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Abstract. In this note, we introduce the concepts of support disjoint-
ness super-⊕-additivity and positively super-⊗-homogeneity of a func-
tional (with respect to pan-addition ⊕ and pan-multiplication ⊗, respec-
tively). By means of these two properties of functionals, we discuss the
characteristics of pan-integrals and present an equivalent definition of the
pan-integral. As special cases, we obtain the equivalent definitions of the
Shilkret integral, the +, ·-based pan-integral, and the Sugeno integral.

Keywords: Pan-integral · Sugeno integral · Shilkret integral · Support
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1 Introduction

In non-additive measure theory, several prominent nonlinear integrals, for exam-
ple, the Choquet integral [3] and the Sugeno [12] integral, have been defined and
discussed in detail [4,10,16].

As a generalization of the Legesgue integral and Sugeno integral, Yang [17]
introduced the pan-integral with respect to a monotone measure and a com-
mutative isotonic semiring (R+,⊕,⊗), where ⊕ is a pan-addition and ⊗ a pan-
multiplication [16,17]. The researches on this topic can be also found in [1,5,8–
10,13,18].

On the other hand, Lehrer introduced a new kind of nonlinear integral —
the concave integral with respect to a capacity, see [6,7,14]. Let (X,A) be a
measurable space and F+ denote the class of all finite nonnegative real-valued
measurable functions on (X,A). For fixed capacity ν, the concave integral with
respect to ν is a concave and positively homogeneous nonnegative functional on
F+. Observe that such integral was defined as the infimum taken over all concave
and positively homogeneous nonnegative functionals H defined on F+ with the
condition: ∀A ∈ A,H(χA) ≥ μ(A).

Inspiration received from the definition of concave integral, we try to charac-
terize the pan-integrals via functionals over F+ (with some additional restricts).
We introduce the concepts of support disjointness super-⊕-additivity and posi-
tively super-⊗-homogeneity of a functional on F+ (with respect to pan-addition
⊕ and pan-multiplication ⊗, respectively). We will show the pan-integral, as
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a functional defined on F+, is support disjointness super-⊕-additive and pos-
itively super-⊗-homogeneous. We shall present an equivalent definition of the
pan-integral by using monotone, support disjointness super-⊕-additive and pos-
itively super-⊗-homogeneous functionals on F+.

2 Preliminaries

Let X be a nonempty set and A a σ-algebra of subsets of X, R+ = [0,+∞),
R+ = [0,+∞]. Recall that a set function μ : A → R+ is a monotone measure, if
it satisfies the following conditions:

(1) μ(∅) = 0 and μ(X) > 0;
(2) μ(A) ≤ μ(B) whenever A ⊂ B and A,B ∈ A.
In this paper we restrict our discussion on a fixed measurable space (X,A).

Unless stated otherwise all the subsets mentioned are supposed to belong to
A. Let M be the set of all monotone measures defined on (X,A). When μ is
a monotone measure, the triple (X,A, μ) is called a monotone measure space
[10,16].

The concept of a pan-integral involves two binary operations, the pan-
addition ⊕ and pan-multiplication ⊗ of real numbers [16,17].

Definition 1. An binary operation ⊕ on R+ is called a pan-addition if it sat-
isfies the following requirements:

(PA1) a ⊕ b = b ⊕ a = a (commutativity);
(PA2) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) (associativity);
(PA3) a ≤ c and b ≤ d imply that a ⊕ b ≤ c ⊕ d (monotonicity);
(PA4) a ⊕ 0 = a (neutral element);
(PA5) an → a and bn → b imply that an ⊕ bn → a ⊕ b (continuity).

Definition 2. Let ⊕ be a given pan-addition on R+. A binary operation ⊗
on R+ is said to be a pan-multiplication corresponding to ⊕ if it satisfies the
following properties:

(PM1) a ⊗ b = b ⊗ a (commutativity);
(PM2) (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) (associativity);
(PM3) a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) (distributive law);
(PM4) a ≤ b implies (a ⊗ c) ≤ (b ⊗ c) for any c (monotonicity);
(PM5) a ⊗ b = 0 ⇔ a = 0 or b = 0 (annihilator);
(PM6) there exists e ∈ [0,∞] such that e ⊗ a = a for any a ∈ [0,∞] (neutral

element);
(PM7) an → a ∈ [0,∞) and bn → b ∈ [0,∞) imply (an ⊗ bn) → (a ⊗ b)

(continuity).

When ⊕ is a pseudo-addition on R+ and ⊗ is a pseudo-multiplication (with
respect to ⊕) on R+, the triple (R+,⊕,⊗) is called a commutative isotonic
semiring (with respect to ⊕ and ⊗) [16].
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Notice that similar operations called pseudo-addition and pseudo-
multiplication can be found in the literature [1,2,5,8–10,13,15,18].

In the following, we recall the concept of pan-integral [16,17].

Definition 3. Consider a commutative isotonic semiring (R+,⊕,⊗). Let μ ∈
M and f ∈ F+. The pan-integral of f on X with respect to μ is defined via

I(⊕,⊗)
pan (μ, f) = sup

{
n⊕

i=1

(
λi ⊗ μ(Ai)

)
:

n⊕
i=1

(
λi ⊗ χAi

)
≤ f, {Ai}ni=1 ∈ P

}
,

where χA is the characteristic function of A which takes value e on A and 0
elsewhere, and P is the set of all finite partitions of X.

For A ∈ A, the pan-integral of f on A is defined by I(⊕,⊗)
pan (μ, f ⊗ χA).

Note: A finite partition of X is a finite disjoint system of sets {Ai}ni=1 ⊂ A
such that Ai ∩ Aj = ∅ for i �= j and ∪n

i=1Ai = X.

Note that in the case of commutative isotonic semiring (R+,∨,∧), Sugeno
integral [12] is recovered, while for (R+,∨, ·), Shilkret integral [11] is covered by
the pan-integral in Definition 3.

Proposition 1. Consider a commutative isotonic semiring (R+,⊕,⊗) and fixed
μ ∈ M. Then I(⊕,⊗)

pan (μ, ·), as a functional on F+, is monotone, i.e., for any
f, g ∈ F+,

f ≤ g =⇒ I(⊕,⊗)
pan (μ, f) ≤ I(⊕,⊗)

pan (μ, g).

Proposition 2. For any A ∈ F , I(⊕,⊗)
pan (μ, χA) ≥ μ(A).

3 Main Results

In this section we present an equivalent definition of pan-integral. In order to do
it, we first introduce two new concepts and show two lemmas.

Definition 4. Consider a commutative isotonic semiring (R+,⊕,⊗). A func-
tional F : F+ → R+ is said to be

(i) positively super-⊗-homogeneous, if for any f ∈ F+ and any a > 0, we
have

F (a ⊗ f) ≥ a ⊗ F (f). (1)

(ii) support disjointness super-⊕-additive,if for any f, g ∈ F+, supp(f) ∩
supp(g) = ∅, we have

F (f ⊕ g) ≥ F (f) ⊕ F (g), (2)

here supp(f) = {x ∈ X : f(x) > 0} since we do not concern the topology.
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Lemma 1. Consider a commutative isotonic semiring (R+,⊕,⊗) and fixed μ ∈
M. Then I(⊕,⊗)

pan (μ, ·), as a functional on F+, is positively super-⊗-homogeneous,
i.e., for any f ∈ F+ and any a > 0, we have

I(⊕,⊗)
pan (μ, a ⊗ f) ≥ a ⊗ I(⊕,⊗)

pan (μ, f). (3)

Proof. For any finite partition {A1, . . . , An} of X and {λ1, . . . , λn} ⊂ R+ with⊕n
i=1(λi ⊗ χAi

) ≤ f , we have that
⊕n

i=1

(
(a ⊗ λi) ⊗ χAi

)
≤ a ⊗ f . Thus,

I(⊕,⊗)
pan (μ, a ⊗ f)

= sup

⎧⎨
⎩

m⊕
j=1

(
βj ⊗ μ(Bj)

)
:

m⊕
j=1

(
βj ⊗ χBj

)
≤ a ⊗ f, {Bj}mj=1 ∈ P

⎫⎬
⎭

≥ sup

{
n⊕

i=1

(
(a ⊗ λi) ⊗ μ(Ai)

)
:

n⊕
i=1

(
(a ⊗ λi) ⊗ χAi

)
≤ a ⊗ f, {Ai}ni=1 ∈ P

}

= sup

{
a ⊗

n⊕
i=1

(
λi ⊗ μ(Ai)

)
: a ⊗

n⊕
i=1

(
λi ⊗ χAi

)
≤ a ⊗ f, {Ai}ni=1 ∈ P

}

≥ a ⊗ sup

{
n⊕

i=1

(
λi ⊗ μ(Ai)

)
:

n⊕
i=1

(
λi ⊗ χAi

)
≤ f, {Ai}ni=1 ∈ P

}

= a ⊗ I(⊕,⊗)
pan (μ, f). �

Remark 1. Notice that for the commutative isotonic semiring (R+,⊕, ·), i.e., ⊗ is
the usual multiplication, then the related pan-integral is positively homogeneous,
i.e.,

I(⊕,·)
pan (μ, af) = a · I(⊕,·)

pan (μ, f).

In fact, by Lemma 1, I(⊕,·)
pan (μ, af) ≥ a I(⊕,·)

pan (μ, f). On the other hand,
I(⊕,·)
pan (μ, f) = I(⊕,·)

pan (μ, 1
a (af)) ≥ 1

aI
(⊕,·)
pan (μ, af), which implies the reverse inequal-

ity and hence the equality holds.

Lemma 2. Consider a commutative isotonic semiring (R+,⊕,⊗) and fixed μ ∈
M. Then I(⊕,⊗)

pan (μ, ·), as a functional on F+, is support disjointness super-⊕-
additive, i.e., for any f, g ∈ F+ such that supp(f) ∩ supp(g) = ∅, we have

I(⊕,⊗)
pan (μ, f ⊕ g) ≥ I(⊕,⊗)

pan (μ, f) ⊕ I(⊕,⊗)
pan (μ, g). (4)

Proof. If one of the two integrals on the right-hand side of Ineq. (4) is infinite
then, by the monotonicity of the pan-integral, I(⊕,⊗)

pan (μ, f ⊕ g) also equals to
infinity, which implies that (4) holds.

So, without loss of generality, we can suppose that both I(⊕,⊗)
pan (μ, f) and

I(⊕,⊗)
pan (μ, g) are finite. Let ln ↗ I(⊕,⊗)

pan (μ, f) and rn ↗ I(⊕,⊗)
pan (μ, f) be two

sequences of real number. Then, for each n, there is a partition {A
(n)
i }kn

i=1 of
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supp(f), a partition {B
(n)
j }mn

j=1 of supp(g), and two sequences of positive number

{α
(n)
i }kn

i=1 and {β
(n)
j }mn

j=1 such that
⊕kn

i=1(α
(n)
i ⊗χ

A
(n)
i

) ≤ f ,
⊕mn

j=1(β
(n)
j ⊗χ

B
(n)
j

) ≤
g and both the following two inequalities hold

kn⊕
i=1

(
α
(n)
i ⊗ μ(A(n)

i )
)

≥ ln,

mn⊕
j=1

(
β
(n)
j ⊗ μ(B(n)

j )
)

≥ rn.

By the fact of supp(f) ∩ supp(g) = ∅, we know that {A
(n)
i }kn

i=1 ∪ {B
(n)
j }mn

j=1 is a
partition of supp(f ⊕ g). Moreover, we have that

( kn⊕
i=1

(α(n)
i ⊗ χ

A
(n)
i

)
) ⊕ ( mn⊕

j=1

(β(n)
j ⊗ χ

B
(n)
j

)
)

≤ f ⊕ g,

and

I(⊕,⊗)
pan (μ, f ⊕ g) ≥

( kn⊕
i=1

(
α
(n)
i ⊗ μ(A(n)

i )
)) ⊕ ( mn⊕

j=1

(
β
(n)
j ⊗ μ(B(n)

j )
))

≥ ln ⊕ rn.

Letting n → ∞, by the continuity of pan-addition, we get that

I(⊕,⊗)
pan (μ, f ⊕ g) ≥ I(⊕,⊗)

pan (μ, f) ⊕ I(⊕,⊗)
pan (μ, g).

The proof is complete. �

Consider a commutative isotonic semiring (R+,⊕,⊗). Let C⊕,⊗ be the set
of all nonnegative, monotone, positively super-⊗-homogeneous and support dis-
jointness super-⊕-additive functionals on F+.

The following is our main result which provides an equivalent definition of
the pan-integral.

Theorem 1. Consider a commutative isotonic semiring (R+,⊕,⊗) and fixed
μ ∈ M. Then for any f ∈ F+,

I(⊕,⊗)
pan (μ, f) = inf

{
F (f) : F ∈ C⊕,⊗,∀A ∈ A, F (χA) ≥ μ(A)

}
.

Proof. By Propositions 1 and 2, Lemmas 1 and 2, we know that I(⊕,⊗)
pan (μ, ·) :

F+ → [0,∞] is monotone, positively super-⊗-homogeneous, support disjointness
super-⊕-additive, i.e., I(⊕,⊗)

pan (μ, ·) ∈ C⊕,⊗ and I(⊕,⊗)
pan (μ, χA) ≥ μ(A) for any

A ∈ A. Therefore,

I(⊕,⊗)
pan (μ, f) ≥ inf

{
F (f) : F ∈ C⊕,⊗,∀A ∈ A, F (χA) ≥ μ(A)

}
.
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On the other hand, for any f ∈ F+, any
⊕n

i=1

(
λi ⊗ χAi

) ≤ f and any
F ∈ C⊕,⊗ with F (χA) ≥ μ(A),∀A ∈ A, we have

F (f) ≥ F
( n⊕

i=1

(
λi ⊗ χAi

)) ≥
n⊕

i=1

F
(
λi ⊗ χAi

)

≥
n⊕

i=1

(
λi ⊗ F (χAi

)
)

≥
n⊕

i=1

(
λi ⊗ μ(Ai)

)
.

Thus,

F (f) ≥ sup
{ n⊕

i=1

(
λi ⊗ μ(Ai)

)
:

n⊕
i=1

(
λi ⊗ χAi

) ≤ f
}
= I(⊕,⊗)

pan (μ, f).

By the arbitrariness of F , we infer that

inf
{

F (f) : F ∈ C⊕,⊗,∀A ∈ A, F (χA) ≥ μ(A)
}

≥ I(⊕,⊗)
pan (μ, f),

which proves the conclusion. �

Let C(1)
⊕,· be the set of nonnegative, monotone, positively homogeneous and

support disjointness super-⊕-additive functionals on F+. Then C(1)
⊕,· ⊂ C⊕,·. Not-

ing that I(⊕,·)
pan (μ, ·) : F+ → [0,∞] is positively homogeneous (Remark 1), then

I(⊕,·)
pan (μ, ·) ∈ C(1)

⊕,·. Thus we have the following result.

Theorem 2. Let (X,F , μ) be a monotone measure space. Then for any f ∈ F+,

I(⊕,·)
pan (μ, f) = inf

{
F (f) : F ∈ C(1)

⊕,·,∀A ∈ A, F (χA) ≥ μ(A)
}

.

Let the commutative isotonic semiring be (R+,∨, ·). Noticing that
I(∨,·)
pan (μ, χA) = μ(A),∀A ∈ A, by Theorem 2, we get an equivalent definition
for the Shilkret integral.

Corollary 1. Let (X,F , μ) be a monotone measure space. Then for any f ∈ F+,

I(∨,·)
pan (μ, f) = inf

{
F (f) : F ∈ C(1)

∨,· ,∀A ∈ A, F (χA) = μ(A)
}

.

If we let ⊕ = +, then we get an equivalent definition for the usual addition
and multiplication based pan-integral.

Corollary 2. Let (X,F , μ) be a monotone measure space. Then for any f ∈ F+,

I(+,·)
pan (μ, f) = inf

{
F (f) : F ∈ C(1)

+,·,∀A ∈ A, F (χA) ≥ μ(A)
}

.

Noting that the Sugeno integral is positively ∧-homogeneous [16] and satisfies
I(∨,∧)
pan (μ, χA) = μ(A),∀A ∈ A, we also have the following result.
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Corollary 3. Let (X,F , μ) be a monotone measure space. Then for any f ∈ F+,

I(∨,∧)
pan (μ, f) = inf

{
F (f) : F ∈ C(1)

∨,∧,∀A ∈ A, F (χA) = μ(A)
}

.
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