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Abstract. Implication functions are crucial operators for many fuzzy
logic applications. In this work, we consider the definition of implication
functions in the interval-valued setting using admissible orders and we
use this interval-valued implications for building comparison measures.
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1 Introduction

Implication operators are crucial for many applications of fuzzy logic, including
approximate reasoning or image processing. Many works have been devoted to
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the analysis of these operators, both in the case of fuzzy sets [1,2,14,15] and
in the case of extensions [3–5,13,16]. A key problem in order to define these
operators is that of monotonicity. When implication operators are extended to
fuzzy extensions, this problem is not trivial, since for most of the fuzzy extensions
do not exist a linear order, whereas for some applications, as it is the case of
fuzzy rules-based classification systems, it is necessary to have the possibility of
comparing any two elements [12].

In this work, we propose the definition of implication operators in the
interval-valued setting defining its monotonicity in terms of the so-called admis-
sible orders [11]. This is a class of linear orders which extends the usual order
between intervals and which include the most widely used examples of linear
orders between intervals, as lexicographical and Xu and Yager ones.

As a first step in a deeper study of these interval-valued implications with
admissible orders, we show how implications which are defined in terms of admis-
sible orders can be used to build comparison measures which are of interest from
the point of view of applications.

The structure of the present work is as follows. In Sect. 2 we present some pre-
liminary definitions and results. In Sect. 3 we present the definition of interval-
valued implication function with respect to an admissible order. Section 4 is
devoted to obtaining equivalence and restricted equivalence functions with
respect to linear orders. In Sect. 5 we use our previous results to build com-
parison measures. We finish with some conclusions and references.

2 Preliminaries

In this section we introduce several well known notions and results which will
be useful for our subsequent developments.

We are going to work with closed subintervals of the unit interval. For this
reason, we define:

L([0, 1]) = {[X,X] | 0 ≤ X ≤ X ≤ 1}.

By ≤L we denote an arbitrary order relation on L([0, 1]) with 0L = [0, 0] as
its minimal element and 1L = [1, 1] as maximal element. This order relation can
be partial or total. If we must consider an arbitrary total order, we will denote
it by ≤TL.

Example 1. The partial order relation on L([0, 1]) induced by the usual partial
order in R

2 is:
[X,X] �L [Y , Y ] if X ≤ Y and X ≤ Y . (1)

As an example of total order in L([0, 1]) we have Xu and Yager’s order (see
[17]):

[X,X] ≤XY [Y , Y ] if

{
X + X < Y + Y or
X + X = Y + Y and X − X ≤ Y − Y .

(2)
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Definition 1. An admissible order in L([0, 1]) is a total order ≤TL which
extends the partial order �L.

In the following, whenever we speak of a total order we assume it is an
admissible order.

Definition 2. Let ≤L be an order relation in L([0, 1]). A function
N : L([0, 1]) → L([0, 1]) is an interval-valued negation function (IV negation)
if it is a decreasing function with respect to the order ≤L such that N(0L) = 1L

and N(1L) = 0L. A negation N is called strong negation if N(N(X)) = X for
every X ∈ L([0, 1]). A negation N is called non-filling if N(X) = 1L iff X = 0L,
while N is called non-vanishing if N(X) = 0L iff X = 1L.

We recall now the definition of interval-valued aggregation function.

Definition 3. Let n ≥ 2. An (n-dimensional) interval-valued (IV) aggregation
function in (L([0, 1]),≤L, 0L, 1L) is a mapping M : (L([0, 1]))n → L([0, 1]) which
verifies:

(i) M(0L, · · · , 0L) = 0L.
(ii) M(1L, · · · , 1L) = 1L.
(iii) M is an increasing function with respect to ≤L.

Example 2. Fix α ∈ [0, 1]. With the order ≤XY , the function

Mα : L([0, 1])2 → L([0, 1])

defined by

Mα([X,X], [Y , Y ]) = [αX + (1 − α)Y , αX + (1 − α)Y ]

is an IV aggregation function.

3 Interval-Valued Implication Functions

Definition 4 (cf. [5] and [2]). An interval-valued (IV) implication function in
(L([0, 1]),≤L, 0L, 1L) is a function I : (L([0, 1]))2 → L([0, 1]) which verifies the
following properties:

(i) I is a decreasing function in the first component and an increasing function
in the second component with respect to the order ≤L.

(ii) I(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L.
(iii) I(1L, 0L) = 0L.

Some properties that can be demanded to an IV implication function are the
following [10]:

I4: I(X,Y ) = 0L ⇔ X = 1L and Y = 0L.
I5: I(X,Y ) = 1L ⇔ X = 0L or Y = 1L.
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NP : I(1L, Y ) = Y for all Y ∈ L([0, 1]).
EP : I(X, I(Y,Z)) = I(Y, I(X,Z)) for all X,Y,Z ∈ L([0, 1]).
OP : I(X,Y ) = 1L ⇔ X ≤L Y .
SN : N(X) = I(X, 0L) is a strong IV negation.
I10: I(X,Y ) ≥L Y for all X,Y ∈ L([0, 1]).
IP : I(X,X) = 1L for all X ∈ L([0, 1]).
CP : I(X,Y ) = I(N(Y ), N(X)) for all X,Y ∈ L([0, 1]), where N is an IV
negation.
I14: I(X,N(X)) = N(X) for all X ∈ L([0, 1]), where N is an IV negation.

We can obtain IV implication functions from IV aggregation functions as
follows.

Proposition 1. Let M be an IV aggregation function such that

M(1L, 0L) = M(0L, 1L) = 0L

and let N be an IV negation in L([0, 1]), both with respect to the same order ≤L.
Then the function IM : L([0, 1])2 → L([0, 1]) given by

IM (X,Y ) = N(M(X,N(Y )))

is an IV implication function.

Proof. It follows from a straight calculation. ��
However, in this work we are going to focus on a different construction method
for IV implication functions.

Proposition 2. Let ≤TL be a total order in L([0, 1]), and let N be an IV nega-
tion function with respect to that order. The function I : L([0, 1])2 → L([0, 1])
defined by

I(X,Y ) =

{
1L, if X ≤TL Y,

∨(N(X), Y ), if X >TL Y.

is an IV implication function.

Proof. It is clear that the function I is an increasing function in the second
component and a decreasing function in the first component. Moreover

I(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L

and I(1L, 0L) = 0L. ��
This result can be further generalized as follows [15]:

Proposition 3. Let ≤TL be a total order in L([0, 1]), and let N be an IV nega-
tion function with respect to that order. If M : L([0, 1])2 → L([0, 1]) is an IV
aggregation function, then the function I : L([0, 1])2 → L([0, 1]) defined by

I(X,Y ) =

{
1L, if X ≤TL Y,

M(N(X), Y ), if X >TL Y,

is an IV implication function.
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4 Equivalence and Restricted Equivalence Functions
in L([0, 1]) with Respect to a Total Order

Along this section only total orders are considered.
The equivalence functions [6–8] are a fundamental tool in order to build

measures of similarity between fuzzy sets. In this section we construct interval-
valued equivalence functions from IV aggregation and negation functions.

Definition 5. A map F : L([0, 1])2 → L([0, 1]) is called an interval-valued (IV)
equivalence function in (L([0, 1]),≤TL) if F verifies:

(1) F (X,Y ) = F (Y,X) for every X,Y ∈ L([0, 1]).
(2) F (0L, 1L) = F (1L, 0L) = 0L.
(3) F (X,X) = 1L for all X ∈ L([0, 1]).
(4) If X ≤TL X ′ ≤TL Y ′ ≤TL Y , then F (X,Y ) ≤TL F (X ′, Y ′).

Theorem 1. Let M1 : L([0, 1])2 → L([0, 1]) be an IV aggregation function such
that M1(X,Y ) = M1(Y,X) for every X,Y ∈ L([0, 1]), M1(X,Y ) = 1L if and
only if X = Y = 1L and M1(X,Y ) = 0L if and only if X = 0L or Y = 0L. Let
M2 : L([0, 1])2 → L([0, 1]) be an IV aggregation function such that M2(X,Y ) =
1L if and only if X = 1L or Y = 1L and M2(X,Y ) = 0L if and only if X = Y =
0L. Then the function F : L([0, 1])2 → L([0, 1]) defined by

F (X,Y ) = M1(I(X,Y ), I(Y,X)),

with I the IV implication function defined in the Proposition 3 taking M = M2,
is an IV equivalence function.

Proof. Since

F (X,Y ) =

⎧⎪⎨
⎪⎩

1L, if X = Y,

M1(M2(N(Y ),X), 1L), if X <TL Y,

M1(M2(N(X), Y ), 1L), if Y <TL X,

then F verifies the four properties in Definition 5. ��
In [8] the definition of equivalence function (in the real case) was modified in
order to define the so-called restricted equivalence function. Now we develop a
similar study for the case of IV equivalence functions.

Definition 6. Let N be an IV negation. A map F : L([0, 1])2 → L([0, 1]) is
called an interval valued (IV) restricted equivalence function (in (L([0, 1]),≤TL))
if F verifies the following properties:

1. F (X,Y ) = F (Y,X) for all X,Y ∈ L([0, 1]).
2. F (X,Y ) = 1L if and only if X = Y .
3. F (X,Y ) = 0L if and only if X = 0L and Y = 1L, or, X = 1L and Y = 0L.
4. F (X,Y ) = F (N(X), N(Y )) for all X,Y ∈ L([0, 1]).
5. If X ≤TL Y ≤TL Z, then F (X,Z) ≤TL F (X,Y ) and F (X,Z) ≤TL F (Y,Z).
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Theorem 2. Let N be an IV negation function. Let M1 : L([0, 1])2 → L([0, 1])
be an IV aggregation function such that M1(X,Y ) = M1(Y,X) for every X,Y ∈
L([0, 1]), M1(X,Y ) = 1L if and only if X = Y = 1L and M1(X,Y ) = 0L if and
only if X = 0L or Y = 0L. Let M2 : L([0, 1])2 → L([0, 1]) be an IV aggregation
function such that M2(X,Y ) = 1L if and only if X = 1L or Y = 1L and
M2(X,Y ) = 0L if and only if X = Y = 0L. Then the function F : L([0, 1])2 →
L([0, 1]) defined by

F (X,Y ) = M1(I(X,Y ), I(Y,X))

with I an IV implication function defined by

I(X,Y ) =

{
1L if X ≤TL Y

M2(N(X), Y ) otherwise,

verifies the properties (1) and (5) of Definition 6. Moreover, it satisfies property
(2) if N is non-filling and property (3) if N is non-vanishing.

Proof. Since

F (X,Y ) =

⎧⎪⎨
⎪⎩

1L, if X = Y

M1(M2(N(Y ),X), 1L), if X <TL Y

M1(M2(N(X), Y ), 1L), if Y <TL X

then F verifies:

(1) F (X,Y ) = F (Y,X) trivially.
(5) If X ≤TL Y ≤TL Z, then N(Z) ≤TL N(Y ) ≤TL N(X). Since M1 is an

increasing function then F (X,Z) ≤TL F (X,Y ) and F (X,Z) ≤TL F (Y,Z).

Since M1(X,Y ) = 1L if and only if X = Y = 1L, then, if N is non-filling,
F (X,Y ) = 1L if and only if X = Y because{

M2(N(Y ),X) 
= 1L, if X <TL Y

M2(N(X), Y ) 
= 1L, if X >TL Y.

Moreover, F (X,Y ) = 0L if and only if X >TL Y and M2(N(X), Y ) = 0L or
X <TL Y and M2(N(Y ),X) = 0L. Therefore, as N is non-vanishing, F (X,Y ) =
0L if and only if {

X = 0L or Y = 1L or
Y = 0L or X = 1L.

with X 
= Y . ��

5 Similarity Measures, Distances and Entropy Measures
in L([0, 1]) with Respect to a Total Order

Our constructions in the previous section can be used to build comparison mea-
sures between interval-valued fuzzy sets, and, more specifically, to obtain simi-
larity measures, distances in the sense of Fang and entropy measures. Along this
section, we only deal with a total order ≤TL.
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To start, let us consider a finite referential set of n elements, U =
{u1, . . . , un}. We denote by IV FS(U) the set of all interval-valued fuzzy sets
over U . Recall that an interval-valued fuzzy set A over U is a mapping A : U →
L([0, 1]) [9]. Note that the order ≤TL induces a partial order ≤TL in IV FS(U)
given, for A,B ∈ IV FS(U), by

A ≤TL B if A(ui) ≤TL B(ui) for every ui ∈ U.

First of all, we show how we can build a similarity between interval-valued
fuzzy sets defined over the same referential U . We start recalling the definition.

Definition 7 [8]. An interval-valued (IV) similarity measure on IV FS(U) is
a mapping SM : IV FS(U) × IV FS(U) → L([0, 1]) such that, for every
A,B,A′, B′ ∈ IV FS(U),

(SM1) SM is symmetric.
(SM2) SM(A,B) = 1L if and only if A = B.
(SM3) SM(A,B) = 0L if and only if {A(ui), B(ui)} = {0L, 1L} for every
ui ∈ U .
(SM4) If A ≤TL A′ ≤TL B′ ≤TL B, then SM(A,B) ≤TL SM(A′, B′).

Then we have the following result.

Theorem 3. Let M : L([0, 1])n → L([0, 1]) be an IV aggregation function with
respect to the total order ≤TL and such that M(X1, . . . , Xn) = 1L if and only if
X1 = · · · = Xn = 1L and M(X1, . . . , Xn) = 0L if and only if X1 = · · · = Xn =
0L. Then, the function SM : IV FS(U) × IV FS(U) → L([0, 1]) given by

SM(A,B) = M(F (A(u1), B(u1)), . . . , F (A(un), B(un)))

where F is defined as in Theorem 2 with non-filling and non-vanishing negation,
is an IV similarity measure.

Proof. It follows from a straightforward calculation. ��
We can make use of this construction method to recover both distances and
entropy measures. First of all, let’s recall the definition of both concepts.

Definition 8 [6]. A function D : IV FS(U) × IV FS(U) → L([0, 1]) is called
an IV distance measure on IV FS(U) if, for every A,B,A′, B′ ∈ IV FS(U), D
satisfies the following properties:

(D1) D(A,B) = D(B,A);
(D2) D(A,B) = 0L if and only if A = B;
(D3) D(A,B) = 1L if and only if A and B are complementary crisp sets;
(D4) If A ≤TL A′ ≤TL B′ ≤TL B, then D(A,B) ≥TL D(A′, B′).

Definition 9 [6]. A function E : IV FS(U) → L([0, 1]) is called an entropy on
IV FS(U) with respect to a strong IV negation N (with respect to ≤TL such that
there exists ε ∈ L([0, 1]) with N(ε) = ε if E has the following properties:
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(E1) E(A) = 0L if and only if A is crisp;
(E2) E(A) = 1L if and only if A = {(ui, A(ui) = ε)|ui ∈ U};
(E3) E(A) ≤TL E(B) if A refines B; that is, A(ui) ≤TL B(ui) ≤TL ε or

A(ui) ≥TL B(ui) ≥TL ε;
(E4) E(A) = E(N(A)).

Then the following two results are straight from Theorem 3.

Corollary 1. Let M : L([0, 1])n → L([0, 1]) be an IV aggregation function with
respect to the total order ≤TL such that M(X1, . . . , Xn) = 1L if and only if X1 =
· · · = Xn = 1L and M(X1, . . . , Xn) = 0L if and only if X1 = · · · = Xn = 0L and
let N be an IV negation with respect to the order ≤TL which is non filling and
non-vanishing. Then, the function D : IV FS(U) × IV FS(U) → L([0, 1]) given
by

D(A,B) = N(M(F (A(u1), B(u1)), . . . , F (A(un), B(un))))

where F is defined as in Theorem 2, is an IV distance measure.

Proof. It is straight from Theorem 3, since a similarity measure defines a distance
in a straightforward way. ��
Theorem 4. Let N be a strong IV negation (with respect to ≤TL) and such
that there exists ε ∈ L([0, 1]) with N(ε) = ε. Let M : L([0, 1])n → L([0, 1]) be
an IV aggregation function with respect to the total order ≤TL and such that
M(X1, . . . , Xn) = 1L if and only if X1 = · · · = Xn = 1L and M(X1, . . . , Xn) =
0L if and only if X1 = · · · = Xn = 0L. Then, the function E : IV FS(U) →
L([0, 1]) given by

E(A) = M(F (A(u1), N(A(u1))), . . . , F (A(un), N(A(un))))

where F is defined as in Theorem 2 with non-filling and non-vanishing negation,
is an IV entropy measure.

Proof. It follows from the well known fact that, for a given IV similarity SM ,
the function E(A) = SM(A,N(A)) is an IV entropy measure [6]. ��

6 Conclusions

In this paper we have considered the problem of defining interval-valued impli-
cations when the order relation is a total order. In particular, we have consid-
ered the case of admissible orders. We have also studied the construction of
interval-valued equivalence and similarity functions constructed with appropri-
ate interval-valued implication functions. Finally we have shown how our con-
structions can be used to get IV similarity measures, distances and entropy
measures with respect to total orders. In future works we will consider the use
of these functions in different image processing, classification or decision making
problems.
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