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Abstract This work describes and applies the recently introduced, general-purpose
perturbative guidance termed variable-time-domain neighboring optimal guidance,
which is capable of driving an aerospace vehicle along a specified nominal, optimal
path. This goal is achieved by minimizing the second differential of the objective
function (related to the flight time) along the perturbed trajectory. This minimization
principle leads to deriving all the corrective maneuvers, in the context of an iterative
closed-loop guidance scheme. Original analytical developments, based on optimal
control theory and adoption of a variable time domain, constitute the theoretical
foundation for several original features. The real-time feedback guidance at hand
is exempt from the main disadvantages of similar algorithms proposed in the past,
such as the occurrence of singularities for the gain matrices. The variable-time-
domain neighboring optimal guidance algorithm is applied to two typical aerospace
maneuvers: (1) minimum-time climbing path of a Boeing 727 aircraft and (2)
interception of fixed and moving targets. Perturbations arising from nonnominal
propulsive thrust or atmospheric density and from errors in the initial conditions are
included in the dynamical simulations. Extensive Monte Carlo tests are performed,
and unequivocally prove the effectiveness and accuracy of the variable-time-domain
neighboring optimal guidance algorithm.

1 Introduction

The problem of driving an aerospace vehicle along a specified path leading to
fulfilling the boundary conditions associated with the mission specifications requires
defining the corrective actions aimed at compensating nonnominal flight conditions.
This means that a feedback control law, or, equivalently, a closed-loop guidance
algorithm, is to be defined, on the basis of the current state of the vehicle, evaluated
at prescribed sampling times.
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Traditionally, two different approaches to guidance exist. Adaptive algorithms
compute the flight trajectory at the beginning of each guidance interval, on the
basis of feasibility or optimality criteria [3, 19]. Perturbative algorithms assume a
specified nominal trajectory, and define the feedback control corrections aimed at
maintaining the vehicle in the proximity of the nominal path [7, 9].

Neighboring Optimal Guidance (NOG) is a perturbative guidance concept that
relies on the analytical second order optimality conditions, in order to find the
corrective control actions in the neighborhood of the reference trajectory. This is
an optimal trajectory that satisfies the first and second-order optimality conditions.
In general, the neighboring optimal path originates from a perturbed state and is
associated with the minimization of the second differential of the objective function.
Several time-varying gain matrices, referring to the nominal trajectory, are defined,
computed offline, and stored in the onboard computer. Only a limited number of
works have been devoted to studying neighboring optimal guidance [1, 4–6, 18, 21].
In particular, a thorough treatment of NOG is due to Chuang [5], who proposed
a simple formula for updating the time of flight, and used a very basic strategy
to evaluate the gain matrices when the time of flight exceeds its nominal value.
Hull [6, 7] supplied further relevant contributions to the topic, using a vector
that contains the unknown parameters to optimize and proposing an analytical
formulation for the update of the time of flight, albeit only at the initial time. A
common difficulty encountered in implementing the NOG consists in the fact that
the gain matrices become singular while approaching the final time. As a result, the
real-time correction of the time of flight can lead to numerical difficulties so relevant
to cause the failure of the guidance algorithm.

This work describes and applies the recently introduced [15, 16], general-purpose
variable-time-domain neighboring optimal guidance algorithm (VTD-NOG), on the
basis of the general theory of NOG described in [7]. Some fundamental, original
features of VTD-NOG are aimed at overcoming the main difficulties related to
the use of former NOG schemes, in particular the occurrence of singularities and
the lack of an efficient law for the iterative real-time update of the time of flight.
This is achieved by adopting a normalized time domain, which leads to defining
a novel updating law for the time of flight, a new termination criterion, and a
new analytical formulation for the sweep method. Two applications are considered,
for the purpose of illustrating the new guidance algorithm: (1) minimum-time-
to-climb path of a Boeing 727 aircraft and (2) interception of fixed and moving
targets. Specifically, perturbations arising from the imperfect knowledge of the
propulsive thrust and from errors in the initial conditions are included in the
dynamical modeling. In addition, atmospheric density fluctuations are modeled
for application (1). Extensive Monte Carlo (MC) tests are performed, with the
intent of demonstrating the effectiveness and accuracy of the variable-time-domain
neighboring optimal guidance algorithm.
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2 Nominal Trajectory

The nominal trajectory of aerospace vehicles is computed in the absence of any
perturbation. For the purpose of applying a neighboring optimal guidance, the
nominal path is required to be an optimal trajectory that minimizes a specified
objective function.

In general, the spacecraft trajectory is described through the time-varying,
n-dimensional state vector x.t/ and controlled through the time-varying,
m-dimensional control vector u.t/; the dynamical evolution over the time interval
Œt0; tf � (with t0 set to 0 and tf unspecified) depends also on the time-independent,
Qp-dimensional parameter vector Qa. The governing state equations have the general
form

Px D Qf.x; u; Qa; t/ (1)

and are subject to q boundary conditions

 .x0; xf ; Qa; tf / D 0 (2)

where the subscripts “0” and “f ” refer to t0 and tf . A feasible trajectory is a solution
that obeys the state equations (1) and satisfies the boundary conditions (2).

The problem at hand can be reformulated by using the dimensionless normalized
time � defined as

� WD t

tf
) �0 � 0 � � � 1 � �f (3)

Let the dot denote the derivative with respect to � hence forward. If a WD �Qa tf
�T

(and p WD Qp C 1), the state equations (1) are rewritten as

Px D tf Qf.x; u; Qa; tf �/ DW f.x; u; a; �/ (4)

The objective functional to minimize has the following general form:

J D �.x0; xf ; a/ C
Z 1

0

L Œx.�/; u.�/; a; � � d� (5)

The spacecraft trajectory optimization problem consists in identifying a feasible
solution that minimizes the objective functional J, through selection of the optimal
control law u�.t/ and the optimal parameter vector a�, i.e.

fu�; a�g D arg min
fu;ag

J (6)
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2.1 First-Order Necessary Conditions for a Local Extremal

In order to state the necessary conditions for optimality, a Hamiltonian H and a
function of the boundary conditions ˚ are defined as [7]

H.x; u; a;�; �/ WD L C �T f ˚.x0; xf ; a;�/ WD � C �T (7)

where the time-varying, n-dimensional costate vector �.�/ and the time-
independent, q-dimensional vector � are the adjoint variables conjugate to the
state equations (4) and to the conditions (2), respectively.

In the presence of an optimal (locally minimizing) solution, the following
conditions hold:

u� D arg min
u

H (8)

P� D �
�

@H

@x

�T

(9)

�0 D �
�

@˚

@x0

�T

�f D
�

@˚

@xf

�T

(10)

�
@˚

@a

�T

C
Z 1

0

�
@H

@a

�T

d� D 0 (11)

For the very general Hamiltonian (7) the Pontryagin minimum principle (8) yields
the control variables as functions of the adjoint variables and the state variables; the
relations (9) are the adjoint (or costate) equations, together with the related boundary
conditions (10); (11) is equivalent to p algebraic scalar equations. If the control u
is unconstrained, then (8) implies that H is stationary with respect to u along the
optimal path, i.e.

H�
u D 0T (12)

Equations (8) through (11) are well established in optimal control theory (and are
proven, for instance, in [7]), and allow translating the optimal control problem into a
two-point boundary-value problem. Unknowns are the state x, the parameter vector
a, and the adjoint variables � and � (while the optimal control u� is given by (8), as
previously remarked). It is straightforward to demonstrate that the condition (11) is
equivalent to

�f �
�

@˚

@a

�T

D 0; with P� D �
�

@H

@a

�T

and �0 D 0 (13)

where �0 and �f are, respectively, the initial and final value (at � D 1) of the time-
varying .p � 1/-vector�.
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2.2 Second-Order Sufficient Conditions for a Local Minimum

The derivation of the second-order optimality conditions involves the definition of
an admissible comparison path, located in the neighborhood of the (local) nominal,
optimal solution, associated with the state x�, costate ��, and control u�. By
definition, an admissible comparison path is a feasible trajectory that satisfies the
equations of motion and the boundary conditions. A neighboring optimal path is an
admissible comparison trajectory that satisfies also the optimality conditions. The
nonexistence of alternative neighboring optimal paths is to be proven in order to
guarantee optimality of the nominal solution [7, 8].

The first second-order condition is the Clebsch-Legendre sufficient condition for
a minimum [7, 8], i.e. H�

uu > 0 (positive definiteness of H�
uu). In the necessary

(weak) form the Hessian H�
uu must be positive semidefinite.

In general, a neighboring optimal path located in the proximity of the optimal
solution fulfills the feasibility equations (4) and (2) and the optimality condi-
tions (8)–(11) to first order. This means that the state and costate displacements
fıx; ı�g (from the optimal solution) satisfy the linear equations deriving from (4)
and (9),

ı Px D fxıx C fuıu C faıa (14)

ı P� D �Hxxıx � Hxuıu � Hx�ı� � Hxaıa (15)

in conjunction with the respective linear boundary conditions, derived from (2)
and (10),

 xf
ıxf C x0

ıx0 C aıa D 0 (16)

ı�0 D �˚x0x0ıx0 � ˚x0aıa �  T
x0

d� (17)

ı�f D ˚xf xf ıxf C ˚xf aıa C T
xf

d� (18)

The fact that the Hamiltonian is stationary with respect to u, i.e. H�
u D 0T , yields

Huxıx C Huuıu C Huaıa C Hx�ı� D 0 (19)

Under the assumption that the Clebsch-Legendre condition is satisfied, (19) is
solved for ıu

ıu D �H�1
uu .Huxıx C Huaıa C Hx�ı�/ (20)
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The parameter condition (11) is replaced by (13), leading to the following relations:

ı P� D �Haxıx � Hauıu � Haaıa � Ha�ı�; with (21)

ı�0 D 0; ı�f D �˚axf ıxf � ˚aaıa �  T
a d� (22)

where (22) is written under the assumption that ˚ax0 D 0, condition that is met
for the problems at hand. It is relatively straightforward to recognize that solving
the equation system (14)–(19) and (21)–(22) is equivalent to solving the accessory
optimization problem [7, 8], which consists in minimizing the second differential
d2J. The solution process involves the definition of the sweep variables, through the
following relations:

ı� D Sıx C Rd�C mda; (23)

0 D Rıx C Qd�C nda; (24)

ı� D mıx C nT d�C ˛da (25)

The matrices S, R, m, Q, n, and � must satisfy the sweep equations (not reported
for the sake of conciseness), in conjunction with the respective boundary conditions
(prescribed at the final time) [7, 8]. The variations d� and da can be solved
simultaneously at �0 (at which ı�0 D 0, cf. (22)), to yield

�
d�
da

�
D �V�1

0 UT
0 ıx0 where U WD ŒR m� and V WD

�
Q n
nT ˛

�
(26)

If (26) is used at �0, then ı�0 D �
S0 � U0V�1

0 UT
0

�
ıx0. Letting OS D S � UV�1UT ,

the same sweep equation satisfied by S turns out to hold also for OS, with boundary
condition S ! 0 as � ! �f .D 1/. From the previous relation on ı�0 and ıx0 one
can conclude that ı�0 ! 0 as ıx0 ! 0, unless OS tends to infinity at an internal
time N� .�0 � N� < �f /, which is referred to as conjugate point. If ı�0 ! 0 and
ıx0 ! 0 then also ıu ! 0. In the end, if OS < 1, then no neighboring optimal path
exists. This is the Jacobi condition. The use of S is not effective for the purpose of
guaranteeing optimality. In fact, cases exist for which S becomes singular, while OS
remains finite [7, 8], and this fully justifies the use of OS.

It is worth remarking that, with the exception of the displacements
fıx; ıu; ıa; ı�; ı�; ı�; ıx0; ıxf g, all the vectors and matrices reported in this
section are evaluated along the nominal, optimal trajectory.
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3 Variable-Time-Domain Neighboring Optimal Guidance

The iterative Variable-Time-Domain Neighboring Optimal Guidance (VTD-NOG)
uses the optimal trajectory as the reference path, with the final intent of determining
the control correction at each sampling time ftkgkD0;:::;nS

. These are the times at
which the displacement between the actual trajectory, associated with x, and the
nominal trajectory, corresponding to x�, is evaluated, to yield dxk � ıxk D x.tk/ �
x�

k .tk/. The total number of sampling times, nS, is unspecified, whereas the actual
time interval between two successive sampling times is given and denoted with �tS,
�tS D tkC1 � tk. It is apparent that a fundamental ingredient needed to implement
VTD-NOG is the formula for determining the overall time of flight t.k/

f at time tk.

This is equivalent to finding the time-to-go
�

t.k/
f � tk

	
at tk. The following subsection

is focused on this issue.

3.1 Time-to-Go Updating Law and Termination Criterion

The fundamental principle that underlies the VTD-NOG scheme consists in finding
the control correction ıu.�/ in the generic interval Œ�k; �kC1� such that the second
differential of J is minimized,

d2J D R 1

�k

2

4
ıx
ıu
da

3

5

T 2

4
Hxx Hxu Hxa

Hux Huu Hua

Hax Hau Haa

3

5

2

4
ıx
ıu
da

3

5 d�

C
2

4
dxk

dxf

da

3

5

T 2

4
˚xkxk 0n�n 0n�p

0n�n ˚xf xf ˚xf a

0p�n ˚axf ˚aa

3

5

2

4
dxk

dxf

da

3

5

(27)

while holding the first-order expansions of the state equations, the related final
conditions, and the parameter condition (i.e., the second of (22)). In contrast, the
first of (22) cannot be used, because in general ı�k ¤ 0 at �k. Minimizing the
objective (27) is equivalent to solving the accessory optimization problem, defined
in the interval Œ�k; 1�. This means that the relations reported in Sect. 2.2 need to be
extended to the generic interval Œ�k; 1�.

Other than the linear expansion of the state and costate equations, the related
boundary conditions, and the second relation of (22), also Eqs. (23)–(25), (19),
and (20) remain unchanged. However, now (26) is to be evaluated at �k and becomes

�
d�
da

�
D �V�1

k UT
k ıxk � V�1

k �ı�k; with � D
�

0q�p

Ip�p

�
(28)
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because ı�k ¤ 0 (unlike ı�0 D 0). The latter relation supplies the corrections d�
and da at �k as functions of the gain matrices U and V (defined in (26)), evaluated at
�k, and ı�k (coming from the numerical integration of (21) in the preceding interval
Œ�k�1; �k�). Equation (28) contains the updating law of the total flight time tf , which is

included as a component of a. Hence, if dt.k/
f denotes the correction on t�f evaluated

at �k, then t.k/
f D t�f C dt.k/

f . As the sampling interval �tS is specified, the general
formula for �k is

�k D
k�1X

jD0

�tS

t.j/f

(29)

The overall number of intervals nS is found at the first occurrence of the following
condition, associated with the termination of VTD-NOG:

nS�1X

jD0

�tS

t.j/f

� 1 ) �nS D 1 (30)

It is worth stressing that the updating formula (28) derives directly from the
natural extension of the accessory optimization problem to the time interval Œ�k; 1�.
In addition, the introduction of the normalized time � now reveals its great utility. In
fact, all the gain matrices are defined in the normalized interval [0,1] and cannot
become singular. Moreover, the limiting values f�kgkD0;:::;nS�1 are dynamically
calculated at each sampling time using (29), while the sampling instants in the
actual time domain are specified and equally spaced (cf. Fig. 1). Also the termination
criterion (30) has a logical, consistent definition, and corresponds to the upper bound
of the interval [0,1], to which � is constrained.

Fig. 1 Illustrative sketch of the relations between the two time domains
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3.2 Modified Sweep Method

The definition of a neighboring optimal path requires the numerical backward
integration of the sweep equations [7]. However, as previously remarked, the matrix
OS has practical utility, because S may become singular while OS remains finite in
the interval [0,1[. Therefore, a suitable integration technique is based on using the
classical sweep equations in the interval Œ�sw; 1� (where �sw is sufficiently close to
�f D 1) and then switching to OS. However, due to (28), new relations are to be
derived for OS and the related matrices.

With this intent, the first step consists in combining (28) with (23)–(24), and
leads to obtaining

ı� D
� OS � WmT

	
ıx � WnTd� � W˛da; with W WD UV�1� (31)

This relation replaces (23).
Equation (31) is to be employed repeatedly in the derivation of new sweep

equations. The related analytical developments are described in full detail in [15],
and lead to attaining the following modified sweep equations:

POS D �OSA C OSB OS C
h OSD˛�1 C WF˛�1 C E˛�1

i
mT � WET � WDT OS � C � AT OS

(32)

PRT D RTB OS � RTA � RTBWmT (33)

PmT D �mTA C mTB OS � mTBWmT � ET � DT OS C DTWmT (34)

PQ D �RTBWnT (35)

Pn D �RT .D C BW˛/ (36)

P̨ D DTW˛ � F � mTBW˛ � mTD (37)

The gain matrices involved in the sweep method, i.e. S, OS, R, Q, n, m, and ˛, can
be integrated backward in two steps:

1. in Œ�sw; 1� the equations of the classical sweep method [7, 15], with the respective
boundary conditions, are used.

2. in Œ0; �sw� (32) through (37) are used; R, Q, n, m, and ˛ are continuous across
the time �sw, whereas OS is given by OS WD S � UV�1UT ; in this work, �sw is set
to 0.99.
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3.3 Preliminary Offline Computations and Algorithm Structure

The implementation of VTD-NOG requires several preliminary computations that
can be completed offline and stored in the onboard computer. First of all, the optimal
trajectory is to be determined, together with the related state, costate, and control
variables, which are assumed as the nominal ones. In the time domain � these
can be either available analytically or represented as sequences of equally spaced
values, e.g. u�

i D u�.�i/ .i D 0; : : : ; nDI �0 D 0 and �nD D 1/. However, in the
presence of perturbations, VTD-NOG determines the control corrections ıu.�/ in
each interval Œ�k; �kC1�, where the values f�kg never coincide with the equally spaced
values f�ig used for u�

i . Hence, regardless of the number of points used to represent
the control correction ıu.�/ in Œ�k; �kC1�, it is apparent that a suitable interpolation
is to be adopted for the control variable u� (provided that no analytical expression
is available). In this way, the value of u� can be evaluated at any arbitrary time in
the interval 0 � � � 1. For the same reason also the nominal state x� and costate
�� need to be interpolated. If a sufficiently large number of points is selected (e.g.,
nD D 1001), then piecewise linear interpolation is a suitable option. The successive
step is the analytical derivation of the matrices

(
fx; fu; fa; Hxx; Hxu; Hx�; Hxa; Hux; Huu; Hua; Hu�; Hax; Hau; Haa; Ha�;

 xf
; x0

; a; ˚x0x0 ; ˚x0a; ˚xf xf ; ˚xf a; ˚axf ; ˚aa

)

(38)

Then, they are evaluated along the nominal trajectory and linearly interpolated, as
well as A, B, C, D, E, and F, whose expressions are reported in [17]. Subsequently,
the two-step backward integration of the sweep equations described in Sect. 3.2 is
performed, and yields the gain matrices OS, R, m, Q, n, and ˛, using also the analytic
expressions of W, U, and V. The linear interpolation of all the matrices not yet
interpolated concludes the preliminary computations.

On the basis of the optimal reference path, at each time �k the VTD-
NOG algorithm determines the time of flight and the control correction.
More specifically, after setting the actual sampling time interval �tS, at each
�k .k D 0; : : : ; nS � 1I �0 D 0/ the following steps implement the feedback
guidance scheme:

1. Evaluate ıxk.
2. Assume the value of ı� calculated at the end of the previous interval Œ�k�1; �k�

as ı�k .ı�0 D 0/.
3. Calculate the correction dt.k/

f and the updated time of flight t.k/
f .

4. Calculate the limiting value �kC1.
5. Evaluate ı�k.
6. Integrate numerically the linear differential system composed of (14), (15),

and (21).
7. Determine the control correction ıu.�/ in Œ�k; �kC1� through (20).
8. Points 1 through 7 are repeated after increasing k by 1, until (30) is satisfied.
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Fig. 2 Block diagram of VTD-NOG

Figure 2 portrays a block diagram that illustrates the feedback structure of VTD-
NOG. The control and flight time corrections depend on the state displacement
ıx (evaluated at specified times) through the time-varying gain matrices, computed
offline and stored onboard.

4 Minimum-Time-to-Climb Path of a Boeing 727 Aircraft

As a first example, the variable-time-domain neighboring optimal guidance is
applied to the minimum-time ascent path of a Boeing 727 aircraft, which is a mid-
size commercial jet aircraft. Its propulsive and aerodynamics characteristics are
interpolated on the basis of real data, and come from [2].

4.1 Problem Definition

The aircraft motion is assumed to occur in the vertical plane. In addition, due to
the low flight altitude, the flat-Earth approximation is adopted, and the gravitational
force is considered constant (g D 9:80665 m=s2). In light of these assumptions, the
equations of motion are [20]

z0 D v sin � (39)

x0 D v cos � (40)
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Fig. 3 Thrust, lift, and drag forces, with the related angles

� 0 D � g

v
cos � C L

mv
C T

mv
sin.˛ C �/ (41)

v0 D �g sin � � D

m
C T

m
cos.˛ C �/ (42)

where z, x, � , and v denote, respectively, the altitude, range, flight path angle, and
velocity of the aircraft at hand, and 0 is the derivative with respect to the actual
time t; D and L represent the magnitudes of the aerodynamic drag and lift (whose
direction is illustrated in Fig. 3), whereas T denotes the thrust magnitude, and m
is the mass, which is assumed constant and equal to 81,647 kg. The angle � is
portrayed in Fig. 3 as well, and identifies the thrust direction with respect to the
zero lift axis; ˛ is the angle of attack. The two aerodynamic forces are functions
of (1) the (dimensionless) lift and drag coefficients cL and cD, (2) the atmospheric
density �, (3) the instantaneous velocity v, and (4) the reference surface area S, equal
to 145 m2 [2], according to the following relations:

L D 1

2
cL�Sv2 and D D 1

2
cD�Sv2 (43)

Due to low altitude, the atmospheric density at sea level is used for the entire time
of flight. The two coefficients cL and cD depend on the angle of attack and are
interpolated in the following fashion [2]:

cL D cL0 C cL1˛ C cL2 .˛ � ˛1/
2 (44)

cD D cD0 C cD1˛ C cD2˛
2 (45)
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where the values of the constant quantities fcL0; cL1; cL2; ˛1; cD0; cD1; cD2g are
reported in [2]. Lastly, the thrust magnitude T depends on the instantaneous velocity,
and is interpolated as well,

T D cT0 C cT1v C cT2v2 (46)

where the constant values of fcT0; cT1; cT2g are again reported in [2].
The minimum-time-to-climb problem consists in finding the optimal time history

of the control angle ˛ that minimizes the time tf needed to reach a given altitude in
horizontal flight, with a prescribed velocity. This means that the objective function
is simply

J D tf (47)

(the initial time is set to 0). The final conditions are partially specified,

zf D Nzf .D 609:6 m/; �f D 0 deg; vf D Nvf .D 128 m=s/ (48)

whereas the initial conditions are completely known,

z0 D 0 m; x0 D 0 m; �0 D 0 deg; v0 D 128 m=s (49)

As the range x does not appear in the right-hand sides of the equations of motion
nor in the final conditions, x is ignorable; as a result, the state vector x is given by
x D Œz � v�T , while the control vector u includes only ˛ (u � ˛). The state
equations can be rewritten in terms of �-derivatives,

Pz D tf v sin � (50)

P� D tf

�
� g

v
cos � C L

mv
C T

mv
sin.˛ C �/

�
(51)

Pv D tf

�
�g sin � � D

m
C T

m
cos.˛ C �/

�
(52)

The right-hand sides of (50)–(52) form the vector f.

4.2 Optimal Trajectory

The VTD-NOG algorithm requires the preliminary determination of the optimal
trajectory, which is assumed as the nominal path, together with the related optimal
control, state, and costate vectors (cf. Sect. 2).
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For the dynamical system at hand the Hamiltonian H and the function ˚ are

H D 	1tf v sin � C 	2tf
�� g

v
cos � C L

mv
C T

mv
sin.˛ C �/

�

C	3tf
��g sin � � D

m C T
m cos.˛ C �/

� (53)

˚ D 
1.zf � Nzf / C 
2�f C 
3.vf � Nvf / (54)

The adjoint equations assume the form

P	1 D 0 ) 	1 D 	1;0 (55)

P	2 D tf

�
�	1v cos � � 	2g

v
sin � C 	3g cos �

�
(56)

P	3 D tf
n
�	1 sin � � 	2

mv

�
@T
@v

sin.˛ C �/ C @L
@v

� T
v

sin.˛ C �/ � L
v

�o

Ctf
˚�	2

g cos �

v2 � 	3

�� @D
@v

C @T
@v

cos.˛ C �/
�


(57)

The respective boundary conditions (10) do not add any further information (since
the state components are completely specified at the final time), and therefore they
are not reported. It is worth remarking that the derivatives of L, D, and T with respect
to ˛ and v can be easily expressed using (43)–(46) and are continuous. Moreover,
the fact that H is stationary with respect to ˛ at the optimal solution yields

	2

T

mv
cos.˛ C �/ C 	2

mv

@L

@˛
� 	3

m

@D

@˛
� 	3

T

m
sin.˛ C �/ D 0 (58)

Finally, the parameter condition (11) leads to

Z 1

0

�T @f
@tf

d� C 1 D 0 (59)

However, the parameter condition can be proven to be ignorable. As a first step,
the components of � are homogeneous in the adjoint equations (55)–(57). This
circumstance implies that if an optimization algorithm is capable of finding some
initial value of � such that �0 D k	�

�
0 .k	 > 0/ (where � denotes optimality),

then the same proportionality holds between � and �� at any � . Moreover, the
control u can be found through (58), which yields the same solution if� replaces��.
This circumstance implies that if � is proportional to �� then the final conditions
are fulfilled at the minimum final time t�f . In contrast, the parameter condition is
violated, because the integral of (59) turns out to be
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Z 1

0

�T @f
@tf

d� D k	

Z 1

0

��T @f
@tf

d� D �k	 ¤ �1 (60)

Therefore, provided that the proportionality condition holds, the optimal control u�
can be determined without considering the parameter condition, which is ignorable
as an equality constraint and can be replaced by the inequality constraint

Z 1

0

�T @f
@tf

d� < 0 (61)

because k	 is an arbitrary positive constant. Once the (nonoptimal) values of the
costate variables (fulfilling the proportionality condition) have been determined, the
correct (optimal) values can be recovered after calculating k	 by means of (60).

In the end, the problem of determining the minimum-time-to-climb path can
be reformulated as a two-point boundary-value problem, in which the unknowns
are the initial values of three adjoint variables, as well as the time of flight, i.e.˚
	1;0; 	2;0; 	3;0; tf



. The boundary conditions are represented by (48), accompanied

by the inequality constraint (61). Once the optimal parameter set has been deter-
mined, the state and costate equations can be integrated, using (58) to express the
control angle ˛ as a function of the adjoint variables.

The optimal parameter set is determined by means of a simple implementation of
swarming algorithm (PSO). This is a heuristic optimization technique, based on the
use of a population of individuals (or particles). Selection of the globally optimal
parameters is the result of a number of iterations, in which the individuals share
their information. This optimization approach is extremely intuitive and easy-to-
implement. Nevertheless, in the scientific literature several papers [10–14] prove
that the use of this method is effective for solving trajectory optimization problems.
A set of canonical units is employed for the problem at hand: the distance unit (DU)
and time unit (TU) are

DU D 2m

�S
and TU D

s
2m

�gS
(62)

The search space is defined by the inequalities �1 � 	k;0 � 1 and 1 TU � tf �
6 TU. It is worth remarking that ignorability of the parameter condition allows
defining arbitrarily the range in which the initial values of the adjoint variables
are sought. Their correct values (fulfilling also the parameter condition (59)) can
be recovered a posteriori, as discussed previously. PSO is used with the intent of
minimizing the objective

QJ D
3X

kD1

jdkj (63)
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Fig. 4 727 aircraft: nominal altitude

Fig. 5 727 aircraft: nominal velocity

where each term dk represents a final constraint violation. While minimization
of (63) ensures feasibility, enforcement of the necessary conditions for optimality
guarantees that the solution found by PSO is (at least locally) optimal.

The PSO algorithm yields a solution associated with QJ D 8:458 � 10�7.
The corresponding optimal time histories of the state and control components
are portrayed in Figs. 4, 5, 6, and 7. From their inspection it is apparent that the
minimum climbing path is composed of two phases: an initial ascent phase, up to an
altitude greater than the final one, followed by a diving phase. The minimum time
to climb equals 55.5 s.
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Fig. 6 727 aircraft: nominal flight path angle

Fig. 7 727 aircraft: optimal control time history

4.3 Application of VTD-NOG

The neighboring optimal guidance algorithm proposed in this work is applied to
the minimum-time-to-climb path of the Boeing 727 aircraft. Perturbations from
the nominal situation are considered, in order to simulate a realistic scenario. In
particular, perturbations on the initial state, thrust magnitude, and atmospheric
density are taken into account. Several Monte Carlo campaigns are run, with
the intent of obtaining some useful statistical information on the accuracy of the
algorithm at hand, in the presence of the previously mentioned deviations, which
are simulated stochastically. Monte Carlo campaigns test the guidance algorithm by
running a significant number of numerical simulations. Each perturbed quantity in
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the initial state is associated with a Gaussian distribution, with mean value equal
to the respective nominal one and with a specific �-value, which is related to the
statistical dispersion about the mean value. The �-values are

�z.�/ D 5 m; �v.�/ D 5 m=s; ��.�/ D 5 deg (64)

In the numerical simulations the deviations from the nominal values are constrained
to the intervals

�
0; 2��.�/

�
.� D z or �/ and

��2�v.�/; 2�v.�/
�
. A different

approach was chosen for the perturbation of the thrust magnitude. In fact, usually the
thrust magnitude exhibits small fluctuations. This time-varying behavior is modeled
through a trigonometric series with random coefficients,

Tpert D T

(

1 C
5X

kD1

ak sin.2k�/ C
5X

kD1

akC5 cos.2k�/

)

(65)

where Tpert denotes the perturbed thrust, whereas ak represents a random number
with Gaussian distribution, zero mean, and standard deviation equal to 0.01. The
atmospheric density fluctuations are modeled through a similar trigonometric series,

�pert D �

(

1 C
5X

kD1

bk sin.2k�/ C
5X

kD1

bkC5 cos.2k�/

)

(66)

where �pert denotes the perturbed density, whereas bk represents a random number
with the same statistic properties as ak.

At the end of the algorithmic process described in Sect. 3.3, two statistical
quantities are evaluated, i.e. the mean value and the standard deviation for all of
the outputs of interest. The symbols N� and �.�/ will denote the mean value and
standard deviation of � (� D z or v or � or tf ) henceforth. Five campaigns are
performed, each including 100 runs. The first four campaigns (MC1 through MC4)
use a sampling time �tS D 2 s, whereas MC5 adopts a sampling time �tS D
1 s. MC1 assumes only perturbations of the initial state. The second campaign
(MC2) considers the thrust fluctuations, whereas MC3 takes into account only the
atmospheric density perturbations. MC4 and MC5 include all the deviations from
the nominal flight conditions (with different sampling times). Table 1 summarizes
the results for the five Monte Carlo campaigns and reports the related statistics.
Application of VTD-NOG to the problem of interest leads to excellent results,
with modest errors on the desired final conditions. More specifically, inspection of
Table 1 points out that errors on the initial conditions are corrected very effectively;
however, also the remaining results exhibit modest deviations at the final time. The
latter is extremely close to the optimal value, and this is an intrinsic characteristic of
VTD-NOG, which employs first order expansions of the state and costate equations
in the proximity of the optimal solution. As a final remark, in the presence of all of
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Table 1 Statistics on the time of flight and the errors on altitude,
velocity, and flight path angle

Statistics MC1 MC2 MC3 MC4 MC5

�Nzf (cm) 1.2 �11.5 8.8 �5.3 1.1

�z
.�/
f (cm) 6.3 39.7 14.9 57.3 22.4

� Nvf (cm/s) �6.1 �5.9 �6.7 �14.7 �9.7

�v
.�/
f (cm/s) 1.7 6.9 6.6 41.6 13.2

� N�f (deg) �0.225 �0.232 �0.268 �0.487 �0.304

��
.�/
f (deg) 0.099 0.166 0.123 1.205 0.356

Ntf (s) 53.79 53.40 55.34 53.77 53.76

t.�/
f (s) 4.97 0.13 0.33 4.95 4.92

Fig. 8 727 aircraft: altitude time histories obtained in MC5

the perturbations (MC4 and MC5), decreasing the sampling time implies a reduction
of the final errors. Figures 8, 9, 10, and 11 depict the perturbed state components
and control angle, obtained in MC5.

5 Interception

As a second application of VTD-NOG, this section considers the interception of
a target by a maneuvering vehicle in exoatmospheric flight or in the presence
of negligible aerodynamic forces, e.g. an intercepting rocket operating at high
altitudes. Both the pursuing vehicle and the target are modeled as point masses,
in the context of a three-degree-of-freedom problem.
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Fig. 9 727 aircraft: velocity time histories obtained in MC5

Fig. 10 727 aircraft: time histories of the flight path angle obtained in MC5

5.1 Problem Definition

Under the assumption that interception occurs in a sufficiently short time interval,
the flat Earth approximation can be adopted again. This means that the Cartesian
reference frame can be defined as follows: the x1-axis is aligned with the local
upward direction, the x2-axis is directed eastward, and the x3-axis is aligned with
the local North direction. As a result, the Cartesian equations of motion for the
intercepting rocket are

Px1 D tf x4 (67)
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Fig. 11 727 aircraft: time histories of the angle of attack obtained in MC5

Px2 D tf x5 (68)

Px3 D tf x6 (69)

Px4 D tf .�g C aT cos u2 sin u1/ (70)

Px5 D tf aT cos u2 cos u1 (71)

Px6 D tf aT sin u2 (72)

where the derivatives are written with respect to � , fx1; x2; x3g are the three
position coordinates, fx4; x5; x6g are the corresponding velocity components, and tf
represents the time of flight up to interception. The symbol g denotes the magnitude
of the (constant) gravitational force at the reference altitude, whereas the thrust
acceleration has magnitude aT and direction identified through the two angles u1

and u2. The target position is assumed as known, and therefore it is expressed by
three specified functions of the dimensionless time � ,

x.T/
1 D f1.�/; x.T/

2 D f2.�/; x.T/
3 D f3.�/ (73)

While the state vector contains the position and velocity components fxigiD1;:::;6, the
control vector is u D Œu1 u2�

T , and the parameter vector a includes only tf (as in
the previous application). As the time is to be minimized, the objective function is

J D tf (74)
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5.2 Optimal Trajectory

The first-order conditions for optimality are obtained after introducing the Hamilto-
nian H and the function of the boundary conditions ˚ , according to (7)

H D 	1tf x4 C 	2tf x5 C 	3tf x6 C 	4tf .�g C aT cos u2 sin u1/

C	5tf aT cos u2 cos u1 C 	6tf aT sin u2

(75)

˚ D 
1

�
x1f � f1.1/

� C 
2

�
x2f � f2.1/

� C 
3

�
x3f � f3.1/

�
(76)

where the subscript f refers to the value of the respective variable at the final
time. The adjoint equations (9) in conjunction with the respective boundary
conditions (10) for 	4 through 	6 lead to

P	1 D 0 ) 	1 D 	1;0 (77)

P	2 D 0 ) 	2 D 	2;0 (78)

P	3 D 0 ) 	3 D 	3;0 (79)

P	4 D �	1;0tf ) 	4 D 	1;0tf .1 � �/ (80)

P	5 D �	2;0tf ) 	5 D 	2;0tf .1 � �/ (81)

P	6 D �	3;0tf ) 	6 D 	3;0tf .1 � �/ (82)

where 	i;0 denotes the (unknown) initial value of the adjoint variable 	i. Then, the
Pontryagin minimum principle yields

u2 D � arcsin
	3;0q

	2
1;0 C 	2

2;0 C 	2
3;0

(83)

sin u1 D � 	1;0q
	2

1;0 C 	2
2;0

and cos u1 D � 	2;0q
	2

1;0 C 	2
2;0

(84)

These relations imply that the optimal thrust direction is time-independent, regard-
less of the (known) target position. It is relatively straightforward to prove that for
the present application the remaining necessary conditions coming from (10) are
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useless for the purpose of identifying the optimal solution, in the sense that they
do not lead to establishing any new relation among the unknowns of the problem,
i.e.,

˚
	1;0; 	2;0; 	3;0; tf



. Also the parameter condition (11) can be proven to be

ignorable, in a way similar to that used in Sect. 4.2. Moreover, as the two angles
u1 and u2 are constant, they can be considered as the unknown quantities in place of
f	1;0; 	2;0; 	3;0g. Under the assumption that aT is constant, integration of (67)–(72)
leads to obtaining the following explicit solution for x1, x2, and x3:

x1 D x1;0 C x4;0tf � C 1

2
aT.tf �/2 cos u2 sin u1 � 1

2
g.tf �/2 (85)

x2 D x2;0 C x5;0tf � C 1

2
aT.tf �/2 cos u2 cos u1 (86)

x3 D x3;0 C x6;0tf � C 1

2
aT.tf �/2 sin u2 (87)

These expressions are evaluated at � D 1, then they are set equal to the respective
position coordinates of the target at � D 1. From (85)–(87) one obtains the following
equations:

.a2
T � g2/t4f C 4gx4;0t3f � 4t2f .x2

4;0 C x2
5;0 C x2

6;0/ � 4gt2f Œf1.1/ � x1;0�

C8x4;0tf Œf1.1/ � x1;0� C 8x5;0tf Œf2.1/ � x2;0� C 8x6;0tf Œf3.1/ � x3;0�

�4 Œf1.1/ � x1;0�
2 � 4 Œf2.1/ � x2;0�2 � 4 Œf3.1/ � x3;0�

2 D 0

(88)

u2 D arcsin
2 Œf3.1/ � x3;0� � 2x6;0tf

aTt2f
(89)

cos u1 D 2 Œf2.1/ � x2;0� � 2x5;0tf
aTt2f cos u2

and sin u1 D 2 Œf1.1/ � x1;0� � 2x4;0tf C gt2f
aT t2f cos u2

(90)
Depending on the analytical form of f1, f2, and f3, (88) can either represent a tran-
scendental equation or simplify to a polynomial equation of fourth degree. Once (88)
has been solved, calculation of the optimal thrust angles is straightforward, by
means of (89) and (90).

5.3 Application of VTD-NOG

The guidance algorithm described in this work is applied to the interception problem
in the presence of nonnominal flight conditions. In particular, perturbations on the
initial state and oscillations of the thrust acceleration magnitude over time are
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modeled. Several Monte Carlo campaigns are run, with the intent of obtaining
some useful statistical information on the accuracy of the algorithm at hand, in the
presence of the previously mentioned deviations, which are simulated stochastically.
The nominal initial position is perturbed by a random vector �: its magnitude � is
associated with a Gaussian distribution, with standard deviation equal to 5 m and
maximal value never exceeding 10 m, whereas the corresponding unit vector O� has
direction uniformly distributed over a unit sphere. Similarly, the nominal initial
velocity is perturbed by a random vector w: its magnitude w is associated with a
Gaussian distribution, with standard deviation equal to 5 m/s and maximal value
never exceeding 10 m/s, whereas the corresponding unit vector Ow has direction
uniformly distributed over a unit sphere. A different approach is adopted for the
perturbation of the thrust acceleration. As the thrust magnitude (and the related
acceleration aT) exhibits fluctuations, the perturbed thrust acceleration is modeled
through a trigonometric series,

aT;pert D aT

(

1 C
5X

kD1

ck sin.2k�/ C
5X

kD1

ckC5 cos.2k�/

)

(91)

where aT is the nominal thrust acceleration, whereas the corresponding (time-
varying) perturbed value aT;pert is actually used in the MC simulations. The
coefficients fckgkD1;:::;10 have a random Gaussian distribution with zero mean and a
standard deviation equal to 0.01. At the end of the algorithmic process described in
Sect. 3.3, two statistical quantities are evaluated, i.e. the mean value and the standard
deviation for all of the outputs of interest (with a notation similar to that adopted for
the preceding application).

In this section, three different targets are taken into account. For each of them,
four Monte Carlo campaigns have been performed, each including 100 runs. The
first campaign (MC1) assumes only perturbations of the initial state. The second
campaign (MC2) considers only oscillations of the thrust acceleration magnitude,
while the third and fourth campaigns (MC3 and MC4) include both types of
perturbations, with different sampling time intervals (�tS D 1 s and �tS D 0:5 s,
respectively).

Fixed Target As a first special case, a fixed target is considered. This means that
the three functions f1, f2, and f3 equal three prescribed values x.T/

1 , x.T/
2 , and x.T/

3 . As
a result, (88) assumes the form of a fourth degree equation; its smallest real root
represents the minimum time to interception.

In the numerical example that follows, the reference altitude (needed for defining
the value of g) is set to the initial altitude of the intercepting rocket, whereas aT D
2g. The initial state of the pursuing vehicle is

x1;0 D 30 km x2;0 D 0 km x3;0 D 3 km x4;0 D x5;0 D x6;0 D 0:1 km=s
(92)
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Fig. 12 Optimal interception trajectory of a fixed target

Table 2 Fixed target:
statistics on the time of flight
and the miss distance

�tS (s) Ndf (m) d.�/
f (m) Ntf (s) t.�/

f (s)

MC1 1 1:71 1:34 30:58 0:22

MC2 1 1:24 0:36 30:57 0:10

MC3 1 1:74 1:04 30:60 0:25

MC4 0:5 1:05 1:50 30:60 0:27

whereas the target position is

x.T/
1 D 35 km x.T/

2 D 5 km x.T/
3 D 0 km (93)

The minimum time of flight up to interception turns out to equal 30.58 s, whereas
the two optimal thrust angles are u�

1 D 73:3 deg and u�
2 D �41:8 deg. Figure 12

portrays the optimal intercepting trajectory.
Application of VTD-NOG yields results associated with the statistics summa-

rized in Table 2. They regard the miss distance df (at the end of nonnominal paths)
and the time of flight. Inspection of Table 2 reveals that VTD-NOG generates
accurate results, with modest values of the miss distance, which decreases by 40 %
from MC3 to MC4. Figure 13 portrays the time evolution of the corrected control
angles, obtained in MC3.

Falling Target The second special case assumes a target in free fall (e.g., a ballistic

missile at high altitudes), with given initial conditions, denoted with
n
x.T/

i;0

o

iD1;:::;6
.

This means that the three functions f1, f2, and f3 are

f1 D x.T/
1;0 C x.T/

4;0 tf � � 1

2
g.tf �/2 f2 D x.T/

2;0 C x.T/
5;0 tf � f3 D x.T/

3;0 C x.T/
6;0 tf � (94)

As a result, (88) assumes again the form of a fourth degree equation; its smallest
real root represents the minimum time to interception.
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Fig. 13 Fixed target interception: time histories of the control angles obtained in MC3

In the numerical example that follows, the reference altitude is set to the initial
altitude of the rocket, whereas aT D 3g. The initial state of the pursuing vehicle is

x1;0 D 15 km x2;0 D x3;0 D 0 km x4;0 D 0 km=s x5;0 D x6;0 D 0:2 km=s (95)

whereas the initial state of the target is given by

x.T/
1;0 D 30 km x.T/

2;0 D x.T/
3;0 D 1 km

x.T/
4;0 D �1 km=s x.T/

5;0 D x.T/
6;0 D 0:1 km=s

(96)

The minimum time of flight up to interception turns out to equal 12.68 s, whereas
the two optimal thrust angles are u�

1 D 96:6 deg and u�
1 D �6:5 deg.
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Table 3 Falling target:
statistics on the time of flight
and the miss distance

�tS (s) Ndf (m) d.�/
f (m) Ntf (s) t.�/

f (s)

MC1 1 0:46 0:27 12:67 0:03

MC2 1 1:81 1:40 12:68 0:01

MC3 1 1:83 1:41 12:67 0:03

MC4 0:5 1:47 1:12 12:68 0:03

The guidance algorithm is applied again in the presence of nonnominal flight
conditions. The same Monte Carlo campaigns performed for the previous case are
repeated for the application at hand. Table 3 summarizes the results for the four
Monte Carlo campaigns and reports the related statistics, with regard to the miss
distance (at the end of nonnominal paths) and the time of flight. It is worth remarking
that decreasing the sampling time (cf. Table 3) leads again to reducing the mean miss
distance. As in the previous application, the actual times of flight are extremely close
to the minimal value (12.68 s).

Moving Target The third special case assumes a target that describes a circular
path at constant altitude (e.g., an unmanned aerial vehicle). This means that

f1 D x.T/
1 f2 D x.T/

2C C RT cos.!tf � C'/ f3 D x.T/
3C C RT sin.!tf � C'/ (97)

where x.T/
1 denotes the target constant altitude,

�
x.T/

2C ; x.T/
3C

	
identify the center of the

circular path, whereas ! and ' define, respectively, the angular rate of rotation and
the initial angular position. In this case, (88) assumes the form of a transcendental
equation, to be solved numerically (for instance, through the Matlab native function
fsolve). However, numerical solvers need a suitable approximate guess solution to
converge to a refined result. For the application at hand, this guess can be easily
supplied. In fact, if the radius RT is sufficiently small, one can assume that the target

is located at
�

x.T/
1 ; x.T/

2C ; x.T/
3C

	
. In the presence of a fixed target, an analytical solution

exists, and derives from solving a fourth degree equation, as already explained in
Sect. 5.2. This solution is used as a guess for the moving target.

In the numerical example that follows, the reference altitude is set to the initial
altitude of the rocket, whereas aT D 3g. The initial state of the pursuing vehicle is

x1;0 D 9 km x2;0 D x3;0 D 0 km
x4;0 D 0:01 km=s x5;0 D 0:1 km=s x6;0 D 0 km=s

(98)

whereas the fundamental parameters of the target are

x.T/
1 D 10 km x.T/

2C D x.T/
3C D 2 km 2!�1 D 60 s RT D 0:5 km ' D 0 (99)

The minimum time of flight up to interception turns out to equal 14.76 s, whereas
the two optimal thrust angles are u�

1 D 74:4 deg and u�
2 D 51:5 deg.
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Table 4 Moving target:
statistics on the time of flight
and the miss distance

�tS (s) Ndf (m) d.�/
f (m) Ntf (s) t.�/

f (s)

MC1 1 0:49 0:34 14:73 0:22

MC2 1 2:03 1:31 14:76 0:10

MC3 1 2:15 1:47 14:74 0:25

MC4 0:5 1:90 1:09 14:76 0:11

The guidance algorithm is applied again in the presence of nonnominal flight
conditions. The same Monte Carlo campaigns performed for the previous case are
repeated for the application at hand. Table 4 summarizes the results for the four
Monte Carlo campaigns and reports the related statistics, with regard to the miss
distance (at the end of nonnominal paths) and the time of flight. It is worth remarking
that decreasing the sampling time (cf. Table 4) leads again to reducing the mean miss
distance.

6 Concluding Remarks

This work describes and applies the recently introduced, general-purpose variable-
time-domain neighboring optimal guidance algorithm. Usually, all the neighboring
optimal guidance schemes require the preliminary determination of an optimal tra-
jectory. Moreover, complex analytical developments accompany the implementation
of this kind of perturbative guidance. However, the main difficulties encountered
in former formulations of neighboring optimal guidance are the occurrence of
singularities for the gain matrices and the challenging implementation of the
updating law for the time-to-go. A fundamental original feature of the variable-
time-domain neighboring optimal guidance is the use of a normalized time scale
as the domain in which the nominal trajectory and the related vectors and matrices
are defined. As a favorable consequence, the gain matrices remains finite for the
entire time of flight and no extension of their domain is needed. Moreover, the
updating formula for the time-to-go derives analytically from the natural extension
of the accessory optimization problem associated with the original optimal control
problem. This extension leads also to obtaining new equations for the sweep
method, which provides all the time-varying gain matrices, computed offline and
stored in the onboard computer. In this mathematical framework, the guidance
termination criterion finds a logical, consistent definition, and corresponds to the
upper bound of the interval to which the normalized time is constrained. Two
applications are considered in the paper: (a) minimum-time-to-climb path of a
Boeing 727 aircraft and (b) minimum-time exoatmospheric interception of fixed
or moving targets. In both cases (especially for (a)), as well as in alternative
applications already reported in the scientific literature [16, 17], the variable-time-
domain neighboring optimal guidance yields very satisfactory results, with runtime
(per simulation) never exceeding the time of flight. This means that VTD-NOG
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actually represents an effective, general algorithm for the real-time determination of
the corrective actions aimed at maintaining an aerospace vehicle in the proximity of
its optimal path.
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