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Preface

The 9th International Conference on Geographic Information Science, held during
September 27–30, 2016, continued the highly successful GIScience series of confer-
ences. GIScience regularly brings together more than 200 international participants
from academia, industry, and government organizations to discuss and advance the
state of the art in the field of geographic information science. Since 2004, the biennial
conference has alternated between locations in North America and Europe. For
example, GIScience 2012 was held in the American Midwest, in Columbus, Ohio, and
GIScience 2014 was located in the heart of Europe, hosted by the Vienna University of
Technology in Austria. GIScience 2016 took place in Montreal, Canada.

Since its inception in 2000, the biennial GIScience conferences have adopted a two-
track program soliciting submissions that describe the highest quality of completed
research as well as those that describe the latest work in progress. There is a full-paper
track with papers up to 15 pages and a short-paper track (formerly referred to as the
extended abstract track) with papers of 4 pages and up to 1500 words. The full papers
are contained in these proceedings, and they are complemented by additional and
separate short-paper proceedings that are distributed digitally at the conference.

The two-track program is ideally suited to the diversity of disciplines that converge
on GIScience, which include (but are not limited to) geography, cognitive science,
computer science, engineering, information science, linguistics, mathematics, philos-
ophy, psychology, social science, and (geo)statistics. The combination of full papers
and short papers presented through talks and poster sessions has a proven record of
delivering an exciting conference program that is both fast-moving and high quality.

The accepted papers provide a snapshot of the breadth of active research topics in
the vibrant field of GIScience. The full and short papers showcase a mix of advanced
research in topics of long-standing relevance to GIScience (e.g., spatial analysis, spatial
cognition, geovisualization, and geo-ontologies) as well as topics of more recent
research interest such as user-generated content, linked data, computational movement
analysis, and text-based navigation systems.

For GIScience 2016, there were 63 full-paper submissions. Each paper was thor-
oughly reviewed by two to four independent members of the international Program
Committee. Based on these reviews, supplemented by careful meta-reviews from the
program chairs, 21 papers were selected for presentation, corresponding to an accep-
tance rate of 33 %. A total of 152 short papers were submitted, 51 of which were
accepted for oral presentation and 54 of which were accepted as poster presentations
(69 % acceptance rate).

The conference could not have happened without the work of the general chairs,
Renee Sieber and Scott Bell, and the local organizer Raja Sengupta. We would also like
to thank Steven Farber and Michael Widener as the workshop and tutorial chairs. In
addition we are appreciative of the work done by Mir Abolfazl Mostafavi and Gaurav
Sinha as sponsorship co-chairs and of Jing Hoon Teo for logistical support. We are also



deeply grateful to the GIScience Program Committee for their considered and thorough
reviews, as well as those additional reviewers who also contributed their expertise. We
would like to thank all the authors who contributed to the conference by submitting full
and short papers. Most importantly, we would like to thank all those who came to
GIScience as presenters and participants, without whose contributions there would be
no conference. The submitters, reviewers, and participants are critical to keeping the
field of GIScience fresh, cutting-edge, and alive.

August 2016 Jennifer A. Miller
David O’Sullivan
Nancy Wiegand
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Computing River Floods
Using Massive Terrain Data

Cici Alexander1, Lars Arge2, Peder Klith Bøcher3, Morten Revsbæk4,
Brody Sandel2,3, Jens-Christian Svenning3, Constantinos Tsirogiannis2,3(B),

and Jungwoo Yang4

1 Dynamiques de l’Environnement Côtier IFREMER, Issy-les-Moulineaux, France
calexand@ifremer.fr

2 MADALGO, Aarhus University, Aarhus, Denmark
{large,constant}@madalgo.au.dk

3 Department of Bioscience, Aarhus University, Aarhus, Denmark
{peder.bocher,brody.sandel,svenning}@bios.au.dk

4 SCALGO, Aarhus, Denmark
{morten,jungwoo}@scalgo.com

Abstract. Many times in history, river floods have resulted in huge
catastrophes. To reduce the negative outcome of such floods, it is impor-
tant to predict their extent before they happen. For this reason, special-
ists use algorithms that model river floods on digital terrains datasets.
Nowadays, massive terrain datasets have become widely available. As
flood modeling is an important part for a wide range of applications, it
is crucial to process such datasets fast even with standard computers.
Yet, these datasets can be several times larger than the main memory of
a standard computer. Unfortunately, existing flood-modeling algorithms
cannot handle this situation efficiently. Hence they have to sacrifice out-
put quality for time performance, or vice versa.

In this paper, we present a novel algorithm that, unlike any previous
approach, can both provide high-quality river flood modeling and handle
massive terrain data efficiently. More than that, we redesigned an exist-
ing popular flood-modeling method (approved by European Union and
used by authorities in Denmark) so that it can efficiently process huge
terrain datasets. Given a raster terrain G and a subset of its cells repre-
senting a river network, both algorithms estimate for each cell in G the
height that the river should rise for the cell to get flooded. Based on our
design, both algorithms can process terrain datasets that are much larger
than the main memory of a computer. For an input raster that consists
of N cells, and which is so large that it can only be stored in the hard
disk, each of the described algorithms can produce its output with only
O(sort(N)) transfers of data blocks between the disk and the main mem-
ory. Here sort(N) denotes the minimum number of data transfers needed
for sorting N elements stored on disk. We implemented both algorithms,
and compared their output with data acquired from a real flood event.
We show that our new algorithm models the real event quite accurately,

MADALGO—Center for Massive Data Algorithmics, a Center of the Danish
National Research Foundation.

c© Springer International Publishing Switzerland 2016
J.A. Miller et al. (Eds.): GIScience 2016, LNCS 9927, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-45738-3 1



4 C. Alexander et al.

more accurately than the existing popular method. We evaluated the
efficiency of the algorithms in practice by conducting experiments on
massive datasets. Each algorithm could process a dataset of 268GB size
on a computer with only 22GB working main memory (twelve times
smaller than the dataset itself) in at most 31 h.

1 Introduction

Throughout history, river floods have caused large disasters. Usually induced by
heavy rainfall, such floods can lead to casualties and huge financial damage for
the local communities. A recent example is the catastrophic flood of the Indus
river in Pakistan that took place in 2010 [9]. This flood claimed approximately
two thousand lives, and about one fifth of the total area of the country ended up
covered by water. Society wants to predict such floods, so that measures can be
taken in advance to reduce the harm done. Therefore, it is important for people
to know which regions around a river have the highest risk of getting flooded
when the level of the river rises.

Today, hydrologists use computers to model river floods; they use specialised
software to simulate flood events based on digital representations of terrains
and rivers. Such terrain representations are widely known as Digital Elevation
Models (DEMs). The most popular type of DEMs is the so-called grid or raster
DEMs. In a raster DEM the domain of the terrain is divided into square cells
of equal size, and each cell is associated with an elevation value.

One method for modeling river floods on DEMs is the method introduced
by Berg Sonne [12]; let G be a raster terrain and let R(G) be the set of cells
in G that represents the region covered by a river network in this terrain. Also,
let x be a positive real. Given G, R(G) and x, the method estimates which cells
in G will get flooded if the level of the river R(G) rises uniformly by x meters.
Of course, a flood is a very complex phenomenon and is influenced by many
factors, some of which are difficult to determine. Therefore, we cannot expect
that a flood can be modeled precisely by the output of any method, no matter
how involved this method is. Yet, the method proposed by Berg Sonne is today
considered a quite accurate tool for modeling river floods. Hence, after approval
by the European Union it is used by the state authorities of Denmark [12].

However, Berg Sonne’s method has a major drawback; it cannot process
massive DEMs. Recent advances in Lidar technology have made it possible to
produce detailed and huge DEM datasets. In many cases, such a dataset is so
large that it cannot fit in the main memory of a standard computer. Hence,
the dataset has to be stored mainly on disk. Since the computer’s processor can
only handle data that appear in the main memory, blocks of data have to be
transferred between the disk and the memory in order to process the dataset.
We call a transfer of a single block of data between the disk and the memory
an I/O-operation, or an I/O for short. The problem here is that a single I/O
is an extremely slow operation; it can take about the same time as a million
CPU operations. Therefore, when it comes to processing huge amounts of data,
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it is important to process the dataset in a way that we minimize the number of
data transfers between the disk and the memory. Otherwise, the whole process
becomes practically infeasible.

Standard algorithms are often designed based on the assumption that all
input data fit in the main memory. Hence, usually they cannot handle massive
datasets. This is also the case for algorithms that are used to model river floods;
to the best of our knowledge, there does not exist any such algorithm that can
deal with this problem1. Nowadays flood modeling has become a crucial part
for a wide range of professionals, from researchers to freelance civil engineers.
Therefore, it is important that this modeling can be performed efficiently even
on standard computers. Yet, even moderately large terrain datasets can be sev-
eral times larger than the main memory of a standard computer. Therefore,
the users of up-to-date hydrological software are forced to choose between two
approaches. In the first approach, the resolution of the input DEM is reduced
(so it fits entirely in the main memory). Thus, a large amount of detail in terrain
data is thrown away. Important features on the landscape, such as ditches and
levees, may not be depicted anymore on the resulting terrain. When it comes to
modeling a river flood, this results in incorrect estimations. In the other app-
roach, users divide the massive DEM into smaller tiles and each tile is processed
independently; in this way, when processing a single tile, we do not take into
account how the rest of the landscape affects the flood in that region. Therefore,
there is a need for developing algorithms that, on one hand model river floods
accurately, and on the other hand efficiently handle massive terrain datasets.

Our Results. Inspired by the above, we designed two I/O-efficient algorithms
that can be used for modeling river floods. The first algorithm is an adaptation
of Berg Sonne’s method that can handle massive raster terrains. The second
algorithm is a novel method that we introduce for modeling river floods. For
each of these algorithms, the input is a raster G, and a subset R(G) of cells in G
representing the area covered by a river network. Each of our algorithms returns
for each cell c ∈ G a value f(c), indicating the minimum number of meters the
river level should rise before c gets flooded. We call this value the resistance value
of c. Given the resistance values f(c) for every c ∈ G, and a positive integer x,
we can then easily extract the part of the terrain that is flooded if the river level
rises uniformly by x meters. As we describe later in detail, each of the algorithms
that we present uses different criteria for computing resistance values, hence they
produce different outputs.

To process massive datasets efficiently, we have designed our algorithms based
on the I/O-model of Agarwal and Vitter [3]. The performance of an algorithm
in the I/O-model is measured as the number of I/Os (transfers of data blocks)
that take place during its execution between the disk and the main memory. This
measure of performance is called the I/O-efficiency of the algorithm. To describe
the I/O-efficiency we need three parameters; the size N of the input data, the
size of the internal memory M , and the size B of a single block of data that can
1 This is not the case for other types of floods, which have received ample attention

in this context [7].
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be transferred from and to the disk. Two basic processes that take place during
the execution of most algorithms is scanning and sorting. We can scan a set of N
elements stored in the disk with O(scan(N)) I/Os, where scan(N) = N/B. We
can also sort a set of N records in an I/O-efficient manner with O(sort(N)) I/Os,
where sort(N) = N/B logM/B N/B [3]. To compute the output for a raster that
has N cells, each of our algorithms require O(sort(N)) I/Os in the worst case.

We implemented both algorithms and measured their efficiency in practice.
For our measurements we used a terrain dataset of 268 GB, which we processed
on a computer with 22 GB of working main memory (roughly twelve times
smaller than the size of the described dataset). For this setting, to process the
entire 268 GB dataset, our adaptation for Berg Sonne’s method required roughly
24 h, and our new algorithm roughly 31 h.

We also conducted experiments to evaluate whether our algorithms can model
adequately real flood events. To do this, we used as reference a vector dataset
which outlines the river flood that took place in Pakistan in 2010 [9]. Using
a variety of experiment settings, we showed that our algorithm provided on
average more accurate results than Berg Sonne’s method. To understand the
reasons behind this, we used both algorithms to model river floods on a massive
raster that represents the terrain in Denmark. Among other artifacts, the method
by Berg Sonne produced flooded regions that had larger size than the ones
calculated by our algorithm. As we explain, one reason for this is that Berg
Sonne’s method produces very small resistance values for areas along the entire
coastline of the terrain.

2 Description of the Algorithms

Problem Definition and Notation. Let G be a grid terrain that consists of
N cells. For every cell c ∈ G we use h(c) to indicate the elevation of the terrain
at this cell. We denote the cell that appears at the i-th row and j-th column
of G by G(i, j). We assume without loss of generality that the center of grid cell
G(i, j) has xy-coordinates (j, i). For any cell c ∈ G, we denote this center point
by p(c). We call the xy-distance, or simply the distance, between two cells in G
the 2D Euclidean distance between their cell centers on the xy-domain of G. Let
C be a set of cells in G and let c be a cell that belongs to this set. We say that
c is the closest cell in C to another cell c′ if c has the smallest xy-distance to c′

compared to any other cell in C.
We use R(G) to denote a subset of the cells in G that belong to a river

network of the terrain. We call these cells the river cells of G. The cells in R(G)
represent the river network in G when there is no flood. This implies that the
elevation value of each cell in R(G) approximates the average height of the river
level at this location when no flood occurs. For the algorithms that we present,
we assume that R(G) is provided as part of the input.

Let hrise be a positive real. We say that there is a river rise of hrise meters,
or that the river rises by hrise meters, when for each cell c ∈ R(G) the river level
rises to elevation h(c) + hrise. We call hrise the rise value. Thus, when a river
rises we assume that its level increases by the same amount at all river cells.
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We study the following problem. Given a terrain G and its river network R(G),
we want to compute for every cell c ∈ G a value f(c) that estimates the minimum
value hrise such that c gets flooded when the river rises by hrise meters. We call
this value the resistance value of c. Each of the two algorithms that we present in
this paper defines these resistance values in a different way; hence, for the same
input grid the output between the two algorithms may differ substantially. In the
description of each algorithm we provide a detailed definition for the resistance
of a grid cell for this algorithm. For both algorithms, it is assumed that all river
cells are flooded by default. Therefore, for both approaches we imply that the
resistance value of every river cell is set to zero.

2.1 Adaptation of Berg Sonne’s Method

The first algorithm that we describe is based on the flood modeling method
introduced by Berg Sonne [12]. Originally, this method was designed to solve
a more simple problem than the one that we examine. In particular, the input
of the original method is a raster G, the river network R(G), and a rise value
hrise. Instead of computing flood resistance values, the method outputs the cells
in G that are considered to get flooded when R(G) rises by hrise meters. We
call this version of the method ProximityFlood . Below, we first explain how
ProximityFlood calculates the flooded cells in G for a given rise value hrise. Then,
we show how we can use this method to design an I/O-efficient algorithm that
computes a flood resistance value for each input cell2.

ProximityFlood consists of two steps. In the first step, every cell c ∈ G \R(G)
gets associated with a single river cell in R(G); this is the river cell from which
we consider that c can potentially get flooded. We call this cell the source cell
of c, and we denote this by source(c). The source cell for every c ∈ G \ R(G)
is defined as the river cell c′ ∈ R(G) that has the smallest xy-distance from
c. After calculating source(c) for every non-river cell c, the height difference
between source(c) and c is computed and stored together with c. We call this
value the obstruction value obst(c) of c.

In the second step, we extract the cells in G that are considered to get flooded
when the river rises by hrise meters. More specifically, we extract any cell c that
(a) has an obstruction value obst[c] � hrise and (b) there exists a path of cells
between c and a river cell cR such that any non-river cell c′ in this path has
an obstruction value obst(c′) � hrise. Notice that, in this way, not all cells with
obstruction � hrise are flooded.

2 Some implementations of ProximityFlood include an extra preprocessing step where
the heights of the river cells are adjusted to make it consistent with the rest of the
terrain data. This prevents artifacts (e.g. rivers that flow upstream) that may appear
when river data are combined with DEMs acquired from a different sources. In our
description of ProximityFlood we do not include this preprocessing step; we consider
that this has to do more with configuring the datasets rather than with the method
itself. Yet, this step can be also handled I/O-efficiently, given realistic assumptions
on the memory size.
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Method ProximityFlood can be used to model a single flood event at a time.
On the other hand, if we want to study which regions get flooded for different rise
values then we have to run this method many times, once for each distinct rise
value hrise. To avoid this, we instead choose to compute for each cell c the mini-
mum rise value hrise for which c gets flooded according to method ProximityFlood
(the resistance value of c). Below we describe our new I/O-efficient algorithm
that computes the resistance values on G, which we call ProximityResistance.

As with ProximityFlood , the new algorithm consists of two main steps. In
the first step, we compute for each cell c ∈ G \ R(G) the source cell source(c)
and the obstruction obst(c). In the second step, we calculate the flood resistance
values of all cells in G \ R(G).

Computing the source cells and obstruction values. For the first step, the
main task is to compute the source cell for each non-river cell c; given this cell,
it is straightforward to compute the obstruction obst(c). Calculating the source
cells in G is equivalent to computing a Voronoi diagram on the xy-domain of
G; the sites of the Voronoi diagram are the center-points of the river cells in
G and for any cell c ∈ G \ R(G) it holds that source(c) = c′ if the center
of c falls in the Voronoi region of p(c′). Computing the Voronoi diagram of the
river cells can be done in O(sort(N)) I/Os [2,11]. Then we sweep simultaneously,
from top to bottom, the diagram and grid G. During the sweep, we maintain the
diagram edges that intersect the sweep line, sorted according to the x-coordinate
of their intersection point with this line. For every row of G that we encounter,
we scan the edges that intersect the sweep line to determine the Voronoi region
(and therefore the corresponding source cell) where each cell in the row belongs
to. Notice that the number of edges in the sweep line is at most two times
the number of cells in a row. This is because there cannot be more than two
river cells per column whose Voronoi regions intersect the same horizontal line.
Therefore, scanning the raster and updating the sweep line can be done efficiently
in O(sort(N)) I/Os in total. From this we conclude that computing the source
cells on the raster can be performed in O(sort(N)) I/Os. But we can do this
more efficiently; in the full version of the paper we present an algorithm that
computes the source cells using O(scan(N)) I/Os [4].

Computing the flood resistance values. In the second step of method
ProximityResistance we compute for each cell c ∈ G its flood resistance f(c).
Recall that for every cell c this resistance value is equal to the minimum rise
value hrise such that obst(c) � hrise and c is connected to the river by a path of
cells with obstruction � hrise. Based on this definition, we can reduce the com-
putation of the flood resistance values to the problem of computing the raise
elevations on a terrain, that was described by Danner et al. as part of their par-
tial flooding algorithm [7]. This problem is defined as follows; let G be a raster
and let ζ1, . . . , ζk be a set of cells in G that we call sinks. For any path of cells π
in G the height of π is defined as the height of the highest cell on this path. The
raise elevation of a cell c ∈ G is the minimum height among all paths that con-
nect c to ζi for any 1 � i � k. Arge et al. provide an algorithm that computes
the raise elevations for all the cells on the terrain in O(sort(N)) I/Os [7].
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We can reduce the problem of computing the flood resistance values of the
cells in G to an instance of the raise elevation problem as follows; we create a
raster G′ that has the same number of rows and columns as G. For any river
cell G(i, j) ∈ R(G) we let the corresponding cell G′(i, j) to be a sink. For any
non-river cell G(i, j) we let cell G′(i, j) have elevation equal to the obstruction
value of G(i, j). It is now easy to see that the raise value of any cell G′(i, j) is equal
to the flood resistance value that we want to compute for G(i, j). By applying
the I/O-efficient algorithm of Arge et al. on G′ we can compute the described
flood resistance values in O(sort(N)) I/Os, which is the total I/O-efficiency of
this algorithm.

2.2 Our New Method

In ProximityResistance, a cell c can only get flooded from the closest river cell
source(c) in the xy-plane. Intuitively, this is very unnatural since the flow of
water on the terrain is obviously influenced by the terrain topography. There-
fore, we introduce a novel method which instead chooses source(c) based on
a model that represents how water flows on the terrain. We refer to this new
method as UpstreamResistance. Next, we describe how source(c) is chosen in
UpstreamResistance, and then we show how to compute this I/O-efficiently.

For a raster G let F(G) = (V,E) be the graph such that for each cell c ∈ G
there exists exactly one vertex v(c) in V , and there exists a directed edge in E
from v(c) to v(c′) if cells c, c′ ∈ G are adjacent and h(c) > h(c′). We call this
graph the flow graph of G. For now let us assume that no adjacent cells in G have
the same elevation value. Hence, there exists exactly one directed edge in F(G)
for each pair of adjacent cells in G, and F(G) is a DAG. The concept of the
flow graph was introduced in previous works to model how water flows between
cells on a DEM [7]. It is naturally assumed that water on a cell can flow only
to neighbour cells with lower height; that is modeled with a directed edge in the
flow graph.

For any cell c ∈ G water from c may flow following different routes on
the raster until reaching one or more cells on the boundary of river R(G). In
method UpstreamResistance we choose source(c) to be one of these cells on
the river boundary, that is, the river cells where the water from c reaches. More
formally, let c be a cell in G. Consider a path in F(G) that starts from vertex v(c)
and ends at a vertex v(c′) where c′ is a river cell, such that the path does not
contain a vertex corresponding to any other river cell. We call such a path a
downstream path of c. Let DC(c) denote the set of all river cells that belong
to some downstream path of c. In method UpstreamResistance, source(c) is the
cell in DC(c) with the highest elevation value. The flood resistance of c is then
defined as the height difference h(c) − h(source(c)).

When it comes to implementing UpstreamResistance I/O-efficiently, the
two key tasks for computing the flood resistances are constructing the flow
graph F(G), and computing the source cell for every cell in G. If no flat areas
exist on G, we can construct F(G) straightforwardly in O(scan(N)) I/Os. On
the other hand, when G contains flat areas the construction of the flow graph
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becomes a more involved process. Yet, even in this case we can construct the
flow graph efficiently, this time in O(sort(N)) I/Os. A detailed description of
this process is provided in the full version of the paper [4]. As for computing the
source cells, observe that for any cell c it holds that source(c) = source(c′) for
some c′ such that there exists an edge in F(G) from v(c) to v(c′). Therefore, we
can compute source(c) by first computing the source cells for those neighbours
of c that appear downstream in F(G), and then use these to infer source(c).
Arge et al. describe an I/O-efficient algorithm that computes the number of
upstream cells for every cell on a raster in O(sort(N)) I/Os [5]. Their algorithm
can be easily modified for computing the source cells in G. Therefore, we can
perform this computation in O(sort(N)) I/Os, which defines the I/O-efficiency
of the entire algorithm.

3 Implementations and Experiments

We implemented both algorithms described in Sect. 2, and we evaluated how
fast they perform in practice, as well as how accurately they model real flood
events. We implemented both algorithms in C++, using the open source library
TPIE that provides I/O-efficient algorithms for sorting and scanning data [14].
We used the GNU g++ compiler (version 4.8.2), and the experiments were ran
on a Linux Ubuntu operating system (release 14.04).

When implementing ProximityResistance we made two modifications com-
pared to the description in Sect. 2. First, when computing the source cells on G
using a sweepline approach, we used the O(scan(N)) approach (described in the
full version of this paper) and we made the practically realistic assumption that a
constant number of rows in G can fit in main memory. Thus, instead of perform-
ing an external scan of each row and maintaining an I/O-efficient stack during
the sweep, we simply store the two last rows that we swept in memory and per-
form all computations internally. Second, when computing the raise elevations
we did not use the O(sort(N)) batched union-find algorithm by Agarwal et al. [1]
(that is quite involved), but instead a much simpler O(sort(N) log(N/M)) algo-
rithm also proposed by Agarwal et al. Both Danner et al. [7] and Agarwal et al.
showed that this simple union-find algorithm performs very well in practice.
When implementing UpstreamResistance we accurately followed the description
in Sect. 2. The only difference was that we again used the practical union-find
algorithm of Agarwal et al. (that requires O(sort(N) log(N/M)) I/Os), this time
for computing the connected components of flat areas in G, and for removing
flat areas that correspond to spurious pits.

Measuring I/O-Efficiency in Practice. To measure the practical efficiency
of each method, we ran our implementations on a massive raster dataset that rep-
resents the terrain surface of the entire country of Denmark. Publicly available
through the website of the Danish Ministry of Environment [10], this raster con-
sists of roughly 66.4 billion cells, arranged in 287,500 rows and 231,250 columns.
Each cell represents a region of 1.6 × 1.6 m on the terrain and is assigned an
elevation value which is a 4-byte floating point number. The total size of the
uncompressed dataset is 268 GB. We refer to this dataset as denmark.
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Raster denmark does not include any river data, and therefore we had to
extract the river cells before conducting the experiments. To do so, we first
preprocessed the raster by removing all shallow pits. Then, we selected the river
cells based on the size of their upstream area. For this reason, we computed
the flow graph of denmark as described in Sect. 2 except that for each cell c we
included at most one outgoing edge. This outgoing edge points to the vertex v(c′)
such that c′ is a neighbour of c and the vector from p(c) to p(c′) has the steepest
downward slope. Then, we computed for each cell c the size of its upstream
area; this is the area that is covered by all cells c′ such that there exists a path
from v(c′) to v(c) in the flow graph. We extracted the river cells by selecting all
cells whose upstream area was larger than 12.5 km2. We picked this threshold
since the resulting river network resembles better the actual shape of the rivers
in Denmark, according to available orthophotos.

We ran both of our algorithms on the denmark raster and the computed river
cells, using a workstation that has a Xeon CPU (W3565), a four-core processor
with 3.2 GHz per core. The workstation had 48 GB of main memory, and a raid
(redundant array of independent disks) that consists of nineteen disks, with 3
Terabytes capacity in total. To showcase the I/O-efficiency of our algorithms,
we reduced the size of working memory on this computer (maximum memory
size available at any point during execution) to 22 GB. The total time taken by
the implementation of ProximityResistance was roughly 24.2 h; only 2.4 h were
used for computing the source cell for each non-river cell, and the remaining
21.8 h were spent on computing the resistance values. For the implementation
of UpstreamResistance, the total execution time was approximately 31.1 h. The
first stage of this method, where the flow graph of the input raster is computed,
took 12.5 h. The remaining 18.6 h were spent for delineating the flat areas on
the terrain, and computing the resistance values. On the same machine and for
only a fraction of the same dataset, we attempted to run standard existing,
non I/O-efficient, implementations of the original Berg Sonne’s method. Yet,
even after several days of execution these implementations could not produce an
output. This is because these older implementations induce a very large number
of I/O operations. Consequently, there is a huge amount of time spent for data
transfers between the memory and the disk, while the CPU remains idle. On
the contrary, the execution time for both of our I/O-efficient implementations is
elegantly distributed between CPU processing and I/O operations. For both of
our algorithms, measurements showed that roughly 60% of the execution time is
devoted to CPU activity, and the remaining to disk usage. From the above, it is
clear that the implementations of both methods have a very good performance
even for a dataset which is much larger than the available main memory. Each
method took less than 1.5 days to process this dataset, using memory size which
corresponds to roughly 8% of the dataset’s total size.

Evaluating the Quality of Flood Modeling. In the second set of experiments
we used an actual flood event to evaluate the quality of the output produced
by the two methods. This event is the catastrophic flood of the Indus river that
took place in Pakistan in 2010 [9].
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For the experiments we used a raster terrain extracted from the SRTM grid,
a DEM that represents the earth surface from 60◦ North to 56◦ South [13].
The extracted raster covers a square region of approximately 2,160 × 2,160 km
and includes the entire Indus river basin–see Fig. 1. The raster consists of
24,000 × 24,000 cells, and the dimension of each square cell is approximately
90 m. We refer to this dataset as indus.

Fig. 1. Left: an illustration of the indus DEM together with the flood vector dataset.
The cells of the DEM appear in grayscale colours, shaded according to their elevation
values; cells of higher elevation are indicated by lighter shades. The polygons of the
flood dataset appear in red colour. Right: a closer view of the flooded regions. (Color
figure online)

Since the indus DEM does not contain any river data, we extracted the
river cells based on the upstream area of each cell, in the same way as we did for
the denmark dataset. In this case we used a threshold of 300 km2 of upstream
area since it produces a visual result that matches the shape of the local river
network, as it appears in orthophotos acquired before the flood.

To evaluate the ability of our algorithms to accurately model floods, we used
a vector dataset that shows the actual flooded regions around the river during
the Indus river flood. This dataset was released by the Dartmouth Flood Obser-
vatory, and contains data acquired with MODIS (Moderate-resolution Imaging
Spectroradiometer) technology [8]. We refer to this dataset as flood. The flood
dataset was constructed based on several satellite photos of the Indus region,
acquired during the period from the 1st to the 5th of August of 2010. It repre-
sents with polygons all the regions that were flooded in at least one day during
this period. The bounding box of flood covers a rectangular region that spans
approximately 1,118 and 911 km on the longitudinal and the longitudinal axes
respectively. It contains 4,294 polygons, and the total area covered by these
polygons is approximately 30,483 km2. Refer to Fig. 1.
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We ran our implementations of the two flood-modeling algorithms on the
indus DEM and the extracted river cells, and we evaluated the output of each
algorithm using a method that resembles the Area-Under-the-Curve (also known
as AUC) measure, which is one of the most popular measures for model test-
ing [6]. In particular, we overlayed flood with indus and extracted the cells
in indus whose centers lie in the interior of a polygon in flood. We refer to
these cells as the flooded cells of indus. In total, we identified slightly more
than four million flooded cells. Next we selected at random a large set of pairs
of cells. Each pair was selected so that it consists of one flooded cell and one
non-flooded cell. We denote this set of pairs by P. For each of our methods, we
determined for each pair pr ∈ P if the flooded cell in pr scores a higher resis-
tance value than the non-flooded cell, and calculated the percentage of the pairs
in P for which this condition holds. We call this percentage the output quality
of the method. The value of the output quality is an estimation of the AUC
measure; the output quality value is equal to the AUC if P consists of all possi-
ble pairs of flooded/non-flooded cells in the region of interest. For our study, we
chose 105 pairs, considering that this is a sufficient number for estimating the
value of the AUC. For method ProximityResistance the output quality is 87%,
while for UpstreamResistance the output quality is 92%. This shows clearly that
both of the methods produce flood resistances that are highly consistent with
the actual event.

To measure how the two methods perform on a more local scale, we calculated
their output quality within several smaller regions. More specifically, within the
xy-region covered by flood we extracted three sets of square windows, each set
consisting of windows of certain size. In the first set each window is a square with
dimension 20 km, in the second set each window has dimension 40 km, and the
third set consists of windows of 80 km dimension. The windows of each set were
picked in the following way. Within the region covered by flood we extracted
at random 500 windows of the same size. Then we used a greedy algorithm to
select a subset of these windows, so that there is no pair of windows in the
subset that overlap with each other, and so that each window contains at least
500 flooded and at least 500 non-flooded cells. Thus, we ended up with a subset
of 119 windows for the first set, and forty-five and twenty-two windows for the
second and third set respectively. From each window, we selected 105 cell pairs,
again so that each pair contains one flooded and one non-flooded cell. We then
calculated the output quality of our methods for each window. Figure 2 shows
the results for the windows of 20 km dimension, where the mean output quality
was 61% for ProximityResistance and 71% for UpstreamResistance. For windows
of 40 km dimension, ProximityResistance attained mean output quality 69% and
UpstreamResistance mean output quality 81%. For the third set of windows, the
values were 76% and 85%, respectively.

Therefore, for each window size UpstreamResistance has higher mean output
quality than ProximityResistance. For both methods the output quality increases
as the window size becomes larger. Yet, we observed that for all examined window
sizes, there exist windows where at least one of the methods has an output quality
value of less than 50%.
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Fig. 2. The locations for the selected windows of 20 km dimension. Windows are rep-
resented by colored boxes, and each box is colored according to the method’s output
quality for this window. The relative size of the boxes in the figure is larger than the
size of the original windows, to make each box more visible. The xy-regions of the orig-
inal windows do not overlap with each other. Left: boxes colored based on the output
quality values for ProximityResistance. Right: boxes colored according to the output
quality values of UpstreamResistance. (Color figure online)

To examine the above further, we investigated if there is a correlation between
the output quality values and the two following factors: heterogeneity of the
terrain (variability of elevation values) and the number of flooded cells inside
each window. To measure the heterogeneity of the terrain within each window
w, we computed the logarithm of the standard deviation for the elevations of
the cells in w. We call this value the topographic heterogeneity of w. In order to
examine visually the relation between the output quality and the topographic
heterogeneity among the different windows, we created a scatter plot for each
method. Each scatter plot contains a 2-dimensional point p(w) for every window
w; the horizontal coordinate of p(w) is equal to the topographic heterogeneity of
w, and the vertical coordinate of this point is equal to the output quality of the
method for w. Figure 3 shows the scatter plots that we produced for windows
of 20 km dimension. It becomes evident that both of the methods score higher
output quality values for windows of intermediate topographic heterogeneity.
Most of the low output quality values appear on windows of small heterogeneity.
Regions that consist mainly of flat areas belong to this category. In a similar
way, we created a plot for each method where the horizontal coordinates of the
presented points are equal to the number of flooded cells in the windows that
we examine. However, the latter plots do not indicate any relation between this
number and the output quality–see Fig. 3. The visualisations that we produced
for the windows of larger size showed similar patterns.

Comparing the Output of the Methods. To gain more insight about methods
ProximityResistance and UpstreamResistance, we visually examined the output
that the two methods produced for the denmark dataset. For various rise values ρ
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Fig. 3. Top: scatter plots that show the relation between the output quality of each
method and topographic heterogeneity. Bottom: plots that show the relation between
the output quality of each method and the number of flooded cells in each window.

we extracted the regions in the output of each method which consisted of all
cells with flood resistance � ρ. Our first observation was that for the same
rise value the flooded area that is computed by ProximityResistance is larger
than in the output produced by UpstreamResistance. Refer to Fig. 4(a) and
(b). This is an outcome of how the two methods estimate river floods around
coastlines; in the output of ProximityResistance, almost the entire coastline of
the terrain appears flooded even for very small rise values. Refer to Fig. 4(c).
Recall that with ProximityResistance a cell c gets flooded for a rise value ρ
if a) this cell has a height difference � ρ from the closest river cell on the
xy-domain (the obstruction value), and b) if there is a path from c to any
river cell such that the obstruction values of all cells in the path is � ρ. The
terrain cells close to the coastline have low height values, since they lie almost
on sea level. Therefore, for each such cell the height difference from the closest
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river cell is either very small (even negative), hence the coastline constitutes
a path of cells that connects to the river and all cells in this path have very
low obstruction values. As a consequence, even for small rise values all cells in
this path are flooded when using ProximityResistance. On the other hand, in
the output of the UpstreamResistance method, coastlines do not appear flooded
even for large rise values. The reason is that for a coastline cell there is usually
no flow path that connects this cell with a river cell. Another artifact produced
by ProximityResistance is that, in some places, the output contains flooded
regions with long linear boundaries that do not correspond to actual obstacles
on the elevation profile of the terrain. Refer to Fig. 4(d). These artifacts are the
result of assigning obstruction values to non-river cells based on the Voronoi
diagram of the river cells on the xy-domain of the terrain. In an area that
extends between two different river streams, this step may produce two regions
of cells that have a large difference in their obstruction values. The boundary
between these two regions follows the boundaries between Voronoi regions of
river cells that belong to different streams. As a consequence, for certain rise
values there appear flooded areas in the output whose boundary follows the
boundary between the Voronoi regions of the river cells.

(a) (b)

(c) (d)

Fig. 4. An illustration of the outputs of ProximityResistance and
UpstreamResistance for the denmark dataset. Flooded regions are indicated by dark
blue color. (a) The output of the ProximityResistance around Hadsund town (north-
east Jutland) for a rise value of half a meter. (b) The output of UpstreamResistance
for the same region and rise value. (c) The output of ProximityResistance close to
Vejle city with a rise value of just one milimeter. The entire coast appears flooded,
with wide flooded areas at certain places. (d) The output of the ProximityResistance
on a region with several river streams, for a rise value of 2.8 m. (Color figure online)
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Abstract. We study graph augmentation under the dilation criterion. In
our case, we consider a plane geometric graph G = (V, E) and a set C of
edges. We aim to add to G a minimal number of nonintersecting edges from
C to bound the ratio between the graph-based distance and the Euclidean
distance for all pairs of vertices described by C. Motivated by the problem
of decomposing a polygon into natural subregions, we present an optimal
linear-time algorithm for the case that P is a simple polygon and C models
an internal triangulation of P . The algorithm admits some straightforward
extensions. Most importantly, in pseudopolynomial time, it can approx-
imate a solution of minimum total length or, if C is weighted, compute
a solution of minimum total weight. We show that minimizing the total
length or the total weight is weakly NP-hard.

Finally, we show how our algorithm can be used for two well-known
problems in GIS: generating variable-scale maps and area aggregation.

1 Introduction

Polygons representing geographic objects can contain millions of vertices and
thus can be difficult to handle. Often, they consist of multiple regions that are
connected only via narrow bottlenecks, such as isthmuses in the case of land
or straits in the case of water areas. To ease the handling of such polygons
and to identify natural subregions, such as the Iberian Peninsula as a part of
Europe, one often seeks a partition of a polygon into multiple smaller polygons
of a certain type (e.g., into convex polygons). A triangulation of a polygon is
the most common type of a polygon partition, yet often one is interested in
larger (non-triangular) subregions. We present new algorithms for partitioning
a polygon based on an internal triangulation of it: every output region is the
union of a set of triangles of that triangulation. We consider our algorithm a
useful tool for shape manipulation and demonstrate its effectiveness on two use
cases: the generation of variable-scale maps and the aggregation of areas.

Our basic idea is to consider the polygon partitioning problem as a special
graph augmentation problem. The vertices and edges of the input polygon P
define a geometric graph G, which we augment with a selection of edges from
a set C of candidate edges (that is, diagonals of P ) to split P into multiple
pieces. After the augmentation, the graph shall be well connected. More precisely,
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for each candidate edge {u, v} ∈ C we require that the dilation for u and v in
the augmented graph is bounded by a user-set parameter. For any two vertices
u, v of a geometric graph G, the dilation (sometimes also called stretch factor or
detour factor) is defined as the ratio between the shortest u-v path via G and the
Euclidean distance between u and v. By selecting a minimum number of edges
from C we obtain a nice decomposition of the input polygon. As an alternative
optimization objective we consider minimizing the total weight of the selected
edges, assuming that for each edge in C a weight is given as part of the input.

Contributions. We introduce terminology and a general problem definition
with three primary variants (unweighted, length-weighted and general weights)
in Sect. 2. We review related work in Sect. 3. In Sect. 4 we consider the prob-
lem variants for the case that the graph to be augmented is a simple polygon
without holes and the edges that can be added are an internal triangulation. We
provide an optimal linear-time algorithm for the unweighted case, and present
some extensions. We prove that both the general-weights case and the length-
weighted case are weakly NP-hard, present a pseudopolynomial-time algorithm
for the general-weights case, and show that it can provide a (1+ε)-approximation
algorithm for the length-weighted case. We discuss our two use cases in Sect. 5.

2 Preliminaries

Graphs. Let G = (V,E) denote a graph defined by its vertices V and edges
E ⊆ {{u, v} | u, v ∈ V }. We call G a geometric graph if every vertex is assigned
a position in R

2 and each edge is represented by the line segment connecting its
endpoints. A geometric graph is plane if vertices have unique positions and no
two edges intersect, except at common endpoints.

Dilation. Let G = (V,E) be a geometric graph and u, v ∈ V be two vertices of
G. We denote the Euclidean distance between u and v as ‖u − v‖; we use ‖e‖
to denote the length of edge e. The length of the shortest path in G between
u and v is denoted by dG(u, v). We define the (vertex) dilation between u and
v as ΔG(u, v) = dG(u, v)/‖u − v‖; the dilation of the entire graph is ΔG =
maxu,v∈V,u�=v ΔG(u, v). If G is disconnected, its dilation is infinite.

Problem Statement. In this paper, we consider graph augmentation problems,
where the augmentation is constrained to a prescribed set of vertex pairs. We
call such vertex pairs candidate edges. Hence, a problem instance comprises

– a plane geometric graph G = (V,E),
– a set C ⊆ {{u, v} | u, v ∈ V }\E of candidate edges, and
– a real number τ ≥ 1.
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Consider S ⊆ C to be a subset of the candidate edges. We denote by GS =
(V,E∪S) the graph obtained by augmenting G with the candidate edges in S. We
call a candidate edge {u, v} ∈ C satisfied with respect to S if ΔGS

(u, v) ≤ τ . A
simple path in GS whose length is sufficiently small to prove that ΔGS

(u, v) ≤ τ
is called a witness of {u, v}. Set S is a solution to the problem if all edges in
C are satisfied (with respect to S). Note that we ask to satisfy only the pairs
specified by the candidate edges; we do not guarantee that the dilation between
all vertices is bounded by τ . This is a trade-off that we make to guarantee that
solutions exist. In particular, S = C is a solution for any problem instance.

However, we want to find a “good” solution. A primary criterion, in the
context of polygon partitioning, is that the edges in S do not intersect each
other or existing edges of G. Furthermore, we consider optimizing three different
objective functions, resulting in the following problems:

– MinSize: minimize |S|.
– MinLength: minimize

∑
e∈S ‖e‖.

– MinWeight: minimize
∑

e∈S w(e), given weights w : C → R
+.

In the above, we provide an upper bound on the allowed dilation and mini-
mize the cost (size, length or weight) of the solution. The dual variants instead
bound the allowed cost and ask to minimize the dilation. We focus on the stated
variants; our algorithms can solve the dual variant by a binary search on τ . This
is possible since the problem is monotonic: any solution for τ is also a solution
for τ ′ > τ , and thus increasing the dilation can only reduce the minimal cost.

3 Related Work

Partitioning. Partitions of polygons into triangles, monotone polygons, or con-
vex polygons are common in the context of GIS [19] and have intensively been
studied in computational geometry. For example, for the case that no additional
vertices (i.e., Steiner points) are allowed, Keil and Snoeying [13] have shown that
a simple polygon with n vertices and r reflex vertices can be partitioned into a
minimum number of convex polygons in O(n + r2 min{r2, n}) time. In the case
that Steiner points are allowed, the problem can be solved in O(n+ r3) time [5].
For polygons with holes, the problem is NP-hard in both cases [16].

Often motivated by problems in computer vision and pattern recognition,
researchers have developed methods for partitioning polygons into “natural and
intuitive” [17], “simpler” [8], or “approximately convex” [15] pieces, which need
not be convex. However, these methods do not provide any guarantee of opti-
mality with respect to the number of output pieces or a different measure.

Dilation. Algorithmic work involving dilation is motivated mostly by applica-
tions in infrastructure design (e.g. road or electricity networks). Much research
has been done without planar considerations, e.g. [2]. Considering our use cases,
we focus here on results with such planar considerations; see [4] for a survey.
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Giannopoulos et al. [9] prove that, given a point set Q, computing a graph
G = (Q,E) with ΔG ≤ 7 is NP-hard, if |E| is bounded to O(|Q|). They also
prove that adding O(|E|) edges to a geometric graph to bound the dilation to 7 is
NP-hard. Both claims hold with and without requiring planarity. This supports
the investigation of our variant, where we do not consider satisfying all pairs,
but only those provided in a (constrained) candidate set.

Farshi et al. [7] show that it is possible to compute, for a given geometric
graph, the edge that results in the largest dilation reduction in O(n4) time. This
was later improved by Wulff-Nilsen [20] to O(n3 log n) time. Note that repeatedly
applying this greedy choice does not yield an optimal result. Aronov et al. [1]
present algorithms for the following problem: given a point inside a polygon,
compute a segment from the point to the boundary of the polygon such that the
dilation from the given point to any point on the boundary is minimized.

If we measure dilation via the geodesic distance and only between vertices
of which one is contained in a given small set, an FPTAS exists to compute a
minimal-dilation triangulation of a simple polygon [14]. Klein et al. [14] attribute
to folklore that a constrained Delaunay triangulation of a simple polygon has
dilation at most π(1 +

√
6)/2 < 5.09. This readily implies that our algorithms—

run with τ and using as C the constrained Delaunay triangulation—compute a
small set of edges such that all vertex pairs have dilation less than 5.09τ (in the
geodesic model). A similar result was proven by Bose and Keil [3], stating that
a constrained Delaunay triangulation (not necessarily of a polygon) has dilation
at most 4π

√
3/9 ≈ 2.42, though only between pairwise visible points.

4 Triangulated Polygons

Here we study the dilation problem restricted to instances where G is a simple
polygon P and C is an inner triangulation of P . We denote the resulting problems
by MinSizePoly, MinLengthPoly and MinWeightPoly.

We present a linear-time optimal algorithm for MinSizePoly in Sect. 4.1. In
Sect. 4.2 we show how to deal with any nonintersecting set of internal diagonals
as candidate edges; and in Sect. 4.3 we present a heuristic for dealing with holes.
Finally, in Sect. 4.4 we prove that MinLengthPoly and MinWeightPoly
are weakly NP-hard; we present a pseudopolynomial-time algorithm for Min-
WeightPoly with integer weights and, via rounding, obtain an approximation
algorithm for MinLengthPoly.

4.1 Minimizing the Number of Selected Edges

To solve MinSizePoly, we apply a recursive algorithm. Its recursion is struc-
tured using a rooted binary tree T on the edges of P and C. By maintaining
three possible subsolutions for each node in T , we show that we compute an
optimal subsolution for each node based only on its children in T .
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r

Fig. 1. (left) A binary tree T with root r. (right) A feasible role assignment for τ = 3;
the solid black diagonal is the only selected candidate edge in C, but allows a shorter
path for another candidate edge.

Building a Tree. We define a directed binary tree T with nodes corresponding
to the edges P ∪ C as follows. First, we pick an arbitrary edge of polygon P as
root r. Then, we add the two edges incident to the same unprocessed triangle
as children to r and recurse on each child. The result is a tree on the edges and
candidate edges, rooted at r; see Fig. 1. If the embedding is given—the cyclic
order of candidate edges at each vertex—we can compute T in O(n) time, where
n is the number of polygon edges. Otherwise, O(n log n) time suffices.

Components of T . Every edge e ∈ P ∪C (a node in the tree) partitions T into
two components4. The component that contains r is referred to as T root

e , the
other as T leaf

e . Both of these components exclude e itself. For root r we define
T root

r = ∅ and T leaf
r = T \ {r}. For uniformity of presentation, we also define a

component T self
e containing only edge e.

In a solution S ⊆ C for MinSizePoly, each candidate edge e = {u, v} ∈ C
must have a witness: a simple u-v path of length at most τ‖e‖. A witness of e
lies fully within one of the three components of T defined by e.

Role Assignment. With our algorithm we compute a role assignment α : C →
{self, leaf,root} for all candidate edges. The role assignment indicates which
component must contain a witness; we call α feasible if T α(e)

e indeed contains
a witness for all e ∈ C. A role assignment α directly prescribes the set Sα of
edges that are part of the solution: Sα = {e | e ∈ C ∧ α(e) = self}. Hence, we
refer to |Sα| as the size of α, using |α| as a shorthand. For uniformity, we define
α(e) = self for all edges e ∈ P , but these are not part of Sα.

Figure 1 shows an instance with a role assignment. Every edge e ∈ C is
displayed according to its role: self-edges are black; root- and leaf-edges are
gray with a small triangle indicating the direction of their shortest path.

As an edge can play three different roles, there are up to 33 = 27 configura-
tions of a role assignment for a triangle; see Fig. 2. We reduce this to 20 config-
urations as follows. Consider two edges e1 and e2. We call e1 and e2 conflicting
in α if either: e1 is the parent of e2 in T , α(e1) = leaf and α(e2) = root; or

4 In this paper “edge” always indicates an element of P ∪C—a node in T —and never
an edge between nodes (parent-child relation) in T .
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(3)

(2)

(1)
e

e1 e2

Fig. 2. The 27 configurations of roles for a triangle of an edge e and its children e1 and
e2 in T . The bracketed roles are not needed for an optimal solution.

e1 and e2 are siblings in T and α(e1) = α(e2) = root. The following lemma
implies that we may indeed discard the bracketed configurations in Fig. 2.

Lemma 1. There exists a feasible role assignment with minimal size that does
not contain any conflict.

Proof. Consider a solution S with minimal size. Let α be the role assignment
obtained by assigning self to e ∈ S and root or leaf to the remaining edges,
depending on which component of T contains the shortest path between the
endpoints of e. To derive a contradiction, assume α contains a conflict between
e1 and e2. This implies that e2 ∈ T α(e1)

e1 and vice versa. By construction, the
shortest path π1 for e1 is contained in T α(e1)

e1 . Hence, π1 must pass through
the endpoints of e2. However, this implies that the shortest path for e2 is a
subpath of π1, and thus not in T α(e2)

e2 as this component contains e1. This is a
contradiction, thus α cannot contain a conflict. �

Partial Assignments. Our algorithm computes role assignments for subtrees
of T . A partial role assignment αe is an assignment on {e} ∪ T leaf

e . Its partial
solution Sαe is defined as {e′ | e′ ∈ C ∩ ({e} ∪ T leaf

e ) ∧ αe(e′) = self}; again
we use |αe| as a shorthand for the size of Sαe . A partial assignment for the root
r corresponds to a (full) role assignment. Assignment αe is feasible if one of the
following holds for all e′ ∈ {e} ∪ T leaf

e :

1. αe(e′) = self; or
2. αe(e′) = leaf and (Sαe ∪ P ) ∩ T leaf

e′ contains a witness for e′; or
3. αe(e′) = root and either:

(a) (Sαe ∪ P ) ∩ T root
e′ ∩ ({e} ∪ T leaf

e ) contains a witness for e′;
(b) the combined length of the two shortest paths in Sαe ∪ P from the end-

points of e′ to the endpoints of e is at most τ · ‖e′‖ − ‖e‖.

The rationale for case 3 is that either the edge is already satisfied (3a) or it is to
be satisfied by what has yet to come (3b). However, the latter must ensure that
there is still some length “to be spent” in order to complete the solution.
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Lemma 1 and the triangle inequality imply that, for a feasible αe with αe(e) ∈
{self, leaf}, all edges in {e} ∪ T leaf

e are satisfied. It presents a shortest path
between the endpoints of e to future computations. The length of this path is
the front-length of αe, denoted by L(αe). Moreover, if αe(e) = root, then a
contiguous subset of T leaf

e may all have this assignment. The front-allowance
R(αe) is the maximal allowed length on the root side of e, such that all these
assignments are still satisfied. If αe(e) �= root, it is infinite.

In the following, all role assignments are feasible, unless mentioned otherwise.

Algorithm. The algorithm relies on a postorder recursive traversal of T to
compute the partial assignment αe for each edge e. Calling this with r hence
results in the full role assignment α. However, to do the recursion correctly, we
cannot simply compute a single partial assignment, but compute three instead:

Definition 1. The following three partial role assignments are defined:
– αself

e : the smallest partial role assignment with αe(e) = self.
– αleaf

e : the partial role assignment with minimal front-length among the small-
est partial role assignments with αe(e) = leaf.

– αroot
e : the partial role assignment with maximal front-allowance, among the

smallest partial role assignments with αe(e) = root and R(αe) ≥ ‖e‖.
We compute these assignments based on the partial assignments of the child

nodes. The base case, a leaf of T , corresponds precisely to an edge of P . For
these, we consider only αself

e to be defined, with size 0 and front-length L(αe) =
‖e‖. For root r, again corresponding to an edge of P , we are interested only in
computing αself

r , the size of which (not counting r) is the size of the solution.
Any other node of T is a candidate edge e, with precisely two children in T : e1
and e2. To compute the partial assignments in this case, we simply try the 20
cases of Fig. 2 and find those that satisfy Definition 1. By storing the size of the
partial assignments, the size of a new partial assignment is simply the sum of the
sizes of the children’s partial assignments, increased by 1 if e is assigned self.
However, not all cases may lead to feasible assignments. We therefore check the
feasibility as follows, where row numbers refer to the labels in Fig. 2.

Cases in the first row correspond to computing αself
e . For cases involving

αroot
e1

(and analogously for e2), the front-allowance is met if L+ ‖e‖ ≤ R(αroot
e1

)
holds, where L is the front-length provided by sibling.

Cases in the second row correspond to computing αleaf
e . Cases with a root

assignment for a child can be ignored by Lemma 1. We must ensure that the
combined front-length of e1 and e2 is at most τ · ‖e‖.

Cases in the third row correspond to computing αroot
e . We check and com-

pute front-allowances. Since e is not part of the solution, a front-allowance of
a child is “propagated”. For a child with a root assignment, its propagated
front-allowance is its front-allowance minus the front-length of its sibling. The
minimum of this propagated front-allowance (if any) and τ ·‖e‖ is the new front-
allowance for e in this case and we check whether it is longer than ‖e‖.

Note that αself
e always exists, but αleaf

e and αroot
e need not exist. Only cases

for which both partial assignments for the children exist are computed.
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Correctness. To prove the algorithm correct, we shall prove that the computed
partial assignments, αself

e , αleaf
e and αroot

e , indeed are the smallest feasible par-
tial assignments according to Definition 1. The lemma below is at the heart of
this proof. Essentially, it states that we can always get a partial assignment with
infinite front-allowance and minimal front-length by increasing the size of an
assignment by at most one.

Lemma 2. For any edge e in T , we know that |αself
e | ≤ 1+min{|αleaf

e |, |αroot
e |},

where the size of a partial assignment is considered infinite if it does not exist.

Proof. Consider αleaf
e or αroot

e . If we change the assignment of e to self, we
obtain again a feasible partial assignment. The lemma readily follows. �
Lemma 3. The computed partial assignments correspond to Definition 1.

Proof. We prove this lemma via structural induction. In the base case, e is a leaf
of T . Hence, it is an edge of P and the only partial role assignment is αself

e with
size zero (since e is not in C). Trivially, this has minimal size.

In the inductive case, e is not a leaf of T . It has two children, e1 and e2. Let
βe be an optimal partial assignment, according to Definition 1. It implies partial
assignments βe1 and βe2 for its two subtrees. Let αe1 = α

βe(e1)
e1 be a shorthand

for the partial assignment computed by our algorithm, for the given case; αe2 is
defined analogously. We use ∗ to consistently indicate either e1 or e2.

If |β∗| < |α∗|, we arrive at a contradiction with the induction hypothesis,
which implies that α∗ has minimal size.

To argue about the case that |β∗| ≥ |α∗| holds for both children, we first
make the following observations. If |β∗| = |α∗|, then we can replace β∗ with α∗
without making the solution worse: by the induction hypothesis, α∗ cannot have
a greater front-length or a lower front-allowance. If |β∗| > |α∗|, we cannot make
this replacement as α∗ may have a greater front-allowance or lower front-length.
However, by Lemma 2, we now know that |αself

∗ | ≤ |β∗| and this assignment
has overall minimal front-length and infinite front-allowance. Hence, replacing
β∗ with αself

∗ does not make the solution worse.
When we carry out both replacements as described above, we obtain a partial

assignment that is not worse than βe and thus adheres to Definition 1. Due to
exhaustive case analysis, our algorithm computes this partial assignment. �

The computed partial assignment αself
r corresponds to a full role assignment;

it is minimal by Lemma 3. This readily implies the following theorem.

Theorem 1. The algorithm computes an optimal solution to MinSizePoly.

Complexity. After building T , the straightforward implementation of this algo-
rithm runs in optimal O(n) time, for a polygon with n edges. Keeping track of
which cases give the best result in the computation of each partial assignment,
allows the recovery of the optimal solution in O(n) time as well.
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4.2 Fewer Diagonals

Suppose we require only that C is a nonintersecting set of diagonals inside P .
Our algorithm can be modified to also deal with such a case. The most sig-
nificant change is that T is no longer binary: nodes may have higher degree.
Lemmas 1 and 2 straightforwardly generalize to this case. Hence, we may con-
clude that an optimal partial assignment can be obtained by using leaf assign-
ments of those children of e that have the smallest front-length. Thus, we sort the
children according to front-length of their leaf assignment. Testing every child
with a root assignment, we can do a binary search to find the best selection of
other children to use a leaf assignment, the rest using self. Hence, processing
a single edge e takes O(de log de) time, where de is the degree in T . The total
execution time is O(n log d) where d is the maximal degree in T .

4.3 Polygons with Holes

Let us consider a simple polygon P with holes; C is an inner triangulation of
P . To bound the dilation, we need at least some edges to connect the outer
boundary of P and each hole. We thus proceed as follows, similar to [8]. First,
we compute a minimal-length set T ⊆ C that connects these boundaries, i.e., a
minimal spanning tree on the boundary components of P . We use these edges
to carve open P into a polygon PT without holes (see Fig. 3). We then run our
algorithm on PT ; let ST denote its solution. The solution S to P is given by
ST ∪ T . This heuristic does not provide an approximation guarantee, since the
distance along the boundary of PT can be higher than the distance in the graph
P ∪ T ; this may result in adding edges to the solution unnecessarily.

Fig. 3. (left) A polygon with two holes. (middle) Two edges are used as T , to connect
the boundaries. (right) T is used to define a single polygon without holes.

4.4 Minimizing the Total Weight or Length of the Selected Edges

We now analyze the computational complexity of MinLengthPoly and Min-
WeightPoly and, thereafter, present algorithms for their solution.

Theorem 2. MinLengthPoly is weakly NP-hard.
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Fig. 4. MinLength instance constructed
for instance {a1, a2, . . . , an} of Partition.

Proof. Our proof is by reduction
from the weakly NP-complete prob-
lem Partition, defined as follows: let
A = {a1, . . . , an} be a set of positive
integers and let A =

∑
ai∈A ai; is there

a set I ⊆ A such that
∑

ai∈I ai = A/2?
For a Partition instance, we con-
struct a MinLengthPoly instance
M with τ = 3 and the polygon P
and triangulation C as shown in Fig. 4,
using one last point at distance 7A to
the right of vn+1. We prove that M
admits a solution S of total length at
most 3A/2 if and only if A is a yes-
instance of Partition.

Let A = {a1, . . . , an} be a yes-
instance of Partition and let I ⊆ A
be such that

∑
ai∈I ai = A/2. We show

that S = {{vi, vi+1} | i ∈ I} is a solution to MinLength instance M with total
length at most 3A/2. Every edge {vi, vi+1} ∈ C with i ∈ {1, . . . , n} (i.e., every
horizontal edge) is trivially satisfied as P already contains a path of length 3ai.
The vertical edge {u, vn+1} is exactly satisfied: walking in counter-clockwise
direction along P yields a u-vn+1 path of length 15A and every horizontal edge
{vi, vi+1} ∈ S reduces the length of this path by 5ai + 4ai − 3ai = 6ai; there-
fore, the shortest u-vn+1 path has total length 15A − 6A/2 = 12A = τ4A =
τ‖{u, vn+1}‖. Every other edge {u, vi} incident to u is satisfied, because it is
longer than {u, vn+1}, while at the same time the shortest u-vi path is shorter
than the shortest u-vn+1 path. By construction, the selected edges have total
length 3A/2.

Now, let S ⊆ C be a solution to M of total length at most 3A/2. Because
every non-horizontal edge has a length of at least 4A, S contains only horizontal
edges. The edge {u, vn+1} can be satisfied only if the total length of horizontal
edges in S is at least 3A/2: hence, the total length of S is exactly 3A/2. Therefore,
the numbers in A corresponding to the edges in S sum up to A/2.

The coordinates of the vertices of the input polygon are rationals—or integer
if we scale by a factor of 18—and polynomial in the sum A of A. Therefore, the
reduction can be computed in pseudopolynomial time. �

Theorem 3. MinWeightPoly is weakly NP-hard.

Proof. We use the same reduction as in the proof of Theorem 2, except that we
define the weights as a part of the MinWeightPoly instance: we set the weight
of each horizontal edge to its length and of each other edge to 4A. All weights
are polynomial in A. With this the argument works as before. �

Since MinLengthPoly and MinWeightPoly are weakly NP-hard, the
more general problems MinLength and MinWeight are weakly NP-hard too.
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Furthermore, the polygon that we constructed for our reduction admits only
one triangulation. Therefore, the problems do not become easier, if we restrict
the triangulation implied by C, e.g. to a constrained Delaunay triangulation [6].

Exact Solution of MinWeightPoly. The algorithm for MinSizePoly can be
adapted to solve MinWeightPoly, assuming integer weights. Let w : C → N

denote the weight function. In the unweighted case, Lemma 2 implies that leaf
or root assignments with size over |αself

e | − 1 are never needed. Its weighted
variant states that, for an edge e, leaf or root assignments with size over
W (αself

e ) − w(e) are never needed, where W (·) denotes the sum of weights over
all edges with a self assignment. Thus, for each diagonal e and i ∈ {1, . . . , w(e)},
we compute a leaf assignment with total weight exactly w(αself

e ) − i and mini-
mal front-length. Analogously, we compute up to w(e) root assignments, with
maximal front-allowance. A straightforward implementation for computing the
partial solutions for an edge from its children’s solutions thus takes O(w(e)2)
time. Therefore, this algorithm takes O(

∑
e∈P∪C w(e)2) ⊆ O(wmax · wsum) ⊆

O(nw2
max) time, where wmax = maxe∈C w(e) and wsum =

∑
e∈C w(e).

Approximating MinLengthPoly. If edge lengths are integer or fixed-point
numbers, the weighted algorithm can compute the solution in pseudopolynomial
time. Otherwise, rounding yields an approximate solution, as detailed below.

Let λ denote a small constant and assume 1+λ ≤ mine∈C ‖e‖. We define two
weight functions: w(e) = 2λ ·round(‖e‖/(2λ)) and w′(e) = round(‖e‖/(2λ)). We
run the weighted algorithm using w′ as its integer weight function. However, w
and w′ are identical up to scaling and thus produce the same optimal results.
The rounding in w implies ‖e‖−λ < w(e) ≤ ‖e‖+λ and w(e) > 1 by assumption.

Let S denote the result of the algorithm; it has weight w(S) =
∑

e∈S w(e)
and length l(S) =

∑
e∈S ‖e‖. We find that w(S) > l(S) − λ|S| > l(S) − λw(S),

implying l(S) < (1 + λ)w(S). Let S∗ denote an optimal solution to Min-
LengthPoly; we find w(S∗) ≤ l(S∗) + λ|S∗| ≤ l(S∗) + λw(S∗) and thus
l(S∗) ≥ (1 − λ)w(S∗). The approximation ratio obtained by our algorithm is
l(S)/l(S∗) < (1+λ)w(S)/((1−λ)w(S∗)). Since S is optimal in terms of weight,
this simplifies to (1 + λ)/(1 − λ).

The running time of this approach is O(nW ′2) where W ′ = maxe∈C w′(e).
As w′(e) ≤ ‖e‖/(2λ)+ 1

2 , we find that this is O(nL2/λ2) where L = maxe∈C ‖e‖.
We thus get a (pseudo)PTAS to approximate MinLengthPoly, that computes
a (1 + ε)-approximation in O(nL2( 2+ε

ε )2) = O(nL2/ε2) time.

5 Use Cases

Two vertices lying on opposite sides of a narrow part of a polygon typically have
a very large dilation: a connection across the strait of Gibraltar, for example,
is much shorter than a path along the coast, all around the Mediterranean Sea.
Hence, our dilation-based method may find natural subregions of a polygon.
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(a) MinSizePoly, τ = 2 (b) MinSizePoly, τ = 5 (c) MinLengthPoly, τ = 5

Fig. 5. Results of our algorithms for a part of Europe. Especially the MinLengthPoly
solution (c) nicely reflects the Iberian and Italian peninsulas.

This general hope is confirmed by the results that we obtained with implemen-
tations of our algorithms; see Fig. 5. Here we apply our method to two specific
problems: computing distorted maps (Sect. 5.1) and aggregating areas (Sect. 5.2).

5.1 Computing Distorted Maps

Several methods exist to distort a map, for example, to resolve spatial conflicts
or to emphasize certain information. Such methods often rely on constraints that
are defined based on a geometric graph representing the map [10,11]. An edge in
this graph may represent a line segment of a map object, but usually additional
edges are needed to model the constraints for the output map. We consider our
graph augmentation method as a useful tool for finding such relevant edges.

The method of Harrie and Sarjakoski [10] for the resolution of conflicts relies
on a constrained Delaunay triangulation of the map objects. A constraint for
the length of a triangle edge e = {u, v} is introduced if e is shorter than a
threshold ε and the map does not contain a u-v path of less than a number k of
line segments. Similarly, our method selects edges of a triangulation based on a
geometric distance and a graph-theoretical distance between two vertices of the
map. However, while the method of Harrie and Sarjakoski measures the graph-
theoretical distance in the input map, our method considers the graph-theoretical
distance after augmenting the map with the selected edges. We consider our
approach promising as it avoids redundant constraints.

The method of Haunert and Sering [11] enlarges a user-selected focus region
in a map while minimizing the distortion, which is measured at the edges of a
graph representing the map objects, for example, a network of roads or country
borders. Additional edges are necessary if the relative position should be main-
tained for some pairs of vertices: e.g., vertices on opposite sides of a strait. To
make a good selection of edges, Van Dijk et al. [18] have developed a greedy
heuristic that iteratively augments the map with an edge of maximal dilation
(among all edges of a constrained Delaunay triangulation) while the dilation of
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the graph exceeds a certain threshold. In contrast, our linear-time algorithm for
polygons makes an optimal selection of multiple edges.

Figure 6 shows results that we obtained with the method of Haunert and
Sering [11] when enlarging Wales in a polygon representing Great Britain. For the
result in Fig. 6(middle), only distortions of the edges of that polygon were taken
into account, which almost caused a collision of England’s east and west coast. A
better result is obtained with the additional edges (see Fig. 6(right)): east-west
relations are preserved more accurately, yielding a more “solid” deformation.

5.2 Area Aggregation

Information on land cover is often given as a planar subdivision that consists of
regions of different classes (urban, rural, forest, etc.). To generalize such data, one
often aggregates the areas into larger regions such that many-to-one relationships
arise. Usually, every output area must have at least a certain minimal size.
Subject to this requirement, Haunert and Wolff [12] suggested minimizing a cost
function that combines two objectives: the overall weighted class change should
be small and the resulting areas should be geometrically compact. They showed
that the problem is NP-hard and developed an exact method based on integer
linear programming and a heuristic method based on simulated annealing.

Figure 7(a) shows a sample from the German digital landscape model ATKIS
DLM 50, corresponding to a topographic map of scale 1:50 000. We processed this
sample with the simulated-annealing-based aggregation method of Haunert and
Wolff [12]; see Fig. 7(c). Each output polygon has at least 400 000 m2, which is a
requirement for the scale 1:250 000. Observe that several settlement areas (red)
are lost. To obtain a better solution, we apply our algorithm for MinSizePoly

Fig. 6. (left) A polygon representing Great Britain with the edges of a MinSizePoly
solution with τ = 2. Variable-scale maps computed (middle) without and (right) with
consideration of the selected diagonals. The method of Haunert and Sering [11] was
used with a scale factor of 2 for Wales; the results were scaled to the same height.
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Drestedt

(a) original landscape model (b) result of partitioning polygons in (a)
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c

(c) result of aggregating polygons in (a)
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c

(d) result of aggregating polygons in (b)

Fig. 7. Results of the simulated-annealing-based aggregation method of Haunert and
Wolff [12] when applied to an example from the landscape model ATKIS DLM 50
(c) without and (d) with application of our MinSizePoly algorithm with τ = 4 for
pre-processing. Three corresponding parts in the solutions are labeled with a, b, and c.
(Color figure online)

with τ = 4 and use its result (Fig. 7(b)) as input for the aggregation method.
The solution that we obtain (Fig. 7(d)) is clearly better with respect to the
total class change: the relatively large settlement labeled with a is retained.
Moreover, more compact shapes have been produced, for example, by filling
small concavities in the polygons; see the labels b and c. Based on the objective
function defined by Haunert and Wolff we can quantify this improvement: for
a sample of n1 = 325 polygons from ATKIS DLM 50 the aggregation method
yielded a solution of 7.1% less total cost when using the polygon partitioning
algorithm, which resulted in n2 = 881 polygons. The cost for class change was
reduced by 3.2% and the cost for non-compactness by 12.2%. The higher quality
comes at the cost of an increased number of input polygons for the aggregation
method. Hence, fast heuristics for aggregation are needed and it is reasonable to
minimize the number of output polygons when using our polygon partitioning
method. In our experiments, we ran simulated annealing with the same very large
number (8 810 000 = n2 · 104) of iterations to produce near-optimal solutions;
this took slightly more than half an hour on a desktop PC.
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6 Conclusion

We studied the algorithmic problem of augmenting a simple polygon P of n
edges by adding edges from an internal triangulation to bound its dilation. We
described an optimal linear-time algorithm to minimize the number of edges
added. Moreover, we gave an O(n log d) algorithm for dealing with any crossing-
free set C of candidates (d is the maximal number of neighbors of a region
induced by P and C) and a heuristic for polygons with holes. Furthermore, we
proved that the weighted case and the length-weighted case are weakly NP-hard.
We gave an O(nw2

max) algorithm for the former problem (wmax is the maximal
weight of an edge) and a (1 + ε)-approximation algorithm for the latter.

We evaluated the benefits of using augmentation in two use cases: distorting
maps and area aggregation. When distorting a map to enlarge a focus region,
the augmentation leads to a better preserved shape throughout the map. When
aggregating areas, it yields 3.2% less class change and 12.2% better compactness.

Future Work. Our results leave several interesting open algorithmic problems.
E.g., can we construct an algorithm that can deal with a candidate set C that
contains intersecting edges, but the solution must be planar? However, this may
imply that no solution exists. What if we allow not only internal diagonals of a
polygon, but any edge that does not cross the polygon boundary?

We plan to run extensive experiments to further explore graph augmentation
for our use cases, to provide guidelines for parameter and weight selection and
model the trade-offs between computation time and quality more explicitly.

Acknowledgments. The authors would like to thank Johannes Oehrlein for help-
ful discussions on the topic of this paper. W. Meulemans is supported by Marie
Sk�lodowska-Curie Action MSCA-H2020-IF-2014 656741.
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Abstract. As location-aware applications and location-based services
continue to increase in popularity, data sources describing a range of
dynamic processes occurring in near real-time over multiple spatial and
temporal scales are becoming the norm. At the same time, existing frame-
works useful for understanding these dynamic spatio-temporal data, such
as time geography, are unable to scale to the high volume, velocity, and
variety of these emerging data sources. In this paper, we introduce a com-
putational framework that turns time geography into a scalable analysis
tool that can handle large and rapidly changing datasets. The Hierar-
chical Prism Tree (HPT) is a dynamic data structure for fast queries on
spatio-temporal objects based on time geographic principles and theo-
ries, which takes advantage of recent advances in moving object data-
bases and computer graphics. We demonstrate the utility of our proposed
HPT using two common time geography tasks (finding similar trajecto-
ries and mapping potential space-time interactions), taking advantage of
open data on space-time vehicle emissions from the EnviroCar platform.

Keywords: Time geography · Dynamic indexing · Spatio-temporal
queries · Scalability

1 Introduction

Decision making in the corporate, private, and public spheres is increasingly
based on spatio-temporal information. These information sources include real-
time traffic counts, location-based social-media interactions, environmental sen-
sor networks, as well as space-time trajectories of humans, animals, and vehicles.
At the same time, modern advances in information and communication tech-
nology have converged with popular culture (e.g., geo-tagging, location-based
services, crowd-sourcing, etc.) to create an environment that is overflowing with
new forms of spatial data [1,2]. Many of these emerging data sources contain
details about movements and flows of individuals, objects, or information over
geographic space, and are part of a growing list of dynamic spatio-temporal data
sources.
c© Springer International Publishing Switzerland 2016
J.A. Miller et al. (Eds.): GIScience 2016, LNCS 9927, pp. 34–47, 2016.
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Existing frameworks for understanding dynamic processes are available,
including the rich conceptual and theoretical frameworks of time geography [3,4].
Hägerstrand’s time geography was originally developed to understand how
human migration activities are constrained at the individual level, and pro-
vides an ideal framework within which to explore modern spatio-temporal data
sources. Indeed, there has been renewed interest in time geography concepts for
geospatial research [5,6], including for location-based services [7,8], accessibil-
ity [9,10], trip planning [11,12], and health [13]. Despite this increasing interest,
issues of scalability and applicability to emerging data sources are limiting time
geography’s use in data-intensive research.

While time-geography is useful for thinking about many types of spatio-
temporal movements, much of the existing literature focuses on a limited num-
ber of individuals or features, and does not generally scale to larger problems. In
this paper, we present a computational framework for time geographic analysis
that aims to preserve the underpinnings of time geography (and in particu-
lar, Miller’s [3] time geographic measurement theory), while at the same time
increasing the scalability and applicability of the framework to meet the needs
of a data-intensive research agenda.

In the following section (Sect. 2), a brief background on time geography is
presented, followed by a presentation of dynamic (spatio-temporal) data struc-
tures and bounding volume hierarchies (Sect. 3) as a potential means of scaling
time geographic concepts. Building on these ideas, a framework (Sect. 4) for
the development of time geographic data structures which takes advantage of
recent advances in moving object databases and computer graphics research is
introduced. Following this (Sect. 5), two examples of this framework applied to
common time geographic analysis tasks are presented, using space-time data on
vehicle emissions from the EnviroCar platform [14]. We conclude (Sect. 6) with
a discussion of the proposed framework and directions for future research.

2 Background

The basic concepts of time geography are the space-time path, describing changes
in an object’s location with time, and the space-time prism, describing an object’s
travel potential. This potential is constrained by the speed at which the object
can travel (vmax), as well as locations at which the object must be present (e.g.,
home and work when the object in question is a person). In general, a space-time
path (see Fig. 1a) consists of a sequence of control points and a corresponding
sequence of path segments connecting these points. In this definition, control
points are observed or measured locations in space and time, and segments
connect temporally adjacent control points. A space-time prism (see Fig. 1b)
may exist between any pair of temporally adjacent control points, creating a
time interval during which unrecorded (or future) travel may occur. An object
may thus occupy locations in space other than the straight-line segment between
two adjacent control points. The outline of the prism represents the limits of the
locations that can be visited, as defined by the known space-time control points,
and the object’s maximum velocity, vmax, which defines the prism’s diameter.
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(a) Space-time paths (b) Space-time prism

Fig. 1. Features of Hägerstrand’s time-geography. Concepts include (a) space-time
paths, bundling and stations (cylinder), as well as (b) space-time prisms, and accom-
panying start and end points, future and past cones (semi-transparent), and potential
path areas (projected onto base).

The time-geographic concepts above have been formalized by Miller [3], who
introduces a rigorous measurement theory based on three key assumptions:
(1) the metric space satisfies the notions of identity, non-negativity, and triangu-
lar inequality about distance, (2) data are recorded at specific points in time, and
(3) analysts have perfect information about the system (although relaxations of
this assumption have been explored to some degree [3,15]). Building on these
relatively simple assumptions, Miller has developed mathematical (and geomet-
rical) definitions for space-time paths, prisms, stations, bundles (convergence of
two or more paths for some shared activity over some given length of time), and
intersections (two or more features sharing the same location(s) in space and
time). Miller also provides strict conditions within which space-time paths are
bundled and where intersections may occur between paths and prisms.

Research areas that typically employ time geography as an analysis tool
deal with different aspects of mobility (e.g., location-based services, accessibil-
ity, trip planning, health). The proliferation of mobile devices, sensor networks,
and new developments such as the Internet of Things create an abundance of
new data sources for these domains, which have traditionally dealt with small,
easily tractable, and carefully selected samples. In the following sections, we will
introduce a computational framework that turns time geography into a scalable
analysis tool that can handle large and rapidly changing datasets, allowing the
aforementioned domains to leverage these new data sources. We will argue that
dynamic spatial indexes are not sufficient in this context, and that dynamically
updated bounding volume hierarchies present a viable solution.
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3 Dynamic Spatial Indexes

A wide range of data structures have been proposed for efficient queries on spa-
tial and spatio-temporal data [16], including indexing strategies geared towards
location-based services [17], real-time data [18], or more general spatio-temporal
data [19,20]. However, for objects that may move in space and time, these indexes
have to be continually updated, which can limit their utility in many cases. In
order to address this issue, a number of dynamic indexing algorithms [21,22],
including dynamic spatial indexes [23–25] have been developed, many of which
are designed specifically for keeping track of moving objects [26–28]. These efforts
have lead to a number of useful data structures and indexing schemes for static
and dynamic spatial data, with a particular focus on 2D geometries (although
some innovative exceptions have been proposed [29]). Because time geography
embeds objects in 3D space-time, it is prudent (and useful) to query and per-
form analysis on objects in this space directly. For example, while conceptually
similar to 2D space plus 1D time, a 3D index allows us to query and explore the
joint space-time in a more efficient way (rather than querying space and then
time or vice versa) and allows us to work directly with 3D volumes, rather than
2D time slices. For this, one can turn to the computer graphics literature, where
data models for static and continuously moving 3D objects are required to speed
up the rendering process [30,31].

3.1 Bounding Volume Hierarchies

Many 3D spatial indexing (or space partitioning) algorithms, such as R-trees,
octrees, and kd-trees, slice 3D space with a flat 3D plane [32] to create sub-
volumes. This is efficient to search, but presents a problem when objects over-
lap the split boundary. In dynamic applications of octrees or kd-trees [21,33],
objects may be placed into all sub-volumes they touch. This requires extra over-
head when working with moving objects, and extra tests when traversing the
space to handle duplicate occurrences. As such, while kd-trees have excellent
performance for static geometries [34], when it comes to dynamic settings with
multiple moving objects, a different approach is required1.

Instead of selecting a split-plane to divide volumes, a bounding volume hier-
archy (BVH) tree of arbitrary enclosing volumes (e.g., bounding boxes, capsules,
cylinders, spheres, etc.) can be used [30,36] (Fig. 3). Here, the sub-volumes of a
node don’t have a particular split plane dividing them, and instead, the objects
are divided to minimize some feature of the sub-volumes (generally the surface-
area or volume, estimated by a heuristic). This approach has been shown to dis-
play superior construction performance over kd-trees [34], and because objects
need not be split across sub-volumes, it also allows for dynamic object updates,
insertions, and deletions [37], which facilitate dynamic BVH implementations.
Furthermore, because the tree contains arbitrary enclosing volumes (i.e., there
is no clear split plane), sub-volumes are allowed to overlap. Indeed, the ability

1 Although some parallel versions of kd-trees [35] do show promise.
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for sub-volumes to overlap is one of the main reasons that BVHs can handle
efficient dynamic updates. When objects only move a short distance, the only
adjustment required is a simple adjustment of the bounds of their enclosing vol-
ume(s). Even if the volumes overlap other volumes, the BVH will still function
correctly (although at slightly reduced efficiency). Furthermore, the arbitrary
enclosing volumes provide a significant level of flexibility, even facilitating nested
(or multi-scale) BVHs (i.e., a BVH of BVHs is possible).

Fig. 2. Tree rotations are local restructuring operations that modify subtrees of a
binary tree by swapping direct child and grandchild nodes [38]. In this case, as triangle
(c) moves, the bounding volume expands, but rather than splitting the modified node
into separate nodes containing triangles (b) and (c), tree rotations allow the BVH to
identify and perform helpful merges and splits, such as merging (a) and (c) into a new
leaf node.

When there is significant overlap, the BVH tree generally needs to be re-
structured [39]. To perform this re-structuring efficiently, [38] have developed
a method based on localized updates to the BVH structure via tree-‘rotations’
which has proven extremely useful [37,40]. Combining these tree-rotations with
the ability to have overlapping volumes, handling moving objects in a BVH
works in two ways: (1) if the movement is minimal, the BVH can be quickly and
conservatively expanded to handle the new location (at the cost of efficiency), or
(2) if movement is significant (i.e., overlaps are large), tree-rotations to optimize
the BVH structure can be performed (Fig. 2).

4 Hierarchical Prism Trees

As mentioned previously, one of the key features of time geography is the space-
time prism, a 3D geometric construct that defines potential space-time acces-
sibility. Using a BVH tree, prism intersection tests can now be performed on
the actual prism volume, rather than at discrete time slices, which is common
practice in GIS-based time geography e.g. [41,42]. Algorithms for intersection
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detection of cones and bounding boxes are readily available, many of which are
well-tested and efficient2. For most time geography analysis, simple bounding box
intersection tests provide a quick test of intersection, with more computational
tests (cone/cone and cone/cylinder) reserved for intersecting prisms (though in
most cases, only a 2D projection of prism intersections is required, not the actual
intersection of the prisms).

The above BVH techniques can be implemented in a time geographic frame-
work, where the 3D space represents location on the x and y axes, and time on
the t (or z) axis (see Fig. 3). The concepts of cones and prisms from time geog-
raphy mean that approximate location queries can be handled using relatively
simple collision tests and predictive location queries [43] can take advantage of
the uncertain nature of cones/prisms. While these types of queries require a pri-
ori information about an object’s behavior (vmax), when the prism shape and
size are unknown (or likely to be variable), existing methods are available that
can be used to estimate features of the space-time prism/cone [42,44,45]. Fur-
thermore, because the BVH only requires an estimate of the bounding volume
(i.e., not the geometry of the object itself) to facilitate efficient updates and
queries, more fine-grained analyses and queries are able to lazily [46] evaluate an
object’s position and shape, leading to further efficiency gains. Now, space-time
intersections, searches, and analyses can be efficiently implemented for a large
number of continually moving space-time objects, with minimal computational
overhead, within a hierarchical tree of space-time prisms, or a Hierarchical Prism
Tree (HPT).

When an even larger number of objects are being tracked, a nested approach
to structuring space-time paths and prisms may be required. For instance, rather
than tracking each individual space-time prism in a HPT, it may be preferable
to track the overall space-time path instead; using the HPT to handle updates
of the overall trajectory. When finer-grained details are needed (i.e., to compute
joint potential path areas), a nested HPT of space-time prisms can be lazily
generated and queried.

5 Examples

In this section, we present two common time geographic analysis tasks which take
good advantage of the proposed HPT framework. The first (Sect. 5.2), based on
finding similar space-time movement patterns, is somewhat simplistic given the
nature of the binary tree solution proposed here. The second (Sect. 5.3), based
on computing joint potential path areas [44,45] for multiple space-time paths,
is more complex, and requires multiple levels of queries and calculations. For
these examples, we take advantage of vehicle trajectories from the EnviroCar3

project’s RESTful API. The (preliminary) Python code implementing the exam-
ples discussed in this section is available at https://github.com/carsonfarmer/
hypt.
2 See for example, http://www.realtimerendering.com/intersections.html.
3 https://www.envirocar.org.

https://github.com/carsonfarmer/hypt
https://github.com/carsonfarmer/hypt
http://www.realtimerendering.com/intersections.html
https://www.envirocar.org
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Fig. 3. Dynamic HPT techniques map ideally onto a time geography framework.
A HPT of space-time paths (a) can be dynamically built and efficiently queried via
time-slice, nearest-neighbor, or bounding box queries, and results can be filtered (b)
using more complex intersection tests at the level of space-time prisms (in this case,
the HPT in (b) is a subset of the largest space-time path traveling west-to-east in (a)).
Tree leafs and nodes are denoted by semi-transparent and empty boxes respectively,
with nested trees (a) and space-time prisms (b) as solid objects.

5.1 EnviroCar

EnviroCar is a community-based data collection platform for gathering vehicle-
borne sensor data and producing environmental information [14]. EnviroCar uses
standard Bluetooth OBD-II adapters4, which are connected to a vehicle via the
standard OBD connection that allows it to read parameters such as speed or rev-
olutions per minute. From there, a smartphone records the data at regular time
intervals, augmented with GPS information from the EnviroCar smartphone
app. The EnviroCar app automatically calculates further information such as
fuel consumption and CO2 emissions, which can then be uploaded to the Enviro-
Car platform server for subsequent analysis and sharing with the wider research
and citizen-science communities.

EnviroCar trajectories provide an ideal test-bed for exploring some of the
concepts presented in this paper. For each control point in a series of EnviroCar
trajectories, we have several measures that can be used to determine the shape
and size of its corresponding space-time prism. For instance, the recorded speed
at each point in the trajectory can be used to determine the value of vmax (max-
imum velocity), which is of relevance when computing dynamic potential path
areas or other metrics that are dependent on the space-time prism. Additional
variables such as CO2, can be stored along with the control point and associated
prism to answer queries such as “how much CO2 was produced by vehicles in

4 http://www.obdii.com/background.html.

http://www.obdii.com/background.html
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Fig. 4. A random selection of 43 EnviroCar space-time paths, encorporating ∼ 4050
space-time prisms (see Fig. 3b). Note that times have been scaled from 0 to ∼ 20 min
for demonstration purposes. Basemap data, imagery, and map information provided
by MapQuest, OpenStreetMap and contributors, ODbL. Trajectories data provided by
EnviroCar [14], ODbL.

this area over this time period?” or “which locations (joint potential path areas)
have the highest number of CO2 measurements in this region?” (Fig. 4).

5.2 Similarity Analysis

Similarity analysis across space-time paths is a common task in time geography
research. The ability to identify similar space-time paths can aide researchers
in locating space-time stations and bundling, improve visualization though path
clustering (grouping similar paths), and path aggregation (forming composite
paths) [41], as well as identifying similar geospatial ‘lifelines’ for discovering the
environmental factors responsible for hot-spots and clusters of certain diseases
[47]. Additionally, a common task in animal movement analysis is to identify areas
of (potential) spatio-temporal overlap (or separation) between different animal
species [48] or individual animals of the same species [45] (see Sect. 5.3). These
types of analysis are generally aided by first identifying similar space-time paths.

A number of similarity measures exist in the literature (see [41,47] for exam-
ples), and while it is not the goal of this paper to present a new comprehensive
method for similarity analysis, frequently, the task of space-time path similarity
search (or clustering) is a first step in an analytical workflow, designed to reduce
complexity and aid pattern recognition. As such, the HPT framework presented
here provides a useful heuristic for grouping similar space-time paths – with little
to no additional effort on the part of the analyst. This is because the goal of the
HPT algorithm is to minimize the size of the sub-volumes, and by doing so, they
are also implicitly minimizing the ‘distance’ between space-time paths. Addi-
tionally, due to the incremental nature of the HPT update algorithm used here

http://www.openstreetmap.org/copyright
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(see Fig. 2 for a discussion of tree restructuring via rotations), the addition of a
new trajectory (or new control point in an existing trajectory) simply integrates
with the existing trajectory ‘clusters’, and subsequent updates can potentially
improve the optimality of the grouping over time.

Fig. 5. Top-level split of a binary HPT (see Fig. 3) into left (a) and right (b) compo-
nents. Within each split, the right and left components of the second-level split are
denoted by different shading.

Figure 5 provides an example of the implicit ‘grouping’ of similar space-time
paths using the previous EnviroCar trajectories example from Fig. 3: a top-level
split of the tree into left (Fig. 5a) and right (Fig. 5b) components. This simple
two-stage split separates trajectories into similar path-types, with paths circling
Münster’s downtown core in Fig. 5a and cross-/inter-town paths in Fig. 5b. Fur-
ther similarity breakdowns can be observed, including two separate, temporally-
offset, spatially-similar groupings in Fig. 5a with one showing travel between the
University’s geosciences building in the north-west and the Loddenheide area in
the south (see Fig. 5b for reference).

5.3 Joint Potential Path Areas

In time geography analysis, it is often of interest to identity areas where interac-
tions in space-time could occur. For example, researchers working with animal
telemetry data may be interested in mapping regions where inter- or intra-species
interactions may have occurred in an effort to better understand animal move-
ment behaviors (avoidance, attraction, etc.) [44]. Similarly, it may be useful
to highlight potential contact points for infectious disease transmission, or to
identify regions of high or low densities of space-time interactions [49]. For the
current example, we are interested in addressing the second question presented in
Sect. 5.1, where we are trying to identify locations in the study region that have
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the highest number of CO2 estimates. By determining these regions of overlap
in space and time, we can potentially identify regions where we can have more
confidence in our estimated CO2 values.

To identify regions where multiple estimates have been made around the
same space-time, we need to identify potential ‘contact’ points between vehic-
ular trajectories, and then map their corresponding joint potential path areas
(jPPA) [50]. A potential path area describes the elliptical region in space that a
moving object or person could potentially reach given fixed start and end points.
It can be conceptualized as the projection of the spacetime prism between two
control points onto the geographical plane [3,50]. As such, a jPPA is simply
the 2D projection of the intersection of two space-time prisms. Previously, this
type of analysis involved two steps: (1) determining potential space-time con-
tacts by temporally syncing trajectories and performing distance-based queries
at various time slices (space-time prisms can be used at the cost of additional
computation), and (2) computing the intersection of identified prism-pairs at
various time slices to compute the jPPA.

Fig. 6. Interaction patterns of a subset of the EnviroCar trajectories (see Fig. 5a), with
potential contact points (PCP) for a single trajectory with all other trajectories in the
subset (a), and the PCP between all trajectories in the subset and their corresponding
PPAs. Note that we are showing overlapping PPAs (with darker regions representative
of the jPPAs) that have been increased in size (×5) to aid in visualization.

A Naive version of the first step requires O(n2) queries across a pair of trajec-
tories, making it nearly impossible to scale to more than a handful of trajectories
or control-points. Some efficiencies can be gained by using spatial indexing sys-
tems in a GIS-framework, however, this is often not done in practice. Because the
HPT presented here is a binary tree (with a query time of O(log n)), we are able
to reduce the time complexity of this process to O(n log n) (additional speed
gains are possible via more efficient ‘dual-tree’ approaches [51,52]). Figure 6a
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shows an example result for this type of query for a single trajectory to all
other trajectories in a subset of the EnviroCar trajectories used previously. In
this case, space-time contact is based on potential contact using the space-time
prisms along the trajectories. Building on this, Fig. 6b shows potential contacts
between all pairs of trajectories in the subset, along with their corresponding
PPAs (projected onto the x/y plane). With the contact points identified, it
is relatively straightforward to compute the relevant PPAs of the interacting
space-time prisms by projecting their intersecting portions (portions that share
the same space-time volume) onto the 2D geographic space. The jPPAs are then
simply the geometric intersection of these PPAs (not shown), which can be com-
puted using standard computational geometry techniques.

6 Conclusions

The primary goal of this paper is to introduce methodological and technical
improvements based on time-geographic theories and methods. To this end, we
have presented an extensible framework for scaling time geographic methods to
the increasingly large and diverse set of emerging spatio-temporal data sources.
By taking advantage of techniques from the computer graphics literature, and
combining these ideas in a time geography framework, we outline a hierarchical
tree of space-time prisms, or Hierarchical Prism Tree (HPT), that forms the
basis for a powerful computational framework for time geography research. In
particular, our HPT is able to embed both space-time paths and prisms in a 3D
space-time. This space-time tree is able to handle large volumes of space-time
data that are potentially dynamic (and/or real-time) in nature. We demon-
strated the utility of our approach using two common time geography analysis
tasks, based on (1) space-time path similarity analysis, and (2) identifying joint
potential path areas. While the work presented here is by no means exhaustive,
it does provide a useful initial exploration of the utility of thinking about the
scalability of time geographic methods. Indeed, the dynamic HPT presented in
this paper provides an ideal framework for scaling and exploring time-geographic
methods and ideas in an intuitive and computationally efficient manner.

The development of the HPT presented in this paper offers many avenues for
further development. Currently, we are exploring ways to scale various space-time
intersection queries in order to facilitate the data-driven generation of space-
time prisms for data integration, as discussed in [42]. Additionally, the dynamic
nature of the HPT is designed to facilitate tracking and analysis of real-time
spatio-temporal data sources, such as those generated by the recently launched
ICARUS initiative5 or the long-established Argos system6. In order to make
time geography methods accessible to the research communities working with
such platforms, we are currently developing a suite of tools for working with
5 ICARUS analyzes the migratory behavior of animals such as birds and bats:

http://icarusinitiative.org.
6 Argos is a global, satellite-based platform widely used in animal tracking:

http://www.argos-system.org/.

http://icarusinitiative.org
http://www.argos-system.org/


Hierarchical Prism Trees 45

space-time data using the Python programing language. Python is continuing to
gain favor among data scientists and academic researchers, and implementation
of various time geography methods within our HPT framework should facilitate
increased adoption of time geography concepts and methods throughout the
social and environmental sciences. A computational framework that is able to
scale time geographic analysis from working with small, localized samples, to
large, globally-distributed (possibly real-time) data sources has the potential to
increase the utility of time geography concepts and methods to new domains
and research questions significantly.
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Abstract. Given a spatial network and a collection of activities (e.g.
crime locations), the problem of Mining Network Hotspots with Holes
(MNHH) finds network hotspots with doughnut shaped spatial footprint,
where the concentration of activities is unusually high (e.g. statistically
significant). MNHH is important for societal applications such as crim-
inology, where it may focus the efforts of officials to identify a crime
source. MNHH is challenging because of the large number of candi-
dates and the high computational cost of statistical significance test.
Previous work focused either on geometry based hotspots (e.g. circular,
ring-shaped) on Euclidean space or connected subgraphs (e.g. shortest
path), limiting the ability to detect statistically significant hotspots with
holes on a spatial network. This paper proposes a novel Network Hotspot
with Hole Generator (NHHG) algorithm to detect network hotspots with
holes. The proposed algorithm features refinements that improve the per-
formance of a näıve approach. Case studies on real crime datasets con-
firm the superiority of NHHG over previous approaches. Experimental
results on real data show that the proposed approach yields substantial
computational savings without reducing result quality.

Keywords: Hotspot detection · Crime hotspots · Spatial scan statistics

1 Introduction

Given a spatial network and a collection of activities (i.e. crime locations), the
problem of Mining Network Hotspots with Holes (MNHH) finds hotspots with
doughnut shaped spatial footprint on a spatial network (i.e. road network), where
the concentration of activities is unusually high (i.e. statistically significant).

The problem of Mining Network Hotspots with Holes (MNHH) has impor-
tant societal applications in criminology, where identifying crime hotspots may
improve police response [1]. In environmental criminology, domain experts cre-
ate geographic profiles of criminals using the locations of crimes and try to find
where a serial criminal frequently commutes, thereby focusing the efforts of police
forces in the field [2]. Our notion of Network Hotspots with Holes originates from
c© Springer International Publishing Switzerland 2016
J.A. Miller et al. (Eds.): GIScience 2016, LNCS 9927, pp. 51–67, 2016.
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two key concepts in criminology, namely inner buffer zone (e.g. comfort zone)
and distance decay [2]. Inner buffer zone is an area around a criminal’s frequently
visited locations, where crimes are less likely due to the risks caused by reduced
anonymity. Distance decay relates to a least effort principle, where crimes occur
relatively close to criminal’s frequently visited locations, since traveling long dis-
tances requires time and money. The opposing effects of inner buffer zone and
distance decay create an activity zone with a doughnut shaped spatial footprint
around a path that a criminal usually travels. Figure 1 illustrates these concepts
where the green squares represent activities (i.e. crime), the blue line shows a
path between home and work (blue squares), the black road segments repre-
sent the inner buffer zone where the activities are less likely and the red road
segments create the activity zone (i.e. outer buffer) that we define as network
hotspot with hole (NHH) in this paper.

Fig. 1. A path between home and work, an inner buffer zone where the activities are
sparse and the activity zone (i.e. outer buffer) that we are interested in (best in color).
(Color figure online)

Informally, the problem of Mining Network Hotspots with Holes (MNHH) can
be defined as follows: given a spatial network (e.g. road network), an activity
set associated with road segments (e.g. street robberies), a log likelihood ratio
threshold (θ), a p-value threshold (αp), a maximum outer buffer distance (̂tmax)
and a unit distance (ω), find network hotspots with holes where the concentration
of activities is significantly higher than outside (p-value ≤ αp).

Challenges: MNHH is challenging due to the potentially large number of can-
didate network hotspots with holes (O(N4)) in a given dataset of millions of
road network nodes (N). For large road networks (e.g. 108 road segments in
the U.S.), this causes exorbitant computation times as well as a prohibitively
large enumeration space. Moreover, the interest measure, “log likelihood ratio
(Log LR)”, does not have a monotonicity property, meaning that there is no
order between the Log LR of a network hotspot with hole (NHH) and another
NHH it may contain. Thus, interest measure cannot be used for computational
speed-up. In addition, the statistical significance test multiplies the cost.
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Related Work and Their Limitations: Statistically significant hotspot detection
approaches can be classified into two categories depending on the study area:
Euclidean space based and Network based approaches. Euclidean approaches
include spatial scan statistics and are widely used for the detection and evalua-
tion of circular [3,4], elliptical [5,6], rectangular [7] and ring-shaped hotspots [8].
These techniques are useful for understanding the distribution of disease [9], or
detecting a disease outbreak or even identifying the location of a criminal (e.g.
through ring-shaped hotspot detection). However, criminal activities and other
human activities diffuse along road networks [10] and therefore Euclidean dis-
tances do not reflect actual travel distances causing biased results. For example
in Fig. 2(a), the traveling distance from E5 node to C7 node will not be the same
as Euclidean distance due to the lake in between. In addition, people’s activities
are mostly dependent on their routine commutes (i.e. home-work-recreation)
instead of a single place. In Fig. 3(a), SaTScan [3] outputs a circular hotspot
with a large space without activities with a low log likelihood ratio. Similarly,
in Fig. 3(b), ring-shaped hotspot detection (RHD) outputs a hotspot with low
log likelihood ratio due to using Euclidean distance as well as assuming a sin-
gle center (i.e. crime base of a criminal). Thus, geometry-based techniques may
not be appropriate for modeling hotspots on road networks. A more detailed
comparison of the recent related work can be found in [9,11].

(a) Input (b) Output

Fig. 2. An example input and output of our proposed approach for Mining Network
Hotspots with Holes. Edges represent streets and nodes represent road intersections.
(Color figure online)

A second category of hotspot detection is network-based. These methods
leverage the underlying spatial network, which improves the detection of activ-
ities that diffuse along the spatial network [12–14]. However, these often focus
on detecting paths or road segments which have unusually high activities and
require a hotspot to be a connected subgraph (e.g. shortest path), causing them
to miss network hotspots with holes [15–17]. Figure 3(c) shows the output of a



54 E. Eftelioglu et al.

(a) (b) (c)

Fig. 3. Output of the related work for the input in Fig. 2(a). SaTScan (a), ring-shaped
hotspot detection (b) and significant route discovery (c)

significant route discovery approach which enumerates shortest paths between
nodes and returns those that have a significantly high number of activities [15].
The output fails to identify the significant region of interest and includes 4
hotspots with low log likelihood ratios and high p-values, indicating lack of
significance.

In contrast to previous methods, our Mining Network Hotspots with Holes
(MNHH) method can find statistically significant network hotspots with holes
(e.g. Fig. 2(b)) without requiring the output to be a connected subgraph.

Contributions: In this paper, we present the problem of Mining Network
Hotspots with Holes (MNHH) on a spatial network. To the best of our knowledge,
the proposed approach is the first to consider statistically significant hotspots
with holes on a spatial network. Specifically, our contributions are as follows:

– We introduce the problem of Mining Network Hotspots with Holes (MNHH)
on a spatial network and a Näıve Network Hotspot with Hole Generator
(NäıveNHHG) algorithm to solve MNHH.

– We propose Smart Network Hotspot with Hole Generator (SmartNHHG) algo-
rithm which prevents redundant computations by dynamic programming.

– We present case studies comparing the proposed approach to geometry-
based approaches (i.e., SaTScan, ring-shaped hotspot detection) on real crime
datasets. Note that the output patterns should not be considered the same
(e.g. circles and rings vs. network sub-graphs).

– Experimental results on real data show that SmartNHHG yields substantial
computational savings over NäıveNHHG without sacrificing result quality.

Scope: This work focuses on finding hotspots with holes on road networks where
each activity (i.e. crime event) is associated with a road segment (i.e. edge).
This does not imply that the original activities must necessarily have occurred at
edges. Each activity set is pre-processed to associate activities to the closest edge
on the road segment. In addition, other properties of road networks (e.g. speed
limit, traffic density) are not considered. In this work, the number of activities
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on the road network is fixed and does not change over time. Finally, this paper
does not provide guidance on parameter (e.g. tmin, tmax) value selection. How-
ever, users may evaluate the spatial distribution of events using centrographic
statistics [18] and select parameters accordingly.

Outline: This paper is organized as follows: Sect. 2 presents the basic concepts
and problem statement for MNHH. Section 3 presents the Näıve and Smart Net-
work Hotspot with Hole Generator (SmartNHHG) algorithms. Section 4 presents
case studies which qualitatively evaluate the output of SmartNHHG on real crime
datasets. Experimental evaluation is in Sect. 5. Section 6 presents a discussion.
Section 7 concludes the paper and previews future work.

2 Basic Concepts and Problem Statement

2.1 Basic Concepts

Definition 1. A spatial network G = (N,E) is a set of nodes (N) and edges
(E) where each node nv ∈ N is associated with coordinates (x, y) representing its
location in an Euclidean space. E is a subset of the cross product N ×N and an
edge ei ∈ E, which joins nodes nu and nv, is associated with a length lu,v ≥ 0.

In Fig. 2(a) grey circles represent nodes (e.g. intersections), grey lines repre-
sent edges (e.g. streets) and there are two geographic barriers (e.g. lake, moun-
tain). The length of the network is the sum of all edge lengths Ltotal =

∑
le∈G.

Definition 2. An activity set A is a collection of activities. An activity a ∈ A
is an object of interest associated with only one edge e ∈ E.

For example in Fig. 2(a), the edge between nG2 and nG3 has 3 activities.

Definition 3. A shortest path pu,v is a sequence of nodes [n1, n2, ..., ni] such
that [e1, e2, ..., ei] ∈ E and ni ∈ N are distinct and the sum of edge lengths is
minimized. The length of a shortest path is Lp =

∑
le∈p.

For example, pA0,B2 = [A0, A1, A2, B2] and Lp = 3 in Fig. 2(a).

Definition 4. Distance between a node ni and a path pu,v is d(ni, pu,v) =
min(Lp(ni, nj ∈ pu,v)).

For example, d(D3, pA0,B2) = 3 in Fig. 2(a).

Definition 5. A Network Buffer (NBu,v,t) is a closed set of nodes NNB ⊂
N and edges ENB ⊂ E such that d(ni, pu,v) ≤ t, ∀ni ∈ NNB and t = kω for
some k ∈ R+ and a unit distance ω.

For example , in Fig. 2(b), NBG4,G6,2 is the set of all blue/red nodes and all
blue/red/black edges.
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Definition 6. A Network Hotspot with Hole (NHHu,v,tmin,tmax
) is the

closure [19] (a set and its limit points that is denoted by Cl) of the set dif-
ference of outer buffer NBu,v,tmax

and inner buffer NBu,v,tmin
, where tmin is

the inner and tmax is the outer buffer distance and the distance interval is closed
i.e., inclusive of tmin and tmax.

Thus, NHHu,v,tmin,tmax
= Cl(NBu,v,tmax

\NBu,v,tmin
). The sum of the length

of the edges in NHH is denoted by LNHH =
∑

le∈NHH.

In Fig. 2(b), black edges represent the NBG4,G6,1 and red nodes and edges
represent the NHHG4,G6,1,2 around the path pG4,G6 with tmin = 1 and tmax = 2.

Definition 7. Log Likelihood Ratio (Log LRNHH) is the test statistic for a
candidate NHH. Since a NHH is on a road network, it uses LNHH, instead of the
hotspot area as used in [20]. The equation can be shown as:

Log LRNHH = Log

(( c

B

)c

×
(

|A| − c

|A| − B

)|A|−c

× I()

)
(1)

B = |A|×LNHH
Ltotal

and I() =

{
1, if c > B

0, otherwise,

B is the expected and c is the observed number of points for a NHH, |A| is
the cardinality of A and I() is an indicator function. I() = 1 when a candidate
NHH has more points than expected (c > B); otherwise I() = 0 [3].

For example, the sum of the lengths of the edges of NHHG4,G6,1,2 in Fig. 2(b)
is LNHH = 19 and the total length of the spatial network is Ltotal = 158. Thus
B = 50×19

158 = 6.012. In this NHH, there are c = 30 points. Thus, I = 1 since
30 > 6.012.

Using Eq. 1, Log LRNHH = Log

((
30

6.012

)30 ×
(

50−30
50−6.012

)50−30

× 1

)
= 32.46

Definition 8. A Hypothesis Test determines whether a NHH occurred by
chance or not. The null hypothesis H0 states that the points are randomly dis-
tributed on a spatial network and the alternative hypothesis H1 states that the
candidate NHH has a significantly higher number of activities than outside. In
order to determine the hypothesis test result, the significance level (p-value) of a
NHH is computed by finding the order of the actual Log LRNHH in the test statis-
tic distribution (obtained by Monte Carlo simulations) and dividing that position
by m + 1. If the p-value of a NHH is lower than the desired threshold (αp), the
H1 cannot be rejected, and we say that the candidate NHH is a significant NHH.
Note that these concepts are inherited from SaTScan [3].

2.2 Problem Statement

Formally, Mining Network Hotspots with Holes (MNHH) problem is as follows:
Given:

1. A spatial network G = (N,E) with activity count function a(u, v) ≥ 0 and
length function l(u, v) > 0 for each edge ei ∈ E,



Mining Network Hotspots with Holes: A Summary of Results 57

2. A log likelihood ratio threshold (θ) and a p-value threshold (αp),
3. A number of Monte Carlo simulation trials (m),
4. A maximum outer buffer distance (̂tmax) and a unit distance (ω),

Find: Network hotspots with holes with Log LRNHH ≥ θ and p-value≤ αp.
Objective: Computational efficiency and correctness of the output.
Constraint: Nodes nj ∈ NHH may not be connected to each other.
Example: The graph in Fig. 2(a) can be viewed as a road network, composed
of streets (edges) and intersections (nodes). The aim is to find network hotspots
with holes (NHH) that meet the given log likelihood ratio and significance lev-
els (p-value threshold θ). In environmental criminology, finding such a hotspot
may have two benefits: (1) it may focus the search for a criminal to the path
at the center of NHH. (2) it may help determine the locations to deploy new
police patrols to prevent crime. In Fig. 2(b), NHHG4,G6,1,2 is returned since
Log LRNHH = 32.46 and p-value= 0.01. Although the output includes more
NHHs, since the other NHHs were overlapping, we show only the NHH with
highest Log LRNHH to reduce the visual clutter.

3 Proposed Approach

In this section, we first describe a näıve version of our network hotspot with hole
generator algorithm (NäıveNHHG). Then we present our SmartNHHG algorithm
with refinements that include two novel dynamic programming approaches and
a Monte Carlo simulation speed-up. The proposed algorithms present steps for
candidate enumeration, candidate evaluation using Log LR and statistical sig-
nificance test. It should be noted that in some communities these steps are
practiced separately. However, in this work, we present algorithms that describe
these processes together for the sake of self-containment.

3.1 Näıve NHH Generator Algorithm

Algorithm 1 presents the pseudocode for the NäıveNHHG approach. The algo-
rithm begins by creating all pair shortest paths, Papsp, in the spatial network
(step 1). Next, each shortest path is used as a center to enumerate NHHs with
different inner and outer buffer distances (tmin, tmax) (step 2). Finally, the sta-
tistical significance of each NHH is evaluated by m Monte Carlo simulations and
the significant NHHs are returned (as the output).

NäıveNHHG Example: Table 1 shows a sample execution trace of
NäıveNHHG. The spatial network has 92 nodes, 158 edges, and 50 activities
(green squares on the edges). All edge lengths are set to 1 for illustration pur-
poses. Inputs are set to log likelihood ratio threshold θ = 30, p-value threshold
αp = 0.01, maximum outer buffer distance ̂tmax = 5 and unit distance ω = 1.

In step 1 of Table 1, all pairs of shortest paths are computed as shown in the
first column (4 out of 2.5 × 104 are shown). In step 2, the NHHs are enumer-
ated by using the set difference of NB with tmin and tmax. Then, Log LRNHH
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Algorithm 1. NäıveNHHG Algorithm
Input:

1) A spatial network G = (N, E) with activity count function a(u, v) ≥ 0 and
length function l(u, v) > 0 for each edge ei ∈ E,
2) A log likelihood ratio threshold (θ) and a p-value threshold (αp),

3) A maximum outer buffer distance (̂tmax) and a unit distance (ω)
Output:

Network hotspots with holes (NHH) with p-value≤ αp

Algorithm:
1: Step 1: Generate all pair shortest paths Papsp

2: For each shortest path pu,v ∈ Papsp

3: Step 2: Enumerate candidate NHH with tmin and tmax

4: Step 3: Significant NHH ← candidate NHH with p-value≤ αp using m Monte
Carlo simulations

5: Return Significant NHH with Log LRNHH ≥ θ

are computed for each NHH and NHHs with Log LRNHH ≥ 30 are stored as
candidates. In step 3, the significance of candidate NHHs are determined and
significant NHHs are returned (as the output) as shown in Fig. 2(b). Although
many NHHs were evaluated as significant, only the NHH on the top row of
Table 1 is returned since θ = 30. If a user is interested in all significant NHH, θ
threshold can be set 0. Also, one may notice that many NHHs were similar in
the output. This issue is discussed in Sect. 6.

Table 1. An example execution trace of NäıveNHHG.

Enumerating Candidate NHH: Algorithm 2 shows the steps of candidate NHH
enumeration on NäıveNHHG. For each shortest path (pu,v) in the set of all pair
shortest paths (Papsp) (line 1), candidate NHHs are enumerated as follows: First,
inner and outer NB are defined by tmin and tmax (line 2–3). Note that these
values are changed by unit distance ω on every iteration and even for a single
pu,v ∈ Papsp, NHHs with different tmin and tmax are enumerated. Next, for each
node nj of pu,v, single source shortest paths from that node to all other nodes
in the spatial network are enumerated (line 5). If the length of any of these
shortest paths is less than the tmin, it is saved in NBu,v,tmin

. Similarly, if the
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length of any of these shortest paths is less than tmax, it is saved in NBu,v,tmax

(line 6–9). Finally, NHHu,v,tmin,tmax
= Cl(NBu,v,tmax

\NBu,v,tmin
) (line 10) and

its Log LRNHH is computed using LNHH =
∑

le∈NHH and its activity count. If
Log LRNHH ≥ θ threshold, then the NHH is saved as a candidate (line 11). This
process is repeated for all paths in Papsp and tmin and tmax until ̂tmax.

In NäıveNHHG, candidate NHHs are enumerated by varying tmin and tmax

for all pairs of shortest paths. However, enumeration becomes exorbitant even
for road networks of 102 nodes. To improve the scalability of NäıveNHHG, we
analyzed NäıveNHHG and determined the redundant computations. Next, we
propose refinements to reduce redundant computations but increase scalability.

Algorithm 2. Enumerating Candidate NHH - NäıveNHHG
1: for each pu,v ∈ Papsp do
2: for each tmax = 2ω to ̂tmax do
3: for each tmin = ω to tmax do
4: for each nj ∈ pu,v do
5: for each Single Source Shortest Path pnj ,n ∈ Psssp do
6: if tmin > Lpnj

,n then
7: NBu,v,tmin ← Edges and Nodes from pnj ,n

8: if tmax ≥ Lpnj
,n then

9: NBu,v,tmax ← Edges and Nodes from pnj ,n

10: NHHu,v,tmin,tmax ← Cl(NBu,v,tmax \ NBu,v,tmin)
11: Candidate NHH ← NHH with Log LRNHH ≥ θ

3.2 Smart NHH Generator Algorithm

This section explains our smart approach for solving the MNHH problem. Our
algorithm features three key ideas for achieving computational savings while
maintaining result quality: Distance based dynamic programming, edge stitching
and Monte Carlo simulation speed-up.

Distance Based Dynamic Programming (DP) Approach: Algorithm 3
shows the steps of distance based DP approach, which avoids redundant cal-
culation of NHH with different tmin and tmax by enumerating NHH with
tmax − tmin = ω (line 2–9) and then using the set union of these to create NHHs
with different inner and outer NB (line 10–12). A simplified example can be seen
in Fig. 4. In this example, in order to enumerate NHHF4,F5,1,3 (on the right),
the set union of NHHF4,F5,1,2 (on the left) and NHHF4,F5,2,3 (in the middle) is
used. Thus, instead of running a new enumeration process for NHHF4,F5,1,3, the
algorithm simply uses the previously computed NHHF4,F5,1,2 and NHHF4,F5,2,3.
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Fig. 4. Distance based dynamic programming approach. To determine NHHF4,F5,1,3,
the set union of NHHF4,F5,1,2 and NHHF4,F5,2,3 is used (best in color).

Algorithm 3. Enumerating Candidate NHH - Distance Based DP Approach
1: for each pu,v ∈ Papsp do
2: for each tmax = 2ω to ̂tmax and tmin = tmax − ω do
3: for each nj ∈ pu,v do
4: for each Single Source Shortest Path pnj ,n ∈ Psssp do
5: if tmin > Lpnj

,n then
6: NBu,v,tmin ← Edges and Nodes from pnj ,n

7: if tmax ≥ Lpnj
,n then

8: NBu,v,tmax ← Edges and Nodes from pnj ,n

9: NHHu,v,tmin,tmax ← Cl(NBu,v,tmax \ NBu,v,tmin)

10: for each tmax = 2ω to ̂tmax do
11: for each tmin = ω to tmax do
12: NHHtmin,tmax = NHHtmin+ω,tmax

⋃
NHHtmin,tmax−ω

Edge Stitching Approach: Edge Stitching exploits a basic property of paths,
i.e. every path consists of edges. Thus, NHHs around single edges can be enu-
merated, then these can be stitched to create NHHs around longer paths (avoid
Line 1 of Algorithm 2). In Algorithm 4, first, all NHHs around single edges are
enumerated (Line 1–9). Next, these NHHs are stitched to create NHHs for longer
paths (Line 10–14) as illustrated in Fig. 5. In this example, in order to create
NHHG4,G6,1,2, NHHG4,G5,1,2 and NHHG5,G6,1,2 are stitched together. Once we
create the set union of these NHHs, edges and nodes that belong to NBG4,G6,1

are removed to determine NHHG4,G6,1,2 (in Fig. 2(b)).

Fig. 5. Edge stitching approach. To determine NHHG4,G6,1,2 (Fig. 2(b)); NHHG4,G5,1,2

and NHHG5,G6,1,2 are stitched together and then the nodes and edges of NBG4,G6,1

are removed (best in color).
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Algorithm 4. Enumerating Candidate NHH - Edge Stitching Approach
1: for each ei ∈ E do
2: for each tmax = 2ω to ̂tmax do
3: for each tmin = ω to tmax do
4: for each Single Source Shortest Path from nu and nv pnj ,n ∈ Psssp do
5: if tmin > Lpnj

,n then
6: NBu,v,tmin ← Edges and Nodes from pnj ,n

7: if tmax ≥ Lpnj
,n then

8: NBu,v,tmax ← Edges and Nodes from pnj ,n

9: NHHu,v,tmin,tmax ← Cl(NBu,v,tmax \ NBu,v,tmin)

10: for each pu,y ∈ Papsp do
11: for each tmax = 2ω to ̂tmax do
12: for each tmin = ω to tmax do
13: NHHu,y,tmin,tmax = Cl(NHHu,v,tmin,tmax

⋃
NHHv,y,tmin,tmax \

NBu,y,tmin)
14: Candidate NHH ← NHHu,y,tmin,tmax with Log LRNHH ≥ θ

Monte Carlo Simulation Speed-Up: The following three refinements are
used to speed-up Monte Carlo simulations. First refinement is to create all
pair shortest paths once, and use them for each simulation trial. NäıveNHHG
runs for m times for Monte Carlo simulations. However, the spatial net-
work does not change between iterations. Thus, we prevent redundant shortest
path calculations in Monte Carlo Simulations. Second, if any NHHrandom has
Log LRrandom

NHH ≥ Log LRactual
NHH then that iteration terminates since there is no

reason to keep looking at all NHHs in that random dataset if a NHHrandom

beats the maximum of Log LRNHH from the actual dataset. Third, Monte Carlo
simulation is terminated if the p-value≥ αp because the αp threshold won’t be
met at the end.

It should be noted that these and similar refinements are often used in
related work to speed-up the Monte Carlo simulation process [3,15,21]. There-
fore, details of the execution trace of those speed-up approaches are omitted
from this paper.

4 Case Study

We conducted two case studies to evaluate SmartNHHG qualitatively comparing
its output with the output of SaTScan [3] and a ring-shaped hotspot detection [8]
method using two real crime datasets (Figs. 6(a) and 7(a)). For both of the case
studies, we matched activities to edges as counts. The road network was obtained
from the US Census Bureau Tiger/Line Shapefile [22]. The map visualizations
were prepared using QGIS and Open Layers Plugin (www.qgis.org).

The first crime dataset in Fig. 6(a) consists of 64 theft committed between
2013 and 2014 in South Side Neighborhood of Chicago, Illinois [23]. We set
ω = 0.04 km, ̂tmax = 0.6 km, θ = 20 and αp = 0.01.

www.qgis.org
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The second crime dataset in Fig. 7(a) consists of 128 burglary crimes com-
mitted between 2013 and 2014 in Caballo Hills Neighborhood of Oakland,
California [24]. We set ω = 0.5 km, ̂tmax = 2.6 km, θ = 20 and αp = 0.03.

For the first crime dataset in Fig. 6(a), SaTScan produced a small circu-
lar hotspot as shown in Fig. 6(b). This is due to the fact that those activities
occurred close to each other. For the second crime dataset in Fig. 7(a), SaTScan’s
output was a large circular hotspot. Since SaTScan uses Euclidean distances to
enumerate circles, none of the outputs for the case studies reflected the effect of
the road network.

In Figs. 6(c) and 7(c), ring-shaped hotspots returned by RHD indicate single
center rings (i.e. a single crime source location) due to its enumeration method
and space (i.e. Euclidean). Although the output of RHD in Fig. 6(c) aligns with
the activities in the study area due to the street morphology in Chicago, it
produced very different results for the burglary crimes in Oakland, California.

(a) (b)

(c) (d)

Fig. 6. Case study 1: Theft crimes in Chicago, Illinois. (a) shows the input, (b) shows
the output of SaTScan, (c) shows the output of ring-shaped hotspot detection and
(d) shows the output of SmartNHHG. Log LR values are not comparable due to the
Euclidean and network spaces. (best in color).

As noted earlier, criminals are known to commit crimes around the routes
they often commute as described in environmental criminology [2]. There-
fore, when we take a look at the output of SmartNHHG in both case studies
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(Figs. 6(d), 7(d) and (e)), we see that the output aligns with such crime patterns.
For example, blue paths at the centers of the NHHs in Fig. 7(d) and (e) are the
only routes to reach those houses that burglary crimes occurred (i.e. activities)
which may make sense in the context of environmental criminology. Finally, it
should be noted that our tool should be considered as a decision support tool
for the analysts and the results should be analyzed by them in the context of
additional domain information to prevent potentially misleading results.

(a) (b) (c)

(d) (e)

Fig. 7. Case study 2: Burglary crimes in Oakland, California. (a) shows the input, (b)
shows the output of SaTScan, (c) shows the output of ring-shaped hotspot detection
and (d) and (e) shows the output of SmartNHHG. Log LR values are not comparable
due to the Euclidean and network spaces. (best in color).

5 Experimental Evaluation

We also conducted an experimental evaluation to observe the effect of the algo-
rithmic refinements compared with the Näıve approach. The experiments were
performed on real-world data obtained from the City of Chicago portal [23].
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The dataset contained 676 theft crimes that were committed in Chicago, Illinois,
between 2013 and 2014. The road network was obtained from the US Census
Bureau Tiger/Line Shapefile [22]. For each edge on the road network, activities
were matched and their counts on edges were aggregated. In the experiments,
the number of Monte Carlo simulation trials was set to m = 0, since we did not
perform any experiments on m due to the fact that our Monte Carlo simulation
speed-up approaches were trivial and previously used in [15,21].

Effect of the Number of Nodes: We varied the number of nodes from 750 to
1500, causing the asymptotic increase on the all pair shortest paths, since total
number of all pairs will be

(
750
2

)
and

(
1500
2

)
respectively. We set the log likelihood

ratio threshold to θ = 20. We also selected the maximum outer buffer distance
(̂tmax = 5 km) and the unit distance to ω = 1 km (note that these inputs will be
selected by domain experts). SmartNHHG is faster than the NäıveNHHG. Also
we can observe that the computational savings increase with increasing number
of nodes thanks to SmartNHHG’s edge stitching approach.

(a) (b) (c)

Fig. 8. Scalability of SmartNHHG with increasing (a) number of nodes, (b) number of
activities (c), and unit distance (ω).

Effect of the Number of Activity Points: We also varied the number of activities
in the activity set as shown in Fig. 8(b). Since the algorithm uses only the activity
count on each edge, this experiment did not affect the execution times of either
algorithm. However, SmartNHHG performs around three times faster than the
NäıveNHHG. In the future, we plan to leverage activity counts on edges to
improve the scalability of SmartNHHG.

Effect of Unit Distance ω: In this experiment, inputs are the number of
nodes |N | = 1000 and the maximum outer buffer distance ̂tmax = 5 km.
The unit distance ω was varied by 0.2, 0.4, 0.6, 0.8 and 1 km. In Fig. 8(c),
SmartNHHG is faster and computational savings increase with smaller ω thanks
to SmartNHHG’s distance based dynamic programming approach.

In summary, experiments confirm that SmartNHHG performs faster than
NäıveNHHG thanks to the proposed algorithmic refinements.
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6 Discussion

Techniques Without Significance Test: This paper focuses on hotspot detection
techniques that use statistical significance to remove chance patterns but there
are also techniques that do not test for statistical significance. These techniques
(i.e. DBSCAN [25], K-Means [26], KMR [27], Clumping [12]) are state-of-the-
art to detect clusters (i.e. a set of objects partitioned into a set of meaningful
sub-classes) in a point process. However, since they do not test for statistical sig-
nificance, they are not suitable for applications where false positive results may
cause harm. For example, a neighborhood falsely identified as a crime hotspot
may become stigmatized, causing residents’ property values to drop. In addi-
tion, adding significance test to these approaches is often non-trivial since they
lack a metric (e.g. log likelihood ratio test) for ranking candidate clusters. Thus,
techniques without statistical significance test were not considered in our work.

Post-processing of the Output: Our proposed approach returns all possible NHH
given an activity set and a spatial network. However, during our experiments,
we often observed that multiple overlapping hotspots were returned on the same
subgraph of the spatial network. To reduce the visual clutter, we used two simple
rules in our visualizations: (1) For two pk and pl: If pl ⊂ pk and there are two
significant NHHk and NHHl and tkmin = tlmin and tkmax = tlmax, then only NHHk

will be returned. (2) For a path p: If there are two significant NHHi, NHHj and
timin ≤ tjmin and timax ≥ timax then only NHHi will be returned.

7 Conclusion

This work explored the problem of mining network hotspots with holes in relation
to important application domains such as crime analysis. We proposed a Smart
Network Hotspot with Hole Generator algorithm that discovers multiple network
hotspots with holes (NHH) on a spatial network. The proposed approach uses
distance based dynamic programming and edge stitching approaches as well as
Monte Carlo simulation speed-ups to enhance its performance. We presented
two case studies using crime activity sets comparing our proposed approach
with a ring-shaped hotspot detection method. Experimental evaluation using
real data indicates that the proposed algorithmic refinements yield substantial
computational savings without sacrificing result quality.

In future, we plan to explore refinements including sub-edge level NHH enu-
meration, active node filtering and dynamic segmentation. We also plan to
explore “emerging” NHHs from spatiotemporal activity sets (i.e. time tags for the
activities). Additionally, factors (e.g. demographics, activity relationships [28],
urbanization [29,30]) that generate NHH will be explored.
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Abstract. Given a graph and a set of spatial events, the goal of
Distance-Constrained k Spatial Sub-Networks (DCSSN) problem is to
find k sub-networks that meet a distance constraint and maximize the
number of spatial events covered by the sub-networks. The DCSSN prob-
lem is important for many societal applications, such as police patrol
assignment and emergency response assignment. The problem is NP-
hard; it is computationally challenging because of the large size of the
transportation network and the distance constraint. This paper proposes
a novel approach for finding k sub-networks that maximize the coverage
of spatial events under the distance constraint. Experiments and a case
study using Chicago crime datasets demonstrate that the proposed algo-
rithm outperforms baseline approaches and reduces the computational
cost to create a DCSSN.

Keywords: Spatial network query · Resource allocation · Spatial net-
work database

1 Introduction

In this work, we propose a new problem of spatial network covering, called
Distance-Constrained k Spatial Sub-Networks (DCSSN). Given a graph and
a set of spatial events (e.g., crime incidents, traffic collisions, etc.), Distance-
Constrained k Spatial Sub-Networks (DCSSN) finds k sub-networks that meet
a distance constraint and maximize total number of spatial events covered by
the sub-networks. Figure 1(a) shows an example input of DCSSN consisting of a
graph with 14 nodes (A,B, . . . , N), 20 edges, and 25 locations of spatial events.
Consider k = 3 and the shortest path distance between nodes in a sub-network
is at most 2. Figure 1(b) shows an example output of DCSSN where distinct
line styles show three sub-networks. The DCSSN problem is NP-hard (a proof
is provided in Sect. 1.4). Intuitively, the problem is computationally challeng-
ing because of the large size of the transportation network and the distance
constraint.

1.1 Application Domain

The DCSSN problem is important for critical applications such as identifying the
most vulnerable areas within distance constraints. As an example, let us consider
c© Springer International Publishing Switzerland 2016
J.A. Miller et al. (Eds.): GIScience 2016, LNCS 9927, pp. 68–84, 2016.
DOI: 10.1007/978-3-319-45738-3 5
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(a) Input (b) Output (k = 3, max distance=2)

Fig. 1. Example of the input and output of DCSSN

police patrol district design. Since crimes are unpredictable in the city, it is
important to provide a reliable police service that responds quickly to potential
requests. DCSSN identifies concentrations of spatial events and allocates limited
resources to districts that are in the highest risk areas. It also minimizes dispatch
time to incidents by providing compact sub-networks. DCSSN can also be applied
to discover groups of spatial locations that effectively interact and communicate
with others because it ensures the travel time between two locations is within
the constraint. Possible examples of such situations are provided in Table 1.

Table 1. Possible applications of DCSSN

Application Benefit of DCSSN

Police patrol district Manage police patrol to concentrate on
high-crime areas

Fire prevention Identify highly vulnerable areas and watch for
early signs of fire

Disease surveillance and response Detect and monitor topological high-risk areas
to prevent the spread of infectious diseases

Road traffic control Identify high traffic accident areas for special
attention and enforcement

1.2 Our Contribution

In this paper, we propose a novel algorithm for finding k sub-networks based on
the rooted sub-graph (RSG) and the nearest neighbor distribution (NND) func-
tion. Our approach follows three main steps: (1) construction of the rooted sub-
graph and the nearest neighbor distribution function, (2) assignment of spatial
events to sub-networks. (3) update of the nearest neighbor distribution function.
Specifically, our contributions are as follows:

– We introduce a new spatial network covering problem, namely Distance-
Constrained k Spatial Sub-Networks (DCSSN).
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– We prove that the DCSSN problem is NP-hard.
– We propose the RSG-NND algorithm that approximately solves DCSSN.
– We provide a computational complexity for our proposed approach.
– Our experimental results and a case study using Chicago crime datasets and

LAPD crime and collision datasets demonstrate that RSG-NND outperforms
baseline algorithms (in terms of the number of spatial events) and reduces the
computation cost to create a DCSSN.

1.3 Problem Definition

In our formulation of the DCSSN problem, a transportation network is
represented and analyzed as a graph composed of nodes and edges. Each
node represents a spatial location in geographic space (e.g., road intersec-
tions) and each edge between two nodes represents a road segment and has
a travel distance. Each spatial event has a spatial location on edge. The
DCSSN(N,E,D, I, k, dmax) problem is defined as follows:

Input: A transportation network G with
• a set of nodes N and a set of edges E,
• a set of non-negative integer lengths of edges D : E → Z≥0

• a set of spatial event locations I,
• the number of sub-networks k, and
• the distance constraint dmax

Output: A set of Distance-Constrained k Spatial Sub-Networks SGk

Objective:
• Maximize total number of spatial events covered by k sub-networks

(SGk).
Constraints:

• Distance Constraint: The shortest path distance between two nodes in
sg ∈ SGk should be no greater than dmax.

1.4 Problem Hardness

The NP-hardness of DCSSN follows from a well-known result about the NP-
hardness of the maximum clique problem.

Theorem 1. The DCSSN problem is NP-hard.

Proof. The NP-hardness of DCSSN can be proved by reduction from a well
known NP-complete problem, the maximum clique problem (MCP). Given a
graph G, MCP finds the largest clique. Let A = (N,E) be an instance of MCP,
where N is a set of nodes, E is a set of edges. Let B(N,E,D, I, k, dmax) be
an instance of the DCSSN problem, where N is a set of nodes, E is a set of
edges, D is a set of distances of E, I is a set of spatial events in E, k is the
number of sub-networks, and dmax is the distance constraint. Let k be 1 and let
dmax be 1. Then it is easy to show that the instance of MCP is a special case
of DCSSN, where every edge has distance of 1 and contains exactly one spatial
event i ∈ I. Since A is constructed from B in polynomial-bounded time, the
proof is complete.
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1.5 Related Work

To the best of knowledge, there is no prior work on distance constrained spatial
sub-network covering. Circle covering problems have been studied to find com-
plete and partial spatial covering on the geometric space [1,7,8,19,20,23,36].
However, geometrical approaches (e.g., Euclidean distance) are not ideal for
spatial networks [4,37]. Metric k-center problems can find complete coverage of
spatial events, which minimizes the longest edge between the center and spatial
event locations [21,24,25]. However, these approaches do not honor distance con-
straints between two nodes in a sub-network and cover all spatial events, leading
to a limitation of the detection of distance-constrained spatial sub-networks.
Clustering methods have been widely used in related research about partial cov-
erage problem [2,17,22,41]. However, these methods do not consider distance
constraints to build sub-networks. There exists a significant body of research on
spatial network analysis. The K-function has been applied to spatial networks to
analyze the distribution of events and detect clusters [31,34,40,42]. Scan statis-
tics has been used to detect anomalies on networks [28,35]. The concept of spatial
auto-correlation has been used to analyze the correlation between two variables
on spatial networks [5,10]. Network kernel density estimation has been studied to
analyze probability distributions of events and provide visual patterns of relative
density on spatial networks [16,30]. Network-based variable-distance clumping
method has been proposed to discover multi-scale network-based clumps [38].
The network farthest-pair point clustering method uses the complete linkage
method to discover clusters on networks [30,39]. Network Voronoi diagrams have
been intensively studied to help spatial analysis on networks [30]. Farthest-point
network Voronoi diagram partitions a network into sub-networks in each of which
the farthest site is the same [30]. Capacity-constrained network Voronoi diagram
has been proposed to create a set of contiguous service areas that meet service
center capacities and minimize the sum of the distances from customers to allot-
ted service centers [43]. There has been an interest in developing approaches for
network path covering problems. Shortest path covering problems identify the
minimal cost path that covers all of the nodes on the network [12,13,15,29]. In
particular, the median tour problem and the maximal covering tour problem use
bi-objective optimization models to minimize the total path length and maximize
the accessibility of demand nodes [14]. FlowScan technique uses a density-based
clustering algorithm to identify hot routes on spatial networks [27]. K-Main
Routes technique discovers k shortest paths to summarize spatial activities on
networks [32]. Many other type of spatial network covering problems are also
studied [6,9,36]. However, these problems do not honor distance constraints.
In this work, we propose a novel approach for creating Distance-Constrained k
Spatial Sub-Networks (DCSSN) that honors distance constraints and maximizes
the coverage of spatial events.

1.6 Outline

The rest of the paper is organized as follows: Sect. 2 describes our proposed
approach. We provide correctness proofs of the proposed approach in Sect. 2.1.
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Section 3 describes the experiment design and presents the experimental obser-
vations and results. Section 4 reports a case study using Chicago crime datasets
and LAPD crime and collision datasets. Finally, Sect. 5 concludes the paper.

2 Proposed Approach for DCSSN

In this section, we introduce our Rooted Sub-Graph with the Nearest Neighbor
Distribution (RSG-NND) approach to the DCSSN problem.

RSG-NND Algorithm: The RSG-NND algorithm starts with constructing
both the rooted sub-graphs (RSG) and the nearest neighbor distribution (NND)
functions and finds an attractor node located in the area with the highest event
density. The key idea in RSG-NND is to construct a data-structure to index the
nearest-neighbor events and assign the highest nearest-neighbor weighted edges
to the attractor node to maximize the coverage of spatial events. This process
can create sub-networks under distance constraints and iteratively find dense
sub-networks in topological space.

The RSG-NND algorithm consists of the following three steps: (1) construc-
tion of the rooted sub-graphs and the nearest neighbor distribution functions,
(2) assignment of spatial events to sub-networks that maximizes the coverage of
spatial events and honors the distance constraint, and (3) update of the nearest
neighbor distribution functions.

In the first step, RSG-NND creates the rooted sub-graph from every node
(r ∈ N) and constructs the nearest neighbor distribution (NND) function. The
idea of RSG is to create a sub-graph induced by all nodes within distance d of
the root r.

Definition 1. The rooted sub-graph RSG(r,d) is the sub-graph of G(N,E)
spanned by all nodes of G at distance at most d from the root r.

The nearest neighbor distribution (NND) function can be represented by

NND(r, d) =
∑

e∈RSG(r,d)
#events(e), (1)

where r is the root of RSG, d is the distance constraint, and #events(e) is the
number of spatial events in edge e.

Figure 2 shows an example of the NND function. Figure 2(a) illustrates the
input with a transportation network (14 nodes, 20 edges, and 25 spatial events).
Every edge is associated with a distance (e.g., travel time), as indicated by the
number displayed alongside it. Consider NND for node F . Figures 2(b) to (e)
show RSGs rooted at node F with different distance constraints. Figure 2(f)
shows the data-structure to index the accumulated counts of nearest-neighbor
events (i.e., #event(e)) from node F . For example, 17 events are located within
the distance of 2 from node F (see Fig. 2(c)). This model, which we refer to as
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(a) Input (b) RSG(F,1) (#events(e) = 8)

(c) RSG(F,2) (#events(e) = 17) (d) RSG(F,3) (#events(e) = 22)

(e) RSG(F,4) (#events(e) = 25) (f) distance-aggregated list

Fig. 2. Creation of Nearest Neighbor Distribution function of node F

distance-aggregated list, allows for storage of nearest neighbor nodes in every
distance. This is useful for NND queries as it updates the NND in linear time
(Lemma 1).

In the second step, RSG-NND searches the accumulated counts of events
(i.e., values of NND) that lie within the closed interval between dmax/2 and
dmax (i.e., [dmax/2, dmax]) from all nodes and chooses the node with the high-
est values of NND. There are three reasons to use the closed interval between
dmax/2 and dmax. First, RSG with distance dmax/2 honors the distance con-
straint of DCSSN (Lemma 2). That means, RSG with distance dmax/2 can be
a subset of the sub-network in DCSSN. If dmax is an odd number, we use the
closed interval [�dmax/2�, dmax] because RSG with distance �dmax/2� may vio-
late the distance constraint. Second, RSG with distance dmax may honor the
distance constraint of DCSSN, but RSG with distance d > dmax always violates
the distance constraint. Finally, the sub-network in DCSSN is always a subset
of the RSG with distance dmax. As a tie break, we choose the node that has
higher values within the smaller distance. We refer to this node as an attractor
node. Intuitively, the node with the highest values in this range has the largest
expectation to become the attractor node which absorbs the next attractor node
to form the DCSSN. After choosing the attractor node a, RSG-NND assigns the
highest weighted edge (e.g., the number of spatial events) to the node a under
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the distance constraint (i.e., dmax). This process creates a sub-network that
maximizes the coverage of spatial events under the constraint. Our approach
may cause missing donut-shaped spatial events because the increase of distance
from the root r results in much higher values of NND. However, in general RSG-
NND will choose attractor nodes from boundaries of donuts and merge these
attractor nodes to create donut-shaped sub-networks if each donut is sufficiently
separated from each other.

(a) Input (1st iteration) (b) NND (c) Input (2nd iteration) (d) NND

Fig. 3. RSG-NND (k= 3, dmax = 2) (1st to 2nd iteration)

Figure 3 shows the process of selection of the attractor node and assignment
of spatial events to the node. Figure 3(b) shows NND for the network of Fig. 3(a).
Consider dmax = 2 and k = 3. In this example, node F has the highest weight
in the closed interval between 1 and 2 (i.e., [1, 2]). After the selection of the
attractor node (i.e., F ), RSG-NND scans all edges under the distance constraint
and allots the highest weighted edge (i.e., EF ) to node F (see Fig. 3(c)).

(a) Search for edge EF (b) After decrease of values of
NND

Fig. 4. Update of distance-aggregated list

In the third step, RSG-NND removes all the spatial events on the allotted
edge (i.e.,, EF ) and updates the NND function. A naive approach for the update
is to create the rooted sub-graphs and repeatedly count all spatial events. How-
ever, it takes O(n2 · log n) for all nodes. In order to minimize the computational
cost, RSG-NND uses two key ideas. First it constructs the distance-aggregated
list and updates NNDs in linear time (Lemma 1). Second it updates only the part



Distance-Constrained k Spatial Sub-Networks: A Summary of Results 75

of nodes affected by the removal of spatial events (i.e., the updates are applied
only to nodes which are reachable from the allotted edge within the distance con-
straint). Figure 4 shows the update of NND for node F . After removing three
spatial events on edge EF , RSG-NND decreases the value of 3 from d = 1 to 4
(Lemma 1). The result of update is shown in Fig. 3(d). This process continues
until all the spatial events are removed and terminates in O(m) iterations, where
m is the number of edges.

Algorithm 1. Generalized rooted sub-graph with the nearest neighbor distribution
function (RSG-NND) Algorithm (Pseudo-code)

Inputs:
- A transportation network (G(N,E)) with a set of nodes N and edges E.
- A set of spatial event locations I on E
- Every edge has a distance d(e)
- The number of sub-networks k
- The distance constraint dmax

Outputs: Distance-Constrained k Spatial Sub-Networks (DCSSN)
Steps:

1: Construct the rooted sub-graphs (RSGs) and the nearest neighbor dis-
tribution functions (NNDs).

2: DCSSN ← ∅
3: while |I| > 0 do
4: Find an attractor node a in the range between dmax/2 and dmax.
5: Assign the highest weighted edge eh ∈ E to a to maximize the coverage of spatial

events under the distance constraint (i.e., dmax).
6: DCSSN ← DCSSN ∪ eh
7: Remove spatial events i ∈ I from G.
8: Update NNDs according to removal of spatial events i.
9: end while

10: return DCSSN (i.e., k sub-networks that maximize coverage of spatial events.)

Algorithm 1 presents the pseudo-code for a generalized version of RSG-NND.
First, RSG-NND creates the rooted sub-graphs and the nearest neighbor distri-
bution functions in the closed interval between dmax/2 and dmax (Line 1). Then,
it chooses the highest NND node as an attractor node (Line 4). After that, it
sorts edges in RSG based on the weights and assigns the highest weighted edge
to the attractor node under the distance constraint (i.e., within distance dmax)
(Line 5). If this sub-network can be added to an existing sub-network under
the distance constraint, two individuals are combined (Line 6). If it cannot be
combined with the existing sub-network, it becomes a new sub-network (Line
6). Then, it removes the spatial events in the network G (Line 7) and updates
NNDs (Line 8). This process continues until all the spatial events are removed.
Finally, the DCSSN is returned (Line 10).
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(a) Input (3rd iteration) (b) NND (c) Input (4th iteration) (d) NND

(e) Input (5th iteration) (f) NND (g) Input (6th iteration) (h) NND

(i) Input (16th iteration) (j) NND (k) Output (DCSSN)

Fig. 5. RSG-NND (k =3, dmax = 2) (17th iteration produces a DCSSN)

Figures 3, 4 and 5 show the execution of the RSG-NND algorithm. RSG-NND
starts with creating RSGs and constructs NNDs (Fig. 3(b)). In this example,
node F becomes an attractor node (see Fig. 3(b)) and takes edge EF to construct
the sub-network. Figure 3(c) shows the network after the allotment of edge EF
to node F . Next, RSG-NND updates NNDs and finds the next attractor node
(i.e., G) as well as edges with the highest weight (e.g., FG, GH, GL, and LM).
As a tie break rule, the edge connecting to the incident with the highest values
in NNDs (i.e., FG) will be allotted into node G. Since new allotment (i.e., FG)
can be combined with the existing sub-network (i.e., EF ) without breaching the
distance constraint, both are combined into one sub-network. Figure 5(c) shows
the result of the 4th iteration. In this example, three nodes have the highest
NND value at the distance of 1 (i.e., E, L, and M). As a tie break rule, the node
with the highest value at the distance of 2 (i.e., M) will be selected. After 17
iterations, RSG-NND allots all spatial events to sub-networks and returns the
result of DCSSN (Fig. 5(k)).
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2.1 Proof and Analysis

In this section, we prove that the RSG-NND is correct, i.e., the RSG-NND
algorithm creates a DCSSN.

Lemma 1. The update of NND takes linear time

Proof. The node set for every distance in the distance-aggregated list can be
constructed using hash-tables. The operation to test whether a node can be
reachable from the root r within the distance d takes a constant time [18].
Assume that spatial events on edge e ∈ E are removed. Let the number of
removed events be i. Then RSG-NND scans the distance-aggregated list and
finds the two nodes (e.g., n1 and n2) which are incident on edge e at a cost of
O(dmax) (see Fig. 4). After that, RSG-NND chooses the farthest node (e.g., n2)
from the root and finds the distance (e.g., d2) from the root r. It takes O(dmax).
Finally, RSG-NND decreases the values of NND after the distance d2 by i, which
takes O(dmax). Therefore the update of NND takes linear time.

Lemma 2. RSG(r, dmax/2) meets the distance constraint.

Proof. According to Definition 1, all nodes in RSG(r, dmax/2) are reachable from
the root r within distance dmax/2. Assume that there are two nodes n1 and n2 in
RSG(r, dmax/2). Then the shortest path distance between n1 and n2 is at most
dmax/2 because there is a path consisting of n1 → r and r → n2. Therefore,
RSG(r, dmax/2) meets the distance constraint.

2.2 Computational Complexity of the RSG-NND Algorithm

Let n be the number of nodes, let m be the number of edges, let k be the
number of sub-networks, and let dmax be the distance constraint. RSG-NND
uses Dijkstra’s algorithm to create RSGs at a cost of O(n · (n · log n + m)) [3].
Because the transportation network is a sparse graph (i.e., m = O(n)), the
complexity becomes O(n2 · log n). The construction of distance-aggregated list
takes O(n · dmax). A hash-table is used to store the set of the nearest neighbor
nodes within the distance constraint providing constant-time performance for
retrieval operations [18]. The assignment of the most highest weighted edge to
the attractor node takes O(m · logm) because edges should be sorted based on
weights. The update of distance-aggregated list takes O(n · dmax) because RSG-
NND examines every node and scans the distance-aggregated list to update the
NND function. Assume that we consider the large-sized network (i.e., dmax �
logm). Since the number of iterations is bounded by O(m), RSG-NND takes
O(n2 · log n+m · (m · logm)). Then the computational complexity of RSG-NND
is O(n2 · log n + m2 · logm).

3 Experimental Evaluation

In this section, we present the experiment design and an analysis of the experi-
ment results.
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Fig. 6. Experiment layout

3.1 Experiment Layout

Figure 6 shows our experimental setup. For the transportation network, we used
a Chicago, IL road map consisting of 19, 075 nodes and 28, 943 edges, taken from
OpenStreetMap [33]. For the spatial events, we used real-world crime datasets
from January to April. 2015 that consist of spatial locations on a Chicago, IL
road map [11] and created Distance-Constrained k Sub-Networks (DCSSN). For
simplicity, we mapped all incidents to the nearest edge (i.e., road segment).

Ideally we would test our proposed algorithm against comparable algorithms
from related work. Unfortunately, we found no algorithms in the literature that
honor distance constraints. The closest algorithm may be spatial partial cluster-
ing [2,17,22,41]. We used agglomerative hierarchical clustering (AHC) method
and density-based clustering (DBC) method as our baseline partial clustering.
Since both methods have no distance constraints, we modified the algorithms
to group the spatial points within the distance constraints. In AHC meth-
ods, we only merged the highest weighted edges under the distance constraint.
DBC method requires two parameters: the maximum radius of the neighbor-
hood (Eps) and the minimum number of points required to form a dense region
(MinPts) [17]. In DBC method, we used a recursive call of DB-SCAN to deter-
mine two parameters for creating better solution [17]. In the merge procedure,
DB-SCAN was modified to honor the distance constraint. Both methods require
the shortest path computation which takes O(n · (n · log n+m)) [3]. Assume that
m = O(n). Since the process of AHC takes O(n2 · log n), the time complexity of
AHC is bounded by O(n2·log n) [41]. The process of DBC takes O(n·log n); there-
fore the time complexity of DBC is bounded by O(n2 · log n) [22,41]. We tested
five different approaches: (1) RSG-NND, (2) single-linkage clustering (AHC-
Single), (3) complete-linkage clustering (AHC-Complete), (4) Group average
linkage (AHC-Average), and (5) DB-SCAN (DBC). The algorithms were imple-
mented in Java 1.8 with a 16 GB memory run-time environment. All experiments
were performed on an AMD FX(tm)-8120 CPU machine running MS Windows
10 with 32 GB of RAM.
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3.2 Experiment Result and Analysis

We experimentally evaluated five different approaches by comparing the impact
on performance of (1) number of edges (i.e., |E|) and (2) distance constrains (i.e.,
dmax). Performance measurements were the number of spatial events covered by
DCSSN and execution time.

Effect of the Number of Edges. The purpose of the first experiment was to
evaluate the effect of number of edges on the performance of the algorithms. We
fixed the number of sub-networks to 5 and the distance constraint (i.e., dmax)
to 1 km, and incrementally increased the number of edges from 5, 585 to 28, 943
by enlarging the network size. The experiment was done using four different
dataset from January to April, 2015 and execution times were averaged over 10
test runs. Figure 7(a) shows that the RSG-NND algorithm performs better than
other approaches. This is because RSG-NND uses the distance-aggregated list
to estimate the global density and groups the spatial events in terms of local
density. As can be seen, the number of spatial events covered by sub-networks
does not increase directly in proportion as the number of edges increases because
the objective is to find the five most dense distance-constrained sub-networks.
Figure 7(b) shows that the run-time increases as the number of edges increases.
As can be seen, both DBC and RSG-NND are faster than agglomerative hier-
archical clustering (AHC) methods. RSG-NND outperform other approaches in
terms of solution quality because the spatial partial clustering methods (i.e.,
AHC, and DBC) are not designed for the objective of DSCSSN.

(a)Comparison of Solution Quality        (b)Run-time Comparison

Fig. 7. Effect of the number of edges (dmax = 1km)

Effect of Distance Constraints. The second set of experiment evaluated the
effect of distance constraints. We fixed the number of edges to 23, 367 and incre-
mentally increased the distance constraint (i.e., dmax) from 0.5 km to 2.5 km.
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(a) Comparison of Solution Quality (b) Run-time Comparison

Fig. 8. Effect of the distance constraints (|E| = 23, 367)

The experiment was done using four different dataset from January to April.
2015 and execution times were averaged over 10 test runs. Figure 8(a) shows
that RSG-NND outperforms other approaches in terms of solution quality. As
the distance (size) constraint increases, so does the performance gap. Figure 8(b)
shows that the run-time increases as the distance constraint increases. This is
because all algorithms require the computation of shortest distance between
nodes.

4 Case Study with Chicago and Los Angeles Road
Networks

In our case study, we imagined a scenario in which the police department identi-
fied high-risk areas and encouraged officers to spend more time in these areas to
prevent crime. For the transportation network, we used a Chicago, IL road map
consisting of 23, 165 nodes, 35, 161 edges, and 4, 463 locations of crime incidents
and a Los Angeles, CA road map consisting of 23, 576 nodes, 34, 764 edges, and
5, 400 locations of crime and collision incidents. We chose two different sets of
distance constraints (i.e., 1 km and 2 km) and created five distance-constrained
spatial sub-networks. Each sub-network is represented by different colors. For
simplicity, we assigned crime locations to the nearest road segment. Due to time
limitations, we have only used five sub-networks for preliminary evaluation of
the proposed algorithm. In the future, we plan to test our algorithm on a larger
number of sub-network to characterize the DCSSN.

4.1 Case Study Results and Analysis

In this section, the goal was to investigate the following questions: (1) Is the
RSG-NND able to create dense sub-networks? and (2) How does the distance
constraint affect DCSSN?
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(a) Input (spatial events) (b) DCSSN (dmax = 1 km) (c) DCSSN (dmax = 2 km)

Fig. 9. Case study: Chicago, IL road map (|N | = 23, 165, |E| = 35, 161, |I| = 4, 463,
and k = 5) (Color shows sub-networks) (Color figure online)

Case Study 1: Chicago, IL Road Map. We used crime datasets in January
2015 that consist of 4, 463 locations of crime incidents on a Chicago, IL road
map (Fig. 9(a)) [11]. We fixed the number of sub-networks to 5 and increased
the distance constraint from 1 km to 2 km (Fig. 9). Figures 9(b) and (c) show that
crime incidents are concentrated in eastern areas. DCSSN within 1 km (Fig. 9(b))
covers 563 locations and DCSSN with 2 km (Fig. 9(c)) covers 1, 223 locations.
As the distance (size) constraint increases, sub-networks expand towards north
and south direction.

(a) Input (spatial events) (b) DCSSN (dmax = 1 km) (c) DCSSN (dmax = 2 km)

Fig. 10. Case study: Los Angeles, CA road map (|N | = 23, 576, |E| = 34, 764, |I| =
5, 400, and k = 5) (Color shows sub-networks) (Color figure online)

Case Study 2: Los Angeles, CA Road Map. We used LAPD crime and
collision datasets in January 2015 that consist of 5,400 locations of crime and
collision incidents (Fig. 10(a)) [26]. We fixed the number of sub-networks to 5
and increased the distance constraint from 1 km to 2 km. Figure 10(b) and (c)
show that crime incidents are concentrated in western areas. DCSSN within
1 km (Fig. 10(b)) covers 475 incident locations and DCSSN with 2 km (Fig. 10(c))
covers 1,045 incident locations. As the distance (size) constraint increases, sub-
networks expand toward west and east direction.
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4.2 Discussion

The RSG-NND performs better than baseline algorithms in terms of solution
quality. This improvement was obtained using three key components: (1) the
rooted sub-graph (RSG), (2) the nearest neighbor distribution (NND) function,
and (3) update of NND. DB-SCAN uses the global density parameters to group
spatial events [17]. However, it does not update the density estimation after
each allocation, which may hard to maximize the coverage of spatial events with
distance constraints. Single-linkage clustering outperforms other agglomerative
hierarchical clustering methods. Even though complete-linkage clustering tends
to minimize the increase in diameter of the clusters at each iteration, it also shows
a limitation to maximize the coverage with distance constraints [2,22,41]. The
experimental results show that RSG-NND outperforms than other approaches
in terms of the coverage of spatial events and speeds up the computation of
DCSSN.

5 Conclusion and Future Work

We presented the problem of creating distance-constrained k spatial sub-
networks (DCSSN). Creating a DCSSN is challenging because of the large size
of the transportation network and the constraint that any two nodes in the sub-
network are within the predefined distance range. In this paper, we introduced
the rooted sub-graph with the nearest neighbor distribution function (RSG-
NND) approach for creating a DCSSN to meet the distance constraint while
maximizing the coverage of spatial events. We presented experiments and a case
study using Chicago crime datasets. In future work, we plan to further explore
the DCSSN problem and design parallel algorithms to create a DCSSN. Also,
we plan to study computational techniques for spatio-temporal sub-networks.
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Abstract. There has been a proliferation of literature that incorporates social
network analysis (SNA) to study geographic phenomena. We argue that these
incorporations have mostly been superficial. What is needed is a stronger
interrogation of the challenges and possibilities of a tight coupling of spatial and
social network concepts, which take advantage of the strengths of each
methodology. In this paper, we create a typology of existing research focused on
the integration of geography into SNA: nodal, topographic and spatial. We then
describe three core concepts that co-exist in the two fields but are not necessarily
complementary: distance, communities, and scale. We consider how they can be
appropriated and how they can be more tightly coupled into spatial social net-
works. We argue that the only way we can move beyond a superficial integration
is to holistically identify the challenges and consider new methods to address the
complexities of integration.

Keywords: Spatial social networks � Geography � GIScience � Social networks

1 Introduction

In recent years, Social Network Analysis (SNA) has generated considerable attention
due to the distinctive ways in which it characterizes and prioritizes the relationships
among entities. The diagrammatic approach of social networks serves as a starting
point for visual exploratory analysis. Social Network Analysis’s foundation in graph
theory provides a strong backbone for deriving metrics to analyze network patterns.

The basic premise of a social network is to define a society as a group of entities
with persistent interactions and shared attributes. A society can refer to a group of
people sharing the same territory, subject to the same laws, interested in same activities
(forming clubs), and belonging to the same economic or social status. It is the common
attribute(s) between the individuals that gives rise to social interactions. In geography,
the concept of a society is formed on the common attribute, irrespective of interactions
between the entities. In SNA, it is not presumed that similar entities will interact. Thus,
the focus is on the explicit interactions. This provides an interesting avenue to uncover
patterns, discover important individuals and reveal interesting facts about the society,
which a procedure starting with the assumption that everyone with similar qualities
interact with each other may not provide. Thus, SNA provides a complimentary
approach, focusing on studying individuals, groups and ultimately the society by
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concentrating on the known interactions that exist between the entities. Both methods
of enquiry, spatial and social analysis, can however benefit each other by a coupling of
knowledge.

In this paper, we explore some of the requirements for tighter integration of SNA
with geography. Although [1] highlighted the long tradition of network analysis in
Geography, whereby both human and physical phenomenon have been modeled as
networks [2], the resurgence in SNA in various fields compels revisiting the tradition
and offer new perspectives for understanding social networks in the context of
GIScience. Despite a proliferation of research that integrates geographic aspects in
SNA, the current literature lacks a framework for classifying the different methods by
which the integrations have been accomplished. We introduce a typology of integrating
geography and SNA in the current literature. We then highlight three concepts com-
monly used in SNA and geography but warrant deeper understanding of what they
mean in either context, highlighting the problems as a way to form working definitions
required in the realm of spatial social networks. We hope to offer additional interesting
avenues for exploring interconnectivity and interactions between people and also
between people and their surroundings. Referred to by various terms, such as location
based social networks [3, 4], geo-social [5], and spatial social networks [6], we prefer
the terms spatial social networks, as it highlights the social connections, recognises the
embeddedness of the interactions in geographic space, not confining geographic
notions to just a pair of coordinate locations.

2 Social Network Analysis (SNA)

Social Network Analysis represents relationships between connected entities such as
individuals, organizations, and groups. In SNA, a social network is computationally
represented as a collection of nodes and edges. Specifically, a network is usually
expressed as a non-directed graph defined G = (V, E) where V = v1, v2, v3,…, vn
represents the set of nodes and E = e1, e2, e3,…, en is the set of edges. Each edge ek is
associated with an unordered pair of vertices (i, j). In some applications, the edges
between the nodes are non-reciprocate and hence the graph is directed, where each
edge ek is associated with an ordered pair of vertices (u, v). The main focus of the
social network is on the edges (or ties), that is, the relationships that exist amongst the
nodes [7]. Using graphs to represent social networks limits the possibility of self-loops,
as in terms of social relationships, the concept of a person being a friend with them-
selves does not make sense.

Most social networks are unweighted graphs. The presence of an edge between two
nodes is binary, indicating whether there exists a relationship amongst the two nodes or
not. In unweighted graphs, the edges do not convey any other information besides
connectivity of nodes. Hence, navigation in the network space is only possible by
moving along existing edges from node to node (like navigation on a road network).
A sociogram is a visualization of the social network. In the sociogram, the widths, or
the lengths of the edges are arbitrary. The nodes in a sociogram are located with the
attempt to show interconnected nodes close to each other [8]. The position of the nodes
in the layout is not directly interpretable on its own on a Cartesian plane and only has
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meaning in relation to other nodes [9]. Any scaling or rotation of the sociogram does
not change the underlying information [10].

Various graph layouts have been developed to produce aesthetically pleasing
drawings by modifying the position of the nodes and edges and by changing the length
of the edges [11]. The drawings should not be confused with the graph itself; very
different layouts can correspond to the same graph [11]. Figure 1a and b shows the
same graph represented with two different layout algorithms applied; the adjacency
matrix of nodes and edges is shown in Fig. 1c. In the adjacency matrix (Fig. 1c), each
non-diagonal entry, aij, is the existence of an edge connecting node i to node j. Usually
the entries aij are binary and denote the existence or non-existence of an edge between
the two nodes i and j. Unlike sociograms, there exists a unique adjacency matrix for
each graph (up to permutations of rows and columns) [12].

Increasing amounts of data can now be used to nuance social relations. In many
cases, an entity can be thought of as a cluster of structured or unstructured attributes,
distinguished by a unique identifier. The emergence of big data has spawned new
perspectives on social network structures [13–15], energized the development of new
metrics [16, 17], and increased the availability of software and libraries [18–20].
Geography is increasingly playing a role in characterizing social networks. However,
geography often tends to be treated similarly to other attributes and has, until recently,
merited little critical attention about how it can be coupled with SNA to exploit spatial
embeddedness of the network. In this paper, we use the term Geography rather broadly
to refer to the field itself; a term synonymous with describing “the earth’s surface from
a standpoint of distributions and interactions” [21].

3 Existing Methods of Coupling Geography and SNA

Numerous articles have discussed spatial social networks. We characterize the literature
into three main types.

First, in its simplest form, articles treat geography as a nodal attribute [23–26]. This
approach has location information of the entities stored in terms of nominal location
(e.g., gazetted placenames). The location is often treated similarly to other nodal
attributes (e.g., age, gender). The location provides information about similarity among
different entities. This allows us to infer location based homophily (i.e. propinquity) or

Fig. 1. Various representations of the same social network. (a) Sociogram with ForceAtlas2
layout [9] (b) sociogram with Fruchterman–Reingold layout [22] (c) adjacency matrix
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to consider places as promoters of social tie formation and maintenance. The main
benefits of this type are that it is easier to treat one attribute like any other and does not
demand the geometric transformation of a nominal location to a feature type. The
analysis methods are usually rooted in SNA, as opposed to spatial analysis, and
locational information merely adds more context to aid the SNA.

Second, researchers may treat location of the entities as a topographic attribute
[27–30]. This is a more sophisticated way of integrating spatial information into social
networks by associating x, y locations with nodes, edges, or both. In this type, edges
can take on two meanings: the social connection between two entities or the physical
path between the entities. Having x, y locations aids representation of the social net-
work on a Cartesian space enabling use of visual as well as spatial analysis techniques
to understand the spatial characteristics. This type of research is typically accompanied
by basemaps to visualize the social network. More importantly, these methods fit social
relationships on to a Cartesian space. The fitting of the social network to Cartesian
space makes spatial analysis, such as kernel densities, a more vital component than in
the nodal attribute treatment. Nonetheless, reducing geography to be a mere nodal
attribute or simply to a x, y pair to be rendered on or analyzed against a map disregards
the nuanced effects on actors and tie formation in the social network.

Third, is the treatment of geography as a spatial property of the network [6, 31–39].
This not only considers the geographic locations of the nodes and/or edges but also
exploits spatial properties and patterns to infer spatio-temporal characteristics of the
network. Common ways of considering spatial aspects include not only Euclidean
distance but also social distance, contiguity in terms of geography and in terms of
social relationships, to name a few. This alleviates the handling of spatial information
by recognizing it as more than x, y co-ordinate pairs, identifying and consequently
exploiting different means of incorporating spatial information, not only as attributes
but as a fundamental aspect of entities and relations embedded in a geographic space.
However, the primary challenge of integration lies in the creation of a geo-social space
that embodies characteristics of Cartesian space as well as network space. By recog-
nizing the spatial properties of the social network, this type moves closest to the
definition of the geo-social space in which spatial social networks are embedded.

In the following section, we encompass all three types of spatial social networks to
discuss the terminological chaos that ensue when talking simultaneously about geog-
raphy and social network analysis. Creating a typology helps understand the various
levels of sophistications of integration, creating a baseline for further deliberation.

4 Different Expressions and Challenges

Table 1 shows how specific terms compare between SNA and geography literature. We
discuss the terms as they appear in the two different contexts and move on to high-
lighting the challenges as well as the importance of creating solidarity of the terms for
spatial social networks.

88 D. Sarkar et al.



4.1 Distance

In social networks, distance is measured by movement from one node to another node,
travelling along the edges. Nodes connected by an edge are said to be adjacent. Two
nodes i and j are considered reachable, if there is a sequence of one or more edges that
connects the said nodes. The sequence of edges between i and j is called a path. The
number of links one traverses to reach another node equals the distance on the graph.
More specifically, the geodesic distance, d(i,j), between two nodes is defined as the
shortest path between them [38]. It is also possible to create social networks with
unconnected nodes, for example, separate groups of friends with no common friend
between the groups. In SNA, the groups themselves are called connected components.
If there is no path connecting the two nodes, that is, if they belong to different con-
nected components then the distance between them is conventionally defined as infi-
nite. Hence, two nodes belonging to two different connected components are
unreachable from each other.

In SNA, the simplest way to characterise importance of nodes is by looking at the
number of edges incident on it. Thus, an important node has many adjacent nodes by
virtue of having a high degree centrality [38]. In a social network, being friends with an
important person is always beneficial because one potentially becomes closer to many
other people in the network. It is important to note that being ‘close’ considers the
geodesic distance on the social network and not physical distance in a Cartesian Space.
Thus, even without having a high degree centrality, by virtue of having a few important
friends, a node may have highly efficient paths connecting it to most other nodes in the
network. These nodes are said to have a high closeness [38].

Table 1. Parallel concepts of SNA and geography and examples of how they tend to be
expressed

Concept Expressed in SNA Expressed in geography Coupling
problems

Distance Counts of edges;
connectivity; shortest
path; degrees of
centrality; weighting

Measures in Euclidean
space; shortest path;
homophily of
non-geographic attributes
in Cartesian space;
impedances; distance
decays

Incongruent
spatial
metaphors

Communities Shared attribute; areas;
number of social
interactions;
homophily

Static measures
(jurisdictions); Dynamic
measures (spatial
distribution and
clustering)

Semantics

Scale Number of nodes and
edges; completeness
of capture;
characteristic nodes

Resolution of collection
and representation;
spatial extent; edge effect

Reconciling and
integrating
the many
interpretations
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In a weighted graph, one cannot just as easily traverse one path as another. In certain
scenarios, edges may be associated with weights to represent factors like strength of a tie,
probability of forming a tie, or in case of spatial social networks, geographic distance
between the nodes. Weights add a new property coaxing geodesic distance calculations
to account for the different weights of the edges. Links may also have directionality
(non-reciprocal relations). If the graph is directional then distance d(i,j) and distance d(j,i)
are not symmetrical. The concept of adding weights to the edges is similar to geo-
graphical impedances along a road or stream network.

Similar to associating weights with links, attribute information (e.g. age, gender)
can be affixed to nodes. Each attribute can be considered a dimension and projected on
to axes creating an n-dimensional attribute space1. Each node is represented as a point
in this attribute space. The position is determined by the particular set of values of the
node’s attributes. The locations of the nodes are no longer arbitrary and the distance
between them is interpretable [10]. This information in the attribute space determine
the similarity of the nodes with respect to their attributes. For example, people with
similar incomes and similar age are closer together in the attribute space.

If the geographic location of each node is stored as attribute information, then,
longitude and latitude may be used to characterise the X and Y axes of the attribute
space. The distance between the two nodes in the attribute space represents the distance
in geographic space. Since, there may be a variety of attribute information collected
about the nodes, the specific attributes selected to characterize the axes in the attribute
space may produce different sociograms for the same social network.

Incorporating location into a node’s attributes allows exploration into the geo-
graphic properties of networks. One way geographic effects may be considered is by
calculating the distance between nodes with connections. Tobler’s First Law of
Geography states that near features are more alike than distant features [39]. Nodes
located in proximity to one other in geographic space thus have properties that are
similar to each other. In social networks, it is known that similar nodes tend to form
connections (i.e., homophily) [40]. Thus, geographically closer nodes are more likely
to have an edge than nodes that are further apart. Propinquity has been acknowledged
to play a role in forming social relationships [41]. Many social processes are considered
to be an outcome or affected by spatial proximity [42]. Milgram’s [43] landmark work
on “small world networks”, which led to the famous concept of “Six degrees of
separation”, contained a geographic component as the letters were posted from the
different cities to reach their final destination. This concept caught the attention of
researchers in exploring the relationship between geographic distance and social ties.

Despite the telecommunication revolution and the fabled “death of distance” [44],
researchers reiterate that relationships are often geographically local with the proba-
bility of forming long distance ties diminishing exponentially with increase in distance
between the actors [45–48]. The dependence on geographic distance to form social ties

1 Machine learning uses the term ‘feature’ to refer to each attribute used to characterize an entity.
Consequently, the n-dimensional space where the features live is referred to as a feature space. Here
we use the term attribute space to avoid confusion with geographic features.
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can be exploited to form generative models for social networks, which mimic the
properties found in real world networks [49, 50].

The geographic distance-friendship relationship is recognized as having important
consequences on the structures and processes of the network [48–50]. While studying
sparsely connected social networks, where despite the low density of links between the
nodes, all nodes are reachable from each other via only a few steps (i.e. small world
networks) [15, 49] concluded that if the probability of linking two individuals is
inversely proportional to the geographic distance separating them, a simple greedy
strategy (i.e., searching by making the locally optimal choice at each step) based on
geography is able to find a short path to a target in (ln N)2 time. The author also pointed
out that if a network is not structured like this, it is impossible to find the target using a
simple greedy strategy in a poly-logarithmic time, making searches computationally
expensive. A model proposed by [50] to explain the ‘searchable’ nature of small world
networks considers individuals to belong to groups, which in turn are embedded
hierarchically inside larger groups. The group can refer to any attribute, for example
profession or geography. In this model too, searching using only local information (i.e.,
selecting a neighbouring node of the current node that has the same attribute as the
target) was successful only when the probability of acquaintance between two indi-
viduals was inversely related to distance.

Distance metric is an abstract notion, appropriated by different fields in various
ways to describe what ‘near’ and ‘far’ means in the subject’s realm. Geography usually
uses measures in Cartesian space. Distance in Cartesian space can be measured in
different ways (e.g., Euclidean distance, Manhattan distance). Social networks on the
other hand use network space where distance is measured as edge sequences between
nodes. While studying social networks that are situated in geography, distance of nodes
on the surface of the earth is a strong determinant of social relationships and hence
affects geodesic distance in the social network. In spatial social networks, metrics can
be developed to leverage the different distance conceptualizations to characterize the
nodes as well as the entire network. However, the starting point for developing new
distance measures will require a conceptualization of a geo-social space in which
spatial social networks are embedded.

4.2 Communities

Sporadic debates in geography and SNA have recommended various definitions of
communities. The simplest differences between communities and societies are in terms
of size and interactions. In a social network, parts of the network may be highly
connected to each other. These sub-structures inside the social network are referred to
as clusters, communities, cohesive groups, or modules [51]. The principal elements
defining a community in geography are usually identified as social ties, social inter-
actions and area [52, 53]. However, this definition is not all encompassing, nor are all
the elements described above a necessary condition for a society [54, 55]. Professional
societies (e.g., the scientific community, community of lawyers) may not satisfy the
requirement of sharing common geographic territory, or may not even interact with one
another, yet form a community based on homogeneity of profession. Communities
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hence have three primary dimensions determining them, namely, shared area, social
interactions, and homophily. The intersection of geography and social network helps
explore communities as a function of both shared area and social connections, inte-
grating social as well as spatial communities. Thus, a working definition for commu-
nities for spatial social networks adheres to the old-school definition encompassing
shared area and based on social ties, yet is flexible to account for spatially discontin-
uous communities if the social ties between entities are known.

The mere fact that nodes are geographically co-located is insufficient to firmly
combine spatial concepts of community to SNA ideas of community. Hence spatial
cluster detection methods (e.g., Getis Ord, global Moran’s I and Ripley’s K) and even
Tobler’s law may not be informative in detecting social network communities. Even
non-spatial topological community detection algorithms normally used in SNA, like
clique or modularity based approaches, may be insufficient to find communities in
spatial social networks. In the case of spatial SNA, the spatial arrangement of nodes as
well as the nature of ties must be factored in to extract information from the network
topology. Thus, for spatial social networks, it is important to consider not only the
Euclidean distance between the nodes, but also the social distance between them, for
most socio-spatial analyses including cluster and community detection [56].

Modularity [57] is a metric that provides a measure of the quality of graph partition.
Modularity calculation for detection of social communities in spatial social networks
must control for the spatiality of the network. Hence, community detection in spatial
social networks needs to be perceptive of both spatial and network auto-correlation to
distill social and geographic determinants of community formation. The modularity
calculation can be modified to factor in the location of the node to find communities
that are firmly determined by geographic factors [34]. However, researchers have
argued that this form of approach to community detection provides little information
about the underlying forces actually shaping the topology of the network, and have
proposed a modularity measure that can factor out the effects of space, thus finding
clusters of nodes that are similar but not just because of their location relative to one
another [33]. Interesting community patterns can also be extracted from spatial social
networks by applying standard modularity based community detection approaches
coupled with innovative ways of visualizing the community. One such visualization
approach plots the communities on maps and uses Kernel Density Estimate to char-
acterize the relative occurrence of a user in any given community in any given location
[28, 30].

Despite the nihility of a widely accepted unique definition of communities in
geography and SNA, the existence of smaller connected structures within the larger
society is a signature of the hierarchical nature of the complex social structure [51].
Identification of topological clusters moves the focus from quantifying the importance
of individual nodes to identifying important sub-structures in the network, representing
a jump in the entity of analysis, i.e., instead of just one node we look at a cluster of
nodes. Coupling SNA and geography provides avenues for consolidating the various
conceptualizations of communities, opening up opportunities to compare and contrast
the various definitions of communities and their corresponding usefulness in revealing
socio-spatial patterns and processes.
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4.3 Scale

Scale has been a central notion in geography and also a particularly confusing one
depending on the context [58–61]. Thus it is imperative to reconcile concepts of spatial
social networks with different meanings of geographic scale.

The observation scale or the measurement unit [60] needs two specifications, one
for the geography and another for social network elements. Whereas the specifications
in geography include the smallest object discernable and the smallest measurable units,
social networks need to include disclaimers about what resolution of data is collected
about the nodes and the edges. Details about nodes include not only a list of the
attributes collected, but also metadata about the attributes. For example, age is denoted
as a specific number or as a range. In terms of geography, it is vital that location
resolution of the node is known. Moreover, if the nodes denote people, it is important
to know how they are located and assess the implications of the locations for the study.
For example, is the location of the person’s home recorded or is it the location of work.
Moreover, a person, unlike a house, is not stationary in space. Thus, it is imperative to
reflect on how the recorded location(s) affect the inferences from the spatial social
networks and how qualifying the observation scale serves as the entry point for
understanding the simplified model of reality at which the study is implemented [61].

The geographic scale or the spatial extent refers to the area on the surface of the
earth spanned by the social network under study [60]. Thus, analysis on data from
Facebook may have a geographic scale spanning the entire earth. However, depending
on the phenomenon under study, only a subset of the network may be used. In terms of
analysis boundaries, social networks pose a two-fold problem, finding the entire
population and then determining the links between the entities. When resorting to
sampling, decisions need to be made to limit the population, or the links, or both. If
geographic constraints are used, then the geographic boundaries used to subset the
network itself define the geographic scale. Conversely, the social network itself might
dictate the geographic scale that needs to be considered. For example, an experiment
that requires the creation of the social network by following the connections of a
person, the geographic scale determined by how far from the original person their
connections live. Someone residing in Montreal may have friends only in Montreal in
which case the geographic scale will be small, or may have friends residing all over the
world requiring a very large geographic scale of study. When resorting to sampling, all
relationships that lie beyond the sampling boundaries are ignored. As network algo-
rithms are fundamentally relational, the results obtained from these algorithms will be
erroneous as a result of the edge effect [62].

When social networks are studied in the context of geography, the spatial extent at
which the various social network metrics are reported may convey interesting infor-
mation. For example, it is known that most of our social connections are local, with
only a few long distance links. Thus, it may be interesting to classify the degree of a
node with varying spatial extents. A person who has more long distance links than
average may be of more interest in connecting disparate spatial locations. Similarly,
when studying real world social networks, people living in small towns or villages
often know each other, forming closely knit social networks. However, emergence of
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communities at a larger spatial extent with similar population density may be more
interesting because of the lower probability of such an event.

Additionally, scale can be studied in terms of its phenomenology. The argument
about Stommel diagrams [63, 64] in which geographic features only have meaning
when observed in space-time (e.g., a flood, an oak forest), can be extended to social
networks. The recognition of the fact that social networks are a spatio-temporal process
is highlighted by the adoption of check-ins and timelines by almost all social media
sites. Thus, in spatial social networks, a coupling of social networks requires recog-
nition of the fact that social networks are not only contextually based on the concep-
tualization of edges, but also contextual in space-time.

Perhaps the most confusing use of the term ‘scale’ in social networks is when
referring to the existence of characteristic nodes. In a uniform network, every node has
an approximately equal number of edges. The degree distribution of a uniform network
has a sharp peak with a very small standard deviation. Hence, a node with the mean
number of edges is considered to be representative of all the nodes in the network.
However, most social networks do not have an egalitarian degree distribution. Few
nodes have disproportionately more edges compared to the majority of the nodes in the
network. In terms of social networks, these nodes play a vital role in keeping the
network connected. Thus, the degree distribution is skewed. These networks are
considered to be scale-free because there is no characteristic node to represent all the
other nodes [65]. The closest equivalence in geography is regarding aggregating and
rescaling data [66]. Data is said to be rescaled to a lower resolution by combining
smaller regions into larger ones, aggregating the values based on some central ten-
dency. This process is often used to aggregate data from county level up to the
provincial level. Thus, though the commonly used term for this operation is ‘rescaling’
or ‘upscaling’ as it involves a change in the observational spatial resolution, the idea is
similar to ‘scale’ in networks where a large population is said to be represented by a
single entity. The use of scale in social networks to refer to existence of a characteristic
node is an incongruence of terminology between social networks and the different
meanings of scale used in geography.

5 Conclusion

Spatial social networks have gained traction in the literature as a method of incorpo-
rating geographical information into SNA. In this paper, we have highlighted some of
the inconsistencies that require closer deliberation for a tighter coupling of spatial
information in SNA. We proposed a typology of the current literature of spatial SNA.
We also highlighted some of the parallel concepts that exist in spatial and social
network analysis. SNA provides an interesting perspective on explicitly studying
relationships between entities. However, the incorporations of geography in social
networks have been rudimentary thus far, and critical introspection is essential to
incorporate concepts and concerns from the perspective of GIScience. We need to draw
upon the long tradition of geography in working with non-Cartesian notions of space,
moving towards a definition of geo-social space to succinctly reflect the subtleties of
spatial social networks.
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When using SNA, analysts must remain cognizant of the fact that a network is
usually a snapshot of a social system in both time and conceptualization. Depending on
the conceptualization of the relationships, multiple social networks can be created. For
example, if explicitly declared friendships are used, it results in a particular social
network that is different from the one when some common attribute between people is
used to conceptualize the edges. Society is multi-faceted and the different conceptions
highlight different aspects. Situating social networks in geography not only allows
several new conceptualizations of relationships between entities, but has the potential
to enrich analytic capabilities even when the network ties are based on non-geographic
factors. In this paper, we have highlighted some of the considerations for progressing
socio-spatial analytics utilizing spatial social networks. Investigators of new metrics,
analysis techniques, and algorithms designed to leverage spatial and social networks
should remain vigilant about unifying spatial and social concepts to reveal interesting
phenomena, possible only through more deeply interrogating both spatiality and
sociality together.
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Abstract. Given a grid of cells each having a cost value, a variant of the
least-cost path problem seeks a corridor—represented by a swath of cells rather
than a sequence of cells—connecting two terminuses such that its total accu-
mulated cost is minimized. While it is widely known that raster-based least-cost
paths are subject to three types of distortion, i.e., deviation, distortion, and
proximity, little is known about potential distortion of their corridor counter-
parts. This paper studies a raster model of the least-cost corridor problem and
analyses its solution in terms of each type of distortion. It is found that
raster-based least-cost corridors, too, are subject to all three types of distortion
but in different ways: elongation distortion is always persistent, deviation dis-
tortion can be substantially reduced, and proximity distortion can be essentially
eliminated.

1 Introduction

To store and process data pertaining to geographic phenomena in a digital device such
as a geographic information system (GIS), a raster model discretizes geographic space
into a grid of equally-sized square units referred to as ‘cells’ or ‘pixels.’ In this model,
continuous surfaces of variables (e.g., elevation, vegetation, and temperature) are
represented by sets of values assigned to those cells, and discrete features (e.g.,
junctions, roads, and districts) are represented by individual cells or groups of cells.

The least-cost path problem is a classic application of a raster model. Given a grid
of cells each weighted by its associated cost, the problem is to find a cellular path, or a
sequence of adjacent cells, between two specified terminal cells such that its cost does
not exceed that of any other such sequence. The cost, dðPÞ, of a path, P, is typically
defined by the following formula.

dðPÞ ¼
X
ði;jÞ2P

c ið Þþ c jð Þ
2

� �
� l i; jð Þ ð1Þ

where c ið Þ and l i; jð Þ denote the cost of cell i and the distance between cells i and j,
respectively.

Note that this paper takes the 8-adjacency assumption under which two cells are
regarded as ‘orthogonally’ or ‘diagonally’ adjacent if they share a cell side or a cell
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corner, respectively, and that the distance between two orthogonally adjacent cells is
equal to the length of a cell side and that between two diagonally adjacent cells is

ffiffiffi
2

p
times longer.

The least-cost path problem in a grid can be seen as an instance of the shortest path
problem, and solved as such if the grid is, implicitly or explicitly, transformed into a
graph by equating each cell with a vertex and connecting two adjacent cells with an
edge weighted by the cost of transition between them. This is a highly efficient
approach in terms of computation, but care must be taken because the raster solution
may well be distorted compared to a more realistic, smoother path that might exist in
Euclidean space.

The raster path distortion can be generally classified into three types: “deviation”
[12], “elongation” [12], and “proximity” [10]. The first two types of distortion are
related, and caused by restricting the alignment of a raster path to a finite number of
directions, eight under the present 8-adjacency assumption. To see this, let us place two
points in the Euclidean plane such that they are 10 and 4 units of distance apart
horizontally and vertically, respectively (Fig. 1). Suppose that it costs 1 unit of cost to
pass through any point in the plane. Then, there exists only one least-cost path between
the two points, which is the straight line segment between them. Now let us impose a
5 � 11 grid on the plane and assign 1 unit of cost to each cell to simulate the uniform
cost surface (Fig. 1). In this grid, more than one least-cost path can connect the two
points and their cost is calculated as the sum of six cell sides and four cell diagonals,
that is, 1 � 6ð Þþ ffiffiffi

2
p � 4� � � 11:657. Significantly, all the paths deviate from the true

least-cost path (which is the straight line segment) and their cost is elongated compared
to the true least-cost value (which is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 þ 42

p � 10:770). In fact, they almost reach
the largest possible degree of elongation, 8.24 % [16], which occurs when the true
least-cost path follows a straight line at an angle of 22.5° from an orthogonal axis.

Many approaches have been proposed to resolve deviation and elongation distor-
tion ([2] briefly considers some of these). Perhaps the most popular one is to extend the
definition of adjacency by including more distant cells than the eight closest ones in the
neighborhood of each cell [10, 17]. The “extended raster” [4] is another approach,
which represents a path as a sequence of points that do not necessarily correspond to
cell centers but to vertices on cell boundaries. Douglas [7] and Tomlin [16] took yet

Fig. 1. A true least-cost path (dotted line) between two points over a uniform cost surface in the
Euclidean plane and two least-cost raster paths (one shaded and the other enclosed by solid lines)
between two cells in a uniform cost grid.
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another alternative, which simulates refracting and diffracting waves, and Tomlin’s
algorithm in particular does this in a very efficient manner.

Proximity distortion generally refers to incorrect passing through costly location.
A least-cost raster path experiences this type of distortion when it goes near high-cost
cells even though it is supposed to influence (or to be influenced by) its nearby cells. In
the most extreme case, a raster path falsely penetrates a linear barrier through an
artificial gap between two diagonally adjacent cells (see Fig. 2).

Fortunately, all such “holes” [1] or “cracks” [13] can be filled by removing the
corresponding edges from the grid-induced graph or heavily weighting them during or
prior to the execution of a shortest path algorithm. However, a more general problem
remains: if a raster path has an impact on a larger area beyond its (imaginary) cen-
terline, how can its cost be correctly evaluated? This has an important implication: at
geographic scales there are paths whose width cannot be assumed to be zero or neg-
ligible. Gonçalves [9] called such paths “wide paths” or “corridors” and formulated a
problem of finding one with the least possible cost. The most innovative aspect of his
formulation was that a corridor is seen as the area swept by a cellular line segment
called a “path front.” Gonçalves [9] proposed a solution method, too, which converts a
cost grid to a graph in which each vertex represents a path front and each edge
represents a possible transition from one path front to another. This method may not be
most efficient—in fact its complexity is exponential in the number of cells comprising
the corridor width, but guided Shirabe [15] to a highly efficient alternative. The key
difference was to replace a path front with a set of cells resembling a ‘marker pen tip’ as
a corridor sweeper (see Fig. 3 for an example).

Although it seems that least-cost raster corridors (rather than paths) by nature avoid
proximity distortion, this has yet to be confirmed. Also it is still unknown whether
least-cost raster corridors are subject to the other types of distortion and, if so, by how
much. This papers aims to answer these questions. The remainder of the paper is
organized as follows. Section 2 reviews the raster-based least-cost corridor algorithm.
Section 3 analyzes the forms and costs of output corridors of varying widths and
varying resolutions. Section 4 concludes the paper.

Fig. 2. False penetration of a raster path (lightly shaded) through an impenetrable linear barrier
(darkly shaded).
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2 Model and Algorithm for the Least-Cost Corridor Problem

Assuming that a corridor having a constant width can be seen as an area swept by a
disk of that width in the Euclidean plane, Shirabe [15] proposed a new raster model in
which a corridor of a width of w cell sides is represented by a set of cells swept by a
regular cellular ‘octagon’ with a width of w cell sides and its cost is defined as the sum
of the costs of all the swept cells. Since it is not possible to compose a truly regular
octagon from cells, it is approximated by a w-by-w block of cells with d diagonal arrays

of cells removed from each corner, where d is the largest integer not greater than 2� ffiffi
2

p
2 w

(see Fig. 4 for examples). The form keeps its orthogonal width equal to w cell sides and
minimizes the difference of its diagonal width from its orthogonal width. More
specifically, the diagonal width alternates around w between

ffiffiffi
2

p
w� d � 1ð Þ and

Fig. 3. A least-cost corridor (enclosed by solid lines) swept by a marker pen tip (a set of
squares) over a hypothetical cost grid.
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ffiffiffi
2

p
w� dð Þ. For instance, when w = 1, the diagonal width alternates between 0 and

1.41; when w = 8, it alternates between 7.07 and 8.49.

In this model, the form/location of a corridor is incrementally determined by
transitioning orthogonally or diagonally from one octagon to another. As illustrated in
Fig. 5, each transition extends the corridor as much as the corresponding set difference
and increases the cost of the corridor as much as the sum of the costs of all the cells in
that difference.

We assign each transition from an octagon, Ni, to an octagon, Nj, a weight, w(Ni,
Nj), as follows:

wðNi;NjÞ ¼
X

k2NjnNi

c kð Þ ð2Þ

Then, the cost, aðPÞ, of a corridor, P, is expressed by:

aðPÞ ¼
X
k2N0

c kð Þþ
X

Ni;Njð Þ2P
w Ni;Nj
� � ð3Þ

where N0 represents the first octagon in P. Accordingly, a raster version of the
least-cost corridor problem is defined as: Given a grid of cells each having a cost value,

w = 1

w = 5

w = 2

w = 6

w = 3

w = 7

w = 4

w = 8

Fig. 4. Regular cellular octagons of different widths. Note that the smallest three octagons are
actually squares as d is set to 0, but they are still called ‘octagons’ for ease of discussion.

Fig. 5. Orthogonal (left) or diagonal (right) transition from one octagon (a set of white cells) to
another (enclosed by a bold line). As the result of each transition, a corridor is extended as much
as the corresponding set difference (shaded).
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find a sequence of octagons of a specified form between two specified octagons, such
that its cost does not exceed that of any other such sequence.

An algorithm for the problem (i) takes a cost grid, a corridor width, an origin
octagon, and a destination octagon as input, (ii) determines an octagonal form from the
corridor width, (iii) converts the cost grid to a graph of octagons of that form and
possible octagon-to-octagon transitions, whose weights are calculated using Eq. 2,
(iv) searches the graph for a sequence of octagons from the origin to the destination that
minimizes the cost function given by Eq. 3, and (v) extracts a corridor by selecting all
the cells contained by at least one octagon in that sequence.

It should be noted that the algorithm may generate a “self-intersecting” [9] corridor.
It has been proven, however, that wider least-cost corridors are less likely to
self-intersect; in particular, if all cell values are positive, it takes at least 2 w� dþ 1ð Þ
transitions for any least-cost corridor to turn to self-intersect [15].

3 Analysis of Distortion

This section closely examines whether and how least-cost corridors represented by
sequences of cellular octagons are subject to each of proximity, deviation, and elon-
gation distortion. For numerical experiments, the algorithm reviewed in the previous
section was implemented in Java adapting Dijkstra’s shortest path algorithm [6].

3.1 Proximity Distortion

First, to model a uniform cost surface having impenetrable linear barriers on it, a
60 � 60 grid was created such that a value of 99999 is assigned to all cells where the
barriers are located and a value of 1 to all other cells. Then, the algorithm was applied
to this cost grid to generate three least-cost raster corridors of different widths—8 cell
sides, 6 cell sides, and 1 cell side—connecting two octagons near the top-right corner
and the bottom-left corner. The results are shown in Fig. 6.

(a) (b) (c)

Fig. 6. Least-cost raster corridors of different widths (lightly shaded) in a uniform cost grid with
linear barriers (darkly shaded). (a) The 8-cell-side-wide corridor turns most to avoid linear
barriers and small gaps between them. (b) The 6-cell-side-wide corridor goes through a gap
(encircled) that is too narrow for the 8-cell-side-wide corridor. (c) The 1-cell-side-wide corridor
goes between two diagonally adjacent high-cost cells (encircled).
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Overall, the 6-cell-side-wide corridor is more winding than the 1-cell-side-wide
corridor but less so than the 8-cell-side-wide, because the corresponding octagon is too
wide to squeeze into any artificial gap but narrow enough to go through some real gap
(encircled in Fig. 6(b)) the 8-cell-side-wide corridor could not.

The 1-cell-side-wide corridor runs almost straight because the algorithm let it go
between two diagonally adjacent high-cost cells (encircled in Fig. 6(c)), but not
completely straight because it was not allowed to cross either of those high-cost cells.
This rather awkward behavior is a consequence of the way the weight of each
octagon-to-octagon transition is calculated (see Eq. 2 with Fig. 5). The weight of
transition from one 1-cell-side-wide octagon (which is a single cell) to another depends
solely on the cost of the latter, not on the cost of any other nearby cell.

The three instances highlight an important aspect of the algorithm: it does not
distinguish groups of cells that form linear features from individual cells that happen to
be adjacent or close to each other. Therefore, it may unexpectedly let corridors through
artificial or real gaps, no matter how costly their nearby cells are. However, these errors
can be eliminated simply by increasing the corridor width not by pre-processing (e.g.,
smoothing) the cost grid. This means that the algorithm can take any raster layer as
input without any transformation. Moreover, notice that Eq. 2 does not assume the cost
grid to have a uniform cost distribution. Thus, regardless of what values are assigned to
individual cells, the algorithm selects a swath of cells that may contain high-cost cells
but still minimize its overall cost. The corridor shown in Fig. 3 is one such example.

3.2 Deviation Distortion

True least-cost paths follow shortest paths over a uniform cost surface in the Euclidean
plane. So do true least-cost corridors. For instance, a true least-cost corridor of a width
of 1 unit of distance is drawn below under the same condition that the true least-cost
path was drawn in Fig. 1.

Now recall that the present algorithm discretizes a cost surface into a cost grid,
represents a corridor as a sequence of regular cellular octagons, and restricts each
octagon-to-octagon transition to an orthogonal or diagonal direction. According to
Eq. 2, all orthogonal transitions have the same weight in a uniform cost grid. The same
is true for all diagonal transitions. Therefore, if two raster corridors contain the same

Fig. 7. A true least-cost corridor of a width of 1 unit of distance (shaded). It follows the line
segment (dotted line) between two points (separated by a horizontal distance of 10 units and a
vertical distance of 4 units) over a uniform cost surface in the Euclidean plane.
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number of orthogonal transitions and the same number of diagonal transitions, they
must have the same cost. Equation 2 also implies that one diagonal transition costs less
than two orthogonal transitions in a uniform cost grid. This can be confirmed by
counting the number of cells associated with each of orthogonal and diagonal transi-
tions in Fig. 5. Hence, one can easily find at least one least-cost raster corridor between
two terminal octagons in a uniform cost grid by starting with one terminal octagon and
successively making diagonal transitions until reaching an octagon that aligns on the
same orthogonal line as the other terminal octagon. Figure 8 shows two such corridors
of different resolutions as examples (to be discussed later).

The above two observations imply that given two terminal octagons, there may be
no raster corridor coinciding with the true least-cost corridor connecting them and there
may be more than one least-cost raster corridor connecting them. How much a least‐
cost raster corridor can deviate from the true least-cost corridor depends on the relative
location of its terminal octagons. If they are aligned orthogonally or diagonally, there is
only one least-cost raster corridor, which just runs in a single (orthogonal or diagonal)
direction along the true least-cost corridor. Otherwise, a least-cost corridor that makes
all diagonal transitions first (or last) deviates most from the true least-cost corridor,
such as those in Fig. 8.

Unfortunately, as is also the case with the raster-based least-cost path problem,
deviation distortion is inherent to the algorithm which relies on the 8-adjacency
assumption, and independent of the cell size. To demonstrate this, the uniform cost
surface underlying the true least-cost corridor shown in Fig. 7 was converted to 14
uniform cost grids of different resolutions: 5 � 11, 10 � 22, 15 � 33, 20 � 44,
25 � 55, 30 � 66, 35 � 77, 40 � 88, 45 � 99, 50 � 110, 100 � 220, 200 � 440,
400 � 880, and 800 � 1760. Then, the algorithm was applied to each grid to delineate
a least-cost raster corridor of a width of 1 unit of distance from the top-right corner to the
bottom-left corner. Note that the actual dimensions of these cost grids are the same but
their resolutions vary, so that the number of cell sides to which 1 unit of distance
corresponds increases inversely proportionally with the cell size. For example, 1 unit of
distance is 1 cell side long in the 5 � 11 grid and 10 cell sides long in the 50 � 110 grid.

All the resulting 14 raster corridors (Fig. 8 shows two of them) similarly deviate
from the true least-cost corridor (drawn in Fig. 7)—similarly, i.e., they are made of an
orthogonal sequence of octagons and a diagonal sequence of octagons. This is a

Fig. 8. Least-cost raster corridors of a width of 1 unit of distance (one enclosed by solid lines
and the other shaded) in 5 � 11 and 50 � 110 uniform cost grids (gridlines are not shown).
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consequence of the way multiple shortest paths are resolved in the underlying shortest
path algorithm, that is, of all shortest paths to each vertex, the one found first will be
regarded as the shortest path to that vertex. In a graph induced by a uniform cost grid, if
there are two shortest paths to a vertex such that one ends with an orthogonal edge and
the other with a diagonal edge, the former will not be found earlier. As suggested by
Goodchild [12], the distortion caused by “a systematic resolution of ties in the solution
algorithm” should be reduced by replacing it with a random one. Statistically speaking,
this heuristic is more effective for longer paths.

3.3 Elongation Distortion

The analysis of elongation distortion begins with the exact calculation of the cost of a
true least-cost corridor in a uniform cost surface. If its two terminal disks are separated
by a horizontal distance of x units and a vertical distance of y units, the cost, a x; yð Þ, of
a true least-cost corridor of a width of 1 unit of distance between them in a uniform cost
surface (which assigns a value of 1 to every location) is given by:

a x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ p=4 ð4Þ

According to this formula, the cost of the true least-cost corridor illustrated in
Fig. 7 is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 þ 42

p þ p=4 � 11:556. We calculated the costs of the 14 least-cost raster
corridors obtained earlier and compared them to this true least-cost value in Table 1.

Table 1. Costs of least-cost raster corridors in uniform cost grids

Grid Cell size Corridor width Cost Rel. Dif.

5 � 11 1 1 11.000 0.952
10 � 22 1/2 2 13.000 1.125
15 � 33 1/3 3 13.667 1.183
20 � 44 1/4 4 11.750 1.017
25 � 55 1/5 5 12.440 1.076
30 � 66 1/6 6 12.889 1.115
35 � 77 1/7 7 11.898 1.030
40 � 88 1/8 8 12.313 1.065
45 � 99 1/9 9 12.630 1.093
50 � 110 1/10 10 12.880 1.115
100 � 220 1/20 20 12.650 1.095
200 � 440 1/40 40 12.535 1.085
400 � 880 1/80 80 12.478 1.080
800 � 1760 1/160 160 12.506 1.082

Note: “Grid” represents the number of rows and columns of
the cost grid from which each corridor is delineated, and “Cell
Size” represents the cell size of that grid relative to that of the
5 � 11 grid. “Corridor Width” represents the width (in terms
of numbers of cell sides) specified for each corridor. “Corridor
cost” and “Rel. Dif.” represent the cost of each corridor and
its ratio to that of the true least-cost corridor (� 11:556),
respectively.
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With one exception, all the 14 least-cost raster corridors overestimate the true
least-cost value. Their relative errors should, in theory, converge as the cell size
becomes smaller, because cellular octagons become more similar to regular octagons
while octagon-to-octagon transitions remain limited to four orthogonal and four
diagonal directions. In the present example, those 14 raster corridors converge to an
elongated polygon, referred to here as a ‘decagon’, of a width of 1 unit of distance,
illustrated in Fig. 9.

In general, the cost, â x; yð Þ, of a decagon of a width of 1 unit of distance between
two terminal octagons in a uniform cost surface (which assigns a value of 1 to every
location) is calculated as:

â x; yð Þ ¼ xþ
ffiffiffi
2

p
� 1

� �
yþ 2

ffiffiffi
2

p
� 1

� �
ð5Þ

where x and y are defined in a similar way as in Eq. 4; that is, the decagon’s two
terminal octagons are separated by a horizontal distance of x units and a vertical
distance of y units.

According to Eqs. 4 and 5, as the cell size decreases, the relative cost difference—
or call it elongation—between a least-cost raster corridor and the corresponding true
least-cost corridor converges to:

r̂ y=xð Þ ¼ 1þ ffiffiffi
2

p � 1
� �

y=xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y=xð Þ2

q ð6Þ

In the present example where x; yð Þ ¼ 10; 4ð Þ, we have r̂ 4=10ð Þ � 1:0823. The worst
case occurs when y=x ¼ tan�1 22:5 and r̂ tan 22:5ð Þ � 1:0824. This implies that both
least-cost raster corridors and paths suffer elongation distortion in the same way.

Finally, as pointed out earlier with reference to Table 1, one least-cost raster cor-
ridor (the one with a width of 1 cell side) underestimates the true least-cost value. This
is explained by the fact that when a raster corridor is not very wide, its octagons are too
coarse to fill the area of the corresponding decagon. The 1-cell-side-width least-cost

Fig. 9. A decagon to which least-cost raster corridors between the top-right and the bottom-left
corners converge as the underlying grid becomes finer.
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corridor is the most extreme case, as there are two large triangular voids between every
two diagonally adjacent cells in it (compare Figs. 8 and 9). Certainly, wider raster
corridors have fewer such voids and are closer to decagons.

4 Conclusion

The paper reviewed a raster-based least-cost corridor algorithm originally proposed by
Shirabe [15] and analyzed its solution in terms of three types of distortion: proximity,
deviation, and elongation. The algorithm’s uniqueness lies in its underlying corridor
model, which (1) represents a corridor as a sequence of ‘octagons’—i.e., sets of cells of
an approximately octagonal form determined by a specified corridor width—and
(2) gives each transition from one octagon to another a weight equal to the sum of the
values of all cells that are included in the latter octagon but not in the former octagon.
The model keeps the width of the corridor (approximately) constant throughout and
simplifies the calculation of its cost to the sum of the weights of all its
octagon-to-octagon transitions, which, in turn, enables the adaptation of Dijkstra’s
algorithm to the search for a least-cost corridor in a cost grid.

It was found, however, that raster corridors generated by the algorithm are subject
to all three types of distortion but to different degrees of severity. A special kind of
proximity distortion may occur when the corridor width is set to 1 cell side; that is, a
1-cell-side-wide least-cost corridor may incorrectly go through an artificial gap
between two diagonally adjacent cells, no matter how high their costs are. However, if
it is known that the influence of a corridor reaches farther than a single cell side from its
centerline, this and more general proximity distortion can be eliminated by setting the
corridor width sufficiently large.

Both deviation and elongation distortion are inevitable consequences of the algo-
rithm’s dependence on the 8-adjacency assumption and independent of the choice of
corridor width or cell size. One might expect that the two related types of distortion
could be reduced by extending the definition of adjacency, but doing so might cause
other problems since the 8-adjacency assumption plays the key role in reducing the risk
of self-intersection as well as linearizing the corridor cost function (see Eq. 3). For-
tunately, deviation distortion can be reduced by employing Goodchild’s random (rather
than systematic) tiebreaker in the algorithm.

As for elongation, numerical experiments found some interesting pattern when the
corridor width was relatively small (in terms of number of cell sides). That is, the cost
of a not-very-wide least-cost raster corridor is significantly discounted by the void
made by every diagonal octagon-to-octagon transition in that corridor and may actually
underestimate the true least-cost value. In general, however, the relative difference in
cost between a least-cost raster corridor and the corresponding true least-cost corridor
converges to a positive theoretical bound as the corridor width increases (in terms of
number of cell sides). Therefore, the effective and efficient resolution of elongation
distortion should be left as an open question to future research.

Lastly, for its ability to take into account width, efficiency of computation, and ease
of use, the least-cost corridor algorithm may be an attractive alternative to existing
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least-cost path algorithms in a wide range of applications where delineation of linear
features from geographic space is a critical task. Examples include designation of
wildlife corridors [1, 5] and alignment of highways [11, 14], power lines [3, 10], and
pipelines [8]. Significantly, however, the findings of this paper imply that the algorithm
still needs improvement and its users must be aware that the output corridors are not
free of distortion and in particular their costs may be overestimated.
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Abstract. Geodemographic classification methods are applied to
Denver Colorado to develop a typology of social vulnerability to heat
exposure. Environmental hazards are known to exhibit biophysical vari-
ations (e.g., land cover and housing characteristics) and social variations
(e.g., demographic and economic adaptations to heat mitigation). Geo-
demographic model-based classification permits a more extensive set of
input variables, with richer attributions; and it can account for spatial
context on variable interactions. Additionally, it generates comparative
assessments of environmental stress on multiple demographic groups.
The paper emphasizes performance of model-based clustering in geode-
mographic analysis, describing two stages of classification analysis. In so
doing, this research examines ways in which high heat exposure intersects
with socioecological variation to drive social vulnerability during extreme
heat events. The first stage classifies tract-level variables for social and
biophysical stressors. Membership probabilities from the initial (baseline)
classification are then input to a second classification that integrates the
biophysical and social domains within a membership probability space to
form a final place typology. Final place categories are compared to three
broad land surface temperature (LST) regimes derived from simple clus-
tering of mean daytime and nighttime land surface temperatures. The
results point to several broad considerations for heat mitigation planning
that are aligned with extant research on urban heat vulnerability. How-
ever, the relative coarseness of the classification structure also reveals a
need for further investigation of the internal structure of each class, as
well as aggregation effects, in future studies.

Keywords: Geodemographic classification · Social vulnerability ·
Biophysical vulnerability · Urban heat exposure · Gini index

1 Introduction

Extreme heat events are a major cause of summertime mortality and health
impacts in urban areas, whose consequences are expected to intensify given the
onset of climate change [24]. To aid community and administrative decision
support for extreme heat events, it remains critical to develop spatial metrics
that identify different ways populations in an urban area may be vulnerable to
c© Springer International Publishing Switzerland 2016
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heat exposure. This study serves to develop place typologies of vulnerability to
extreme heat events that can be scalable to a variety of cities and climatic regions
prone to heat waves. The primary objective is to demonstrate an advanced clus-
tering method to generate such typologies, using a case study of extreme heat
vulnerability at the census tract scale in Denver on June 25, 2012, a day for
which record-breaking temperatures upwards of 105 degrees Fahrenheit (40.6
degrees Celsius) were recorded.

Heat vulnerability metrics frequently integrate social, economic, physical
and built environment characteristics. The literature on urban heat vulnerabil-
ity metrics remains largely tied to index-based approaches [11,15,17,22,23,32].
Drawing from “Hazards of Place” models established by Cutter et al. [5] these
studies utilize highly dimensional sets of socioeconomic and environmental vari-
ables to rank study units in terms of “high” or “low” vulnerability. Due to the
reductionist nature of index-based techniques, their application to decision sup-
port frameworks may limit understanding of differential forms of socioeconomic
and environmental risk occurring in different places. Vulnerability indices may
limit abilities to link specific levels of vulnerability to variables of interest. Geo-
demographic classification techniques present a worthwhile alternative to index
based approaches that enable direct targeting of resources and planning inter-
ventions to place-specific needs. These techniques’ use of cluster analysis rather
than weighted aggregation produce profiles of each place category that allow for
the comparison of place-specific forms of risk to processes of hazard exposure
[25,33].

For this analysis, Geodemographic classification is applied to consider two
contexts of vulnerability, or domains: biophysical, including land cover and age,
size, and improvements of housing stock; and socioeconomic, including income
levels and resources for urban heat mitigation. This study examines the ways in
which different populations experience extreme heat events in terms of assets and
disparities related to socioeconomic status, physical environments, dwelling, and
mobility. Model-based clustering techniques are applied to the data to provide
new insight into the intersection of socioeconomic and biophysical domains of
populations’ vulnerability to extreme heat events. Model-based clustering assigns
membership probabilities that quantify an observation’s position in multivariate
space for a domain of analysis [2,7]. This information identifies which observa-
tions, and where, closely correspond to defined place categories, versus those
with mixed or unique multivariate characteristics. Domain-specific information
linked to membership probabilities is then synthesized to produce a final classi-
fication. Being a first foray into this methodological approach, relatively coarse
group numbers are examined in both the baseline and final classifications. The
use of simpler classification structures provides insights about heat vulnerability,
for example to examine information latent in the initial (baseline) classification
that becomes apparent in the final typology, as well as assessing the complete
model-based method by exploring what information in the variables remains
latent at the end of both stages of clustering.
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2 Background

Denver, Colorado was chosen as a test case for the analysis framework, due to
its publicly available open land-use/land cover data, collected by the authors
during a time period that matches the June 2012 heat wave. Denver is cen-
tral to a major metropolitan region in the Western United States with a pop-
ulation of roughly 660,000 and a semi-arid climate. Days with temperatures
in excess of 100◦ (37.8C) may occur periodically throughout the summertime.
Since extreme heat days are uncommon for Denver, certain sub-populations may
lack resources to handle sudden shocks of an extreme heat event, as related to
household improvements for mitigating indoor heat exposure and daily activity
patterns that may elevate health risks. This paper observes June 25, 2012, part
of an extended heat event affecting Denver with maximum ambient temperatures
observed on this day between 100–105◦ F (37.8C–40.6C).

2.1 Social Vulnerability and Study Variables

Social vulnerability to environmental hazards is generally discussed relative to
limitations in populations’ capacities to absorb impacts of environmental stress,
given their levels of social and biophysical risk [1,8,27,30,31]. Environmental
stressors like extreme heat are dynamic relative to extent, duration, and timing
and intersect with spatial variation in social and biophysical risk to produce dif-
ferent place-specific vulnerabilities [1,8,27,30,31]. Place-specific impacts related
to extreme heat exposure may include upswings in hospitalizations, heat-related
mortality, reduced mobility, and strains on residential water and energy usage.
Populations’ varying degrees of adaptive capacity, reflected by social, financial,
material, and natural resources for the absorption of and recovery from hazard
impacts, are also considered for this study as a counterpoint to vulnerability [16].

The relationship between exposure of populations to environmental stress and
resulting impacts is multifaceted [16,20]. This study considers separate socioe-
conomic and biophysical contexts, or “domains”, of vulnerability to extreme
heat exposure. Domains in this analysis consist of tract-level proxy variables
for socioeconomic and biophysical stressors (Fig. 2). Variables were chosen from
a combination of American Community Survey 5-Year Estimates (2008–2012)
and data available in 2013 through the Denver Open Data Catalog. Parcel data
consist of a combination of 2013 and 2015 datasets. Variables estimated from
the 2015 parcel dataset excluded residential parcels with construction recorded
after 2012. Impervious surface cover was derived from NLCD 2011.

Several drivers of vulnerability for the biophysical domain are considered.
The first set includes housing stock size and type, age, and improvements.
Given high heat exposure, vulnerabilities related to these variables extend to
impacts including indoor and outdoor thermal comfort, diminished building
mechanical functions, and strains upon affordability of energy and water given
their increased usage [9]. Housing stock types include single-family residential
detached dwellings, single-unit rowhouses/townhomes and condominiums. Large
multi-unit structures include condominium and apartment complexes and senior
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Fig. 1. Study variables by socioeconomic and biophysical domains. Data sources: (1)
American Community Survey 5-Year Estimates (2008–2012) (2) Denver Open Data
Catalog (3) National Land Cover Database 2011.

housing. This differentiation is necessary since individually-owned housing units
(whether owner-occupied or rented) may provide more direct access to upkeep
of building structural and mechanical functions. In apartment housing, however,
centralized operation and maintenance of utilities may be more common [10].
Greater need for building maintenance and improvements also extends to age
of construction [10,24]. The mean value of home improvements per residential
parcel for each tract is included to estimate the degree to which housing improve-
ments are in place in addition to ages of housing construction in the tract.

The second set of vulnerability/adaptive capacity drivers considered for the
biophysical domain consists of land cover categories including canopy, imper-
vious surface, and building cover. These variables may alternatively contribute
to or offset urban heat island effects. Places featuring sparse canopy cover may
experience higher vegetative stress in periods of high heat, increasing the degree
to which building and impervious cover may retain heat [4,6,10–13,34].

The third set of biophysical vulnerability drivers account for impacts to indi-
vidual mobility and include diminished means of reaching services, employment,
and amenities by regular commute patterns. These effects may be compounded
by urban sprawl patterns and lack of a personal vehicle [29]. Chosen variables
include personal vehicle ownership, and reliance upon automobiles versus public
transit or personal mobility. For residents reliant on public transit commutes
greater than 30 min, long wait times or walks to stops or destinations may exac-
erbate health risks for those with medical conditions.
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The socioeconomic domain also accounts for several facets of vulnerability.
Income levels and housing costs account for affordability of heat mitigation and
utilities. Variables representing residential tenure and coverage of utilities for
renters lend further detail to affordability of home maintenance and utilities.
Homeowners bear the costs of home mitigation and utilities, whereas renters
are more beholden to the level of maintenance and utility costs set by landlords
or property management companies [10,18,21]. Additionally, the inclusion of
race/ethnicity and non-citizen status variables accounts for uneven access to
resources (e.g. access to housing improvements, affordability of energy and water)
often linked to minority groups in heat vulnerability studies [10,11,24].

Socioeconomic vulnerabilities are also considered in terms of anticipated
changes in residential health and safety. Race/ethnicity and non-citizen sta-
tus variables in this context may indicate uneven access to information (e.g.,
heat warning systems) [26]. Additionally, age structure provides background on
demographic characteristics of tracts, and extends to exposure concerns for sen-
sitive age groups, including minors and elderly residents [11,23,24]. Variables
chosen to account for additional heat impacts include additional financial strain
given heat-related injuries (lack of health insurance coverage), and diminished
occupational safety (residents with outdoor occupations).

2.2 Exposure Variables: Land Surface Temperatures

Land surface temperatures (henceforth “LSTs”) serve as a proxy for exposure
to high ambient temperatures during the study period. LST information was
overlaid with the place-based vulnerability typology identified for Denver. Com-
parison of place categories to the ways in which they were exposed allows us
to inspect differentiation of social and biophysical characteristics within LST
regimes. Though warmer than ambient temperatures, the choice of LSTs is
necessitated by the increased cost of monitoring ambient temperatures using
temperature loggers and monitoring sites. MODIS 1 km thermal imagery avail-
able through USGS Global Visualization Viewer was used to estimate LSTs.
Although sparse, this imagery allows for continuous representation of LSTs
and precise targeting of dates featuring temperature extremes. Levels of rela-
tive humidity on this day were not considered because their influence on human
thermal comfort was limited given semi-arid conditions (Fig. 2).

This analysis delineates groups of tracts in Denver by varying forms of social
and built environment vulnerabilities present within three land surface tem-
perature (LST) regimes identified during June 25, 2012, a particularly hot day
during a prolonged period of extreme heat. Mean land surface temperatures by
tract climbed upwards of 130F (54.4C). Because dry conditions frequently prevail
during Denver summers, a high differential often accompanies high temperatures
and provides residents some relief in the form of strong nighttime cooling. Mean
Nighttime LSTs for Denver cooled by a range of ˜63.6F–79F (17.6C–26.1C).
However, the rate and duration of cooling varied considerably across the city
from extreme daytime temperatures.
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LST Regime

Reduced Daytime LST
with Gradual Nighttime
Cooling

High Daytime LST with
Rapid Nighttime Cooling

High Daytime LST with
Gradual Nighttime
Cooling

Fig. 2. Three Land Surface Temperature (LST) regimes estimated for June 25, 2012
in Denver from MODIS thermal imagery. Areal units shown on the map are census
tracts.

In Fig. 1, these effects are generalized to tracts using three broad land sur-
face temperature regimes derived from simple clustering of mean daytime and
nighttime LSTs in ArcGIS. Aligned with urban heat island dynamics, many
tracts in central and west Denver with high impervious surface and building
cover reached extreme high daytime LSTs (121F–125F) and experienced limited
cooling at night, forming the first “Reduced Daytime LST and Limited Night-
time Cooling” LST regime. Tracts closer to the SE and SW edges of Denver,
and portions of NW Denver, with higher canopy cover, did not warm as much
during the day; but their proximity to the urban heat island led to more limited
cooling at night, forming the second “High Daytime LST with Gradual Night-
time Cooling” regime. Finally, tracts in extreme NE portions of Denver with
recent residential development interspersed with open prairie, experienced the
hottest LST’s (125F–130F) during the observation period with strong nighttime
cooling to less than ˜73F, forming the third LST regime, “High Daytime LST
with Strong Nighttime Cooling”.
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3 Methods

3.1 Overview of clustering

Social vulnerability profiles were generated in the R statistical program-
ming environment (http://www.R-project.org/) using a two-stage classification
process that incorporates model-based clustering techniques (Fig. 3). An initial
(“baseline”) set of domain-specific classifications was first established to assign
membership probabilities to census tracts. Hierarchical agglomerative clustering
was then used to synthesize the baseline classification results into a final classi-
fication, relative to observations’ membership probabilities in groups defined for
each domain.

Fig. 3. Workflow showing processing for data reduction and two stages of clustering.
Circular arrows indicate steps requiring iteration. Interested readers may contact the
authors for additional detail on the data and code used for this analysis.

3.2 Data Reduction

Model-based clustering results are sensitive to high dimensional data, especially
when there are a relatively small number of observations (n = 140). Data needs
to be reduced into small sets of latent variables representative of composites of
the variables of interest.

First, sparsely populated tracts were omitted, including Denver International
Airport and the University of Colorado-Denver Auraria Campus. For the remain-
ing 140 observations, a Box-Cox transformation corrected for skew in individual

http://www.R-project.org/
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variables. Box-Cox transformed variables were standardized as z-scores) for con-
sistency in value ranges.

Principal Components Analysis (PCA) reduced the dimensionality of data
by domain. PCA scores were extracted for each run, retaining the leading three
principal component scores. The retention of principal components (PCs) for
the social domain is slightly more explanatory than for the built environment
domain. For the social domain, the first three PCs explain 62 % of variance in
the domain. For the built environment domain, the first three PCs explain 54 %
of the variance. Although more variance within each domain may be explained
by including more PCs, a tradeoff exists, to preserve most–but not all–of the
explanation of variance for the domain while maintaining clarity in the cluster
results.

Varimax rotation was then performed to generate composite input variables
for cluster analysis that more clearly differentiate among the original variables
of interest for each domain.

3.3 Baseline Clustering

Baseline clustering of Varimax scores for each domain was performed in R
library “teigen” [2]. The clustering algorithm available in “teigen” employs the
expectation-maximization (EM) method for grouping distributions and assumes
models with a multivariate t-distribution [2]. Clustering was performed itera-
tively from k = 4 to k = 9 groups to optimize the number of groups for each
domain’s classification. The initial number of k = 4 groups was used to roughly
approximate the information presented by the Varimax scores representing each
domain. Varimax scores suggested continuums of two sets of highly influen-
tial variables per domain. For the biophysical domain, clear differentiation was
observed between single and multifamily residential housing, as well as between
old and new housing construction. Varimax scores for the socioeconomic domain
encompassed high and low income levels, and tenure dynamics (renters and
homeowners). For each domain, the clustering algorithm found an optimal num-
ber of k= 4 groups.

3.4 Final Clustering

Baseline cluster solutions were then synthesized into a final classification. Hierar-
chical agglomerative clustering was applied as a means of grouping observations
in probability space by their relative proximity in membership probability space.
Hierarchical agglomerative clustering was performed using the Ward.D2 method.
The clustering tree was pruned at k = 8 groups to account for twice the number
of baseline groups for each domain. The choice of k = 8 groups permits a unique
pairing (overlay) of baseline groups from each domain (1:1 match). The degree
to which the intersection of domains departs from a 1:1 match is considered, as
well as the occurrence in final classification profiles of high levels of variables not
strongly representative of baseline classes.
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4 Results

Final classes are described by their positions in “membership space” relative to
the baseline classification (Table 1). The goodness of variance fit for the final
classification based upon standardized study variables was 0.39.

Table 1. Baseline classification groups and descriptions.

Class Description

BP1 SFR and new construction

BP2 SFR, old construction, and housing risk

BP3 MFR and new construction

BP4 MFR and mixed housing ages

SES1 Homeowners and high adaptive capacity

SES2 Homeowners and limited adaptive capacity

SES3 Renters, young adults, and high adaptive capacity

SES4 Renter tendency and some adaptive limitations

To describe final classification, prominent variables of interest within each
class (relative to global averages) are identified on the basis of even distribu-
tion (i.e., likely to occur in relatively consistent levels for every member tract)
using a population-weighted Gini index [3,28]. Only variables within a thresh-
old Gini score (0.0–0.3) throughout the class are described as potential forms of
vulnerability for the class as a whole. Gini scores indicate the extent to which
values of classified variables are evenly spread within each group, with scores
of 0.0 indicating even spread, and 0.3 indicating a somewhat even spread. To
account for data mismatch with Gini score profiles, residential improved values
and impervious surface cover are represented in these results by the same vari-
ables binned into high, medium, and low breaks classes. The discussion of final
categories below refers to values shown in Figs. 4 and 5.

For this data and case study area, the final classification structure, which used
twice the number of baseline classes, primarily resembles an overlay analysis with
most place categories represented by clear combinations of two baseline classes.
The classification presents profiles of vulnerability on extreme heat days tied to
housing stock age, type, size, and value; income levels and housing costs; med-
ical risks (outdoor occupations and health insurance coverage); and sensitive age
groups (minors and elderly). To a lesser degree, the results also differentiate land
cover and commute types across place categories. Many low-density residential
tracts with high daytime LST regimes belong to classes characterized by greater
housing risk, more Hispanic/Latino residents, and more limited social and finan-
cial means of adaptation than other classes. Class 4 features above-average levels
of older SFR, as well as increased levels of residents in poverty, non-citizen sta-
tus, low household improvement values, and high homeowner costs regardless of
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Aging SFR, High Adaptive

Capacity

2: Variable Heat Exposure,
Mixed Housing Stock at Risk,

Limited Adaptive Means
3: Small MFR Tendency, and

Mixed Adaptive Means

4: High Daytime Heat
Exposure, SFR at Risk,
Limited Adaptive Means

5: Variable Heat Exposure and
Large MFR Housing, High

Adaptive Capacity

6: Reduced Heat Exposure, SFR
at Reduced Risk, High

Adaptive Capacity

7: Reduced Heat Exposure, MFR
at Reduced Risk, High

Adaptive Capacity

Daytime Heat
Exposure, MFR at Risk,
Limited Adaptive Means

8: Variable

LST Regime

High Daytime LST with 
Rapid Nighttime Cooling

High Daytime LST with 
Gradual Nighttime Cooling

Fig. 4. Figure 4 Geographic distribution of the results of the final classification indicate
eight classes. These are overlaid with boundaries of the LST regimes discussed earlier
in the paper.

income level. Class 4 also features above-average levels of residents lacking health
insurance, as well as those employed in outdoor occupations. Similar disparities
in socioeconomic resources are visible for Class 8, despite somewhat more mixed
income levels and newer housing stock compared to Class 4. Classification profiles
further reveal that Class 2 tracts, also frequently occurring within high daytime
LST regimes, are characterized more strongly by vulnerabilities associated with
high levels of sensitive age groups (minors and elderly). By contrast, similarly
exposed, more densely populated tracts around the CBD (Classes 3 and 5) are
characterized by above-average levels of residents with greater adaptive means
(higher incomes, newer housing, higher improvement values, inclusion of utilities
in rent, and shorter commutes suggestive of more direct access to services and
employment).

Conversely, tracts within reduced daytime and nighttime LST regimes
(Classes 1, 6, 7) comprise place categories that feature above-average levels
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of variables indicative of greater adaptive means, including high income levels,
increased residential improvement values, more insured residents, and increased
use of automobiles for commuting. Class 8 is the only group with strong member-
ship in cooler LST regimes to demonstrate increased levels of those representing
socioeconomic disparities. Finally, several unique forms of social vulnerability to
urban heat were found to arise from intersections of membership probabilities
in baseline categories not specifically characterized by certain variables of inter-
est. The detection of sensitive age groups was perhaps strongest example found
for class profiles in this analysis. Class 2, with higher daytime LSTs and more
limited adaptive means, features high youth and elderly populations, whereas
Classes 6 and 7 — with greater adaptive means and more limited heat expo-
sure — are characterized by high levels of youth (Class 6) and elderly (Class 7)
residents.

5 Discussion

This paper develops a typology of social vulnerability to heat exposure, utilizing
social and biophysical variables in a two-stage model-based clustering to per-
mit a more nuanced accounting of spatial context, and to generate comparative
assessments of multiple stressors on multiple demographic groups. Model-based
clustering creates a probability space to facilitate exploration of the interaction
between heat exposure and socioecological characteristics and their impact on
adaptive capacity to heat vulnerability. The typology of tracts in Denver pro-
vides further support for studies linking limited adaptive capacity in extreme
heat events to reduced socioeconomic status and built environment disparities
[10,11,14,24]. While the study examines heat vulnerability in Denver Colorado
for a single extreme heat event, the model-based clustering method demonstrated
here can be readily applied to other urban areas using similar types of input
data. Model-based clustering composites a number of statistical methods, which
considered individually are not in themselves innovative, however the combi-
nation and application to the complex problem of heat vulnerability has not
been reported elsewhere to the authors’ knowledge. It is the integration that
contributes to and advances knowledge in GIScience and spatial analysis.

The typology of tracts provides several examples of operational knowledge
for decision support related to heat mitigation. First, disparities in exposure
and risk characteristics are clearly interpretable for older single-family residential
neighborhoods throughout Denver. High LST regimes are more highly comprised
of classes with aging housing stock and/or reduced SES (Classes 2, 4). Class 4
features added concerns for heat mitigation in residential areas, particularly
increased impervious surface cover. By contrast, older SFR neighborhoods in
reduced LST regimes are more typically aligned with Class 1, with increased
levels of financial and material resources available to residents for the mitigation
of heat impacts. Where overlap between Class 1 and high daytime LST regimes
occurs, resources like increased canopy cover may also be more frequently present
in residential settings to offset effects of heat exposure. These effects concur with
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Fig. 5. Selection of biophysical and socioeconomic input variables representing the
most distinguishing and/or most uniform characteristics defining each of eight final
classes. Space limitations for the conference paper prohibit including the full sets, which
will be shown at the conference presentation. Numbers to the right of each variable
name in parentheses show Gini scores within the group. Numbers in the righthand
column indicate the “average profile”, that is, the percentage difference between a
variable’s mean in the class compared to the overall mean. A score of 200 for example
indicates that the level of that variable in that group is double the overall mean. Each
group also shows the percentage of tracts situated in each LST regime.

Harlan et al.’s [10] findings of limited SES and high rentership in highly exposed
inner-city neighborhoods, versus increased adaptive means in historic districts
near the urban core.

Second, for gentrifying tracts around downtown Denver, evidenced through
increased levels of SES and property improvements in Classes 3 and 5, a
leading concern for mitigation may be physical risk related to mechanical
functionality of cooling systems in multifamily residential structures and res-
idents’ indoor thermal comfort [19,21,24]. Additionally, surprising contrasts
were found among variables occurring in increased for Class 3, particularly
increased property improvement values versus residents at or below poverty and
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pre-1940 housing stock. These findings suggest vulnerabilities related to forms of
socioeconomic and built environment risk that occur below the scale of tracts,
and point to further community engagement as a potential solution for heat
mitigation efforts in these portions of Denver.

Third, suburban portions of Denver represent the strongest align-
ment between reduced LST regimes and increased socioeconomic/biophysical
resources available to populations for heat mitigation. Yet another surprising
contrast common among these groups is the prevalence of above-average levels
of high housing costs for low-income renters. These findings again suggest the
presence of processes that may occur at sub-tract scales (e.g. isolated blocks
whose socioeconomic traits vary from their surroundings). Further, members of
Classes 6 and 7 also manifest in peri-urban portions of northeast Denver, char-
acterized by new housing development, high daytime LSTs and strong nighttime
cooling. Also similar to findings by Harlan et al. [10], then, a contrast may exist
in this portion of Denver between populations subject to higher heat exposure
but largely retaining increased household-level assets for heat mitigation. How-
ever, Class 8, which is also largely present in suburban and peri-urban portions
of Denver, provides an interesting contrast to existing findings on urban heat,
being characteristically more closely aligned with the increased levels of socioe-
conomic disparities present in Class 4. These effects suggest mitigation priorities
for heat events that may be more unique to growing semi-arid cities like Denver.
Altogether, these types of rich insights demonstrate that clustering on mixed
membership enables the definition of relatively unique, intuitive place typolo-
gies of vulnerability to heat exposure across Denver, while keeping the number
of classes relatively small.

5.1 Limitations and Future Work

Several notable shortcomings are present for this analysis. First, the coarseness
of the classification was found to mask some of the more nuanced information
critical to support heat mitigation decisions in Denver or a similar city. For
example, some variables do not manifest in profiles of the final cluster solution.
Variables that do not strongly manifest in any class include African-American
and Asian-American residents at risk, Senior Housing, and residents with Long
Public Transit commutes. Efforts to account for these effects in future work
should consider the selection of more robust baseline classifications by domains,
pruning the final hierarchical classification tree at a higher number of classes,
and identifying of local multivariate outliers.

Additional shortcomings of this analysis are linked to internal validity of the
methods. A major limitation of this analysis is related to uncertainty propa-
gated by choice of analysis units and aggregation effects. First, the Modifiable
Areal Unit Problem (MAUP) is propagated by bounding of study variables by
administrative units (census tracts). It is highly likely that greater complexity
of relationships among socioeconomic and environmental variables of interest
exists beneath tract boundaries particularly because tracts may not effectively
represent sociocultural features. MAUP effects propagate uncertainty in several
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notable ways in the results. For example, no common housing stock type can
be discerned for Class 8, and no clear differentiation can be made for housing
stock ages characterizing Class 4. Additionally, for Classes 3 and 5 characterizing
downtown Denver, levels of multifamily residential housing well above-average
renders it difficult to discern the presence of older housing stock, which appears
to be represented less consistently in these classes. Further, for Class 3, it is
difficult to discern how some variables of interest, since they often appear at
odds (e.g. high residential improved values per unit and residents at or below
poverty). Second, MAUP and scale effects also proved problematic for repre-
senting LST data used in this study. The design of this analysis bounded a
continuous process (variation in temperature) and generalized it to tract bound-
aries, which may propagate uncertainty in our definition of LST regimes and how
they align with different categories of places. This approach may be acceptable
for this study, being a “first pass” that relies only upon a qualitative comparison
(overlay) of place category characteristics with LST regimes. However, future
iterations of this work should more directly account for levels of uncertainty
in each tract relative to aggregation effects (inconsistencies between raw and
aggregated LSTs).

Still, MAUP effects remain a critical consideration not only for this analysis,
but for the wider development of vulnerability metrics, to consider problems
related to grouping of social and environmental variables using administrative
boundaries. Similarly, the effects of spatial autocorrelation among sets of vari-
ables of interest, as well as potential effects of spatial non-stationarity in vari-
ables’ alignment, merit further consideration for future work.

Despite its limitations, the model-based clustering approach to Geodemo-
graphic classification overall provides a worthwhile direction for identifying pat-
terns in social vulnerability to urban extreme heat events. In addition to method-
ological improvements, future applications of this framework should extend to
comparison of cluster results outcome measures, particularly public health vari-
ables including morbidity and mortality. Pairing this approach with measures
of disparities in access to services, public facilities, and employment centers also
presents promise. Future studies should expand these methods to urban areas
with differing of experiences of extreme heat events (e.g. high heat and rela-
tive humidity for New York City and Chicago, extreme high temperatures and
greatly limited nighttime cooling for Phoenix).
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Abstract. Geotagged photos have been applied by many researchers to explore
the spatial extent of places. This paper addresses an important challenge of using
geotagged Flickr photos to delineate the spatial extent of a vague place, which is
defined as a place without a clearly defined boundary. We argue that the vari-
ation of location popularity has a great impact on the estimation of such vague
spatial extent of a place. We propose an approach to model the representa-
tiveness of each geotagged photo point based on its location popularity.
A modified kernel density estimation method incorporating the photo repre-
sentativeness is developed and tested with eight places, which cover urban vs.
non-urban areas, with vs. without an official boundary cases, and at various
spatial scales of state, city and district levels. Our results indicate major
improvements of the proposed representativeness-weighted kernel density esti-
mation method over the traditional kernel density estimation method in esti-
mating the spatial extent of vague places.

Keywords: Place � Geotagged photos � Flickr � Kernel density estimation

1 Introduction

Naïve geography in [1] envisions that the advanced geographic information systems
(GIS) should “follow human intuition” (p. 1) and “support common-sense reasoning”
(p. 5) so that ordinary people who do not need to know about GIS can use them easily.
It is important for such GIS to understand and represent linguistic place names. Some
places (e.g., administrative divisions) have a formally defined geographic extent to be
represented in GIS, while many places (e.g., vernacular places) have no formally
defined boundary but a vague geographic extent. Therefore, an effective and efficient
representation of vague spatial extent of places is critical to GIS representation, query,
analysis, and visualization of places.

Acquiring human knowledge of places is a traditional way to derive vague place
extents. With the increasing popularity of geotagged social media (e.g., Flickr, Twitter,
and Facebook), large numbers of place names exist in the contents from such platforms,
carrying valuable information about people’s perception of places. Among these social
media, Flickr provides adequate and more direct associations between photo
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geolocations and place name tags [2]. Thus, extracting the spatial extent of places from
Flickr data1 has been a GIS research topic (e.g., [3–6]), especially for purposes of
enriching large-scale gazetteers and GIS services (e.g., [7, 8]). In the meantime, such
crowd-sourced data also present challenges to place-related research, including to
which degree the spatial extent of a place can be estimated from geotagged photos or
other crowd-sourced social media data.

Past research has indicated the effectiveness of using Flickr data to identify major
locations of vague places (e.g., [4, 9]). However, estimation of vague geographic
extents still presents a major challenge. As suggested by Jones et al. [10], we argue that
the underlying assumption of a random distribution of Flicker photos is incorrect when
applying geotagged photos to estimate vague place extents. In general, there are fewer
photos taken at locations with low accessibility and low popularity than those popular
and easily accessible locations. The conventional approach of treating each geotagged
photo with equal representativeness or importance, regardless of where it is located, is
questionable. The representativeness of photo points located in unpopular areas could
be under-weighted due to a low absolute number of photos taken in such areas, while
the representativeness of photo points located in popular areas would be over-weighted
due to a larger number of photos taken in these areas. As a result, unpopular locations
(e.g., inaccessible parts of mountain areas) of a vague place (e.g., Rocky Mountains)
would be significantly underestimated or even excluded in the derived geographic
extent. On the other hand, popular locations could be overestimated and distort the
boundary of a place. When the kernel density estimation (KDE) method is applied to
delineate vague boundaries (e.g., [5]), the resulting surface usually looks like a hot spot
map of the photos tagged with a target place name rather than a “probability field”
(p. 205) [13] representing the place extent where a higher estimate indicates a higher
probability of belonging to a target place. Thus, this study aims at improving the
representation of vague place extents by adjusting photo point representativeness based
on their location popularity. Note that we adopt the same term “target place” (p. 1047)
from [10] to refer to a place whose extent needs to be estimated.

In the remainder of this paper, we start with a review of work related to the concept
of place, georeferencing place names, and delineation of vague place extent from
survey, web and social media data. In the methodology part, we discuss a proposed
approach based on photo point representativeness and the representativeness-weighted
KDE (RW-KDE) method. Next, we present the results of testing our proposed
assumptions and method based on eight selected sample places, followed by com-
parisons with the results derived from the traditional KDE approach. We conclude this
paper with contributions, limitations and future research directions.

2 Related Work

As an important concept in geography, place has been extensively studied, implying
more than space by incorporating social, economic, cultural and political meanings
through human experience [14–16]. Places are usually revealed in unstructured forms.

1 Data source: https://www.flickr.com/services/api/, also the data source of this paper.
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Their informality is also reflected by the variations in people’s understanding of them
[12]. Thus, they are often absent from current GIS in which geographic objects need to
be disambiguated, abstracted and digitalized from the perspective of space. Great
efforts have been made toward the convergence of place and GIS, such as theoretically
modeling place in a computational environment (e.g., [17, 18]) and delineating the
spatial extent of place names which is the focus of this paper.

There have been some place-friendly web applications using simple gazetteers to
handle place names [10]. But retrieval of vague place extent is still beyond the ability
of current gazetteers. Usually given an authority-recognized place name, a gazetteer
provides information about its geographic location, feature type, and relationship to
other places [19]. But it provides limited information on vernacular names. In most
gazetteers, the location of a place with a large spatial extent is usually represented as a
point, rectangle bounding box, or occasionally a polygon with crisp boundary [12].
Although an abstract and simple geometry benefits computational process in current
information systems, it falls short in delivering information about the inherent
vagueness of place boundary which often reflects human perception and cognition.
Therefore, much research has focused on deriving vague place extents from a variety of
data sources.

Montello et al. [20] conducted an empirical study in which human subjects were
asked to draw shapes of the downtown Santa Barbara area based on their understanding
of the place extent. The downtown shapes drawn by different participants were then
aggregated to generate a probabilistic representation of the vague place extent. Montello
et al. [21] interviewed another two groups of participants to unveil and measure the
variation of vagueness of a place perceived by different people and at different locations.
These survey-based approaches have an advantage that data structure and collection
procedure can be designed to facilitate subsequent modeling and estimation of vague
place extents as well as to answer specific research questions. However, the difficulty in
collecting such empirical data obstructs their wide applications.

Some other research derived a place’s extent using its topological relations to other
clearly defined geographic objects. Based on a set of points covering a region, Parker
and Downs [22] combined DBSCAN clustering technique and fuzzy set theory for the
delineation of a vague extent. For another example, based on two sets of geographic
points that fall inside and outside a place, Alani et al. [23] created a Voronoi diagram of
these points and delineated the place extent from the Voronoi polygons. Their method
only generated a crisp boundary. Taking advantage of a diversity of spatial information,
Schockaert et al. [24] proposed a unique approach which could derive constraints from
qualitative and quantitative spatial data and approximate a vague extent based on the
derived constraints using techniques of genetic algorithm and ant colony optimization.
All these approaches require that the geographic objects used as references are avail-
able and their geometries are already defined. They do not focus on how and where to
collect these references and their spatial relations to the target place. For a large number
of vernacular places, the practicality of these approaches depends on the availability of
well-defined reference data.

Since a lot of place-related data can now be found from the web (e.g., web articles and
documents, Internet yellow pages), much research used search engines to acquire ref-
erences (e.g., hotels, cities) that are related to (e.g., inside, outside, covering, containing
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same words as) the target place name (e.g., [11, 25, 26]). After the geolocations of
returned references were determined by geoparsing and georeferencing, the vague
extents were then estimated from the reference locations using KDE approach [10, 12],
fuzzy-set approach [25], or adapted a-shape and recoloring algorithms [26].

As online social media became popular, geotagged photos (often from Flickr) were
widely used in recent research for place extent assessment and digital gazetteer
enrichment. This is because, unlike other web-sourced data, they do not require the
geoparsing and geocoding processes which could introduce unexpected errors [2, 3]. Li
and Goodchild [5] applied KDE to Flickr geotagged photos, and found that the
highest-density cells normally tell the major location of a place. They also pointed out a
limitation of the data source being lack of sampling strategy. Martins [2] improved the
KDE surface by removing overestimated locations based on land coverage information,
assuming that a place boundary is usually related to a land cover change. But this study
did not address underestimated locations. Instead of the local density perspective in
traditional KDE, Grothe and Schaab [3] took a global perspective to generate the crisp
boundary of places using a support vector machine (SVM) classification technique.
Cunha and Martins [6] improved the SVM method by incorporating place semantics
from Flickr photo tags, demographic characteristic from population dataset, and
topographical characteristic from elevation and land cover datasets, considering that a
place’s boundary can be found along the line where these characteristics change. The
boundary they generated was also crisp and did not handle vague place extent. There is
limited research in the literature that both delineates the vagueness of place extents and
deals with the variation of location popularity. Given this challenge, this study focuses
on improving estimation of vague place extents based on geotagged Flickr photos.

KDE is a widely adopted method for estimating geographic extent in various
domains such as animal home range [27]. It is relatively easy to use, fits well with data
such as geotagged photos, and thus is frequently adopted by researchers. KDE gen-
erates a density surface through interpolation from the geographic points covering a
place to reflect the inherent vagueness of place extent [10]. Unlike fuzzy-set methods,
KDE avoids using a subjective fuzzy membership function to represent vagueness. In
the following sections, a modified KDE approach along with its assumptions are dis-
cussed and it is evaluated with data of eight selected case studies.

3 Methodology

3.1 Data Acquisition and Preprocessing

In order to assess if the performance of our proposed method works for different place
types and at various feature scales, we selected the following eight places as case
studies: Manhattan Chinatown and San Francisco Chinatown that do not have an
official boundary at the urban district scale; City of Nashville and City of Philadelphia
with an official boundary at the urban city scale; Rocky Mountain National Park and
Great Smoky Mountains National Park as non-urban features with an official boundary;
State of California and State of Utah with an official boundary at the state scale. These
places are denoted as the target places.

Representing the Spatial Extent of Places Based on Flickr Photos 133



Around each target place, a larger rectangle study area (about eight times larger in
size) was defined and used to search for the data of all geotagged photos through the Flickr
search API. Note that we downloaded the data of all geotagged photos, not just those
tagged with the target place name. In the reminder of this paper, we use the term target
photos to refer to the data of photos tagged with the target place name or its variants, to
distinguish them from the data of the whole set of photos denoted as all photos. The time
span used in our searches varies among the eight places. For Manhattan Chinatown and
San Francisco Chinatown, we searched for photos between January 2013 and February
2015 since these two places did not have an official boundary and their geographic extents
could change over time. For the validation purpose, we extended Liu’s [30] approach of
using the Street View imagery of Google Maps (https://www.google.com/maps) to
manually delineate the boundary lines that separate locations with typical Chinese
characteristics from those without Chinese themes. The derived boundary lines served as
the benchmark reference to be compared with the geographic extents estimated by our
proposed method. Most of the Chinatown Street View images were captured after 2013,
which should be comparable with the time period of Flickr photos used in this study. For
California, we downloaded Flickr photos posted in January and July of 2014 as our
sample data to test if partial Flickr data could also give acceptable estimates. Similarly, for
Utah, only photos between September and December of 2014 were used. The time span
chosen for the other four selected case-study places was between February 2004 and
February 2015 since they all had an official boundary that were relatively stable over time.

As suggested by Liu [30], redundant photos that were uploaded in bulk by the same
user at the same location were removed to minimize the bias, with only one randomly
chosen photo kept; place name variants (e.g., California abbreviated as CA; Nashville
misspelled as Nashvile; Manhattan Chinatown shorten to Chinatown when the photo is
posted on the Manhattan Island) were found by browsing through tags that occurred
more than three times in the set of all photos. We then selected a set of target photos that
were tagged with the place name or any acceptable variant from the set of all photos.
Finally, based on the geolocations of target photos and all photos, two sets of geographic
points for each place name were created respectively: target points and all points.

3.2 Representativeness of Geotagged Photos

The target points are those points assumed to fall inside the target place and used in
many published work to generate the KDE surface. Here we denote the set of target
points by T, and the set of all points by A. Their relation can be depicted by T � A. As
discussed in the introduction section, unpopular locations tend to be underestimated,
while popular locations tend to be overestimated. Intuitively, the contribution of a
target point at a low popularity location should be increased to compensate for the
disadvantage of photo availability at that location. Flickr data provide an opportunity to
measure a location’s popularity in terms of the photo volume. This makes it possible to
model a target point’s contribution level, namely representativeness, of the place in a
study. Therefore, we assume that the location popularity is indicated by the volume of
all points at a given location.
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For implementation, we first discretize the earth surface in each study area into a
regular grid with a cell size of n � n, where n is the width of a cell. Each grid cell
represents a location l. The popularity pl of location l can be quantified by the count of
all points falling in that cell. As stated above, when a location’s popularity decreases,
the representativeness of a target point at that location should increase. We assume that
the representativeness rt of target point t that falls in the cell of location k is inversely
proportional to location k’s popularity pk. That is,

rt ¼ 1
pk

ð1Þ

This function creates the value of representativeness falling within (0, 1]. The
choice of grid cell size n is an important step. It can be observed from the set of all
points in Fig. 1 that the sparsest points located in the most unpopular locations are
usually isolated and distant from their nearest neighbor. The most isolated target point
that has the largest nearest neighbor distance can be found and denoted as the sparsest
target point which can reflect the most unpopular location near target points. Note that
the nearest neighbor of a target point here is based on the set of all points. In order to
maximize the possibility that the sparsest target point has the highest representativeness
value 1 and to avoid assigning too many other target points with the value 1, we define
n as the sparsest target point’s nearest neighbor distance d divided by √2, which is:

d ¼ maxt2T mina2A� tf gdist t; að Þ� �
; n ¼ d=

p
2 ð2Þ

where t represents a point in the set of target points T, and a represents a point in the set
of all points A.

3.3 Outlier Removal

As shown in Fig. 1, the target points of a place with a continuous extent usually form
an obvious cluster at that place with a few outliers surrounding it. There are several
characteristics of the outliers that can help us remove them: (1) they lie remotely from
the major cluster of target points; (2) they are thinly scattered around the major cluster;

Fig. 1. Spatial distributions of target points (red) and all points (red and green) of the Great
Smoky Mountains National Park. The official boundary is shown in black solid line. (Color figure
online)
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and (3) their total count is relatively small. So our goal is to find the major cluster and
separate those thinly scattered points that are distant from it.

The Delaunay Triangulation Clustering (DTC) can meet our goal of identifying the
major cluster in the target points. According to [28], the basic idea is to first construct
neighbors for each target point based on Delaunay Triangulation and use edges (black
solid lines in Fig. 2(a)) to connect neighboring target points. For each pair of neigh-
boring target points, if they are not close (i.e., their distance is beyond certain threshold,
namely cut-off distance c), they should not be in the same cluster, and their connecting
edge is removed [28]. Finally, sets of target points that are connected by remained
edges (black solid lines in Fig. 2(b)) form clusters [28]. To choose a reasonable cut-off
distance c for breaking edges, we assume the following two rules and the search
procedure in Fig. 2(c).

Rule (a): c must be no less than the sparsest target point’s nearest neighbor distance
d in Eq. (2). This is because if c is less than d, the sparsest target point that is located in
the most unpopular location will definitely be disconnected with any of its neighbors in
target points, which can result in its isolation. This rule takes the location unpopularity
issue into account when deciding the cut-off distance.

Rule (b): the largest cluster, denoted as the major cluster, in the clustering result
under the cut-off distance c should contain more than 95 % of the target points. This is
because the distribution pattern of target points shows that the majority of target points
form a cluster at the target place with only a few outliers surrounding it. The major
cluster should consist of the majority of target points, and here we assume the number
of them to be more than 95 % of the target points. Empirically, this assumption works
well across all eight places in this study.

When the major cluster is found, there are several isolated points and small clusters
(e.g., A and B in Fig. 2(b)) that are quite near the major cluster. Since they do not have
the outlier characteristic of being distant from the major cluster, they are not treated as
outliers. A convex hull of the major cluster is created to capture these isolated points
and small clusters. Finally, all other points or small clusters that do not intersect with
the convex hull are removed from the set of target points. The remaining target points
after the outlier removal step are denoted as the cleaned points.

(a) (b)

A
Assign 
c = d

Assign
c = c +
0.5*d

Is Rule (b) 
followed?

c

Y

N

(c)

B

Fig. 2. DTC with the target points (red dots) of Nashville: (a) edges connecting neighbors
constructed by Delaunay Triangulation; (b) resulting major cluster with its convex hull (in dash
line). (c) Flow chart of the search procedure for cut-off distance c. (Color figure online)
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3.4 Representativeness-Weighted KDE (RW-KDE)

We take the density surface approach to generate a raster surface representing vague
place extents. The cleaned points provide limited observations about the location of a
place. To measure the degree of other locations’ inclusion in a place, interpolations can
be made from the limited observations using the KDE. At each location to be esti-
mated, the kernel estimator sums up the kernels centered at the cleaned points whose
contributions decrease as distances increase [29]. The traditional KDE method con-
siders all observations with equal importance. We incorporate photo point represen-
tativeness into the KDE defined by Silverman [29] using the following kernel
estimator:

f̂ Xð Þ ¼ 1
h2

Pn
i¼1 ri

Xn

i¼1
ri � KðX � Xi

h
Þ ð3Þ

where n is the count of cleaned points; Xi is the coordinates of a cleaned point; X is the
coordinates of a raster cell whose inclusion needs to be estimated; h is the smoothing
bandwidth; ri is the representativeness of cleaned point i calculated by Eq. (1); and K is
the quadratic kernel function cited from Silverman [29] (p. 76):

K Xð Þ ¼ 3p�1 1� XTXð Þ2 if XTX\1
0 otherwise

�
ð4Þ

For each set of cleaned points of a place, both KDE and RW-KDE are implemented
using the same parameters. This ensures that their results are comparable. In order to
both maintain a good resolution with details on the final raster surface and minimize the
computational cost associated with high resolution, we choose about 1/300 of the width
of a place study area to be the cell size of output surface. It is well-known that the
smoothing bandwidth could have a significant impact on the output. For each place, we
repeated KDE and RW-KDE using different bandwidths to evaluate the sensitivity of
the improvements by RW-KDE method. We tested eleven bandwidths that are about
1/8, 3/16, 1/4, 5/16, 3/8, 7/16, 1/2, 9/16, 5/8, 11/16 and 3/4 of the width of the
minimum bounding rectangle of the cleaned points. The reason for choosing this range
is that almost all surfaces tend to be over smoothed when bandwidth approaches 3/4,
and that for most places in this study, bandwidths smaller than 1/8 are too small for
many locations within a place to find any cleaned point in its neighborhood when
calculating kernel density estimate. Since the improvements can be observed across the
eleven bandwidths, here we only present results based on three bandwidths: 1/4, 3/8,
and 1/2.

4 Results

In this section, we use the official boundary and the surveyed boundary as references to
compare the results derived from the RW-KDE method vs. the KDE method. All official
boundaries come from the 2015 TIGER/Line® Shapefiles provided by the U.S.Census
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Bureau2 and the park maps on the website of U.S. National Park Service3. Chinatowns
are usually recognized and known for its distinct Chinese characteristics in building
styles, signs, decorations, and pedestrians. These characteristics change notably between
adjacent streets that are respectively inside and outside Chinatown. Thus, it is reasonable
to manually draw a relatively objective boundary separating Chinatown from the sur-
rounding areas, based on the Street View images from Google Maps.

All eight places were estimated by the steps described in Sect. 3. Figure 3 shows
the surfaces of vague extent generated by KDE vs. RW-KDE methods with the three
selected bandwidths. All estimated values on the density surfaces are normalized to [0,
1] and linearly stretched for grey shades of [0, 255]. In the introduction section, we
argue that location popularity could vary greatly across different areas of a place. To
better know how strong the variation is, we take California as an example to estimate
three popularity density surfaces (Fig. 4) based on all photo points in the study area
using the KDE, each of which corresponds to one of the three estimated KDE surfaces
and RW-KDE surfaces of vague extent in Fig. 3 under the same estimating parameters.

The popularity density surfaces show the advantage of SanFrancisco andLosAngeles
areas which are two of the largest cities in the U.S. These surfaces are very similar to the
estimated KDE surfaces of vague spatial extent in Fig. 3. To know if a location’s mem-
bership of California estimated from the traditional KDE method is correlated to the
popularity density of that location, we plot these two variables for each locationwithin the
official boundary and calculate a Pearson’s r correlation coefficient. The results indicate a
very strong correlation which supports our early argument that location popularity may
impact the estimates by the traditional KDE method. Take the popularity density surface
with the bandwidth of 755,000 feet (Fig. 4(c)) as an example, more than 65 % of the state
area have a popularity density below 0.2 in a scale of [0,1], and only 4 %have a popularity
density above 0.8. Among the low popularity-density locations (below 0.2), all of them
have a membership value below 0.263 on the traditional KDE surface; 75 % have a value
under 0.13; 50 % have a value under 0.075; and 25 % have a value under 0.033. This
means that the majority of locations within the official boundary are much unpopular than
San Francisco and Los Angeles areas, and they are estimated by the traditional KDE
approach to have a much lower possibility of being in California than the San Francisco
and Los Angeles areas which have an estimate above 0.42. This is a significant deviation
from the ground truth. A qualitative observation of the large dark area inside the official
boundary tells the same story.

In contrast, by incorporating photo representativeness, the estimated values of
RW-KDE surface are no longer correlated to a location’s popularity density (see blue
dots in Fig. 4). Also among the same low popularity-density locations (below 0.2)
within the official boundary, 75 % of them have an estimated value above 0.4 on the
RW- KDE surface; 50 % have a value above 0.56; and 25 % have a value above 0.73.
The RW- KDE has greatly increased the estimated values at unpopular locations, better
representing their membership of California. These improvements support our argument
that we need to treat each photo tagged with a place name differently according to its

2 https://www.census.gov/cgi-bin/geo/shapefiles/index.php.
3 https://www.nps.gov/.
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location popularity; otherwise, less popular locations that obviously belong to a vague
place would be underestimated in the derived geographic extent. Similar issues and
improvements can be found in downtown vs. other areas of Philadelphia and Nashville,
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Fig. 3. Vague spatial extents represented by KDE (top row of each place) vs. RW-KDE surfaces
(bottom row) under different bandwidths (h). Reference boundaries are in red line. (Color figure
online)
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low vs. high accessibility areas in national parks, and across different bandwidths.
Although there exists linear distributions of photo points in national parks, RW-KDE
can take advantages of the limited number of sparse points that are away from the roads
by assigning them a higher weight. It better represents the less popular areas that are
often underestimated by the KDE method.

Moreover, based on qualitative observations of Fig. 3, in the cases of Chinatowns,
national parks, and Nashville, RW-KDE surfaces tend to produce the highest estimates
near the center of reference boundaries. This is consistent with the common sense that
the center of a place has the highest probability of membership, and that probability
decreases when approaching the boundary line. However, the cores of traditional KDE
surfaces tend to be distorted toward the most popular locations.

Both the KDE and the RW-KDE surfaces can produce a crisp boundary using a
contour line with a threshold. To further quantify their performance, namely closeness
to the reference boundary, we choose the commonly used measures of accuracy, recall,
and precision. As defined in [24], recall measures how much of the reference extent A
can be covered by the estimated extent A’, namely area(A\A’)/area(A); precision
measures how much of the estimated extent correctly falls in the reference boundary,
namely area(A\A’)/area(A’); and accuracy measures the overall performance of the
estimates, namely area(A\A’)/area(A[A’).

We use the rank of raster cells based on their density values in descending order
rather than the value itself to derive the boundaries from the KDE surface and the
RW-KDE surface, respectively. This is because the distributions of normalized density
values from the KDE surface and the RW-KDE surface are quite different. If a
threshold of density value is used to derive boundaries from these two surfaces, the
returned boundaries could be very different in size. Since the size of derived boundaries
can influence their comparisons with the reference boundary, we need to keep the two
estimated boundaries comparable in size when examining their performance based on
comparisons with the reference boundary. If a rank threshold b is used to derive the
boundaries, the returned two sets of raster cells from the KDE surface and the
RW-KDE surface will form two crisp boundaries with equal size but different shapes.

We calculate the recall, precision and accuracy measures for the boundaries gen-
erated with various rank thresholds from the KDE and the RW-KDE surfaces under the
selected three bandwidths and plot them in Fig. 5. These plots also include additional

Fig. 4. In each pair of (a) to (c), (left) a popularity density surface based on all Flickr photos
using KDE; (right) a scatter plot of the estimates from the resulting KDE and RW-KDE surfaces
against the popularity densities within the official boundary of California.
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Fig. 5. Recall, precision, and accuracy of the boundaries derived from the KDE and RW-KDE
surfaces. The x axis represents the rank threshold b used to derive crisp boundary. The y axis in
the second, third, and fourth columns represent the recall, precision, and accuracy measures,
respectively. (Color figure online)
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KDE surfaces estimated from the target points with outliers to see if it is the outlier
removal step that contributes to the improvements. In Fig. 5, a blue line (i.e., RW-KDE
surface) is frequently above a line of the same type and other colors. That is, given the
same threshold and bandwidth, boundaries derived from the RW-KDE method out-
perform those derived from the KDE method. RW-KDE method produces a less dis-
torted representation of vague place boundaries than KDE approach. The outlier
removal does not improve the performance of traditional KDE method, for red lines
and green lines are almost overlapping with each other.

In the precision plots, many low precisions are found in crisp boundaries that are
derived at a small rank threshold from KDE surfaces (see the left side of the precision
charts of Philadelphia, California, Nashville in Fig. 5). This means that many locations
that are estimated by KDE to be most likely included in the target place are actually
outside reference boundaries. This is consistent with the observed distortions in the
derived KDE surfaces of Philadelphia, California, and Nashville in Fig. 3. In the case
of California, the overestimated areas that are outside the reference boundary have a
high popularity density shown in Fig. 4. This supports our point that the popular
locations that are less likely to be located within the place could be overestimated and
distort the boundary. In contrast, much higher precisions (close to 1) are found in crisp
boundaries that are derived at the same small rank threshold from RW-KDE surfaces.
That is, almost all locations that are estimated by the RW-KDE method to be most
likely included in the target place are truly inside the reference boundaries.

5 Conclusions

Estimation of vague spatial extent of place names is important to GIS capability of
handling places. Geotagged photos have brought great opportunities to estimate vague
place extents. However, the challenge that photos are not randomly distributed makes it
questionable if Flickr photos can be used to derive a good representation of vague place
extent, not just to identify a single crisp boundary for a vague place.

Our analysis of the California example shows that, without a consideration of point
representativeness, locations in less popular areas are likely to be underestimated using
the traditional KDE method, and popular areas are likely to have overestimation that
could distort the shape of derived spatial extents. With this challenge, this paper
proposes a solution of assigning photo point representativeness based on their location
popularity to improve the representation of vague place extents. Compared to the
results derived from the traditional KDE method, the proposed RW-KDE method
outperforms the traditional KDE, which is not subject to the kernel bandwidth change
within a reasonable range. The locations in less popular areas that obviously belong to
a target place are better estimated by the RW-KDE method to be comparable with those
popular locations within the same target place. The locations in highly popular areas
that do not belong to the target place are less likely to be estimated by the RW-KDE
method to be part of the target place. The RW-KDE method also derives crisp
boundaries with higher recall, precision, and accuracy measures, which quantitatively
suggest a less distorted representation of place boundaries.
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The major contribution of this paper is two folds: First, it addresses and proposes a
solution for the aforementioned important challenge that has been widely recognized in
the literature but not fully explored. The proposed method has been tested with eight
places and produced better representation of vague place extents. Second, the
improvements show that it is feasible to use geotagged Flickr photos to construct a
good representation of vague place extents where a higher estimate indicates a higher
probability of belonging to the target place.

Good matches between the estimated vague extents and the reference boundaries
indicate that Flickr users’ perception of the eight place extents is close to the reference
boundaries. However, as suggested by [6], there could be some places whose derived
vague extents are different from their official boundaries. More places will be examined
in the future to find out useful patterns about people’s perception of place, such as in
what situations a place’s derived extent is quite different from the official boundary.

The method proposed in this paper may not be suitable for places having multiple
parts. This is because the outlier removal process assumes that the photos tagged with a
target place name usually form one major cluster at that place. For places containing
disjoint parts or places sharing the same place name, additional considerations are
needed in future research to detect the disjoint parts of a place. Then the proposed
method in this study can be applied to generate a vague extent for each individual part.

References

1. Egenhofer, M.J., Mark, D.M.: Naïve geography. In: Frank, A.U., Kuhn, W. (eds.) Spatial
Information Theory A Theoretical Basis for GIS. LNCS, vol. 988, pp. 1–15. Springer,
Berlin, Heidelberg (1995)

2. Martins, B.: Delimiting imprecise regions with georeferenced photos and land coverage data.
In: Kim, K.-S. (ed.) W2GIS 2011. LNCS, vol. 6574, pp. 219–229. Springer, Heidelberg
(2011)

3. Grothe, C., Schaab, J.: Automated footprint generation from geotags with kernel density
estimation and support vector machines. Spat. Cogn. Comput. 9, 195–211 (2009)

4. Hollenstein, L., Purves, R.: Exploring place through user-generated content: using Flickr
tags to describe city cores. JOSIS 1, 21–48 (2010)

5. Li, L., Goodchild, M.F.: Constructing places from spatial footprints. In: Proceedings of the
1st ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered
Geographic Information, pp. 15–21. ACM (2012)

6. Cunha, E., Martins, B.: Using one-class classifiers and multiple kernel learning for defining
imprecise geographic regions. IJGIS 28, 2220–2241 (2014)

7. Keßler, C., Janowicz, K., Bishr, M.: An agenda for the next generation gazetteer: geographic
information contribution and retrieval. In: Proceedings of the 17th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, pp. 91–100.
ACM (2009)

8. Gao, S., Li, L., Li, W., Janowicz, K., Zhang, Y.: Constructing gazetteers from volunteered
big geo-data based on Hadoop. Comput. Environ. Urban. Syst. (2014, in press)

9. Keßler, C., Maué, P., Heuer, J.T., Bartoschek, T.: Bottom-up gazetteers: learning from the
implicit semantics of geotags. In: Janowicz, K., Raubal, M., Levashkin, S. (eds.) GeoS 2009.
LNCS, vol. 5892, pp. 83–102. Springer, Heidelberg (2009)

Representing the Spatial Extent of Places Based on Flickr Photos 143



10. Jones, C.B., Purves, R.S., Clough, P.D., Joho, H.: Modelling vague places with knowledge
from the web. IJGIS 22, 1045–1065 (2008)

11. Purves, R., Clough, P., Joho, H.: Identifying imprecise regions for geographic information
retrieval using the web. In: Proceedings of the GIS Research UK 13th Annual Conference,
pp. 313–318. University of Glasgow, Glasgow (2005)

12. Twaroch, F.A., Jones, C.B., Abdelmoty, A.I.: Acquisition of vernacular place names from
web sources. In: King, I., Baeza-Yates, R. (eds.) Weaving Services and People on the World
Wide Web, pp. 195–214. Springer, Heidelberg (2009)

13. Goodchild, M.F., Montello, D.R., Fohl, P., Gottsegen, J.: Fuzzy spatial queries in digital
spatial data libraries. In: Proceedings of the IEEE World Congress on Computational
Intelligence, pp. 205–210. IEEE (1998)

14. Relph, E.: Place and Placelessness. Pion, London (1976)
15. Tuan, Y.-F.: Space and Place: The Perspective of Experience. University of Minnesota

Press, Minneapolis (1977)
16. Agnew, J.: Space and Place. In: Agnew, J., Livingstone, D. (eds.) The SAGE Handbook of

Geographical Knowledge, pp. 316–330. SAGE, Thousand Oaks (2011)
17. Cohn, A., Gotts, N.: The ‘Egg-Yolk’ representation of regions with indeterminate

boundaries. In: Burrough, P., Frank, A. (eds.) Geographic Objects with Indeterminate
Boundaries, pp. 171–187. Taylor and Francis, Bristol (1996)

18. Dilo, A., De By, R.A., Stein, A.: A system of types and operators for handling vague spatial
objects. IJGIS 21, 397–426 (2007)

19. Goodchild, M.F., Hill, L.L.: Introduction to digital gazetteer research. IJGIS 22, 1039–1044
(2008)

20. Montello, D.R., Goodchild, M.F., Gottsegen, J., Fohl, P.: Where’s Downtown?: behavioral
methods for determining referents of vague spatial queries. Spat. Cogn. Comput. 3, 185–204
(2003)

21. Montello, D.R., Friedman, A., Phillips, D.W.: Vague cognitive regions in geography and
geographic information science. IJGIS 28, 1802–1820 (2014)

22. Parker, J.K., Downs, J.A.: Footprint generation using fuzzy-neighborhood clustering.
Geoinformatica 17, 285–299 (2013)

23. Alani, H., Jones, C.B., Tudhope, D.: Voronoi-based region approximation for geographical
information retrieval with gazetteers. IJGIS 15, 287–306 (2001)

24. Schockaert, S., Smart, P.D., Twaroch, F.A.: Generating approximate region boundaries from
heterogeneous spatial information: an evolutionary approach. Inf. Sci. 181, 257–283 (2011)

25. Schockaert, S., De Cock, M., Kerre, E.E.: Automatic acquisition of fuzzy footprints. In:
Meersman, R., Tari, Z. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 1077–1086. Springer,
Heidelberg (2005)

26. Arampatzis, A., Van Kreveld, M., Reinbacher, I., Jones, C.B., Vaid, S., Clough, P., Joho, H.,
Sanderson, M.: Web-based delineation of imprecise regions. Comput. Environ. Urban Syst.
30, 436–459 (2006)

27. Downs, J.A., Horner, M.W.: Analysing infrequently sampled animal tracking data by
incorporating generalized movement trajectories with kernel density estimation. Comput.
Environ. Urban Syst. 36, 302–310 (2012)

28. Eldershaw, C., Hegland, M.: Cluster analysis using triangulation. In: Computational
Techniques and Applications, CTAC 1997, pp. 201–208. World Scientific (1997)

29. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall,
London (1986)

30. Liu, Y.: A study of colloquial place names through geotagged social media data. Master
thesis. University of Tennessee (2014)

144 J. Chen and S.-L. Shaw



Scaling Behavior of Human Mobility
Distributions

Tuhin Paul1(B), Kevin Stanley1, Nathaniel Osgood1,2, Scott Bell3,
and Nazeem Muhajarine2

1 Department of Computer Science, University of Saskatchewan,
Saskatoon, SK, Canada

{tuhin.paul,kevin.stanley,nathaniel.osgood}@usask.ca
2 Department of Community Health and Epidemiology, University of Saskatchewan,

Saskatoon, SK, Canada
nazeem.muhajarine@usask.ca

3 Department of Geography and Planning, University of Saskatchewan,
Saskatoon, SK, Canada
scott.bell@usask.ca

http://www.usask.ca

Abstract. Recent technical advances have made high-fidelity tracking
of populations possible. However, these datasets, such as GPS traces,
can be comprised of millions of records, well beyond what even a skilled
analyst can digest. To facilitate human analysis, these records are often
expressed as aggregate distributions capturing behaviors of interest.
While these aggregate distributions can provide substantial insight, the
spatio-temporal resolution at which they are captured can impact the
shape of the resulting distribution. We present an analysis of five spa-
tial datasets, and codify the impact of rebinning the data at different
spatio-temporal resolutions. We find that all aggregate metrics consid-
ered are affected by rebinning, but that some distributions do so regu-
larly and predictably, while others do not. This work provides important
insight into which metrics can be used to compare human behavior across
datasets and the kinds of relationships between that can be expected.

Keywords: Spatial data · Mobility · GPS · Analytics

1 Introduction

Human spatial behavior underlies many disciplines, including geography, soci-
ology, architecture, and many forms of engineering and research effort has
been invested attempting to describe how people move through and use space.
Through studies conducted with pen and paper through diaries, surveys, or
ethnographies, researchers have made significant strides in codifying how people
move through and utilize space. With the advent of mobile communications and
location sensing technology, vast new repositories of spatio-temporal informa-
tion on human mobility have become available. Voronoi diagram-based spatial
c© Springer International Publishing Switzerland 2016
J.A. Miller et al. (Eds.): GIScience 2016, LNCS 9927, pp. 145–159, 2016.
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decompositions based on cell tower or WiFi router access logs, trajectory data
from GPS logging, or interaction level data from RFID and Bluetooth (BT) bea-
cons all provide previously unprecedented representations of a person’s spatial
trajectories [1,9,10,12,21,22,26,29,31]. However, all of these data sources have
different characteristics: cell record and WiFi data are characterized by irreg-
ular spatial distributions contingent on inter-device spacing and only generate
records when people connect, GPS logs are only reliable outdoors, and BT and
RFID devices provide reliable measures of proximity but only in controlled set-
tings. Even reliable measurements via GPS have variable accuracy depending on
the device, atmospheric conditions, and built environment.

To cope with the large amounts of data generated by these new measurement
techniques, researchers often employ aggregate metrics, which can be character-
ized as distributions over a single variable such as trip length, to help describe
the data. The model parameters (e.g., mean and variance of a Gaussian) corre-
sponding to these distributions can be used to describe the data concisely. For
example, many human-centric statistics, such as visit frequency or interpersonal
contact duration, are characterized by truncated power law distributions [15].
The power coefficient describing that distribution can inform an analyst about
the relative behavior of two populations. However, because changing the spatial
extent over which these data are collected can change the shape of the distribu-
tion, studies of the same populations at different spatio-temporal scales will be
described by different model parameters, and by extension may generate erro-
neous conclusions. This hearkens back to the Modifiable Areal Unit Problem,
a recurring challenge when working with data and variables that can be aggre-
gated to different units of analysis [19,20]. Understanding to what extent these
distributions are susceptible to the spatial and temporal resolution of collection,
and to what extent these sizing and sampling effects are predictable based on
underlying mathematical processes, would help human behavioral researchers
make meaningful comparisons across datasets and between populations.

Employing five mobility datasets, recorded from either smartphone GPS or
GPS logging devices, we analyzed sampling effects. To model spatial binning,
an area of interest was binned into square sections of varying sizes. To model
temporal granularity, we down-sampled the mobility traces at regular intervals.
This selective and regular resampling allows us to examine the impact of spatio-
temporal resolution on the resulting aggregate distributions. We find that some
distributions have definitive scaling behaviors, indicating the possibility of mean-
ingfully comparing datasets across resolutions. Other metrics do not vary as
regularly under resampling, indicating that caution should be exercised when
comparing results from different data sources using these techniques.

2 Related Literature

Human mobility is not random, but follows well defined patterns [15,22,24,25],
sometimes characterized by aggregate statistics like: (1) Inter-contact time,
(2) visit frequencies, (3) dwell time, (4) radius of gyration, (5) trip length, and
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(6) trip duration [15,24]. Because mobility is continuous in space and time, quan-
tization (binning) is often applied [21,23,24]. While the transmission range of a
GSM (Global System for Mobile Communications) base station is normally up to
35 km [13], Bluetooth and WLAN (Wireless Local Area Network) transmission
ranges are limited to tens of meters to a few hundred meters [30]. A study found
position errors of 2 m–15 m, on average, using GPS [17].

The examination of different units of analysis in geography has a long tra-
dition [19,20]. Persuasive arguments for considering these effects in GIScience
are also well documented [8], including in work on the convergence of GIScience
and Social Media [28]. Bell et al. examined similar sized units of different types
(census vs neighbourhoods) and found similar patterns [4].

Eagle et al. used mobile phones to collect location history and behavioral
data of people from multiple sources [6]. For better granularity of spatial data
indoors, and social context, locations of surrounding Wi-Fi access points have
been used by [9,10,27]. The resultant datasets provide valuable insight into the
interwoven patterns in human movements. Research on intertwined patterns in
human mobility lead the development of synthetic human mobility models, which
emulate observed patterns in human mobility traces [3,11,15,22].

Data driven geographic inquiry or algorithmic geographies [14], are increas-
ingly important to understanding human behavior, complex systems, and our
environment-behavior interactions [16]. Urban geographers, demographers, and
behavioral geographers are using open, big, and real-time (or streamed) data
in new ways. This includes health [18], networks and transportation [27], and
behavior modelling [2]. In GIScience and its cognate geographic disciplines, the
application of grid cells and varying spatial resolutions has primarily been in
remote sensing and elevation modelling [5,7].

3 Experimental Setup

We used five data sets: the Saskatchewan Human Ethology Datasets (SHED) 1, 2,
and 5 [9,10,27], the open source dataset GeoLife [32], and GPS traces from the
‘Seasonality and Active Saskatoon Kids’ dataset (hereafter, the ‘Kids’ dataset)
[18]. The SHED datasets are technical pilots for the ongoing development of iEpi
[12], and contain detailed mobility, activity, and contact traces from graduate
students and staff (SHED1 and SHED2) or undergraduate students (SHED5).
GeoLife is an open source collection of mobility traces collected using GPS log-
gers by Microsoft Research [32] in China. The GPS traces in GeoLife correspond
to self-identified trips taken by participants, and do not include stationary peri-
ods. The Kids study [18] used GPS loggers and wearable accelerometers to study
a large number of elementary students from low income neighbourhoods over a
week, to determine activity and mobility patterns.

Software glitches, hardware failure, and participant non-compliance lead to
significant variance within the number of available records in each of the data-
bases. Individual participants returned anywhere from negligible fractions, to
almost complete records of possible data, but only a portion of the total number
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of records included GPS data (e.g., while at school or university, SHED or Kids
participants might report accelerometer but not GPS records due to poor GPS
reception indoors). Participants were classified into two groups, responders (at
least 20 % of possible time slots or samples with GPS data over the data col-
lection period) and non-responders, for all but Geolife, where compliance was
difficult to assess because data corresponds to participant-identified trips. The
threshold of 20 % was chosen arbitrarily based on inspection of trajectories. Par-
ticipants whose GPS records were available for less than 20 % of the possible
time slots were removed. GeoLife data were sampled at 1–5 s intervals [32], and
participants were included in the analysis if they had recorded trips spanning
at least two weeks. The number of participants and records before and after
filtering are presented in Table 1.

Table 1. Dataset properties

SHED1 SHED2 SHED5 Kids GeoLife

Study duration 4 weeks 4 weeks 4 weeks 1 week 5+ years

#(participants) 38 37 29 745 182

#(used participants) 34 27 24 722 33

#(GPS records) 1.35e6 3.41e7 279,298 1.54e8 2.5e7

#(used records) 107,409 101,746 80,998 1.42e8 1.86e7

To determine the impact of the temporal sampling rate, we down-sampled
the data (expressed by T ), between subsequent measurements. A down-sampling
period (T ) is an integer multiple of the base period (T0) at which GPS data
are collected. Down-sampling at T is performed by taking every ( T

T0
)th sam-

ple from the base data. Because each dataset has a different minimum sam-
pling time (between 1 s and 8 min), we standardized the minimum sampling
duration to be 8 min for SHED5, and 10 min for others. For SHED5, T ∈
{8 min × (1, 5, 10, 15, 30, 60)} and for others, T ∈ {10 min × (1, 3, 6, 12, 24, 48)}.
The fastest sampling rate was chosen for consistency with SHED5, which had
the slowest base rate; the slowest sampling rate was chosen to be 3 times per day,
consistent with the minimum number of daily cellphone records required in [26].
This downsampled sequence was then sampled spatially using a regular square
grid. If no location record existed at the downsampled timestep, then a special
symbol for “unknown location” was used for the location of that participant at
that timestep. These special symbols were ignored when creating the aggregate
distributions, but they broke trips during trip length and duration calculations.
Both choices were intentionally conservative; we assign no location if the loca-
tion is unknown, and do not assume that a trip continues if data during a trip
is missing. This will tend to make trips shorter, as potentially longer trips may
be broken into a number of shorter sub-trips.
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Location was binned with a maximum granularity of 4 km, consistent with a
suburban cell tower area, with that granularity successively reduced by factors of
2 to a minimum of 15.625 m, consistent with the nominal accuracy of commodity
GPS receivers common in typical smartphones. The spatial resolution is reported
as the length of the square bins or grid cells, and given the symbol d. The coverage
area of a dataset was gridded at the coarsest resolution (4 km edged squares),
and increasingly finer resolution cells were created by subdividing these larger
cells into 4, halving the edge dimension while conserving the topology of the
spatial binning, until the finest resolution of 15.625 m was reached. Locations
were taken to be the centers of the grid cell in subsequent calculations. Over
short time scales and at fine resolutions, there was strong agreement between
the recorded position and the binned locations; as temporal and spatial scales
expanded, agreement between computed location and measured location began
to diverge, as expected. Intra-step shifts in time or space (e.g., changing the start
time or base grid locations) was not investigated, but would also be expected to
have an impact, particularly at coarse spatial or temporal scales.

We computed five previously employed aggregate metrics [15,24] for each
dataset at each spatio-temporal resolution: visit frequency, dwell time, trip
length, trip duration, and radius of gyration (RoG). All empirical distributions
are aggregated across locations and participants through time.

Visit Frequency: The distribution of the count of participant samples in a
given location. Remaining in a cell increases the count for that cell. This
metric indicates overall place popularity.

Dwell Time: The distribution of the number of time steps participants spent in
a cell without changing cells. This metric distinguishes between places visited
often, for short duration, versus those visited occasionally for longer.

Trip Length: The distribution of contiguous trips, where a trip is defined as
changing locations for at least three consecutive downsampled time steps.
Distance is calculated as the Euclidean distance, which is an integer multiple
of d, between cell centers for each stage of the trip. The trip length distribution
specifies the probability of traveling a certain distance.

Trip Duration: The distribution of time spent in a trip (as defined above),
with a resolution of the current sampling period. Trip duration describes how
long participants are likely to remain in transit.

Radius of Gyration: This metric, represented as rg, is defined in (1), where c
is the center of the polygon bound by spatial resolution-dependent coordinates
{ri : i ∈ N+ ∧ i ≤ N} of trip samples. The RoG distribution describes
how compact the areas traversed by participants are. We computed c as the
centroid of the convex hull of the polygon defined by trip samples.

rg =

√
√
√
√ 1

N

N∑

i

(ri − c)2 (1)

Given the distributions of the above metrics at chosen spatio-temporal resolu-
tions, we used regression for power law based fits of the distributions because the
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metrics have been reported to follow truncated power law distributions [15,24].
Under the power law model, each distribution has two parameters, a constant
term and an exponent term, encoded as α and k, as shown in (2).

f(x) = αxk [x ≥ x0] (2)

After determining the model parameters α and k of (2) from the distributions
of each of the five metrics at different spatio-temporal resolutions, we determined
how these model parameters varied with d and T using the following models on
the basis of R2-based goodness of fit:

Linear: f(x) = c1 + c2x
Logarithmic: f(x) = c1 + c2 log x
Exponential: f(x) = c1c

x
2

Power: f(x) = αxk

Data were stored as text files. Initial data exploration was done using Eureqa1

from Nutonian, Inc. Our final fits were done using R statistical software2 with
R2 as the goodness of fit metric. Calculations were carried out on a computer
with four Core AMD processor and 8 GB memory running Ubuntu 15.10.

4 Results

As we are primarily interested in determining how aggregate distributions of
mobility change under different spatio-temporal measurement regimes, we have
plotted the distributions of aggregate metrics. Figures 1 and 2 show the variation
of our key metrics at spatial dimensions of 31.25 m and 500 m, respectively. Each
curve within each graph denotes a particular (dataset, sampling time) pair.

Several trends are notable within each graph. First, most curves show the
characteristic forms for power law distributions, which is consistent with the
literature [15,24]. All curves (with the exception of RoG) are characterized by
linear descent on the log-log plots over large portions of their span, indicating
heavy tailed power distributions.

Second, not all datasets are equal. The Kids dataset is characterized by longer
dwell times than the other datasets. This is likely indicative of the relative dif-
ference between elementary school students’ and university students’ lifestyles.
The GeoLife dataset, comprised exclusively of trips, has a lower dwell time, and
higher visit frequency and RoG, which is as expected for participants who are
always on the move.

Third, the RoG measure is noisy with respect to sampling regime. Given that
the formulation for RoG implicitly depends on the sampling regime, this makes
sense, as altering capture resolution alters the parameters of RoG. As a result,
we conclude that RoG is a poor measure for inter-experiment meta analysis,

1 http://www.nutonian.com/products/eureqa-server/.
2 https://www.r-project.org/.

http://www.nutonian.com/products/eureqa-server/
https://www.r-project.org/
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Fig. 1. Distribution of dataset features at d = 31.25 m

as significant variation in computing values will be expected due to the data
capture resolution.

Fourth, dwell time, trip length, and trip duration are well characterized by
power law distributions, as characterized by Fig. 3, where each box plot repre-
sents the distribution of R2 values when fitting a power law to curves aggregated
over participants, as seen in Figs. 1 and 2, for each d and T pair considered in
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Fig. 2. Distribution of dataset features at d = 500m

the expertiment. As expected from the noisy signal, RoG is poorly character-
ized by a power law. Visit frequency does not appear to be strongly power law
distributed, particularly near the tails. The noisy tails also make visit frequency
susceptible to changing fit quality with spatio-temporal resolution.
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Fifth, there is apparent regularity in much of the variation in both Figs. 1
and 2, implying underlying mathematical relationships. To determine the regu-
larity of effect, we further fit curves to the model parameters derived from the
regression for power law distributions fits, to determine if the coefficients of the
fit equations also vary regularly with resolution. That is, we wished to determine
if the model parameters could be expressed as functions of the resolution.

Fig. 3. R2-based quality of power law fits of distributions of dataset features

Given the model parameters α and k, derived from power law based regres-
sions of the distribution of key metrics, we tried to relate them to d and T .
Figure 4 presents the R2-based fit qualities, aggregated over all datasets, of expo-
nential, linear, logarithmic, and power law regression models to establish rela-
tionships between model parameters (α and k) and spatio-temporal resolutions
(d and T ). Overall, power models explain the behavior of α and k with d and
T best, exhibiting the largest mean R2 values and smallest variances. However,
values of k showed significant variance, and trip length and RoG had generally
poor fits for all models tested.

Figure 5 presents the R2 fit quality values of regression fits of power law
model parameters (α and k), as d or T broken down by dataset. Each value in
the boxplot is represented by a single spatio-temporal resolution (value of d and
T ), aggregated over all participants for a single dataset. Much of the variance in
these fits can be ascribed to the power law only describing a region of variation,
as would be expected from Figs. 1 and 2, where, for example, visit frequency
becomes quite noisy with large T , or there is limited variation among datasets
for trip duration at small T . Visit frequency and dwell time seem to have the
strongest power dependence on both d and T . It is interesting to note, that while
visit frequency did not consistently hue to a power law distribution, the varia-
tion of the model parameters did vary regularly. Trip length model parameters
vary somewhat regularly with d, but are inconsistent across datasets with T .
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Fig. 4. Goodness of fit of α(d), α(T ), k(d), k(T ), for key metrics over all datasets, to
exponential (Exp), linear (Lin), logarithmic (Log), and power law (Pow) models

RoG and trip duration do not exhibit strong fits. With RoG, this is expected,
given the noisiness of the original signal, but with trip duration this is more likely
due to the changing definition of a trip, as changing d and T changes possible
trip lengths.
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Fig. 5. Power function-based fit quality dependence of a and k on d and T

Discussion

Understanding human mobility and its measures is increasingly important for
many fields. In this paper, we sought to examine the impact on aggregate metrics
of spatial scale and temporal sampling period. We analyzed five spatial datasets,
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which have not been analyzed in this manner before, deriving distributions of
previously reported spatial metrics. Through our analysis, we report the follow-
ing findings:

1. Metrics had well defined and consistent distributions. With the excep-
tion of RoG, distributions were found to generally be heavy tailed power law
distributions, as expected. The form of the distribution was consistent across
datasets and resolutions, although parameters describing these distributions
varied with spatio-temporal resolution.

2. Binning changes the data and fit. For all metrics, changing the spatial
bin size or temporal sampling period changed the shape of the resulting dis-
tribution. That is, measuring or analyzing the data at different resolutions
provides different answers. When employing datasets obtained from empirical
data in models, or when comparing two empirical datasets, caution must be
exercised to ensure that resolutions match, or the comparison might not be
phenomenologically meaningful.

3. Ordering between metrics over datasets is generally preserved
under resampling. While it could be perilous to compare metrics over dis-
tributions captured at different resolutions, changing resolutions generally did
not change the ordering of such metrics. For example, the trip duration of
the Kids dataset was almost always greater than GeoLife, for each sampling
resolution. There were instances at longer T , where points on the SHED5
tail overlapped the Kids that altered slightly due to sampling effects, but the
overall shape of the curves was consistent.

4. The impact depends on the dataset. Not all datasets were affected
equally by the varying resolution, implying that varying resolution impacts
datasets from a sampling mathematics viewpoint, through the underlying
behaviors of the individuals, and the data collection context. Different popu-
lations and environments may have greater or lesser sensitivity to resampling
than others.

5. The sensitivity to resampling can itself be a metric. While substantial
additional research would be required to understand the behavioral drivers
which give rise to the differential impact of scaling, the fact that there is
regularity in the behavior of the model parameters and spatio-temporal scale
might be diagnostic of different populations, for example the greater sensi-
tivity of SHED5 over GeoLife to dwell time scale indicates that information
about population mobility is encoded in the scaling behavior.

These findings have implications for how mobility data should be employed
in research and practice. Finding 1 validates work from other researchers with
new data [15,24]. Finding 2 cautions modelers and researchers employing this
data. Because the distributions do not generalize across resolution, data from an
empirical study conducted at one resolution cannot, with certainty, provide the
underlying distributions for models with a different underlying spatial resolution.
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Finding 3 indicates that derived metrics such as mobility entropy, which exhibit
resolution sensitivity [21,23] may derive their resolution dependence from the
variation described here. Finding 3 suggests that resampling within datasets
will not compromise conclusions of an ordinal nature. Finding 4 indicates that
the scaling effects are not entirely due to the mathematics of sampling: human
behavior patterns in the data also contribute. Finding 5 hypothesizes that resam-
pling behavior itself could be used as a metric of human mobility. These scaling
metrics could also be used to evaluate agent-based models of human mobility
used in simulation. Synthetic mobility models such as [11,15,22] should not only
reproduce the distributions of key metrics at a given resolution, but the scal-
ing behaviours noted here. Taken together, these findings provide a meaningful
contribution to the study of human mobility metrics.

While we have made a significant contribution to the literature, several short-
comings of this study could be addressed in future work. First, while we used
five datasets comprising millions of records, these datasets had a relatively small
number of participants and durations measured in weeks. Further analysis of
larger, longer duration, and more diverse datasets would help validate the work.
Second, we employed GPS datasets, downsampled regularly in time and space.
While this approach facilitated the analysis, location data sources such as WiFi
and cell tower records have irregular shaped cells based on the Voronoi diagram
of transmitter locations, and stochastic sampling patterns based on connectiv-
ity behavior. Understanding how irregularity in spatial and temporal sampling
impacted these distributions would also be worthwhile. Finally, we have not
attempted to employ these insights into building better models of human behav-
ior. Further research into the application of these findings to building higher
fidelity models of human behavior for simulation systems could have wide rang-
ing impacts.

5 Conclusion

Spatio-temporal resolution changes the shape and model parameters of aggre-
gate distributions used to describe human mobility. This variation appears to
conserve, at least in ordering, the differences between datasets, implying that
indications of the differences in human behavior being observed are also pre-
served. Because spatio-temporal resolution matters, making quantitative com-
parisons between datasets with different resolutions is potentially dangerous and
should be avoided, at least until regularities in the scaling relationships can be
better characterized. While significant research remains, this work represents an
initial step in understanding how to properly employ newly available high-fidelity
datasets in human mobility analysis.

Acknowledgments. We would like to acknowledge the Natural Sciences and Engi-
neering Research Council of Canada for providing funding for this work.
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Abstract. Simulating structural changes in landscape is a routine task
in computational geography. Owing to advances in sensing and data col-
lection technologies, geospatial data is becoming available at finer spa-
tial and temporal resolutions. However, in practice, these large datasets
impede land simulation based studies over large geographic regions due
to computational and I/O challenges. The memory overhead of sequential
implementations and long execution times further limit the possibilities
of simulating future urban scenarios. In this paper, we present a generic
framework for co-ordinating I/O and computation for geospatial simula-
tions in a distributed computing environment. We present three parallel
approaches and demonstrate the performance and scalability benefits of
our parallel implementation pFUTURES, an extension of the FUTURES
open-source multi-level urban growth model. Our analysis shows that
although a time synchronous parallel approach obtains the same results
as a sequential model, an asynchronous parallel approach provides better
scaling due to reduced disk I/O and communication overheads.

1 Introduction

Urban Growth models (UGMs) serve as the foundation for analytical research
on complex urban growth phenomenon. These models capture the interactions
between various drivers of urbanization to explain changes in urban systems and
serve a common goal of predicting future scenarios based on past observations.
The functionality of an UGM also lies in its ability to simulate urbanization
scenarios under varying land use policies. However, these simulations are com-
putationally expensive and run for long periods of time. Traditional sequential
approaches become too slow to allow scenario simulations on user desktop envi-
ronments.

Large geographic extents and high spatial resolution input data also impacts
the simulation runtime. While the large geographic extents introduce more spa-
tially related processes to the simulation, high resolution data increases the num-
ber of such underlying observable processes. Thus, owing to the size and spatial
details in the data, we see an increase in the spatio-temporal interactions which
add to the computational complexity of the model and simulation.
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However, with advances in parallel computing, new techniques [12,14,17,31,
32] have emerged to scale geospatial simulations. New parallel execution strate-
gies and algorithms have also been developed that provide the means to scaleup
geospatial simulations. In this paper, we present pFUTURES, a large-scale sim-
ulation framework that we develop for cellular automaton based urban growth
models. Further, we adopt the FUTURES UGM in this framework and demon-
strate its scalability across different geographic regions.

Our specific technical contributions are as follows: (i) a parallel framework
for executing cellular automaton based land-use simulation models, (ii) three
parallel approaches to co-ordinate I/O and computation in a master-worker style
configuration of a UGM (iii) flexible data partitioning technique at a granularity
as defined by the UGM and, (iv) communication and I/O optimization strategies.

The rest of the paper is organized as follows: in Sect. 2, we summarize existing
research in simulating urban geography. In Sect. 3, we provide an overview of the
FUTURES simulation model. In Sect. 4, we describe our parallel system archi-
tecture, design and challenges, and how we adapt the FUTURES model within a
master-worker style configuration. In Sect. 5, we describe our experimental setup
and results from executing pFUTURES over three different geographic regions.
Finally, we conclude in Sect. 6.

2 Related Work

Since Wolfram proposed the use of Cellular Automatons (CAs) [35] for the
study of systems in nature, CAs have found wide adoption in land use and land
change models. While a few of them feature as multi-criteria GIS analysis tools
[10,22,30], most models have been implemented as standalone sequential sys-
tems. SLEUTH [9], FORE-SCE [23], CLUE-S [28] and FUTURES [20] are a few
popular land use simulation models that are CA based systems. The SLEUTH
urban growth model has been around for twenty years and modified for vary-
ing geographic extents [7]. FORE-SCE and CLUE-S are land use models. While
FORE-SCE examines urbanization as one of the outcomes of land use change,
CLUE-S is an instance of a land use model that analyzes land-use systems by
considering hierarchy of land use at different spatial scales. However, these mod-
els define land change events as sequential CA transitions and do not perform
them in parallel.

An overview of the parallel capabilities of CAs and their widespread appli-
cations can be found in [3]. In pRPL [12], the authors implemented a few of
these capabilities as a parallel Raster Processing Library designed for scientific
simulations. pRPL exposes an API that allows programmers to define transition
rules, neighborhood configurations and raster layer specific routines. Internally,
pRPL implements data decomposition, boundary communication and neighbor
cell transitions based on a user-defined specification. The library has been written
for geographers to develop models without any parallel programming experience.
pSLEUTH [12] is a parallel version of the SLEUTH model built using pRPL.
Extending pSLEUTH, [13,14] implemented a hybrid parallel cellular automata
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model for urban growth simulation using GPU/CPU heterogeneous architec-
tures. A complete list of technical modifications and evolution of SLEUTH has
been documented in [7].

Neighbourhood modeling is an inherent aspect in urban growth models. In
[10], the authors proposed a new proximal space approach with related geo-
algebraic operations to model neighborhood and neighborhood operations in
CAs. Parallel data decomposition and execution strategies [11,18,32] have also
been developed that preserve neighborhood relationships in resulting spatial
structures. The evolution and adoption from SIMD to MIMD architectures in
the field of geoprocessing has been described in [11].

Distributed computing based computational geometry advancements [2,4,17,
21,31,32] also feature in parallel geosimulations. Geospatial libraries like GDAL
[32] have been modified [36] to parallelize common GIS vector and raster oper-
ations. The libraries exploit advancements in parallel computing to implement
I/O operations in parallel. However, existing parallel approaches [12,14] do not
intrinsically handle data decomposition of irregular boundaries. Duplication of
data and redundant computation along boundary regions become necessary. To
overcome these limitations, the pFUTURES framework implements a flexible
data partitioning scheme as defined by the underlying UGM.

3 FUTURES: FUTure Urban-Regional Environment
Simulation

FUTURES is an urban growth model that simulates land change events based on
historical land growth patterns. It simulates emerging urban landscape patterns
under varying environmental, infrastructural, socioeconomic and demographic
factors.

Figure 1 provides an overview of the FUTURES simulation framework and
its interacting components, namely, (i) DEMAND sub-model, (ii) POTENTIAL
sub-model and, (iii) Patch Growing algorithm (PGA).

3.1 Development Potential Sub-model (POTENTIAL)

The POTENTIAL sub-model implements a site suitability modeling technique
that formalizes the relationship between urban development and environmen-
tal, infrastructural, and socioeconomic changes over time in a region. The model
considers a number of predictor variables as input to a multi-level logistic regres-
sion model. Each predictor variable accounts for a spatial or temporal aspect of
land cover change and is used to define a suitability score for a site in a region.
Finally, the output from the POTENTIAL model is normalized to produce a
map of development probability values for all sites in a region.

The probability that an undeveloped cell becomes developed is defined as:

pi =
esi

1 + esi
(1)
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Fig. 1. The FUTURES land change modeling framework [20]

where, si is the composite development potential for a cell i. The develop-
ment potential si is defined as a function of environmental, infrastructural, and
socioeconomic predictor variables of site suitability as following:

si = aji +
n∑

h=1

βjih ∗ xih + βjih ∗ pi
′

(2)

where, for the ith undeveloped cell and varying across j groups (i.e., the level),
aji is the intercept, βji is the regression coefficient, h is a predictor variable rep-
resenting conditions at the start of a chosen simulation year, n is the number of
predictor variables, xih is the value of h at i, and pi

′
is the dynamic development

pressure variable due to neighboring developed sites.

pi
′
=

ni∑

k=1

Statek

dik
γ (3)

where, Statek is the current state (0/1) of the kth neighbor of cell i, d is its
distance from the kth neighbor in its list of n neighbors and γ is a coefficient
that controls the influence of distance between cell i and its neighboring cells.

3.2 Land Demand Sub-model (DEMAND)

The DEMAND sub-model establishes the relationship between historical land
consumption and population growth under different development scenarios.
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This relationship is established using an ordinary least squares regression tech-
nique. The regression model considers two parameters in estimating future land
use for urbanization: (i) population growth and (ii) land consumption over time.
The generated per capita demand projections from the model drive the PGA in
the FUTURES UGM.

3.3 Patch Growing Algorithm (PGA)

The Patch Growing Algorithm implements the mechanism to simulate histori-
cally observed urbanization patterns based on the above two sub-models. Patch
growth is defined as a 3-step process: (i) Monte Carlo based seed selection using
the site development probability, (ii) patch size selection from a library of patch
sizes, a weighted distribution of historically observed patch sizes, and (iii) patch
growth through a neighbor discovery process.

A neighborhood configuration specified at the start of the simulation defines
the neighbor discovery process. Further, a site suitability metric (Eq. 4) for newly
discovered cells determines the most suitable cells that go towards patch growth.

si = si
′ ∗ d−α (4)

where, s
′
i is the underlying development potential of a cell i, d is the distance

of cell i to a seed, and α is a patch compactness factor. The PGA continues the
neighbor discovery process by using the newly added neighbors as potential seed
cells. Thus, the patch growing algorithm continues till the value of patch size
is met or else terminates when no more suitable sites for patch growth can be
found.

4 pFUTURES System Architecture

pFUTURES adopts a centralized system architecture based on a master-worker
model for parallel computing. In a large-scale urban simulation, this model
allows a distributed execution of UGMs on smaller sub-regions in the landscape.
The pFUTURES framework consists of a single master with multiple workers
and relies on a messaging framework for communication. Figure 2 illustrates
our master-worker model with multiple workers, centrally controlled by a single
master.

4.1 Master Services

In this section, we describe the responsibilities of the master in pFUTURES,
namely, (i) Data Partitioning, (ii) Task Scheduling and (iii) Task Synchronization.

Data Partitioning decomposes input data to create small distinct partitions
of data for workers. This allows workers to execute independently with minimal
task dependencies during parallel execution. In pFUTURES, data partitioning
creates smaller data partitions for sub-regions in the landscape. The granularity
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Fig. 2. Data processing in a master-worker style architecture

of this decomposition and the number of sub-regions can be created at “predic-
tor levels” defined in the underlying UGM. Figure 3 illustrates a data partition
created at a predictor level as defined by a UGM.

Task Scheduling decides the order in which tasks are executed by workers in
the system. In the context of large scale urban simulations, task scheduling spec-
ifies a sequence in which sub-regions in the landscape are processed by workers.
The task order is based on a dynamically generated or, a statically provided
schedule at the master.

Fig. 3. Example of a data partition created from multiple data layers

Task Synchronization resolves data dependencies during task execution. Data
dependencies arise due to (i) independent execution of a task at a worker and,
(ii) task scheduling as enforced by the master. The master periodically synchro-
nizes the UGM execution by communicating with the workers. In pFUTURES,
task synchronization enables interactions among geographically distant regions,
which results in similar outcomes to a sequential UGM simulation. In Sect. 4.4,
we describe three synchronization strategies to co-ordinate worker tasks in
pFUTURES.
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4.2 Worker Services

In the master-worker parallel model, a worker executes a set of fixed computation
steps on data partitions assigned by the master. In pFUTURES, a worker task
entails the execution of a UGM on a region as assigned by the master. The
responsibilities of the worker can be described in terms of Task Execution which
deals with an individual worker running a UGM for a fixed number of time-steps
on a data partition and Task Updates, which are carried out in response to task
synchronization enforced by the master.

4.3 System Workflow

The pFUTURES system combines the master and worker services in a five-step
workflow as shown in Fig. 4. The master begins by parsing a system configuration
file which contains the global parameters that control the UGM simulation. The
master then creates regional datasets based on regional configuration files and
the input data layers. The configuration file for a region contains the affine
geometry transforms, their inverse and the number of simulation time-steps.
In the next step, the master creates a schedule and decides an order in which
regions will be processed by workers in the system. The master sets up one task
per worker and sends them a region and a time-step in the simulation to advance.
A worker on receiving these values, parses the region specific configuration file
and reads all input data for the simulation into memory. The workers update the
development pressure values received due to development in adjacent regions and
run the simulation. In every time-step, a worker also aggregates the development
pressure updates for cells to be transmitted to adjacent regions. The master
asynchronously tracks the status of the workers to receive these development
pressure updates for all regions in the landscape. In the next time-step, the
master iterates over these received development pressure updates, identifying
and generating per-region lists with updates to transmit to the workers. On
task completion, the task is invalidated from the schedule and new tasks are
assigned to the workers. Thus, workers in pFUTURES execute the UGM over
the landscape with synchronization support from the master (Fig. 2).

Fig. 4. pFUTURES system workflow diagram
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4.4 Synchronization Strategies

In this section, we present three synchronization strategies which achieve varying
level of interaction between the workers within pFUTURES, namely, (i) no border
interactions, (ii) all border interactions and (iii) selective border interactions.

Approach 1: Data Parallel Approach. In the first approach, distinct partitions
of data are assigned to the workers for UGM execution. Each worker runs the
model independently and for all the simulation time-steps. There is no communi-
cation or synchronization with the master or other workers. On task completion,
a worker writes the result to disk and signals the master to receive a new data
partition, if available. In this approach, the UGM simulation can scale for any
geographic extent without the need to accommodate all data in main memory at
once. It also achieves speedup by executing the model simulation over multiple
regions in parallel. However, this approach lacks the ability to capture interac-
tions due to development among geographically neighboring regions, especially
along the region boundaries. We propose Approach 2 to overcome this problem.

Fig. 5. Approach 2: time synchronous parallel approach

Approach 2: Time Synchronous Parallel Approach. In this approach, the master
and worker functionalities are augmented to preserve all cross-border region
interactions. In every time-step, a worker builds a list of development pressure
updates for cells not belonging in its region and sends them to the master.
The master waits for all regions in the landscape to be processed by workers and
aggregates the updates for each region. In the next time-step, the workers receive
the updates to be applied in its region. Thus, by modifying the master to act as
a relay, we enforce a time-step based synchronization over the complete study
region for parallel simulations. Figure 5 illustrates how tasks are synchronized at
every time-step of the simulation. This approach requires additional disk I/O to
maintain the simulation state of all regions at every time-step.

Approach 3: Time Asynchronous Parallel Approach. To reduce the additional
disk I/O imposed by Approach 2, we propose an alternate approach based on
visual analysis of the simulation results obtained using Approach 2. We make two
observations: (i) spatial structural changes along the boundary line due to devel-
opment in adjacent counties is limited and sparse and, (ii) development along
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Fig. 6. Approach 3: time asynchronous parallel approach

county boundaries is not applicable to all regions in the study extent. Based
on these observations, we modify our previous approach to support communi-
cation only among smaller conterminous regions of interest. Thus, we transform
our parallel framework as a batch of in-memory simulations for conterminous
regions that run on workers till completion. Figure 6 illustrates this idea of batch
processing on the workers.

4.5 Challenges

The design of pFUTURES was primarily guided by a requirement for a parallel
and scalable framework to augment the existing sequential version of FUTURES
UGM. In this section, we describe the practical challenges and solutions in our
adoption of the FUTURES UGM within the pFUTURES framework.

Challenge 1: Stateless Configuration of the Worker. The first challenge arises
from the way workers are programmed for task execution in a master-worker
configuration. At every time-step, a worker assigned to a region must use the
most recent simulation state of the region. However, this state is not stored at the
worker. This challenge is addressed by serializing the state of urban simulation
at a worker in every time-step. This is achieved by: (i) maintaining the next
simulation time-step for all regions at the master and (ii) storing onto disk, the
state of the urban landscape for all regions. Thus, at the beginning of every
new time-step, a worker is capable of advancing the simulation by querying the
master and reading necessary state information from the disk.

Challenge 2: Isolated Execution of the Worker. In a master-worker style con-
figuration, a worker is designed to have access only to specific data partitions
as assigned by a master. A worker is unaware of other executing workers and
the spatial configuration of other regions. Each worker is further limited by its
ability to only communicate with the master. Thus, in adoption of a master-
worker style configuration, it is a challenge to communicate development pres-
sure due to sites developed along regional boundary lines across different workers.
In Sect. 4.4, we have described our propagation mechanism for our three synchro-
nization approaches.
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Challenge 3: Location Translation. In a master-worker style configuration, the
master maintains a global view of the study area, while, a worker’s view is
limited to the extent of a sub-region in the landscape. It is a challenge for a
worker to communicate global co-ordinates to the master without co-ordinate
transformation. Thus, a mechanism to translate between the different spatial co-
ordinate systems at the master and worker is necessary. To handle this challenge,
we designed a location translation mechanism based on affine transformation,
which converts a cell co-ordinate at a worker to a global co-ordinate at the
master.

Challenge 4: Communication and Memory Overhead. The overhead of central-
ized communication at the master due to development pressure updates relayed
by the workers is unavoidable. However, we can reduce the memory overhead
at the master to support communication in large study areas. To achieve this,
we implement a disk-based query mechanism like gdallocation [33], to identify
updates for specific regions. This approach reduces the memory consumption at
the master by eliminating the need to store full-sized rasters of the landscape.
It makes available more memory to store the communication updates received
from the workers. Additionally, we reduce the communication between the mas-
ter and a worker, by implementing a filtering sequence that eliminates updates
for already developed and invalid cells in the landscape. Thus, the pFUTURES
framework is scalable and supports parallel simulation of sub-regions with a low
memory and communication overhead.

5 Experimental Evaluation

In this section, we explain our experimental methodology and discuss the results
from executing the FUTURES UGM in pFUTURES over three different geo-
graphic regions.

5.1 Experimental Setup

To evaluate our parallel architecture, we carried out our experiments on a sin-
gle node Linux based system with the MPI-2.1 message passing interface. The
node was configured with two Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60 GHz
processors, 256 GB of total main memory and a 20 TB disk with a SGI XFS
parallel file system to store all input and output data.

5.2 Experiment Results

We evaluate the performance of our framework by conducting experiments over
three study regions, namely, (i) Mountain region of North Carolina, (ii) State of
North Carolina and (iii) South Atlantic States. We compare the execution times
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Fig. 7. Simulation time (Mountain region of North Carolina)

Fig. 8. Simulation time (State of North Carolina)

Fig. 9. Simulation time (South Atlantic States)

in our three approaches by: (i) increasing the number of workers under a fixed
workload and, (ii) increasing the workload under a fixed number of workers.
Figures 7, 8 and 9 summarize the results from our experiments. Figure 10 shows
the output maps of simulation in our three study regions.

In terms of execution time performance, in all three approaches as shown in
Figs. 7(a), 8(a) and 9(a), increasing the number of workers reduces the execution
time of the simulation. We observe that Approach 1 requires the least amount of
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Fig. 10. Urban-regional environment simulation maps for (i) Mountain region of North
Carolina, (ii) State of North Carolina and (iii) South Atlantic States

time to execute. This is expected as there is no synchronization or communica-
tion between the workers in the simulation. Each worker independently executes
the model over a county for all the time-steps, with no border interactions among
adjacent counties. Approach 2 has the largest execution time and this can be
attributed to two reasons: (i) I/O costs involved in reading and writing at the
worker at every time step, (ii) synchronization at the end of every time-step
to communicate development pressure updates. Approach 3, which implements
selective communication among batches of conterminous regions performs better
than Approach 2. As compared to Approach 2, Approach 3 eliminates expensive
I/O needed to save simulation state at every time-step. Instead, by process-
ing only a select set of neighboring counties and their corresponding boundary
communication, the simulation runs in-memory, till completion, at the workers.
However, the approach still incurs synchronization costs associated with com-
municating development pressure updates which results in longer execution time
as compared to Approach 1.

In our second set of experiments, as shown in Figs. 7(b), 8(b) and 9(b), we
compare scalability with respect to the size of the study extents. The number of
workers is set to eight and the number of counties is varied in each study region.
It is observed that increasing the number of counties increases the amount of
time taken to execute the simulation. This is consistent in all three approaches.
Once again, Approach 1 performs the best as there is no communication and
synchronization needed during the simulation. Approach 3 performs better than
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Approach 2 but worse than Approach 1 due to reasons discusseds above. How-
ever, we notice that the performance of Approach 3, when compared to Approach
1, deteriorates with increase in workload. This is caused due to increased com-
munication among neighboring counties as the study extent grows. We conclude
that Approach 1 and Approach 3 scale well for increasing number of counties
and, hence is our recommended approach.

We use a randomly generated schedule in our simulation experiments with
the FUTURES UGM. This is justified as the underling UGM is insensitive to
task scheduling. Data dependencies among workers executing this model are
resolved at the start of every time-step and do not arise during execution of
the time-step. Moreover, by design, Approach 1 and Approach 2 are agnostic to
task scheduling. However, in Approach 3, the number of adjoining regions that
can be processed in a time-step is dependent on the number of workers in the
system. Thus, the impact of scheduling as described in [6] along with support
for a variable grid approach [34] remains to be evaluated.

6 Conclusion

In this paper, we present a parallel framework, pFUTURES, for fast execution
of cellular automaton based urban simulation models. We present three par-
allel approaches to coordinate I/O and computation in a master-worker style
configuration for such models. We adopt the FUTURES UGM in this parallel
framework and evaluate its scalability with varying geographic study extents. We
conclude that the practical benefits from the flexible data partitioning scheme,
the reduced communication and I/O costs from the parallel optimization strate-
gies, and the overall simulation speedup from the framework make it suitable
for geospatial simulations using high resolution data and large datasets.
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Abstract. With ubiquitous live sensors and sensor networks, increas-
ingly large numbers of individual sensors are deployed in physical space.
Sensor data streams are a fundamentally novel mechanism to create
and deliver observations to information systems, enabling us to repre-
sent spatio-temporal continuous phenomena such as radiation accidents,
pollen distributions, or toxic plumes almost as instantaneously as they
happen in the real world. While data stream engines (DSE) are available
to process high-throughput updates, DSE support for phenomena that
are continuous in both space and time is not available. This places the
burden of handling any tasks related to the integration of potentially
very large sets of concurrent sensor streams into higher-level abstrac-
tions on the user. In this paper, we propose a formal extension to stream
data model languages based on the concept of fields to support high-level
abstractions of continuous ST phenomena that are known to the DSE,
and therefore, can be supported through queries and processing opti-
mization. The proposed field data types are formalized in a data model
language independent way using second order signatures. We formalize
both the set of supported field types are as well as the embedding into
stream data model languages.

Keywords: Data streams · Sensor data streams · Data stream engines ·
Fields · Field data types

1 Introduction

Motivation. With ubiquitous live sensors and wireless sensor networks, increas-
ingly large numbers of individual sensors are deployed in physical space such
as urban environments [25], forests [10], for earthquake monitoring [12], or pre-
cision agriculture. Such large numbers of live streaming sensors enable us to
collect observations that are sufficiently dense in both space and time to now
represent continuous change in space and time in near real-time. Examples for
spatio-temporal continuous phenomena are, for instance, pollen distributions,
toxic plumes, radiation accidents, or soil moisture distributions.

Sensor data streams are a fundamentally novel mechanism to create and
deliver observations to information systems, enabling us to represent entities,
c© Springer International Publishing Switzerland 2016
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processes and events in information systems almost instantaneously as they hap-
pen in the real world [5,24]. While a stream seems similar to a time series, that is,
it consists of an ordered set of time-stamp records, a stream is a significantly dif-
ferent programming abstraction: it is an unbounded multiset of elements, contin-
uously producing records as time advances. New updates are constantly pushed
into queries during query execution, resulting in real-time query answers. Data
stream engines (DSEs) have been designed as a high-throughput alternative to
database management systems (DBMS). Today, open source and commercial
DSE such as Apache Spark [1] achieve query performance over streams with a
throughput of >1 Million updates/s; in comparison, DBSs are limited to 500
updates/s [26]. Similar to DBSs, DSEs provide data model and query languages,
which make it easier for users to program applications, enabling them to define
data schemata and SQL-type queries over data streams. The core concept of
stream data models is that of a stream (as opposed to a relation). Stream query
languages contain continuous queries as well as query windows as evaluation con-
texts over streams. While DBS and DSE are separate technologies, stream data
models and query languages are formally integrated with the relational algebra
to guarantee compatibility between both technologies [4].

DSEs make it feasible to monitor and analyze phenomena that are continuous
in space and time while delivering real-time answers to queries. However, today’s
stream data model languages provide concepts to represent individual sensor
data streams. For instance, point geometry types are available to create stream
tuples with sensor location attributes [3]. Such low-level support enables only
modeling individual sensor data streams, and it is the responsibility of the user
and application code to handle any tasks related to the integration of potentially
very large sets of concurrent sensor streams into higher-level abstractions such as
spatio-temporally continuous phenomena. Currently, the bulk of programming
and understanding of continuous phenomena is pushed into the application code,
and this code has to be re-implemented for each application again and again. We
believe that DSEs should provide a generic, flexible and high-level abstraction
for continuous spatio-temporal (ST) phenomena. The complexity of integrating
individual sensor streams into a higher-level representation on-the-fly should be
hidden from users while still allowing them to configure the mapping between
sensor streams and a continuous phenomenon. Spatio-temporal continuous phe-
nomena need to be supported on the level of both data model language and
query execution support in DSEs.

Transforming large sets of individual sensor data streams into the high-level
representation of a ST continuous phenomenon is not an easy feat. A repre-
sentation of a continuous phenomenon must always be an approximation based
on captured samples. When dealing with up to 1,000 concurrent streams, it
is unlikely that their updates and sampling rates are synchronized. Instead,
each stream might have its own sampling frequency. To create a snapshot of
a spatially continuous phenomenon at a desired time stamp across all sensors
requires resampling or interpolating existing streams. Further, the types of analy-
ses of such phenomena will vary but still run concurrently. Thus, locking the
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representation of a continuous phenomenon into a single, fixed resolution of
cells, triangulations or contour lines is severely limiting.

Contributions. In this paper, we propose an extension to stream data models that
is based on field data types, which directly tap into streamed data rather than
accessing stored data. Fields have long been proposed as a unifying information
system abstraction for continuous phenomena [8,21] and are well understood
on an ontological level [15,16], but are still uncommon as actual information
system interfaces and implementations [7,13,22]. We believe that a field data
type is the most promising approach to handling the complexities of sensor
stream processing for continuous phenomena.

While the extension of DSEs with fields on the data model, query language
and processing level is a complex task, we have investigated feasibility aspects
of processing fields on-the-fly based on massive sensor data streams in previous
work [27,28]. In this paper, we focus solely on introducing the formal framework
of extending data stream models with field types. We introduce our proposed
field data types for stream data models on an abstract level using second order
signatures [17], which allow us to define the field types independently from spe-
cific data models and programming languages. The abstract model is continuous
in space and time and used to formalize the universe of field types that can
be constructed. The abstract model is complemented by a discrete model that
is amendable to direct implementation. It grounds the purely continuous view
of the abstract model in the realities of discrete computer systems. It does so
by relating the abstract field types to computational concepts such as tuples,
streams, windows, and interpolation functions. Our field stream data model with
its dynamic spatial, temporal, and spatio-temporal fields serves as the founda-
tion for sophisticated spatio-temporal data analyses, bridging the gap between
raw point-based sensor streams and the detection of trends and events.

The following two Sects. 2 and 3 present the background of our work and
the related work. The abstract model for the field types is presented in Sect. 4,
while Sect. 5 describes the discrete model suitable for embedding in a data model
language. Section 6 offers our conclusions and identifies future work.

2 Background

2.1 Data Streams

The core concept of relational database systems (DBS) is the relation, which
is a set of persistently stored data tuples. Each relational query is performed
over a stored relation in its entirety. On the other hand, data stream engines
(DSEs) are concerned with frequently updated data and, thus, have streams as
their core concept. A stream is an unbounded sequence of tuples that arrive
in some temporal order, with multiple tuples likely arriving out of order or
simultaneously. More formally, streams are defined as “unbounded, append-only
multisets of time-stamped tuples” [4]. Unbounded means in this context that we
cannot predict how many tuples will arrive at any point of time that is in the
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future; at any time point in the past up until now, this multiset is finite. Tuples
have either explicit timestamps, which are added at the data source and denote
the real-world event time, or implicit timestamps, which are added to tuples
when they arrive at the DSE [5]. Stream data models support linear, dense and
discrete time models [26].

While each tuple in a stream is assigned a timestamp, not every tuple nec-
essarily has a spatial attribute. For that reason, we introduce a special type of
stream – a spatio-temporal stream – as a stream wherein every tuple also has
a spatial attribute. It is based on the following concept of a spatio-temporal
relation.

Definition 1. Let S be a discrete set of point locations, T be a discrete bounded
set of timestamps, and V1,. . . ,Vn be value domains. Then a ST-Relation is a
relation �ST ⊆ S × T × V1 × · · · × Vn such that for every (si,ti) ∈ S × T there
exists at most one (v1×· · ·×vn) ∈ V1×· · ·×Vn such that (si, ti, v1, . . . , vn) ∈ �ST .

Definition 2. Let S be a discrete set of point locations, T be a discrete bounded
set of timestamps, and V1,. . . ,Vn be value domains (e.g., values of measure-
ments). Let further TS be a set of timestamps with initial and last timepoints
tS1, tSf ∈ TS such that for every tSi ∈ TS, tS1 ≤ tSi ≤ tSf . Then, an ST-Stream
is a function SST : TS → � such that for a fixed spatial domain S, a fixed tempo-
ral domain T , and a fixed value domain V1×· · ·×Vn, all R ∈ � are ST-Relations
with R ⊆ S × T × V1 × · · · × Vn.

A ST-Stream can be the time series of observations from a single sensor or
from an entire geosensor network. Viewing an ST-Stream as all streamed updates
of geographically and thematically related sensors is a powerful abstraction that
allows us to reason about complex spatio-temporal events that take place within
the space and time observed by the streams. In our model, ST-streams encompass
streams that consists of the updates from only a single sensor as well as the
aggregation of streams that form continuous dynamic ST-Fields.

2.2 Fields as Formal Foundation for Streaming ST Continuous
Phenomena

The term field (more precisely geo-spatial fields) is widely used to describe enti-
ties in physical space that are continuous in space and time and lack bound-
aries. A field implies a continuous quality of an observed phenomenon in the
real-world, such as temperature, that is present at every point in time and space
on Earth (and beyond). A plethora of different computer representations have
been developed for continuous phenomena, and it is common practice to pick
a representation that matches best the data capture method in order to rep-
resent a particular phenomenon. For instance, temperature may be represented
by measurements at irregularly distributed sample points, foliage as regular grid
cells, or pollen density as isolines, with more complex representations possi-
ble. While implementations of these computer representations enable many spe-
cialized analytical operations in geographic information systems, the diversity
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and lack of coherence of representation seriously impedes integration and cross-
cutting analyses [8,21]. This problem is exacerbated if spatio-temporal fields are
considered, and multi-faceted integration over space, time, multiple parameters,
and various sensor platforms is the objective.

Over the last two decades, geo-spatial fields have been mathematically for-
malized, e.g., in [9,16]. In the context of our field stream data model, we are
mainly concerned with fields that are approximated based on observations, so-
called sampled fields (in contrast to equation fields). We present a mathematical
definition of the following types of fields that are the underlying basic compo-
nents of the field model: a spatial field, which addresses continuity over space, a
temporal field, representing continuity over time, and a spatio-temporal field, rep-
resenting continuity over both space and time. We are particularly interested in
the important notion of a sampled field because it addresses the spatial domain
of fields, that is, it represents either sensor locations or the continuous quality
of the phenomenon.

A spatial field is defined as follows: Given a spatial domain S and an
attribute domain V , a spatial field FS over S is a computable, possibly par-
tial, function f : S → V from spatial locations in S to attribute values in V .
The spatial locations in S are points, and a subset of S are sensor locations.
More details on spatial domains for fields are discussed in [15]. The attribute
domain V can be finite or infinite, discrete or continuous, numeric or symbolic.

A temporal field Ft is a function f : T → V from the time points in T to
attribute values in V . A temporal field represents the change of an attribute over
time. The attribute could be a location (e.g., a trajectory of a moving object),
a sensor measurement, or a stock price. For observed temporal fields, the time
domain is both linear and dense, that is, time advances linearly. For a temporal
field based on a sensor stream, the time domain is discrete and isomorphic to N;
each natural number corresponds to a non-decomposable unit of time which is the
sampling time. For a continuous temporal field, the time domain is isomorphic
to R since the real-world phenomenon exists without temporal ‘gaps’.

Spatio-temporal fields have both spatial dimensions as well as a temporal
dimension. For example, in a spatio-temporal temperature field over a lake, each
value f(s, t) identifies the temperature at location s and time t. Galton [16]
defines a spatio-temporal field as a function f : S × T → V that assigns each
pair of a spatial location in S and a time point in T an attribute value in
V . Again, the temporal domain T is linear and dense, and can be discrete or
continuous. Choosing a snapshot point of view and a discrete temporal domain,
the spatio-temporal field is equivalently defined as a function f : T → (S → V )
mapping time points to a spatial field S → V .

In the next section, we discuss current support for continuous ST phenomena
based on observation streams in information systems.

3 Related Work

Fields as data types are not commonly available in information systems, mostly
due wide-spread use of established software, implementations and tools that are
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based on different types of representations. The OGC coverage interface specifi-
cation [6] assumes a field-type representation for space-time varying phenomena,
and has been an industry standard for more than a decade. However, its emphasis
is on standardizing coverage operators, not data representations. Also, observa-
tion streams can not be accommodated directly with this interface specification.
Work more closely related to ours is [7], which proposes a field data type as a
generic data type to represent time series, trajectories and coverages. The idea of
a single, generic data type to express different specialized fields is similar to our
objectives. In this work, the field types have been prototypically implemented
on top of an array database system, but, it is unclear if a formal, generic and
reusable formal embedding has been attempted. [7] focuses on generic data types
that are used via a library in a programming language, and the implemented
data types use DBS technology for storage. Our work is different in two regards:
first, our fields types are designed to extend stream data models (instead of sub-
suming them). Secondly, our work focuses on streams while the work in Camara
et al. [7] addresses persistently stored and long-term collected data.

Similar to us, Ferreira et al. [13] are motivated by the increasing sampling
density, and recognize the need to support how objects and fields evolve over
time in a more flexible way so that integrated spatial analysis is simplified.
An algebra for spatio-temporal data is proposed. This approach is less generic
in its data types than [7] and our work since concrete types for time series,
trajectories, coverages, as well as objects and events are proposed. Further, this
work focuses on both fields and objects and their respective relationships, while
our work aims at providing a flexible type systems for generic, composable and
potentially complex continuous ST fields. Also, an embedding into a data model
or query language is not addressed in [13].

The existing extensions to DSE data models and query languages for spatio-
temporal streams are limited today. Therefore, fields can only be support by
processing individual sensor data streams and integrating them in application
code. Beside naively supporting points in stream data models, the work in [14,20]
focuses on spatio-temporal objects such as moving points and moving regions,
and extend Gueting’s work on spatio-temporal objects [18] for streams. Our
work is complementary in addressing fields and streams. [2] introduces Nile-PDT,
which correlates multiple concurrent streams; Nile-PDT is unaware of the spatial
dimension, and is useful for extracting features rather than representing fields.
GeoStreams [19] explores using DSE for processing large raster data streams,
i.e. the input of DSE queries are entire rasters, not point observation streams.

In summary, extensions to stream data model language and query language
to support spatio-temporal continuous phenomena that are based on point-based
observation streams do not exist today.

4 Abstract Model of Continuous Spatio-Temporal Field
Data Types

Our objective is to design a data model and integrate the types streams, rela-
tions and fields that we defined above seamlessly. When designing the new data
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model, we distinguish the abstract (data) model and the discrete (data) model as
different levels of abstraction for the sensor data stream model [11]. In our termi-
nology, the abstract model defines data types in an implementation-independent,
high-level and formal way. Its definition is driven by semantic understanding of
the concepts. The abstract model allows us to use infinite sets in the concept def-
initions, without worrying about the finite (computer) representations of these
sets. Thus, we can define our field data types with an infinite time domain as
well as an infinite space domain regardless of the finite data structures and corre-
sponding algorithms at the stage of the discrete data model design. For example,
there is no need to worry about whether a trajectory of a moving object shall
be represented as a curve or as a polyline in a two-dimensional space, while it is
defined as an infinite set of points in the plane. The discrete model is defined as
a data model that serves as the basis for implementing the abstract data model;
this model addresses the issue of finite computer representations in the context
of handling and processing sensor data streams in DSE.

4.1 Second Order Signatures

Second order signatures [17], introduced by Güting in 1993, have been widely
used in the database literature to formalize relations, spatial and spatio-temporal
data types [14,18,20]. Second order signatures allow formalizing both the syntax
and semantics of data types and defining operators for those data types. Fur-
thermore, defining our proposed field types in second order signature provides a
natural interface with the spatio-temporal type hierarchies mentioned above.

The basic idea of a second-order signature is using two coupled extended
signatures to describe a data model: the first signature defines a type system and
the second signature uses the types of the first signature as sorts and defines
operators over these types. Since we only focus on defining data types in this
paper, we primarily utilize the first signature as a tool. A signature is a pair
(S,Σ), where S is a set whose elements are called sorts and Σ is a set whose
elements are called operators (note, that this operators are not the same opera-
tors defined for the data types but type constructors). In addition, a signature
has an associated set of terms defined. In a multi-sorted signature, if t1, . . . , tn
are terms of sorts s1, . . . , sn and ω : s1 × · · · × sn → s is n-ary operator, then
ω(t1, . . . , tn) is a term of sort s. In a single-sorted signature, n is equal to 1.
A 0-ary operator is called a constant.

The basic concept of a signature for a given set of sorts is then extended
to introduce automatically list sorts, product sorts, union sorts, and function
sorts [17]. Based on this concept extension, the first signature of a second-order
signature defines a type system; the sorts of the signature describe so-called kinds
and its operators are the type constructors. The terms of this signature introduce
the available types of this type system.
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4.2 Abstract Model: Continuous Spatio-Temporal Field Data Types

As said a (first-order) signature consists of two sets of symbols, i.e. sorts/kinds
and operators, and defines a type system. First, we introduce the kinds of our
data model in Table 1. The type constructors column lists the operators of a
signature. Using the argument sorts, the terms of the result sort (kind) are
the possible new data types we can construct in the proposed data model. Each
kind describes a certain set of types; for example, BASE stands for the types int,
float, string, and bool. The type constructors show the signature for constructing
terms of each type. In this terminology, the symbol (.)+ denotes a list of one or
more operands of certain sorts.

Table 1. Abstract model of continuous spatio-temporal field types.

Argument sorts Kind Type constructor

→ BASE integer

float

string

bool

→ SPATIAL point

→ TIME instant

BASE+ → SPATIALFIELD simpleSfield

simpleSfieldvector

BASE+ → TEMPORALFIELD simpleTfield

simpleTfieldvector

BASE+ → SPATIALTEMPORALFIELD simpleSTfield

simpleSTfieldvector

(BASE∪ SPATIAL∪
TIME∪SPATIALFIELD∪
TEMPORALFIELD∪
SPATIALTEMPORALFIELD)+

→ CSTFIELD complexSfield,

complexTfield

complexSTfield

complexSfieldvector

complexTfieldvector

complexSTfieldvector

The kinds BASE, SPATIAL and TIME are similar to the spatio-temporal
data types as defined in [18]. In our model, SPATIAL emphasizes a particular
spatial type, i.e. a point location, which is used to model geographic locations of
a phenomenon; a subset of the point location are the locations of sensor devices.
With regard to TIME, we only consider the type instant. In general, the data
types in kind BASE refer to the measurements taken by sensor nodes, which can
be represented as integer, float, string, and bool values. Abstract semantics of
BASE, SPATIAL, TIME have been defined in [18].

The kinds SPATIALFIELD, TEMPORALFIELD and SPATIALTEMPO-
RALFIELD represent definitions of field types that are a mapping from S, T or
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S ×T to a single attribute (e.g. temperature). These kinds represent spatial field
data types, e.g., the temperature distribution over a specific geographic region
(simpleSfield data type), temporal field data types, e.g., temperature readings
from a single sensor over a time range (simpleTfield), and spatio-temporal field
data types, e.g., temperature distribution over a specific area and time range
(simpleSTfield), respectively. The fields have been described in more detail in
Sect. 2. In addition, we introduce the new field data types simpleSfieldvector, sim-
pleTfieldvector and simpleSTfieldvector, correspondingly, to support each space-
time location being mapped to a vector of values (of potentially different types).
For example, an instance of data type simpleSTfieldvector is a mapping from
a spatio-temporal location to a vector consisting of a temperature value, wind
speed measurement and so on. This extension provides the capability that mul-
tiple measurements that are associated with a single spatio-temporal location
can be queried and analyzed at the same time.

The data types introduced so far are the basis for our further extensions.
We introduce a new kind CSTFIELD that denotes Complex Spatio-Temporal
Fields. Taking the complexSfield (complex spatial field) data type as an exam-
ple, the value domain is not limited to basic measurements as in all other types
defined before; instead, the value domain can be a combination of any of the
data types defined in the data model so far. Therefore, an instance of complexS-
field can be a spatial field, in which each location is mapped to a spatial object
(e.g., each spatial location is mapped to a view shed region), which is similar
to the idea of an object field as defined in [9]. Furthermore, a simple spatial/
temporal field can also be a valid domain value for complex spatial/temporal
fields. For example, a complexTfield (complex temporal field) can be a mapping
from a temporal instant to a spatial field (as we discussed before, a snapshot
point of view f : T → (S → V ) which the spatio-temporal field can be equiva-
lently defined). Similarly, we introduce complexSfieldvector, complexTfieldvector,
complexSTfieldvector data types for supporting the representation of multiple
values/objects/fields under one spatio-temporal framework. If end users need
multiple spatio-temporal fields to be correlated, the complexSTfieldvector data
type is necessary. The data types of kind CSTFIELD are designed to add more
query capability and representational flexibility for end users.

We use the notation Aα to denote the carrier set for each data type, where α
is the data type. Each carrier set is extended with the null value ⊥ that denotes
a missing or undefined value. For convenience, we define Āα = Aα \ {⊥}.

4.3 Semantics of the Type System

The type simpleSfield is similar to the commonly used spatial fields in a GIS.

Definition 3. A simpleSfield(α) is a data type with a carrier set

AsimpleSfield(α) ≡ {
f | f : Āpoint → Aα ∪ {⊥}}

where α is a data type (integer, float, string, or boolean) applicable to the type
constructor simpleSfield and the carrier set Aα denoting any possible data type
of BASE kind.
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Next, we define a set ValueVector of BASE data types and then use that to
define the data type simpleSfieldvector.

Definition 4. A ValueVector is a list of basic data types BASE+ with a carrier
set

AV alueV ector ≡ {{s1, . . . , sn} | ∀i [si ∈ Ainteger ∪ Areal ∪ Astring ∪ Abool ∪ {⊥}]
}

for some n ≥ 2.

Definition 5. A simpleSfieldvector(α) is a data type with carrier set

AsimpleSfieldvector(α) ≡ {f | f : Āpoint → Aα} ∪ {⊥}
where α is a data type in sort BASE+, with carrier set Aα denoting
V alueV ector.

Similarly, simpleTfieldvector and simpleSTfieldvector can be defined as fol-
lows.

Definition 6. simpleTfieldvector(α) and simpleSTfieldvector(α) are data
types with respective carrier sets

AsimpleTfieldvector(α) ≡ {f | f : Āinstant → Aα} ∪ {⊥},
AsimpleSTfieldvector(α) ≡ {f | f : Āpoint × Āinstant → Aα} ∪ {⊥}

where α is a data type applicable to the type constructor simpleTfieldvector
and simpleSTfieldvector, respectively, with the carrier set Aα denoting
V alueV ector.

Next, we define simpleTfield and simpleSTfield analogous to the earlier def-
inition of simpleSfield.

Definition 7. simpleTfield(α) and simpleSTfield(α) are data types with
respective carrier sets

AsimpleTfield(α) ≡ {f | f : Āinstant → Aα} ∪ {⊥},
AsimpleSTfield(α) ≡ {f | f : Āpoint × Āinstant → Aα} ∪ {⊥}

where α is a data type applicable to the type constructor simpleTfield and
simpleSTfield, respectively, with the carrier set Aα denoting any possible data
type of BASE kind.

The final types – the complexSfield, complexTfield, and complexSTfield type
constructors and their vector analogues – are high-level abstractions that hide
individual sensors, their locations, and measurement values and provide an inte-
grated field view.
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Definition 8. complexSfield(α), complexTfield(α), and complexSTfield(α)
are data types with the respective carrier sets

AcomplexSfield(α) ≡ {f | f : Āpoint → Aα} ∪ {⊥}
AcomplexTfield(α) ≡ {f | f : Ainstant → Aα} ∪ {⊥}

AcomplexSTfield(α) ≡ {f | f : Āpoint × Āinstant → Aα} ∪ {⊥}

where α is a data type applicable to the type constructor complexSfield,
complexTfield and complexSTfield, respectively, with the carrier set Aα denot-
ing any possible data type in ABASE ∪ Apoint ∪ Ainstant ∪ AsimpleSfield ∪
AsimpleTfield ∪ AsimpleSTfield ∪ AsimpleSfieldvector ∪ AsimpleTfieldvector ∪
AsimpleSTfieldvector.

Definition 9. complexSfieldvector(α), complexTfieldvector(α) and compl−
exSTfieldvector(α) are data types with the respective carrier sets

AcomplexSfieldvector(α) ≡ {f | f : Āpoint → Aα} ∪ {⊥}
AcomplexTfieldvector(α) ≡ {f | f : Ainstant → Aα} ∪ {⊥}

AcomplexSTfieldvector(α) ≡ {f | f : Āpoint × Āinstant → Aα} ∪ {⊥}

where α is a data type applicable to the type constructor complexSfieldvector,
complexTfieldvector and complexSTfieldvector, respectively, with the carrier
set Aα denoting any possible data type in

{ {s1, . . . , sn} | ∀i [si ∈ ABASE ∪ Apoint ∪ Ainstant ∪
AsimpleSfield ∪ AsimpleTfield ∪ AsimpleSTfield ∪
AsimpleSfieldvector ∪ AsimpleTfieldvector ∪ AsimpleSTfieldvector ∪ {⊥}]}

We now have specified the data model from an abstract perspective by defin-
ing the range of spatio-temporal fields we support in our stream data model. We
have defined which field types are possible, and how they are constructed.

5 Extending Stream Data Models with Field Data Types

The previous section formalized the spatio-temporal fields data types that our
data model supports on an abstract level that assumes continuity in space and
time. This section presents the discrete versions of these field data types that
are necessary to implement the data types on the basis of streams of discrete
observations and discretized views of space and time.
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5.1 From Spatio-Temporal Streams to Continuous Spatio-Temporal
Fields

As mentioned in Sect. 2, this paper addresses fields that are approximated based
on observations, so-called sampled fields (in contrast to equation fields that are
purely defined via equations). In particular, we introduce fields types that are
canonically constructed from spatio-temporal streams. Our approach starts with
the definition of a spatio-temporal relation, which is a finite set of tuples, and each
tuple is an observation. Using a spatio-temporal relation that contains tuples
with timestamps within a well-defined interval and spatial locations within a
well-defined spatial region, we can construct an observation field. An observa-
tion field is simply a collection of raw sensor samples. Each sample represents
a point in a spatio-temporal volume; other values are not available. Once we
add an interpolator to an observation field, we can create a continuous spatio-
temporal field. On behalf of the raw samples of the observation field and the
interpolator, the continuous spatio-temporal field can produce all values within
its continuous spatial and temporal domain. Some of these values correspond to
actual samples; others are interpolated based on the samples. Below, we intro-
duce streaming versions of the discussed types; this includes sdstream, obser-
vationfield, and continuousSTfield. The mapping between relational types and
streaming types is bidirectional. Due to space constraints, we refer the reader to
more details of this discussion in [23] (Table 2).

Table 2. Discrete model of spatio-temporal field types extending stream data models.

Argument sorts Kind Type constructor

→ BASE integer

float

string

bool

→ SPATIAL point,

geometry

→ TIME instant

BASE+ → SDATA sensordata

SDATA →SDSTREAM sdstream

→ WINDOW slidingwindow

SDSTREAM×WINDOW → STREL observationfield

→ INTERPOL interpolator

observationfield×INTERPOL → CSTFIELD continuousSTfield

continuousSfield

continuousTfield

(BASE∪SPATIAL∪TIME∪
CSTFIELD)+

→ CCSTFIELD complexcontinuousSTfield
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5.2 Discrete Data Model for Continuous Spatio-Temporal Field
Data Types

The kinds BASE and TIME are maintained from the abstract data model. For
the SPATIAL kind we add a geometry type that can represent various geometric
objects such as points, lines, 2D regions, and aggregations thereof. This geometric
type is introduced to better represent the results of operators over fields, whose
discussion is beyond the scope of this paper.

Data Type for Sensor Tuples: This data type is defined to represent an
individual sensor sample using the corresponding basic data types and the type
constructor sensordata. A sensor data tuple represents a single update from a
sensor, while the time series of a sensor’s updates is a stream. The sensordata’s
constructor uses BASE+ as input sorts. The rationale behind this choice is that
a sensor node can combine all or a subset of its sensor samples from different
attached sensors that are taken at one time instant and forward them compactly
as a single message, creating an update tuple. Sensors without an update at that
time report a NULL value as part of the update tuple. We assume that a sensor
data tuple will always contain at least one time stamp of the kind TIME and a
location value of type point since a data value without any time or any location
information is meaningless. A second time stamp might be created at the DSE
to represent the arrival time of the update tuple.

Definition 10. A sensordata(α) is a data type with a carrier set

Asensordata(α) ≡ Āpoint × Āinstant × Ainteger × Aα

where α is a data type in sort BASE+ that is applicable to the type constructor
sensordata and produces an output of the kind SDATA.

The carrier set of data type α is a ValueVector, defined in Definition 4. The
three other parameters Apoint, Ainstant, and Ainteger represent the carrier sets for
location, explicit time stamp (time of observation), and implicit time stamp
(arrival time at the DSE), respectively. The explicit time stamp is required
whereas the implicit time stamp is an optional parameter, as indicated by the
missing bar across Ainteger.

Sensor Data Stream Type: Next, we define the data type for representing
streams of sensor data tuples. Each value from the carrier set of this new data
type sdstream(α) is a function that maps each implicit time stamp to a finite
number (possibly zero) of sensor data tuples [4].

Definition 11. A sdstream(α) is a data type with a carrier set

Asdstream(α) ≡ {
f

∣
∣ Ainstant → {S ⊆ Aα

∣
∣ |S| < ∞}}

where α is a data type of sort SDATA that is applicable to the type constructor
sdstream.
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Sliding Window Type: For kind WINDOW, the data type constructor slid-
ingwindow represents the concept of sliding windows in DSE. We adopt the
two commonly used parameters to specify sliding windows: window size ws and
update interval ui. We only consider tuple-based (count-based) or time-based
sliding windows.

Definition 12. A slidingwindow is a data type with a carrier set

Aslidingwindow ≡
{

f
∣∣ f : Teval → TS × TE such that ∀(tstarti , tendi

) ∈ Teval

[
tstarti ≤ tendi

and tendi
− tstarti = ws and

tstarti − tstarti−1 = ui
]}

where ws is the sliding window size, ui is the sliding window update interval,
Teval is the carrier set of time stamps when a sliding window will be evaluated,
and TS × TE is the carrier set that indicates the start and end time of a specific
sliding window.

For a tuple-based (count-based) window Teval, TS , TE ⊆ Āinteger holds, while
for a time-based window Teval, TS , TE ⊆ Āinstant holds. This is due to the fact,
that we consider two different types of windows semantics: count-based win-
dow change their designated time interval with the arrival of a new streaming
tuple, while time-based windows change their time interval with the advance-
ment of time.

Observation Field Type: Using sliding windows, the most recent portion of
a data stream can be regarded as a temporalized relation [4]. However, we prefer
to define the more meaningful type observationfield that captures the finite set
of sensor data points – each containing a spatial location, a timestamp, and
a measurement value – from a window and defined them as a single field. An
observationfield represents raw sensor data measurement streams as a discrete
spatio-temporal field where values are only valid at the spatial/temporal locations
where actual sensor measurement are available.

Definition 13. An observationfield is a data type with carrier set

Aobservationfield(sdstream(α),ω) ≡
{

f
∣∣ f : Teval → Seval such that ∀f(ti) ∈ Sevali

[f(ti).timestamp ∈ R(ω, ti)]
}

where Seval = {S ⊆ Aα

∣
∣ |S| < ∞}, α is a data type of sort SDATA,

sdstream(α) is a data type of sort SDSTREAM, ω is a data type of sort WIN-
DOW, Teval is the carrier set of timestamps when a sliding window ω is evalu-
ated, and R(ω, teval) is the time range at each evaluation timestamp teval ∈ Teval

of the sliding window ω.
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Interpolator Type: Now, we introduce the interpolator type required to con-
vert streams of discrete sensor measurements into continuous spatio-temporal
fields. More precisely, it is intended to estimate any values at arbitrary spatio-
temporal locations within a specific instance of type observationfield, even if no
sensor measurements are available at those precise spatio-temporal locations.

Definition 14. An interpolator is a data type with a carrier set

Ainterpolator ≡ {f | f : Aobservationfield(sdstream(α),ω) × Āpoint × Āinstant → Aσ}
where α is a data type of sort SDATA, sdstream(α) is a data type of sort
SDSTREAM, ω is a data type of sort WINDOW, observationfield(sdstream(α),
ω) is of data type observationfield, and σ is a data type in sort BASE+.

Continuous Spatial Temporal Field Type: Since we define the continuous
spatio-temporal field type in the context of handling discrete streaming sensor
data, the new type continuousSTfield is explicitly based on the observation field
and the corresponding interpolator function. The resulting continuousSTfield is
continuously updated with the windows parameters from the underlying obser-
vation field.

Definition 15. Assume a given interpolator with output of type σ and an
observationfield denoted as observationfield(sdstream((α), ω). Then a con-
tinuousSTfield is a data type with a carrier set

AcontinuousSTfield(observationfield(sdstream(α),ω)) ≡
{

f
∣
∣
∣ f : Teval → {

fc
∣
∣ fc : Āpoint × Āinstant → Aβ such that Aβ ⊆ Aσ

}}

where α is a data type of sort SDATA, sdstream(α) is a data type of sort
SDSTREAM, ω is a data type of sort WINDOW, Teval is the carrier set of
timestamps when a sliding window ω is evaluated, and β is a data type in sort
BASE+.

Other continuous spatial/temporal field types continuousSfield and contin-
uousTfield and the complex type complexcontinuousSTfield closely follow the
definitions from the abstract data model, except that they are now streaming
versions correspondingly to the definition of a continuousSTfield.

6 Conclusions and Future Work

In this paper, we presented our formal extension of stream data models with
field data types. Using the field data types, users can define high-level abstrac-
tions of continuous ST phenomena based on large numbers of concurrent, bursty
and unpredictable sensor data streams that are now known to a DSE. Therefore,
they can be supported through queries and processing optimization, thus, unbur-
dening the user and application code. We introduced field types specifically for
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sampled fields, and their streaming counterparts. Our stream model extension
formally integrates spatio-temporal streams, spatio-temporal relations and field
types. We formalized the proposed types using second order signature to achieve
independence from the details of a specific data model language implementation,
and formalized the syntax as well as semantics of the proposed types. As for
future work, several aspects closely related to this work require more research.
For instance, the challenging question of generic operators over the proposed
fields types that can be integrated into stream query languages requires further
investigation. Similarly, a prototypical implementation of the type system as
part of various actual data model languages is of significant interest.
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Abstract. A complete qualitative scene description should be such that it
captures the essential details of a configuration so that a topologically correct
depiction can be recreated. This paper models a spatial scene through sequences
of point partitions, that is, how embedding space and objects are distributed
around the intersections of the boundaries of regions. Twenty-three base patterns
are identified, which suffice to capture complex scenes, including configurations
with holes. To demonstrate the diagrammatic depiction of a spatial scene from
point partition patterns, such a scene is recreated using the developed model.
The paper also provides a means of transitioning between these more complex
relations and the eight coarse topological relations of the 4-intersection.

Keywords: Spatial scenes � Regions � Complex objects � Partition � Topology

1 Introduction

In order to model a spatial scene—a collection of spatial objects and their qualitative
spatial relations [2, 15–17] —there are several considerations to be made, such as
which embedding space, objects, and qualitative measures could be of interest, and to
what degree existing models are able to provide meaningful solutions. An ideal model
should allow a qualitative description of such a scene to produce a topologically correct
representation of that scene, in the form of a diagram or a graphic. Conversely, such a
depiction should be able to generate the original scene description without ambiguity,
so that two topologically equivalent configurations yield the same spatial scene.

The most familiar models for representing the topological relations between spatial
regions—the 4-intersecton [8] and RCC-8 [18] —involve the set of eight binary
relations in R

2 (Fig. 1).

(a) (b) (c) (d) (e) (f) (g)           (h)

Fig. 1. The eight region-region relations in R
2, described by the 4-intersection: (a) disjoint,

(b) meet, (c) overlap, (d) equal, (e) inside, (f) coveredBy, (g) contains, and (h) covers.
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These coarse qualitative models alone, however, may be insufficient to handle the
complexities that may be present within a scene [14] (Fig. 2).

Binary relations with holed and separated regions have been addressed in various
ways. RCC-8 [18] accommodates regions with holes and separations, yet it does not
differentiate between regions in the outer exterior or enclosed exterior of a holed region.
The use of the vanilla 9-intersection [9] to capture relations between complex regions
[17] has similar shortcomings. The 9+-intersection [12, 13] allows the interior, bound-
ary, and exterior components of the 9-intersection [9] to be split, enabling more refined
objects to be modeled, such as those with separations of interiors, boundaries, or
exteriors (e.g., separated regions, holed regions, or directed lines), thereby capturing
more details than the coarse models. Likewise, the compound object model [6] allows
for the construction of holed regions or regions with cuts via set difference of basic
objects, as well as separations and regions with spikes through the union of basic
objects. Other approaches focus on particular domains of relations (e.g., holed regions
[10, 20] and separations [5]) or on specific relations, such as types of overlap [11], types
of surrounds [4] and the interplay between complex points, lines and regions [19].

None of these models, however, accounts for the different types of boundary-
boundary intersections and the sequences of such intersections along the objects’
boundaries, which are germane to capturing essential details of a spatial scene so that a
topologically correct depiction can be reconstructed from the symbolic qualitative
representation. For binary relations, types and sequences of boundary-boundary
intersections have been addressed [7], but these aspects have not been fully explored to
capture the potential complexities of scenes with arbitrary numbers of complexly
structured spatial objects. These constraints for line-like boundaries have been applied
to line-line relations for complex scenes comprised of line segments [3], but that work
is not immediately extensible to the boundaries of areal objects in a manner that allows
specific region-region relations to be derived.

While o-notation [14] (and its extension i-notation [15]) can handle an arbitrary
number of regions, regions with holes and separations, and situations where an ensemble
of regions comes together to surround regions, they are unable to handle such situations
as the sequence for objects that all meet at a single point or containment relations where
the containing region is divided. Furthermore, o-notation and i-notation are verbose and
redundant, as they repeat the specifications of boundary-boundary intersections for each
involved object. This paper builds on the previous models, while overcoming their

(a) (b) (c)

Fig. 2. Three configurations that map onto the same binary relation using 9-intersection or
RCC-8: (a) overlap between two simple regions, (b) two regions overlapping to form a hole, and
(c) two holed regions that overlap.
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shortfalls. To ensure a proper grounding, only two objects will be considered at a time,
instead of a scene of many objects, but each object will be allowed an arbitrary number
of disconnected separations and holes. In the process a set of detailed region-region
relations is developed, as well as a bridge to connect them to the more familiar coarse
relations (Fig. 2). This process would enable a simple natural-language description of
space to be modeled more robustly [21]. The opposite should also be true, representing a
detailed scene as something less complex, and easier to understand (Fig. 3).

A detailed representation of a spatial scene enables the capture of an arbitrary
degree of complexity between regions—potentially much more than is possible with
the base relations. To varying degrees of specificity, recent models have attempted to
represent the complexity of spatial scenes between two, or sometimes an arbitrary
number of, regions. Maptree utilizes combinatorial maps to represent the structure of a
scene [22], however a means of teasing coarse relations out of such a structure has not
been developed.

As an alternative to just building more complex structures, one might also consider
representing more complex relations. For instance, one can model overlap through an
enumeration of connected components under union and set difference in order to
represent the relation along with additional complexities, such as the number of par-
titions the exterior is divided into [11]. Further refinements to coarse relations might
involve recording the sequence of intersections between regions, whether they form a
crossing or a touching configuration, their dimension (qualitative length) and the
relation to the objects’ compliments (indicating whether the exterior is partitioned, for
instance) [7]. For example, a scene described by a touch-cross-cross sequence (Fig. 4a)
is distinct from a scene described by a cross-touch-cross sequence (Fig. 4b). Without
such specification it is sometimes impossible to represent a scene uniquely.

The remainder of this paper develops a new model for capturing the detailed
relations between regions, a model that is both relatable to the familiar 9-intersection

Fig. 3. Dependencies among course representations and detailed representations.

(a) (b)

Fig. 4. Two simple scenes with different forms of overlap: (a) a touch-cross-cross sequence,
and (b) a cross-touch-cross sequence.
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and less ambiguous than contemporary theories of spatial scenes, such as o-notation.
The paper is structured as follows: Section 2 introduces point partitions to capture
topological relations. Section 3 demonstrates the construction of spatial scene diagrams
from point partitions. Section 4 relates the coarse topological relations with the detailed
point partition relations. Section 5 provides the additional structure for modeling
regions with holes. Section 6 extends the model to scenes with more than two regions.
Section 7 draws conclusions and provides insights into future lines of research.

2 Point Partitions

A comprehensive model for representing spatial scenes with two objects needs to not
only capture any number of boundary intersections existing in concert, but also their
sequence and dimension [9] — and without the potential ambiguity and redundancy of
other approaches. We introduce point partitions (P2) to allow any point within a spatial
scene to be characterized in terms of how space around that point is partitioned.
A partition of a space X is a collection of mutually disjoint subsets of X whose union is
X [1]. When considering an intersection point between the boundaries of two spatial
regions, these point partitions provide a language for describing their localized spatial
interactions. The space around a point of interest (such as a boundary intersection
point) is partitioned into radial slices, called cells. Any boundary segments that touch or
cross in a point form the boundaries of these cells.

2.1 Representing Spatial Scenes

In a spatial scene (Fig. 5a), the boundary-boundary intersections contain critical
information, which can be analyzed in isolation (Fig. 5b–d). The neighborhood of each
boundary-boundary intersection also contains metric information (e.g., the shapes of
the boundaries). Such information will be discarded and only a diagrammatic repre-
sentation will be used for each intersection (Fig. 5e–g).

(b) (c) (d)

(a) (e) (f) (g)

Fig. 5. The partitioning around boundary-boundary intersections: (a) a scene where two regions
intersect at three points, (b-d) cells around intersection i0, i1, i2, and (e-g) the diagrammatic
representations of i0, i1, and i2.
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To represent the point partitions that contextualize an intersection it is possible to
take a diagrammatic representation and turn it into a symbolic representation: when the
space around any point is partitioned the cells that define that space form a distinct
sequence that allows that space to be described and identified as participating in a
specific spatial relation.

2.1.1 Sequence of Point-Like Boundary-Boundary Intersections
Consider the scene where two regions, A and B, intersect (Fig. 5a). These regions share
three distinct points: their boundary intersections at i0, i1, and i2. Walking around the
boundary of A clockwise one visits intersection i0, followed by intersection i1, then i2,
and back to i0 again. This loop can be permuted cyclically, i.e., the sequences (i0, i1,
i1), (i1, i2, i0), and (i2, i0, i1) refer to the same configuration). Alternatively, starting
with B at i0, heading to i2, then i1, and finally back to i0 completes the sequence for
that region. These sequences, (i0, i1, i2) for A and (i0, i2, i1) for B, define the
boundaries of those objects, allowing us to relate A and B through specific shared
points.

2.1.2 Point-Like Boundary-Boundary Intersections
For point-like boundary-boundary intersections, the space immediately surrounding
each point in this case is divided into four cells (Fig. 5b-d). For i0 this results in a cell
corresponding to A, a cell corresponding to the exterior, a cell corresponding to B, and
a cell corresponding to the intersection of A and B. Fully written this sequence is {A},
{B}, {A, B},{}, where each cell is listed as the set of object interiors that it contains.
Following in this manner the series of cells around i1 is {A}, {A, B}, {B}, {}, and the
sequence around i2 is {A}, {}, {B}, {}.

The illustrated scene is but one of many possibilities. Between two objects, A and
B, their intersection, and the exterior, it is possible to construct sequences by parti-
tioning space into one to four cells for regions that do not self-intersect. In total there
are 23 such patterns (Sects. 2.2.1, 2.2.2, 2.2.3 and 2.2.4), each a unique sequence of
interior cells surrounding an intersection point, which are called point partitions (P2).
For ease of reference, each pattern will be referred to by name instead of sequence
whenever possible going forward. These patterns can then be combined to form a
bridge between scene notation and other approaches. Such a correspondence is
important when the vast measure of spatial data is underspecified relative to such a
detailed representation.

2.1.3 Linear Boundary Intersections
While sequence has been shown to be central to the construction of P2 patterns, the
dimension of an intersection between regions is also important when generating
topologically correct results from a scene description. Intersections that are
0-dimensional are immediately relatable within the context of P2 relations, whereas
1-dimensional intersections are more involved. Since this model is based on
point-intersections, each 1-dimensional intersection (Fig. 6a) is split into a starting
endpoint depicted by a distinct sequence of cells that surround it (Fig. 6b), and a
finishing endpoint depicted by its own sequence of cells (Fig. 6c).
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By splitting line segments into pairs of endpoints the set of P2 relations will be able
to handle 1-dimensional intersections in the exact same manner as 0-dimensional
intersections.

2.2 The 23 Base Patterns

The following sections describe relations with one cell, two cells, three cells, and four
cells respectively. Since the alphabet of P2 patterns is comprised of {A}, {B}, {A, B},
and {}, and no region intersects with itself, {A}, {A}, {B}, {B} is not a valid sequence.
It is impossible to produce meaningful sequences of more than four cells between pairs
of regions.

2.2.1 Single Partitions
Relations with a single cell (Fig. 7) will never appear in the construction of a scene, but
may nonetheless describe the context of a specified point. If one starts with a relation
where A and B meet at a point i0 and regions A and B are then shrunk, that point of
interest, i0, at the former intersection then becomes defined by a cell that only contains
the exterior (Fig. 7d), for instance. If A grows and B shrinks, that same point may
instead be defined as being inside A (Fig. 7a) — it is no longer representative of a
boundary intersection, but it may be important to the history of the scene to know that
that point has been subsumed fully by the interior of A.

If a point does not sit on a boundary these four trivial point partitions may arise:
(1) a point is inside A’s interior only, inside A, (2) a point is inside B’s interior only,
inside B, (3) a point is inside the intersection of A and B, inside AB, and (4) the point is
fully in the exterior, and therefore inside exterior of A and B.

(a) (b) (c)

Fig. 6. The representation of a 1-dimensional intersection: (a) the 1-dimensional intersection as
two regions meet, (b) the start of a meet relation, and (c) the end of a meet relation.

(a) (b) (c) (d)

Fig. 7. The four P2 patterns with a single cell: (a) inside A, (b) inside B, (c) inside AB, and
(d) inside exterior.
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2.2.2 Partitions of Two
Among the simplest P2 patterns are those that are defined between two cells. There are
six of these relations, labeled B localDisjoint A, A localDisjoint B, A localEqual B, A
localAttach B, A localInside B, and A localCovers B (Fig. 8). These relations are
prefixed with local* because within the context of a single point it is impossible to
know if the relation holds for the entire object or just at the specified intersection
without first considering the other intersections the objects participate in.

2.2.3 Partitions of Three
Relations between three cells are special in that they represent 1-dimensional inter-
sections. Each of the 3-cell relations represent either the start or end of a boundary
segment (Fig. 9).

Point patterns between three cells may involve: (1) B and A meet along a line in a
clockwise traversal, A 1-meet (enter) B, (2) A and B meet along a line in a clockwise
traversal, A 1-meet (exit) B, (3) A crosses over B’s boundary, A 1-overlap (enter) B,
(4) A crosses out of B’s boundary, A 1-overlap (exit) B, (5) A starts to cover B, A 1-
covers (enter) B, (6) A stops covering B, A 1-covers (exit) B, (7) A starts being

(a) (b) (c) (d) (e) (f)

Fig. 8. The six P2 relations between two cells with respect to regions A and B:
(a) A localDisjoint B, (b) B localDisjoint A, (c) A localEqual B, (d) A localAttach B,
(e) A localInside B, and (f) A localCovers B.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. The eight P2 relations between three cells with respect to regions A and B: (a) A 1-meet
(enter) B, (b) A 1-meet (exit) B, (c) A 1overlap (enter) B, (d) A 1-overlap (exit) B, (e) A 1-covers
(enter) B, (f) A 1-covers (exit) B, (g) A 1-coveredBy (enter) B, and (h) A 1-coveredBy (exit) B.
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coveredBy B, A 1-coveredBy (enter) B, and (8) A stops being coveredBy B, A 1-
coveredBy (exit) B. It can also be reasoned from these relations that A relation (enter)
B is the same as B relation (exit) A, depending on perspective.

2.2.4 Partitions of Four
Relations defined between four cells represent 0-dimensional intersections (Fig. 10).
There are five of these relations, which correspond to: 0-meet, 0-covers, 0-coveredBy,
and 0-overlap (enter/exit). The initial example (Fig. 5) depicted A 0-overlap (enter) B,
A 0-overlap (exit) B, and A 0-meet B. Reading this sequence of names builds up a
description of the scene more readily than listing a sequence of 12 sets of elements,
illustrating the usefulness of meaningful relation names.

Point partition patterns between four cells may involve: (1) A and B’s boundary
meet at a single point from the exterior, 0-meet, (2) B meets A’s boundary at a single
point from A’s interior, A 0-covers B, (3) A meets B’s boundary at a single point from
B’s interior, A 0-coveredBy B, (4) A crosses into B at a single point, A 0-overlap
(enter) B, and (5) A crosses out of B at a single point, A 0-overlap (exit) B.

3 Depiction of a Spatial Scene from P2 Patterns

Consider the scene in Fig. 5 once more. It is now possible to build that scene back up
from its sequence of P2 relations. Using the boundary sequence, object A was defined
by intersections i0, i1, and i2 in that specific order. Furthermore, i0, i1, and i2 can be
replaced by the sequence of cells recorded around each point. If objects are recorded
clockwise, the interiors of their cells must always be to the right of the boundaries that
define them. Utilizing just the sequence information this means that the boundary
segment will start with the first element containing A and end after the final element
containing A. Therefore, {A}, {A, B} is on one side of the boundary, while {B}, {} is
on the other.

Keeping all cells containing A to the right, the first segment of A’s boundary can be
drawn. This line segment is continued to intersection i2where it connects between {A, B}
and {B} once more, and continues between {A} and {}, and the same process is repeated
for intersection i2, keeping A always to the right of the line segment that defines it
(Fig. 11a). The boundary sequence is cyclic, so i2 is connected back to i1 and the

(a) (b) (c) (d) (e)

Fig. 10. The five P2 relations between four cells with respect to regions A and B: (a) A 0-meet B,
(b) A 0-covers B, (c) A 0-coveredBy B, (d) A 0-overlap (enter) B, and (e) A 0-overlap (exit) B.
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boundary of A is completed. Completing the boundary of B is a matter of repeating the
process, with the benefit that the scene is already half drawn (Fig. 11b).

4 Mappings Between Coarse and Detailed Relations

Now that the 23 P2 relations have been defined the next step is to relate them to the
familiar 9-intersection relations (Fig. 1). The similar naming convention from the onset
is an additional benefit.

The connection between these two models is threefold: (1) the relations disjoint,
inside, contains, and equal are each represented by one of the two-cell P2 patterns;
(2) meet, covers, and coveredBy are each be represented by a single 4-cell pattern or a
pair of 3-cell patterns (depending on whether the intersection is 0-dimensional or
1-dimensional); and (3) overlap can be realized in nine different ways.

4.1 Disjoint, Inside, Contains, and Equal

The relations localDisjoint, localInside, localContains, and localEqual correspond to
their 9-intersection counterparts for a pair of regions A and B if and only if they hold
for all intersections between A and B. This is the simplest correspondence (Fig. 12).

If two regions, A and B, share one of these four local relations but additionally
share a different relation with each other, the coarse relations disjoint, inside, contains,
and equal will not hold. This counterexample is particularly relevant if scene changes
over time are considered.

(a)

(b)

Fig. 11. Building the depiction of a scene from P2 patterns: (a) drawing A’s boundary and
(b) drawing B’s boundary.
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4.2 Meet, Covers, and CoveredBy

The relations meet, covers, and coveredBy correspond to 0-meet, 0-covers, and
0-coveredBy, respectively, and additionally to the combinations 1-meet (enter) plus
1-meet (exit), 1-covers (enter) plus 1 covers (exit), and 1-coveredBy (enter) plus
1-coveredBy (exit). This distinction is due to the set of P2 relations being able to
distinguish dimension, while the vanilla 9-intersection is dimension agnostic (Fig. 13).

4.3 Overlap

The most complex correspondence comes in the form of overlap. The set of P2 rela-
tions accommodates not only 0-overlap (enter) and (exit), but also 1-overlap (enter)
and 1-overlap (exit), and varying combinations. Hybrid pairs, such as 1-overlap plus 1-
meet and 1-covers plus 1-coveredBy, may substitute for pure overlap configurations
when they occur in sequence and represent relations on opposing sides of a boundary
(in versus out). Overlap is distinct that in this sense it may be split into more primitive
relations. Due to this flexibility, the model is able to produce nine valid, basic overlap
configurations via various P2 relations (Fig. 14). This is distinct from other detailed

(a) (b) (c) (d)

Fig. 12. The four local relations and their corresponding coarse relations, provided no other
detailed relations exist between A and B: (a) disjoint, (b) equal, (c) inside, and (d) contains.

(a) (b) (c)

Fig. 13. The correspondence between the P2 relations and the following 9-intersection relations:
(a) meet, (b) covers, and (c) coveredBy.
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representations of overlap in that it only includes cases with a single crossing into and
out of a boundary, not fewer or more [11].

This example shows that A 0-overlap (enter) B as well as A 1-meet (enter) B plus
A 1-overlap (enter) B, and A 1-covers (enter) B plus A 1-coveredBy (enter) B are all
valid combinations of P2 relations that can start an overlap relation. Similarly, A 0-
overlap (exit) B as well as A 1-covers (exit) B plus A 1-coveredBy (exit) B, and A 1-
overlap (exit) B plus A 1-meet (exit) B are all valid combinations of P2 relations that
can end an overlap relation.

The various overlap configurations are constructed as follows: (Fig. 14a) A 0-
overlap (enter) B ^ A 0-overlap (exit) B; (Fig. 14b) A 1-meet (enter) B, A 1-overlap
(enter) B ^ A 1-covers (exit) B, A 1-coveredBy (exit) B; (Fig. 14c) A 1-covers (enter)
B, A 1-coveredBy (enter) B ^ A 1-overlap (exit) B, A 1-meet (exit) B; (Fig. 14d) A 0-
overlap (enter) B ^ A 1-overlap (exit) B, A 1-meet (exit) B; (Fig. 14e) A 1-meet (enter)
B, A 1-overlap (enter) B ^ A 0-overlap (exit) B; (Fig. 14f) A 1-meet (enter) B, A 1-
overlap (enter) B ^ A 1-overlap (exit) B, A 1-meet (exit) B; (Fig. 14g) A 0-overlap
(enter) B ^ A 1-covers (exit) B, A 1-coveredBy (exit) B; (Fig. 14h) A 1-covers (enter)
B, A 1-coveredBy (enter) B ^ A 0-overlap (exit) B; and (Fig. 14i) A 1-covers (enter)
B, A 1-coveredBy (enter) B ^ A 1-covers (exit) B, A 1-coveredBy (exit) B. For further
detail, any number of P2 coveredBy, localInside and localEqual relations can occur
between an overlap start and an overlap finish, and any number of P2 meet,
localContains, localEqual, or covers relations can occur between an overlap finish and
an overlap start.

4.4 From Detailed to Coarse Relations

The conversion from the P2 relations to 9-intersection relations is simpler. If any set of
intersections between two objects forms one of the overlap configurations the resulting
9-intersection relation is only overlap. If there are no overlap relations, the existence of
a meet, covers, or coveredBy P2 relation corresponds to the same 9-intersection relation.
If none of these relations exist equal, contains, or inside take precedence. Finally, if
there are no other relations present the two regions are disjoint.

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 14. The 9 basic forms of overlap identifiable with point-partitions.
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5 Point Partitions with Holes

The 23 P2 patterns allow for the description of many complex relations between two
regions. However, simple regions are not the only objects of interest. Regions with
holes are also important and have many real world analogues, such as sensor cover-
ages, where reasoning with holes necessitates a more complex model.

Thus far P2 patterns have been limited solely to the description of intersections
between a pair of boundaries and each object has been afforded a single boundary
sequence. A hole, however, can be seen as an additional disconnected boundary (or
boundaries) within an object. To accommodate holed regions each object must be
allowed any number of boundary sequences, and a notation for describing such scenes
must be able to handle this new case.

Two types of holes exist within this context: (1) holes that have boundary inter-
sections with another object (A’s hole, Fig. 15a) and (2) holes that do not have any
boundary intersections with anything (B’s hole, Fig. 15a). Holes with boundary
intersections require the addition of a new boundary sequence to the sequence that
describes its containing region. The original sequence (for the region) and the
sequences for any further boundary is distinguished by adding a semicolon (; i3, i4,
Fig. 15b). The strategy for recording the sequence is the same, save for the distinction
that the interior of the containing region will be to the left of the boundary in the
clockwise traversal, instead of the right.

The second scenario involves a hole that does not intersect with any other
boundaries; it sits freely within its containing region. Such a hole cannot be placed in
an exact location as directly, but it is still conceivable to do so. For holes without
boundary intersection the sequence for the hole’s container is listed in lieu of a
sequence. In the most trivial circumstance this will be the object’s name to which the
hole belongs, but more complex cases require listing the sequence describing the
simplest and smallest cell the hole resides in. To distinguish a hole’s sequence, it is
placed in parentheses (; (i2, i1, i0), Fig. 15b).

To demonstrate the use of P2 relations for describing holed regions, the previous
scene (Fig. 15) is constructed next with the associated notation. Taking the P2 relations
in the correct sequence, region A is constructed from its outer boundary (Fig. 16a).

A: i0,i1,i2 ; i3,i4

B: i2,i4,i3,i1,i0 ; (i2,i1,i0) 

i0: {},{A},{},{B}

i1, i4: {},{B},{A,B},{A}

i2, i3: {},{A},{A,B},{B}

(a) (b)

Fig. 15. A scene with holes where: (a) region A contains holes a hole with a boundary
intersection, and (b) region B contains a hole without a boundary intersection.
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Similarly, the boundary of region B can be constructed (Fig. 16b). Next, the hole in A
and the hole in B are added (Fig. 16c).

6 Beyond Scenes with Two Holes

Relations between two spatial regions, including those with holes, are within the
descriptive bounds of the 23 P2 patterns that have been developed, along with the
accompanying notation. The framework provided thus far can be extended to model the
relations between more than two objects within a single spatial scene. While the P2

patterns for localDisjoint, localContains, and LocalInside each describe various pure
containment relations (instances without a proper boundary sequence), placing an
arbitrary number of objects within a scene adds complexity. This problem, however, is
the same one that arises when placing holes without boundary intersections within an
object—a problem that has been resolved. If an object participating in a scene with
more than two regions is wholly contained within some other region for which it has no
boundary intersections, its container or the sequence describing its container must be
recorded (using the parenthesis notation). As with holed regions, this information
allows any region to be exactly placed within a scene.

The next consideration is for objects that do have boundary intersections. The set of
P2 patterns currently is restricted to an alphabet of four cells: {A}, {B}, {A, B}, and {}.
To accommodate a third (or nth) region the patterns will necessarily change. A pattern
such as {B}, {A, B}, {B}, {} could become {B}, {B, C}, {A, B, C}, {A, B}, {B}, {} if
a region C is added to the scene. With a coarse approach (e.g., the compound object
model) A and B would be related, B and C would be related, and A and C would be
related—each with a separate matrix. This process essentially asks three distinct
questions that can generate ambiguity, since the description of B relation C is blind to
the existence of A, and this method relies on inferences to draw the complete scene.
Using P2 patterns, however, the scene can be reduced to answer the same three
questions, but leading to a consistent result every time.

The scene is still built from the same sequence information and the expanded P2

patterns that includes as many objects or cells as necessary. To relate just A to B,

(a) (b) (c)

Fig. 16. An incremental construction of a scene starting with: (a) A’s boundary, (b) B’s
boundary, and (c) the holes in each object.
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however, C is simply removed from the sequence: {B}, {B, C}, {A, B, C}, {A, B},
{B}, {} becomes {B}, {B}, {AB}, {AB}, {B}, {}. This sequence contains duplicates,
but since no region can self-intersect, these consecutive cells are merged and become
{B}, {A, B}, {B}, {} once again, labeled A 0-coveredBy B. Similarly, A relation C is
{}, {C}, {A, C}, {A}, {}, {} which becomes {}, {C}, {A, C}, {A}, labeled A overlap
C (enter). Finally, B relation C is {B}, {B, C}, {B, C}, {B}, {B}, {} which reduces to
{B}, {B, C}, {B}, {}, labeled C 0-coveredBy B. Using this strategy, the relations
between any objects within a scene of arbitrary complexity can be ascertained and
reduced to a simple sequence P2 patterns, and ultimately a 9-intersection analogue,
regardless of initial complexity.

7 Conclusions and Future Work

Point partitions are a means for capturing spatial phenomena between two (or more)
regions regardless of the complexity of their relation or the existence of holes. By
recording both the sequence of intersections around an object, as well as the sequence
of objects around an intersection, the provided notation is so fine-grained than a
topologically correct and unique depiction can be recreated.

These features combine to produce a set of 23 new region-region relations, called
P2 patterns. Any intersection, regardless of how many objects are involved, can be
reduced to one of these P2 patterns by culling unwanted regions from the relation and
merging any duplicate cells that form side by side. P2 relations can also describe
relations between regions with holes. Furthermore, the set of detailed P2 patterns can be
reduced to the familiar set of eight region-region relations, and vice versa, allowing for
a representation that best suits the provided information and the required task.

As a future consideration, it is also possible to use the sequences produced by the
P2 relations in order to identify the number of separations in the exterior formed by two
regions, and the number of distinct cells formed by the intersection of two regions
when multiple separations, holes or exterior partitions exist and develop a prototype
that automatically draws scene diagrams from P2 patterns and sequences.
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Abstract. Urban air pollution is a leading environmental health concern.
However, the association between urban air pollution and health outcomes is not
consistently reported in the literature, likely because of inaccurate exposure
assessment induced by spatial error. In this study, a spatio-temporal model is
presented, which integrates harmonic regression and land use regression
(LUR) to estimate urban air pollution at fine spatio-temporal scale. The
space-time field is decomposed into space-time mean and space-time residuals.
The mean is estimated by linear combinations of harmonic regression compo-
nents, and the spatial field is modelled with LUR. The residuals account for
spatio-temporal deviation from the mean model. Using data from a regulatory
monitor network and geographic covariates from a LUR model, the study yields
monthly nitrogen dioxide estimates at the postal code level for Calgary, Canada.
The model yields a satisfactory fit (R2 = 0.78). The space-time residuals exhibit
non-significant to moderate spatial and temporal autocorrelation.

Keywords: Spatio-temporal model � Harmonic regression � Land use
regression � Nitrogen dioxide � Fine scale estimates

1 Introduction

Urban air pollution is a leading problem in environmental health and a potential risk
factor for adverse health effects, including cardiovascular disease [1]. Numerous
studies provide substantial evidence of association between urban air pollution and
cardiovascular diseases [2–6]; however, the link is not consistent across studies [7]. For
example, D’Ippoliti et al. [2] found a positive association between nitrogen dioxide
(NO2) air pollution and hospitalizations for myocardial infarction (MI) in Rome (Italy).
This positive association is supported by Lanki et al. [4], a European study; however, a
study about the short-term exposure effects on MI in France [3], found no association
between NO2 exposure and MI occurrence. Jerrett et al. [7] show that inconsistent
association between exposure and health outcome may be caused by inaccurate
exposure assessment, due to spatial misalignment, a common issue in environmental
studies. Usually, air pollution data are acquired from sparse monitoring stations,
whereas disease data are generally available at small area level (e.g., postal code) [8].
The mismatch between data measured at different resolutions results in spatial
misalignment [9], which can induce error and biased estimates of risk. The earliest
exposure predictions rely on city-wide averages, which fail to consider the spatial
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variation within a city [10]. More recent studies assign exposures using nearest monitor
interpolation [11], land use regression [12], or geostatistical methods, such as universal
kriging [13]. These relatively simple spatial statistical techniques rely on data from
existing regulatory networks [14].

To accurately assess the association between exposure and health outcomes, it is
important to develop more refined models which produce accurate predictions of air
pollution at fine spatial scale [15, 16]. Traditionally, researchers have used time series
analysis, on the assumption that pollutants are spatially homogeneous. However, it is
now widely recognized that different pollutants have different spatial distributions [17].
For example, regional pollutants, such as ozone (O3) and particulate matter (PM), are
often relatively homogeneous over space due to relatively consistent concentration
levels and temporal fluctuations. However, other pollutants, such as NO2 and other
traffic related pollutants, are likely to display spatial heterogeneity [17]. Therefore, it is
important to estimate spatial variability of pollutants, to reduce exposure measurement
error especially for spatially heterogeneous pollutants [18, 19]. Spatial and temporal
variability of pollutant concentration are not independent of one another: for example,
spatial variability can be greater in the fall, when air masses travel more rapidly, due to
changing weather patterns and stronger winds. Spatial-only and temporal-only models
fail to capture these spatio-temporal trends, yielding spatially and/or temporally auto-
correlated residuals, and hence unreliable and potentially biased risk estimates. Despite
their increased complexity, improved spatio-temporal models are a preferable alter-
native, as they can yield more accurate and reliable exposure estimates at fine spatial
scale (e.g., postal code) [15].

In this paper, we develop a spatio-temporal model to estimate NO2 concentrations
in Calgary, Alberta, Canada. By modelling spatial and temporal dependences, the
analysis yields reliable exposure predictions at unobserved locations.

2 Methods

This study builds on the methods of Kyriakidis and Journel [20], Lindstrom et al. [15],
Sampson et al. [21], and Szpiro et al. [14] to model NO2 annual patterns at the postal
code level in Calgary. A land use regression (LUR) of NO2 in Calgary, recently pub-
lished by Bertazzon et al. [24], provides the spatial model embedded in this study. The
space–time field is decomposed into two parts: space–time mean and space–time
residuals. The space–time mean accounts for spatially varying seasonal and long-term
trends, which depend on geographical covariates. The space–time residuals account for
spatio-temporal deviation from the mean model. The space–time mean is obtained by
linear combinations of harmonic regression components at each monitoring station.
Harmonic regressions account for temporal variability; to account for the spatial vari-
ability in the temporal structure, a land use regression model is embedded in each
harmonic coefficient. As the temporal variability is explained by the harmonic regres-
sions, the literature typically assumes a separate spatial temporal covariance structure for
the space–time residuals [14, 15, 21]. This study relies on the same assumption.

Fine Scale Spatio-Temporal Modelling of Urban Air Pollution 211



2.1 Study Area and Data

Calgary is the 5th largest city in Canada, with a population of 1.2 million and a land
area of 725 km2 [22]. Located just east of the Rocky Mountains, it is exposed pre-
dominantly to north winds, carrying cold and dry arctic air, and to west winds, carrying
warm, moisturized air from the Pacific Ocean [23]. Calgary’s metropolitan area hosts a
variety of industries which are mainly located in the east side of the city [24]. The
largest contributor to NO2 emissions is transportation, followed by industrial sources
(largely oil and gas), power plants, and natural gas combustion [25].

Air Pollution. Monthly average NO2 concentrations between July 2011 and July 2014
were acquired from Alberta’s Airdata Warehouse (AEMERA), a central repository for
archived ambient air quality data collected in Alberta. In Calgary, these data are
managed by the Calgary Region Airshed Zone (CRAZ), which runs the regulatory
monitor network in the city. The data used in this study were recorded at this monitor
network, which consists of eight passive stations and two continuous stations,1 for a
total of ten locations (Fig. 1a). Figure 1b shows the monitor network deployed for the
LUR study [24] in Summer 2010 and Winter 2011.

Both the continuous stations yielded a complete series of 37 observations, while the
eight passive stations had gaps between July 2013 and February 2014, resulting in
20 missing values from the expected 370 monthly observations. The continuous

Fig. 1. Calgary regulatory monitoring network (a); 2010–2011 LUR monitoring network (b).
(Color figure online)

1 One additional continuous station, Calgary Southeast, was decommissioned in April 2011 and
relocated in April 2014. For this reason, data from this station were not used in this analysis.
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stations (red stars in Fig. 1a) provide nearly instantaneous measurements of ambient
concentrations, and data are stored in one-hour average time blocks. Passive stations
(blue triangles in Fig. 1a) collect samples over a period of about one month. NO2 time
series for the ten stations over the three years are plotted in Fig. 2.

Geographic Variables. Land use regression is a form of multiple linear regression
that uses geographic covariates as independent variables to predict air pollution at
unobserved locations. Bertazzon et al. [24] calculated summer and a winter LUR
models for Calgary. That study deployed a spatial network of 50 monitors within the

city (Fig. 1b), where 2-week sampling campaigns were run in August 2010 and
February 2011. Data acquisition, model selection, and other details are published

Fig. 2. Time series of NO2 (ppb) from July 2011 to July 2014. (Color figure online)

Table 1. Significant variables for summer and winter LUR models

Model WS_N NO2_EM_dist EXPW
_dist

MRD
_200

EXPHW_400 LU_ind
_1000

POP_den
_2500

Summer √ √ √ √ √
Winter √ √ √ √ √

Those covariates are: North wind speed (WS_N) in winter and summer; Distance from industrial
NO2 emissions (NO2_EM_dist), Distance from expressways (EXPW_dist); Major roads within a
200 m buffer (MRD_200); Sum of primary highways and expressways within a 400 m buffer
(EXPHW_400); Industrial land use within a 1000 m buffer (LU_ind_1000); and Population
density within a 2500 m buffer (POP_den_2500). All these variables2 are considered in this
study.
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elsewhere [24]. Table 1 summarizes the geographic covariates that were significant in
those summer and winter models [24].

2.2 Spatio-Temporal Models

The pollutant concentration in space-time is conceptualized as a space-time field
[14, 15, 20, 21]. This space-time field is decomposed into two parts: space–time mean
model, and space–time residuals. This decomposition can be written as:

Y s; tð Þ ¼ l s; tð Þþ eðs; tÞ: ð1Þ

where Y(s, t) is the monthly average NO2 concentration at the ten monitoring stations, µ
(s, t) is the space–time mean process and e(s, t) is the space–time residual process, with
s denoting space (monitoring stations) and t time (in months). As temporal trends are
modelled at multiple locations in space, this approach accounts for spatial variability in
temporal trends and spatial non-stationarity in the residuals [21].

The mean process is modeled as:

l s; tð Þ ¼ b0s þ
Xm
i¼1

bis fiðtÞ: ð2Þ

where fiðtÞf g (i ¼ 1 to m) is a set of harmonic components and b1s is the spatially
varying coefficient of the temporal components. Typically the number of harmonic
regression components, m, is small [14, 26]. The method developed here differs from
others [15, 14, 21], which use empirical orthogonal functions (EOF), a variant of
principal component analysis, to model the space–time mean. Here we directly use
harmonic components, a key tool in time series analysis, on the assumption of sta-
tionarity of the process [26]. Annual periodic cycles of NO2, fisðtÞ, are modeled by a
harmonic regression at each of the ten monitoring stations. For example, if the har-
monic regression model has two significant component, the mean process can be
rewritten as:

l s; tð Þ ¼ b0s þ b1s cos
2pt
T

� �
þ b2s sin

2pt
T

� �
ð3Þ

which can also be written as [27]:

l s; tð Þ ¼ b0s þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21s þ b21s

q
cos

2pt
T

� u

� �
: ð4Þ

where T denotes the harmonic period, 1/T the frequency,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21s þ b21s

q
the amplitude,

and u the phase angle [27].

2 The variable Winter north wind speed was not included, due to its high correlation with the
corresponding summer variable.
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The spatial fields of the b1s coefficients are amplitudes of temporal patterns [21].
They are modelled with land use regression [24, 28, 29], which predicts spatial vari-
ability through a linear regressions on q geographic covariates [21]:

bi ¼
Xq

j¼1

aijXij þ ei ð5Þ

where Xij denotes the jth geographical covariate for the ith coefficient bi. Each bi may
have different LUR coefficients and geographic covariates [14]. The aij are LUR
regression coefficients and ei denotes LUR residuals for each spatial field bi.

As the temporal variability is captured by the harmonic regression, the space–time
residual process can be assumed to be temporally independent and spatially correlated
[15, 21].

3 Results

3.1 Harmonic Regression Model

As shown in Fig. 2, NO2 exhibits a prominent annual cycle (12-month period), as well
as minor, seasonal cycles with shorter periods. The initial model all these cycles into
consideration, with independent harmonic components covering periods from 2 to 12
months:

1: cos 2pt�1
12

� �þ sin 2pt�1
12

� �
; 2: cos 2pt�2

12

� �þ sin 2pt�2
12

� �
; 3: cos 2pt�3

12

� �þ sin 2pt�3
12

� �
;

4: cos 2pt�4
12

� �þ sin 2pt�4
12

� �
; 5: cos 2pt�5

12

� �þ sin 2pt�5
12

� �
; 6: cos 2pt�6

12

� �þ sin 2pt�6
12

� �
;

However, only the harmonic components cos 2pt
12

� �
and sin 2pt

12

� �
are significant in the

model, suggesting that the annual cycle is the most prominent temporal pattern for
NO2. Therefore, the final harmonic regression model at a specific monitoring station s
is simply:

l tð Þ ¼ b0 þ b1 cos
2pt
T

� �
þ b2 sin

2pt
T

� �
þ2t ð6Þ

Table 2. Harmonic regression estimates at 10 stations in Calgary

Central North-west Shepherd Fish creek Elbow wetland Apple wood East village Pump-house Metis trail Nose hill

b0 15.8* 11.2* 3.93 2.2 3.59* 9.14 9.15 7.33 7.18 3.5

b1 −5.78* −4.55* −2.92* −1.69* −2.6* −7.59* −7.01* −5.4* −4.88* −1.94*

b2 −9.11* −4.99* 0.03 −0.22 −0.46* −0.81 −0.6 −0.5 0.13 -0.08

R2 0.94 0.92 0.83 0.67 0.84 0.82 0.81 0.75 0.84 0.72

q 0.37 0.12 0.28 0.29 0.25 0.13 0.12 0.15 0.25 0.39

D-W 1.15 1.73 1.44 1.43 1.50 1.74 1.74 1.71 1.50 1.20

p 0.01 0.25 0.05 0.04 0.06 0.29 0.26 0.17 0.08 0.00
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where b0 is the constant, b1 is the parameter of the cosine component, and b2 is the
parameter of the sine component.

Table 2 summarizes the harmonic regressions at the ten monitoring stations. For the
cosine component, all the 10 coefficients are negative and statistically significant
(95 %, denoted by asterisks). For the sine component, most coefficients are negative,
relatively small in absolute value, and only three are significant (denoted by asterisks).
Nonetheless, both components are included in the model, because cosine and sine
together form a single harmonic motion. The model is satisfactory for all the ten

stations, with R2 ranging from 0.65 (Fish Creek) to 0.93 (Central). As
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22

q

denotes the peak value of the NO2 trend at each station, it is easy to tell Central and
Northwest (the two continuous stations) have higher peak NO2 concentrations, which is
consistent with time series of NO2 in Fig. 2.

Consistently, b2 is significant only at these two stations and at Elbow Wetland,
which exhibits a lower but pronounced peak concentration, most discernible in the 2014
cycle (Fig. 2). Table 2 also shows the harmonic regression residual autocorrelation (q),
and the Durbin–Watson statistic (D–W) with associated p values, which indicate that the
residual temporal autocorrelation is not significant in any of the ten stations.

3.2 LUR for Spatial Fields b

All the significant geographic covariates from Bertazzon et al. [24] are included in the
LUR models for the b coefficients; however, due to their high cross-correlation (0.74),
Distance from industrial NO2 emissions and Distance from expressways are not

Table 3. Summary of land use regression model for each spatial field b

Intercept NO2_EM_
dist

MRD
_200

WS_N EXPW
_dist

R2 Adj.
R2

Moran’s
I

p(Z
(I))

b0 15.02 −0.002 0.007 0.82 0.77 0.01 0.34
Std.
b0

−1.04 0.64

Res.
b0

−0.03 0.32

b1 −0.02 −0.66 −0.001 0.78 0.72 0.13 0.06
Std.
b1

−0.49 −0.76

Res.
b1

−0.37 0.68

b2 −6.26 −0.001 0.005 0.54 0.41 −0.29 0.17
Std.
b2

−0.82 0.6

Res.
b2

−0.18 0.58
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included simultaneously, to control for multicollinearity in ecological multiple
regression [29, 30]. The model results are shown in Table 3.

For the harmonic LUR model of b0, significant covariates are Distance from
industrial NO2 emissions andMajor roads within 200 meters. For the model of b1, they
are North wind speed and Distance from expressways. The model of b2 has the same
significant covariates as the intercept model. The model of b0 has the highest R

2 (0.82),
not far from the R2 of b1 (0.78), whereas the model of b2 has the lowest R2 (0.54).
Remarkably, a high R2 is associated with b1, which is significant in all the harmonic
models, whereas a much lower R2 is associated with b2, which is only significant in
three of the ten harmonic models (Table 2). The poor spatial fit of the sine coefficient,
along with its lack of significance in the temporal model, may be explained by the
relatively flat temporal trends and relative spatial homogeneity of the stations located in
rural areas and in proximity of major green spaces. This may also be the reason why the
same geographic covariates are significant for the intercept and the sine coefficient,
versus a different set of significant covariates for the cosine coefficient. Spatial auto-
correlation of the b spatial fields was assessed by Moran’s I, with a spatial relationship
defined by the inverse distance method. Spatial autocorrelation in the model residuals
was calculated using Moran’s I test, based on a spatial weights matrix defined on
row-standardized 2 nearest neighbours [31]. As shown in Table 3, spatial autocorre-
lation was not significant for any of the spatial fields or residuals.

3.3 Space-Time Residuals

The last part of the model is the estimation of the space–time residuals after fitting both
harmonic regression and land use regression models. The estimated l̂st is constructed
by plugging the estimated b̂0, b̂1 and b̂2, from the land use regression model into
Eq. (3) at each location s.

The normality assumption for the residual field is analyzed by a normal QQ plot of
the combined distribution of the residuals from the ten stations, and shown in Fig. 3.
Although the QQ plot has a heavy right tail, suggesting skewness in the distribution,

Fig. 3. Combined Normal QQ plot for space-time residuals
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overall the normality assumption appears to be a reasonable approximation. The R2

value is 0.78, indicating a satisfactory goodness of fit.
Once the space–time residuals were obtained, their temporal autocorrelation was

tested using the Durbin–Watson statistic. The residuals of seven of the ten stations
exhibit moderate, yet not statistically significant, temporal autocorrelation at one-month
lag. Therefore, in comparison with the residuals of the harmonic regression model
(paragraph 3.1), the increased residual temporal correlation can be ascribed to the error

introduced by plugging the LUR estimated spatial fields, b̂0; b̂1 and b̂2;, in the
space-time mean model, in place of the original harmonic parameters. Moran’s I test
with a spatial weights matrix defined on row-standardized 2 nearest neighbours was
applied to assess the residual spatial autocorrelation for the 37 months (Table 4). The
index is significant (95 %) for only four of the 37 months (four more at 90 %). Most of

the significant spatial autocorrelations occur from the mid-summer to the fall.
As some of the spatio-temporal residuals exhibit spatial and/or temporal autocor-

relation, multivariate spatial autocorrelation was also assessed. However, because

Table 4. Spatial autocorrelation for space-time residuals at 37 month time points

Table 5. Bivariate spatial correlation of space-time residuals
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temporal autocorrelation was observed only for one-month lag, a bivariate measure was
deemed appropriate. For each pair, the index compares the residual at one location with
its spatial neighbour, the latter lagged by one month. The results are shown in Table 5.

All the bivariate spatial correlations are negative, indicating residual dispersion, and
most of them are between 0.00 and 0.11. Only two values are between 0.80 and 0.86
(February–March 2013, and May–June 2014), yet not statistically significant.

3.4 Predictions

Figure 4 shows maps of the spatial fields b0, b1, and b2 calculated by the LUR models
with the respective geographic covariates. b0, the constant of the space-time model,
exhibits mostly positive values, whereas b1, the cosine parameter, and b2, the sine
parameter, exhibit mostly negative values. These negative values are multiplied by
alternating positive and negative values of the harmonic components in the various
seasons.

The models for b0, and b2 have the same set of independent variables (Table 3) and
exhibit very similar spatial patterns: the effect of Major roads within 200 meters is
discernible, as a gridline pattern, whereas the effect of Distance from industrial NO2

emissions is shown by higher pollution levels in the east quadrants. For the b1 model,
the independent variables are North wind speed, recognizable as a north-south pattern,
and Distance from expressways, identifiable in a roughly Y-shaped pattern (also shown
in Fig. 1a), formed by Deerfoot Trail, Crowchild Trail, and Highway1.

Using these estimated parameters, prediction maps of NO2 were created for each of
the 37 months and each of the 28,980 Calgary postal codes. Figure 5 shows, as
examples, the predictions for November 2011, February 2012, and May 2012.

Predicted concentration levels are highest in February, which is consistent with the
peak exhibited by most stations in Fig. 2, and can be ascribed to more intense resi-
dential heating and more people using motorized vehicles to commute, in addition to
industrial activities. Consistently, the association between NO2 concentration and
traffic is visible in all three months, yet more pronounced in November and May, when

Fig. 4. Predicted spatial coefficients of b0 (left), b1 (middle) and b2 (right)
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pollution levels are relatively lower. As in Fig. 4, the association with major roads is
shown by a grid-like pattern, along with the pattern of major highways. The association
with industrial emissions is discernible through higher concentration levels in the east
side, particularly in November and February.

Leave-one-out-cross-validation (LOOCV) for the spatio-temporal model yields a
wide range of root mean square error (RMSE) values, with the lowest values (< 1.1) at
Elbow Wetlands, Applewood, and East Village. The average RMSE for the 8 passive
stations is 1.24, which rises to 1.33 when the continuous stations are included.
In addition, we attempted a comparison of the model predictions with independent
concentration records. Unfortunately, the only available independent records were from
the Calgary East continuous station, which was decommissioned in April 2011,
therefore providing data from January to April 2011. The model predictions were
extrapolated and compared with the recorded NO2 concentrations in early 2011. The
percentage difference between predicted and recorded concentrations [24] indicates that
the model tends to under-predict, yielding and an average error of 0.13.

4 Discussion

The method presented in this paper yields predictions of NO2 concentration at high
spatial and temporal resolution (28,980 locations at monthly intervals) for 3 years over a
large urban area (725 km2). These predictions are obtained through a multistep method
integrating harmonic regressions at each station of a regulatory network with a land use
regression that links geographic covariates with pollutant concentration. A major
assumption of the model is the independence of the residuals over time and space.

Indeed, the assumption of temporal independence is met by both the harmonic
regression model and the spatio-temporal model. In the former model, temporal
dependences are accounted for by the regression itself, whereas in the latter model, the
bs estimated within the harmonic regression are replaced with those estimated by the
LUR model. Thus, the model embeds an extra layer of error, which cannot easily be
accounted for; hence, some residuals exhibit moderate, yet not significant

Fig. 5. Predicted NO2, postal code level: November 2011 (a), February 2012 (b), May 2012 (c)
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one-month-lag temporal autocorrelation. Likewise, the assumption of spatial inde-
pendence of the residual is essentially met by both the spatial and the spatio-temporal
models: significant spatial autocorrelation is exhibited by none of the LUR residuals,
and by only four for the 37 monthly values of the spatio-temporal model.
Spatio-temporal correlation across pairs of stations over one-month lag is not signifi-
cant, though values were high for two of the 37 pairs. The few significant spatial
autocorrelations occurred mostly between mid-summer and fall, possibly suggesting
that greater spatial variability of pollution is associated with unstable weather patterns
at that time of the year. Low spatial and spatio-temporal autocorrelation can be ascribed
to the sparseness of the monitoring network, which is also consistent with the large
number of negative, yet non-significant, spatial autocorrelation values. Conversely, the
denser and more regular temporal sample can be associated with more significant
residual temporal autocorrelation. To address the latter problem, the literature suggests
a Bayesian hierarchical approach [19].

Regression diagnostics indicate that the models yield satisfactory goodness of fit.
Interpretation of spatial field models is less straightforward than standard LUR models,
which directly estimate pollution concentrations: here, pollution concentration pre-
dictions are obtained as a combination of these sets of estimated coefficients and the
harmonic components. The proposed method can effectively capture variations in the
pollutant concentration that are intrinsically spatio-temporal. For example: lower NO2

concentrations were recorded at rural stations and close to major parks (Elbow Wet-
land, Fish Creek, Shepherd, and Calgary Nose Hill). NO2 in these locations exhibits
similar, flatter temporal trends, in comparison with higher concentrations and larger
seasonal fluctuations at inner-city stations. As well, NO2 is a traffic-related air pollutant,
exhibiting higher concentration near major roads: the association between NO2 and
traffic is captured by the model, which estimates higher NO2 values along the main
roads and highways, and a more diffused pollution pattern in the winter, when Calgary
residents tend to drive more, even over short distances.

The model was validated by LOOCV cross validation, which yields encouraging
results, yet suggests that the model can be improved, and further indicates that the
proposed model works better for passive stations. The model predictions were further
assessed against independent concentration records. This informal comparison only
provides a broad indication, as the benchmark records lie outside the temporal pre-
diction range and were measured at a continuous station. Some limitations of this study
are related to data availability. Spatial data for the LUR models [24] were collected in
August 2010 and February 2011, whereas temporal data collection by CRAZ did not
start until July 2011. Additionally, data from passive and continuous stations were
lumped together, using monthly interval data from continuous stations: further analysis
should confirm the consistency between the two sets of data. In this study, geographic
covariates from two seasonal LUR models (summer and winter) were combined in the
estimation of a single spatial field model. In this process, important seasonal differences
were obscured, including the effect of the summer vs. winter wind speed, and the effect
of population density, ascribed to residential heating in the winter LUR model [24].
Addressing this limitation requires a more complex modelling framework, and that it be
complemented by a careful analysis of seasonal and meteorological patterns over the
analyzed time period. The harmonic regression models yield detailed estimates of the
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seasonal cycles of NO2, but do not accurately estimate the temporal path through the
years. Future work shall address this limitation, by exploring additional temporal
functions, for example by integrating the harmonic components with a trend function or
using Fourier decomposition.

The method presented in this paper offers a powerful tool to estimate pollution
levels at fine spatial and temporal scales. Monthly air pollution estimates at the postal
code level yield a much greater spatio-temporal detail than data recorded by regulatory
networks. For this reason, these estimates can reduce the spatial error currently asso-
ciated with risk assessment and health models. Once refined, the method will be
employed to estimate other pollutants, including particulate matter (PM), volatile
organic compounds (VOC), and polycyclic aromatic hydrocarbons (PAH). Like pre-
vious LUR models [24], these estimates will be shared with health research partners,
and used in the analysis of health outcomes, including cardiovascular disease, pediatric
asthma, and gastrointestinal diseases.

5 Conclusion

This paper presented a method to estimate NO2 concentration at high spatial and
temporal resolution. Estimates were computed for the urban area of Calgary (Canada)
at the postal code level (28,980 locations) at monthly intervals, based on data obtained
from a regulatory network of ten stations over three years. The multistep statistical
spatiotemporal model integrates harmonic regression and land use regression to esti-
mate the mean and residuals of a space–time field. By explicitly accounting for spatial
and temporal errors, the model yields satisfactory goodness-of-fit and more reliable
estimates. These fine-scale estimates can reduce spatial misalignment errors, leading to
improved exposure assessment in health models.
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Abstract. Movement data comes in various forms, including trajectory
data and checkpoint data. While trajectories give detailed information
about the movement of individual entities, checkpoint data in its sim-
plest form does not give identities, just counts at checkpoints. However,
checkpoint data is of increasing interest since it is readily available due
to privacy reasons and as a by-product of other data collection. In this
paper we propose to use the Earth Mover’s Distance as a versatile tool
to reconstruct individual movements or flow based on checkpoint counts
at different times. We analyze the modeling possibilities and provide
experiments that validate model predictions, based on coarse-grained
aggregations of data about actual movements of couriers in London,
UK. While we cannot expect to reconstruct precise individual movements
from highly granular checkpoint data, the evaluation does show that the
approach can generate meaningful estimates of object movements.

1 Introduction

Throughout the years, interest in spatial data has shifted from static planar
maps, to space-time [19] and 3D GIS [1], and to movement data [21,29]. The
study of movement data has grown explosively due to the availability of tracking
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devices and their increased quality. Movement is essential for modeling many
types of spatial interaction, one of the central concepts in spatial analysis.

Movement data is often available in the form of trajectories: sequences of
time-stamped locations acquired through GPS or other devices that can deter-
mine the location of an individual entity. There are a host of computational
tools to analyze trajectories, for example, to determine similarity, to cluster, or
to find specific patterns in the trajectories (such as flocks or leadership) or the
underlying space (like hotspots) [9,16].

Recently, a different type of movement data has become of increasing interest,
namely checkpoint data [3,4,6,11,25,26,28]. Here the entities themselves need
not be equipped with GPS, but rather their presence at a location or neigh-
borhood is recorded by a stationary sensor. Such sensors include street cameras
counting passing pedestrians, check-in gates at metro stations, inductive loops
counting cars, RFID sensors in mass participation sporting events, and mobile
phone cell towers and wifi access points counting the number of connections in
their vicinity. The resulting type of movement data is typically either anonymous
or anonymized before being made available for analysis. Hence, frequently the
only data available is counts of entities at certain times or in certain intervals.

Checkpoint data is usually much less information-rich than trajectory data.
This is partly due to the typically coarse spatial granularity of fixed checkpoint
locations, but also due to the lack of heading, speed, chosen route, and stops that
are not recorded nor so easily derived from aggregate counts. We can identify
several types of checkpoint data based on the spatial extent of acquisition of
the data (point-based or area-based) and the movement space (network or more
general). Examples of the resulting four classes are given in Table 1.

Table 1. Examples of various types of checkpoint data.

Network movement Areal movement

Point-based check
(cameras, gates, inductive loops)

Road traffic, subway Indoor movement
(airport, hall)

Area-based check
(cell towers, satellite)

Pedestrians
(street)

Pedestrians
(square, park)

The coarse-grained aspect of the data makes it suitable only for coarse-
grained pattern analysis. Perhaps the most important one of these patterns is
global flow of entities. But since no identity, heading, or speed data is avail-
able, flow must be reconstructed from the counts. Reconstruction of flow can be
based on any of various spatial interaction models. Spatial interaction models
describe the flow of people, goods, infections, or information between locations
in geographic space, and are therefore studied in various fields of geography.

In this paper we assume a tessellated geographic space and a number of
time stamps as a model for area-based checkpoint data. At each time stamp
or snapshot, we have a count of the number of entities in each region of the
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tessellation (termed “temporal checkpoints” in [25], akin to a function from time
to a spatial field). Such data may arise from mobile phone connection counts in
cell tower regions, for example, aggregated over time intervals.

We will study the possibilities of reconstructing flow consistent with this
data using the Earth Mover’s Distance [23], a well-known measure for capturing
the distance (or its inverse, similarity) between two images or weighted point
sets. It has also been used in GIS for similarity assessment (see, for example,
[10,15,17]). Let R = {(r1, w1), . . . , (rn, wn)} be a set of n tuples consisting of
points ri and corresponding weights wi. Let W =

∑
wi. Similarly, let B =

{(b1, v1), . . . , (bm, vm)} be a set of m tuples, and let V =
∑

vi. The Earth
Mover’s Distance between R and B is defined if W = V , and is the minimum
total effort to transport all the weight from R to B. The effort to transport
weight w from a point r to a point b is defined as w · dist(r, b), where dist(r, b)
is a distance measure, for example the Euclidean distance. The Earth Mover’s
Distance is a metric, also known as the Wasserstein metric. Since the total weight
in R and B is the same, we must transport all weight from R to give all points
of B the correct weight. Any point in R can give its weight to multiple points
in B, and any point in B may receive its weight from one or more points in R.
Therefore, a minimum effort transportation corresponds to a flow from R to B.

Reconstructing flows allows us to make effective visualizations including OD
maps [27] and flow maps [2,5]. Figure 1 shows a typical output of our model
estimating flows of people based on granular mobile phone data.

Results and Organization. In Sect. 2 we overview spatial interaction mod-
els and argue that the Earth Mover’s Distance is suitable for reconstructing
flow from checkpoint data. We recap a linear-programming formulation to com-
pute the Earth Mover’s Distance. In Sect. 3 we use the Earth Mover’s Distance

Fig. 1. Estimated flows of people between 9:05 and 9:10 am in central London, 3rd
June 2012. Flow estimations based on least cost movement between mobile telephone
density surfaces over the 5 min period.
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to reconstruct flow in typical scenarios like mobility in a city. We show that
environmental situations like obstacles (rivers) and metro stations can easily be
incorporated by adapting the objective function and constraints of the linear
program. In Sect. 4 we analyze the success of the Earth Mover’s Distance to
reconstruct flows. To this end we evaluate our approach using data about real
trajectories of couriers in London, UK, by converting them to tessellated counts
at time stamps and then trying to reconstruct the flows present in the origi-
nal trajectories. Section 5 summarizes the contribution of this work, as well as
indicating further possibilities and improvements for future work.

2 Spatial Interaction and the Earth Mover’s Distance

Spatial interaction models of flow are commonly associated with the gravity
model [8,20,22], which in its original form relates the trade flow Fij between
two countries i, j using their economic masses Mi and Mj and their distance dij :

Fij = c · Mβ1
i Mβ2

j

dβ3
ij

,

where c, β1, β2, β3 are constants. The distance may be influenced by the cost of
transportation but also by trade barriers. Many extensions of the gravity model
have been described, taking into account more factors or compensating for weak-
nesses. Besides economics, the gravity model is also popular in transportation,
migration, and mobility modeling. Other spatial interaction models include the
radiation model [24] and Huff’s probabilistic model [13,14].

While these models could be used to model movement in checkpoint data, the
Earth Mover’s Distance [23] (EMD) has potential advantages. The other mod-
els aim to represent global patterns of interaction, established over long time
periods (over which small variations are smoothed out), and focus on economic
principles such as supply and demand. There is little reason to believe that such
models would work well for reconstruction of movement based on checkpoint
data, which has a much finer time resolution and may vary rapidly in both time
and space. Furthermore, models like the gravity model attempt to explain the
degree of interaction based on (economic) masses without taking local patterns
into account. A gravity function can be fitted to the data, but such a function
will be global and apply to the whole grid. Geographically weighted regression
approach [18] has been taken recently to support local spatial interaction mod-
eling. While more location specific parameters were introduced to reach a better
fit, existing flow data is required in training the models. Our objective is to
reconstruct deviations from global movement behavior, or random patterns, and
detect local trends of movement that exist in specific areas at specific times. For
this we use one of the simplest possible models, the EMD. Importantly the EMD
conserves mass in flow, although we purposefully adapt it to account for loss or
gain of mass, for example, because of sensor error or movements not detected
by sensors.
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We consider a specific instance of checkpoint data where we have counts at
time steps t1, . . . , ts at all checkpoints. For descriptive purposes we assume that
the checkpoints provide counts in regions of a regular grid. When a grid of counts
at time ti and a grid of counts at time ti+1 are known, we can infer movement
from entities in cells at time ti to cells at time ti+1, see Fig. 2. In particular,
if some cell c contains 10 entities at time ti and 6 entities at time ti+1, we are
certain that at least 4 entities have left the cell. Possibly, all 10 entities have left
and 6 other entities appeared. It is also possible that yet other entities passed
all the way through cell c between times ti and ti+1 and were never counted.

Checkpoint data does not allow us to completely reconstruct flow, since, for
example, it is difficult to identify flow between two cells of the same magnitude,
because they cancel out. However, we can still hope to determine flows at a some-
what more global level if there is a trend. To this end, we make an assumption of
minimum cost movement. We do not claim that this is realistic, but it does provide
a lower bound on the total flow. Minimum cost flow can be derived from the EMD,
as described in the introduction. We let the location of an entity be the center of
the cell the entity is in. So an entity sits in the same cell at time ti and ti+1 has
exactly the same location despite that it might moved slightly. When a minimum
cost flow lets entities move to the same cell as the one they started, the cost of the
movement is zero because the movement distance is zero. Movement of entities to
an adjacent cell has cost equal to the product of the cell size and the number of
entities moving. In Fig. 2 there are two minimum flow solutions.

The minimum cost flow problem can be formulated as a linear program. Here
the flow from a cell j at ti to a cell k at time ti+1 becomes a variable Fjk. The objec-
tive function, to be minimized, is the summation of all flows times the distance:

∑

j,k

Fjk · djk (1)

where the distance is assumed to be the distance between the cell centers. To
ensure that the flow transports the correct numbers, we use constraints. They
come in three types:

– Non-negativity constraint: Fjk ≥ 0 for all j, k
– Origin constraint:

∑
k Fjk = count of cell j at time ti, for all j

– Destination constraint:
∑

j Fjk = count of cell k at time ti+1, for all k

Fig. 2. Grid with counts at times ti and ti+1, and a possible flow indicated to the right
by arrows. In another minimum cost movement, two of the three entities at the top
left moved two cells to the right, and the one entity in the middle did not move.
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In principle, no flow is negative, the whole count must exit each cell at time ti,
and the resulting count at each cell has arrived at time ti+1. We can replace
the two equalities by inequalities and obtain a linear program with the same
solution.

3 Modeling and Computation of Flow in Specific Cases

To demonstrate the versatility of linear programming to compute the EMD flow,
we show how to incorporate various situations in a natural way. We consider
flow in an urban environment based on mobile phone data and a time interval
of 5 min. This is a typical situation in practice. It allows identification of the
main flows during morning and evening rush hours, flow during big events, and
generally flow patterns at different times. We can imagine a grid of, for instance,
20 × 20 cells, each of 100 × 100 m.

Urban Movement from Area-Based Counts. The basic computation of flow
using the EMD follows the three linear programming constraints given in the
previous section. The EMD is in principle mass preserving, but we can expect
that in our situation of urban movement there will be different total counts at
times ti and ti+1. There are two main reasons for this:

– People at the edges of the area of interest move to the outside, or people just
outside the area of interest move inside. We can assume that this movement
influences the counts in the cells close to the boundary.

– People can at any time switch on or off their device, and they may also lose
connection or acquire a connection.

To incorporate the former we extend the grid with an extra ring of cells sur-
rounding the original grid, see Fig. 3. The extra ring does not have data, so
there are no counts for these cells. In our model we allow these cells to produce
extra entities moving into the core grid, or take up entities departing from the
core grid. This models the boundary effects in a simple and elegant manner as
a (potentially infinite) sink/source.

Fig. 3. An extra ring of cells (grey) around the core grid (white) allows us to model
movement of entities to and from the outside area.
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To incorporate the latter we allow entities in every cell to disappear or appear
in a count. Since we prefer to “explain” changing numbers by movement, the cost
of appearing or disappearing will be significantly higher than that of movement.
Technically, we add one extra “cell” to ti and to ti+1, which does not have a
location. The extra cell in ti (and ti+1) allows movement of any number to (from)
any cell in ti+1 (and ti) at the same, high cost per unit. That is, we set dcj and
dkc′ to high values in Eq. (1) when c and c′ are the extra cells.

In many big cities, a major reason for losing cell tower connection is going
underground to take a subway. This can be incorporated easily in our model.
Grid cells that contain an entrance to the subway have a lower cost (captured
in djk) of appearing and disappearing. The same applies to cells from which a
subway entrance can be reached, naturally incorporating the distance between
the cell and the subway entrance.

Another common feature is the presence of obstacles in a city, like a river
or a stretch of train tracks that does not have crossings. Such situations can
cause two nearby grid cells to be much further apart by travel distance than by
Euclidean distance. So again, we need only change the distance function djk in
Eq. (1) to accommodate for the increased distance. It is reasonable to use the
geodesic distance, the length of the shortest path that does not cross obstacles,
as the altered distance.

In the model we can choose to favor many small movements over fewer larger
movements or vice versa. With the linear conversion of distance to cost in Eq. (1)
we observe that five unit-distance movements cost as much as one movement over
five units. By raising djk to a power γ we can favor smaller movements by setting
γ > 1 or larger movements by setting γ < 1. The parameter γ is closely related
to β3 in the gravity model and corresponds to the concept of distance decay.
Also note that the LP remains linear in its variables, so this adaptation does not
influence efficiency.

We observe that it is generally not possible in our scenario to get from any
cell to any other cell in a given time interval. By assuming a maximum travel
speed in the city, we can limit the number of cells that can be reached from any
cell. This has a positive effect on both the resulting flow (we forbid long-distance,
unrealistic flows) and on the efficiency. Since the LP has a flow variable Fjk for
every cell pair j at ti and k at ti+1 between which flow is possible, we can reduce
the number of variables drastically this way.

Finally, we observe that the assumption of a grid is not necessary for EMD
and its LP-based algorithm. For any partition into regions we can use a repre-
sentative point inside (the cell tower location) instead of the grid cell center.

Other Movement. Movement monitored by gates or cameras leads to point-
based counts rather than area-based counts. With toll gates on highways and
with check-in gates of subways, we know the direction and precise count of
entities accessing a particular area; with cameras this is less precise. Previous
research on traffic management in combination with checkpoints concentrated
on toll gate placement and pricing [7,11,28], travel time estimation [3,26], or
traffic flow modeling in general, see, for example [12].
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We briefly discuss movement described by point-based counts, because it
is considerably different from movement described by area-based counts. We
assume a network is given with certain positions where check-in and check-out
is possible. Again our objective is to determine flow, which is closely related to
matching up in-flow of the network with out-flow. For example, if there is a large
check-in count at checkpoints a and i in Fig. 4, and a large check-out count later
at checkpoints f and d, it is interesting to try and determine if entities mostly
went from a to d and from i to f , or if they mostly went from a to f and from
i to d.

Fig. 4. A simple network with
checkpoints.

With area-based checkpoints every entity
– in theory – is counted once by a checkpoint
at any time. With point-based checkpoints,
time plays a different role. To be able to com-
pute a matching also for point-based check-
point data, we can generate check-in counts
and check-out counts in 5-minute intervals.
This results in two sets of weighted points,
where the points are a combination (c, i) of
checkpoint c and time interval ti, and the
weights are the corresponding counts. Thus,
we can again use the EMD to reconstruct flow. This results in flows of the form
Fc,i,c′,j , where Fc,i,c′,j describes the potential flow from any check-in point c at
time interval ti to any check-out point c′ at time interval tj . In our LP, we need
a variable for Fc,i,c′,j only if j ≥ i, or more generally, if the trip from c to c′

is possible in tj − ti time, plus the sampling interval. It is natural to use the
typical travel times between checkpoints to obtain the most likely matching. For
a particular flow Fc,i,c′,j we set the cost (djk in Eq. (1)) to capture the likelihood
that an entity that checked in at c in time interval ti will check out at c′ in time
interval tj . This likelihood can be modeled using various factors.

We observe that also with anonymous point-based checkpoint data in a net-
work, we can potentially reconstruct flow using the EMD. However, the number
of variables needed may be large, especially if we use fine granularity of time.

4 Evaluation

This section provides an experimental validation of the use of our approach
in estimating flows from checkpoint snapshots. The evaluation uses real move-
ment data as its “ground truth”, generates granulations of this data at different
timestamps based on spatial tessellations as input to the EMD LP, and evaluates
the accuracy of the estimates based on comparison with the original movement
data. It is important to note that the experiments described in this section are
not overly concerned with actually reconstructing precise moving object flows
and trajectories from granular snapshots—the snapshots are too information-
poor for any method to reliably achieve that. Rather, the evaluation attempts
to demonstrate the extent to which our approach can capture the broader flows,
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directions, and distances, and show that it is flexible enough to accommodate a
range of other information about constraints to movement.

Experimental Setup. Our evaluations use a real data set of courier move-
ment trajectories in central London, UK, in 2007 (the Ecourier data set1). The
location-update frequency of trajectories varies between one coordinate every
10–30 s.

As discussed above, the EMD LP takes as input two snapshots of the granular
distribution of spatial objects, generating a matching between the cells in one
snapshot to the cells in the next snapshot as output. This matching can be
directly interpreted as flow. Each input snapshot summarizes the number of
objects in each cell at that time. Thus in our experiments, we spatially granulate
the trajectory data by aggregating courier locations at specified times according
to a raster grid of user-defined size and location. Based on preliminary studies of
the data, a 22 km squared area of central London was chosen for this study, and
decomposed into a 40× 40 raster grid for the purposes of trajectory aggregation
(i.e., each cell is square with a 550 m side length). Each trajectory was snapped
at the relevant snapshot times to the nearest grid center, yielding a rounded
ground truth that can in theory be reconstructed exactly. Our evaluation can
then compare these known “ground truth” trajectories with the flows predicted
by the EMD LP based only on the counts in cells.

Using the Ecourier data set ensures that our evaluation operates upon realis-
tic movement patterns. However, the limited number of couriers in close proxim-
ity at any one time would make the task of unambiguously identifying movements
in the raw courier data too simple for the EMD LP (that is, in reality, most grid
cells would contain zero or one couriers at any one time). To provide a more
challenging simulation of the contemporaneous movements of larger numbers of
objects, we densified the trajectory data set by aggregating all courier trajecto-
ries over every day over a two month period (May–July 2007) down to a single
day (that is, retaining the time-of-day portion of the trajectory time stamps, but
discarding the trajectory date). Hence, our evaluation uses approximately 280
courier trajectories in our study area at any one time, ensuring that between
zero and 10 couriers may appear in the same cell at a time.

Experiment 1: Flow Accuracy. We begin by comparing the flows esti-
mated by the EMD with the known “ground truth” trajectories of moving
objects. Figure 5a shows the changes in accuracy with increasing the time interval
between the two input snapshots. Accuracy is measured on a per-object basis as
the number of correctly estimated object movements (i.e., correct flow between
an origin cell to a destination cell) divided by the total number of objects.

Broadly, Fig. 5 shows EMD estimation accuracy decreasing with increasing
time interval between snapshots. This decrease is to be expected, as in longer
temporal intervals, objects have a greater range of potential destinations. On
average, couriers in our data set travel about 400 m in 1 min, with the fastest
objects traveling 1.8 km in that time (≈110 km/h).

1 https://en.wikipedia.org/wiki/Ecourier.

https://en.wikipedia.org/wiki/Ecourier
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Overall, the model can be said to perform relatively well. At the smallest tem-
poral interval between snapshots (10 s), the model achieves near perfect accuracy
of prediction. With snapshots 2 min apart (120 s), the model still achieves 50 %
accuracy in predictions.

Experiment 2: Distance and Direction Accuracy. The evaluations in Fig. 5
do not account for “near misses”; only estimated flows that are exactly correct
contribute to the accuracy or skill scores. In practice, estimations may differ
in the degree to which they approximate the true flows. Figure 6a shows the
accuracy of estimated flow distance, in terms of the total number of objects with
estimated flows of the correct length, when compared with the total number
of moving objects. As might be expected, the accuracy is moderately increased
over the accuracy observed in Fig. 5.

Fig. 5. Estimation accuracy of the flow.

Figure 6b shows the accuracy of
estimated flow direction. Averaging
the direction of all flows from each cell
provides an overall flow direction for
that cell. The accuracy in Fig. 6b is
the proportion of cells with an over-
all estimated flow direction within 30◦

of the overall true flow direction. Even
though the individual estimated flows
might not exactly match the main
flows, the response curve in Fig. 6b
shows that the overall direction of esti-
mated flows closely matches (i.e., is
within 30◦) of the overall direction of
main flows in the majority of cases,
even up to and beyond 2 min gaps between snapshots.

Fig. 6. Flow accuracy for movements with various distances.
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Experiment 3: Comparison with Baseline. One further evaluation of the
EMD LP flow estimations is to compare with an independent matching base-
line. A natural baseline is a randomized, greedy allocation, as summarized in
Algorithm 1. In short, based on the two snapshots, the algorithm randomly
selects a “provider” cell with a stock of objects that must flow out. It then
allocates as much of that stock as possible to the nearest “consumer” cell with
a demand for in-flowing objects. The algorithm iterates until all the stocks are
exhausted and demands are satisfied.

Algorithm 1. Randomized, greedy allocation Baseline
Data: Set of cells L and numbers of objects in each cell ns : L → N and

ne : L → N at start and end snapshots respectively
1 Initialize the stock of each cell stock : L → N as stock(l) �→ ns(l) − ne(l) ;
2 Initialize P = {l ∈ L|stock(l) > 0} (providers) ;
3 while P is not empty do
4 Select a random provider cell p ∈ P ;
5 Assign as many objects as possible from stock(p) to the nearest consumer

cell, c ∈ C where stock(p) < 0;
6 Update remaining stock for c and p;
7 If stock(p) = 0 remove p from P ;

Figure 7a compares the estimation accuracy of the EMD with the estima-
tion accuracy of the Baseline. The response curves of the two estimations, the
EMD (also shown in Fig. 5 and the Baseline, show little difference, with perhaps
the EMD marginally outperforming the Baseline over shorter time intervals.
However, a t-test comparing the per-cell accuracy values at each time interval
revealed no significant difference between EMD and Baseline estimations (at the
95 % level).

Fig. 7. Distance prediction accuracy.
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At first glance, this result is disappointing as it seems to indicate the EMD
solution cannot demonstrably outperform the näıve, suboptimal Baseline. How-
ever, on closer inspection, both EMD and Baseline are fundamentally matching
algorithms, using exactly the same information and constraints. Further, look-
ing more closely at the quality of estimation, in terms of the spatial distance
between estimated and true flows, does reveal a performance advantage of using
the EMD. Figure 7b shows the average distance (in terms of number of cells)
between the estimated target (destination cell) of flows and the true target of
flows. The results show that the flows estimated by the EMD have targets that
are systematically closer to the targets of the true flows than for the correspond-
ing Baseline estimation. A t-test showed that this difference was statistically
significant at the 95 % level for all time intervals, except the shortest (10 s).

Experiment 4: Movement Constraints. One final evaluation examines the
addition of movement constraints to the LP model. As discussed in Sect. 3, it
is possible to add to the LP known constraints to movement, such as obstacles
or barriers to movement. It was not possible to add these constraints to the
experimental setup used in the previous experiments, because in central London
at a grid size of 550 m, every grid cell is effectively “connected” to every adjacent
cell by at least one road. Hence, at this level of granularity, there are no obstacles
to movement.

Instead, Experiment 4 “zooms in” on one road, a 16 km section of the M25
London Orbital. This major motorway was frequently used by many couriers,
although once again we densified the data, aggregating all the courier trips along
that stretch of motorway to a single day, to ensure a sufficiently challenging,
large set of contemporaneous movements. The road was then segmented into
20 1.6 km long segments: 10 segments for couriers traveling east to west; 10
segments for couriers traveling west to east. Figure 8a illustrates the cells of
the granulation and their connectivity, with all neighboring cells connected. At
each timestep, moving objects were assigned to cells in this granulation based
on both coordinate location (provides east/west cell location) and on direction
of movement, to enable disambiguation of which carriageway the object was
traveling on.

Figure 8a illustrates the cells of the granulation and their connectivity, with
all neighboring cells connected. Of course, in practice we know that vehicles
cannot travel in the wrong direction along a motorway carriageway, nor can
they switch between carriageways directly, without first leaving the motorway

Fig. 8. Cells and connectivity of experiment 4 road granulation.
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Fig. 9. Effect of movement constraints upon EMD estimation accuracy

and rejoining at an exit. Hence, Fig. 8b illustrates these constraints to move-
ment, encoded through penalizing to the maximum weight disallowed move-
ments between cells (i.e., between carriageways or in the wrong direction along
a carriageway).

Figure 9 compares the EMD estimated flows with and without the constraints
to disallowed movements along the motorway. The figure shows that the EMD
does provide a better estimation of flows when information of underlying move-
ment constraints are provided. As temporal granularity decreases, the difference
network information makes tends to be more significant. A t-test suggested that
the difference was statistically significant at the 95 % level except for the 30 s
time intervals group.

Discussion. The four experiments described above aim to provide a picture of
the strengths and weaknesses of our approach, using the EMD to reconstruct
flows from granular checkpoint data. In summary, the results of these experi-
ments indicate that the EMD:

1. is capable of regenerating flows from spatially granular checkpoint datawith rel-
atively high accuracy, certainly better than chance, especially for shorter tem-
poral intervals where the potential for dispersion are lessened (Experiment 1);

2. is able to provide even greater reliability in generating information about
broader distance and directions of flows (Experiment 2);

3. can significantly improve on the quality of estimations when compared with a
näıve, suboptimal baseline matching solution, at least in terms of the spatial
proximity of estimated flow targets to true flow targets; and

4. is able to incorporate information about constraints to movement, where
available, and use that to improve the accuracy of estimates.

5 Conclusions and Future Work

Checkpoint data is becoming increasingly a source of data to be analyzed. This is
due to both new data acquisition methods and to privacy considerations. We have
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shown that movement based on anonymous checkpoint data can be analyzed,
and flow reconstructed, despite the low information content. We suggest the
Earth Mover’s Distance as a general, versatile technique to achieve this. In our
experiments we analyze the Ecourier data set and obtain meaningful results
on flow, provided that the temporal resolution is relatively small. We cannot
reconstruct flow if it is random, or different patterns cancel out the possibilities
of detection.

The opportunities for future research abound, especially in experimentation
and validation. We list several research directions of interest.

In our data set, we can expect better performance, or meaningful results over
longer time periods, if we add further information like major roads. These can
be incorporated using flow direction and as obstacles, as described, but also as
preferred (faster) routes by lowering the distance costs between certain cells.

Intuitively, network distance is more accurate than other types of distances
for network-based movement. The difficulty for applying it lies in choosing rep-
resentative network nodes for cells based on which network distance can be
defined. Such difficulty can be reduced by aggregating movement with a fine-
grained space partition schema. Also, with point-based checkpoint data in stead
of area-based one as used in this paper, network distance is naturally more suit-
able than Euclidean distance.

It is also interesting to analyze to what extent we can find flow patterns in
other data sets, using similar approaches. These could be data sets based on
mobile phone data, as in Sect. 3, or point-based checkpoint data in a network.

We are interested in the spatial and temporal granularities and how they
affect the correctness of the flow we find. With a high spatial granularity, we
will run into efficiency problems and may need to develop hierarchical methods
to approximate the EMD-based flow efficiently.

We can potentially obtain better and more reliable flow when we use more
than two snapshots in a single flow reconstruction. This must be modeled first,
and then tested against flow reconstruction based on two snapshots only.
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Abstract. The intrinsic connection between place, space, and time in
narrative texts is the subject of chronotopic literary analysis. We take
the notion of the chronotope and apply it to exploratory analysis of
unstructured big data. Exploratory chronotopic data analysis provides
a data-driven perspective on how place, space, and time are connected
in large, crowdsourced text collections. In this study, we processed the
English Wikipedia text to find all co-occurrences of named places and
dates and discovered that times are linked to places in a large majority
of cases. We analyzed these millions of connections between places and
dates and discovered a number of interesting trends. Because of the scale
of the data involved, we suggest that chronotopic data analysis will lead
to the development of new data models and methods for geographic
information science and related fields, such as digital humanities.

Keywords: Place · Time · Chronology · Historical geographic informa-
tion science · Big data · Volunteered geographic information

1 Introduction

Although human history is a continuum of events and processes happening over
time and space, when writing about history people structure historical infor-
mation using discrete times and places as anchors. Wars are fought between
countries, cities specialize in industries, historical eras are described at the gran-
ularity of centuries, and decades are characterized by particular cultural or social
movements. In popular historical writing it is common to talk about places hav-
ing golden ages like Athens, Greece in the 4th century BCE or important seminal
events in the history of place, such as the D-Day invasion in Normandy. How
we refer to places and times together helps to create a conceptual framework for
history. But how do we refer to places and times? There is scant research on this
question from a data-driven perspective, looking at the integrated dynamics of
spatial and temporal references in a large corpus of text. The availability of many
such corpora, improvements in geographic and temporal parsing of natural lan-
guage, and the ability to support the associated algorithms and data structures
on high-performance computing infrastructure means we have an unprecedented
opportunity to explore this topic in new ways.

The deep-rooted connection between representations of time and space in
literature has been a focus of literary narrative analysis. The Russian literary
c© Springer International Publishing Switzerland 2016
J.A. Miller et al. (Eds.): GIScience 2016, LNCS 9927, pp. 243–258, 2016.
DOI: 10.1007/978-3-319-45738-3 16
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theorist, Mikhail Bakhtin, introduced the concept of the chronotope to describe
how literary genres are characterized by modes of language, which reflect specific
spatio-temporal configurations [4]. For example, ancient Greek romances operate
on “adventure-time” and are characterized by highly abstract, interchangable
representations of times and places in an “alien world” that is not connected
with a concrete, familiar landscape and historical timeline. Other works in con-
trast have more concrete and substantial spatial and temporal structure based
on the life course of an individual. In later works there was an effort to merge
historical time sequences describing the life of cities, nations, and other social
organizations with individual life sequences, though the two sequences are not
fused in the sense that they focus on different types of events. The changing
ways that people have represented time and space in literature reflect changing
conceptualizations of how people live their lives, and shifting cultural attitudes
and ideas about the role of the individual and society [5]. Fundamentally, what
differentiates chronotopic analysis from other kinds of investigations of place or
time in literature is that it is predicated on the idea that spatial and temporal
relations and structures in narrative texts are intrinsically connected. Thus in
chronotopic analysis time and space are not analyzed independently and neither
takes precedence over the other. The term chronotope, being an amalgamation
of the Greek words for time and space, was inspired by the space-time theo-
ries developed in relativity physics in the early 20th century. Although Bakhtin
first wrote about chronotopes in 1937, his essay on chronotopes was not pub-
lished until the 1970 s and not translated into English until 1981. But since that
time chronotopic analysis has flourished into a broad and heterogeneous field of
literary theory.

The development of data models, e.g., space-time prisms, and geographic
information systems designed to enable analysis of spatio-temporal phenomena
has also been an ongoing research area in GIScience for some years [18,29].
Conventionally, these models extend existing spatial models to include time
(‘three-plus-one’ representations), though there has been some exploration of
fully four-dimensional models as well (see [7]). One of the key application areas
for such systems is the representation and understanding of human activities and
interactions [28]. The application of geographic information science to analyze
and represent history has primarily focused on using existing GIS technologies
to create historical snapshots of geographic information, e.g., a representation of
the boundary of an ancient civilization and the cities within [14]. The use of inte-
grated historical and geographic context can also be used to support geovisual
analytics and sensemaking of unstructured information sources [26].

The emergence of new kinds of crowdsourced geographic information (e.g.,
social media data), which is primarily referenced in terms of named places rather
than spatially, has led to research on how to model place-based information
[8,25]. In GIScience this recent interest in modeling place (in contrast to space)
has included the notion of representing places in terms of their temporal sig-
natures [27]. And there are examples of using machine learning to infer spatio-
temporal patterns in the themes that people write about in social media, for
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example to detect events [16,22]. However, most of the research on place in
GIScience has focused on gazetteer development as well as the spatial and the-
matic (or affordance-based) elements of their representation, not in an integrated
way that combines space and time [1,11,13]. An analytic approach that incorpo-
rates the intrinsic connectedness between time and place (or space) in collections
of unstructured texts remains largely underdeveloped.

Meanwhile, in recent years there has been growing interest in the use of
corpus studies and the exploration of big data to understand broad cultural
and sociological trends through the written word and other kinds of media. The
Google n-grams project which looks at trends in word use in millions of published
books has shown that data-driven analysis can uncover shifts in language use
over time and examples of social forces acting to change how people write because
of policies, such as censorship [17]. Spatial analysis has also grown in prominence
in digital humanities [10].

A research program on chronotopic analysis of large text corpora will provide
great value, helping us understand the varied ways in which people conceptualize
place and time in an integrated way, which in turn can be used to help us organize
historical geographic information. In this paper we carve off a preliminary slice of
this research. We report on an exploratory analysis of the millions of references
to places and times that are found to co-occur in the English Wikipedia corpus.
This analysis provides a window into understanding how the semantics of time
are structured in the context of crowdsourced, encyclopedic historical content
about places. This work can be viewed as a first step toward developing a broader
methodology of data-driven chronotopic analysis of unstructured text.

In the following section we describe our data processing workflow to match
place and temporal references in Wikipedia. In Sect. 3 we discuss patterns around
the use of temporal references alone, and in Sect. 4 look at patterns in how place
and time references co-occur. In Sect. 5 we discuss the larger implications of this
exploratory study for GIScience research and point to future research directions
in exploratory chronotopic data analysis.

2 Data Processing Methods

In this section we describe our methods for identifying place and temporal ref-
erences and how we matched these references in the text. We leveraged existing
open source tools to accomplish this task, but due to the large size of the data,
custom analytic scripts were developed to explore the results. For our experi-
ments we used the August 8, 2015 dump of the English Wikipedia, which consists
of 7,131,349 articles of which 4,659,056 are actual article pages (i.e., not category,
image, or disambiguation pages). The numbers of place and temporal references
(detailed below) are both of the same order–in the tens of millions.

2.1 Temporal Tagging

The narrative-style HeidelTime temporal tagger was used to identify tempo-
ral tags in the articles [24]. In total 68,657,749 temporal references were
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identified within all the main article pages of the English Wikipedia. The exist-
ing methods for matching of temporal entities in text are not perfect. There are
some false positives that we noticed. For example, references to AM radio station
frequencies are often identified as dates. We endeavored to identify and isolate
these incorrectly classified entities, but no doubt some noise is still present in
the results because of misclassified entities.

2.2 Place Tagging

In order to find place references in Wikipedia we used DBpedia data to find all
place pages and used the links to those pages to identify georeferences in other
articles [3]. DBpedia organizes place references into classes, including Country,
City, and Administrative Unit as well as other feature types like Museums and
Parks. We identified all these place types in the texts, but for the analysis per-
formed in this study we focused on two main categories of places: (1) Countries
and (2) Populated places, corresponding to City, Town, Village, and Admin-
istrative Unit features in DBpedia. Table 1 shows the statistics on number of
matched places by type, with 31,922,923 place references identified in total.
Since it is customary to make only one link to a referenced page within an entire
Wikipedia article, we matched all additional references to place names that were
linked at least once in an article. For example, if a page contains a link to the
“Rome” page in the abstract, then we also find all other references to Rome in
other paragraphs in the article and match those as well. Once these links were
identified we removed all Category pages to focus on references in the narrative
text of actual article pages.

Table 1. Summary statistics on the occurrences of named place references in the
English Wikipedia. The Instances column is the count of distinct named places, and
the References column list the count of how many times a reference of that type is made
in the corpus. Number of articles shows the total count of articles that reference at
least one instance of the place category in the text, and Pct. articles is the percentage
of all articles that contain a reference of that type.

Place type Instances References Articles Pct. articles

Country 255 6,330,851 1,998,273 42.9 %

Populated places (cities, towns, etc.) 273,329 12,450,520 2,527,910 54.3 %

Other place types (DBpedia) 351,453 13,141,552 1,900,407 40.8 %

Any place types 625,037 31,922,923 3,480,667 74.7 %

2.3 Matching Places and Times

Although Wikipedia articles are crowdsourced and thus can vary in terms of writ-
ing style, in most cases the encyclopaedic format of Wikipedia articles is fairly
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standardized. As such, paragraphs tend to be self-contained to the degree that we
can begin our chronotopic analysis using the simple heuristic of matching places
with times if they are found in the same paragraph. In addition to these matches
based on co-occurrence in paragraphs, we also matched temporal references to
places when found anywhere within an article about that place (e.g., all dates
within the main Wikipedia page for New Zealand are matched to New Zealand).
While this undoubtedly leads to some false positives in the sense that a place and
time might be considered connected even when they are unrelated in the text,
it serves as a useful starting point. Using this method, 29,265,607 or 42.6% of
all temporal references in the English Wikipedia are associated with
some named place, and 19,998,504 or 62.6% of all place references are
associated with a temporal reference. It is clear that place and time are
connected concepts across a wide variety of encyclopaedic content. These sta-
tistics alone lend credence to the idea that integrated data-driven analysis of
time and place references in large text corpora has the potential to lead us to
a richer understanding of the semantics of place and time more generally. In
addition, it demonstrates that temporality is at least as important, if not more
so, for understanding and representing place as place is for understanding and
representing time.

3 Dynamics of Date References

In this section we begin the analysis by looking at patterns found in the temporal
information on its own. Temporal taggers capture some of the diversity of ways
that times are referenced in text. In the TIMEX3 format generated by Heidel-
Time, a temporal reference type can be DATE, TIME, DURATION, or SET [21].
A TIME reference refers to a time in a day, e.g., 3:45 pm. A DURATION refers
to a length of time, such as “for 2 h”. A SET reference is a collection of dates,
such as the second Thursday of every month or “annual”. A DATE reference is
a relative or absolute date based on the Gregorian calendar. The temporal gran-
ularity of DATE references ranges from centuries to decades to years through
to seasons, months and weeks to individual days and days of the week. In this
work our analysis focuses on DATE references, which make up the vast majority
of all the temporal references found in Wikipedia. Table 2 shows the summary
statistics for these different granularities of date references in the text.

Table 2. Summary statistics on the temporal references in the English Wikipedia.

Temporal type Count Number of articles Pct. articles Avg. per article

DATE 59, 225, 232 4, 282, 056 91.9 % 12.71

TIME 1, 029, 268 422, 923 9.1 % 0.22

DURATION 6, 867, 967 1, 876, 934 40.3 % 1.47

SET 2, 102, 917 978, 907 21.0 % 0.45

Any type 68, 657, 749 4, 343, 050 93.2 % 14.74
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3.1 Decade, Year, Month, and Day Patterns

Figure 1 shows a log scale plot of references to decades from the year 1000 to
the 2010s. A remarkable feature of this is the identification that the 10 s decade
of every century is referenced on an order of magnitude fewer times than other
decades are. The first decade (00s) of the century is referenced more so than
others, however that is likely an artifact of the parser not being able to distinguish
between century and decade references in those cases. A plausible reason for the
reduction in the 10 s is that it reflects the common use of phrases like “the early
1900s” for the first two decades of the century; however, that remains to be
evaluated. Ignoring the first two decades of the century, from the early 18th
century on there is a steady increase in references to decades, which matches the
overall trend for more fine-grained dates as well. In the 20th century a reduction
in decade references is found in references to the 1940 s as well, which appears to
be a result of the events of World War II dominating the structure of temporal
references, so that there are more single year references in that decade than
others. This is corroborated by Fig. 2. That Figure illustrates that the U.S. Civil
War and the two World Wars are such dominant topics in Wikipedia, that events
are described in finer grained (at the level of days and months) detail for those
years. Since 2000 the ratio of day references has increased substantially, so that
it is on a trend to eclipse year references. It remains to be seen whether this
increase is due to the recency of the dates or whether there is a genuine shift in
how we are writing about history due to changes in digital technology and our
ability to record temporal events at increasing granularity and precision.

Fig. 1. Log scale plot of the number of references to decades (e.g., “1960s”) from 1000 s
to 2010s.

3.2 Temporal References and Human Population

The number of temporal references in Wikipedia grows as a function of the date
being referenced, which simply means that we’ve recorded more of our history
over time. What is unclear is whether this growth is due to our technical ability
to record history with better temporal precision, or if it perhaps reflects other
factors as well. To explore this we plotted two ratios in Fig. 3. The red line shows
human population relative to the population at 1950, so there are approximately
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Fig. 2. A comparison of counts of temporal reference types. The U.S. civil war and the
two world wars are described in much finer temporal granularity than other years from
1800–2000.

3 times as many people living today as in 1950. The blue line shows the number
of temporal references for each year in ratio to the 1950 count. Interestingly, both
values grow at the same rate until around 1990, with exponential growth in the
number of temporal references until recent years, which presumably is due to a
lag in recording contemporary events in Wikipedia (and the data not including
the full year of 2015). While this is merely correlation it suggests a hypothesis
that as population grows the number of interesting events to record grows in the
same way, barring any major technological change.1 The explosion in temporal
references is perhaps due to the advent of the Internet, which revolutionized our
ability to record history digitally. Wikipedia was not founded until 2001 around
a decade after this increase began.

4 Place and Time Together

Chronotopic analysis is based on the premise that there are characteristic space-
time configurations that help us understand categories of written texts and their
social context. The first step in approaching this process from a data-driven
perspective is to investigate how places and times are expressed together. That is,
what are the configurations that exist? In this section we present an exploratory
analysis of the connectedness of places and times in the English Wikipedia.

4.1 Historical Trends for Places

Some places have long recorded histories whereas others are more circumscribed
due to a combination of factors, including not only the eurocentrism of Wikipedia
but also the variations in quality of written historical records from around the

1 Or alternatively, we have increasing time and energy to devote to minutiae!.
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Fig. 3. Based on 1950 levels the number of temporal references for a year grows with
global population until the late 1980s where it begins growing much faster.

world that have survived into the modern era [9]. We can use the data we have
collected to understand these differences in the historical record of places.

Looking at the changing number of temporal references for a place over time
can show trends in how the history of that place has been recorded. We looked
at these trends at the granularity of centuries, by aggregating all references to
dates at finer granularities (year, day, etc.) into century bins. Then we looked
at the average number of references for the countries per century and compared
individual countries to that average. Figure 4 shows the results for four countries
(Iraq, Greece, France, and China) from 3000 BCE to present day. This chart
shows that the region of Iraq is of outsized importance in the 3rd and 2nd
millennium BCE as it was the home of many of the earliest civilizations in the
fertile crescent. China has a long recorded history, and in Greece there is a clear
spike during the 4th century BCE. France in contrast has relatively low numbers
of temporal references until after 1000 CE.

Although plotting the timelines of individual places helps us understand the
temporality of those places, similarity and clustering techniques for time series
data can help to uncover larger trends across a set of places. Figure 5 shows
that among countries that have 500 or more century co-references, there is a
stand-out group of nine countries that are distinctly different from the others:
Egypt, Syria, Greece, Iraq, Iran, Italy, France, China, and India. The plot is a
multidimensional scaling (MDS) of the century time series data based on Euclid-
ean distance [6]. Note, that although these countries did not exist as such for
much of this time, they are still used in reference to dates long before their
founding. This demonstrates that present-day place names (such as Iraq) can
operate as metonyms for historical places (e.g., Mesopotamia) in many cases.
This has implications for spatio-temporal representation of place in a historical
GIS, since we cannot assume that a place name should semantically be restricted
to a founding (or ending) timestamp.
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Fig. 4. Changes in the number of temporal references in proportion to the average
shows historically important eras for countries.

For different types of DATE references we can also construct histograms for
each place, which indicate the distribution of dates for the place. We constructed
two histograms of this type based on counts of individual century references from
3000 BCE to the 21st century. The first of these two histograms was built based
on counts of pure century references, e.g. “the 14th century.” The second was
based on counts of references to all century, year, and day binned by century.
Therefore, a date like 1941 will be binned into the 20th century as will the day
February 3, 1996. Based on these histograms we can calculate the entropy of
temporal references for a place, which serves as a measure of how diverse the
dates are over time vs. being focused on a few centuries. The entropy measure is
shown in Eq. 1, where H(X) is the entropy value ([0.. log2(n)], n equals number
of classes) and P (x) is probability of date x in the histogram [23].

H(X) = −
n∑

i=1

P(xi) log2 P(xi) (1)

Figures 6 and 7 are quantile choropleth maps showing the century reference
entropy results for countries. There is a very strong spatial autocorrelation for
the measure when it comes to specific century references (Fig. 6). The highest
entropy values run in an east-west band from China through the Middle East
to North Africa and southeastern Europe, indicating that references to many
centuries at a coarse granularity are made in the context of these countries.
This matches the spread of complex state societies out of the fertile crescent
[19]. There is less historical record of the pre-Columbian states in the Americas,
which is reflected here as well. When more fine-grained dates are included in the
century counts (Fig. 7), Western Europe as well as Egypt and parts of the Middle
East show the most diversity of centuries represented. This would reflect more
historical record across many centuries after around 1000 rather than before,
when the recording temporal references became more precise.
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Fig. 5. MDS of countries based on Euclidean similarity of century time series.

In contrast to looking at how centuries are referenced, we can also examine
the distribution of different individual years that are referenced in the context of
a country. For this measure we look at all the years from 1000 to 2015 and make
a similar choropleth map for the countries, shown in Fig. 8. In this case European
countries have the most spread of years referenced and in strong contrast to the
centuries mapped in Fig. 6 the Middle East is referenced in terms of a relatively
small number of individual years.

4.2 Times in Terms of Places, Places in Terms of Times

Not surprisingly, countries on average have more associated temporal references
than do populated places such as cities and towns. However, countries and other
populated places are similar in that on average there are about equal numbers
of century and decade references, on the order of ten times more day references,
and about four times again more references to individual years (with no spe-
cific day reference). Table 3 breaks down how place types and date types are
related in the texts. 61.8 % of all Wikipedia pages have a place and temporal
reference that co-occur in a paragraph. Further, this means that out of all pages
that reference a place (N=3,480,667), 82.7% of those articles have a place and
date reference co-occurring in a paragraph. This result points to the potential
benefit of using place-time information as fundamental dimensions by which to
organize information retrieval systems for large-scale text data, with the further
implication that place-based GISs that intrinsically include a temporal dimen-
sion will open up significant opportunities for analysis that a spatial (only) GIS
cannot [2,12].
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Fig. 6. Information entropy of dates per country by century reference only.

Fig. 7. Information entropy of dates per country by references to all dates aggregated
by century.

Fig. 8. Information entropy of dates per country by individual year from 1000 to 2015.
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Table 3. Summary statistics on the co-occurrence of named place and date references
in paragraphs of the English Wikipedia. The Avg. per type column shows the ratio of
count to the number of instances of the place type (i.e., country, populated place, or
other).

Place type + Temporal ref Count Avg. per type Articles Pct. articles

Country+ DATE 9, 343, 550 36, 641.37 1, 413, 690 30.3

Country+ Century 177, 377 695.60 72, 259 1.6

Country+ Decade 204, 481 801.89 94, 109 2.0

Country+ Year 4, 951, 018 19, 415.76 1, 073, 744 23.0

Country+ Day 1, 418, 277 5, 561.87 588, 293 12.6

Pop. place + DATE 22, 687, 527 83.00 2, 029, 940 43.6

Pop. place + Century 508, 843 1.86 153, 415 3.3

Pop. place + Decade 475, 722 1.74 179, 734 3.9

Pop. place + Year 12, 301, 207 45.01 1, 616, 998 34.7

Pop. place + Day 2, 950, 422 10.79 858, 563 18.4

Other + DATE 36, 626, 672 104.21 1, 865, 095 40.0

Other + Century 571, 218 1.63 154, 708 3.3

Other + Decade 530, 834 1.51 183, 913 3.9

Other + Year 13, 081, 170 37.22 1, 517, 277 32.6

Other + Day 2, 972, 499 8.46 746, 753 16.0

All place types + DATE 68, 657, 749 −− 2, 880, 090 61.8

4.3 Wars and Conflict: Myths of Creation and Eschatology

In his essay on chronotopic analysis, Bakhtin wrote, “For a long time the central
and almost sole theme of purely historical narrative was the theme of war” [4].
We examined the top-3 referenced single day pre-2000 dates for each of the 255
countries and found that 65 % of the dates are related to a battle, declaration of
war, or peace treaty. It is similar for large cities. This shows that, in the English
Wikipedia at least, the theme of war still dominates how we talk about places.
The other major category of event is the creation of a new geopolitical entity
(often after a period of war). Table 4 shows a sample of the most cited days.

Table 4 also demonstrates that the recording of historical events in the
English Wikipedia, no matter where the events have occurred, is heavily skewed
to a United States, United Kingdom and commonwealth perspective. For exam-
ple, the most highly referenced day for Egypt (29 references) is the date of
the ANZAC landing during the Gallipoli campaign, which happened in Turkey,
though the troops disembarked for the campaign from a station in Egypt. In con-
trast the beginning of the Yom Kippur War, a date presumably of more interest
to the population living in Egypt, is referenced 23 times. This is further evidence
of the eurocentric bias in Wikipedia content, which has been well-documented
across all language editions [9].
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Table 4. Top-2 referenced days from 2001 and earlier for selected places.

Country Count Date Historical event

Argentina 32 1816-07-09 Argentine declaration of independence

Argentina 23 1982-04-02 Falklands War begins

China 101 1949-10-01 Mao speech creating People’s Rep. of China

China 56 1997-07-01 Transfer of sovereignty of Hong Kong

Egypt 29 1915-04-25 Landing at Anzac cove (Gallipoli)

Egypt 23 1973-10-06 Yom Kippur War

France 73 1918-11-11 Armistice of 11 November 1918

France 52 1944-06-06 D-Day Normandy landings

Germany 109 1990-10-03 Reunification of Germany

Germany 70 1939-09-01 Invasion of Poland

Greece 34 1940-10-28 Ohi Day (Greco-Italian War)

Greece 31 1941-04-06 Germany invades Greece

India 156 1947-08-15 Independence day (India)

India 81 1950-01-26 Republic day (India)

Indonesia 19 1941-12-07 Dutch East Indies Campaign

Indonesia 16 1949-12-27 Proclamation of Indonesian Independence

Iran 30 1979-11-04 Iran hostage crisis

Iran 22 1988-07-03 Shooting of Iran Air Flight 655

Japan 145 1941-12-07 Pearl Harbor bombing

Japan 88 1945-08-15 Surrender of Japan (V-J Day)

Mexico 27 1848-02-02 Treaty of Guadalupe Hidalgo

Mexico 24 1994-01-01 NAFTA operational, Zapatista uprising

Russia 30 1991-12-25 Dissolution of the Soviet Union

Russia 26 1998-02-02 Russian financial crisis

South Africa 134 1910-05-31 South African independence

South Africa 102 1994-04-27 First democratic elections (Freedom day)

United Kingdom 45 1939-09-03 Britain declares war on Germany

United Kingdom 43 1910-05-31 South African independence

United States 461 2001-09-11 September 11 terrorist attacks

United States 131 1941-12-07 Pearl Harbor bombing

Paris 24 1792-08-10 Insurrection of 10 August 1792

Paris 19 1860-01-01 Annexation of 1860

Rome 19 1944-06-04 Liberation of Rome

Rome 17 1870-09-20 Capture of Rome (Risorgimento)
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5 Implications of Chronotopic Analysis for GIScience

The chronotopic analysis we performed in this study point to many interesting
relationships between place and time in very large unstructured data collec-
tions. Going forward, there are a number of underlying representational and
algorithmic challenges that need to be addressed for GIScience to leverage the
opportunities provided by big data.

Better discovery of spatial and temporal references in text. Currently,
methods to discover spatial and temporal entities in text leave a lot of room for
improvement. For example, place name disambiguation still relies on heuristics
that could potentially be improved with machine learning classifiers.

Scaling of discovery methods. The document scraping or feature extraction
stage of such work can require massive amounts of time and consume large
amounts of storage. In the work we describe above, the temporal tagging and
creation of the database of temporal references required approximately 50,000
core hours of processing in a single pass (equivalent to approximately 5 years on
a single core computer). Fortunately, the tasks are embarrassingly parallel (the
task can easily be decomposed into many smaller but separate tasks), so in our
case we could make use of a local HPC service, utilizing 3000 compute cores and
a GPFS parallel file system, bringing the elapsed time down to a couple of days.
In our experience this stage often needs to be repeated many times to train and
refine the extraction methods used, so such savings are critical.

Data structures and algorithms. The figures quoted in Table 3 suggest that
both spatial and temporal dimensions are useful ways to organize this corpus.
In fact a strong case could be made for a combined spatio-temporal index, given
that this would cover over 60 % of the documents. Within GIScience there has
been some useful work on adding in the temporal dimension [15,20], but less on
the data structures and related algorithms that could scale to many millions of
objects that have complex, multi-valued relationships to both place and time.

Formalizing complex spatial and temporal references. Given that there
may be multiple spatial and temporal references in a document, each taking
different forms, more nuanced analyses will require us to describe the ‘spatiality’
or ‘temporality’ of a document more formally. How do these map onto human
understandings of space and time? What kinds of query operators and interfaces
are needed? How do we extend the current formal models of topology and spatial
relations to address these more complex, multi-space, multi-time objects?

6 Conclusion

In this paper we introduced the notion of chronotopic data analysis as a method-
ology to study spatio-temporal structure in a large text corpora. As an example
of this kind of analysis we examined the set of all place and date co-references in
the English Wikipedia and found that millions of place references have a tempo-
ral association. We demonstrated that by exploring places and dates together we
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can uncover a number of unexpected patterns that shed light on the importance
of the temporal dimension in understanding place.

We have just scratched the surface of chronotopic analysis of big data. Our
investigation into place and time in Wikipedia was done by looking at statistics
for the entire corpus. Chronotopic analysis in literature also looks at how the
spatio-temporal configuration relates to other aspects of the narrative. Toward
that end, there is much that can be done to extend the methodology, for example
looking at how different types of articles within Wikipedia reference place-time
differently. In addition, this type of exploratory data analysis can discover reg-
ularities or unique characteristics in the spatio-temporal patterns that manifest
in different kinds of historical textual collections, such as novels, newspaper col-
lections, and the literature of private life, e.g., diaries and letters.
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Abstract. We explore the idea of spatial lenses as pieces of software
interpreting data sets in a particular spatial view of an environment.
The lenses serve to prepare the data sets for subsequent analysis in that
view. Examples include a network lens to view places in a literary text,
or a field lens to interpret pharmacy sales in terms of seasonal allergy
risks. The theory underlying these lenses is that of core concepts of spa-
tial information, but here we exploit how these concepts enhance the
usability of data rather than that of systems. Spatial lenses also supply
transformations between multiple views of an environment, for example,
between field and object views. They lift these transformations from the
level of data format conversions to that of understanding an environ-
ment in multiple ways. In software engineering terms, spatial lenses are
defined by constructors, generating instances of core concept representa-
tions from spatial data sets. Deployed as web services or libraries, spatial
lenses would make larger varieties of data sets amenable to mapping and
spatial analysis, compared to today’s situation, where file formats deter-
mine and limit what one can do. To illustrate and evaluate the idea of
spatial lenses, we present a set of experimental lenses, implemented in a
variety of languages, and test them with a variety of data sets, some of
them non-spatial.

Keywords: Conceptual lenses · Core concepts of spatial information ·
Spatial analysis · Data usability · Format conversions

1 Introduction

There is an implicit assumption underlying most work with GIS, namely that
a data set encodes a certain view of an environment and should therefore be
analyzed with tools conforming to that view only. For example, a raster data set
is normally seen as encoding a field view of space, consequently admitting map
algebra operations, while a set of polygons would be seen as encoding an object
view of space, and a literary text would in itself not be considered spatial data.
While this assumption can guide the choice of analysis tools, it can also stand in
c© Springer International Publishing Switzerland 2016
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the way of more flexible uses and richer interpretations of data. It limits the use
of mapping and spatial analysis tools to certain data formats that these tools
can handle and it prevents the exploitation of spatial references in data that are
not in a GIS format. Furthermore, the assumption can lead to unnecessary data
format conversions and information loss.

In this paper, we challenge this assumption by decoupling data from world
views. We introduce the notion of spatial lenses for data, which we define as pieces
of software that interpret data sets in terms of a chosen world view. For example,
a field lens interprets a data set as a representation of an environment viewed as
a field. The data set to be interpreted in this way can be an image, a set of point
measurements, a live sensor network, or anything else that may be interpreted as
representing a continuous function from positions in space-time to values (in other
words, a field [1]). Spatial lenses defined in this way would normally be built by
application programmers or software developers, according to specifications pro-
duced by geographic information scientists, ideally in consultation with domain
scientists (such as climatologists, archaeologists, or historians).

The decoupling of data from views of environments also allows for (and often
requires) introducing some auxiliary information. To interpret a set of point mea-
surements as a field, for example, one obviously needs to supply an interpolation
function. If a literary text is to be seen as representing a social network, the
nodes (for example, literary characters) and links (for example, their kinship)
need to be defined in computable form.

Spatial lenses also reduce the need for explicit data format conversions by
users. Spatial analyses often involve multiple switches between different views of
space, based on the formats of data sources. With a dedicated choice of how to
conceptualize an environment, there is no need to change that lens for computa-
tional reasons only, no matter what format the data sources are in. For example,
an analysis of night-time lights in certain areas and at multiple levels of granu-
larity does not require alternation between field and object views, though this is
often done in practice [2]. Aggregation is handled as a granularity lens operation,
which can be layered on top of other content lenses to answer questions about
data quality.

Similar to the idea of constructor and observer operators, which are well-
known from abstract data types in programming and software engineering [17],
using the spatial lens idea allows for separation of analysis from pre-processing.
Spatial lenses are constructors that generate instances of core concept repre-
sentations to which observers can subsequently be applied in order to answer
spatio-temporal questions.

Our main goal is to allow for a more flexible view of what is considered “spa-
tial data”. A large proportion of data has implicit or explicit spatial references
and is therefore in principle amenable to mapping and spatial analysis. However,
the gap between the data and the tools is often too large to bridge for those with-
out solid technical GIS expertise. Spatial lenses lift mapping and spatial analysis
from the implementation level of data formats and GIS commands to the level
of questions about spatial phenomena [5]. Each of the lenses comes with a set
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of questions they answer. For example, a network lens answers questions about
connectivity, centrality, and paths, while an event lens answers questions about
temporal sequencing and possible causation.

The paper first surveys previous work in several information sciences, then
presents five case studies, each of them proposing and implementing a set of
lenses, and ends with conclusions.

2 Previous Work

We take the seminal work of Codd on databases in the early 1970s [3] as inspi-
ration for the (admittedly harder) task of creating a higher-level understanding
of spatial information. Codd’s relational algebra essentially defined a lens on the
world in terms of tables. Once one understands the world as consisting of phe-
nomena that one can represent in rows of tables with columns for their attributes,
the power of relational algebra unfolds without a need to understand how the
tables are stored and manipulated in a database. The first sentence in Codd’s
CACM article says it all: “Future users of large data banks must be protected
from having to know how the data is organized in the machine (the internal
representation)” [3].

Replace “large data banks” with “GIS” (or any other type of spatial comput-
ing platform) and ask yourself what you can do without knowing how a system
organizes the data internally. Here we do not mean the physical level of data
organization, but the logical one, i.e. the data structures. Whole curricula are in
fact built on the assumption that you cannot and should not do much without
that knowledge. While this assumption creates a cast of GIS experts (generally
recognized to be too small, and likely to stay so), it misses out on the vast
potential that GIS has for users without the technical skills, time, or financial
resources to acquire a thorough understanding of GIS internals before asking a
spatial question. In this paper, we do not address the usability of GIS and other
tools, but the usability of data, improving the means to interpret any data
spatially.

A case similar to that about databases could be made for the power (and
limitations) of seeing everything stored in a computer as a document of some type
(text, table, graphic etc.) or for the idea of Linked Data, built on the simplest
possible data model of subject-predicate-object triples [4]. Both paradigms have
lifted data manipulation from the level of dealing with data structures to that
of dealing with real-world concepts (documents and statements). GIScience has
not yet reached similar levels of simplicity and clarity in describing what it is
(and GIS are) about.

The core concepts of spatial information have been defined previously to
bridge the gap between spatial thinking and spatial computing [5,16]. The fol-
lowing six of them are now explored as concepts to interpret spatial data:

1. Object – An individual that has properties and relations with other objects.
2. Field – A property with a value for each position in space and time.
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3. Network – A set of objects (nodes) linked by a binary relation (edges).
4. Event – Something that happens and involves fields, objects, and/or net-

works as participants.
5. Granularity – The level of detail in objects, fields, networks, and events.
6. Accuracy – The correspondence of spatial information with what is consid-

ered a true state of affairs.

Note that the core concept of Location underlies the four “content concepts”
(object, field, network, event), in the sense that all of these serve to answer
‘where’ questions. The “quality concepts” of granularity and accuracy, in turn,
can be applied to all content concepts. As location is always observed in space
and time, all concepts are spatio-temporal (not just the event concept).

In the case of spatial lenses as well as in the cases of databases, documents,
and linked data, the idea of a conceptual lens should be understood as a means
to view reality using some data and software, rather than viewing the data.
For example, if one decides to view temperature measurements from a network
of weather stations as a representation of a temperature field, this conceptual
lens allows for having a temperature value at each position and time of interest
(some of which are measured, others interpolated). The field lens is, thus, not
applied to the point data set per se (as this would leave out the interpolation
function to be supplied), but to the environment, seeing it through the data.

Our notion of Spatial Lenses is not directly related to the Urban Lens1 from
the Senseable City Lab at MIT, which allows users to extract trends from large
datasets through the application of a figurative lens. Unlike this data visualiza-
tion work, our spatial lens notion applies a computational approach that carries
a set of associated questions to help users spatialize data in a particular way.

In GIScience, attempts to provide clearer conceptual structure to geographic
information have so far mainly focused on organizing GIS commands around the
sorts of items manipulated by a GIS [6,7], or on finding a single general model
to deal with the largest possible range of geographic data [1,8]. Our approach,
by contrast, identifies sorts of items or phenomena in the world, together with
questions to be asked about them [5]. It then fits the data and operations to
these conceptualizations, rather than coercing the understanding of the world to
data models.

3 Case Studies

To articulate the flexibility in choosing spatial lenses, we investigate non-trivial
domain-specific questions through a set of case studies. These studies highlight
lens views of environments based on existing data, spatial or other, taken from
diverse sources and mostly available online. The data range from historical news-
paper texts through typical GIS data in raster and vector form, to research
objects (publications and research data of any kind) (Fig. 1).

1 http://senseable.mit.edu/urban-lens/.

http://senseable.mit.edu/urban-lens/


Exploring the Notion of Spatial Lenses 263

Fig. 1. Spatial lenses applied to a campus environment, illustrating symbolically how
a campus can be seen as a set of objects, as observed through various fields, as forming
networks, as participating in events, and how all these views come with a certain level
of granularity (detail) and accuracy

3.1 Baltimore City Vacant Buildings

Data Source and Uses. Our first data set is an online repository of vacant
building features across Baltimore City2. Updated monthly, the data set keeps
track of parcel properties that are not currently on the market, and are con-
demned or no longer occupied. Each feature contains attributes for several par-
ent administrative jurisdictions including neighborhood and police districts as
well as a pair of coordinates and a notice date generated upon initial inspection.
Available on the web portal OpenBaltimore, the data can be displayed through
online mapping tools, or downloaded in tabular form. We know of no spatial
analyses that use this data so far. However, for economists and social scientists,
the data could be useful when studying spatial urban dynamics or deciding on
investments.

Questions and Lens Support. Addressing such possible user perspectives,
we can ask the following questions of the data:

2 https://data.baltimorecity.gov.

https://data.baltimorecity.gov
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– Where can one find vacancy clusters?
– Which neighborhoods contain most clusters?

To study clustering, we propose an object lens, viewing clustered vacancies as
objects generated from vacant parcel points. A user could then, based on the
neighborhood attribute, observe how many clusters are within each neighbor-
hood. This information could be valuable for influencing policy. For example,
if a user discovers a large number of vacancy clusters within the Sandtown-
Winchester neighborhood, they could suggest to the respective council members
where to focus and how to allocate rehabilitation funds. Note that this is an
example that illustrates how objects are not defined by boundaries (there are
none, in this case), but by their identity.

Fig. 2. West Baltimore vacancies plotted as cluster objects (Color figure online)

Constructing the Lens. Since the vacant lots in this data set have a coordi-
nate pair attribute, generating cluster objects is straightforward (for this data,
DBSCAN is appropriate [9]), and a user would only need to supply the data in
tabular form along with clustering specifications. Upon applying the object lens
twice, to individual parcels as well as to the clusters, the following processing
steps constitute the object lens constructor:

– Determine and plot point locations based on provided coordinate pairs.
– With user defined settings, run the clustering algorithm.
– Count clusters within each neighborhood.

In our Python implementation, the tabular data is loaded into a matrix, and
DBSCAN is run. Several clustering characteristics, including minimum number
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of samples (in this case five other vacant parcels) and maximum sampling dis-
tance (in this case eight houses away), are supplied by the user. The results
in Fig. 2 show point objects for each vacant building plotted by location and
with clusters differentiated by color. An automated count reveals that the Cen-
tral Park Heights and Sandtown-Winchester neighborhoods contain the highest
number of clusters, with 30 and 22 lots respectively.

Secondary Lens. Viewing vacancies through a field lens rather than as a
set of objects can provide additional insights. By constructing a field, values
could instead represent vacancy density. This “heat map” view could be used to
study the spatial distribution of decay rather than just answering the question,
where do discrete vacancy clusters occur? An economist or city planner could
then suggest to developers where best to launch demolition and development
projects. A similar view of vacancies by density is currently being used by The
Johns Hopkins Medical Center, which is looking for opportunities to expand
further into east Baltimore3.

3.2 Santa Barbara Communities of Interest

Data Source and Uses. The data set used here was gathered by one of the
authors, Daniel W. Phillips, while conducting research about redistricting in
Santa Barbara, California. The data were collected to determine how well res-
idents thought the boundaries of the city council district in which they lived
reflect what they believed to be their community of interest. They consist of 114
responses to a survey given to residents during the summer of 2015, collected in
three of the six city council districts in the city. One of the items on the survey
involved each participant taking a base street map of the city and drawing a line
around the area that they believed to be their community of interest, defined as
a contiguous group of people with shared values, concerns, and cultural traits.

Questions and Lens Support. Analysis of the polygons drawn by residents
involved the following questions:

– Do residents of a given district roughly agree about the location and extent
of their community of interest?

– Can one identify an area of highest agreement, which might be considered the
core of the community of interest within each district?

Applying a field lens supports answering these questions. By overlaying the
individual polygons for a given district, one can determine the degree of overlap
as a field. While the street map survey instrument might have led respondents
into more network-based thinking about their communities than field-based, it
identified familiar locations better than an aerial image would have and thus
enabled people to make more informed decisions; even still, most drew simple
3 https://hub.jhu.edu/gazette/2013/january/east-baltimore-changes-development.

https://hub.jhu.edu/gazette/2013/january/east-baltimore-changes-development
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oval shapes that did not conform to the underlying street network. For any given
point within this field there is a certain percentage of respondents who included
that point in the polygon that they drew. The percentages range from zero to
more than 60 %.

Constructing the Lens. After digitizing all drawings, the resulting poly-
gons were merged into a shapefile that served as the input for the constructor
operations4:

– Compute a count of the overlapping polygons at each point in space.
– Use that count to create an output raster (with 25 m cells).

Constructing classes for degree of overlap allowed for a simpler representation,
with a light yellow to dark red color scheme applied to differentiate four classes
of agreement (Fig. 3).

Fig. 3. Agreement level of polygons drawn by District 1 residents, with classes from
light to dark of 0–39, 40–49, 50–59, and 60+ percent agreement (Color figure online)

Secondary Lens. One could apply an accuracy lens, comparing the results
of applying different survey instruments. If the survey collectors used a more
detailed base map or showed it digitally, allowing for zooming and panning,
they might increase the accuracy of the responses obtained.

4 Using a Python script written by Adam Davis, UCSB Department of Geography.
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3.3 Yucatan Peninsula Research Data Footprints

Data Source and Uses. Universities increasingly curate data repositories to
promote the discovery and reuse of research data. The data considered here
expose the spatial extents of research projects from different domains. The first
data set examined is UCSB archaeologist Dr. Anabel Ford’s archaeological sites
and protected areas layer, which contains a collection of point locations and
names for 530 archaeological sites on the Yucatan peninsula5. The second data
set examined is Stanford political scientist Tom Patterson’s global disputed bor-
der layer, which contains polyline features for disputed areas and breakaway
regions derived from the CIA’s World Factbook boundary database6.

Questions and Lens Support. Leveraging the location of researcher data
through the creation of footprints for data sets promotes data discovery and
integration across disciplines. Researchers working across various domains may
have overlapping study areas and would benefit from spatial data discovery. For
example, a political scientist interested in contested regions should be able to
discover and utilize a relevant protected heritage sites layer contributed by an
archaeologist. Applying an object lens to study areas makes it possible to ask
questions about their spatial properties and relationships, in particular:

– Which data sets overlap with the spatial extent of the area of interest?

A generic method is needed to generate a footprint of any research data type.
Spatial metadata often includes an extent attribute, which delineates a mini-
mum rectangular bounding box for the object. However, this extent alone is not
a desirable data envelope, as the inclusion of an outlying feature can greatly
exaggerate the geometry of the object [10]. Some library resources may also
include place names, for example, Library of Congress subject headings. These
place names need to be turned into footprints using a gazetteer.

Constructing the Lens. Convex hulls are constructed from an input researcher
data set, such as Ford’s geocoded archaeological site points and Patterson’s
disaggregated contested border polylines:

– Determine the spatial extent of each research object.
– Determine overlap between research objects.

Convex hulls are convex sets that contain all points [11] and are constructed for
each data object using geoprocessing tools. The intersection of the convex hull
shapefiles representing data set footprints reveals overlapping extents.

Figure 4 demonstrates the spatial relationships among the constructed convex
hulls. A partial intersection reveals a correspondence between protected areas
of archaeological interest and a contested border region in Belize, which may

5 http://discovery.ucsb.opendata.arcgis.com/.
6 https://earthworks.stanford.edu/.

http://discovery.ucsb.opendata.arcgis.com/
https://earthworks.stanford.edu/
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Fig. 4. Convex hulls constructed for research objects reveal intersections in extent.

be of interest to a domain scientist working in the region. Using location as
an integrator of contents has potential to enhance the data discovery process,
enhancing information retrieval across domains.

Secondary Lens. Another lens view on research data sets that enables data
discovery is that of a non-spatial network of linked data triples. The connections
between nodes of researchers and the data that they produce are represented as
edges for the predicate isReferencedBy :

– Which research data sets reference publications in the area of interest?
– Which publications are authored by researchers in the area of interest?

Applying spatial lenses to researcher-generated data sets and to publications
authored by researchers exposes undiscovered relationships, providing a basis
for data discovery and leading to opportunities for trans-disciplinary research
collaboration.

3.4 United States Historical News Archive

Data Source and Uses. The Chronicling America data set7 is an archive that
contains newspaper issues published between 1836 and 1922. Although the data-
base includes newspapers from across the United States, some regions appear
7 http://chroniclingamerica.loc.gov/about/api.

http://chroniclingamerica.loc.gov/about/api
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better represented than others. Large-scale efforts to digitize historical archives
are a relatively recent phenomenon and thus researchers are just beginning to
explore the possibilities that this new data presents. Scholars, for example, have
investigated the temporal dynamics of themes found in the Richmond Daily Dis-
patch during the Civil War [12]. With respect to the Chronicling America data
set in particular, there do not appear to be any studies that approach the data
set from a geographic point of view so far.

Questions and Lens Support. A network lens can be used to investigate
questions about relationships between place names in newspaper text:

– Which pairs of place names frequently co-occur in newspaper texts and why?
– What place names are most centrally mentioned (i.e., most connected to

others)?

Such a network can be inspected using traditional network analysis tools.
For instance, important nodes (i.e., place names) can be identified using central-
ity measures, and clusters can be found with community detection algorithms.
Moreover, it is possible to visualize this network using programming libraries or
software tools such as Gephi (see Fig. 5).

Constructing the Lens. Pre-processing is a crucial step in applying spatial
lenses to natural language data, as these data are unstructured and often noisy.
Natural language processing tools are available to normalize and parse text, as
well as to identify potential place names in text. Additionally, such data are
fraught with misspellings and other formatting issues resulting from scanning.
The Natural Language Toolkit (NLTK) for Python has been used to clean and
parse text data. We also take advantage of a tool called CLIFF8 to recognize
place names in newspaper articles. CLIFF accepts unstructured text as input
and returns a list of standardized place names that were found. The key steps
for constructing a network in this case are:

– Determine proximity parameters for defining co-occurrences.
– Identify place names using the CLIFF tool.
– Iterate over entire text and maintain a list of place names that occur within

the specific proximity.
– Create an undirected network using the list of co-occurring place names and

weigh each edge by the frequency with which the places co-occur.

Secondary Lens. The Chronicling America data set includes many historical
issues of individual newspapers and it is appealing to apply a temporal granu-
larity lens to it. Once the mechanisms for constructing a co-occurence network
are built, it becomes easy to investigate the data at different temporal scales by
aggregating newspaper issues into multiple time windows. Observing changes in
8 http://cliff.mediameter.org/.

http://cliff.mediameter.org/
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Fig. 5. Cooccurrence network of all 1914 Aberdeen Herald issues

the network structure over time can help scholars understand urban processes
such as shifting neighborhood demographics or transformations in spatial
structure.

3.5 California Wildfires and Land Cover Change

Data Source and Uses. Two sets of data are used in this section. The first is
regional land cover data of California in four different years (1996, 2001, 2006,
and 2010), produced by the Coastal Change Analysis Program (C-CAP) of the
National Oceanic and Atmospheric Administration (NOAA) and updated every
five years9. Landsat TM 5 satellite imagery is used to produce these data, with
25 different land cover classes. The second data set is a list of the 20 largest
California wildfires from 1932 to 2015, produced by California Department of
Forestry and Fire Protection10 (see Fig. 6).

Monitoring land cover change is important for policy decisions, regulatory
actions and subsequent land-use activities. These data are frequently used to
generate landscape-based metrics and to assess landscape condition and mon-
itor status and trends over a specified time interval [13]. Land cover change
sometimes is set in motion by individual landowners and sometimes is driven
by environmental forces. Over the past few decades, the most prominent land
changes within the U.S. have been changes in the amount and kind of forest

9 https://coast.noaa.gov/ccapftp/.
10 http://www.fire.ca.gov/communications/downloads/fact sheets/20LACRES.pdf.

https://coast.noaa.gov/ccapftp/
http://www.fire.ca.gov/communications/downloads/fact_sheets/20LACRES.pdf
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Fig. 6. Data sources: land cover in California in 1996 (left); 20 largest California wild-
fires (right).

cover. Logging practices, development, urban expansion, and wildfires play the
most important roles in this trend [14].

Questions and Lens Support. To analyze the effect of wildfires on land
cover change in California between 1996 and 2010, in five-year time periods, we
propose to use an event lens to look at the data. Both land cover change and
wildfires can be seen as events, allowing users to relate and compare land cover
change to wildfires, asking questions such as:

– Is there a relationship between the number and the magnitude of wildfires and
the amount of land cover change in a given time period?

– What time period has experienced the greatest number of wildfires?
– In what time period has the area of land affected by wildfires been greatest?

Defining environmental phenomena as events enables the users to evaluate
the interaction of these phenomena with land cover change and to reason about
them. This is not easily done, if at all, with conventional methods.

Constructing the Lens. An event lens enables the user to choose the unit on
which they want to study change (the whole field, sub-fields, or even a set of
objects). Each of these units could be defined in various sizes and forms, applying
a granularity lens. To define land cover change events, we consider each satellite
image as representing a field. By comparing two consecutive fields in time, an
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event is constructed based on whether or not there is a difference between these
two fields. The total number of events in which a certain class is changed can then
be calculated and this value could give an estimation of the land cover change.
Next, each of the 20 wildfires is defined as a separate event that has location
(county), name, date, and affected area as properties. To construct events:

– Compare land cover fields for all two consecutive pairs.
– Create an event (and populate its properties) if there is a difference between

two fields at a certain location.
– Create wildfire events with corresponding properties.

Having these two sets of events, we can observe their overlap, containment,
and time of occurrence. The results of applying the overlap observer, for example,
shows that the 2006–2010 period, by having six major wildfires and almost 1116
acres of land affected, has by far the greatest number of wildfires and the largest
total area affected among the three periods.

Secondary Lens. Since the wildfire data are at the county level, an idea for the
secondary lens would be to use an object lens. One can then apply the event lens
on these objects to assess the effect of each wildfire on its corresponding county
and to study their relationship. Objects can be constructed using Geospatial
Object Based Image Analysis (GEOBIA) methods such as supervised maximum
likelihood classifier [15].

4 Conclusions

The idea of spatial lenses to view environments through data sets is presented
here as a counterpoint to considering data sets as implying singular world views.
Data are just data, and while they always result from a certain conceptualiza-
tion, one can often beneficially interpret them in other ways, including ways not
intended by their authors. Today’s GIS practice tends to lock users into concep-
tualizations based on data formats, discouraging the exploration of alternative
views of data and, more importantly, of the phenomena under study. Balancing
a possible need to restrict what can be done with data against the opportunity
to exploit spatiality currently errs on the timid side, i.e. being overly restrictive
(while still not really preventing inappropriate uses).

Core concepts are a way of thinking about, encoding, and computing with
phenomena in a few intuitive spatial ways. Users of spatial data will ideally
approach these lenses knowing what questions they want to answer, and these
questions will inform the choice of operations and consequently the lens. There-
fore, in order to get meaningful results, data sets should be fed to lenses applied
to study areas, rather than applying lenses to data sets. The question what data
set can inform what lenses remains to be studied. Implementing more generic
constructor operations for each lens will make it more specific by admitting cer-
tain data types but not others. Switching between different lenses, on the other
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hand, appears to be possible even for one and the same data set (for example,
seeing point measurements as defining objects or fields).

The five case studies presented in this paper explore, illustrate, and test the
idea of spatial lenses. They were chosen to represent a broad spectrum of data
sets and applications, as well as to cover all four content and two quality concepts
of spatial information defined in our previous work [16]. We have arranged them
to start with straightforward object and field lens applications and progress to
more elaborate or unusual applications. Each case study furthermore illustrates
some less obvious aspects of the chosen data sets. Jointly, they demonstrate
the versatility of the spatial lens idea, resulting from the decoupling of spatio-
temporal question answering from data and file formats. For example, examining
land cover time series from an event perspective is conceptually intuitive and
powerful, but not possible using traditional techniques.

Our lenses were straightforward for GIS savvy users to build. Our ambi-
tion in ongoing work is to build six generic lenses, usable by domain experts
with little or no GIS expertise. Consequently, the next step in this research is
to abstract each lens constructor from peculiarities in the data sets and build
pieces of software that can be deployed as libraries or web services. These lenses
will be parameterized to become applicable to all data sets that allow for an
interpretation through them. For example, a field lens, when fed with a point
data set with values from a continuously varying phenomenon, would determine
the spatial and temporal domain of the field, ask the user for an interpolation
method (or apply a default method), and produce an enriched data set that can
then be queried by map algebra tools, used to produce isoline maps, or applied
to any other field-based analysis.
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Abstract. While the adoption of Linked Data technologies has grown
dramatically over the past few years, it has not come without its own
set of growing challenges. The triplification of domain data into Linked
Data has not only given rise to a leading role of places and positioning
information for the dense interlinkage of data about actors, objects, and
events, but also led to massive errors in the generation, transformation,
and semantic annotation of data. In a global and densely interlinked
graph of data, even seemingly minor error can have far reaching conse-
quences as different datasets make statements about the same resources.
In this work we present the first comprehensive study of systematic errors
and their potential causes. We also discuss lessons learned and means to
avoid some of the introduced pitfalls in the future.

1 Introduction and Motivation

Over the last few years, the Linked Data cloud has grown to a size of more than
85 billion statements, called triples, contributed by more than 9,900 data sources.
A cleaned and quality controlled version made available via the LOD Laundromat
[2] contains nearly 40 billion triples.1 The Linked Data cloud (and proprietary ver-
sions derived from it and other sources) have brought dramatic changes to industry,
governments, and research.For instance, theyhave enabledquestionanswering sys-
tems such as IBM’s Watson [3] and Google’s new knowledge graph. Linked Data
has also increased the pressure on governments to publish open data in machine
readable and understandable formats, e.g., via data.gov. Finally, it has enabled the
research community to more efficiently publish, retrieve, reuse, and integrate, sci-
entific data, e.g., in the domain of pharmacological drug discovery [16]. The value
proposition of Linked Data as a new paradigm for data publishing and integration
in GIScience has been recently discussed by Kuhn et al. [10].
1 http://lodlaundromat.org/.
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Places and positioning information more broadly play a prominent role for
Linked Data by serving as nexuses that interconnect different statements and
contribute to forming a densely connected global knowledge graph. GeoNames,
for example, is the second most interlinked hub on the Linked Data Web, while
DBpedia contains more than 924,000 entities with direct spatial footprints and
millions of entities with references to places. Examples of these include birth
and death locations of historic figures and places where notable events occurred.
Many other datasets also contain spatial references such as sightings of certain
species on Taxonconcept,2 references to places in news articles published by the
New York Times Linked Data hub,3 and affiliations of authors accessible via
the RKB Explorer,4 to name but a few. In fact, most Linked Data are either
directly or indirectly linked through various spatial and non-spatial relations to
some type of geographic identifier.

Nonetheless, current statistics show that about 66 % of published Linked
Datasets have some kind of problems including limited availability of SPARQL
query endpoints and non-dereferenceable IRIs.5 A recent study of Linked
Datasets published through the Semantic Web journal shows that about 37 %
of these datasets are no longer Web-available [6]. In other words, even the core
Linked Data community struggles to keep their datasets error-free and avail-
able over longer periods. This problem, however, is not new. It has been widely
acknowledged that proper publishing and maintenance of data are among the
most difficult challenges facing data-intensive science. A variety of approaches
have been proposed to address this problem, e.g., providing a sustainable data
publication process [15]. Simplifying the infrastructure and publishing process,
however, is just one of many means to improve and further grow the Web of
Linked Data. Another strategy is to focus on controlling and improving the qual-
ity of published data, e.g., through unit testing [9], quality assessment methods
such as measuring query latency, endpoint availability, and update frequency
[17], as well as by identifying common technical mistakes [5].

Given the importance of places and positioning information on the Linked
Data cloud, this paper provides the first comprehensive study of systematic
errors, tries to identify likely causes, and discusses lessons learned. However,
instead of focusing on technical issues such as non-dereferenceable IRIs, unavail-
able SPARQL endpoints, and so forth, we focus on Linked Data that is tech-
nically correct, available, and in (heavy) use. We believe that understanding
quality issues in the contents published by leading data hubs will allow us to
better understand the difficulties faced by most other providers. We argue that
the lead issue is the lack of best practices for publishing (geo)-data on the Web
of Linked Data. For instance, geo-data is often converted to RDF-based Linked
Data without a clear understanding of reference systems or geographic feature
types. Our view is not unique and has recently led to the first joint collaboration

2 http://www.taxonconcept.org/.
3 http://data.nytimes.com/.
4 http://www.rkbexplorer.com/.
5 http://stats.lod2.eu/.
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of the Open Geospatial Consortium (OGC) and World Wide Web Consortium
(W3C) by establishing the Spatial Data on the Web Working Group.

In the next sections, we will categorize systematic errors into several types
and discuss their impact and likely causes. We will differentiate between (I) errors
caused by the triplification and extraction of data, (II) errors that result from an
improper use of existing ontologies or a limited understanding of the underlying
domain, (III) errors in the design of new ontologies and oversimplifications in
conceptual modeling, and (IV) errors related to data accuracy and the lack of
an uncertainty framework for Linked Data. Some errors are caused by a combi-
nation of these categories. We realize that studies of data quality are often not
met with excitement and thus have selected interesting and humorous examples
that illustrate, with serious implications, the far-reaching consequences of seem-
ingly small errors. Finally, we would like to clarify that our work is motivated by
improving the quality of the Linked Data to which we contributed datasets our-
selves, not in merely blaming errors made by others. We notified the providers of
the discussed datasets and some of the issues presented here have been resolved.
We hope that our work will help to prevent similar errors in the future.

2 Triplification and Extraction Errors

There are three common ways in which Linked Data is created today. The most
common approach is to generate Linked Data from other structured data such
as relational databases, comma separated value (CSV) files, or ESRI shape-
files. This approach is often called triplification, i.e., turning data into (RDF)
triples. As a second approach, Linked Data is increasingly extracted using nat-
ural language processing and machine learning techniques from semi-structured
or unstructured data. The most common example is DBpedia [11] which con-
verts (parts of) Wikipedia into Linked Data. Another example is the ontology
design patterns-based machine reader FRED that parses any natural language
text into Linked Data [14]. Finally, in a small but growing number of cases,
Linked Data is the native format in which data are created. This is typically the
case for derived data products, such as events mined from sensor observations,
metadata records from publishers and libraries, and so on.

The first two approaches share a common workflow. First, the relevant
content has to be extracted, e.g., from a tabular representation in hypertext
markup language (HTML). Next, the resulting raw data have to be analyzed
and processed. In a final step, the processed data must be converted into Linked
Data by using an ontology. While errors can be introduced during each of these
steps, this section focuses on errors introduced during the extraction of data and
the conversion into Linked Data, i.e., triplification errors.

One way of studying whether systematic errors have been introduced dur-
ing the triplification process is to visually map geographic features present in
the Linked Data cloud. Figure 1 shows the result for about 15 million features
extracted from multiple popular Linked Data sources such as DBpedia, Geon-
ames, Freebase, TaxonConcept, New York Times, and the CIA World Factbook.
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Fig. 1. A representative fraction of places in Linked Data (EPSG:4326, Plate Carree).

These features have been selected though SPARQL queries for all subjects
that have a W3C Basic Geo predicate, i.e., geo:lat or geo:long. For DBpedia,
we included multiple language versions. What is noteworthy about Fig. 1 is the
lack of a base map, i.e., the figure is entirely based on point data.6 In other
words, the Linked Data cloud has high spatial coverage. One can easily identify
the outlines of continents and most of the land surface is covered by features
with varying density. This is also true for regions in the far North and South
of the planet. Nonetheless, one can immediately identify significant errors – the
most obvious being perpendicular lines crossing in the middle of the map. In
this work, we do not focus on random errors (which are expected in a sample
of this size and arise from largely unpredictable and thus not easily correctable
reasons), but instead on systematic errors inherent to the data. These errors are
further examined through a set of cases as follows.

Case 1 shows a massive ×-like structure which represents numerous problems
with geographic coordinates such as latitudes and longitudes sharing the same
single value. This indicates that latitude values were mistaken for longitude
values and vice versa. We also found cases were only latitude values or longitude
values were given or where multiple appeared such as entities having two latitude
values without any longitudes. The quantity of these errors suggests that they
are systematic. Most likely, they stem from problems with scraping or parsing
scripts. Cases where features were mapped to (0,0) will be discussed below.

Case 2 depicts one of many examples of grid-like structures. From our obser-
vations, these are caused by two separate issues. First, features are often merely
represented by coarse location information, e.g., by only using degrees and drop-
ping decimals. Second, the vast majority of geo-data on the (Linked Data) Web

6 A high resolution version that gives a better impression of the coverage as well as
various errors is available at http://stko.geog.ucsb.edu/pictures/lstd map.png.

http://stko.geog.ucsb.edu/pictures/lstd_map.png
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today relies on point geometries. This also includes centroids for regions such as
counties, countries, mountain ranges, rivers, and even entire oceans. To give a
concrete examples, Geonames places the Atlantic Ocean at (10N, 25W), while
DBpedia places it about 1200 Km away at (0N, 30W). Note, however, that many
of the features visible in the oceans are not necessarily errors. They include sub-
marine volcanos, mid-ocean ridges, or reports about events such as oil spills.
Whether centroids are errors or are simply an inaccurate and largely meaning-
less way of representing large regions depends on the context in which the data
are to be used. However, it is difficult to imagine use cases for centroids of oceans
particularly as the two examples above show the arbitrariness of these locations.
The same argument can be made for coarse location data, and in fact, we will
discuss one example in greater detail below.

Cases 3 and 4 can be seen through block-like structures in China and a
second New Zealand in the Northern Hemisphere. The vast majority of these
errors are systematic and appear in the DBpedia dataset. We were able to
track down a potential reason for them by exploring the different language ver-
sions of DBpedia. It appears as though the scripts used by DBpedia curators to
extract content from Wikipedia either expected signs, e.g., (34.413,−119.848),
or a hemisphere designator, e.g., (34.413N,119.848W). Some language versions
of Wikipedia, e.g., the Spanish version, use other character designators such as
(34.413N,119.848O) where O stands for oeste. It is likely that the script dropped
the O instead of replacing it with a W. Consequently, geographic features in the
United States for which a Spanish language version was available in Wikipedia
ended up in China. This also explains the lower density of those misplaced fea-
tures, i.e., the Spanish Wikipedia lists fewer places in the US than the English
version. Other, likely non-systematic, errors include the flattening factor for the
Earth being reported as 1 which could be caused by a parsing error (or ceiling
function) as the data type reported by DBpedia is an xsd:integer.7

Case 5 in Fig. 1 is not an error but rather a reminder that despite the overall
coverage, certain regions are underrepresented. Interestingly, the Linked Data
map bears a remarkable similarity to maps created for different (social media)
datasets such as Flickr, Twitter, Wikipedia, and so forth. This highlights two
issues. First, and as outlined previously, most Linked Data are created from
existing data sources, and secondly the same underlying biases appear to apply
for most of these data sources. In other words, most data used in the Linked
Data cloud share the same blind spots.

Lessons Learned: Two major sources of errors can be differentiated, those
introduced during triplification and knowledge extraction as well as those
that were part of the original source data. In the first case, errors are typ-
ically introduced by software that does not take the full range of possible
syntactic variations into account (e.g., west versus oeste) or fails to accu-
rately distinguish between point-features and bounding boxes. Furthermore

7 SPARQL: ASK WHERE <http://dbpedia.org/resource/Earth> <http://dbpedia.org/
property/flattening> 1. [using DBpedia 2015-04.].

http://dbpedia.org/resource/Earth
http://dbpedia.org/property/flattening
http://dbpedia.org/property/flattening
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the software may confuse latitudes with longitudes for other reasons (caus-
ing the ×-like feature in Fig. 1) or parse and cast the data into inappropri-
ate formats (e.g., the flattening factor). For the second type of errors, one
could argue that they are not specific to Linked Data but simply a result of
errors in the source data. Such argument, however, misses the substantial
difference between information embedded in the context of a Web page
published for human use with the decontextualized raw data statements
that form an interlinked and the machine-available knowledge graph. While
the Atlantic Ocean was represented by a point-like feature at (0N, 30 W)
in Wikipedia, it is the DBpedia version that allows for inferences such as
plotting the place of death of people who are known to have died some-
where in the Atlantic Ocean (e.g., Benjamin Guggenheim) at 0N, 30 W.
Summing up, triplification and Linked Data extraction require substantial
domain expertise. Approaches such as unit testing and simple integrity
constraints could be used to detect many of the errors described above.
For instance, most of the places in the US that were duplicated in China
also contain topological information such as being part of a county or a
state. Thus, checking whether the space-based and place-based information
match could be a powerful method to avoid such errors in the future.

3 Ontology Usage and Domain Errors

To improve retrieval and reuse, Linked Data is typically created by using shared
ontologies and vocabularies. Most of these, however, are underspecified to a
degree where the intended interpretation is largely conveyed by the labels and
simple hierarchies rather than a deeper axiomatization. The need for and value of
a more expressive formalization is still controversially debated with recent work
highlighting the need for stronger ontologies. The following example illustrates
the problems that can arise from a lack of deeper axiomatization or the improper
use of ontologies outside of their intended interpretation.

Figure 2 shows DBpedia data concerning a lunar crater named after
Copernicus. As one can see at the bottom, geo:lat and geo:long are used to
represent the centroid of the crater. However, W3C Basic Geo uses WGS84 as
a reference datum. Thus, and in contrast to the original Wikipedia data, the
information that the crater is not on Earth and that the coordinates use a
different, selenographic reference system were lost in the triplification process.
Consequently, and as depicted in Fig. 3, systems such as the Fluidops Informa-
tion Workbench render the crater on the Earth’s surface near the city of Sarh,
Chad. The same is true for the landing site of Apollo 11 – Tranquility Base
– located in the Mare Tranquillitatis. In fact, the same problem occurs for all
other locations on distant planets and their moons. Showcasing one consequence
of such errors, the current DBpedia version (2015-04) indeed shows that the
moon landing happened here on Earth, as is evident by the following SPARQL
query which returns geographic coordinates in the southern part of Algeria.
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Fig. 2. DBpedia data about the Copernicus crater.

SELECT ?lat ?long
WHERE {dbp:Tranquility_Base geo:lat ?lat; geo:long ?long.}

lat long
0.6875 23.4333
0.713889 23.4333
0.6875 23.7078
0.713889 23.7078

Listing 3.1. Query and results showing the location of the moon landing is in Algeria.

Fig. 3. Fluidops displays Linked data about the Copernicus crater taken from DBpedia.
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Three underlying issues contribute to the outlined problems. First, there is
an ongoing debate on how to simplify data publishing on the Web and part of
this discussion is about how to avoid burdening publishers through enforcing
complex vocabularies and schema. However, the degree to which simplification
results in oversimplification is largely context-dependent and while current pro-
posals argue for not enforcing spatial reference system identifiers (SRID), the
example above illustrated potential consequences. The counterargument made
by the Web community is that for the majority of data published on the Web
(that has some sort of geographic identifier), simple WGS84 point coordinates
are indeed appropriate. The second issue is the lack of a clear best practice for
publishing geo-data on the Linked Data cloud. While GeoSPARQL [12] is slowly
gaining traction, there are various competing or complementary approaches such
as the W3C Basic Geo vocabulary or SPARQL-ST [13] which can also handle
spatiotemporal data. The third issue lies in the nature of most vocabularies and
ontologies themselves as well as a lack of domain expertise. Ontologies cannot
fix meaning but only restrict the interpretation of domain terminology towards
their intended meaning [10]. Consequently, while the W3C Basic Geo specs iden-
tify WGS84 as the reference coordinate system, this is not enforced through the
axiomatization, and, thus, there is no way of preventing geo:lat and geo:long
from being used to represent locations on celestial bodies other than the Earth.
Finally, as discussed previously, most Linked Data today are created by data
enthusiasts from existing data. This typically leads to lost expertise. We expect
this problem to disappear with time as more domain experts adopt a Linked
Data driven approach to publishing their (scientific) data.

The moon landing error mentioned above arose from using the wrong ontol-
ogy to annotate data. There are also more subtle cases, however, with more
dramatic consequences that arise from a lack of domain knowledge or an unclear
scope. Consider, for example, the Gulf of Guinea which is one of the world’s
key oil exploration regions, recently gaining notoriety through frequent pirate
attacks. Today’s semantic search engines such as Google’s knowledge graph or
knowledge engines such as Wolfram Alpha can answer basic questions about
countries bordering the Gulf of Guinea. For instance, both systems can handle
a query such as ‘What is the population of Nigeria?’. However, no system can
answer a query such as ‘What is the total population of all countries bordering
the Gulf of Guinea?’ or ‘What are the major cities in this region ordered by
population?’. In principle, however, and leaving the natural language processing
and comprehension of the underlying topological relations aside, such queries
can be easily answered using SPARQL and Linked Data. To do so, one could,
for instance, select a reference point in the gulf and use a buffer to query for
all populated places and their population. Using PROTON’s populationCount
relation the query could be formulated as shown by the fragment in Listing 3.2.
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SELECT (sum(? populationCount ) as ? to ta lPopu la t i on )
WHERE {
[ . . . ] geo : l a t ? l a t ; geo : long ? long .
? p lace omgeo : nearby (? l a t ? long ”500mi ” ) ;
ptop : populationCount ? populationCount .}
[ . . . ]

Listing 3.2. Fragment of a query for the total population of places within a radius of
500 miles around a location in the Gulf of Guinea.

This query, however, will return the population of cities, towns, countries, and
so forth, and, thus, will not give a truthful estimate of the population (as citizens
of a country and its cities will be counted multiple times). We will revisit the case
of towns and cities later and for now will consider all types of geographic features
that have a population value, e.g., to rank places by population.The Gulf of Guinea
is also home to the intersection of the Equator with the Prime Meridian. Interest-
ingly, and as shown by the results of Listing 3.3, this has surprising implications
for the query discussed before. In GeoNames, the Earth, as such, is located in its
own reference system at (0,0) together with the statement that its population is
6,814,400,000 and its feature type is L parks,area; see Fig. 4. Hence, it is the most
populated geographic feature in the Gulf of Guinea and thus causes the gulf to have
the world’s highest population density. Moreover, these kinds or errors will propa-
gate, e.g., via GeoNames’ RDF nearby functionally. For instance, we can learn that
the United States are nearby the Odessa Church.8

One could now argue that placing the Earth at (0,0) is an isolated case,
and, thus, not a systematic error. However, this is not the case. Many existing
mapping services return (0,0) to indicate geocoding failures. In fact, this is so
common that the Natural Earth dataset has created a virtual island at the
location called Null Island to better flag geocoding failures. Consequently, it
is not surprising to find many features on the Linked Data cloud located to
(0,0). The second problem, namely the population count, is also systematic. The
Linked Data cloud is envisioned as a distributed global graph but it is not yet
clear which data should be provided by linking to more authoritative sources and
which data should be kept locally. Therefore, for instance, The New York Times
Linked Data portal returns a population of 86,681 for Santa Barbara without
providing detailed metadata, while GeoNames reports 88,410 (together with a
change history). In contrast, DBpedia reports a population of 90,385 as well as
corrected data for the latest update, namely 2014-01-01.

SELECT distinct ?lat ?long ?populationCount
WHERE {
<http://sws.geonames.org/6295630/> geo:lat ?lat ; geo:long ?long ;
ptop:populationCount ?populationCount.}

lat long populationCount
0 0 6814400000

Listing 3.3. A query for the geographic coordinates of the Earth and its population.

8 E.g. via, wget http://sws.geonames.org/6252001/nearby.rdf.

http://sws.geonames.org/6252001/nearby.rdf
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Fig. 4. The point-feature representation of the Earth.

Lessons Learned: Selecting or creating an appropriate ontology to seman-
tically lift data is not trivial and the moon landing example shows some
of the potential consequences. As most ontologies are lightweight and thus
underspecified, it is important to check the documentation and intended
use manually. One proposal is to enforce the explicit specification of coordi-
nate reference systems for all spatial data on the Linked Data cloud. This,
however, has been controversially discussed in recent years as it would intro-
duce another hurdle-to-entry for publishers and Web developers. Thus, it
has been argued that a layered approach is needed. The second case, namely
the population count for the Gulf of Guinea, highlights the need for tighter
integration of different data sources based on their scope and authority.
Today, a lot of data are published by providers that have limited expertise,
cannot provide provenance records, or have no clear maintenance strategy.
It is worth noting that the Web (and thus also Linked Data) follows the
AAA slogan that Anyone can say Anything about Any topic. While this
strategy has enabled the Web we know today, it is a blessing and curse
at the same time when it comes to scientific data and reliability. Future
work will need to go beyond entity resolution (e.g., via owl:SameAs) by
providing data conflation services (e.g., to merge/correct population data
from different sources).

4 Modeling Errors

Another source of error is introduced by various modeling errors such as ontolo-
gies being overly simplistic or overly specific as well as errors that result from
how data are semantically lifted using these ontologies. Many of these exam-
ples are related to how we assign locations to entities. Clearly, entities typed as
place (and its subtypes) have a direct spatial footprint such as dbr:Montreal
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geo:geometry POINT(−73.56 45.5) even though this footprint may be con-
tested, missing, or unknown, such as for the ancient city of Troy. A similar argu-
ment can be made for types that describe spatially fixed entities, e.g., statues.
In some rare cases this is also true for otherwise mobile entities such as vessels.
A common example for this is the HMS Victory that is located on a dry dock
in Portsmouth, England. Wikipedia and thus DBpedia assign geographic coor-
dinates to most places, many statues, and some other entities such as the HMS
Victory.9 For many other types of entities, however, this is not an appropriate
method for assigning locations. For instance, any living human has a (chang-
ing) position at any time. This position is not stable and thus not reported in a
resource such as Wikipedia (although it may be stored in a trajectory database).
In fact, one would be very surprised to find the up-to-date geographic coordinates
for a specific person, car, ongoing event, and so forth in the Wikipedia.

From an ontological modeling perspective, one would expect entities of
types such as event to be related to a place which in turn is related
to a spatial footprint. In fact, the notion that events are located spa-
tially via their physical participants and these participants are temporally
located via events, is at the core of the DOLCE foundational ontology. One
way of thinking about this is to consider the length of the property path
that is expected between an entity of a given type and geographic coor-
dinates. For example, Rene Descartes is related to Stockholm which has
a spatial footprint: dbr:Rene Descartes dbp:deathPlace dbr:Stockholm.
dbr:Stockholm geo:geometry POINT(18.07 59.33). From this perspective,
places are expected to be 0-degree spatial. Persons, events, and so forth, are
expected to be 1-degree spatial, and information resources such as academic
papers are expected to be 2-degree spatial (via the affiliations of their authors).

Interestingly, performing this experiment on DBpedia yields 1,893 0-degree
persons, 371,655 1-degree persons, and 31,182 2-degree persons. Higher degree
persons can easily be explained either by a lack of knowledge about their places
of birth and death or by the many fictitious persons classified as Person in
DBpedia. Zero degree persons, however, can be considered modeling errors and
will appear in Fig. 1. The same argument can be made for the 5,086 0-degree
events, 1,507 0-degree sports teams, 448 0-degree biological species, and so forth.

Let us now illustrate the resulting problems using a concrete example.
Figure 5 shows a query for Terry Fox. As can be seen on the right side of the
figure, there are latitude/longitude coordinates assigned to him directly. The
image on the left implies that the information about the person Terry Fox may
have been accidentally conflated with the statue of Terry Fox which indeed may
have a fixed location. Checking the geographic coordinates, however, reveals that
they point to the Mt. Terry Fox Provincial Park (in the middle of Fig. 5), thereby
clearly revealing the modeling error and its consequences.

A second common example related to modeling is the mis-categorization
of geographic features. These errors are difficult to quantify as there is no
gold standard that would allow us to measure the semantic accuracy of type

9 http://dbpedia.org/resource/HMS Victory.

http://dbpedia.org/resource/HMS_Victory
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Fig. 5. The spatial footprint of the famous Canadian athlete Terry Fox.

assignment. Nonetheless, some of the clear, e.g., legally defined, cases are
worth discussing. For instance, there are 554 places in DBpedia that are clas-
sified as being a town while having a population over 100,000, e.g., Stuttgart,
Germany, with a population over 500,000, and 3,694 cities with a population
below 1,000 such as Eureka, Utah with a current estimated population of 667.
The issue here is that the meanings of city and town varies greatly across coun-
tries and even between US states [7]. In Utah, for instance, every settlement
with a population below 1,000 is legally considered a town. Hence, Eureka is
a town and not a city. In contrast, the class town in Pennsylvania is a sin-
gleton class that contains Bloomsburg as its sole member. Nonetheless we can
find triples such as dbr:Bloomsburg University of Pennsylvania dbp:city
dbr:Bloomsburg, Pennsylvania in DBpedia. In both cases, the underlying
problem is that the ontologies (which are often semi-automatically learned from
data) are overly specific and introduce fine grained distinctions that are not sup-
ported through the data; see [1] for more details on feature types in DBpedia.

Lessons Learned: While there is sufficient theoretical work on how enti-
ties are located in space and time – namely by modeling location as a rela-
tion between objects and by spatially anchoring events via their physical
participants – there seems to be a gap on how to apply these theoretical
results to the practice of data publishing. The case of wrong or overly-
specific type assignment is even more difficult to tackle as geographic fea-
ture types have spatial, temporal, and culturally indexed definitions as
shown by the town and city example. Ongoing work investigates the role
of spatial statistics for mining type characteristics bottom-up and may help
to minimize categorization errors in the future [18].

5 Accuracy and Uncertainty Related Errors

DBpedia also stores 133,941 cardinal direction triples such as the statement,
Ventura, CA is to the north of Oxnard, CA: dbr:Ventura, California
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dbp:south dbr:Oxnard, California.10 This leads to the interesting question
of how accurate these triples are. Testing 100,000 of these triples reveals that
26 % (26,420) of them are inaccurate when using the geometries provided by
DBpedia. Our sample only includes triples where subject and object are both
of type dbo:Place and have valid geo:geometry predicates. By considering all
133,941 cardinal triples in DBpedia, we find that 55,928 of them have a subject
or object lacking geo:geometry, or are not of type dbo:Place. Of these, 17,957
triples list a cardinal direction relation to a RDF literal such as an xsd:integer,
e.g., dbr:Harrisburg, Pennsylvania dbp:north 20 (xsd:integer).

Fig. 6. A 1:n step in the direction computation for 1× 1 km grids of Ventura (88
circles) and Oxnard (133 triangles). Grid points in the ocean were removed.

More interesting, however, than discovering these (significant) data errors
alone, is the question of how much uncertainty is introduced by using point-
features to represent places and how this uncertainty is communicated [4].
Returning to the Ventura and Oxnard example, one can overlay the known
administrative areas for both cities with a 1× 1 kilometer grid and then pair-
wise compare all possible grid points. Figure 6 shows the spatial distribution of
those grid points and an 1:n step out of this direction comparison. The direction-
ality is determined by testing if the azimuth between two point geometries falls
within ω (which is set to π/8) from the primary angle of the cardinal (N,S,E,W)
or the intercardinal direction (NE,SE,SW,NW). For example, SE (stko:southeast
here) covers the range 5π/8 to 7π/8 which is measured from the positive y-axis.
Our results show that the cardinal direction S holds for 34.8 % of the cases in
which Ventura is located to the north of Oxnard, while the intercardinal direc-
tion SE holds for 50.5 % cases in which Ventura is located to the northwest of
10 The way in which DBpedia uses cardinal directions can be easily misunderstood.

The triple states that the entity south of Ventura is the city of Oxnard.
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Oxnard. In 0.5 % of the cases the correct direction is NW. This uncertainty (and
the fact that SE seems to be the better choice), however, is not communicated
by DBpedia.

A similar case, this time based on reporting coordinates and areas
beyond a meaningful accuracy, can be found in many other examples. For
instance, DBpedia states that the value for dbo:PopulatedPlace/areaTotal for
Santa Barbara is 108.69662101458125 km2. The location for Santa Barbara
is given by the centroid POINT(−119.71416473389 34.425834655762) – thus
indicating that the exact centroid of Santa Barbara is known at the sub-micron
scale. This is not DBpedia specific and thus a systematic error. Similar cases
can be found in the New York Times Linked Data hub that locates Santa Bar-
bara at geo:lat 34.4208305 and geo:long −119.6981901.11 In contrast, the
TaxonConcept dataset uses the uncertainty parameter specified by RFC 5870,
e.g., geo:44.863876,−87.231892;u=10 for a sighting of the Danaus Plexippus
butterfly, thereby presenting a possible solution to the problem.

Finally, it is worth noting that the lack of a clear uncertainty framework
for Linked Data in general has dramatic consequences beyond location data
alone. Listing 5.1, shows a query for regions in California and their population.
Summing up the data for the South Coast and Central Coast would not yield a
value of approximately 22,250,000 but merely 2,249,558. This surprising behavior
is caused by the population of the South Coast being represented as a string
instead of an xsd:integer which cannot be used (and is thus silently disregarded)
by the SPARQL summation function.

SELECT ?region ?population

WHERE {
?region a yago:RegionsOfCalifornia;

dbp:population ?population .}

region population

[shortened results] ...

South Coast (California) ‘ ∼ 20million′@en //Not recognized as a (approximate) number

Central Coast (California) 2249558 //recognized as an xsd:integer

Listing 5.1. Population of (overlapping) regions in California.

Lessons Learned: The cardinal directions example shows the many and
massive errors that exist in spatial information on the Linked Data cloud
today. Blaming the datasets and their providers, however, is missing the
more relevant and underlying problem – namely the effects of decontextual-
ization on data [8] and their transformation into statements in triple form.
Consider the following example: The sentence ‘Isla Vista, CA is the most
populated municipality to the west of the Mississippi.’ is meaningful and
partially correct. During natural language processing and triplification this
sentence would be transfered to a triple such as ex:Isla Vista dbr:west

11 http://data.nytimes.com/N2261955445337191084.

http://data.nytimes.com/N2261955445337191084
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ex:Mississippi. This triple, however, is not only questionable but also
leads to exactly those cardinal direction accuracy issues discussed before
as the direction will depend on the point coordinates used to represent the
Mississippi river. Finally, and as illustrated above, the lack of a general
uncertainty framework for Linked Data requires urgent attention in future
research.

6 Conclusions

Places and positioning information more broadly play a key role in interlink-
ing data on the Web. Consequently, it is important to study the quality of
these (geo-)data. Our work reveals that about 10 % of all spatial data on the
Linked Data cloud is erroneous to some degree. We identified major types of
systematic errors, discussed their likely causes (some of which have been con-
firmed by the data providers), and pointed out lessons learned and directions
for future research. Some of the identified problems can be easily addressed and
prevented in the future, e.g., by unit testing against possible representational
choices for geographic coordinates. Other cases remain more challenging such as
proper ontological modeling or the representation of uncertainty. Those issues for
which a clear best practice can be identified and agreed upon are currently being
collected by the joint OGC/W3C Spatial Data on the Web Working Group.12

Finding the right balance between simple models and data publishing processes
on the one hand and preventing potentially harmful oversimplifications on the
other hand remains the major challenge to be addressed in the future.

Acknowledgements. The authors would like to acknowledge partial support by the
National Science Foundation (NSF) under award 1440202 EarthCube Building Blocks:
Collaborative Proposal: GeoLink Leveraging Semantics and Linked Data for Data Shar-
ing and Discovery in the Geosciences, NSF award 1540849 EarthCube IA: Collabora-
tive Proposal: Cross-Domain Observational Metadata Environmental Sensing Network
(X-DOMES), and the USGS award on Linked Data for the National Map.

References

1. Adams, B., Janowicz, K.: Thematic signatures for cleansing and enriching place-
related linked data. Int. J. Geogr. Inf. Sci. 29(4), 556–579 (2015)

2. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD
Laundromat: a uniform way of publishing other people’s dirty data. In: Mika, P.,
et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 213–228. Springer, Heidelberg
(2014)

3. Ferrucci, D.A., Brown, E.W., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A.,
Lally, A., Murdock, J.W., Nyberg, E., Prager, J.M., Welty, C.A.: Building Watson:
an overview of the DeepQA project. AI Mag. 31(3), 59–79 (2010)

12 The views presented in this paper belong to the authors and do not necessarily
represent the views or positions of the entire working group. A current draft of the
best practice report is available at: https://www.w3.org/TR/sdw-bp/.

https://www.w3.org/TR/sdw-bp/


290 K. Janowicz et al.

4. Fisher, P.F.: Models of uncertainty in spatial data. Geograph. Inf. Syst. 1, 191–205
(1999)

5. Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic
web. In: Proceedings of the WWW 2010 Workshop on Linked Data on the Web,
LDOW 2010, Raleigh, USA, 27 April 2010 (2010)

6. Hogan, A., Hitzler, P., Janowicz, K.: Linked dataset description papers at the
semantic web journal: a critical assessment. Semant. Web 7(2), 105–116 (2016)

7. Janowicz, K.: Observation-driven geo-ontology engineering. Trans. GIS 16(3), 351–
374 (2012)

8. Janowicz, K., Hitzler, P.: The digital earth as knowledge engine. Semant. Web
3(3), 213–221 (2012)

9. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proceedings of
the 23rd International Conference on World Wide Web, pp. 747–758. International
World Wide Web Conferences Steering (2014)

10. Kuhn, W., Kauppinen, T., Janowicz, K.: Linked data - a paradigm shift for geo-
graphic information science. In: Duckham, M., Pebesma, E., Stewart, K., Frank,
A.U. (eds.) GIScience 2014. LNCS, vol. 8728, pp. 173–186. Springer, Heidelberg
(2014)

11. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-
scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2),
167–195 (2015)

12. Perry, M., Herring, J.: OGC geosparql-a geographic query language for RDF data.
Open Geospatial Consortium (2012)

13. Perry, M., Jain, P., Sheth, A.P.: SPARQL-ST: extending SPARQL to support
spatiotemporal queries. In: Ashish, N., Sheth, A.P. (eds.) Geospatial Semantics
and the Semantic Web - Foundations, Algorithms, and Applications. Semantic
Web and Beyond: Computing for Human Experience, vol. 12, pp. 61–86. Springer,
Heidelberg (2011)

14. Presutti, V., Draicchio, F., Gangemi, A.: Knowledge extraction based on dis-
course representation theory and linguistic frames. In: ten Teije, A., Völker, J.,
Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles,
N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 114–129. Springer,Y
Heidelberg (2012)

15. Rietveld, L., Verborgh, R., Beek, W., Vander Sande, M., Schlobach, S.: Linked
data-as-a-service: the semantic web redeployed. In: Gandon, F., Sabou, M., Sack,
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Abstract. Many algorithmic results are known for automated label
placement on maps. However, algorithms to compute labels for groups
of features, such as island groups, are largely missing. In this paper we
address this issue by presenting new, efficient algorithms for island label
placement in various settings. We consider straight-line and circular-arc
labels that may or may not overlap a given set of islands. We concentrate
on computing the line or circle that minimizes the maximum distance
to the islands, measured by the closest distance. We experimentally test
whether the generated labels are reasonable for various real-world island
groups, and compare different options. The results are positive and val-
idate our geometric formalizations.

1 Introduction

Map labeling is a fundamental problem in automated cartography which has
received a significant amount of attention both in the GIScience and in the algo-
rithms communities [13]. There are a variety of geometric objects to be labeled,
ranging from points (representing locations such as cities), over polylines (rep-
resenting linear cartographic features such as rivers) and polygons (representing
areal features such as lakes), to groups of polygons (representing groups of fea-
tures such as islands). The basis of all algorithmic work in this area is formed
by an extensive set of cartographic guidelines which detail the properties of a
high quality labeling (see [5,8,14]). These guidelines often lead to optimization
problems which can be approached with algorithmic methods.

To generate such guidelines for groups of features, Reimer et al. [12] propose
a framework of possible geometric quality measures for the labeling of feature
groups. The framework includes the shape of the label, whether it may intersect
the features or not, and how the distance between a label and the features is
measured. Assuming that the placement of a label is optimal according to some
yet unknown measure generates a number of algorithmic optimization problems.
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Only few of them, namely the simpler ones, can be solved directly with known
methods. Reimer et al. [12] conclude that new algorithms are needed to advance
the state-of-the-art in automated label placement for feature groups.

In this paper we expand on the research in Reimer et al. [12] by solving
several of the algorithmic problems in label placement for groups of features. In
particular, we focus on min-max distance measures that minimize the maximum
distance to the closest point of each feature. This is arguably more natural
than the versions that could be solved with known methods. In this setting,
we consider straight-line and circular-arc labels, which may or may not intersect
the features. We design new algorithms for these optimization problems, analyze
their efficiency, and test implementations on island label groups to know how
much the automatically generated labels resemble ones we can find in atlases,
originally placed by a cartographer.
Contribution. Our input is a set S of k simple polygons P1, . . . , Pk, with n
vertices in total (the islands). We refer to labels that are allowed to overlap
islands as general labels and to labels that are not allowed any overlap as water
labels. We focus on placing a single label for an island group, in isolation of other
features and labels on the map.

We assume that labels are long enough that we can consider complete lines
and circles instead of line segments and circular arcs (see Fig. 1). In practice this
assumption may not always be true; we will see some examples in the experiments
section. Finding optimal labels that are shorter is a considerably more complex
placement problem, resulting in higher running times of solutions. Therefore,
in this algorithmic study, we limit ourselves to the simpler case where labels
span the island group. We will see that the algorithms we obtain are sufficiently
complex already.

We give O(n log k) and O(nk+k2 log k) time algorithms for general and water
straight-line labels, respectively, in Sect. 2. For circular-arc labels we give O(n2)
and O(n3 polylog n) time algorithms for general and water labels, respectively in
Sect. 3. Our solutions are inspired by free placements in motion planning, facility
location, minimum-width annulus computation, and dimensional metrology. In
all cases we need to carefully capture the geometry of an optimal placement to
arrive at an efficient solution.

Fig. 1. We assume that labels are long enough to warrant consideration of complete
lines and circles. A subsection of the line or circle functions as the final label.
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In Sect. 4 we compare the circular-arc labels generated by our algorithms to
manually placed labels for a representative set of island groups. The results are
positive and often appear already as good as the manually placed labels. We are
hence confident that geometric formalization can capture the implicit connection
necessary to associate an island label well with its group.

In Sect. 5 we discuss further possible extensions of our algorithms, using the
min-sum distance measure and allowing labels with a non-zero height.
Related Work. Many algorithms have been developed for labeling maps, far
too many to list here (for an overview see [13]). The labeling of island groups
has received little algorithmic treatment so far. An exception is the work by van
Kreveld and Schlechter [9] who give an algorithm that places an intersection-
free label in the position minimizing the maximum distance from the label to
each island of the group using horizontal straight-line labels. Since only straight
labels are handled, the solution is not so general. The other exception is the
work of Reimer et al. [12], who review what existing geometric algorithms can
be adapted directly to island label placement.

2 Straight-Line Labels

In this section we show how to compute a straight-line label – either general or
water – that minimizes the maximum distance to the islands. For each island, we
consider the distance to its closest point. As we assume labels are long enough
to be considered as complete lines, we need not compare different length labels
reducing the complexity of the problem. This also implies that the distance
to a label can be measured perpendicularly to the label. While this assumption
restricts the type of labels we can generate, the resulting reduction of complexity
of the problem allows us to formulate good polynomial time algorithms. We
discuss how to find the actual label placement on this line in Sect. 4.1.

2.1 General Labels

As we assume that labels are complete lines, the minimum distance between
an island and a label can always be measured to a point on the convex hull of

Fig. 2. (a) Two points on a line form two lines intersecting in a point in dual space.
(b) The bottom and top of a convex polygon in primal space correspond to the top
and bottom of a funnel in dual space.
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the island. Hence, to find the optimal general label, we first replace every island
by its convex hull, taking O(n) time in total [10]. Then we study the problem
in dual space, where lines are represented as points. Each line l = (y = mx + b)
becomes a point l∗ = (m,−b) in dual space. Similarly, each point p = (px, py)
becomes a line p∗ = (y = pxx − py) [4]. The k convex polygons in primal space
form k funnels in dual space (see Fig. 2). The top and bottom boundaries of each
funnel are x-monotone polylines. Funnel boundaries belonging to two different
islands only intersect when a line in primal space is tangent to both islands.
Between each pair of islands there exist at most four tangents, and at most
two of these are tangent to any combination of “upper” and “lower” boundaries
of the two islands. Thus, the funnel boundaries form a set of 2k x-monotone,
pairwise 2-intersecting polylines with O(n) vertices total.

For any fixed rotation of the label to be placed, the furthest closest vertex of
an island that is below the label in primal space, is on the upper envelope of the
lower boundaries in dual space. As all the funnel-boundaries are 2-intersecting,
this upper envelope has complexity O(n) and we can compute it in O(n log k)
time by pairwise merging in log k phases. A similar argument holds for the
furthest closest vertex above and the lower envelope.

If we look at a fixed rotation of the label to be placed, this corresponds to
finding the optimal position in dual space on a vertical line. As dualization is
distance-preserving on any vertical line, the optimal placement for any fixed
rotation is exactly centered between the upper and lower envelope. Thus, the
optimal solution for any rotation is located on a centerline, which also has O(n)
complexity.

For each segment s of the centerline we can compute the optimal position
in O(1) time. Let xstart be the x-coordinate of the start of s. Let dstart be the
vertical distance to the upper- (or lower-) envelope at xstart. While we move
along s the distance to the upper envelope changes by a linear factor c1 in x.
For a shift of δ along the x-axis, the vertical distance in dual space is fs(δ) =
dstart + c1 · δ. The distance to the closest point in primal space is

gs(δ) =
(dstart + c1 · δ)2
(xstart + δ)2 + 1

The optimal position is at the minimum over the domain given by segment s.
This minimum can be at an endpoint of s or in the middle.

We can compute the upper and lower envelope in dual space in O(n log k)
time and compute the centerline and the optimum on the centerline in O(n)
time. Hence, we can find the optimal label in O(n log k) time.

Theorem 1. Given a set of k islands having n vertices together, we can compute
the straight-line general label optimizing the min-max distance in O(n log k) time.

2.2 Water Labels

An optimal water label need not have an equal distance to the furthest closest
point on either side. Positions that have equal distance to both points may result
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in labels that intersect one or more islands. As a consequence, the dual of the
label need not lie on the centerline in between the upper and lower envelope.
In this section we describe an algorithm to compute the optimal solution for
straight-line water labels in O(nk + k2 log k) time.
Compute the Arrangement. We first compute the complete arrangement of
all 2k funnel boundaries in O((n + k2) log k) or O(nk) time.

For the first bound, make an x-sorted list V of funnel boundary vertices in
O(n log k) time. Then do a standard sweep from left to right. The sweep-line
intersects O(k) edges simultaneously, leading to the bound.

For the second bound, take the sorted list V and split it into n/k parts such
that each part has O(k) vertices. These parts give rise to n/k vertical lines, such
that between two vertical lines we need the arrangement of O(k) line segments.
We compute the full arrangement of the supporting lines in O(k2) time and then
remove all parts that are on lines but not on the line segments. Then we couple
consecutive arrangement parts at the vertical lines into a single arrangement.
We spend n/k · O(k2) = O(nk) time.
Insert the Centerline. The centerline has complexity O(n). As all boundaries
and the centerline are x-monotone, and all boundaries are either convex or con-
cave, each edge of the centerline can intersect at most O(k) edges of the arrange-
ment. Consequently, the centerline can cross the arrangement O(nk) times. This
bound is also realizable in theory.

To insert the centerline, we sort the boundaries and the centerline by increas-
ing slope of the first segment in O(k log k) time. This uniquely defines the left-
most face the centerline is in and we can access it in O(1) time. For each face
the centerline crosses do the following. Starting at the left-most vertex of the
face-boundary, or the last traversed edges of this face, traverse the upper- and
lower-boundary of the face, as well as the centerline simultaneously. To get this
working, we maintain the last traversed upper and lower edge of every face, and
store that with the face in the arrangement. As soon as we enter a face again, we
can proceed where we left off. We traverse each edge at most twice and we make
at most an additional O(nk) edges by the intersections between the centerline
and the arrangement. Hence, the total time complexity is O(nk).

Fig. 3. Three funnels, the illegal
cells (grey), the centerline (blue),
and the induced closest legal edges
(red). (Color figure online)

Illegal Placements. A line that intersects
an island in primal space dualizes to a point
inside the funnel of the island in dual space.
Hence, all faces of the arrangement covered
by a funnel result in labels that intersect one
or more islands. Faces covered by a funnel are
defined to be illegal. An edge of the arrange-
ment separating two illegal faces is also
illegal, all other edges are legal. When we con-
sider the problem for a fixed rotation of the
final label, the legal point vertically closest
to the centerline in dual space is optimal.
The closest legal points form intervals on the
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edges of the arrangement (see Fig. 3). These subedges can either be above, below,
or on the centerline.
Find the Closest Legal Subedges. We first remove all illegal edges in
O(n + k2) time. Let a chain be a maximal sequence of edges connected by
vertices of degree two. The resulting arrangement, excluding the centerline, con-
sists of O(k2) non-intersecting chains with O(n+k2) vertices in total. We sweep
this arrangement with a vertical line, maintaining the intersected edges and
the centerline in a balanced binary search tree to determine the closest legal
subedges. There are O(nk) possible intersections with the centerline which we
can resolve in O(1) time and O(k2) vertices at which chains start and end requir-
ing O(log k) time each to update. Hence, we can find all closest legal subedges
above and below the centerline in O(nk + k2 log k) time.

The closest point to the centerline may be on the centerline or on the closest
legal subedge above or below it. In total we get O(nk) legal subedges and legal
edges of the centerline, which we can evaluate in O(1) time each.

Theorem 2. Given a set of k islands having n vertices together, we can compute
the straight-line water label optimizing the min-max distance in O(nk +k2 log k)
time.

3 Circular-Arc Labels

In this section we consider the problem of computing a circle that minimizes the
maximum distance to the islands, measured by the distance to the closest point
of each island. We approach the problem by computing an annulus of minimum
width that touches all islands. The circle in the middle of this annulus is the
required solution. The optimal annulus problem has four degrees of freedom as
we can express a solution by the coordinates of the center and two radii.

The minimum-width annulus problem has been studied before for point sets
[2,4], and can be solved in O(n3/2+ε) time (where ε > 0 is a constant that can
be chosen). Instead of a point set, we have a set of simple polygons, and the
annulus must intersect at least one point of each. We define the inner circle as
the boundary of the annulus with the smaller radius and the outer circle as the
boundary with the larger radius. A contact is a vertex of the input touching
either of the circles, or an edge of the input that is tangent to the outer circle,
see Fig. 4. An edge of the input tangent to the inner circle is not a contact,
because it cannot contribute to defining the optimal annulus.

3.1 General Labels

We begin with the case of general, unrestricted circular-arc labels, which is the
minimum-width annulus problem where the annulus must touch every island.
Similar to the minimum-width annulus problem for points, any solution having
less than four contacts cannot be optimal (proof omitted).
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Fig. 4. (a) Annulus touching all islands determined by four contacts (marked), two on
the inner circle and two on the outer circle. (b) Annulus partially determined by three
contacts with a middle circle that does not intersect any island.

Lemma 3. The annulus corresponding to the optimal min-max, circular-arc
label is determined by at least four contact points.

The solution to the minimum-width annulus problem for points described in [4]
uses the Voronoi Diagram and the Farthest-point Voronoi Diagram to determine
the annuli with four contacts that may be the optimal one. The center of each
such annulus must lie on a vertex of one of these diagrams, or on an edge-edge
intersection of the diagrams. It yields an O(n2) time algorithm.

We use a similar approach, but need different diagrams. As the annulus is
required to overlap or touch each island, the outer radius of the optimal annulus
is defined by the closest point of the furthest polygon. Similarly, the inner radius
is defined by the polygon with the closest furthest point. We make use of two
matching Voronoi Diagrams.

The Farthest-Polygon Voronoi Diagram (FPVD) [6] subdivides the plane in
O(n) regions with total complexity O(n). In each region, the same polygon is
furthest and the same feature (vertex or edge) of that polygon is closest (see
Fig. 5(a)). Cheong et al. [6] show that it can be computed in O(n log3 n) time.

The Hausdorff Voronoi Diagram (HVD) [7,11] subdivides the plane in a set
of regions, with total complexity O(n). In each region, the same polygon is
closest and the same feature of that polygon is furthest (see Fig. 5(b)). Here
the distance between a point x and a polygon P is defined as maxp∈P d(x, p).

Fig. 5. (a) In each cell of the FPVD the same polygon is furthest and the same feature
closest. (b) In each cell of the HVD the same polygon is closest (measured to the
furthest point) and the same feature is furthest.
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Hence, the closest polygon is the polygon with the closest furthest point. This
diagram can be computed in O(n log4 n) time [7].

The optimal annulus must have its center on a vertex of the FPVD, on a
vertex of the HVD, or on an intersection of two edges, one of each diagram. For
annuli with their center on a vertex we observe that the diagrams have only
O(n) vertices, and for each we can determine the width of the corresponding
annulus in O(n) time, leading to O(n2) time for this case. For annuli with their
center on an edge-edge intersection we observe that all edges are either straight
or parabolic and each diagram has O(n) edges. Thus, there can be at most O(n2)
intersections. For each intersection we know the distance to the inner and outer
contacts, and we can determine the width of each annulus in O(1) time.

Theorem 4. Given a set of islands with n vertices together, we can find a circle
minimizing the maximum distance to the closest point of any island in O(n2)
time.

3.2 Water Labels

We next consider the problem of computing a circle that misses all islands and
minimizes the maximum distance to them, measured by the distance to the
closest point of each island. Phrased in terms of computing an annulus, we want
to compute an annulus of minimum width touching every island. For this annulus
the additional requirement holds that the middle circle, located halfway between
the inner- and outer-circle, should not intersect any island.

As before we begin by characterizing properties of an optimal solution by
contacts of the three co-centric circles involved and the islands. We can no longer
show that there are always four contacts, or two contacts with the inner or outer
circle, and hence we cannot use the edges of the FPVD and HVD any longer.
Instead we will cover all cases where the annulus is restricted by at least three
contacts.

Lemma 5. An optimal annulus A is of one (or more) of the following types:

(i) A has the contacts as if it were an unrestricted annulus (four contacts on
outer and inner circle together);

(ii) A has at least two contacts on the outer circle and one on the middle circle;
(iii) A has at least two contacts on the inner circle and one on the middle circle;
(iv) A has at least one contact on the outer circle, one on the inner circle and

one on the middle circle.

With three contacts, the annulus can move its center while retaining these
contacts, because there is still one degree of freedom remaining. We can optimize
over this degree of freedom and find all locally optimal annuli. As we check all
local optimal annuli we will also check the global optimum solution.

This characterization of optimal annuli gives rise to an algorithmic solution.
As a tool we will use a data structure that allows us to test whether a query
circle intersects any island, which we describe first. We treat the islands as a set
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of n line segments and observe that a circle does not intersect any island if and
only if it does not intersect any line segment (ignoring the case where the circle
lies fully inside an island, which can easily be handled).

Lemma 6 (from [3]). A line segment s intersects a circle C if and only if:

(i) exactly one of the endpoints of s lies inside C, or
(ii) both endpoints of s lie outside C, the center of C lies in the perpendicular

strip of s, and the supporting line of s intersects C.

Fig. 6. A line segment s, its sup-
porting line (dashed), its perpendicu-
lar strip (yellow), and an intersecting
circle C. (Color figure online)

The perpendicular strip of s is the strip
bounded by the two lines perpendicular to
s and each through one endpoint of s (see
Fig. 6). Using the lemma we can design a
data structure that stores n line segments
in a multi-level tree so that for any query
circle, we can efficiently decide if it inter-
sects a line segment. Combining the the-
ory of [1] with Lemma 6, and using cutting
trees instead of partition trees, we get the
following:

Lemma 7 A set of n line segments can be
stored in a data structure of size and pre-
processing time O(n3 polylog n), such that for any query circle, we can decide
in O(polylog n) time whether it intersects any line segment of the set, where
polylog n stands for logk(n) for some constant k.

We compute an optimal annulus as follows. First, build the data structure
T on the n line segments bounding the islands. Second, use the results of the
general case to compute O(n2) annuli. For each such annulus, determine the
middle circle and query with it in T to decide if it intersects any island. If not,
it is a candidate solution. Third, take any triple of features of the islands and
assume them to be contacts. Choose each of the cases (ii), (iii) and (iv) from
Lemma 5 and each assignment of contacts for that case.

To treat any of the O(n3) choices, compute the loci of centers of the corre-
sponding annulus, and the corresponding function describing the widths of these
annuli. This is a one-parameter function because we have fixed three out of four
degrees of freedom, and we compute it in O(1) time because only three contacts
(features of the islands) are involved. We optimize the width function, finding
all O(1) local optima. Each gives rise to an annulus, which we test with our data
structure T to see if the middle circle intersects any island.

Since we will be testing O(n3) circles by querying T , and the construction of
T takes O(n3 polylog n) time, we obtain:

Theorem 8 Given a set of islands with n vertices together, we can find a circle
that does not intersect any island and minimizes the maximum distance to the
closest point of any island in O(n3 polylog n) time.
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Fig. 7. Digitized island groups and their manual label (grey). (a) Aleutian Islands -
Clear arc. (b) Antilles - Different island sizes. (c) Dalmatian Islands - Arc with spread.
(d) Caroline Islands - Wide spread. (e) Outer Hebrides - Closely interwoven islands.
(f) Windward Islands - Group with outlier.

4 Experiments

We evaluate the quality of the labels generated by our algorithms by performing
both a visual analysis and a comparison in numbers with manually placed labels.1

4.1 Setup

To determine the quality of the computed labels we compare them to manually
generated labels. We use digitized island groups from several atlases together
with their respective labels. We selected six candidates to represent a wide range
of possible island configurations (see Fig. 7).

In these experiments we focus on circular arc labels as they are more com-
monly present in maps. Nevertheless, the straight-line labels generated by our
algorithms give good results (see Fig. 8) that may directly be used as label posi-
tions. The rarity of straight-line labels for island groups makes them less suitable
for a direct evaluation though.

Fig. 8. Island groups with their original, manual label (grey) and the computed label
(green). Straight-line water labels under different points of measurement. (a) All points.
(b) Centroid. (c) Closest point. (Color figure online)

1 Further results are available online: http://www.win.tue.nl/∼agoethem/labeling,
May, 2016.

http://www.win.tue.nl/~agoethem/labeling
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Besides the straight-line and circular-arc labels discussed in this paper, we
also tested other possible optimization measures. Specifically, we tested optimal
straight-line and circular-arc labels, using the min-max distance measure, when
distance is measured to the centroid or to the complete area of each island. The
latter is in fact equivalent to measuring distance to the furthest points. The opti-
mal label placements for these settings can be computed using variations on the
techniques described in this paper. To ensure we obtained realistic solutions we
computed label positions having the same height as the original manual label. The
discussed algorithms can easily be extended to take this into account (see Sect. 5).

Finally, our algorithms compute only complete lines and circles for label place-
ment. These should still automatically be converted to line segments and circular
arcs. We project all vertices of the island onto the computed line (/circle). The
final label is the minimal line segment (/circular arc) that contains all projected
vertices. As a consequence the computed label position best spans the width of
the island group. We note that the actual label may have a different length, but
any length label can trivially be computed from this.

Fig. 9. Island groups with their original, manual label (grey) and the computed label
(green). General labels under different points of measurement. (a) Closest point. (b) All
points. (c) Closest point. (d) Candidate generation may use general labels to compute
several possible high-quality label positions (manual example). (Color figure online)

4.2 Visual Inspection

General Labels. We observe that the computed labels capture the shape of
the island group well when the island group forms a coherent and clear shape
(see Fig. 9(a) and (b)). The label overlaps many islands and is less suitable for
label placement, but is a good basis for label candidate generation. By slightly
changing the radius and center of the arc we can generate many labels capturing
the shape of the group (see Fig. 9(d)).

The min-max distance measure is outlier-sensitive. This is no problem in
most groups, but outliers may cause unexpected results (see Fig. 9(c)).

In general, we notice that the effect of the point of measure is small for the
min-max measure. When the group contains large islands, however, the effect
becomes more prominent. In Fig. 10 the same island group is shown (Antilles) for
the three different points of measure. For large islands the closest point, farthest
point, and centroid may give significantly different results.
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Fig. 10. Antilles islands with the manually placed label (grey) and the computed label
(green) for different points of measure: (a) All points. (b) Centroid. (c) Closest point.
(Color figure online)

Water Labels. Generally, water labels give good results (see Fig. 11(a), (b) and
(c)). Often the label is located outside the island group following the general
shape. When the label is placed inside the group, the same holds for the manual
label (see Fig. 11(c) and (d)).

We observe that, as expected, preventing any overlap between the label shape
and the islands may be overly restrictive. In Fig. 11(d) two tiny islands prevent
the label from following a more natural shape. Future work may investigate
whether it is possible to extend the algorithms to allow a small amount of overlap.
A relatively small amount of overlap may be acceptable if this causes a large
increase in the quality of the label.

The min-max measure is less outlier sensitive for water labels. The width
of the group compensates for the outliers (see Fig. 11(e) and (f)). As the label
cannot intersect any island its shape is more restricted and it is harder for outliers
to affect it.

Fig. 11. Island groups with their original, manual label (grey) and the computed label
(green). Water labels under different points of measurement. (a) All points. (b) Closest
point. (c) Closest point. (d) Centroid. (e) Centroid. (f) Closest point. (Color figure
online)
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4.3 Comparison

To support our visual inspection we also perform a comparison in the line of the
research outlined by Reimer et al. [12]. They suggest to analyze what criteria
cartographers may subconsciously use when placing island labels, by comparing
manually placed island labels from atlases with automatically generated labels
according to geometric criteria. For example, suppose we consider the setting
with water labels and min-max distance for circular labels, measured to the
closest point of each island. If an analysis reveals that cartographers place island
labels within a small percentage of what is possible in this setting, then it is likely
that cartographers apply this criterion either explicitly or subconsciously. Note
that the manually placed label and the automatically generated label may be
very different even if cartographers realize nearly the same score on the measure.

For each measure and each setting we compute the label placement that
minimizes the distance to the island group and the corresponding distance. We
also compute the distance, according to this measure, from the manual label to
the island group. For fair comparison we measure distance to the circle concentric
to the manual label. The more correlated the distance of the manual label and
optimal label position are, the more likely it is that the manual label was placed
(subconsciously) according to the given measure. In Table 1 an overview of all
distance measures (normalized to the minimal distance) is given for circular arc
labels using the min-max distance. We make some observations.

First, the requirement that labels are strictly non-overlapping reduces our
ability to optimize the given metrics. Consequently, the manual label for the
Antilles is generally ‘better’ than the optimal water label. Second, the out-
lier sensitivity of the min-max distance measure is reflected in the ‘quality’ of
the manual label for the Windward Islands, which appears to ignore a further
removed island. Consequently, the manual label is a poor fit in the min-max

Table 1. Distance of the manual label to the island group for the different settings
(normalized in comparison to the optimal label placement for that setting). For each
combination of island group and label type (general or water), the distance of the label
that minimizes its respective measure best is underlined. Note that the manual label
may overlap the island group causing labels that are better than “optimal”.

Circular-arc min-max label

General label Water label

Centroid All Closest Centroid All Closest

Aleut. Isl 3.39 2.61 9.53 1.04 0.97 1.18

Antilles 1.42 1.51 1.57 0.93 0.84 1.07

Carol. Isl 1.71 1.73 1.78 1.68 1.66 1.72

Dalm. Isl 1.34 1.40 1.65 1.01 1.02 1.02

Hebrides 2.54 2.44 3.03 1.09 1.11 1.10

Wind. Isl 3.80 3.81 6.35 2.57 2.35 2.87
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distance measure. Finally, surprisingly, this preliminary test suggests that the
closest point of each island may not be as important as the furthest point or
centroid. We should take some care in interpreting these measures though, as
the closest point measure is also most easily influenced by a small change in the
label shape.

5 Discussion and Future Work

The time bounds we obtain are worst-case time bounds for optimal label place-
ment. They show that optimal placement can be done at least this efficiently.
The quadratic and cubic runtime bounds imply that we cannot expect interac-
tive label placement for high-detail island groups. This need not be a problem
as the geometry of the problem is likely only marginally affected by the exact
details of the island shapes, and line simplification can be applied in preprocess-
ing to reduce the input size. Alternatively, the algorithms could be adapted so
that the cubic running time does not show up for realistic inputs.

We sketch two possible extensions of our algorithms and investigate the pos-
sibilities for future work.
Min-Sum Distance. In Sect. 2 we presented two algorithms for straight-line
general and water labels using the min-max distance. Both can be extended
to the min-sum distance as follows. An optimal straight-line label must have
equally many islands placed to either side. Hence, for a fixed rotation, the optimal
(general) solution can be found in O(n log k) time. The optimal water label is
placed at the legal position closest to the above solution.

In both cases there always exists an optimal solution tangent to an island.
Thus, in dual space it is located on an edge of the arrangement. We compute
the arrangement in O((n + k2) log k) time and detect the faces having an equal
number of islands above and below it. We traverse the arrangement and update
the required information in constant time per face, resulting in O((n+k2) log k)
time to find the optimal general and water label.
Non-zero-Height Labels. For general labels, using a non-zero-height does not
change the solution. To place a water label of height h, we can offset all islands
by h/2 and compute a zero-height label. The vertices of the islands in primal
space, however, become circular arcs. Consequently, in dual space we have an
arrangement of curves. We can still compute the arrangement, the centerline, and
the closest legal segments in O(nk+k2 log k) time. A similar approach works for
the min-sum distance measure.
Future Work. We would like to lift the restriction that the full line or circle
must be free for water labels; the part used by the text would be enough. How-
ever, the degrees of freedom in the problem increase, and it is unclear whether
sufficiently efficient algorithms exist.

Alternatively, it would be interesting to see if we can relax the requirement
that a water label cannot have any overlap with the islands. Allowing the label
to overlap an outermost strip of fixed width for each island could easily be
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integrated in our approach. To achieve this, checks of intersection with the middle
annulus circle could simply be done with a negatively offset version of the islands.
When we instead would require that the label has a maximum amount of overlap
in total over all islands, finding the optimal water label is non-trivial.

We note that labeling bodies of water and channels is similar to labeling
island groups. In contrast to island group labeling though, we try to place the
label in the middle of the body of water or channel. We may achieve this by
maximizing the distance to the nearest points outside the body of water, while
avoiding any islands. Hence, a max-min distance measure (maximizing the min-
imum distance) may be more applicable.

Acknowledgments. Thanks to Sarah Lohr, Susanne Heuser, and Andreas Reimer
for providing us with the digitized maps.
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Abstract. Given an unlabeled road map, we consider, from an algo-
rithmic perspective, the cartographic problem of placing non-overlapping
road labels embedded in the roads. We first decompose the road network
into logically coherent road sections, i.e., parts of roads between two junc-
tions. Based on this decomposition, we present and implement a new and
versatile framework for placing labels in road maps such that the num-
ber of labeled road sections is maximized. In an experimental evaluation
with road maps of 11 major cities we show that our proposed label-
ing algorithm is both fast in practice and that it reaches near-optimal
solution quality, where optimal solutions are obtained by mixed-integer
linear programming. In direct comparison, our algorithm consistently
outperforms the standard OpenStreetMap renderer Mapnik.

1 Introduction

Due to the increasing amount of geographic data and its continual change, auto-
matic approaches become more and more important in cartography. This par-
ticularly applies to the time-consuming and demanding task of label placement
and much research has been done on its automation. Badly placed labels of fea-
tures of interest can easily make maps unreadable [4]. Depending on the type of
map feature, label placement is done differently. For point features (e.g., cities
on small-scale maps) labels are typically placed closely to that feature, while for
line features (e.g., roads, rivers) the name is either placed along or inside the
feature. The latter approach is also used for area features (e.g., lakes). Regardless
of the applied technique and feature type, labels should not overlap each other
and clearly identify the features [8].

The cartographic label placement problem has also attracted the interest
of researchers in computational geometry and has been thoroughly investigated
from both the practical and theoretical perspective [13, Chapter 58.3.1], [14].
While algorithms for labeling point features get a lot of attention, much less work
has been done on line features and area features. In this paper we address labeling
line features, namely labeling the entire road network of a road map. We take an
algorithmic, mathematical perspective on the underlying optimization problem
and build on our recent theoretical results for labeling tree-shaped networks [3].
We apply the quality criteria for label placement in road maps elaborated by
c© Springer International Publishing Switzerland 2016
J.A. Miller et al. (Eds.): GIScience 2016, LNCS 9927, pp. 308–322, 2016.
DOI: 10.1007/978-3-319-45738-3 20
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Fig. 1. The presented workflow. (a) The road network given by polylines (thin, blue
segments). (b) Phase 1: a graph G is created whose embedding is the simplified road
network; blue segments: road sections, red segments: junction edges. (c) Phase 2: cre-
ating the labeling using G. (d) A labeling produced by the OSM renderer Mapnik. The
six labels of road Osloer Straße are enclosed by red ellipses. (Color figure online)

Chirié [2] based on interviews with cartographers. They include that (C1) labels
are placed inside and parallel to the road shapes, (C2) every road section between
two junctions should be clearly identified, and (C3) no two road labels may
intersect. Similar criteria have been described in a classical paper by Imhof [4].

Variations of embedded labels have been considered in road maps before.
Chirié [2] and Strijk et al. [11, Chapter 9] presented simple, local heuristics
that place non-overlapping labels based on a discrete set of candidate positions
– in contrast we consider the problem globally applying a continuous sliding
model. Seibert and Unger [10] utilized the geometric properties of grid-based
road networks and proved that it is NP-complete to decide whether at least one
label can be placed for each road. For the same grid-based setting Neyer and
Wagner [6] evaluated a practically efficient algorithm that is not applicable for
general road networks.

Road labeling with embedded labels has also been considered for interac-
tive and dynamic maps. Maass and Döllner [5] provided a heuristic for labeling
interactive 3D road maps taking obstacles into account. Vaaraniemi et al. [12]
presented a study on a force-based labeling algorithm for dynamic maps consid-
ering both point and line features. Schwartges et al. [9] investigated embedded
labels in interactive maps allowing panning, zooming and rotation of the map.
They evaluated a simple heuristic for maximizing the number of placed labels.

For labeling point features a typical objective is to maximize the number
of non-overlapping placed labels, because every placed label enhances the map
with further information. While this is mostly true for point features, maximiz-
ing the number of labels is not the right objective for label placement of roads
since not every label that is placed necessarily contributes more information to
the map. For example, consider the placed labels of the road Osloer Straße in
Fig. 1(d). We can easily remove some of those labels without losing any informa-
tion, because the map user can still identify the same road sections; see Fig. 1(c).
In online map services, however, one often finds such redundant labels; see the
full version of this paper [7] for two examples. Some roads may have unnecessar-
ily many labels, which ma y in turn cause others to remain completely unlabeled.
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Hence, the user cannot identify such roads on the map, a real disadvantage if
headed for that road. Due to these observations we do not aim to maximize
the number of labels, but the number of labeled road sections. For the purpose
of this paper, a road section forms a connected piece of the road network that
logically belongs together, e.g., a part of a road between two junctions or a part
that distinguished by its color or width. Our algorithm, however, is independent
of the actual definition of road sections; any partition of the road network into
disjoint road sections can be handled. We say that a road section is labeled if a
label (partly) covers it.

As the underlying model for maximizing labeled road sections we re-use
the planar graph model that has been introduced in our theoretical compan-
ion paper [3]. In that paper we proved that labeling a maximum number of road
sections is NP-hard, even for planar graphs and if no road consists of multiple
branches. However, we presented a polynomial-time algorithm for the case that
the road graph is a tree. While this result for trees is mostly of theoretic interest
(road networks rarely form trees), we will show in this paper that our tree-based
algorithm can be used successfully as the core of an efficient and practical road
labeling algorithm that produces near-optimal solutions.

Contribution and Outline. We introduce a versatile algorithmic framework for
placing non-overlapping labels in road networks maximizing the number of
labeled road sections. We keep the algorithmic components easily exchangeable.
In Sect. 2 we discuss and expand the model introduced in [3]. Afterwards, we
present a workflow for labeling road networks in two phases; see Fig. 1.

Phase 1 (Sect. 3). We translate the given road network into a semantic rep-
resentation (an abstract road graph) that identifies pieces of the road network
that belong semantically together. To that end, we simplify the road network,
e.g., we merge lanes closely running in parallel. By design this simplification
maintains the overall geometry of the road network and only merges structures
in the data that should not be labeled independently. Phase 1 is not part of the
labeling optimization process.

Phase 2 (Sect. 4). Based on the abstract road graph, we create an actual
labeling using one of three algorithms: a naive base-line algorithm, a heuristic
extending our tree-based algorithm [3] and a mixed-integer linear programming
(MILP) formulation.

As proof of concept we implemented the core of the framework only tak-
ing the most important cartographic criteria into account. However, with some
engineering it can be easily enhanced to more complex models, e.g., enforcing
minimum distances between labels, abbreviating road names, or using alterna-
tive definitions of road sections. In Sect. 5 we present a detailed evaluation of
our framework on 11 sample city maps. Due to its availability and popularity in
practice, we compare our results against the standard OpenStreetMap (OSM)
renderer Mapnik as a representative of local heuristics; it uses a strategy similar
to [2,11]. We show that our tree-based algorithm is fast and yields near-optimal
labelings that outperform Mapnik.
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Fig. 2. Illustration of model and arising issues. (a) Sketch of a road network and its
abstract road graph. (b) Labels are possibly curvy and have sharp bends making the
text hardly legible. (c) Issue 2: two ways to represent bridges and tunnels in the
abstract road graph. (d) Issue 4: the text representation of labels may overlap, while
the curve representation in the abstract road graph does not. (Color figure online)

2 Semantic Representation of Road Networks

At any given scale, road networks are typically drawn as follows. Each road or
road lane is represented as a thick, polygonal curve, i.e., a polygonal curve with
non-zero width; see the background of Fig. 1(a). If two (or more) such curves
intersect, they form junctions. If two or more lanes of the same road closely
run in parallel they merge to one even thicker curve such that individual lanes
become indistinguishable. We then want to place road labels inside those thick
curves. More precisely, a road label can again be represented as a thick curve
(the bounding shape of the road name) that is contained in and parallel to the
thick curve representing its road; see Fig. 1(c).

For the purpose of this paper it is sufficient to use a simplified representation,
which represents the road network and its labels as thin curves instead [3]. More
precisely, a road network is modeled as a planar embedded abstract road graph
whose edges correspond to the skeleton of the actual thick curves. In this model
a label is again a thin curve of certain length that is contained in the skeleton.
Following the cartographic quality criteria (C1)–(C3), we want to place labels,
i.e., find sub-curves of the skeleton, such that (1) each label starts and ends on
road sections, but not on junctions, (2) no two labels overlap, and (3) a maximum
number of road sections are labeled. Requiring that labels end on road sections
avoids ambiguous placement of labels in junctions where it is otherwise unclear
how the road passes through it. Note that this does not forbid labels across
junctions. From a labeling of the abstract road graph it is straight-forward to
transform each label back into its text representation by placing the individual
letters of each label along the thick curves; see Fig. 2(a).

Abstract Road Graph Model. We have introduced the abstract road graph in [3],
but for the convenience of the reader we repeat it here, see also Fig. 1(b) and
Fig. 2(a). A road network (in an abstract sense) is a planar geometric graph G =
(V,E), where each vertex v ∈ V has a position in the plane and each edge {u, v} ∈
E is represented by a polyline whose end points are u and v. Each edge further
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has a road name. A maximal connected subgraph of G consisting of edges with
the same name forms a road R. The length of the name of R is denoted by λ(R).
Each edge e ∈ E is either a road section, i.e., the part of a road in between two
junctions, or a junction edge, which models road junctions. Formally, a junction
is a maximal connected subgraph of G that only consists of junction edges.
Typically, when two roads cross, a junction is a star with one center vertex and
four outer vertices, but more complex junctions are possible. We require that no
two road sections in G are incident to the same vertex and that vertices incident
to road sections have at most degree 2. Thus, the road graph G decomposes into
road sections, separated by junctions.

We say a point p lies on G, if there is an edge e ∈ E whose polyline contains p.
Hence, a polyline � (in particular a single line segment) lies on G if each point
of � lies on G. Further, � covers e, if there is a point of � that lies on e. If each
point of e is covered by �, e is completely covered. The geodesic distance of two
points on G is the length of the shortest polyline on G connecting both points.

A label of a road R is a simple open polyline � on G that has length len(�) =
λ(R), ends on road sections of G, and whose segments only lie on edges of R.
The start point of � is denoted as the head h(�) and the endpoint as the tail t(�).
Obviously, the edges that are covered by � form a path P� = (e1, e2, · · · , ek−1, ek)
such that e1, and ek are (partly) covered and e2, . . . , ek−1 are completely covered
by �. If ei is a road section (and not a junction edge), we say that ei is labeled
by �. We restrict ourselves to well-shaped labels, i.e., labels that are not too
curvy or do not contain broken type setting due to sharp bends; see Fig. 2(b).
Similar to Schwartges et al. [9], we apply a local criterion to decide whether
a label is well-shaped; see also [7]. A labeling L for a road network is a set of
mutually non-overlapping, well-shaped labels, where two labels � and �′ overlap
if they intersect in a point that is not their respective head or tail.

Following the criteria (C1)–(C3), the problem MaxLabeledRoads is to
find a labeling L that labels a maximum number of road sections, i.e., no other
labeling labels more road sections. In [3] we showed that MaxLabeledRoads
is NP-hard in general, but can be solved in O(|V |3) time if G is a tree.

Shortcomings for Real-world Road Networks. While the abstract road graph
model allows theoretical insights, we cannot directly apply it to real-world road
networks. Due to the following issues, we need to invest some effort in a pre-
processing phase (see Sect. 3) to guarantee that the resulting labels in the text
representation do not overlap, look nice and are embedded in the roads’ shapes.

Issue 1: If lanes run closely in parallel, their drawings in the road network
merge to one thick curve and individual lanes become indistinguishable. Hence,
in our abstract model, such lanes should be aggregated to a single road section
that represents the skeleton of the merged curve, and labels should be contained
in it; see Fig. 1(c).

Issue 2: Real-world road networks are not planar, but edges may cross,
namely at tunnels and bridges; see Fig. 2(c). To avoid overlaps between labels
placed on those road sections, we either can model the intersection as a regular
junction of two roads or we split one into two shorter road sections that do not
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Fig. 3. Illustration of the steps applied in Phase 1. Segments of the same thickness and
color have the same road name. For more details see the description of Phase 1. (Color
figur online)

cross the other road section. In both cases the road graph becomes planar. For
our prototype we use the first variant (also used by Mapnik), because more road
sections can be labeled.

Issue 3: In real-world road networks some road sections are possibly so long
that the label should be repeated after appropriate distances.

Issue 4: Labels have a certain font size so that when transforming an abstract
label curve into its text representation, labels of different roads may overlap due
to their road sections being too close; see Fig. 2(d).

3 Phase 1 – Construction of Abstract Road Graphs

The first phase of our framework consists of transforming the input road network
data into an abstract road graph while resolving the four issues mentioned in
Sect. 2. Typically, road networks are given as a set of polylines that describe
the roads and road lanes. Individual polylines do not necessarily form semantic
components such as road sections. So as a first step, we break all polylines down
into individual line segments (whose union forms the road network). Let L be
the set of all these line segments. We further require that each line segment
l ∈ L is annotated with its road name rn(l), the stroke width st(l) and the
color co(l) that are used to draw l, and finally the font size fs(l) that shall be
used to display the name. We say that two line segments l, l′ ∈ L are equally
represented if st(l) = st(l′) and co(l) = co(l′). We assume that fs(l) < st(l) for
any l; otherwise we set st(l) := fs(l).

The workflow consists of the following five steps; see Fig. 3. (1) Identifi-
cation. Identify single road components, i.e., sets of line segments in the road
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network data that have the same name, are equally represented, and form a con-
nected component. (2) Simplification. Simplify each road component such that
lanes running closely in parallel are aggregated. (3) Planarization. Replace
bridges and tunnels by artificial junctions. (4) Transformation. Transform the
segment representation into an abstract road graph. (5) Resolving Overlaps.
Identify mutual overlaps of road sections and block them for label placement.

Below we describe each step in more detail. We define the hull of a line
segment l ∈ L to be the region of points whose Euclidean distance to l is at
most st(l); see Fig. 3(a). The hull of a polyline is then the union of its segments’
hulls. We approximate hulls by simple polygons.

Step 1 – Identification. For each road name n, each color c and each
font size f we define the intersection graph of the hulls of the line segments
Ln,c,f = {l ∈ L | rn(l) = n, co(l) = c and fs(l) = f}. In this intersection
graph each hull is a vertex and two vertices are connected if and only if the
corresponding hulls intersect. In each (non-empty) intersection graph we identify
all connected components, which we call road components; e.g., in Fig. 3(a) the
blue segments form a road component. Thus, based on L we obtain a set C of road
components. By definition, each component C ∈ C has a unique name rn(C),
stroke width st(C), color co(C) and font size fs(C).

Step 2 – Simplification. For each road component C ∈ C we geometrically
form the union of the according hulls. Thus, the result is a simple polygon P
(possibly with holes) describing the contour of the road component; see Fig. 3(b),
top. Following Bader and Weibel [1] we use the conforming Delaunay Triangu-
lation of P to construct a skeleton as a linear representation of C. In this way,
after some further simplifications (see Fig. 3(c)), we obtain a skeleton for each
component C such that labels centered on the skeleton are guaranteed to be
contained in P . This resolves Issue 1. We annotate each skeleton edge with the
name, stroke width, color and font size of C. For more details see [7].

Step 3 – Planarization. So far polylines describing the skeletons of dif-
ferent road components may intersect at other points than their end points,
e.g., polylines representing bridges and tunnels may cross other polylines. As
motivated in Sect. 2, we subdivide these polylines to resolve intersections; see
Fig. 3(d). More precisely, if two line segments pq and rs of two polylines inter-
sect at a point t, we replace them by the four segments pt, tq, rt and ts. We
do the intersection tests with a certain tolerance to identify T -crossings safely.
However, this may yield short stubs that protrude junctions slightly; we remove
those stubs. This resolves Issue 2 and yields a set of annotated polylines only
intersecting in vertices.

Step 4 – Transformation. Next we create the abstract road graph from
the polylines of the previous step. As a result of Step 3 we know that any two
polylines intersect only in vertices. We first take the union of all polylines, iden-
tify vertices that are common to two or more polylines and mark these vertices
as junction seeds. This induces already a planar graph G = (V,E) with polyline
edges whose vertices V are either junction seeds or have degree 1. It remains to
partition the edges of G into road sections and junction edges. Initially, we mark
all edges as road sections. We distinguish two types of junction seeds in G.
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If a junction seed v has degree at least 3, only two of its incident edges e and
e′ belong to the same road R and all other incident edges belong to different
roads (and have a different road type than R) then we do not create any junction
edges at v, see Fig. 3(e), small box. Since R is the only road that may use the
junction at v and it is visually clear that all other roads end at v we can safely
treat v as an internal vertex of a road section of R. So we disconnect all incident
edges of v except e and e′ from v and let each of them end at its own slightly
displaced copy of v. The edges e and e′ are merged at v and the new edge remains
a road section. This resolves the situation as desired.

For all other junction seeds we create junction edges as follows. Let v be a
junction seed and let Ev be the set of edges incident to v. We intersect the hulls
of all edges in Ev and project their intersection points onto the corresponding
edges, see Fig. 3(f). For each edge e ∈ Ev we determine the projection point pe

that is farthest away from v (in geodesic distance). If the distance between pe

and v exceeds a given threshold δ, we shift pe to the point on e that has distance
δ from v. Now we subdivide e at pe and mark the edge {v, pe} as a junction
edge; the other edge at pe (if non-empty) remains a road section. The threshold
δ ensures that roads running closely in parallel are not completely marked as
junction edges. Figure 3(g) shows the resulting abstract road graph.

To resolve Issue 3 we subdivide road sections whose length exceeds a certain
threshold (in our experiment 350 pixels) by inserting a very short junction edge.

Step 5 – Resolving Overlaps. By Step 2 the hulls of edges that belong
to the same road component do not overlap. However, if two sections of different
roads run closely in parallel, their hulls (and hence their labels) may overlap.
We identify overlaps of the hulls of non-incident edges in G and block the cor-
responding parts of the edge whose road is less important for placing labels;
ties are broken arbitrarily. More complex approaches using road displacement
could be applied, however, we have chosen a simple solution. By design hulls of
incident edges may only overlap if both are junction edges; those overlaps are
handled by the labeling algorithms; see Sect. 4. This resolves Issue 4.

4 Phase 2 – Label Placement in Road Graphs

In this section we present the four different methods for solving MaxLabeled-
Roads that we subsequently evaluate in our experiments in Sect. 5. Further-
more, we describe a technique for decomposing road graphs into several smaller,
independent components that may speed up computations.

4.1 Labeling Methods

BaseLine. An obvious base-line heuristic to obtain lower bounds is to simply
place a well-shaped label on each individual road section that is long enough to
admit such a label without extending into any junctions. We use this approach
to show that it is beneficial to position labels across junctions.

Mapnik. Mapnik (http://mapnik.org) is a standard open source renderer
for OpenStreetMap that includes an road labeling algorithm. The algorithm

http://mapnik.org
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iteratively labels so-called ways, which are polylines describing line features in
OpenStreetMap. Along each way it places labels with a certain spacing and locally
ensures that labels do not intersect already placed labels of other ways. It does not
use any semantic structure from the road network (e.g., road sections), but relies
on how the contributors of OpenStreetMap modeled single ways. We may run the
rendering algorithm and extract all placed labels from its output.

Tree. The tree-based heuristic makes use of our recently proposed algorithm that
optimally solves MaxLabeledRoads if G is a tree [3]. The basic idea for trees is
that a placed label splits the tree into several independent sub-trees, which then
are labeled recursively. Using dynamic programming we reuse already computed
results so that the algorithm’s complexity becomes polynomial, namely O(|V |5)
running time and O(|V |2) space. Applying some further intricate modifications we
improved this to O(|V |3) time and O(|V |) space, and O(|V |2) time if each road in
G is a path. We omit the details (see [3]) and use that algorithm as a black box.
If G is a tree, our heuristic optimally labels G. Otherwise it computes a spanning
tree T on G using Kruskal’s algorithm and computes an optimal labeling for T .
We construct T such that all road sections of G are contained in T . Since a road
section is only incident to junction edges, this is always possible. In Sect. 5 we show
that large parts of realistic road networks can actually be decomposed into paths
and trees without losing optimality.

Milp. In order to provide upper bounds for the evaluation of our labeling algo-
rithms, we implement a mixed-integer linear programming (MILP) model that
solves MaxLabeledRoads optimally on arbitrary abstract road graphs. The
basic idea is to discretize all possible label positions and to restrict the space of
feasible solutions to non-overlapping sets of labels; see also [7]. Although solving
a MILP is generally NP-hard, we can apply specialized solvers to find optimal
solutions for reasonably sized instances in acceptable times.

4.2 Decomposition of Road Networks

We may speed up both our heuristic Tree and the exact approach Milp by
decomposing the road graph into smaller, independent components to be labeled
separately, i.e., components whose individual optimal solutions compose to a
conflict-free optimal solution of the initial road graph. Such a decomposition
allows us to compute solutions in parallel with either of the above methods
and it further decreases the total combinatorial complexity. The decomposition
rules guarantee that the labelings of the components can always be merged
without creating any label overlaps. We name this technique D&C and sketch
the decomposition and composition steps; see also [7].

Step 1 – Decomposition. For many road sections, e.g., long sections, of
real-world road networks labels can be easily placed preserving the optimal label-
ing. We iterate through the edges of G and cut or remove some of them if one of
the following rules applies. As a result the graph decomposes into independent
connected components; see Fig. 4(a)–(d). Let e be the currently considered edge
and let R be the road of e.
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Fig. 4. Illustration of the rules. Edges of the same thickness and color belong to the
same road. (Color figure online)

Rule 1 . If e is a junction edge and it cannot be completely covered by a
well-shaped label, i.e., e is not well-shaped, then remove e.

Rule 2 . If e is a road section that ends at a junction that is not connected to
any other road section of R, then detach e from that junction.

Rule 3 . If e is a road section, a well-shaped label � fits on e, and e is at least
twice as long as �, then cut e at its midpoint.

Rule 4 . If e is a road section, a well-shaped label � fits on e, and e is connected
to a junction that is only connected to road sections of R that may completely
contain a well-shaped label, then detach e from that junction.

On each edge we apply at most one rule. If we apply Rule 3 or Rule 4 on an
edge e, we call e a long-edge. Afterwards, we determine all connected components
of the remaining graph G′, which are then independently labeled.

Step 2 – Label Placement. For the constructed components we compute
solutions in parallel with either of the above methods.

Step 3 – Composition. Finally, we compose the labelings of the second step
to one labeling. Due to the decomposition, no two labels of different components
can overlap. If a long-edge e is not labeled, we place a label on it, which is
possible by definition. We adapt the algorithms of Step 2 such that they do
not count labeled road sections that were created by Rule 3 , but we count the
corresponding long-edge in this step.

5 Evaluation

We evaluate our framework and in particular the performance of our new tree-
based labeling heuristic by conducting a set of experiments on the road networks
of 11 North American and European cities; see Table 1. While the former ones are
characterized by grid-shaped road networks, the latter ones rarely posses such
regular geometric structures. Since the road networks in rural areas are much
sparser than those of cities, we refrained from considering these networks and
focused on the more complex city road networks. We extracted the abstract road
graphs from the data provided by OpenStreetMap1. We applied the spherical
Mercator projection ESPG:3857, which is also known as Web Mercator and used
1 openstreetmap.org.

https://www.openstreetmap.org
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Table 1. Statistics for Baltimore (BA), Berlin (BE), Boston (BO), Los Angeles (LA),
London (LO), Montreal (MO), Paris (PA), Rome (RO), Seattle (SE), Vienna (VI) and
Washington (WA) for zoom 16. OSM : number of input segments in thousands. Segm.:
percentage of segments after Phase 1, Step 3 in relation to input segments. Graph:
number of road sections after Phase 1 in thousands. Time: running time for Phase 1.

European cities North American cities

BE LO PA RO VI BA BO LA MO SE WA

OSM 225.0 563.4 292.5 117.0 119.9 332.1 225.0 327.0 161.4 433.1 103.9

Segments 55 73 62 62 54 40 50 67 72 59 37

Graph 37.9 105.4 49.9 15.4 18.9 33.8 27.8 80.6 40.2 77.1 11.4

Time (sec.) 21 65 32 12 11 28 21 44 21 42 9

Table 2. Speedup: ratio of running times of two algorithms. Quality: ratio of the
number of labeled road sections computed by two algorithms.

Ratio European cities North American Cities

BE LO PA RO VI BA BO LA MO SE WA Avg.

Speedup Milp
D&C+Milp 3.44 3.07 2.51 1.71 3.12 1.44 2.33 1.3 1.79 3.1 1.32 2.29

Tree
D&C+Tree 1.77 1.8 1.73 1.62 1.71 1.57 1.71 1.37 1.75 1.68 1.35 1.64
D&C+Milp
D&C+Tree 2.82 2.32 3.33 2.54 2.74 6.84 3.06 21.59 6.36 5.32 10.59 6.14

Quality D&C+Tree
Tree 1.01 1.0 1.0 1.0 1.01 1.01 1.0 1.01 1.02 1.01 1.02 1.01

D&C+Tree
Milp 1.0 1.0 0.99 0.99 0.99 0.96 0.99 0.96 0.97 0.97 0.91 0.97

Mapnik
Milp 0.74 0.85 0.83 0.91 0.76 0.71 0.8 0.62 0.61 0.8 0.68 0.75

BaseLine
Milp 0.58 0.49 0.4 0.38 0.48 0.39 0.42 0.39 0.46 0.37 0.24 0.42

D&C+Tree
Mapnik 1.36 1.19 1.2 1.09 1.29 1.37 1.25 1.55 1.58 1.21 1.33 1.31

by several popular map-services. We considered the three scale factors 4.773,
2.387 and 1.193, which approximately correspond to the map scales 1:16000,
1:8000, 1:40002. Further, they correspond to the zoom levels 15, 16 and 17,
respectively, which are widely used by map services as OpenStreetMap. Those
zoom levels show road networks in a size that already allows labeling single
road sections, while the map is not yet so large that it becomes trivial to label
the roads. We applied the standard drawing style for OpenStreetMap, which
in particular includes the stroke width and color of roads as well as the font
size of the labels. Further, this specifies for each zoom level the considered road
categories; the higher the zoom level the more categories are taken into account.

Our implementation is written in C++ and compiled with GCC 4.8.4 using
optimization level -O3. MILPs were solved by Gurobi3 6.0. The experiments were
performed on a 4-core Intel Core i7-2600K CPU clocked at 3.4 GHz, with 32 GiB
RAM. The D&C-approach labels single components in parallel. For computing
the Delaunay triangulation we used the library Fade2d4.

2 wiki.openstreetmap.org/wiki/Zoom levels.
3 www.gurobi.com.
4 www.geom.at.

http://wiki.openstreetmap.org/wiki/Zoom_levels
www.gurobi.com
www.geom.at
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Fig. 5. (a) Running times in seconds of the algorithms (logarithmic scale). (b) Percent-
age of labeled road sections over all zoom levels broken into the different algorithms.

For each city and each zoom level we applied the algorithms BaseLine,
Tree, D&C+Tree, Milp and D&C+Milp. We adapted the algorithm such
that short road sections (shorter than the width of the letter W) are not counted,
because they are rarely visible. Further, we let Mapnik (Version 3.0.9) render
the same input. For each label we identified for each of its letters the closest road
section r with the same name and counted it as labeled. Since Mapnik does not
optimize the labeling by the same criteria as we do, we compensate this by also
counting neighboring road sections as labeled if the junction in between them is
not incident to any other road section. This accounts for those long road sections
that we split artificially to resolve Issue 3.

The raw data of our experiments is made available on i11www.iti.kit.edu/
roadlabeling. On this page we also provide interactive maps of the cities Berlin,
London, Los Angeles and Washington, which present the computed labelings.

Phase 1. With a maximum of 67 s (London, zoom 17) and 27 s averaged
over all instances, Phase 1 can be applied on large instances in reasonable time.
During Phase 1 the number of segments is reduced to between 40% and 83%
of the original instance (measured after Step 3, before creating junction edges);
see also [7]. This clearly indicates that the procedure aggregates many lanes,
since by design the approach does not change the overall geometry, but the
simplification maintains the shape of the original network. This is also confirmed
by the labelings; see Fig. 1(b)–(c) and interactive maps.

Phase 2, Running Time. We first consider the average running times over
all zoom levels; see Fig. 5(a). We did not measure the running times of Mapnik,
because its labeling procedure is strongly interwoven with the remaining render-
ing procedure, which prevents a fair comparison. As to be expected Milp is the
slowest method (max. 126 s, Los Angeles, ZL 15), while BaseLine is the fastest
procedure (max. 0.17 s). Combining Milp with D&C yields an average speedup
of 2.29 over all instances and a max. speedup of 3.44; see Table 2.

The algorithm Tree needs less than 4.7 s and its median is about 1.3 s.
Hence, despite its worst-case cubic asymptotic running time, it is fast in practice.

http://i11www.iti.uni-karlsruhe.de/roadlabeling/
http://i11www.iti.uni-karlsruhe.de/roadlabeling/
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Fig. 6. Percentage of labeled road sections broken down in zoom levels and algorithms.
The width of the bars (thin, medium, wide) corresponds to the zoom level (15, 16, 17).

Similar to Milp, it is further enhanced by combining it with D&C for a speedup
of 1.64 with respect to Tree, and an average speedup of 6.14 with respect to
D&C+Milp; see Table 2. In the latter case it even has a maximum speedup of
about 21.6. Since decomposing and composing the labelings is done sequentially,
the theoretically possible speed up using D&C is not achieved.

If we break down the running times into single zoom levels, we observe similar
results; see also [7]. Since with increasing zoom level the instance size grows, for
most of the algorithms also the running time increases. Only for North American
cities and Milp do we observe that the running time for instances of smaller
zoom levels are higher than for larger zoom levels.

Phase 2, Quality. First we analyze the average percentage of labeled road
sections over the three zoom levels; see Fig. 5(b). As an upper bound, Milp,
which provably solves MaxLabeledRoads optimally, yields results from 46.2%
(Rome) to 80.3% (Montreal). Considering zoom levels independently, we obtain
a minimum of 27.5% (Rome, ZL 15) and a maximum of 91.7% (Montreal, ZL
17). We think that the wide span is attributed to the different structures of road
networks and road names, e.g., Rome has a lot of short alleys and long road
names. Hence, many road components are too short or convoluted to contain a
single label. Abbreviating road names could help to overcome this problem.

The algorithm D&C+Tree yields marginally better results than Tree, but
only 1% on average, see Table 2. Comparing D&C+Tree with Milp we observe
that D&C+Tree yields near-optimal results with respect to our road-section
based model. On average it reaches 97% of the optimal solution; see Table 2.
While the quality ratio is only 91% for Washington, more than half of the
instances are labeled with a quality ratio of ≥99 %. For European cities the per-
centage of road sections that belong to components that are optimally solved by
Tree (long edges, paths, and trees) is notably higher (88.3%) than for North
American cities (60.5%). Nonetheless, we obtain similar percentages of labeled
road sections for North American Cities. Hence, the heuristic computing a span-
ning tree of non-tree components is both fast and yields near-optimal results. The
additional implementation effort of Tree is further justified by the observation
that the naive way to place labels only on single road sections lags far behind;
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only 42% on average, 58% as maximum and 24% as minimum compared to the
optimal solution. Mapnik achieves on average 75% of the optimal solution and
a maximum of 91%. For more than the half of the instances Mapnik achieves at
most 76% of the optimal solution. So in direct comparison, D&C+Tree con-
sistently outperforms Mapnik. Moreover, D&C+Tree has a better utilization
of labels and achieves an average ratio of 1.61 labeled road sections per label,
compared to Mapnik with a ratio of 1.37; see also [7].

With increasing zoom level the number of labeled road sections is increased,
which is to be expected, since more road sections become long-edges; see Fig. 6
for four cities (similar results apply for the others). For each zoom level, we
observe similar results as described before: Tree and D&C+Tree achieve near-
optimal solutions and Mapnik labels considerably fewer road sections. However,
for smaller zoom levels the gap between Milp and Mapnik shrinks.

From a visual perspective, labels lie on the skeleton of the road network,
which is achieved by design; see Fig. 1(c) and the interactive maps. Instead of
unnecessary repetition of labels, labels are only placed if they actually convey
additional information. In particular, visual components are labeled, but not
single lanes that are indistinguishable due to the zoom level.

6 Conclusion

We introduced a framework for labeling road maps based on an abstract road
graph model that is combinatorial rather than geometric. We showed in our
experimental evaluation that our proposed heuristic for decomposing the road
graph into tree-shaped subgraphs and labeling those trees provably optimally
is efficient and effective. It has running times in the range of seconds to one
minute even for large road networks such as London with more than 100,000
road sections and achieves near-optimal quality ratios (on average 97 %) com-
pared to upper bounds computed by the exact method Milp. Our algorithm
clearly outperforms the labeling algorithm of the standard OSM renderer Map-
nik, with an average improvement in the number of labeled road sections of 31%.
Interestingly, Milp is able to compute mathematically optimal solutions within
a few minutes for all our test instances, even though it is slower by a factor of
about 6 compared to the tree-based algorithm. So for practical purposes there is
a trade-off between a final, but rather small improvement in quality at the cost
of a significant and by the very nature of Milp unpredictable increase in run-
ning time. We only implemented essential cartographic criteria to evaluate the
algorithmic core of our framework; further criteria (e.g., abbreviated names) and
alternative definitions of road sections can be easily incorporated. The frame-
work can be pipelined with labeling algorithms for other map features, e.g., after
placing labels for point features, one may block all parts of the road network cov-
ered by a point label and label the remaining road network such that no labels
overlap. While this allows the labeling of different types of features sequentially,
constructing a labeling of all features in a single step remains an open problem.
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7. Niedermann, B., Nöllenburg, M.: An algorithmic framework for labeling road maps.
CoRR. arXiv:1605.04265 (2016)

8. Reimer, A., Rylov, M.: Point-feature lettering of high cartographic quality: a multi-
criteria model with practical implementation. In: EuroCG 2014 (2014)

9. Schwartges, N., Wolff, A., Haunert, J.-H.: Labeling streets in interactive maps
using embedded labels. In: Advances in Geographic Information Systems (ACM-
GIS 2014), pp. 517–520. ACM (2014)

10. Seibert, S., Unger, W.: The hardness of placing street names in a Manhattan type
map. Theor. Compt. Sci. 285, 89–99 (2002)

11. Strijk, T.: Geometric algorithms for cartographic label placement. Dissertation,
Utrecht University (2001)

12. Vaaraniemi, M., Treib, M., Westermann, R.: Temporally coherent real-time label-
ing of dynamic scenes. In: Computing for Geospatial Research Applications (COM.
Geo 2012), pp. 17:1–17:10. ACM (2012)

13. van Kreveld, M.: Geographic information systems. In: Handbook of Discrete and
Computational Geometry, 2nd edn., Chap. 58, pp. 1293–1314. CRC Press (2010)

14. Wolff, A., Strijk, T.: The map labeling bibliography (2009). http://liinwww.ira.
uka.de/bibliography/Theory/map.labeling.html

http://arxiv.org/abs/1605.04265
http://liinwww.ira.uka.de/bibliography/Theory/map.labeling.html
http://liinwww.ira.uka.de/bibliography/Theory/map.labeling.html


Measuring Cognitive Load for Map Tasks
Through Pupil Diameter

Peter Kiefer1(B), Ioannis Giannopoulos1, Andrew Duchowski2,
and Martin Raubal1

1 Institute of Cartography and Geoinformation, ETH Zürich,
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Abstract. In this paper we use pupil diameter as an indicator for mea-
suring cognitive load for six different tasks on common web maps. Two
eye tracking data sets were collected for different basemaps (37 par-
ticipants and 1,328 trials in total). We found significant differences in
mean pupil diameter between tasks, indicating low cognitive load for
free exploration, medium cognitive load for search, polygon comparison,
line following, and high cognitive load for route planning and focused
search. Pupil diameter also changed over time within trials which can
be interpreted as an increase in cognitive load for search and focused
search, and a decrease for line following. Such results can be used for the
adaptation of maps and geovisualizations based on their users’ cognitive
load.

1 Introduction

The cognitive load users must cope with has been identified as a major crite-
rion for the design of geographic visualizations and geographic human-computer
interfaces [5,7,9]. This has become even more relevant in the age of mobile com-
puting where geographic information is presented on constrained interfaces and
under stressful, distractive and multi-tasking conditions [11,14].

The notion of cognitive load was introduced by Cognitive Load Theory (CLT)
as a means of describing how the mental effort of learners is influenced by the
design of learning material [23,30,31]. The geovisualization community has con-
sidered CLT mainly with respect to extraneous cognitive load, which denotes
the cognitive load determined by the complexity of the information presenta-
tion, e.g., by the design of the map [5], or the number and type of animations
[12]. It has been argued that high cognitive load may lead to less efficient and
less effective map reading [20] and spatial orientation [28], as well as decreased
spatial learning [21]. Recently, the cognitive load of experts and novices during
a visual search task on a map was compared [24,25] and interpreted as differ-
ences in germane cognitive load, which ‘reflects the effort that contributes to the
construction of schemas’ [32] in permanent memory.
c© Springer International Publishing Switzerland 2016
J.A. Miller et al. (Eds.): GIScience 2016, LNCS 9927, pp. 323–337, 2016.
DOI: 10.1007/978-3-319-45738-3 21
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This paper takes a different view: for two map designs and one level of exper-
tise, it investigates the intrinsic cognitive load [31] of six different tasks people
typically perform on maps. We hypothesize that certain tasks (e.g., route plan-
ning) are more demanding for the working memory than others (e.g., comparing
the area of polygons), thus inducing a higher cognitive load. This hypothesis is
investigated through a user study on two different basemaps (Google MapsTM

and OpenStreetMap; 1,328 trials in total, taken from 37 participants).
We use the pupil diameter while performing these tasks as a measure for

cognitive load, which has repeatedly been shown to be a reliable indicator [2,13,
15,19]. Significant within-subject differences in the mean pupil diameter between
tasks were found which we interpret as evidence for differences in the intrinsic
cognitive load these tasks evoke. More precisely, we conclude on low cognitive
load for the task free exploration, medium cognitive load for search, polygon
comparison, line following, and high cognitive load for route planning and focused
search. A further analysis reveals changes of pupil diameter over time within
trials, suggesting an increase in cognitive load for search and focused search, and
a decrease for line following.

Our paper is the first using pupillometry for the analysis of eye tracking data
recorded during map interaction, thus aiming to contribute to “fundamental
empirical research and state-of-the-art evaluation methods within [...] geographic
information visualization and cognition” [8]. Further, since pupil diameter can
be measured in real-time, our results have the potential to be used for adaptive
maps [27] that change based on the user’s current cognitive load.

We proceed as follows: Sect. 2 provides background on cognitive load and how
it can be measured with eye tracking. Section 3 introduces our method, including
experimental design and stimulus selection for the eye tracking experiments. We
report and discuss results in Sects. 4 and 5, before concluding the paper in Sect. 6.

2 Related Work

2.1 Cognitive Load

Cognitive load was introduced in the 1980 s as a theory of learning [30], tar-
geted at an improvement of learning material. The theory suggests ‘that total
cognitive load is an amalgam of at least two quite separate factors: extraneous
cognitive load which is artificial because it is imposed by instructional methods
and intrinsic cognitive load over which instructors have no control’ [31, p. 307].

Sweller identifies element interactivity as the main reason for intrinsic cog-
nitive load [31] (we return to this in Sect. 5). Extraneous cognitive load, on
the other hand, is determined by the presentation of the material and can be
influenced by the instructor. For instance, the design of a map can be either
supportive or impedient for task solving [5]. The higher the intrinsic and/or the
extraneous load, the less capacity remains in working memory for germane cogni-
tive load – a third type of cognitive load which occurs during schema acquisition
and automation [26,32].
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Bunch and Lloyd distinguish subjective from objective ways of measuring
cognitive load. While the first are based on interviews or questionnaires, the lat-
ter can be achieved by measuring the performance of participants in a secondary
(parallel) task [5]. What they omit are ways of measuring cognitive load using
physiological sensors, such as eye tracking, galvanic skin response or electroen-
cephalogram [10]. The first of these – eye tracking – has been applied to map
tasks in recent work [24,25]: experts and novices were found to have different
average fixation durations and frequency which has been attributed to differ-
ences in germane cognitive load. In this paper, we focus on intrinsic cognitive
load of different tasks and utilize a different eye tracking measure: the pupil
diameter.

2.2 Cognitive Load and Pupil Diameter

We are not the first using eye tracking methodology in GIScience and Cartog-
raphy. Much progress has been made in topics such as map interpretation, map
interaction, spatial decision-making, and wayfinding (see [17], Sect. 2 for a com-
prehensive overview). In this paper, instead of analyzing where on a stimulus
someone is looking, we focus on pupil diameter - a novel approach in GIScience
and Cartography.

It has long been recognized that a relationship exists between cognitive load
and pupil diameter [4]. Although Hess and Polt [13] demonstrated correlation
between pupil dilation and problem difficulty, i.e., pupil size increases with prob-
lem difficulty, their early study was limited by several factors, including state
of the technology available at the time. Their study observations were based
on camera recordings of five participants’ eyes, with a 16-mm Arriflex camera
taking image samples at 2 frames per second. Given multiplication problems of
different complexity to solve, the pupils of each participant typically showed a
gradual increase in diameter, reaching a maximum dimension immediately before
a response was given, then reverting to the previous control size.

Pupil dilation, in response to a given assignment meant to elicit mental activ-
ity, is referred to as Task-Evoked Pupillary Dilation (TEPD) or Task-Evoked
Pupillary Response (TEPR) [1,3]. Using a television pupillometer sampling at
20 Hz, Ahern and Beatty [1] measured pupil diameter in a slightly updated repli-
cation of Hess and Polt’s mental arithmetic experiment. In all correct responses
to the assigned multiplication, pupillary responses showed a common pattern of
dilation followed by a slight constriction after presentation of the multiplicand.
A larger dilation was evoked by the multiplier; this increase in pupillary dila-
tion was maintained during the problem-solving period. More difficult problems
evoked larger pupillary dilations, reconfirming the relationship between problem
difficulty and task-evoked activation.

Here, we test the dilation reflex, i.e., the relationship of pupil dilation to vary-
ing task demands, in the context of mentally processing geographic information.
Instead of analog or digital cameras, we evaluate the utility of the pupil diame-
ter as produced by a head-mounted eye tracker. Klingner et al. [18] review past
uses of eye trackers for measuring TEPR. Confirming that an eye tracker can be
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used to measure cognitive load via measurement of pupil diameter, they suggest
measurement following a 2 s delay after stimulus onset. While they advocate
detailed timing and evaluation of short-term pupillary response, we adopt what
Klingner et al. refer to as a coarse measurement of the time-aggregated style of
data processing, i.e., an aggregated measurement of pupil diameter over a long
period of time. Such coarse measurements have been successfully applied in pre-
vious studies, such as Hyönä et al.’s experiment on language tasks of different
complexity [15, Experiment 1].

Marshall analyzes pupil diameter [22] suggesting that the dilation reflex
undergoes oscillatory changes during different levels of cognitive load. They claim
the measurement is reliable across hardware platforms and sampling rates [2].
Their approach relies on a sophisticated multiscale (wavelet) analysis of the
pupil diameter frequency, e.g., effectively measuring pupillary hippus, or pupil
unrest [29]. However, according to Beatty and Lucero-Wagoner [4], in addition
to reflexive control of pupillary size, the tiny, cognitively related, fluctuations in
pupillary diameter are visually insignificant and appear to serve no functional
purpose whatsoever. Whether characterization of pupil unrest is a reliable mea-
sure of cognitive load appears debatable.

Here we intend to evaluate pupil diameter in state space instead of frequency
space, a more straightforward and accessible method albeit potentially more
susceptible to confounds stemming from the light reflex, or the pupil’s response
to light levels.

3 Method

Data collection was performed in two separate studies following the same design,
setup, and procedure but differing in the basemap used: Google MapsTM for
the first study (GMaps), OpenStreetMap for the second (OSM). Both studies
took place in 2013. The GMaps dataset has previously been used for a paper
on activity recognition [16].

We are not studying map design here, i.e., we will not compare cognitive load
of GMaps vs. OSM. The rationale for using two datasets is rather to get an
indication on whether results generalize over at least two map designs.

3.1 Experimental Design

The study followed a within-subject design with one independent variable (task)
and one dependent variable (mean pupil diameter, measured in millimeters). Six
test conditions were considered for task (see also [16]):

T1 free exploration: exploring the map at free will. (“You have 20 s for exploring
the map. You can look at whatever you want.”)

T2 search: searching for a point of interest (“On the following map, please search
for X”, where X is given by its label.)

T3 route planning : planning the shortest route between two cities (“Do you see
X and Y? Please, plan the shortest route from X to Y.”)
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Fig. 1. Hardware setup for the two studies.

T4 focused search: searching for the 3 closest points of interest of a certain type
on a ‘you are here’-map (“Do you see your position (the blue dot)? Please,
search for the three closest Z”, where Z is an object type.)

T5 line following : counting intersections while following a road with one’s gaze
(“Do you see X? Please, follow X from North to South and count the num-
ber of intersections”, where X is a road name and cardinal directions were
systematically varied)

T6 polygon comparion: comparing the area of two lakes (“Do you see X and Y?
Please compare the areas of these two lakes and name the bigger one.”)

3.2 Participants

Participants for each of the two experiments were recruited through a university
mailing list. All were university students or already holding a university degree.
None of them used maps in their profession (i.e., no cartographer, geographer,
land planner etc.); therefore they can all be regarded as having the same level
of expertise. A monetary compensation of 15 CHF (Swiss Francs) was offered.

GMaps: 19 participants took part; 2 were excluded from further analyses
due to calibration errors. From the remaining 17 participants, 10 were female.
The average age was 28 years (SD: 8.7). OSM: 20 participants (11 female) took
part and none was excluded. The average age was 23.8 years (SD: 7.4).

3.3 Apparatus

Data were recorded using the SMI (v1.8) head-mounted eye tracking glasses
(30 Hz)1 and transmitted via a USB cable to a laptop. A chin rest was placed at
a distance of 65 cm to the stimulus in order to guarantee that the viewer would
look at the monitor along an axis perpendicular to the monitor plane. We used

1 http://www.smivision.com/en.html.

http://www.smivision.com/en.html
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two 24” widescreen LED monitors (1920 × 1200 pixels, Samsung S24A850DW ).
One monitor was used to display the stimulus, the other one for controlling
the experiment (see Fig. 1). The experiment was controlled through our own
software framework which chooses and presents a random set of stimuli, includ-
ing instructions and previews, plus an (optional) re-calibration screen (refer to
Sects. 3.4 and 3.5). Shutters and constant ceiling lights ensured the same lighting
conditions in the room over all trials.

3.4 Procedure

Participants were introduced to the experiment. They were told they would have
to solve simple tasks on maps. The eye tracker was mounted, and the partici-
pant was asked to rest her head on the chin rest. A three-point calibration was
performed. Each participant had 36 trials on different stimuli (refer to Sect. 3.5),
presented in randomized order, where no two successive trials were from the
same task. Each trial consisted of three phases:

1. Instruction phase: the participant was presented a textual description of the
task (in German) and could ask questions.

2. Preview phase: either a preview showing small parts of the stimulus (T3, T4,
T5, T6), or a black dot in the center (T1, T2) was shown. The goal of this
phase was to clearly separate the task to be analyzed from an orientation
activity beforehand. For instance, start and destination points for the route
planning tasks were shown here. At the end of the preview phase the par-
ticipant was asked to fixate a certain point in order to provide equal start
conditions for all participants.

3. Task phase: the stimulus was shown, and the eye movements recording was
started. The recording was either ended as soon as the participant indicated
with a move of her hand that she had solved the task, or after a maximum
of 20 s.

The experimenter checked the calibration after each trial. In case the calibration
had been lost, the previous trial was considered ‘not valid’ (excluded from later
analyses) and a re-calibration was performed.

3.5 Stimuli

Since we are not investigating map design here we chose stimuli from standard
web maps as used by people in their daily routines2. Two different web maps
were used as sources for the stimuli: Google MapsTM3 for the GMaps study,
and OpenStreetMap4 for the OSM study.

In order to ensure that participants see the exact same map extents, stimuli
were static images (screenshots) without the possibility of panning or zooming.
2 Studies on standard web maps have become quite common recently, e.g. [6].
3 Before the 2013 redesign (classic style); not available online any more (6 May 2016).
4 http://www.openstreetmap.org/.

http://www.openstreetmap.org/
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(a) T1: free exploration (b) T2: search

(c) T3: route planning (d) T4: focused search

(e) T5: line following (f) T6: polygon comparison

Fig. 2. Example stimuli (GMaps dataset). Zoom levels: 12 for (a, c, f), 18 for (b, d,
e). (Color figure online)

Participants were supposed to be unfamiliar with the geographic area shown
in the stimulus, but familiar with the language and cultural context to allow for
reasonable search tasks. Since all participants were from Switzerland and native
German speakers, we chose map extents from Germany and Austria. With a
brief interview after the experiment we asserted they were indeed unfamiliar
with the areas they had seen during the trials.

It is not possible to identify the representive instance of a certain task type,
which implies that complexity within a task type generally varies (we return
to this issue in Sect. 5). Stimuli were chosen in a way that all task instances
for one task type were of a similar difficulty level. More specifically, easy tasks
were avoided to ensure a certain task duration which would allow us to collect
a sufficient amount of data. Selection criteria are detailed in the following. One
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researcher selected stimuli following these criteria and discussed the selection
with a second researcher.

In total, each participant was shown 36 out of 40 stimuli (see Fig. 2 (a–f) for
examples from the GMaps study). Each stimulus was used only for one task
type and only shown once to a participant to avoid a learning effect:

T1 free exploration: 6 stimuli (3 urban, 3 rural). Criterion: similar density of
point and line features across the whole stimulus.

T2 search: 9 stimuli (urban). Criteria: the stimulus must contain at least 30
labeled points. Instances with the type as the specific point of interest to
look for must be present across the whole stimulus No large part of the map
must be covered by empty polygons that would allow for limiting the search
space, such as an ocean.

T3 route planning : 6 out of 8 stimuli (rural). Criteria: start and destination must
be located at the edges of the stimulus. One stimulus for each pair of opposite
cardinal directions (e.g., start in the North-East, destination in South-West).
The highest road priority present between start and destination must allow
for several (at least 5) possible route options of similar length (i.e., no clear
short route on a highway or similar).

T4 focused search: 5 stimuli (urban). Criteria: as for T2. The distance between
the third closest point to the ‘you are here’-dot and the fourth closest should
be similar. One stimulus with dot in the map center, and one for each of
North/South/East/West.

T5 line following : 6 out of 8 stimuli (urban). Criteria: the road to follow must
traverse the whole stimulus, starting and ending at opposite edges. One
stimulus for each pair of opposite cardinal directions. There must be at least
10 intersections along the road.

T6 polygon comparion: 4 stimuli (rural). Criteria: the two lakes to compare must
be located on opposite edges of the map. They should have similar size. One
stimulus for each pair of opposite cardinal directions.

Stimulus selection criteria were the same for both studies (GMaps and OSM),
therefore 80 stimuli were used in total.

The luminance was measured at the distance of the participant’s eyes to
the stimulus (accumulated local luminance) for each map stimulus. The results
showed that the luminance was constant throughout the whole experiment, with
a constant lux value of 270 (measured with testo 540, ISO 9001:2008). This
ensures changes in pupil diameter are not caused by different color, hue, or
contrast profile of the individual stimuli.

4 Results

As described in Sect. 3.4, some trials were considered ‘invalid’ due to calibration
issues. The number of valid trials (out of 1,404 recorded) used for the analysis
was 1,328 (T1: 222; T2: 332; T3: 220; T4: 185; T5: 221; T6: 148). The average
trial duration was 15.27 s (SD=5.55 s).
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The eye tracker recorded for each gaze (at 30 Hz) the pupil diameter in mil-
limeters which will be used as the basis for the following analyses.

4.1 Differences in Mean Pupil Diameter Between Tasks

The mean pupil diameter was calculated for every single task (aggregated tri-
als) performed by each participant and was used as input for within-subjects
analyses [15]. A Friedman test revealed that there were statistically significant
differences between the measured mean pupil diameter for the six map tasks,
χ2(5) = 89.649, p < .001. Post-hoc analyses with the Wilcoxon signed-rank
test were performed, revealing statistically significant differences between sev-
eral map tasks (see Table 1(a)). Median (IQR) pupil diameters for tasks T1 to
T6 were 2.53, 2.63, 2.68, 2.66, 2.64 and 2.61, respectively. Minimum and max-
imum pupil diameters for tasks T1 to T6 were (1.85, 3.09 ), (1.96, 3.47 ), (1.97,
3.59 ), (2.03, 3.65 ), (2.00, 3.55 ), (1.89, 3.44 ) (all in millimeters).

Figure 3(a) illustrates an ordering between the tasks, based on the above
results. An example is illustrated in Fig. 3(b), showing the results obtained from
a single user.

Analyses were also performed on the two different map services separately.
A Friedman test revealed that there was a statistically significant difference
between the measured mean pupil diameter for the six map tasks in each of the
two map cases, GMaps and OSM, χ2(5) = 46.681, p < .001 and χ2(5) = 63.629,
p < .001, respectively.

Post-hoc analyses with the Wilcoxon signed-rank test revealed statistically
significant differences between several map tasks (see Table 1(b) for GMaps
and Table 1(c) for OSM). Median (IQR) pupil diameters for task T1 to T6 for
GMaps were 2.64, 2.78, 2.90, 2.83, 2.81 and 2.95, respectively. Median (IQR)
pupil diameters for task T1 to T6 for OSM were 2.36, 2.49, 2.54, 2.53, 2.48
and 2.45, respectively.

4.2 Change in Pupil Diameter Within Trials

To evaluate the change in pupil diameter within each task, we follow to a certain
extent Klingner et al. [18]. That is, Klingner et al. compute the change in pupil
diameter (in mm), presumably with respect to a baseline signal. It is not clear,
however, how large a temporal window was used over which the baseline was
measured. They note that stimulus onset (spoken multiplicand) occurred 5 s
after measurement began. From the data reported, it appears that the baseline
measurement occurred over the first 2 s. Klingner et al. note that a smoothing
filter was used to smooth the pupil diameter data.

We follow Klingner et al. [18] by computing our within-trial pupil change with
respect to a baseline signal, captured over a variable-length temporal window
(0.5, 1.0, 1.5, and 2.0 s). Prior to our computation, following Klingner et al.,
we also apply a Butterworth filter to smooth the raw pupil diameter data (see
Fig. 5). We use a 2nd degree Butterworth filter set to 1/30 half-cycles per sample
(the point at which the gain drops to 1/

√
2 of the passband). Smoothing of the



332 P. Kiefer et al.

Table 1. Differences in avg. pupil diameter within participants between tasks. Read
the tables as follows: avg. pupil diameter for task in line is significantly smaller than
for task in column.

(a) All trials (both datasets combined).

T1 T2 T3 T4 T5 T6
Z p Z p Z p Z p Z p Z p

T1 - -5.288 <.001 -5.303 <.001 -5.137 <.001 -5.273 <.001 -4.956 <.001

T2 - - -3.432 <.001 -4.247 <.001 - -

T3 - - - - - -

T4 - - - - - -

T5 - - -2.663 <.01 -3.251 <.001 - -

T6 - - -2.663 <.01 -2.467 <.05 - -

(b) GMaps dataset.

T1 T2 T3 T4 T5 T6
Z p Z p Z p Z p Z p Z p

T1 - -3.621 <.001 -3.621 <.001 -3.621 <.001 -3.621 <.001 -3.574 <.001

T2 - - - -3.574 <.001 - -2.817 <.01

T3 - - - - - -

T4 - - - - - -

T5 - - - -2.627 <.01 - -2.533 <.05

T6 - - - - - -

(c) OSM dataset.

T1 T2 T3 T4 T5 T6
Z p Z p Z p Z p Z p Z p

T1 - -3.883 <.001 -3.920 <.001 -3.659 <.001 -3.845 <.001 -3.211 <.001

T2 - - -2.912 <.005 -2.539 <.05 - -

T3 - - - - - -

T4 - - - - - -

T5 - - -2.576 <.05 -2.240 <.05 - -

T6 - -3.845 <.001 -3.920 <.001 -3.509 <.001 -4.247 <.001 -

pupil diameter effectively denoises the signal by removing the high frequency
component, attributable to high frequency pupil diameter oscillation known as
pupil unrest or hippus [29].

For each of the temporal windows, we used a univariate type-III repeated-
measures ANOVA assuming a 2×6 mixed design where the independent vari-
ables were map type (between-subjects at two levels: GMaps, OSM) and task
(within-subjects at 6 levels; see Sect. 3.1). The dependent variable was mean
pupil change computed as the mean of the pupil diameter difference from the
mean diameter over the baseline time window, averaged over 20 s.

For a 0.5 s baseline (see Fig. 4(a)), the effect of task was significant
(F (5, 175) = 14.64, p < 0.01) but the map type was not (F (1, 35) = 1.38, p =
0.25, n.s.). The mean pupil difference was smallest during task T5 (M = −0.07),
and differed significantly from each of the tasks T2, T4, and T6 (p < 0.01).
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T1
free explora on

T2
search

T3
route planning

T4
focused search

T5
line following

T6
polygon comparison

(a) Ranking between tasks.
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(b) Example result for one user.

Fig. 3. Figure 3(a) ranks the tasks from significantly smaller (bottom) to signifi-
cantly bigger (top) mean pupil diameter based on the results illustrated in Table 1(a).
Figure 3(b) exemplifies the results obtained from a single user.
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Fig. 4. Change in Pupil Diameter (CPD) with different baseline windows.

Significant differences between mean pupil difference (at the p < 0.01 level) were
also observed between tasks T1 and T2, T2 and T3, and T2 and T6. Similar
results were observed at larger baseline windows of 1.0–2.0 s (see Figs. 4(b)–(d)).

5 Discussion

Although pupil diameter is a well-known indicator for cognitive load [2,13,15,19],
it is also influenced by other factors, most importantly luminance (which was
controlled for by the study setup) and fatigue. A potential effect of fatigue would
apply to all tasks which were shown in a randomized order, therefore it is safe
to assume the observed effect has been caused by differences in cognitive load.

Figure 3(a) summarizes our main results: we hypothesized differences in cog-
nitive load between 6 tasks, and we indeed were able to group them into 3
classes of significantly different mean pupil diameter, suggesting differences in
cognitive load. Setting up more detailed hypotheses from the beginning would
have been speculation since, to our knowledge, no complete and heuristically
proven cognitive model for these 6 map tasks exists yet.
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Fig. 5. Plots of representative pupil diameter and CPD (Tbaseline = 0.5 s) for user
performing task T1 (a, b, c) and T5 (d, e, f) on Google MapsTM.

Still, based on Sweller’s idea of intrinsic cognitive load being influenced by
the interactivity5 of elements relevant for the task [31], our results make sense:
it is no surprise that free exploration (T1) has the lowest cognitive load since
nothing needs to be kept in working memory. Polygon comparison (T6), with
medium cognitive load, can be solved by regarding the interaction of two map
elements (the two lakes). During line following (T5), the participant at any
moment needs to keep in working memory the road, the previous and current
intersection, and a counter. Search (T2), another task with medium cognitive
load, can be solved by keeping in memory all point objects that have been looked
at already and their positions. Focused search (T4) is similar to T2, but with
the additional requirement to estimate distances to the blue dot. Finally, a high
cognitive load for route planning (T3) is reasonable since it requires a large
number of map elements and their interaction to be considered.

The temporal within-trial analyses (Sect. 4.2) added further insights: they
indicate that the cognitive load of tasks T1, T3, and T6 remained on the level
it was at the start of the task. For instance, free exploration does neither have
higher or lower cognitive load in later phases of the task than at the beginning
(see Fig. 5 (a,b,c) for an example). Cognitive load of the two search tasks (T2,
T4) seems to increase, which is plausible since the number of visited points that
needs to be kept in working memory increases as well. The decrease of cognitive
load for T5 (refer to Fig. 5 (d,e,f)) is more difficult to interpret: peripheral vision

5 A potential definition of element interactivity here would be the number of elements
whose relation needs to be kept in working memory to solve a task successfully
without having to keep the relations to or between any other elements in memory.
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might play a role here. The next intersection(s) relevant for the counting is/are
most likely already perceived in the periphery in later phases of the task, which
is not true when the stimulus ‘pops up’ at the start of the task.

Is it possible that we are observing changes in extraneous or germane, instead
of intrinsic cognitive load [26,31]? Germane cognitive load would occur if the par-
ticipants learned schemata for the tasks. Our tasks are common, so it is unlikely
participants created new schemata for, say, route planning. Extraneous cognitive
load would be an issue if the design of the basemap were specifically supportive
or obstructive for some tasks. We approach this question by comparing the over-
all results (Table 1(a)) with the basemap-specific results (Tables 1(b, c)). The
differences between OSM and the overall results are small; instead of being in
the same ‘medium cognitive load’ class, T6 in OSM causes significantly less
cognitive load than T2 and T5 (which makes sense w.r.t. the number of inter-
acting elements). In GMaps, on the other hand, there are larger differences: T6
is now on the same (high) level as T4, while T3 is only significantly higher than
T1, but not than any other task. This result might be interpreted as Google
MapsTM being more supportive for route planning (T3), but less supportive for
polygon comparison (T6) than OpenStreetMap.

As described in Sect. 3.5, the stimuli were selected by two human raters
following a set of criteria with the aim of identifying ‘common’ cases for each
task (neither too easy nor too difficult). The results are thus generalizable to
tasks that are close to the introduced selection criteria, but probably do not
apply to all potential instances of a task type, such as route planning with start
and destination being directly connected by one street segment. Also, performing
the same task on a different scale (e.g., route planning in a city) might lead to
different results. Concerning generalizability over maps, the presented ranking
(see Fig. 3(a)) is based on the two tested popular map services. We do not claim
that the presented results will hold independent of any map service.

Though we controlled for familiarity with the geographic areas, we did not
control for familiarity with the map design. It can be assumed that participants
were more familiar with GMaps than with OSM, potentially leading to lower
cognitive load for GMaps. A comparison of cognitive load between map types,
however, was not the aim of this study.

We did not include a short delay before task onset (unlike, e.g., Klingner
et al. [18]). Instead, task onset began as soon as the stimulus appeared, and our
analyses relied on either coarse (aggregated) pupil diameter (Sect. 4.1, similar to
[15]) or within-trial changes (Sect. 4.2). Determination of the baseline temporal
window for the latter is difficult. In our case it appears that cognitive demand
begins fairly quickly. This gives credence to the use of a short temporal window.
On the other hand, the longer the temporal baseline window, the less change in
pupil diameter, on average, can be expected.

6 Conclusion

This paper is the first using pupil diameter as a measure for cognitive load while
solving map tasks. We applied this measure to two datasets collected through
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studies on different web maps. We were able to group 6 map tasks into 3 classes
of significantly different mean pupil diameter which we interpreted as differences
in cognitive load: low (free exploration), medium (search, polygon comparison,
line following), and high (focused search, route planning).

These results may motivate pupillometry to be used for future studies on
cognitive load in GIScience research, such as during wayfinding [17]. It would
further be interesting to investigate the correlation between the number of inter-
acting elements on a map and cognitive load more systematically (refer to Sect. 5,
[31]). Future gaze-contingent map interfaces may use our method to recognize
cognitive load in real-time and adapt accordingly.

Acknowledgement. Supported by the Swiss National Science Foundation (grant no.
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