On the Feasibility of TTL-Based Filtering
for DRDoS Mitigation

Michael Backes!, Thorsten Holz?, Christian Rossow®, Teemu Rytilahti2(®),
Milivoj Simeonovski®®™) and Ben Stock?®™)

! CISPA, MPI-SWS, Saarland University, Saarland Informatics Campus,
Saarbriicken, Germany
2 Horst Gortz Institute for IT-Security, Ruhr University Bochum, Bochum, Germany
teemu.rytilahti@rub.de
3 CISPA, Saarland University, Saarland Informatics Campus, Saarbriicken, Germany
stock@cs.uni-saarland.de, simeonovski@cs.uni-saarland.com

Abstract. A major disturbance for network providers in recent years
have been Distributed Reflective Denial-of-Service (DRDoS) attacks. In
such an attack, the adversary spoofs the IP address of a victim and sends
a flood of tiny packets to vulnerable services. The services then respond
to spoofed the IP, flooding the victim with large replies. Led by the idea
that an attacker cannot fabricate the number of hops a packet travels
between amplifier and victim, Hop Count Filtering (HCF) mechanisms
that analyze the Time-to-Live (T'TL) of incoming packets have been pro-
posed as a solution.

In this paper, we evaluate the feasibility of using HCF to mitigate
DRDoS attacks. To that end, we detail how a server can use active prob-
ing to learn TTLs of alleged packet senders. Based on data sets of benign
and spoofed NTP requests, we find that a TTL-based defense could block
over 75 % of spoofed traffic, while allowing 85 % of benign traffic to pass.
To achieve this performance, however, such an approach must allow for
a tolerance of £2 hops.

Motivated by this, we investigate the tacit assumption that an
attacker cannot learn the correct TTL value. By using a combination
of tracerouting and BGP data, we build statistical models which allow
to estimate the TTL within that tolerance level. We observe that by
wisely choosing the used amplifiers, the attacker is able to circumvent
such TTL-based defenses. Finally, we argue that any (current or future)
defensive system based on T'TL values can be bypassed in a similar fash-
ion, and find that future research must be steered towards more funda-
mental solutions to thwart any kind of IP spoofing attacks.

Keywords: IP spoofing - Hop count filtering - Reflective Denial-
of-Service

1 Introduction

One of the major hassles for network provides in recent years have been so-called
Distributed Reflective Denial-of-Service (DRDoS) attacks [5]. In these attacks,

© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 303-322, 2016.
DOI: 10.1007/978-3-319-45719-2_14

304 M. Backes et al.

an attacker poses as its victim and sends a flood of tiny packets to vulnerable
services which then respond with much larger replies to the victim. This is
possible because the Internet Protocol (IP) does not have means to protect
against forgery of source addresses in its packets, so-called IP spoofing. A variety
of different UDP-based protocols have been known to be vulnerable for this
category of attacks for long [22], but despite the efforts to locate and shut down
vulnerable services, they remain a problem even today.

To ensure that a server does not become unwilling participant in a DRDoS
attack, an appealing defense is to detect spoofed packets at the recipient. One
such technique is to validate certain IP header fields and drop packets that seem
unsound. Most promising, Cheng et al. [10] propose a technique called Hop
Count Filtering (HCF) to leverage the Time-to-Live (TTL) field encoded in the
IP header. The intuition behind a TTL-based filtering approach is that the route
of the actual source of the traffic and the claimed source is likely different, i.e.,
the spoofing source is in a different network than the spoofed IP address. This
is then also reflected in the TTL value, as the attacker’s route to the server
differs from the one of the spoofed system, and hence the number of hops is
different. Thus, it is seemingly possible to filter most spoofed traffic by dropping
any traffic which does not correspond to the expected TTL.

In this paper, we evaluate the feasibility of using HCF to defend against
DRDoS attacks. To do so, we analyze several means of probing for the TTL of
an alleged sender, using different types of probes towards a host in question as
well as horizontal probing of its neighbors. We show that this process is prone to
errors and frequently tedious in practice, raising the need for a certain tolerance
in TTL-based defenses. More precisely, we show that an error margin of +2 must
be allowed to enable 85 % of benign traffic to pass, while dropping more than
75 % of spoofed traffic.

Any TTL-based defense relies on the tacit assumption that an attacker can-
not learn the correct TTL when spoofing a packet. We, however, show that a
spoofing attacker can subvert TTL-based filters by predicting the TTL value—
without having access to the system or network of either server or impersonated
victim. Our idea is to leverage publicly available traceroute data to learn sub-
paths that an IP packet from I P4 to I P will take. We follow the intuition that
subpaths from IP4 to any other host on the Internet are quite constant and
can be learned by the attacker. Similarly, we show that the attacker can observe
that any packet to I Pp traverses a certain subpath. We augment such subpath
information with an approximation of how the packet is routed on the higher-
tier Internet layers. Given the tolerance required in TTL-based defenses, we can
estimate the initial TTL value that the attacker has to set to enable bypassing
of such defenses.

These “negative” results prove that TTL-based spoofing filters are unreli-
able and (if at all) a short-sighted solution only. Rather than attacking existing
defense systems, our findings conceptually show that TTL-based defenses can-
not work to thwart the outlined attacks. Hence, we see this paper as a valuable
contribution to steer future research towards more fundamental solutions, be it

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 305

alternative defenses against spoofing, or conceptual redesigns of the Internet and
its protocols.
To summarize, we make the following contributions:

— We discuss how a server can use active probing to measure the hops to hosts
which connect to its services (Sect. 3).

— We re-evaluate the concept of HCF to determine the necessary level of toler-
ance required for it to work in practice (Sect.4).

— We describe a methodology which leverages previous knowledge about routing
and statistical models to estimate the number of hops between an arbitrary
victim and an amplifier of the attacker’s choosing (Sect. 5).

— In doing so, we show that TTL-based defenses can be circumvented by an
attacker with as little as 40 globally distributed probes (Sect. 6).

2 Background

In this section, we discuss the background information on routing on the Internet,
Distributed Denial of Service attacks, and Hop Count Filtering as a countermea-
sure against such attacks.

2.1 Relevant Internet Technologies

The Internet is a network of interconnected sub-networks, which route packets
between them based on the established routes. These smaller networks are also
referred to as Autonomous Systems (AS). For a host in network A to connect to
a host in network B, a route must be found through potentially several different
ASes. Traffic between different autonomous systems is routed based on the Bor-
der Gateway Protocol, in which routers exchange information about accessible
IP ranges and the corresponding AS paths, i.e., routes to these ranges.

To ensure that a packet is not stuck in a routing loop, the Internet Proto-
col (IP) header contains a field dubbed Time-to-Live (TTL). When handling a
packet, “[...] every module that processes a datagram must decrease the TTL”
and whenever a packet’s TTL value reached zero, the packet must be discarded
by the routing device [19]. In practice, the TTL is implemented as a decreas-
ing hop count. The value is initially set by the sending host and depends on
the operating system, e.g., Mac OS X uses 64, Windows 128, and while Linux
distributions nowadays mostly use 64, some even use 255 [1]. When receiving a
packet, analysis of the TTL values therefore allows to approximate the number
of routing devices the packet has passed.

The concept of TTLs can also be used to learn the exact route of a packet
(tracerouting). To that end, the initiator of the tracerouting sends an IP packet
towards the intended destination, initially setting the TTL value to 1. When this
packet reaches the first hop, the TTL is decreased. According to the RFC, the
router must now drop the packet. In such a case, most routers will also send an
Internet Control Message Protocol (ICMP) error message to the original sender,

306 M. Backes et al.

indicating that the timeout of the packet has been exceeded. This response can
be used by the tracerouting machine to learn the IP address of the first hop. By
repeating this process with increasing TTL values, this method can be used to
learn all IP addresses of routers on the packet’s way to its destination.

2.2 Source Spoofing and DRDoS

In its original design, the Internet Protocol does not feature a means of verifying
the source of a packet. Since IP packets are only directed based on the desti-
nation, an attacker may generate an IP packet with a fabricated (or spoofed)
source address. This design flaw can be abused by an adversary towards several
ends. One example are Denial of Service (DoS) attacks, where an attacker tries
to either saturate the network link to a server or exhaust resources on the target
machine by, e.g., initiating a large number of TCP handshakes. To defend against
this, a network administrator may configure a firewall to drop packets from the
attacker. The attacker, however, can spoof IP packets from other machines to
bypass this defense mechanism.

Moreover, recent years have seen an increase in Distributed Reflective Denial
of Service (DRDoS) attacks. These attacks rely on spoofing packets in conjunc-
tion with services which respond to requests with significantly larger responses.
There are a variety of vulnerable protocols (described in [22,23]), but recently,
the most nefarious attacks have been misusing protocols such as DNS, NTP,
SSDP, or chargen. As an example, the Network Time Protocol’s (NTP) monlist
feature may generate a response that is more than 4,500 times larger than the
request. To abuse this, an attacker generates a flood of monlist requests to vul-
nerable servers while spoofing the source IP address to be that of the victim.
Subsequently, a vulnerable NTP server will send the response to the victim’s IP.
In doing so, the attacker can massively amplify his own bandwidth, while also
not revealing his real IP address in the process.

Although this kind of attack has been well-known for long [14,24] and
attempts have been made to shut down vulnerable systems used in such attacks
(e.g., [12]), they still pose a threat to online services. In order to fight such
attacks, several countermeasures dating back to 2001 [17] have been proposed.
One obvious defense strategy would be to limit the number of requests a client
may issue. However, while such mechanisms may help to protect against exces-
sive abuse of a single amplifier, Rossow’s [22] analysis shows that even with rate
limiting the aggregated attack bandwidth of some protocols is still an issue. This
and many other countermeasures have been evaluated and analyzed by Beitollahi
and Deconinck [7], hence we omit to discuss them further and refer the reader
to their paper. Instead, we discuss the hop count filtering mechanisms relevant
for our work in the following.

2.3 Hop Count Filtering

When a packet is received, its TTL depends on (i) the initial TTL value and
(ii) the number of hops the packet has traversed. While it is easy to forge an

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 307

IP header as such, Cheng et al. [10] propose to use the TTL to detect nefarious
packets. More precisely, they assume that an attacker trying to impersonate
a specific host cannot ascertain the hop count between the spoofed host and
the recipient of the packet. Based on this assumption, they present a reactive
defense against DDoS attacks. To detect an attack in which the sender spoofs IP
addresses to conceal his true location, they first require a period of observing the
legitimate upcoming traffic (learning state), where the victim builds a mapping
between the legitimate clients (IP addresses) and their respective hop count.
Once an attack is detected, the victim rejects all packets where the TTL values
do not match the recorded hop count. This way, the victim does not have to
allocate resources for handling incoming spoofed traffic.

To increase the accuracy of the hop count filtering (HCF), Mukaddam
et al. [15] proposed a modified version of HCF that aims to improve the learning
phase. Instead of recording only one hop count value per IP, they record a list
of all possible hop count values seen in the past. They justify the need for such
an extension by arguing that the hop count may change due to the use of differ-
ent routes. Indeed, such a system decreases the collateral damage by correctly
classifying legitimate traffic. On the other hand, however, this mechanism allows
an attacker more guesses in evasion attempts by ascertaining the correct TTL
value.

3 Re-evaluating the Feasibility of Hop-Count Filtering

As the previous work by Mukaddam et al. has shown, the original HCF approach
may be impaired by routing on the Internet. In addition, such an approach
requires a prior learning phase, e.g., through passive TCP handshake analysis,
to facilitate detection of spoofing. In the following, we investigate how far the
methodology from Cheng et al. can be extended to filter out spoofed traffic used
in DRDoS attacks. In contrast to the original HCF, this process cannot rely solely
on TCP handshakes from previous connections by the client, as protocols used
in DRDoS attacks, such as NTP or DNS, are connection-less. Simply dropping
all packets from any host without a previous TCP connection would render any
benign use of UDP-based services moot. Therefore, we investigate with what
margin of error TTLs for an alleged sender can be learned by the server to
evaluate the efficacy of TTL-based filtering on the Internet.

3.1 Protocol-Based Probing

The most intuitive way for a server to ascertain a TTL value of a client is to
receive an unspoofed packet from that host. This can be done after a success-
ful TCP handshake, as an established connection can only occur if the alleged
sender actually initiated the connection. Due to its connection-less nature, we
cannot rely on such a process for UDP. Instead, we need to prompt the alleged
sender for an unspoofed packet. To achieve this, we can rely on ICMP, TCP,
or UDP requests to the system in question. The ports we used in our work for

308 M. Backes et al.

TCP and UDP are derived from the most scanned port discussed by Durumeric
et al. [8]. We realize that it might not be feasible to send a plethora of probes
to an end host whenever a packet to a UDP-based service is received, as this
itself would be an amplification attack. Regardless, we want to investigate how
different protocols and techniques might be leveraged to learn the TTL.

One way of compelling the probed system to send a packet is to use ICMP.
ICMP echo can be used to measure the round trip time of a packet to a given
host. The TTL of the probe target can be extracted from the IP header of an
echo reply. In addition to the echo command, several operating systems also
implement the non-mandated timestamp command. This can be used in the
same fashion to induce a response from the probed system.

Additionally, the probing server can itself try to establish a TCP connection
to the alleged sender. The methodology is independent of the actual application
used underneath, since the TCP handshake is conducted by the operating system
before handing the socket to the underlying application.

In contrast to TCP, where no application data needs to be sent to the probed
host, most UDP-based services require protocol-specific data to be submitted.
As an example, DNS and NTP servers only react to datagrams which are con-
formant to the respective protocol. On the other hand, the UDP-based chargen
service “simply sends data without regard to the input” [20]. Therefore, we
send protocol-conformant packets to DNS and NTP ports, and random data to
chargen.

3.2 Interpreting Responses

In any of the cases described above, we may receive a positive or negative
response. In the following, we discuss these types of responses and indicate how
they can be used to extract the TTL from probed systems.

Positive Responses. When using ICMP, an echo or timestamp reply suffices to
extract the TTL value from the encapsulating IP packet. For TCP, if a service
listens on the probed port, the operating system will follow the three-way hand-
shake process and respond with a SYN/ACK packet. In the case of UDP, the
process differs slightly: when a service is listening on the probed port and the
incoming packet adheres to the specification of that service, it sends a response
back to the requesting system. Analogously to ICMP, the TTL value can be
extracted from TCP and UDP responses by simply examining the IP header.

Negative Responses. In addition to responses which indicate that the host is
up or a service is listening on the probed port, we can also leverage negative
responses or error messages to learn the TTL. For example, in cases where a
TCP port is not open, the host system may respond with a packet which has
the RST flag set. Assuming that the packet is usually generated by the probed
system (we discuss exceptions to this rule in Sect. 3.4), we can extract the TTL
value in the same fashion used for positive responses. For UDP, we leverage
ICMP Port Unreachable replies.

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 309

Next to these protocol-specific errors, we may also receive a message indicat-
ing that the host is not reachable. For example, the last router on the path can
issue an ICMP Host Unreachable message. In this case, given the assumption
that only the last router will send such a message, we can use the TTL from the
incoming packet and decrease it by one (since the original sender would have had
one more hop). ICMP also features a more generic Destination Unreachable mes-
sage; this, however, can be sent by any router on the path and therefore cannot
be used to conclusively calculate the TTL value. Next to these, we may receive
ICMP Communication Administratively Prohibited messages. Such a message
can either be sent by a router or the system itself when a packet is rejected by
the firewall.

3.3 Horizontal Probing

A probed host may not answer, e.g., because it is firewalled and drops any
incoming packets. In these cases, we may still gather valuable information on
the path to the host by probing neighboring hosts. A neighbor in this case is a
host which is located within the same subnet as the target. Although assuming
that each subnet consists of exactly 256 IPs is not correct, this measure can
still provide partial insight into the route and give a close estimate of the actual
TTL value. Therefore, we probe neighbors by changing the last octet of the IP
address 1, and use previous knowledge from hosts within the same /24 subnet,
as this is the smallest network section generally advertised and accepted via
BGP [18].

3.4 Caveats of Active Probing

There are several scenarios which can induce errors in probes. Typically, pri-
vate customers receive a router for their dial-up account, which uses Network
Address Translation (NAT) to allow multiple LAN clients access to a single
Internet connection. Unless these routers are configured to forward packets to a
machine behind the NAT, any response to the previously mentioned probes will
be generated by the router. As the router adds an additional hop (and hence
decreases the TTL by one) on the way from the NAT client to the server, the
TTL values will mismatch in such a case.

For negative responses, additional artefacts may skew the results. Specifically,
TCP resets or ICMP error packets may be generated by a firewall located before
the intended probe target. In such a case, the firewall itself must spoof the probed
IP to send these packets to ensure that the packet is attributed correctly on the
system which initiated the connection. Hence, we may assume that negative
responses are indeed generated by the probed system. Since we cannot learn the
number of hops between the firewall and probed system, using negative responses
can yield false results. We discuss the number of false results in Sect. 4.

As outlined before, the initial TTL value depends on the operating system of
the sending host. Considering an example in which a Windows client is located
behind a NAT router, which is running a Linux system with an initial TTL value

310 M. Backes et al.

of 255. Even though a packet originating from the Windows machine will only
have one additional hop on its way to the probing server, the TTL value received
by the probing system will greatly differ depending on whether the Windows or
Linux host responded to the probing request. To accommodate for this and for
horizontal probing, we normalize all TTL values to values between 0 and 63, i.e.,
TTL = TTL%64. As the maximum TTL of 255 is not divisible by 64, we first
increment TTL values above 128 by one to correct this discrepancy.

4 Probing Analysis

To evaluate how well active probing could be used in the wild to enable the
use of HCF, we set up two systems. First, we used a regular NTP server not
susceptible to DRDoS to attract benign clients. Second, we set up a honeypot
system running a vulnerable version of NTP to attract spoofing attackers. In the
following, we describe both data sets, discussing for what fraction of hosts we
could learn any TTL value, and comparing this to the TTL values of incoming
packets. Although we are using NTP servers for our evaluation, it is out of
convenience of getting both spoofed and non-spoofed clients for comparison.
In contrast, for protocols like chargen, getting benign traffic would have been
significantly harder. We end this section with a discussion on the implications
of the results of our analysis.

4.1 Benign Traffic

To capture benign traffic, we set up an NTP server that does not implement
monlist feature at all, and is therefore not susceptible to amplification vectors.
To attract NTP clients, we joined the NTP pool project. Note that the term
client refers to its role in NTP, i.e., such a host could either be an end user’s
computer or a server synchronizing its clock with us. Within hours, the server was
added to the public pool and started to receive NTP requests. We analyzed the
incoming traffic for patterns of suspicious behavior (especially dreaded monlist
requests). Our analysis showed that such requests were only issued in small
numbers by scanners (e.g., operated by research groups). As we did not respond
to such amplification requests and did not notice any suspicious activity, it is
highly unlikely that an attacker would choose our server for his amplification
attack. Hence, we deem this data set to consist exclusively of unspoofed traffic.

In total, we gathered data for 48 h, in which we received packets from 543,514
distinct IP addresses. In a first step, we probed each of these hosts immediately
after their first contact using the different types of probes outlined in Sect. 3.1.
In doing so, we could extract TTL values for 316,012 (58.1 %) for probed sys-
tems. The most successful type of probe was ICMP echo, which yielded a result
for 257,694 or 47.4% of the hosts. In comparison, the most successful TCP-
based, positive response were SYN/ACKs from TCP port 443 (HTTPS), which
accounted for a mere 31,966 (5.9%) of the hosts. For any UDP-based probes,
we only received negligible amounts of positive responses. Among the negative

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 311

o /a1 . 2 N 3

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of responsive clients

Fig. 1. Deviation differences for selected probe types

responses, ICMP Communication Prohibited for TCP port 4899 (Radmin) was
the most frequent message (113,058 or 20,8 %).

To find out how accurate these results actually are, we compared the nor-
malized TTL values to the ones from the incoming traffic. As stated before,
we assume that the traffic directed to the NTP server is indeed generated by
the alleged senders, i.e., the ground truth value for each sending host can be
extracted from these incoming packets. Initially, we consider all probes to a spe-
cific host for our analysis. In cases where the measured TTL values differ between
the probe types, we select the minimum value of any test. The intuition of this
is straightforward: whenever a firewall or router answers instead of the probed
system, the number of hops between them and our probing server is smaller.
Hence, by choosing the minimum TTL value, we ensure that we measure the
longest path between us and the host responding to the probe. Therefore, if the
probed system answers to one probe whereas all others are responded to by the
firewall, we still measure the accurate value for the system in question.

The results of applying this methodology on the data set are shown in Table 1.
We observe that, with respect to the total number of responding systems, 26.1 %
of the measured TTLs match the ground truth. Moreover, 92.2 % of the values
are within a threshold of +1, and almost 97 % within +2. In the following, we
analyze the results for specific tests in more detail, and discuss potential reasons
for the observed deviations.

Table 1. Accuracy of measured TTLs (direct probes only)

Deviation | Amount | Fraction | Cumulated fraction

+0 82,629 [26.1% 26.1%
+1 208,891 1 66.1% |92.2%
+2 14,623 | 4.6% 96.9%
+3 4,684 | 1.5% |98.4%

More 5,185 | 1.6% |100%

312 M. Backes et al.

The deviation between the measured and actual values is shown in Fig. 1 for
ICMP echo, Communication Prohibited to TCP port 4899, and SYN/ACK for
TCP port 443. We can observe that for ICMP echo, 12.8 % of measured TTLs
were correct, whereas an additional 78.8% were off-by-one, i.e., 91.6 % of the
measured TTLs were within a threshold of £1. For Communication Prohibited
on port 4899, we observe that 96.8 % of the values are within 41, whereas 91 %
are off-by-one. This appears natural to the scenarios we discussed: ICMP echo
requests will often be answered by routers and firewalls due to network address
translation. Although SYN on TCP port 443 was only responsive on 5.9 % of the
hosts, the results are quite interesting. We observe that for 42.2 % of the hosts
which responded to such a probe, the TTL value could be correctly measured.
In addition, another 45.9 % were off-by-one, resulting in 88 % of the values being
within a threshold of £1. We argue that this is caused by nature of TCP, i.e., we
only receive a SYN/ACK in case a service is listening on the probed system. This
can either occur if the connection directly reached the probed system, i.e., it is
not behind a NAT or the corresponding port is forwarded, or there could be a
chance that a public-facing administrative interface is being exposed for service
needs [2]. Therefore, it is plausible that such routers may respond to HTTPS
requests, explaining the high number of our off-by-one measurements.

Next to probing of the target system itself, we can probe neighboring hosts.
More specifically, we probe direct neighbors (IP +1) and additionally rely on
previous measurements aimed towards other hosts within the same /24 network.
In doing so, we find that both types of probing increase the coverage. In our
experiment, we found that directly probing neighbors increases the number of
measurable TTLs by 69,399, resulting in a total coverage of 73.4 %. Taking into
account all information from hosts within the same /24 network increases the
coverage more drastically (by 168,730 hosts), yielding TTL values for 91.6 % of
all hosts. At the same time, the accuracy remains similar, with 27 % of the probed
values matching the ground truth. For £1, we can correctly measure the TTL in
88.9 % of the cases, and 94.3 % of all measurements are within a threshold of +2.
Given these results for coverage and accuracy, we note that combining different
types of probing towards a single host with horizontal probing of the system’s
neighbors allows us measure the TTL within a threshold of + 2 for 86.4 % of all
connecting hosts.

4.2 Spoofed Traffic

Next to the benign data set, for which we can measure the TTL within a small
threshold for the majority of the hosts correctly, we wanted to investigate how
well HCF would be suited for spoofed traffic. To that end, we set up a honeypot
running a vulnerable version of NTP server prone to becoming an amplifier for
DRDoS attacks. To avoid unnecessarily harming the spoofed targets while still
pretending to be attractive to adversaries, the outgoing bandwidth was limited,
i.e., we answered to at most two monlist requests per host per minute. We did
not announce the IP address of this machine in any manner and hence assume
that no legitimate traffic would be directed to the host. Instead, incoming NTP

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 313

[Non-spoofed (single) [0 Non-spoofed (/24-subnet) I Spoofed (single) Il Spoofed (/24-subnet)

o
3

o o o o
w > o =

Percentage of responsive clients
o
N

o
[

0.0
o - o~) <~) © ~ © o o] o) <)
=1 — — - - -

Hop count deviation

Fig. 2. Deviation difference between spoofed and non-spoofed traffic

requests are either due to scanning, or spoofed packets sent by an attacker. In
a time-period of 96 h, we recorded 5,616 distinct alleged sender addresses, for
which we could gather direct probe results in 3,983 cases (70.9 %). This slightly
higher coverage (compared to the benign data) can be explained by the fact that
most attacks are targeting servers, which also are more likely to expose services
we actively probe for.

Before conducting any of our measurements, one property of the spoofed
traffic became apparent: more than 99 % of all incoming packets had an assumed
initial TTL of 255. This specific feature, however, should not be used solely to
detect spoofed traffic, since the initial TTL can be changed without much effort
by the attacker. Therefore, we normalized the TTL value as outlined before.

Figure 2 shows the comparison between the measured TTL values and the
TTL values extracted from incoming packets, for both benign and spoofed data
sets. While we can clearly observe that for the majority of benign clients, the
TTL can be guessed within a threshold of £2; we note that no such trend is
visible for spoofed traffic.

4.3 Implications

In this section, we outlined the results of our experiments on benign and spoofed
data sets to evaluate a feasible margin of error for HCF. With respect to those
data sets, we find that distinguishing between benign and spoofed traffic appears
to yield useful results when using a threshold of 2. The reasons for the impre-
cision of the measurements are manifold, e.g., when a client is behind a NAT
or incoming traffic to the machine is filtered by a firewall. Therefore, a TTL-
based defense mechanism must make a trade-off between false positives and
false negatives, respectively. Based on the data sets we analyzed, if a TTL-based
defense mechanism was to be deployed to protect a service against becoming an

314 M. Backes et al.

unwilling actor in an attack, over 85 % of the benign traffic could pass, while
more than 3/4 of spoofed packets could be dropped, thus avoiding to harm the
targets.

Depending on the type of attacked hosts, this distinction might be even easier
to make. Nevertheless, any TTL-based defense relies on one tacit assumption:
an attacker can not learn the correct TTL value for an arbitrary victim and
an amplifier of his choosing. Therefore, in the following section, we discuss the
feasibility of a method in which the attacker can learn the TTL value (within a
given threshold).

5 Methodology for Estimating Hop Count Value

So far we showed that deploying a TTL-based filtering at the server side would
require some tolerance interval to be functional and avoid collateral damage by
incorrectly classifying legitimate traffic. In this section, we assess if an attacker
can actually bypass the filtering by predicting the correct hop count value
between the hosts and properly adjusting the TTL value. That is, we present a
methodology for estimating the hop count value between amplifiers and victims.

5.1 Key Idea and Attacker Model

Our key idea lies on the observation that paths between arbitrary locations
to a selected destination share (small) segments of the path. We leverage the
fact that such path information can be learned by an attacker to estimate the
number of hops of a packet sent from one location to another. To learn subpaths,
we (i) probabilistically model known paths obtained via traceroutes, and (ii)
combine this knowledge with BGP routing information. Figure 3 shows our idea
for estimating the distance (number of hops) between an amplifier (M) and a
victim (V). For our methodology, we use the common approach for representing
the Internet, which is a graph where nodes are the autonomous systems and
edges are the peerings (routing links) between them. Additionally, we assign
weights to the nodes to denote the hop count number within the individual
AS. One way to build such a graph that illustrates the AS-level topology of the
Internet is to use available BGP data to discover the connectivity information for
the ASes. Nevertheless, studies have shown that BGP data is only available to a
limited extent, therefore the Internet AS-level topology is partially hidden [9,16].
However, our methodology does not primarily rely on the available BGP data,
but rather on the traceroute information an attacker can obtain. We use the
BGP data, when available, as a complement to the traceroute data in order to
discover the missing ASes, and to subsequently calculate the number of hops.
Our attacker (A) aims at evading any TTL-based filter or, at least, reduce its
effectiveness in mitigating amplification attacks. His main goal is to predict the
TTL value as close as possible to the correct one, such that he can craft requests
which are deemed to be legitimate to the server, i.e., amplifier. In theory, there
are few approaches that the attacker may follow to learn the correct TTL value.

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 315

Fig. 3. Approach to estimate the hops between amplifier (M) and victim (V)

First, he may learn the TTL value by actively or passively monitoring traffic
anywhere on the route, and then probe the destination in order to calculate
the remaining part of the route. This approach is neither realistic nor practical
because the attacker has to be present at every route R; between M; and the
victim V. Second, if the attacker can position a probe either in the network of
M or V, he can easily measure the TTL value by tracerouting to the other host.

For a more realistic scenario, we restrict the attacker’s capabilities. Figure 3
illustrates this attacker model. Similar to the reverse traceroute method [11],
our attacker is capable of probing from random, distributed locations and can
use any publicly available online resources to traceroute to the amplifier and to
the victim (e.g., RIPE Atlas [3] or looking glass servers). However, he does not
have control over the amplifier and not necessarily full control over the probes.

We restrict neither the location of the amplifiers nor the victims, i.e., they
can be located at arbitrary network locations. We assume that A can obtain a
set of amplifiers (e.g., NTP, DNS), all of which deploy TTL-based filtering and
respond to valid requests only!.

5.2 Methodology

We propose a methodology for estimating the distance between hosts on the
internet through an Exploratory Data Analysis (EDA)?. Our methodology is
comprised of three main components, namely, data collection, data processing,
and EDA. Figure4 illustrates the methodology we propose in this paper.

! We assume that the amplifiers have deployed HCF to protect against amplification
attacks, therefore “valid” protocol requests are those with matching TTL value.

2 Exploratory Data Analysis is not a method or a technique, but rather a philosophy
for data analysis that employs a variety of techniques.

316 M. Backes et al.

€

Extract the Find common
ground truth, patterns
A’é
(Build) €
ompare
a model P
Y
[Approximate
the TTL value

Fig. 4. Workflow of the methodology

Data
processing

Raw data
collection

RIPE DB

Data Collection. First, depicted in the data collection component, the attacker
collects traceroute data for the victim and the amplifier(s). The attacker launches
traceroutes to the targeted locations from a globally distributed set of hosts on
the Internet such as RIPE Atlas [3]. Note that the distribution of the selected
hosts is required to be global such that there will be a diversity of the paths,
allowing us to predict TTLs for arbitrarily chosen victims.

Data Processing. Second, in the data processing component, we have to ensure
that the relevant data collected in the previous stage is complete and usable.
In an ideal world, tracerouting returns a complete path including all the IP
addresses and ASes on the way up to the destination. In practice, the collected
data from the previous phase is usually imperfect, with a plethora of missing
connecting hops [13]. Such data can pose difficulties in effective data analysis;
therefore, we need to develop certain methods for efficient data scrubbing. First,
we discard all the traceroutes that are missing more than a certain percentage
(e.g., 50%) of the intermediate hops. Also, we ignore traceroutes that cannot
reach at least the AS of the destination. In the case where the destination address
belongs to the same AS as the last replying node, we make an intuitive assump-
tion that this is the last AS in the path, and we supplement the route with the
AS number of the last replying node. We then continue filling up the gaps of
the unknown ASes due to private IP addresses within the traceroute. Private
addressing might occur when a packet passes through someone’s internal net-
work with implemented Multiprotocol Label Switching (MPLS) routing [21]. In
such cases, we assume that the border AS, the one with a public IP address
before the MPLS routing, is the correct one, and we fill in the gaps accordingly.
Finally, to fill in the remaining missing hops, we apply a technique that employs
the publicly available BGP data. The BGP data assists in the discovering of the
neighboring AS® and helps us to bridge the gap between two known autonomous

3 A neighbor (or peering) autonomous system is the one that the AS directly inter-
connect with in order to exchange traffic.

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 317

Common subpath

Fig. 5. Connecting border ASes (AS-Mi and AS-Vi)

systems. Note that this technique can only complete the lacking AS numbers,
but not the actual hops (and their IP addresses).

Exploratory Data Analysis. Once the data is processed, i.e., prepared for
analysis, we dissect the data set using the EDA approach. This stage of the
methodology repeats for every victim and it involves three subsequent steps.

Find Common Patterns. Finding common patterns is the first step in the
data exploration. This method transforms the paths from detailed traceroutes
with IP addresses of the hops to coarse-grained ones with only AS-level paths
and their weights, i.e., the number of hops in each AS for a particular traceroute.

Build a Model. This method assists in constructing a probabilistic table that
identifies the likelihood of an AS to be part of the route between amplifier and
victim. If all collected traceroutes pass through a particular AS, say AS-1, on
the way to the target location T, the method denotes the probability of 1 that
the AS-1 exist as a hop on the way to T. Moreover, this method also considers
the average number of hops within the AS and the distance of the AS from the
target. The average number is the AS internal hop count value, and it may vary
due to routing-related reasons such as load balancing. To identify the border
autonomous systems (in the next step), we need to define the distance as a
number of hops that a particular AS is distant from the target AS. For example,
the AS the target T belongs to always has a probability of 1 and distance 0.

Approximate the TTL Value. The probabilistic modeling helps in building a
partial path between two hosts. Consider the scenario illustrated in Fig. 5. The
model identifies with a degree of certainty the common subpaths of the target
and the source. Furthermore, it estimates the hop count value of these subpaths.
To estimate the final hop count value, we need to bridge these two subpaths with
the missing intermediate AS(s). To this end, we apply techniques based on the
available BGP data such that the final result is a fully connected AS-level path.
Initially, we identify the border autonomous systems (labeled as AS-Mi and
AS-Viin Fig. 5), i.e., the last certain (most distant) AS in the common subpaths.
With respect to the possible missing hops for connecting these two subpaths, we
distinguish three different scenarios (marked with a, b and ¢ in Fig. 5):

318 M. Backes et al.

Direct connection (a) When a direct peering between the border autonomous
systems exists, i.e., AS-Mi is in the neighborhood? of AS-Vi and vice versa,
and the intersection set of the AS-Mi and AS-Vi neighbors is empty; we
assume that the border ASes are directly connected (AS-Mi «— AS-Vi).

One-hop connection (b) To identify the single connecting point in between,
accordingly, we have to check the neighbors of the border ASes. In the case
where only one intersecting AS exists, we assume that this particular AS is
the connecting point. If the intersection set contains more than one common
AS, we refer to our probability table. We then accordingly choose the AS
with the biggest probability to be a part of the route.

N-hop connection (c¢) A more complex scenario is when two or more interme-
diate AS are missing. In such a scenario, we build a tree of possible subpaths
by examining additional two levels® of neighbors. Upon building up the tree
of all possible paths, we test every branch over the database of available
BGP routes and the pre-computed table of probabilities. In case the branch
is present in the BGP routing database, we deem that particular route to be
the accurate one.

Once the bridging subpath is identified, we add up the average hop count
of the connecting ASes to the sum of the hop count value estimated for the
subpaths.

6 Experimental Setup and Results

In the following, we describe the data set used to evaluate our approach. Subse-
quently, we present and discuss the experimental results of the evaluation.

6.1 Data Set

To evaluate the proposed methodology, we mainly use services provided by the
RIPE Atlas network [3], which is the largest Internet measurement network built
by RIPE NCC. Moreover, they provide an API for creating different types of
measurements and for collecting the data in a structured format. In the following,
we list the services and data sources used for our experimental evaluation.

1. RIPE Atlas probes: To attain a global coverage and also to have a possibility
to obtain the ground truth, we use the RIPE Atlas network of probes [3] as
a basis for our experiments. We observe that this network has around 9,000
active probes, spread across 181 countries and 3,386 ASes [4]. Such a global
coverage fulfils the requirements for our experimental evaluation. Moreover,
the platform give us the flexibility for requesting custom measurements, in

4 Peering ASes are ASes which directly interconnect with each other. We obtain this
information from the available BGP data.

5 Statistics [3] show that average length of AS-level paths is 4, therefore we bound the
subpath examination to 2 levels, i.e., we can examine paths of at least 6 hops.

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 319

our case traceroutes, by selecting any of the deployed active probes. This
flexibility is of particular importance for our experiments since we can select
a subset of nodes with different geographical and logical locations to collect
the traceroute data. Additionally, when a probe acts as a victim in our leave-
one-out analysis (which we outline in the following), we can easily obtain
the ground truth by running traceroute measurement from the probes to the
amplifiers.

2. BGP data: When the collected traceroute data is not enough for making the
final assessment of the connectivity between the ASes, we utilize available
BGP data. In order to infer the AS-level connectivity, we use RIPE Atlas
as an accurate source for BGP data. Also the BGP data helps to obtain a
ground truth of individual ASes.

3. Amplifiers: To investigate the real-world implications of our attack, we
scanned for chargen amplifiers on the Internet. In total, we randomly selected
16 such servers.

6.2 Leave-one-out Evaluation

To evaluate the performance of our methodology, we use a leave-one-out (L-1-
0) evaluation approach, in which every probe acts like a victim at a selected
time. Informally, for a data set with P probes, we perform P experiments with
P — 1 training cases and one test case. In other words, for every experiment we
temporarily remove one probe from the data set and select that particular probe
as our victim. Upon fixing the probe P; as a victim V', the model is rebuilt upon
this newly defined set.

Suppose that P = py,...,p, is a set of probes, M = mq,...,m; set of
amplifiers, and R = ri1,...,7nm set of traceroutes where r;; is a traceroute
from p; to m;. For ease of exposition, we use the notation p; =r M to describe
a set of all traceroutes from p; to every member of the set M. Applying the L-1-0
approach to the methodology works as follows:

Collect the traceroute data (R |J {pi =r P\{pi}li =1,...,n}).

Process the data and extract the ground truth.

Remove probe p; from P (P\{p;}) and set V' = p;, where V is the victim.
Extract the ground truth for p; to M i.e., the distance from p; =r M.
Run the EDA using the remaining data.

Repeat step 3-5 fori =1,....,n

S G W=

L-1-0 in Practice. We apply the L-1-O method on a set of 40 random RIPE
Atlas probes, located in different ASes, and 16 randomly distributed chargen
amplifiers. We first collect the required data, namely, we obtain the path from
every probe to all of the 16 amplifiers, and also between the probes within the
set. We use the RIPE Atlas REST API to create IPv4 traceroutes using ICMP
packets and hops limit of 32. In order to get more precise paths and avoid
measurements inconsistencies caused by load balancing routers, we employ the
Paris traceroute measurement tool [6].

320 M. Backes et al.

Once the traceroute data is collected and the data set is processed, i.e.,
cleaned up using the method described in Sect. 5.2, we pass the data through step
3—6 from the L-1-0 approach. In such experimental setup, L-1-O theoretically
can evaluate 640 TTL predictions, i.e., paths from 16 amplifiers to 40 victims.
Unfortunately, because of the incompleteness of the traceroute data as well as
instability of some of the probes, the method was able to predict and evaluate
around 593 (92.6 %) individual paths.

Overall Performance. Table2 shows the overall performance of our method-
ology. The experimental results show that using our methodology, an attacker
can predict correctly without any deviation roughly 13 % of the paths between
the amplifiers and the victims, i.e., 13 % of the measured hop counts match the
ground truth. However, we showed in Sect.4 that, with a tolerance of +2, a
TTL-based defense could block over 75 % of spoofed traffic, while allowing 85 %
of benign traffic to pass. Therefore, when we take this threshold into considera-
tion, our methodology is effective for 56.3 % of the paths.

Table 2. Overall performance of the methodology

Amount | Fraction | Cumulated fraction
+0 78 132% [13.2%
+1 |170 28.7% |28.5%
+2 132 223% |56.3%
+3 49 83% |69.1%
More | 164 27.7% 1 100%

Moreover, we observe that applying our methodology to a set of randomly
chosen amplifiers, the attacker can isolate amplifiers for which he can predict
the hop count value between the amplifier and any arbitrary victim with higher
accuracy. Thus, he can bypass the TTL-based defense running on the amplifier
and exploit it for a DRDoS attack. Figure6 illustrates the average hop count
deviation per amplifier and shows that the attacker can, indeed, sample a set
of good amplifiers. We see several explanations for such a deviation among the
amplifiers. The geographical and logical location of the amplifiers and the victims
plays an important role. As we discussed before, the limitation of the BGP data
makes our methodology not equally precise for all the AS. Also another cause is
the inconsistency of the collected data between BGP data and traceroute path
caused by Internet Exchange Points and sibling ASes managed by the same
institution. However, these results show that even with a low threshold value
at the amplifier, by wisely choosing amplifiers to use, an attacker is able to
circumvent any TTL-based defense against DRDoS attacks.

On the Feasibility of TTL-Based Filtering for DRDoS Mitigation 321

o o

IS

Average hop difference
Noow

-

0 D D D D D D D D
5 2 2 g 3z § g8 3 8 8
= = = = = = = =3 = =

o N ® < 0 ©
= = = = = =
Amplifier

Fig. 6. Average hop deviation per amplifier

7 Conclusion

In this paper, we evaluated the feasibility of using Hop Count Filtering to mit-
igate DRDoS attacks. To that end, we detailed how a server can use active
probing to learn TTLs of alleged packet senders. Based on data sets of benign
and spoofed NTP requests, we find that with a tolerance of +2, a TTL-based
defense could block over 75 % of spoofed traffic, while allowing 85 % of benign
traffic to pass. Subsequently, however, we show that an attacker can use a com-
bination of tracerouting and BGP data to build statistical models, which allows
him to estimate the TTL for his target within that tolerance level. Hence, by
wisely choosing amplifiers to use, he is able to circumvent any TTL-based defense
against DRDoS attacks. We therefore argue that any (current or future) defen-
sive system based on TTL values can be bypassed in a similar fashion, and find
that future research must be steered towards more fundamental solutions to
thwart any kind of IP spoofing attacks.

Acknowledgments. This work was supported by the German Federal Ministry of
Education and Research (BMBF) through funding for the Center for IT-Security, Pri-
vacy and Accountability (CISPA) as well as through the BMBF grant 011S14009B
(“BDSec”).

The authors would like to thank Sven Bugiel for his comments on an earlier version
of the paper. Additionally, we are grateful for the feedback from our shepherd Roberto
Perdisci as well as those of our anonymous reviewers.

References

1. Default TTL wvalues in TCP/IP. http://www.map.meteoswiss.ch/map-doc/
ftp-probleme.htm

2. Functional requirements for broadband residential gateway devices. https://www.
broadband-forum.org/technical /download /TR-124.pdf

3. RIPE Atlas: Internet data collection system. https://atlas.ripe.net/

4. RIPE Atlas: Statistics and network coverage. https://atlas.ripe.net/results/maps/
network-coverage/

5. Technical details behind a 400Gbps NTP amplification DDoS attack. https://goo.
gl/j7zZWEp

http://www.map.meteoswiss.ch/map-doc/ftp-probleme.htm
http://www.map.meteoswiss.ch/map-doc/ftp-probleme.htm
https://www.broadband-forum.org/technical/download/TR-124.pdf
https://www.broadband-forum.org/technical/download/TR-124.pdf
https://atlas.ripe.net/
https://atlas.ripe.net/results/maps/network-coverage/
https://atlas.ripe.net/results/maps/network-coverage/
https://goo.gl/j7zWEp
https://goo.gl/j7zWEp

322

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

M. Backes et al.

Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,
Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with Paris traceroute.
In: Internet Measurement Conference (2006)

Beitollahi, H., Deconinck, G.: Analyzing well-known countermeasures against dis-
tributed denial of service attacks. Comput. Commun. 35, 1312-1332 (2012)

. Durumeric, Z., Bailey, M., Halderman, J.A.: An internet-wide view of internet-wide

scanning. In: USENIX Security Symposium (2014)

Gregori, E., Improta, A., Lenzini, L., Rossi, L., Sani, L.: On the incompleteness of
the AS-level graph: a novel methodology for BGP route collector placement. In:
Internet Measurement Conference (2012)

Jin, C., Wang, H., Shin, K.G.: Hop-count filtering: an effective defense against
spoofed DDoS traffic. In: Proceedings of the 10th ACM Conference on Computer
and Communications Security. ACM (2003)

Katz-Bassett, E., Madhyastha, H.V., Adhikari, V.K., Scott, C., Sherry, J., van
Wesep, P., Anderson, T.E., Krishnamurthy, A.: Reverse traceroute. In: USENIX
NSDI (2010)

Kiihrer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from hell? Reducing the
impact of amplification DDoS attacks. In: USENIX Security Symposium (2014)
Mao, Z.M., Rexford, J., Wang, J., Katz, R.H.: Towards an accurate AS-level tracer-
oute tool. In: Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication (2003)

Mirkovic, J., Reiher, P.L.: A taxonomy of DDoS attack and DDoS defense mecha-
nisms. Comput. Commun. Rev. 34, 39-53 (2004)

Mukaddam, A., Elhajj, I., Kayssi, A.Il., Chehab, A.: IP spoofing detection using
modified hop count. In: International Conference on Advanced Information Net-
working and Applications (2014)

Oliveira, R.V., Pei, D., Willinger, W., Zhang, B., Zhang, L.: The (in)completeness
of the observed internet AS-level structure. IEEE/ACM Trans. Netw. 18(1), 109—
122 (2010)

Paxson, V.: An analysis of using reflectors for distributed denial-of-service attacks.
Comput. Commun. Rev. 31(3), 38-47 (2001)

Pepelnjak, 1., Durand, J., Doering, G.: BGP operations and security. RFC 7454,
RFC Editor (2015). https://tools.ietf.org/html/rfc7454

Postel, J.: Internet protocol specification. RFC 791, RFC Editor (1981). https://
tools.ietf.org/html/rfc791

Postel, J.: Character generator protocol. RFC 864, RFC Editor (1983). https://
tools.ietf.org/html/rfc864

Rosen, E.C., Viswanathan, A., Callon, R.: Multiprotocol label switching architec-
ture. RFC 3031, RFC Editor, January 2001. http://tools.ietf.org/html/rfc3031
Rossow, C.: Amplification hell: revisiting network protocols for DDoS abuse. In:
NDSS (2014)

Ryba, F.J., Orlinski, M., Wahlisch, M., Rossow, C., Schmidt, T.C.: Amplifica-
tion and DRDoS attack defense-a survey and new perspectives. arXiv preprint
arXiv:1505.07892 (2015)

Specht, S.M., Lee, R.B.: Distributed denial of service: taxonomies of attacks, tools,
and countermeasures. In: International Conference on Parallel and Distributed
Computing Systems (2004)

https://tools.ietf.org/html/rfc7454
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc864
https://tools.ietf.org/html/rfc864
http://tools.ietf.org/html/rfc3031
http://arxiv.org/abs/1505.07892
http://arXiv.org/abs/1505.07892

	On the Feasibility of TTL-Based Filtering for DRDoS Mitigation
	1 Introduction
	2 Background
	2.1 Relevant Internet Technologies
	2.2 Source Spoofing and DRDoS
	2.3 Hop Count Filtering

	3 Re-evaluating the Feasibility of Hop-Count Filtering
	3.1 Protocol-Based Probing
	3.2 Interpreting Responses
	3.3 Horizontal Probing
	3.4 Caveats of Active Probing

	4 Probing Analysis
	4.1 Benign Traffic
	4.2 Spoofed Traffic
	4.3 Implications

	5 Methodology for Estimating Hop Count Value
	5.1 Key Idea and Attacker Model
	5.2 Methodology

	6 Experimental Setup and Results
	6.1 Data Set
	6.2 Leave-one-out Evaluation

	7 Conclusion
	References

