Concatenation: 〈ti,−{m1, . . . ,mn},−{m′
1, . . . ,m

′
p},+{m1, . . . ,mn,m′

1, . . . ,
m′

p}〉@(tt1, tt2, tt3) denoting the strand
〈ti,−{m1, . . . ,mn}〉@tt1 ⇒ 〈ti,−{m′

1, . . . ,m
′
p}〉@tt2 ⇒ 〈ti,+{m1, . . . ,mn,m′

1, . . . ,m
′
p}〉@tt3

– Decomposing: 〈ti,−{m1, . . . ,mn},+{m1, . . . ,mi},+{mi+1, . . . ,mn}〉@(tt1, tt2,
tt3) denoting the strand
〈ti,−{m1, . . . ,mi,mi+1, . . . ,mn}〉@tt1 ⇒ 〈ti,+{m1, . . . ,mi}〉@tt2 ⇒ 〈ti,+{mi+1, . . . ,mn}〉@tt3

– Key: 〈ti,+k〉@tt if k ∈ KP ;
– Encryption: 〈ti,−k,−m,+enc(m, k)〉@(tt1, tt2, tt3) denoting the strand

〈ti,−k〉@tt1 ⇒ 〈ti,−m〉@tt2 ⇒ 〈ti,+enc(m, k)〉@tt3
– Decryption: 〈ti,−k−1,−enc(m, k),+m〉@(tt1, tt2, tt3).

〈ti,−k−1〉@tt1 ⇒ 〈ti,−enc(m, k)〉@tt2 ⇒ 〈ti,+m〉@tt3

As with the the usual Dolev-Yao intruder model as, e.g., in [25], the Timed
Intruder can send text messages and known keys, receive a message, replay a
message, concatenate and decompose messages, and finally encrypt and decrypt
messages. There are, however, two differences with respect to the usual Dolev-
Yao intruder model as defined in [25]. Each node of the trace is associated with
an intruder name ti and a time variable tt. These are necessary for extracting
the Time Constraints of a Strand Graph (as described in Definition 5), specifying
the physical restrictions of the Timed Intruder.

As the time when timed intruders receive and manipulate messages cannot
be measured by the protocol participants, they do not have control over the
time variables of timed intruder strands. The following assumption captures this
intuition:

Time Variable Disjointness Assumption. For any Bundle B, the set of time
variables appearing in protocol participant strands in B is disjoint from the set
of time variables appearing in timed intruder strands in B.

Example 4. Let us return to the distance bounding protocol described in
Example 1. The following is an attack, where two colluding intruders ti1, who is
close to p1, and ti2, who is close to p2, collude by sharing a fast channel to fool
p1 into thinking that p2 is closer than he actually is.

The intruders ti1 and ti2 simply forward messages between each other and the
players p1 and p2. However, this is a Bundle only if the following Time Constraint
Set is satisfiable:

Towards the Automated Verification of Cyber-Physical Security Protocols 459

⎧
⎨

⎩

tt2 ≥ tt1, tt = tt2, tt6 ≥ tt2 + td(p1, ti1), tt7 ≥ tt6, tt8 ≥ tt7 + td(ti1, ti2), tt9 ≥ tt8,

tt4 ≥ tt9 + td(ti1, p2), tt5 ≥ tt4, tt10 ≥ tt5 + td(p2, ti1), tt11 ≥ tt10, tt12 ≥ tt11 + td(ti2, ti1),

tt13 ≥ tt12, tt3 ≥ tt13 + td(ti1, p1), tt3 ≤ tt2 + 4

⎫
⎬

⎭

This set of constraints represents a set of concrete executions, where the Timed
Intruders ti1 and ti2 collude. There is a concrete execution only if the set of Time
Constraints is satisfiable, which depends on the Network Topology, that is, on
the function td.

4 Timed Intruder Completeness

Standard Security Protocol Verification is already very challenging. However,
automated verification has been very successful in discovering new attacks. A
good part of this success is due to the Dolev-Yao intruder model, which greatly
simplifies the design of verification tools. Tools can rely on the important result
that just a single Dolev-Yao intruder is enough, in the sense that if there is an
attack in the presence of multiple (colluding) Dolev-Yao intruders, then there is
also an attack in the presence of a single Dolev-Yao intruder [4].

Unfortunately, for Cyber-Physical Security Protocols, it is not the case that a
single Timed Intruder is enough for verification. Consider the attack illustrated
in Example 4. There may be a great number of Timed Intruders, but none of
them situated between p1 and p2, as illustrated by Fig. 1. In such a scenario
there might not be an attack as the round time to receive and return a message
between such a display of intruders may never be less than the distance bound
(4). On the other hand, two strategically placed Timed Intruders, as in the
second picture in Fig. 1, may lead to an attack.

Clearly there is an unbounded number of choices based on deciding:

– How many Timed Intruders are there?
– Where are these Timed Intruders located?

This is similar to the challenge in usual security protocol verification of deter-
mining how many protocol sessions running in parallel should the scenario have,
which is undecidable [20]. Fortunately, we are able to prove a completeness result
which answers the two questions above. In order to formalize the completeness
statement, we introduce some notation.

Definition 8. Let B be a Timed Bundle over the Network Topology td involving
the participants P = {p1, . . . , pn} and the Timed Intruders I = {ti1, . . . , tin}.
The graph B restricted to participants P, written BP , is the graph 〈N P

B , (⇒P
B

∪ →P
B)〉 specified as follows:

– N P
B contains only the nodes in B belonging to a participant in P, i.e., of the

form 〈p, s, ī〉 where p ∈ P;
– For two nodes n1, n2 in N P

B , if n1 ⇒ n2 in B, then n1 ⇒P
B n2;

460 V. Nigam et al.

– If n is a node in N P
B whose term is a message receive, −m or −m # tc, and n′

is a maximal element of the set of predecessors of n in N P
B under the relation

(⇒ ∪ →)∗;→ then n′ →P
B n. We let P(n,B) denote this set of predecessors.

Intuitively, a Bundle restricted to the set of participants specifies the events
observable by the participants without including the moves corresponding to
the timed intruders. It includes all the edges of the original bundle connecting
two nodes of N P

B . The “maximal predecessor” in N P
B is the first element of N P

B
encountered when following edges in the predecessor direction. It is maximal in
the partial order on nodes induced by the edges of the bundle. Thus the terms of
nodes in P(n,B) contain all the terms used by the intruders to derive the term
at node n.

The Bundle shown in Example 4 restricted to the participants {p1, p2} is

The edge 〈p1,+c # tt = cur〉@tt2 → 〈p2,−c〉@tt4 in this figure simply specifies
that using the message, c, sent by p1, the timed intruders were able to send the
message c to the participant p2.

For another example, consider the following Bundle, where timed intruder
ti uses his key k ∈ KP and the messages c1 and c2 to compose the message
enc({c1, c2}, k) to p3:

The corresponding bundle restricted to the participants p1, p2 and p3 is:

It captures the fact that the messages sent by p1 and p2 are used to generate the
message received by p3 without explicitly showing how intruders manipulated
these messages.

Notice that unlike bundles, a receive node in a restricted bundle may have
multiple incoming edges, reflecting the possibility of processing by multiple
intruders.

The next two lemmas follow directly from the definition of Bundles and
restricted Bundles.

Towards the Automated Verification of Cyber-Physical Security Protocols 461

Lemma 1. Let p = n �1 n1 �2 n2 �3 · · · �j−1 nj �j n′ be a path from n in
P(n′,B) to n′, where �i is either → or ⇒ for 1 ≤ i ≤ j. Then p is necessarily
of the form:

〈p, snd〉@tt → 〈ti1, s1〉@tt1 �2 〈ti2, s2〉@tt2 �2 · · · �j−1 〈tij , sj〉@ttj → 〈p′, rcv〉@tt′

where snd is a message send (+m) or a timed message send (+m # tc), rcv is a
message receive (−m) or a timed message receive (−m # tc), and for 1 ≤ i ≤ j,
〈tii, si〉 are timed intruder strands.

Lemma 2. Let T (B, td) be the Time Constraint Set of B for a given Network
Topology td. Let p be a path in B as described in Lemma1 of the form:

〈p, snd〉@tt → 〈ti1, s1〉@tt1 �1 〈ti2, s2〉@tt2 �2 · · · �j−1 〈tij , sj〉@ttj → 〈p′, rcv〉@tt′

Then any satisfying model of T (B, td) will also satisfy the constraint:

tt′ ≥ tt + td(p, ti1) + td(ti1, ti2) + · · · + td(tij−1, tij) + td(tij , p′).

The following specifies the equivalence of two Bundles.

Definition 9. Let P be a set of participants and I, I ′ be two possibly equal
sets of Timed Intruders. Let td1 = tdP � tdI and td2 = tdP � tdI′ be Network
Topologies. Then we say that a Timed Bundle B1 over td1 is equivalent to a
Timed Bundle B2 over td2, written B1

∼=td2
td1

B2, if their Bundles restricted to P
are (syntactically) identical, i.e., BP

1 = BP
2 .

2

Intuitively, the condition BP
1 = BP

2 specifies that for the honest participants
the two Bundles are equivalent, although they may have different timed intruders
in different locations manipulating messages in different ways. Thus, if such a
B1 constitutes an attack, then B2 also constitutes an attack.

Timed Intruder Completeness Problem:

Let P = {p1, . . . , pn} be a set of participants and I = {ti1, . . . , tim} be a
set of timed intruders. Let tdP be a Network Topology of the participants.
Is there a subset I ′ ⊆ I and tdI′ such that for any tdI and any Bundle
B1 over td1 = tdP � tdI , there is a Bundle B2 over td2 = tdP � tdI′ such
that B1

∼=td2
td1

B2?

In other words, given a particular scenario with P participants and a Network
Topology for these participants tdP , is there a Network Topology td′

I involving a
collection of Timed Intruders I ′ that can be used to carry out the same observ-
able events for any other Network Topology tdI with a possibly larger number
of Timed Intruders?

If such an I ′ and tdI′ exists then an automated verification tool does not
have to guess how many timed intruders there are, and where they are located,
but simply can use I ′ and tdI′ .
2 It is possible to relax this definition so that they are identical modulo time variable

names, but this is not needed here.

462 V. Nigam et al.

4.1 Completeness Proof

We are given a set of participants P = {p1, . . . , pn}, a set of Timed Intruders
I = {ti1, . . . , tim}, and a Network Topology tdP specifying the time messages
take to travel between participants.

A Solution for the Timed Intruder Completeness Problem: For our solution, we
assume that there are as many timed intruders as participants. If this is not the
case, we can safely add more dummy timed intruders. We associate with each
participant pi one Timed Intruder tipi . Thus:

I ′ = {tip1 , . . . , tipn}.

Moreover, we assume that the time a message takes to travel between pi to
tii is 0 (or negligible). Moreover, the time for a message to travel between two
Timed Intruders tipi and tipj is the same as the time it takes to travel between
their corresponding participants pi and pj . Thus:

tdI′(pi, tipi) = tdI′(tipi , pi) = 0 for all pi ∈ P;
tdI′(tipi , tipj) = tdP(pi, pj) for all pi, pj ∈ P.

The Timed Intruders in I ′ collude in the following form: whenever a Timed
Intruder tpi learns a message m sent by pi, it broadcasts this message m to the
remaining Timed Intruders in I ′ \ {tipi}. For example, the Strand for when p1
sends a message is then as follows:

Notice that the message m reaches to a Timed Intruder tipi at time tti which is
subject to the Time Constraints tti ≥ tt′1+tdP(p1, pi) and tt′1 ≥ tt1+td(p1, tip1),
which reduces to tt′1 ≥ tt1 as td(p1, tip1) = 0. Thus, tti ≥ tt1 + tdP(p1, pi).
Moreover, if the Timed Intruder tipi forwards this message to the participant
pi, then this message will be received at a time tt′i ≥ tt1 + tdP(p1, pi), that is,
as if the message had traveled directly from p1 to pi without passing through
intruders tip1 and tipi

Proof. We will now show that the I ′ and tdI′ defined above provide a solution
for the Timed Intruder Completeness Problem. For this, assume given a tdI and
a Bundle B1 over td1 = tdP � tdI .

We will construct a Bundle B2 over td2 = tdP � tdI′ such that B1
∼=td2

td1
B2.

We do so by transforming B1 into B2.
Let the following be a sub-graph of B1 restricted to P:

Towards the Automated Verification of Cyber-Physical Security Protocols 463

where for all 1 ≤ i ≤ n, sndi is a Message Output (+mi) or a Timed Message
Output (+mi # tc), rcv is a Message Input (−m) or a Timed Message Input
(−m # tc).

Let p be an arbitrary path from node 〈pi, sndi〉@tti to 〈p, rcv〉@tt path in
B1. From Lemma 1, p has the shape:

〈pi, sndi〉@tti → 〈ti1, s1〉@tt1 �1 〈ti2, s2〉@tt2 �2 · · · �j−1 〈tij , sj〉@ttj → 〈p′, rcv〉@tt

Moreover, from Lemma 2, any model satisfying B1 will also satisfy the constraint:

tt ≥ tti + td(pi, ti1) + td(ti1, ti2) + · · · + td(tij−1, tij) + td(tij , p). (2)

Given our assumption on the Network Topology (Eq. 1), we also have that

td(pi, p) ≤ td(p, ti1) + td(ti1, ti2) + · · · + td(tij−1, tij) + td(tij , p)

That is, the time it takes to travel directly from pi to p is less than or equal to
the time it takes to travel from pi to p via the timed intruders ti1, . . . , tij .

From our solution, we obtain for the sub-graph shown above the following
subgraph where all the messages m1, . . . ,mn are broadcast to all Timed Intruders
including the Timed Intruder tip:

where the intruder tip receives the messages m1, . . . ,mn. Notice that for 1 ≤ i ≤
n, we have that tt′′i ≥ tti + td(pi, p). At this point the intruder tip has all the
information he needs to compose the message m. Moreover, he can do so without
losing time. Thus he is able to deliver the message m to p at time tt satisfying
the constraints:

tt ≥ tt1 + td(p1, p) tt ≥ tt2 + td(p2, p) · · · tt ≥ ttn + td(pn, p). (3)

As any model of the Time Constraints Set of B1 satisfies Eq. 2, the same assign-
ment for tt1, . . . , ttn, tt will also satisfy the time constraints in Eq. 3. Moreover, if
any of snd1, . . . , sndn is a Timed Output (pi,+mi # tci) or rcv is a Timed Input
(p,−m # tc) the same assignment will also satisfy tci and tc because protocol
participant strands and timed intruder strands do not share time variable (Time
Variable Disjointness Assumption).

By repeating this procedure for each sub-graph in B1 restricted to P as shown
above, we are able to construct B2 using tdI′ where the only timed intruder
strands are those of the intruders I ′ leading to the following result.

Theorem 1. Let P be participant names and I be Timed Intruders, such that
|I| ≥ |P|. Let I ′ and tdI′ be as described above. Then I ′ and tdI′ solve the
Timed Intruder Completeness Problem.

464 V. Nigam et al.

Remark 2. It should be possible to extend our completeness result for cases
with different transmission channels (See Remark 1). For this, our solution would
assume that the intruders communicate with the fastest transmission speed avail-
able. This is enough to prove Eq. 2 without relying on Eq. 1. We leave a more
careful analysis to future work.

Remark 3. Our solution of placing a timed intruder close to each participant
might be unrealistic for some scenarios, e.g., when a participant, A, is guaranteed
to be alone due to some physical barrier which ensures that intruders are at least
d units away. We speculate that by instead of placing a single intruder for A, we
would need n intruders, where n is the number of participants. Each intruder
would be placed d units away from A in the direction of each other participant.
This should be enough to prove a corresponding completeness theorem. We leave
this interesting problem to future work.

5 Examples and Preliminary Experimental Results

We illustrate with some examples that our solution is able to identify attacks on
CPSP. We are using the terminology of attacks described in [10].

External Distance Fraud. Assume two honest participants p1 (Verifier) and p2
(Prover). They exchange some information, normally to authenticate p2, for
example [24], using a standard Needham-Schroeder-Lowe protocol session [17],
and then carry-out a distance bounding protocol session. The following Timed
Strand captures the attack where the intruder tip1 fools player p1 that p2 is closer
than he actually is by completing the distance bounding challenge:

Notice that the timed intruder tip1 is able to complete the distance bound-
ing session as he is very close to the verifier p1. This is captured by the Time
Constraint Set of this Bundle. Moreover, here we assume that they exchange a
nonce, but if we allow equational theories specifying, for example xor operations
⊕ as done in [13], a similar Timed Bundle would be obtained.

Attack-in-Between-Ticks. The In-Between-Ticks attack [15] is an instance of
a Lone Distance Fraud attack [10], where the prover is dishonest but is not
colluding with other Timed Intruders. This attack exploits the fact that real
verifiers are running on a processor with a slow clock speed. When the verifier
receives the response from the prover, he is only able to record the time of receival
in the following clock cycle. This is captured by using the Time Constraint
(floor(cur) + 1) as illustrated by the following Timed Strand:

Towards the Automated Verification of Cyber-Physical Security Protocols 465

It is possible to show that the Time Constraint Set of this Timed Strand,
T , is satisifiable although the distance between p1 and p2 is greater than the
distance bound 4. That is, it is possible to show that the set T ∪ {td(p1, p2) >
4, td(p2, p1) > 4} is satisfiable.

Distance Hijacking. In our technical report [21], we show the Timed Bundle with
the Distance Hijacking attack described in [24] on the protocol that combines the
traditional Needham-Schroeder-Lowe protocol and a distance bounding session.

5.1 Prototype Implementation

We developed a prototype implementation, which can be found at [22], of this
strategy in a version of Maude [8] integrated with the SMT solver CVC4 [2].
Our preliminary results seem quite promising.

In addition to symbolic time constraints we implemented a symbolic con-
straint solver in order to tackle the state-space explosion due to the fact that a
timed intruder can generate an unbounded number of messages. It works along
the same lines as in usual implementations of such constraint solvers used by
tools assuming the standard Dolev-Yao intruder by not instantiating messages
generated by the intruder, but rather using symbolic constraints.

Our prototype used and implements mechanisms for the main contributions
of this paper:

– Network Topology as a Constraint Set: While here we assume that the
Network Topology is given by a function td which completely determines the
time messages take to travel between agents, our implementation allows the
user to specify the Network Topology as a set of constraints. For example,
the constraint td(p1, p2) > 4 specifies the set of Network Topologies where
the time it takes for a message to travel from p1 to p2 is greater than 4.
This reduces even further the decision choices needed when specifying some
scenario as one does not need to consider grounded Network Topologies.

– Time Variables and Time Constraints: As described here, we use time
variables and keep track of the Time Constraints of the constructed Timed
Strand, which is initially empty. Whenever a command in our protocol lan-
guage is executed, we add the corresponding constraint to the set of constraints
following Definition 5. We then call the SMT solver to check whether the set
of constraints is satisfiable. If it is not, then search on this branch of the search
tree is aborted.

466 V. Nigam et al.

– Timed Intruders: Our prototype also implements the solution described in
Sect. 4.1 for the configuration of timed intruders. This greatly simplifies the
number of decisions needed when specifying a verification scenario. Whenever
a message is sent by a participant, his corresponding timed intruder broadcasts
this message to all other Timed Intruders. A timed intruder is only able to
learn such a message when enough time has elapsed. This is implemented also
using the SMT solver and adding appropriate time constraints.

Table 1 summarizes some preliminary experimental results.

Table 1. Preliminary experimental results

Scenario Size of protocols No of states Search time

External Distance Fraud 5 12 31ms

Attack-in-Between-Ticks 5 70 55ms

Simplified Paywave 14 3224 8s

Paywave 22 20807 78s

NSL + Distance Bounding � 15 86 108ms

The External Distance Fraud and Attack-in-Between-Ticks are as described
above. The number of states traversed is quite small for finding these. The dis-
tance bounding protocol scheme is used by many other protocols, such as the
protocol described in [24] (NSL + Distance Bounding) and the lack of its use
leads to an attack on the Paywave protocol [6]. We implemented these to check
how our tool scales to larger protocols. We implemented a simplified version of
the Paywave protocol omitting some of the steps taken and only concentrating
on the core part of the protocol. Our tool was able to find the attack in 8s tra-
versing around 3.2k states. Finally, we implemented the whole Paywave protocol
and our tool was also able to find the attack, but now in 78s traversing 20.8k
states.

The use of the SMT solver was essential to reduce the number of states.
However, it seems that it is possible to reduce the overhead caused by each call
of the SMT solver.

We also experimented with protocols that fall outside of our language frag-
ment. The NSL + Distance Bounding protocol described in [24] with a small
modification carries out a standard Needham-Schroeder-Lowe protocol session,
followed by a distance bounding protocol using xor. Since our tool does not sup-
port yet equational theories, a subject for future work, we modeled the distance
bounding session with a pair. Our tool was able to find a terrorist attack in 108
ms traversing 86 states. This attack was not reported in [24] as they did not
assume that intruders are close to the participants.

Finally, we also obtained preliminary results on using the tool for checking
whether there is a privacy attack on a protocol [7]. In order to check for such
an attack, we need to enumerate all possible executions. (The formal definitions

Towards the Automated Verification of Cyber-Physical Security Protocols 467

are out of the scope of this paper.) In order to have an idea of how big this
set of executions is, we implemented the protocol used for RFID in European
passports. The total number of states was only 10 states. This is a promising
result for extending this work to check for properties that rely on observational
equivalence [5].

6 Related and Future Work

Meadows et al. [19] and Pavlovic and Meadows in [23] propose and use a logic
called Protocol Derivation Logic (PDL) to formalize and prove the safety of a
number of cyber-physical protocols. In particular, they specify the assumptions
and protocol executions in the form of axioms, specifying the allowed order of
events that can happen, and show that safety properties are implied by the
axiomatization used. They do not formalize an intruder model. Another dif-
ference between their work and ours is that their PDL specification is not an
executable specification.

Another approach similar to [19], in the sense that it uses a theorem proving
approach, is given by Basin et al. [3]. They formalize an intruder model that
is similar to ours in Isabelle, and also formalize some cyber-physical security
protocols. They then prove the correctness of these protocols under some specific
conditions and also identify attacks when some conditions are not satisfied. Their
work has been a source of inspiration for our intruder model specified in Sect. 3.
However, they do not propose or investigate the Timed Intruder Completeness
Problem.

Chothia et al. [6] investigate empirically the execution times of commands
of CPSP which are carried out by limited resource devices and then, based on
these measurements, they propose the inclusion of a distance bounding session
to mitigate relay attacks. They proved the security of CPSP by modeling the
protocol in different phases. As we illustrate in Example 2, our language allows
the inclusion of the measurements themselves. We leave a more detailed analysis
to future work.

Cheval and Cortier [5] propose a way to prove the observational equivalence
with time by reducing it to the observational equivalence based on the length
of inputs. They are able to automatically show that RFID protocols used by
passports suffer a privacy attack. Their approach is, therefore, different as they
do not investigate the Timed Intruder Completeness Problem. Also it is not
clear whether from their language one can capture attacks such as the Attack-
in-Between Ticks which exploits the time constraints of the verifier. Finally, from
our initial experiments with the Passport RFID protocol, we believe that it is
also feasible to check for privacy attacks given the very low number of states
encountered by our tool. This is left for future work.

Corin et al. [9] propose using timed automata to model check security pro-
tocols taking into account retransmission and error states of security protocols.
This is an early contribution on the analysis of timing aspects of security proto-
cols which did not consider CPSP nor the completeness of timed intruders.

468 V. Nigam et al.

Finally, Malladi et al. [18] formalize distance bounding protocols in strand
spaces. They then construct an automated tool for protocol verification using
a constraint solver to verify a number of examples. There are some similarities
between their goals and the goal we want to achieve, namely, the automated
verification of CPSP and in the use of SMT solvers to do so. However, there
are some important differences. Firstly, we formalize and provide a solution to
the Timed Intruder Completeness Problem and, secondly, our language seems
to have more expressive features, e.g., our time constraints.

The definition of restricted bundle to characterize executions from the pro-
tocol participants perspective is inspired by the notions of skeleton and shape in
strand space based protocol analysis [11,12].

Arnaud et al. [1] propose a model for specifying and reasoning about secured
routing protocols where nodes communicate in a direct way with their neighbors.
It seems possible to represent our network model using time constraints as they
do and not only reason about the routing of packets, but also the time when
these arrive, which is important for cyber-physical systems where agents use
some routing protocol to communicate. We leave this to future work.

We are currently investigating methods to control even further the state
space explosion, for example, using more elaborate symbolic constraint sys-
tems for messages and investigating how to support backward Narrowing as
in Maude-NPA [14]. Moreover, we are extending our implementation to sup-
port message signatures with equational theories using the library available in
Maude [13]. Finally, we are investigating definitions of observational equivalence
which involve time and that can be implemented using SMT-solvers.

Acknowledgments. We thank the anonymous reviewers for their valuable comments
and observations. Talcott was partially supported by NSF grant CNS-1318848 and
ONR grant N00014-15-1-2202. Nigam and Talcott were partially supported by Capes
Science without Borders grant 88881.030357/2013-01. Nigam was partially supported
by Capes and CNPq.

References

1. Arnaud, M., Cortier, V., Delaune, S.: Modeling, verifying ad hoc routing proto-
cols. Inf. Comput. 238, 30–67 (2014). Special Issue on Security and Rewriting
Techniques

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

3. Basin, D.A., Capkun, S., Schaller, P., Schmidt, B.: Formal reasoning about physical
properties of security protocols. ACM Trans. Inf. Syst. Secur. 14(2), 16 (2011)

4. Cervesato, I.: Data access specification and the most powerful symbolic attacker
in MSR. In: Okada, M., Babu, C.S., Scedrov, A., Tokuda, H. (eds.) ISSS 2002.
LNCS, vol. 2609, pp. 384–416. Springer, Heidelberg (2003)

5. Cheval, V., Cortier, V.: Timing attacks in security protocols: symbolic framework
and proof techniques. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol.
9036, pp. 280–299. Springer, Heidelberg (2015)

Towards the Automated Verification of Cyber-Physical Security Protocols 469

6. Chothia, T., Garcia, F.D., de Ruiter, J., van den Breekel, J., Thompson, M.: Relay
cost bounding for contactless EMV payments. In: Böhme, R., Okamoto, T. (eds.)
FC 2015. LNCS, vol. 8975, pp. 189–206. Springer, Heidelberg (2015)

7. Chothia, T., Smirnov, V.: A traceability attack against e-passports. In: Sion, R.
(ed.) FC 2010. LNCS, vol. 6052, pp. 20–34. Springer, Heidelberg (2010)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude: A High-Performance Logical Framework. Springer, Heidel-
berg (2007)

9. Corin, R., Etalle, S., Hartel, P.H., Mader, A.: Timed model checking of security
protocols. In: FMSE. ACM (2004)

10. Cremers, C.J.F., Rasmussen, K.B., Schmidt, B., Capkun, S.: Distance hijacking
attacks on distance bounding protocols. In: IEEE Symposium on Security and
Privacy, SP (2012)

11. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic
protocols. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
523–537. Springer, Heidelberg (2007)

12. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Skeletons, homomorphisms, shapes,
characterizing protocol executions. In: Mathematical Foundations of Program
Semantics (2007)

13. Durán, F., Eker, S., Escobar, S., Mart́ı-Oliet, N., Meseguer, J., Talcott, C.: Built-
in variant generation and unification, and their applications in Maude 2.7. In:
Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706, pp. 183–192. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-40229-1 13

14. Escobar, S., Meadows, C.A., Meseguer, J.: Maude-NPA, cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2007/2008/2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009)

15. Kanovich, M., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.: Discrete vs. dense
times in the analysis of cyber-physical security protocols. In: Focardi, R., Myers,
A. (eds.) POST 2015. LNCS, vol. 9036, pp. 259–279. Springer, Heidelberg (2015)

16. Kanovich, M.I., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.L.: Towards timed
models for cyber-physical security protocols. Available in Nigam’s homepage (2014)

17. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996)

18. Malladi, S., Bruhadeshwar, B., Kothapalli, K.: Automatic analysis of distance
bounding protocols. CoRR, abs/1003.5383 (2010)

19. Meadows, C., Poovendran, R., Pavlovic, D., Chang, L., Syverson, P.F.: Distance
bounding protocols, authentication logic analysis and collusion attacks. In: Pooven-
dran, R., Roy, S., Wang, C. (eds.) Secure Localization and Time Synchronization
for Wireless Sensor and Ad Hoc Networks. Advances in Information Security, vol.
30, pp. 279–298. Springer, New York (2007)

20. Millen, J.K.: A necessarily parallel attack. In: Workshop on Formal Methods and
Security Protocols (1999)

21. Nigam, V., Talcott, C., Urquiza, A.A.: Towards the automated verification of
cyber-physical security protocols, Bounding the number of timed intruders. CoRR,
abs/1605.08563 (2016)

22. Nigam, V., Talcott, C., Urquiza, A.A.: https://github.com/SRI-CSL/VCPublic.
git (2016)

23. Pavlovic, D., Meadows, C.: Deriving ephemeral authentication using channel
axioms. In: Security Protocols, Workshop, pp. 240–261 (2009)

http://dx.doi.org/10.1007/978-3-319-40229-1_13
https://github.com/SRI-CSL/VCPublic.git
https://github.com/SRI-CSL/VCPublic.git

470 V. Nigam et al.

24. Santiago, S., Escobar, S., Meadows, C.A., Meseguer, J.: Effective sequential pro-
tocol composition in Maude-NPA. CoRR, abs/1603.00087 (2016)

25. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: proving security proto-
cols correct. J. Comput. Secur. 7(1), 191–230 (1999)

Safeguarding Structural Controllability
in Cyber-Physical Control Systems

Cristina Alcaraz(B) and Javier Lopez

Department of Computer Science, University of Malaga,
Campus de Teatinos s/n, 29071 Malaga, Spain

{alcaraz,jlm}@lcc.uma.es

Abstract. Automatic restoration of control wireless networks based on
dynamic cyber-physical systems has become a hot topic in recent years,
since most of their elements tend to have serious vulnerabilities that
may be exploited by attackers. In fact, any exploitation may rapidly
extend to the entire control network due to its problem of non-locality,
where control properties of a system and its structural controllability can
disintegrate over time. Unfortunately, automated self-healing processes
may become costly procedures in which the reliability of the strategies
and the time-critical of any recovery of the control can become key factors
to re-establish the control properties in due time. This operational need
is precisely the aim of this paper, in which four reachability-based recovery
strategies from a theoretical point of view are proposed so as to find the
best option/s in terms of optimization, robustness and complexity. To
do this, new definitions related to structural controllability in relation to
the type of distribution of the network and its control load capacity are
given in this paper, resulting in an interesting practical study.

Keywords: Structural controllability · Control systems ·
Cyber-physical systems · Restoration · Self-healing

1 Introduction

As control systems continue to grow both in size and complexity [1] by adapt-
ing the new cyber-physical systems (CPSs) for the automation of operations,
the protection of such networks from external or unforeseen forces becomes an
essential issue. Namely, operational efficiency has an important role to play in
the monitoring and management of many of our critical infrastructures (CIs)
such as industrial automation applications or power grids. Unfortunately such
functionality today is highly susceptible to threats and/or changes. Many of
these changes come from vulnerabilities or incompatibilities of the cyber-physical
control elements, which tend to incorporate and connect computation elements
with existing physical components [2,3] through multiple types of communi-
cation technologies like, for example, wireless [4]. However, the exploitation of
these vulnerabilities is also intertwined with the nature of the threats, which may

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 471–489, 2016.
DOI: 10.1007/978-3-319-45741-3 24

472 C. Alcaraz and J. Lopez

sometimes cause a minor or even, major impact on the performance, security and
safety of the underlying infrastructures [5].

In these circumstances it is easy to understand that preventive measures
related to resilience and fault-tolerance have to be properly addressed in critical
environments [6], regardless of the fact that some measures can become quite
difficult to implement [7,8]. For example, the mere act of helping restore large
and complex control distributions to their natural state in time, might provoke
serious complexities that may subsequently affect the overall performance of the
system. So it becomes crucial to research how to design optimized recovery mech-
anisms that can ‘automatically’ establish connectivity of control from anywhere
and at any time. However, the implementation of large control networks can also
be quite costly from a research point of view. This means that the modeling and
simulation of the challenge (taking into account the network topology and the
nature of its distribution), have to be done through graph theory.

Within the literature some authors have already tried to address restoration
topics through graph theory. For example, Nakayama et al. base their research
on tie-set notions, associated with graphical-theoretical tree structures so as
to implement a ring-based solution against link failures [9]. A variant of this
solution is the rapid spanning tree protocol (RSTP), an evolution of the span-
ning tree protocol (STP), to manage traffic loops and broadcast congestion in
mesh topologies [10]. Tree-like structures are also applied to group and activate,
through a nice tree decomposition, backup instances of driver nodes in charge
of delivering control signals to the rest of nodes of the network [11], or to build
edge-redundant networks to activate backup links [11–13]. Médard et al. in [12]
support their approach on two trees so that the removing of any resource leaves
each destination connected to one of the directed trees; whereas Quattrociocchi
et al. in [13] center their study on modeling a routing protocol based on the
maximum spanning tree and on the online activation of fixed redundant links.
Likewise, Wang et al. apply the redundancy concept in the controllability field
by applying transitivity of control routes, taking into account a control robust-
ness index with reliance on the number of driver nodes [14]. Wang et al. in [15]
and Ding et al. in [16] also propose optimizing the robustness of controllability
by adding a minimum number of strategic links within the network.

However, more research on dynamic preservation of control structural prop-
erties for critical environments is still required since most of these approaches are
composed of static structures for the recovery, and/or are centered on the restora-
tion of general-purpose networks. Indeed, the vast majority of the critical control
systems follow particular topological structures of the type power-law y ∝ xα,
[17], whose structures tend to produce small sub-networks similar to current
control substations. Moreover, this research shortfall also forces us to think that
it is necessary to propose specific restoration strategies that help the underlying
system (i) maintain its control properties at all times and (ii) survive in crisis sit-
uations. So, four restoration strategies for structural controllability are presented
in this paper. They are based on the automatic activation of redundant edges
so as to exhibit the optimal scenario, and on the dynamic reachability of nodes

Safeguarding Structural Controllability in Cyber-Physical Control Systems 473

through relink techniques together with a further set of parameters described
throughout this paper. To complement this study, analyses on which of these
approaches are the most suitable for critical contexts with heavy dependence on
CPSs are also presented, thereby complying with optimization aspects.

In order to clarify some theoretical concepts introduced in the following sec-
tions and their relationships with respect to the main goals and contributions of
this paper, topics related to structural controllability and power dominance are
described here. The concept of structural controllability was introduced by Lin
in 1974 [18] so as to model the controllability and its control capacity through
graphical representations, where the control is generally associated with a subset
of nodes with the maximum capacity of dominance. This subset of nodes, also
known as driver nodes and denoted here as ND, has to be selected according to
a predefined method based on the type of context and the general structure of
its networks; in our case, attending to power-law control networks. A suitable
method is, for example, the Power Dominating Set (PDS) problem defined
by Haynes et al. in [19] rather than the traditional maximum matching method.
Through PDS it is possible to obtain the set of ND in charge of managing the
control of the entire or a supart of the network, whose concept was originally
designed as a variant of the well-studied problem of domination and motivated
in part by the structure of electric power networks and their monitoring net-
works [19]. Therefore these two concepts, structural controllability and PDS,
constitute the theoretical basis of our research, and the goal now is to provide a
redundancy-based restoration layer with the possibility of reaching linear com-
plexities in optimal restoration scenarios.

The remainder of this paper is structured as follows: Sect. 2 outlines pre-
liminary concepts concerning dynamic control networks, in addition to detail-
ing the initial assumptions and the threat model. Section 3 presents the four
recovery strategies together with their redundancy principles, which are theo-
retically developed and discussed in Sect. 4. Finally, Sect. 5 concludes the paper
and presents future work.

2 Dynamic Control: Preliminary

Let a directed weighted Gw(V,E) graph represent the construction of a con-
trol system composed of V control nodes corresponding to cyber-physical ele-
ments, and E communication links. Through Gw(V,E), it is possible to charac-
terize dynamic control networks capable of accepting the existence of loops and
weighted edges to plot control loads related to controllability. In the real-world,
many of these variables traverse specific links that help control devices (or driver
nodes), such as remote terminal units or gateways in charge of managing sensor
or actuator states, to be reached. This in turn recreates a decentralized system
where the main control exclusively depends on a dominant subset of elemen-
tal nodes and links. Concretely, these links contain the maximum capacity to

474 C. Alcaraz and J. Lopez

conduct the main traffic1 between two points, also defined here as the control
load capacity (CLC).

To represent this capacity it is necessary to work with a weighted decentral-
ized system containing information about the edge betweeness centrality (EBC)
[5]. EBC is an indicator that corresponds to the sum of the fraction of the
shortest paths that pass through a given edge, such that, edges with the high-
est centrality participate in a large number of shortest paths. The result is a
weighted matrix related to Gw(V,E) whose weights are computed as follows:

EBC(e) =
∑

s,t∈V

δ(s, t | e)
δ(s, t)

(1)

where δ(s, t) denotes the number of shortest (s,t)-paths and δ(s, t | e) the number
of paths passing through the edge e. Hence, CLC in control theory corresponds
to the traditional weighted interaction strength matrix A [5] supported by the
linear time-invariant (LTI) dynamical system introduced by Kalman in [20]:

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0 (2)

From this equation, ẋ(t) comprises the vector (x1(t), . . . , xn(t))T containing the
current state of n nodes at time t; A, the network topology with the interaction
strength (n×n); and B an input matrix (n×m, m ≤ n) holding the set of driver
nodes, controlled by a time-dependent input vector u(t) = (u1(t), . . . , um(t))
responsible for forcing the system to reach a desired configuration state. The
system in Eq. 2 is controllable if and only if rank[B,AB,A2B, . . . ,An−1B] = n
(Kalman’s rank criterion). However, whilst the computation of this equation
seems to be straightforward, for large and heterogeneous networks like CPSs
embedded in control systems where the number of nodes grows exponentially
(e.g., sensors, actuators, smart meters, remote units or hand-led interfaces), it
becomes extremely expensive and problematic. So the problem associated with
maintaining weights in A and the exponential growth of nodes leads to a new
control theory known as structural controllability [18], which is described in more
detail below.

2.1 Structural Controllability and its CLC

Structural controllability refers to a graphical-theoretical interpretation of the
style Gw(A, B) = (V,E) where A and B contain non-zero weights, such that
V = VA ∪ VB comprises the set of vertices and E = EA ∪ EB the set of edges.
In this representation, VB, analogous to u(t) in Eq. 2, embraces all those nodes
with the capacity to inject control signals throughout the entire network, which
is composed of different control load capacities, li,j , for each edge ei,j in E (i.e.,
li,j is part of the concept of CLC).

1 Note that we do not consider in this study either the type of traffic or the content
of messages, only those concepts that help define mechanisms of restoration.

Safeguarding Structural Controllability in Cyber-Physical Control Systems 475

As indicated above, there are two main approaches that obtain the minimum,
but not the only set of driver nodes associated with VB: the maximum matching
and the PDS. In graph theory, the former aims to obtain ND (unmatched nodes)
by identifying those nodes that do not share input vertices [21]. Although the
concept has been proven multiple times [5,14,15], we primarily focus on the PDS
problem by offering the necessary means to exemplify, through graph theory,
structures similar to real power grids and their monitoring systems, and whose
concept corresponds to an extension of the Dominating Set (DS). From the
original formulation of the PDS, given by Haynes et al. in [19], the problem was
later simplified into two fundamental observation rules by Kneis et al. in [22].
These two rules, substantiated on the ‘dominance’ concept, are as follows:

OR1 A vertex in ND observes itself and all its neighbors, complying with DS.
OR2 If an observed vertex v of degree d+ ≥ 2 is adjacent to d − 1 observed

vertices, the remaining un-observed vertex becomes observed as well. This also
implies that OR1 ⊆ OR2 given that the subset of nodes that comply with
OR1 becomes part of the set of nodes that complies with OR2.

Both rules and their susceptibility to threats have also been analyzed in
recent publications [1,23], and for different types of graphs under the restriction
of degree and specific graph structures (circle, planar, split, and partial k-tree
graphs as well as grid and blocks). However, and as previously mentioned, we are
not interested in applying the concept of PDS in general distributions. Rather
our interest lies in applying the PDS problem in power-law networks since most
of the topologies of CIs follow similar structures to y ∝ xα [17].

The pursuit of all these methods and their application as a whole results in
a complex control structure supported by EBC to establish control loads. The
handling of anomalous loads is done through the definition given by Nie et al.
in [5], in which the capacity of a node, li,j , is always bounded to “the maximum
load that the edge, ei,j , can operate”. In normal situations, li,j , has to be related
to the initial capacity, denoted here as L0

i,j (n × n), and depending on the type
of activity within the network and the overloading of the links, the initial state
of the network may significantly vary over time. Therefore, the load capacity
has to be managed each time by verifying that li,j does not exceed maximum
CLC [5]:

Hi,j = (1 + α) × L0
i,j (3)

of size n × n, where α comprises a tolerance indicator with value α > 0 and
Lt=0

i,j ≤ Lt>0
i,j ≤ Hi,j . Under these conditions, any topological impact may force

the system not only to redistribute its control loads, but also its shortest paths,
thereby affecting, sooner or later, the network diameter. This could also trigger a
cascading effect when the permitted thresholds, retained in Hi,j , are clearly sur-
passed. Given this and its importance for control contexts, the following section
provides a set of initial assumptions required for dynamic control restoration
together with the threat model.

476 C. Alcaraz and J. Lopez

2.2 Initial Assumptions and the Adversarial Model

Apart from cyclicity between nodes, the existence of li,j in each ei,j and
li,j ≤ Hi,j , the two observation rules (OR1, OR2) introduced in the previous
section must not be violated at any moment. In relation to this, the number of
driver nodes should not increase significantly during the life cycle of the network,
maintaining, as much as possible, its spatial complexity. This also means that no
protection approach should hamper the control processes and the responsiveness
degree of the system, while still providing the necessary means to self-heal the
control in time, with a reasonable computational cost.

For the analysis, the adversary model follows a weak model in which adver-
saries are able to access the general structure of the graph, its topology and the
location of the current driver nodes, despite the random nature of ND. We also
assume that their mobility within the network and their performances remain
reduced to a random subset of nodes, such that δ ≤ |V |

2 , where their actions
are focused on availability and integrity of assets, composed of random (launch
random actions on an arbitrary set of nodes) or targeted attacks (specific actions
on particular nodes).

Within the random category, four attacks are highlighted:

– [R1] isolate a selective set of nodes by removing all their edges (e.g., jamming);
– [R2] arbitrarily choose some nodes and remove a few, but not all, of their

edges (e.g., obstacles, congestion);
– [R3] randomly insert a limited set of nodes whose links are causally created;

and
– [R4] arbitrarily add new edges within the network.

In real scenarios, there also exists the possibility of finding mobile automation
contexts in which nodes do not necessarily have to be compromised. They may,
for example, (i) leave a network by themselves (henceforth denoted as [Lv]) by
simply removing all their connections, or (ii) join the network, by themselves, by
increasing the number of members and links. To tackle these two new situations,
we consider the definition of [R1] but without applying preventive measures to
avoid the re-connection, and [R3] to engage the new joining.

With respect to the targeted class, four kinds of attacks can be identified:

– [T1] isolate those nodes with the highest degree, i.e., the hubs;
– [T2] isolate the node with the highest strength within the network, equivalent

to the node with the highest CLC − max(
∑

i∈E(EEB(v, i)+EEB(i, v))); and
– [T3] remove an arbitrary set of δ links with the highest peaks of centrality.

3 Four Reachability-Based Strategies

Reachability of assets and their maintenance can be achieved through four types
of reconnection approaches, the strategies of which aim to find redundant path-
ways, for each disconnected vertex vi ∈ V . For the relink, the approaches force
the system to first identify those most prominent {nd1 , . . . , ndn

} ∈ ND, such
that:

Safeguarding Structural Controllability in Cyber-Physical Control Systems 477

STG1 Select one “brother” nd located in the surrounding area, such that
(nd, vi) /∈ E, but there exists a common node vj ∈ E where (vj , nd)
∈ E and (vj , vi) ∈ E, and it may serve as a possible candidate to estab-
lish a new redundant relationship (nd, vi) ∈ E. Note that the selection of
prominent nodes is restricted to the redundancy principles described below.

STG2 Choose one “father” nd with the capacity for reconnecting (nd, vi) ∈ E.
STG3 Take one “grandfather” nd located to 2-hops with the ability to relink

vi.
STG4 Select one “remote” nd situated at n-hops with the possibility of relinking

vi in crisis situation.

If we observe Fig. 1, it is possible to see that the first three scenarios (STGx
(x = {1, 2, 3})) establish a protection on a local level, whereas STG4 addresses
the protection for a remote level in which the selection of outstanding driver
nodes relies on the minimum diameter, using for this the traditional breadth-first
search (BFS) method. Each link represents the control load capacity between
two points, li,j ; and when a node has different paths (e.g., x, y, z) to transmit a
critical message until reaching j, then it is necessary to choose the path with the
highest load capacity: max{li,x, li,y, li,z}. For the mapping of secondary routes,
it is also necessary to redesign the OR1 and OR2 algorithms specified in [1],
not only to select the best driver candidates but also to introduce, from the
initial stage (the commissioning phase), redundant pathways. This modification
involves:

– expanding the DS selection scheme (OR1 included in [1]) by adding redun-
dant links; and

l12

l15 > l14 > l12

STG1 STG2 STG3 STG4

Controllers Observed nodes

Redundancy (Gr)

P3.1
P3.2

Uncontrolled nodes

lxy: control capacity between two points (x, y)

l13

x2

x3

x1

x5

x4

l14
l15

x2

x1

x5

x4

x3

x8

x7

l12

l13

l14

l15

l83

l73

l63

l63 > l73 >

l83 > l13

x6

x6

x2

x7

x5

x4

x3x1

l61

l71

l15

l14

l13

l12

l61 > l71

l13

x1
x3

x4

Fig. 1. Restoration scenarios STGx (x = {1, 2, 3, 4}) and redundancy principles P3.1
and P3.2

478 C. Alcaraz and J. Lopez

– extending the approach OR2 from [1] so as to avoid breaking the second
observation rule due to the existence of new links.

Given this, the next section specifies the new approaches of OR1 and OR2,
since they constitute the foundation of the new restoration strategies.

Algorithm 3.1. Redundancy Principles (Gw(V, E),G r
w(V, E′), DS,

NP1
D , vi)

output (NP2
D)

local candidate, Ond, DSnd, NP2
D ← �;

while (NP1
D �= �)

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

candidate ← Randomly select one candidate ∈ NP1
D ;

DSnd ← (childrena(candidate,Gw(V, E)) ∩ DS;
Ond ← (children(candidate,Gw(V, E)) \ DSnd;
comment: P3.1 (see Section 3.1);

if (vi ∈ DS) and restriction given in P3.1

then

⎧
⎪⎪⎨

⎪⎪⎩

DSnd ← (children(G r
w(V, E), candidate)) ∩ DS;

Ond ← (children(G r
w(V, E), candidate)) \ DSnd;

if restriction given in P3.1
then

{
NP2

D ← NP2
D ∪ candidate;

else

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

comment: P3.2 (see Section 3.1);

if (vi /∈ DS) and restriction given in P3.2

then

⎧
⎪⎪⎨

⎪⎪⎩

DSnd ← (children(G r
w(V, E), candidate)) ∩ DS;

Ond ← (children(G r
w(V, E), candidate)) \ DSnd;

if restriction given in P3.1
then

{
NP2

D ← NP2
D ∪ candidate;

NP1
D ← NP1

D \ candidate;

return (NP2
D)

a
children: returns the children of a given node vi, such that ∀vj ∈ V , (vi, vj) ∈ E.

3.1 Redundancy Principles and Approaches

For the specification of the new OR1 and OR2 approaches, three basic redun-
dancy principles have to be defined, which help remodel the control structures
in relation to redundant pathways. These principles are described as follows and
sketched out in Algorithm 3.1:

P1 The selection of new paths is conditioned by all those edges belonging to
those driver nodes ∈ DS (since OR1 ⊆ OR2 − cf. Sect. 2.1) with the highest
edge betweeness centrality EBC(v) − i.e., those nodes containing the highest
control capacity li,j .

P2 Any relink should be done, taking into account the properties of the under-
lying network. As the control network is based on power law distributions,
the redundancy should be subject to those nodes with the maximum degree
in order to comply with the power notion. P1 and P2 result in a new set of
driver nodes NP1

D representing the set of suitable candidates for the relink,
capable of ensuring the greatest control transference in perturbed scenarios.

P3 The selection of driver nodes has to be limited to OR2 (cf. Sect. 2.1), in
which the type of node to be relinked has to be considered (see Fig. 1):

Safeguarding Structural Controllability in Cyber-Physical Control Systems 479

P3.1 If the unobserved node is part of DS, then it is necessary to find a
driver node nd ∈ NP1

D that does not infringe OR2, such that: (|Ond| ≥ 2
and |DSnd| ≥ 0) or (|Ond| = 0 and |DSnd| ≥ 0), where Ond denotes the
set of observed nodes controlled by an nd, and DSnd represents the set
of driver nodes controlled by an nd ∈ DS.

P3.2 If the unobserved node is not part of DS, then it is necessary to find a
driver node nd ∈ NP1

D such that (|Ond| ≥ 1 and |DSnd| ≥ 0) or (|Ond| = 0
and |DSnd| = 0).

The result of P3 is a new set of driver nodes NP2
D , such that NP1

D ⊆ NP2
D . To

satisfy these principles and to obtain the maximum CLC (i.e., Hi,j in Eq. 3) that
Gw can support at any given moment, a second graph G r

w(V,E′) of the same size
as Gw is required. G r

w comprises all the redundant links from the commissioning
phase such that |E′| ≥ |E|, and through this graph it is possible to map the
entire system and compute Hi,j , whereas Lt≥0

i,j provides information of Gw at
each state t ≥ 0. The update of G r

w will depend on the optimization of the
restoration mechanisms, which are described in detail below.

3.2 OR1 and OR2 Based on Redundant Pathways

The reconstruction of OR1 and OR2 presupposes considering the four restora-
tion strategies laid out in Sect. 3 and the redundancy principles specified in
Sect. 3.1, leading to Algorithms 3.2 and 3.4. Both extend the rudimentary ver-
sions defined in [1] so as to include redundant links in E′ from the commissioning
phase, and protect the most critical control pathways over time. The identifi-
cation of these routes is done through Algorithm 3.3, which is responsible for
extracting the most prominent driver nodes from NP1

D and NP2
D .

Algorithm 3.2. OR1v2
a (Gw(V, E),G r

w(V, E′), STG, Lvb)

local DS, relink ← �, N ← V ;
output (Gw(V, E),G r

w(V, E), DS)

DS ← OR1(Gw(V, E)); comment:Procedure OR1 included in [1];

while (N �= �)

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Randomly choose one vi ∈ N ;
{Gw(V, E),G r

w(V, E′)} ← STGs (STG,Gw(V, E),G r
w(V, E′),

DS, vi, Lv);
if vi ∈ DS
then N ← N \ {vi};

else

⎧
⎨

⎩

if relink �= �
then DS ← DS ∪ vi;
else N ← N \ {vi};

return (Gw(V, E),G r
w(V, E), DS)

a
OR1v2, a redesigned version from the original OR1 specified in [1].

b
Lv represents the set of those nodes that leave (by themselves) a determined network.

480 C. Alcaraz and J. Lopez

Algorithm 3.3. STGs (STG,Gw(V, E),G r
w(V, E′), DS, vi, relink, Lv)

output (Gw(V, E),G r
w(V, E′))

local fathers, brothers, grandfathers, Ond, DSnd, NP1
D , NP2

D , candidate;

comment: P1 and P2 (see Section 3.1);

if STG �= STG4

then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fathers ← ((fathers(Gw(V, E), vi) \ Lv) ∩ DS
while (fathers �= �)

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if STG �= STG2

then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if STG = STG1

then

⎧
⎪⎪⎨

⎪⎪⎩

brothers ← ((children(Gw(V, E),
fathers(i)) \ Lv) ∩ DS

NP1
D ← NP1

D ∪ Maxi EBC
∗a(Gw(V, E),

fathers(i), brothers);

else

⎧
⎪⎪⎨

⎪⎪⎩

grandfathers ← ((fatherb(Gw(V, E),
fathers(i)) \ Lv) ∩ DS

NP1
D ← NP1

D ∪ Max EBC
∗(Gw(V, E),

fathers(i), grandfathers);
fathers ← fathers \ fathers(i);

if STG = STG2

then NP1
D ← Max EBC

∗(Gw(V, E), fathers, vi);
else

{
NP1

D ← Minimum Diameter with EBC*
c(Gw(V, E), DS);

comment: P3 (see Section 3.1);

NP2
D ← Redundancy Principles(Gw(V, E),G r

w(V, E′), DS, NP1
D , vi);

if NP2
D �= �

then

{
candidate ← Randomly select one candidate ∈ NP2

D ;

G r
w(V, E) ← Update Netw

d(G r
w(V, E), candidate, vi);

return (Gw(V, E),G r
w(V, E′))

a
Max EBC

∗: returns ND with the maximum EBC included in Gw(V,E) (P1) and the maximum

dominance (P2).
b

fathers: set of fathers nodes fj that comprises a determined node vi / ∀ fj (fj, vi) ∈ E.
c

Minimum Diameter with EBC*: returns ND with the min. diameter and the max. EBC∗.
d

Update Netw: relinks the candidate to node vi / (candidate, node) ∈ E.

The second observation rule OR2 in Algorithm 3.4 has to verify until twice the
fulfillment of the dominance. The first round is applied in Gw and the second one
in its extended version G r

w. In this way, any activation of redundant pathways in
Gw at a state t, will prevent the appearance of one or several nd of degree d+ ≥ 2
adjacent to d−1 observed vertices, which could infringe OR2 (cf. Sect. 2.1). This
double exploration is crucial to providing a complete enough control structure
at each life state t of the system.

As part of this analysis, we provide a brief study of computational complexity,
evaluating the upper bound for the new versions of OR1 and OR2 together with
their restoration scenarios STGx (x = {1, 2, 3, 4}). For simplicity, we denote
| V |= n, | E |= e, | ND |= nd, where we assume that nd ≈ n in the worst
case. Concretely, Algorithms 3.2 and 3.4 are quite dependent on the complexity
of the traditional algorithms OR1 and OR2, also analyzed in [11] with an
overhead of O(n2), and on the complexity of Algorithm 3.3 and the type of
restoration scenario. For STGx (x = {1, 2, 3}), Algorithm 3.3 has to explore,
for each node ∈ V , the existence of a father, brother or grandfather driver with
the highest CLC in Gw (P1) and the highest degree (P2); both entailing a cost

Safeguarding Structural Controllability in Cyber-Physical Control Systems 481

of O(n + e + n + e) = O(e + n) = O(n) − the process of verifying P1 andP2
is encompassed in a unique function denoted here as EBC*. STG4 becomes
analogous to STGx (x = {1, 2, 3}) but with the difference that it needs to
explore those nd ∈ ND with the minimum diameter. As we apply the BFS
method (well-known to be O(n+e)) to obtain the minimal ND with the minimum
diameter in Gw, the cost of obtaining NP1

D , considering EBC* in this first stage,
is O(n + e + e + n) = O(n).

Algorithm 3.4. OR2v2
a (Gw(V, E),G r

w(V, E′), STG, Lv)

local DS, ND

output (Gw(V, E),G r
w(V, E), ND)

{Gw(V, E),G r
w(V, E′), DS} ← OR1(Gw(V, E),G r

w(V, E′), STG, Lv);
comment:Procedure OR2 included in [1] with an overhead of O(n2) [11];

ND ← OR2(Gw(V, E), DS);
comment: In the following, the algorithm considers G r

w(V, E′) and OR2;

i ← 1;
while i ≤| ND |

do

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Choose vertex w ∈ ND with degree d ≥ 2;
N ← Children(G r

w(V, E), w);
if (d − 1 vertices ∈ N and (∃ a vertex w1 ∈ U where w1 ∈ N)

then

{
ND ← ND ∪ {w1};U ← U \ {w1}; i ← 1;
else i ← i + 1;

return (Gw(V, E),G r
w(V, E′), ND)

a
OR1v2, a redesigned version from the original OR2 specified in [1].

Once NP1
D has been computed, Algorithm 3.1 has to be executed to extract

NP2
D . Assuming that | NP1

D |≈ nd in the worst case, the verification of OR2
in Gw and G r

w for each descendant driver node in NP1
D becomes O(n2). Note

that the costs implicit in assignment and if instructions tend to O(1), and
the same occurs with the updating of Gw and G r

w since the insertion of new
links does not involve an additional cost to Algorithm 3.3. As a result, the
cost of computing Algorithm 3.3 becomes O(n + n2) = O(n2). With all this
information in hand, the cost of computing the new version of OR1 is of at least
O(n × n2) = O(n3) in the commissioning phase; whereas the new version OR2
implies O(n3) by computing Algorithm 3.2, O(kn2) (OR2 of [1]) and O(kn2) by
processing the second rule in G r

w) (also stated in [11]), resulting in an overhead of
O(n3 + kn2 + kn2) = O(n3). Unfortunately, the computational cost of the new
dominance versions (OR1, OR2) is higher than the traditional versions, but
this increase is only applicable in the initial phase, when the redundant control
is being configured. With respect to spatial complexities, it is worth noting that
the spatial cost is heavily dependent on each STGx (x = {1, 2, 3, 4}). In the
case of STG2, the cost may be similar to the cost required by the traditional
OR1 and OR2 since the redundancy is exclusively concentrated on the father
drivers. In contrast, the spatial cost in STGx (x = {1, 3, 4}) may significantly
rise depending on the selection of external driver nodes (brothers, grandfathers
or remote nodes) and its penalty in OR2 (see Algorithm 3.4).

482 C. Alcaraz and J. Lopez

4 Analysis and Discussion

Let Lv be the set of leaving nodes belonging to [Lv] (cf. Sect. 2.1); Ae the set
of active links in Gw(V,E) such that Ae ⊆ E′; and Fnd the set of father drivers
that observe a determined vertex in V . Algorithm 4.1 combines the functional
features of the four restoration strategies described in the previous section.

Algorithm 4.1. Dynamic Recovery (Gw(V, E),G r
w(V, E′), ND, Lv, Ae,

STG)

local vi, Fnd, found, candidates, fathers
output (Gw(V, E),G r

w(V, E′), ND)

for vi ← 1 to | V |
do
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fnd ← Fathers(Gw(V, E), vi) ∩ ND;
if (Fnd = �) and (vi /∈ Lv)

then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

comment:Optimal solution;

found ← false ;
fathers ← Fathers(G r

w(V, E), vi) ∩ ND;
while fathers �= �) and not found

do

⎧
⎨

⎩

Randomly choose a vertex candidate ∈ fathers;
if (candidate /∈ Ae)
then found ← true ;

if found

then

{
G r

w(V, E) ← Update Netw (G r
w(V, E), candidate, vi);

Ae ← Ae ∪ {candidate};

else

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

comment: Sub-optimal sol. - STG4 in Algorithm 3.3;

NP1
D ← Min. Diameter with EBC*(Gw(V, E), ND \ Lv);

NP2
D ← Red. Principles(Gw(V, E),G r

w(V, E′), DS, NP1
D , vi);

if NP2
D �= �

then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

candidate ← Randomly select one nd ∈ NP2
D ;

G r
w(V, E) ← Update Netw (G r

w(V, E),
candidate, vi);
Gw(V, E) ← New EBC

a(Gw(V, E));
Ae ← Ae ∪ {candidate}; found ← true ;

if not found

then

{
comment:Non-optimal solution;

ND ← ND ∪ {vi};
else

{{Gw(V, E),G r
w(V, E′)} ← STGs (STG,Gw(V, E),

G r
w(V, E′), ND, vi, Lv);

return (Gw(V, E),G r
w(V, E′), ND)

a
New EBC: re-compute Eq. 1 to update the control load capacities retained in Gw(V,E).

The heuristic (i.e., Algorithm 4.1) is based on three main restoration blocks,
categorized according to:

– Optimal solution, capable of reestablishing the control by automatically acti-
vating an ei,j ∈ E′. As the link activation is practically straightforward, the
computational cost in performing this part of the algorithm is O(n).

– Sub-optimal solution, with the ability to: (i) dynamically find an nd ∈ ND

with the minimum diameter in Gw and the maximum EBC* that ensures cover-
age of the unobserved node; and (ii) search a redundant pathway (dependent

Safeguarding Structural Controllability in Cyber-Physical Control Systems 483

on STGx (x = {1, 2, 3, 4})) that guarantees a secondary way to the unob-
served node in the near future. This dynamic search of prominent driver nodes
follows the principles P1, P2 and P3. If none of these principles are achieved,
then Algorithm 4.1 looks at the possibility of offering at least a non-optimal
solution. The computational overhead, at this point, becomes important since
it not only contemplates the charge required in EBC* (O(n)) but also the
charge necessary to verify P3.1 or P3.2 (Algorithm 3.1, O(n2)), the upgrad-
ing of loads in Gw(V,E) after reparation with a further cost of O(n2log(n))
[24], and the updating of Gw(V,E) and Ae. That is, O(n + n2 + n2log(n)) =
O(n2log(n)).

– Non-optimal solution, to the contrary, deals with transforming any unobserved
node to an observed node by including it as part of the ND. In this way, the
node is able to observe itself and comply with at least the first observation
rule, OR1. Note that this option is also closely related to [R3], when new
nodes need to be joined to the network, or the previous options are not reached
properly. In either of these two circumstances, the spatial complexity propor-
tionally grows according to the number of unobserved nodes, tearing up the
desirable conditions described in Sect. 2.2.

The correctness proof of the restoration problem is solved when the follow-
ing requirements are satisfied: (1) the algorithm that restores, ensures control-
lability without violating the control structural properties (restoration); (2) the
algorithm is able to properly finish in a finite time (termination); and (3) the
algorithm is able to terminate and provide control at any moment (validity).

For the former requirement, if a node vi is not observed by an nd ∈ ND in
a state t, then the control at that moment is not guaranteed. But if there exists
(either at local or at remote) a redundant link in E′ ∈ G r

w(V,E′) created from
the commissioning phase, such that (nd2 , vi) ∈ E′ and nd2 ∈ ND, then this link is
activated complying with OR1 and OR2 via Algorithms 3.2 and 3.4. Otherwise,
Algorithm 4.1 finds an nd2 with the minimum diameter and EBC* (i.e., P1 and
P2) such that (nd2 , vi) ∈ E′ and it ensures OR2 (P3) by Algorithm 3.1, further
complying with OR1 by having found a suitable driver node nd2 capable of
observing itself and all its neighbors. In the case that it is unable to find an
appropriate candidate, Algorithm 4.1 is forced to convert the unobserved vi to a
driver node to obey at least OR1 such that OR1 ⊆ OR2. This way of modeling
the network repair means that the structural controllability is maintained at all
times where all the nodes are observed by one or several driver nodes ∈ ND or
by itself if it is an nd.

Through induction we show the termination of the algorithm, where we first
define the initial and final conditions, and the base cases. The precondition
adds that Gw is threatened by one or several (targeted or random) attacks (cf.
Sect. 2.2), probably leaving some nodes in Gw without observation (Fnd =);
whereas the post-condition certifies that the network is fully observed (Fnd
=)
where OR1 and OR2 are fulfilled. As for the base cases:

484 C. Alcaraz and J. Lopez

Case 1: ∀ nodes in V , Fnd
= 	 after perturbation. In this case the loop of
Algorithm 4.1 is completely processed where all the nodes are covered by a
driver node in ND.

Case 2: ∀ nodes processed in V , ∃ one vi ∈ V such that Fnd = 	 after per-
turbation. In these circumstances, three scenarios must be distinguished for
vi:
– Optimal solution: ∃ a father nd ∈ fathers such that (nd, vi) ∈ E′. In

this case, the conditions, P1, P2 and P3 are met from the commissioning
phase onward.

– Sub-optimal solution: G r
w(V,E′) does not cover vi through an edge in E′,

so it is necessary to explore the existence of one or several candidates
{nd1 , nd2 , . . . , ndn

} with: (i) the minimum diameter and EBC*, and (ii)
with the capability to relink vi complying with P3.
If these candidates exist, then NP1

D
= 0 and Algorithm 3.1 verifies the
existence of an nd ∈ NP1

D that suffices P3.1 or P3.2 depending on vi. If in
addition this nd exists, then NP2

D
= 	 guaranteeing the relink. Otherwise,
the algorithm enters the non-optimal solution.

– Non-optimal solution: if there is no suitable redundant link in E′ or NP2
D =

	, then ND is updated by adding vi as driver node; i.e.: ND ←− ND∪{vi}.
In the first two cases, the network is updated through a new link and in such
a way that ∀ nodes in V , Fnd
= 	, satisfying the post-condition. For the
second case, ND is actualized and OR1 is finally met where OR1 ⊆ OR2.

Induction: if we assume that we are in step k (k ≥ 1) of the loop where ∃
several nodes {v1, v2, . . . , vn} in V with Fnd = 	, we can observe that for
these nodes, three possible cases can arise as stated in Case 2. At the end
of Algorithm 3.1 with k = |V |, the set Fnd
= 	 for all the nodes in V , once
again satisfies the post-condition. This also states that the latter requirement
(the validity) is also satisfied since Algorithm 4.1 finishes and ensures that
the two observation rules are provided at all times.

4.1 Experimental Results and Discussion

In order to show the practical validity of Algorithm 4.1 for small (∼100–500
nodes), medium (∼500–1000 nodes) and large (∼1000–1500 nodes) networks,
a case study written in Matlab is presented in this section. The experiments
have been planned to perturb a random number of nodes (δ ≤ |V |

2) belonging
to pure power-law distributions. Specifically, our research focuses on the Power-
Law Out-Degree (PLOD) [25] with a low connectivity probability of α = 0.1
for illustrating realistic scenarios, where we evaluate: (1) the spatial overhead
invested in ND, and (2) the effects caused after δ disturbances such as the
cascading effect and the optimization of STGx (x = {1, 2, 3, 4}).

Figure 2 shows the spatial cost invested by the new versions OR1 (DS) and
OR2. To understand this, it is necessary to observe the value associated with
N bef

D (the state of ND before repair) with respect to the Norig
D given in [1],

Safeguarding Structural Controllability in Cyber-Physical Control Systems 485

Fig. 2. Spatial complexity before and after perturbation and restoration

as well as the increase of Naft
D after repair. The results indicate that the cardi-

nality of the new N bef
D regarding |Norig

D | is insignificant, regardless of the increase
of DS for STGx (x = {1, 3}). Namely, the difference between |Naft

D | and |N bef
D |

after repair becomes relevant when the threat is related to [Lv] or [R3], since
the controllability properties are infringed and the network in general needs a
new assignation of driver nodes (a concept also supported by the analysis in
Sect. 4).

In relation to this research, Fig. 3 illustrates the effect of the threats carried
out in the respective recovery scenarios, where we observe that the joining of δ
members ([R3]), the insertion of δ edges ([R4]), and the isolation of the node
with the highest degree (the hubs, [T1]) and the highest strength ([T2]) are the
most devastating threats. The effect becomes more notable in those scenarios in
which the redundant control is located in the surrounds (STGx (x = {1, 2, 3})),
reaching a fall of 60–80% of the entire network for [R3] and [R4]. This also
means that STG4 can become more resilient to topological changes. Moreover,
these results certainly ratify the findings in [13,21], where it is concluded that
power-law networks are in general quite sensitive to threats related to degree
sequence.

Figures 4 and 5, in contrast, simplify the simulation results with respect to
the optimization of strategies STGx (x = {1, 2, 3, 4}). From these two figures
it is possible to appreciate how the system, depending on the degradation of
the structural controllability properties after a threat, is able to drive one (non-
optimal, suboptimal or optimal) strategy or another. In addition, as the number
of attacks can be high in a round (δ ≤ |V |

2), the degradation of the structural
controllability can drastically change. If the majority of surrounding links are

486 C. Alcaraz and J. Lopez

100 300 500 700 900 1100 1300 1500
0

10

20

30

40

50

60
STG1

Nodes

R
at

e
of

 I
m

pa
ct

100 300 500 700 900 1100 1300 1500
0

10

20

30

40

50

60

70
STG2

Nodes

R
at

e
of

 I
m

pa
ct

100 300 500 700 900 1100 1300 1500
0

20

40

60

80

100
STG3

Nodes

R
at

e
of

 I
m

pa
ct

100 300 500 700 900 1100 1300 1500
0

10

20

30

40

50
STG4

Nodes

R
at

e
of

 I
m

pa
ct

Lv

R1

R2

R3

R4

T1

T2

T3

Fig. 3. Cascading effect after perturbation

Fig. 4. Optimization of STGx (x = {1, 2, 3, 4}) considering random attacks

lost, the recovery should then depend on the less optimal strategies. But even
so, it is also possible to note from the figures that STG4 followed by STG1
are the best strategies for self-healing with reduced restoration costs (O(n))
for the majority of simulated cases, whereas the worst scenario is STG3 in

Safeguarding Structural Controllability in Cyber-Physical Control Systems 487

Fig. 5. Optimization of STGx (x = {1, 2, 3, 4}) considering targeted attacks and [Lv]

which the rate of optimization is mainly bounded to the sub-optimal solution.
However, STGx (x = {1, 4}) is quite susceptible to new integrations where
the non-optimal rate reaches more than 50 %, as opposed to the outcome of
STG2. In these conditions, we determine that critical wireless environments
should primarily be subject to relink procedures based on STG4. But even so,
we also believe that the combined option STGx (x = {1, 4}) would be the best
option to guarantee protection at both local and remote level, without discarding
the possibility of adapting STG2 to facilitate the integration of new members
within a given network. However, this hypothesis requires evaluating the trade-
off between safety and maintenance costs [26,27] when one or several redundancy
strategies are established for each node within the network. So this study will
be part of our future work.

5 Conclusions and Future Work

Modernized control systems based on CPSs for dynamic automation of oper-
ations tend to suffer from (slight or grave) perturbations or frequent changes
due to the mobile and sensitive nature of the wireless communications. In this
context, the inherent non-locality problem of the control networks is a matter
of utmost importance. Automated and reliable self-healing solutions have to be
considered as an integral part of network designs. However, most current solu-
tions lack efficient strategies that ensure an acceptable repair cost and respon-
siveness in time [11], complicating the provision of effective solutions for critical
environments. For this reason, four reachability-based restoration strategies have

488 C. Alcaraz and J. Lopez

been presented in this paper, so as to find optimal solutions that guarantee con-
trol at all times and without damaging the structural controllability properties.
Specifically, this research has entailed the restructuring of the two fundamen-
tal dominance rules given in [22] to allow redundancy of control links, either at
local or remote level. From these four strategies, we have discovered that the
best options are mainly to be found in those distant locations with the high-
est control load capacity and highest degree, followed by those brother drivers
located in the nearest surrounding area. Both strategies offer optimal solutions
for the great majority of simulated studies, reaching the expected restoration
costs (O(n)).

Now, our intention is to broaden the study to find the most suitable redun-
dancy combinations considering the lessons learned here, trying not to lose a
suitable balance between installation and maintenance costs, and safety [26,27].

Acknowledgment. The first author receives funding from the Ramón y Cajal
research programme financed by the Ministerio de Economı́a y Competitividad. In
addition, this work also has been partially supported by PERSIST (TIN2013-41739-R)
financed by the same Ministerio.

References

1. Alcaraz, C., Miciolino, E.E., Wolthusen, S.: Structural controllability of networks
for non-interactive adversarial vertex removal. In: Luiijf, E., Hartel, P. (eds.)
CRITIS 2013. LNCS, vol. 8328, pp. 120–132. Springer, Heidelberg (2013)

2. Alcaraz, C., Zeadally, S.: Critical control system protection in the 21st century:
threats and solutions. IEEE Comput. 46, 74–83 (2013)

3. Pasqualetti, F., Dorfler, F., Bullo, F.: Attack detection and identification in cyber-
physical systems. IEEE Trans. Autom. Control 58(11), 2715–2729 (2013)

4. Sridhar, S., Hahn, A., Govindarasu, M.: Cyber-physical system security for the
electric power grid. Proc. IEEE 100(1), 210–224 (2012)

5. Nie, S., Wang, X., Zhang, H., Li, Q., Wang, B.: Robustness of controllability for
networks based on edge-attack. PLoS ONE 9(2), 1–8 (2014)

6. Alcaraz, C., Lopez, J.: Wide-area situational awareness for critical infrastructure
protection. IEEE Comput. 46(4), 30–37 (2013)

7. Sanjay, B., Sanjeev, S., Ishita, T.: A detailed review of fault-tolerance techniques
in distributed system. Int. J. Internet Distrib. Comput. Syst. 1(1), 33–39 (2012)

8. Treaster, M.: A survey of fault-tolerance and fault-recovery techniques in parallel
systems. ACM Computing Research Repository, CoRR 501002, pp. 1–11 (2005)

9. Nakayama, K., Shinomiya, N., Watanabe, H.: An autonomous distributed control
method for link failure based on tie-set graph theory. IEEE Trans. Circuits Syst. I
Regul. Pap. 59(11), 2727–2737 (2012)

10. Marchese, M., Mongelli, M.: Simple protocol enhancements of rapid spanning tree
protocol over ring topologies. Comput. Netw. 56(4), 1131–1151 (2012)

11. Alcaraz, C., Wolthusen, S.: Recovery of structural controllability for control sys-
tems. In: Butts, J., Shenoi, S. (eds.) Critical Infrastructure Protection. IFIP AICT,
vol. 441, pp. 47–63. Springer, Heidelberg (2014)

12. Médard, M., Finn, S.G., Barry, R.A.: Redundant trees for preplanned recovery in
arbitrary vertex-redundant or edge-redundant graphs. IEEE/ACM Trans. Netw.
7(5), 641–652 (1999)

Safeguarding Structural Controllability in Cyber-Physical Control Systems 489

13. Quattrociocchi, W., Caldarelli, G., Scala, A.: Self-healing networks: redundancy
and structure. PLoS ONE 9(2), e87986 (2014)

14. Wang, B., Gao, L., Gao, Y., Deng, Y.: Maintain the structural controllability
under malicious attacks on directed networks. EPL (Europhys. Lett.) 101(5), 58003
(2013)

15. Wang, W.-X., Ni, X., Lai, Y.-C., Celso, G.: Optimizing controllability of complex
networks by minimum structural perturbations. Phys. Rev. E 85, 026115 (2012)

16. Ding, J., Lu, Y.-Z., Chu, J.: Recovering the controllability of complex networks. In:
9th World Congress The International Federation of Automatic Control (IFAC),
pp. 10894–10901 (2014)

17. Pagani, G.A., Aiello, M.: The power grid as a complex network: a survey. Physica
A 392(11), 2688–2700 (2013)

18. Lin, C.-T.: Structural controllability. IEEE Trans. Autom. Control 19(3), 201–208
(1974)

19. Haynes, T., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in
graphs applied to electric power networks. SIAM J. Discrete Math. 15(4), 519–529
(2002)

20. Kalman, R.E.: Mathematical description of linear dynamical systems. J. Soc. Ind.
Appl. Math. Control Ser. A 1, 152–192 (1963)

21. Liu, Y., Slotine, J.-J., Barabási, A.-L.: Controllability of complex networks. Nature
473, 167–173 (2011)

22. Kneis, J., Mölle, D., Richter, S.: Parameterized power domination complexity. Inf.
Process. Lett. 98(4), 145–149 (2006)

23. Guo, J., Niedermeier, R., Raible, D.: Improved algorithms and complexity results
for power domination in graphs. Algorithmica 52(2), 177–202 (2008)

24. Robinson, E.: Complex graph algorithms. In: Graph Algorithm in the Language of
Linear Algebra, Chap. 6, pp. 59–85. SIAM (2011)

25. Palmer, C., Steffan, J.: Generating network topologies that obey power laws. In:
Global Telecommunications Conference, GLOBECOM 2000, vol. 1, pp. 434–438
(2000)

26. Alcaraz, C., Zeadally, S.: Critical infrastructure protection: requirements and chal-
lenges for the 21st century. Int. J. Crit. Infrastruct. Protection (IJCIP) 8, 53–66
(2015)

27. Alcaraz, C., Lopez, J.: Analysis of requirements for critical control systems. Int. J.
Crit. Infrastruct. Protection (IJCIP) 5(137–145), 2012 (2012)

Attacks

The Beauty or The Beast? Attacking Rate
Limits of the Xen Hypervisor

Johanna Ullrich(B) and Edgar Weippl

SBA Research, Vienna, Austria
{JUllrich,EWeippl}@sba-research.org

Abstract. Rate limits, i.e., throttling network bandwidth, are
considered to be means of protection; and guarantee fair bandwidth dis-
tribution among virtual machines that reside on the same Xen hyper-
visor. In the absence of rate limits, a single virtual machine would be
able to (unintentionally or maliciously) exhaust all resources, and cause
a denial-of-service for its neighbors.

In this paper, we show that rate limits snap back and become attack
vectors themselves. Our analysis highlights that Xen’s rate limiting
throttles only outbound traffic, and is further prone to burst trans-
missions making virtual machines that are rate limited vulnerable to
externally-launched attacks. In particular, we propose two attacks: Our
side channel allows to infer all configuration parameters that are related
to rate limiting functionality; while our denial-of-service attack causes
up to 88.3 % packet drops, or up to 13.8 s of packet delay.

1 Introduction

Cloud computing is here to stay; and has become an all-embracing solution for
numerous challenges in information technology: Defending against cyber attacks,
countries back up their “digital monuments” in clouds [1]; clouds support censor-
ship evasion [2]; clouds accommodate power-restrained mobile devices with com-
puting [3]; automotive clouds connect a vehicle’s sensors and actuators with other
vehicles or external control entities for safer and more comfortable driving [4];
and also healthcare applications are hosted in the cloud [5]. Its total market is
worth more than 100 billion US dollars [6]; and recently, even the conservative
banking sector is jumping on the bandwagon [7,8].

A key technology in cloud computing is virtualization as provided by the
Xen hypervisor [9] that enables multiple virtual instances to share a physical
server [10]; but at the same time, resource sharing provides opportunity for
adversarial virtual machines to launch attacks against its neighbors. For example,
side channels exploiting shared hard disks [11] or network capabilities [12] allow
to check for co-residency of two virtual machines; data might be leaked from
one virtual instance to another via covert channels exploiting CPU load [13] or
cache misses [14]; an instance might free up resources for itself when tricking the
neighbor into another resource’s limit [15]; and shared network interfaces allow to
infer a neighbor’s networking behavior [16,17]. Mitigation follows two principal
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 493–511, 2016.
DOI: 10.1007/978-3-319-45741-3 25

494 J. Ullrich and E. Weippl

directions: On the one hand, dedicated hardware eliminates mutual dependencies
and thus the threat of co-residency, but contradicts cloud computing’s premise
of resource sharing. On the other hand, isolation reduces the impact of a virtual
machine’s behavior on its neighbors despite resource sharing. With respect to
networking, rate limits are introduced as means of isolation in order to throttle a
virtual machine’s maximum amount of traffic per time interval. This approach is
considered to guarantee fair distribution of bandwidth among virtual instances
and mitigates denial-of-service of neighbors in case a single instance (accidentally
or maliciously) requests all bandwidth. The Xen hypervisor provides such a rate
limiting functionality [18].

The introduction of a countermeasure should raise the question whether it
does not form a new attack vector itself. Throttling network traffic however
seems to be such a universal approach that its implementation into the Xen
hypervisor is barely scrutinized. Solely, [19] investigates rate limiting’s quality
of isolation; [20] analyzes rate limiting with respect to bandwidth utilization.
The paper at hand overcomes this gap and examines the impact of Xen’s rate
limiting functionality on security. Our analysis reveals that rate limits might
protect from co-residency threats, but allow (yet unknown) attacks that are
directed against the rate limited virtual machine itself. In particular, we propose
a side channel and a denial-of-service attack. The side channel reveals Xen’s
configuration parameters that are related to the rate limiting functionality, while
the denial-of-service attack causes up to 88.3 % of packet loss or up to 13.8s of
delay in benign connections. Our results emphasize that Xen’s rate limiting
snaps back, and revision should be considered.

The remainder of the paper is structured as follows: Sect. 2 provides details
on Xen’s networking in general and its rate limit functionality in particular,
whereas Sect. 3 analyzes this mechanism with respect to security. Section 4
presents our side channel revealing configuration parameters and respective mea-
surement results; Sect. 5 presents three flavors of our denial-of-service attacks
and discusses them with respect to their impact on benign connections. It is fol-
lowed by related work in Sect. 6. Overall results are discussed Sect. 7. Section 8
concludes.

2 Background

This section first provides a general overview on Xen’s networking architecture.
Its rate limiting functionality however throttles only a virtual machine’s out-
bound traffic; thus, we describe a virtual machine’s outbound traffic path in a
second step. Finally, we focus on the credit-based algorithm eventually throttling
a machine’s traffic.

General Networking Architecture: The Xen hypervisor follows the approach
of paravirtualization; it provides device abstractions to its virtual machines – in
terms of Xen virtual machines are called domains – so that all sensitive instruc-
tion like those for device I/O are redirected over the hypervisor. Paravirtualizing
hypervisors do not need specific hardware capabilities; but require modifications

The Beauty or The Beast? Attacking Rate Limits of the Xen Hypervisor 495

Fig. 1. Xen’s outbound traffic path

of the operating systems running in the virtual machines [9]. With respect to
Xen, the hypervisor in the narrower sense is responsible for CPU scheduling,
memory management and interrupt forwarding. The remainder tasks are dele-
gated to domain0 – a privileged virtual machine with the right to access physical
I/O devices and to interact with other (non-privileged) domains. Abstract net-
working devices consist of two distinct parts: (1) netfront devices are provided to
non-privileged domains replacing classic network interfaces; (2) its counterpart
netback resides in domain0, multiplexes packets from multiple netfront devices
and forwards them to the physical network interface card as in standard Linux
operating systems [19,21].

Outbound Traffic Path: Packets originating from non-privileged virtual
machines (domainN) have to pass domain0 on their way to the physical net-
work; the respective handover path is depicted in Fig. 1. Therefore, Xen provides
descriptor rings, i.e., ring buffers, as central points of communication. The ring
does not directly contain data; this data is rather stored in buffers that are indi-
rectly referenced via the ring descriptors. Packets pass this path in the following
manner. First, packets are enqueued in the virtual machine’s network interface
TX queue. Then, netfront forwards these packets from the TX queue to the ring
buffer, and notifies netback. Netback – being within domain0 and thus having
access to physical drivers – hands them over to the physical network interface
card’s driver queue and removes them from the ring buffer. Beyond, netback is
the place of rate limiting. If a respective virtual machine exceeds its assigned
bandwidth quota, netback refrains from taking further packets from the ring
buffer and discontinues forwarding for some time. As items are not removed
from the ring anymore, the buffer becomes full. As soon as a virtual machine’s
netfront detects this, it signalizes this fact to the upper networking layers by
means of a flag. Packets pending in the ring buffer have to wait for further
processing until the next bandwidth quota is received.

Rate Limiting: Rate limiting throttles a virtual machine’s bandwidth – how-
ever, it confines outbound traffic only – and is configured by means of two
parameters [18]. The parameter rate defines the respective bandwidth limit in
MB/s, while time window defines the replenish interval of the rate limiting

496 J. Ullrich and E. Weippl

algorithm. Its default value is 50 ms. Looking behind the scenes, the algorithm is
credit-based1. With every packet forwarded from the ring buffer, the respective
packet size is subtracted from the remaining credit. In case of lacking credits, two
alternatives remain: (1) immediate replenishment of credits and continuation of
transmission, or (2) discontinuation and waiting for replenishment of credits at
a later point in time. Immediate replenishment is only possible if the last replen-
ishment happened at least the time defined by the parameter time window ago.
In the alternative case, a timer is set to the time of next replenishment, and
packet transmission is rescheduled as soon as credits are regained. According to
the parameters rate r and time window t, the credit bytes per interval c cal-
culates to c = r · t, and the total amount of available credit is limited to this
number. This implies that accumulating unused credits for later transmission is
impossible. There is a single exception if c remains below 128 kB, i.e., rates of less
than 2.5 MB/s at the default time window, as then jumbo packets might seize
up the interface. In such a case, credit accumulation up to 128 kB is allowed.

3 Security Analysis

In this section, we perform a manual security analysis of the Xen’s rate limit
functionality. This analysis reveals distinct characteristics that may serve as
attack surface; we describe these characteristics, highlight their implication on
security and discuss them with respect to cloud computing. Finally, we provide
a high-level overview of our attacks that exploit the found characteristics.

(1) Unidirectional Bandwidth Limits: Xen allows to restrict a virtual
machine’s outbound bandwidth, but inbound remains unlimited without any
chance for change. In consequence, the transmission paths are asymmetric. In
principle, asymmetry in bandwidth is a known phenomena, e.g., Asymmetric
digital subscriber line (ADSL), but Xen’s asymmetry appears to contradict its
application in cloud services as highlighted by the following analogy. ADSL’s
asymmetry is concordant with its application in consumer broad-band connec-
tions. Consumers typically request more downstream than upstream bandwidth,
and thus favoring the first direction (at the expense of the latter) is reasonable.
Cloud instances predominantly require higher outbound than inbound band-
width, e.g., when used as application, web or streaming servers. Xen however
performs precisely the opposite and limit’s the more utilized outbound direc-
tion2.

Bandwidth is not only unequally distributed, but also differs by magnitudes
as in consequence inbound traffic is only limited by the underlying hardware.
Outbound bandwidth in public clouds starts from 12.5 MB/s for small cloud
instances; assuming a 10-Gigabit physical network in the data center, maximum
inbound outperforms maximum outbound bandwidth by a factor up to 100.
1 Kernel 3.16.0, /net/xen-netback/netback.c.
2 Cloud providers like Rackspace (see https://www.rackspace.com/cloud/servers) or

Amazon EC2 (see https://aws.amazon.com/en/ec2/pricing/) typically do not even
charge inbound traffic.

https://www.rackspace.com/cloud/servers
https://aws.amazon.com/en/ec2/pricing/

The Beauty or The Beast? Attacking Rate Limits of the Xen Hypervisor 497

(2) Susceptibility to Burst Transmissions: Xen’s algorithm is prone to
burst transmissions. A virtual machine transmitting high amounts of traffic
shoots its wad at the begin of a time slot, and has to wait for new credits then.
At the time of replenishment, further packets might already wait for transmis-
sion and cause another burst consuming all credits. In consequence, packets
experience latencies when pausing for the next slot; however, these latencies are
only experienced by outbound traffic due to the unidirectional bandwidth limita-
tion. In case the outbound traffic exceeds the configured bandwidth for a longer
period of time, packets might even be dropped: Packets remain in the ring buffer
as a result of credit shortage. As a consequence, netfront cannot forward pack-
ets to the ring descriptor anymore and causes a growing backlog in the virtual
machines TX queue. If the number of packets becomes larger than this queue’s
size, packets are dropped. By default, time window is set to 50 ms; according to
the documentation “a good balance between latency and throughput and in most
cases will not require changing” [18]. This implies that the credit-based algo-
rithm is rather coarse-grained as time slots in the virtual machine’s traffic are of
the same order of magnitude as round trip times, and the bursts are externally
observable.

Attacks Exploiting Rate Limiting: We found two attacks exploiting these
characteristics – a side channel revealing Xen configuration parameters that
are related to its rate limit functionality, and a denial-of-service attack causing
significant delays and packets drops in benign connections to third parties. We
provide a high-level overview on these attacks, before addressing them in more
detail in Sects. 4 and 5.

1. Side Channel: Pushing a virtual machine into its outbound traffic limits,
leads to burst transmissions that can be observed. By measuring time between
two bursts, it is possible to infer the parameter time window t; by summing
up the bytes of a burst, an adversary is able to infer the amount of credits c
per interval, and subsequently also calculate the rate r.

2. Denial-of-Service Attack: An adversary might force a virtual machine to
spend all its credits; in consequence, a virtual machine has not enough credits
left in order to serve benign requests. Respective responses are significantly
delayed as they have to wait for credit replenishment, or dropped due to full
buffers. This denial-of-service attack is insofar remarkably as it exhausts out-
bound bandwidth in comparison to ordinary bandwidth exhaustion attacks
exhausting inbound bandwidth.

4 Side Channel

If a virtual machine requires more bandwidth than assigned, its traffic becomes
bursty due to Xen’s credit-based rate limit algorithm. An adversary might exploit
this behavior to determine a virtual machine’s configuration parameters time
window t and rate r by means of the following side channel. The adversary

498 J. Ullrich and E. Weippl

Fig. 2. Side channel attack scenario

sends a high number of legitimate requests to the virtual machine. The latter
replies according to the chosen protocol; however, the sum of all replies exceeds
the assigned bandwidth and outbound traffic becomes bursty as depicted in
Fig. 2. The time interval between two bursts is equivalent to the configured
time window t, as the virtual machine receives credits for further transmission
immediately after the timer expires. Summing up the size of all packets within a
burst allows to determine the victim’s credit rate c. Finally, the adversary is able
to calculate the victim’s assigned bandwidth (parameter rate) r = c/t. The side
channel is advantageously protocol independent. The only stringent objective is
that the virtual machine reliably replies; thus, a wide variety of protocols are
worth considering, e.g., ICMP, DNS, etc. The more outbound traffic, the better;
the larger the amplification between outbound and inbound traffic, the better;
both facilitate to reach the assigned rate limit for outbound traffic.

We evaluated this side channel in our experiments3. The virtual machine
was limited to 5 MB/s at the default time window of 50 ms. Checking the con-
figuration with iperf 4, we measured 4.7 MB/s from the virtual machine to the
adversary (throttled outbound traffic), and 117.3 MB/s in the other direction
(unthrottled inbound traffic). Attacking the virtual machine, the adversary sent
16 ICMP Echo Request of 1458 bytes, waiting a millisecond before sending the
next 16 ICMP Echo Requests causing up to 22.2 MB/s of inbound traffic for the
virtual machine. In total, the attack runs for 1000 of such cycles sending in total
16000 Echo Requests. Repeating this attack ten times, we inferred the configu-
ration parameter from the measurements according to the following approaches:

– Time Window: The begin of a time window is indicated by a packet following
a (larger than usual) pause. Thus, we extracted all packets following a pause
of at least 5 ms, and measured the time window between these first packets
of subsequent bursts. Rounding off to whole milliseconds, we took the most
frequent candidate of all test runs.

3 For our experiments, we use Xen version 4.4.1 (on Debian 8.2) on an Intel i5-750.
On the hypervisor, two virtual machines run Debian 7.9; each guest is pinned to a
separate CPU, domain0 runs on the remaining two CPUs. The two virtual instances
were rate limited and bridged via the hypervisor. The adversary ran Debian 8.2 on
an Lenovo X200 laptop. The hypervisor and the adversary’s laptop were connected
via a 1 Gbit/s network switch.

4 https://iperf.fr/.

https://iperf.fr/

The Beauty or The Beast? Attacking Rate Limits of the Xen Hypervisor 499

Fig. 3. Side channel measurement results using ICMP

– Credit Rate: In the previous step, the first packets of bursts have already
been determined; the credit rate is now calculated by summing up the size of
all packets from this first packet of the burst to the last one. The last packet
of the burst is the one right before the first packet of the next burst. Again,
the most frequent candidate is taken from all candidates.

This way, we inferred a time window t of 52 ms, and a credit rate c of
249,318 bytes; the resulting bandwidth r is thus 4.8 MB/s. Figure 3 depicts a
network trace of the side channel from the adversary’s point of view; for rea-
sons of simplicity, the graph is already slotted in time intervals of 52 ms. While
the adversary sends requests in regular intervals, the virtual machines replies
predominantly at the begin of a time slot. Afterwards, it remains silent due to
lacking further credits. One can also see in the figure that the number of sent
replies is high at the begin of a time slot; this is an indicator that all waiting
replies are sent at once immediately after credit replenishment. The side chan-
nel was measured with different configurations of the virtual machine. First, we
altered the bandwidth keeping the time window at the default configuration of
50 ms; results are provided in Table 1. Then, we modified the time window at
a fixed bandwidth of 5 MB/s; results are provided in Table 2. The first line of
Table 1, and the second line of Table 2 represents the results of the measurement
that has been described above.

Our results show that the measured time window is slightly longer than the
configured time window. Taking a look into Xen’s source code, the time win-
dow is strictly speaking the time period for the timer; this additional time of
mostly 2 ms might be caused by credit replenishment, packet forwarding, etc.
that is necessary after the timer expires. Actual bandwidth appears to be below
the configuration parameter; however, our side channel appears to reflect iperf
measurements well. Measurements for 30 MB/s at 50 ms of Table 1 shows an
increased time window; however, evaluation shows two almost equally frequent
candidates – 56 ms and 48 ms – both equally distant from the expected 52 ms.
Similarly, measurements for 5 MB/s at 20 ms (peaks at 16 ms and 24 ms) as well

500 J. Ullrich and E. Weippl

Table 1. Bandwidth Measurements with Fixed Time Window of 50 ms

Xen configuration Attack parameters Side channel

Configured

bandwidth

iperf (Out-

bound)

Requests

per cycle

Inbound

bandwidth

Credit rate c

(Measured)

Time

window t

(Measured)

Rate r

(Calculated)

MB/s MB/s MB/s B ms MB/s

5 4.7 16 23.3 249318 52 4.8

10 9.4 32 46.7 498636 52 9.6

20 18.9 32 46.7 998730 52 19.2

30 27.8 48 70.0 1498824 56 26.8

40 37.0 60 87.5 1998918 52 38.4

Table 2. Time Window Measurements with Fixed Bandwidth of 5MB/s

Xen configuration Attack parameters Side channel

Configured
time
window

iperf
(Out-
bound)

Requests
per cycle

Inbound
band-
width

Credit
rate c
(Mea-
sured)

Time
window t
(Mea-
sured)

Rate r
(Calcu-
lated)

ms MB/s MB/s B ms MB/s

70 4.8 16 23.3 349920 72 4.8

50 4.7 16 23.3 249318 52 4.8

30 4.6 16 23.3 148716 32 4.6

20 4.9 16 23.3 100602 24 4.2

10 4.1 16 23.3 49572 8 6.2

as 5 MB/s at 10 ms (peaks at 8 ms and 16 ms) of Table 2 show two such peaks.
For the latter however the lower peaks has slightly more candidates. The reason
for less quality of the latter two results might be the rather small time window t.
Pauses before first packets of a burst become shorter with decreasing time win-
dows; thus, our algorithm looking for 5 ms pauses might struggle to detect begin
packets at such low time windows accurately. This might be overcome by looking
for shorter pauses.

5 Denial-of-Service

Traffic exceeding the rate limit has to wait for a free time slot in the future;
beyond, if the backlog of waiting packets becomes too much, buffers become full
and packets are dropped. Deliberately filling the buffers, an adversary might
exploit this behavior in order to perform a denial-of-service attack causing sig-
nificant packet delays or even drops of benign traffic.

The Beauty or The Beast? Attacking Rate Limits of the Xen Hypervisor 501

Fig. 4. Denial-of-service attack scenario

For evaluation, we extended the measurement setup by an additional host
representing the victim5 as depicted in Fig. 4. The victim had a benign connec-
tion to the virtual machine; we decided to probe the virtual machine with ICMP
Echo Requests at an interval of 10 ms. In total, these requests (and potentially
received replies) require a maximum bandwidth of 19.6 kB/s which is negligible
in comparison to the attack traffic. For the adversary, we tested three alterna-
tives for causing the backlog – by means of ICMP Echo Requests, UDP-based
traffic amplification and TCP acceleration as described in the following para-
graphs.

ICMP Echo Requests: As with the side channel, the adversary sends multi-
ple Echo Requests and pauses afterwards for 1 ms repeating both actions in a
loop. Echo Requests however bear the drawback of being non-amplifying, i.e.,
the virtual machine’s (maximum) outbound traffic is of the same amount as the
inbound traffic from the adversary.

UDP-Based Traffic Amplification: A virtual machine might host a service
that answers with replies that exceed the requests in size and thus amplifies
inbound traffic. An adversary sending numerous such requests is able to trigger
more outbound traffic than with ICMP. Susceptible protocols are predominantly
UDP-based, e.g., NTP, DNS, SSDP or BitTorrent, and bandwidth amplification
factors reach up to 4670.0 [22]6. For our evaluation, we scripted a simple UDP
server that responded with a bandwidth amplification factor of 100. The server
ran on the virtual machine; our adversary sent respective UDP requests in the
same manner as the ICMP Requests – sending a certain number of UDP requests
before pausing for 1 ms repeating both actions in a loop.

5 The victim ran Ubuntu 14.4 LTS on a Lenovo X60 laptop. The virtual machines
were rate limited to 5MB/s at the default window time of 50 ms.

6 [22] investigated amplifying protocols with respect to reflective denial-of-service.
Such attacks require source address spoofing in order to redirect replies to the vic-
tim – a prerequisite that is not necessary for our denial-of-service attack. This implies
that (1) there are even more protocols than described in this paper that are suscep-
tible to our attack and (2) ingress filtering does not prevent our attack.

502 J. Ullrich and E. Weippl

TCP Acceleration: TCP connections, e.g., when serving a HTTP request, are
frequently asymmetric with respect to transmitted payload; a server is send-
ing amounts of data while the client almost exclusively acknowledges receipt
with a couple of bytes. TCP is a reliable protocol, adjust its speed according to
given network capabilities and thus does not automatically lead into a denial-of-
service attack; but an adversary might intentionally accelerate a TCP connection
by means of optimistic acknowledgments [23]. Such optimistic acknowledgments
are sent prior the receipt of the respective segment, lead the server to believe in
higher available bandwidth and make the server send at a higher speed than nor-
mally. For our evaluation, we installed an Apache7 server on the virtual machine
providing a 100 MB file for download. For the adversary, we re-implemented this
attack with respect to current TCP implementations as congestion control has
significantly changed over the last decade and ran the attack when downloading
the previously mentioned file.

Results for ICMP and UDP-Based Attacks: Results for the ICMP-based
attacks are found in Table 3; results for the UDP-based attack with traffic ampli-
fication in Table 48. Inbound bandwidth refers to the traffic that is sent from the
adversary to the virtual machine, while the potential outbound bandwidth refers
to the bandwidth that would be caused in the reverse direction in the absence
of rate limits. The remaining three columns show the average delay of replies to
the victim’s Echo Requests, the observed maximum delay as well as the relative
amount of dropped replies. In both tables, the first line represents the latter
values in the absence of an attack for reasons of comparison.

The results highlight the following: (1) All attacks significantly increase the
delays by two orders of magnitudes. (2) The higher the ICMP bandwidth, the
more packet drops. The average delay however appears to decrease at higher
attack bandwidths; and might be an artifact of increased drop rates as less
replies were received by the victim and were taken into account for average
delay calculation. The maximum delay of icmp16 might be higher than the
remainder for the same reason. (3) UDP-based attacks do not cause any packets
drops; average and maximum delay are higher than in the ICMP-based attacks,
and appear to be independent of the attack bandwidth. The reason might be
that the virtual machine favors ICMP traffic over UDP, and thus drops attack
traffic rather than the victim’s. However, amplification allows the adversary to
reduce the amount of sent traffic in order to gain the same potential outbound
bandwidth at the virtual machine; for example, attack icmp16 leads to the same
potential outbound bandwidth as udp4. Figure 5 depicts a test run of the ICMP-
based attack, Fig. 6 of the UDP-based attack. Both figures show the increased
round-trip times of the victim; the first figure further shows packet drops.

Results for TCP-Based Attack: The results of our TCP attack are found in
Table 5. In comparison to ICMP- or UDP-based attacks, delays are much higher.

7 https://httpd.apache.org/.
8 As in the side channel, the results are based on ten test runs each.

https://httpd.apache.org/

The Beauty or The Beast? Attacking Rate Limits of the Xen Hypervisor 503

Table 3. Denial-of-service attack with ICMP echo requests

ID Adversary Victim

Requests
per cycle

Inbound
bandwidth

Potential
outbound
band-
width

Average
delay

Maximum
delay

Dropped
replies

MB/s MB/s ms ms %

noattack 0.221 0.491 0

icmp16 16 23.3 23.3 14.3 65.7 67.5

icmp32 32 46.7 46.7 23.6 49.3 85.6

icmp48 48 70.0 70.0 21.8 51.5 83.6

icmp60 60 87.5 87.5 16.7 52.8 88.3

Table 4. Denial-of-service attack with UDP-based traffic amplification

ID Adversary Victim

Requests
per cycle

Inbound
bandwidth

Potential
outbound
band-
width

Average
delay

Maximum
delay

Dropped
replies

MB/s MB/s ms ms %

noattack 0.221 0.491 0

udp4 4 0.2 23.2 23.0 53.3 0

udp8 8 0.5 46.4 22.9 53.5 0

udp12 12 0.7 69.6 22.7 53.4 0

udp15 15 0.9 87.0 23.6 53.7 0

Fig. 5. Impact on the victim (icmp16) Fig. 6. Impact on the victim (udp4)

The average delay is 1625.8 ms, the maximum delay even 13791 ms, i.e., almost
14s. Packet drops are however below the ICMP-based attack: 33.2 %.

Figure 7 shows the sequence numbers of sent TCP acknowledgments and
received TCP payload from the adversary’s perspective. While the first increases

504 J. Ullrich and E. Weippl

Fig. 7. Relative sequence numbers
(tcp)

Fig. 8. Impact on the victim (tcp)

Table 5. Denial-of-service attack with TCP

ID Adversary Victim

Requests
per cycle

Inbound
bandwidth

Potential
outbound
bandwidth

Average
delay

Maximum
delay

Dropped
replies

MB/s MB/s ms ms %

noattack 0.221 0.491 0

tcp 0.01 65.8 1625.8 13791.6 33.2

exponentially to maximize the virtual machine’s congestion window, the latter
increases only in a linear manner. This linear increase is caused by the rate limit
of 5 MB/s, and provides a first evidence that the virtual machine operates at its
networking limits. Moreover, enlarged sections of this figure would clearly depict
the bursty transmission and the underlying 50 ms intervals (but were omitted
due to space constraints). Figure 8 shows the attack’s impact on the victim’s
round-trip times: Right at the start, round-trip times are as expected less than
a millisecond; then, round-trip times start to increase. The maximum recorded
delay is 13,791.6 ms. In a third phase, the buffers are full and Echo Replies are
dropped at a large-scale. As numerous packets are dropped, the buffer is released
and round-trip times decrease back to normal.

6 Related Work

Our research is based on three foundations. First, we summarize related work
on Xen’s network rate limits in general. Then, we discuss known side channels
as well as denial-of-service attacks in cloud computing; by now, no approach
exploited a hypervisor’s rate limit functionality.

Rate Limit Functionality: Related work on Xen’s rate limit for networking
is rather scarce, and must not be mistaken for (the more frequently discussed)
rate limits with respect to CPU scheduling, e.g., [24–26].

The Beauty or The Beast? Attacking Rate Limits of the Xen Hypervisor 505

Adamczyk et al. [19] investigate rate limits’ quality of isolation, i.e., protec-
tion against malicious neighbor virtual machines. The authors infer that per-
formance isolation is moderate in case of applied rate limits. Nevertheless, the
authors propose round robin for more fairness among co-resident tenants. Mei
et al. [20] analyze rate limits with respect to bandwidth utilization, and considers
Xen’s rate limiting to be static as a virtual machine cannot provide spare tokens
to neighbors. The authors propose a new bandwidth allocation algorithm that
dynamically provides bandwidth based on current and past bandwidth consump-
tion. While this algorithm definitely increases bandwidth allocation, an actively
networking virtual machine would increase its assigned bandwidth with time,
and lead to starving neighbors. Summarizing, the impact of rate limits on secu-
rity of the throttled virtual machine themselves has never been raised.

Side Channels: Numerous side channels in cloud computing exploit network
timing. Bowers et al. [27] measure file access times to extract data’s hardware
spread in order to check a cloud provider’s hardware redundancy, Benson et al.
[28] measure file access times in order to determine the geographic location
of files. Multiple side channels check for co-residency, i.e., whether two virtual
machines reside on the same physical server: Ristenpart et al. [11] exploit round-
trip times, Bates et al. [16,17] packet arrival rates and Herzberg et al. [12]
latencies when downloading a file.

Beyond, side channels enabling to spy on neighbors are available. Kadloor
et al. [29,30] measure round-trip times in order to infer a neighbor’s traffic
amount. Bates et al. [16,17] observe a distinct TCP throughput ratio therefore.
Herzberg et al. [12] propose address deanonmyization, i.e., discovery of private
IP addresses, by exploiting again latencies in file downloads, and further infer
the number of intermediate hops by finding the minimal TTL in order to gain a
successful connection.

Denial-of-Service Attacks: Alarifi et al. [31] present an attack that forces a
virtual instance to migrate to another physical host. This behavior is triggered
by co-resident virtual machines riding a workload wave. Ficco et al. [32] propose
an attack that stealthily increases resource use (by means of XML-based denial-
of-service attack) in order to remain undetected. The authors aim to harm the
victim economically as the increased resource use is charged by the provider.
Liu et al. [33] discuss under-provision of network links in data centers, e.g., that
uplink capacity remains typically smaller than the total subnet bandwidth. An
adversary might spot such bottlenecks in clouds and strike it in a concerted
action of multiple virtual machines.

Shea et al. [34,35] analyze the impact of TCP SYN floods on virtualized
environments and infer that virtualization overhead negatively impacts a host’s
vulnerability to denial-of-service attacks. Ferriman et al. [36] analyze the impact
of denial-of-service attacks on Google App Engine and saw an increased render-
ing time for a test application. Chonka et al. [37] perform XML-based attacks in
order to evaluate their service-oriented traceback architecture. Beyond, distrib-
uted denial-of-service attacks striking software-defined networks are known [38].

506 J. Ullrich and E. Weippl

Our attacks differ with respect to three attributes from the available
approaches: (1) Our side channel does not only reveal a victim’s network band-
width, but rather extracts the (more accurate) parameters credit rate and time
window of the applied rate limiting. (2) Both – our side channels as well as the
denial-of-service attack – are the very first that exploit the asymmetric behavior
of Xen’s rate limiting and its susceptibility to burst transmissions in order to gain
information about the victim or negatively impact the latter’s availability. (3) In
contrast to side channels from related work measuring network bandwidth, the
adversary neither has to control the measured virtual instance nor be co-resident
to the victim instance; the latter holds for the denial-of-service attack, too.

7 Discussion

Throttling network bandwidth hinders a virtual machine from claiming all avail-
able resources and cutting off supply to neighbor machines. Such rate limits have
always been considered as means of security against denial-of-service attacks, but
not as an attack vector themselves. Notwithstanding, our work conveys by the
example of the popular Xen hypervisor that (1) configuration parameters of rate
limits are easily gained through a side channel and that (2) novel denial-of-service
attacks exploiting (allegedly protective) rate limits are feasible. In comparison to
traditional bandwidth consumption attacks, our denial-of-service attack shows
a peculiarity with respect to the point of consumption. A traditional denial-of-
service attack jams the virtual machine’s inbound link, exploiting rate limiting
functionality as shown in the paper at hand causes jam on the outbound link. In
the first case, a virtual machine would not receive any further traffic and might
suspect irregularities on the network. In the latter case, it would still obtain
requests and would be (mostly) unaware that responses are stuck in the hypervi-
sor. Digging its own grave, it would even answer incoming requests strengthening
the attack. Xen’s unilateral bandwidth limits (not throttling inbound traffic) is
an additional blessing as requests from the adversary are reliably forwarded to
the victim. This means that there is in principle no need for traffic amplifica-
tion; but admittedly, the attack is more likely to succeed with some sort of traffic
amplification, e.g., when striking over the Internet with much lower bandwidth.

Our side channel allows to infer all configuration parameters of Xen’s rate
limits – the rate and the window time. These parameters are sensitive insofar
as they allow a more detailed look on network characteristics than conventional
means of bandwidth measuring, and serve various attacks. On the one hand,
this enables an adversary to plan an attack, e.g., our denial-of-service-attack,
more accurately. Further, an adversary once knowing these parameters of a vir-
tual machine would be able to glean the latter’s networking behavior; but also
benign customers might use the side channel to check compliance of the con-
figuration with their service contract. On the other hand, the side channel may
also serve as a way to identify the underlying hypervisor of a virtual machine as
Xen. By now, however, it remains unclear whether burst transmissions are just
an issue of Xen, or also applicable to other hypervisors and container solutions.

The Beauty or The Beast? Attacking Rate Limits of the Xen Hypervisor 507

In dependence on the outcome, burst transmissions themselves would imply the
use of Xen; otherwise, fingerprinting would have to focus on more subtle differ-
ences in bursts among different hypervisors; we plan respective investigations for
future work. Beyond, the side channel has potential to be developed further into
a covert channel. A limitation is however given by network jitter as an adver-
sary depends on clear distinction between subsequent time slots. This limitation
however is only valid for the side channel, not for the denial-of-service attack.

Our denial-of-service attack causes latencies of almost 14s, and packet drops
of up to 88.3%. Service degradation is generally undesired, for example, it
decreases interactivity [39]; but there are also scenarios beyond the obvious that
we would like to highlight. First, virtual machines are remotely synchronized
by means of a synchronization protocol like Network Time Protocol (NTP) for
purposes of time measurements [40,41]. However, the synchronization algorithm
easily looses its stability in case of variable path delays [42], and these delays are
heavily increased for a certain period before going back to normal by our attack;
further, synchronization is prone to path asymmetry [42], and this asymmetry
is also exacerbated by our attack. Synchronization errors are already in the mil-
liseconds in presence of moderate CPU load [41], and will become significantly
worse in presence of our attack making accurate time measurements in the clouds
a nightmare. Second, temporal lensing was lately introduced as a way of attack-
ing [43]; thereby an adversary performs a reflective denial-of-service attack that
concentrates into a single (short, but high-bandwidth) pulse striking the vic-
tim. This is achieved by using reflectors with different attack path latencies, i.e.,
requesting reflectors with long paths before those with shorter ones, with the
goal that all replies reach the victim simultaneously. The more reflectors with
higher latencies are found, the more the adversary is able to funnel. The longest
path latency found by the authors was 800 ms. In case such a reflector resided
on a virtual machine, its responses could be delayed up to almost 14s by hitting
this virtual machine with our TCP attack. This approach would significantly
increase temporal lensing’s power of impact by providing seamlessly controllable
reflectors.

Finally, our results provide a further explanation to cloud phenomena: [44]
measured TCP and UDP performance in the Amazon EC2 cloud that is known
to use the Xen hypervisor, and identified regular bandwidth drops9. They seem
to occur roughly every 50 ms, and might be a consequence of rate limits. This
observation might further be an indicator that rate limits were (and possibly
still are) deployed at this major cloud provider; but Rackspace – another public
cloud provider also using Xen – might also throttle virtual machines this way as
they claim that only outbound traffic is limited [45]. Parenthetically, public cloud
providers charge only outbound traffic while inbound remains free. This implies
that our denial-of-service attack does not only impact a virtual machine’s avail-
ability, but also costs the owner actual money and could be used to economically
harm somebody.

9 See Fig. 5 in [44].

508 J. Ullrich and E. Weippl

In consequence, mitigation is of utter importance; however, none of the fol-
lowing suggestions fully prevents our attacks. (1) Throttling inbound traffic as
well would only prevent non-amplifying attacks, but might negatively impact
a host’s availability. However, providers could choose to apply such limits only
in the presence of an attack – provided that adequate detection mechanisms
are prevalent. (2) A modification of the credit-based scheduler enabling short
spikes (by spending previously saved credits) would increase the effort to over-
whelm rate limits and buffers for the adversary. (3) Decreasing the time window
t makes our side channel more prone to jitter (and thus prevent it) as the time
slots cannot be clearly distinguished anymore, but would have a negative impact
on performance. Alternatively, the algorithm might be modified in order to be
less deterministic, e.g., by randomizing the time window.

8 Conclusion

Rate limits are known to guarantee fair bandwidth distribution and to prevent
denial-of-service attacks among virtual machines on the same Xen hypervisor;
but our work shows that rate limits themselves become a vector for externally-
launched attacks. The underlying reasons are Xens unidirectional rate limits
throttling outbound traffic only, and its susceptibility to burst transmissions. In
the paper at hand, we propose two distinct attacks exploiting rate limits. Our
side channel reveals configuration parameters that are related to rate limit func-
tionality; our denial-of-service attack causes up to 13.8s of packet delay or up to
88.3 % packet drops. Beyond ordinary service degradation, these latencies may
heavily destabilize time synchronization in clouds due to increased path asym-
metry and path variability; but may also strengthen temporal lensing attacks
due to providing reflectors with controllable path latency. There is indication
that popular cloud providers like Amazon EC2 or Rackspace are using Xen’s
rate limits; thus, a large number of hosts remains conceivably vulnerable.

Acknowledgments. The authors thank Peter Wurzinger, and Adrian Dabrowski for
many fruitful discussions; Rob Sherwood for sharing the original implementation of
optimistic acknowledging and David Lobmaier for reimplementing it with respect to
current TCP implementations. Further, the authors are grateful to our reviewers for
their comments, especially on the aspect of mitigation.

This research was funded by P 842485 and COMET K1, both FFG - Austrian
Research Promotion Agency.

References

1. With an eye on Russia, Estonia seeks security in cloud computing, December 2015.
http://www.firstpost.com/business/with-an-eye-on-russia-estonia-seeks-security-
in-cloud-computing-2535650.html

2. Dou, E., Barr, A.: U.S. Cloud Providers Face Backlash From China’s Censors,
March 2015. http://www.wsj.com/articles/u-s-cloud-providers-face-backlash-
from-chinas-censors-1426541126

http://www.firstpost.com/business/with-an-eye-on-russia-estonia-seeks-security-in-cloud-computing-2535650.html
http://www.firstpost.com/business/with-an-eye-on-russia-estonia-seeks-security-in-cloud-computing-2535650.html
http://www.wsj.com/articles/u-s-cloud-providers-face-backlash-from-chinas-censors-1426541126
http://www.wsj.com/articles/u-s-cloud-providers-face-backlash-from-chinas-censors-1426541126

The Beauty or The Beast? Attacking Rate Limits of the Xen Hypervisor 509

3. Khan, A., Othman, M., Madani, S., Khan, S.: A survey of mobile cloud computing
application models. IEEE Commun. Surv. Tutorials 16(1), 393–413 (2014)

4. Ericsson, Connected Vehicle Cloud Under The Hood
5. Gilpin, L.: How The Cloud Is Revolutionizing Healthcare, December

2015. http://www.forbes.com/sites/lyndseygilpin/2015/12/01/how-the-cloud-is-
revolutionizing-healthcare/

6. Departement of Commerce, 2015 Top Markets Report Cloud Computing - A Mar-
ket Assessment Tool for U.S. Exporterts (2015)

7. FCA paves the way for cloud computing in UK financial services, Novem-
ber 2015. http://www.out-law.com/en/articles/2015/november/fca-paves-the-
way-for-cloud-computing-in-uk-financial-services/

8. Finnegan, M.: How Tesco Bank has adopted AWS cloud as ‘business as usual’
in eight months, November 2015. http://www.computerworlduk.com/cloud-
computing/how-tesco-bank-has-adopted-aws-cloud-as-business-as-usual-in-eight-
months-3629767/

9. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, SOSP 2003, pp.
164–177 (2003)

10. Mather, T., Kumaraswamy, S., Latif, S.: Cloud security and privacy: an enterprise
perspective on risks and compliance. O’Reilly Media Inc., Sebastopol (2009)

11. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: 16th ACM Con-
ference on Computer and Communications Security, pp. 199–212 (2009)

12. Herzberg, A., Shulman, H., Ullrich, J., Weippl, E.: Cloudoscopy: services discovery
and topology mapping. In: ACM Cloud Computing Security Workshop, pp. 113–
122 (2013)

13. Okamura, K., Oyama, Y.: Load-based covert channels between Xen virtual
machines. In: Proceedings of the 2010 ACM Symposium on Applied Computing,
pp. 173–180 (2010)

14. Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., Schlichting, R.: An
exploration of l2 cache covert channels in virtualized environments. In: Proceedings
of the 2011 ACM Workshop on Cloud Computing Security Workshop, pp. 29–40
(2011)

15. Varadarajan, V., Kooburat, T., Farley, B., Ristenpart, T., Swift, M.M.: Resource-
freeing attacks: improve your cloud performance (at your neighbor’s expense). In:
ACM Conference on Computer and Communications Security, pp. 281–292 (2012)

16. Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., Butler, K.: Detecting
co-residency with active traffic analysis techniques. In: ACM Cloud Computing
Security Workshop, pp. 1–12 (2012)

17. Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., Butler, K.: On detecting
co-resident cloud instances using network flow watermarking techniques. Int. J.
Inf. Secur. 13(2), 171–189 (2014)

18. redhat, 33.10.Limit network bandwidth for a Xen guest (2016). https://
access.redhat.com/documentation/en-US/Red Hat Enterprise Linux/5/html/
Virtualization/sect-Virtualization-Tips and tricks-Limit network bandwidth for
a Xen guest.html

19. Adamczyk, B., Chydzinski, A.: On the performance isolation across virtual net-
work adapters in Xen. In: Proceedings of the 2nd International Conference Cloud
Comput. GRIDs Virtual, CLOUD COMPUTING 2011, pp. 222–227 (2011)

http://www.forbes.com/sites/lyndseygilpin/2015/12/01/how-the-cloud-is-revolutionizing-healthcare/
http://www.forbes.com/sites/lyndseygilpin/2015/12/01/how-the-cloud-is-revolutionizing-healthcare/
http://www.out-law.com/en/articles/2015/november/fca-paves-the-way-for-cloud-computing-in-uk-financial-services/
http://www.out-law.com/en/articles/2015/november/fca-paves-the-way-for-cloud-computing-in-uk-financial-services/
http://www.computerworlduk.com/cloud-computing/how-tesco-bank-has-adopted-aws-cloud-as-business-as-usual-in-eight-months-3629767/
http://www.computerworlduk.com/cloud-computing/how-tesco-bank-has-adopted-aws-cloud-as-business-as-usual-in-eight-months-3629767/
http://www.computerworlduk.com/cloud-computing/how-tesco-bank-has-adopted-aws-cloud-as-business-as-usual-in-eight-months-3629767/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Virtualization/sect-Virtualization-Tips_and_tricks-Limit_network_bandwidth_for_a_Xen_guest.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Virtualization/sect-Virtualization-Tips_and_tricks-Limit_network_bandwidth_for_a_Xen_guest.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Virtualization/sect-Virtualization-Tips_and_tricks-Limit_network_bandwidth_for_a_Xen_guest.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Virtualization/sect-Virtualization-Tips_and_tricks-Limit_network_bandwidth_for_a_Xen_guest.html

510 J. Ullrich and E. Weippl

20. Mei, L., Lv, X.: Optimization of network bandwidth allocation in Xen. In: 2015
IEEE 17th International Conference on High Performance Computing and Com-
munications (HPCC), 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security (CSS), 2015 IEEE 12th International Conferen on Embedded
Software and Systems (ICESS), pp. 1558–1566, August 2015

21. Li, C., Xi, S., Lu, C., Gill, C.D., Guerin, R.: Prioritizing soft real-time network
traffic in virtualized hosts based on Xen. In: 21st IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 145–156, April 2015

22. Rossow, C.: Amplification hell: revisiting network protocols for DDoS abuse. In:
Network and Distributed System Security Symposium (NDSS) (2014)

23. Sherwood, R., Bhattacharjee, B., Braud, R.: Misbehaving TCP receivers can cause
internet-wide congestion collapse. In: Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS), pp. 383–392 (2005)

24. Xu, Y., Musgrave, Z., Noble, B., Bailey, M.: Bobtail: avoiding long tails in the
cloud. In: Presented as Part of the 10th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 2013), pp. 329–341 (2013)

25. Xu, Y., Bailey, M., Noble, B., Jahanian, F.: Small is better: avoiding latency traps
in virtualized data centers. In: Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC 2013 (2013)

26. Varadarajan, V., Ristenpart, T., Swift, M.: Scheduler-based defenses against Cross-
VM side-channels. In: 23rd USENIX Security Symposium (USENIX Security
2014), pp. 687–702, August 2014

27. Bowers, K.D., van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: How to tell if your
cloud files are vulnerable to drive crashes. In: 18th ACM Conference on Computer
and Communications Security, pp. 501–514 (2011)

28. Benson, K., Dowsley, R., Shacham, H.: Do you know where your cloud files are?
In: 3rd ACM Cloud Computing Security Workshop, pp. 73–82 (2011)

29. Kadloor, S., Gong, X., Kiyavash, N., Tezcan, T., Borisov, N.: Low-cost side channel
remote traffic analysis attack in packet networks. In: IEEE International Confer-
ence on Communications (ICC), pp. 1–5, May 2010

30. Kadloor, S., Kiyavash, N., Venkitasubramaniam, P.: Mitigating timing based infor-
mation leakage in shared schedulers. In: IEEE INFOCOM, pp. 1044–1052 (2012)

31. Alarifi, S., Wolthusen, S.D.: Robust coordination of cloud-internal denial of service
attacks. In: 2013 Third International Conference on Cloud and Green Computing
(CGC), pp. 135–142, September 2013

32. Ficco, M., Rak, M.: Stealthy denial of service strategy in cloud computing. IEEE
Trans. Cloud Comput. 3(1), 80–94 (2015)

33. Liu, H.: A new form of DOS attack in a cloud and its avoidance mechanism. In:
Proceedings of the 2010 ACM Workshop on Cloud Computing Security Workshop,
CCSW 2010, pp. 65–76 (2010)

34. Shea, R., Liu, J.: Understanding the impact of denial of service attacks on vir-
tual machines. In: Proceedings of the 2012 IEEE 20th International Workshop on
Quality of Service, IWQoS 2012, pp. 27:1–27:9 (2012)

35. Shea, R., Liu, J.: Performance of virtual machines under networked denial of service
attacks: experiments and analysis. IEEE Syst. J. 7(2), 335–345 (2013)

36. Ferriman, B., Hamed, T., Mahmoud, Q.H.: Storming the cloud: a look at denial of
service in the Google App Engine. In: 2015 International Conference on Computing,
Networking and Communications (ICNC), pp. 363–368, February 2015

37. Chonka, A., Xiang, Y., Zhou, W., Bonti, A.: Cloud security defence to protect cloud
computing against HTTP-DoS and XMLAQ2DoS attacks. J. Netw. Comput. Appl.
34(4), 1097–1107 (2011)

The Beauty or The Beast? Attacking Rate Limits of the Xen Hypervisor 511

38. Yan, Q., Yu, F.R.: Distributed denial of service attacks in software-defined net-
working with cloud computing. IEEE Commun. Mag. 53(4), 52–59 (2015)

39. Sanaei, Z., Abolfazli, S., Gani, A., Buyya, R.: Heterogeneity in mobile cloud com-
puting: Taxonomy and open challenges. IEEE Commun. Surv. Tutorials 16(1),
369–392 (2014)

40. Lampe, U., Kieselmann, M., Miede, A., Zöller, S., Steinmetz, R.: A tale of millis
and nanos: time measurements in virtual and physical machines. In: Lau, K.-K.,
Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 172–179.
Springer, Heidelberg (2013)

41. Broomhead, T., Cremean, L., Ridoux, J., Veitch, D.: Virtualize everything but
time. In: USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2010) (2010)

42. Ullmann, M., Vogeler, M.: Delay attacks: implication on NTP and PTP time syn-
chronization. In: 2009 International Symposium on Precision Clock Synchroniza-
tion for Measurement, Control and Communication, October 2009

43. Rasti, R., Murthy, M., Weaver, N., Paxson, V.: Temporal lensing and its application
in pulsing denial-of-service attacks. In: 2015 IEEE Symposium on Security and
Privacy, pp. 187–198, May 2015

44. Wang, G., Ng, T.S.E.: The impact of virtualization on network performance of
amazon EC2 data center. In: INFOCOM, 2010 Proceedings IEEE, pp. 1–9, March
2010

45. Rackspace, Pricing (2016). https://www.rackspace.com/cloud/servers/pricing

https://www.rackspace.com/cloud/servers/pricing

Autocomplete Injection Attack

Nethanel Gelernter1,2,3(B) and Amir Herzberg2,3

1 Cyberpion, Givat Shmuel, Israel
nethanel.gelernter@gmail.com

2 College of Management Academic Studies, Rishon LeZion, Israel
3 Bar Ilan University, Ramat Gan, Israel

Abstract. Autocomplete, a well-known feature in popular search
engines, offers suggestions for search terms before the user has even com-
pleted typing their query. We present the autocomplete injection attack
and its potential exploits. In this attack, a cross-site attacker injects
terms into the autocomplete suggestions offered by a web-service to a
victim user. The most popular web search engines are vulnerable to the
attack, as well as other websites.

Autocomplete injection can be exploited in multiple ways, including
phishing, framing, illegitimate content-promotion and sometimes persis-
tent cross-site scripting attacks. We evaluated the effectiveness of the
attack with several experiments. Our results show the potential impact
of the autocomplete injection attacks.

Keywords: Web-security · Phishing · Cross-site attacks · Usable
security · Autocomplete injection attack · Cross-site framing ·
Blackhat SEO · Cross site scripting · Persistent XSS · CSRF

1 Introduction

Web-services invest considerable efforts to improve their user experience. More
specifically, services are often personalized using information collected about each
user, including the history of previous interactions. Autocomplete mechanisms
are one of the personalization methods most widely-used by web-services to ease
the entry of search terms. As the user types the first few letters of a query,
the autocomplete mechanism offers several suggestions for the complete query.
The user can either avoid typing the rest of the term by choosing one of the
suggestions or type additional letters, which will prompt updated suggestions.
Autocomplete suggestions allow users to choose long terms while decreasing
the number of keystrokes [3,27]. This serves to improve the user experience,
especially for users with disabilities (for whom it was originally designed).

We show that the autocomplete mechanism can also be abused by a rogue
website visited by the user, allowing multiple attacks on those who have an active
‘session’ in one of several popular websites. Based on this new type of ‘cross-site’
attack, we tested for - and found - autocomplete vulnerabilities in five sites: the

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 512–530, 2016.
DOI: 10.1007/978-3-319-45741-3 26

Autocomplete Injection Attack 513

three most-popular search-engines: Google, Yahoo! and Bing, and the three most
popular websites (Google, Facebook and Youtube) [2].

This paper shows how it is possible to manipulate the autocomplete sugges-
tions, and demonstrates and evaluates this possibility on Google, Yahoo! and
Bing. Our results show that it is possible to control the first autocomplete sug-
gestion that will be offered by these websites to the victim, for almost every
prefix she types. We refer to this manipulation as the autocomplete injection
attack.

Autocomplete injections can be exploited in different ways to benefit the
attacker and harm the user. We present four ways in which autocomplete injec-
tions can be exploited by attackers: phishing, framing, illegitimate content-
promotion, and persistent cross-site scripting attacks. We discuss each of these
exploits in a dedicated section, and briefly introduce them below.

Phishing Attacks (Sect. 3). In phishing attacks, the victim is tricked into vis-
iting a malicious ‘imposter’ website that mimics a legitimate site [12]. Tricking
the user into visiting the imposter site is a critical part of the attack. In most
phishing attacks, this is done by the user clicking on a link from a phishing
email, website, or ad [23]. However, this ‘direct’ approach has disadvantages,
most notably, the victim accesses the imposter page as a result of an external
event (e.g., email or ad), and not as a result of the user’s own agenda; this
may make the user more alert upon visiting the phishing site, especially when
the user is aware of the threat of phishing attacks. The autocomplete injection
attack allows launching sophisticated phishing attack; that attack tricks the user
into visiting a malicious page by clicking on a result in her favorite search engine.

Illegitimate ‘Black-Hat’ Content Promotion (Sect. 4). The autocomplete
injection attack can be used to promote content. So far, the methods to promote
content include the use of ads and public-relations methods, or Search-Engine
Optimization (SEO) techniques, including illegitimate blackhat-SEO methods.
The goal is to cause search engines to return the website as one of their
top results, increasing the likelihood of access by users. Content promotion
via autocomplete injection is significantly easier, and complementary: the pro-
motion occurs via the autocomplete suggestions for related terms. Note that
autocomplete-injection-based content promotion does not require users to search
for a particular term, and can work with many or most search queries. This is
somewhat similar to the search poisoning blackhat-SEO technique [21].

Cross-site Framing Attacks (Sect. 5). The personalization of autocomplete
features causes different people to get different suggestions. This fact is known
to many web-users. An attacker that is able to control these autocomplete sug-
gestions can mislead the environment of the user, such as spouse, family, and
colleagues, into believing the user was surfing sinister content or to draw incorrect
conclusions about her interests. Such attacks are a variant of cross-site framing
attacks [8]. For example, it is possible to plant autocomplete suggestions that
will give indications that a married user is interested in dating services, and even
in a particular type of dating services (e.g., with specific sexual orientation). In

514 N. Gelernter and A. Herzberg

this paper, we evaluated even more severe framing attacks, in which the attacker
plants pedophile-related terms in the autocomplete suggestions of her victims.

Persistent Cross-Site Scripting (Sect. 6). The autocomplete injection attack
allows a rogue website, to manipulate a popular web-service into sending users
attacker-controlled autocomplete suggestions. If the attacker can include a script
as part of the autocomplete string, this may allow a Persistent Cross-Site Script-
ing attack [16]. We found that Yahoo! is vulnerable to such an attack and demon-
strate how an attacker can manipulate the autocomplete suggestions of Yahoo!
such that for every typed letter, the malicious script of the attacker will run.

1.1 Contributions

Our main contribution is the introduction of the autocomplete injection attack.
We demonstrate how the attack can be used for four different purposes: phish-
ing, framing, illegitimate content-promotion, and persistent cross-site scripting
attacks. We evaluated the applicability of these attacks on highly popular sites
(Google, Yahoo!, Bing, Facebook and Youtube), and found that all are vulnera-
ble, allowing phishing, framing, and illegitimate content-promotion. We further
found that the autocomplete-injection attack on Yahoo! allows persistent cross-
site scripting.

We hope that the publication of this paper will urge websites, including
the very popular ones we tested, to protect their users against this threat. We
informed all websites of the vulnerability.

Ethics. This research involved several IRB-approved experiments to measure
the effectiveness of different autocomplete attacks on users. Ethics was a major
issue in the planning of all these experiments, which were designed to avoid
causing damage to users and web-services. We describe the relevant ethical con-
siderations for every experiment. We informed all the websites about this vul-
nerability, giving them sufficient time to address it. Indeed, Yahoo! blocked the
cross-site scripting vulnerability posed by the autocomplete injection attack.

1.2 Related Work

Phishing. The idea of tempting the victim into naturally contacting the attacker
was presented by Irani et al. in the context of social networks [14]. In their reverse
social engineering attack, the attacker tricks the user into creating the initial
contact with the attacker, without using classical spear phishing techniques [23]
that are often detected by users with some security background.

Illegitimate Content Promotion and Search Engine Optimizations
(SEO). Current research on illegitimate content promotion focuses on ‘blackhat-
SEO’ techniques [6,21]. Xing et al. [29] presented an SEO attack based on pollut-
ing the search history of users, causing the search engine to offer them different

Autocomplete Injection Attack 515

results. We are not aware of previous proposals to promote content or websites
by abusing the autocomplete mechanism.

Cross-Site Framing Attacks. Framing attacks in the cross-site adversary
model were presented recently [8]. However, unlike most attacks noted [8],
injected autocomplete suggestions are likely to be noticed by individuals who
can see the victim’s display, such as family and co-employees. This can cause
severe damage without requiring additional intervention by the attacker (e.g.,
contacting police and reporting about someone).

2 Adversary Model and Autocomplete-Injection Attack

This section briefly explains the adversary model in this work (Sect. 2.1) and
reviews the technical aspects of injecting autocomplete suggestions into websites
(Sect. 2.2). The applications of these manipulations are discussed and analyzed
in the following sections.

2.1 The Cross-Site Adversary Model

Cross-site attacks require only a modest capability from the attacker: controlling
a ‘rogue’ web-page visited by the victim user. A cross-site attack sends the victim
user a web-page, often containing a script that causes the victim’s browser to
issue requests to some target web-service; such requests are often referred to as
cross-site requests. Cross-site requests are essential to the use of the web and
generally used for legitimate purposes. In particular, search-engines and other
popular sites use cross-site requests to allow third-party sites to perform search
queries. Cross-site requests are also used by well-known web attacks, such as
cross-site scripting (XSS) [16], cross-site request forgery (CSRF) [28], cross-site
search [9] and clickjacking [25].

Luring random or specific victims into visiting a rogue website is consid-
ered an easy task, e.g., using phishing emails, ads, and social-engineering tech-
niques [7,14,15].

To manipulate the autocomplete suggestions offered by a target website,
the victim who visits the rogue website must be logged into that website from
the same browser. Several well-known techniques allow a cross-site attacker to
efficiently detect such cross-site login [4,9,17].

2.2 Injecting Autocomplete Suggestions

A website allows cross-site requests, if it serves requests that were sent from
another domain as though they were issued (legitimately) by the client currently
authenticated to the website. Many web-services and search engines allow cross-
site search requests (queries). Namely, websites can send search requests to one
of the popular search engines to which the current user (victim) is logged in; the
search engines will treat this search request as if it was sent by the victim.

516 N. Gelernter and A. Herzberg

Search engines maintain logs of the searches done by each of their users. These
logs are used to personalize services given to the users by the search engines.
One use of the search history logs is to offer personalized autocomplete sugges-
tions. Under the assumption that users tend to search for the same terms again
and again, search engines offer terms from the search history log as autocomplete
suggestions. We denote such autocomplete suggestions as history-based autocom-
plete suggestions. History-based autocomplete suggestions usually appear first,
before general autocomplete suggestions, which are based on local and global
trends.

The autocomplete injection attack exploits the ability to add entries to the
search history logs by sending cross-site search request and the fact that websites
present history-based autocomplete suggestions.

The attacker sends a cross-site search request with a query and causes the
search engine to add that query to the history log. Later, when the user types a
prefix of the injected query, she will see the query as an autocomplete suggestion.

2.3 Autocomplete Injection in Popular Websites

Our work focuses on search engines, and in particular on Google, Yahoo! and
Bing, the most popular search engines in the US [2]. The same techniques can
be applied to other websites such as Facebook and YouTube.

Figure 1 illustrates the way autocomplete suggestions are presented to the
user by the three search engines. It is possible to see the differences between the
search engines in both the number of history-based autocomplete suggestions and
whether history-based suggestions visually differ from the general autocomplete
suggestions.

Other differences between the search engines relate to content filtering and
the number of cross-site requests required to plant a term. Google is the only
search engine that filters out content related to pornography, violence, hate

Fig. 1. Autocomplete suggestions as presented by the Google, Yahoo! and Bing search
engines in US. Injected suggestions appear as history-based autocomplete suggestions.

Autocomplete Injection Attack 517

Table 1. Differences between the three most popular search engines [2] with regarding
to history-based autocomplete suggestions as presented to their users

Maximal number Colored differently Filtering Number of searches to be
added

Google 2
√ √

1–3

Yahoo! 2
√

X 1

Bing 8 X X 1

speech, and illegal and dangerous objects [10]. This fact is relevant mainly for the
framing attacks using autocomplete injection and discussed in Sect. 5.1. Google
also differs from the other search engines in the number of cross-site search
requests required for a term to appear as an autocomplete suggestion. We cre-
ated a webpage that sent cross-site search requests for a list of 14 terms. These
terms included meaningful and meaningless terms, and other types of terms that
are being injected during the attacks described in this paper. The page sent only
a single request for each of the terms, and we checked whether the term appears
as autocomplete suggestion or not. In both Yahoo! and Bing, all the autocom-
plete suggestions were presented immediately, but in Google some of them did
not appear. Hence, we repeated the test on 10 active Google accounts when 2
and 3 requests are sent. After sending 2 cross-site search requests for each term,
the term appeared in 95 % of the cases. All the terms appeared after sending 3
cross-site search requests. Table 1 summarizes the differences between the search
engines.

3 Phishing

The ability to manipulate the autocomplete suggestions seems ideal for phishing
attacks. Theoretically, the attacker simply plants autocomplete suggestions that
mislead the search engine to offer the phishing website instead of the original one.
A user that relies on the injected autocomplete suggestion will get the phishing
website in her search results.

Although the idea seems simple, in practice it is not easy to manipulate
the search engine to offer incorrect results for terms that are related to popu-
lar websites. In this section we describe the challenge of the attacker and offer
two techniques that can be used to launch a successful phishing attack using
autocomplete injection. At the end of the section, we present the results of an
experiment we conducted to evaluate these techniques.

3.1 The Challenge

When users search a popular page they usually type the name of the website
or the name of the organization associated with the website. Even if the user
incorrectly spells a popular term, the search engines usually offer results that

518 N. Gelernter and A. Herzberg

are based on the correctly-spelled term. Similarly, combining terms that are
strongly related to a (popular) website with the name of another website will
yield search results that are related to the original website. For example, if an
attacker concatenates the name of a phishing website to the name of some bank
in an autocomplete suggestion and the user searches this suggestion, the search
engines will return entries from the bank website and the phishing website will
not appear in the first entries.

This poses a challenge to the attacker; the attacker has to find autocomplete
suggestions that will satisfy the following conditions:

1. Relevant for the search so the user will select them.
2. Yield search results without the real website appearing at the top.
3. Yield search results with the phishing website at the top of the list.

3.2 Phishing Autocomplete Suggestions

We describe two techniques to create autocomplete suggestions that satisfy the
three requirements of the phishing challenge. The first uses advanced search
operators and the second relies on homographs.

Advanced Search Operators. Although most of the users rely on the simple
search, search engines also support advanced search operators. The attacker can
use some of these operators to abuse the search results.

The first operator is the not operator, usually denoted by the minus sign (-).
Attaching the not operator to a term means searching for results that do not
contain that term. The attacker can abuse the not operator in terms that contain
more than a single word. For example, for a term such as bank Somebank that
can be searched also as bank-Somebank, the attacker can inject the autocomplete
suggestion bank -Somebank <bait>. This will cause a search for results without
the name of the bank, Somebank, and with the terms bank and <bait>. Here,
<bait> is a search-term that is bound to cause the phishing-website (e.g., its
domain name phishingsite.com) to be the top result.

Another operator that can be used for this purpose is the site/inurl oper-
ator. This operator specifies the site/url of the results. By concatenating this
operator after relevant search terms to specify that the results must come from
the phishing website, the attacker ensures that the results will be only from the
phishing website.

Homographic Autocomplete Attacks. Another direction is to use homo-
graphs. A homograph is one of two or more characters, or sequences of char-
acters, with shapes that either appear identical or cannot be differentiated by
quick visual inspection. Homographs are usually used to deceive users in classi-
cal phishing attacks [1,13,22]. For example: replacing the English letter o (code
006 F in Unicode) in “Bank of America” with the Cyrillic small letter “o” (code
043E in Unicode). A search for this simple homograph in Google brings the real

Autocomplete Injection Attack 519

result for Bank of America only in the eighth entry. By replacing also the two
appearances of the English letter a in the word “america” (autocomplete sug-
gestions always appear in small letters) with the Cyrillic letter “a” (code 0430 in
Unicode), the attacker gets a homograph that will yield search results without
the real website of Bank of America.

Once the attacker has a homograph that yields search results without the
real website, the attacker needs to create a phishing website that will appear in
the first results for that homograph. This is not considered a hard task, because
the homograph used by the attacker is not a common search term.

When choosing the homograph, it is preferable to replace several characters.
Otherwise, the search engines might refer to the term as a typo and, and due
to the similarity to a popular real term, will present the results for that term.
However, to increase the exposure of the autocomplete suggestion, it is better
to replace characters toward the end of the term, such that the homograph and
the real term share a prefix that is as long as possible.

3.3 Evaluation

To evaluate the autocomplete injection attack for phishing purposes, we designed
a one-minute usability experiment. The experiment evaluated both the tech-
niques described in Sect. 3.2.

Experiment 1: Bank Phishing

Goal: Check whether users will choose injected autocomplete suggestions that
will lead to phishy search results for each of the techniques described in Sect. 3.2.
Also check whether they will follow the phishy search results to the phishing
website.

Methodology and Ethics: The experiment was carried out with 100 volunteer
undergraduate students in a security course and with employees working in a
security firm. The participants agreed to participate and did the experiment on
their computers. To avoid ‘contaminating’ their real accounts, the experiment
used a dedicated search page, which used the autocomplete suggestions and
search results of Bing, by presenting Bing’s results in an iframe1. We added to
this page the “injected” autocomplete suggestions.

To analyze the phishing results, we created a page with search results for the
phishing terms and loaded this page as the search results when the user clicked
on the phishing autocomplete suggestions. This was the alternative for buying
a phishing domain, creating a real phishing website and promoting it in search
engines.

Process: We chose one of the three largest banks in our country, and instructed
the users to find its website using our search engine and to open the website in
a new window and then to press on a button to finish the experiment. For each
participant, we only saved whether the person used the phishing or legitimate
1 Yahoo! and Google prevent presentation of search results in iframes.

520 N. Gelernter and A. Herzberg

autocomplete suggestions or none at all, and whether they clicked on the phishing
website. The experiment was completed once the user clicked on the phishing
website or when she opened the real website in a new window and clicked on the
finish button.

Phishing Details: For the phishing website, we chose a name that is similar to
the name of a real bank. For half the participants we used the advanced search
operators as described in Sect. 3.2 (the AO group). For the other participants
we used a homograph in which we replaced two English letters with two Cyrillic
letters as described in Sect. 3.2 (the HG group). The phishy autocomplete sug-
gestions for both the AO and HG groups yielded a page where the first search
result points to the phishing website. However, for each autocomplete sugges-
tion s′, a homograph of s, in the HG group, this page also contained a question
that appears by Bing for such searches: “Do you mean s”? We found that for
these particular autocomplete suggestions, both Yahoo! and Bing prompt this
question but Google does not. We also asked the users to report any unusual or
suspicious behavior they noticed.

Results: We observed that using homographs is much more effective than using
advanced search operators. Users from the AO group almost completely avoided
the phishing autocomplete results; only two of them searched for the injected
phishing autocomplete suggestions, and both users also followed the results to
the phishing website. The explanation we got for the lack of use in the autocom-
plete suggestion was that the phishy suggestions that rely on advanced search
operators did not reflect the exact search the users planned to submit. In the HG
group, 26 % of the users used the homograph autocomplete suggestion. However,
only 20 % clicked on the phishing website. The other 6 % simply clicked on the
question raised by the search engine (“Do you mean ...?”) and got new search
results without any phishing website. Figure 2 depicts the results.

Our most important observation is that no user reported a suspected phishing
attack. Although users probably noticed the unusual autocomplete suggestions,
mainly in the AO group, none of them linked this anomaly with a phishing attack.
This means the attacker can launch the attack on a large scale without being

Fig. 2. Users who clicked on injected phishy autocomplete suggestions and users that
followed the phishy suggestions and clicked on the phishing website in the search results.
The results separate users who were tricked using advanced search operators (AO) and
users who were tricked using homographs (HG).

Autocomplete Injection Attack 521

worried about detection. Moreover, the autocomplete-injection attack allows an
attacker to exploit a random visit to his rogue website, and manipulate the
user (‘Alice’) into accessing the phishing website later on, when Alice initiates a
visit to her bank. These are significant advantages compared to classical spear
phishing attacks [23]. Specifically, it is far more likely that Alice will ‘fall for’ a
phishing site, when Alice initiates the visit to the bank [14].

Although only 20 % of the users were phished in the experiment, the results
indicate that autocomplete injection can be used for effective phishing attacks.
The autocomplete injection attack is effective only against users who rely on
autocomplete suggestions. When it comes to users who relied on autocomplete
suggestions, the homograph variant of the attack achieved a 76 % success rate.

4 Illegitimate (Black-Hat) Content-Promotion

Companies and organizations spend large amounts of money to promote prod-
ucts, slogans, and other content, using advertising and PR campaigns. Hack-
tivists and ‘black-hat organizations’, may use illegitimate mechanisms to pro-
mote content; these tend to be more effective or less expensive. For example,
these may be used to promote illegal or illegitimate content, which may be
banned by legitimate advertising and PR providers. In this section we explore
the potential abuse of the autocomplete injection attack to perform illegitimate
content promotion, delivering messages and slogans to website visitors. The con-
tent may include malicious content such as the promotion of malware websites,
or be part of phishing campaigns, complementing the mechanisms described in
Sect. 3.

The attack allows a website, visited by a user, to add a desired string to the
autocomplete suggestions offered by popular search engines/sites. This string
could be a slogan or other text used to ‘promote’ some product or idea. It may
also be a ‘negative text’, e.g., discrediting a competitor. Because such goals could
be attractive to many attackers, the ease with which a website can launch the
autocomplete injection attack makes it a real risk.

This section evaluates the promotion of a slogan using the autocomplete injec-
tion attack. Slogans have considerable marketing value, and organizations invest
considerable effort and funds to promote and advertise them. Autocomplete-
injection even allows the slogan/phrase to appear for users typing relevant terms,
for highly-effective targeted advertising. A company can inject slogans and adver-
tisements in the autocomplete suggestions of its website visitors and influence
their searches in external search engines. For example, assume a company wants
to promote the Doritos R© chips brand. The autocomplete-injection can display a
relevant slogan, such as the fabricated slogan ‘America likes Doritos’ (as we used
in Experiment 2) arbitrarily or when the user types relevant words and phrases,
e.g., snack.

522 N. Gelernter and A. Herzberg

Experiment 2: Promoting a Slogan

Goal: Validate that injected autocomplete terms are noticed by users. Evaluate
their impact on users and their potential for exposing users to a slogan using
the fabricated slogan ‘America likes Doritos’.

Methodology and Ethics: The experiment was carried out with 95 volunteer
undergraduate students who signed a consent form, and used their own comput-
ers to simulate reality. To avoid (unintentional) bias by participants and/or staff,
the experiment was ‘double blinded’, i.e., users were assigned randomly to one of
three sets (no injection, or one of two injection modes described below), without
awareness of either user or staff. To avoid injecting suggestions to the accounts
of the users, we used a search page we built as described in Experiment 1.

Process: Users were instructed to use our search form to send the search queries
of their choice. Users accessed a webpage with instructions to run searches dur-
ing five minutes using the provided search form. Each user was randomly (and
blindly) assigned to one of three groups: None, Letters and Terms. For Letters
users, we inserted autocomplete strings consisting of each letter in the alphabet
concatenated with the slogan, and also each letter repeated (e.g., aa). For Terms
users, for each alphabet letter we chose a popular search term T beginning with
this letter, and concatenated the slogan to T in two ways: “T : slogan” and “T -
slogan”. For None users, nothing was injected2. After five minutes of search, we
redirected the user to a form with a single question: What does America like?.
There were five possible answers: (1) Fries. (2) Waffles. (3) Kinder. (4) Doritos.
(5) I don’t know.

Results: As can be seen in Fig. 3, users in both of the ‘autocomplete-injection’
groups were far more likely to select the answer corresponding to the slogan,
compared to users in the control group (‘none’). While the number of users is
not sufficient for this study to be conclusive, it gives a good indication that
users notice autocomplete injections and are influenced by them. These results
also show that people notice injected autocomplete suggestions, even in short
free searches. This means autocomplete-injection may be effective as a way to
‘frame’ an innocent victim user, by presenting suspect autocomplete suggestions
in the victim’s computer; see next section.

Fig. 3. Participants’ answers to the question “What does America like?” in each of the
modes

2 The probability of getting each of the Letter and the Terms modes was twice the
probability of getting the None mode.

Autocomplete Injection Attack 523

5 Framing Attacks

This section evaluates the effectiveness of framing attack using autocomplete
injection and the damage that such an attack can cause. By planting autocom-
plete suggestions, the attacker can create a false impression about the victim.
For example, autocomplete suggestions that are related to dating sites indicate
that the user is interested in finding dates. In cases where the user already
has a spouse, such autocomplete suggestions might create relationship issues if
observed by someone else.

We investigate the likelihood that a casual user will notice and take action,
when faced with (fake) autocomplete phrases; these phrases were chosen to cre-
ate an impression of searches for pedophile contents. This is significant, since
autocomplete phrases are automatically offered to any user of the browser. Even
casual users, using somebody else’s computer and with no intent to snoop, may
be exposed to them. This is in contrast to other methods of computer fram-
ing [8], which are generally unlikely to be viewed by a casual user. For example,
Google requires users to re-authenticate before presenting their search history
(and only a snoopy visitor would even try to look up the search history).

The findings of Experiment 2 show that users often notice the injected auto-
complete suggestions. However, the fact that users notice autocomplete phrases
does not necessarily imply that this can be noticeable framing evidence. First of
all, users may not deduce from observing the autocomplete phrases that there
are implications regarding the user of the computer. More significantly, even if
they do, they may not feel the need or confidence to report this. This bystander
phenomenon, where eyewitnesses fail to report crimes, has been reported and
studied in many social-science studies and experiments [11,19].

We therefore conducted Experiment 3 to evaluate the potential abuse of the
autocomplete mechanism, as noticeable framing (false) evidence. We focused on
autocomplete phrases that seem to indicate searches for pedophilia sites and
related activities. Section 5.1 describes how to circumvent Google filtering for
inappropriate autocomplete suggestions.

Experiment 3: Bystander and Pedophilia-Autocomplete

Ethical Restrictions and Pilot Experiment: This experiment involved eth-
ical challenges. Clearly, it would not be ethical to inject such phrases into the
computers of subjects. In fact, the first author performed such an experiment on
his own Google account, by authenticating to the framed account in his home
PC, which is also used by his spouse. It took one day until the author was con-
fronted with an upset spouse and had to explain and show that this was just
an experiment. For this reason, all further experiments were performed in our
lab. Another challenge is the fact that users must see the framing autocomplete
suggestions in a natural way and hence must not know the real purpose of the
experiment. We explained to the users what we expected them to do and asked
for their consent; we only disclosed the real purpose of the experiment toward
the very end. Participants were paid and allowed to leave the experiment at any

524 N. Gelernter and A. Herzberg

given time without forfeiting the payment. At the end of the experiment, we
explained the real purpose of the experiment and repeated our request for their
permission to use the collected information.

Experiment Design: To achieve the most realistic and reliable results possible,
the experiment was designed to emulate a typical workplace situation, searching
for terms using Google. After signing consent forms, participants were asked
to run 25 web-searches on a computer, supposedly as part of a user experience
study. At the outset of the experiment, the computer dedicated to the experiment
was found inoperative. This was an excuse to have the participants use a laptop
belonging to a contractor, Vic, who worked in the lab and was currently away.
Essentially, Vic represents the victim, ‘framed’ to be suspected of pedophilia.
We explained that Vic was away, so we would use his laptop to substitute for
the regular experiment computer. We made a phone call to Vic, but he did
not respond, so we used the laptop anyway. Supposedly this was the approved,
standard practice in our lab.

During the searches, users could see that Vic was ‘logged on’ to his
Google account. In reality, ‘Vic’s’ laptop was configured for the experiment,
equipped with a video (camera) and a screen-recording application. It was also
injected with pedophilia-related autocomplete phrases. Since Google filters most
pedophilia terms, we used homographic variants or ‘typos’ such as childp ornog-
raphy (see Subsect. 5.1), which we had no difficulty injecting.

Participants were instructed to search for 25 phrases using Google; the
phrases were played from an audio file. The phrases included questions like “what
is my IP” and “how to find the median”, websites like Youtube and Facebook,
movies-related search terms, and more. Half of the search phrases had a common
prefix with some of the framing autocomplete phrases; we also had many benign
autocomplete phrases, to avoid over-visibility.

After searching for the 25 audio-played phrases, participants were asked to
run arbitrary searches for 2 more minutes. Participants answered a few statistical
questions and were given a paper and envelop for anonymous feedback to be read
only by the professor responsible for the lab. This was selected as a comfortable
mechanism for them to raise any concerns. To make sure participants did not
plan to raise their concerns before leaving, we paid them at this point and
allowed them to leave, then asked them to return for two more questions, the
first being: Did you notice any bothersome thing during the experiment?. If the
answer was yes, we asked the participant to write it down. Finally, we explained
the real goals of the experiment to the participants, and asked their discretion
and their agreement for us to use their results (all agreed). We also asked whether
the participants saw any pedophile-related phrases. Participants who reported
noticing were asked whether they reported it, and if not, why.

Participants: We recruited 25 participants, all students (ages: 18–38), via ads.
We did not include computer science students, since they were expected to
have a higher awareness of the autocomplete mechanism. Four students were
disqualified after not meeting our minimal threshold of proficiency in English.
The complexity of the experiment process prevented us from conducting the

Autocomplete Injection Attack 525

experiment on a larger group of participants. Due to the experiment’s design,
we had to perform the experiment on each participant separately, such that no
single participant could observe the experiment of another participant.

(a) Did you notice
pedophile-related auto-
complete suggestions?

(b) Reporting vs. ignor-
ing the framing attack.

Fig. 4. Framing experiment results

Results and Analysis (see
Fig. 4): As shown in Fig. 4(a),
two-thirds (14) of the 21 quali-
fied participants, reported that
they noticed the pedophilia
content. Five of them reported
this only when asked explic-
itly about signs of pedophilia,
in the very last question. Even
without these 5, 9 (43 %)
reported pedophilia content
without being asked about it
specifically.

We did not have the resources to run a control group without injection,
and the number of participants is not sufficient to draw significant conclusions.
However, this seems to provide testimony further to Experiment 2, that users
notice and are impacted by the autocomplete phrases. Note that in Experiment
2, only about a third of the responders selected the injected slogan (see Fig. 3),
possibly because in Experiment 2, the participants were asked to search for
whatever they want; they might not have searched for terms with a long prefix
of an injected autocomplete suggestion.

Out of the 14 participants that acknowledged noticing pedophilia content, 2
(14 %) used the feedback form to write elaborate complaints to the professor.
They explained the pedophilia-phrases and their implications, and demanded
immediate and conclusive action, offering to contact authorities themselves oth-
erwise. Of the remaining 14 that reported noticing pedophilia content, 4 reported
that they planned to report or considered reporting. Although it may seem that
only a small percentage of participants reported, or even planned/considered
reporting, the percentage is, in fact, surprisingly high, compared to the 15–25 %
reported in most previous studies of the bystander effect, e.g., [11,19].

Our analysis of the recorded behavior of the participants and correlated
screen contents offers insight into the reasons seven participants failed to notice
the framing pieces of evidence. Apparently the reasons are technical and not very
relevant to the use of autocomplete injections and red-flag framing evidence. For
example, one of them typed very quickly, such that autocomplete suggestions
were almost irrelevant for him (e.g., due to their latency). Most of the others
could be seen in the video looking primarily at the keyboard and/or to be on
the verge of disqualified for poor English.

5.1 Circumventing Autocomplete Excluded-Phrases

Because Google is the most popular search engine, we used a framed
Google account to evaluate framing attacks (Experiment 3). Our focus on

526 N. Gelernter and A. Herzberg

injecting pedophilia-related phrases raised a challenge. Unlike the other two
search engines, Yahoo! and Bing, Google filters pedophilia-related and certain
other ‘problematic’ terms, like pornography, violence, hate speech, illegal and
dangerous objects, and terms that are frequently used to find content that vio-
lates copyright [10]. Therefore, an attacker who wishes to use Google for framing
must circumvent this filtering.

In spite of Google’s filters, it is still possible to inject search queries related
to these subjects using simple homographs (see Sect. 3.2). We were able to inject
inappropriate autocomplete suggestions using basic homographs, for example:
pornography, where the first o is the Cyrillic small letter “o” (code 043E in
Unicode). Another direction is to use minor typos, e.g., childp ornography, or
adding, dropping, or duplicating letters.

6 Stored Cross-Site Scripting (XSS)

The injection of data controlled by an attacker to a website might result in a
cross-site scripting (XSS) attack [16]. The same origin policy (SOP) [24] restricts
websites from running scripts that will affect websites with a different origin. The
XSS attack circumvents SOP by injecting a malicious script into the attacked
page. Once the malicious script is running from the attacked page, it is allowed
to access pages and to perform actions in the domain of the attacked page3.

XSS attacks can be classified into three categories: DOM-based, reflected,
and stored attacks. In DOM-based XSS [20], the malicious code is injected in
the client side. Stored (persistent) and reflected (non-persistent) are two types
of XSS attack in which the server itself returns a page with malicious script. In
reflected XSS, the malicious script is reflected from the request, usually from the
URL, and hence, it usually requires accessing a malicious link. In stored XSS,
the attacker injects the malicious script to the server, and the server embeds
this script in some HTTP responses it returns. Among the three types of XSS,
stored XSS is considered the most severe. It is harder to detect by browsers, and
it requires minimal interaction from the user.

The autocomplete suggestions injected by the attacker are stored by the
server and are used later when the user is typing search queries. Therefore, if
the attacker injects an autocomplete suggestion that contains malicious script
and the server does not filter or sanitize them, the website is vulnerable to a
stored XSS attack. The malicious script will be triggered when the user types
some prefix of the autocomplete suggestion in which the malicious script was
included.

To launch an effective XSS attack, the attacker will want to increase the
probability that the malicious script will be run and decrease the user interaction
required for the attack. The autocomplete injection allows an attacker to plant
the malicious script in a manner that will trigger it for any letter typed in the
search box. For every possible character, the attacker can plant an autocomplete
3 Countermeasures like content security policy (CSP) [26] can mitigate XSS attacks,

but are beyond the scope of this paper.

Autocomplete Injection Attack 527

suggestion that is the concatenation of the character and the malicious script.
In this way, the website will present the victim with an autocomplete suggestion
that will trigger the malicious script execution upon typing every single letter
in the search box.

Among the five web-services we tested, we found that only Yahoo! is vulnera-
ble to the autocomplete injection XSS attack. We injected a script into Yahoo!’s
autocomplete within the onerror attribute of an img HTML tag with a bad
src attribute. We found that when the user moves the cursor over the auto-
complete dialog, possibly with the keyboard when moving down toward other
autocomplete suggestions, the malicious script is automatically executed. Such
a cross-site scripting attack can be abused in many ways, e.g., to take-over the
account. The attack exploits a combination of two vulnerabilities. The first is
the lack of input sanitation, which allows cross-site scripting but requires the
user to search for a script that will attack herself. The second vulnerability is
the autocomplete-suggestions based on cross-site historical searches.

The combination of autocomplete injection attack with this innocuous XSS,
results in a severe XSS vulnerability that can be exploited easily by an attacker.

7 Defenses

Web-services that offer autocomplete mechanisms should defend against the
autocomplete injection attack. Autocomplete injection attacks are based on
sending cross-site search requests, i.e., search requests initiated by a third-party
rogue website; these requests are regarded by the web-service as searches per-
formed by the current user (identified by cookie). A simple solution is to use
CSRF defenses (see below), and prevent cross-site search requests. If cross-site
search requests are considered useful and should be permitted, the websites
should not take these searches into account as part of the ‘history’ of searches
by the user. In particular, they should not let these searches influence the history-
based autocomplete suggestions.

Web-services can detect most cross-site requests by inspecting the Referer
or Origin HTTP request headers. However, these headers are not always sent,
often due to filtering by client-tools for privacy; this could foil reliance on these
headers to detect cross-site requests. As a solution, web-services can simply
ignore searches that do not contain Referer or Origin headers, when determining
the history-based autocomplete suggestions.

Alternatively, web-services can use other cross-site request forgery (CSRF)
countermeasures. (See Overview [28]). The most popular active defense taken
by a website is anti-CSRF tokens. In this basic defense against CSRF, an unpre-
dictable token is sent with a request from the web-service, and is then validated
by the server. Because the attacker cannot forge a token, she cannot send a
request from another site that will pass the validation on the web-service side.
Other CSRF countermeasures are discussed in [5,18,30].

Several of the most effective autocomplete injection attacks make use of
homographs. Web-services can easily detect potential homographic attacks.

528 N. Gelernter and A. Herzberg

We believe that there will be no noticeable overhead in performance or loss-
of-usability, due to blocking such homographic search strings (at least from the
log of search strings).

Unfortunately, our experience shows that some web-service operators are
reluctant to fix autocomplete-injection vulnerabilities. This motivates the devel-
opment and use of client-side defenses. In particular, we recommend that, by
default, browsers block cross-site requests that are suspected of being homo-
graphic attacks. Similar to web-services, we believe browsers can also detect
such attacks with no noticeable ‘costs’, in terms of performance or usability.
More advanced client-side defenses against CSRF attacks may also be applica-
ble, e.g., [5].

8 Conclusions

Popular web-services offer autocomplete suggestions based on the history of
user search strings; this saves users the effort of repeating a previous search.
Additionally, web-services often allow cross-site queries, i.e., queries initiated by
third-party sites, as long as the queries do not result in ‘change of state’. More
specifically, cross-site search-requests are allowed by many web-services, since
they are considered ‘harmless’.

Our experiments show that several attacks are feasible by exploiting the
combination of the autocomplete mechanism, based on previous search strings,
and the use of cross-site search requests. Specifically, we demonstrate how this
facilitates autocomplete-based phishing, framing, illegitimate content-promoting
and, at least in Yahoo!, persistent cross-site scripting. We propose both browser-
based and web-server-based defenses against the autocomplete injection attack.
We hope this paper will call attention to the problem and help address this
potential vulnerability. It is also our goal to raise awareness regarding the general
risk of permitting ‘seemingly harmless’ cross-site requests.

Acknowledgments. This work was supported by grant 1354/11 from the Israeli Sci-
ence Foundation (ISF), and by grants from the Israeli Ministry of Science, Technology
and Space.

References

1. Helou, A.J., Scott, T.: Multilingual web sites: Internationalized Domain Name
homograph attacks. In: 12th IEEE International Symposium on Web Systems Evo-
lution (WSE), pp. 89–92. IEEE (2010)

2. Alexa.Top Sites in United States, April 2016. http://www.alexa.com/topsites/
countries/US

3. Anson, D., Moist, P., Przywara, M., Wells, H., Saylor, H., Maxime, H.: The effects
of word completion and word prediction on typing rates using on-screen keyboards.
Assistive Technol. 18(2), 146–154 (2006)

4. Bortz, A., Boneh, D.: Exposing private information by timing web applications.
In : Proceedings of the 16th International Conference on World Wide Web, pp.
621–628. ACM (2007)

http://www.alexa.com/topsites/countries/US
http://www.alexa.com/topsites/countries/US

Autocomplete Injection Attack 529

5. Czeskis, A., Moshchuk, A., Kohno, T., Wang, H.J.: Lightweight server support for
browser-based CSRF protection. In: Proceedings of the 22nd International Con-
ference on World Wide Web, pp. 273–284 (2013)

6. Dover, D., Dafforn, E.: Search Engine Optimization (SEO) Secrets. Wiley Publish-
ing (2011)

7. Ferguson, A.J.: Fostering e-mail security awareness: the west point carronade.
EDUCASE Quarterly (2005)

8. Gelernter, N., Grinstein, Y., Herzberg, A.: Cross-site framing attacks. In: Proceed-
ings of the 31st Annual Computer Security Applications Conference, pp. 161–170.
ACM (2015)

9. Gelernter, N., Herzberg, A.: Cross-site search attacks. In: Proceedings of the 22nd
ACM Conference on Computer and Communications Security, CCS 2015, pp. 1394–
1405 (2015)

10. Google. Google Search Autocomplete (2014). https://support.google.com/
websearch/answer/106230?hl=en

11. Greenberg, M.S., Wilson, C.E., Ruback, R.B., Mills, M.K.: Social and emotional
determinants of victim crime reporting. Soc. Psychol. Q. 42, 364–372 (1979)

12. Herzberg, A., Jbara, A.: Security and identification indicators for browsers against
spoofing, phishing attacks. ACM Trans. Internet Techn. 8(4), 16:1–16:36 (2008)

13. Holgers, T., Watson, D.E., Gribble, S.D.: Cutting through the confusion: a mea-
surement study of homograph attacks. In: USENIX Annual Technical Conference,
General Track, pp. 261–266 (2006)

14. Irani, D., Balduzzi, M., Balzarotti, D., Kirda, E., Pu, C.: Reverse social engineering
attacks in online social networks. In: Holz, T., Bos, H. (eds.) DIMVA 2011. LNCS,
vol. 6739, pp. 55–74. Springer, Heidelberg (2011)

15. Jagatic, T.N., Johnson, N.A., Jakobsson, M., Menczer, F.: Social phishing. Com-
mun. ACM 50(10), 94–100 (2007)

16. Manico, J., Williams, J., Mattatall, N.: Cross site scripting prevention
cheat sheet, March 2016. https://www.owasp.org/index.php/XSS (Cross Site
Scripting) Prevention Cheat Sheet

17. Grossman, J.: I know what websites you are logged-in to (Login-Detection
via CSRF) (2009). http://blog.whitehatsec.com/i-know-what-websites-you-are-
logged-in-to-login-detection-via-csrf/

18. Jovanovic, N., Kirda, E., Kruegel, C.: Preventing cross site request forgery attacks.
In: Securecomm and Workshops, pp. 1–10. IEEE (2006)

19. Kidd, R.F.: Crime reporting. Criminology 17(3), 380–394 (1979)
20. Klein, A.: DOM Based Cross Site Scripting or XSS of the Third Kind. Technical

report, July 2005. http://www.webappsec.org/projects/articles/071105.shtml
21. Lu, L., Perdisci, R., Lee, W.: Surf: detecting and measuring search poisoning.

In: Proceedings of the 18th ACM Conference on Computer and Communications
Security, pp. 467–476. ACM (2011)

22. Milletary, J., CERT Coordination Center: Technical Trends in Phishing Attacks
(2005). Accessed 1 Dec 2007

23. Parmar, B.: Protecting against spear-phishing. Comput. Fraud Secur. 2012(1),
8–11 (2012)

24. Ruderman, J.: Same origin policy for javascript (2001). https://developer.mozilla.
org/En/Same origin policy for JavaScript

25. Rydstedt, G., Bursztein, E., Boneh, D., Jackson, C.: Busting frame busting: a
study of clickjacking vulnerabilities at popular sites. In: IEEE Oakland Web 2.0
Security and Privacy (W2SP), pp. 1–13 (2010)

https://support.google.com/websearch/answer/106230?hl=en
https://support.google.com/websearch/answer/106230?hl=en
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://blog.whitehatsec.com/i-know-what-websites-you-are-logged-in-to-login-detection-via-csrf/
http://blog.whitehatsec.com/i-know-what-websites-you-are-logged-in-to-login-detection-via-csrf/
http://www.webappsec.org/projects/articles/071105.shtml
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript

530 N. Gelernter and A. Herzberg

26. Stamm, S., Sterne, B., Markham, G.: Reining in the web with content security
policy. In: Rappa, M., Jones, P., Freire, J., Chakrabarti, S. (eds.) Proceedings of
the International Conference on World Wide Web, pp. 921–930. ACM (2010)

27. Tam, C., Wells, D.: Evaluating the benefits of displaying word prediction lists on a
personal digital assistant at the keyboard level. Assistive Technol. 21(3), 105–114
(2009)

28. The Open Web Application Security Project. Cross-Site Request Forgery (2010).
https://www.owasp.org/index.php/Cross-Site Request Forgery (CSRF)

29. Xing, X., Meng, W. , Doozan, D., Snoeren, A.C., Feamster, N., Lee, W.: Take this
personally: attacks on personalized services. In: Proceedings of the 22nd USENIX
Conference on Security, pp. 671–686. USENIX Association (2013)

30. Zhou, M., Bisht, P., Venkatakrishnan, V.N.: Strengthening XSRF defenses for
legacy web applications using whitebox analysis and transformation. In: Mathuria,
A., Jha, S. (eds.) ICISS 2010. LNCS, vol. 6503, pp. 96–110. Springer, Heidelberg
(2010)

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

Breaking into the KeyStore: A Practical Forgery
Attack Against Android KeyStore

Mohamed Sabt1,2(B) and Jacques Traorè1

1 Orange Labs, 42 Rue des Coutures, 14066 Caen, France
{mohamed.sabt,jacques.traore}@orange.com

2 Sorbonne Universités, Université de technologie de Compiègne Heudiasyc,
Centre de recherche Royallieu, 60203 Compiègne, France

Abstract. We analyze the security of Android KeyStore, a system
service whose purpose is to shield users credentials and cryptographic
keys. The KeyStore protects the integrity and the confidentiality of keys
by using a particular encryption scheme. Our main results are twofold.
First, we formally prove that the used encryption scheme does not pro-
vide integrity, which means that an attacker is able to undetectably
modify the stored keys. Second, we exploit this flaw to define a forgery
attack breaching the security guaranteed by the KeyStore. In particular,
our attack allows a malicious application to make mobile apps to unwit-
tingly perform secure protocols using weak keys. The threat is concrete:
the attacker goes undetected while compromising the security of users.
Our findings highlight an important fact: intuition often goes wrong when
security is concerned. Unfortunately, system designers still tend to choose
cryptographic schemes not for their proved security but for their appar-
ent simplicity. We show, once again, that this is not a good choice, since
it usually results in severe consequences for the whole underlying system.

Keywords: Android KeyStore · Authenticated encryption · Integrity

1 Introduction

Smartphones are used in an ever-growing variety of use-cases, including highly-
sensitive tasks. Third party applications often need to generate and use some
sensitive data, such as authentication credentials and cryptographic keys. Unfor-
tunately, no strong protection is guaranteed for these highly valuable data, which
might attract powerful attackers motivated by economic gain. This lack has hin-
dered the adoption of smartphones in certain areas in which the use of cryp-
tographic keys is crucial. The development of smartphone market spurs mobile
system designers to reinvent their security features. Starting from Android 4.3,
aka Jelly Bean, official support for app-specific secrets storage has been provided
by a newly introduced component, called Android KeyStore.

The Android KeyStore is an Android system service that allows applications
to generate, use and store their cryptographic keys. Once inside the KeyStore,

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 531–548, 2016.
DOI: 10.1007/978-3-319-45741-3 27

532 M. Sabt and J. Traorè

keys can no longer be extracted. They can be used for cryptographic operations
without ever leaving the KeyStore.

Multiple implementations exist for the KeyStore. The default one, provided
by Google, does all key-related operations using the OpenSSL library. It protects
the integrity and the confidentiality of its keys by storing them in encrypted form
using authenticated encryption (AE). For some reason, the scheme in use is
particular and does not follow any standardized or provably secure construction.
Its idea is simple: the message (representing the stored key) is appended to its
MD5 hash value before encrypting it with CBC (cipher block chaining) mode.
Henceforth, we call this AE scheme Hash-then-CBC-Encrypt.

At the first look, Hash-then-CBC-Encrypt is a lightweight mode that has
many advantages over other popular AE schemes. It is more efficient than those
based on the generic composition approach [6], since the message is needed not
to be processed twice. In addition, it is much simpler to implement compared
to others. Therefore, it might seem to be the most fitting scheme to implement
inside mobile devices for the protection of users keys.

1.1 Our Contribution

In this paper, we show that the use of non-provably secure cryptographic schemes
in complex architectures could cause severe consequences. We start by proving
that the AE scheme Hash-then-CBC-Encrypt does not provide authentic-
ity regardless of the used hash function. To this end, we show that it
does not satisfy two notions of integrity: integrity of ciphertext (INT-CTXT)
and ciphertext unforgeability (CUF-CPA). Then, we present a selective forgery
attack where an adversary exploits this weakness to substantially reduce the
length of the symmetric keys protected by the KeyStore.

We illustrate this security flaw by defining an attack scenario in which an
application entrusts the KeyStore with its symmetric key. Our attack lulls users
into a false sense of security by silently transforming, for instance, 256-bit HMAC
keys into 32-bit ones. This allows a malicious third party that controls the net-
work to break any secure protocol based on these weak keys. Such an attack
might constitute a real threat, since it could happen undetected. At the writing
of this paper, our attack affects the latest Android build (android-6.0.1 r22).

Our work brings to light an interesting fact: security in modern systems still
does not withstand a simple cryptanalysis. Astonishingly, recently, the KeyStore
has been significantly enhanced by new features without reviewing its security
correctness. We show that, once again, security by feature-enhancing is disap-
pointedly misleading. Moreover, it is really tempting for system designers to use
ad hoc cryptographic schemes due to their straightforwardness and flexibility to
meet special needs. The particularity of our work is that we use advanced secu-
rity notions, such as indistinguishability, in order to compromise a system like
Android. Our attack demonstrates that any theoretical weakness concerning the
security of a cryptographic scheme could be utilized to break the whole system.
We thus show that the scope of these notions extends beyond theory. We advo-
cate the shift onto provably secure cryptography in order to prevent potential
vulnerabilities that will be hard to find inside a complex system.

Breaking into the KeyStore 533

1.2 Related Work

KeyStore Security. Encryption in mobile devices is increasingly becoming a
topic of utmost importance. Teufl et al. have thoroughly analyzed the encryp-
tion components of Android in [24]. This concerns both full disk encryption and
credential storage. Authors provide a descriptive study of the two systems. How-
ever, no cryptanalysis of the presented cryptographic schemes is given. Works
in [9,17] highlight the severity of physical attacks, such as cold boot, against
Android’s disk encryption. The primary limitation of these attacks is that they
require a physical access to the targeted mobile devices.

As for secure credential storage, authors in [25] show that app developers
tend to implement their own mechanisms to store credentials. They underline
the prevalence of flawed solutions by designing a tool capable of automatically
identifying and retrieving app credentials. Developers are thus urged to use the
security services proposed by the Android system itself, that is KeyStore. The
different flavors, software-based and hardware-based, of the KeyStore are sub-
jected to close scrutiny in [8]. The investigation involves how an adversary is
able to compromise the different access controls to the stored keys. However,
the study assumes that all the cryptographic algorithms were properly defined
and implemented, which is proved not to be true in [10]. Hay et al. exploit a
buffer overflow vulnerability that permits the execution of an arbitrary code
inside the keystore process. To the best of our knowledge, we present the first
cryptanalysis-based attack against the KeyStore. In addition, our attack has the
advantages to be software-only and remotely executable.

Authenticated Encryption. Authenticated encryption is a symmetric encryp-
tion scheme that protects data confidentiality and integrity. Integrity (authen-
ticity) means that no adversary is able to produce new valid ciphertexts. This
entails that encrypted data cannot be undetectably modified. Recently, the
design of AE primitives has renewed interest, not least because of the currently
running CAESAR competition [7]. The security notions of AE were formalized
in the early 2000s in [5,11]. Generic composition [6] is the most popular approach
for numerous security protocols, such as SSH,TLS and IPsec. This approach is
about combining a confidentiality-providing encryption scheme together with a
message authentication code (MAC). Nevertheless, the pursuit of more efficiency
than that offered by these two-pass schemes has motivated the construction of
dedicated AE designs, such as the Galois Counter Mode (GCM) [14].

It turns out that designers do not only strive for efficiency, but also for
implementation simplicity. Therefore, authenticity obtained from Encryption-
with-Redundancy (EwR) has long been attractive. In such a paradigm, encryp-
tion consists of computing some public function h over the message M to get
a checksum σ = h(M). Then, M ||σ is encrypted and returned. As for decryp-
tion, the ciphertext is decrypted to get M ||σ and then the equality σ = h(M)
is verified. Several of these schemes have been partially or fully broken [15,16].
A generic attack attributed to Wagner on a large class of CBC-Encryption-
with-Redundancy is described in [20]. An and Bellare in [1] formally prove that
this AE scheme does not guarantee security regardless of how the checksum is
computed.

534 M. Sabt and J. Traorè

Some might argue that Hash-then-Encrypt (HtE) is just a special case of
EwR, where the checksum function h is a hash function. However, we argue that
this is not true. Indeed, the checksum is appended at the end of the message
(M ||σ) in EwR, while the hash value is appended at the beginning of the message
(σ||M) in HtE. Thus, generic attacks against EwR, Wagner’s for instance, are
easier to apply than those against HtE. This is due to the fact that the former
typically requires to remove the last block of ciphertexts, and for many schemes,
the decryption of the first blocks does not depend on the last ones (e.g. CBC
and CTR). Moreover, the proof of Bellare only shows that EwR does not offer a
sufficient condition for security even if the underlying base encryption is secure.
A similar result related to MAC-then-Encrypt (MtE) is given in [6]. In order to
avoid misinterpretation, we emphasize that these results only imply that such
constructions are not generically secure: the soundness of the underlying primi-
tives does not constitute a sufficient condition to guarantee security. Indeed, the
proof consists of providing a counterexample, i.e. a particular MtE scheme that
it is not IND-CCA although its encryption and MAC algorithms are secure. The
proof is applicable only for special IND-CPA encryption schemes whose cipher-
texts can be modified without changing their corresponding plaintexts, which is
clearly not the case for CBC and CTR modes. We note that the results of [6]
do not mean that all MtE schemes are inherently broken. A body of results
(e.g. [18]) has proved the security of several schemes following this construction.

In this paper, we give the first proof that HtE for both CBC and CTR modes,
indeed, does not guarantee integrity. In addition, the proof that we provide is not
a mere existential forgery or a theoretical distinguishing attack. Unlike related
work, we provide a practical attack that could be exploited to compromise the
Android KeyStore. The threat is concrete: the broken HtE in CBC mode (Hash-
then-CBC-Encrypt) is the cryptographic scheme that is used to safeguard the
stored keys in Android mobile devices.

1.3 Responsible Disclosure

We communicated our findings to Google in January 2016. The Android security
team has acknowledged the attack presented in this paper and confirmed that
the broken encryption scheme is planned for removal.

1.4 Paper Outline

The rest of the paper is structured as follows: Sect. 2 reviews some classical
definitions and notations. In Sect. 3, we provide two proofs that Hash-then-CBC-
Encrypt does not provide integrity. Section 4 describes some technical details
about the Android KeyStore. We present our attack scenario in Sect. 5. Section 6
provides some discussion and specific recommendations related to the identified
vulnerability.

Breaking into the KeyStore 535

2 Definitions

A message is a string. A string is a member of {0, 1}∗. The concatenation of
strings X and Y is denoted X||Y or simply XY . For a string X, its length is
represented by |X|. A block cipher is a function E : Key × {0, 1}n −→ {0, 1}n,
where Key is a finite nonempty set and Ek(.) = E(k, .) is a permutation, hence
invertible, on {0, 1}n. The number n is called the block length. We use the nota-
tion AO to denote the fact that the algorithm A can make queries to the function
O. Hereafter, we say that the adversary A has access to the oracle O. If f is
a randomized (resp., deterministic) algorithm, then y

R← f(x) (resp., y ← f(x))
denotes the process of running f on input x and assigning the result to y.

Symmetric Encryption Schemes. Following Bellare et al. in [4], a symmetric
encryption scheme SE is given by three algorithms (K, E ,D), where (1) the key
generation algorithm, K, takes a security parameter k ∈ N and returns a key
K. We write K

R←− K(k); (2) the encryption algorithm, E , takes a key K and
a plaintext M to produce a ciphertext C. We write C

R←− Ek(M); and (3) the
decryption algorithm, D, takes a key K and a ciphertext C to return either the
corresponding plaintext M or a special symbol ⊥ to indicate that the ciphertext
is invalid. We require that Dk(Ek(M)) = M for all M and K.

Secrecy of a Symmetric Encryption Scheme. The security of symmetric
encryption schemes is usually classified from the point of view of their goals
and attack models. The classical goal of secure encryption is to protect the
confidentiality of messages, which could be defined by various concepts [23].

The most used one is indistinguishability (IND) that is formalized as fol-
lows [4]: given a symmetric encryption SE = (K, E ,D) and a ciphertext of one of
two plaintexts, no adversary can distinguish which one was encrypted. IND can
be expressed as an experiment. Let Ek(LR(., ., b)) be a left-or-right oracle where
b ∈ {0, 1}: the oracle takes two messages of equal length as input, m0 and m1,
and returns C ← Ek(mb). The adversary submits queries of the form (m0,m1),
where |m0| = |m1|, to the oracle, and must guess which message was encrypted.
If all adversaries cannot succeed with probability better than a random guess,
then SE is called IND-ATK secure, where ATK represents the attack model.

The standard attack models are as follows: (1) The chosen plaintext attack
(CPA) in which an adversary has access to the encryption oracle Ek(LR(., ., b)),
so that she can choose a set of plaintexts and obtain the corresponding cipher-
texts; (2) the chosen ciphertext attack (CCA) in which an adversary has access,
besides the encryption oracle, to the decryption oracle Dk(.), so that she can
choose a set of ciphertexts and obtain their plaintexts.

Definition 1 (Indistinguishability of a Symmetric Encryption Scheme). Let
SE = (K, E ,D) be a symmetric encryption scheme. Let A be a polynomial-time
adversary. For b ∈ {0, 1} and k ∈ N, consider the following experiments:

536 M. Sabt and J. Traorè

Experiment Expind−cpa−b
SE,Acpa

(k)

1: K
R←− K(k)

2: x ←− A
Ek(LR(.,.,b))
cpa

3: return x

Experiment Expind−cca−b
SE,Acca

(k)

1: K
R←− K(k)

2: x ←− A
Ek(LR(.,.,b)),Dk
cca

3: return x

The adversary A is prohibited from querying Dk(.) on a ciphertext C output by
the encryption oracle. For atk ∈ {cpa, cca}, the advantage of the adversary is
defined as follows:

Advind−atk
SE (k) = Pr[Expind−atk−1

SE, A = 1] − Pr[Expind−atk−0
SE, A = 1]

The scheme SE is secure if the advantage of any adversary is negligible.

The Cipher Block Chaining (CBC) Mode. Encryption with a raw block
cipher is not used in practice. Instead, several modes of operation exist. Here,
we only consider the CBC mode.

Definition 2 (The CBC Encryption Scheme). Let Ek : Key×{0, 1}l −→ {0, 1}l
be a block cipher and let E−1

k be its inverse. Let CBC[Ek] = (K, E ,D) be its
associated CBC encryption scheme. Given a message M = m1||...||mn ∈ {0, 1}ln,
the encryption and the decryption algorithms are defined as follows:

CBC Encryption ECBC
k (M)

1: Parse M as m1||...||mn

2: c0
R←− {0, 1}l

3: for i = 1...n do
4: ci ←− Ek(ci−1 ⊕ mi)
5: end for
6: return c0||c1||...||cn

CBC Decryption DCBC
k (C)

1: Parse C as c0||c1||...||cn
2: for i = 1...n do
3: mi ←− E−1

k (ci) ⊕ ci−1

4: end for

5: return m1||...||mn

Two points should be noted in the definition. First, the random IV is denoted c0
in order to highlight that the IV is included along with the ciphertext. Second, we
make the simplifying assumption that DCBC

k (.) never returns the error message
⊥. It takes any ciphertext as input, and always returns some string.

3 Hash-Then-CBC-Encrypt Does Not Provide Integrity

In this section, we start by reviewing the different concepts of integrity which our
proof relies on. We then provide a formal definition of Hash-then-CBC-Encrypt.
We end by proving that this scheme is not secure.

3.1 Integrity of a Symmetric Encryption Scheme

In the context of symmetric encryption, integrity (or authenticity) means that
only valid parties possessing the secret key K are able to produce a valid cipher-
text; i.e. whose decryption does not give ⊥. Symmetric encryption schemes in

Breaking into the KeyStore 537

general do not protect the integrity of messages. For example, the CBC mode
does not provide integrity, since it never returns ⊥. The IND-CPA secure schemes
that also provide integrity are called authenticated encryption schemes.

Throughout this paper, we consider two notions of integrity: integrity of
ciphertext (INT-CTXT) [6] and ciphertext unforgeability (CUF-CPA) [12]. Both
notions require that no adversary be able to produce a valid ciphertext which the
encryption oracle had never produced before. However, contrary to INT-CTXT,
the adversary in CUF-CPA has no access to the decryption oracle and outputs
only one attempted forgery. Despite of their similarity, these two notions are
defined to accomplish different goals. Indeed, INT-CTXT is a strong measure
for security, while CUF-CPA is a strong one for the effectiveness of the potential
attacks. Thus, proving that a symmetric scheme does not achieve neither INT-
CTXT nor CUF-CPA entails two consequences: (1) the scheme does not provide
high security and therefore it should not be used by scheme designers; and (2)
the found attack is very damaging due to its readily implementation in practice.

Definition 3 (Integrity of an Authenticated Encryption Scheme). Let SE =
(K, E ,D) be a symmetric encryption scheme. Let A be a polynomial-time adver-
sary. Let S be the list of all ciphertexts generated by the adversary queries to
Ek(.). For k ∈ N, the following experiments are defined:

Experiment Expint-ctxtSE,Actxt
(k)

1: K
R←− K(k)

2: if C ← A
Ek(.),Dk(.)
ctxt such that

Dk(C) �= ⊥ and C /∈ S then
3: return 1
4: else
5: return 0
6: end if

Experiment Expcuf-cpaSE,A-cpa
(k)

1: K
R←− K(k)

2: C ←− A
Ek(.)
cuf-cpa

3: if Dk(C) �= ⊥ and C /∈ S then
4: return 1
5: else
6: return 0
7: end if

For both experiments, the adversary’s advantage is defined to be:

Advint
SE, A(k) = Pr[ExpintSE, A = 1]

The scheme SE is INT-CTXT secure (or CUF-CPA secure) if the corresponding
advantage is negligible for any adversary.

3.2 Hash-then-CBC-Encrypt

Conceptually, Hash-then-CBC-Encrypt in its general setting is an authenticated
encryption scheme obtained from the association of any given hash function with
any given CBC encryption algorithm.

Construction 1 (Hash-then-CBC-Encrypt (hCBC)). Let CBC[Ek] = (K, E ,D)
be an IND-CPA CBC encryption scheme, where Ek is a block cipher of block
length l. Let h be a hash function. Without loss of generality, we suppose that the

538 M. Sabt and J. Traorè

output length of h is l bits (otherwise, padding is needed). For M ∈ {0, 1}ln, we
define the composite Hash-then-CBC-Encrypt hCBC = (h,K, E ′,D′) as follows:

Encryption E ′
k(M)

1: σ ←− h(M)
2: C ←− ECBC

k (σ||M)
3: return C

Decryption D′
k(C)

1: Parse DCBC
k (C) as σ′||M

2: if σ′ �= h(M) then
3: return ⊥
4: end if
5: return M

3.3 Hash-then-CBC-Encrypt is not INT-CTXT

Here, we provide an indirect proof that hCBC is not secure against INT-CTXT.
For this, we use the relations among notions that are defined in [6]. In particular,
we use a derived one: if an AE scheme is IND-CPA and not IND-CCA, then it
is not INT-CTXT (IND-CPA ∧ ¬IND-CCA ⇒ ¬INT-CTXT), which is
easily obtained from IND-CPA ∧ INT-CTXT ⇒ IND-CCA. Therefore,
our proof is composed of two parts: firstly we prove that hCBC is IND-CPA and
secondly we prove that it is not IND-CCA.

Proposition 1 Hash-then-CBC-Encrypt is IND-CPA secure.
The proof is based on a standard reduction argument, and the understanding

of the rest of the paper does not depend on it. We leave it for [22].

Proposition 2 Hash-then-CBC-Encrypt is not IND-CCA secure.

Proof Let A be an IND-CCA adversary for hCBC = (h,K, E ,D). Its algorithm
is shown below.

Algorithm. A
Ek(LR(.,.,b)),Dk
cca

1: Let m0 and m1 be two messages
2: m′

0 ←− h(m0)||m0

3: m′
1 ←− h(m0)||m1

4: C ←− Ek(LR(m′
0,m

′
1, b))

5: Parse C as c0||c1||c2||c3
6: C′ ←− c1||c2||c3

7: x ←− Dk(C
′)

8: if x �= ⊥ then
9: return 0

10: else
11: return 1
12: end if

We claim that the previous adversary succeeds whether b = 0 or b = 1. Therefore,
Advind−cca

hCBC (A) = 1, and as a result, hCBC is not CCA-secure. Recall that the
oracle Ek(LR(., ., b)) returns the ciphertext of one of the two submitted messages.
Thus, we have C = Ek(m′

b = h(m0)||mb). Applying hCBC, C can be written as
ECBC
k (h(h(m0)||mb) ||h(m0) ||mb), which is composed as follows:

C = c0 ||
c1

︷ ︸︸ ︷
Ek(c0 ⊕ h(h(m0)||mb)) ||

c2
︷ ︸︸ ︷
Ek(c1 ⊕ h(m0)) ||

c3
︷ ︸︸ ︷
Ek(c2 ⊕ mb)

Breaking into the KeyStore 539

We see that for C ′, c0 is removed and c1 becomes the new initial value. Consid-
ering the new IV, the CBC decryption algorithm performed over C ′ returns the
rest of the plaintext h(m0)||mb. Therefore, Dk(C ′) outputs m0 when b = 0, ⊥
otherwise (unless h(m0) = h(m1)), which concludes our proof.

3.4 Hash-then-CBC-Encrypt is not CUF-CPA

As a matter of fact, we have already proved that hCBC is not CUF-CPA. Indeed,
following [19], if a scheme is not INT-CTXT, then consequently, it is not CUF-
CPA. Nevertheless, our goal here is to explicitly provide a selective forgery upon
which our attack scenario against the KeyStore is built. We note that the pre-
sented attack is quite powerful: the adversary succeeds in forging a valid cipher-
text for any message M after only one query to the encryption oracle.

Proof Let A be a CUF-CPA adversary for hCBC = (h,K, E ,D). We will show
that A can forge a valid ciphertext for any M ∈ {0, 1}ln.

Algorithm. AEk

cuf-cpa(M)

1: M ′ ←− h(M)||M
2: C ←− Ek(M

′)
3: Parse C as c0||c1||c2||...||cn+2

4: C′ ←− c1||c2||...||cn+2

5: return C′

As mentioned in Definition 3, the adversary A wins if the output ciphertext C ′

is both new and valid. Trivially, C ′ has never been produced by the encryption
oracle Ek(.) before, and thus it is new. In addition, we argue that the oracle Dk(.)
on C ′ will not return ⊥. Indeed, using the same arguments given in Proposition 2,
C ′ could be written as ECBC

k (h(M)||M). Thus, Dk(C ′) = M(�= ⊥).

4 The Android KeyStore

The Android KeyStore is a high-level service that enables applications to store
their credentials. The original credential store was created in Android 1.6 and was
limited to store VPN and Wi-Fi EAP credentials. Back then, only the operating
system, and not user applications, could access the stored keys and certificates.
It is worth mentioning that hereafter all the implementation details that we
provide concern the KeyStore of the build android-6.0.1 r22, which is the latest
version of Android at the writing of this paper.

As illustrated in Fig. 1, the KeyStore is comprised of three layers: Public
APIs, Keystore service, and Keymaster. The security of keys is primarily ensured
by the Keymaster which is designed to protect keys from extraction. This implies
that it is the only component that has a direct access to keys material, and
therefore keys are represented differently outside Keymaster: alias (name) in
Public APIs and key handlers in Keystore service.

540 M. Sabt and J. Traorè

Fig. 1. Android KeyStore Architecture

Generally speaking, the key handler is an opaque object that identifies a
keymaster-protected key. Key handlers are implementation-dependent. We only
consider the default software-only keymaster provided by Google. By inspecting
its implementation that is found in keymaster openssl.cpp, we see that the
key handler is just an encoded version of the corresponding key. Encoding is
achieved by concatenating a header of describing meta data to the key. The
header includes: a 4-byte constant value for software keys, a 4-byte key type,
and a 4-byte big endian integer for key length. Thus, the default key handler is
written as follows: Soft Key Magic || Key Type || Key Length || Key.

Our target in this paper is the stored keys on mobile device. Therefore, in
what follows, we focus solely on the secure mechanism performed by the Keystore
service for storing keys (or more precisely key handlers).

4.1 Keystore Service

Similar to other services, the Keystore service spans two layers in the Android
architecture: the Java world (application framework) and the native world (sys-
tem service). Based on the Binder, its different components, KeyStore.java and
Keystore.cpp, communicate via the Binder proxy IKeyStoreService.

The implementation [2] of the Keystore reveals how the blobs of key handlers
are stored on mobile device. A key handler blob (binary large object) contains
a serialized version of the key handler. The keystore saves its files in /data/mis-
c/keystore, where there is one directory for each user. Each directory includes
files that have the following content:

Breaking into the KeyStore 541

– A single master key. The Keystore service is initialized by generating a 128-bit
master key using the internal entropy source /dev/urandom. The master key
is then encrypted by a 128-bit AES key derived from the screen passcode. The
encrypted keymaster is stored in the .masterkey file.

– Key handler blobs related to user’s applications. Each file contains a header
of meta data as well as the encryption of the key handler using Hash-then-
CBC-Encrypt. The content of the file is written as follows:

meta data || ECBC[AES]
master key(MD5(key handler) || key handler)

We note that the KeyStore applies hCBC = (MD5,K, ECBC
AES ,DCBC

AES) to protect
key handlers. Therefore, the adversary defined in Sect. 3.4 is able to maliciously
forge new key handlers given valid ones. However, this attack fails in practice
when performed against the Keystore service because the produced key handlers
would yield errors while being decoded. We recall that key handlers have a special
encoding format that is specified by the keymaster. In the next Section, we adapt
our forgery attack so that an adversary could fabricate a valid key handler which
the keymaster successfully parses to its related key.

5 Attacking the Android KeyStore

5.1 Technical Background

As mentioned previously, our target is the secure storage of keys. As a result,
among all other operations provided by the KeyStore, only those involving the
encryption of the stored keys will be relevant to us. This includes two operations:
key generation and key import.

The KeyStore is designed to work not only with its own keys, but with
those generated by a third party system. This implies that all keys, generated or
imported, must follow a special format when being serialized. For instance, the
keymaster requires formatting keys before wrapping them inside key handlers.
The file keymaster defs.h shows that there are three categories of formats:

typedef enum {

KM_KEY_FORMAT_X509 = 0, /* for public key export */

KM_KEY_FORMAT_PKCS8 = 1, /* for asymmetric key pair import */

KM_KEY_FORMAT_RAW = 3, /* for symmetric key import */

} keymaster_key_format_t;

We notice that standard formats (i.e. X.509 and PKCS#8) are used for key-
pairs, while no format is provided for symmetric keys. Thus, the exact bytes
comprising a symmetric key are encapsulated inside the stored key handler.
This is due to the fact that their support is quite recent. Indeed, until lately, the
KeyStore was limited to asymmetric key-pairs (e.g. RSA, DSA and EC).

This lack of formatting makes the adversary task easier. Indeed, it is hard to
fabricate a ciphertext that is both valid and properly formatted. Consequently,
the current version of our attack is limited to applications using symmetric keys.

542 M. Sabt and J. Traorè

5.2 Threat Model

The adversary’s goal is to undetectably undermine the security of the applica-
tions relying on symmetric keys for their security. For this purpose, we assume
that the adversary installs some malware on the mobile device. This malware is
capable of importing keys inside the KeyStore, since any installed application
does have this capability. In addition, the malware is supposed to be granted the
read-write permission on the KeyStore directory (i.e. /data/misc/keystore).

Furthermore, the malware is executed inside a mobile device with protective
tools. First, the mobile system detects any malware trying to connect to a remote
server. Second, the mobile system imposes the use of a strong screen passcode.
This helps to avoid exhaustive attacks, since the master key of the KeyStore
is derived from this passcode. Third, the system prohibits the KeyStore from
storing short or obviously non-random keys. Thus, the adversary cannot perform
the trivial attack consisting of generating the same key for all applications or
generating a different key for each application and communicating it to a server.
In both cases, the attack would be detected. We insist that these assumptions are
highly plausible in corporate environments where companies enforce the security
of their employees mobile devices.

Finally, the adversary controls all communications with the mobile, and thus
can intercept and tamper with any exchanged message. Besides, it is assumed
that any proved cryptographic mechanism is secure unless weak keys are used.

To sum up, in order to succeed her attack, the adversary should silently
“break into” the KeyStore to shorten, and hence weaken, the stored keys which
the targeted applications would blindly continue using.

5.3 The Forgery Attack

The purpose of the forgery attack is that given a ciphertext of a symmetric key,
the adversary can fabricate another ciphertext that decrypts to a shorter key.
As already stated, the KeyStore protects keys by encrypting their key handlers
with hCBC. Thus, keys protection, involving their confidentiality and integrity,
is done using a variant of hCBC which we call encode-then-hCBC (ehCBC).

Informally, ehCBC is an AE scheme where messages are encoded before
hCBC-encrypting them. To be more precise, let ehCBC = (K′, E ′,D′) be an
encoded version of hCBC = (h,K, E ,D). Then, for all message M , the next rela-
tion holds: E ′(M) = E(Length(M)||M). In what follows, we adapt the CUF-CPA
adversary of hCBC in order to compromise ehCBC.

Let M be an arbitrary weak symmetric key, and let A be an attacker that
can import keys of its choice to the KeyStore. For the sake of clarity, we omit
the constant values in the header of the key handler, and so only the key length
is kept. Therefore, the import function corresponds to the ehCBC-encryption
operation (E ′

k). It is worth mentioning that this simplifying assumption does not
alter the logic of the attack. A wins if it can produce a valid ehCBC-ciphertext
of M . However, conforming to our threat model (Sect. 5.2), the attacker cannot
import M directly. To this end, A executes the algorithm below:

Breaking into the KeyStore 543

Algorithm. A
import
malicious(M)

1: M ′ ←− Len(M) ||M
2: M ′′ ←− MD5(M ′) ||M ′

3: C ←− E ′
k(padding ||M ′′)

so that Len(.)||padding is l-block

4: Parse C as c0||c1||c2||C′

5: C′′ ←− c2 ||C′

6: return C′′

Following the same arguments provided in Sects. 3.3 and 3.4, we can see that
DehCBC

k (C ′′) outputs M , which means that A achieves its goal. Though, it is
important to notice that the attacker owes part of its success to the absence
of verification of sound key lengths. Indeed, considering all the technical details
that we provided, the length in bytes of the imported key (padding||M ′′) is
always greater than 32, since it is constructed of at least two AES blocks (i.e.
MD5(.) and Len(.)||padding). For instance, if A selects 4-byte M (or key), it
calls the import function on a key of length 36 bytes. We recall that AES keys
cannot be longer than 32 bytes. Fortunately (for the attacker), no checking is
done by import, and consequently the attack ends successfully.

We underline that the interest of the above attack is twofold. First, it can
be abused by some malware to breach the KeyStore security even in a well-
protected mobile system. Second, we prove that encoding does not improve the
security of hCBC unlike for many other AE schemes. We believe that this result
is of independent importance regardless of the introduced attack scenario.

5.4 The Undetected Malware

We illustrate the fallout of our forgery against the KeyStore by a complete attack
scenario. We emphasize that the severity of protecting highly sensitive data, like
keys, by a broken cryptographic scheme is not limited to the suggested scenario.

In our scenario, the intent of the attacker is to maliciously modify all the
exchanged messages between an app and a remote server even if they are pro-
tected by proved cryptography. This is possible thanks to some malware installed
on the mobile and which soundlessly weakens the keys of the KeyStore. This
attacker represents a new kind of threat, since she can go undetected while com-
promising the security of users including those hiding behind secure protocols.

Actors. We define five actors to describe the plot of the attack: (1) a secu-
rity manager who enforces the security of the mobile system. In particular, the
KeyStore refuses to store weak (i.e. short) keys. Additionally, the system would
detect any malware trying to communicate with its accomplice server; (2) a vic-
tim who uses the said mobile to perform some services requiring to protect their
critical transactions. The corresponding cryptographic keys are managed by the
KeyStore; (3) a remote server related to the running services and to which the
critical transactions are sent; (4) a malicious application viciously shortening
the keys of other applications; and (5) a colluding party that is able to intercept
and alter any exchanged message on the network.

544 M. Sabt and J. Traorè

Attack Workflow. We suppose that the attacker has already convinced the
victim in some way to install the malicious application on her device. The attack
scenario is structured into three phases: provisioning, lulling and attacking.

Provisioning phase. The malicious application runs in background and executes
the algorithm described in Sect. 5.3. Thus, it craftily generates several symmetric
keys of length 32+x bytes. Then, it imports these keys into the KeyStore which
accepts them for two reasons: they are seemingly strong and no verification is
done concerning their abnormal length. Afterward, it cuts them down into keys
of length x bytes. Here, we take x to be 4, so that keys are small enough to allow
a swift brute-force attack. For the sake of completeness, we precise that once the
keys are trimmed, their meta data are required to be padded with some dummy
data. This is because the files containing the keys must remain of constant size.
For brevity, we omit the technical details related to this balancing operation.

Lulling phase. In this phase, an application on the victim’s device asks the
KeyStore to generate a key with alias as its name. The malicious application,
snooping on the KeyStore, notes this alias as well as the UID of the caller
application. As soon as the key is generated and its associated file is created,
the malicious application modifies the name of one of its keys in such a way that
the renamed key is believed to belong to the targeted application. Some might
argue that this operation is delicate, since the malicious application is assumed
to continuously supervise the KeyStore activities. Nevertheless, we argue that no
special privilege is required. Indeed, it can be done with quite ease by monitoring
the content of the KeyStore folder. This is due to the fact that the key’s alias
and the creating application’s UID could be guessed from the key file name.

Attacking phase. Now, the user is carrying out some operations that involve
transmitting sensitive messages to a server. The application handling such oper-
ations needs to protect the integrity of these messages. Therefore, it asks the
KeyStore to generate an HMAC tag over each message. The KeyStore returns
a tag unwittingly generated with the weak key. Concatenated to their tag, the
messages are then intercepted by the colluding party while being sent to the
server. The latter performs an exhaustive search to find the secret key used to
generate the HMAC tag. Since the search space being explored is shrunk, the
brute-force search ends quite fast. The colluding party then modifies the content
of some messages (e.g. the total amount of a payment transaction), and recom-
putes a valid tag for them before forwarding the new messages to the server. In
this way, the attacker effortlessly breaks into victims who think that they are
safe with primitives, HMAC for example, which are believed to be secure.

5.5 The Hidden Assumption

The malicious application is supposed to have read/write permissions to the
folder /data/misc/keystore. Nevertheless, in practice, the Android system
restricts access to this folder: only the keystore user is allowed to see or mod-
ify its contents. Thus, the success of our attack depends on how likely the

Breaking into the KeyStore 545

malicious application is to bypass the access control mechanisms of Android.
This requires one of these two extra abilities: (1) executing an arbitrary code
inside the keystore process by either code injection or code reuse; and (2) obtain-
ing root or kernel-level privileges. Some might argue that once such abilities
have been gained the presented attack in Sect. 5.4 could be realized otherwise.
Here, we present three possible scenarios and we discuss how our attack is more
effective.

The Trivial Scenario. With a root privilege, we need not bother mutating
key blobs. Instead, we can simply recover the master key from the keystore
memory in order to decrypt/re-encrypt any keystore file. This scenario is not
as straightforward as it seems to be. Indeed, it involves a program to parse the
memory. The problem is that the keystore has been regularly updated recently, so
its memory layout has been continuously changing. Therefore, this program may
require to be different depending on the installed Android version. In addition,
it should be constantly maintained to keep on with any further update. We note
that the format of the keystore files has not changed since Android 4.3. Involving
only basic I/O file operations, our attack is much simpler and more portable.

The Big-Brother Function. The malicious application and her colluding
party agree on a function B to generate keys that could be quickly guessed.
Unable to communicate, otherwise the subversion will be detected, the function
B is embedded into the malicious application. It is easy to see that this attack
ends successfully following our threat model. However, we claim that our attack
is more practical because it satisfies two additional properties: (1) stateless: the
adversary (i.e. colluding party) needs not to store data related to the victim (i.e.
the mobile device) so as to win; and (2) size-oblivious: the complexity of the
attack does not increase with the number of the targeted users. In contrast, the
other attack cannot be both stateless and size-oblivious. Indeed, the function
B outputs a new key for each device. Keys shall seem to be strong, otherwise
they will be rejected. The more the attacker targets new devices, the bigger the
keys search space becomes. Avoiding this increase in time of execution involves
the parameterization of the function B for each user. For instance, B might be
seeded with the device IMEI (International Mobile station Equipment Identity).
Hence, the attack becomes size-oblivious, but stateful. Statelessness is important
in our context due to its relevance to stronger undetectability.

Man in the KeyStore. The scenario supposes that all calls to the KeyStore
are intercepted at runtime by the malicious application. Subverted values are
returned for any intercepted call, including all cryptographic operations. Surely,
this attack is powerful, but we argue that it is more limited than ours. Firstly,
actively proxying all calls might be resource-consuming, i.e. slowing down the
mobile or shortening its battery life, which makes the attack quite detectable.
Secondly, the Keystore service is based on the Binder architecture, and thus

546 M. Sabt and J. Traorè

intercepting calls requires an attack of type Man in the Binder (MitB). However,
a success MitB [3] necessitates deep insight on how Binder works, consequently
it is version-dependent and more complicated than just reading/writing files.

6 Discussion and Recommendations

An important aspect of any forgery is what it implies in practice. Here, we have
demonstrated how a theoretical weakness could be exploited to undermine the
security of a real-world system, namely Android. In addition, the defined attack
is attractive to implement, since it is simple and not demanding in term of
resources. We insist that this scenario is just an example: a wholly new class of
threat could be built from our forgery attack.

Furthermore, it is worth noting that the attack of Sect. 5 is conceived to be
applicable only against software-only implementations of KeyStore. We admit
that it does not directly impact hardware-based implementations which exist on
some mobile devices. Indeed, our scenario involves forging keys by forging key
handlers. Hardware-backed implementations, such as those based on Trusted
Execution Environment (TEE) [21], encrypt their keys with AE schemes to pro-
duce their key handlers. Therefore, the integrity of keys is protected by two
means: the Keystore service and the TEE. In our scenario, an attacker can still
forge a valid key handler that is sent to the Keymaster (i.e., TEE). The TEE
in its turn will detect the forgery when it decodes the forged key handler, which
means that the attack does not succeed. However, we can imagine other possible
vectors of attack. For example, an attacker might perform a fuzzy attack by gen-
erating valid key handlers and send them to the TEE. A malformed key handler
might allow the attacker to carry out, for instance, a stack overflow attack.

Finally, we believe that even if some may argue that our attack is difficult to
mount, there is value in identifying these types of design flaws. Corporate-issued
devices or state-level malware could easily execute the described attack in order
to gain undetectable long-term access to device communications.

Recommendations. Having thus presented our main results, we are now on a
position to make specific recommendations. We recall that any countermeasure
intended to fix a deployed system must not cause intrusive changes that affect the
entire architecture of this system. Fortunately, the KeyStore design is modular
enough to allow modifying the scheme hCBC without involving the rest.

The quickest solution would be to keep the hash-then-encrypt paradigm and
use it with another encryption mode. The Counter (CTR) mode is often per-
ceived as being advantageous to other modes. However, we prove that the scheme
Hash-then-CTR-Encrypt does not provide integrity either. The full proof is given
in [22]. We could have proposed other encryption modes, however the lack of
obvious attacks cannot be taken as evidence of the soundness of a scheme.
Instead, it would be better to switch to proved AE encryption schemes. At
first glance, the simplest solution to make would seem to be Encrypt-then-MAC
(EtM). Unfortunately, the ‘generic composition’ approach does not suit systems
like Android. In fact, efficiency is important for mobile devices. EtM might incur

Breaking into the KeyStore 547

some overhead while computing ciphertexts. Moreover, it might be hard to imple-
ment because of manually managing two different cryptographic primitives.

Thus, we might believe that mobile designers should just go and pick up one of
the AE one-pass dedicated schemes. It turns out that choosing a proper scheme
is a great hassle for system designers. Let us discuss two popular ones:OCB
(Offset Codebook Mode) [13] and GCM (Galois Counter Mode) [14]. OCB is a
fast, secure and easy to implement AE encryption scheme. However, Rogaway,
its inventer, holds a patent on it, and therefore it is not free to use. As for
GCM, it is also fast and secure, but it involves hard mathematical concepts. As
a result, most system designers feel unable to go through and implement GCM.
We suspect that the absence of trusted implementations while defining the first
KeyStore architecture might have been the reason of using hCBC. Today, GCM
is being increasingly supported by free libraries, such as OpenSSL. Hence, we
recommend to replace hCBC by GCM in the Android KeyStore.

It is worth reiterating that proved cryptography is the way to go. A key lesson
from this paper is that cryptographers and system designers must work closely
together. Bridging the gap that separates these communities will be essential for
keeping future systems secure.

Acknowledgments. We would like to thank Mohammed Achemlal, Marc Girault and
Olivier Sanders for valuable discussions.

References

1. An, J.H., Bellare, M.: Does encryption with redundancy provide authenticity? In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 512–528. Springer,
Heidelberg (2001)

2. Android: Keystore implementation. https://android.googlesource.com/platform/
system/security/+/master/keystore/keystore.cpp

3. Artenstein, N., Revivo, I.: Man in the Binder: He who controls IPC, controls the
droid (2014). www.blackhat.com/docs/eu-14/materials/eu-14-Artenstein-Man-
In-The-Binder-He-Who-Controls-IPC-Controls-The-Droid-wp.pdf

4. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: Proceedings of the 38th Annual Symposium on Foun-
dations of Computer Science, FOCS 1997, pp. 394–405. IEEE (1997)

5. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, p. 531. Springer, Heidelberg (2000)

6. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptology 21(4), 469–491
(2008)

7. Bernstein, D.J.: CAESAR: Competition for Authenticated Encryption, December
2015. http://competitions.cr.yp.to/caesar.html

8. Cooijmans, T., de Ruiter, J., Poll, E.: Analysis of secure key storage solutions on
android. In: Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices, SPSM 2014, pp. 11–20. ACM (2014)

https://android.googlesource.com/platform/system/security/+/master/keystore/keystore.cpp
https://android.googlesource.com/platform/system/security/+/master/keystore/keystore.cpp
www.blackhat.com/docs/eu-14/materials/eu-14-Artenstein-Man-In-The-Binder-He-Who-Controls-IPC-Controls-The-Droid-wp.pdf
www.blackhat.com/docs/eu-14/materials/eu-14-Artenstein-Man-In-The-Binder-He-Who-Controls-IPC-Controls-The-Droid-wp.pdf
http://competitions.cr.yp.to/caesar.html

548 M. Sabt and J. Traorè

9. Götzfried, J., Müller, T.: Analysing android’s full disk encryption feature. J. Wire-
less Mobile Netw. Ubiquitous Comput. Dependable Appl. (JoWUA) 5(1), 84–100
(2014)

10. Hay, R., Dayan, A.: Android keystore stack buffer overflow - CVE-2014-3100 (2014)
11. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes

of operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, p. 284. Springer,
Heidelberg (2001)

12. Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: how secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, p. 310. Springer, Heidelberg (2001)

13. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

14. McGrew, D.A., Viega, J.: Flexible and efficient message authentication in hardware
and software. Manuscript (2003)

15. Mitchell, C.J.: Analysing the IOBC authenticated encryption mode. In: Boyd, C.,
Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 1–12. Springer, Heidelberg (2013)

16. Mitchell, C.J.: Cryptanalysis of two variants of PCBC mode when used for message
integrity. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574,
pp. 560–571. Springer, Heidelberg (2005)

17. Müller, T., Spreitzenbarth, M.: FROST: forensic recovery of scrambled telephones.
In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 373–388. Springer, Heidelberg (2013)

18. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014)

19. Paterson, K.G., Watson, G.J.: Authenticated-encryption with padding: a formal
security treatment. In: Naccache, D. (ed.) Cryphtography and Security: From The-
ory to Applications. LNCS, vol. 6805, pp. 83–107. Springer, Heidelberg (2012)

20. Preneel, B.: Cryptographic primitives for information authentication - state of the
art. In: Preneel, B., Rijmen, V. (eds.) State of the Art in Applied Cryptography.
LNCS, vol. 1528, p. 49. Springer, Heidelberg (1998)

21. Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted execution environment: what it
is, and what it is not. In: Trustcom/BigDataSE/ISPA, vol. 1, pp. 57–64 (2015)

22. Sabt, M., Traoré, J.: Breaking into the keystore: a practical forgery attack against
android keystore. Cryptology ePrint Archive, Report 2016/677 (2016)

23. Shafi, G., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299
(1984)

24. Teufl, P., Fitzek, A.G., Hein, D., Marsalek, A., Oprisnik, A., Zefferer, T.: Android
encryption systems. In: Privacy & Security in Mobile Systems (2014)

25. Zhou, Y., Wu, L., Wang, Z., Jiang, X.: Harvesting developer credentials in android
apps. In: Proceedings of the 8th ACM Conference on Security & Privacy in Wireless
and Mobile Networks, WiSec 2015, pp. 23:1–23:12. ACM, New York (2015)

Attribute-Based Cryptography

Traceable CP-ABE with Short Ciphertexts:
How to Catch People Selling Decryption Devices

on eBay Efficiently

Jianting Ning1, Zhenfu Cao2(B), Xiaolei Dong2(B), Junqing Gong1,
and Jie Chen2(B)

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

jtning@sjtu.edu.cn, gongjunqing@126.com
2 Shanghai Key Lab for Trustworthy Computing, East China Normal University,

Shanghai 200062, China
{zfcao,dongxiaolei}@sei.ecnu.edu.cn, S080001@e.ntu.edu.sg

Abstract. Ciphertext-policy attribute-based encryption (CP-ABE) is a
highly promising solution for cloud computing, which has been widely
applied to provide fine-grained access control in cloud storage services
recently. However, for CP-ABE based cloud storage systems, if a decryp-
tion device appears on eBay described and advertised to be able to
decrypt any ciphertexts with policies satisfied by an attribute set or
even with a specific access policy only, no one can trace the malicious
user(s) who built such a decryption device using their private key(s).
This has been known as a major obstacle to deploying CP-ABE systems
in real-world commercial applications. Due to the one-to-many encryp-
tion mechanism of CP-ABE, the same decryption privilege is shared by
multiple users who have the same attributes. It is difficult to identity the
malicious user(s) who built such a decryption device. To track people sell-
ing decryption devices on eBay efficiently, in this paper, we develop a new
methodology for constructing traitor tracing functionality, and present
the first black-box traceable CP-ABE (BT-CP-ABE) with short cipher-
texts which are independent of the number of users N . The black-box
traceability is public, fully collusion-resistant, and adaptively traceable
against both key-like decryption black-box and policy-specific decryption
black-box.

Our construction combines the conventional CP-ABE with Anony-
mous Hierarchical Identity-Based Encryption (A-HIBE) in a novel way,
which is the first to construct the (underlying) traitor tracing system
from A-HIBE. The resulting ciphertexts are independent of N while the
private keys are linear in N , which partially answers an open problem
posed by Boneh and Waters [CCS 2006]. We believe this work is a con-
structive step towards efficient traitor tracing system with short cipher-
texts and private keys. In particular, we believe that following the route
of this work, any progress in A-HIBE (i.e., with shorter ciphertexts and
private keys) may result in some progress in BT-CP-ABE and finally
give a satisfactory solution to this open problem.

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 551–569, 2016.
DOI: 10.1007/978-3-319-45741-3 28

552 J. Ning et al.

Keywords: Attribute-Based Encryption · Black-box traceability ·
Anonymous Hierarchical Identity-Based Encryption · Short ciphertexts

1 Introduction

Traditional public key encryption enables a user to share her/his sensitive data
with others in a private manner. The access capability of the shared data is all or
nothing. That is, if given the private key, one can get the entire access capability
to the shared data; otherwise, nothing will be revealed. The traditional way is
useful for applications where the user knows specifically who will get access to
the shared data. However, in many cases, a user may want to share her/his data
with multiple potential and authorized receivers. Ciphertext-Policy Attribute-
Based Encryption (CP-ABE, [7]) is introduced to fulfill the above requirement,
which enables fine-grained access control over encrypted data. In particular, CP-
ABE provides a scalable way of encrypting data such that the data owner defines
the attribute sets that the data consumer needs to possess in order to decrypt
the ciphertext. As a sophisticated one-to-many encryption mechanism, CP-ABE
has been widely applied to provide fine-grained access control for commercial
applications, especially for cloud computing.

However, there exists an important and practicality issue that hinders the
wide utilization of CP-ABE to date. In particular, a ciphertext can be decrypted
by multiple users whose attributes satisfy the access structure of this ciphertxt.
In other words, the decryption privilege is shared by multiple users who have
the same attributes and not associated with individuals. As a result, malicious
users may deliberately leak their decryption keys or some decryption privilege
in the form of a decryption black-box/device to others for profits.

Consider a CP-ABE based commercial application (such as cloud storage
service), if a decryption device which is described and advertised as a decryption
black-box function is being sold on eBay for financial gain at a lower price, due
to the nature of CP-ABE, no one can track the malicious user(s) who built such
a decryption device using their secret key(s). In practice, such decryption black-
box could be quite useful and deemed to be very attractive to potential buyers
with their lower prices, and the resulting financial gain could be a big incentive
for malicious users to build and sell such a decryption black-box online with
little risk of getting caught.

The problem, as described above, is the one of the main obstacles to deploy-
ing CP-ABE systems in real-world commercial applications [4]. To address this
problem, we need to add the traceability property to the conventional CP-ABE.
According to the evidence of trace procedure, there are roughly two flavors of
traceability. The first one is white-box traceability, given a well-formed decryp-
tion key, a tracing algorithm can identify the malicious user who leaks the key.
The second one is black-box traceability, given a decryption black-box/device, a
tracing algorithm can identify the malicious user(s) who built the device using
their secret key(s). Intuitively, black-box traceability is stronger than white-box
traceability. This paper investigates the black-box traceability.

Traceable CP-ABE with Short Ciphertexts 553

Furthermore, there are two types of decryption black-boxes/devices [15,17]
in general. A key-like decryption black-box behaves as a decryption key asso-
ciated with an attribute set. A policy-specific decryption black-box is associ-
ated with an access policy and can decrypt ciphertexts with this access pol-
icy. These two types of decryption black-boxes reflect different practical scenar-
ios. Policy-specific decryption black-box has weaker decryption capacity than
key-like decryption black-box, and tracing it is deemed to be more difficult. In
fact, Liu et al. [17] proved that, for CP-ABE, traceability against policy-specific
decryption black-box implies traceability against key-like decryption black-box,
and it is sufficient to investigate traceability against policy-specific decryption
black-box. In the rest of the paper, we focus on the traceability against policy-
specific decryption black-box.

The problem of building a black-box traceable CP-ABE has recently been
studied in [15]. However, as we will review that an efficient (i.e., with short
ciphertexts) and expressive CP-ABE supporting adaptive traceability against
both key-like and policy-specific decryption black-boxes is yet to be built: the
ciphertexts in [15] grow sub-linearly in the number of users N in the system.
Technically, they adopted a traitor tracing method similar to [2,3,6] and indices
for users are arranged in an

√N × √N matrix. The resulting ciphertexts are
sub-linear in N , which is the most efficient level to date. In addition, they only
achieved selective traceability against policy-specific decryption black-box.

1.1 Our Results

In this paper, we propose a new CP-ABE with high expressiveness (i.e., sup-
porting any monotonic access structures) and full security (i.e., provably secure
against adaptive adversaries in the standard model) as [15] as well as following
features:

High efficiency: The ciphertexts are independent of the number of users N
in the system rather than sub-linear in N (i.e.

√N) in [15] (which is the
most efficient one so far), the public parameters are shorter than that of [15],
while the private keys are linear in N . We note that, in practice, since the
ciphertexts are generated and transferred more frequently than secret keys,
the ciphertext size has greater impact on overall system performance and
the user experience. We emphasize that reducing ciphertext size is more sig-
nificant. It is desirable to obtain a black-box traceable CP-ABE with short
ciphertexts which are independent of N .

Public, fully collusion-resistance, adaptive traceability: It achieves fully
collusion-resistant adaptive traceability against policy-specific decryption
black-box, that is, it can track at least one of the malicious users even if there
are an arbitrary number of malicious users colluding by pulling all of their
decryption keys together when building a policy-specific decryption black-box.
The tracing algorithm needs no secrets and can be run by anyone.

554 J. Ning et al.

Table 1. Comparison with other related worka

Traceability CS PubKS PriKS Fully Secure

[12] × 2l + 3 |U| + 4 |S| + 3
√

[16] White-box 2l + 3 |U| + 4 |S| + 4
√

[18] White-box 3l + 3 7 2|S| + 4 ×
[15] Black-box 1 2l + 17

√N |U| + 3 + 4
√N |S| + 4

√

Ours Black-box 2 2l + 5 |U| + 8 + N |S| + 6 + O(N)
√

aCS, PubKS, PriKS represent the ciphertext size, the public key size, the private
key size respectively. Let l be the size of an access policy, |U| the size of the
attribute universe, |S| the size of the attribute set of a private key, |I| the
number of attributes in a private key that satisfies a ciphertext’s access policy,
N the number of users in the system. Black-box 1 means that it is public,
fully collusion-resistant, adaptively traceable against key-like black-box, but
only selectively traceable against policy-specific black-box. Black-box 2 means
that it is public, fully collusion-resistant, adaptively traceable against both key-
like and policy-specific black-boxes.

To the best of our knowledge, this is the first CP-ABE that simultaneously
supports all these features. Table 1 gives the comparison between our work and
some other related work.

1.2 Our Techniques

Following the routes of [2,3,6,15], to construct a black-box traceable CP-ABE
with adaptive traceability against policy-specific decryption black-box (BT-CP-
ABE for short), instead of building one from scratch, we first define a simpler
primitive named Enhanced CP-ABE, then we extend it to BT-CP-ABE. An
Enhanced CP-ABE can be extended to BT-CP-ABE provided that it is message-
hiding and index-hiding secure.

However, taking a traitor tracing method similar to [2,3,6,15] (i.e., encode
each user as an entry in a matrix and partition the ciphertexts) to construct
an Enhanced CP-ABE, the resulting ciphertexts are sub-linear in the number of
users N in the system, which is the most efficient level to date. To go beyond
the sub-linear barrier, in this paper, we put forward a novel method to construct
a message-hiding and index-hiding secure Enhanced CP-ABE where the cipher-
texts are independent of N . The inspiration for our construction comes from the
notion of Anonymous Hierarchical Identity-Based Encryption (A-HIBE), which
is an extension of Identity-Based Encryption (IBE) allowing high level users
to delegate their key generation ability to the low level users. More concretely,
we begin with a conventional CP-ABE [12] and an A-HIBE [24] with constant
size ciphertexts (which is based on [10,25]), and obtain a message-hiding and
index-hiding secure Enhanced CP-ABE with hierarchical key delegation and
anonymous (short) ciphertexts via a novel combination. We construct the tracing
part of our system from A-HIBE by utilizing its key delegation and anonymity

Traceable CP-ABE with Short Ciphertexts 555

properties. Note that simply combine the tracing part (i.e. the A-HIBE part) and
the CP-ABE part only provide weak traceability. Consider two users ni (with
attribute set Sni

and index ni) and n′
i (with attribute set Sn′

i
and index n′

i) col-
lude to make a decryption black-box D with only Sni

satisfies an access policy
A (i.e. Sn′

i
does not satisfy A). D uses user ni’s key (the part corresponding to

Sni
) to decrypt the ciphertext associated with A from the underlying CP-ABE

system and user n′
i’s key (the part corresponding to index n′

i) to decrypt the
ciphertext from the underlying tracing system. As a result, user n′

i is identified to
be malicious, but Sn′

i
does not satisfy A. To achieve strong traceability, we use a

randomly chosen “binder term” to bind the CP-ABE part and the A-HIBE part
in a user’s private key together, and set the private key such that it is used in
both CP-ABE part and the A-HIBE part (i.e. the tracing part) in the ciphertext
simultaneously.

Specifically, let N be the number of users in the system, and each user
is assigned and identified by a unique index ni for ni ∈ {1, 2, ...,N}. The
index of a user ni is encoded into her/his private key by generating her/his
private key skni,S according to her/his attribute set S and a sub-identity
IDni

= (ID1, ID2, ..., IDN+1−ni
). Due to the key delegation property of the

underlying A-HIBE, a user ni can generate the decryption key skni′ ,S provided
that ni > ni′ . The EncryptE(pp, A, nj ,m) algorithm is defined similar to con-
ventional CP-ABE except for taking one more parameter nj ∈ {1, ...,N + 1},
and the encrypted message m can be recovered using a decryption key skni,S

provided that S satisfies the access policy A and ni ≥ nj .
The message-hiding security of Enhanced CP-ABE is a typical semantic

security and is based on the underlying CP-ABE security and A-HIBE secu-
rity against adaptive adversaries, except that each key is identified by a unique
index. The index-hiding security of Enhanced CP-ABE roughly follows from the
anonymity of the underlying A-HIBE.

1.3 Related Work

Sahai and Waters first introduced the notion of Fuzzy Identity-Based Encryption
in [23]. Goyal et al. [7] later formalized two notions of ABE: CP-ABE and KP-
ABE. Subsequently, lots of constructions of CP-ABE and KP-ABE systems were
proposed [1,5,13,26]. And a series of work has been done for ABE as the following
directions: new proof techniques to obtain adaptive security [1,10,13], secure
outsourcing computation [8,14,21] and decentralizing trust by setting multiple
authorities [11,22].

Katz et al. [9] introduced the notion of traceability in the context of predicate
encryption. They added traceability to any inner-product predicate encryption
with additional overhead linear in the number of users N . Liu et al. [15] later
proposed a black-box traceability CP-ABE system at the expense of sub-linear
(i.e.

√N) overhead. Recently, Ning et al. [18–20] proposed practical CP-ABE
systems with white-box traceability. However, there exists no efficient black-box
traceable CP-ABE with short ciphertexts which are independent of N .

556 J. Ning et al.

1.4 Future Work

Our work raises the following open problems: (1) Can we reduce the sizes of
the public parameters, private keys, ciphertexts to a constant simultaneously?
(2) Can we further improve the system flexibility, say allowing unlimited number
of users in the system, without sacrificing short ciphertexts, public parameters
and private keys?

We note that progress on either problem would likely require improving on
the A-HIBE and CP-ABE: for the first problem, reducing the public parameters,
private keys and ciphertexts to a constant is a long-standing open problem; for
the second problem, an unbounded A-HIBE and compact CP-ABE with short
ciphertexts, public parameters and private keys are desirable which is also a
long-standing open problem.

1.5 Organization

Section 2 introduces the background. Section 3 gives the definition of BT-CP-
ABE and its security model. Section 4 gives the definition of Enhanced CP-ABE,
its security model and the transformation from Enhanced CP-ABE to BT-CP-
ABE. Section 5 presents the construction of our Enhanced CP-ABE as well as
the security proof. Finally, Sect. 6 presents a briefly conclusion.

2 Background

We define [l] = {1, 2, ..., l} and [l1, l2] = {l1, l1 + 1, ..., l2}, where l, l1, l2 are
positive integers. Let N be the number of users in the system, each user is
assigned and identified by a unique index ni ∈ [N].
Access Structure. Let U denote the attribute universe. A collection A ⊆ 2U

of non-empty sets of attributes is an access structure on U . The sets in A are
called the authorized sets, and the sets not in A are called the unauthorized sets.
A collection A ⊆ 2U is called monotone if ∀B,C ∈ A : if B ∈ A and B ⊆ C,
then C ∈ A.
Linear Secret-Sharing Schemes (LSSS). Let U denote the attribute uni-
verse. A secret-sharing scheme

∏
with domain of secrets Zp realizing access

structure on U in called linear (over Zp) if (1) The shares of a secret s ∈ Zp

for each attribute form a vector over Zp; (2) For each access structure A

on U , there exists a matrix M with l rows and n columns called the share-
generating matrix. For i = 1, ..., l, we define a function ρ labels row i of M with
attribute ρ(i) from the attribute universe U . When we consider the column vec-
tor −→v = (s, r2, ..., rn)⊥, where r2, ..., rn ∈ Zp are randomly chosen. Then M−→v is
the vector of l shares of the secret s according to

∏
. The share (M−→v)j “belongs”

to attribute ρ(j), where j ∈ [l].
Composite Order Bilinear Groups. We let G denote a group generator,
which takes a security parameter λ and outputs a description of a bilinear group
G. Define the output of G as (p1, p2, p3, p4, G,GT , e), where p1, p2, p3, p4 are

Traceable CP-ABE with Short Ciphertexts 557

distinct primes, G,GT are cyclic groups of order N = p1p2p3p4, and e : G2 → GT

is a map such that: (1) Bilinearity: ∀u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) =
e(u, v)ab; (2) Non-degeneracy: ∃g ∈ G such that e(g, g) has order N in GT .

Complexity Assumptions. The message-hiding security of our Enhanced CP-
ABE in GameE

MH1
will rely on four assumptions (the Assumption 1, the General

Subgroup Decision Assumption, the 3-Party Diffie-Hellman Assumption in a
Subgroup, and the Source Group q-Parallel BDHE Assumption in a subgroup)
which are used in [12] to achieve full security of their CP-ABE system, excepting
that we extend them to four subgroups (i.e. N = p1p2p3p4) and give one more
subgroup generator g4 to the distinguisher D. The message-hiding security of our
Enhanced CP-ABE in GameE

MHN+1
will rely on three assumptions (the General

Subgroup Decision Assumption, the Assumptions 5 and 6) which are used in [24]
to achieve full security of their HIBE system. Assumption 7 will be used to prove
the index-hiding security of our Enhanced CP-ABE in GameE

IH , which is used
in [24] to achieve the anonymity of their HIBE system.

Assumption 1. [12] Given a group generator G, define the following distri-
bution: G = (N = p1p2p3p4, G,GT , e) R← G, α, s

R← ZN , g1
R← Gp1 , g2,X2,

Y2
R← Gp2 , g3

R← Gp3 ,g4
R← Gp4 , D = (G, g1, g2, g3, g4, g

α
1 X2, g

s
1Y2), T0 = e

(g1, g1)αs, T1
R← GT .

An algorithm A’s advantage in breaking this assumption is: Adv1
G,A(λ) =

|Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]|. We say that G satisfies Assumption 1 if
Adv1

G,A(λ) is a negligible function of λ for any PPT algorithm A.

Assumption 2. (The General Subgroup Decision Assumption): [12] Given
a group generator G and a collection of non-empty subsets of {1, 2, 3, 4}
Z0, Z1, ..., Zk where each Zi for i ≥ 2 satisfies either Z0 ∩ Zi = φ = Z1 ∩ Zi

or Z0 ∩ Zi �= φ �= Z1 ∩ Zi. Define the following distribution: G = (N =
p1p2p3p4, G,GT , e) R← G, gZ2

R← GZ2 , ..., gZk

R← GZk
, D = (G, gZ2 , ..., gZk

),
T0

R← GZ0 , T1
R← GZ1 .

Fixing the collection of sets Z0, Z1, ..., Zk, the advantage of an algorithm A in
breaking this assumption is: AdvSD

G,A(λ) = |Pr[A(D,T0) = 1]−Pr[A(D,T1) = 1]|.
We say that G satisfies the General Subgroup Decision Assumption if AdvSD

G,A(λ)
is a negligible function of λ for any PPT algorithm A and any suitable collection
of subsets Z0, Z1, ..., Zk.

Assumption 3. (The 3-Party Diffie-Hellman Assumption in a Subgroup): [12]
Given a group generator G, define the following distribution: G = (N = p1p2p3p4,

G,GT , e) R← G, x, y, z
R← ZN , g1

R← Gp1 , g2
R← Gp2 , g3

R← Gp3 , g4
R← Gp4 , D =

(G, g1, g2, g3, g4, g
x
2 , gy

2 , gz
2), T0 = gxyz

2 , T1
R← Gp2 .

An algorithm A’s advantage in breaking this assumption is: Adv3DH
G,A (λ) =

|Pr[A(D,T0) = 1]−Pr[A(D,T1) = 1]|. We say that G satisfies the 3-Party Diffie-
Hellman Assumption in a Subgroup if Adv3DH

G,A (λ) is a negligible function of λ
for any PPT algorithm A.

558 J. Ning et al.

Assumption 4. (The Source Group q-Parallel BDHE Assumption in a Sub-
group): [12] Given a group generator G and a positive integer q, define the fol-
lowing distribution: G = (N = p1p2p3p4, G,GT , e) R← G, c, d, f, b1, ..., bq

R← ZN ,

g1
R← Gp1 , g2

R← Gp2 , g3
R← Gp3 , g4

R← Gp4 , D = (G, g1, g2, g3, g4, g
f
2 , gdf

2 , gc
2, g

c2

2 ,

..., gcq

2 , gcq+2

2 , ..., gc2q

2 , g
ci/bj
2 ∀i ∈ [2q]\{q+1}, j ∈ [q], g

dfbj
2 ∀j ∈ [q], g

dfcibj′/bj
2 ∀i ∈

[q], j, j′ ∈ [q] s.t. j �= j′), T0 = gdcq+1

2 , T1
R← Gp2 .

An algorithm A’s advantage in breaking this assumption is: Advq
G,A(λ) =

|Pr[A(D,T0) = 1]−Pr[A(D,T1) = 1]|. We say that G satisfies the Source Group
q-Parallel BDHE Assumption in a Subgroup if Advq

G,A(λ) is a negligible function
of λ for any PPT algorithm A.

Assumption 5. [24] Given a group generator G, define the following distribu-
tion: G = (N = p1p2p3p4, G,GT , e) R← G,X1

R← Gp1 ,Y2
R← Gp2 ,X3, Y3, Y

′
3

R←
Gp3 ,X4

R← Gp4 , D ← (G,X1, Y2Y3,X3,X4), T0
R← Y2Y

′
3 , T1

R← Gp2p3 .

An algorithm A’s advantage in breaking this assumption is: Adv5
G,A(λ) =

|Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]|. We say that G satisfies Assumption 5 if
Adv5

G,A(λ) is a negligible function of λ for any PPT algorithm A.

Assumption 6. [24] Given a group generator G, define the following distri-
bution: G = (N = p1p2p3p4, G,GT , e) R← G, g,X1, Y1

R← Gp1 , X2, Y2, Z2
R←

Gp2 ,X3, Z3
R← Gp3 ,X4

R← Gp4 , D = (G, g,X1X2,X3, Y1Y2, Z2Z3,X4), T0 =

e(X1, Y1), T1
R← GT .

An algorithm A’s advantage in breaking this assumption is: Adv6
G,A(λ) =

|Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]|. We say that G satisfies Assumption 6 if
Adv6

G,A(λ) is a negligible function of λ for any PPT algorithm A.

Assumption 7. [24] Given a group generator G, define the following distrib-
ution: G = (N = p1p2p3p4, G,GT , e) R← G,X1, Y1,W1

R← Gp1 , Y2, Z2, W2,W
′
2

R← Gp2 , Z3
R← Gp3 ,X4, Z4,W4,W

′
4

R← Gp4 , D ← (G,X1X4, Y1Y2,

Z2, Z3, Z4,W1W2W4), T0 = W1W
′
2W

′
4, T1

R← Gp1p2p4 .

An algorithm A’s advantage in breaking this assumption is: Adv7
G,A(λ) =

|Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]|. We say that G satisfies Assumption 7 if
Adv7

G,A(λ) is a negligible function of λ for any PPT algorithm A.

3 Black-box Traceable CP-ABE

3.1 Definition

A black-box traceable CP-ABE (BT-CP-ABE) system is a CP-ABE system
where a decryption black-box can be traced to the corresponding malicious users

Traceable CP-ABE with Short Ciphertexts 559

who built it. We extend the conventional (non-traceable) CP-ABE by assigning
and identifying users with unique indices, and adding a Trace algorithm to it.
In particular, following the notation of the CP-ABE system introduced in [12],
a BT-CP-ABE system consists of five algorithms as follows:

– Setup(λ,U ,N) → (pp,msk). The algorithm takes a security parameter λ, the
attribute universe description U and the number of users N in the system. It
outputs the public parameters pp and a master secret key msk.

– KeyGen(pp,msk, S) → skni,S . The algorithm takes the public parameters
pp, the master secret key msk and a set of attributes S. It outputs a private
key skni,S , which is assigned and identified by a unique index ni ∈ {1, ...,N}.
And we assume that S is implicitly included in skni,S .

– Encrypt(pp, A,m) → ct. The algorithm takes the public parameters pp, an
access structure A over the universe of attributes and a message m. It outputs
a ciphertext ct. We assume that A is implicitly included in ct.

– Decrypt(pp, skni,S , ct) → m or ⊥. The algorithm takes the public parameters
pp, a secret key skni,S , and a ciphertext ct. If S satisfies ct’s access policy, the
algorithm outputs the message m. Otherwise, it outputs ⊥.

– TraceD(pp, AD, ε) → NT : The tracing algorithm takes the public parameters
pp, an access policy AD and a probability value (lower-bound) ε1. It is an oracle
algorithm interacts with a policy-specific decryption black-box D. It runs in
time polynomial in 1λ and 1/ε, and outputs an index set NT ⊆ {1, ...,N}
of malicious user(s). Note that in our setting, we treat D as a probabilistic
circuit that takes as input a ciphertext ct and returns a message m or ⊥. And
such a decryption black-box does not need to be perfect, we only require it to
decrypt successfully with non-negligible probability.

3.2 Message-Hiding Security

The message-hiding security is a typical semantic security similar to that of
conventional CP-ABE system [12], excepting every key query is companied with
a unique index. Similar to [15], to capture the security that an adversary can
choose keys to corrupt adaptively, we allow an adversary to specify the index
(which is originally assigned by the KeyGen algorithm) to a decryption key
when he makes a key query. Note that to guarantee that each user/key can be
identified by an index uniquely, an adversary can adaptively ask for a decryption
key corresponding to (ni, Sni

) for i ∈ {1, ..., q}, where ni ∈ {1, ...,N}, q ≤ N .
Also note that for any two pairs (ni, Sni

) and (nj , Snj
) where ni �= nj for ∀i �=

j, i, j ∈ {1, ..., q}, we do not require Sni
�= Snj

.
The message-hiding security is described by a security game GameMH

between an adversary A and a challenger C. The phases of the game are as
follows:

1 Note that ε is the lower-bound of a policy-specific decryption black-box’s decryption
ability, and it has to be polynomially related to the security parameter.

560 J. Ning et al.

– Setup: C runs Setup(λ,U ,N) and sends pp to A.
– Query Phase 1: For i = 1 to q1, A adaptively submits (ni, Sni

), and C
responds with skni,Sni

.
– Challenge: A submits two equal length messages m0,m1 and an access policy

A
∗. A

∗ cannot be satisfied by any of the queried Sn1 , ..., Snq1
. C flips a random

coin β ∈ {0, 1} and gives an encryption of mβ under A
∗ to A.

– Query Phase 2: For i = q1 + 1 to q, A adaptively submits (ni, Sni
) with the

restriction that none of these queried attribute sets satisfy A
∗, and C responds

with skni,Sni
.

– Guess: A outputs a guess β′ ∈ {0, 1} for β.

A’s advantage is defined as Adv = Pr[β′ = β] − 1
2 in GameMH .

Definition 1. A N -user BT-CP-ABE system is adaptively message-hiding
secure if there exists no probabilistic polynomial-time (PPT) adversary has a
non-negligible advantage in the above security game.

Selective message-hiding security is defined by adding an initialization phase
where the adversary must declare the access policy A

∗ before seeing the public
parameters pp.

3.3 Black-box Traceability

The black-box traceability definition is described by a security game GameBT

between an adversary A and a challenger C. The phases of the game are as
follows:

– Setup: C runs Setup(λ,U ,N) and sends pp to A.
– Key Query: For i = 1 to q, A adaptively submits (ni, Sni

), and C responds
with skni,Sni

.
– (Policy-Specific) Decryption Black-box Generation: A outputs a

decryption black-box D associated with an access policy AD and a proba-
bility value ε.

– Trace: C runs TraceD(pp, AD, ε) to get an index set NT ⊆ {1, ...,N} of mali-
cious user(s).

Let ND = {ni|1 ≤ i ≤ q} be the index set of corrupted keys. We say A wins
the above game if the following conditions hold:

(1) D generated by A is a useful policy-specific decryption black-box. That is,
it holds that Pr[D(Encrypt(pp, AD,m)) = m] ≥ ε, where the probability is
taken over the random coins of D and the random choices of message m.

(2) Sni
does not satisfy AD for ∀ni ∈ NT , or NT � ND, or NT = ∅.

Definition 2. A N -user BT-CP-ABE system is adaptively traceable against
policy-specific decryption black-box if there exists no PPT adversary has a non-
negligible advantage in the above game.

Traceable CP-ABE with Short Ciphertexts 561

Selective black-box traceability is defined by adding an initialization phase
where the adversary must declare the access policy AD before seeing the public
parameters pp.

Note that as of [2,3,6,9,15], in this paper, we are modeling a stateless (reset-
table) decryption black-box.

4 Enhanced CP-ABE

Following the routes of [2,3,6,15], instead of constructing BT-CP-ABE directly,
We define a simpler primitive named Enhanced CP-ABE (EnCP-ABE for short)
and its security notion first, then we show that BT-CP-ABE can be transformed
from EnCP-ABE.

4.1 Definition

An EnCP-ABE system consists of the following five algorithms.

– SetupE(λ,U ,N) → (pp,msk). The algorithm takes a security parameter λ,
the attribute universe description U and the numbers of users N in the system.
It outputs the public parameters pp and a master secret key msk.

– KeyGenE(pp,msk, S) → skni,S . The algorithm takes the public parameters
pp, the master secret key msk and a set of attributes S. It outputs a private
key skni,S , which is assigned and identified by a unique index ni ∈ [N].

– KeyDelE(pp, skni,S) → skn′
i,Ss.t. ni∈[2,N],n′

i∈[N],n′
i<ni

2. The algorithm takes
the public parameters pp and a secret key skni,S . It outputs a secret key skn′

i,S

corresponding to the attribute set S and index n′
i subject to n′

i < ni.
– EncryptE(pp, A, nj ,m) → ct. The algorithm takes the public parameters pp,

an access structure A over the universe of attributes, an index nj ∈ [N + 1]
and a message m. It outputs a ciphertext ct.

– DecryptE(pp, skni,S , ct) → m or ⊥. The algorithm takes the public parame-
ters pp, a secret key skni,S , and a ciphertext ct encrypted with index nj . If S
satisfies ct’s access policy and ni ≥ nj , the algorithm outputs the message m.
Otherwise, it output ⊥.

Note that if we always set nj of the EncryptE(pp, A, nj ,m) algorithm equal
to 1, the functions of EnCP-ABE are identical to that of BT-CP-ABE.

4.2 Message-Hiding Security

The message-hiding security is described by a security game between an adver-
sary A and a challenger C. The phases of the game are as follows:

2 This key delegation algorithm is a weak one than that of [24]. We remove the key
re-randomization operation since it will only be invoked by the Decrypt algorithm.

562 J. Ning et al.

– Setup: C runs SetupE(λ,U ,N) and sends pp to A.
– Query Phase 1: For i = 1 to q1, A adaptively submits (ni, Sni

), and C
responds with skni,Sni

.
– Challenge: A submits two equal length messages m0,m1 and an access policy

A
∗. C flips a random coin β ∈ {0, 1} and gives ct ← EncryptE(pp, A∗, nj ,mβ)

to A.
– Query Phase 2: For i = q1 + 1 to q, A adaptively submits (ni, Sni

), and C
responds with skni,Sni

.
– Guess: A outputs a guess β′ ∈ {0, 1} for β.

We define game GameE
MH1

as follows. We let C give ct ←
EncryptE(pp, A∗, 1,mβ) to A during the Challenge phase. And A wins the
game if β′ = β with the restriction that none of the queried attribute sets
Sn1 , ..., Snq

satisfy A
∗. A’s advantage is defined to be Adv1 = Pr[β′ = β] − 1

2 in
this game.

And we define game GameE
MHN+1

as follows. We let C give ct ←
EncryptE(pp, A∗,N + 1,mβ) to A during the Challenge phase. And A wins
the game if β′ = β. A’s advantage is defined to be AdvN+1 = Pr[β′ = β] − 1

2 in
this game.

Definition 3. A N -user Enhanced CP-ABE system is adaptively message-
hiding secure if there exists no PPT adversary has a non-negligible advantage in
the security game GameE

MH1
and GameE

MHN+1
.

4.3 Index-Hiding Security

Similar to [15,17], the index-hiding security against policy-specific decryption
black-box is to guarantee that there has no adversary can distinguish between
EncryptE(pp, A∗, nj ,m) and EncryptE(pp, A∗, nj +1,m) for any access policy
A

∗ without a secret key sknj ,Snj
, where Snj

satisfies A
∗. It is described by a

security game GameE
IH between an adversary A and a challenger C. The game

takes as input a parameter nj ∈ [N] which is given to both A and C. The phases
of the game are as follows:

– Setup: C runs SetupE(λ,U ,N) and sends pp to A.
– Key Query: For i = 1 to q, A adaptively submits (ni, Sni

), and C responds
with skni,Sni

.
– Challenge: A submits a message m and an access policy A

∗. C flips a random
bit β ∈ {0, 1} and gives ct ← EncryptE(pp, A∗, nj + β,m) to A.

– Guess: A outputs a guess β′ ∈ {0, 1} for β.

We define A wins the game if β′ = β with the restriction that none of the
queried pairs {(n1, Sn1), ..., (nq, Snq

)} satisfy (Sni
satisfies A

∗) ∧ (ni = nj) for
any i ∈ [q]. A’s advantage is defined as Advnj

= Pr[β′ = β] − 1
2 in this game.

Definition 4. A N -user Enhanced CP-ABE system is adaptively index-hiding
secure against policy-specific decryption black-box if there exists no PPT adver-
sary has a non-negligible advantage Advnj

for any nj ∈ [N] in GameE
IH .

Traceable CP-ABE with Short Ciphertexts 563

4.4 Transform from EnCP-ABE to BT-CP-ABE

Following the routes of [2,3,6,15], we show that a BT-CP-ABE can be trans-
formed from an EnCP-ABE with message-hiding and index-hiding security. We
denote an EnCP-ABE as Γe, then a BT-CP-ABE can be transformed from Γe

by the following three steps:

(1) Let EnCP-ABE be message-hiding secure and index-hiding secure.
(2) Set the parameter nj of EncryptE(pp, A, nj ,m) equal to 1, i.e.,

EncryptE(pp, A, nj ,m) = EncryptE(pp, A, 1,m).
(3) Add a Trace algorithm to Γe defined as follows.

– TraceD(pp, AD, ε) → NT ⊆ [N]: The tracing algorithm takes the public para-
meters pp, an access policy AD and a probability value ε. Given a decryption
black-box D associated with the access policy AD, it works as follows:

1. For n = 1 to N + 1, do as follows:
(1) Repeat the following steps 8λ(N/ε)2 times: First, randomly

sample message m from the message space. Then, let ct ←
EncryptE(pp, AD, n,m). Next, Call oracle D on input ct and com-
pare the output of D with m;

(2) Let fn be the fraction of times that D decrypted the ciphertexts
correctly.

2. Let NT be the set of all n ∈ [N] for which fn − fn+1 ≥ ε/(4N).
3. Output the set NT as the malicious users.

We denote Γbt as the modified Γe after the above transformation.

Theorem 1. If Γe is adaptively (resp. selectively) message-hiding secure and
adaptively (resp. selectively) index-hiding secure against policy-specific decryp-
tion black-box, then Γbt is a BT-CP-ABE with adaptive (resp. selective) trace-
ability against policy-specific decryption black-box.

Proof. The proof is nearly identical to that of Theorem1 in [15], replacing “Sni
⊇

SD” with “Sni
satisfies AD”.

5 An Efficient Enhanced CP-ABE

5.1 Construction

– SetupE(λ,U ,N) → (pp,msk). The algorithm chooses a bilinear group G
of order N = p1p2p3p4 (four distinct primes). It randomly chooses α, a, k,
{bi}i∈U , f , h, {ui}i∈[0,N] ∈ ZN , g ∈ Gp1 , Y3 ∈ Gp3 and Y4, Rg,4, Ra,4, Rk,4,
{Rbi,4}i∈U , Rf,4, Rh,4, {Rui,4}i∈[0,N] ∈ Gp4 . It then sets G = gRg,4, A =
gaRa,4, K = gkRk,4, F = gfRf,4, H = ghRh,4, {Ui = guiRui,4}i∈[0,N], {Bi =
gbiRbi,4}i∈U and E = e(g, g)α. The public parameter pp is

(N,G,A,K,E, {Bi}i∈U , F,H, {Ui}i∈[0,N], Y4)

and the master secret key msk is

(g, gα, ga, gk, {gbi}i∈U , gf , gh, {gui}i∈[0,N], Y3).

564 J. Ning et al.

– KeyGenE(pp,msk, S) → skni
. For a user with index ni ∈ [N], the algorithm

represents ni in its unary-style form (i.e., 1N+2−ni)3. It randomly chooses
t, c, δ, t0, t1 ∈ ZN , R,R′, R′′, R3, R

′
3, R

′′
3 , {Ri}i∈[N+2−ni,N] s.t. ni≥2, {R′

i}i∈S ∈
Gp3 . The secret key skni

is
⎛

⎜
⎜
⎝

K1 = gαgatgkcgδR,K2 = gcR′,K3 = gtR′′,
{K ′

i = (gbi)tR′
i}i∈S ,

K4 = gt1R3,K5 = gδgft0(ghΠN+1−ni
i=0 gui)t1R′

3,
K6 = gt0R′′

3 , {Ti = (gui)t1Ri}i∈[N+2−ni,N] s.t. ni≥2

⎞

⎟
⎟
⎠ .

– KeyDelE(skni
, pp) → skn′

i s.t. ni∈[2,N],n′
i∈[N],n′

i<ni
. Given a secret key skni

,

the algorithm creates a secret key skn′
i

subject to n′
i < ni, where ni ∈

[2,N], n′
i ∈ [N]. Without loss of generality, the algorithm generates skn′

i
for

n′
i = ni − 1 as follows.

(1) It parses skni
as (K̃1, K̃2, K̃3, K̃4, K̃5, K̃6, {K̃′

i}i∈S , {T̃i}i∈[N+2−ni,N] s.t. ni≥2).
(2) It takes the following (weak) delegation step to generate skn′

i
for n′

i =
ni − 1. It sets

⎛

⎜
⎜
⎝

K1 = K̃1,K2 = K̃2,

{K ′
i = K̃ ′

i}i∈S ,

K4 = K̃4,K5 = K̃5T̃N+2−ni
,

K6 = K̃6, {Ti = T̃i}i∈[N+3−ni,N] s.t. ni≥3

⎞

⎟
⎟
⎠ .

It returns skn′
i

= (K1, K2, K3, K4, K5, K6, {K′
i}i∈S , {Ti}i∈[N+2−n′

i,N] s.t. n′
i≥2).

We note that, the algorithm will only be invoked by the decryption algorithm,
we focus on the decryption ability. The distribution of the secret key does not
matter in our case. A user with skni

who can delegate all the secret keys skn′
i

subject to n′
i < ni is deemed to have all the decryption abilities corresponding

to skn′
i

for all n′
i < ni.

– EncryptE(pp, (M,ρ), nj ,m) → ct. M is an l × n matrix and ρ is a map from
each row Mj of M to an attribute ρ(i) ∈ U . The algorithm represents nj

in its unary-style form (i.e., 1N+2−nj). It then randomly chooses a random
vector y = (s, y2, ..., yn), where s is the random secret to be shared. For
each row Mj of M , it randomly chooses rj ∈ ZN . Then it randomly chooses
R4,1, R4,2, R4,3, R4,4, {Rj,1,4, Rj,2,4}j∈[l] ∈ Gp4 . The ciphertext ct is

⎛

⎜
⎝

C0 = m · Es, C1 = GsR4,1, C2 = KsR4,2,

{Cj,1 = AMjyB
−rj

ρ(j)Rj,1,4, Cj,2 = GrjRj,2,4}j∈[l],

C3 = (H · ΠN+1−nj

i=0 Ui)sR4,3, C4 = F sR4,4

⎞

⎟
⎠ .

3 For each index ni ∈ [N], instead of picking a sub-identity IDni = (ID0, ID1, ID2, ...,
IDN+1−ni) from a random pseudo identity ID = (ID0, ID1, ID2, ..., IDN) ∈ Z

N+1
N ,

we represents ni in a unary-style form similar to the unary representation, i.e.,
1N+2−ni . Concretely, we may view our unary-style representation as a special form
of the pseudo identity in the paper, i.e., we actually set ID0 = ID1 = ··· = IDN = 1.

Traceable CP-ABE with Short Ciphertexts 565

– DecryptE(pp, skni
, ct) → m or ⊥. Assume ct is encrypted with index nj . If

ni > nj , the algorithm calls KeyDelE(skni
, pp) algorithm and gets the secret

key sknj
. If S does not satisfy (A, ρ), the algorithm outputs ⊥. Otherwise,

it computes the constants ωj ∈ ZN such that
∑

ρ(j)∈S ωjAj = (1, 0, ..., 0). It
then computes:

e(K1, C1)e(K4, C3)e(K6, C4)(e(K2, C2)e(K5, C1))−1

∏
ρ(j)∈S(e(K3, Cj,1)e(K ′

ρ(j), Cj,2))ωj
= e(g, g)αs.

Then m can be recovered as C0/e(g, g)αs. Note that the decryption works if
and only if S satisfies the access policy of ct and ni ≥ nj .

5.2 Message-Hiding Security in GameEMH1

Theorem 2. If Assumption 1, the General Subgroup Decision Assumption, the
3-Party Diffie-Hellman Assumption in a Subgroup, the Source Group q-Parallel
BDHE Assumption in a Subgroup hold, no PPT adversary can achieve a non-
negligible advantage in winning GameE

MH1
.

Due to space, we refer the reader to Appendix A for the proof of this theorem.

5.3 Message-Hiding Security in GameEMHN+1

Theorem 3. If the General Subgroup Decision Assumption, Assumptions 5
and 6 hold, no PPT adversary can achieve a non-negligible advantage in winning
GameE

MHN+1
.

Due to space, we refer the reader to Appendix B for the proof of this theorem.

5.4 Index-Hiding Security

Theorem 4. If the General Subgroup Decision Assumption, the 3-Party Diffie-
Hellman Assumption in a Subgroup, the Source Group q-Parallel BDHE Assump-
tion in a Subgroup, Assumptions 5, 6 and 7 hold, no PPT adversary can achieve
a non-negligible advantage in winning GameE

IH .

Due to space, we refer the reader to AppendixC for the proof of this theorem.

6 Conclusions

In this paper, we proposed an efficient traceable CP-ABE supporting public fully
collusion-resistant black-box traceability and high expressiveness. The system is
proved fully secure and adaptively traceable against both key-like and policy-
specific decryption black-boxes in the standard model. Compared with the most
efficient black-box traceable CP-ABE currently available with high expressive-
ness and full security, ciphertexts in the proposed system are independent of the

566 J. Ning et al.

number of users N in the system, rather than sub-linear in N , while the public
parameters and private keys are linear in N . These make our proposed system
more suitable and more practical for commercial applications. We thought our
new methodology of realizing traitor tracing functionality may serve as the first
step towards more practical solution to BT-CP-ABE.

Acknowledgments. This work is supported in part by the National Natural Sci-
ence Foundation of China (Grant No. 6163000206, 61373154, 61371083, 61472142 and
61411146001), in part by the Prioritized Development Projects through the Special-
ized Research Fund for the Doctoral Program of Higher Education of China (Grant No.
20130073130004), in part by Shanghai High-tech field project (Grant No. 16511101400),
and in part by Science and Technology Commission of Shanghai Municipality (Grant
No. 14YF1404200).

A Proof of Theorem 2

Proof Overview. Roughly speaking, the message-hiding security of our EnCP-
ABE in the sense of GameE

MH1
is guaranteed by the IND-CPA security of the

CP-ABE system in [12]. Hence the proof of this theorem mainly follows the proof
of IND-CPA in [12]. For simplicity, here we prove this theorem by reducing the
message-hiding of our EnCP-ABE in GameE

MH1
to the IND-CPA security of the

CP-ABE system in [12]. Due to space, complete proof will be given in the full
paper.

B Proof of Theorem 3

Proof Overview. Roughly speaking, the message hiding of our EnCP-ABE in
the sense of GameE

MHN+1
is guaranteed by the IND-CPA of the HIBE system

in [24]. The proof of this theorem also follows that of [24]. For simplicity, here
we prove this theorem by reducing the message-hiding of our EnCP-ABE in
GameE

MHN+1
to the IND-CPA security of the HIBE system in [24]. Due to space,

complete proof will be given in the full paper.

C Proof of Theorem 4

We prove the theorem by considering two cases separately. Let n̄j be the para-
meter which is given to both the adversary A and the challenger defined in
GameE

IH . A will eventually behave in one of two different ways in GameE
IH :

Case 1: In Key Query phase, each query (ni, Sni
) submitted by A satisfies

ni �= n̄j . It will not violate the restriction in the model even when Sni
∈ A

∗.
Case 2: In Key Query phase, A will submit an query (ni, Sni

) such that (ni =
n̄j). The restriction in the security model implies that Sni

/∈ A
∗.

We prove our EnCP-ABE is index-hiding in both cases in the following Theo-
rems 5 and 6 respectively. Since our classification above is complete, combining
them together immediately concludes the proof of Theorem 4.

Traceable CP-ABE with Short Ciphertexts 567

Proof of Case 1

Theorem 5. If the General Subgroup Decision Assumption, Assumptions 5, 6
and 7 hold, no PPT adversary can achieve a non-negligible advantage in winning
GameE

IH in Case 1.

Proof Overview. Basically, the case-1 index-hiding of our Enhanced CP-ABE
in the sense of GameE

IH is almost the same to that of [24]. Due to space, complete
proof will be given in the full paper.

Proof of Case 2. From high-level point of view, the index-hiding in the second
case relies on both the CP-ABE part and the A-HIBE part. For query with
ni �= n̄j , we may deal with the key in a similar way as the proof of case 1.
The main challenge is how to deal with the query with ni = n̄j in which case
the above technique fails. Fortunately, our construction allows us to borrow the
security from the CP-ABE part using the restriction that attribute set Sni

must
not satisfy the challenge policy A

∗. We prove the following theorem.

Theorem 6. If the General Subgroup Decision Assumption, the 3-Party Diffie-
Hellman Assumption in a Subgroup, the Source Group q-Parallel BDHE Assump-
tion in a Subgroup, Assumptions 5 and 7 hold, no PPT adversary can achieve a
non-negligible advantage in winning GameE

IH in Case 2.

Proof Overview. We prove the theorem via a hybrid argument over a sequence
of games similar to those used for proving index-hiding in case 1. Due to space,
complete proof will be given in the full paper.

References

1. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014)

2. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

3. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: Proceedings of the 13th ACM Conference on Computer and Commu-
nications Security, pp. 211–220. ACM (2006)

4. Cao, Z.: New trends of information security - how to change people’s life style?
Sci. China Inf. Sci. 59(5), 050106:1–050106:3 (2016)

5. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015)

6. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, pp. 121–130.
ACM (2010)

568 J. Ning et al.

7. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

8. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE cipher-
texts. In: USENIX Security Symposium, p. 3 (2011)

9. Katz, J., Schröder, D.: Tracing insider attacks in the context of predicate encryp-
tion schemes. In: ACITA (2011)

10. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

11. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

12. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

13. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

14. Li, J., Lin, X., Zhang, Y., Han, J.: KSF-OABE: outsourced attribute-based encryp-
tion with keyword search function for cloud storage. IEEE Trans. Serv. Comput.
PP(99) (2016). doi:10.1109/TSC.2016.2542813

15. Liu, Z., Cao, Z., Wong, D.S.: Blackbox traceable CP-ABE: how to catch people
leaking their keys by selling decryption devices on ebay. In: Proceedings of the ACM
SIGSAC Conference on Computer & Communications Security, pp. 475–486. ACM
(2013)

16. Liu, Z., Cao, Z., Wong, D.S.: White-box traceable ciphertext-policy attribute-based
encryption supporting any monotone access structures. IEEE Trans. Inf. Foren.
Secur. 8(1), 76–88 (2013)

17. Liu, Z., Cao, Z., Wong, D.S.: Traceable CP-ABE: how to trace decryption devices
found in the wild. IEEE Trans. Inf. Foren. Secur. 10(1), 55–68 (2015)

18. Ning, J., Cao, Z., Dong, X., Wei, L., Lin, X.: Large universe ciphertext-policy
attribute-based encryption with white-box traceability. In: Kuty�lowski, M., Vaidya,
J. (eds.) ESORICS 2014, Part II. LNCS, vol. 8713, pp. 55–72. Springer, Heidelberg
(2014)

19. Ning, J., Dong, X., Cao, Z., Wei, L.: Accountable authority ciphertext-policy
attribute-based encryption with white-box traceability and public auditing in the
cloud. In: Computer Security–ESORICS 2015, pp. 270–289. Springer (2015)

20. Ning, J., Dong, X., Cao, Z., Wei, L., Lin, X.: White-box traceable ciphertext-policy
attribute-based encryption supporting flexible attributes. IEEE Trans. Inf. Foren.
Secur. 10(6), 1274–1288 (2015)

21. Parno, B., Raykova, M., Vaikuntanathan, V.: How to Delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

22. Qian, H., Li, J., Zhang, Y.: Privacy-preserving decentralized ciphertext-policy
attribute-based encryption with fully hidden access structure. In: Qing, S., Zhou,
J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 363–372. Springer, Heidelberg
(2013)

23. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

http://dx.doi.org/10.1109/TSC.2016.2542813

Traceable CP-ABE with Short Ciphertexts 569

24. Seo, J.H., Cheon, J.H.: Fully secure anonymous hierarchical identity-based encryp-
tion with constant size ciphertexts. IACR Cryptology ePrint Archive, 2011:21
(2011)

25. Seo, J.H., Kobayashi, T., Ohkubo, M., Suzuki, K.: Anonymous hierarchical
identity-based encryption with constant size ciphertexts. In: Jarecki, S., Tsudik,
G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 215–234. Springer, Heidelberg (2009)

26. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

Server-Aided Revocable Attribute-Based
Encryption

Hui Cui1(B), Robert H. Deng1, Yingjiu Li1, and Baodong Qin2

1 School of Information Systems, Secure Mobile Centre,
Singapore Management University, Singapore, Singapore

{hcui,robertdeng,yjli}@smu.edu.sg
2 School of Computer Science and Technology,

Southwest University of Science and Technology, Mianyang, China
qinbaodong@swust.edu.cn

Abstract. As a one-to-many public key encryption system, attribute-
based encryption (ABE) enables scalable access control over encrypted
data in cloud storage services. However, efficient user revocation has been
a very challenging problem in ABE. To address this issue, Boldyreva,
Goyal and Kumar [5] introduced a revocation method by combining the
binary tree data structure with fuzzy identity-based encryption, in which
a key generation center (KGC) periodically broadcasts key update infor-
mation to all data users over a public channel. The Boldyreva-Goyal-
Kumar approach reduces the size of key updates from linear to logarithm
in the number of users, and it has been widely used in subsequent revo-
cable ABE systems; however, it requires each data user to keep a private
key of logarithmic size and all non-revoked data users to periodically
update decryption keys for each new time period. To further optimize
user revocation in ABE, in this paper, we propose a notion called server-
aided revocable ABE (SR-ABE), in which almost all workloads of data
users incurred by user revocation are delegated to an untrusted server
and each data user only needs to store a key of constant size. We then
define a security model for SR-ABE, and present a concrete SR-ABE
scheme secure under this model. Interestingly, due to the key embedding
gadget employed in the construction of SR-ABE, our SR-ABE scheme
does not require any secure channels for key transmission, and also enjoys
an additional property in the decryption phase, where a data user only
needs to perform one exponentiation computation to decrypt a cipher-
text.

Keywords: Revocation · Attribute-based encryption · Server-aided

1 Introduction

Attribute-based encryption (ABE) [22] is a promising solution to preserve data
privacy in scenarios where data users are identified by their attributes (or creden-
tials) and data owners want to share their data stored in the cloud with data users

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 570–587, 2016.
DOI: 10.1007/978-3-319-45741-3 29

Server-Aided Revocable Attribute-Based Encryption 571

whose attributes satisfy a certain access structure (or policy). In a ciphertext-
policy ABE (CP-ABE) system, a trusted key generation center (KGC) issues a
private key for every data user corresponding to his/her attribute set, and each
data owner specifies an access policy over an attribute set to an encrypted mes-
sage1. A data user is able to decrypt a ciphertext if the attribute set associated
with his/her private key satisfies the access policy ascribed to the ciphertext.

Since an ABE system may involve a large number of data users, efficient
user revocation, due to either private key compromises or user resignations, has
been regarded as a very important and challenging problem. Boldyreva, Goyal
and Kumar [5] put forth an efficient revocation method by combining the fuzzy
identity-based encryption (IBE) scheme [22] with the binary tree data struc-
ture [18], where the KGC issues a long-term private key to each data user and
publicly broadcasts key updates at the beginning of each time period, but only
non-revoked data users can generate decryption keys from their long-term private
keys and the key updates to decrypt the newly created ciphertexts. The revocable
ABE schemes in [1,5,9,21] following the Boldyreva-Goyal-Kumar approach miti-
gate the KGC’s communication overhead incurred in the key update process, but
they fail to reduce the workloads of data users since every data user is required
to keep a private key of logarithmic size and all non-revoked data users need to
periodically update decryption keys to decrypt newly encrypted data. Regard-
ing this crux, Qin et al. [19] proposed a solution in identity-based encryption,
called server-aided revocable identity-based encryption (SR-IBE), where almost
all workloads on data users are delegated to a untrusted server who manages
data users’ public keys and key updates sent by the KGC periodically, and each
data user keeps just one private key of constant size (i.e., O(1)) and are not
required to communicate with either the KGC or the untrusted server during
the key update phase. However, this problem has not caught sufficient attention
in the attribute-based setting.

1.1 Our Contributions

Motivated by SR-IBE in [19], we put forth a notion called server-aided revocable
ABE (SR-ABE) to accomplish efficient and secure user revocation in ABE. The
architecture of an SR-ABE scheme is depicted in Fig. 1 under the scenario of
cloud storage [24]. The architecture consists of four types of entities: a KGC, data
owners, data users and an untrusted server2. Note that the untrusted server could
be operated by anyone, including the cloud storage system. The KGC possesses
a master private key, and publishes its public parameter. When a new data user,
1 There are two complimentary forms of ABE: CP-ABE and key-policy ABE (KP-

ABE). In a KP-ABE system, the situation is reversed in that a private key is asso-
ciated with an access policy and a ciphertext is associated with a set of attributes.
In the rest of the paper, unless otherwise specified, we will focus on CP-ABE.

2 The server is untrusted in the sense that it honestly follows the protocol, but does not
hold any secret information (i.e., it may collude with data users), and all operations
done by the server can be performed by anyone, including data users (i.e., any
dishonest behaviour from the server can be easily detected).

572 H. Cui et al.

say Alice, joins the system, she first generates a public and private user-key
pair by herself. She keeps the private user-key to herself and sends the public
user-key (along with a proof showing that she knows the corresponding private
user-key) to the KGC, which, based on Alice’s public user-key and attributes,
generates a public attribute-key for Alice and sends it to the untrusted server.
Also, the KGC periodically generates key updates for all non-revoked data users
and publicly transmits them to the untrusted server. The same as that in the
standard CP-ABE, to upload a message in the current time period to the cloud,
a data owner encrypts the message over an access structure and a time period
using the system public parameter, and outsources the resulting ciphertext to
the cloud. To decrypt a ciphertext, a data user forwards the ciphertext to the
untrusted server. If the data user is not revoked and his/her set of attributes
satisfies the access structure ascribed to the ciphertext, the untrusted server
is able to generate a transformation key from his/her public attribute-key and
the key update information, with which the server can partially decrypt the
ciphertext. This partially decrypted ciphertext can be fully decrypted by the data
user using his/her private user-key. Notice that SR-ABE only requires all data
users to contact the KGC during the user registration phase, while operations
caused by user revocation are completely handled by the untrusted server and
are totally transparent to the data users.

Fig. 1. System architecture of server-aided revocable attribute-based encryption.

The key challenge in constructing an SR-ABE scheme is how to enable the
untrusted server to assist decryption while without knowing the underlying plain-
text. In an IBE system, each user has a unique identity and every ciphertext is
exclusively designated to one recipient. Therefore, in the SR-IBE scheme pre-
sented in [19], after the server partially decrypts a ciphertext for a data user,
the user can obtain the underlying plaintext using his/her identity-based private

Server-Aided Revocable Attribute-Based Encryption 573

key. However, in an ABE scheme, the same attributes could be shared among
multiple users, so if using the master private key splitting methodology in [19] in
an SR-ABE scheme, given the partial decryption of a ciphertext by the untrusted
server, a data user would be able to fully decrypt the partially decrypted cipher-
text, regardless of the data user being revoked or not, as long as his/her set of
attributes satisfies the access structure in the ciphertext. To conquer this chal-
lenge, we equip each data user with a pair of self-generated public and private
user-keys3 (i.e., it does not require a secure channel for key transmission), and
then trickly embed the public user-key into the public attribute-key generated
by the KGC. As a result, the untrusted server can still partially decrypt cipher-
texts for non-revoked users, but every partially decrypted ciphertext is bound
with a public user-key, which can only be decrypted by the user possessing the
corresponding private user-key.

We define a security model for SR-ABE, which formalizes the possible real-
istic threats and takes into account all adversarial capabilities of the standard
ABE security notion. The adversary is able to learn private user-keys and public
attribute-keys of data users with attributes of its choice. The adversary should
not be able to learn any partial information about the message encrypted for the
challenge access structure. In addition, we consider the adversary having access
to periodic key updates, transformation keys for different time periods and being
able to revoke users of its choice. The adversary should also not be able to learn
any partial information about the messages encrypted for any revoked data user
whose attributes satisfy the challenge access structure when the encryption is
done after the time of revocation.

Then we present a concrete SR-ABE construction for this model based on the
large universe CP-ABE scheme in the prime-order groups presented by Rouse-
lakis and Waters [20]. For the sake of building the SR-ABE scheme, we resort to
the technique in [23] and the binary tree data structure [18], and combine them
with the Rouselakis-Waters CP-ABE scheme [20]. In our SR-ABE scheme, com-
ponents corresponding to each attribute in a transformation key follow the form
of the second level private key of the HIBE scheme [6]. A technique similar to
that in [23] is used to generate the public attribute-keys and key updates, where
the master private key of the KGC is randomly divided into two parts and each
part is respectively bound to the public attribute-keys and key updates. Also, to
reduce the size of key updates from linear to logarithmic in the number of data
users, the binary tree data structure in [18] is used. We present the full details of
the construction in Sect. 4. It is worth noticing that though SR-ABE is derived
from SR-IBE, due to the gadget we employ in the public attribute-key genera-
tion algorithm, our SR-ABE construction enjoys two additional advantages that
the SR-IBE scheme in [19] does not have: (1) there is no need of secure channels
for the distribution of private keys, since they are generated by each data user

3 This user-key pair can also be generated and securely sent to the data user by the
KGC as that in [19], but this requires a secure channel between the data user and
the KGC for key distribution.

574 H. Cui et al.

himself/herself; (2) in the decryption phase, each privileged data user only needs
to perform one exponentiation computation and no pairing computation.

Since the Rouselakis-Waters CP-ABE scheme [20] is selectively secure, where
the adversary has to commit the challenge access structure in advance, our SR-
ABE scheme which is constructed based on [20] is also selectively secure. Note
that the techniques can be applied to fully secure ABE schemes (e.g., [21]) to
obtain fully secure server-aided ABE schemes.

In a nutshell, our contributions in this paper can be summarized as follows.

– We first propose a notion called server-aided revocable attribute-based encryp-
tion (SR-ABE), in which almost all data users’ workloads incurred in key
update phase are delegated to an untrusted server and each data user only
needs to keep a private user-key of constant size for decryption.

– We define a security model for SR-ABE which considers all possible adversarial
behaviours that could be executed by an adversary in the real world.

– Due to the gadget employed in the construction of SR-ABE, our SR-ABE
scheme does not require any secure channels for key transmission, and enjoys
an additional property in the decryption phase, where a data user only needs
to perform one exponentiation computation to decrypt a ciphertext.

1.2 Related Work

Revocable IBE. Boneh and Franklin [8] suggested to renew users’ private
keys periodically to achieve user revocation in IBE, but this requires all users
to regularly contact the KGC over secure channels, regardless of whether their
keys have been exposed. That is, the size of key updates is linear in the number
of non-revoked users (i.e., O(N − R), where N is the number of all users and
R is the number of revoked users). Hanaoka et al. [11] presented a method for
users to periodically renew their private keys without interacting with the KGC,
where the KGC publicly posts the key update information; however, each user
needs to possess a tamper-resistant hardware device, making the solution rather
cumbersome. Boldyreva, Goyal and Kumar [5] presented an efficient revocable
IBE scheme to reduce the size of key updates from linear to logarithmic (i.e.,
O(R log(N

R))) and remove the secure channels required during key updates, but
all non-revoked users still need to periodically update their private keys for
decryption. There are also revocable IBE schemes with a third party [3,7,10,14,
16,17,19], where a semi-trusted4 or untrusted third party is required to hold the
shares of all users’ private keys and help them decrypt. Once a user is revoked,
the third party stops decrypting (or is disallowed to decrypt) for the user.

Revocable ABE. Two kinds of user revocation mechanisms have been proposed
for revocable ABE [1,9]: direct and indirect revocation. In direct revocation,
data owners directly specify the revocation list when encrypting [2,12,15]. In
addition, Yang et al. [26] proposed a revocable ABE scheme by giving the direct

4 In this paper, unless otherwise specified, “semi-trusted” means that the party is
disallowed to collude with data users.

Server-Aided Revocable Attribute-Based Encryption 575

revocation capability to a semi-trusted server who shares the decryption ability
with data users, and will terminate decryption operations for revoked users. In
indirect revocation, the KGC indirectly disables revoked users through a key
update process. Boldyreva, Goyal and Kumar [5] proposed a revocable KP-ABE
scheme following the indirect revocation approach, Attrapadung and Imai [1]
gave a hybrid revocable KP-ABE system which allows a data owner to select
either direct or indirect revocation when encrypting a message, Sahai, Seyalioglu
and Waters [21] provided a generic way to achieve indirect revocation in ABE
schemes, and Cui and Deng [9] gave two revocable ABE schemes in the setting
where the KGC’role is split across multiple KGCs.

Note that direct revocation can be done immediately without key updates,
but it requires all data owners to keep a current revocation list. This makes
the system impurely attribute-based, since data owners in the attribute-based
setting create a ciphertext based solely on attributes without caring each data
user’s status. In this paper, we focus on ABE with indirect revocation.

1.3 Organization

The remainder of this paper is organized as follows. In Sect. 2, we briefly review
the notions and definitions relevant to this paper. In Sect. 3, we describe the
framework of our SR-ABE, and then present its security model. In Sect. 4, we
give a concrete construction of SR-ABE, prove its security, and compare it with
previous revocable ABE schemes. We conclude the paper in Sect. 5.

2 Preliminaries

In this section, we review the basic cryptographic definitions that are to be used
in this paper.

2.1 Bilinear Pairings and Complexity Assumptions

Let G be a group of order p generated from g, and p be a prime number. We
define ê : G × G → G1 to be a bilinear map if it has the following properties [8].

– Bilinear: for all g ∈ G, and a, b ∈ Z∗
p , we have ê(ga, gb) = ê(g, g)ab.

– Non-degenerate: ê(g, g) �= 1.

We say that G is a bilinear group if the group operation in G is efficiently
computable and there exists a group G1 and an efficiently computable bilinear
map ê : G × G → G1 as above.

576 H. Cui et al.

Decisional (q − 1) Assumption [20]. The decisional (q − 1) problem is that
for any probabilistic polynomial-time algorithm, given −→y =

g, gμ, g1/a,

gai

, gbj , gμbj , gaibj , gai/b2j ∀ (i, j) ∈ [q, q],
gai/bj ∀ (i, j) ∈ [2q, q] with i �= q + 1,

gaibj/b2
j′ ∀ (i, j, j′) ∈ [2q, q, q] with j �= j′,

gμaibj/bj′ , gμaibj/b2
j′ ∀ (i, j, j′) ∈ [q, q, q] with j �= j′,

it is difficult to distinguish (−→y , ê(g, g)aq+1μ) from (−→y , Z), where g ∈ G, Z ∈ G1,
a, μ, b1, ..., bq ∈ Z∗

p are chosen independently and uniformly at random.

2.2 Access Structures and Linear Secret Sharing

Definition 1 (Access Structure) [13,25]. Let {P1, ..., Pn} be a set of par-
ties. A collection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C,
then C ⊆ A. A monotone access structure is a monotone collection A of non-
empty subsets of {P1, ..., Pn}, i.e., A ⊆ 2{P1,...,Pn} \{∅}. The sets in A are called
authorized sets, and the sets not in A are called unauthorized sets.

Definition 2 (Linear Secret Sharing Schemes (LSSS)) [13,25]. Let P
be a set of parties. Let M be a matrix of size l × n. Let ρ : {1, ..., l} → P be
a function that maps a row to a party for labeling. A secret sharing scheme Π
over a set of parties P is a linear secret-sharing scheme over Zp if

1. The shares for each party form a vector over Zp.
2. There exists a matrix M with l rows and n columns, called the share-

generating matrix, for Π. For x = 1, ..., l, the x-th row of matrix M is
labelled by a party ρ(i), where ρ : {1, ..., l} → P is a function that maps
a row to a party for labelling. Considering that the column vector −→v = (μ,
r2, ..., rn), where μ ∈ Zp is the secret to be shared and r2, ..., rn ∈ Zp are
randomly chosen, then M

−→v is the vector of l shares of the secret μ according
to Π. The share (M−→v)i belongs to party ρ(i).

It has been noted in [13] that every LSSS also enjoys the linear reconstruction
property. Suppose that Π is an LSSS for an access structure A. Let A be an
authorized set, and define I ⊆ {1, ..., l} as I = {i|ρ(i) ∈ A}. Then the vector (1,
0, ..., 0) is in the span of rows of matrix M indexed by I, and there exist constants
{wi ∈ Zp}i∈I such that, for any valid shares {vi} of a secret μ according to Π,
we have

∑
i∈I wivi = μ. These constants {wi} can be found in polynomial time

with respect to the size of the share-generating matrix M [4].
On the other hand, for an unauthorized set A′, no such constants {wi} exist.

Moreover, in this case it is also true that if I ′ = {i|ρ(i) ∈ A′}, there exists a
vector −→w such that its first component w1 is any non-zero element in Zp and
< Mi,

−→w > = 0 for all i ∈ I ′, where Mi is the i-th row of M [20].

Server-Aided Revocable Attribute-Based Encryption 577

Boolean Formulas [13]. Access policies can also be described in terms of
monotonic boolean formulas. LSSS access structures are more general, and can be
derived from representations as boolean formulas. There are standard techniques
to convert any monotonic boolean formula into a corresponding LSSS matrix.
The boolean formula can be represented as an access tree, where the interior
nodes are AND and OR gates, and the leaf nodes correspond to attributes. The
number of rows in the corresponding LSSS matrix will be the same as the number
of leaf nodes in the access tree.

2.3 Binary Tree

We recall the definition about binary tree described in [5,19]. Denote BT by
a binary tree with N leaves corresponding to N users. Let root be the root
node of the tree BT. If θ is a leaf node, then Path(θ) denotes the set of nodes
on the path from θ to root, which includes both θ and root. If θ is a non-leaf
node, then θl, θr denote left and right child of θ. Assume that nodes in the
tree are uniquely encoded as strings, and the tree is defined by all of its node
descriptions. The algorithm KUNodes is used to compute the minimal set of
nodes for which key update needs to be published so that only the non-revoked
users at a time period t are able to decrypt the ciphertexts. This algorithm
takes a binary tree BT, a revocation list rl and a time period t as the input, and
outputs a set of nodes which is the minimal set of nodes in BT such that none of
the nodes in rl with corresponding time period before or at t (users revoked at
or before t) have any ancestor (or, themselves) in the set, and all other leaf nodes
(corresponding to non-revoked users) have exactly one ancestor (or, themselves)
in the set. We give a pictorial depiction on how the KUNodes algorithm works
in Fig. 2, where it firstly marks all the ancestors of the revoked nodes as revoked,
and then it outputs all the non-revoked children of revoked nodes. Below is a

Fig. 2. A pictorial description about how the KUNodes algorithm works.

578 H. Cui et al.

formal definition of the KUNodes algorithm.

KUNodes(BT, rl, t)
X,Y ← ∅.

∀ (θi, ti) ∈ rl, if ti ≤ t, then add Path(θi) to X.

∀ x ∈ X, if xl /∈ X, then add xl to Y ; if xr /∈ X, then add xr to Y.

If Y = ∅, then add root to Y.

Return Y.

3 Framework and Security Model

In this section, we describe the framework and security definition of SR-ABE.

3.1 Framework

An SR-ABE scheme involves four types of entities: a key generation center
(KGC), data owners, data users and a untrusted server, and consists of nine
algorithms given below. We assume that the server keeps a list of tuples (iden-
tity, attribute set, public attribute-key), i.e., (id, A, pkA

id).

– Setup(1λ) → (par, msk, rl, st). Taking a security parameter λ as the input,
this algorithm outputs the public parameter par, the master private key msk,
an initially empty revocation list rl and a state st. This algorithm is run by
the KGC.

– UserKG(par, id) → (skid, pkid). Taking the public parameter par and an
identity as the input, this algorithm outputs a public and private user-key
pair (skid, pkid). This algorithm is run by each data user.

– PubKG(par, msk, id, pkid, A, st) → (pkA
id, st). Taking the public parameter

par, the master private key msk, an identity id with a public user-key pkid

and a set of attributes A, and a state st as the input, this algorithm outputs
a public attribute-key pkA

id for user id possessing an attribute set A and an
updated state st. This algorithm is run by the KGC, and (pkA

id, st) is sent to
the untrusted server.

– TKeyUp(par, msk, t, rl, st) → (tkut, st). Taking the public parameter par,
the master private key msk, a time period t, a revocation list rl and a state
st as the input, this algorithm outputs a key update message tkut and an
updated state st. This algorithm is run by the KGC, and (tkut, st) is sent to
the server.

– TranKG(par, id, pkA
id, tkut) → tkid,t. Taking the public parameter par, an

identity id with the corresponding public attribute-key pkA
id and a key update

message tkut as the input, this algorithm outputs a transformation key tkid,t

for user id in time period t. This algorithm is run by the server.
– Encrypt(par, (M, ρ), t, M) → CT. Taking the public parameter par, an access

structure (M, ρ), a time period t and a message M as the input, this algorithm
outputs a ciphertext CT. This algorithm is run by each data owner, and CT
will be stored in the cloud.

Server-Aided Revocable Attribute-Based Encryption 579

– Transform(par, id, A, tkid,t, CT) → CT′/⊥. Taking the public parameter
par, an identity id with the corresponding transformation key tkid,t and a
ciphertext CT as the input, this algorithm outputs either a partially decrypted
ciphertext CT′ when the attributes A associated with the transformation key
tkid,t satisfies the access structure of the ciphertext CT or ⊥ indicating the
failure of the transformation. This algorithm is run by the server. After the
partial decryption, CT′ is sent to the data user id.

– Decrypt(par, id, skid, CT′) → M/⊥. Taking the public parameter par, an
identity id with a private user-key skid and a transformed ciphertext CT′ as
the input, this algorithm outputs a message M or a failure symbol ⊥. This
algorithm is run by a data user id.

– Revoke(id, t, rl, st) → rl. Taking an identity id to be revoked, a time period t, a
revocation list rl and a state st, this algorithm outputs an updated revocation
list rl. This algorithm is run by the KGC.

The correctness of an SR-ABE scheme requires that for any security para-
meter λ and any message M , if the data user id is not revoked at time period t,
and if all parties follow the described algorithms as above, we have Decrypt(par,
skid, CT′) = M .

3.2 Security Model

Below we describe the security definition of indistinguishability under chosen
plaintext attacks (IND-CPA security) for SR-ABE between an adversary algo-
rithm A and a challenger algorithm B.

– Setup. Algorithm B runs the setup algorithm, and gives the public parameter
par to algorithm A, and keeps the master private key msk, an initially empty
revocation list rl and a state st.

– Phase 1. Algorithm A adaptively issues a sequence of following queries to
algorithm B.
• Private-User-Key oracle. Algorithm A issues a private user-key query on an

identity id. Algorithm B returns skid by running UserKG(par, id).
Note that once algorithm B runs UserKG(par, id), it adds (id, pkid, skid)
to a list so that the same (skid, pkid) is used for all queries on id.

• Public-Attribute-Key oracle. Algorithm A issues a public attribute-key
query on an identity id and an attribute set A. Algorithm B returns pkA

id by
running UserKG(par, id) (if id has not been issued to the Private-User-Key
oracle), PubKG(par, msk, id, pkid, A, st).

• Transformation-Key-Update oracle. Algorithm A issues a key update query
on a time period t. Algorithm B runs TKeyUp(par, msk, t, rl, st) and
returns tkut.

• Transformation-Key oracle. Algorithm A issues a transformation key query
on a time period t and an identity id with an attribute set A. Algorithm B
returns tkid,t by running UserKG(par, id) (if id has not been issued to the
Private-User-Key oracle), PubKG(par, msk, id, pkid, A, st), TKeyUp(par,

580 H. Cui et al.

msk, t, rl, st), TranKG(par, id, pkA
id, tkut). Note that this oracle cannot be

queried on a time period t before a transformation key update oracle has
been queried on t.

• Revocation oracle. Algorithm A issues a revocation query on an identity
id and a time period t. Algorithm B runs Revoke(id, t, rl, st) and out-
puts an updated revocation list rl.Note that a time period t on which a
transformation key update query has been issued cannot be issued to this
oracle.

– Challenge. Algorithm A outputs two messages M∗
0 , M∗

1 of the same size, an
access structure (M∗, ρ∗) and a time period t∗ satisfying the following con-
straints.
1. Case 1: if (1) an identity id∗ has been queried to the Private-User-Key

oracle, and (2) (M∗, ρ∗) can be satisfied by a query on (id∗, A∗) issued
to the Public-Attribute-Key oracle, then (1) the revocation oracle must
be queried on (id∗, t) on t = t∗ or any t occurs before t∗, and (2) the
Transformation-Key oracle cannot be queried on (id∗, t∗).

2. Case 2: if an identity id∗ whose attribute set A∗ can be satisfied by the
challenge access structure (M∗, ρ∗) is not revoked at or before t∗, then id∗

should not be previously queried to the Private-User-Key oracle.
Algorithm B randomly chooses γ ∈ {0, 1}, and forwards the challenge cipher-
text CT∗ to algorithm A by running Encrypt(par, (M∗, ρ∗), t∗, M∗

γ).
– Phase 2. Algorithm A continues issuing queries to algorithm B as in Phase 1,

following the restrictions defined in the Challenge phase.
– Guess. Algorithm A makes a guess γ′ for γ, and it wins the game if γ′ = γ.

The advantage of algorithm A in this game is defined as Pr[γ = γ′]−1/2. An
SR-ABE scheme is IND-CPA secure if any probabilistic polynomial time (PPT)
adversary has at most a negligible advantage in the security parameter λ. In
addition, an SR-ABE scheme is said to be selectively IND-CPA secure if an
Init stage is added before the Setup phase where algorithm A commits to the
challenge access structure (M∗, ρ∗) (and the challenge time period t∗) which it
attempts to attack.

Remark. Seo and Emura [23] defined a security model to prevent a realistic
threat called decryption key exposure attacks such that no information of the
plaintext is revealed from a ciphertext even if all (short-term) decryption keys
of a “different time period” are exposed, which the revocable ABE schemes
in [1,5,9,21] following the Boldyreva-Goyal-Kumar technique cannot resist5. To
cover such attacks in our IND-CPA security model, different from those previous
security notions [1,5,9,21] in revocable ABE, the adversary in our CP-ABE
definition is given access to an additional Transformation-Key oracle, since the
decryption key generated by a data user in a normal ABE scheme is now created
by the server and renamed as transformation key in our SR-ABE scheme.

5 This does not contradict with the security proofs of these schemes, because such
attacks are excluded from their security models.

Server-Aided Revocable Attribute-Based Encryption 581

4 Server-Aided Revocable Attribute-Based Encryption

In this section, we present a construction of SR-ABE, and analyze its security.

4.1 Construction

Assume that both the attribute space and the time space are Zp, and the message
space is G1. The proposed SR-ABE scheme, which is based on the CP-ABE
scheme in [20], consists of the following algorithms.

– Setup. This algorithm takes a security parameter λ as the input. It randomly
chooses a group G of prime order p with g ∈ G being the corresponding gen-
erator, and defines a bilinear map ê : G × G → G1. Additionally, it randomly
chooses u, h, u0, h0, w, v ∈ G, α ∈ Zp. Let rl be an empty list storing revoked
users and BT be a binary tree with at least N leaf nodes. Define two functions
F1 and F2 to map any element y in Zp to an element in G by F1(y) = uyh and
F2(y) = u0

yh0. The public parameter is par = (g, w, v, u, h, u0, h0, ê(g, g)α)
along with rl and st, where st is a state which is set to be BT. The master
private key is msk = α.

– UserKG. This algorithm takes the public parameter par and an identity id
as the input. It randomly chooses β ∈ Zp, and outputs a private and public
user-key pair (skid, pkid) = (βid, gβid) for user id.

– PubKG. This algorithm takes the public parameter par, the master private
key msk, an identity id with a public key pkid and an attribute set A, and a
state st as the input. Let A1, ..., Ak be the elements of A. It firstly chooses
an undefined leaf node θ from the binary tree BT, and stores id in this node.
Then, for each node x ∈ Path(θ), it runs as follows.
1. It fetches gx from the node x. If x has not been defined, it randomly chooses

gx ∈ G, computes g′
x = pkid

α/gx, and stores gx in the node x.
2. It randomly chooses rx, rx,1, ..., rx,k ∈ Zp, and computes

Px,1 = g′
x · wrx , Px,2 = grx , P

(i)
x,3 = grx,i , P

(i)
x,4 = F1(Ai)rx,i · v−rx .

3. It outputs pkA
id = {x, Px,1, Px,2, P

(i)
x,3, P

(i)
x,4}x∈Path(θ),i∈[1,k] as the public

attribute-key and an updated state st.
– TKeyUp. This algorithm takes the public parameter par, the master private

key msk, a time period t, a revocation list rl and a state st as the input. For
all x ∈ KUNodes(BT, rl, t), it fetches gx (note that gx is always predefined
in the PubKG algorithm) from the node x. It then randomly chooses sx ∈
Zp, and outputs the transformation key update information tkut = {x, Qx,1,
Qx,2}x∈KUNodes(BT, rl, t) where Qx,1 = gx · F2(t)sx , Qx,2 = gsx .

– TranKG. This algorithm takes the public parameter par, an identity id with a
public attribute-key pkA

id and the transformation key update information tkut

as the input. Denote I as Path(θ), J as KUNodes(BT, rl, t). It parses pkA
id as

{x, Px,1, Px,2, P
(i)
x,3, P

(i)
x,4}x∈I,i∈[1,k], tkut as {x, Qx,1, Qx,2}x∈J for some set of

582 H. Cui et al.

nodes I, J . If I ∩ J = ∅, it returns ⊥. Otherwise, for any node x ∈ I ∩ J , it
randomly chooses r′

x, r′
x,1, ..., r′

x,k, s′
x ∈ Zp, and computes

tk1 = Px,1 · Qx,1 · wr′
x · F2(t)s′

x = pkid
α · wrx+r′

x · F2(t)sx+s′
x ,

tk2 = Px,2 · gr′
x = grx+r′

x , tk
(i)
3 = P

(i)
x,3 · gr′

x,i = grx,i+r′
x,i ,

tk
(i)
4 = P

(i)
x,4 · F1(Ai)r′

x,i · v−r′
x = F1(Ai)rx,i+r′

x,i · v−(rx+r′
x),

tk5 = Qx,2 · gs′
x = gsx+s′

x .

It outputs the transformation key tkid,t = (tk1, tk2, {tk
(i)
3 , tk

(i)
4 }i∈[1,k], tk5).

– Encrypt. This algorithm takes the public parameter par, an LSSS access struc-
ture (M, ρ), a time period t and a message M as the input. Let M be a l × n
matrix. It randomly chooses a vector −→v = (μ, y2, ..., yn)⊥ ∈ Zn

p . These values
will be used to share the encryption exponent μ. For i = 1 to l, it calculates
vi = Mi · −→v where Mi is the i-th row of M. In addition, it randomly chooses
μ1, ..., μl ∈ Zp, and outputs the ciphertext CT = ((M, ρ), t, C0, C1, {C

(i)
2 ,

C
(i)
3 , C

(i)
4 }i∈[1,l], C5) where

C0 = ê(g, g)αμ · M, C1 = gμ, C
(i)
2 = wvi · vμi ,

C
(i)
3 = F1(Ai)−μi , C

(i)
4 = gμi , C5 = F2(t)μ.

– Transform. This algorithm takes the public parameter par, an identity id with
a transformation key tkid,t over an attribute set A and a time period t and
a ciphertext CT over an access structure (M, ρ) and the same time period t
as the input. Suppose that A satisfies the access structure (M, ρ). Let I be
defined as I = {i : ρ(i) ∈ A}. Denote by {wi ∈ Zp}i∈I a set of constants such
that if {vi} are valid shares of any secret μ according to M, then

∑
i∈I wivi

= μ. It parses CT, and outputs the transformed ciphertext CT′ = (C ′
0, C0)

where

C ′
0 =

∏
i∈I

(
ê(C(i)

2 , tk2)ê(C
(i)
3 , tk

(i)
3)ê(C(i)

4 , tk
(i)
4)

)wi
ê(C5, tk5)

ê(C1, tk1)
=

1
ê(g, pkid

α)μ
.

– Decrypt. This algorithm takes the public parameter par, an identity id with
a private user-key skid and a transformed ciphertext CT′ as the input. It
outputs the message M as M = (C ′

0)
1/β · C0.

– Revoke. This algorithm takes an identity id, a time period t, a revocation list
rl and a state st as the input. For all the nodes x associated with identity id,
it adds (x, t) to rl, and outputs the updated rl.

Notes and Comments. In the above scheme, g′
x in the PubKG algorithm

can also be set as gα+βid/gx such that the KGC runs the UserKG algorithm
as follows. For each id, the KGC randomly chooses βid, r, r1, ..., rk ∈ Zp, and
outputs a private user-key skid = {K1, K2, K

(i)
3 , K

(i)
4 }i∈[1,k], where

K1 = gβid · wr, K2 = gr, K
(i)
3 = gri , K

(i)
4 = F1(Ai)ri · v−r.

Server-Aided Revocable Attribute-Based Encryption 583

However, this requires a secure channel between the KGC and each data user
for key transmission. In addition, the KGC possesses all secrets of data users.
Lastly, since this key structure follows that in the basic Rouselakis-Waters CP-
ABE scheme [20], each data user’s computational cost in decryption could not
be mitigated, and their storage sizes of private keys are linear to the numbers of
the attributes entitled to them.

Remark. Note that the techniques applied in our SR-ABE construction can be
used to realize other cryptographic primitives.

– Server-aided revocable KP-ABE. Since our SR-ABE construction uses the
same binary tree data structure as in the revocable KP-ABE scheme [1], it is
not difficult to see that the technique of having an untrusted server to facilitate
computation used in our construction can be applied in a straightforward
manner to realize server-aided revocable KP-ABE.

– Server-aided revocable IBE with efficient decryption. In our SR-ABE scheme,
we embed a public user-key into the attribute-key such that the server is
only able to partially decrypt a ciphertext, and leaves the partially decrypted
ciphertext to user for fully decryption using her private user-key. Such a gadget
can be easily adopted in the SR-IBE scheme in [19] to reduce data users’
decryption costs and remove secure channels for key distribution.

4.2 Security

Theorem 1. Under the decisional (q−1) problem, our SR-ABE scheme is selec-
tively IND-CPA secure.

Proof. The proof is divided into two cases. In Case 1, it is assumed that an
identity id∗ whose attribute set A∗ satisfying the challenge access structure
(M∗, ρ∗) is revoked at or before the challenge time period t∗. In Case 2, it is
assumed that an identity id∗ whose attribute set A∗ satisfying the challenge
access structure (M∗, ρ∗) is not revoked at or before the challenge time period
t∗. Briefly speaking, the adversary is allowed to issue a private user-key query
on id∗ in Case 1, while this query is prohibited in Case 2. We detail the proof
in the full version of this paper6.

4.3 Comparison

To our knowledge, in addition to our work in this paper, [1,5,21,26] are also
revocable ABE schemes from bilinear pairings (excluding dual vector pairing
spaces [21]) in the prime-order groups. Recall that our goal in this paper is to
achieve indirect user revocation in a CP-ABE system by delegating data users’
workloads to an untrusted server such that the KGC indirectly accomplishes user
revocation by stopping updating the keys for revoked data users. In [5], a KP-
ABE scheme with indirect revocation is proposed where the KGC enables user
6 Please contact the authors for it.

584 H. Cui et al.

Table 1. Comparison between our SR-ABE scheme and existing revocable ABE
(R-ABE) schemes from standard bilinear pairings in the prime-order groups.

R-ABE in [5] R-ABE in [1] R-ABE
in [26]

R-ABE in
[21]

Our SR-ABE

Revocation
Mode

Indirect Indirect & Direct Direct Indirect Indirect

Type of ABE KP-ABE KP-ABE CP-ABE KP-ABE &
CP-ABE

CP-ABE

Server − − Semi-
trust

− Untrust

Key
Exposure
Resistance

No No − No Yes

Security Selective Selective Selective Selective Selective

Secure
Channel

Yes Yes Yes Yes No

Size of Key
Updates

O(R log(N
R
)) O(R log(N

R
)) − O(R log(N

R
)) O(R log(N

R
))

Size of Key
Stored by
Data User

O(l logN) O(l logN) O(1) O(l logN) &
O(k logN)

O(1)

Computation
Cost in
Decrypt

≥ 2(E + P) ≥ 3E + 4P E ≥ E + P E

revocation by stopping posting key update information for revoked data users,
thereby forcing revoked data users to be unable to update their decryption keys.
A hybrid revocable KP-ABE system is given in [1], which allows a data owner
to select either direct or indirect revocation mode when encrypting a message.
In [26], a revocable ABE scheme is put forth by giving the direct revocation
capability to a semi-trusted server, where the server shares part of the decryption
capability of the data users and stops the decryption operation for any revoked
data users. A generic way to realize ABE supporting dynamic credentials is
provided in [21], where the KGC indirectly accomplishes revocation by stopping
updating the keys for revoked data users.

Table 1 compares our SR-ABE scheme with revocable ABE schemes under
prime-order groups in [1,5,21,26]. Let N be the number of all data users, R be
the number of revoked data users, l be the number of attributes presented in
an access structure, and k be the size of the attribute set associated with an
attribute-key. Also, let “−” denote not-applicable, “E” denote exponentiation
operation, and “P” denote pairing operation, respectively. It is straightforward
to see from Table 1 that the schemes in [1,5,21] require secure channels between
the KGC and every data user for key transmission, and every data user to keep a
private key of which the size is determined by their attributes and the associated
nodes in the predefined binary tree. While the scheme in [26] does not require

Server-Aided Revocable Attribute-Based Encryption 585

every data user to store a key of large size but requires a secure channel between
the KGC and the semi-trusted server, and is subject to collusion attacks between
the semi-trusted server and revoked data users. Clearly, our SR-ABE scheme has
an edge over previous solutions in that it does not require any secure channels
between the system participants, and is secure against collusion attacks between
the untrusted server and revoked data users. Also, our SR-ABE scheme achieves
desirable efficiency in decryption run by data users, which only requires one
exponentiation operation.

5 Conclusions

In this paper, we introduced a notion called server-aided revocable attribute-
based encryption (SR-ABE) to achieve efficient user revocation in attribute-
based encryption (ABE). We formally defined the (selective) IND-CPA security
for SR-ABE, proposed a concrete construction of SR-ABE in terms of ciphertext-
policy attribute-based encryption (CP-ABE), and then proved that the proposed
SR-ABE scheme is selectively IND-CPA secure. Compared with the previous
revocable ABE schemes, our SR-ABE scheme has three salient advantages. First,
our SR-ABE scheme delegates almost all computational overheads of data users
resulted in key updates to an untrusted server. Second, instead of storing a
private key, of which the size is logarithmic to the number of data users, by
each data user as in most of the existing revocable ABE schemes, each data user
in our SR-ABE scheme only needs to keep a private key of one group element.
Third, in our SR-ABE scheme, most of the computational cost in decryption is
delegated to the untrusted server, and a data user is only required to perform one
exponentiation operation to decrypt a ciphertext. Besides constructing server-
aided revocable CP-ABE schemes, the same techniques introduced in this paper
can be easily applied to build server-aided revocable key-policy ABE schemes
and IBE schemes.

Acknowledgments. This research work is supported by the Singapore National
Research Foundation under the NCR Award No. NRF2014NCR-NCR001-012, the
National Natural Science Foundation of China under the Grant No. 61502400 and
the Foundation of Sichuan Educational Committee under the Grant No. 16ZB0140.

References

1. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS,
vol. 5921, pp. 278–300. Springer, Heidelberg (2009)

2. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009)

3. Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg
(2004)

586 H. Cui et al.

4. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, June 1996

5. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revo-
cation. In: Proceedings of the ACM Conference on Computer and Communications
Security, CCS 2008, Alexandria, Virginia, USA, 27–31 October 2008, pp. 417–426.
ACM (2008)

6. Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. J. Cryptology 24(4), 659–693 (2011)

7. Boneh, D., Ding, X., Tsudik, G., Wong, C.: A method for fast revocation of pub-
lickey certificates and security capabilities. In: 10th USENIX Security Symposium,
13–17 August 2001, Washington, D.C., USA. USENIX (2001)

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg (2001)

9. Cui, H., Deng, R.H.: Revocable and decentralized attribute-based encryption.
Comput. J. doi:10.1093/comjnl/bxw007

10. Ding, X., Tsudik, G.: Simple identity-based cryptography with mediated RSA. In:
Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 193–210. Springer, Heidelberg
(2003)

11. Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Identity-based hierarchical
strongly key-insulated encryption and its application. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 495–514. Springer, Heidelberg (2005)

12. Horváth, M.: Attribute-based encryption optimized for cloud computing. In: Ital-
iano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R.
(eds.) SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 566–577. Springer, Heidelberg
(2015)

13. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

14. Li, J., Li, J., Chen, X., Jia, C., Lou, W.: Identity-based encryption with outsourced
revocation in cloud computing. IEEE Trans. Comput. 64(2), 425–437 (2015)

15. Li, Q., Xiong, H., Zhang, F.: Broadcast revocation scheme in composite-order
bilinear group and its application to attribute-based encryption. IJSN 8(1), 1–12
(2013)

16. Liang, K., Liu, J.K., Wong, D.S., Susilo, W.: An efficient cloud-based revoca-
ble identity-based proxy re-encryption scheme for public clouds data sharing. In:
Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part I. LNCS, vol. 8712, pp. 257–272.
Springer, Heidelberg (2014)

17. Libert, B., Quisquater, J.: Efficient revocation and threshold pairing based cryp-
tosystems. In: Proceedings of the Twenty-Second ACM Symposium on Principles
of Distributed Computing, PODC 2003, Boston, Massachusetts, USA, 13–16 July
2003, pp. 163–171. ACM (2003)

18. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 41. Springer,
Heidelberg (2001)

19. Qin, B., Deng, R.H., Li, Y., Liu, S.: Server-aided revocable identity-based encryp-
tion. In: Pernul, G., Y A Ryan, P., Weippl, E. (eds.) ESORICS. LNCS, vol. 9326,
pp. 286–304. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24174-6 15

20. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large
universe attribute-based encryption. In: ACM SIGSAC Conference on Computer
and Communications Security, CCS 2013, Berlin, Germany, 4–8 November 2013,
pp. 463–474. ACM (2013)

http://dx.doi.org/10.1093/comjnl/bxw007
http://dx.doi.org/10.1007/978-3-319-24174-6_15

Server-Aided Revocable Attribute-Based Encryption 587

21. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012)

22. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

23. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model
and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 216–234. Springer, Heidelberg (2013)

24. Wan, Z., Liu, J., Deng, R.H.: HASBE: a hierarchical attribute-based solution for
flexible and scalable access control in cloud computing. IEEE Trans. Inf. Forensics
Secur. 7(2), 743–754 (2012)

25. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

26. Yang, Y., Ding, X., Lu, H., Wan, Z., Zhou, J.: Achieving revocable fine-
grained cryptographic access control over cloud data. In: Desmedt, Y. (ed.) ISC
2013. LNCS, vol. 7807, pp. 293–308. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-27659-5 21

http://dx.doi.org/10.1007/978-3-319-27659-5_21
http://dx.doi.org/10.1007/978-3-319-27659-5_21

Online/Offline Public-Index Predicate
Encryption for Fine-Grained Mobile

Access Control

Weiran Liu1,2, Jianwei Liu1, Qianhong Wu1,3,4, Bo Qin5(B), and Kaitai Liang6

1 School of Electronic and Information Engineering, Beihang University, No. 37,
XueYuan Road, Haidian District, Beijing 100191, China

liuweiran900217@gmail.com, {liujianwei,qianhong.wu}@buaa.edu.cn
2 State Key Laboratory of Integrated Services Networks,

Xidian University, Xi’an 710071, China
3 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

4 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
5 Key Laboratory of Data Engineering and Knowledge Engineering,

Ministry of Education, School of Information, Renmin University of China,
No. 59, ZhongGuanCun Avenue, Haidian District, Beijing 100872, China

bo.qin@ruc.edu.cn
6 Department of Computer Science, Aalto University,

Konemiehentie 2, 01250 Espoo, Finland
kaitai.liang@aalto.fi

Abstract. Public-Index Predicate Encryption (PIPE) allows users to
encrypt according to boolean predicates defined on arbitrary attributes.
The expensive algebraic operations are the major efficiency obstacle for
PIPE to be applied to mobile clouds. This paper proposes a general
Online/Offline PIPE (OO-PIPE) framework to address this issue. First,
we propose a generic transformation from a Large Universe PIPE (LU-
PIPE) secure against chosen plaintext attack (CPA) to OO-PIPE in the
same security model. The challenge is to generate ciphertext without the
knowledge of the associated ciphertext attributes in the offline phase. We
address the challenge by identifying an interesting attribute-malleability
property in many LU-PIPE schemes. The property allows an encryptor to
efficiently malleate a ciphertext associated with one ciphertext attribute
to any assigned ciphertext attribute. Second, we design a generic trans-
formation from CPA-secure LU-PIPE to OO-PIPE secure against adap-
tively chosen ciphertext attack (CCA2), assuming the underlying LU-
PIPE has attribute-malleability and public-verifiability properties. The
main obstacle here is that the online/offline mechanism endogenously
implies forgery in the sense that a pre-computed ciphertext must be
able to be efficiently malleated to the resulting ciphertext associated
with a different ciphertext attribute and a plaintext, while any efficient
valid ciphertext forgery is forbidden in CCA2 security. We circumvent

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 588–605, 2016.
DOI: 10.1007/978-3-319-45741-3 30

Online/Offline Public-Index Predicate Encryption 589

this obstacle by employing a universally collision resistant Chameleon
hash, namely, only the original encryptor can malleate the ciphertext
to associate with different attributes and provide a hash collision of the
ciphertext components.

1 Introduction

Mobile cloud computing becomes more and more attracting in cloud-assisted
networks. However, security risks of mobile computing may hinder its wide appli-
cations. Since data are outsourced to the cloud, it is required that data must
be stored securely, while allowing legal access for authenticated users. Tradi-
tional encryption techniques supporting limited access control are not seam-
lessly applicable to mobile cloud computing. Public-Index Predicate Encryption
(PIPE) is an emerging asymmetric encryption allowing fine-grained access con-
trol over encrypted data. In a PIPE system, the access control policy is described
by a predicate. A ciphertext is associated with a ciphertext attribute, and a secret
key is assigned to a key attribute. One can decrypt if and only if the ciphertext
attribute specified in the ciphertext matches the key attribute in his/her secret
key according to the pre-defined predicate.

PIPE is a general cryptographic concept capturing a wide range of crypto-
graphic primitives, including Identity-Based Encryption (IBE) [5,34], Revoca-
tion Encryption (RE) [23], Attribute-Based Encryption (ABE) [33] in Key-Policy
settings [15] and in Ciphertext-Policy settings [2]. PIPE is classified into two cat-
egories: Small Universe PIPE (SU-PIPE) and Large Universe PIPE (LU-PIPE).
In SU-PIPE, the size of attribute is polynomially bounded in security parame-
ter [9,12,15], which poses constraints in practice. LU-PIPE does not suffer from
this constraint and its attribute space can be exponentially large [25,31,32].
This desirable feature makes many instances of LU-PIPE, e.g., (H)IBE [19,20],
ABE [39], become attractive to secure mobile cloud computing.

There are still hindrances for LU-PIPE to be widely deployed in mobile cloud
computing. Most LU-PIPE schemes require time-consuming algebraic operations
and encryption time grows with the number of ciphertext attributes. This may
limit their efficiency. When the encryption is run on a mobile device, it may
raise poor user experience with long latency and meanwhile, exhaust the battery
quickly. Moreover, since LU-PIPE is usually suggested to secure data stored
on untrusted but powerful servers, a strong security level, i.e., CCA2 security,
is necessary for holding against powerful active attackers. Note that CCA2-
secure LU-PIPE is less efficient than its CPA-secure counterpart. This further
deteriorates the resource consumption and user experience.

Online/offline encryption may mitigate the efficiency problem. The encryp-
tion is split into offline and online phases. In the offline phase, an encryptor con-
ducts the majority of the computation task on a high-end computer or when bat-
tery recharge before knowing the ciphertext attributes. In the online phase, the
encryptor needs only few computations to fulfill the encryption when knowing
the corresponding ciphertext attributes. In this way, it is feasible to implement
LU-PIPE on resource-limited mobile devices with desirable user experience.

590 W. Liu et al.

Several online/offline PIPE (OO-PIPE) schemes have been designed in an ad
hoc way [10,17,18,27,29]. It is desirable to investigate generic OO-PIPE trans-
formation from LU-PIPE. Theoretically, such a work allows a better under-
standing on LU-PIPE and online/offline mechanism. Practically, it enables one
to instantly obtain OO-PIPE with better security and/or efficiency whenever an
advantageous LU-PIPE scheme is available.

1.1 Our Contributions

We aim at proposing a framework for constructing OO-PIPE with CCA2 secu-
rity. Our contribution includes the following aspects.

We start by identifying a useful property, i.e., attribute-malleability consist-
ing of private malleability and public malleability, of many LU-PIPE schemes.
The private malleability allows an encryptor to malleate a ciphertext associated
with one ciphertext attribute to a ciphertext associated with any given cipher-
text attribute at a very low cost. In contrast, the public malleability states that
even through others may malleate a ciphertext associated with one ciphertext
attribute to a ciphertext associated with some other ciphertext attribute, they
cannot know (the key of) any matching key attribute.

We propose a generic CPA-secure OO-PIPE construction from attribute-
malleable CPA-secure LU-PIPE. With private malleability, an encryptor pre-
pares a ciphertext under a randomly chosen ciphertext attribute in the offline
phase, and then replaces it with the target ciphertext attribute in the online
phase. With public malleability, we show that the security of the resulting OO-
PIPE can be tightly reduced to the CPA security of the underlying LU-PIPE.

We next propose a generic CCA2-secure OO-PIPE construction from any
CPA-secure attribute-malleable LU-PIPE with public-verifiability. The public-
verifiability states that there exists a public verification mechanism to verify
whether the ciphertext has been honestly generated. This property enables one to
establish a built-in LU-PIPE ciphertext validation check mechanism. We further
exploit universally collision resistant Chameleon hash for ciphertext validation
so that an encryptor can replace the randomly encrypted ciphertext attribute in
the offline phase with the target ciphertext attribute in the online phase, while
an attacker cannot make such malleation.

Technically, our constructions offer a novel application of Chameleon hash
in encryption systems. Chameleon hash was previously used in (online/offline)
signature applications [35]. It has been recently used as a security proof tool
in constructing CCA2-secure KP-ABE [28]. We strengthen regular Chameleon
hash with universal collision resistance and propose a generic universally colli-
sion resistant Chameleon hash from a regular Chameleon hash and a standard
cryptographic hash. Our work illustrates the unique value of Chameleon hash
in online/offline encryption cryptosystems, in contrast to its previous use in
online/offline signatures.

Online/Offline Public-Index Predicate Encryption 591

1.2 Related Work

LU-PIPE. The simplest LU-PIPE is IBE that was theoretically introduced by
Shamir [34] and practically constructed by Boneh and Franklin [5]. In 2005,
Sahai and Waters [33] proposed Fuzzy IBE with a more expressive predicate.
The concept of ABE, a versatile type of LU-PIPE, was also introduced in their
work. Subsequently, two types of ABE, i.e., KP-ABE and CP-ABE, were respec-
tively proposed by Goyal et al. [15] and Bethencourt et al. [2]. These schemes are
proven secure in the selective security model. Fully secure ABE constructions
were provided by Okamoto et al. [30,31] and Lewko et al. [26]. They follow the
dual system encryption methodology due to Waters [36] and Lewko et al. [24]
to achieve fully security. Another kind of typical LU-PIPE systems, i.e., Revo-
cation Encryption (RE), was introduced by Lewko, Sahai and Waters [23] in the
selective and fully security model.

CCA2-Secure LU-PIPE. Many researches have devoted their efforts to the
constructions of CCA2-secure LU-PIPE schemes. The Canetti-Halevi-Katz app-
roach [8] is widely used for the CCA2 security transformation at the cost of
one-time signatures. Their approach was first applied for converting CPA-secure
IBE to CCA2-secure PKE, and converting CPA-secure Hierarchical IBE (HIBE)
to CCA2-secure IBE. It was later used to obtain CCA2-secure KP-ABE from
CPA-secure KP-ABE by Goyal et al. [15], and CCA2-secure CP-ABE from CPA-
secure CP-ABE by Cheung et al. [2]. Yamada et al. [37] generalized this app-
roach and introduced a generic framework to transform CPA-secure ABE to
CCA2-secure ABE. Yamada et al. [38] further extended this approach into PE
settings and showed that any CPA-secure PE scheme could be converted into a
CCA2-secure one assuming that the underlying PE scheme is verifiable, i.e., all
legitimate receivers of a ciphertext can obtain the same message upon decryp-
tion. All the above CCA2-secure PE constructions need one-time signatures.
Boyen et al. [7] introduced a shrink approach to obtain CCA2-secure PKE from
CPA-secure IBE using standard collision resistant hash functions, by exploit-
ing the specific ciphertext structure of the underlying schemes [4]. Recently, Liu
et al. [28] refined this technique in KP-ABE and proposed a direct CCA2-secure
KP-ABE scheme from the Rouselakis-Waters KP-ABE [32].

OO-PIPE. Online/offline cryptosystems were first proposed by Even et al. [11].
The goal of design is to have a very short response time after a pre-processing
phase in which all expensive operations are pre-computed. They instantiated
this technique in the context of digital signatures. The signing process is divided
into online and offline phases. Most of the computation work is done in the
offline phase without knowledge of the message to be signed. Once the mes-
sage to be signed is given, the resulting signature can be quickly obtained in
the online phase. Shamir and Tauman [35] showed how to use Chameleon hash
functions to transform any digital signature scheme to an online/offline signature
scheme. In the online phase, one only needs to find a Chameleon hash collision,
which usually only requires several modular multiplications [22]. Guo et al. [17]
considered online/offline variants of the Boneh-Boyen IBE [3] and the Gentry

592 W. Liu et al.

IBE [14], followed by the work of Liu et al. [27]. Subsequently, online/offline
HIBE [29] and online/offline Identity-Based Key Encapsulation [10] were pro-
posed. Hohenberger and Waters [18] proposed CPA-secure online/offline ABE
schemes based on the Rouselakis-Waters ABE [32]. Most of the existing CCA2-
secure OO-PIPE schemes employ the Canetti-Halevi-Katz approach [17,29] with
the help of one-time signatures. Chow et al. [10] presented a generic transfor-
mation to get CCA2-secure OO-IBE from any OO-IBE in the key encapsulation
mechanism. Their transformation, inspired by the technique from Fujisaki and
Okamoto [13], is actually very efficient, although one needs to model the output
of the hash function as a random oracle.

2 Preliminaries

We write [a, b] to denote the set {a, a+1, · · · , b} containing consecutive integers,
and [a] as shorthand for [1, a] if there is no ambiguity. For a set S, we use |S|
to denote the number of elements in S. We use s1, s2, · · · , sn

R← S for n ∈ N to
represent that si

R← S for each i ∈ [n].
For a randomized algorithm A, we denote y ← A(x;R) as the process of

running the algorithm A on input x with randomness R to output y, where R is
sampled from the space RA, i.e., R

R← RA. We interchangeably use the notations
y ← A(x) and y ← A(x;R), depending on whether we need emphasis on the
randomness. We denote S[A(x)] as the range space of A with the input x.

2.1 Definition of LU-PIPE

We follow the LU-PIPE definition given by Yamada et al. [38]. We work in
the Key Encapsulation Mechanism (KEM) setting, where the ciphertext hides
a symmetric session key key for encryption of regular digital contents. Let U =
{0, 1}∗ be an attribute space and Pn = {Kn × En → {0, 1}|n ∈ N} be a large
universe predicate family, where n denotes the dimension of the predicate Pn. Let
Kn denote the “key attribute” space and En denote the “ciphertext attribute”
space over U . A Large Universe Public-Index Predicate KEM (LU-PIP-KEM)
for Pn consists of four polynomial time algorithms:

(msk, pp) ← Setup(λ, n). Take as inputs a security parameter λ ∈ N and a
dimension n of the predicate Pn. It outputs a master secret key msk and a
public parameter pp.

skx ← KeyGen(pp,msk, x). Take as inputs the public parameter pp, the master
secret key msk, and a key attribute x ∈ Kn. It outputs a secret key skx associated
with the key attribute x.

(key, cty) ← Encrypt(pp, y;Ry). Take as inputs the public parameter pp and a
ciphertext attribute y ∈ En. It outputs a session key key and a ciphertext cty
associated with the ciphertext attribute y under the randomness Ry.

Online/Offline Public-Index Predicate Encryption 593

key ← Decrypt(pp, cty, y, skx, x). Take as inputs the public parameter pp, a
ciphertext cty associated with the ciphertext attribute y ∈ En, and a secret key
skx associated with the key attribute x ∈ Kn. It outputs the session key key.

A LU-PIP-KEM scheme is correct if for all (msk, pp) ← Setup(λ, n), all
skx ← KeyGen(pp,msk, x) with x ∈ Kn, and all (key, cty) ← Encrypt(pp, y,Ry)
with y ∈ En, it holds that if Pn(x, y) = 1, then Decrypt(pp, cty, y, skx, x) = key;
else if Pn(x, y) = 0, then Decrypt(pp, cty, y, skx, x) = ⊥.

The chosen plaintext security in LU-PIP-KEM is defined through a game
played between an adversary A and a challenger C. Both of them take the security
parameter λ and the dimension n of the predicate as input.

Setup. C runs Setup to generate and give the public parameter pp to A.

Phase 1. A adaptively submits secret key queries for the key attribute x ∈ Kn.
C generates a secret key skx for x and returns it to A.

Challenge. A outputs a challenge ciphertext attribute y∗ ∈ En on which it
wishes to be challenged. The challenge ciphertext attribute y∗ must satisfy that
Pn(x, y∗) = 0 for any x that A has already queried for the secret key skx. C runs
Encrypt(pp, y∗) to obtain (key∗, ct∗). Then, it flips a random coin b ∈ {0, 1}. If
b = 0, C returns (key∗, ct∗) to A. If b = 1, it selects a random session key key∗

R

and returns (key∗
R, ct∗).

Phase 2. Phase 1 is repeated with a restriction that A cannot submit secret
key queries for x ∈ Kn with Pn(x, y∗) = 1.

Guess. Finally, A outputs a guess b′ ∈ {0, 1} and wins in the game if b = b′.
The advantage of A in attacking the LU-PIP-KEM system with security

parameter λ is defined as AdvLU-PIP-KEM
A (λ) =

∣
∣Pr[b′ = b] − 1

2

∣
∣.

Definition 1. A LU-PIP-KEM system is CPA-secure if for any polynomial time
adversary A, the advantage of winning the above game is a negligible function ε
in λ, i.e., AdvLU-PIP-KEM

A (λ) < ε.

A weaker security notion called selective security can be defined in the above
game with an extra Init phase in which A must commit to the challenge cipher-
text attribute y∗ ∈ En before Setup.

We next review the notion of OR-compatibility for a predicate. A predicate Pn

is said to have OR-compatibility if for two ciphertext attributes, the predicate
is able to capture the presence of one or the other. This property was first
introduced by Yamada et al. [38]. They commented that OR-compatibility is
commonly achieved in many concrete LU-PIPE schemes [2,15,21].

Definition 2. A predicate Pn = {Kn × En → {0, 1}|n ∈ N} is said to have
OR-compatibility if for all d ∈ N, there exists a map OR : En × Ed → En+d and
two attribute extension maps EN : Kn → Kn+d, ED : Kd → Kn+d such that
for all x1 ∈ Kn, x2 ∈ Kd, y1 ∈ En, y2 ∈ Ed,

594 W. Liu et al.

Pn+d(EN(x1), OR(y1, y2)) = Pn(x1, y1),
Pn+d(ED(x2), OR(y1, y2)) = Pd(x2, y2).

2.2 Definition of Public-Verifiability

We review the public-verifiability of a LU-PIP-KEM scheme. This property was
first defined in the IBE setting [16] and then be extended to FE settings by
Yamada et al. [37]. Intuitively, a LU-PIP-KEM has public-verifiability if there
exists a public verification mechanism to verify whether a given ciphertext is
honestly generated. As remarked by Abdalla et al. [1], any encryption schemes
with public-verifiability cannot be anonymous (or known as Private Index Pred-
icate Encryption [6]). Hence, public-verifiability can only be achieved in PIPE,
which is also the focus of this paper.

To define public-verifiability, we introduce a polynomial time algorithm Verify.

0 or 1 ← Verify(pp, cty, y). Take as inputs the public parameter pp and a cipher-
text cty ∈ {0, 1}∗ under a ciphertext attribute y ∈ En. It outputs 0 or 1.

Verify needs to satisfy that for all (key, cty) ∈ S[Encrypt(pp, y,Ry)], it holds
that Verify(pp, cty, y) = 1, while for all (key, cty) /∈ S[Encrypt(pp, y,Ry)], it must
have that Verify(pp, cty, y) = 0 except with a negligible probability.

Definition 3. A LU-PIP-KEM scheme is said to have public-verifiability if
there exists an algorithm Verify in the LU-PIP-KEM scheme satisfying the com-
pleteness requirement defined above.

3 Modelling OO-PIPE

We formally define OO-PIPE in the KEM setting. An OO-PIP-KEM scheme con-
sists of five polynomial time algorithms OO.Setup, OO.KeyGen, OO.OffEncrypt,
OO.OnEncrypt and OO.Decrypt. The definitions of OO.Setup and OO.KeyGen are
identical to those of LU-PIP-KEM systems shown in Sect. 2.1. The others are
defined as follows.

ict ← OO.OffEncrypt(pp). Only take as input the public parameter pp and out-
puts an intermediate ciphertext ict.

(key, cty) ← OO.OnEncrypt(pp, y, ict). Take as inputs the public parameter pp, a
target ciphertext attribute y ∈ En, and an intermediate ciphertext ict. It outputs
a session key key and a ciphertext cty associated with y.

key ← OO.Decrypt(pp, cty, y, skx, x). Take as inputs the public parameter pp, a
ciphertext cty associated with the ciphertext attribute y ∈ En, and a secret key
skx associated with the key attribute x ∈ Kn. It outputs the session key key.

The correctness requires that for all (msk, pp) ← OO.Setup(λ, n), all x ∈ Kn,
all skx ← OO.KeyGen(pp,msk, x), all ict ← OO.OffEncrypt(pp), all y ∈ En, and
all (key, cty) ← OO.OnEncrypt(pp, y, ict), if Pn(x, y) = 1, then we have that

Online/Offline Public-Index Predicate Encryption 595

OO.Decrypt(pp, cty, y, skx, x) = key; else if Pn(x, y) = 0, then we have that
OO.Decrypt(pp, cty, y, skx, x) = ⊥ except with a negligible probability.

We next define chosen ciphertext security in OO-PIP-KEM. The security
model is similarly defined through a game played between an adversary A and
a challenger C, both of which are given the parameter λ and the dimension n of
the predicate as inputs.

Setup. C runs OO.Setup to generate public parameter pp and sends it to A.

Phase 1. A adaptively issues queries:

– Secret Key Query. A submits a key attribute x ∈ Kn to C. C generates and
gives a secret key skx for x to A.

– Decryption Query. A submits a ciphertext cty with ciphertext attribute
y ∈ En to C. C constructs a key attribute x ∈ Kn with Pn(x, y) = 1,
and runs OO.KeyGen(pp,msk, x) to generate a secret key skx. It then runs
OO.Decrypt(pp, cty, y, skx, x) and returns the decryption result to A.

Challenge. A outputs a challenge ciphertext attribute y∗ ∈ En on which it
wishes to be challenged. The challenge ciphertext attribute y∗ must satisfy that
Pn(x, y∗) = 0 for any x that A queried for the secret key skx. C generates a
session key key∗ and a ciphertext ct∗ under the challenge attribute y∗. Then, it
flips a random coin b ∈ {0, 1}. If b = 0, C returns (key∗, ct∗) to A. Otherwise, it
randomly selects a session key key∗

R and returns (key∗
R, ct∗) to A.

Phase 2. A further adaptively issues the following two kinds of queries:

– Secret Key Query for key attributes x ∈ Kn satisfying Pn(x, y∗) = 0.
– Decryption Query for the ciphertext cty with a constraint that cty �= ct∗.

C responds the same as in Phase 1.

Guess. Finally, A outputs a guess b′ ∈ {0, 1} and wins in the game if b = b′.

The advantage of A who issues qS secret key queries and qD decryption
queries in attacking the OO-PIP-KEM system with security parameter λ is
defined as AdvOO-PIP-KEM

A,qS ,qD
(λ) =

∣
∣Pr[b′ = b] − 1

2

∣
∣.

Definition 4. An OO-PIP-KEM system is CCA2-secure if for any polynomial
time adversary A who makes a total of qS secret key queries and qD decryption
queries, the advantage of winning the security game defined above is at most
negligible function ε in λ, i.e., AdvOO-PIP-KEM

A,qS ,qD
(λ) < ε.

The CPA security for OO-PIP-KEM system can also be defined as in the
preceding game, with a constraint that A is not allowed to issue decryption
queries in Phase 1 and Phase 2.

Definition 5. An OO-PIP-KEM system is CPA-secure if for any polynomial
time adversary A who makes a total of qS secret key queries and no decryp-
tion query, the advantage of winning the security game defined above is at most
negligible function ε in λ, i.e., AdvOO-PIP-KEM

A,qS ,0 (λ) < ε.

596 W. Liu et al.

Similar to LU-PIP-KEM, the selective security of an OO-PIP-KEM system
can be defined in the above game by adding an Init phase before Setup phase.
A must decide the challenge ciphertext attribute y∗ ∈ En in the Init phase.

4 CPA-secure OO-PIP-KEM from LU-PIP-KEM

The major challenge in constructing OO-PIP-KEM is that in the offline phase,
the encryptor cannot know the ciphertext attribute that a ciphertext will be
associated with. We manage to overcome this challenge by identifying a useful
property, i.e., attribute-malleability, in many LU-PIPE schemes. Coarsely speak-
ing, a LU-PIP-KEM scheme has attribute-malleability if an encryptor can mal-
leate a ciphertext ctori associated with an original ciphertext attribute yori to a
new ciphertext ctnew associated with a new ciphertext attribute ynew with the
same session key key. The ones who have the secret key skx with key attribute
x satisfying P (x, ynew) = 1 can also correctly decrypt ctnew to recover key.

The attribute-malleability enables an encryptor to prepare the ciphertext
without knowing the associated ciphertext attribute. In the offline phase, the
encryptor randomly chooses a ciphertext attribute yori, and encapsulates a ses-
sion key key under that ciphertext attribute to generate a ciphertext ctori. When
the target ciphertext attribute y is available to the encryptor in the online phase,
he malleates the ciphertext ctori with the ciphertext attribute yori to a target
ciphertext cty associated with the given ciphertext attribute y with the same
session key key. In decryption, the receiver who has the secret key skx with the
key attribute x satisfying P (x, y) = 1 can decrypt the ciphertext cty and recover
the session key key.

4.1 Definition of Attribute-Malleability

We first introduce three polynomial time algorithms, PriMalleate, PubMalleate,
Combine in LU-PIP-KEM, and their necessary properties.

ymall ← PriMalleate(yori, ynew, Rori). Take as inputs the original ciphertext
attribute yori ∈ En, a new ciphertext attribute ynew, and the randomness Rori

used to run (key, ctori) ← Encrypt(pp, yori;Rori). It outputs a malleated cipher-
text attribute ymall ∈ En.

c̃tori ← PubMalleate(pp, c̃tnew, ỹmall). Take as inputs the public parameter pp,
a ciphertext c̃tnew associated with the new ciphertext attribute ynew, and a
malleated ciphertext attribute ỹmall ∈ En. It outputs a ciphertext c̃tori ∈ En.

ctnew ← Combine(pp, ctori, ymall). Take as inputs the public parameter pp, a
ciphertext ctori associated with the ciphertext attribute yori, and the malleated
ciphertext attribute ymall. It outputs a ciphertext ctnew associated with the given
ciphertext attribute ynew.

These algorithms need to meet the following requirements.

Online/Offline Public-Index Predicate Encryption 597

– Private Malleability. For all (key, ctori) ← Encrypt(pp, yori;Rori) with a ran-
domly chosen ciphertext attribute yori

R← En and all ciphertext attribute
ynew ∈ En, if ymall is output by ymall ← PriMalleate(yori, ynew, Rori),
and ctnew is generated as ctnew ← Combine(pp, ctori, ymall), then we have
(key, ctnew) = Encrypt(pp, ynew;Rori).

– Public Malleability. For all (key, c̃tnew) ← Encrypt(pp, ynew;Rnew) with a
ciphertext attribute ynew ∈ En and randomly chosen ỹmall

R← En, if c̃tori ←
PubMalleate(pp, c̃tnew, ỹmall), then (key, c̃tori) = Encrypt(pp, ỹori;Rnew). Also,
c̃tnew = Combine(pp, c̃tori, ỹmall).

– Efficiency. Running ymall ← PriMalleate(yori, ynew, Rori) for all yori, ynew ∈
En is more efficient than running (key, ctnew) ← Encrypt(pp, ynew;Rnew).

Definition 6. We say a LU-PIP-KEM scheme has attribute-malleability if there
exist polynomial time algorithms PriMalleate, PubMalleate and Combine satisfy-
ing private malleability, public malleability and efficiency defined above.

4.2 Generic Transformation

We now describe our transformation. Let Π ′ = (Setup,KeyGen,Encrypt,Decrypt)
be a CPA-secure LU-PIP-KEM scheme for predicate Pn over the attribute uni-
verse U = {0, 1}∗ that has attribute-malleability defined in Definition 6. We
can construct a CPA-secure OO-PIP-KEM scheme Π =(OO.Setup, OO.KeyGen,
OO.OffEncrypt, OO.OnEncrypt, OO.Decrypt) for the same predicate Pn as follows.

OO.Setup(λ, n). The setup algorithm imply invokes (msk, pp) ← Setup(λ, n) and
outputs the master secret key and the public parameter as (msk, pp).

OO.KeyGen(pp,msk, x). Given a key attribute x ∈ Kn, the key generation algo-
rithm simply calls skx ← KeyGen(pp,msk, x) and outputs the secret key skx.

OO.OffEncrypt(pp). The offline encryption algorithm will generate a ciphertext
under a randomly chosen ciphertext attribute and treat it as an intermediate
ciphertext. In detail, it randomly chooses yori

R← En. Then, it runs (key, ctori) ←
Encrypt(pp, yori;Rori) with randomly chosen randomness Rori to obtain a session
key and a ciphertext associated with the original ciphertext attribute yori. The
intermediate ciphertext is ict = (key, yori, ctori, Rori).

OO.OnEncrypt(pp, y, ict). When knowing the target ciphertext attribute y ∈ En,
the online encryption algorithm first runs ymall ← PriMalleate(yori, y, Rori) to
obtain a malleated ciphertext attribute ymall ∈ En. The session key key is
unchange. The ciphertext associated with the ciphertext attribute y is cty =
(ctori, ymall). Note that the online encryption procedure only involves operations
for running algorithm PriMalleate.

OO.Decrypt(pp, cty, y, skx, x). If Pn(x, y) = 0, then the key attribute x does
not satisfy the predicate Pn for the ciphertext attribute y and the decryption
algorithm simply outputs ⊥. Otherwise, it first parses cty as (ctori, ymall). Then,
it runs cty ← Combine(pp, ctori, ymall) and gets a ciphertext cty associated with

598 W. Liu et al.

the ciphertext attribute y. It runs key ← Decrypt(pp, cty, y, skx, x) to recover
the session key key.

Correctness. Due to the private malleability, for the session key and the cipher-
text generated by calling (key, ctori) ← Encrypt(pp, yori;Rori) in OO.OffEncrypt

with the randomly chosen yori
R← En and for ymall ← PriMalleate(yori, y, Rori),

we get a LU-PIP-KEM ciphertext associated with the ciphertext attribute y
by running cty ← Combine(pp, ctori, ymall) in the decryption algorithm. There-
fore, if a secret key associated with key attribute x ∈ Kn satisfies Pn(x, y) = 1,
then the decryption algorithm can correctly recover the session key by running
key ← Decrypt(pp, cty, y, skx, x).

Performance. Only operations for running PriMalleate are required in the online
encryption procedure, whereas in the original LU-PIP-KEM, the encryption pro-
cedure involves running algorithm Encrypt. With the efficiency requirement, for
all ynew ∈ En, running PriMalleate is more efficient than running Encrypt. There-
fore, the efficiency of the online encryption procedure is improved.

4.3 Security Analysis

The CPA security of our OO-PIP-KEM relies on the CPA security of the under-
lying LU-PIP-KEM. The major obstacle in the security proof is how to convert
the challenge LU-PIP-KEM ciphertext into a challenge OO-PIP-KEM cipher-
text in the Challenge phase. We overcome this obstacle by exploiting the public
malleability implied by attribute-malleability.

When obtaining the challenge LU-PIP-KEM session key k̃ey
∗

and ciphertext
c̃t

∗
associated with the challenge ciphertext attribute y∗ from the LU-PIP-KEM

challenger, we randomly choose a malleated ciphertext attribute ỹ∗
mall ∈ En and

calls c̃t
∗
ori ← PubMalleate(pp, c̃t

∗
, ỹ∗

mall) to obtain a ciphertext c̃t
∗
ori. We then

construct the challenge OO-PIP-KEM ciphertext as ct∗ = (c̃t
∗
ori, ỹ

∗
mall).

– Since c̃t
∗
ori ← Encrypt(pp, ỹ∗

ori), c̃t
∗
ori is a LU-PIP-KEM ciphertext.

– Since c̃t
∗

= Combine(pp, c̃t
∗
ori, ỹ

∗
mall), c̃t

∗
is associated with y∗.

Therefore, ct∗ is a well-formed challenge OO-PIP-KEM ciphertext for the cipher-
text attribute y∗ due to the public malleability. In this way, the challenge cipher-
text simulation in the Challenge phase goes through. The formal proof is shown
in the full version of the paper.

Theorem 1. If the underlying LU-PIP-KEM for predicate Pn is CPA-secure
and attribute-malleable, then the proposed OO-PIP-KEM scheme is CPA-secure
for the same predicate Pn.

5 CCA2-secure OO-PIP-KEM from LU-PIP-KEM

5.1 Universally Collision Resistant Chameleon Hash Function

Collision Resistant Chameleon Hash. A Chameleon hash [22] has a hash key
chk and a trapdoor td. Anyone knowing the hash key chk can efficiently compute

Online/Offline Public-Index Predicate Encryption 599

the hash value for any given input. There also exists an efficient algorithm for
the holder of the trapdoor td to find collisions for every given input. However, it
is impossible for others unaware of td to compute collisions for any given input,
except with a negligible probability.

A Chameleon hash function [22] family CH with hash value space H consists
of three polynomial time algorithms CHGen, CHash and Coll defined as follows.

(chk, td) ← CHGen(λ). Take the security parameter λ ∈ N as input, and outputs
a Chameleon hash key/trapdoor pair (chk, td).

H ← CHash(chk,m, r). Take as inputs the Chameleon hash key chk, a message
m, and an auxiliary random parameter r. It outputs the hash value H ∈ H for
the given message m.

r′ ← Coll(td,m, r,m′). Take as inputs the Chameleon hash trapdoor td, a mes-
sage m with its auxiliary random parameter r for previously calculating the
hash value H, and another message m′ �= m. It outputs another auxiliary ran-
dom parameter r′ such that

CHash(chk,m, r) = CHash(chk,m′, r′) = H

A Chameleon hash function should satisfy the collision resistance require-
ment, i.e., given the Chameleon hash key chk as input, no efficient algorithm can
find two pairs (m, r) �= (m′, r′) such that CHash(chk,m, r) = CHash(chk,m′, r′)
except with a negligible probability.

Universally Collision Resistant Chameleon Hash. Our construction
exploits Chameleon hash with universal collision resistance. A Chameleon hash
function family is universal collision resistant if even though the attacker is
allowed to choose the Chameleon hash key chk, it remains hard to find a hash
collision for any given input. Roughly speaking, the hash value H can be only
computed using the fixed Chameleon hash key chk.

We denote such a Chameleon hash family as UCH consisting of algorithms
UCHGen, UCHash, UColl. Formally, UCH is universally collision resistant if, given
only a description of the Chameleon hash function family, no efficient algorithm
can find two tuples (chk,m, r) �= (chk′,m′, r′) such that UCHash(chk,m, r) =
UCHash(chk′,m′, r′) except with a negligible probability.

Generic Construction of UCH. We can construct universally collision resis-
tant Chameleon hash functions based on any regular Chameleon hash and a
standard cryptographic hash Hash : {0, 1}∗ → H. The construction is as follows.

UCHGen(λ). The hash key/trapdoor pair is (chk, td) ← CHGen(λ).

UCHash(chk,m, r). The hash value is H = Hash(CHash(chk,m, r)‖chk).

UColl(td,m, r,m′). Directly output r′ ← Coll(td,m, r,m′).

One with the trapdoor td can still find collisions for any given input since

H = UCHash(chk,m, r) = Hash(CHash(chk,m, r)‖chk)
= Hash(CHash(chk,m′, r′)‖chk) = UCHash(chk,m′, r′)

600 W. Liu et al.

Without td, any polynomial time algorithm cannot find two tuples (chk,m, r) �=
(chk′,m′, r′) with H = UCHash(chk,m, r) = UCHash(chk′,m′, r′). Otherwise,

UCHash(chk,m, r) = Hash(CHash(chk,m, r)‖chk)
= UCHash(chk′,m′, r′) = Hash(CHash(chk′,m′, r′)‖chk′)

which implies that we find a collision for either Hash or CH, contradicting to
their security notion.

5.2 Basic Idea

The public-verifiability in LU-PIPE allows a ciphertext verification mechanism,
i.e., testing whether the ciphertext is honestly generated with the assigned
ciphertext attribute. We can leverage such a built-in verification mechanism
to construct OO-PIPE with CCA2 security. Precisely, we add an on-the-fly ver-
ification attribute yv in the ciphertext. We split the attribute universe U into
two parts: one is the regular attribute universe U , and another is the verification
attribute universe V for the verification attributes. The verification attribute
yv ∈ V is only used for ciphertext verification. In encryption, the encryptor
hashes the components of a ciphertext, and treats the result as the ciphertext
attribute yv to encrypt again. In the decryption procedure, the receiver computes
the hash result again, and verifies whether the ciphertext is encrypted under the
assigned ciphertext attribute, and under the hash ciphertext attribute yv using
the ciphertext verification mechanism.

Similar built-in verification has been used by Boyen et al. [7]. However,
one may encounter an obstacle when directly employing their technique. The
online/offline mechanism implies ciphertext forgery in the sense that a ciphertext
with an ciphertext attribute can be efficiently malleated to a target ciphertext
with a genuine ciphertext attribute, while any efficient ciphertext forgery must
be prevented in CCA2 security. A plausible solution is to follow the technique
proposed by Liu et al. [28] by replacing the regular hash to a Chameleon hash
function. With the help of hash collision algorithm Coll in the Chameleon hash
function, it is possible to malleate the ciphertext with an ciphertext attribute to
a target ciphertext with the genuine ciphertext attribute, while remaining the
verification terms unchange. However, for invoking hash collision algorithm, all
encryptors must know the trapdoor of the target Chameleon hash key bounded
in the public parameter, which obviously implies security problem.

To circumvent this obstacle, we use a “dynamic” universally collision resistant
Chameleon hash to replace the regular Chameleon hash for each ciphertext.
In offline encryption, the encryptor generates a Chameleon hash key/trapdoor
pair (chk, td), chooses a random ciphertext attribute yori, and calculates the
intermediate ciphertext components for yori and the temporary hash value yv.
When learning the genuine ciphertext attribute in the online phase, the encryptor
replaces the random ciphertext attribute with the genuine one, while leveraging
UCHash with the trapdoor td to remain yv unchange. The cost is an additional
Chameleon hash key chk in the ciphertext. In the online phase, the encryptor

Online/Offline Public-Index Predicate Encryption 601

will run UColl, which is efficient in some Chameleon hash instantiations based
on discrete log [22]. In this way, the online encryption cost keeps low.

5.3 Generic Transformation

Let Π ′ be a CPA-secure LU-PIP-KEM scheme consisting of four algorithms
Setup, KeyGen, Encrypt, Decrypt for predicate Pn over the attribute universe
U = {0, 1}∗. Suppose that the predicate Pn has OR-compatibility defined in
Definition 2, Π ′ has attribute-malleability defined in Definition 6, and Π ′ has
public-verificability defined in Definition 3. We below construct a CCA2-secure
OO-PIP-KEM scheme Π including the algorithms CCA.Setup, CCA.KeyGen,
CCA.OffEncrypt, CCA.OnEncrypt, CCA.Decrypt for the same predicate Pn over
the regular attribute universe U and the verification attribute universe V with
|U| = |V|, U ∩ V = ∅ and U ∪ V = U .

CCA.Setup(λ, n). The setup algorithm runs (msk, pp) ← Setup(λ, n+d). Then, it
chooses a secure UCH function UCH : {0, 1}∗ → Ed with an auxiliary parameter
universe R. The system restricts that Ed is over V. The master secret key is
msk. The public parameter is published as (pp,UCH,R).

CCA.KeyGen(pp,msk, x). Given the key attribute x ∈ Kn, the algorithm first
extends x to EN(x) ∈ Kn+d using the map EN . Then, it runs skEN(x) ←
KeyGen(pp,msk,EN(x)) and outputs the secret key skx = skEN(x).

CCA.OffEncrypt(pp). The offline encryption algorithm first randomly chooses an
original ciphertext attribute yori

R← En. Then, it runs (chk, td) ← UCHGen(λ).
It next picks a random r′ R← R, and calculates an on-the-fly verification attribute
yv = UCHash (chk, yori, r

′). It uses map OR to obtain the ciphertext attribute
OR(yori, yv) ∈ En+d and runs (key, ctori) ← Encrypt(pp,OR(yori, yv);Rori) with
randomness Rori to generate the session key and the ciphertext. The intermedi-
ate ciphertext is ict = (key, yori, yv, ctori, Rori, chk, td, r′).

CCA.OnEncrypt(pp, y, ict). Once the target ciphertext attribute y ∈ En is avail-
able, the online encryption algorithm extends the ciphertext attribute y ∈ En

to OR(y, yv) and obtains a malleated ciphertext attribute ymall ∈ En+d by
running ymall ← PriMalleate(OR(yori, yv), OR(y, yv), Rori). It next runs r ←
UColl(td, yori, r

′, ctori‖ymall). The session key is key, while the ciphertext cty
associated with the ciphertext attribute y is cty = (ctori, ymall, chk, r). Note
that the online encryption algorithm only needs invocations of PriMalleate and
UColl.

CCA.Decrypt(pp, cty, y, skx, x). The decryption algorithm recovers the on-the-
fly verification attribute yv = UCHash (chk, ctori‖ymall, r). Then, it runs
cty ← Combine(pp, ctori, ymall) to rebuild the ciphertext cty with the cipher-
text attribute OR(y, yv). One can verify whether the ciphertext is legitimate by
testing

Verify (pp, cty, OR(y, yv))
?= 1

602 W. Liu et al.

The property of Chameleon hash ensures yv = UCHash (chk, ctori‖ymall, r) =
UCHash (chk, yori, r

′) and the on-the-fly verification attribute remains the same
in the online encryption procedure. If Verify outputs 0, the ciphertext is invalid
and the decryption algorithm simply outputs ⊥. Otherwise, the decryption algo-
rithm runs key ← Decrypt(pp, cty, OR(y, yv), skx, EN(x)) to recover key.

Correctness. If the ciphertext cty is honestly generated by the encryptor with
the ciphertext attribute y, then (key, cty) = Encrypt(pp,OR(y, yv)) for cty ←
Combine(pp, ctori, ymall), where yv can be correctly obtained by invoking yv =
UCHash (chk, ctori‖ymall, r). Hence, we have that Verify(pp, cty, OR(y, yv)) = 1.
The decryption can be done using skx = skEN(x) for Pn+d (EN(x), OR(y, yv)) =
Pn(x, y) = 1. The session key can be correctly recovered with

key = Decrypt(pp, cty, OR(y, yv), skx, EN(x)).

Performance. Comparing with OO-PIP-KEM, operations for running UColl
are additionally required in the online encryption of our CCA2-secure OO-PIP-
KEM construction. By properly applying Chameleon hash functions with rather
efficient algorithm Coll [22], and by our construction shown in Sect. 5.1, UColl is
also efficient. Therefore, the online encryption algorithm remains efficient. The
additional communication cost is the extra ciphertext components chk, r, both
of which have constant size in all existing Chameleon hash instantiations.

5.4 Security Analysis

Our OO-PIP-KEM is CCA2-secure if the underlying LU-PIP-KEM is CPA-
secure. The obstacle in the CCA2 security proof is how to respond the decryption
queries for ciphertexts associated with the challenge ciphertext attributes y∗.

We overcome this obstacle by using the extended key attribute xd ∈ Kd

and the extended verification attribute yv ∈ Ed. In the Challenge phase, the
challenge attribute for the LU-PIP-KEM challenger is extended to OR(y∗, y∗

v).
When the adversary issues a decryption query for a ciphertext cty associated
with a ciphertext attribute OR(y∗, yv), where yv is its verification ciphertext
attribute corresponding to cty, we first run Verify to check the validity of the
ciphertext. The public-verifiability ensures that Verify outputs 1 if and only if the
ciphertext is honestly generated. Then, we construct a key attribute xv ∈ Ed such
that P (xv, yv) = 1, and issues the secret key associated with ED(xv) ∈ Kn+d

to the LU-PIP-KEM challenger. On one hand, the OR-compatibility ensures
Pn+d(ED(xv), OR(y∗, yv)) = Pd(xv, yv) so that we can use this secret key to
decrypt the ciphertext. On the other hand, the universal collision resistance
of UCH implies yv �= y∗

v except with a negligible probability. Hence, we have
P (ED(xv), OR(y∗, y∗

v)) = Pd(xv, y
∗
v) = 0, and the secret key query is valid to

the LU-PIP-KEM challenger. The decryption query is perfectly responded.
The universal collision resistance of UCH is crucial for the security proof.

Although chk∗ in the challenge ciphertext is chosen by the encryptor, and y∗
v is

generated honestly, if the Chameleon hash only hash collision resistance prop-
erty, it is possible for the adversary to replace chk∗ to others of its choice,

Online/Offline Public-Index Predicate Encryption 603

while remaining y∗
v unchange. In detail, if the Chameleon hash is only collision

resistant, after obtaining the challenge ciphertext ct∗ = (c̃t
∗
ori, ỹ

∗
mall, chk∗, r∗),

the adversary can replace chk∗ with a hash key chk′
A of its own choice, for

which it knows its trapdoor td′
A in order to construct a ciphertext ct′ =

(c̃t
′
ori, ỹ

′
mall, chk′

A, r′
A), where (chk∗, r∗) �= (chk′

A, r′
A) but y′

v = y∗
v . In this case,

the decryption oracle would be stuck. The universal collision resistance of the
Chameleon hash family prevents the adversary from such attacks since the hash
key chk∗ is fixed into the hash value and can be verified by the decryption oracle.
The formal security proof is shown in the full version of the paper.

Theorem 2. The proposed OO-PIP-KEM is CCA2-secure if the underlying
CPA-secure LU-PIP-KEM has the properties of attribute-malleability, public-
verifiability and OR-compatibility.

6 Instantiations

Our OO-PIP-KEM transformations can apply to existing LU-PIPE schemes,
including OO-IBE schemes proposed by Guo et al. [17], and OO-ABE schemes
proposed by Hohenberger and Waters [18]. In addition, one can illustratively
instantiate a new OO-PIP-KEM scheme by applying our transformation to a
LU-PIP-KEM scheme. In 2010, Lewko, Sahai and Waters proposed a revocation
encryption (RE) scheme [23]. The ciphertext is associated with an identity set of
revoked users. Users who are not in the revoked set can decrypt. It can be shown
that their RE satisfies attribute-malleability and public-verifiability. Hence, one
can obtain an OO-RE scheme in the KEM setting by following our generic
transformation.

7 Conclusion

We provided a general framework for constructing CCA2-secure OO-PIPE. We
proposed a generic transformation from attribute-malleable LU-PIP-KEM to
OO-PIP-KEM with CPA security. We further transformed CPA-secure LU-PIP-
KEM to CCA2-secure OO-PIP-KEM at the cost of a Chameleon hash, assuming
the underlying LU-PIP-KEM has attribute-malleability and public-verifiability.

Acknowledgement. This paper is supported by the Natural Science Founda-
tion of China through projects 61370190, 61272501, 61402029, 61472429, 61202465
and 61532021, by the Guangxi natural science foundation through project
2013GXNSFBB053005. K. Liang is supported by privacy-aware retrieval and modelling
of genomic data (No. 13283250), the Academy of Finland.

References

1. Abdalla, M., et al.: Searchable encryption revisited: consistency properties, relation
to anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 205–222. Springer, Heidelberg (2005)

604 W. Liu et al.

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: S&P 2007, pp. 321–334 (2007)

3. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

7. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: CCS 2005, pp. 320–329. ACM (2005)

8. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004)

9. Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: CCS 2007, pp.
456–465. ACM (2007)

10. Chow, S.S.M., Liu, J.K., Zhou, J.: Identity-based online/offline key encapsulation
and encryption. In: Cheung, B.S.N., Hui, L.C.K., Sandhu, R.S., Wong, D.S. (eds.)
ASIACCS 2011, pp. 52–60. ACM (2011)

11. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)

12. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

13. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

14. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

15. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006, pp. 89–98. ACM (2006)

16. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
265–282. Springer, Heidelberg (2007)

17. Guo, F., Mu, Y., Chen, Z.: Identity-based online/offline encryption. In: Tsudik, G.
(ed.) FC 2008. LNCS, vol. 5143, pp. 247–261. Springer, Heidelberg (2008)

18. Hohenberger, S., Waters, B.: Online/offline attribute-based encryption. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer,
Heidelberg (2014)

19. Huan, J., Yang, Y., Huang, X., Yuen, T.H., Li, J., Cao, J.: Accountable mobile
e-commerce scheme via identity-based plaintext-checkable encryption. Inf. Sci.
345, 143–155 (2016)

20. Huang, X., Liu, J.K., Tang, S., Xiang, Y., Liang, K., Xu, L., Zhou, J.: Cost-
effective authentic and anonymous data sharing with forward security. IEEE Trans.
Comput. 64(4), 971–983 (2015)

21. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

Online/Offline Public-Index Predicate Encryption 605

22. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet
Society (2000)

23. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys.
In: S&P 2010, pp. 273–285. IEEE (2010)

24. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

25. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

26. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

27. Liu, J.K., Zhou, J.: An efficient identity-based online/offline encryption scheme.
In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009.
LNCS, vol. 5536, pp. 156–167. Springer, Heidelberg (2009)

28. Liu, W., Liu, J., Wu, Q., Qin, B., Zhou, Y.: Practical direct chosen ciphertext secure
key-policy attribute-based encryption with public ciphertext test. In: Kuty�lowski,
M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 91–108. Springer,
Heidelberg (2014)

29. Liu, Z., Xu, L., Chen, Z., Mu, Y., Guo, F.: Hierarchical identity-based online/offline
encryption. In: ICYCS 2008, pp. 2115–2119. IEEE (2008)

30. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

31. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012)

32. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large
universe attribute-based encryption. In: CCS 2013, pp. 463–474. ACM (2013)

33. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

34. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

35. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

36. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

37. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic constructions for
chosen-ciphertext secure attribute based encryption. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 71–89. Springer,
Heidelberg (2011)

38. Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro,
N.: Verifiable predicate encryption and applications to CCA security and anony-
mous predicate authentication. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 243–261. Springer, Heidelberg (2012)

39. Yeh, L., Huang, J.: Pbs: a portable billing scheme with fine-grained access control
for service-oriented vehicular networks. IEEE Trans. Mob. Comput. 13(11), 2606–
2619 (2014)

Author Index

Aafer, Yousra I-401
Abdalla, Michel II-61
Ahamad, Mustaque I-3
Aires Urquiza, Abraão II-450
Alcaraz, Cristina II-471
Alimohammadifar, Amir I-47
Antonakakis, Manos I-3
Arapinis, Myrto II-241
Athanasopoulos, Elias I-422

Backes, Michael I-344
Balliu, Musard I-561
Banasik, Wacław II-261
Bielova, Nataliia I-501
Biskup, Joachim II-361
Boneh, Dan II-301
Bos, Herbert I-581
Buescher, Niklas II-80
Buiras, Pablo I-538
Buttyán, Levente I-199

Cao, Zhenfu I-135, II-551
Capkun, Srdjan I-217, II-382
Chan, Aldar C.-F. I-91
Chari, Suresh N. I-69
Chen, Jie II-551
Chevalier, Céline I-261
Chow, Sherman S.M. I-363
Cornejo, Mario II-61
Cortier, Véronique II-241
Cremers, Cas II-201
Cui, Hui II-570

Debbabi, Mourad I-47
Deng, Robert H. II-570
Diaz, Claudia I-27
Dong, Xiaolei I-135, II-551
Dowling, Benjamin II-140
Du, Wenliang I-383, I-401
Dziembowski, Stefan II-261

Félegyházi, Márk I-199
Fetzer, Valerie II-406

Fielder, A. II-179
Fung, Carol I-477

Garcia, Flavio D. II-283
Garmany, Behrad I-602
Gawlik, Robert I-602
Gelernter, Nethanel II-512
Gervais, Arthur II-382
Giechaskiel, Ilias II-201
Gong, Junqing II-551
Goodrich, Michael T. II-20
Gordon, S. Dov II-99
Grossklags, Jens II-161
Günther, Felix II-140
Gupta, Payas I-3

Haller, Istvan I-581
Hankin, C. II-179
Hao, Feng II-223
Herath, Udyani II-140
Herzberg, Amir I-344, II-512
Heyszl, Johann II-3
Holz, Thorsten I-602
Holzer, Andreas II-80

Imani, Mohsen I-27

Jarraya, Yosr I-47
Juarez, Marc I-27

Kaaniche, Nesrine I-279
Kapitza, Rüdiger I-440
Kate, Aniket I-344
Katz, Jonathan II-99
Katzenbeisser, Stefan II-80, II-320
Kemerlis, Vasileios P. I-422
Keromytis, Angelos D. I-422
Khouzani, MHR. II-179
Kiayias, Aggelos I-173
Kohnhäuser, Florian II-320
Kollenda, Benjamin I-602
Kornaropoulos, Evgenios M. II-20
Kostiainen, Kari I-217

Kremer, Steve II-241
Kurmus, Anil I-440

Laguillaumie, Fabien I-261
Lai, Russell W.F. I-363
Laszka, Aron II-161
Laurent, Maryline I-279, II-339
Lázár, Zsombor I-199
Lenders, Vincent II-382
Li, Ninghui I-69
Li, Yingjiu II-570
Liang, Kaitai II-588
Liu, Jianwei II-588
Liu, Joseph K. I-154
Liu, Peng I-238, I-458
Liu, Qixu I-238
Liu, Weiran II-588
Lopez, Javier II-471
Lucic, Mario II-382

Madi, Taous I-47
Majumdar, Suryadipta I-47
Malacaria, P. II-179
Malinowski, Daniel II-261
Malisa, Luka I-217
Malluhi, Qutaibah M. I-301
McIntosh, Allen II-99
Miller, Katja II-3
Mitzenmacher, Michael II-20
Molloy, Ian M. I-69
Müller-Quade, Jörn II-406

Nguyen, Anh I-477
Nguyen, Kim Thuat II-339
Nigam, Vivek II-450
Nilges, Tobias II-406
Ning, Jianting II-551
Nitulescu, Anca II-61

Och, Michael I-217
Oksuz, Ozgur I-173
Oualha, Nouha II-339

Park, Youngja I-69
Peeters, Roel II-121
Pék, Gábor I-199
Perry, Mike I-27
Piessens, Frank I-561
Pietzuch, Peter I-440
Pointcheval, David II-61

Portokalidis, Georgios I-422
Pourzandi, Makan I-47
Preuß, Marcel II-361
Pryvalov, Ivan I-344
Pulls, Tobias II-121

Qin, Baodong II-570
Qin, Bo II-588

Radu, Andreea-Ina II-283
Rashidi, Bahman I-477
Rasmussen, Kasper B. II-201
Rawat, Sanjay I-581
Rezk, Tamara I-501
Ritzdorf, Hubert II-382
Rocchetto, Marco II-427
Russell, Alexander I-173
Russo, Alejandro I-538

Sabelfeld, Andrei I-561
Sabt, Mohamed II-531
Sakzad, Amin I-154
Schoepe, Daniel I-561
Schröder, Dominique I-363
Shahandashti, Siamak F. II-223
Shankar, Asim II-301
Sheridan, Brendan II-39
Sherr, Micah II-39
Sigl, Georg II-3
Smeraldi, F. II-179
Srinivasan, Bharat I-3
Stebila, Douglas II-140
Steinfeld, Ron I-154
Sun, Shi-Feng I-154

Talcott, Carolyn II-450
Taly, Ankur II-301
Tamassia, Roberto II-20
Tang, Qiang I-173
Teo, Joseph I-91
Tippenhauer, Nils Ole II-427
Traorè, Jacques II-531

Ullrich, Johanna II-493

van der Meyden, Ron I-520
Várnagy, Zoltán I-199
Vassena, Marco I-538
Veggalam, Spandan I-581

608 Author Index

Vergnaud, Damien I-261
Vu, Tam I-477

Wang, Bing I-173
Wang, Ding I-111
Wang, Fabo I-458
Wang, Kai I-458
Wang, Lingyu I-47
Wang, Ping I-111
Wang, Wenjie I-458
Wang, Xiao II-99
Wang, Yongge I-301
Waye, Lucas I-538
Weber, Alina II-80
Weichbrodt, Nico I-440
Weippl, Edgar II-493
Wen, Guanxing I-238
Woizekowski, Oliver I-520
Wollgast, Patrick I-602
Wong, Duncan S. I-324
Wong, Jun Wen I-91

Wright, Matthew I-27
Wu, David J. II-301
Wu, Qianhong II-588
Wu, Qianru I-238

Xu, Jia I-324

Yagemann, Carter I-383
Yang, Anjia I-324
Yang, Weining I-69
Ying, Kailiang I-401
Yuen, Tsz Hon I-154

Zankl, Andreas II-3
Zhang, Tao I-363
Zhang, Xiao I-401
Zhang, Yuqing I-238, I-458
Zhao, Mingyi II-161
Zhou, Jianying I-91, I-324
Zhou, Jun I-135

Author Index 609

	Preface
	Organization
	Contents -- Part II
	Contents -- Part I
	Leakage Management and Obfuscation
	Towards Efficient Evaluation of a Time-Driven Cache Attack on Modern Processors
	1 Introduction
	2 Bernstein's Time-Driven Cache Attack
	3 Key Rank Estimation in Bernstein's Attack
	4 Proposal for Attack Combination
	5 Performance Events on ARM Processors
	6 Measurement Setup
	7 Discussion of Practical Results
	8 Practical Evaluation Suggestions
	9 Conclusion
	A AES T-table Implementation
	References

	More Practical and Secure History-Independent Hash Tables
	1 Introduction
	2 Security Model
	2.1 History-Independence
	2.2 Collision-Timing Attack

	3 Weakly History-Independent Linear Probing
	3.1 Insertion
	3.2 Deletion
	3.3 Protection Against Collision-Timing Attacks
	3.4 Analysis of Individual Displacement

	4 Previous Linear Probing Schemes
	5 Evaluation
	6 Conclusion and Discussion
	References

	On Manufacturing Resilient Opaque Constructs Against Static Analysis
	1 Introduction
	2 Problem and Definitions
	3 Generating Opaque Constructs
	4 Obfuscation Scheme Extensions
	4.1 Encrypting Data Against Complete Static Analysis
	4.2 Choosing Opaque Construct Parameters
	4.3 Compounding Effects

	5 Heuristic Attacks
	5.1 Distribution Testing
	5.2 Potential Defenses
	5.3 Discussion

	6 Related Work
	7 Conclusions
	A Alternative Sources of Hardness
	References

	Secure Multiparty Computation
	Robust Password-Protected Secret Sharing
	1 Introduction
	2 Security Model
	2.1 Password-Protected Secret Sharing
	2.2 The Adversarial Model
	2.3 Semantic Security
	2.4 Secure PPSS

	3 High-Level Description
	4 A Robust Gap Threshold Secret Sharing Scheme
	4.1 Intuition
	4.2 Description

	5 Our Password-Protected Secret Sharing Protocols
	5.1 General Description
	5.2 Protocol I: One-More-Gap-Diffie-Hellman-Based PRF
	5.3 Protocol II: DDH-Based PRF

	6 Comparisons
	References

	Compiling Low Depth Circuits for Practical Secure Computation
	1 Introduction
	2 Related Work
	3 Preliminaries in Digital Circuit Design for MPC
	4 Creation of Low Depth Circuits
	4.1 Code Level Minimization Techniques
	4.2 Optimized Building Blocks
	4.3 Gate Level Minimization Techniques

	5 Evaluation
	5.1 Functionalities
	5.2 Circuit Comparison
	5.3 Evaluation of the Optimizations Techniques
	5.4 Protocol Runtime

	6 Conclusion
	References

	Secure Computation of MIPS Machine Code
	1 Introduction
	2 Preliminaries
	3 Basic System Design
	3.1 Overall Workflow
	3.2 MIPS Architecture
	3.3 Overview of Our System
	3.4 Setup
	3.5 Main Execution Loop

	4 Improving the Basic Design
	4.1 Mapping Instructions to Steps
	4.2 Padding Branches
	4.3 Checking Termination Less Frequently

	5 Performance Analysis
	5.1 Time for Static Analysis and Compilation
	5.2 The Effect of Our Optimizations
	5.3 Performance of Binary Search

	6 Conclusion
	References

	Secure Logging
	Insynd: Improved Privacy-Preserving Transparency Logging
	1 Introduction
	2 Assumptions and Goals
	3 Ideas
	4 Insynd
	4.1 Setup and Registration
	4.2 Event Generation
	4.3 Event Reconstruction
	4.4 Publicly Verifiable Proofs

	5 Evaluation
	5.1 Security and Privacy Properties
	5.2 Publicly Verifiable Proofs

	6 Related Work
	7 Performance
	8 Conclusions
	References

	Secure Logging Schemes and Certificate Transparency
	1 Introduction
	1.1 The Web PKI and Certificate Transparency
	1.2 Our Contribution
	1.3 Related Work

	2 Cryptographic Building Blocks
	2.1 Merkle Trees
	2.2 Merkle Tree Security Properties

	3 Logging Schemes
	3.1 Definition of Logging Schemes
	3.2 Instantiation of Certificate Transparency as a Logging Scheme
	3.3 CONIKS as a Logging Scheme

	4 Security Goals
	5 Security of Certificate Transparency
	6 Conclusion and Future Work
	A Proof of Theorem4 (Inclusion of promises)
	References

	Economics of Security
	Banishing Misaligned Incentives for Validating Reports in Bug-Bounty Platforms
	1 Introduction
	2 Related Work
	2.1 Bug Bounty and Vulnerability Markets
	2.2 Empirical Analysis of Software Vulnerability Discovery

	3 Model
	4 Analysis
	4.1 Without an Invalid-Report Policy
	4.2 Accuracy Threshold
	4.3 Report-Rate Threshold
	4.4 Validation Reward

	5 Numerical Results
	5.1 Homogeneous Hackers
	5.2 Heterogeneous Hackers

	6 Conclusion
	References

	Efficient Numerical Frameworks for Multi-objective Cyber Security Planning
	1 Introduction
	2 Modeling and Notations
	3 Solving the Multi-Objective Optimization
	3.1 Conversions to (binary) MILP
	3.2 Additive Model in (3)
	3.3 Multiplicative Model in (4)
	3.4 ``Best-of'' Model in (5)
	3.5 From Vulnerabilities to Attacks
	3.6 Independence Across Vulnerabilities
	3.7 Correlations Across Vulnerabilities
	3.8 Parameter Uncertainties

	4 Numerical Evaluations
	References

	E-voting and E-commerce
	On Bitcoin Security in the Presence of Broken Cryptographic Primitives
	1 Introduction
	2 Background
	2.1 Transactions and Scripts
	2.2 Mining and Consensus
	2.3 Network

	3 System and Adversary Model
	4 Broken Hashing Primitives
	4.1 Hashing in Bitcoin
	4.2 Modeling Hash Breakage
	4.3 Main Hash
	4.4 Address Hash

	5 Broken Signature Primitives
	5.1 Digital Signatures in Bitcoin
	5.2 Modeling Signature Breakage Variants
	5.3 Broken Signature Scheme Effects

	6 Multi-Breakage
	6.1 Address Hash and Signature Scheme
	6.2 Main Hash and Signature Scheme

	7 Current Bitcoin Implementation
	7.1 Current Cryptographic Primitives
	7.2 Existing Contingency Plans
	7.3 Potential Migration Pitfalls
	7.4 Recommendations

	8 Related Work
	9 Conclusions
	A Breaking Nested Functions
	B Generalizing Hash Oracles
	References

	DRE-ip: A Verifiable E-Voting Scheme Without Tallying Authorities
	1 Introduction
	2 Preliminaries
	2.1 Cryptographic Setting

	3 Our Proposed Solution: DRE-ip
	4 Security of DRE-ip
	4.1 End-to-End Verifiability
	4.2 Ballot Secrecy

	5 Comparison
	6 Extension to Multiple Candidates
	7 Concluding Remarks
	References

	When Are Three Voters Enough for Privacy Properties?
	1 Introduction
	2 Modelling Security Protocols
	2.1 Messages
	2.2 Processes

	3 Modelling E-Voting Protocols
	3.1 Public Tests
	3.2 Revote Policies
	3.3 Extracting Ballots and Counting Votes
	3.4 Properties
	3.5 E-Voting Processes

	4 Main Results
	5 Case Studies
	6 Conclusion
	References

	Efficient Zero-Knowledge Contingent Payments in Cryptocurrencies Without Scripts
	1 Introduction
	1.1 Contracts: From Theory to Practice
	1.2 Our Contribution: Contracts Without Scripts

	2 Preliminaries
	3 The Protocols
	3.1 The Two-Party ECDSA Key Generation Protocol
	3.2 The Unique Signature Generation Protocol
	3.3 The Construction of the SellWitnessf Protocol
	3.4 Protocol for Selling a Factorization of an RSA Modulus

	References

	Security of the Internet of Things
	LeiA: A Lightweight Authentication Protocol for CAN
	1 Introduction
	2 Security Notions and Adversarial Model
	3 LeiA: A Lightweight Authentication Protocol for CAN
	4 Security Analysis
	5 Dealing with the Shortcomings of CAN
	6 Conclusion
	References

	Privacy, Discovery, and Authentication for the Internet of Things
	1 Introduction
	1.1 Our Contributions

	2 Desired Protocol Features
	2.1 Case Study: Apple AirDrop
	2.2 Protocol Design Goals

	3 Preliminaries
	3.1 Cryptographic and Protocol Building Blocks

	4 Private Mutual Authentication Protocol
	4.1 Protocol Analysis

	5 Private Service Discovery Protocol
	5.1 Protocol Analysis

	6 Protocol Evaluation and Deployment
	6.1 Identity-Based Encryption
	6.2 Private Mutual Authentication
	6.3 Private Discovery
	6.4 Fixing AirDrop

	7 Extensions
	8 Related Work
	References

	Secure Code Updates for Mesh Networked Commodity Low-End Embedded Devices
	1 Introduction
	2 Related Work
	3 System Requirements and Adversary Model
	4 Requirements on COTS Low-End Embedded Systems
	5 Secure Code Update Scheme
	5.1 Offline Phase
	5.2 Online Phase

	6 Evaluation
	7 Conclusion
	References

	Authenticated Key Agreement Mediated by a Proxy Re-encryptor for the Internet of Things
	1 Introduction
	2 Preliminaries
	2.1 Notations and Abbreviation

	3 The Basic Idea: Lightweight Bi-directional Proxy Re-encryption Scheme with Symmetric Cipher
	3.1 Properties of a Proxy Re-encryption Scheme
	3.2 Existing Approaches on Proxy Re-encryption
	3.3 Our Proposed Lightweight Proxy Re-encryption
	3.4 Comparison of Our PRE Scheme to Related Work

	4 Lightweight Authenticated and Mediated Key Agreement for IoT
	4.1 Network Architecture and Scenario Description
	4.2 Security Assumptions and Notations
	4.3 AKAPR Message Sequence Chart

	5 Security Analysis
	5.1 Resistance Against Attacks
	5.2 Formal Security Validation with ProVerif

	6 Conclusion
	References

	Data Privacy
	Information Control by Policy-Based Relational Weakening Templates
	1 Introduction
	2 Running Example
	3 Generic Approach
	4 Data Dependencies as a Priori Knowledge
	5 Experimental Evaluation and Practical Efficiency
	6 Conclusion
	References

	Quantifying Location Privacy Leakage from Transaction Prices
	1 Introduction
	2 Model
	2.1 System Model
	2.2 Adversarial Model
	2.3 Knowledge Scenarios
	2.4 Conditional Probability Intuition
	2.5 Multiple Purchase Events
	2.6 Privacy Metrics

	3 Datasets
	4 Experimental Evaluation
	4.1 Experimental Considerations
	4.2 Country Granularity
	4.3 US City Granularity
	4.4 Chicago Metropolitan Granularity
	4.5 Store Chain Granularity
	4.6 Most Revealing Product Category
	4.7 Required Time Precision

	5 Related Work
	6 Conclusion
	References

	A Formal Treatment of Privacy in Video Data
	1 Introduction
	2 Defining Privacy for Video Anonymization Algorithms
	2.1 From IND-CPA to IND-ISA

	3 On Obtaining IND-ISA-Secure Anonymization Schemes
	4 An IND-ISA-Private Anonymization Scheme
	4.1 Scenario
	4.2 Anonymization Scheme
	4.3 Dataset
	4.4 User Study
	4.5 Discussion

	5 Conclusion and Future Work
	References

	Security of Cyber-Physical Systems
	On Attacker Models and Profiles for Cyber-Physical Systems
	1 Introduction
	2 Scope and Taxonomy for Related Work Review
	2.1 Scope of Our Review
	2.2 Terminology
	2.3 Taxonomy

	3 Review of Attacker Definitions in Related Work
	3.1 Attacks on CPS
	3.2 Attacker Profiles
	3.3 Formal Models for Attackers

	4 Discussion of Attackers in Related Work
	4.1 Profiles
	4.2 Dimensions

	5 Profiles and a Generic Attacker Framework
	5.1 Attacker Framework, Profile, Model, and System Model
	5.2 Mapping Profiles in Related Work to Our Profiles
	5.3 Attacker Profile Archetypes
	5.4 Validation of Proposed Profiles and Discussion
	5.5 APE (Attacker Profile Analyzer)

	6 Conclusion
	A Appendix: Subdimensions
	A.1 Knowledge
	A.2 Resources
	A.3 Psychology
	A.4 Time

	References

	Towards the Automated Verification of Cyber-Physical Security Protocols: Bounding the Number of Timed Intruders
	1 Introduction
	2 A Specification Language for Cyber-Physical Security Protocols
	2.1 Syntax
	2.2 Timed Strand Spaces and Bundles

	3 Timed Intruder Model
	4 Timed Intruder Completeness
	4.1 Completeness Proof

	5 Examples and Preliminary Experimental Results
	5.1 Prototype Implementation

	6 Related and Future Work
	References

	Safeguarding Structural Controllability in Cyber-Physical Control Systems
	1 Introduction
	2 Dynamic Control: Preliminary
	2.1 Structural Controllability and its CLC
	2.2 Initial Assumptions and the Adversarial Model

	3 Four Reachability-Based Strategies
	3.1 Redundancy Principles and Approaches
	3.2 OR1 and OR2 Based on Redundant Pathways

	4 Analysis and Discussion
	4.1 Experimental Results and Discussion

	5 Conclusions and Future Work
	References

	Attacks
	The Beauty or The Beast? Attacking Rate Limits of the Xen Hypervisor
	1 Introduction
	2 Background
	3 Security Analysis
	4 Side Channel
	5 Denial-of-Service
	6 Related Work
	7 Discussion
	8 Conclusion
	References

	Autocomplete Injection Attack
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Adversary Model and Autocomplete-Injection Attack
	2.1 The Cross-Site Adversary Model
	2.2 Injecting Autocomplete Suggestions
	2.3 Autocomplete Injection in Popular Websites

	3 Phishing
	3.1 The Challenge
	3.2 Phishing Autocomplete Suggestions
	3.3 Evaluation

	4 Illegitimate (Black-Hat) Content-Promotion
	5 Framing Attacks
	5.1 Circumventing Autocomplete Excluded-Phrases

	6 Stored Cross-Site Scripting (XSS)
	7 Defenses
	8 Conclusions
	References

	Breaking into the KeyStore: A Practical Forgery Attack Against Android KeyStore
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Responsible Disclosure
	1.4 Paper Outline

	2 Definitions
	3 Hash-Then-CBC-Encrypt Does Not Provide Integrity
	3.1 Integrity of a Symmetric Encryption Scheme
	3.2 Hash-then-CBC-Encrypt
	3.3 Hash-then-CBC-Encrypt is not INT-CTXT
	3.4 Hash-then-CBC-Encrypt is not CUF-CPA

	4 The Android KeyStore
	4.1 Keystore Service

	5 Attacking the Android KeyStore
	5.1 Technical Background
	5.2 Threat Model
	5.3 The Forgery Attack
	5.4 The Undetected Malware
	5.5 The Hidden Assumption

	6 Discussion and Recommendations
	References

	Attribute-Based Cryptography
	Traceable CP-ABE with Short Ciphertexts: How to Catch People Selling Decryption Devices on eBay Efficiently
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work
	1.4 Future Work
	1.5 Organization

	2 Background
	3 Black-box Traceable CP-ABE
	3.1 Definition
	3.2 Message-Hiding Security
	3.3 Black-box Traceability

	4 Enhanced CP-ABE
	4.1 Definition
	4.2 Message-Hiding Security
	4.3 Index-Hiding Security
	4.4 Transform from EnCP-ABE to BT-CP-ABE

	5 An Efficient Enhanced CP-ABE
	5.1 Construction
	5.2 Message-Hiding Security in GameEMH1
	5.3 Message-Hiding Security in GameEMHN+1
	5.4 Index-Hiding Security

	6 Conclusions
	References

	Server-Aided Revocable Attribute-Based Encryption
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Bilinear Pairings and Complexity Assumptions
	2.2 Access Structures and Linear Secret Sharing
	2.3 Binary Tree

	3 Framework and Security Model
	3.1 Framework
	3.2 Security Model

	4 Server-Aided Revocable Attribute-Based Encryption
	4.1 Construction
	4.2 Security
	4.3 Comparison

	5 Conclusions
	References

	Online/Offline Public-Index Predicate Encryption for Fine-Grained Mobile Access Control
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Definition of LU-PIPE
	2.2 Definition of Public-Verifiability

	3 Modelling OO-PIPE
	4 CPA-secure OO-PIP-KEM from LU-PIP-KEM
	4.1 Definition of Attribute-Malleability
	4.2 Generic Transformation
	4.3 Security Analysis

	5 CCA2-secure OO-PIP-KEM from LU-PIP-KEM
	5.1 Universally Collision Resistant Chameleon Hash Function
	5.2 Basic Idea
	5.3 Generic Transformation
	5.4 Security Analysis

	6 Instantiations
	7 Conclusion
	References

	Author Index

