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Abstract. Moderation poses one of the main Internet challenges. Cur-
rently, many Internet platforms and virtual communities deal with it
by intensive human labour, some big companies –such as YouTube or
Facebook– hire people to do it, others –such as 4chan or fanscup– just
ask volunteer users to get in charge of it. But in most cases the policies
that they use to decide if some contents should be removed or if a user
should be banned are not clear enough to users. And, in any case, typi-
cally users are not involved in their definition.

Nobel laureate Elinor Ostrom concluded that societies –such as insti-
tutions that had to share scarce resources– that involve individuals in
the definition of their rules performed better –resources lasted more or
did not deplete– than those organisations whose norms where imposed
externally. Democracy also relies on this same idea of considering peo-
ples’ opinions.

In this vein, we argue that participants in a virtual community will be
more prone to behave correctly –and thus the community itself will be
“healthier”– if they take part in the decisions about the norms of coex-
istence that rule the community. With this aim, we investigate a collec-
tive decision framework that: (1) structures (relate) arguments issued by
different participants; (2) allows agents to express their opinions about
arguments; and (3) aggregates opinions to synthesise a collective deci-
sion. More precisely, we investigate two aggregation operators that merge
discrete and continuous opinions. Finally, we analyse the social choice
properties that our discrete aggregator operator satisfies.

1 Introduction

With the advent of the Internet, a plethora of on-line communities, such as social
networks, have emerged to articulate human interaction. Nonetheless, interac-
tions are not frictionless. Thus, for instance, users may post inappropriate or
offensive contents, or spam ads. Thus, typically the owners of on-line commu-
nities establish their own norms (terms and policies) to regulate interactions
without the involvement of its participants. Moderators become then in charge
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of guaranteeing the enforcement of such norms disregarding what users may
deem as fair or discomforting.

Here we take the stance that the participants in a social network must decide
the norms that govern their interactions. Thus, we are in line with Nobel-prize
winner Ostrom [4], who observed that involving a community’s participants in
their decisions improves its long-term operation. Then, there is the matter of
helping users agree on their norms. As argued in [2,3], argumentative debates
are a powerful tool for reaching agreements in open environments such as on-line
communities. On-line debates are usually organised as threads of arguments and
counter-arguments that users issue to convince others. There are two main issues
in the management of large-scale on-line debates. On the one hand, as highlighted
by [2,3], there is simply too much noise when many individuals participate in a
discussion, and hence there is the need for structuring it to keep the focus. On
the other hand, the preferences on arguments issued by users must be aggregated
to achieve a collective decision about the topic under discussion [1].

Against this background, here we consider that structured argumentative
debates can also be employed to help users of a virtual community jointly agree
on the norms that rule their interactions. With this aim, we present the following
contributions:

– Based on the work in [3], we introduce an argumentative structure, the so-
called norm argument map, to structure a debate focusing on the acceptance
or rejection of a target norm. Figure 1 shows one example in an online sports
community.

– A novel aggregation method to assess the collective support for a single argu-
ment by aggregating the preferences (expressed as ratings) issued by the
participants in a discussion. Such method will consider that the impact of a
single rating on the overall aggregated value will depend on the distance of
that rating from neutrality. More precisely, our aggregation method abides
by the following design principle: the farther a rating is from neutrality, the
stronger its importance when computing the collective support for an argu-
ment.

– A novel aggregation method to compute the collective support for a norm
based on the arguments issued by the participants in a discussion. This
method is based on the following design principles: (1) the larger the sup-
port for an argument, the larger its importance on the computation of the
collective support for a norm; and (2) only those arguments that are relevant
enough (count on sufficient support) are worth aggregating. Technically, this
method is conceived as a WOWA operator [7] because it allows to consider
both the values and the information sources when performing the aggregation
of argument supports.

– We compared our aggregation method with a more naive approach that sim-
ply averages participants’ preferences on a collection of prototypical argu-
mentation scenarios. We observe that our method obtains support values for
norms that better capture the collective preference of the participants.
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Fig. 1. Example of a norm argument map. Rated positive/negative arguments in
favor/against a norm prohibiting to upload spam content at a social network forum.

The paper is organised as follows. Section 2 introduces some background on
the aggregation operators employed, Sects. 3, 4, 5, and 6 introduce our formal
notion of norm argument map and our functions to compute the support for an
argument, a set of arguments and a norm. Section 7 details the analysis of our
support functions on argumentation scenarios. Finally, Sect. 8 draws conclusions
and sets paths to future research.

2 Background

As previously stated, the main goal of this work is to compute an aggregated
numerical score for a norm from its arguments and opinions1. Hence, aggregation
operators become necessary to fuse all the numerical information participants
provide. Next, we introduce the aggregation operators employed in this work,
namely the standard weighted mean (WM) and the weighted ordered weighted
average (WOWA, an OWA’s [8] variation) from Torra [7], to compute the col-
lective support for a norm.

Definition 1. A weighting vector w is a vector such that if w =
(w1, . . . , wn) ∈ Rn then wi ∈ [0, 1] and

∑n
i=1 wi = 1.

Definition 2. Let w = (w1, . . . , wn) ∈ Rn be a weighting vector and let e =
(e1, . . . , en) ∈ Rn be the vector of elements we want to aggregate. A weighted
mean is a function WMw(e) : Rn → R, defined as WMw(e) =

∑n
i=1 wiei.

Notice that WM weighs the position of the elements, which amounts to
concede different importance degrees to each particular (information) source. In
order to weigh the values of aggregated elements in e we need an alternative
operator.
1 An argument’s opinions are numerical values that, in the case of Fig. 1, take the

form of number of stars awarded to each argument.
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Definition 3. Let w = (w1, . . . , wn) ∈ Rn and q = (q1, . . . , qn) ∈ Rn be two
weighing vectors and let e = (e1, . . . , en) ∈ Rn be the vector of elements we want
to aggregate. A weighted ordered weighted average, weighted OWA or
WOWA is a function WOWAw,q(e) : Rn → R defined as:

WOWAw,q(e) =
n∑

i=1

pieσ(i), pi = f∗(
∑

j≤i

wσ(j)) − f∗(
∑

j<i

wσ(j)),

where σ is a permutation of the elements in e so that eσ(i) is the ith largest
element in e and f∗ is a non-decreasing interpolation function of the points:
{(i/n,

∑
j≤i qj)}i=1,...,n ∪ {(0, 0)} that has to be a straight line when the points

can be interpolated that way.

Note that w acts as the vector in the weighted mean, weighing the information
source, while q weighs the value of the aggregated elements. For instance, q1 =
qn > q2, . . . , qn−1, gives more importance to extreme (i.e., the highest and lowest)
values.

3 Norm Argument Map

Next we formalise the notion of norm argument map as the argumentative struc-
ture that contains all arguments and opinions about a norm.

Definition 4. A norm is pair n = (φ, θ(α)), where φ is the norm’s precondi-
tion, θ is a deontic operator2 and α is an action that participants can perform.

Definition 5. An argument is a pair ai = (s,Oai
) composed of a statement s,

the argument itself, and a vector of opinions Oai
that contains all the opinion

values participants issued.

Henceforth we will note the vector of opinions as Oai
= (oi

1, . . . , o
i
ni

), where
oi

j is the jth opinion about argument ai.

Definition 6. Given a norm n, the argument set for n is a non-empty col-
lection of arguments An containing both arguments supporting and attacking the
norm.

We will note the vector of all the opinions of the arguments in An as OAn
.

For the sake of simplicity, we assume that all arguments in the argument set An

of a norm are different. We divide the argument set of a norm into two subsets:
the arguments in favor of the norm and the arguments against it.

We are now ready to define our argumentative structure as follows:

Definition 7. A norm argument map M = (n,An, κ) is a triple composed
of a norm n, a norm argument set An, and a function κ that classifies the
arguments of An between the ones that are in favor of the norm and the ones
that are against it.
2 A deontic operator stands for either prohibition, permission, or obligation.
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Hereafter we will refer to the positive arguments of norm n as the set of
arguments in favor of the norm and to its negative arguments as the set of
arguments against the norm. These argument sets will be noted as A+

n and A−
n

respectively. A negative argument is distinguished from positive arguments by
adding a bar over the argument (e.g. āi ∈ A−

n ).
Finally, we also define a framework wherein participants can simultaneously

discuss over multiple norms.

Definition 8. A norm argument map framework F = (P,N) is a pair of
a set of participants P and a set of norm argument maps N , so that participants
in P can deliberate about different norms by means of the norm argument maps
in N.

4 Argument Support

Having defined the norm argument map we aim now at aggregating arguments’
opinions to calculate the support for each argument. In our case opinions will
be numerical values defined in an opinion spectrum.

Definition 9. An opinion spectrum is a set of possible numerical values indi-
vidual participants can assign to each argument meaning her opinion about the
argument.

The spectrum will be considered a closed real number interval, and thus
there exist a maximum, a minimum and a middle opinion values. Figure 2 shows
an example of the opinion spectrum semantics considering λ = [1, 5]. Since
opinions will have different values, we consider different semantics for them. The
opinion spectrum will be divided into three subsets of opinions. Given an opinion
spectrum λ = [lb, ub] such that lb, ub ∈ R and lb < ub: [lb, lb+ub

2 ) contains the
values for negative opinions, ( lb+ub

2 , ub] contains the values for positive opinions,
and { lb+ub

2 } contains the value for the neutral opinion. Note that an opinion
oi

j = lb is the most extreme opinion against argument ai, while another opinion
oi

k = ub would represent the most extreme opinion in favor of the argument.
Additionally, we consider the opinion laying in the middle of the spectrum lb+ub

2
as a neutral opinion.

Since different opinions in an opinion spectrum have different meanings and
we aim at aggregating them in order to calculate the support for an argument,
we need a function that weighs the importance of each opinion. Such importance

Fig. 2. Semantics of the opinion spectrum λ = [1, 5].
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function will consider neutral opinions less important than the extreme (strongly
stated) ones. Formally,

Definition 10. Given an opinion spectrum λ = [lb, ub], we say that a function
I : λ → [0, 1] is an importance function iff it satisfies the following conditions:

(C1) I continuous and piecewise differentiable
(C2) I(ub) = I(lb) = 1
(C3) I( lb+ub

2 ) = 0

(C4)

⎧
⎪⎨

⎪⎩

I ′(x) < 0 if x ∈ [lb, lb+ub
2 ) and I is differentiable in x

I ′(x) = 0 if x = lb+ub
2 and I is differentiable in x

I ′(x) > 0 if x ∈ ( lb+ub
2 , ub] and I is differentiable in x

Given a opinion spectrum, we can construct an importance function either by
interpolation or geometrically (parabola case). Here we follow the first approach.
Below we formally define the importance function that we propose in this paper,
which is graphically depicted in Fig. 3.

I(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ub2−1.8 ub lb−0.2 ub x−4lb2+9.8 lb x−4.8x2

(lb−ub)2 if x ∈
[
lb, ub+3lb

4

]

1.45ub+1.75lb−3.2x
ub−lb if x ∈

(
ub+3lb

6 , 3ub+5lb
8

)

4ub2+8 ub lb−16 ub x+4lb2−16 lb x+16x2

(lb−ub)2 if x ∈
[
3ub+5lb

8 , 5ub+3lb
8

]

1.75ub+1.45lb−3.2x
lb−ub if x ∈

(
5ub+3lb

8 , 3ub+lb
4

)

−4ub2−1.8 ub lb+9.8 ub x+lb2−0.2 lb x−4.8x2

(lb−ub)2 if x ∈
[
3ub+lb

4 , ub
]

We can now weigh the importance of each opinion with our importance func-
tion to calculate the support of an argument as the weighted mean of its opinions.

Definition 11. Given an opinion spectrum λ = [lb, ub], an argument support
function Sarg : A → λ is a function that yields the collective support for each

argument ai ∈ A as: Sarg(ai) = WMw(Oai
), where w =

(
I(oi

1)
li

, . . . ,
I(oi

ni
)

li

)

Fig. 3. Importance function (I) plot when λ = [1, 5].
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stands for a weighting vector for the opinions in Oai
, I is an importance func-

tion, and li =
∑ni

j=1 I(oi
j).

Notice that oi
j is the jth opinion of argument ai and li stands for the overall

addition of all importance values associated to all opinions about argument ai.
Since the elements in w add up to one, w is a weighting vector.

5 Argument Set Support

So far we have learned how to aggregate an argument’s opinions to compute its
support. Next we face the problem of calculating the support for an argument
set. To motive the choice of our aggregation function, we start with an example.

Example. Consider a norm n with positive and negative arguments with opin-
ions in the spectrum λ = [1, 5]. Say that there are three positive arguments a1,
a2, a3, and a single negative argument a4. On the one hand, in the set of positive
arguments a1 has a support of 5, which comes from a single opinion while both
a2 and a3 have a support of 1, which comes from aggregating 100 opinions. On
the other hand, on the set of negative arguments, a4’s support is 5, which comes
from aggregating 30 opinions:

A+
n Sarg(ai) dim(Oai

)
a1 5 1
a2 1 100
a3 1 100

A−
n Sarg(a) dim(Oa)

a4 5 30

What should we consider to give the support for A+
n on this extreme case?

We should discard a2 or a3 because they have bad (the minimum) support.
People have decided these arguments are not appropriate or do not provide a
valid reason to defend the norm under discussion. Since opinions’ semantics can
be applied to argument support: arguments with supports outside ( lb+ub

2 , ub] are
not accepted by participants and, therefore, should not be considered as valid
arguments. We cannot consider a1 either because, although it has the maximum
possible support, it has only been validated by one person, hence it is negligible
in front of the other arguments. Therefore, we propose to filter out arguments by
just considering those having at least a number of opinions that corresponds to
a significant fraction of the number of opinions of the argument with the largest
number of opinions.

Thus, we tackle this argument relevance problem by creating a new subset of
arguments containing only the arguments considered to be α-relevant (namely,
relevant enough) and by defining the criteria needed to be considered as such:

Definition 12. Let A be a set of arguments and λ = [lb, ub] an opinion spec-
trum, we say that an argument ai ∈ A is relevant iff Sarg(ai) > lb+ub

2 .

Definition 13. Let A be a set of arguments, λ = [lb, ub] an opinion spectrum,
α ∈ [0, 1] a relevance level, and ak ∈ A the argument with the largest number of
opinions. We say that a relevant argument ai ∈ A is α-relevant iff dim(Oai

) ≥
α dim(Oak

).
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Henceforth, Rα(A) = {aα
1 , . . . , aα

r } will denote the set of α-relevant argu-
ments in A. Notice that r ≤ |A| and that in general aα

i is not equal to ai.
We propose to aggregate the set of α-relevant arguments by weighting their

supports with the importance function previously introduced in order to weight
more those arguments that have received greater support than others. Moreover,
since arguments count on different numbers of opinions, we consider the sum of
importances of their opinions so that important opinions account for more weight
that neutral opinions.

To aggregate the supports of the arguments weighting these two values we
will use a WOWA operator. Hence, we define the argument set support function
as follows:

Definition 14. Let λ be an opinion spectrum, an argument set support
function Sset is a function that takes a non-empty argument set A, with
Rα(A) �= ∅, and yields its support in λ as:

Sset(A) = Sset(Rα(A)) = WOWAw,q(Sarg(aα
1 ), . . . , Sarg(aα

r )),

where Rα(A) = {aα
1 , . . . , aα

r }, w =
(∑dim(Oaα

1
)

j=1 I(o1
j )

Io
A

, . . . ,
∑dim(Oaα

r
)

j=1 I(or
j )

Io
A

)
,

Io
A =

r∑

i=1

( dim(Oaα
i
)

∑

j=1

I(oi
j)

)
with oi

j ∈ Oaα
i

= {oi
1, . . . o

i
ni

}

stands for the overall importance of all the opinions over arguments in A,

q =
(I(Sarg(aα

σ(1)))

Iarg
A

, . . . ,
I(Sarg(aα

σ(r)))

Iarg
A

)

Iarg
A =

∑r
i=1 I(Sarg(aα

σ(i))) stands for the overall importance of the collective
supports received by the arguments in A, aα

σ(i) ∈ Rα(A) = {aα
1 , . . . , aα

r }, and
aα

σ(i) is the α-relevant argument with the ith largest support.

Notice that, if there are no α-relevant arguments then we cannot asses the
support for the set, hence we consider Sset(∅) to be not defined.

Also note that the w vector is used to weigh the importance of the arguments
as the sum of the importances of its opinions. After that we have to divide by Io

A

so we get a weighting vector. The q vector uses the importance of the supports
for the arguments. We have to order the arguments with the σ permutation
because the WOWA orders the values being aggregated. This way each weight
in the q vector weighs its corresponding element. With this modification, we get
the WOWA to aggregate the elements using two weighting vectors. Note that
the weighting vector w does not have to be ordered because the WOWA itself
orders it.
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6 Computing the Collective Support for a Norm

To compute the collective support for a norm, we will use the support for its
positive and negative argument sets, namely S(A+

n ) and S(A−
n ). In general, a

large support for the negative arguments of a norm is expected to negatively
impact the norm’s support. Thus, instead of directly aggregating S(A−

n ), we will
aggregate the symmetric value of the support in the spectrum with respect to
the center of the spectrum, namely ub + lb − S(A−

n ).
Analogously to the computation of the support for an argument set, here we

have to weigh the importance of the values aggregated as well as the importance
of each argument set as information source. Thus, we will also employ a WOWA
operator to compute the collective support for a norm, which we define as follows:

Definition 15. A norm support function is a function Snorm that takes a
norm n, and uses the supports of its positive and negative arguments to obtain
the support for the norm in λ = [lb, ub]. If Rα(A+

n ) �= ∅ and Rα(A−
n ) �= ∅, the

function is defined as follows:

Snorm(n) = WOWAw,q(Sset(A+
n ), ub + lb − Sset(A−

n ))

such that the information source is weighed by

w =
(∑|Rα(A+

n )|
i=1 (

∑ni

j=1 I(oi
j))

Io
n

,

∑|Rα(A−
n )|

i=1 (
∑ni

j=1 I(oi
j))

Io
n

)

and the aggregated values are weighed by

q =
(I(Sset(A+

n ))
Iset

n

,
I(ub + lb − Sset(A−

n ))
Iset

n

)

where Io
n =

∑|Rα(A+
n )|

i=1 (
∑ni

j=1 I(oi
j)) +

∑|Rα(A−
n )|

i=1 (
∑ni

j=1 I(oi
j)), oi

j is the jth

opinion in Oaα
i

= {oi
1, . . . , o

i
ni

}, aα
i ∈ Rα(A+

n ) = {aα
1 , . . . , aα

k1
}, oi

j is the
jth opinion in Oaα

i
= {oi

1, . . . , o
i
ni

}, aα
i ∈ Rα(A−

n ) = {aα
1 , . . . , aα

k2
}, and

Iset
n = I(Sset(A+

n )) + I(ub + lb − Sset(A−
n )).

If one or both relevant argument sets are empty the function is defined as follows:

Snorm(n) =

⎧
⎨

⎩

ub + lb − Sset(A−
n ) if Rα(A+

n ) = ∅ and Rα(A−
n ) �= ∅

Sset(A+
n ) if Rα(A+

n ) �= ∅ and Rα(A−
n ) = ∅

not defined if Rα(A+
n ) = ∅ and Rα(A−

n ) = ∅
At this point, once we compute the collective support for a norm, we can

decide whether the norm should be enacted or not. Given a predefined norm
acceptance level μ, a norm will be enacted if Snorm(n) > μ. For the norm to be
enacted, its support should be laying on the positive side of the spectrum, hence
μ should be picked so that μ ∈ ( lb+ub

2 , ub].
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7 Case Study: A Virtual Community

In this section we qualitatively compare the outcome of our norm sup-
port function with that of a naive average support function. This naive
average support function obtains the support for a norm n as Savg(n) =

1
dim(OAn )

( ∑|A+
n |

i=1

∑ni

j=1 oi
j +

∑|A−
n |

i=1

∑ni

j=1 ub + lb − oi
j

)
. Our comparison encom-

passes a collection of Norm Argument Maps (NAM) that we characterise based
on the opinions about their positive and negative arguments. Table 1 summarises
the results of our comparison, which we detail next through some examples
which invoke our norm support function3 with an opinion spectrum λ = [1, 5],
the importance function I, and a relevance level α = 0.3.

NAM 1. Consider a norm n with one positive argument which is highly sup-
ported by opinions (e.g. with values 5, 5, 5), and three negative arguments that
count on neutral supports (e.g. one with opinions 3.15, 3.2, 2.8; another one
with opinions 3, 3.5, 2.6; and a third one with opinions 2.5, 3.5, 3.2). Thus,
while the average support function would yield a rather neutral norm support
(Savg(n) = 3.5375), our norm support function would compute a strong support
(Snorm(n) = 4.9842). Note that, since participants have not issued negative
arguments that are strong enough to attack the norm, whereas they have found
a strong argument to support it, the norm support should be favorable to the
enacting of the norm. This is captured by our norm support function, while the
average support function remains neutral. This happens because it is fundamen-
tal to weigh the importance of the arguments as well as the importance of the
argument sets. In this way neutral arguments do not weigh much in the overall
norm support. NAM 2. Consider the case of a norm with one positive argument
with neutral opinions (e.g. 3.5, 3.25, 3.5, 3, 2.5) and one negative argument with
a similar number of opinions but with weak support (e.g. opinions with values
1, 1, 1.2, 1.3, 1.25). The average support function would yield a strong support
for the norm (Savg(n) = 4) because of the weak support received by the nega-
tive argument. Unlike the average, our support function would obtain a neutral
support for the norm (Snorm(n) = 3.1731) because the negative arguments are
weakly supported and the positive one counts on neutral support.

Table 1. Norm supports computed by the average approach Savg and our approach
Snorm.

Argument sets Norm support

Norm argument map Positive arguments Negative arguments Savg Snorm

NAM 1 One strong argument Several neutral arguments Neutral Strong

NAM 2 One neutral argument One weak argument Strong Neutral

NAM 3 Weak arguments None Weak Undefined

NAM 4 None Weak arguments Strong Undefined

NAM 5 Strong with few opinions Weak with lots of opinions Strong undefined

3 This implementation is based on [6] and we have made it publicly available in [5].
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The two cases above show that the norm support of our method is in line
with positive arguments because negative arguments are not strong enough.
The next three cases show the importance of counting on relevant arguments.
NAM 3. Consider now a norm with weak positive arguments and no nega-
tive arguments. The average approach would yield weak support for the norm.
However, notice that the lack of strongly-supported positive arguments does not
imply that the norm is not good. If the norm was not good, we should expect
that participants eventually issue strongly-supported negative arguments. Since
there is not enough relevant information to decide whether the norm is good or
not, the norm support would be undefined for our norm support function. This
seems more reasonable than the weak support computed by the naive approach.
NAM 4. Consider now the dual of our last NAM: a norm counts on weak neg-
ative arguments and no positive arguments. Here the average support function
would obtain a strong norm support. Again, like in the previous case, our norm
support function would be undefined, which seems more adequate due to the
lack of relevance of the arguments issued so far. NAM 5. Consider the case
of a norm with positive arguments, each one counting with a few high-valued
opinions, and negative arguments, each one counting on a much larger number
of low-valued opinions. The average support function Savg(n) would produce
a strong norm support. However, notice that weak negative arguments should
not favorably support a norm. Moreover, the positive arguments count on few
opinions. If the norm was good enough, we should have expected to receive more
supporting opinions, which is not the case. This is why our norm support func-
tion Snorm(n) yiedls an undefined support. Overall, the three last examples show
that the lack of enough relevant information leads our norm support function to
an undefined norm support, which seems more reasonable (and cautious) than
that of a naive average support function.

7.1 A Test with Human Users

We conducted a test to evaluate the functionality of the norm argument map.
Our test encompassed eleven people debating on norms similar to the one in
Fig. 1 within a prototyped football social network. Users debated normally for
several rounds and, afterwards, a satisfaction survey asked them if resulting
aggregated ratings were reasonable. In a scale from 1 to 5, the answers’ mean
was 3.36, which we can consider as a positive preliminary result if we take into
account the usability deficiencies of our prototype.

8 Conclusions and Future Work

To provide a more democratic way of moderating virtual communities, we pro-
pose a new argumentative structure, the so-called norm argument map. We also
faced the problem of computing the collective support for a norm from the opin-
ions of an argument’s participants. We have identified two core concepts when
computing a norm’s support: the relevance of arguments and their importance.
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Thus, we argue that we must only consider relevant enough arguments and weigh
opinions based on their importance (strength).

As to future work, we are currently working on identifying similar arguments
that should be colapsed, but some other issues, such as when to close the argu-
mentation process or how to define the norm acceptance level μ, still need to be
studied. Moreover, we also plan to apply it to other social participation situations
such as direct democracy.

Acknowledgments. Work funded by Spanish National project CollectiveWare code
TIN2015-66863-C2-1-R (MINECO/FEDER).
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