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1 Sapientia University of Transylvania, T̂ırgu-Mureş, Romania
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Abstract. Early detection is the key of success in the treatment of
tumors. Establishing methods that can identify the presence and posi-
tion of tumors in their early stage is a current great challenge in med-
ical imaging. This study proposes a machine learning solution based on
binary decision trees and random forest technique, aiming at the detec-
tion and accurate segmentation of brain tumors from multispectral vol-
umetric MRI records. The training and testing of the proposed method
uses twelve selected volumes from the BRATS 2012/13 database. Image
volumes were preprocessed to extend the feature set with local informa-
tion of each voxel. Intending to enhance the segmentation accuracy, each
detected tumor pixel is validated or discarded according to a criterion
based on neighborhood information. A detailed preliminary investiga-
tion is carried out in order to identify and enhance the capabilities of
random forests trained with information originating from single image
records. The achieved accuracy is generally characterized by a Dice score
up to 0.9. Recommendation are formulated for the future development
of a complex, random forest based tumor detection and segmentation
system.

Keywords: Decision tree · Random forest · Machine learning · Image
segmentation

1 Introduction

The early detection of brain tumors is utmost important as it can save human
lives. The accurate segmentation of brain tumors is also essential, as it can assist
the medical staff in the planning of treatment and intervention. The manual
segmentation of tumors requires plenty of time even for a well-trained expert.
A fully automated segmentation and quantitative analysis of tumors is thus a
highly beneficial service. However, it is also a very challenging one, because of
the high variety of anatomical structures and low contrast of current imaging
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techniques which make the difference between normal regions and the tumor
hardly recognizable for the human eye [1]. Recent solutions, usually assisted by
the use of prior information, employ various image processing and pattern recog-
nition methodologies like: combination of multi-atlas based segmentation with
non-parametric intensity analysis [2], AdaBoost classifier [3], level sets [4], active
contour model [5], graph cut distribution matching [6], diffusion and perfusion
metrics [7], 3D blob detection [8], support vector machine [9], concatenated ran-
dom forests [10,11], and fuzzy c-means clustering [12].

The main goal of our research work is to build a reliable procedure for brain
tumor detection from multimodal MRI records, based on supervised machine
learning techniques, using the MICCAI BRATS data set that contains several
dozens of image volumes together with ground truth provided by human experts.
In this paper we propose a solution based on binary decision trees and random
forest, and present preliminary results together with a recommendations towards
a complex and reliable brain tumor detection system.

2 Materials and Methods

The main goal of this study is to establish a machine learning solution to detect
and localize tumors in MRI volumes. This paper presents preliminary results
obtained using the random forest technique. The algorithm is trained to separate
three tissue types, which are labeled as tumor, edema, and negative. The primary
focus is on establishing the presence or absence of the tumor, while the accurate
segmentation is a secondary goal.

2.1 BRATS Data Sets

Brain tumor image data used in this work were obtained from the MICCAI
2012 Challenge on Multimodal Brain Tumor Segmentation [13]. The challenge
database contains fully anonymized images originating from the following insti-
tutions: ETH Zürich, University of Bern, University of Debrecen, and University
of Utah. The image database consists of multi-contrast MR scans of 30 glioma
patient, out of which 20 have been acquired from high-grade (anaplastic astrocy-
tomas and glioblastoma multiform tumors) and 10 from low-grade (histological
diagnosis: astrocytomas or oligoastrocytomas) glioma patients. For each patient,
multimodal (T1, T2, FLAIR, and post-Gadolinium T1) MR images are avail-
able. All volumes were linearly co-registered to the T1 contrast image, skull
stripped, and interpolated to 1 mm isotropic resolution. Each records contains
approximately 1.5 millions of feature vectors. All images are stored as signed
16-bit integers, but only positives values are used. Each image set has a truth
image which contains the expert annotations for “active tumor” and “edema”.
Each voxel in a volume is represented by a four-dimensional feature vector:

x = [x(T1), x(T2), x(T1C), x(FLAIR)]T . (1)
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These are the observed features of each pixel. Since these four values do not
incorporate any information regarding the location or the neighborhood of the
pixel, there is a strong need to extend the feature vector with further, computed
features.

2.2 Data Preprocessing

Preprocessing steps in our application have three main goals.

1. Histogram normalization. Whether we like it or not, absolute intensity values
in magnetic resonance imaging say nothing about the observed tissue. Inten-
sities are relative and frequently contaminated with intensity inhomogeneity
[14]. Treating the latter problem stays outside the scope of this study, as the
MICCAI BRATS data set is free from intensity inhomogeneity. However, the
histogram of each volume needs to be mapped on a uniform scale. In this
order, all intensity values underwent a linear transformation x → αx + β,
where parameters α and β were established separately for each feature such
a way that the middle fifty percent of the data fell between 600 and 800 after
the transformation. Further on, we set up a minimum and maximum limit
for intensity values at 200 and 1200, respectively. Intensities situated beyond
the limit were replaced by the corresponding limit value.

2. Computed features. Since the observed data vectors bear no information on
the position of the pixel, we included eight more features into the feature
vector. For each of the four channels, two locally averaged intensities were
computed within 10-element and 26-element neighborhood. The former con-
tained eight direct neighbors within the slice and the two closest ones from
neighbor slices. The latter contained all neighbors of the given pixel situated
within a 3 × 3 × 3-sized cube. Pixels having no valid neighbors in the specific
neighborhood inherited the own intensity value of the pixel itself in the given
channel.

3. Missing Data. Some pixels have zero valued observed features standing for a
missing value. These pixels were not included in the main data processing.
However, all existing features were used at the computation of averaged fea-
tures, so pixels with missing values may have contributed to their neighbors,
before being discarded.

2.3 Decision Tree

Binary decision trees (BDT) can describe any hierarchy of crisp (non-fuzzy)
two-way decisions [15]. Given an input data set of vectors X = {x 1,x 2, . . . ,xn},
where x i = [xi,1, xi,2, . . . , xi,m]T , a BDT can be employed to learn the classi-
fication that corresponds to any set of labels Λ = {λ1, λ2, . . . , λn}. The clas-
sification learned by the BDT can be perfect if x i = x j implies λi = λj ,
∀i, j ∈ {1, 2, . . . , n}. The BDT is built during the learning process. Initially the
tree consists of a single node, the root, which has to make a decision regarding
all n input vectors. If not all n vectors have the same label, which is likely to
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be so, then the set of data is not homogeneous, there is a need for a separation.
The decision will compare a single feature, the one with index k (1 ≤ k ≤ m), of
the input vectors with a certain threshold α, and the comparison will separate
the vectors into two subgroups: those with xi,k < α (i = 1 . . . n), and those
with xi,k ≥ α (i = 1 . . . n). The root will then have two child nodes, each cor-
responding to one of the possible outcomes of the above decision. The left child
will further classify those n1 input vectors, which satisfied the former condition,
while the right child those n2 ones that satisfied the latter condition. Obviously,
we have n1 + n2 = n. For both child nodes, the procedure is the same as it was
for the root. When at a certain point of the learning algorithm, all vectors being
classified by a node have the same label λp, then the node is declared a leaf
node, which is attributed to the class with index p. Another case when a node is
declared leaf node is when all vectors to be separated by the node are identical,
so there is no possible condition to separate the vectors. In this case, the label
of the node is decided by the majority of labels, or if there is no majority, a
label should be chosen from the present ones. In our application, this kind of
rare cases use the priority list of labels defined as: (1) tumor, (2) edema, (3)
negative.

The separation of a finite set of data vectors always terminates in a finite
number of steps. The maximum depth of the tree highly depends on the way of
establishing the separation condition in each node. The most popular way, also
employed in our application, uses entropy based criteria to choose the separation
condition. Whenever a node has to establish its separation criterion for a subset
of vectors X ⊆ X containing n items with 1 < n ≤ n, the following algorithm is
performed:

1. Find all those features which have at least 2 different values in X.
2. Find all different values for each feature and sort them in increasing order.
3. Set a threshold candidate at the middle of the distance between each consec-

utive pair of values for each feature.
4. Choose that feature and that threshold, for which the entropy-based criterion

E = n1 log
n1

n
+ n2 log

n2

n
(2)

gives the minimum value, where n1 (n2) will be the cardinality of the subset
of vectors X1 (X2), for which the value of the tested feature is less than
(greater or equal than) the tested threshold value.

After having the BDT trained, it can be applied for the classification of test
data vectors. Any test vector is first fed to the root node, which according to
the stored condition and the feature values of the vector, decides towards which
child node to forward the vector. This strategy is followed then by the chosen
child node, and the vector will be forwarded to a further child. The classification
of a vector terminates at the moment when it is forwarded to a leaf node of the
tree. The test vector will be attributed to the class indicated by the labeling of
the reached leaf node.
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2.4 Random Forest

A binary decision tree is an excellent tool, when the task is to accurately learn
a certain complicated pattern. For example, it can reproduce every little detail
of any MRI volume applied as training data, while keeping the maximum depth
below one hundred. However, this marvellous property drags along a serious dan-
ger of overfitting. Learning all the small details of the train data builds a serious
obstacle for the decision tree in making correct decisions concerning major prop-
erties of the test data. This is why, we followed the recipe of Breiman [16], and
built forests of binary decision trees, using randomly chosen subsets of the learn-
ing data, and randomly chosen subset of features for each tree separately. Each
tree in a random forest is a weak classifier. A large set of trees trained with
randomly chosen data will make a single decision on a majority basis. In the
current stage of this research, we tested how accurate decisions can be made by
random forests trained by the data coming from a single MRI volume. There
were several important questions to answer:

1. What is the right number of trees in a random forest? Too few trees are not
likely to be accurate, while too many redundant ones will not be runtime
efficient.

2. What is the right number of feature vectors to train each tree in the random
forest? Again, to few vectors are not expected to lead to accurate decision,
while too many vectors bring the risk to overfitting.

3. How to make a random forest accurate and effective, when being trained with
data coming from several MRI volumes?

2.5 Post-Processing

Random forests are expected to identify the most part of vectors describing
tumor pixels. Since negative pixels belong to a great variety of normal tissues
(e.g. white matter, gray matter, cerebro-spinal fluid), some of them might be
classified as tumor or edema. To be able to discard such cases, we proposed
and implemented a posterior validation scheme for all pixels that are labeled as
tumor or edema by the random forest. For each such pixel, we defined a 250-
pixel neighborhood (all pixels situated at Euclidean distance below

√
15 units,

and counted how many of the neighbors are classified as tumor or edema. Those
having a number of such neighbors below the predefined neighborhood threshold,
are relabeled as negative pixels during post-processing. The appropriate value
of the threshold is to be established as well.

2.6 Evaluation of Accuracy

The Jaccard index (JI) is a normalized score of accuracy, computed as

JI =
TP

TP + FP + FN
, (3)
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where TP stands for the number of true positives, FP for the false positives, and
FN for false negatives. Further on, the Dice score (DS) can be computed as

DS =
2TP

2TP + FP + FN
=

2JI
1 + JI

. (4)

Both indices score 1 in case of an ideal clustering, while a fully random result is
indicated by a score close to zero.

3 Results and Discussion

Twelve volumes from the BRATS 2012/13 data set were selected for the evalu-
ation of the proposed methodology:

V = {HG01,HG02, . . . HG07,HG09,HG11,HG13,HG14,HG15}. (5)

Let us denote by DS(i → j) (i, j ∈ V) the Dice score given by the random
forest trained with data chosen from volume i while tested on the whole volume j.
Considering the size of the set V, there are 12×11 = 132 possible i 	= j scenarios,
and 12 ones with i = j. We performed all possible such tests with various settings
of main parameters like number of trees in the forest and number of samples used
for the training of each tree. At the training of individual decision trees, an equal
number of random samples were chosen from each of the three tissue types. For
example, the so-called 100-sample training refers to the use of a total number of
3 × 100 = 300 feature vectors.

Test cases in increasing order of obtained Dice Scores
0 10 20 30 40 50 60 70 80 90 100 110 120 130
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Dice Scores vs. number of samples used to train each tree of the random forest
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Fig. 1. Classification accuracy benchmarks in case of random forests containing 100
trees, each tree trained with 3 × (30 to 5000) feature vectors. Exceptionally, training
with HG13 used 4000 samples instead of 5000, because it has less than 5000 tumor
pixels.
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Figure 1 exhibits the obtained Dice scores in case of trees trained by sample
sizes varying from 30 to 5000 items. Each forest in this experiment consisted of
100 trees. For each type of trees, the obtained DS(i → j) (i 	= j) Dice scores
were sorted in increasing order. The obtained curves indicate that the sample
size can strongly influence the classification accuracy. Generally the larger the
training sample, the more accurate the decisions, but at a certain level above
1000 samples per tissue type, traces of overfitting are observed. Table 1 shows
numerical values of the obtained average Dice scores. The last column also reveals
how accurate the classification can be when tested on the same volume that was
used for training. Obviously, overfitting does not disturb classification accuracy
on the train data set.

Table 1. Averaged accuracy benchmark scores obtained by forests of 100 trees each

Samples from
each tissue type

Mean Dice score
DS(i → i)

Percentage of Dice score
obtained for 1000 samples

Mean Dice score
DS(i → i)

5000 samples 0.4916 98.33 % 0.8124

1000 samples 0.5030 100.00 % 0.7810

600 samples 0.4976 98.93 % 0.7702

300 samples 0.4809 95.62 % 0.7626

100 samples 0.4510 89.66 % 0.7354

30 samples 0.4286 85.21 % 0.6912

Table 2. Dice scores obtained when training with one volume and testing on another,
trees of 1000 samples per tissue type, and 100 trees in the forest

Volume i Train data selected from volume i
Testing on each volume j �= i

Testing on volume j When trained
on each volume i �= j

Average SD Maximum Minimum Average SD Maximum Minimum

HG01 0.5216 0.1722 0.7822 0.2133 0.5857 0.1627 0.8304 0.2508

HG02 0.6191 0.1280 0.8262 0.3500 0.4637 0.2117 0.7416 0.1013

HG03 0.5721 0.1767 0.8615 0.2945 0.4532 0.2309 0.8082 0.1579

HG04 0.5107 0.1983 0.8304 0.2043 0.3902 0.1502 0.6377 0.1474

HG05 0.3872 0.2188 0.6652 0.0552 0.3848 0.1235 0.5279 0.1519

HG06 0.5648 0.1537 0.8386 0.3113 0.5918 0.0955 0.7273 0.6980

HG07 0.5815 0.1537 0.8270 0.3368 0.4796 0.1666 0.7052 0.2110

HG09 0.2662 0.1626 0.5126 0.0684 0.4659 0.1230 0.5789 0.2043

HG11 0.4939 0.2064 0.8564 0.2111 0.5718 0.1320 0.7090 0.2863

HG13 0.5630 0.1992 0.8082 0.2758 0.3368 0.2351 0.6995 0.0552

HG14 0.4721 0.1804 0.7299 0.1248 0.5628 0.1621 0.8270 0.3340

HG15 0.4837 0.1359 0.6426 0.2255 0.7493 0.1144 0.8615 0.5000

Table 2 gives a detailed statistical report on obtained DS(i → j) values, for
each individual image volume. The left panel summarizes benchmark values for
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cases when the given volume served as training data set, and the forest was
tested on all other volumes. The right panel reports testing on the given volume,
having forests trained with all other volumes separately. The two panels are far
from being symmetric, as the best performing train data sets were HG02, HG07,
and HG03, while highest accuracy benchmarks were obtained when testing on
volumes HG15, HG06, and HG01. The minimum values indicate that data from
a single volume cannot train a forest for high quality classification. On the other
hand, the maximum values show that data from each volume can contribute to
the classification accuracy, and for each test data set there exist possible training
sets that yield acceptable classification.

Another aspect that deserves to be remarked and analysed is the poor sym-
metry of the obtained Dice scores. Having obtained a high value for a certain
DS(i → j) does not necessarily mean that DS(j → i) will also have a high value.
In order to numerically characterize the symmetry of the obtained results, we
propose to compute the Averaged Symmetry Criterion (ASC), defined as:

ASC = exp

⎛
⎝ 1

|V|(|V| − 1)

∑
i,j∈V; i�=j

∣∣∣∣log
DS(i → j)
DS(j → i)

∣∣∣∣

⎞
⎠ , (6)

where |V| stands for the cardinality of V, namely 12 in our case. ASC values
obtained for various train samples sizes are reported in Table 3. Dices scores
seem to be closest, but still very far from symmetry at sample sizes that assure
highest accuracy.

For certain couples of different volumes (i, j), we performed 30 repeated train-
ing and testing processes. The goal was to monitor the variability of Dice scores
DS(i → j) obtained due to the random samples used for training. Figure 2
presents the outcome of repetitive evaluation. Seemingly using less samples
means higher variance in benchmark results.

The applied post-processing scheme led to relevant improvement of classi-
fication accuracy. Figure 3 shows the histogram of all DS(i → j) values before
and after post-processing. Here the train data consisted of 600 randomly chosen
samples per tissue type for each of the 100 trees in the forest. Dice scores after
post-processing reported here are the maximum values obtained by choosing the
optimal neighborhood threshold for each individual case. However, this cannot
be done automatically. We need to establish either an acceptable constant value
of the neighborhood threshold, or to define a strategy that sets the threshold
while testing.

Figure 3 also reports the effect of the post-processing. On the left side each
individual test is represented, showing the DS before and the maximum DS

Table 3. The relation between DS(i → j) and DS(j → i), for i, j ∈ V and i �= j

Train sample size per tissue type 30 100 300 600 1000 5000

Symmetry benchmark (ASC) 2.065 1.960 1.792 1.705 1.670 1.710
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Fig. 2. Reproducibility benchmark: outcome of repeated training on random data sam-
ples from a given volume and testing on another volume.

after post-processing. The single curve in the middle plot presents the average
effect of post-processing for each possible value of the neighborhood threshold,
indicating that it is possible to choose such a threshold value between 190 and
200, for which the average DS rises from 0.502 to 0.583. The bottom right side
of Fig. 3 shows those 25 test cases, which were most favorably affected by the
post-processing.

Figure 4 shows the outcome of tumor segmentation without and with post-
processing, by presenting detected and missed tumor pixels in several consecutive
slices of volume HG11. The forest used here consisted of 100 trees, and each tree
was trained using 600 samples of each tissue type, randomly selected from volume
HG15. In this image, black pixels are the true positive ones, while gray shades
represent false positives and false negatives. Post-processing in this certain case
rose the Dice score from 0.5339 to 0.8036, which was achieved by discarding lots
of false positives, mostly in slices where the real tumor was not present. Even this
result could be further improved by implementing another post-processing step
that would detect non-tumor (gray) pixels inside the tumor (among black pixels).

The size of tumors that are present in the volumes included in V varied
from 4.5 cm3 in volume HG13 to 110 cm3 in volume HG14. The segmentation
accuracy of tumors depends on the size of the tumor, as indicated in Fig. 5. The
post-processing seems to help more in case of small tumors, so it has a vital role
in detecting early stage tumors.

The experiments carried out during this study showed us that a random forest
trained with samples from a single volume cannot perform acceptably in all cases.
On the other hand, each tested volume had one or more corresponding train
volumes that assured fine detection and accurate segmentation of the tumor.
The latter allows us to envision a complex random forest that will be suitable for
a great majority of cases, which will be reliable enough for clinical deployment.



310 Z. Kapás et al.

Dice Score
0 0.25 0.50 0.75 1

N
um

be
r 

of
 te

st
 c

as
es

 (
ou

t o
f 1

32
)

0

3

6

9

12

15

18
Before post-processing

Dice Score
0 0.25 0.50 0.75 1

N
um

be
r 

of
 te

st
 c

as
es

 (
ou

t o
f 1

32
)

0

3

6

9

12

15

18
After post-processing

Maximum rise of Dice Score
0 0.25 0.50 0.75

N
um

be
r 

of
 te

st
 c

as
es

 (
ou

t o
f 1

32
)

0

6

12

18

24

30

36
Effect of post-processing

DS before post-processing
0 0.2 0.4 0.6 0.8 1

D
ic

e 
S

co
re

 (
D

S
) 

af
te

r 
po

st
-p

ro
ce

ss
in

g

0.0

0.2

0.4

0.6

0.8

1.0

Neighborhood threshold
0 50 100 150 200 250

A
ve

ra
ge

 D
ic

e 
S

co
re

0.50

0.52

0.54

0.56

0.58

0.60

Neighborhood threshold
0 50 100 150 200 250

D
ic

e 
S

co
re

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Effects of the proposed post-processing. Histogram of Dice scores DS(i → j):
(top left) before post-processing; (top middle) after post-processing; (top right) his-
togram of the differences caused by neighborhood-based post-processing; (bottom left)
Individual DS(i → j) values before and after post-processing; (bottom middle) The evo-
lution of average Dice score plotted against the value of the neighborhood threshold;
(bottom right) Variation of individual Dice scores DS(i → j) plotted against the value
of the neighborhood threshold, those 25 which are most affected by post-processing.

The future random forest solution will probably contain clusters of trees, where
different clusters will be trained each using its dedicated reduced number of
volumes. Clusters of trees will give their own opinion concerning test cases,
and the forest will have the role to aggregate these individual opinions and
produce the final positive or negative diagnosis. This preliminary study has
shown that a random forest based learning algorithm, even if trained with a
much more reduced number of features than other random forest based solutions
(e.g. [10,11]), can be suitable to detect the presence of the tumor.
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Fig. 4. (left) Detected tumor without post-processing; (right) Detected tumor with
neighborhood-based post-processing. Without validating each pixel classified as tumor,
several scattered false positives are present in the volume.
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Fig. 5. Obtained average and maximum Dice scores with or without post-processing,
plotted against the size of the tumor in the test volume. Linear trends are also indicated.

4 Conclusion

In this paper we presented an automatic tumor detection and segmentation
algorithm employing random forests and binary decision trees, in its preliminary
stage of implementation. The proposed methodology already reliably detects
tumors of 2 cm diameter. It is likely to obtain fine segmentation accuracy in the
future using a complex random forest trained with data from dozens of volumes.
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