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Abstract. The fundamentals of insurance are introduced and alterna-
tives to risk measurement are presented, illustrating how the size and
likelihood of future losses may be quantified. Real data indicate that
insurance companies handle many small losses, while large or extreme
claims occur only very rarely. The skewness of the profit and loss proba-
bility distribution function is especially troublesome for risk quantifica-
tion, but its strong asymmetry is successfully addressed with generaliza-
tions of kernel estimation. Closely connected to this approach, distortion
risk measures study the expected losses of a transformation of the original
data. GlueVaR risk measures are presented. The notions of subadditivity
and tail-subadditivity are discussed and an overview of risk aggregation
is given with some additional applications to insurance.
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1 Introduction and Motivation

The insurance market is made up of customers that buy insurance policies and
shareholders that own insurance companies. The latter are typically concerned
about adverse situations and seek to maximize their profits, while the former
search for the best market price, although they also need reassurance that they
have opted for a solvent company.

Every insurance contract has an associated risk. Here, we analyse the caveats
of measuring risk individually when we consider more than one contract and
more than one customer, i.e., the aggregate risk in insurance.

Risk quantification serves as the basis for identifying the appropriate price
for an insurance contract and, thus, guaranteeing the stability and financial
strength of the insurance company. The aim of this article is to provide some
fundamentals on how best to undertake this analysis. Once the individual risk
associated with each contract has been calculated, the sum of the risk of all
contracts provides an estimate of the overall risk. In this way, we also provide
an overview of risk aggregation.
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1.1 Basic Risk Quantification in Insurance

Let us consider a client who buys a car insurance policy that covers the risk of
losses caused by accidents involving that vehicle for a period of one year. The
insurance company needs to cover its expenses attributable to administration
costs, regulatory mandates, advertising and IT systems. In other words, the
company needs to fix a minimum price to cover the general expenses derived
from its ordinary operations. The contract price is known as the premium.

The premiums collected can then be invested in the financial market, pro-
ducing returns for the company before its financial resources are required for
paying out compensation to its customers. A company that sells car insurance
may sell thousands of one-year contracts but only those clients that suffer an
accident, and who are covered, are compensated.

Each insurance contract has an associated profit or loss outcome, which can
only be observed at the end of the contract. Two problems emerge when measur-
ing this outcome. First, from an economic point of view, the production process
of an insurance contract follows what is known as an inverted cycle, i.e., the price
has to be fixed before the cost of the product is fully known. In a normal fac-
tory production process, the first step is to create and manufacture the product
and, then, according to existing demand and the expenses incurred, a minimum
price is fixed for the product. In the insurance sector, however, information on
costs is only partial at the beginning of the contract, since accidents have yet
to occur. Moreover, uncertainty exists. The eventual outcome of an insurance
contract depends, first, on whether or not the policyholder suffers an accident
and, second, on its severity. If an accident occurs, then the company has to
compensate the insured party and this amount may be much greater than the
premium initially received. Thus, the cost of any one given contract is difficult
to predict and the eventual outcome may be negative for the insurer.

Despite the large financial component involved in the management of an
insurance firm, insurance underwriting is based primarily on the analysis of his-
torical statistical data and the law of large numbers. Here, recent advances in
the field of data mining allow massive amounts of information to be scrutinized
and, thus, they have changed the way insurance companies address the problem
of fixing the correct price for an insurance contract. This price, moreover, has to
be fair for each customer and, therefore, premium calculation requires a sophis-
ticated analysis of risk. In addition, the sum of all prices has to be sufficient to
cover the pool of insureds.

Insurance companies around the world are highly regulated institutions. An
insurance company cannot sell its products unless they have been authorized
by the corresponding supervisor. In Spain, supervision is carried out by the
Direccion General de Seguros y Fondos de Pensiones, an official bureau that
depends on the Ministry of Economics and which has adhered to European
guidelines since January 2016. Under the European directive known as Solvency
II, no company is allowed to operate in European territory unless it complies
with strict legal requirements. This directive is motivated by the need to provide
an overall assessment of the companys capacity to face its aggregate risk, even
in the worst case scenario.
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The choice of loss models and risk measures is crucial, as we shall illustrate
in the sections that follow. We start by providing definitions and notations and
include a simple example that illustrates the definition of losses and the risk
measure. We present distortion risk measures and report key findings about their
behaviour when aggregating losses. We then present a special family of distortion
risk measures. The non-parametric approach to the estimation of distribution
functions is discussed. An example using data from car insurance accidents is
analysed and we conclude with a discussion of some possible lines of future
research.

1.2 Notation

Consider a probability space and the set of all random variables defined on this
space. A risk measure ρ is a mapping from the set of random variables to the
real line [26].

Definition 1. Subadditivity. A risk measure is subadditive when the aggre-
gated risk, which is the risk of the sum of individual losses, is less than or equal
to the sum of individual risks.

Subadditvity is an appealing property when aggregating risks in order to
preserve the benefits of diversification.

Value-at-Risk (VaR) has been adopted as a standard tool to assess risk and to
calculate legal requirements in the insurance industry. Throughout this discus-
sion, we assume without loss of generality that all data on costs are non-negative,
so we will only consider non-negative random variables.

Definition 2. Value-at-Risk. Value-at-Risk at level α is the α-quantile of a
random variable X (which refers to a cost, a loss or the severity of an accident
in our context), so

VaRα (X) = inf {x | FX (x) ≥ α} = F−1
X (α) ,

where FX is the cumulative distribution function (cdf) of X and α is the confi-
dence or the tolerance level 0 ≤ α ≤ 1.

VaR has many pitfalls in practice [23]. A major disadvantage when using
VaR in the insurance context is that this risk measure does not always fulfill the
subadditivity property [1,3]. So, the VaR of a sum of losses is not necessarily
smaller than or equal to the sum of VaRs of individual losses. An example of
such a case is presented in Sect. 5. VaR is subadditive for elliptically distributed
losses [25].

Definition 3. Tail Value-at-Risk. Tail Value-at-Risk at level α is defined as:

TVaRα (X) =
1

1 − α

∫ 1

α

V aRλ (X) dλ.
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Roughly speaking, the TVaR is understood as the mathematical expectation
beyond the VaR. The TVaR risk measure is subadditive and it is a coherent risk
measure [18].

Since we are mainly concerned with extreme values, we consider the definition
of tail-subadditivity. This means that we only examine the domain of the variables
that lies beyond the VaR of the aggregate risk.

Definition 4. Tail-Subadditivity. A risk measure is tail-subadditive when the
aggregated risk (risk of the sum of losses) is less than or equal to the sum of
individual risks, only in the domain defined by the VaR of the sum of losses.

Additional information on the algorithm to rescale the risk measure in the
tail is given below.

1.3 Exposure to Risk: A Paradox

An additional problem of measuring risk in insurance is that of exposure. The
following simple example shows the importance of defining losses with respect
to a certain level of exposure. For this purpose, we compare flying vs. driving.

There is typically much discussion as to whether flying is riskier than driving.
In a recent paper published in Risk Analysis [24], a comparison of the risks of
suffering a fatal accident in the air and on the highway illustrates that the
construction and interpretation of risk measures is crucial when assessing risk.
However, this example does not discuss the paradox that is described in [20],
which argues that risk quantification also depends on how exposure is measured.

MacKenzie [24] calculates the probability of a fatal incident by dividing the
total number of fatal incidents by the total number of miles travelled in the
United States. He also approximates the distributions of the number of victims
given a fatal incident occurs. The probabilities of a fatal incident per one million
miles travelled compared to those calculated by Guillen [20] for 10,000 hours of
travel (in parentheses) are 0.017 % (0.096 %) for air carriers, 22.919 % (45.838 %)
for air taxis and commuters, and 1.205 % (0.843 %) for highway driving. The two
approaches produce different outcomes in the probability of an accident with
fatalities, because speed is not homogeneous across all transportation modes.
However, regardless of whether miles travelled or hours of travel are considered,
we always conclude that the safest means of transport is flying with a commercial
air carrier if we look solely at the probability of an incident occurring.

However, if the expected number of fatalities per one million miles or per
10,000 hours of travel is compared, a contradiction emerges. The average number
of victims per one million miles is 0.003 if we consider distance in terms of
commercial aviation trips, whereas the average number of victims is 0.013 if we
consider distance driven on highways. However, if we consider the time spent
on the commercial aviation trip, the average is 0.017 victims compared to 0.009
when driving on highways. The conclusion we draw here is that highway trips
are safer than commercial airline flights. This contradiction with respect to the
previous discussion is caused by the use of the mathematical expectation of two



Fundamentals of Risk Measurement and Aggregation 19

different loss functions. This simple example shows the importance of knowing
how to define the losses and the implications of the choice of the risk measure.

2 Distortion Risk Measures

Distortion risk measures were introduced by Wang [29,30] and are closely related
to the distortion expectation theory [31]. A review of how risk measures can be
interpreted from different perspectives is provided in [27], and a clarifying expla-
nation of the relationship between distortion risk measures and distortion expec-
tation theory is provided. Distortion risk measures are also studied in [4,17]. The
definition of a distortion risk measure contains two key elements: first, the asso-
ciated distortion function; and, second, the concept of the Choquet integral [15].

Definition 5. Distortion Function. Let g : [0, 1] → [0, 1] be a function such
that g (0) = 0, g (1) = 1 and g is injective and non-decreasing. Then g is called
a distortion function.

Definition 6. Choquet Integral. The Choquet Integral with respect to a set

function μ of a μ-measurable function X : Ω → R
+ ∪ {0} is denoted as

∫
Xdμ

and is equal to ∫
Xdμ =

∫ +∞

0

Sμ,X(x)dx,

if μ (Ω) < ∞, where Sμ,X (x) = μ ({X > x}) denotes the survival function of X
with respect to μ. See [16] for more details.

Definition 7. Distortion Risk Measure for Non-negative Random
Variable. Let g be a distortion function. Consider a non-negative random vari-
able X and its survival function SX(x) = P (X > x). Function ρg defined by

ρg (X) =
∫ +∞

0

g (SX (x)) dx

is called a distortion risk measure.

3 GlueVaR Risk Measures

A new family of risk measures known as GlueVaR was introduced by Belles-
Sampera et al. [5]. A GlueVaR risk measure is defined by a distortion function.
Given confidence levels α and β, α ≤ β, the distortion function for a GlueVaR
is:

κh1,h2
β,α (u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1

1 − β
· u, if 0 ≤ u < 1 − β

h1 +
h2 − h1

β − α
· [u − (1 − β)] ,

if 1 − β ≤ u < 1 − α

1, if 1 − α ≤ u ≤ 1

(1)
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where α, β ∈ [0, 1] such that α ≤ β, h1 ∈ [0, 1] and h2 ∈ [h1, 1]. Parameter β is
the additional confidence level besides α. The shape of the GlueVaR distortion
function is determined by the distorted survival probabilities h1 and h2 at levels
1−β and 1−α, respectively. Parameters h1 and h2 are referred to as the heights
of the distortion function.

The GlueVaR family has been studied by [5–7,9], who showed that the associ-
ated distortion function κh1,h2

β,α can be defined as being concave in [0, 1]. The con-
cavity of the distortion risk measure is essential to guarantee tail-subadditivity.

Theorem 1. Concave and continuous distortion risk measures are subadditive.

Proof. A proof can be derived from [16].

Corollary 1. If a distortion risk measure is subadditive, it is also tail-
subadditive in the restricted domain.

Theorem 2. GlueVaR risk measures are tail-subadditive if they are concave in
the interval [0, (1 − α)).

Proof. For a GlueVaR risk measure, it suffices to check that its corresponding
distortion function κh1,h2

β,α (u) is concave for 0 ≤ u < (1 − α). Note that by
definition the distortion function is also continuous in that interval. Then it
suffices to restrict the domain so that the variable only takes values that are
larger than the VaR of the sum of losses and apply the previous theorem. Note
also that the VaR of the sum of losses is always larger or equal than the VaR of
each individual loss, since we consider that all losses are non-negative. [5] also
provide a proof.

Let us comment on the practical application of the above results. Given two
random variables, X1 and X2. Let us denote by mα = V aRα(X1 + X2). Then,
we define the truncated variables X1|X1 > mα and X2|X2 > mα. Likewise,
we consider the truncated random variable (X1 + X2)|(X1 + X2) > mα, then
tail-subadditivity holds whenever

ρg [(X1 + X2)|(X1 + X2) > mα] ≤ ρg [X1|X1 > mα] + ρg [X2|X2 > mα] . (2)

Put simply, expression (2) means that the risk of the sum of the losses of two
contracts that exceed the value-at-risk of the sum is less than or equal to the
sum of the risks of losses from each contract above the risk of the sum.

The algorithm to calculate the rescaled GlueVaR risk measure in the tail
that we implement below in Sect. 5 is as follows. We have restricted our data set
to all values greater than mα0 for a given confidence level α0. For these data,
we subtract mα0 from each data point and redefine the tolerance parameters,
so that α = 0 and β = 1 − (1 − β0)/(1 − α0), where α0 and β0 are the original
levels of confidence. Once the GlueVaR has been calculated for this set of data
and parameters, we add α0mα0 to return to the original scale.
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4 Nonparametric Estimation of Standard Risk Measures

Let T (·) be a concave transformation where Y = T (X) is the transformed
random variable and Yi = T (Xi), i = 1 . . . n are the transformed observed losses
and n is the total number of observed data. Then the kernel estimator of the
transformed cumulative distribution function of variable X is:

F̂Y (y) =
1
n

n∑
i=1

K

(
y − Yi

b

)
=

1
n

n∑
i=1

K

(
T (x) − T (Xi)

b

)
, (3)

The transformed kernel estimation of FX (x) is:

F̂X (x) = F̂T (X)(T (x)).

where b and K
(

x−Xi

b

)
are defined as the bandwidth and the integral of the

kernel function k(·), respectively (see [10] for more details).
In order to obtain the transformed kernel estimate, we need to determine

which transformation should be used. Several authors have analysed the trans-
formed kernel estimation of the density function ([10,14,28]).

A double transformation kernel estimation method was proposed by Bolancé
et al. [11]. This requires an initial transformation of the data T (Xi) = Zi, where
the transformed variable distribution is close to a Uniform (0, 1) distribution.
Afterwards, the data are transformed again using the inverse of the distribution
function of a Beta distribution. The resulting variable, with corresponding data
values M−1 (Zi) = Yi, after the double transformation is close to a Beta (see,
[10,12]) distribution, so it is quite symmetrical and the choice of the smoothing
parameter can be optimized.

Following the double transformation of the original data, V aRα is calculated
with the Newton-Raphson method to solve the expression:

F̂T (X)(T (x)) = α

and once the result is obtained, the inverse of the transformations is applied in
order to recover the original scale. The optimality properties and performance,
even in small samples are studied by Alemany et al. [2].

When calculating the empirical TV aRα a first moment of the data above
V aRα is used, but other numerical approximations based on the non-parametric
estimate of the distribution function are also possible.

In general, a non-parametric estimation of distortion risk measures can be
directly achieved in the transformed scale, which guarantees that the transformed
variable is defined in a bounded domain. So, the non-parametric approach can
simply be obtained by integrating the distorted estimate of the survival function
of the transformed (or double transformed) variable T (X), so:

ρ̂g(T (X)) =
n∑

i>1

g(1 − F̂T (X)(T
(
X(i)

)
))(T

(
X(i)

) − T
(
X(i−1)

)
),
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where subscript (i) indicates the ordered location. Once the result is obtained,
the inverse of the transformations is applied in order to recover the original scale.
The properties of this method have not yet been studied.

5 Example

Here we provide an example of the implementation of risk measurement and
aggregation. The data have been provided by a Spanish Insurer and they contain
information on two types of costs associated with the car accidents reported to
the company. The first variable (X1) is the cost of the medical expenses paid
out to the insurance policy holder and the second variable (X2) is the amount
paid by the insurer corresponding to property damage. Medical expenses may
contain medical costs related to a third person injured in the accident. More
information on the data can be found in [13,21,22]. The sample size is 518 cases.
The minimum, maximum and mean values of X1 (in parentheses X2) are 13 (1),
137936 (11855) and 1827.6 (283.9), respectively.

The empirical risk measures for different levels of tolerance are shown in
Table 1. Risk in the tail region is shown in Table 2. The results in Table 1 confirm
that VaR is not subadditive; nor is the GlueVaR example chosen here. However,
tail-subadditivity holds in the tail, as shown in Table 2.

Table 1. Distortion risk measures (ρ) for car insurance cost data and subadditivity

ρ α ρ(X1) ρ(X2) ρ(X1 + X2) ρ(X1) + ρ(X2) Subadditivity

V aRα 95.0 % 6450.00 1060.00 7926.00 7510.00 No

99.0 % 20235.00 4582.00 25409.00 24817.00 No

TV aRα 95.0 % 18711.78 3057.88 20886.81 21769.66 Yes

99.0 % 48739.25 7237.02 53259.39 55976.27 Yes

GlueV aR∗ 95.0 % 10253.39 1558.42 11996.87 11811.81 No

99.0 % 24817.56 4988.43 29992.21 29805.99 No
∗The GlueVaR parameters are h1 = 1/20, h2 = 1/8 and β = 99.5 %.

Nonparametric estimates of VaR are shown in Table 3. The results also indi-
cate that subadditivity is not fulfilled for a level of α = 95%. Note also that
compared to the empirical results, the non-parametric approximation produces
higher values for larger tolerance levels because the shape of the distribution
in the extremes is smoothed and extrapolated. So, in this case, subadditivity is
found for α = 99% and α = 99.5%.
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Table 2. Distortion risk measures (ρ) for car insurance cost data and rescaled tail-
measure

ρ α ρ(X1) ρ(X2) ρ(X1 + X2) ρ(X1) + ρ(X2) Tail-subadd.∗

V aRα 95.0 % 7603.70 18978.70 7529.7 26582,40 Yes

99.0 % 36603.91 - 25409.00 - -

TV aRα 95.0 % 20380.47 69517.70 20440.66 89898.17 Yes

99.0 % 87142.91 - 49453.17 - -

GlueV aR∗∗ 95.0 % 11740.70 27401.87 11588.64 39142.57 Yes

99.0 % 45027.08 - 29398.90 - -
∗Only values above the corresponding V aRα(X1 +X2) are considered. For α = 99 %,
no values of X2 are larger than this level.
∗∗The GlueVaR parameters are h1 = 1/20, h2 = 1/8 and β = 99.5 %.

Table 3. Nonparametric estimates of Value-at-Risk (ρ) for car insurance cost data and
subadditivity

α ρ(X1) ρ(X2) ρ(X1 + X2) ρ(X1) + ρ(X2) Subadditivity

95.0 % 6357.58 1049.77 7415.80 7407.35 No

99.0 % 23316.56 4693.33 26606.16 28009.89 Yes

99.5 % 36967.12 7921.23 36968.11 44888.35 Yes

6 Conclusion

We highlight the importance of transformations in the analysis of insurance
data that present many extreme values. Distortion risk measures transform the
survival function to focus on extreme losses, while advanced non-parametric
kernel methods benefit from the transformation of the original data to eliminate
asymmetry.

Extreme value theory plays an important methodological role in risk manage-
ment for the insurance, reinsurance, and finance sectors, but many challenges
remain with regards how best to measure and aggregate risk in these cases.
Tails of loss severity distributions are essential for pricing [19] and creating the
high-excess loss layers in reinsurance.

Distortion risk measures constitute a tool for increasing the probability den-
sity in those regions where there is more information available on extreme cases.
Yet, the selection of the distortion function is not subject to an optimization
procedure. Regulators have imposed the use of some easy-to-calculate measures,
for example, in Solvency II the central risk measure is the VaR, while in the
Swiss Solvency Test, TVaR is the standard approach. Non-parametric methods
for risk measurement are flexible and do not require any assumptions regarding
the statistical distribution that needs to be implemented. As such, they cer-
tainly impose fewer assumptions than when using a given parametric statistical
distribution. We believe that distortion risk measures could optimize an objec-
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tive function that reflects attitude towards risk. The relationship between risk
measures and risk attitude was initially studied by [8]. The analysis of the atti-
tudinal position and the risk aversion shown by the risk quantifier have not been
addressed here and remain matters for future study.

References

1. Acerbi, C., Tasche, D.: On the coherence of expected shortfall. J. Bank. Financ.
26(7), 1487–1503 (2002)
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