
From Data Streams to Fields: Extending Stream
Data Models with Field Data Types

Qinghan Liang, Silvia Nittel(B), and Torsten Hahmann

Spatial Informatics, School of Computing and Information Science,
University of Maine, Orono, USA

{qinghan.liang,torsten.hahmann}@maine.edu, nittel@spatial.maine.edu

Abstract. With ubiquitous live sensors and sensor networks, increas-
ingly large numbers of individual sensors are deployed in physical space.
Sensor data streams are a fundamentally novel mechanism to create
and deliver observations to information systems, enabling us to repre-
sent spatio-temporal continuous phenomena such as radiation accidents,
pollen distributions, or toxic plumes almost as instantaneously as they
happen in the real world. While data stream engines (DSE) are available
to process high-throughput updates, DSE support for phenomena that
are continuous in both space and time is not available. This places the
burden of handling any tasks related to the integration of potentially
very large sets of concurrent sensor streams into higher-level abstrac-
tions on the user. In this paper, we propose a formal extension to stream
data model languages based on the concept of fields to support high-level
abstractions of continuous ST phenomena that are known to the DSE,
and therefore, can be supported through queries and processing opti-
mization. The proposed field data types are formalized in a data model
language independent way using second order signatures. We formalize
both the set of supported field types are as well as the embedding into
stream data model languages.

Keywords: Data streams · Sensor data streams · Data stream engines ·
Fields · Field data types

1 Introduction

Motivation. With ubiquitous live sensors and wireless sensor networks, increas-
ingly large numbers of individual sensors are deployed in physical space such
as urban environments [25], forests [10], for earthquake monitoring [12], or pre-
cision agriculture. Such large numbers of live streaming sensors enable us to
collect observations that are sufficiently dense in both space and time to now
represent continuous change in space and time in near real-time. Examples for
spatio-temporal continuous phenomena are, for instance, pollen distributions,
toxic plumes, radiation accidents, or soil moisture distributions.

Sensor data streams are a fundamentally novel mechanism to create and
deliver observations to information systems, enabling us to represent entities,
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processes and events in information systems almost instantaneously as they hap-
pen in the real world [5,24]. While a stream seems similar to a time series, that is,
it consists of an ordered set of time-stamp records, a stream is a significantly dif-
ferent programming abstraction: it is an unbounded multiset of elements, contin-
uously producing records as time advances. New updates are constantly pushed
into queries during query execution, resulting in real-time query answers. Data
stream engines (DSEs) have been designed as a high-throughput alternative to
database management systems (DBMS). Today, open source and commercial
DSE such as Apache Spark [1] achieve query performance over streams with a
throughput of >1 Million updates/s; in comparison, DBSs are limited to 500
updates/s [26]. Similar to DBSs, DSEs provide data model and query languages,
which make it easier for users to program applications, enabling them to define
data schemata and SQL-type queries over data streams. The core concept of
stream data models is that of a stream (as opposed to a relation). Stream query
languages contain continuous queries as well as query windows as evaluation con-
texts over streams. While DBS and DSE are separate technologies, stream data
models and query languages are formally integrated with the relational algebra
to guarantee compatibility between both technologies [4].

DSEs make it feasible to monitor and analyze phenomena that are continuous
in space and time while delivering real-time answers to queries. However, today’s
stream data model languages provide concepts to represent individual sensor
data streams. For instance, point geometry types are available to create stream
tuples with sensor location attributes [3]. Such low-level support enables only
modeling individual sensor data streams, and it is the responsibility of the user
and application code to handle any tasks related to the integration of potentially
very large sets of concurrent sensor streams into higher-level abstractions such as
spatio-temporally continuous phenomena. Currently, the bulk of programming
and understanding of continuous phenomena is pushed into the application code,
and this code has to be re-implemented for each application again and again. We
believe that DSEs should provide a generic, flexible and high-level abstraction
for continuous spatio-temporal (ST) phenomena. The complexity of integrating
individual sensor streams into a higher-level representation on-the-fly should be
hidden from users while still allowing them to configure the mapping between
sensor streams and a continuous phenomenon. Spatio-temporal continuous phe-
nomena need to be supported on the level of both data model language and
query execution support in DSEs.

Transforming large sets of individual sensor data streams into the high-level
representation of a ST continuous phenomenon is not an easy feat. A repre-
sentation of a continuous phenomenon must always be an approximation based
on captured samples. When dealing with up to 1,000 concurrent streams, it
is unlikely that their updates and sampling rates are synchronized. Instead,
each stream might have its own sampling frequency. To create a snapshot of
a spatially continuous phenomenon at a desired time stamp across all sensors
requires resampling or interpolating existing streams. Further, the types of analy-
ses of such phenomena will vary but still run concurrently. Thus, locking the
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representation of a continuous phenomenon into a single, fixed resolution of
cells, triangulations or contour lines is severely limiting.

Contributions. In this paper, we propose an extension to stream data models that
is based on field data types, which directly tap into streamed data rather than
accessing stored data. Fields have long been proposed as a unifying information
system abstraction for continuous phenomena [8,21] and are well understood
on an ontological level [15,16], but are still uncommon as actual information
system interfaces and implementations [7,13,22]. We believe that a field data
type is the most promising approach to handling the complexities of sensor
stream processing for continuous phenomena.

While the extension of DSEs with fields on the data model, query language
and processing level is a complex task, we have investigated feasibility aspects
of processing fields on-the-fly based on massive sensor data streams in previous
work [27,28]. In this paper, we focus solely on introducing the formal framework
of extending data stream models with field types. We introduce our proposed
field data types for stream data models on an abstract level using second order
signatures [17], which allow us to define the field types independently from spe-
cific data models and programming languages. The abstract model is continuous
in space and time and used to formalize the universe of field types that can
be constructed. The abstract model is complemented by a discrete model that
is amendable to direct implementation. It grounds the purely continuous view
of the abstract model in the realities of discrete computer systems. It does so
by relating the abstract field types to computational concepts such as tuples,
streams, windows, and interpolation functions. Our field stream data model with
its dynamic spatial, temporal, and spatio-temporal fields serves as the founda-
tion for sophisticated spatio-temporal data analyses, bridging the gap between
raw point-based sensor streams and the detection of trends and events.

The following two Sects. 2 and 3 present the background of our work and
the related work. The abstract model for the field types is presented in Sect. 4,
while Sect. 5 describes the discrete model suitable for embedding in a data model
language. Section 6 offers our conclusions and identifies future work.

2 Background

2.1 Data Streams

The core concept of relational database systems (DBS) is the relation, which
is a set of persistently stored data tuples. Each relational query is performed
over a stored relation in its entirety. On the other hand, data stream engines
(DSEs) are concerned with frequently updated data and, thus, have streams as
their core concept. A stream is an unbounded sequence of tuples that arrive
in some temporal order, with multiple tuples likely arriving out of order or
simultaneously. More formally, streams are defined as “unbounded, append-only
multisets of time-stamped tuples” [4]. Unbounded means in this context that we
cannot predict how many tuples will arrive at any point of time that is in the
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future; at any time point in the past up until now, this multiset is finite. Tuples
have either explicit timestamps, which are added at the data source and denote
the real-world event time, or implicit timestamps, which are added to tuples
when they arrive at the DSE [5]. Stream data models support linear, dense and
discrete time models [26].

While each tuple in a stream is assigned a timestamp, not every tuple nec-
essarily has a spatial attribute. For that reason, we introduce a special type of
stream – a spatio-temporal stream – as a stream wherein every tuple also has
a spatial attribute. It is based on the following concept of a spatio-temporal
relation.

Definition 1. Let S be a discrete set of point locations, T be a discrete bounded
set of timestamps, and V1,. . . ,Vn be value domains. Then a ST-Relation is a
relation �ST ⊆ S × T × V1 × · · · × Vn such that for every (si,ti) ∈ S × T there
exists at most one (v1×· · ·×vn) ∈ V1×· · ·×Vn such that (si, ti, v1, . . . , vn) ∈ �ST .

Definition 2. Let S be a discrete set of point locations, T be a discrete bounded
set of timestamps, and V1,. . . ,Vn be value domains (e.g., values of measure-
ments). Let further TS be a set of timestamps with initial and last timepoints
tS1, tSf ∈ TS such that for every tSi ∈ TS, tS1 ≤ tSi ≤ tSf . Then, an ST-Stream
is a function SST : TS → � such that for a fixed spatial domain S, a fixed tempo-
ral domain T , and a fixed value domain V1×· · ·×Vn, all R ∈ � are ST-Relations
with R ⊆ S × T × V1 × · · · × Vn.

A ST-Stream can be the time series of observations from a single sensor or
from an entire geosensor network. Viewing an ST-Stream as all streamed updates
of geographically and thematically related sensors is a powerful abstraction that
allows us to reason about complex spatio-temporal events that take place within
the space and time observed by the streams. In our model, ST-streams encompass
streams that consists of the updates from only a single sensor as well as the
aggregation of streams that form continuous dynamic ST-Fields.

2.2 Fields as Formal Foundation for Streaming ST Continuous
Phenomena

The term field (more precisely geo-spatial fields) is widely used to describe enti-
ties in physical space that are continuous in space and time and lack bound-
aries. A field implies a continuous quality of an observed phenomenon in the
real-world, such as temperature, that is present at every point in time and space
on Earth (and beyond). A plethora of different computer representations have
been developed for continuous phenomena, and it is common practice to pick
a representation that matches best the data capture method in order to rep-
resent a particular phenomenon. For instance, temperature may be represented
by measurements at irregularly distributed sample points, foliage as regular grid
cells, or pollen density as isolines, with more complex representations possi-
ble. While implementations of these computer representations enable many spe-
cialized analytical operations in geographic information systems, the diversity
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and lack of coherence of representation seriously impedes integration and cross-
cutting analyses [8,21]. This problem is exacerbated if spatio-temporal fields are
considered, and multi-faceted integration over space, time, multiple parameters,
and various sensor platforms is the objective.

Over the last two decades, geo-spatial fields have been mathematically for-
malized, e.g., in [9,16]. In the context of our field stream data model, we are
mainly concerned with fields that are approximated based on observations, so-
called sampled fields (in contrast to equation fields). We present a mathematical
definition of the following types of fields that are the underlying basic compo-
nents of the field model: a spatial field, which addresses continuity over space, a
temporal field, representing continuity over time, and a spatio-temporal field, rep-
resenting continuity over both space and time. We are particularly interested in
the important notion of a sampled field because it addresses the spatial domain
of fields, that is, it represents either sensor locations or the continuous quality
of the phenomenon.

A spatial field is defined as follows: Given a spatial domain S and an
attribute domain V , a spatial field FS over S is a computable, possibly par-
tial, function f : S → V from spatial locations in S to attribute values in V .
The spatial locations in S are points, and a subset of S are sensor locations.
More details on spatial domains for fields are discussed in [15]. The attribute
domain V can be finite or infinite, discrete or continuous, numeric or symbolic.

A temporal field Ft is a function f : T → V from the time points in T to
attribute values in V . A temporal field represents the change of an attribute over
time. The attribute could be a location (e.g., a trajectory of a moving object),
a sensor measurement, or a stock price. For observed temporal fields, the time
domain is both linear and dense, that is, time advances linearly. For a temporal
field based on a sensor stream, the time domain is discrete and isomorphic to N;
each natural number corresponds to a non-decomposable unit of time which is the
sampling time. For a continuous temporal field, the time domain is isomorphic
to R since the real-world phenomenon exists without temporal ‘gaps’.

Spatio-temporal fields have both spatial dimensions as well as a temporal
dimension. For example, in a spatio-temporal temperature field over a lake, each
value f(s, t) identifies the temperature at location s and time t. Galton [16]
defines a spatio-temporal field as a function f : S × T → V that assigns each
pair of a spatial location in S and a time point in T an attribute value in
V . Again, the temporal domain T is linear and dense, and can be discrete or
continuous. Choosing a snapshot point of view and a discrete temporal domain,
the spatio-temporal field is equivalently defined as a function f : T → (S → V )
mapping time points to a spatial field S → V .

In the next section, we discuss current support for continuous ST phenomena
based on observation streams in information systems.

3 Related Work

Fields as data types are not commonly available in information systems, mostly
due wide-spread use of established software, implementations and tools that are
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based on different types of representations. The OGC coverage interface specifi-
cation [6] assumes a field-type representation for space-time varying phenomena,
and has been an industry standard for more than a decade. However, its emphasis
is on standardizing coverage operators, not data representations. Also, observa-
tion streams can not be accommodated directly with this interface specification.
Work more closely related to ours is [7], which proposes a field data type as a
generic data type to represent time series, trajectories and coverages. The idea of
a single, generic data type to express different specialized fields is similar to our
objectives. In this work, the field types have been prototypically implemented
on top of an array database system, but, it is unclear if a formal, generic and
reusable formal embedding has been attempted. [7] focuses on generic data types
that are used via a library in a programming language, and the implemented
data types use DBS technology for storage. Our work is different in two regards:
first, our fields types are designed to extend stream data models (instead of sub-
suming them). Secondly, our work focuses on streams while the work in Camara
et al. [7] addresses persistently stored and long-term collected data.

Similar to us, Ferreira et al. [13] are motivated by the increasing sampling
density, and recognize the need to support how objects and fields evolve over
time in a more flexible way so that integrated spatial analysis is simplified.
An algebra for spatio-temporal data is proposed. This approach is less generic
in its data types than [7] and our work since concrete types for time series,
trajectories, coverages, as well as objects and events are proposed. Further, this
work focuses on both fields and objects and their respective relationships, while
our work aims at providing a flexible type systems for generic, composable and
potentially complex continuous ST fields. Also, an embedding into a data model
or query language is not addressed in [13].

The existing extensions to DSE data models and query languages for spatio-
temporal streams are limited today. Therefore, fields can only be support by
processing individual sensor data streams and integrating them in application
code. Beside naively supporting points in stream data models, the work in [14,20]
focuses on spatio-temporal objects such as moving points and moving regions,
and extend Gueting’s work on spatio-temporal objects [18] for streams. Our
work is complementary in addressing fields and streams. [2] introduces Nile-PDT,
which correlates multiple concurrent streams; Nile-PDT is unaware of the spatial
dimension, and is useful for extracting features rather than representing fields.
GeoStreams [19] explores using DSE for processing large raster data streams,
i.e. the input of DSE queries are entire rasters, not point observation streams.

In summary, extensions to stream data model language and query language
to support spatio-temporal continuous phenomena that are based on point-based
observation streams do not exist today.

4 Abstract Model of Continuous Spatio-Temporal Field
Data Types

Our objective is to design a data model and integrate the types streams, rela-
tions and fields that we defined above seamlessly. When designing the new data
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model, we distinguish the abstract (data) model and the discrete (data) model as
different levels of abstraction for the sensor data stream model [11]. In our termi-
nology, the abstract model defines data types in an implementation-independent,
high-level and formal way. Its definition is driven by semantic understanding of
the concepts. The abstract model allows us to use infinite sets in the concept def-
initions, without worrying about the finite (computer) representations of these
sets. Thus, we can define our field data types with an infinite time domain as
well as an infinite space domain regardless of the finite data structures and corre-
sponding algorithms at the stage of the discrete data model design. For example,
there is no need to worry about whether a trajectory of a moving object shall
be represented as a curve or as a polyline in a two-dimensional space, while it is
defined as an infinite set of points in the plane. The discrete model is defined as
a data model that serves as the basis for implementing the abstract data model;
this model addresses the issue of finite computer representations in the context
of handling and processing sensor data streams in DSE.

4.1 Second Order Signatures

Second order signatures [17], introduced by Güting in 1993, have been widely
used in the database literature to formalize relations, spatial and spatio-temporal
data types [14,18,20]. Second order signatures allow formalizing both the syntax
and semantics of data types and defining operators for those data types. Fur-
thermore, defining our proposed field types in second order signature provides a
natural interface with the spatio-temporal type hierarchies mentioned above.

The basic idea of a second-order signature is using two coupled extended
signatures to describe a data model: the first signature defines a type system and
the second signature uses the types of the first signature as sorts and defines
operators over these types. Since we only focus on defining data types in this
paper, we primarily utilize the first signature as a tool. A signature is a pair
(S,Σ), where S is a set whose elements are called sorts and Σ is a set whose
elements are called operators (note, that this operators are not the same opera-
tors defined for the data types but type constructors). In addition, a signature
has an associated set of terms defined. In a multi-sorted signature, if t1, . . . , tn
are terms of sorts s1, . . . , sn and ω : s1 × · · · × sn → s is n-ary operator, then
ω(t1, . . . , tn) is a term of sort s. In a single-sorted signature, n is equal to 1.
A 0-ary operator is called a constant.

The basic concept of a signature for a given set of sorts is then extended
to introduce automatically list sorts, product sorts, union sorts, and function
sorts [17]. Based on this concept extension, the first signature of a second-order
signature defines a type system; the sorts of the signature describe so-called kinds
and its operators are the type constructors. The terms of this signature introduce
the available types of this type system.
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4.2 Abstract Model: Continuous Spatio-Temporal Field Data Types

As said a (first-order) signature consists of two sets of symbols, i.e. sorts/kinds
and operators, and defines a type system. First, we introduce the kinds of our
data model in Table 1. The type constructors column lists the operators of a
signature. Using the argument sorts, the terms of the result sort (kind) are
the possible new data types we can construct in the proposed data model. Each
kind describes a certain set of types; for example, BASE stands for the types int,
float, string, and bool. The type constructors show the signature for constructing
terms of each type. In this terminology, the symbol (.)+ denotes a list of one or
more operands of certain sorts.

Table 1. Abstract model of continuous spatio-temporal field types.

Argument sorts Kind Type constructor

→ BASE integer

float

string

bool

→ SPATIAL point

→ TIME instant

BASE+ → SPATIALFIELD simpleSfield

simpleSfieldvector

BASE+ → TEMPORALFIELD simpleTfield

simpleTfieldvector

BASE+ → SPATIALTEMPORALFIELD simpleSTfield

simpleSTfieldvector

(BASE∪ SPATIAL∪
TIME∪SPATIALFIELD∪
TEMPORALFIELD∪
SPATIALTEMPORALFIELD)+

→ CSTFIELD complexSfield,

complexTfield

complexSTfield

complexSfieldvector

complexTfieldvector

complexSTfieldvector

The kinds BASE, SPATIAL and TIME are similar to the spatio-temporal
data types as defined in [18]. In our model, SPATIAL emphasizes a particular
spatial type, i.e. a point location, which is used to model geographic locations of
a phenomenon; a subset of the point location are the locations of sensor devices.
With regard to TIME, we only consider the type instant. In general, the data
types in kind BASE refer to the measurements taken by sensor nodes, which can
be represented as integer, float, string, and bool values. Abstract semantics of
BASE, SPATIAL, TIME have been defined in [18].

The kinds SPATIALFIELD, TEMPORALFIELD and SPATIALTEMPO-
RALFIELD represent definitions of field types that are a mapping from S, T or
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S ×T to a single attribute (e.g. temperature). These kinds represent spatial field
data types, e.g., the temperature distribution over a specific geographic region
(simpleSfield data type), temporal field data types, e.g., temperature readings
from a single sensor over a time range (simpleTfield), and spatio-temporal field
data types, e.g., temperature distribution over a specific area and time range
(simpleSTfield), respectively. The fields have been described in more detail in
Sect. 2. In addition, we introduce the new field data types simpleSfieldvector, sim-
pleTfieldvector and simpleSTfieldvector, correspondingly, to support each space-
time location being mapped to a vector of values (of potentially different types).
For example, an instance of data type simpleSTfieldvector is a mapping from
a spatio-temporal location to a vector consisting of a temperature value, wind
speed measurement and so on. This extension provides the capability that mul-
tiple measurements that are associated with a single spatio-temporal location
can be queried and analyzed at the same time.

The data types introduced so far are the basis for our further extensions.
We introduce a new kind CSTFIELD that denotes Complex Spatio-Temporal
Fields. Taking the complexSfield (complex spatial field) data type as an exam-
ple, the value domain is not limited to basic measurements as in all other types
defined before; instead, the value domain can be a combination of any of the
data types defined in the data model so far. Therefore, an instance of complexS-
field can be a spatial field, in which each location is mapped to a spatial object
(e.g., each spatial location is mapped to a view shed region), which is similar
to the idea of an object field as defined in [9]. Furthermore, a simple spatial/
temporal field can also be a valid domain value for complex spatial/temporal
fields. For example, a complexTfield (complex temporal field) can be a mapping
from a temporal instant to a spatial field (as we discussed before, a snapshot
point of view f : T → (S → V ) which the spatio-temporal field can be equiva-
lently defined). Similarly, we introduce complexSfieldvector, complexTfieldvector,
complexSTfieldvector data types for supporting the representation of multiple
values/objects/fields under one spatio-temporal framework. If end users need
multiple spatio-temporal fields to be correlated, the complexSTfieldvector data
type is necessary. The data types of kind CSTFIELD are designed to add more
query capability and representational flexibility for end users.

We use the notation Aα to denote the carrier set for each data type, where α
is the data type. Each carrier set is extended with the null value ⊥ that denotes
a missing or undefined value. For convenience, we define Āα = Aα \ {⊥}.

4.3 Semantics of the Type System

The type simpleSfield is similar to the commonly used spatial fields in a GIS.

Definition 3. A simpleSfield(α) is a data type with a carrier set

AsimpleSfield(α) ≡ {
f | f : Āpoint → Aα ∪ {⊥}}

where α is a data type (integer, float, string, or boolean) applicable to the type
constructor simpleSfield and the carrier set Aα denoting any possible data type
of BASE kind.
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Next, we define a set ValueVector of BASE data types and then use that to
define the data type simpleSfieldvector.

Definition 4. A ValueVector is a list of basic data types BASE+ with a carrier
set

AV alueV ector ≡ {{s1, . . . , sn} | ∀i [si ∈ Ainteger ∪ Areal ∪ Astring ∪ Abool ∪ {⊥}]
}

for some n ≥ 2.

Definition 5. A simpleSfieldvector(α) is a data type with carrier set

AsimpleSfieldvector(α) ≡ {f | f : Āpoint → Aα} ∪ {⊥}
where α is a data type in sort BASE+, with carrier set Aα denoting
V alueV ector.

Similarly, simpleTfieldvector and simpleSTfieldvector can be defined as fol-
lows.

Definition 6. simpleTfieldvector(α) and simpleSTfieldvector(α) are data
types with respective carrier sets

AsimpleTfieldvector(α) ≡ {f | f : Āinstant → Aα} ∪ {⊥},

AsimpleSTfieldvector(α) ≡ {f | f : Āpoint × Āinstant → Aα} ∪ {⊥}

where α is a data type applicable to the type constructor simpleTfieldvector
and simpleSTfieldvector, respectively, with the carrier set Aα denoting
V alueV ector.

Next, we define simpleTfield and simpleSTfield analogous to the earlier def-
inition of simpleSfield.

Definition 7. simpleTfield(α) and simpleSTfield(α) are data types with
respective carrier sets

AsimpleTfield(α) ≡ {f | f : Āinstant → Aα} ∪ {⊥},

AsimpleSTfield(α) ≡ {f | f : Āpoint × Āinstant → Aα} ∪ {⊥}

where α is a data type applicable to the type constructor simpleTfield and
simpleSTfield, respectively, with the carrier set Aα denoting any possible data
type of BASE kind.

The final types – the complexSfield, complexTfield, and complexSTfield type
constructors and their vector analogues – are high-level abstractions that hide
individual sensors, their locations, and measurement values and provide an inte-
grated field view.
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Definition 8. complexSfield(α), complexTfield(α), and complexSTfield(α)
are data types with the respective carrier sets

AcomplexSfield(α) ≡ {f | f : Āpoint → Aα} ∪ {⊥}
AcomplexTfield(α) ≡ {f | f : Ainstant → Aα} ∪ {⊥}

AcomplexSTfield(α) ≡ {f | f : Āpoint × Āinstant → Aα} ∪ {⊥}

where α is a data type applicable to the type constructor complexSfield,
complexTfield and complexSTfield, respectively, with the carrier set Aα denot-
ing any possible data type in ABASE ∪ Apoint ∪ Ainstant ∪ AsimpleSfield ∪
AsimpleTfield ∪ AsimpleSTfield ∪ AsimpleSfieldvector ∪ AsimpleTfieldvector ∪
AsimpleSTfieldvector.

Definition 9. complexSfieldvector(α), complexTfieldvector(α) and compl−
exSTfieldvector(α) are data types with the respective carrier sets

AcomplexSfieldvector(α) ≡ {f | f : Āpoint → Aα} ∪ {⊥}
AcomplexTfieldvector(α) ≡ {f | f : Ainstant → Aα} ∪ {⊥}

AcomplexSTfieldvector(α) ≡ {f | f : Āpoint × Āinstant → Aα} ∪ {⊥}

where α is a data type applicable to the type constructor complexSfieldvector,
complexTfieldvector and complexSTfieldvector, respectively, with the carrier
set Aα denoting any possible data type in

{ {s1, . . . , sn} | ∀i [si ∈ ABASE ∪ Apoint ∪ Ainstant ∪
AsimpleSfield ∪ AsimpleTfield ∪ AsimpleSTfield ∪
AsimpleSfieldvector ∪ AsimpleTfieldvector ∪ AsimpleSTfieldvector ∪ {⊥}]}

We now have specified the data model from an abstract perspective by defin-
ing the range of spatio-temporal fields we support in our stream data model. We
have defined which field types are possible, and how they are constructed.

5 Extending Stream Data Models with Field Data Types

The previous section formalized the spatio-temporal fields data types that our
data model supports on an abstract level that assumes continuity in space and
time. This section presents the discrete versions of these field data types that
are necessary to implement the data types on the basis of streams of discrete
observations and discretized views of space and time.
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5.1 From Spatio-Temporal Streams to Continuous Spatio-Temporal
Fields

As mentioned in Sect. 2, this paper addresses fields that are approximated based
on observations, so-called sampled fields (in contrast to equation fields that are
purely defined via equations). In particular, we introduce fields types that are
canonically constructed from spatio-temporal streams. Our approach starts with
the definition of a spatio-temporal relation, which is a finite set of tuples, and each
tuple is an observation. Using a spatio-temporal relation that contains tuples
with timestamps within a well-defined interval and spatial locations within a
well-defined spatial region, we can construct an observation field. An observa-
tion field is simply a collection of raw sensor samples. Each sample represents
a point in a spatio-temporal volume; other values are not available. Once we
add an interpolator to an observation field, we can create a continuous spatio-
temporal field. On behalf of the raw samples of the observation field and the
interpolator, the continuous spatio-temporal field can produce all values within
its continuous spatial and temporal domain. Some of these values correspond to
actual samples; others are interpolated based on the samples. Below, we intro-
duce streaming versions of the discussed types; this includes sdstream, obser-
vationfield, and continuousSTfield. The mapping between relational types and
streaming types is bidirectional. Due to space constraints, we refer the reader to
more details of this discussion in [23] (Table 2).

Table 2. Discrete model of spatio-temporal field types extending stream data models.

Argument sorts Kind Type constructor

→ BASE integer

float

string

bool

→ SPATIAL point,

geometry

→ TIME instant

BASE+ → SDATA sensordata

SDATA →SDSTREAM sdstream

→ WINDOW slidingwindow

SDSTREAM×WINDOW → STREL observationfield

→ INTERPOL interpolator

observationfield×INTERPOL → CSTFIELD continuousSTfield

continuousSfield

continuousTfield

(BASE∪SPATIAL∪TIME∪
CSTFIELD)+

→ CCSTFIELD complexcontinuousSTfield
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5.2 Discrete Data Model for Continuous Spatio-Temporal Field
Data Types

The kinds BASE and TIME are maintained from the abstract data model. For
the SPATIAL kind we add a geometry type that can represent various geometric
objects such as points, lines, 2D regions, and aggregations thereof. This geometric
type is introduced to better represent the results of operators over fields, whose
discussion is beyond the scope of this paper.

Data Type for Sensor Tuples: This data type is defined to represent an
individual sensor sample using the corresponding basic data types and the type
constructor sensordata. A sensor data tuple represents a single update from a
sensor, while the time series of a sensor’s updates is a stream. The sensordata’s
constructor uses BASE+ as input sorts. The rationale behind this choice is that
a sensor node can combine all or a subset of its sensor samples from different
attached sensors that are taken at one time instant and forward them compactly
as a single message, creating an update tuple. Sensors without an update at that
time report a NULL value as part of the update tuple. We assume that a sensor
data tuple will always contain at least one time stamp of the kind TIME and a
location value of type point since a data value without any time or any location
information is meaningless. A second time stamp might be created at the DSE
to represent the arrival time of the update tuple.

Definition 10. A sensordata(α) is a data type with a carrier set

Asensordata(α) ≡ Āpoint × Āinstant × Ainteger × Aα

where α is a data type in sort BASE+ that is applicable to the type constructor
sensordata and produces an output of the kind SDATA.

The carrier set of data type α is a ValueVector, defined in Definition 4. The
three other parameters Apoint, Ainstant, and Ainteger represent the carrier sets for
location, explicit time stamp (time of observation), and implicit time stamp
(arrival time at the DSE), respectively. The explicit time stamp is required
whereas the implicit time stamp is an optional parameter, as indicated by the
missing bar across Ainteger.

Sensor Data Stream Type: Next, we define the data type for representing
streams of sensor data tuples. Each value from the carrier set of this new data
type sdstream(α) is a function that maps each implicit time stamp to a finite
number (possibly zero) of sensor data tuples [4].

Definition 11. A sdstream(α) is a data type with a carrier set

Asdstream(α) ≡ {
f

∣
∣ Ainstant → {S ⊆ Aα

∣
∣ |S| < ∞}}

where α is a data type of sort SDATA that is applicable to the type constructor
sdstream.
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Sliding Window Type: For kind WINDOW, the data type constructor slid-
ingwindow represents the concept of sliding windows in DSE. We adopt the
two commonly used parameters to specify sliding windows: window size ws and
update interval ui. We only consider tuple-based (count-based) or time-based
sliding windows.

Definition 12. A slidingwindow is a data type with a carrier set

Aslidingwindow ≡
{

f
∣∣ f : Teval → TS × TE such that ∀(tstarti , tendi

) ∈ Teval

[
tstarti ≤ tendi

and tendi
− tstarti = ws and

tstarti − tstarti−1 = ui
]}

where ws is the sliding window size, ui is the sliding window update interval,
Teval is the carrier set of time stamps when a sliding window will be evaluated,
and TS × TE is the carrier set that indicates the start and end time of a specific
sliding window.

For a tuple-based (count-based) window Teval, TS , TE ⊆ Āinteger holds, while
for a time-based window Teval, TS , TE ⊆ Āinstant holds. This is due to the fact,
that we consider two different types of windows semantics: count-based win-
dow change their designated time interval with the arrival of a new streaming
tuple, while time-based windows change their time interval with the advance-
ment of time.

Observation Field Type: Using sliding windows, the most recent portion of
a data stream can be regarded as a temporalized relation [4]. However, we prefer
to define the more meaningful type observationfield that captures the finite set
of sensor data points – each containing a spatial location, a timestamp, and
a measurement value – from a window and defined them as a single field. An
observationfield represents raw sensor data measurement streams as a discrete
spatio-temporal field where values are only valid at the spatial/temporal locations
where actual sensor measurement are available.

Definition 13. An observationfield is a data type with carrier set

Aobservationfield(sdstream(α),ω) ≡
{

f
∣∣ f : Teval → Seval such that ∀f(ti) ∈ Sevali

[f(ti).timestamp ∈ R(ω, ti)]
}

where Seval = {S ⊆ Aα

∣
∣ |S| < ∞}, α is a data type of sort SDATA,

sdstream(α) is a data type of sort SDSTREAM, ω is a data type of sort WIN-
DOW, Teval is the carrier set of timestamps when a sliding window ω is evalu-
ated, and R(ω, teval) is the time range at each evaluation timestamp teval ∈ Teval

of the sliding window ω.
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Interpolator Type: Now, we introduce the interpolator type required to con-
vert streams of discrete sensor measurements into continuous spatio-temporal
fields. More precisely, it is intended to estimate any values at arbitrary spatio-
temporal locations within a specific instance of type observationfield, even if no
sensor measurements are available at those precise spatio-temporal locations.

Definition 14. An interpolator is a data type with a carrier set

Ainterpolator ≡ {f | f : Aobservationfield(sdstream(α),ω) × Āpoint × Āinstant → Aσ}
where α is a data type of sort SDATA, sdstream(α) is a data type of sort
SDSTREAM, ω is a data type of sort WINDOW, observationfield(sdstream(α),
ω) is of data type observationfield, and σ is a data type in sort BASE+.

Continuous Spatial Temporal Field Type: Since we define the continuous
spatio-temporal field type in the context of handling discrete streaming sensor
data, the new type continuousSTfield is explicitly based on the observation field
and the corresponding interpolator function. The resulting continuousSTfield is
continuously updated with the windows parameters from the underlying obser-
vation field.

Definition 15. Assume a given interpolator with output of type σ and an
observationfield denoted as observationfield(sdstream((α), ω). Then a con-
tinuousSTfield is a data type with a carrier set

AcontinuousSTfield(observationfield(sdstream(α),ω)) ≡
{

f
∣
∣
∣ f : Teval → {

fc
∣
∣ fc : Āpoint × Āinstant → Aβ such that Aβ ⊆ Aσ

}}

where α is a data type of sort SDATA, sdstream(α) is a data type of sort
SDSTREAM, ω is a data type of sort WINDOW, Teval is the carrier set of
timestamps when a sliding window ω is evaluated, and β is a data type in sort
BASE+.

Other continuous spatial/temporal field types continuousSfield and contin-
uousTfield and the complex type complexcontinuousSTfield closely follow the
definitions from the abstract data model, except that they are now streaming
versions correspondingly to the definition of a continuousSTfield.

6 Conclusions and Future Work

In this paper, we presented our formal extension of stream data models with
field data types. Using the field data types, users can define high-level abstrac-
tions of continuous ST phenomena based on large numbers of concurrent, bursty
and unpredictable sensor data streams that are now known to a DSE. Therefore,
they can be supported through queries and processing optimization, thus, unbur-
dening the user and application code. We introduced field types specifically for
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sampled fields, and their streaming counterparts. Our stream model extension
formally integrates spatio-temporal streams, spatio-temporal relations and field
types. We formalized the proposed types using second order signature to achieve
independence from the details of a specific data model language implementation,
and formalized the syntax as well as semantics of the proposed types. As for
future work, several aspects closely related to this work require more research.
For instance, the challenging question of generic operators over the proposed
fields types that can be integrated into stream query languages requires further
investigation. Similarly, a prototypical implementation of the type system as
part of various actual data model languages is of significant interest.
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