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Preface

This volume contains papers presented at the 13th International Conference on
Modeling Decisions for Artificial Intelligence (MDAI 2016), held in Sant Julià de Lòria,
Andorra, September 19–21, 2016. This conference followed MDAI 2004 (Barcelona,
Spain), MDAI 2005 (Tsukuba, Japan), MDAI 2006 (Tarragona, Spain), MDAI 2007
(Kitakyushu, Japan), MDAI 2008 (Sabadell, Spain), MDAI 2009 (Awaji Island, Japan),
MDAI 2010 (Perpignan, France), MDAI 2011 (Changsha, China), MDAI 2012 (Girona,
Spain), MDAI 2013 (Barcelona, Spain), MDAI 2014 (Tokyo, Japan), and MDAI 2015
(Skövde, Sweden) with proceedings also published in the LNAI series (Vols. 3131,
3558, 3885, 4617, 5285, 5861, 6408, 6820, 7647, 8234, 8825, and 9321).

The aim of this conference was to provide a forum for researchers to discuss theory
and tools for modeling decisions, as well as applications that encompass decision-
making processes and information-fusion techniques.

The organizers received 36 papers from 13 different countries, 22 of which are
published in this volume. Each submission received at least two reviews from the
Program Committee and a few external reviewers. We would like to express our
gratitude to them for their work. The plenary talks presented at the conference are also
included in this volume.

The conference was supported by the University of Andorra, the city of Sant Julià de
Lòria (Andorra), Andorra Turisme, INNTEC – Jornades de la innovació i les noves
tecnologies, the Catalan Association for Artificial Intelligence (ACIA), the Japan
Society for Fuzzy Theory and Intelligent Informatics (SOFT), the European Society for
Fuzzy Logic and Technology (EUSFLAT), the UNESCO Chair in Data Privacy, and
the project TIN2014-55243-P from the Spanish MINECO.

July 2016 Vicenç Torra
Yasuo Narukawa

Guillermo Navarro-Arribas
Cristina Yáñez
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Aggregation Operators to Support Collective
Reasoning

Juan A. Rodriguez-Aguilar1(B), Marc Serramia2, and Maite Lopez-Sanchez2

1 Artificial Intelligence Research Institute (IIIA-CSIC),
Campus UAB, Bellaterra, Spain

jar@iiia.csic.es
2 Mathematics and Computer Science Department, University of Barcelona (UB),

Gran Via de les Corts Catalanes 585, Barcelona, Spain

Abstract. Moderation poses one of the main Internet challenges. Cur-
rently, many Internet platforms and virtual communities deal with it
by intensive human labour, some big companies –such as YouTube or
Facebook– hire people to do it, others –such as 4chan or fanscup– just
ask volunteer users to get in charge of it. But in most cases the policies
that they use to decide if some contents should be removed or if a user
should be banned are not clear enough to users. And, in any case, typi-
cally users are not involved in their definition.

Nobel laureate Elinor Ostrom concluded that societies –such as insti-
tutions that had to share scarce resources– that involve individuals in
the definition of their rules performed better –resources lasted more or
did not deplete– than those organisations whose norms where imposed
externally. Democracy also relies on this same idea of considering peo-
ples’ opinions.

In this vein, we argue that participants in a virtual community will be
more prone to behave correctly –and thus the community itself will be
“healthier”– if they take part in the decisions about the norms of coex-
istence that rule the community. With this aim, we investigate a collec-
tive decision framework that: (1) structures (relate) arguments issued by
different participants; (2) allows agents to express their opinions about
arguments; and (3) aggregates opinions to synthesise a collective deci-
sion. More precisely, we investigate two aggregation operators that merge
discrete and continuous opinions. Finally, we analyse the social choice
properties that our discrete aggregator operator satisfies.

1 Introduction

With the advent of the Internet, a plethora of on-line communities, such as social
networks, have emerged to articulate human interaction. Nonetheless, interac-
tions are not frictionless. Thus, for instance, users may post inappropriate or
offensive contents, or spam ads. Thus, typically the owners of on-line commu-
nities establish their own norms (terms and policies) to regulate interactions
without the involvement of its participants. Moderators become then in charge

c© Springer International Publishing Switzerland 2016
V. Torra et al. (Eds.): MDAI 2016, LNAI 9880, pp. 3–14, 2016.
DOI: 10.1007/978-3-319-45656-0 1



4 J.A. Rodriguez-Aguilar et al.

of guaranteeing the enforcement of such norms disregarding what users may
deem as fair or discomforting.

Here we take the stance that the participants in a social network must decide
the norms that govern their interactions. Thus, we are in line with Nobel-prize
winner Ostrom [4], who observed that involving a community’s participants in
their decisions improves its long-term operation. Then, there is the matter of
helping users agree on their norms. As argued in [2,3], argumentative debates
are a powerful tool for reaching agreements in open environments such as on-line
communities. On-line debates are usually organised as threads of arguments and
counter-arguments that users issue to convince others. There are two main issues
in the management of large-scale on-line debates. On the one hand, as highlighted
by [2,3], there is simply too much noise when many individuals participate in a
discussion, and hence there is the need for structuring it to keep the focus. On
the other hand, the preferences on arguments issued by users must be aggregated
to achieve a collective decision about the topic under discussion [1].

Against this background, here we consider that structured argumentative
debates can also be employed to help users of a virtual community jointly agree
on the norms that rule their interactions. With this aim, we present the following
contributions:

– Based on the work in [3], we introduce an argumentative structure, the so-
called norm argument map, to structure a debate focusing on the acceptance
or rejection of a target norm. Figure 1 shows one example in an online sports
community.

– A novel aggregation method to assess the collective support for a single argu-
ment by aggregating the preferences (expressed as ratings) issued by the
participants in a discussion. Such method will consider that the impact of a
single rating on the overall aggregated value will depend on the distance of
that rating from neutrality. More precisely, our aggregation method abides
by the following design principle: the farther a rating is from neutrality, the
stronger its importance when computing the collective support for an argu-
ment.

– A novel aggregation method to compute the collective support for a norm
based on the arguments issued by the participants in a discussion. This
method is based on the following design principles: (1) the larger the sup-
port for an argument, the larger its importance on the computation of the
collective support for a norm; and (2) only those arguments that are relevant
enough (count on sufficient support) are worth aggregating. Technically, this
method is conceived as a WOWA operator [7] because it allows to consider
both the values and the information sources when performing the aggregation
of argument supports.

– We compared our aggregation method with a more naive approach that sim-
ply averages participants’ preferences on a collection of prototypical argu-
mentation scenarios. We observe that our method obtains support values for
norms that better capture the collective preference of the participants.
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Fig. 1. Example of a norm argument map. Rated positive/negative arguments in
favor/against a norm prohibiting to upload spam content at a social network forum.

The paper is organised as follows. Section 2 introduces some background on
the aggregation operators employed, Sects. 3, 4, 5, and 6 introduce our formal
notion of norm argument map and our functions to compute the support for an
argument, a set of arguments and a norm. Section 7 details the analysis of our
support functions on argumentation scenarios. Finally, Sect. 8 draws conclusions
and sets paths to future research.

2 Background

As previously stated, the main goal of this work is to compute an aggregated
numerical score for a norm from its arguments and opinions1. Hence, aggregation
operators become necessary to fuse all the numerical information participants
provide. Next, we introduce the aggregation operators employed in this work,
namely the standard weighted mean (WM) and the weighted ordered weighted
average (WOWA, an OWA’s [8] variation) from Torra [7], to compute the col-
lective support for a norm.

Definition 1. A weighting vector w is a vector such that if w =
(w1, . . . , wn) ∈ Rn then wi ∈ [0, 1] and

∑n
i=1 wi = 1.

Definition 2. Let w = (w1, . . . , wn) ∈ Rn be a weighting vector and let e =
(e1, . . . , en) ∈ Rn be the vector of elements we want to aggregate. A weighted
mean is a function WMw(e) : Rn → R, defined as WMw(e) =

∑n
i=1 wiei.

Notice that WM weighs the position of the elements, which amounts to
concede different importance degrees to each particular (information) source. In
order to weigh the values of aggregated elements in e we need an alternative
operator.
1 An argument’s opinions are numerical values that, in the case of Fig. 1, take the

form of number of stars awarded to each argument.
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Definition 3. Let w = (w1, . . . , wn) ∈ Rn and q = (q1, . . . , qn) ∈ Rn be two
weighing vectors and let e = (e1, . . . , en) ∈ Rn be the vector of elements we want
to aggregate. A weighted ordered weighted average, weighted OWA or
WOWA is a function WOWAw,q(e) : Rn → R defined as:

WOWAw,q(e) =
n∑

i=1

pieσ(i), pi = f∗(
∑

j≤i

wσ(j)) − f∗(
∑

j<i

wσ(j)),

where σ is a permutation of the elements in e so that eσ(i) is the ith largest
element in e and f∗ is a non-decreasing interpolation function of the points:
{(i/n,

∑
j≤i qj)}i=1,...,n ∪ {(0, 0)} that has to be a straight line when the points

can be interpolated that way.

Note that w acts as the vector in the weighted mean, weighing the information
source, while q weighs the value of the aggregated elements. For instance, q1 =
qn > q2, . . . , qn−1, gives more importance to extreme (i.e., the highest and lowest)
values.

3 Norm Argument Map

Next we formalise the notion of norm argument map as the argumentative struc-
ture that contains all arguments and opinions about a norm.

Definition 4. A norm is pair n = (φ, θ(α)), where φ is the norm’s precondi-
tion, θ is a deontic operator2 and α is an action that participants can perform.

Definition 5. An argument is a pair ai = (s,Oai
) composed of a statement s,

the argument itself, and a vector of opinions Oai
that contains all the opinion

values participants issued.

Henceforth we will note the vector of opinions as Oai
= (oi

1, . . . , o
i
ni

), where
oi

j is the jth opinion about argument ai.

Definition 6. Given a norm n, the argument set for n is a non-empty col-
lection of arguments An containing both arguments supporting and attacking the
norm.

We will note the vector of all the opinions of the arguments in An as OAn
.

For the sake of simplicity, we assume that all arguments in the argument set An

of a norm are different. We divide the argument set of a norm into two subsets:
the arguments in favor of the norm and the arguments against it.

We are now ready to define our argumentative structure as follows:

Definition 7. A norm argument map M = (n,An, κ) is a triple composed
of a norm n, a norm argument set An, and a function κ that classifies the
arguments of An between the ones that are in favor of the norm and the ones
that are against it.
2 A deontic operator stands for either prohibition, permission, or obligation.
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Hereafter we will refer to the positive arguments of norm n as the set of
arguments in favor of the norm and to its negative arguments as the set of
arguments against the norm. These argument sets will be noted as A+

n and A−
n

respectively. A negative argument is distinguished from positive arguments by
adding a bar over the argument (e.g. āi ∈ A−

n ).
Finally, we also define a framework wherein participants can simultaneously

discuss over multiple norms.

Definition 8. A norm argument map framework F = (P,N) is a pair of
a set of participants P and a set of norm argument maps N , so that participants
in P can deliberate about different norms by means of the norm argument maps
in N.

4 Argument Support

Having defined the norm argument map we aim now at aggregating arguments’
opinions to calculate the support for each argument. In our case opinions will
be numerical values defined in an opinion spectrum.

Definition 9. An opinion spectrum is a set of possible numerical values indi-
vidual participants can assign to each argument meaning her opinion about the
argument.

The spectrum will be considered a closed real number interval, and thus
there exist a maximum, a minimum and a middle opinion values. Figure 2 shows
an example of the opinion spectrum semantics considering λ = [1, 5]. Since
opinions will have different values, we consider different semantics for them. The
opinion spectrum will be divided into three subsets of opinions. Given an opinion
spectrum λ = [lb, ub] such that lb, ub ∈ R and lb < ub: [lb, lb+ub

2 ) contains the
values for negative opinions, ( lb+ub

2 , ub] contains the values for positive opinions,
and { lb+ub

2 } contains the value for the neutral opinion. Note that an opinion
oi

j = lb is the most extreme opinion against argument ai, while another opinion
oi

k = ub would represent the most extreme opinion in favor of the argument.
Additionally, we consider the opinion laying in the middle of the spectrum lb+ub

2
as a neutral opinion.

Since different opinions in an opinion spectrum have different meanings and
we aim at aggregating them in order to calculate the support for an argument,
we need a function that weighs the importance of each opinion. Such importance

Fig. 2. Semantics of the opinion spectrum λ = [1, 5].
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function will consider neutral opinions less important than the extreme (strongly
stated) ones. Formally,

Definition 10. Given an opinion spectrum λ = [lb, ub], we say that a function
I : λ → [0, 1] is an importance function iff it satisfies the following conditions:

(C1) I continuous and piecewise differentiable
(C2) I(ub) = I(lb) = 1
(C3) I( lb+ub

2 ) = 0

(C4)

⎧
⎪⎨

⎪⎩

I ′(x) < 0 if x ∈ [lb, lb+ub
2 ) and I is differentiable in x

I ′(x) = 0 if x = lb+ub
2 and I is differentiable in x

I ′(x) > 0 if x ∈ ( lb+ub
2 , ub] and I is differentiable in x

Given a opinion spectrum, we can construct an importance function either by
interpolation or geometrically (parabola case). Here we follow the first approach.
Below we formally define the importance function that we propose in this paper,
which is graphically depicted in Fig. 3.

I(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ub2−1.8 ub lb−0.2 ub x−4lb2+9.8 lb x−4.8x2

(lb−ub)2 if x ∈
[
lb, ub+3lb

4

]

1.45ub+1.75lb−3.2x
ub−lb if x ∈

(
ub+3lb

6 , 3ub+5lb
8

)

4ub2+8 ub lb−16 ub x+4lb2−16 lb x+16x2

(lb−ub)2 if x ∈
[
3ub+5lb

8 , 5ub+3lb
8

]

1.75ub+1.45lb−3.2x
lb−ub if x ∈

(
5ub+3lb

8 , 3ub+lb
4

)

−4ub2−1.8 ub lb+9.8 ub x+lb2−0.2 lb x−4.8x2

(lb−ub)2 if x ∈
[
3ub+lb

4 , ub
]

We can now weigh the importance of each opinion with our importance func-
tion to calculate the support of an argument as the weighted mean of its opinions.

Definition 11. Given an opinion spectrum λ = [lb, ub], an argument support
function Sarg : A → λ is a function that yields the collective support for each

argument ai ∈ A as: Sarg(ai) = WMw(Oai
), where w =

(
I(oi

1)
li

, . . . ,
I(oi

ni
)

li

)

Fig. 3. Importance function (I) plot when λ = [1, 5].
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stands for a weighting vector for the opinions in Oai
, I is an importance func-

tion, and li =
∑ni

j=1 I(oi
j).

Notice that oi
j is the jth opinion of argument ai and li stands for the overall

addition of all importance values associated to all opinions about argument ai.
Since the elements in w add up to one, w is a weighting vector.

5 Argument Set Support

So far we have learned how to aggregate an argument’s opinions to compute its
support. Next we face the problem of calculating the support for an argument
set. To motive the choice of our aggregation function, we start with an example.

Example. Consider a norm n with positive and negative arguments with opin-
ions in the spectrum λ = [1, 5]. Say that there are three positive arguments a1,
a2, a3, and a single negative argument a4. On the one hand, in the set of positive
arguments a1 has a support of 5, which comes from a single opinion while both
a2 and a3 have a support of 1, which comes from aggregating 100 opinions. On
the other hand, on the set of negative arguments, a4’s support is 5, which comes
from aggregating 30 opinions:

A+
n Sarg(ai) dim(Oai

)
a1 5 1
a2 1 100
a3 1 100

A−
n Sarg(a) dim(Oa)

a4 5 30

What should we consider to give the support for A+
n on this extreme case?

We should discard a2 or a3 because they have bad (the minimum) support.
People have decided these arguments are not appropriate or do not provide a
valid reason to defend the norm under discussion. Since opinions’ semantics can
be applied to argument support: arguments with supports outside ( lb+ub

2 , ub] are
not accepted by participants and, therefore, should not be considered as valid
arguments. We cannot consider a1 either because, although it has the maximum
possible support, it has only been validated by one person, hence it is negligible
in front of the other arguments. Therefore, we propose to filter out arguments by
just considering those having at least a number of opinions that corresponds to
a significant fraction of the number of opinions of the argument with the largest
number of opinions.

Thus, we tackle this argument relevance problem by creating a new subset of
arguments containing only the arguments considered to be α-relevant (namely,
relevant enough) and by defining the criteria needed to be considered as such:

Definition 12. Let A be a set of arguments and λ = [lb, ub] an opinion spec-
trum, we say that an argument ai ∈ A is relevant iff Sarg(ai) > lb+ub

2 .

Definition 13. Let A be a set of arguments, λ = [lb, ub] an opinion spectrum,
α ∈ [0, 1] a relevance level, and ak ∈ A the argument with the largest number of
opinions. We say that a relevant argument ai ∈ A is α-relevant iff dim(Oai

) ≥
α dim(Oak

).
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Henceforth, Rα(A) = {aα
1 , . . . , aα

r } will denote the set of α-relevant argu-
ments in A. Notice that r ≤ |A| and that in general aα

i is not equal to ai.
We propose to aggregate the set of α-relevant arguments by weighting their

supports with the importance function previously introduced in order to weight
more those arguments that have received greater support than others. Moreover,
since arguments count on different numbers of opinions, we consider the sum of
importances of their opinions so that important opinions account for more weight
that neutral opinions.

To aggregate the supports of the arguments weighting these two values we
will use a WOWA operator. Hence, we define the argument set support function
as follows:

Definition 14. Let λ be an opinion spectrum, an argument set support
function Sset is a function that takes a non-empty argument set A, with
Rα(A) �= ∅, and yields its support in λ as:

Sset(A) = Sset(Rα(A)) = WOWAw,q(Sarg(aα
1 ), . . . , Sarg(aα

r )),

where Rα(A) = {aα
1 , . . . , aα

r }, w =
(∑dim(Oaα

1
)

j=1 I(o1
j )

Io
A

, . . . ,
∑dim(Oaα

r
)

j=1 I(or
j )

Io
A

)
,

Io
A =

r∑

i=1

( dim(Oaα
i
)

∑

j=1

I(oi
j)

)
with oi

j ∈ Oaα
i

= {oi
1, . . . o

i
ni

}

stands for the overall importance of all the opinions over arguments in A,

q =
(I(Sarg(aα

σ(1)))

Iarg
A

, . . . ,
I(Sarg(aα

σ(r)))

Iarg
A

)

Iarg
A =

∑r
i=1 I(Sarg(aα

σ(i))) stands for the overall importance of the collective
supports received by the arguments in A, aα

σ(i) ∈ Rα(A) = {aα
1 , . . . , aα

r }, and
aα

σ(i) is the α-relevant argument with the ith largest support.

Notice that, if there are no α-relevant arguments then we cannot asses the
support for the set, hence we consider Sset(∅) to be not defined.

Also note that the w vector is used to weigh the importance of the arguments
as the sum of the importances of its opinions. After that we have to divide by Io

A

so we get a weighting vector. The q vector uses the importance of the supports
for the arguments. We have to order the arguments with the σ permutation
because the WOWA orders the values being aggregated. This way each weight
in the q vector weighs its corresponding element. With this modification, we get
the WOWA to aggregate the elements using two weighting vectors. Note that
the weighting vector w does not have to be ordered because the WOWA itself
orders it.
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6 Computing the Collective Support for a Norm

To compute the collective support for a norm, we will use the support for its
positive and negative argument sets, namely S(A+

n ) and S(A−
n ). In general, a

large support for the negative arguments of a norm is expected to negatively
impact the norm’s support. Thus, instead of directly aggregating S(A−

n ), we will
aggregate the symmetric value of the support in the spectrum with respect to
the center of the spectrum, namely ub + lb − S(A−

n ).
Analogously to the computation of the support for an argument set, here we

have to weigh the importance of the values aggregated as well as the importance
of each argument set as information source. Thus, we will also employ a WOWA
operator to compute the collective support for a norm, which we define as follows:

Definition 15. A norm support function is a function Snorm that takes a
norm n, and uses the supports of its positive and negative arguments to obtain
the support for the norm in λ = [lb, ub]. If Rα(A+

n ) �= ∅ and Rα(A−
n ) �= ∅, the

function is defined as follows:

Snorm(n) = WOWAw,q(Sset(A+
n ), ub + lb − Sset(A−

n ))

such that the information source is weighed by

w =
(∑|Rα(A+

n )|
i=1 (

∑ni

j=1 I(oi
j))

Io
n

,

∑|Rα(A−
n )|

i=1 (
∑ni

j=1 I(oi
j))

Io
n

)

and the aggregated values are weighed by

q =
(I(Sset(A+

n ))
Iset

n

,
I(ub + lb − Sset(A−

n ))
Iset

n

)

where Io
n =

∑|Rα(A+
n )|

i=1 (
∑ni

j=1 I(oi
j)) +

∑|Rα(A−
n )|

i=1 (
∑ni

j=1 I(oi
j)), oi

j is the jth

opinion in Oaα
i

= {oi
1, . . . , o

i
ni

}, aα
i ∈ Rα(A+

n ) = {aα
1 , . . . , aα

k1
}, oi

j is the
jth opinion in Oaα

i
= {oi

1, . . . , o
i
ni

}, aα
i ∈ Rα(A−

n ) = {aα
1 , . . . , aα

k2
}, and

Iset
n = I(Sset(A+

n )) + I(ub + lb − Sset(A−
n )).

If one or both relevant argument sets are empty the function is defined as follows:

Snorm(n) =

⎧
⎨

⎩

ub + lb − Sset(A−
n ) if Rα(A+

n ) = ∅ and Rα(A−
n ) �= ∅

Sset(A+
n ) if Rα(A+

n ) �= ∅ and Rα(A−
n ) = ∅

not defined if Rα(A+
n ) = ∅ and Rα(A−

n ) = ∅
At this point, once we compute the collective support for a norm, we can

decide whether the norm should be enacted or not. Given a predefined norm
acceptance level μ, a norm will be enacted if Snorm(n) > μ. For the norm to be
enacted, its support should be laying on the positive side of the spectrum, hence
μ should be picked so that μ ∈ ( lb+ub

2 , ub].



12 J.A. Rodriguez-Aguilar et al.

7 Case Study: A Virtual Community

In this section we qualitatively compare the outcome of our norm sup-
port function with that of a naive average support function. This naive
average support function obtains the support for a norm n as Savg(n) =

1
dim(OAn )

( ∑|A+
n |

i=1

∑ni

j=1 oi
j +

∑|A−
n |

i=1

∑ni

j=1 ub + lb − oi
j

)
. Our comparison encom-

passes a collection of Norm Argument Maps (NAM) that we characterise based
on the opinions about their positive and negative arguments. Table 1 summarises
the results of our comparison, which we detail next through some examples
which invoke our norm support function3 with an opinion spectrum λ = [1, 5],
the importance function I, and a relevance level α = 0.3.

NAM 1. Consider a norm n with one positive argument which is highly sup-
ported by opinions (e.g. with values 5, 5, 5), and three negative arguments that
count on neutral supports (e.g. one with opinions 3.15, 3.2, 2.8; another one
with opinions 3, 3.5, 2.6; and a third one with opinions 2.5, 3.5, 3.2). Thus,
while the average support function would yield a rather neutral norm support
(Savg(n) = 3.5375), our norm support function would compute a strong support
(Snorm(n) = 4.9842). Note that, since participants have not issued negative
arguments that are strong enough to attack the norm, whereas they have found
a strong argument to support it, the norm support should be favorable to the
enacting of the norm. This is captured by our norm support function, while the
average support function remains neutral. This happens because it is fundamen-
tal to weigh the importance of the arguments as well as the importance of the
argument sets. In this way neutral arguments do not weigh much in the overall
norm support. NAM 2. Consider the case of a norm with one positive argument
with neutral opinions (e.g. 3.5, 3.25, 3.5, 3, 2.5) and one negative argument with
a similar number of opinions but with weak support (e.g. opinions with values
1, 1, 1.2, 1.3, 1.25). The average support function would yield a strong support
for the norm (Savg(n) = 4) because of the weak support received by the nega-
tive argument. Unlike the average, our support function would obtain a neutral
support for the norm (Snorm(n) = 3.1731) because the negative arguments are
weakly supported and the positive one counts on neutral support.

Table 1. Norm supports computed by the average approach Savg and our approach
Snorm.

Argument sets Norm support

Norm argument map Positive arguments Negative arguments Savg Snorm

NAM 1 One strong argument Several neutral arguments Neutral Strong

NAM 2 One neutral argument One weak argument Strong Neutral

NAM 3 Weak arguments None Weak Undefined

NAM 4 None Weak arguments Strong Undefined

NAM 5 Strong with few opinions Weak with lots of opinions Strong undefined

3 This implementation is based on [6] and we have made it publicly available in [5].
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The two cases above show that the norm support of our method is in line
with positive arguments because negative arguments are not strong enough.
The next three cases show the importance of counting on relevant arguments.
NAM 3. Consider now a norm with weak positive arguments and no nega-
tive arguments. The average approach would yield weak support for the norm.
However, notice that the lack of strongly-supported positive arguments does not
imply that the norm is not good. If the norm was not good, we should expect
that participants eventually issue strongly-supported negative arguments. Since
there is not enough relevant information to decide whether the norm is good or
not, the norm support would be undefined for our norm support function. This
seems more reasonable than the weak support computed by the naive approach.
NAM 4. Consider now the dual of our last NAM: a norm counts on weak neg-
ative arguments and no positive arguments. Here the average support function
would obtain a strong norm support. Again, like in the previous case, our norm
support function would be undefined, which seems more adequate due to the
lack of relevance of the arguments issued so far. NAM 5. Consider the case
of a norm with positive arguments, each one counting with a few high-valued
opinions, and negative arguments, each one counting on a much larger number
of low-valued opinions. The average support function Savg(n) would produce
a strong norm support. However, notice that weak negative arguments should
not favorably support a norm. Moreover, the positive arguments count on few
opinions. If the norm was good enough, we should have expected to receive more
supporting opinions, which is not the case. This is why our norm support func-
tion Snorm(n) yiedls an undefined support. Overall, the three last examples show
that the lack of enough relevant information leads our norm support function to
an undefined norm support, which seems more reasonable (and cautious) than
that of a naive average support function.

7.1 A Test with Human Users

We conducted a test to evaluate the functionality of the norm argument map.
Our test encompassed eleven people debating on norms similar to the one in
Fig. 1 within a prototyped football social network. Users debated normally for
several rounds and, afterwards, a satisfaction survey asked them if resulting
aggregated ratings were reasonable. In a scale from 1 to 5, the answers’ mean
was 3.36, which we can consider as a positive preliminary result if we take into
account the usability deficiencies of our prototype.

8 Conclusions and Future Work

To provide a more democratic way of moderating virtual communities, we pro-
pose a new argumentative structure, the so-called norm argument map. We also
faced the problem of computing the collective support for a norm from the opin-
ions of an argument’s participants. We have identified two core concepts when
computing a norm’s support: the relevance of arguments and their importance.
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Thus, we argue that we must only consider relevant enough arguments and weigh
opinions based on their importance (strength).

As to future work, we are currently working on identifying similar arguments
that should be colapsed, but some other issues, such as when to close the argu-
mentation process or how to define the norm acceptance level μ, still need to be
studied. Moreover, we also plan to apply it to other social participation situations
such as direct democracy.

Acknowledgments. Work funded by Spanish National project CollectiveWare code
TIN2015-66863-C2-1-R (MINECO/FEDER).
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Abstract. The fundamentals of insurance are introduced and alterna-
tives to risk measurement are presented, illustrating how the size and
likelihood of future losses may be quantified. Real data indicate that
insurance companies handle many small losses, while large or extreme
claims occur only very rarely. The skewness of the profit and loss proba-
bility distribution function is especially troublesome for risk quantifica-
tion, but its strong asymmetry is successfully addressed with generaliza-
tions of kernel estimation. Closely connected to this approach, distortion
risk measures study the expected losses of a transformation of the original
data. GlueVaR risk measures are presented. The notions of subadditivity
and tail-subadditivity are discussed and an overview of risk aggregation
is given with some additional applications to insurance.

Keywords: Risk analysis · Extremes · Quantiles · Distortion measures

1 Introduction and Motivation

The insurance market is made up of customers that buy insurance policies and
shareholders that own insurance companies. The latter are typically concerned
about adverse situations and seek to maximize their profits, while the former
search for the best market price, although they also need reassurance that they
have opted for a solvent company.

Every insurance contract has an associated risk. Here, we analyse the caveats
of measuring risk individually when we consider more than one contract and
more than one customer, i.e., the aggregate risk in insurance.

Risk quantification serves as the basis for identifying the appropriate price
for an insurance contract and, thus, guaranteeing the stability and financial
strength of the insurance company. The aim of this article is to provide some
fundamentals on how best to undertake this analysis. Once the individual risk
associated with each contract has been calculated, the sum of the risk of all
contracts provides an estimate of the overall risk. In this way, we also provide
an overview of risk aggregation.

c© Springer International Publishing Switzerland 2016
V. Torra et al. (Eds.): MDAI 2016, LNAI 9880, pp. 15–25, 2016.
DOI: 10.1007/978-3-319-45656-0 2
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1.1 Basic Risk Quantification in Insurance

Let us consider a client who buys a car insurance policy that covers the risk of
losses caused by accidents involving that vehicle for a period of one year. The
insurance company needs to cover its expenses attributable to administration
costs, regulatory mandates, advertising and IT systems. In other words, the
company needs to fix a minimum price to cover the general expenses derived
from its ordinary operations. The contract price is known as the premium.

The premiums collected can then be invested in the financial market, pro-
ducing returns for the company before its financial resources are required for
paying out compensation to its customers. A company that sells car insurance
may sell thousands of one-year contracts but only those clients that suffer an
accident, and who are covered, are compensated.

Each insurance contract has an associated profit or loss outcome, which can
only be observed at the end of the contract. Two problems emerge when measur-
ing this outcome. First, from an economic point of view, the production process
of an insurance contract follows what is known as an inverted cycle, i.e., the price
has to be fixed before the cost of the product is fully known. In a normal fac-
tory production process, the first step is to create and manufacture the product
and, then, according to existing demand and the expenses incurred, a minimum
price is fixed for the product. In the insurance sector, however, information on
costs is only partial at the beginning of the contract, since accidents have yet
to occur. Moreover, uncertainty exists. The eventual outcome of an insurance
contract depends, first, on whether or not the policyholder suffers an accident
and, second, on its severity. If an accident occurs, then the company has to
compensate the insured party and this amount may be much greater than the
premium initially received. Thus, the cost of any one given contract is difficult
to predict and the eventual outcome may be negative for the insurer.

Despite the large financial component involved in the management of an
insurance firm, insurance underwriting is based primarily on the analysis of his-
torical statistical data and the law of large numbers. Here, recent advances in
the field of data mining allow massive amounts of information to be scrutinized
and, thus, they have changed the way insurance companies address the problem
of fixing the correct price for an insurance contract. This price, moreover, has to
be fair for each customer and, therefore, premium calculation requires a sophis-
ticated analysis of risk. In addition, the sum of all prices has to be sufficient to
cover the pool of insureds.

Insurance companies around the world are highly regulated institutions. An
insurance company cannot sell its products unless they have been authorized
by the corresponding supervisor. In Spain, supervision is carried out by the
Direccion General de Seguros y Fondos de Pensiones, an official bureau that
depends on the Ministry of Economics and which has adhered to European
guidelines since January 2016. Under the European directive known as Solvency
II, no company is allowed to operate in European territory unless it complies
with strict legal requirements. This directive is motivated by the need to provide
an overall assessment of the companys capacity to face its aggregate risk, even
in the worst case scenario.
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The choice of loss models and risk measures is crucial, as we shall illustrate
in the sections that follow. We start by providing definitions and notations and
include a simple example that illustrates the definition of losses and the risk
measure. We present distortion risk measures and report key findings about their
behaviour when aggregating losses. We then present a special family of distortion
risk measures. The non-parametric approach to the estimation of distribution
functions is discussed. An example using data from car insurance accidents is
analysed and we conclude with a discussion of some possible lines of future
research.

1.2 Notation

Consider a probability space and the set of all random variables defined on this
space. A risk measure ρ is a mapping from the set of random variables to the
real line [26].

Definition 1. Subadditivity. A risk measure is subadditive when the aggre-
gated risk, which is the risk of the sum of individual losses, is less than or equal
to the sum of individual risks.

Subadditvity is an appealing property when aggregating risks in order to
preserve the benefits of diversification.

Value-at-Risk (VaR) has been adopted as a standard tool to assess risk and to
calculate legal requirements in the insurance industry. Throughout this discus-
sion, we assume without loss of generality that all data on costs are non-negative,
so we will only consider non-negative random variables.

Definition 2. Value-at-Risk. Value-at-Risk at level α is the α-quantile of a
random variable X (which refers to a cost, a loss or the severity of an accident
in our context), so

VaRα (X) = inf {x | FX (x) ≥ α} = F−1
X (α) ,

where FX is the cumulative distribution function (cdf) of X and α is the confi-
dence or the tolerance level 0 ≤ α ≤ 1.

VaR has many pitfalls in practice [23]. A major disadvantage when using
VaR in the insurance context is that this risk measure does not always fulfill the
subadditivity property [1,3]. So, the VaR of a sum of losses is not necessarily
smaller than or equal to the sum of VaRs of individual losses. An example of
such a case is presented in Sect. 5. VaR is subadditive for elliptically distributed
losses [25].

Definition 3. Tail Value-at-Risk. Tail Value-at-Risk at level α is defined as:

TVaRα (X) =
1

1 − α

∫ 1

α

V aRλ (X) dλ.
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Roughly speaking, the TVaR is understood as the mathematical expectation
beyond the VaR. The TVaR risk measure is subadditive and it is a coherent risk
measure [18].

Since we are mainly concerned with extreme values, we consider the definition
of tail-subadditivity. This means that we only examine the domain of the variables
that lies beyond the VaR of the aggregate risk.

Definition 4. Tail-Subadditivity. A risk measure is tail-subadditive when the
aggregated risk (risk of the sum of losses) is less than or equal to the sum of
individual risks, only in the domain defined by the VaR of the sum of losses.

Additional information on the algorithm to rescale the risk measure in the
tail is given below.

1.3 Exposure to Risk: A Paradox

An additional problem of measuring risk in insurance is that of exposure. The
following simple example shows the importance of defining losses with respect
to a certain level of exposure. For this purpose, we compare flying vs. driving.

There is typically much discussion as to whether flying is riskier than driving.
In a recent paper published in Risk Analysis [24], a comparison of the risks of
suffering a fatal accident in the air and on the highway illustrates that the
construction and interpretation of risk measures is crucial when assessing risk.
However, this example does not discuss the paradox that is described in [20],
which argues that risk quantification also depends on how exposure is measured.

MacKenzie [24] calculates the probability of a fatal incident by dividing the
total number of fatal incidents by the total number of miles travelled in the
United States. He also approximates the distributions of the number of victims
given a fatal incident occurs. The probabilities of a fatal incident per one million
miles travelled compared to those calculated by Guillen [20] for 10,000 hours of
travel (in parentheses) are 0.017 % (0.096 %) for air carriers, 22.919 % (45.838 %)
for air taxis and commuters, and 1.205 % (0.843 %) for highway driving. The two
approaches produce different outcomes in the probability of an accident with
fatalities, because speed is not homogeneous across all transportation modes.
However, regardless of whether miles travelled or hours of travel are considered,
we always conclude that the safest means of transport is flying with a commercial
air carrier if we look solely at the probability of an incident occurring.

However, if the expected number of fatalities per one million miles or per
10,000 hours of travel is compared, a contradiction emerges. The average number
of victims per one million miles is 0.003 if we consider distance in terms of
commercial aviation trips, whereas the average number of victims is 0.013 if we
consider distance driven on highways. However, if we consider the time spent
on the commercial aviation trip, the average is 0.017 victims compared to 0.009
when driving on highways. The conclusion we draw here is that highway trips
are safer than commercial airline flights. This contradiction with respect to the
previous discussion is caused by the use of the mathematical expectation of two
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different loss functions. This simple example shows the importance of knowing
how to define the losses and the implications of the choice of the risk measure.

2 Distortion Risk Measures

Distortion risk measures were introduced by Wang [29,30] and are closely related
to the distortion expectation theory [31]. A review of how risk measures can be
interpreted from different perspectives is provided in [27], and a clarifying expla-
nation of the relationship between distortion risk measures and distortion expec-
tation theory is provided. Distortion risk measures are also studied in [4,17]. The
definition of a distortion risk measure contains two key elements: first, the asso-
ciated distortion function; and, second, the concept of the Choquet integral [15].

Definition 5. Distortion Function. Let g : [0, 1] → [0, 1] be a function such
that g (0) = 0, g (1) = 1 and g is injective and non-decreasing. Then g is called
a distortion function.

Definition 6. Choquet Integral. The Choquet Integral with respect to a set

function μ of a μ-measurable function X : Ω → R
+ ∪ {0} is denoted as

∫

Xdμ

and is equal to
∫

Xdμ =
∫ +∞

0

Sμ,X(x)dx,

if μ (Ω) < ∞, where Sμ,X (x) = μ ({X > x}) denotes the survival function of X
with respect to μ. See [16] for more details.

Definition 7. Distortion Risk Measure for Non-negative Random
Variable. Let g be a distortion function. Consider a non-negative random vari-
able X and its survival function SX(x) = P (X > x). Function ρg defined by

ρg (X) =
∫ +∞

0

g (SX (x)) dx

is called a distortion risk measure.

3 GlueVaR Risk Measures

A new family of risk measures known as GlueVaR was introduced by Belles-
Sampera et al. [5]. A GlueVaR risk measure is defined by a distortion function.
Given confidence levels α and β, α ≤ β, the distortion function for a GlueVaR
is:

κh1,h2
β,α (u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1

1 − β
· u, if 0 ≤ u < 1 − β

h1 +
h2 − h1

β − α
· [u − (1 − β)] ,

if 1 − β ≤ u < 1 − α

1, if 1 − α ≤ u ≤ 1

(1)
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where α, β ∈ [0, 1] such that α ≤ β, h1 ∈ [0, 1] and h2 ∈ [h1, 1]. Parameter β is
the additional confidence level besides α. The shape of the GlueVaR distortion
function is determined by the distorted survival probabilities h1 and h2 at levels
1−β and 1−α, respectively. Parameters h1 and h2 are referred to as the heights
of the distortion function.

The GlueVaR family has been studied by [5–7,9], who showed that the associ-
ated distortion function κh1,h2

β,α can be defined as being concave in [0, 1]. The con-
cavity of the distortion risk measure is essential to guarantee tail-subadditivity.

Theorem 1. Concave and continuous distortion risk measures are subadditive.

Proof. A proof can be derived from [16].

Corollary 1. If a distortion risk measure is subadditive, it is also tail-
subadditive in the restricted domain.

Theorem 2. GlueVaR risk measures are tail-subadditive if they are concave in
the interval [0, (1 − α)).

Proof. For a GlueVaR risk measure, it suffices to check that its corresponding
distortion function κh1,h2

β,α (u) is concave for 0 ≤ u < (1 − α). Note that by
definition the distortion function is also continuous in that interval. Then it
suffices to restrict the domain so that the variable only takes values that are
larger than the VaR of the sum of losses and apply the previous theorem. Note
also that the VaR of the sum of losses is always larger or equal than the VaR of
each individual loss, since we consider that all losses are non-negative. [5] also
provide a proof.

Let us comment on the practical application of the above results. Given two
random variables, X1 and X2. Let us denote by mα = V aRα(X1 + X2). Then,
we define the truncated variables X1|X1 > mα and X2|X2 > mα. Likewise,
we consider the truncated random variable (X1 + X2)|(X1 + X2) > mα, then
tail-subadditivity holds whenever

ρg [(X1 + X2)|(X1 + X2) > mα] ≤ ρg [X1|X1 > mα] + ρg [X2|X2 > mα] . (2)

Put simply, expression (2) means that the risk of the sum of the losses of two
contracts that exceed the value-at-risk of the sum is less than or equal to the
sum of the risks of losses from each contract above the risk of the sum.

The algorithm to calculate the rescaled GlueVaR risk measure in the tail
that we implement below in Sect. 5 is as follows. We have restricted our data set
to all values greater than mα0 for a given confidence level α0. For these data,
we subtract mα0 from each data point and redefine the tolerance parameters,
so that α = 0 and β = 1 − (1 − β0)/(1 − α0), where α0 and β0 are the original
levels of confidence. Once the GlueVaR has been calculated for this set of data
and parameters, we add α0mα0 to return to the original scale.
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4 Nonparametric Estimation of Standard Risk Measures

Let T (·) be a concave transformation where Y = T (X) is the transformed
random variable and Yi = T (Xi), i = 1 . . . n are the transformed observed losses
and n is the total number of observed data. Then the kernel estimator of the
transformed cumulative distribution function of variable X is:

F̂Y (y) =
1
n

n∑

i=1

K

(
y − Yi

b

)

=
1
n

n∑

i=1

K

(
T (x) − T (Xi)

b

)

, (3)

The transformed kernel estimation of FX (x) is:

F̂X (x) = F̂T (X)(T (x)).

where b and K
(

x−Xi

b

)
are defined as the bandwidth and the integral of the

kernel function k(·), respectively (see [10] for more details).
In order to obtain the transformed kernel estimate, we need to determine

which transformation should be used. Several authors have analysed the trans-
formed kernel estimation of the density function ([10,14,28]).

A double transformation kernel estimation method was proposed by Bolancé
et al. [11]. This requires an initial transformation of the data T (Xi) = Zi, where
the transformed variable distribution is close to a Uniform (0, 1) distribution.
Afterwards, the data are transformed again using the inverse of the distribution
function of a Beta distribution. The resulting variable, with corresponding data
values M−1 (Zi) = Yi, after the double transformation is close to a Beta (see,
[10,12]) distribution, so it is quite symmetrical and the choice of the smoothing
parameter can be optimized.

Following the double transformation of the original data, V aRα is calculated
with the Newton-Raphson method to solve the expression:

F̂T (X)(T (x)) = α

and once the result is obtained, the inverse of the transformations is applied in
order to recover the original scale. The optimality properties and performance,
even in small samples are studied by Alemany et al. [2].

When calculating the empirical TV aRα a first moment of the data above
V aRα is used, but other numerical approximations based on the non-parametric
estimate of the distribution function are also possible.

In general, a non-parametric estimation of distortion risk measures can be
directly achieved in the transformed scale, which guarantees that the transformed
variable is defined in a bounded domain. So, the non-parametric approach can
simply be obtained by integrating the distorted estimate of the survival function
of the transformed (or double transformed) variable T (X), so:

ρ̂g(T (X)) =
n∑

i>1

g(1 − F̂T (X)(T
(
X(i)

)
))(T

(
X(i)

) − T
(
X(i−1)

)
),
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where subscript (i) indicates the ordered location. Once the result is obtained,
the inverse of the transformations is applied in order to recover the original scale.
The properties of this method have not yet been studied.

5 Example

Here we provide an example of the implementation of risk measurement and
aggregation. The data have been provided by a Spanish Insurer and they contain
information on two types of costs associated with the car accidents reported to
the company. The first variable (X1) is the cost of the medical expenses paid
out to the insurance policy holder and the second variable (X2) is the amount
paid by the insurer corresponding to property damage. Medical expenses may
contain medical costs related to a third person injured in the accident. More
information on the data can be found in [13,21,22]. The sample size is 518 cases.
The minimum, maximum and mean values of X1 (in parentheses X2) are 13 (1),
137936 (11855) and 1827.6 (283.9), respectively.

The empirical risk measures for different levels of tolerance are shown in
Table 1. Risk in the tail region is shown in Table 2. The results in Table 1 confirm
that VaR is not subadditive; nor is the GlueVaR example chosen here. However,
tail-subadditivity holds in the tail, as shown in Table 2.

Table 1. Distortion risk measures (ρ) for car insurance cost data and subadditivity

ρ α ρ(X1) ρ(X2) ρ(X1 + X2) ρ(X1) + ρ(X2) Subadditivity

V aRα 95.0 % 6450.00 1060.00 7926.00 7510.00 No

99.0 % 20235.00 4582.00 25409.00 24817.00 No

TV aRα 95.0 % 18711.78 3057.88 20886.81 21769.66 Yes

99.0 % 48739.25 7237.02 53259.39 55976.27 Yes

GlueV aR∗ 95.0 % 10253.39 1558.42 11996.87 11811.81 No

99.0 % 24817.56 4988.43 29992.21 29805.99 No
∗The GlueVaR parameters are h1 = 1/20, h2 = 1/8 and β = 99.5 %.

Nonparametric estimates of VaR are shown in Table 3. The results also indi-
cate that subadditivity is not fulfilled for a level of α = 95%. Note also that
compared to the empirical results, the non-parametric approximation produces
higher values for larger tolerance levels because the shape of the distribution
in the extremes is smoothed and extrapolated. So, in this case, subadditivity is
found for α = 99% and α = 99.5%.
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Table 2. Distortion risk measures (ρ) for car insurance cost data and rescaled tail-
measure

ρ α ρ(X1) ρ(X2) ρ(X1 + X2) ρ(X1) + ρ(X2) Tail-subadd.∗

V aRα 95.0 % 7603.70 18978.70 7529.7 26582,40 Yes

99.0 % 36603.91 - 25409.00 - -

TV aRα 95.0 % 20380.47 69517.70 20440.66 89898.17 Yes

99.0 % 87142.91 - 49453.17 - -

GlueV aR∗∗ 95.0 % 11740.70 27401.87 11588.64 39142.57 Yes

99.0 % 45027.08 - 29398.90 - -
∗Only values above the corresponding V aRα(X1 +X2) are considered. For α = 99%,
no values of X2 are larger than this level.
∗∗The GlueVaR parameters are h1 = 1/20, h2 = 1/8 and β = 99.5 %.

Table 3. Nonparametric estimates of Value-at-Risk (ρ) for car insurance cost data and
subadditivity

α ρ(X1) ρ(X2) ρ(X1 + X2) ρ(X1) + ρ(X2) Subadditivity

95.0 % 6357.58 1049.77 7415.80 7407.35 No

99.0 % 23316.56 4693.33 26606.16 28009.89 Yes

99.5 % 36967.12 7921.23 36968.11 44888.35 Yes

6 Conclusion

We highlight the importance of transformations in the analysis of insurance
data that present many extreme values. Distortion risk measures transform the
survival function to focus on extreme losses, while advanced non-parametric
kernel methods benefit from the transformation of the original data to eliminate
asymmetry.

Extreme value theory plays an important methodological role in risk manage-
ment for the insurance, reinsurance, and finance sectors, but many challenges
remain with regards how best to measure and aggregate risk in these cases.
Tails of loss severity distributions are essential for pricing [19] and creating the
high-excess loss layers in reinsurance.

Distortion risk measures constitute a tool for increasing the probability den-
sity in those regions where there is more information available on extreme cases.
Yet, the selection of the distortion function is not subject to an optimization
procedure. Regulators have imposed the use of some easy-to-calculate measures,
for example, in Solvency II the central risk measure is the VaR, while in the
Swiss Solvency Test, TVaR is the standard approach. Non-parametric methods
for risk measurement are flexible and do not require any assumptions regarding
the statistical distribution that needs to be implemented. As such, they cer-
tainly impose fewer assumptions than when using a given parametric statistical
distribution. We believe that distortion risk measures could optimize an objec-
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tive function that reflects attitude towards risk. The relationship between risk
measures and risk attitude was initially studied by [8]. The analysis of the atti-
tudinal position and the risk aversion shown by the risk quantifier have not been
addressed here and remain matters for future study.
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Abstract. Bitcoin has emerged as the most successful cryptocurrency
since its appearance back in 2009. However, its main drawback to become
a truly global payment system is its low capacity in transaction through-
put. At present time, some ideas have been proposed to increase the
transaction throughput, with different impact on the scalability of the
system. Some of these ideas propose to decouple standard transactions
from the blockchain core and to manage them through a parallel pay-
ment network, relegating the usage of the bitcoin blockchain only to
transactions which consolidate multiple of those off-chain movements.
Such mechanisms generate new actors in the bitcoin payment scenario,
the Payment Service Providers, and new privacy issues arise regarding
bitcoin users. In this paper, we provide a comprehensive description of
the most relevant scalability solutions proposed for the bitcoin network
and we outline its impact on users’ privacy based on the early stage
proposals published so far.

Keywords: Bitcoin · Scalability · Off-chain transactions · Lightning
network · Duplex micropayment channels

1 Introduction

Bitcoin is an online virtual currency based on public key cryptography, pro-
posed in 2008 in a paper authored by someone behind the Satoshi Nakamoto
pseudonym [1]. It became fully functional on January 2009 and its broad adop-
tion, facilitated by the availability of exchange markets allowing easy conversion
with traditional currencies (EUR or USD), has brought it to be the most suc-
cessful virtual currency.

The success of bitcoin has evidenced its weak design in terms of scalability
since the number of transactions per second that the system may handle is orders
of magnitude lower than standard globally used systems, like VISA.

In order to allow bitcoin to scale and to have a chance to be a global payment
system, different solutions have been proposed. Although some of them are still
in development, in this paper we point out the most relevant ones, that is, pro-
posals that have a large acceptance degree in the community, focusing on those
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that present an important shift in the bitcoin development: off-chain payment
channels. Besides the general paradigm change that off-chain payment channels
may suppose, we are mainly interested on how bitcoin users’ privacy could be
affected by such proposals.

The organization of the paper is as follows. In Sect. 2 we provide a general
background of the bitcoin system and outline its scalability problems. Section 3
points out the main proposals to scale the bitcoin system, focusing in the off-
chain payment channel solution. How bitcoin users’ privacy will be affected by
off-chain payment channels is discussed in Sect. 4, mainly analysing how actual
techniques used to attack/protect users’ privacy will be affected. Finally, Sect. 5
concludes the paper and gives some guidelines for further research in this field.

2 The Bitcoin System

In this section, we point out the main ideas to understand the basic functionality
of the bitcoin cryptocurrency. Such background is needed to understand the
scalability problems the system faces and the solutions that have been proposed.
However, the complexity of bitcoin makes impossible to provide a full description
of the system in this review, so interested readers can refer to Antonopoulos’s
book [2] for a detailed and more extended explanation on the bitcoin system.

Bitcoin is a cryptocurrency based on accounting entries. For that reason, it
is not correct to look at bitcoins as digital tokens since bitcoins are represented
as a balance in a bitcoin account. A bitcoin account is defined by an Elliptic
Curve Cryptography key pair. The bitcoin account is publicly identified by its
bitcoin address, obtained from its public key using a unidirectional function.
Using this public information users can send bitcoins to that address1. Then,
the corresponding private key is needed to spend the bitcoins of the account.

2.1 Bitcoin Payments

Payments in the bitcoin system are performed through transactions between
bitcoin accounts. A bitcoin transaction indicates a bitcoin movement from
source addresses to destination addresses. Source addresses are known as input
addresses in a transaction and destination addresses are named output
addresses. As it can be seen in Fig. 1, a single transaction can have one or
multiple input addresses and one or multiple output addresses.

A transaction details the exact amount of bitcoins to be transferred from each
input address. The same applies to the output addresses, indicating the total
amount of bitcoins that would be transferred at each account. For consistency,
the total amount of the input addresses (source of the money) must be greater or
equal than the total amount of the output addresses (destination of the money).
Furthermore, the bitcoin protocol forces that input addresses must spend the

1 Notice that the terms public key, address or bitcoin account refer to the same con-
cept.
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Fig. 1. Bitcoin transaction example: four input addresses and two output addresses
(data from blockexplorer.com).

exact amount of a previously received transaction2 and, for that reason, in a
transaction each input must unambiguously indicate the transaction3 and the
index of the output from which the bitcoins were received (the field Previous
output (index) in Fig. 1).

Finally, the owner of the input addresses should perform a digital signature
using his private keys, proving that he is the real owner of such accounts.4

Before accepting a payment from a standard transaction, the receiver should:

– Validate that the bitcoins of the input addresses are not previously spent.
– Validate that the digital signature is correct.

The first validation prevents doublespending in the bitcoin system and it is
performed through a ledger where all previous transactions are annotated. Before
accepting the payment, the receiver needs to be sure that there is no other
transaction already in the ledger that has an input with the same Previous output
(Index). For that reason, the integrity of the system is based on the fact that this
ledger is not modifiable, although it should be possible to add new transactions.
In the bitcoin system, this append-only ledger is called blockchain.5 The second
validation can be performed with the information included in the transaction
itself (field ScriptSig) together with the information of the transaction identified
in the Previous output (Index) (field ScriptPubKey).

2 Notice that in Fig. 1, there are two input addresses that are exactly the same which
indicates that bitcoins have arrived to this bitcoin account in two separate transac-
tions.

3 A transaction is identified in the bitcoin system by its hash value.
4 Although this is the standard form of bitcoin verification for regular bitcoin transfer

transactions, the verification of a transaction can be much more complex and is based
on the execution of a stack-based scripting language (more details can be found in
Chap. 5 of [2]).

5 Note that the non-modifiable property of the blockchain implies that bitcoin pay-
ments are non reversible.

https://blockexplorer.com/
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2.2 The Blockchain and the Mining Process

The blockchain is a general append-only ledger containing all bitcoin transac-
tions performed since the system started to operate, back in 2009. Such app-
roach implies that the size of the blockchain is constantly increasing and, for
that reason, scalability is probably the biggest challenge that the system faces.
The blockchain is freely replicated and stored in different nodes of the bitcoin
network, making the bitcoin a completely distributed system.

Transactions are included in the blockchain at time intervals, rather than in
a flow fashion, and such addition is performed by collecting all new transactions
of the system, compiling them together in a data structure called block, and
including the block at the top of the blockchain. Every time that a block con-
taining a specific transaction is included in the blockchain such transaction is
said to be a confirmed transaction since it has been already included in the
blockchain and can be checked for doublespending prevention.

Blocks are data structures that mainly contain a set of transactions that
have been performed in the system (see Fig. 2). To achieve the append-only
property, the inclusion of a block in the blockchain is a hard problem, so adding
blocks to the blockchain is time and work consuming. Furthermore, every block
is indexed using its hash value and every new block contains the hash value of
the previous one (see the field Previous block in Fig. 2). Such mechanism ensures
that the modification of a block from the middle of the chain would imply to
modify all remaining blocks of the chain from that point to the top in order to
match all hash values.

Fig. 2. Example of a bitcoin block (data from blockexplorer.com).

https://blockexplorer.com/
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Adding a block to the blockchain is known as the mining process, a process
that is also distributed and that can be performed by any user of the bitcoin
network using specific-purpose software (and hardware). The mining process uses
a hashcash proof-of-work system, first proposed by Adam Back as an anti-spam
mechanism [3]. The proof-of-work consists in finding a hash of the new block
with a value lower than a predefined target6. This process is performed by brute
force varying the nonce value of the block. Once the value has been found, the
new block becomes the top block of the blockchain and all miners discard their
work on that block and move to the next one.

Mining new blocks is a structural task in the bitcoin system since it helps to
confirm the transactions of the system. For that reason, and also assuming that
mining implies a hard work, miners have to be properly rewarded. In the bitcoin
system, miners are rewarded with two mechanisms. The first one provides them
with newly created bitcoins. Every new block includes a special transaction,
called generation transaction or coinbase transaction (see the first transac-
tion in Fig. 2), in which it does not appear any input address and the output
address is determined by the miner who creates the block, who obviously indi-
cates one of its own addresses.7 The second rewarding mechanism is the fees that
each transaction pays to the miner. The fee for each transaction is calculated
by computing the difference between the total input amount and the total out-
put amount of the transaction (notice that in example block of Fig. 2 the first
transaction does not provide any fee while the second one generates a 0.01 fee).
All fees collected from transactions in a block are included in the generation
transaction.

2.3 The Bitcoin Network

The bitcoin system needs to disseminate different kinds of information, essen-
tially, transactions and blocks. Since both data are generated in a distributed
way, the system transmits such information over the Internet through a distrib-
uted peer to peer (P2P) network. Such distributed network is created by bitcoin
users in a dynamic way, and nodes of the bitcoin P2P network [4] are computers
running the software of the bitcoin network node. This software is included by
default into bitcoin’s full-client wallets, but it is not usually incorporated in light
wallet versions, such as those running in mobile devices. It is important to stress
such distinction in case to perform network analysis, because when discovering
nodes in the P2P bitcoin network, depending on the scanning techniques, not all
bitcoin users are identified, but only those running a full-client and those run-
ning a special purpose bitcoin P2P node. Furthermore, online bitcoin accounts,

6 Notice that the value of the target determines the difficulty of the mining process.
Bitcoin adjusts the target value depending on the hash power of the miners in order
to set the throughput of new blocks to 1 every 10min (in mean).

7 The amount of a generation transaction is not constant and it is determined by the
bitcoin system. Such value, started in 50 bitcoins, is halved every four years, fixing
asymptotically to 21 millions the total number of bitcoins that will ever be created.
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provided by major bitcoin Internet sites, can also be considered as light weight
clients, so they do not represent a full bitcoin P2P node neither.

2.4 Bitcoin Scalability Issues

Recently, the increase of both the popularity and the usage of the bitcoin system
has shown its bounds regarding its ability to scale with the number of users. It
is obvious that a system with a unique (although replicated) register containing
all system transactions (i.e. the blockchain) may present a bottleneck.

Scalability issues can be measured in different ways as it is pointed out in [5].
From latency (the time for a transaction to be confirmed) to bootstrap time
(the time it takes a new node to download and process the history necessary to
validate payments) through cost per confirmed transactions, different measures
can be used to evaluate the efficiency of a payment system. Croman et al. [5] give
approximations of all of these metrics for the Bitcoin network. However, probably
the easiest measure to compare Bitcoin with existing global payment systems
and the one that has a direct impact on scalability is the system transaction
throughput. The transaction throughput can be measured by the maximum
number of transactions per second that a system may deal with and it is often
chosen to evaluate systems because it is objective, easy to compute, and can be
used to compare different payment systems easily. For instance, Visa reported to
allow around 2,000 transactions per second in normal situation [5] while reaching
a peak of 56,000 in a stress test [6]. Paypal manages lower values, providing 136
transactions per second as mean throughput on his payment network.8

Bitcoin throughput can be measured taking into account different parame-
ters, from network communication latency to processing power of the nodes
performing transaction validation. However, the restriction that limits the most
the throughput of the system is the maximum size of blocks. Currently (June
2016), block size is fixed at a maximum value of 1 MB.9 Yet this limit has not
always been in place: the initial release of the code in February 2009 did not
explicitly contain a block size limit and it was not until late 2010 when the 1 MB
limit was enforced. The procedure for activating the block size limit was grad-
ual: first, the core was changed so that no large blocks were mined;10 second,
the consensus rules were updated to reject blocks larger than 1 MB;11 finally,
the new rules started to be enforced on block height higher than 79,400 (which
was reached12 in September 12nd, 2010). From that moment on, the block size
limit has been kept to 1 MB.
8 PayPal Q1 2016 Results [7] reported handling 1.41B payment transactions, which

leads to an estimated 1.41B/4/30/24/60/60 = 136 transactions per second.
9 https://github.com/bitcoin/bitcoin/blob/a6a860796a44a2805a58391a009ba22752f64

e32/src/consensus/consensus.h#L9.
10 https://github.com/bitcoin/bitcoin/commit/a30b56ebe76ffff9f9cc8a6667186179413c

c6349.
11 https://github.com/bitcoin/bitcoin/commit/8c9479c6bbbc38b897dc97de9d04e4d5a

5a36730#diff-118fcbaaba162ba17933c7893247df3aR1421.
12 https://blockchain.info/block-height/79400.

https://github.com/bitcoin/bitcoin/blob/a6a860796a44a2805a58391a009ba22752f64e32/src/consensus/consensus.h#L9
https://github.com/bitcoin/bitcoin/blob/a6a860796a44a2805a58391a009ba22752f64e32/src/consensus/consensus.h#L9
https://github.com/bitcoin/bitcoin/commit/a30b56ebe76ffff9f9cc8a6667186179413c6349
https://github.com/bitcoin/bitcoin/commit/a30b56ebe76ffff9f9cc8a6667186179413c6349
https://github.com/bitcoin/bitcoin/commit/8c9479c6bbbc38b897dc97de9d04e4d5a5a36730#diff-118fcbaaba162ba17933c7893247df3aR1421
https://github.com/bitcoin/bitcoin/commit/8c9479c6bbbc38b897dc97de9d04e4d5a5a36730#diff-118fcbaaba162ba17933c7893247df3aR1421
https://blockchain.info/block-height/79400
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Limiting the size of blocks to 1 MB implies a maximum throughput of 7 trans-
actions per second [5]. The 7 transactions per second limit is an approximation
obtained by dividing the maximum size of blocks by the average size of Bitcoin
transactions (250 bytes) and the inter-block time (10 min). Therefore, a block
of maximum size may contain 1,000,000/250 = 100 average sized transactions,
thus giving a throughput of 100/600 = 6.6 transactions per second. Notice that
such value is very far from the numbers that other payment systems, like Visa
or PayPal, may deal with.

3 Bitcoin Scalability Proposals

Modification proposals in the Bitcoin core protocol, even those of utter impor-
tance like the ones affecting the scalability of the system, are often difficult to
tackle since they have to be deployed with extreme precaution and maximum
consensus. Furthermore, if changes affect the consensus mechanisms of the pro-
tocol, their implications may cause a blockchain fork and that could have a big
impact in a cryptocurrency with a market capitalization of more than 11.5 billion
dollars.13 Moreover, the collateral implications of changes need to be also con-
sidered beforehand to prevent unexpected consequences, specially those related
to security and decentralization.

Changes in the Bitcoin consensus rules may be introduced by soft (protocol)
forks or hard (protocol) forks. A soft fork is produced when the protocol rules
are changed so that the new rules are more strict than the old rules. In this case,
all blocks accepted by the new rules will also be recognized as valid by the old
rules. On the contrary, hard forks make the protocol rules less strict. Therefore,
all blocks accepted by the old rules will also be valid by the new rules but there
may be blocks that are valid with the new rules that were invalid with the
older rules. Soft forks are preferred for updating rules because they do not break
compatibility with previous versions and they do no require all participants to
upgrade [8].

The effects of hard and soft forks on the network are also different. As an
example, let’s consider the case where 95 % of the mining power of the network
upgrades to a new set of rules. In a hard fork, the upgraded 95% will eventually
create a block which is valid under the new rules but invalid following the old
rules. From that moment on, a (blockchain) fork will remain in the network: the
upgraded clients will consider the block valid and will keep mining on top of it,
whereas the non-upgraded 5% will recognize the block as invalid and discard it
together with all subsequent blocks. The non-upgraded 5% will always consider
the block invalid, and thus will create an alternative branch of the chain and will
remain in that branch, making the (blockchain) fork persistent. On the contrary,
in a soft fork, most of the blocks will be mined by the upgraded nodes (since
they have 95% of the mining power) and they will be accepted by all nodes
(regardless of their upgrading status). Sooner or later, one of the non-upgraded
miners will create a new block which will be seen as valid by the 5% of the
13 Information from http://coinmarketcap.com/ on June 17th, 2016.

http://coinmarketcap.com/
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miners but invalid for the rest. As a consequence, 5% of the mining power will
start mining on top of that new block, and the 95% left will keep mining at the
same height. Since the upgraded nodes have the majority of the mining power,
their branch will soon be longer than the branch created by the non-upgraded
miner. Seeing that this branch is longer and valid, the non upgraded nodes will
change to the upgraded branch, and thus all the network will be mining again
on the same branch.

In the next subsections, we review the techniques that have been proposed to
boost the scalability of bitcoin. It is worth mention that since in this paper we
are focused on the bitcoin system, we do not consider those scalability proposals
that are envisaged for general decentralized blockchain systems, like the ones
proposed Croman et al. [5], but could not be applied to the bitcoin system due
to the impractical solutions to redefine some primitives, like modify the proof-
of-work protocol.

3.1 Tuning Bitcoin Protocol Parameters

Tuning protocol parameters may allow Bitcoin to improve its scalability,
although previous studies have concluded that high scalability in the longer
term requires a protocol redesign [5].

The parameter that has been most discussed by the Bitcoin community in
order to improve system scalability is the block size limit. Some proposals sug-
gest to increase the limit following different strategies or even propose to remove
the limit. Jeff Garzik’s BIP 100 [9] proposed to change the 1 MB fixed limit to a
new floating block size limit, where miners may increase the block size by con-
sensus. Gavin Andresen BIP 101 [10] proposal (currently withdrawn) consisted
in initially increasing block size to 8 MB and doubling the size every two years
for 20 years, after which the block size remains fixed. Jeff Garzik’s BIP 102 [11]
proposes to simply increase block size to 2 MB. Pieter Wuille’s BIP 103 [12]
proposed to increase the maximum block size by 4.4% every 97 days until 2063,
implying a 17.7% block size increase per year. Gavin Andresen’s BIP 109 [13]
propose a fixed block size increase to 2 MB with a new limit on the amount
of data that can be hashed to compute signature hashes and a change on how
the maximum number of signatures is counted. All of these proposals have to
be deployed via a hard fork, since all blocks bigger than 1 MB will be seen as
invalid by the current version nodes.

However, the increase on the block size limit can not be done arbitrarily.
Recent studies [5] argued that with the current 10 min average block interval
and taking into account block propagation times in the network, block size limit
should not be increased to more than 4 MB.

Segregated Witness [14] is another proposal that does not increase the block
size limit, but reduces the amount of information stored per transaction, thus
effectively allowing more transactions per block. Additionally, segregated wit-
ness solves the malleability problem (refer to Sect. 3.2 for a description) and
introduces many other benefits.
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3.2 Off-Chain Payment Channels

It is unclear whether tuning the protocol parameters alone will provide enough
scaling benefits to satisfy bitcoin needs in the future. For that reason, one of the
proposals that has been broadly accepted in the bitcoin community as a relevant
bitcoin scalability solution is an improvement that has been enumerated in the
previous section: the segregated witness approach. As a single proposal, segre-
gated witness only provides, in the best case, a 4x increase in throughput of the
bitcoin network, falling in the buy-time-now solution for the bitcoin scalability
problem. But the segregated witness ability to resolve the transaction malleabil-
ity problem allows to develop new mechanisms that could provide a much more
powerful tool for bitcoin scalability issues: off-chain payment channels.

Transaction Malleability Problem. As we pointed out in Sect. 2.1 Bitcoin
transactions are identified with its hash value, a value computed using a double
SHA256 function over the raw data that defines the transaction. However, for
space considerations, this identifier is not stored in the blockchain. Since signa-
tures are not performed over all transaction data, after its creation a transaction
can be modified adding some irrelevant data, resulting in a slightly different
transaction but with a completely different identifier. Notice that, in this case,
we will have two different valid transactions with different identifiers, and only
after the transaction is included in the blockchain, the final identifier of the
transaction will become unique. It is important to mention that such a modi-
fication, that provides malleability, does not affect the ability of an attacker to
spend/steal the bitcoins present in the transaction inputs (since the attacker
cannot perform the digital signature of the owner). The attacker is only able to
modify the identifier of the transaction in a value that differs from the one its
real owner has established. For that reason, although transaction malleability is
known back from 2011, it has never been considered as a security issue.

Nonetheless, transaction malleability supposes a problem for smart contracts
when a child transaction wants to spend a parent output before the parent trans-
action appears on the blockchain. In case that a malleabled parent transaction
is finally included in the blockchain, then all pre-signed child transactions would
be invalid.

Basic Off-Chain Payment Channel Ideas. Off-chain Payment Channels are
mechanisms that allow payments between two parties, A and B, payments that
can be performed without including a transaction for the payment itself in the
blockchain.

The first proposal of such a mechanism was first targeted at micropayments
from one payer to one payee. Its main goal was to avoid the fees that trans-
actions in the blockchain imply and that are not affordable for micropayment
transactions [15]. To set up the payment channel, a transaction is included in
the blockchain as a deposit of the money that will be used in the payment
channel. A refund transaction is also created, allowing the payer to recover the
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deposited funds if the payee does not cooperate. The refund transaction can not
be included in the blockchain until a certain point in the future, and thus the
channel may remain open until that moment arrives. Between the set up and the
closing of the payment channel, the payer can perform multiple payments to the
payee through transactions that, although formatted in standard bitcoin format,
would be transferred privately between A and B without using the standard bit-
coin P2P network. Furthermore, the individual payment transactions will not
appear in the blockchain: only the set up transaction that opens the channel
and the last transaction that closes the channel will be broadcast through the
bitcoin P2P network and will be included in the blockchain.

The channel can be closed at any time by B by signing and broadcasting
the last transaction received from A. If A has never sent a transaction to B or
B does not cooperate, A can get back her funds using the refund transaction,
but she will have to wait until the transaction is valid as specified by the time
lock. Moreover, if all the funds deposited in the channel by A have already
been transferred to B, the channel is exhausted and can no longer be used. In
that case, B can sign and broadcast the last transaction received from A, which
transfers the whole amount of the channel to B and closes the channel.

In order to create the described unidirectional micropayment channel two
bitcoin features are used: multisignature outputs and transactions with lock
time.

Multisignature outputs are transaction outputs that may require more than
one signature to unlock. For instance, two signatures may be required to unlock
a single output. Multisignature outputs are used in the set up transaction of
the basic micropayment channel explained above in order to lock the funds that
are being used by the channel. In the set up transaction, the payer deposits a
certain amount of bitcoins in the channel by sending that amount of bitcoins to
a multisignature output controlled by both the payer and the payee.

Bitcoin transactions may have a time lock specifying either a unix timestamp
or a blockchain block height. Transactions with a time lock can not be included
in any block until the specified time has arrived. Time locks are used in micro-
payment channels as a mechanism that allows to replace transactions. A certain
transaction with a time lock can be replaced by creating a new transaction with
a smaller time lock spending the same outputs (or some of those outputs). The
new transaction can then be broadcast sooner (because it has a smaller time lock)
and thus replaces the old transaction. Note that, in order to effectively replace
the transaction, the interested party must broadcast the new transaction to the
network before the older one becomes valid. In the basic micropayment channel
described above, a time lock is placed on the refund transaction to ensure that
it can not be used to return all the money to the payer before the channel extin-
guishes. Payment transactions spend the same outputs and do not have a time
lock, so they can replace the refund transaction.

Such basic approach is restricted to a unidirectional channel between A and
B, allowing A to perform off-chain payments to B but without the ability for B
to pay to A. The straightforward approach to generate bidirectional channels is
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to create two unidirectional channels, one from A to B and another from B to
A. The problem with such approach is that both channels are independent and
if one of the channels runs out of money (suppose the channel A → B) no more
payments can be performed from A to B even if in the other payment channel
(B → A) A has a positive balance with B.

To construct bidirectional off-chain payment channels without this restric-
tion, two different schemes have been proposed: duplex micropayment channels
and lightning channels. In the following paragraphs, we provide a high level
overview of both proposals.

Duplex Micropayment Channels. Duplex micropayment channels (DMC)
are proposed by Decker and Wattenhofer [16]. DMC are able to provide bidi-
rectional payments between two entities within a finite time frame. The main
idea behind DMC is indeed to create two unidirectional channels between the
two parties A and B as described before, but using a technique that allows to
reset the channels when needed and thus effectively overcoming the problem of
exhausting the funds in one of the channels while having a positive amount of
bitcoins in the other. Therefore, the main contribution of the proposal is the
technique that allows to reset the unidirectional channels: the invalidation tree.

The invalidation tree is a tree structure of depth d made of transactions with
multisignature outputs. Each transaction in the tree has a time lock such that
any two transactions spending coins from the same output have different time
locks and the time lock of a children transaction is at least the same of the time
lock of the parent transaction. A branch of the tree is thus a set of d transactions
of (non-strictly) increasing time lock. At any given moment, only one branch of
the tree is valid, while the other branches are effectively replaced because of the
time lock.

The unidirectional channels are then build on top of a leaf of the invalida-
tion tree and are operated in the same way than the basic channels explained
previously in this section. User A pays to user B using the A → B channel while
user B pays to A using the B → A channel independently. However, when one
of the channels is exhausted and the sender has funds in the other channel, a
reset of the channels can be triggered so that these funds become available to
spend. In order to do so, A and B create a new branch of the invalidation tree
that replaces the currently active branch, and new unidirectional channels are
appended to the leaf of the new branch.

DMC have a finite time frame defined by the time locks used in the invalida-
tion tree. Moreover, DMC also have a finite number of available channel resets,
which can be freely determined by the depth of the invalidation tree and the
time locks used.

Lightning Channels. Lightning channels are proposed by Poon and Dryja [17]
and are able to create bidirectional channels without any time limitations, that
is, channels that can remain open until any of the parties decides to close them.
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Unlike DMC, lightning channels do not create unidirectional channels: they cre-
ate a unique channel that allows to send bitcoins in both directions.

In order to do so, for each new payment the two users agree on the current
balances of the channel and create two transactions that represent these new
balances (both transactions represent the same balances). One transaction is
then kept by each user, allowing her to sign it and broadcast it to the network
and thus closing the channel in its current state. These transactions have some
particularities. The transaction that A can broadcast to the network sends imme-
diately to B his amount, and prevents A from getting her share until after some
blocks have been created on top of the block including the transaction. During
this time frame, B can also claim A’s amount if he reveals a secret that only A
knows. Similarly, the transaction that B keeps sends bitcoins immediately to A
and prevents B from getting his amount until some blocks, and during this time
A can claim B’s amount if she reveals a secret than only B knows.

Whenever a new payment has to be made in the channel, both users update
the balances and agree to the new state of the channel: they create two trans-
actions with the new balances, keeping again each one of the transactions. Now,
both users can broadcast their transaction to the network and thus secure their
balances. However, at this point there is nothing preventing the users from broad-
casting their transactions from the previous state of the channel. In order to
ensure that none of the users cheat by broadcasting old transactions, at every
new transaction the users exchange their respective secrets for the previous trans-
action. Now, if one of the users tries to cheat by broadcasting an old transaction,
the other party can claim all the funds of the channel by revealing the secret.

Off-Chain Payment Networks. Duplex micropayment channels and light-
ning networks as described above provide a mechanism to stablish bidirectional
channels between two different users. However, it is impractical that users will
open a new off-chain payment channel with a counterpart unless the number of
payments between both parties is high. To overcome such problem, both pro-
posals allow an improvement by which two-side off-chain payment channels can
be somehow concatenated in order to allow users to perform payment through
multiple established off-chain channels without the parts needing to trust the
intermediary ones. The idea to implement this feature uses the ability to spend
a transaction once a secret value is known. In Fig. 3, a single hop example is
showed. C, who receives the payment, generates a random value, x, and com-
putes its hash, h(x), that will send to A. A creates a transaction Tx1(B, h(x))
and sends it to B. B can charge the transaction providing the value x, that he
does not have. To obtain x, B creates another transaction Tx2(C, h(x)) that can
be charged by C when he provides x. Since C does indeed know the value x,
when he reveals it he can charge the second transaction and B can charge the
first one.

Notice that with this scenario, the payment between users A and C can be
performed not only in case A and B have a direct payment channel but also when
there is a path through multiple payment channels that link them. Based on this
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Fig. 3. One hop off-chain payment channel.

principle, it is straight forward to envisage the appearance of such intermediary
nodes, the payment service providers, nodes that will create a highly connected
network that will route and perform such off-chain payments.

4 Privacy Implications of Scalability Solutions

Anonymity is probably one of the properties that has contributed to the success
of bitcoin deployment. Anonymity in the bitcoin network is based on the fact
that users can create any number of anonymous bitcoin addresses that will be
used in their bitcoin transactions. This basic approach is a good starting point,
but the underlaying non-anonymous Internet infrastructure, together with the
availability of all bitcoin transactions in the blockchain, has proven to be an
anonymity threat. In [18], research performed on bitcoin privacy is categorized
in three main areas: Blockchain analysis, traffic analysis and mixing networks.
Next, we review how the different ideas proposed in those areas would be affected
by the implementation and adoption of off-chain payment channels.

4.1 Blockchain Analysis

A direct approach to analyze the anonymity offered by the bitcoin system is to
dig information out of the blockchain. A simple analysis provides information
about the movements of bitcoins: from which bitcoin addresses the money comes
and to which bitcoin addresses it goes. However, such basic approach has two
main drawbacks:

– Users with multiple addresses: since users in the bitcoin system can create
any number of addresses, in order to obtain insightful information from the
blockchain researchers try to cluster all addresses that belong to the same
user. As we will see, authors apply different techniques to perform such clus-
tering.

– Blockchain data volume: at present time, the size of the blockchain data is
72 GB. However, such data only include the raw blockchain data, which is not
a database and it is not suitable for data queries. Storing such information
in a searchable database expands the data size and produces a much larger
database which is more difficult to deal with. For that reason, research papers
on privacy issues regarding blockchain analysis have drastically decreased in
the last years.
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Furthermore, a basic assumption is made on the blockchain information when
doing such analysis: the blockchain includes all transactions of the system. But,
in the light of off-chain payment channels, such assumption is no longer valid
since only a fraction of transactions are finally stored in the blockchain.

Address clustering has been one of the blockchain analysis techniques used
to deanonymize users in the bitcoin networks. The idea is to cluster different bit-
coin addresses belonging to the same user in order to trace his economic move-
ments. Different heuristics have been used to perform such clustering. A common
assumption is to consider that all addresses included as inputs in a transaction
belong to the same user [19–21]. Another technique to cluster addresses is to
consider that in a transaction with multiple outputs, in case that one of them
goes to a not previously used addresses (and the others use addresses already
appeared in the blockchain) the new address can be clustered with all input
addresses of such transaction [20,22].

Notice that those techniques cannot be effectively used when off-chain pay-
ments channels would become common use. First of all, the assumption that all
inputs from a single transaction belong to the same user no longer holds since
set up transactions for payments channels include two inputs from exactly two
different users. Furthermore, a portion of transactions in the blockchain with
exactly two outputs would come from closing payment channels, for which no
assumption can be performed between input and output addresses. At most,
transactions closing payment channels can be linked with set up transactions
since both share the same address, but since input addresses from set up chan-
nels will be different from output addresses from closing channels it will not be
possible to infer how much money each address have been spent/earned as a
consolidate balance of the payment channel.

On the other hand, with the adoption of payment channels, the size of the
address cluster for a typical user will hardly be reduced. Notice that without
payment channels, users are free to use a new address for every single operation
performed (paying, cashing or taking the change). Such amount of addresses
hardens the possibility to obtain a single cluster for each user. However, once a
payment channel is opened the user performs all payments through such chan-
nel without involving any new address. Nevertheless, all those payments are
performed off-chain so they cannot be traced by blockchain analysis techniques.

User anonymity has been also analyzed using k-anonymity measures. Ober
et al. [23] indicate that to estimate the level of k-anonymity provided by bit-
coin it is necessary to estimate the number of active entities since, for instance,
dormant coins (those included in an address not active for a long time) reduce
the anonymity set. Furthermore, they also indicate that to better estimate the
k-anonymity at a certain point of time, active entities should be defined based
on a window time around this period (hours, days, weeks, ...). Then, an active
entity is the one that has performed a payment within this time window. With
off-chain payment channels, entities activity is very hard to estimate since once a
channel is opened, it cannot be determined by blockchain analysis if such channel
is an active one or not for the obvious mechanism of off-chain communication.



40 J. Herrera-Joancomart́ı and C. Pérez-Solaà

Finally, tools like BitIodine [24] are based on mining the blockchain infor-
mation assuming that all transactions performed by the system are included.
With the off-chain payment channels, such assumption is no longer valid and,
depending on the degree of its adoption, such a tool will not be able to provide
significant information.

4.2 Traffic Analysis

As we already mentioned, the anonymity degree of users in the bitcoin system
is also bounded by the underlying technologies used. Transactions in the bitcoin
system are transmitted through a P2P network, so the TCP/IP information
obtained from that network can be used to reduce the anonymity of the system,
as it is pointed out in [19]. Although it is true that most wallets are able to work
over TOR anonymous network,14 a high number of bitcoin users do not use such
services, and then, there is still room for network analysis. Moreover, using TOR
to obtain anonymity while using bitcoin may not be the best choice [25].

Koshy et al. [26] performed an anonymity study based on real-time transac-
tion traffic collected during 5 months. For that purpose, authors develop Coin-
Seer, a bitcoin client designed exclusively for data collection. For more than 5
million transactions, they collected information on the IP address from where
the CoinSeer received such transaction and, in the general case, they assigned
as the IP corresponding to the transaction the one that broadcast the trans-
action for the first time. In order to perform a pure network analysis, authors
do not apply any address clustering process, so only single input transactions
(almost four million) are taken into account in the analyzed data set. Then, to
match an IP with a bitcoin address, they consider a vote on the link between
IP i and addressj if a transaction first broadcasted form an IP i contains the bit-
coin addressj as input address. Although Koshy et al. could not provide positive
results for deanonymizing users, the techniques they propose were interesting
and could be a threat to user privacy when more data is available for the analy-
sis. Note that there already exist some actors in the current bitcoin scenario that
are able to collect and process this kind of data. For instance, some blockchain
explorers keep and publicly show information on the IP address from which they
first receive transactions and blocks.

However, new off-chain payment channels present a new scenario since, as
we already explained in Sect. 3.2, off-chain payments use a separate network.
Although nodes of the channel need to be connected to the bitcoin network
for channel set up and also to monitor the correctness of channel counter-party,
communication of the channel will pass through a different network, the one that
connects users from different off-chain payment channels through their payment
service providers. Users will access the off-chain payment networks through a
single node15 for which the user will maintain an open payment channel. So a
14 https://www.torproject.org/.
15 It is difficult to predict at present time whether users will maintain multiple payment

channels with multiple payment service providers but multiple channels could be not
viable depending on the fees needed to open and close those channels.

https://www.torproject.org/
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Fig. 4. Possible off-chain payment channel topology.

possible network topology for the network would be similar to the one showed
in Fig. 4, with a highly connected component which include the payment service
provider nodes and final users connected to those nodes.

This architecture differs from the distributed topology of the bitcoin network,
where every user is able to maintain multiple simultaneous network connections
with different nodes of the network to obtain some security features.

Notice that with this type of topology, transaction anonymity is lost when
the payment between two users is performed through off-chain payment channels
that only include a single payment service provider, since the entity providing
such off-chain channels may know both, source and destination of the payment.

4.3 Mixing

In the bitcoin environment, mixing is used to anonymize bitcoins. Mix services
shuffle the inputs and outputs of a transaction in order to hinder the relation
between them. The goal is to allow bitcoin users to send bitcoins from one address
to a mix service and receive from the mix service the bitcoins to another address
that can not be linked with the original one. Therefore, the process detaches the
link between a source (the input address) and a destination (the output address).
Although such mixing service can be implemented straightforward using a cen-
tral authority which receives payments and pays back to different addresses, the
trusted level of such central authority would be too high. For that reason, differ-
ent proposals that avoid or reduce the trusted role of the central authority have
been presented.

A basic mix service can be implemented using a multiple-input and multiple-
output transaction, as it is described in CoinJoin [27]. The idea is that multiple
users can jointly create a transaction with multiple input addresses and multiple
output addresses. To be a valid transaction, the transaction should be signed
by all users participating in the mixing. One of the problems of this proposal
(and to some extent of the majority of mixing proposals) is that one of the
anonymous users of the mix service can perform a DoS attack. Since the final
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valid transactions should be signed by all users that include bitcoins in the
transactions, each mixing transaction never becomes valid in case the attacker
simply does not sign any transaction in which he takes part.

In [28], Bonneau et al. present Mixcoin, a more sophisticated centralized
mixing system that relies on accountability. Users of the system obtain, prior
the mixing phase, a signed warranty that can be used to prove, in case of the
event, that the mixer entity has misbehaved. Authors point out that such public
verifiable proof of misbehavior would discourage malicious mixing. Furthermore,
to reduce the possibility that the mixer could deanonymize users using his stored
information, the authors propose a concatenation of several mixer services, thus
reducing the strategy of a malicious mixer to a collusion with the other mixers.

Mixing services as described so far can be applied to standard bitcoin
addresses and transactions but when off-chain payment channels are used, such
mixing techniques cannot be applied in the same form. The reason is that in the
standard bitcoin model, payments can bee seen as one hope transactions that
are visible by all participants (they appear in the blockchain). Fortunately, in
this scenario every user can create multiple addresses without any cost. For that
reason, standard mixing services use multiple new addresses to hinder identities
since there is no way to allow payments through secret multiple hops, because
each hope (a transaction, in fact) must be recorded publicly in the blockchain.
Conversely, in off-chain payments, on one hand, users may be more restricted on
the number of payment channels that they create (due to fee costs) but on the
other hand, payments are processed with multiple hops through different pay-
ment service providers, and such hops could remain secret since they take place
in the off-chain payment network and there is no need to store them. So the
natural idea to detach the link between source and destination in this scenario
is to perform payments through secret multiple hop routes.

At that point it is worth notice that, in off-chain payment networks, payment
anonymity highly resembles standard communication anonymity where a path
between source and destination is hidden to protect communication identifica-
tion. For that reason, common onion routing techniques [29] could be applied to
allow anonymous payments in a similar way than TOR network provides anony-
mous browsing. Nevertheless, in the same way that single TOR utilization does
not guarantee that you are browsing the www anonymously (since, for instance,
the browser configuration may reveal some details about your identity), details
on the protocol for multi-hop off-chain payment channels will have to be care-
fully analyzed (when they are available) in order not to disclose the link between
the source and the destination.

5 Conclusions

Bitcoin scalability is one of the relevant topics in the broad crytocurrency field
since some limitations Bitcoin faces are common to all blockchain based cryp-
tocurrencies. Different ideas have been proposed so far, being the segregated
witness approach the one that most support has received. Segregated witness
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has the potential to solve transaction malleability and once solved, bitcoin will
have the ability to work with unsigned transactions and off-chain payment chan-
nels will be able to start working in practice. From that moment on, payment
networks will be able to grow and flourish. Moreover, payment networks will have
a life of its own, being able to operate on top of the existing Bitcoin protocol but
with the freedom that off-chain transacting will offer. This is potentially one of
the biggest changes the bitcoin ecosystem has ever seen and, as such, will have
an impact on many bitcoin properties, among which users’ privacy is included.

Once off-chain payment networks become main use, some Bitcoin premises
on decentralization and openness of its payment routing, multiple address gen-
eration and full transaction disclosure through the blockchain may be modified.
Research performed so far has proven that the way the system uses payment
addresses may unveil some information from their owners, when all transactions
performed by the system were freely available in the blockchain for analysis and
transactions were published through open P2P networks. However, if most of the
transactions occur off-chain, this kind of analysis will no longer be as effective
as before. Depending on the final payment channels implementations, some of
these techniques may be able to adapt to extract information about the exist-
ing channels. Nonetheless, we will have to wait until the payment networks are
deployed to evaluate to what extent this kind of analysis remains feasible.
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Abstract. Inspired by the Grabisch idea of k–additive measures, we
introduce and study k–additive aggregation functions. The Owen multi-
linear extension of a k–additive capacity is shown to be a particular k–
additive aggregation function. We clarify the relation between k–additive
aggregation functions and polynomials of a degree not exceeding k. We
also describe n2+2n basic 2–additive n–ary aggregation functions whose
convex closure forms the class of all 2–additive n–ary aggregation func-
tions.

Keywords: Aggregation function · k–additive aggregation function ·
k–additive capacity

1 Introduction

Consider a fixed finite space X = {1, . . . , n}, n ∈ N. Recall that a set func-
tion m : 2X → [0, 1] is called a capacity if it is monotone, i.e., m(A) ≤ m(B)
whenever A ⊆ B, and if m(∅) = 0, m(X) = 1. The additivity of a capac-
ity m makes m a probability measure, determined by n values of singletons,
w1 = m({1}), . . . , wn = m({n}), constrained by the condition w1 + · · ·+wn = 1.
The additivity of a probability measure excludes the possibility of interactions
between single subsets of X. On the other hand, a general capacity m allows
to model interaction of any group of subsets of X, but it requires the knowl-
edge of 2n − 2 values m(A), ∅ �= A �= X. To reduce the complexity of a general
capacity m, but to allow to model interaction of some groups of subsets of X,
Grabisch [5] introduced the notion of k–additive capacities, k ∈ {1, . . . , n}. Note
that 1–additive capacities are just probability measures on X, and n–additive
capacities are general capacities on X. Though k–additive capacities were orig-
inally defined by means of the Möbius transform, supposing that the Möbius
transform of each subset with cardinality exceeding k is equal to zero [5], they
can also be characterized as follows (see [11,12]).
c© Springer International Publishing Switzerland 2016
V. Torra et al. (Eds.): MDAI 2016, LNAI 9880, pp. 47–55, 2016.
DOI: 10.1007/978-3-319-45656-0 4
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A capacity m : 2X → [0, 1] is said to be k–additive if for any system (Ai)
k+1
i=1

of pairwise disjoint subsets of X we have

k+1∑

i=1

(−1)k+1−i

⎛

⎝
∑

I⊆{1,...,k+1},|I|=i

m

⎛

⎝
⋃

j∈I

Aj

⎞

⎠

⎞

⎠ = 0. (1)

So, for example, a capacity m : 2X → [0, 1] is 2–additive, if for any pairwise
disjoint sets A,B,C ⊆ X we have

m(A∪B∪C)−(m(A ∪ B) + m(B ∪ C) + m(A ∪ C))+m(A)+m(B)+m(C) = 0.
(2)

Note that each 2–additive capacity m is determined by
(
n
2

)
+ n = n(n+1)

2
values wij = m({i, j}), 1 ≤ i < j ≤ n and wi = m({i}), i ∈ X, constrained by
the condition

∑

i<j

wij +
∑

i

wi = 1, and some monotonicity conditions.

Based on the representation of subsets A ∈ 2X by means of the character-
istic functions 1A : X → {0, 1}, one can represent a capacity m : 2X → [0, 1]
as a pseudo-Boolean function H : {0, 1}n → [0, 1], whose value at any x =
(x1, . . . , xn) ∈ {0, 1}n is given by

H(x) = m ({i ∈ X | xi = 1}) .

Then the Eq. (1) for k-additivity of m can be changed into the equation

k+1∑

i=1

(−1)k+1−i

⎛

⎝
∑

I⊆{1,...,k+1},|I|=i

H

⎛

⎝
∑

j∈I

xj

⎞

⎠

⎞

⎠ = 0, (3)

that is satisfied for any x1, . . . ,xk+1 ∈ {0, 1}n such that also x1 + · · · + xk+1 ∈
{0, 1}n.

Similarly, the 2-additivity of a capacity m, see (2), can be represented in the
form

H(x+ y+ z) − (H(x + y) + H(y + z) + H(x + z)) + H(x) + H(y) + H(z) = 0,
(4)

for any x,y, z ∈ {0, 1}n such that also x + y + z ∈ {0, 1}n.
In what follows, inspired by formulas (3), (4), and several extension meth-

ods extending pseudo-Boolean functions H representing capacities m, such as
the Lovász and Owen extensions, see [8] and [10], respectively, and also other
extensions characterized in [7], we propose and study k–additive aggregation
functions.

The paper is organized as follows. After the introduction and exemplifica-
tion of k–additive aggregation functions in the next section, in Sect. 3, we derive
a complete characterization of 2–additive n–ary aggregation functions and also
provide a characterization of k–additive aggregation functions for k ∈ N, inde-
pendently of n = |X|. Finally, some concluding remarks are added.
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2 k–additive Aggregation Functions

We start by recalling the definition of an aggregation function.

Definition 2.1. Let n be a fixed natural number. A mapping F : [0, 1]n → [0, 1]
is called an (n–ary) aggregation function if it is monotone and satisfies the
boundary conditions F (0) = F (0, . . . , 0) = 0 and F (1) = F (1, . . . , 1) = 1.

Note that we also have adopted this definition for n = 1. For more details
concerning aggregation functions we recommend recent monographs [1,2,6].

Definition 2.2. Let k, n ∈ N and let F : [0, 1]n → [0, 1] be an aggregation func-
tion. Then F is called k–additive whenever for all collections x1, . . . ,xk+1 ∈
[0, 1]n such that also

k+1∑

i=1

xi ∈ [0, 1]n we have

k+1∑

i=1

(−1)k+1−i

⎛

⎝
∑

I⊆{1,...,k+1},|I|=i

F

⎛

⎝
∑

j∈I

xj

⎞

⎠

⎞

⎠ = 0. (5)

In particular, F is 2–additive if and only if for all x,y, z ∈ [0, 1]n such that
x + y + z ∈ [0, 1]n it holds that

F (x+y+z)−(F (x + y) + F (y + z) + F (x + z))+F (x)+F (y)+F (z) = 0. (6)

Observe that 1–additivity is just the standard additivity of aggregation func-
tions. Moreover, it is not difficult to check that each k–additive aggregation
function F is also p–additive for any integer p > k.

Example 2.1.

(i) Consider the standard product P : [0, 1]n → [0, 1], P (x) =
n∏

i=1

xi. Then

P is an n–additive aggregation function that is not (n − 1)–additive. In
particular, for n = 2, P is 2–additive, but not additive.

(ii) Let F : [0, 1]n → [0, 1], F (x) = 1
n

n∑

i=1

xk
i , k ≥ 2. Then F is a k–additive

aggregation function, but it is not (k − 1)–additive.
(iii) Recall that the Choquet integral [4,6] based on an additive capacity is an

additive aggregation function, i.e., a weighted arithmetic mean. However,
this link between k–additive capacities and k–additivity of the related Cho-
quet integrals is no more valid if n > 1, k > 1. Consider, e.g., n = 2 and
the smallest capacity m∗ on X = {1, 2}, given by m∗(A) = 1 if A = X,
and otherwise, m∗(A) = 0. Then the corresponding Choquet integral is
just the minimum, Chm∗(x1, x2) = min{x1, x2}. The aggregation function
Chm∗ = Min : [0, 1]2 → [0, 1] is not k–additive for any k ∈ N. We illustrate
the violation of 3–additivity only:

Let x1 =
(
1
3 , 0

)
, x2 =

(
2
3 , 0

)
, x3 =

(
0, 1

3

)
and x4 =

(
0, 2

3

)
. Applying (5) to Min,

we have
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4∑

i=1

(−1)4−i

⎛

⎝
∑

I⊆{1,...,4},|I|=i

Min

⎛

⎝
∑

j∈I

xj

⎞

⎠

⎞

⎠ = 1 −
(

1
3

+
2
3

+
1
3

+
2
3

)

+
(

0 +
1
3

+
1
3

+
1
3

+
2
3

+ 0
)

− (0 + 0 + 0 + 0) =
2
3

�= 0.

It is known that the discrete Choquet integral with respect to a capacity
m can be seen as the Lovász extension of the pseudo-Boolean function repre-
senting m [3,8]. For the Owen extension [10], that is also called a multilinear
extension [6], we have the next connection between k–additive capacities and
the k–additivity of the corresponding Owen extension.

Definition 2.3. ([10]) Let m : 2X → [0, 1] be a capacity. Its Möbius transform
Mm : 2X → [0, 1] is given by

Mm(A) =
∑

B⊆A

(−1)|A\B|m(B),

and the Owen extension Om : [0, 1]n → [0, 1] of the pseudo-Boolean function
H : {0, 1}n → [0, 1] corresponding to m (or simply the Owen extension of m) is
given by

Om(x) =
∑

∅�=A⊆X

Mm(A)

⎛

⎝
∏

j∈A

xj

⎞

⎠ . (7)

Theorem 2.1. Let m : 2X → [0, 1] be a capacity and Om : [0, 1]n → [0, 1] the
Owen extension of m. Then the following are equivalent.

(i) Om is a k–additive aggregation function.
(ii) m is a k–additive capacity.

Proof. The necessity (i) ⇒ (ii) follows from the fact that if Om is a k–additive
aggregation function, then H : {0, 1}n → [0, 1], H(1I) = Om(1I) = m(I), is also
k–additive.

To show the sufficiency (ii) ⇒ (i), suppose that m is a k–additive capacity,

i.e., Mm(I) = 0 whenever |I| > k. Let x1, . . . ,xk+1,
k+1∑

i=1

xi ∈ [0, 1]n. For ∅ �=
I ⊆ {1, . . . , k + 1} put

∑

j∈I

xj = xI . Evaluating the expression in (5) for Om, we

obtain
k+1∑

i=1

(−1)k+1−i

⎛

⎝
∑

I⊆{1,...,k+1},|I|=i

Om (xI)

⎞

⎠

=
k+1∑

i=1

(−1)k+1−i

⎛

⎝
∑

I⊆{1,...,k+1},|I|=i

⎛

⎝
∑

∅�=A⊆X,|A|≤k

Mm(A)

⎛

⎝
∏

j∈A

xI,j

⎞

⎠

⎞

⎠

⎞

⎠

=
∑

∅�=A⊆X,|A|≤k

Mm(A)

⎛

⎝
k+1∑

i=1

(−1)k+1−i

⎛

⎝
∑

I⊆{1,...,k+1},|I|=i

∏

j∈A

xI,j

⎞

⎠

⎞

⎠ = 0,
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where we have utilized the fact that the product restricted to the components
from the index set A, is a |A|–additive aggregation function. �

Observe that the k–additive aggregation function introduced in Example 2.1 (ii)
cannot be obtained by means of the Owen extension, i.e., Owen extensions of k–
additive capacities form a proper subset of all k–additive aggregation functions.

3 Characterization of k–additive Aggregation Functions

In this section we describe all k–additive n–ary aggregation functions.
As already mentioned, 1–additive, i.e., additive aggregation functions

F : [0, 1]n → [0, 1] are completely characterized by a weighting vector w =

(w1, . . . , wn) ∈ [0, 1]n such that
n∑

i=1

wi = 1, and it holds that F (x) =
n∑

i=1

wixi.

Denote by Ak,n the set of all k–additive n–ary aggregation functions. Our
aim is to provide a description of Ak,n, in general, but because of transparency,
we give complete proofs for 2–additive aggregation functions only. The proof for
k = 2 will be divided into 3 steps. We start by characterizing the set A2,1.

For k = 2 and n = 1, we have

A2,1 = {F : [0, 1] → [0, 1] | F (0) = 0, F (1) = 1, F is increasing and 2–additive }.

Note that here, 2–additivity means that for all x, y, z, x + y + z ∈ [0, 1],

F (x + y + z) − F (x + y) − F (y + z) − F (x + z) + F (x) + F (y) + F (z) = 0. (8)

Proposition 3.1. A function F : [0, 1] → [0, 1] is a 2–additive aggregation func-
tion if and only if

F (x) = (a + 1)x − ax2, a ∈ [−1, 1]. (9)

Proof. It is only a matter of computation to show that each function F of the
form (9) is an aggregation function satisfying (8), i.e., F ∈ A2,1.

Now, suppose that F ∈ A2,1. Putting F
(
1
2

)
= b and a = 4b−2, we can write

F
(
1
2

)
in the form F

(
1
2

)
= (a + 1)12 − a 1

4 . Next, using (8), for x = y = z = 1
4 we

obtain

F

(
3
4

)

− 3b + 3F

(
1
4

)

= 0,

and similarly, for x = y = 1
4 and z = 1

2 we have

1−2F

(
3
4

)

−F

(
1
2

)

+2F

(
1
4

)

+F

(
1
2

)

= 0, i.e., 1−2F

(
3
4

)

+2F

(
1
4

)

= 0.

Thus we can derive

F

(
1
4

)

=
6b − 1

8
= (a + 1)

1
4

− a
1
16

,
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F

(
3
4

)

=
6b + 3

8
= (a + 1)

3
4

− a
9
16

.

Proceeding by induction, we can show that F is of the form F (r) = (a+1)r−ar2

for any dyadic rational r ∈ [0, 1] (recall that r ∈ [0, 1] is a dyadic rational
number if and only if there is a k ∈ N such that also r · 2k ∈ N), and due to the
monotonicity of F , we can conclude that

F (x) = (a + 1)x − ax2, for all x ∈ [0, 1].

Clearly, F is an aggregation function only if a ∈ [−1, 1]. �

The next result gives a complete characterization of the set A2,2.

Proposition 3.2. A function F : [0, 1]2 → [0, 1] is a 2–additive n–ary aggrega-
tion function if and only if

F (x1, x2) = ax1 + bx2 + cx2
1 + dx2

2 + ex1x2, (10)

where

a + b + c + d + e = 1, a ≥ 0, b ≥ 0, a + e ≥ 0, b + e ≥ 0,

a + 2c ≥ 0, b + 2d ≥ 0, a + 2c + e ≥ 0, a + 2d + e ≥ 0.

Proof. The necessity can be proved by similar arguments as in Proposition 3.1.
On the other hand, one can show by a direct computation that functions of the
form (10) satisfying the given conditions, are 2–additive aggregation functions.

�

Now, we are ready to describe the set A2,n for any n ∈ N.

Theorem 3.1. A function F : [0, 1]n → [0, 1] is a 2–additive aggregation func-
tion if and only if

F (x1, . . . , xn) =
∑

i,j∈{1,...,n},i≤j

aijxixj +
n∑

i=1

bixi, (11)

and the coefficients aij and bi satisfy the conditions:

∑

i,j∈{1,...,n}, i≤j

aij +
n∑

i=1

bi = 1,

and for each fixed i ∈ {1, . . . , n},

0 ≤ bi ≤ −
∑

apj<0

apj

(
1{p}(i) + 1{j}(i)

)
.
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Proof. It remains to prove the claim for n ≥ 3 only. The proof of (11) is by
induction on n. For n = 3, the necessity can be proved as a consequence of
Propositions 3.1 and 3.2, using the following equality valid for functions F ∈ A23

and all (x1, x2, x3) ∈ [0, 1]3,

F (x1, x2, x3) = F (x1, x2, 0) + F (0, x2, x3) + F (x1, 0, x3)
− F (x1, 0, 0) − F (0, x2, 0) − F (0, 0, x3).

The restrictions put on the coefficients aij and bi follow from the boundary
condition F (1, . . . , 1) = 1 and the monotonicity of F .

The sufficiency is a matter of an easy computation. It follows from the 2–
additivity of functions Fi, Fij : [0, 1]n → [0, 1] given by Fi(x) = xi, Fij(x) = xixj ,
where i, j ∈ {1, . . . , n}, i ≤ j. �

Using similar arguments as in the case of 2–additive n–ary aggregation functions,
we get the following characterization of k–additive n–ary aggregation functions.

Theorem 3.2. A function F : [0, 1]n → [0, 1] is a k–additive n–ary aggregation
function, i.e., F ∈ Ak,n, if and only if there are appropriate constants (ensuring
the boundary condition F (1, . . . , 1) = 1 and the monotonicity of F ) such that for
all (x1, . . . , xn) ∈ [0, 1]n,

F (x1, . . . , xn) =
k∑

i=1

⎛

⎝
∑

1≤j1,i≤...≤ji,i≤n

aj1,i,...,ji,i

(
i∏

p=1

xjp,i

)⎞

⎠ ,

i.e., F is a polynomial of a degree not exceeding k.

The fact that F ∈ Ak,n only if F is a polynomial in n variables of degree at
most k, is substantial for the following result.

Corollary 3.1. Let F ∈ Ak,n and G1, . . . , Gn ∈ Ap,m. Then the composite
function G : [0, 1]m → [0, 1] given by

G(x) = F (G1(x), . . . , Gn(x))

is a (k · p)–additive aggregation function.

Proof. Under given assumptions, G is clearly an m–ary aggregation function,
and so only its (k · p)–additivity remains to be proved. As the compositions of
polynomials is again a polynomial, G is a polynomial of a degree κ,

κ ≤ λ max{λ1, . . . , λn} ≤ k · p,

where λ is the degree of F and λ1, . . . , λn are the degrees of G1, . . . , Gn, respec-
tively. �

From Corollary 3.1, it follows that each class Ak,n is convex. We describe the
set V2,n of all vertices of A2,n, i.e., the minimal set whose convex closure gives
just A2,n. For Ak,n, k > 2, a similar result can be proved.
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Theorem 3.3. For a fixed n ∈ N, let V2,n = {Fi, Fij , Gij}1≤i≤j≤n, where, for
each x ∈ [0, 1]n,

Fi(x) = xi, Fij(x) = xixj , Gij(x) = xi + xj − xixj .

Then neither Fi nor Fij and Gij can be expressed as a non–trivial convex com-
binations of 2–additive n–ary aggregation functions, and F ∈ A2,n if and only if
there are non-negative constants αi, βij and γij such that

n∑

1

αi +
∑

1≤i≤j≤n

(βij + γij) = 1 and F =
n∑

1

αiFi +
∑

1≤i≤j≤n

(βijFij + γijGij) .

(12)

Proof. The proof of this theorem follows directly from Theorem 3.1. �

Example 3.1. Let n = 2. Consider a 2–additive capacity m : 2{1,2} → [0, 1] with
m({1}) = a, m({2}) = b, a, b ∈ [0, 1]. Its Owen extension Om : [0, 1]2 → [0, 1] is
a 2–additive aggregation function, given by

Om(x1, x2) = ax1 + bx2 + (1 − a − b)x1x2.

If a + b ≤ 1, then immediately

Om(x) = aF1(x) + bF2(x) + (1 − a − b)F12(x),

and if a + b ≥ 1, we have

Om(x) = (1 − b)F1(x) + (1 − a)F2(x) + (a + b − 1)G12(x),

where F1(x) = x1, F2(x) = x2, F12(x) = x1x2, and G12(x) = x1 + x2 − x1x2.

As mentioned above, the Owen extensions of k–additive capacities form a
proper subset of all k–additive aggregation functions. For k = 2 we have the
following corollary of Theorems 2.1 and 3.3.

Corollary 3.2. Let F ∈ A2,n. Then F is the Owen extension of some 2–additive
capacity m, i.e., F = Om, if and only if in the convex decomposition (12) of F
there are coefficients αii = βii for each i ∈ {1, . . . , n}.

4 Conclusion

We have introduced and discussed k–additive aggregation functions. A special
attention was paid to 2–additive n–ary aggregation functions. We have clarified
the relation between k–additive capacities, their Owen (multilinear) extension
and k–additive aggregation functions. The convex structure of k–additive aggre-
gation functions, and related Owen extensions, as well, have also been clarified.
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We expect applications of k–additive aggregation functions in multicriteria deci-
sion problems, where interaction of single criteria is expected. Another develop-
ment of our ideas is expected in generalizations of aggregation functions where
some kind of additivity can be replaced by k–additivity. In particular, the notion
of k–OWA operators is a promising object of our next study. As an interesting
example with expected applications consider a generalization of the arithmetic
mean M : [0, 1]2 → [0, 1], M(x, y) = x+y

2 . Recall that M is the only idempotent
symmetric additive aggregation function. Replacing additivity by 2–additivity,
a one-parametric family (Mα)α∈[−1/4,1/4] of aggregation functions is obtained,
where Mα(x, y) = x+y

2 + α(x − y)2.
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Abstract. Hesitant fuzzy linguistic term sets were introduced to grasp
the uncertainty existing in human reasoning when expressing preferences.
In this paper, an extension of the set of hesitant fuzzy linguistic term sets
is presented to capture differences between non-compatible preferences.
In addition, an order relation and two closed operation over this set
are also introduced to provide a lattice structure to the extended set
of hesitant fuzzy linguistic term sets. Based on this lattice structure a
distance between hesitant fuzzy linguistic descriptions is defined. This
distance enables differences between decision makers to be quantified.
Finally, a representative of a decision making group is presented as the
centroid of the group based on the introduced distance.

Keywords: Linguistic modeling · Group decision making · Uncertainty
and fuzzy reasoning · Hesitant fuzzy linguistic term sets

Introduction

Different approaches involving linguistic assessments have been introduced in
the fuzzy set literature to deal with the impreciseness and uncertainty connate
with human preference reasoning [2,4,5,7,9]. Additionally, different extensions
of fuzzy sets have been presented to give more realistic assessments when uncer-
tainty increases [1,3,8]. In particular, Hesitant Fuzzy Sets were introduced in [10],
to capture this kind of uncertainty and hesitance. Following this idea, Hesitant
Fuzzy Linguistic Term Sets (HFLTSs) were introduced in [8] to deal with situa-
tions in which linguistic assessments involving different levels of precision are used.
In addition, a lattice structure was provided to the set of HFLTSs in [6].

In this paper, we present an extension of the set of HFLTSs, HS , based on
an equivalence relation on the usual set of HFLTSs. This enables us to establish
differences between non-compatible HFLTSs. An order relation and two closed
operation over this set are also introduced to define a new lattice structure
in HS .
c© Springer International Publishing Switzerland 2016
V. Torra et al. (Eds.): MDAI 2016, LNAI 9880, pp. 56–67, 2016.
DOI: 10.1007/978-3-319-45656-0 5
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In order to describe group decision situations in which Decision Makers
(DMs) are evaluating different alternatives, Hesitant Fuzzy Linguistic Descrip-
tions (HFLDs) were presented in [6]. A distance between HFLTSs is defined
based on the lattice of HS . This allows us to present a distance between HFLDs
that we can use to quantify differences among assessments of different DMs.
Taking into consideration this distance, a group representative is suggested to
describe the whole group assessment. Due to this representative is the HFLD
that minimizes distances with the assessments of all the DMs, it is called the
centroid of the group.

The rest of this paper is organized as follows: first, Sect. 1 presents a brief
review of HFLTSs and its lattice structure. The lattice of the extended set of
HFLTSs is introduced in Sect. 2. In Sect. 3, the distances between HFLTSs and
HFLDs are defined and the centroid of the group is presented in Sect. 4. Lastly,
Sect. 5 contains the main conclusions and lines of future research.

1 The Lattice of Hesitant Fuzzy Linguistic Term Sets

In this section we present a brief review of some concepts about HFLTSs already
presented in the literature that are used throughout this paper [6,8].

From here on, let S denote a finite total ordered set of linguistic terms,
S = {a1, . . . , an} with a1 < · · · < an.

Definition 1. [8] A hesitant fuzzy linguistic term set (HFLTS) over S is a subset
of consecutive linguistic terms of S, i.e. {x ∈ S | ai ≤ x ≤ aj}, for some i, j ∈
{1, . . . , n} with i ≤ j.

The HFLTS S is called the full HFLTS. Moreover, the empty set {} = ∅ is
also considered as a HFLTS and it is called the empty HFLTS.

For the rest of this paper, the non-empty HFLTS, H = {x ∈ S | ai ≤ x ≤ aj},
is denoted by [ai, aj ]. Note that, if j = i, the HFLTS [ai, ai] is expressed as the
singleton {ai}.

The set of all the possible HFLTSs over S is denoted by HS , being H∗
S =

HS − {∅} the set of all the non-empty HFLTSs. This set is provided with a
lattice structure in [6] with the two following operations: on the one hand, the
connected union of two HFLTSs, �, which is defined as the least element of HS ,
based on the subset inclusion relation ⊆, that contains both HFLTSs, and on
the other hand, the intersection of HFLTSs, ∩, which is defined as the usual
intersection of sets. The reason of including the empty HFLTS in HS is to make
the intersection of HFLTSs a closed operation in HS .

For the sake of comprehensiveness, let us introduce the following example
that is used throughout all this paper to depict all the concepts defined.

Example 1. Given the set of linguistic terms S = {a1, a2, a3, a4, a5}, being
a1 = very bad, a2 = bad, a3 = regular, a4 = good, a5 = very good, possible
linguistic assessments and their corresponding HFLTSs by means of S would be:
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Assessments HFLTSs

A = “between bad and regular” HA = [a2, a3]

B = “bad” HB = {a2}
C = “above regular” HC = [a4, a5]

D = “below regular” HD = [a1, a2]

E = “not very good” HE = [a1, a4]

2 The Extended Lattice of Hesitant Fuzzy Linguistic
Term Sets

With the aim of describing differences between couples of HFLTSs with empty
intersections, an extension of the intersection of HFLTSs is presented in this
section, resulting their intersection if it is not empty or a new element that we will
call negative HFLTS related to the rift, or gap, between them if their intersection
is empty. In order to present said extension of the intersection between HFLTSs,
we first need to introduce the mathematical structure that allows us to define
it as a closed operation. To this end, we define the extended set of HFLTSs in
an analogous way to how integer numbers are defined based on an equivalence
relation on the natural numbers. To do so, we first present some needed concepts:

Definition 2. Given two non-empty HFLTSs, H1,H2 ∈ H∗
S , we define:

(a) The gap between H1 and H2 as:

gap(H1,H2) = (H1 � H2) ∩ H1 ∩ H2.

(b) H1 and H2 are consecutive if and only if H1 ∩ H2 = ∅ and gap(H1,H2) = ∅.

Proposition 1. Given two non-empty HFLTSs, H1,H2 ∈ H∗
S , the following

properties are met:

1. gap(H1,H2) = gap(H2,H1).
2. If H1 ⊆ H2, gap(H1,H2) = ∅.
3. If H1 ∩ H2 �= ∅, gap(H1,H2) = ∅.
4. If H1 ∩ H2 = ∅, gap(H1,H2) �= ∅ or H1 and H2 are consecutive.
5. If H1 and H2 are consecutive, there exist j ∈ {2, . . . , n−1}, i ∈ {1, . . . , j} and

k ∈ {j+1, . . . , n}, such that H1 = [ai, aj ] and H2 = [aj+1, ak] or H2 = [ai, aj ]
and H2 = [aj+1, ak].

Proof. The proof is straightforward. 	�
Note that neither [a1, aj ] nor [ai, an] can ever be the result of the gap between
two HFLTSs for any i and for any j.

Notation. Given two consecutive HFLTSs, H1 = [ai, aj ] and H2 = [aj+1, ak],
then {aj} and {aj+1} are named as the linguistic terms that provide the con-
secutiveness of H1, H2.



A Representative in Group Decision by Means of the Extended Set 59

Example 2. Following Example 1, gap(HB ,HC) = {a3}, while the HFLTSs HA

and HC are consecutive and their consecutiveness is given by {a3} and {a4}.

Definition 3. Given two pairs of non-empty HFLTSs, (H1,H2) and (H3,H4),
the equivalence relation ∼, is defined as:

(H1,H2) ∼ (H3,H4) ⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1 ∩ H2 = H3 ∩ H4 �= ∅
∨

gap(H1,H2) = gap(H3,H4) �= ∅
∨

both pairs are consecutive and
their consecutiveness is provided

by the same linguistic terms

It can be easily seen that ∼ relates couples of non-empty HFLTSs with the
same intersection if they are compatible, with consecutiveness provided by the
same linguistic terms if they are consecutive and with the same gap between
them in the case that they are neither compatible nor consecutive.

Example 3. Following Example 1, the pairs of HFLTSs (HA,HB) and (HA,
HD) are related according to ∼ given that they have the same intersection,
{a2}. Additionally, (HC ,HB) ∼ (HC ,HD) since they have the same gap between
them, {a3}.

Applying this equivalence relation over the set of all the pairs of non-empty
HFLTSs, we get the quotient set (H∗

S)2/ ∼, whose equivalence classes can be
labeled as:

• [ai, aj ] for the class of all pairs of compatible non-empty HFLTSs with inter-
section [ai, aj ], for all i, j = 1, . . . , n with i ≤ j.

• −[ai, aj ] for the class of all pairs of incompatible non-empty HFLTSs whose
gap is [ai, aj ], for all i, j = 2, . . . , n − 1 with i ≤ j.

• αi for the class of all pairs of consecutive non-empty HFLTSs whose consec-
utiveness is provided by {ai} and {ai+1}, for all i = 1, . . . , n − 1.

For completeness and symmetry reasons, (H∗
S)2/ ∼ is represented as shown

in Fig. 1 and stated in the next definition.

Example 4. Subsequent to this labeling, and following Example 1, the pair
(HC ,HB) belongs to the class −{a3} and so does the pair (HC ,HD). The pair
(HC ,HA) belongs to the class α3 and the pair (HC ,HE) belongs to the class
{a4}.

Definition 4. Given a set of ordered linguistic term sets S = {a1, . . . , an}, the
extended set of HFLTSs, HS , is defined as:

HS = (−H∗
S) ∪ A ∪ H∗

S ,

where −H∗
S = {−H | H ∈ H∗

S} and A = {α0, . . . , αn}.
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In addition, by analogy with real numbers −H∗
S is called the set of negative

HFLTSs, A is called the set of zero HFLTSs, and, from now on, H∗
S is called the

set positive HFLTSs.

Fig. 1. Graph of the extended set of HFLTSs.

Note that HFLTSs can be characterized by couples of zero HFLTSs. This
leads us to introduce a new notation for HFLTSs:

Notation. Given a HFLTS, H ∈ HS , it can be expressed as H = 〈αi, αj〉,
where the first zero HFLTS identifies the bottom left to top right diagonal and
the second one identifies the top left to bottom right diagonal. Thus, 〈αi, αj〉
corresponds with [ai+1, aj ] if i < j, with −[ai+1, aj ] if i > j and αi if i = j.

This notation is used in the following definition that we present in order to
latter introduce an order relation within HS .

Definition 5. Given H ∈ HS described by 〈αi, αj〉 the coverage of H is defined
as:

cov(H) = {〈αi′ , αj′〉 ∈ HS | i′ ≥ i ∧ j′ ≤ j}.
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Example 5. The coverage of HA from Example 1 can be seen in Fig. 2.

The concept of coverage of a HFLTS enables us to define the extended inclu-
sion relation between elements of HS .

Fig. 2. Coverage of HA.

Definition 6. The extended inclusion relation inHS , �, is defined as:

∀H1,H2 ∈ HS , H1 � H2 ⇐⇒ H1 ∈ cov(H2).

Note that, restricting to only the positive HFLTSs, the extended inclusion
relation coincides with the usual subset inclusion relation. According to this
relation in HS , we can define the extended connected union and the extended
intersection as closed operations within the set HS as follows:

Definition 7. Given H1,H2 ∈ HS , the extended connected union of H1 and H2,
H1 � H2, is defined as the least element that contains H1 and H2, according
to the extended inclusion relation.

Definition 8. Given H1,H2 ∈ HS , the extended intersection of H1 and H2,
H1 	 H2, is defined as the largest element being contained in H1 and H2,
according to the extended inclusion relation.

It is straightforward to see that the extended connected union of two positive
HFLTSs coincides with the connected union presented in [6]. This justifies the
use of the same symbol. About the extended intersection of two positive HFLTSs,
it results the usual intersection of sets if they overlap and the gap between them
if they do not overlap. Notice that the empty HFLTS is not needed to make the
extended intersection a closed operation in HS .

Proposition 2. Given two non-empty HFLTSs, H1,H2 ∈ H∗
S , if H1 � H2, then

H1 � H2 = H2 and H1 	 H2 = H1.

Proof. The proof is straightforward. 	�
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Fig. 3. � and � of HFLTSs.

Example 6. Figure 3 provides an example with the extended connected union
and the extended intersection of HB and HC and of HA and HE from Example 1:
HB � HC = [a2, a5], HB 	 HC = −{a3}, HA � HE = HE and HA 	 HE = HA.

Proposition 3. (HS ,�,	) is a distributive lattice.

Proof. According to their respective definitions, both operations, � and 	, are
trivially commutative and idempotent.

The associative property of � is met since (H1 � H2) � H3 = H1 � (H2 � H3)
given that both parts equal the least element that contains H1, H2 and H3.
About the associativeness of 	, (H1 	 H2) 	 H3 = H1 	 (H2 	 H3) given that in
both cases it results the largest element contained in H1, H2 and H3.

Finally, the absorption laws are satisfied given that: on the one hand H1 �
(H1	H2) = H1 given that H1	H2 � H1 and on the other hand H1	(H1�H2) =
H1 given that H1 � H1 � H2.

Furthermore, the lattice (HS ,�,	) is distributive given that none of its sub-
lattices are isomorphic to the diamond lattice, M3, or the pentagon lattice, N5.

	�

3 A Distance Between Hesitant Fuzzy Linguistic
Term Sets

In order to define a distance between HFLTSs, we introduce a generalization of
the concept of cardinal of a positive HFLTS to all the elements of the extended
set of HFLTSs.

Definition 9. Given H ∈ HS , the width of H is defined as:

W(H) =

⎧
⎨

⎩

card(H) if H ∈ H∗
S ,

0 if H ∈ A,
−card(−H) if H ∈ (−H∗

S).
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Fig. 4. Distance between HFLTSs.

Note that the width of a HFLTS could be related as well with the height
on the graph of HS , associating the zero HFLTSs with height 0, the positive
HFLTSs with positive heights and the negative HFLTSs with negative values of
heights as shown in Fig. 4.

Proposition 4. D(H1,H2) = W(H1 � H2) − W(H1 	 H2) provides a distance
in the lattice (HS ,�,	).

Proof. D(H1,H2) defines a distance given that it is equivalent to the geodesic
distance in the graph HS . The geodesic distance between H1 and H2 is the length
of the shortest path to go from H1 to H2. Due to the fact that H1	H2 � H1�H2,
W(H1 �H2)−W(H1 	H2) is the length of the minimum path between H1 �H2

and H1	H2. Thus, we have to check that the length of the shortest path between
H1 �H2 and H1 	H2 coincides with the length of the shortest path between H1

and H2.
If one of them belong to the coverage of the other one, let us suppose that

H1 � H2, then H1 � H2 = H2 and H1 	 H2 = H1 and the foregoing assertion
becomes obvious. If not, H1, H1 �H2, H2 and H1 	H2 define a parallelogram on
the graph. Two consecutive sides of this parallelogram define the shortest path
between H1 � H2 and H1 	 H2 while two other consecutive sides of the same
parallelogram define the shortest path between H1 and H2. Thus, the assertion
becomes true as well.

Proposition 5. Given two HFLTSs, H1,H2 ∈ HS , then D(H1,H2) ≤ 2n. If, in
addition, H1,H2 ∈ H∗

S , then D(H1,H2) ≤ 2n − 2.

Proof. If H1,H2 ∈ HS , then, the most distant pair is α0 and αn. Then,

W(α0 � αn) − W(α0 	 αn) = W([a1, an]) − W(−[a1, an]) =

n − (−n) = 2n.
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If H1,H2 ∈ H∗
S , then, the most distant pair is {a1} and {an}. Then,

W({a1} � {an}) − W({a1} 	 {an}) = W([a1, an]) − W(−[a2, an−1]) =

n − (−(n − 2)) = 2n − 2.

	�
Notice that for positive HFLTSs, D(H1,H2) coincides with the distance

D2(H1,H2) introduced in [6]. Additionally, in this case, the distance presented
can also be calculated as D([ai, aj ], [ai′ , aj′ ]) = |i − i′| + |j − j′|.
Example 7. Figure 4 shows the width of the extended connected union and the
extended intersection of HB and HC from Example 1. According to these results,
D(HB ,HC) = W(HB � HC) − W(HB 	 HC) = 4 − (−1) = 5.

4 A Representative of a Group Assessment

The aim of this section is to model the assessments given by a group of Decision
Makers (DMs) that are evaluating a set of alternatives Λ = {λ1, . . . , λr} by
means of positive HFLTSs over S = {a1, . . . , an}. To do so, we use the definition
of Hesitant Fuzzy Linguistic Description (HFLD) introduced in [6].

Definition 10. A Hesitant fuzzy linguistic description of the set Λ by HS −{∅}
is a function FH on Λ such that for all λ ∈ Λ, FH(λ) is a non-empty HFLTS,
i.e., FH(λ) ∈ HS − {∅}.

According to this definition, we can extend the distance between HFLTSs
presented in Sect. 3 to a distance between HFLDs as follows:

Definition 11. Let us consider F 1
H and F 2

H two HFLDs of a set Λ =
{λ1, . . . , λr} by means of HS , with F 1

H(λi) = H1
i and F 2

H(λi) = H2
i , for all

i ∈ {1, . . . , r}. Then, the distance DF between these two HFLDs is defined as:

DF (F 1
H , F 2

H) =
r∑

t=1

D(H1
t ,H2

t ).

Thus, given a set ok k DMs, we have k different HFLDs of the set of alterna-
tives Λ. In order to summarize this k different assessments, we propose a HFLD
that serves as a group representative.

Definition 12. Let Λ be a set of r alternatives, G a group of k DMs and
F 1
H , . . . , F k

H the HFLDs of Λ provided by the DMs in G, then, thecentroid of
the groupis:

FC
H = arg min

Fx
H∈(H∗

S)r

k∑

t=1

DF (F x
H , F t

H),

identifying each HFLD FH with the vector (H1, . . . , Hr) ∈ (H∗
S)r, where

FH(λi) = Hi, for all i = 1, . . . , r.
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Note that the HFLD of the centroid of the group does not have to coincide
with any of the HFLDs given by the DMs. In addition, there can be more than
one HFLDs minimizing the addition of distances to the assessments given by the
DMs, so the centroid of the group is not necessarily unique. Consequently, we
proceed with a further study of the possible unicity of the centroid of the group.

Proposition 6. For a specific alternative λ, let F 1
H(λ), . . . , F k

H(λ) be the
HFLTSs given as assessments of λ by a group of k DMs. Then, if F p

H(λ) =
[aip , ajp ],∀p ∈ {1, . . . , k}, the set of all the HFLTSs associated to the centroid of
the group for λ is:

{[ai, aj ] ∈ H∗
S | i ∈ med(i1, . . . , ik), j ∈ med(j1, . . . , jk)},

where med( ) contains the median of the values sorted from smallest to largest
if k is odd or any integer number between the two central values sorted in the
same order if k is even.

Proof. It is straightforward to check that the distance D between HFLTSs is
equivalent to the Manhattan distance, also known as taxicab distance, because
the graph of HS can be seen as a grid. Thus, finding the HFLTSs that corresponds
to the centroid of the group is reduced to finding the HFLTSs in the grid that
minimizes the addition of distances to the other HFLTSs given by the DMs.

The advantage of the taxicab metric is that it works with two independent
components, in this case, initial linguistic term and ending linguistic term. There-
fore, we can solve the problem for each component separately. For each compo-
nent, we have a list of natural numbers and we want to find the one minimizing
distances. It is well known that the median is the number satisfying a minimum
addition of distances to all the points, generalizing the median to all the numbers
between the two central ones if there is an even amount of numbers.

Thus, all the HFLTSs satisfying a minimum addition of distances are:

{[ai, aj ] ∈ HS | i ∈ med(i1, . . . , ik), j ∈ med(j1, . . . , jk)}.

Finally, we have to check that the HFLTSs associated to the centroid are
positive HFLTSs for the FC

H to be a HFLD. If F p
H(λ) = [aip , ajp ] ∈ H∗

S ,∀p ∈
{1, . . . , k}, that means ip ≤ jp,∀p ∈ {1, . . . , k}. Therefore, if k is odd, the median
of i1, . . . , ik is less than or equal to the median of j1, . . . , jk, and if k is even, the
minimum value of med(i1, . . . , ik) is less than or equal than the maximum value
of med(j1, . . . , jk). Accordingly, there is always at least one HFLTS associated
to the centroid which is a positive HFLTS. Thus,

{[ai, aj ] ∈ H∗
S | i ∈ med(i1, . . . , ik), j ∈ med(j1, . . . , jk)}.

	�
Example 8. Let us assume that HA,HB ,HC ,HD,HE from Example 1 are
the assessments given by 5 DMs about the same alternative. In such case,
med(2, 2, 4, 1, 1) = 2 and med(3, 2, 5, 2, 4) = 3, and, therefore, the central assess-
ment for this alternative is [a2, a3].
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Corollary 1. For a group of k DMs, if k is odd, the centroid of the group is
unique.

Proof. If k is odd, both medians are from a set with an odd amount of numbers,
so both medians are unique. Therefore, the corresponding HFLTS minimizing
the addition of distances is also unique. 	�
Corollary 2. For each alternative in Λ, the set of all the HFLTSs corresponding
to any centroid of the group is a connected set in the graph of HS .

Proof. If k is odd, by Corollary 1, the proof results obvious. If k is even, by the
definition of med( ), the set of possible results is also connected. 	�
Example 9. Let G be a group of 5 DMs assessing a set of alternatives Λ =
{λ1, . . . , λ4} by means of HFLTSs over the set S = {a1, a2, a3, a4, a5} from
Example 1, and let F 1

H , F 2
H , F 3

H , F 4
H , F 5

H the HFLDs describing their correspond-
ing assessments shown in the following table together with the HFLD corre-
sponding to the centroid of the group:

F 1
H F 2

H F 3
H F 4

H F 5
H FC

H

λ1 [a2, a3] {a2} [a4, a5] [a1, a2] [a1, a4] [a2, a3]

λ2 [a1, a2] {a1} [a2, a3] [a1, a2] {a2} [a1, a2]

λ3 [a3, a5] {a3} {a4} [a1, a4 [a2, a4] [a3, a4]

λ4 [a4, a5] {a5} {a5} {a5} [a1, a2] {a5}

As the last alternative shows, the centroid of the group is not sensible to
outliers, due to the fact that is based on the calculation of two medians.

5 Conclusions and Future Research

This paper presents an extension of the set of Hesitant Fuzzy Linguistic Term
Sets by introducing the concepts of negative and zero HFLTSs to capture dif-
ferences between pair of non-compatible HFLTSs. This extension enables the
introduction of a new operation studying the intersection and the gap between
HFLTSs at the same time. This operation is used to define a distance between
HFLTSs that allows us to analyze differences between the assessments given by
a group of decision makers. Based on the study of these differences, a centroid
of the group has been proposed.

Future research is focused in two main directions. First, the study of the
consensus level of the total group assessments to analyze the agreement or dis-
agreement within the group. And secondly, a real case study will be performed
in the marketing research area to examine consensus and heterogeneities in con-
sumers’ preferences.
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Abstract. In this paper, we propose (a) the realistic models for Supplier
Selection and Order Allocation (SSOA) problem under fuzzy demand
and volume/quantity discount constraints, and (b) how to select the
suitable aggregation operator based on risk preference of the decision
makers (DMs). The aggregation operators under consideration are addi-
tive, maximin, and augmented operators while the risk preferences are
classified as risk-averse, risk-taking, and risk-neutral ones. The fitness of
aggregation operators and risk preferences of DMs is determined by sta-
tistical analysis. The analysis shows that the additive, maximin, and aug-
mented aggregation operators are consistently suitable for risk-taking,
risk-averse, and risk-neutral DMs, respectively.

1 Introduction

Selecting appropriate suppliers is one of the critical business decisions faced by
purchasing managers, and it has a long term impact on a whole supply chain. For
most firms, raw material costs account for up to 70 % of product cost as observed
in Ghodspour and O’Brien (2001). Thus, a supplier selection process is an impor-
tant issue in strategic procurement to enhance the competitiveness of the firm [1].
Effective selection of appropriate suppliers involves not only scanning the price
list, but also requirements of organization which are increasingly important due
to a high competition in a business market. Typically, Dickson (1996) indicated
that major requirements are meeting customer demand, reducing cost, increasing
product quality and on time delivery performance [2]. Hence, supplier selection is
a Multi-Criteria-Decision-Making (MCDM) problem which includes both quali-
tative and quantitative data, and some of which may be conflicting. In a case of
conflicting criteria, DMs need to compromise among criteria. To do so, decision
criteria are transformed to objective functions or constraints. The relative impor-
tance (weight) of each criterion may be also applied to the model.

Essentially, to prevent a monopolistic supply base as well as to meet all the
requirements of firms, most firms have multiple sources which lead to the problem
of how many units of each product should be allocated to each of suppliers. Thus,
it becomes a Supplier Selection and Order Allocation (SSOA) problem.
c© Springer International Publishing Switzerland 2016
V. Torra et al. (Eds.): MDAI 2016, LNAI 9880, pp. 68–81, 2016.
DOI: 10.1007/978-3-319-45656-0 6
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Interestingly, to attract large order quantities, suppliers frequently offer trade
discounts. Commonly, volume and quantity discounts are popular trade-discount
strategies. The quantity-discount policy aims to reduce a unit cost, while the
volume-discount encourages firms to reduce the total purchasing cost. Both dis-
counts are triggered at a certain purchasing level. For example, buyers purchase
at $20 per unit from $25 per unit when they purchase more than 100 units or
receive a 10 % discount when the total purchase cost of all products is greater
than $1000. It is interesting here to observe that the trade discount complicates
the allocation of order quantities placed to suppliers. Thus, determining the joint
consideration of different pricing conditions is a crucial task of DMs to make the
most beneficial buying decision.

Practically, firms try to place an order at the level of predicted demand to
avoid excess inventory. However, when trade discounts are offered, firms usually
purchase more than predicted demand to receive a lower price. Hence, to flexibly
optimize the benefit, fuzzy demand is incorporated in models. Note that the
satisfaction of demand criteria decreases whenever the order quantity is greater
or less than predicted demand. Regarding the issue of uncertainty (fuzziness),
fuzzy set theory (FST) developed by Zadeh (1965) has been extensively used to
deal with uncertain data, like in this case [3].

During the last decades, we have witnessed many decision techniques for han-
dling MCDM problem. Among several techniques suggested in Ho et al. (2010)
[4], linear weighting programming model proposed by Wind and Robinson (1968)
[5], is widely applied to assess the performances of suppliers. The model is rela-
tively easy to understand and implement. Later, with the use of pairwise com-
parisons, an analytical hierarchy process (AHP) allows more accurate scoring
method [6]. Generally, this technique decomposes the complex problem into mul-
tiple levels of hierarchical structure. Similarly, Analytic Network Process (ANP),
Goal Programming(GP), Neural Network (NN), etc., are also introduced to deal
with the MCDM problem.

Although several advanced techniques have been proposed to deal with the
MCDM problem, little attention has been addressed to determine which aggre-
gation operator is suitable for a specific risk preference of DMs. Basically, the
risk preference of DMs can be distinguished into three types, namely, risk-taking,
risk-averse, and risk-neutral. Another concerning issue is that previous research
works related to the SSOA problem have been conducted based on either volume
or quantity discount, not both of them at the same time.

Based on these motivations, this paper proposes realistic models with impor-
tant practical constraints, especially volume and quantity discount constraints
under fuzzy demand. Interestingly, three types of aggregation operators are
applied to the models to determine which operator is suitable for risk-taking,
risk-averse, and risk-neutral DMs. The aggregation operators are (1) additive, (2)
maximin, and (3) augmented operators. The models are developed from Amid
et al. [7], Amid et al. [8], and Feyzan [9], accordingly. In addition, to test the
sensitivity of the models as well as the effect of aggregation operators, statistical
analysis is conducted based on two performance indicators, namely, the average
and the lowest satisfaction levels.
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The rest of this paper is organized as follows. In Sect. 2, related works are
mentioned. Then, six developed models are presented in Sect. 3. In Sect. 4, sta-
tistical experiments are designed to analyze the performances of the aggregation
operators using MINITAB software. Results are discussed in Sect. 5 and some
concluding remarks are presented in Sect. 6.

2 Related Work

To aggregate multiple criteria, many advanced aggregation operators have been
proposed in decades. However, in this paper, three basic types of operators are
investigated with relative importance of criteria.

Additive Aggregation Operator. The weighted additive technique is proba-
bly the best known and widely used method for calculating the total score when
multiple criteria are considered. In [7], the objective function is

Max ΣI
i=1wiλi

where wi is the relative importance of criteria i and λi is the satisfaction
level (SL) of criteria i. Note that to deal with multiple criteria, dimensions of
criteria are transformed to SLs which are dimensionless.

Maximin Aggregation Operator. In [8], this operator is looking for SL that
meets the need of all criteria. Therefore, s is the smallest SL of all criteria.

Max s

Augmented Aggregation Operator. In [9], the author propose this opera-
tor in order to keep both advantages of additive and maximin operators. The
objective function is developed as follows.

Max s + ΣI
i=1wiλi

3 Model Development

There are six proposed models for SSOA problem under fuzzy demand and vol-
ume/quantity discount constraints. These models are based on risk preference
of DMs which are risk-taking, risk-averse, and risk-neutral. Models under con-
sideration are shown in Fig. 1.

3.1 Problem Description

In this study, DMs must properly allocate the order quantities to each supplier
so that the maximum satisfaction is achieved. They have four criteria in mind:
(1) the total cost, (2) the quality of product, (3) the on time delivery perfor-
mance, and (4) the preciseness of demand, where relative importances of criteria
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(weights) are given. We reduce dominant effects among criteria by transforming
them into satisfaction levels (SLs) in a range from 0.0 to 1.0. Demand of each
product is allowed to be fuzzy. As multiple products are considered, the overall
demand SL is the least SL of all products. In addition, the price-discount models
were developed from Xia and Wu (2007) [10], Wang and Yang (2009) [11], and
Suprasongsin et al. (2014) [12].

Techniques
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Maximin

Met5

Additive
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Fig. 1. A combined model diagram
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Fig. 2. Experimental’s factor of each
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3.2 Notations

Let us assume that there are five products and five suppliers under considera-
tion. Supplier k (k = 1, ...,K) offers either volume discount or quantity discount
when product j (j = 1, ..., J) is purchased at a discount level c (c = 1, ..., C).
It is also assumed that supplier 3 offers a volume discount policy, while other
suppliers offer a quantity discount policy.

Indices
i index of criteria i = 1...I
j index of products j = 1...J
k index of suppliers k = 1...K
c index of business volume breaks and price breaks levels c = 1...C
m index of fuzzy demand m = 1...M
n index of demand(d) levels n = 1 ifd ≤ M

n = 2 ifd ≥ M
Input parameters

dcj constant (crisp) demand of product j (unit)
hjk capacity for product j from supplier k (unit)
uj maximumnumber of supplier that can supply product j (supplier)
lj minimumnumber of supplier that can supply product j (supplier)
ojk minimumorder quantity of product j from supplier k (unit)
srjk 1 if supplier k supplies product j ; 0 otherwise (unitless)
rjk minimum fraction of total demand of product j purchased from supplier

k (unitless)
pcjk price of product j offered from supplier k at discount level c ($)
z1jk unit price of product j from supplier k ($)
z2jk quality score of product j from supplier k (scores)
z3jk delivery lateness of product j from supplier k (days)
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ecjk break point of quantity discount at level c of product j from supplier k (unit)
gck discount fraction of volume discount from supplier k at discount

level c (unitless)
bck break point of volume discount at level c from supplier k ($)
fk 1 if supplier k offers quantity discount; 0 otherwise (unitless)
wi weight of criteria i (unitless)
σ weight of fuzzy demand (unitless)
mni minimumvalue of criteria i ($, scores,days)
mdi moderate value of criteria i ($, scores,days)
mxi maximumvalue of criteria i ($, scores,days)
bomj boundary of demand levelm of product j (unit)

Decision variables

xcjkn purchased quantity at discount level c ofproduct j from supplier k
atdemandlevel n (unit)

vcjk purchased quantity at discount level c ofproduct j from supplierk (unit)
at constant demand

πjk 1 if supplier k supplies product j ; 0 otherwise (unitless)
tcjk total purchasing cost j from supplier k atlevel c for quantity discount ($)
ack total purchasing cost j from supplier k at level c for volume discount ($)
αck 1 if quantity discount level c is selected for supplier k ; 0 otherwise (unitless)
βck 1 if volume discount level c is selected for supplier k ; 0 otherwise (unitless)
λi satisfaction level of criteria i ; cost, quality and delivery lateness (unitless)
s overall satisfaction level formulated by weighted maximin model (unitless)
sl the minimumof satisfaction levels of all criteria (unitless)
γ achievement level of fuzzy demand fromall products (unitless)
zjn 1 if demand leveln is selected for product j ; 0 otherwise (unitless)
sldj satisfaction level of fuzzy demand of each product j (unitless)
djn total demand of product j at level n (unit)

3.3 Mathematical Formulation

In this section, six models are presented as the following.

Additive Model. In this model, we assume that all criteria are equally impor-
tant. The model aims to maximize the average SLs of all criteria including the
achievement level of fuzzy demand as shown in (1).

Maximize
(Σiλi + γ)/(I + 1) (1)

Price Discount. In quantity discount constraints (2–4), the purchasing quantity
xcjkn must be corresponding to a suitable discount level. Similarly, in volume
discount constraints (5–7), the business volume ack from supplier k should be in
a suitable discount level c.

Σctcjk · fk = ΣcΣnpcjk · xcjkn · fk ∀j, k (2)
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ec−1,jk · αck · fk ≤ Σjxcjkn · fk < ecjk · αck · fk ∀c, k, n (3)

Σcαck · fk ≤ 1 ∀k (4)

Σcack · (1 − fk) = ΣcΣjΣnz1jk · xcjkn · (1 − fk) ∀k (5)

bc−1,k · βck · (1 − fk) ≤ ack · (1 − fk) < bck · βck · (1 − fk) ∀c, j, k (6)

Σcβck · (1 − fk) ≤ 1 ∀k (7)

Available Supplier. A supplier may supply only some products but not all of
the products.

πjk ≤ srjk ∀j, k (8)

Capacity. The total purchasing quantity xcjkn must be less than the supply
capacity hjk and it is active only if the assigned πjk is equal to 1.

ΣcΣnxcjkn ≤ hjk · πjk ∀j, k (9)

Limited Number of Supplier. The number of suppliers cannot exceed the
available suppliers.

lj ≤ Σkπjk < uj ∀j (10)

Minimum Order Quantity. The total purchasing quantity xcjkn must be
greater than the required minimum order quantity of product j from supplier k

ojk · πjk ≤ ΣcΣnxcjkn ∀j, k (11)

Relationship. The agreement with a supplier k that a firm will purchase the
product j at least some percentage of the total demand from this supplier k.

rjk · Σndjn ≤ ΣcΣnxcjkn ∀j, k (12)

Fuzzy Demand. Total purchasing quantity xcjkn must be in a range of mini-
mum bom,j and maximum bom+1,j demand levels and only one demand level zjn
must be selected.

bomj · zjn ≤ djn < bom+1,j · zjn ∀j,m, n (13)

ΣcΣkxcjkn = djn ∀j, n (14)

Σnzjn = 1 ∀j (15)

Satisfaction Level. Constraints (16–18) describe the SLs of cost, quality, and
delivery lateness criteria. Constraints (19–21) calculate the SL (called achieve-
ment level) of the fuzzy demand.

λ1 ≤ mx1 − ΣcΣjΣktcjk · fk + ΣcΣkack · (1 − gck) · (1 − fk)
mx1 − md1

(16)

λ2 ≤ ΣcΣjΣkΣnz2jk · xcjkn − mn2

md2 − mn2
(17)
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λ3 ≤ mx3 − ΣcΣjΣkΣnz3jk · xcjkn

mx3 − md3
(18)

sldj ≤ bo3j − Σndjn
bo3j − bo2j

∀j (19)

sldj ≤ Σndjn − bo1j
bo2j − bo1j

∀j (20)

γ ≤ sldj ∀j (21)

Non-negativity Conditions and the Range of Values. Constraints (22–24)
are non-negativity conditions and the range of values.

0 ≤ λi < 1 ∀i (22)

0 ≤ sldj < 1 ∀j (23)

0 ≤ γ < 1 (24)

Weighted Additive Model. A basic concept of this model is to use a single
utility function representing the overall preference of DMs corresponding to the
relative importance of each criterion.

Maximize
(Σiwi · λi) + (σ · γ) (25)

All constraints are the same as those of the additive model (2–24).

Maximin Model. Different from the additive model, the maximin model
attempts to maximize the minimum SLs of all criteria, rather than maximize
the average value of all SLs. In this model, all criteria are equally important.

Maximize
sl (26)

Constraints (2–24) are used and three non-negativity constraints are added.

sl ≤ γ (27)

sl ≤ λi ∀i (28)

0 ≤ sl < 1 (29)

Weighted Maximin Model. It is similar to the maximin model but weights
are considered. Constraints (31–36) are adapted from constraints (16–21).

Maximize
s (30)

The constraints are subjected to (2–15), (23) and the following constraints.

w1 · s ≤ mx1 − ΣcΣjΣktcjk · fk + ΣcΣkack · (1 − gck) · (1 − fk)
mx1 − md1

(31)

w2 · s ≤ ΣcΣjΣkΣnz2jk · xcjkn − mn2

md2 − mn2
(32)
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w3 · s ≤ mx3 − ΣcΣjΣkΣnz3jk · xcjkn

mx3 − md3
(33)

σ · sldj ≤ bo3j − Σndjn
bo3j − bo2j

(34)

σ · sldj ≤ Σndjn − bo1j
bo2j − bo1j

∀j (35)

s ≤ sldj ∀j (36)

0 ≤ s < 1 (37)

Augmented Model. Technically, to maximize the average SLs and the min-
imum SLs of all criteria simultaneously, the objective function is changed to
(38).

Maximize
(sl + (Σiλi + γ))/(I + 1) (38)

All constraints are drawn from the maximin model (2–24) and (27–29).

Weighted Augmented Model. Weighted augmented model is developed from
augmented model by taking weights into account. All constraints are the same
as augmented model (Tables 1, 2, 3, 5, 6, 7, 8, 9 and 10).

Maximize
sl + (Σiwi · λi + σ · γ) (39)

Table 1. Weight sets (wi, σ)

Factor/weight Weight set 1 Weight set 2

Cost 31 % 38%

Quality 24 % 28%

Delivery lateness 13 % 11%

Demand 32 % 23%

Table 2. Crisp demand of each
product (dcj)

Product Predicted demand

1 500

2 30

3 100

4 700

5 2500

Table 3. Narrow(N) and wide(W) demand range (bomj)

Level/product P1 P2 P3 P4 P5

N W N W N W N W N W

Minimum variation 450 100 25 10 50 20 650 200 2300 1500

Predicted demand 500 500 30 30 100 100 700 700 2500 2500

Maximum variation 550 1000 32 80 160 500 720 1500 3000 5000
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Table 4. Unit (LIST) price, quality score and delivery lateness for Incomplete trade-
off(I) and Complete trade-off(C); (z1jk),(z2jk) and (z3jk)

Data P/S S1 S2 S3 S4 S5

I C I C I C I C I C

Unit (list) price P1 50 50 40 40 55 55 50 50 45 45

P2 0 0 200 200 0 0 230 230 0 0

P3 70 70 75 75 72 69 0 0 0 0

P4 0 0 0 0 8 8 10 10 5 5

P5 0 0 0 0 0 0 20 20 20 20

Quality score P1 3 3 5 8 6 6 2 2 4 4

P2 0 0 6 6 0 0 7 7 0 0

P3 5 5 7 7 6 8 0 0 0 0

P4 0 0 0 0 8 8 10 10 5 5

P5 0 0 0 0 0 0 8 8 9 9

Delivery lateness P1 3 3 1 1 2 2 4 4 3 3

P2 0 0 4 4 0 0 3 3 0 0

P3 2 2 2 2 1 1 0 0 0 0

P4 0 0 0 0 3 3 5 5 4 4

P5 0 0 0 0 0 0 5 5 3 3

Table 5. Limited number of sup-
plier (uj , lj)

No. of supplier P1 P2 P3 P4 P5

Maximum 2 5 3 4 3

Minimum 1 1 1 1 1

Table 6. Break point of volume discount
(bck) and volume discount percentage (gck)

Level Supplier 3

bck gck

1 0 0

2 10000 0.05

3 50000 0.1

Table 7. Available
supplier for each
product (srjk)

P/S S1 S2 S3 S4 S5

1 1 1 1 1 1

2 0 1 0 1 0

3 1 1 1 0 0

4 0 0 1 1 1

5 0 0 0 1 1

Table 8. Price of each product for quantity discount levels (pcjk)

Level/sup. S1 S2 S3 S5

P1 P3 P2,4,5 P1 P2 P3 P4-5 P1 P2 P3 P4 P5 P1 P2-3 P4 P5

Level 1 50 70 0 40 200 75 0 50 230 0 32 20 45 0 29 20

Level 2 45 68 0 39 180 74 0 48 220 0 30 18 43 0 28 17

Level 3 43 65 0 38 170 73 0 46 210 0 28 16 42 0 25 14
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Table 9. Break point of quantity
discount at level (ecjk)

Level/ S1 S2 S4 S5

supplier P1-5 P1,3,4,5 P2 P1,3,4,5 P2 P1-5

Level 1 0 0 0 0 0 0

Level 2 100 100 50 100 20 100

Level 3 500 500 60 500 30 500

Table 10. Boundaries of each criterion
(mni, mdi, mxi)

Criteria i mni mdi mxi Units

z1(Cost) - 87574 94096 $

z2(Quality score) 28891 32798 - Score

z3(Delivery lateness) - 12101 13298 Day

4 Design of Experiment to Statistically Analyze Effects
of Each Aggregation Operator

To statistically analyze the sensitivities of optimal solutions and the advantages
of aggregation operators, we generate five data sets by varying randomly the
capacity, the number of supplier, the minimum order quantity, and the rela-
tionships to suppliers. In designing the experiment, independent and dependent
variables are required. Models investigate how independent variables have sig-
nificant effects on dependent variables. The experimental results are analyzed
by MINITAB software (Table 11).

Independent Variable. Four independent variables are considered in this
study: (1) two sets of weights, (2) two types of demand ranges(wide and narrow
demand ranges), (3) six models, and (4) two types of trade-offs (Incomplete and
Complete trade-off). Incomplete trade-off means that there are some dominant

Table 11. Capacity (hjk), Minimum order
quantity (MOQ) (ojk) and Min % of
demand to be purchased (%Demand)(rjk)

Data P/S S1 S2 S3 S4 S5

Capacity (hjk) P1 1000 500 400 1500 700

P2 0 50 0 40 0

P3 300 1000 100 0 0

P4 0 0 500 2000 600

P5 0 0 0 3000 2000

MOQ (ojk) P1 0 0 0 0 0

P2 0 0 0 0 0

P3 0 10 0 0 0

P4 0 0 0 0 0

P5 0 0 0 100 0

%Demand (rjk) P1 0 0 0 0 0

P2 0 0 0 0 0

P3 0 0.1 0 0 0

P4 0 0 0 0 0

P5 0 0 0 0 0.05

Table 12. Optimal purchasing
quantity of weighted additive tech-
nique: weight set1, complete trade-
off, narrow demand range

P/S S1 S2 S3 S4 S5

P1 - 50 - - 450

P2 - - - 30 -

P3 - 10 90 - -

P4 - - 179 471 50

P5 - - - 500 2000
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suppliers. For example, supplier 1 is considered as a dominant supplier if supplier
1 provides the lowest cost, the highest quality and the lowest delivery lateness.
Each data set consists of 48 combinations as illustrated in Fig. 2.

Dependent Variable. Dependent variables are the performance indicators and
are used as responses in MINITAB software. The average SL and the lowest SL
are two responses in this study.

5 Results and Discussion

Results are evaluated in four aspects, namely, verification of reasonable results,
average SL, lowest SL, dominated solution, and how to select the aggregation
operator to match the risk preferences of DMs.

5.1 Reasonable Result Verification

From Table 12, it can be seen that the model yields reasonable results as follows.
For Product 4 (P4), it is supplied by 3 suppliers. Unquestionably, if there is
only cost criterion, all units must be ordered from S5 due to the lowest price
offered. As multiple criteria are concerned, the model is required to make trade-
offs among criteria with respect to assigned weights from DMs. As we have seen
from Table 4, the quality score of S4 is greater than S5 (10:5) and the delivery
lateness of S5 is less than S4 (4:5). Thus, to achieve the highest satisfaction of
DMs, DMs purchase P4 at a bit higher price and gain a much better quality and
a bit worse delivery lateness. In addition, as the fuzzy demand has the highest
weight (32 %), DMs prefer to purchase at the amount closed to the predicted
demand. Hence, the total demand of P4 in this model is exactly 700 units.

5.2 Level of Average Satisfaction

By means of statistical analysis, a two-level full factorial design of experiment
is applied and each insignificant factor is gradually deleted each time begin-
ning with the highest p-value of interaction factors, until only significant factors
are left. The results show that the method and demand range have significant
interaction effects. Using Tukey test presented in Fig. 3 and interaction plot in
Fig. 4, techniques with the additive operators (Tech.1 and 4) have significantly
higher average SL than those of augmented operators (Tech.3 and 6) and max-
imin operators (Tech.2 and 5) in both environments. Although, in Fig. 4, the
demand range and method have significant interaction effect, conclusion can be
concluded in the same way.
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Fig. 3. Grouping for the average SL Fig. 4. Interaction plot of method and
demand range for the average SL

5.3 Level of the Lowest Satisfaction

The results show that an interaction between method and demand range is statis-
tically significant. It is because the model has more ability to search for a better
solution when demand range is wider. In Figs. 5 and 6, the maximin aggregation
operator (Tech.2) has significantly higher lowest SL than techniques based on
the additive operators (Tech.1 and 4). The benefit of the maximin operator is to
avoid very bad performance in any aspect. Paradoxically, although the weighted
maximin technique is developed using maximin operator, it provides the lowest
SL (Lowest SL = 0.1), instead of the highest SL (Highest SL = 0.4) as presented
in Fig. 6.

Fig. 5. Grouping for the lowest SL Fig. 6. Interaction plot of method and
demand range for the lowest SL

5.4 Dominated Solution

A solution is considered as a dominated solution whenever the SLs of all cri-
teria are worse than or the same as those of other solutions. The results show
that all techniques, except the weighted maximin technique, do not provide any
dominated solution as shown in Table 13. We can see that every SLs of weighted
maximin technique is lower than the weighted additive technique. This is because
if SLs of all criteria are equal to their assigned weights, the weighted maximin
technique will get the optimal solution (the sum of all SLs = 1.0) and it has no
effort to strive for a better solution. Thus, there is high chance that it will be
dominated by the others since the sum of their SLs can be greater than one.
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Table 13. Dominated solution (weight set 2, complete trade-off, narrow demand range)

Method/criteria Cost Quality Delivery
lateness

Demand

Weight set 2 0.38 0.28 0.11 0.23

Additive 0.99 0.6 0.18 0.57

Maximin 0.99 0.46 0.34 0.34

Augmented 0.99 0.46 0.34 0.34

Weighted additive 1 0.63 0.11 0.6

Weighted maximin 0.99 0.33 0.11 0.36

Weighted augmented 0.99 0.46 0.34 0.34

5.5 How to Select the Aggregation Operator to Match the Risk
Preferences of DMs

The risk-taking DM normally prefers the solution with relatively high value of
average SLs of all criteria even some criteria may have very low or zero SL. The
risk-taking DM will feel that scarifying a criterion for a betterment of many other
criteria is worth to take a risk. In opposite, the risk-averse DM is very unhappy
if a criterion has a very low or zero degree of satisfaction although many other
criteria will have very high degree of satisfaction. The risk-neutral DM has a
moderate opinion about risk which is somewhere between the risk-taking and
risk-averse ones. This type of risk preference DM feels that the average SLs of all
criteria is important but the lowest degree of satisfaction should not be too low.
Based on the above mentioned characteristics of risk preference, most risk-taking
DMs should prefer the additive aggregation operator while most risk-averse DMs
should prefer the maximin operator. Similarly, most risk-neutral DMs will find
that the augmented operator provides the most preferable solution for them.

6 Concluding Remarks

In this paper, we have proposed the realistic FMOLP models that involve volume
and quantity discounts under fuzzy demand and how to select a proper aggre-
gation operator based on risk preference of DMs. The effects of aggregation
operator are statistically analyzed. The results reveal that solutions are reason-
able with different sets of input parameters. The statistical results also show that
the additive aggregation operator matches the preference of the risk-taking DMs
since it offers relatively high average SL but a criterion may have very low SL.
In opposite, the maximin aggregation operator is acceptable for the risk-averse
DMs since it yields a solution with not too low degree of the lowest satisfac-
tion. The augmented aggregation operator, which tries to combine the additive
and maximin aggregation operators, provides the solution that is acceptable for
the risk-neutral DMs. In addition, it also reveals that the weighted maximin
technique should be applied with caution since it may generate a dominated
solution.
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Abstract. Weighted quasi-arithmetic means on two-dimensional
regions when weighting functions are independent and utility functions
have independent forms are introduced, and some conditions on weight-
ing functions are discussed to characterize the properties. The first-order
stochastic dominance and risk premiums on two-dimensional regions are
demonstrated. Several examples of two-dimensional utility functions are
given by one-dimensional utility functions to explain main results.

1 Introduction

Weighted quasi-arithmetic means are important concepts not only for mathe-
matical theory like the mean value theorems but also for application like sub-
jective estimation of data in management science, artificial intelligence and
so on. Weighted quasi-arithmetic means of an interval is derived mathemati-
cally by aggregation operations. (Kolmogorov [6], Nagumo [7] and Aczél [1]).
In micro-economics, subjective estimations with preference relations are formu-
lated as utility functions (Fishburn [4]). From the view point of utility functions,
Yoshida [9,12] have studied the relations between weighted quasi-arithmetic
means on an interval and decision maker’s attitude regarding risks. For exam-
ple, for a continuous strictly increasing function ϕ : [a, b] �→ (−∞,∞) as a
decision maker’s utility function and a continuous function ω : [a, b] �→ (0,∞)
as a weighting function, a weighted quasi-arithmetic mean μ on a closed interval
[a, b] is defined by

μ = ϕ−1

(∫ b

a

ϕ(x)ω(x) dx

/ ∫ b

a

ω(x) dx

)

. (1.1)

Then μ is a mean value satisfying

ϕ(μ)
∫ b

a

ω(x) dx =
∫ b

a

ϕ(x)ω(x) dx (1.2)

in the mean value theorem for integration. As a special case,

ν =
∫ b

a

xω(x) dx

/ ∫ b

a

ω(x) dx (1.3)
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is called a risk neutral mean. Then some properties of utility functions were dis-
cussed when risk averse/risk neutral/risk loving conditions μ � ν hold. Bustince
et al. [2] discussed aggregation operations on two-dimensional OWA operators,
and Labreuche and Grabisch [5] demonstrated Choquet integral for aggrega-
tion in multicriteria decision making, and Torra and Godo [8] studied continu-
ous WOWA operators for defuzzification. Yoshida [13] has introduced weighted
quasi-arithmetic means on two-dimensional regions, which are related to multi-
object decision making. In this paper, we investigate weighted quasi-arithmetic
means on two-dimensional regions when utility functions have an independent
form and weighting functions are independent, and we discuss some properties
for weighting functions for decision maker’s attitude. We also demonstrate the
first-order stochastic dominance and risk premiums in micro-economics.

In Sect. 2 we discuss weighted quasi-arithmetic means on two-dimensional
regions when weighting functions are independent and utility functions have
independent forms. In this case we can give a special risk neutral function. We
also give some characterizations of weighting functions for decision maker’s risk
averse/risk neutral/risk loving attitudes and the comparison between weighted
quasi-arithmetic means.

In Sect. 3 we demonstrate weighted quasi-arithmetic means on two-
dimensional regions and the first-order stochastic dominance and risk premi-
ums on two-dimensional regions, which are important concepts for risk man-
agement in micro-economics. In Sect. 4 we investigate several examples for two-
dimensional utility functions constructed from one-dimensional utility functions,
and we explain the results in previous sections.

2 Weighted Quasi-Arithmetic Means on Two-Dimensional
Regions

In this section, we discuss weighted quasi-arithmetic means on two-dimensional
regions when utility functions have an independent form and weighting func-
tions are independent, and we give their characterization regarding weighting
functions. Let a domain D be a non-empty open subset of (0,∞)2 such that
D = D1 × D2 ⊂ (0,∞)2, where D1 and D2 are open intervals. Let (Ω,P ) be
a probability space, where P is a non-atomic probability measure on a sample
space Ω. For i = 1, 2, let Xi be a family of real valued random variables X on Ω
which have C1-class density functions wi : Di �→ (0,∞) and which also satisfy
the following tail condition:

lim
x→∞ xP (|X| ≥ x) = 0. (2.1)

Denote by X 2 a family of random vectors (X1, Y1) on Ω such that X1 ∈ X1,
Y1 ∈ X2, and X1 and Y1 are independent. Then a density function w of random
vector (X1, Y1) ∈ X 2 is given by

w(x, y) = w1(x)w2(y) (2.2)
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for (x, y) ∈ D = D1 ×D2, where w1 and w2 are C1-class density functions of X1

and Y1 respectively. In this paper, these density functions are used as weights in
quasi-arithmetic means, and they are also called weighting functions. Let Γ be a
set of 4-tuples (α, β, γ, δ) ∈ (−∞,∞)4 satisfying one of the following conditions
(Γ .a) and (Γ .b):

(Γ .a) α > 0, β > 0 and γ = 0.
(Γ .b) α ≥ 0, β ≥ 0 and γ > 0.

For i = 1, 2, let Li be a family of C1-class strictly increasing functions fi :
Di �→ (0,∞). Denote by L a family of utility functions f : D �→ (0,∞) given by

f(x, y) = αf1(x) + βf2(y) + γf1(x)f2(y) + δ (2.3)

for (x, y) ∈ D = D1 × D2 with coefficients (α, β, γ, δ) ∈ Γ and functions fi ∈
Li (i = 1, 2). Then f are C1-class strictly increasing functions on D because
fx(x, y) = αf ′

1(x)+γf ′
1(x)f2(y) > 0 and fy(x, y) = βf ′

2(y)+γf1(x)f ′
2(y) > 0 for

(x, y) ∈ D = D1 ×D2. In this paper, (2.3) is called an independent form because
in the right-hand side of (2.3) utility f(x, y) is constructed from the sum and the
scalar product of one-dimensional utilities f1(x) and f2(y). Denote a family of
rectangle regions by R(D) = {R = I × J | I and J are bounded closed intervals
and R ⊂ D}. For a rectangle region R ∈ R(D), weighted quasi-arithmetic means
on region R with utility f(∈ L) and weighting w are given by a subset Mf

w(R)
of R as follows.

Mf
w(R) =

{

(x̃, ỹ) ∈ R | f(x̃, ỹ)
∫∫

R

w(x, y) dx dy =
∫∫

R

f(x, y)w(x, y) dx dy

}

.

Then we have Mf
w(R) �= ∅ because f is continuous on R and

min
(x̃,ỹ)∈R

f(x̃, ỹ) ≤
∫∫

R

f(x, y)w(x, y) dx dy

/ ∫∫

R

w(x, y) dx dy ≤ max
(x̃,ỹ)∈R

f(x̃, ỹ).

We define a point (xR, yR) on a rectangle region R(∈ R(D)) by the following
weighted quasi-arithmetic means:

xR =
∫∫

R

xw(x, y) dx dy

/ ∫∫

R

w(x, y) dx dy, (2.4)

yR =
∫∫

R

y w(x, y) dx dy

/ ∫∫

R

w(x, y) dx dy. (2.5)

Hence, (xR, yR) is called an invariant risk neutral point on R with weighting w
(Yoshida [13]). For a random vector (X1, Y1) ∈ X 2, from (2.2) we also have

xR =
∫

I

xw1(x) dx

/ ∫

I

w1(x) dx, (2.6)

yR =
∫

J

y w2(y) dy

/ ∫

J

w2(y) dy. (2.7)

Now we introduce the following relations between decision maker’s attitude and
his utility.
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Definition 2.1. Let a utility function f ∈ L and let a rectangle region R ∈
R(D).

(i) Decision making with utility f is called risk neutral on R if

f(xR, yR)
∫∫

R

w(x, y) dx dy =
∫∫

R

f(x, y)w(x, y) dx dy (2.8)

for all density functions w of random vectors (X1, Y1) ∈ X 2.
(ii) Decision making with utility f is called risk averse on R if

f(xR, yR)
∫∫

R

w(x, y) dx dy ≥
∫∫

R

f(x, y)w(x, y) dx dy (2.9)

for all density functions w of random vectors (X1, Y1) ∈ X 2.
(iii) Decision making with utility f is called risk loving on R if

f(xR, yR)
∫∫

R

w(x, y) dx dy ≤
∫∫

R

f(x, y)w(x, y) dx dy (2.10)

for all density functions w of random vectors (X1, Y1) ∈ X 2.

Definition 2.2. Let I and J be closed intervals satisfying I ⊂ D1 and J ⊂ D2,
and let fi ∈ Li be utility functions for i = 1, 2.

(i) Decision making with utility f1 (f2) is called risk neutral on I (J) if

f1(xR)
∫

I

w1(x) dx =
∫

I

f1(x)w1(x) dx

(

f2(yR)
∫

J

w2(y) dy =
∫

J

f2(y)w2(y) dy

)

(2.11)
for all density functions w1 (w2) of random variables X1 ∈ X1 (Y1 ∈ X2

resp.).
(ii) Decision making with utility f1 (f2) is called risk averse on I (J) if

f1(xR)
∫

I

w1(x) dx ≥
∫

I

f1(x)w1(x) dx

(

f2(yR)
∫

J

w2(y) dy ≥
∫

J

f2(y)w2(y) dy

)

(2.12)
for all density functions w1 (w2) of random variables X1 ∈ X1 (Y1 ∈ X2

resp.).
(iii) Decision making with utility f1 (f2) is called risk loving on I (J) if

f1(xR)
∫

I

w1(x) dx ≤
∫

I

f1(x)w1(x) dx

(

f2(yR)
∫

J

w2(y) dy ≤
∫

J

f2(y)w2(y) dy

)

(2.13)
for all density functions w1 (w2) of random variables X1 ∈ X1 (Y1 ∈ X2

resp.).

The following result, which can be checked directly by (2.2), (2.6) and (2.7),
implies special utility function g is risk neutral.
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Theorem 2.1. Let g : D �→ (0,∞) be a utility function defined by

g(x, y) = αx + βy + γxy + δ (2.14)

for (x, y) ∈ D with a coefficient (α, β, γ, δ) ∈ Γ . Then utility function g is risk
neutral on any rectangle regions R ∈ R(D).

Hence we investigate this special risk neutral utility function g given by 2.14.
Firstly g is strictly increasing, i.e. it holds that gx(x, y) = α + γx > 0 and
gy(x, y) = β + γy > 0 for (x, y) ∈ D. Further Hessian matrix of g is

Hg =
(

gxx gxy

gyx gyy

)

=
(

0 γ
γ 0

)

(2.15)

and its determinant is |Hg| = −γ2 ≤ 0. For example, we take a domain
D = (0,∞)2, a region R = [1, 9]2 and a weighting function w(x, y) = 1 for
all (x, y) ∈ D. Then Fig. 1 illustrates weighted quasi-arithmetic means Mg

w(R)
for risk neutral functions g which are given respectively by three cases: (a)
g(x, y) = x + 3y and (b) g(x, y) = x + 2y in (Γ .a) and (c) g(x, y) = xy in (Γ .b).
We find an invariant risk neutral point is (xR, yR) = (5, 5). In Yoshida [13],
weighted quasi-arithmetic means for risk neutral functions are given by only
straight lines. However, in case (c), weighted quasi-arithmetic means Mg

w(R) for
utility function g(x, y) = xy is not straight line. Thus in case when a utility func-
tion g is given by (2.14) with γ > 0, there exist weighted quasi-arithmetic means
Mg

w(R) which are not straight lines but curved lines on R = [1, 9]2 (Fig. 1).

Fig. 1. Weighted quasi-arithmetic means Mg
w(R) for risk neutral functions g ((a)

g(x, y) = x + 3y, (b) g(x, y) = x + 2y, (c) g(x, y) = xy).
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We can easily check the following equivalent result by [13, Theorem 3.1] and
[10, Corollary 5.7].

Theorem 2.2. Let a utility function f ∈ L has an independent form (2.3) with
a coefficient (α, β, γ, δ) ∈ Γ and utility functions fi ∈ Li (i = 1, 2). Then the
following (a) and (b) are equivalent:

(a) f is risk averse (risk loving).
(b) f1 and f2 are risk averse (risk loving resp.).

We introduce the following natural ordering on (0,∞)2.

Definition 2.3. (A partial order � on (0,∞)2).

(i) For two points (x, y), (x, y)(∈ (0,∞)2), an order (x, y) � (x, y) implies x ≤
x and y ≤ y.

(ii) For two sets A,B(⊂ (0,∞)2), an order A � B implies the following
(a) and (b):

(a) For any (x, y) ∈ A there exists (x, y) ∈ B satisfying (x, y) � (x, y).
(b) For any (x, y) ∈ B there exists (x, y) ∈ A satisfying (x, y) � (x, y).

Now we compare weighted quasi-arithmetic means given by two different
weighting functions on two-dimensional regions, and we give their characteriza-
tion. For random vectors (X1, Y1), (X2, Y2) ∈ X 2, let w and v be C1-class density
functions for random vectors (X1, Y1) and (X2, Y2) respectively such that

w(x, y) = w1(x)w2(y) and v(x, y) = v1(x)v2(y) (2.16)

for (x, y) ∈ D = D1×D2, where w1, w2, v1 and v2 are C1-class density functions
of X1, Y1, X2 and Y2 respectively. Then by [11, Theorem 2.1] and independent
form (2.3) we obtain the following characterization for comparison of weighted
quasi-arithmetic means.

Theorem 2.3. Let w and v be C1-class density functions for random vectors
(X1, Y1) and (X2, Y2) respectively given in (2.16). Then the following (a) and
(b) are equivalent:

(a) Mf
w(R) � Mf

v (R) for all utility functions f ∈ L and all rectangle regions
R ∈ R(D).

(b) w′
1

w1
≤ v′

1
v1

on D1 and w′
2

w2
≤ v′

2
v2

on D2.

3 Weighted Quasi-Arithmetic Means on Two-Dimensional
Regions and Stochastic Risks in Economics

In this section, we deal with the relations between weighted quasi-arithmetic
means on two-dimensional regions and stochastic risks in micro-economics.
Firstly we extend the domain D to (−∞,∞)2 as follows. Let w be a C1-class den-
sity function for a random vector (X1, Y1) ∈ X 2. Let w1 : D1 �→ (0,∞) be a C1-
class density function of a random variable X1 ∈ X1, and let w2 : D2 �→ (0,∞)
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be a C1-class density function of a random variable Y1 ∈ X2. Hence we extend
their domains to (−∞,∞) by

w1(x) = 0 for x ∈ (−∞,∞)\D1 and w2(y) = 0 for y ∈ (−∞,∞)\D2. (3.1)

Then by (2.2) the domain of w is also extended from D to (−∞,∞)2. Let f ∈ L
be a utility function. Then there exist C1-class strictly increasing utility functions
fi ∈ Li such that fi : Di �→ (0,∞) (i = 1, 2) and coefficients (α, β, γ, δ) ∈ Γ
satisfying (2.3). Hence we extend their domains to (−∞,∞) by

f1(x) = 0 for x ∈ (−∞,∞) \ D1 and f2(y) = 0 for y ∈ (−∞,∞) \ D2. (3.2)

Then by (2.3) the domain of f is also extended from D to (−∞,∞)2.
For random variables X ∈ X1 and Y ∈ X2, we denote by L1(X) a family of

extended functions f1 ∈ L1 such that f1(X) are integrable and we also denote by
L2(Y ) a family of extended functions f2 ∈ L2 such that f2(Y ) are integrable. For a
random vector (X,Y ) ∈ X 2, we denote by L(X,Y ) a family of extended functions
f(∈ L) such that f(X,Y ) are integrable. For f ∈ L(X,Y ) there exist C1-class
strictly increasing utility functions f1 ∈ L1(X) and f1 ∈ L2(Y ) and coefficients
(α, β, γ, δ) ∈ Γ satisfying (2.3). Hence we introduce the following concept.

Definition 3.1

(i) Let i = 1, 2, and let real valued random variables X,Y ∈ Xi. Random
variable X is dominated by random variable Y in the sense of the first-order
stochastic dominance if

P (X ≤ x) ≥ P (Y ≤ x) for any x ∈ (−∞,∞). (3.3)

Then we write it simply as X �FSD Y.
(ii) Let random vectors (X1, Y1), (X2, Y2) ∈ X 2. Random vector (X1, Y1) is dom-

inated by random vector (X2, Y2) in the sense of the first-order stochastic
dominance if

P ((X1, Y1) � (x, y)) ≥ P ((X2, Y2) � (x, y)) for any (x, y) ∈ (−∞,∞)2.
(3.4)

Then we write it simply as (X1, Y1) �FSD (X2, Y2).

Hence we obtain the following Lemmas by (2.3) and (2.16).

Lemma 3.1. For random vectors (X1, Y1), (X2, Y2) ∈ X 2, the following (a) and
(b) are equivalent:

(a) (X1, Y1) �FSD (X2, Y2).
(b) X1 �FSD X2 and Y1 �FSD Y2.

Lemma 3.2. For random vectors (X1, Y1), (X2, Y2) ∈ X 2, the following (a) and
(b) are equivalent:
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(a) E(f(X1, Y1)) ≤ E(f(X2, Y2)) for all utility functions f ∈ L(X1, Y1) ∩
L(X2, Y2).

(b) E(f1(X1)) ≤ E(f1(X2)) for all utility functions f1 ∈ L(X1) ∩ L(X2) and
E(f2(Y1)) ≤ E(f2(Y2)) for all utility functions f2 ∈ L(Y1) ∩ L(Y2).

Then we obtain the following results by Lemmas 3.1 and 3.2, Theorem 2.3
and [11, Proposition 2, Corollary 1].

Theorem 3.1. Let random vectors (X1, Y1), (X2, Y2) ∈ X 2 and let w and v be
their density functions respectively.

(i) If Mf
w(R) � Mf

v (R) for all utility functions f ∈ L and all rectangle regions
R ∈ R(D), then (X1, Y1) �FSD (X2, Y2).

(ii) If (X1, Y1) �FSD (X2, Y2), then E(f(X1, Y1)) ≤ E(f(X2, Y2)) for all utility
functions f ∈ L(X1, Y1) ∩ L(X2, Y2).

Risk premium is one of important concepts in mathematical finance. In the
rest of this section we discuss risk premiums on two-dimensional regions. From
[13] we introduce the following concept of risk premiums for utility functions in
comparison with risk neutral points.

Definition 3.2. Let f ∈ L be a utility function on D and let w be a weighting
functions given in (2.2). Let a rectangle region R ∈ R(D). A nonnegative vector
πf

w(R)(∈ [0,∞)2) is called a risk premium for utility f if (xR, yR) − πf
w(R) ∈ D

and it satisfies the following equation:

f((xR, yR) − πf
w(R))

∫∫

R

w(x, y) dx dy =
∫∫

R

f(x, y)w(x, y) dx dy. (3.5)

We define the set of risk premiums satisfying (3.5) by

Πf
w(R) = {πf

w(R) | (xR, yR) − πf
w(R) ∈ Mf

w(R), 0 � πf
w(R)}, (3.6)

where 0 is the zero vector on (−∞,∞)2. Hence Πf
w(R) �= ∅ if decision making

with utility f is risk averse on R with weighting w, i.e. it holds that

f(xR, yR)
∫∫

R

w(x, y) dx dy ≥
∫∫

R

f(x, y)w(x, y) dx dy. (3.7)

Then Πf
w(R) is also written as

Πf
w(R) = {(xR, yR) − (x, y) | (x, y) ∈ Mf

w(R) ∩ R
(xR,yR)
− }, (3.8)

where R
(xR,yR)
− is a subregion dominated by the invariant risk neutral point

(xR, yR) which is defined by

R
(xR,yR)
− = {(x, y) ∈ R | (x, y) � (xR, yR)}. (3.9)

If a utility function f is strictly increasing and concave on D, then utility f
is risk averse and Πf

w(R) �= ∅ for all weightings w and all rectangle regions
R ∈ R(D) by [13, Lemma 2.2, Theorem 4.1]. The following lemma, which is
checked directly, gives a condition for the concavity of f .
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Lemma 3.3. Let f ∈ L be a utility function given in (2.3) with a coefficient
(α, β, γ, δ) ∈ Γ and C2-class utility functions fi ∈ Li (i = 1, 2). If f1 and f2 are
strictly increasing and concave and they satisfy the following inequality:

(f ′
1f1)

′ ≤ 0 on D1 and (f ′
2f2)

′ ≤ 0 on D2, (3.10)

then f is strictly increasing and concave on D.

The following results, which are trivial, give risk premiums for utility func-
tions with independent forms (2.3).

Theorem 3.2. Let f ∈ L be a utility function given in (2.3) with a coefficient
(α, β, γ, δ) ∈ Γ and utility functions fi ∈ Li (i = 1, 2). Let w be a density
function on D given in (2.2), and let a rectangle region R(∈ R(D)). Then it
holds that

Πf
w(R) =

{

(xR, yR) − (x, y)
∣
∣
∣
∣
g(f1(x), f2(y)) = g(F1, F2),
x ≤ xR, y ≤ yR, (x, y) ∈ R

}

, (3.11)

where F1 and F2 are constants given by

F1 =

∫
I
f1(x)w1(x) dx
∫

I
w1(x) dx

and F2 =

∫
J

f2(y)w2(y) dy
∫

J
w2(y) dy

(3.12)

and g is a risk neutral utility function given in (2.14).

Corollary 3.1. The following (i) and (ii) are important cases in Theorem 3.2.

(i) Let a utility f(x, y) = f1(x) + f2(y) for (x, y) ∈ D with fi ∈ Li (i = 1, 2).
Then

Πf
w(R) =

{

(xR, yR) − (x, y)
∣
∣
∣
∣
f1(x) + f2(y) = F1 + F2,
x ≤ xR, y ≤ yR, (x, y) ∈ R

}

. (3.13)

(ii) Let a utility f(x, y) = f1(x)f2(y) for (x, y) ∈ D with fi ∈ Li (i = 1, 2).
Then

Πf
w(R) =

{

(xR, yR) − (x, y)
∣
∣
∣
∣
f1(x)f2(y) = F1F2,
x ≤ xR, y ≤ yR, (x, y) ∈ R

}

. (3.14)

4 Examples

InTable 1we list up some economic utility functionsϕ on one-dimensional domains
([10,12]), and then we can construct utility functions on two-dimensional regions
by combining these functions. Examples 4.1 and 4.2 illustrate risk premiums, and
in Example 4.3 we deal with the other results in previous sections.

Example 4.1. Take a two-dimensional domain D = (0,∞)2 and let a region
R = I × J = [1, 2] × [1, 2]. Let a density function
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w(x, y) = w1(x)w2(y) = xκ1yκ2 (4.1)

for (x, y) ∈ D with real constants κ1, κ2. Then invariant risk neutral point
(xR, yR) is given by

xR =

∫
I
xw1(x) dx

∫
I
w1(x) dx

=
(κ1 + 1)(2κ1+2 − 1)
(κ1 + 2)(2κ1+1 − 1)

, (4.2)

yR =

∫
J

yw2(y) dy
∫

J
w2(y) dy

=
(κ2 + 1)(2κ2+2 − 1)
(κ2 + 2)(2κ2+1 − 1)

. (4.3)

Let f(x, y) =
√

x +
√

y be a utility function in case (Γ, a) with (α, β, γ, δ) =
(1, 1, 0, 0). Then it is trivial that f is concave on (0,∞)2, and Πf

w(R) �= ∅. By
Corollary 3.1 risk premiums are

Πf
w(R) =

{

(xR, yR) − (x, y)
∣
∣
∣
∣

√
x +

√
y = F1 + F2,

1 ≤ x ≤ xR, 1 ≤ y ≤ yR

}

, (4.4)

where F1 and F2 are given by

F1 =

∫
I
f1(x)w1(x) dx
∫

I
w1(x) dx

=
(κ1 + 1)(2κ1+

3
2 − 1)

(κ1 + 3
2 )(2κ1+1 − 1)

, (4.5)

F2 =

∫
J

f2(y)w2(y) dy
∫

J
w2(y) dy

=
(κ2 + 1)(2κ2+

3
2 − 1)

(κ2 + 3
2 )(2κ2+1 − 1)

. (4.6)

Example 4.2. Take a two-dimensional domain D = (0,∞)2 and let a region
R = I × J = [1, 2] × [1, 2]. Let a density function

v(x, y) = v1(x)v2(y) = eκ1xeκ2y (4.7)

for (x, y) ∈ D with real constants κ1, κ2. Then invariant risk neutral point
(xR, yR) is given by

xR =

∫
I
xv1(x) dx

∫
I
v1(x) dx

=
(2κ1 − 1)eκ1 − κ1 + 1

κ1(eκ1 − 1)
, (4.8)

yR =

∫
J

yv2(y) dy
∫

J
v2(y) dy

=
(2κ2 − 1)eκ2 − κ2 + 1

κ2(eκ2 − 1)
. (4.9)

Let f(x, y) = (1 − e−x)(1 − e−y) be a utility function in case (Γ, b) with
(α, β, γ, δ) = (0, 0, 1, 0). By Lemma 3.3, we can easily check f is concave on
[log 2,∞)2, and Πf

v (R) �= ∅. By Corollary 3.1 risk premiums are

Πf
v (R) =

{

(xR, yR) − (x, y)
∣
∣
∣
∣
(1 − e−x)(1 − e−y) = G1G2,
1 ≤ x ≤ xR, 1 ≤ y ≤ yR

}

, (4.10)

where G1 and G2 are given by

G1 =

∫
I
f1(x)w1(x) dx
∫

I
w1(x) dx

= 1 − κ1(eκ1 − e)
e2(κ1 − 1)(eκ1 − 1)

, (4.11)
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G2 =

∫
J

f2(y)w2(y) dy
∫

J
w2(y) dy

= 1 − κ2(eκ2 − e)
e2(κ2 − 1)(eκ2 − 1)

. (4.12)

Example 4.3. Take a two-dimensional domain D = (0,∞)2. Let w and v be
density functions in Examples 3.1 and 3.2:

w(x, y) = w1(x)w2(y) = xκ1yκ2 (4.13)

v(x, y) = v1(x)v2(y) = eκ1xeκ2y (4.14)

for (x, y) ∈ D with positive constants κ1, κ2. Then we have

w′
1(x)

w1(x)
=

κ1

x
� κ1 =

v′
1(x)

v1(x)
if x � 1, (4.15)

w′
2(y)

w2(y)
=

κ2

y
� κ2 =

v′
2(y)

v2(y)
if y � 1. (4.16)

For a region R = I × J = [1, 2] × [1, 2], by Theorem 2.1 we get Mf
w(R) �

Mf
v (R) for all utility functions f ∈ L. Let (X1, Y1), (X2, Y2) ∈ X 2 be random

vectors which have the corresponding density functions w and v respectively.
Then by Theorem 3.1 it holds that (X1, Y1) �FSD (X2, Y2) and E(f(X1, Y1)) ≤
E(f(X2, Y2)) for all utility functions f ∈ L(X1, Y1) ∩ L(X2, Y2).

Remark. We can construct other utility functions on two-dimensional domain
from utility functions ϕ on one-dimensional domain given in Table 1.

Table 1. Strictly concave utility functions ϕ on one-dimensional domains

Utility function, domain and parameters ϕ(x)

Power utility (0, ∞); 0 < λ < 1 xλ

λ

Logarithmic utility (0, ∞); λ > 0 λ log x

Exponential utility (−∞, ∞); λ > 0 1−e−λx

λ

Quadratic utility (0, λ); λ > 0 λx − 1
2
x2

Sigmoid utility (0, ∞); λ > 0 1
1+e−λx
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Abstract. Necessity (resp. possibility) measures are very simple rep-
resentations of epistemic uncertainty due to incomplete knowledge. In
the present work, a characterization of discrete Choquet integrals with
respect to a possibility or a necessity measure is proposed, understood as
a criterion for decision under uncertainty. This kind of criterion has the
merit of being very simple to define and compute. To get our character-
ization, it is shown that it is enough to respectively add an optimism or
a pessimism axiom to the axioms of the Choquet integral with respect
to a general capacity. This additional axiom enforces the maxitivity or
the minitivity of the capacity and essentially assumes that the decision-
maker preferences only reflect the plausibility ordering between states of
nature. The obtained pessimistic (resp. optimistic) criterion is an aver-
age of the maximin (resp. maximax) criterion of Wald across cuts of a
possibility distribution on the state space. The additional axiom can be
also used in the axiomatic approach to Sugeno integral and generalized
forms thereof. The possibility of axiomatising of these criteria for deci-
sion under uncertainty in the setting of preference relations among acts
is also discussed.

Keywords: Choquet integral · Sugeno integral · Possibility theory

1 Introduction

In multiple-criteria decision making, discrete fuzzy integrals are commonly used
as aggregation functions [11]. They calculate a global evaluation for objects or
alternatives evaluated according to some criteria. When the evaluation scale is
quantitative, Choquet integrals are often used, while in the case of qualitative
scale, Sugeno integrals are more naturally considered [9]. The definition of dis-
crete fuzzy integrals is based on a monotonic set function named capacity or
fuzzy measure. Capacities are used in many areas such as uncertainty modeling
[4], multicriteria aggregation or in game theory [14].

The characterization of Choquet integral on quantitative scales is based on a
general capacity, for instance a lower or upper probability defined from a family
of probability functions [12,15]. There are no results concerning the characterisa-
tion of the Choquet integral with respect to a possibility or a necessity measure.
c© Springer International Publishing Switzerland 2016
V. Torra et al. (Eds.): MDAI 2016, LNAI 9880, pp. 94–106, 2016.
DOI: 10.1007/978-3-319-45656-0 8
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In contrast, for the qualitative setting, characterizations of Sugeno integrals with
respect to possibility measures exist [3,8]. However, Sugeno integrals with respect
to necessity (resp. possibility) measures are minitive (resp. maxitive) functionals,
while this is not the case for the corresponding Choquet integrals.

This paper proposes a property to be added to axioms characterizing discrete
Choquet integrals that may justify the use of a possibility or necessity measure
representing a plausibility ordering between states. We then generalize maximin
and maximax criteria of Wald. Such specific criteria are currently used in signal
processing based on maxitive kernels [10] or in sequential decision [1]. We also show
that the same additional property can be added to characterisations of Sugeno
integrals and more general functionals, to obtain possibilistic qualitative integrals
(weighted min and max). Finally we show that the additional property can be
expressed in the Savage setting of preference between acts, and discuss the possi-
bility of act-based characterizations of possibilistic Choquet and Sugeno integrals.

2 Characterization of Possibilistic Choquet Integrals

We adopt the notations used in multi-criteria decision making where some
objects or alternatives are evaluated according to a common finite set C =
{1, · · · , n} of criteria. In the case of decision under uncertainty (DMU) C is
the set of the possible states of the world. A common, totally ordered, evalua-
tion scale V is assumed to provide ratings according to the criteria. Each object
is identified with a function f = (f1, · · · , fn) ∈ V n, called a profile, where fi is
the evaluation of f according to the criterion i. The set of all these objects (or
acts in the setting of DMU) is denoted by V.

A capacity or fuzzy measure is a non-decreasing set function μ : 2C → L, a
totally ordered scale with top 1 and bottom 0 such that μ(∅) = 0 and μ(C) = 1,
with L ⊆ V . When L is equipped with a negation denoted by 1−, the conjugate
of a capacity μ is defined by μc(A) = 1 − μ(A). A possibility measure Π is a
capacity such that Π(A ∪ B) = max(Π(A),Π(B)). If π = (π1, . . . , πn) is the
possibility distribution associated with Π, we have Π(A) = maxi∈A πi, which
makes it clear that πi = 1 for some i. In multi-criteria decision making, πi is
the importance of the criterion i. In the case of decision under uncertainty, πi

represents the plausibility of the state i. A necessity measure is a capacity N
such that N(A ∩ B) = min(N(A), N(B)); then we have N(A) = mini�∈A 1 − πi

since functions Π and N are conjugate capacities.

2.1 Possibilistic Choquet Integrals

In this part, L is supposed to be the unit interval. The Moebius transform
associated with a capacity μ is the set function mμ(T ) =

∑
K⊆T (−1)|T\K|μ(K),

where
∑

T⊆C mμ(T ) = 1. The sets T such that mμ(T ) �= 0 are called the focal
sets of μ. Using mμ, the discrete Choquet integral of a function f : C → R with
respect to a capacity μ can be simply expressed as a generalized weighted mean:

Cμ(f) =
∑

T⊆C
mμ(T )min

i∈T
fi. (1)



96 D. Dubois and A. Rico

Suppose μ is a necessity measure N and let σ be the permutation on the
criteria such that 1 = πσ(1) ≥ · · · ≥ πσ(n) ≥ πσ(n+1) = 0. The Choquet integral
of f with respect to N boils down to:

CN (f) =
n∑

i=1

(πσ(i) − πσ(i+1)) min
j:πj≥πσ(i)

fj =
n∑

i=1

(πσ(i) − πσ(i+1))
i

min
j=1

fσ(j) (2)

since the focal sets of N are the sets {σ(1), · · · , σ(i)}i=1,··· ,n and their value
for the Moebius transform is πσ(i) − πσ(i+1) respectively. Using the identity
CΠ(f) = 1 − CN (1 − f) one obtains the Choquet integral of f with respect to
the conjugate possibility measure:

CΠ(f) =
n∑

i=1

(πσ(i) − πσ(i+1)) max
j:πj≥πσ(i)

fj =
n∑

i=1

(πσ(i) − πσ(i+1))
i

max
j=1

fσ(j) (3)

Note that if π1 = · · · πn = 1 then CN (f) = minn
i=1 fi and CΠ(f) = maxn

i=1 fi

are Wald maximin and maximax criteria, respectively. Moreover if many criteria
have the same importance πi, then the expression of CN (resp. CΠ) proves that
we take into account the worst (resp. best) value of fj according to these criteria.

It is worth noticing that the functional CN is not minitive and CΠ is not
maxitive [5] as shown by the following example.

Example 1. We consider C = {1, 2}, the possibility distribution π and the follow-
ing profiles f and g: π1 = 1, π2 = 0.5; f1 = 0.2, f2 = 0.3; and g1 = 0.4, g2 = 0.1.
We have CN (f) = 0.5 ·0.2+0.5 ·0.2 = 0.2 and CN (g) = 0.5 ·0.4+0.5 ·0.1 = 0.25,
but CN (min(f, g)) = 0.5 ·0.2+0.5 ·0.1 = 0.15 �= min(CN (f), CN (g)). By duality,
it also proves the non-maxitivity of CΠ using acts 1 − f and 1 − g.

2.2 Pessimistic and Optimistic Substitute Profiles

Using the permutation σ on the criteria associated with π, a pessimistic profile
fσ,− and an optimistic profile fσ,+ can be associated with each profile f :

fσ,−
i = min

j:πj≥πσ(i)

fj =
i

min
j=1

fσ(j); fσ,+
i = max

j:πj≥πσ(i)

fj =
i

max
j=1

fσ(j). (4)

Observe that only the ordering of elements i induced by π on C is useful in
the definition of the pessimistic and optimistic profiles associated with f . These
profiles correspond to the values of f appearing in the weighted mean expressions
(2) and (3). Substituting pessimistic and optimistic profiles associated with f in
these expressions, possibilistic Choquet integrals take the form of usual discrete
expectations wrt a probability distribution m with mσ(i) = πσ(i) − πσ(i+1):

CN (f) =
n∑

i=1

mσ(i)f
σ,−
i = CN (fσ,−), CΠ(f) =

n∑

i=1

mσ(i)f
σ,+
i = CΠ(fσ,+).
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Two profiles f and g are said to be comonotone if and only if for all i, j ∈ C,
fi > fj implies gi ≥ gj . So f and g are comonotone if and only if there exists
the permutation τ on C such that fτ(1) ≤ · · · ≤ fτ(n) and gτ(1) ≤ · · · ≤ gτ(n).

For any profile f , we have fσ,−
1 ≥ · · · ≥ fσ,−

n and fσ,+
1 ≤ · · · ≤ fσ,+

n . So for
any pair of profiles f and g, fσ,− and gσ,− (resp. fσ,+ and gσ,+) are comonotone.

We can define a sequence of progressively changing profiles (φk)1≤k≤n that
are equivalently evaluated by CN . Namely, φ1 = f , φk+1 ≤ φk, φn = fσ,− where
φk+1 = φk except for one coordinate. The profiles φk are defined by

φk(i) =
{

minl:πl≥πσ(i) fl if i ≤ k
fi otherwise.

Similarly we can define a sequence of profiles that are equivalently evaluated
by CΠ . Namely, (φk)1≤k≤n such that φ1 = f , φk+1 ≥ φk, φn = fσ,+ where
φk+1 = φk except for one coordinate. The profiles φk are defined by

φk(i) =
{

maxl:πl≥πσ(i) fl if i ≤ k
fi otherwise.

We observe that CN (f) = CN (φk), CΠ(f) = CΠ(φk), for all 1 ≤ k ≤ n.

2.3 Representation Theorem

Consider the case of Boolean functions, corresponding to subsets A,B of C. Their
profiles are just characteristic functions 1A,1B . Given a permutation σ induced
by π, let us find the corresponding optimistic and pessimistic Boolean profiles.

Lemma 1. For all A ⊆ C non empty, 1σ,−
A = 1B for a subset B = Aσ,− ⊆ A

and 1σ,+
A = 1B for a superset B = Aσ,+ ⊇ A.

Proof. 1σ,−
A (i) = mini

k=1 1A(σ(k)) = 1 if ∀k ≤ i : σ(k) ∈ A and 0 otherwise.
So 1σ,−

A = 1B with B ⊆ A.
1σ,+

A (i) = maxi
k=1 1A(σ(k)) = 1 if ∃k ≤ i and σ(k) ∈ A, and 0 otherwise.

So 1σ,+
A = 1B with A ⊆ B. �

It is easy to realize that the set Aσ,− exactly contains the largest sequence of
consecutive criteria (σ(1), . . . , σ(k−)) in A, while the set Aσ,+ exactly contains
the smallest sequence of consecutive criteria (σ(1), . . . , σ(k+)) that includes A.

Lemma 2. A capacity μ is a necessity measure if and only if there exists a
permutation σ on C such that for all A we have μ(A) = μ(Aσ,−).

A capacity μ is a possibility measure if and only if there exists a permutation
σ on C such that for all A we have μ(A) = μ(Aσ,+).

Proof. Let σ be such that μ(A) = μ(Aσ,−). Let us prove that for all A,B ⊆ C,
we have μ(A ∩ B) = min(μ(A), μ(B)).

From Lemma 1, (A ∩ B)σ,− ⊆ A ∩ B. So μ(A ∩ B) = μ((A ∩ B)σ,−) =
μ({σ(1), · · · , σ(k−)}). As σ(k−+1) �∈ A∩B, then σ(k−+1) �∈ A or σ(k−+1) �∈ B.
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Suppose without loss of generality that σ(k− +1) �∈ A. Then Aσ,− = (A∩B)σ,−

hence μ(A ∩ B) = μ(A) ≤ μ(B) so μ(A ∩ B) = min(μ(A), μ(B)). Consequently
μ is a necessity measure.

Conversely we consider a necessity measure N and the permutation such that
π1 ≥ · · · ≥ πn, N(A) = 1 − πi0 with i0 = min{j : j �∈ A}. So the set Aσ,− is
{1, · · · , i0 − 1} so N(Aσ,−) = 1 − πi0 .

A similar proof can be developed for the case of possibility measures. �

Now we add suitable axioms to a known representation theorem of Cho-
quet integral [15], and obtain a characterisation theorem for the case when the
capacity is a possibility or a necessity measure.

Theorem 1. A function I : V → R satisfies the following properties:

C1 I(1, · · · , 1) = 1,
C2 Comonotonic additivity:f and g comonotone implies I(f + g) = I(f)+ I(g),
C3 Pareto-domination:f ≥ g implies I(f) ≥ I(g),
Π4 There exists a permutation σ on C such that ∀A, I(1A) = I(1A

σ,+)

if and only if I = CΠ , where Π(A) = I(1A) is a possibility measure.

Proof. It is easy to check that the Choquet integral with respect to Π satisfies
the properties C1-C3 and Π4 according to the permutation associated with π.

If I satisfies the properties C1-C3, then according to the results presented
in [15] I is a Choquet integral with respect to the fuzzy measure μ defined by
μ(A) = I(1A). The property Π4 implies μ(A) = I(1σ,+

A ) = μ(Aσ,+), and using
Lemma 2 this equality is equivalent to have a possibility measure. �

Note that Axiom Π4 can be replaced by: There exists a permutation σ on C
such that ∀f , I(f) = I(fσ,+). We have a similar result for necessity measures:

Theorem 2. A function I : V → R satisfies the following properties:

C1 I(1, · · · , 1) = 1,
C2 Comonotonic additivity: f and g comonotone implies I(f +g) = I(f)+I(g),
C3 Pareto-domination: f ≥ g implies I(f) ≥ I(g),
N4 There exists a permutation σ on C such that ∀A, I(1A) = I(1A

σ,−)

if and only if I = CN , where N(A) = I(1A) is a necessity measure.

Axiom N4 can be replaced by: There exists a permutation σ on C such that ∀f ,
I(f) = I(fσ,−). These results indicate that Choquet integrals w.r.t possibility
and necessity measures are additive for a larger class of pairs of functions than
usual, for instance CN (f + g) = CN (f) + CN (g) as soon as (f + g)σ,− = fσ,− +
gσ,−, which does not imply that f and g are comonotone.

Example 2. We consider C = {1, 2, 3}, the permutation associated with Π such
that π1 ≥ π2 ≥ π3 and the profiles f = (1, 2, 3), g = (1, 3, 2) which are not
comonotone. It is easy to check that (f + g)− = fσ,− + gσ,−.
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The above result should be analyzed in the light of a claim by Mesiar and Šipoš
[13] stating that if the capacity μ is modular on the set of cuts {{i : fi ≥ α} :
α > 0} ∪ {{i : gi ≥ α} : α > 0} of f and g, then CN (f + g) = CN (f) + CN (g).
For a general capacity, it holds if f and g are comonotonic. For more particular
capacities, the set of pairs of acts for which modularity holds on cuts can be
larger. This is what seems to happen with possibility and necessity measures.

3 A New Characterisation of Possibilistic Sugeno
Integrals

In this part we suppose that L = V is a finite, totally ordered set with 1 and 0
as respective top and bottom. So, V = LC . Again, we assume that L is equipped
with a unary order reversing involutive operation t → 1− t called a negation. To
distinguish from the numerical case, we denote by ∧ and ∨ the minimum and
the maximum on L. As we are on a qualitative scale we speak of q-integral in
this section. The Sugeno q-integral [16,17], of an alternative f can be defined by
means of several expressions, among which the two following normal forms [12]:

∫

μ

f =
∨

A⊆C

μ(A)
∧

∧i∈Afi =
∨

A⊆C
(1 − μc(A))

∨
∨i∈Afi (5)

Sugeno q-integral can be characterized as follows:

Theorem 3 [3]. Let I : V → L. There is a capacity μ such that I(f) =
∫

μ
f for

every f ∈ V if and only if the following properties are satisfied

1. I(f ∨ g) = I(f) ∨ I(g), for any comonotone f, g ∈ V.
2. I(a ∧ f) = a ∧ I(f), for every a ∈ L and f ∈ V.
3. I(1C) = 1.

Equivalently, conditions (1–3) can be replaced by conditions (1’–3’) below.

1’. I(f ∧ g) = I(f) ∧ I(g), for any comonotone f, g ∈ V.
2’. I(a ∨ f) = a ∨ I(f), for every a ∈ L and f ∈ V.
3’. I(0C) = 0.

The existence of these two equivalent characterisations is due to the possibility of
writing Sugeno q-integral in conjunctive and disjunctive forms (5) equivalently.

Moreover, for a necessity measure N ,
∫

N
f = ∧n

i=1(1 − πi) ∨ fi; and for a
possibility measure Π,

∫
Π

f = ∨n
i=1πi ∧ fi. The Sugeno q-integral with respect

to a possibility (resp. necessity) measure is maxitive (resp. minitive), hence the
following known characterization results for them:

Theorem 4. Let I : V → L. There is a possibility measure Π such that I(f) =∫
Π

f for every f ∈ V if and only if the following properties are satisfied

1. I(f ∨ g) = I(f) ∨ I(g), for any f, g ∈ V.
2. I(a ∧ f) = a ∧ I(f), for every a ∈ L and f ∈ V.
3. I(1C) = 1.
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Theorem 5. There is a necessity measure Π such that I(f) =
∫

N
f for every

f ∈ V if and only if the following properties are satisfied

1’. I(f ∧ g) = I(f) ∧ I(g), for any f, g ∈ V.
2’. I(a ∨ f) = a ∨ I(f), for every a ∈ L and f ∈ V.
3’. I(0C) = 0.

However, we can alternatively characterise those simplified Sugeno q-integrals
in the same style as we did for possibilistic Choquet integrals due to the following

Lemma 3. ∫

N

f =
∫

N

fσ,−,

∫

Π

f =
∫

Π

fσ,+.

Proof. Assume π1 ≥ · · · ≥ πn for simplicity, i.e. σ(i) = i. By definition fσ,− ≤ f
so

∫
N

fσ,− ≤ ∫
N

f since the Sugeno q-integral is an increasing function. Let i0
and i1 be the indices such that

∫
N

fσ,− = max(1 − πi0 ,minj≤i0 fi0) = max(1 −
πi0 , fi1) where i1 ≤ i0. Hence πi1 ≥ πi0 i.e. 1 − πi1 ≤ 1 − πi0 and

∫
N

fσ,− ≥
max(1 − πi1 , fi1) ≥ ∫

N
f.

By definition f ≤ fσ,+ so
∫

Π
f ≤ ∫

Π
fσ,+. Let i0 and i1 be the indices

such that
∫

Π
fσ,+ = min(πi0 ,maxj≤i0 fj) = min(πi0 , fi1) where i1 ≤ i0. Hence

πi0 ≤ πi1 and
∫

Π
fσ,+ ≤ min(πi1 , fi1) ≤ ∫

Π
f. �

In particular,
∫

N
f =

∫
N

φk,
∫

Π
f =

∫
Π

φk, for all 1 ≤ k ≤ n, as for Choquet
integral. Now we can state qualitative counterparts of Theorems 1 and 2:

Theorem 6. There is a possibility measure Π such that I(f) =
∫

Π
f for every

f ∈ V if and only if the following properties are satisfied

1. I(f ∨ g) = I(f) ∨ I(g), for any comonotone f, g ∈ V.
2. I(a ∧ f) = a ∧ I(f), for every a ∈ L and f ∈ V.
3. I(1C) = 1.

Π4 There exists a permutation σ on C such that ∀A, I(1A) = I(1A
σ,+)

Theorem 7. There is a necessity measure N such that I(f) =
∫

N
f for every

f ∈ V if and only if the following properties are satisfied

I(f ∧ g) = I(f) ∧ I(g), for any comonotone f, g ∈ V.
I(a ∨ f) = a ∨ I(f), for every a ∈ L and f ∈ V.
I(0C) = 0.

N4 There exists a permutation σ on C such that ∀A, I(1A) = I(1A
σ,−)

Axiom Π4 (resp., N4) can be replaced by: there exists a permutation σ on
C such that for all f , I(f) = I(fσ,+) (resp. I(f) = I(fσ,−)).

We can generalize Sugeno q-integrals as follows: consider a bounded complete
totally ordered value scale (L, 0, 1,≤), equipped with a binary operation ⊗ called
right-conjunction, which has the following properties:
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– the top element 1 is a right-identity: x ⊗ 1 = x,
– the bottom element 0 is a right-anihilator x ⊗ 0 = 0,
– the maps x �→ a ⊗ x, x �→ x ⊗ a are order-preserving for every a ∈ L.

Note that we have 0 ⊗ x = 0 since 0 ⊗ x ≤ 0 ⊗ 1 = 0. An example of such a
conjunction is a semi-copula (such that a ⊗ b ≤ min(a, b)). We can define an
implication → from ⊗ by semi-duality: a → b = 1 − a ⊗ (1 − b). Note that
this implication coincides with a Boolean implication on {0, 1}, is decreasing
according to its first argument and it is increasing according to the second one.

A non trivial example of semi-dual pair (implication, right-conjunction) is the

contrapositive Gödel implication a →GC b =
{

1 − a if a > b
1 otherwise and the associated

right-conjunction a ⊗GC b =
{

a if b > 1 − a
0 otherwise (it is not a semi-copula).

The associated q-integral is
∫ ⊗

μ
f = ∨A⊆C((∧i∈Afi) ⊗ μ(A)). This kind of

q-integral is studied in [2] for semi-copulas. The associated q-cointegral obtained
via semi-duality is of the form

∫ →
μ

f = ∧A⊆C(μc(A) → (∨i∈Afi)). We can see

that
∫ →

μ
f = 1 − ∫ ⊗

μc(1 − f). But in general,
∫ ⊗

μ
f �= ∫ →

μ
f even when a → b =

1 − a ⊗ (1 − b) [6], contrary to the case of Sugeno q-integral, for which ⊗ is the
minimum, and a → b = max(1 − a, b). We have

∫ ⊗
Π

(f) = maxn
i=1 fi ⊗ πi and∫ →

N
f = minn

i=1(1 − fi) → (1 − πi) since N c = Π.
With a proof similar as the one for Sugeno q-integral, it is easy to check that

a generalized form of Lemma 3 holds:
∫ ⊗

Π
f =

∫ ⊗
Π

fσ,+,
∫ →

N
f =

∫ ⊗
N

fσ,−.
The characterisation results for Sugeno q-integral (Theorem 3) and their

possibilistic specialisations (Theorems 4 and 5) can be generalised for right-
conjunction-based q-integrals and q-cointegrals albeit separately for each:

Theorem 8. A function I : V → L satisfies the following properties:

RC1 f and g comonotone implies I(f ∨ g) = I(f) ∨ I(g),
RC2 I(1A ⊗ a) = I(1A) ⊗ a
RC3 I(1C) = 1.

if and only if I is a q-integral
∫ ⊗

μ
f with respect to a capacity μ(A) = I(1A).

Adding axiom Π4 yields an optimistic possibilistic q-integral
∫ ⊗

Π
f .

Theorem 9. A function I : V → L satisfies the following properties:

IRC1 f and g comonotone implies I(f ∧ g) = I(f) ∧ I(g),
IRC2 I(a → 1A) = a → I(1A)
IRC3 I(1∅) = 0.

if and only if I is an implicative q-integral
∫ →

μ
f with respect to a capacity μ(A) =

I(1A). Adding axiom N4 yields a pessimistic possibilistic q- cointegral
∫ ⊗

N
f .
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4 Axiomatisation Based on Preference Relations

In the context of the decision under uncertainty we consider a preference relation
on the profiles and we want to represent it with a Choquet integral, a Sugeno
q-integral or a q-integral with respect to a possibility or a necessity.

4.1 Preference Relations Induced by Fuzzy Integrals

With the previous integrals with respect to a possibility we can define a prefer-
ence relation: f �+∮ g if and only if

∮
Π

(fσ,+) ≥ ∮
Π

(gσ,+) where
∮

is one of the

integrals presented above. For all f , we have the indifference relation f ∼+∮ fσ,+.
An optimistic decision maker is represented using a possibility measure since
the attractiveness (fσ,+

i ) is never less that the greatest utility fj among the
states more plausible than i. Particularly, if the state 1 is the most plausible
with f1 = 1 then we have f = (1, 0, · · · , 0) ∼ (1, · · · , 1). The expected profit in
a very plausible state is not affected with the expected losses in less plausible
states. The Choquet integral calculates the average of the best consequences for
each plausibility level.

Similarly we can define preference relations �−∮ using a necessity measure. In

such a context for all f , f ∼−∮ fσ,−. In this case, the decision maker is pessimistic

since the attractiveness (fσ,−
i ) is never greater that the smallest utility fj among

the states more plausible than i. Particularly, if the state 1 is the most plausible
with f1 = 0 then we have f = (0, 1, · · · , 1) ∼ (0, · · · , 0). The expected profits
in the least plausible states cannot compensate the expected losses in more
plausible states. In this case the Choquet integral calculates the average of the
worst consequences for each plausibility level.

4.2 The case of Choquet integral

Let � be a preference relation on profiles given by the decision maker. In [4] the
following axioms are proposed, in the infinite setting, where the set of criteria is
replaced by a continuous set of states S:

A1 � is non trivial complete preorder.
A2 Continuity according to uniform monotone convergence

A2.1 [fn, f, g ∈ V, fn � g, fn ↓u f ] ⇒ f � g;
A2.2 [fn, f, g ∈ V, g � fn, fn ↑u f ] ⇒ g � f ;

A3 If f ≥ g + ε where ε is a positive constant function then f � g
A4 Comonotonic independence: If f, g, h are profiles such that f and h, and g

and h are comonotone, then: f � g ⇔ f + h � g + h

And we have the following result [4]:

Theorem 10. A preference relation � satisfies axioms A1 − A4 if and only if
there exists a capacity μ such that Cμ represents the preference relation. This
capacity is unique.
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The notion of pessimistic and optimistic profile can be extended to the con-
tinuous case. A possibility distribution on S defines a complete plausibility pre-
ordering ≤π on S, and given an act f , we can define its pessimistic counterpart
as f≤π,−(s) = infs≤πs′ f(s′). Let us add the pessimistic axiom:

N4 There is a complete plausibility preordering ≤π on S such that f ∼ f≤π,−.

Similarly an optimistic axiom Π4 can be written, using optimistic counter-
parts of profiles f≤π,+(s) = sups≤πs′ f(s′).

Π4 There is a complete plausibility preordering ≤π on S such that f ∼ f≤π,+.

We can conjecture the following result for necessity measures:

Theorem 11. A preference relation � satisfies axioms A1 − A4 and N4 if and
only if there exists a necessity measure N such that CN represents the preference
relation. This necessity measure is unique.

The proof comes down to showing that the unique capacity obtained from
axioms A1 − A4 is a necessity measure. However, it is not so easy to prove
in the infinite setting. Indeed, a necessity measure then must satisfy the infinite
minitivity axiom, N(∩i∈I) = infi∈I N(Ai), for any index set I, which ensures the
existence of a possibility distribution underlying the capacity. But it is not clear
how to extend Lemma 2 to infinite families of sets. As its stands, Lemma 2 only
justifies finite minitivity. The same difficulty arises for the optimistic counterpart
of the above tentative result. In a finite setting, the permutation σ that indicates
the relative plausibility of states can be extracted from the preference relation on
profiles, by observing special ones. More precisely, CN (1, . . . , 1, 0, 1, . . . 1) = 1−πi

(the 0 in the case i) in the pessimistic case, and CΠ(0, . . . , 0, 1, 0, . . . 0) = πi in
the optimistic case. This fact would still hold in the form CN (C\{s}) = 1 − π(s)
and CΠ({s}) = π(s), respectively, with infinite minitivity (resp. maxitivity).

4.3 A New Characterisation for Qualitative Possibilistic Integrals

The axiomatization of Sugeno q-integrals in the style of Savage was carried out
in [7]. Here, acts are just functions f from C to a set of consequences X. The
axioms proposed are as follows, where xAf is the act such that (xAf)i = x if
i ∈ A and fi otherwise, x ∈ X being viewed as a constant act:

A1 � is a non trivial complete preorder.
WP3 ∀A ⊆ C,∀x, y ∈ X,∀f, x ≥ y implies xAf � yAf,
RCD: if f is constant, f � h and g � h imply f ∧ g � h
RDD: if f is a constant act, h � f and h � g imply h � f ∨ g.

Act f ∨ g makes the best of f and g, such that ∀s ∈ S, f ∨ g(s) = f(s) if
f(s) � g(s) and g(s) otherwise; and act f ∧ g, makes the worst of f and g, such
that ∀s ∈ S, f ∧ g(s) = f(s) if g(s) � f(s) and g(s) otherwise. We recall here
the main results about this axiomatization for decision under uncertainty.



104 D. Dubois and A. Rico

Theorem 12. [7]: The following propositions are equivalent:

– (XC ,�) satisfies A1, WP3, RCD, RDD.
– there exists a finite chain of preference levels L, an L-valued monotonic set-

function μ, and an L-valued utility function u on X, such that f � g if and
only if

∫
μ
(u ◦ f) ≥ ∫

μ
(u ◦ g).

In the case of a Sugeno q-integral with respect to a possibility measure, RDD
is replaced by the stronger axiom of disjunctive dominance DD:

Axiom DD: ∀f, g, h, h � f and h � g imply h � f ∨ g
and we get a similar result as the above theorem, whereby f � g if and only if∫

Π
(u ◦ f) ≥ ∫

Π
(u ◦ g) for a possibility measure Π [8].

In the case of a Sugeno q-integral with respect to a necessity measure, RCD
is replaced by the stronger axiom of conjunctive dominance CD:

Axiom CD: ∀f, g, h, f � h and g � h imply f ∧ g � h
and we get a similar result as the above Theorem 12, whereby f � g if and only
if

∫
N

(u ◦ f) ≥ ∫
N

(u ◦ g) for a necessity measure Π [8].
We can then replace the above representation results by adding to the char-

acteristic axioms for Sugeno q-integrals on a preference relation between acts
the same axioms based on pessimistic and optimistic profiles as the ones that,
added to characteristic axioms of Choquet integrals lead to a characterisation of
preference structures driven by possibilistic Choquet integrals.

Theorem 13. The following propositions are equivalent:

– (XC ,�) satisfies A1, WP3, RCD, RDD and Π4
– there exists a finite chain of preference levels L, an L-valued possibility mea-

sure Π, and an L-valued utility function u on X, such that f � g if and only
if

∫
Π

(u ◦ f) ≥ ∫
Π

(u ◦ g).

Theorem 14. The following propositions are equivalent:

– (XC ,�) satisfies A1, WP3, RCD, RDD and N4
– there exists a finite chain of preference levels L, an L-valued necessity measure

N , and an L-valued utility function u on X, such that f � g if and only if∫
N

(u ◦ f) ≥ ∫
N

(u ◦ g).

The reason for the validity of those theorems in the case of Sugeno q-integral
is exactly the same as the reason for the validity of Theorems 1, 2, 6 and 7,
adding Π4 (resp. N4) to the representation theorem of Sugeno q-integral forces
the capacity to be a possibility (resp. necessity) measure. However, this method
seems to be unavoidable to axiomatize Choquet integrals for possibility and
necessity measures as they are not maxitive nor minitive. In the case of pos-
sibilistics q-integrals, the maxitivity or minitivity property of the preference
functional makes it possible to propose more choices of axioms. However, it is
interesting to notice that the same axioms are instrumental to specialize Sugeno
and Choquet integrals to possibility and necessity measures.



Possibilistic Integrals 105

5 Conclusion

This paper proposes an original axiomatization of discrete Choquet integrals
with respect to possibility and necessity measures, and shows that it is enough
to add, to existing axiomatisations of general instances of Choquet integrals, a
property of equivalence between profiles, that singles out possibility or necessity
measures. Remarkably, this property, which also says that the decision-maker
only considers relevant the relative importance of single criteria, is qualitative
in nature and can thus be added as well to axiom systems for Sugeno integrals,
to yield qualitative weighted min and max aggregation operations, as well as for
their ordinal preference setting à la Savage. We suggest these results go beyond
Sugeno integrals and apply to more general qualitative functionals. One may
wonder if this can be done for the ordinal preference setting of the last section,
by changing axioms RCD or RDD using right-conjunctions and their semi-duals.
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Abstract. In this note, we introduce the concepts of support disjoint-
ness super-⊕-additivity and positively super-⊗-homogeneity of a func-
tional (with respect to pan-addition ⊕ and pan-multiplication ⊗, respec-
tively). By means of these two properties of functionals, we discuss the
characteristics of pan-integrals and present an equivalent definition of the
pan-integral. As special cases, we obtain the equivalent definitions of the
Shilkret integral, the +, ·-based pan-integral, and the Sugeno integral.

Keywords: Pan-integral · Sugeno integral · Shilkret integral · Support
disjointness super-⊕-additivity · Positively super-⊗-homogeneity

1 Introduction

In non-additive measure theory, several prominent nonlinear integrals, for exam-
ple, the Choquet integral [3] and the Sugeno [12] integral, have been defined and
discussed in detail [4,10,16].

As a generalization of the Legesgue integral and Sugeno integral, Yang [17]
introduced the pan-integral with respect to a monotone measure and a com-
mutative isotonic semiring (R+,⊕,⊗), where ⊕ is a pan-addition and ⊗ a pan-
multiplication [16,17]. The researches on this topic can be also found in [1,5,8–
10,13,18].

On the other hand, Lehrer introduced a new kind of nonlinear integral —
the concave integral with respect to a capacity, see [6,7,14]. Let (X,A) be a
measurable space and F+ denote the class of all finite nonnegative real-valued
measurable functions on (X,A). For fixed capacity ν, the concave integral with
respect to ν is a concave and positively homogeneous nonnegative functional on
F+. Observe that such integral was defined as the infimum taken over all concave
and positively homogeneous nonnegative functionals H defined on F+ with the
condition: ∀A ∈ A,H(χA) ≥ μ(A).

Inspiration received from the definition of concave integral, we try to charac-
terize the pan-integrals via functionals over F+ (with some additional restricts).
We introduce the concepts of support disjointness super-⊕-additivity and posi-
tively super-⊗-homogeneity of a functional on F+ (with respect to pan-addition
⊕ and pan-multiplication ⊗, respectively). We will show the pan-integral, as

c© Springer International Publishing Switzerland 2016
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a functional defined on F+, is support disjointness super-⊕-additive and pos-
itively super-⊗-homogeneous. We shall present an equivalent definition of the
pan-integral by using monotone, support disjointness super-⊕-additive and pos-
itively super-⊗-homogeneous functionals on F+.

2 Preliminaries

Let X be a nonempty set and A a σ-algebra of subsets of X, R+ = [0,+∞),
R+ = [0,+∞]. Recall that a set function μ : A → R+ is a monotone measure, if
it satisfies the following conditions:

(1) μ(∅) = 0 and μ(X) > 0;
(2) μ(A) ≤ μ(B) whenever A ⊂ B and A,B ∈ A.
In this paper we restrict our discussion on a fixed measurable space (X,A).

Unless stated otherwise all the subsets mentioned are supposed to belong to
A. Let M be the set of all monotone measures defined on (X,A). When μ is
a monotone measure, the triple (X,A, μ) is called a monotone measure space
[10,16].

The concept of a pan-integral involves two binary operations, the pan-
addition ⊕ and pan-multiplication ⊗ of real numbers [16,17].

Definition 1. An binary operation ⊕ on R+ is called a pan-addition if it sat-
isfies the following requirements:

(PA1) a ⊕ b = b ⊕ a = a (commutativity);
(PA2) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) (associativity);
(PA3) a ≤ c and b ≤ d imply that a ⊕ b ≤ c ⊕ d (monotonicity);
(PA4) a ⊕ 0 = a (neutral element);
(PA5) an → a and bn → b imply that an ⊕ bn → a ⊕ b (continuity).

Definition 2. Let ⊕ be a given pan-addition on R+. A binary operation ⊗
on R+ is said to be a pan-multiplication corresponding to ⊕ if it satisfies the
following properties:

(PM1) a ⊗ b = b ⊗ a (commutativity);
(PM2) (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) (associativity);
(PM3) a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) (distributive law);
(PM4) a ≤ b implies (a ⊗ c) ≤ (b ⊗ c) for any c (monotonicity);
(PM5) a ⊗ b = 0 ⇔ a = 0 or b = 0 (annihilator);
(PM6) there exists e ∈ [0,∞] such that e ⊗ a = a for any a ∈ [0,∞] (neutral

element);
(PM7) an → a ∈ [0,∞) and bn → b ∈ [0,∞) imply (an ⊗ bn) → (a ⊗ b)

(continuity).

When ⊕ is a pseudo-addition on R+ and ⊗ is a pseudo-multiplication (with
respect to ⊕) on R+, the triple (R+,⊕,⊗) is called a commutative isotonic
semiring (with respect to ⊕ and ⊗) [16].
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Notice that similar operations called pseudo-addition and pseudo-
multiplication can be found in the literature [1,2,5,8–10,13,15,18].

In the following, we recall the concept of pan-integral [16,17].

Definition 3. Consider a commutative isotonic semiring (R+,⊕,⊗). Let μ ∈
M and f ∈ F+. The pan-integral of f on X with respect to μ is defined via

I(⊕,⊗)
pan (μ, f) = sup

{
n⊕

i=1

(
λi ⊗ μ(Ai)

)
:

n⊕

i=1

(
λi ⊗ χAi

)
≤ f, {Ai}ni=1 ∈ P

}

,

where χA is the characteristic function of A which takes value e on A and 0
elsewhere, and P is the set of all finite partitions of X.

For A ∈ A, the pan-integral of f on A is defined by I(⊕,⊗)
pan (μ, f ⊗ χA).

Note: A finite partition of X is a finite disjoint system of sets {Ai}ni=1 ⊂ A
such that Ai ∩ Aj = ∅ for i �= j and ∪n

i=1Ai = X.

Note that in the case of commutative isotonic semiring (R+,∨,∧), Sugeno
integral [12] is recovered, while for (R+,∨, ·), Shilkret integral [11] is covered by
the pan-integral in Definition 3.

Proposition 1. Consider a commutative isotonic semiring (R+,⊕,⊗) and fixed
μ ∈ M. Then I(⊕,⊗)

pan (μ, ·), as a functional on F+, is monotone, i.e., for any
f, g ∈ F+,

f ≤ g =⇒ I(⊕,⊗)
pan (μ, f) ≤ I(⊕,⊗)

pan (μ, g).

Proposition 2. For any A ∈ F , I(⊕,⊗)
pan (μ, χA) ≥ μ(A).

3 Main Results

In this section we present an equivalent definition of pan-integral. In order to do
it, we first introduce two new concepts and show two lemmas.

Definition 4. Consider a commutative isotonic semiring (R+,⊕,⊗). A func-
tional F : F+ → R+ is said to be

(i) positively super-⊗-homogeneous, if for any f ∈ F+ and any a > 0, we
have

F (a ⊗ f) ≥ a ⊗ F (f). (1)

(ii) support disjointness super-⊕-additive,if for any f, g ∈ F+, supp(f) ∩
supp(g) = ∅, we have

F (f ⊕ g) ≥ F (f) ⊕ F (g), (2)

here supp(f) = {x ∈ X : f(x) > 0} since we do not concern the topology.
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Lemma 1. Consider a commutative isotonic semiring (R+,⊕,⊗) and fixed μ ∈
M. Then I(⊕,⊗)

pan (μ, ·), as a functional on F+, is positively super-⊗-homogeneous,
i.e., for any f ∈ F+ and any a > 0, we have

I(⊕,⊗)
pan (μ, a ⊗ f) ≥ a ⊗ I(⊕,⊗)

pan (μ, f). (3)

Proof. For any finite partition {A1, . . . , An} of X and {λ1, . . . , λn} ⊂ R+ with
⊕n

i=1(λi ⊗ χAi
) ≤ f , we have that

⊕n
i=1

(
(a ⊗ λi) ⊗ χAi

)
≤ a ⊗ f . Thus,

I(⊕,⊗)
pan (μ, a ⊗ f)

= sup

⎧
⎨

⎩

m⊕

j=1

(
βj ⊗ μ(Bj)

)
:

m⊕

j=1

(
βj ⊗ χBj

)
≤ a ⊗ f, {Bj}mj=1 ∈ P

⎫
⎬

⎭

≥ sup

{
n⊕

i=1

(
(a ⊗ λi) ⊗ μ(Ai)

)
:

n⊕

i=1

(
(a ⊗ λi) ⊗ χAi

)
≤ a ⊗ f, {Ai}ni=1 ∈ P

}

= sup

{

a ⊗
n⊕

i=1

(
λi ⊗ μ(Ai)

)
: a ⊗

n⊕

i=1

(
λi ⊗ χAi

)
≤ a ⊗ f, {Ai}ni=1 ∈ P

}

≥ a ⊗ sup

{
n⊕

i=1

(
λi ⊗ μ(Ai)

)
:

n⊕

i=1

(
λi ⊗ χAi

)
≤ f, {Ai}ni=1 ∈ P

}

= a ⊗ I(⊕,⊗)
pan (μ, f). �

Remark 1. Notice that for the commutative isotonic semiring (R+,⊕, ·), i.e., ⊗ is
the usual multiplication, then the related pan-integral is positively homogeneous,
i.e.,

I(⊕,·)
pan (μ, af) = a · I(⊕,·)

pan (μ, f).

In fact, by Lemma 1, I(⊕,·)
pan (μ, af) ≥ a I(⊕,·)

pan (μ, f). On the other hand,
I(⊕,·)
pan (μ, f) = I(⊕,·)

pan (μ, 1
a (af)) ≥ 1

aI
(⊕,·)
pan (μ, af), which implies the reverse inequal-

ity and hence the equality holds.

Lemma 2. Consider a commutative isotonic semiring (R+,⊕,⊗) and fixed μ ∈
M. Then I(⊕,⊗)

pan (μ, ·), as a functional on F+, is support disjointness super-⊕-
additive, i.e., for any f, g ∈ F+ such that supp(f) ∩ supp(g) = ∅, we have

I(⊕,⊗)
pan (μ, f ⊕ g) ≥ I(⊕,⊗)

pan (μ, f) ⊕ I(⊕,⊗)
pan (μ, g). (4)

Proof. If one of the two integrals on the right-hand side of Ineq. (4) is infinite
then, by the monotonicity of the pan-integral, I(⊕,⊗)

pan (μ, f ⊕ g) also equals to
infinity, which implies that (4) holds.

So, without loss of generality, we can suppose that both I(⊕,⊗)
pan (μ, f) and

I(⊕,⊗)
pan (μ, g) are finite. Let ln ↗ I(⊕,⊗)

pan (μ, f) and rn ↗ I(⊕,⊗)
pan (μ, f) be two

sequences of real number. Then, for each n, there is a partition {A
(n)
i }kn

i=1 of
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supp(f), a partition {B
(n)
j }mn

j=1 of supp(g), and two sequences of positive number

{α
(n)
i }kn

i=1 and {β
(n)
j }mn

j=1 such that
⊕kn

i=1(α
(n)
i ⊗χ

A
(n)
i

) ≤ f ,
⊕mn

j=1(β
(n)
j ⊗χ

B
(n)
j

) ≤
g and both the following two inequalities hold

kn⊕

i=1

(
α
(n)
i ⊗ μ(A(n)

i )
)

≥ ln,

mn⊕

j=1

(
β
(n)
j ⊗ μ(B(n)

j )
)

≥ rn.

By the fact of supp(f) ∩ supp(g) = ∅, we know that {A
(n)
i }kn

i=1 ∪ {B(n)
j }mn

j=1 is a
partition of supp(f ⊕ g). Moreover, we have that

( kn⊕

i=1

(α(n)
i ⊗ χ

A
(n)
i

)
) ⊕ ( mn⊕

j=1

(β(n)
j ⊗ χ

B
(n)
j

)
)

≤ f ⊕ g,

and

I(⊕,⊗)
pan (μ, f ⊕ g) ≥

( kn⊕

i=1

(
α
(n)
i ⊗ μ(A(n)

i )
)) ⊕ ( mn⊕

j=1

(
β
(n)
j ⊗ μ(B(n)

j )
))

≥ ln ⊕ rn.

Letting n → ∞, by the continuity of pan-addition, we get that

I(⊕,⊗)
pan (μ, f ⊕ g) ≥ I(⊕,⊗)

pan (μ, f) ⊕ I(⊕,⊗)
pan (μ, g).

The proof is complete. �

Consider a commutative isotonic semiring (R+,⊕,⊗). Let C⊕,⊗ be the set
of all nonnegative, monotone, positively super-⊗-homogeneous and support dis-
jointness super-⊕-additive functionals on F+.

The following is our main result which provides an equivalent definition of
the pan-integral.

Theorem 1. Consider a commutative isotonic semiring (R+,⊕,⊗) and fixed
μ ∈ M. Then for any f ∈ F+,

I(⊕,⊗)
pan (μ, f) = inf

{
F (f) : F ∈ C⊕,⊗,∀A ∈ A, F (χA) ≥ μ(A)

}
.

Proof. By Propositions 1 and 2, Lemmas 1 and 2, we know that I(⊕,⊗)
pan (μ, ·) :

F+ → [0,∞] is monotone, positively super-⊗-homogeneous, support disjointness
super-⊕-additive, i.e., I(⊕,⊗)

pan (μ, ·) ∈ C⊕,⊗ and I(⊕,⊗)
pan (μ, χA) ≥ μ(A) for any

A ∈ A. Therefore,

I(⊕,⊗)
pan (μ, f) ≥ inf

{
F (f) : F ∈ C⊕,⊗,∀A ∈ A, F (χA) ≥ μ(A)

}
.



112 Y. Ouyang and J. Li

On the other hand, for any f ∈ F+, any
⊕n

i=1

(
λi ⊗ χAi

) ≤ f and any
F ∈ C⊕,⊗ with F (χA) ≥ μ(A),∀A ∈ A, we have

F (f) ≥ F
( n⊕

i=1

(
λi ⊗ χAi

)) ≥
n⊕

i=1

F
(
λi ⊗ χAi

)

≥
n⊕

i=1

(
λi ⊗ F (χAi

)
)

≥
n⊕

i=1

(
λi ⊗ μ(Ai)

)
.

Thus,

F (f) ≥ sup
{ n⊕

i=1

(
λi ⊗ μ(Ai)

)
:

n⊕

i=1

(
λi ⊗ χAi

) ≤ f
}
= I(⊕,⊗)

pan (μ, f).

By the arbitrariness of F , we infer that

inf
{

F (f) : F ∈ C⊕,⊗,∀A ∈ A, F (χA) ≥ μ(A)
}

≥ I(⊕,⊗)
pan (μ, f),

which proves the conclusion. �

Let C(1)
⊕,· be the set of nonnegative, monotone, positively homogeneous and

support disjointness super-⊕-additive functionals on F+. Then C(1)
⊕,· ⊂ C⊕,·. Not-

ing that I(⊕,·)
pan (μ, ·) : F+ → [0,∞] is positively homogeneous (Remark 1), then

I(⊕,·)
pan (μ, ·) ∈ C(1)

⊕,·. Thus we have the following result.

Theorem 2. Let (X,F , μ) be a monotone measure space. Then for any f ∈ F+,

I(⊕,·)
pan (μ, f) = inf

{
F (f) : F ∈ C(1)

⊕,·,∀A ∈ A, F (χA) ≥ μ(A)
}

.

Let the commutative isotonic semiring be (R+,∨, ·). Noticing that
I(∨,·)
pan (μ, χA) = μ(A),∀A ∈ A, by Theorem 2, we get an equivalent definition
for the Shilkret integral.

Corollary 1. Let (X,F , μ) be a monotone measure space. Then for any f ∈ F+,

I(∨,·)
pan (μ, f) = inf

{
F (f) : F ∈ C(1)

∨,· ,∀A ∈ A, F (χA) = μ(A)
}

.

If we let ⊕ = +, then we get an equivalent definition for the usual addition
and multiplication based pan-integral.

Corollary 2. Let (X,F , μ) be a monotone measure space. Then for any f ∈ F+,

I(+,·)
pan (μ, f) = inf

{
F (f) : F ∈ C(1)

+,·,∀A ∈ A, F (χA) ≥ μ(A)
}

.

Noting that the Sugeno integral is positively ∧-homogeneous [16] and satisfies
I(∨,∧)
pan (μ, χA) = μ(A),∀A ∈ A, we also have the following result.
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Corollary 3. Let (X,F , μ) be a monotone measure space. Then for any f ∈ F+,

I(∨,∧)
pan (μ, f) = inf

{
F (f) : F ∈ C(1)

∨,∧,∀A ∈ A, F (χA) = μ(A)
}

.
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Abstract. IFPD confirmation measures are used in ranking inductive
rules in Data Mining. Many measures of this kind have been defined
in literature. We show how some of them are related to each other via
weighted means. The special structure of IFPD measures allows to define
also new monotonicity and symmetry properties which appear quite nat-
ural in such context. We also suggest a way to measure the degree of
symmetry of IFPD confirmation measures.

Keywords: Confirmation measures · IFPD · Monotonicity ·
Symmetry · Degree of symmetry

1 Introduction

The effects of a piece of knowledge E on a conclusion H can be conveyed as an
inductive rule in the form E → H. When expressing the content of a dataset
via inductive rules, the strengths of the rules need to be compared and ranked.
The most natural way to scoring them is combining quantities which measure
the probability change of conclusion H: it is possible to measure the degree
to which E supports or contradicts H using prior probability P (H) and pos-
terior probability P (H|E) and the probability P (E) of evidence E. What is
needed is a confirmation measure C(H,E) which evaluates the degree to which
a piece of evidence E provides evidence for or against or support for or against
conclusion H.

As soon as the evidence E occurs, the knowledge changes and conclusion H
may be confirmed, when P (H|E) > P (H), or disconfirmed, when P (H|E) <
P (H). A Bayesian Confirmation measure C(H,E) is required to possess the
following properties:

– C(H,E) > 0 if P (H|E) > P (H) (confirmation case)
– C(H,E) = 0 if P (H|E) = P (H) (neutrality case)
– C(H,E) < 0 if P (H|E) < P (H) (disconfirmation case)

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-45656-0 10
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Confirmation measures have been deeply explored in literature from differ-
ent perspectives (see e.g. [4,6,8]). We focus on special Bayesian confirmation
measures called Initial Final Probability Dependence (IFPD) (for more details
see [4]). IFPD property identifies confirmation measures that are in some sense
essential since they use only prior and posterior probabilities to evaluate the
rules. The analysis of the special class of IFPD confirmation measures results
to be interesting with reference to the recent use of visualization techniques
that are particularly meaningful for the comprehension and selection of different
interestingness measures (see [20,21]). In the same way, the study of analyt-
ical properties of confirmation measures provides some useful insights on the
discrimination between different measures ([7,13]).

Actually, some recent confirmation measures were developed by Rough Sets
Theory specialists ([13]). Throughout the paper we will consider as benchmark
examples four well known confirmation measures, which turn out to be used
in jMAF (see [2,15]), a well-established software for Rough Set based Decision
Support Systems:

– G(H,E) = log
[

P (E|H)
P (E|¬H)

]

defined by Good in [10]

– K(H,E) =
P (E|H) − P (E|¬H)
P (E|H) + P (E|¬H)

defined by Kemeny and Oppenheim in [14]

– Z(H,E) =

⎧
⎪⎪⎨

⎪⎪⎩

Z1(H,E) =
P (H|E) − P (H)

1 − P (H)
in case of confirmation

Z2(H,E) =
P (H|E) − P (H)

P (H)
in case of disconfirmation

first defined by Rescher in [17] and reproposed, e.g., in [4,13,22]

– A(H,E) =

⎧
⎪⎪⎨

⎪⎪⎩

A1(H,E) =
P (H) − P (H|¬E)

P (H)
in case of confirmation

A2(H,E) =
P (H) − P (H|¬E)

1 − P (H)
in case of disconfirmation

proposed by Greco, S�lowiński and Szczȩch in [13].

The above formulas allow to observe that measure G, even though originally
expressed as a function of likelihoods of the hypotheses P (E|H) and P (E|¬H),
can be expressed as a function of only P (H) and P (H|E), the so-called preva-
lence and confidence (or precision) of the rule:

G(H,E) = log
[
P (H|E)
P (H)

[1 − P (H)]
[1 − P (H|E)]

]

.

The same happens for K

K(H,E) =
P (H|E) − P (H)

P (H|E) − 2P (H|E)P (H) + P (H)

and Z
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Z(H,E) =

⎧
⎪⎪⎨

⎪⎪⎩

Z1(H,E) =
P (H|E) − P (H)

1 − P (H)
in case of confirmation

Z2(H,E) =
P (H|E) − P (H)

P (H)
in case of disconfirmation.

Many Bayesian confirmation measures are, indeed, defined as functions of
P (H|E) and P (H) only, e.g., justification measures (see [18]), although some
of them take explicitly into account the value of P (E) (see e.g. [1]). To express
A as a function of prevalence and confidence, in fact, we cannot avoid to include
in the definition the probability P (E) of evidence E, the so called coverage of
the rule. It is possible to rewrite it in terms of P (H), P (H|E) and P (E):

A(H, E) =

⎧
⎪⎨

⎪⎩

A1(H, E) =
P (E)

1 − P (E)

P (H|E) − P (H)

P (H)
in case of confirmation

A2(H, E) =
P (E)

1 − P (E)

P (H|E) − P (H)

1 − P (H)
in case of disconfirmation.

Therefore G, K and Z are examples of IFPD confirmation measures, while this
is not true for A.

An IFPD confirmation measure thus, is a real-valued function of two variables
x = P (H|E) and y = P (H), which coherently can be analysed with usual
calculus techniques: we will use this observation to outline some of the properties
of confirmation measures.

2 Relationships Between Confirmation Measures

Several confirmation measures are defined and used in many fields (see, e.g., [8]),
notwithstanding their different names some of them conceal the same measure.
Moreover some truly different measures provide the same ranking among rules,
like Kemeny’s K and Good’s G: in this case the measures are said to be ordinally
equivalent [4].

Nevertheless, even not equivalent measures, like K and Z, may exhibit
rather similar outcomes. Remarkably, an algebraic investigation of the analytical
expressions of those measures reveals that it is possible to rewrite K in terms
of Z. In particular, K can be rewritten in a rather natural way, as a weighted
harmonic mean of the expressions for Z in case of confirmation (which was indi-
cated above by Z1) and disconfirmation (Z2). Moreover, in a similar way K can
also be expressed using the two expressions that define measure A.

Let us go into some more details.
As reported in [4], the idea beyond the definition of Z was to calculate the

relative reduction of the distance from certainty, i.e., to determine to what extent
the probability distance from certainty concerning the truth of H is reduced by
a confirming piece of evidence E.

The way in which we will link the expressions of K and Z seems to allow
insights into the meaning of those measures. Let us first formally extend the use
of function Z1 also to the case of disconfirmation, and that of Z2 to the case of
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confirmation, so that we can readily write K as a weighted harmonic mean of
those functions, with weights w1 = P (H|E) and w2 = 1−P (H|E), respectively,1

K(H,E) =
(

P (H|E)
Z1(H,E)

+
1 − P (H|E)
Z2(H,E)

)−1

(1)

or

K(H,E) =
P (H|E) − P (H)

P (H|E)(1 − P (H)) + (1 − P (H|E))P (H)
.

This way K can be interpreted as a synthesis of the two expressions for Z
putting higher weight to the confirmation formula when the confidence of the
rule P (H|E) is high, and to the disconfirmation formula when confidence is low.
We can observe that K, as an harmonic mean, will be more stable with respect
to possible extreme values of Z1 or Z2 (when P (H|E) is either rather close to 1
or to 0).

Similar considerations hold for confirmation measure A which also requires
the use of two different expressions in the cases of confirmation and disconfir-
mation. By extending the domains of functions A1 and A2 to both the cases of
confirmation and disconfirmation, we obtain

K(H,E) =
1 − P (E)

P (E)

(
1 − P (H|E)
A1(H,E)

+
P (H|E)
A2(H,E)

)−1

(2)

Note that a factor depending on the probability of evidence E is now required. K
can be viewed in terms of the two formulas for A1 and A2, but the role played by
confidence is now upset: a higher weight is assigned to the confirmation formula
when the confidence of the rule is low and to the disconfirmation formula when
confidence is high.

Once realized that K can be expressed as a weighted harmonic mean of Z1

and Z2, or of A1 and A2, it seems interesting to observe other, similar, rela-
tionships. For example, the simplest confirmation measure, the difference confir-
mation measure d(H,E) = P (H|E) − P (H) (see Carnap [3]), can be expressed
as the harmonic mean of Z1 and Z2. Note that weighted (harmonic) means of
Bayesian confirmation measures clearly provide new Bayesian confirmation mea-
sures. In Table 1 we propose some examples of weighted harmonic means of Z1

and Z2 by considering the first weight w1 set equal to P (H|E), 1 − P (H|E),
P (H), 1 − P (H), P (E), 1 − P (E), respectively.

The last two measures, hwm4 and hwm5, are the only not-IFPD confirma-
tion measures of the set. Some of those measures correspond, or are ordinally
equivalent, to confirmation measures which have been already defined in the lit-
erature; it is obvious that this way we can also easily think up completely new

1 As a matter of fact, when the evidence E disconfirms conclusion H, i.e. P (H|E) <
P (H), both Z1 and Z2 assume a negative value: strictly speaking their harmonic
mean is not defined, but the proposed link (1) among measures holds, with the same
meaning. In the neutrality case we have the boundary values K = Z = 0 and their
link cannot be defined by a harmonic mean like (1).
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Table 1. Confirmation measures as means of Z1 and Z2

Name w1 w2 Formula Kind of mean

d Carnap 1/2 1/2 2[P (H|E) − P (H)] Harmonic

K - Kemeny P (H|E) 1 − P (H|E) P (H|E)−P (H)
P (H|E)−2P (H|E)P (H)+P (H)

w. harmonic

hwm1 1 − P (H|E) P (H|E) P (H|E)−P (H)
2P (H|E)P (H)−P (H|E)−P (H)+1

w. harmonic

hwm2 P (H) 1 − P (H) 1/2 P (H|E)−P (H)
P (H)(1−P (H))

w. harmonic

hwm3 1 − P (H) P (H) P (H|E)−P (H)

2P (H)2−2P (H)+1
w. harmonic

hwm4 P (E) 1 − P (E) P (H|E)−P (H)
−2P (H)P (E)+P (H)+P (E)

w. harmonic

hwm5 1 − P (E) P (E) P (H|E)−P (H)
2P (H)P (E)−P (H)−P (E)+1

w. harmonic

measures, using different means which can be found in literature, or to choose
weights in order to calibrate a specific confirmation measure with specific prop-
erties. More in general one could also exploit the large variety of aggregation
functions in order to obtain measures which satisfy desired properties (see, e.g.,
[11]).

Clearly, the new generated rules may or may not have some additional prop-
erties which are often requested for Confirmation measures. In the following
we restrict our attention to monotonicity and symmetry properties in terms of
P (H|E), P (H) and P (E), primarily focusing on IFPD measures.

3 Monotonicity

Since monotonicity and symmetry properties of confirmation measures are usu-
ally expressed in contingency table notation, let us recall how the rules E → H
induced from a dataset on a universe U , can be represented involving the con-
tingency table notation, as in Table 2

Table 2. Contingency table

H ¬H Σ

E a c a + c

¬E b d b + d

Σ a + b c + d a+b+c+d

where a = sup(H,E), b = sup(H,¬E), c = sup(¬H,E), d = sup(¬H,¬E)
and sup(B,A) denotes the support of the rule A → B, i.e., the number of
elements in the dataset for which both the premise A and the conclusion B of
the rule are true (see Greco et al. in [13]). In this way the cardinality of the
universe U is |U | = a + b + c + d.
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By estimating probabilities in terms of frequencies, e.g. P (H|E) = a
a+c ,

P (H) = a+b
|U | , P (E) = a+c

|U | , the four confirmation measures considered above
as our benchmark examples admit the following representation

– G(a, b, c, d) = log
[

a(c+d)
c(a+b)

]

– K(a, b, c, d) = ad−bc
ad+bc+2ac

– Z(a, b, c, d) =

{
Z1(a, b, c, d) = ad−bc

(c+d)(a+c) in case of confirmation
Z2(a, b, c, d) = ad−bc

(a+b)(a+c) in case of disconfirmation

– A(a, b, c, d) =

{
A1(a, b, c, d) = ad−bc

(a+b)(b+d) in case of confirmation
A2(a, b, c, d) = ad−bc

(c+d)(b+d) in case of disconfirmation.

Several definitions of monotonicity for interestingness measures with different
meanings have been proposed in literature (see e.g. [8] in particular with reference
to interestingness measures in the data mining framework). Greco et al. in [12]
suggest that a confirmation measure should be not decreasing with respect to
both a and d and not increasing with respect to both b and c in the contingency
table. In other words the proposed property of monotonicity requires that

Monotonicity. C(H,E) is monotonic (M) if it is a function not decreasing with
respect to both P (E ∩H) and P (¬E ∩¬H), non increasing with respect to both
P (E ∩ H) and P (¬E ∩ ¬H).

Since IFPD confirmation measures can directly be defined in terms of confi-
dence and prevalence of a rule, we propose here a new monotonicity property for
confirmation measures which is set in terms of confidence P (H|E) and prevalence
P (H) only:

Confidence Prevalence Monotonicity. An IFPD confirmation measure C
satisfies Confidence Prevalence Monotonicity (CPM) if it is non decreasing with
respect to confidence P (H|E) and non increasing with respect to prevalence
P (H).

Monotonicity with respect to confidence means that any higher value in
P (H|E) increases or at lest does not decrease the credibility of the decision rule
E → H; again, monotonicity with respect to prevalence reflects the idea that
any higher value for P (H) decreases or at least does not increase the credibility
of the rule E → H. Observe that in [16] Piatetsky-Shapiro proposed three prin-
ciples that should be obeyed by any interestingness measure which only partially
overlap with (CPM) in the case of IFPD confirmation measures.

Property (CPM) for an IFPD confirmation measure appears to be quite a
natural assumption. Moreover property (M) implies (CPM), more precisely:

Proposition 1. If an IFPD confirmation rule C satisfies Monotonicity property
(M) then C satisfies Confidence Prevalence Monotonicity (CPM).
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To prove the proposition, note that a confirmation measure C(H,E),
expressed in terms of x = P (H|E) = a

a+c and y = P (H) = a+b
|U | , can be

considered as a compound function F (a, b, c, d) of the entries a, b, c and d of
the contingency table. By considering the associated real function in the differ-
entiable case, the chain rule formula allows to set a link between the different
monotonicity properties, that is

F ′
a = C′

x

[
c

(a+c)2

]
+ C′

y

[
c+d
|U |2

]

F ′
b = C′

y

[
c+d
|U |2

]

F ′
c = C′

x

[
−a

(a+c)2

]
+ C′

y

[
−(a+b)

|U |2
]

F ′
d = C′

y

[
−(a+b)

|U |2
]
.

The monotonicity properties required in Greco et al. [12] imply in particular
that C′

x ≥ 0 and C′
y ≤ 0 as it can be deduced by referring to the monotonic

dependence of x and y on a, b, c and d: x′
a ≥ 0, x′

c ≤ 0; y′
a ≥ 0, y′

b ≥ 0, y′
c ≤ 0,

y′
d ≤ 0. Note that, conversely, (CPM) monotonicity property doesn’t imply the

validity of monotonicity properties required in Greco et al. [12] in (M): in fact
by considering a = 100, b = c = d = 10 and Carnap’s confirmation measure, if
the value of a increases to 101 then d(x, y) = x − y decreases, while it is clearly
increasing with respect to x and decreasing as a function of y.

4 Symmetries

Also symmetry properties of confirmation measures have been discussed in the
literature (see e.g. [9,13]) observing that some of them should be required while
some other ones should be avoided. We propose three quite natural symmetry
definitions in the framework of IFPD confirmation measures. The proposed def-
initions are suggested by recalling simple geometric symmetry properties and
only one of them turns out to coincide with the classical hypothesis symmetry
(see [3]) which by the way is considered a desirable property by the literature
(see e.g. [5]). The first definition we propose is inspired by skew-symmetry, where
we again use the notation x = P (H|E) and y = P (H).

Prior Posterior Symmetry. An IFPD confirmation measure C satisfies Prior
Posterior Symmetry (PPS) if

C(x, y) = −C(y, x).

The skew-symmetric condition characterizing PPS is due to a sign constraint:
when an order relation between x and y is encountered, necessarily the symmetric
point with respect to the main diagonal requires an evaluation which is opposite
in sign.

Example. Consider a situation in which P (H) = 0.2 and that, given that evi-
dence E is true, the probability of hypothesis H increases to P (H|E) = 0.5,
with a confirmation measure C(0.5, 0.2); the Prior Posterior Symmetry requires
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the same disconfirmation evaluation if, given P (H) = 0.5, the evidence E lowers
the probability of H down to P (H|E) = 0.2, i.e. C(0.2, 0.5) = −C(0.5, 0.2).

In the next two definitions the considered points (x, y) and (1 − y, 1 − x) are
symmetric with respect to the line y = 1 − x.

Complementary Probability Symmetry. An IFPD confirmation measure C
satisfies Complementary Probability Symmetry (CPS) if

C(x, y) = C(1 − y, 1 − x).

Example. Consider P (H) = 0.8 and assume that, given evidence E, the prob-
ability of hypothesis H becomes P (H|E) = 0.3, with confirmation C(0.3, 0.8);
the Complementary Probability Symmetry requires the same (dis)confirmation
level if, given P (¬H) = 1 − P (H) = 0.2, evidence E increases the probability of
¬H to P (¬H|E) = 1 − P (H|E) = 0.7, i.e. C(0.7, 0.2) = −C(0.3, 0.8).

The next definition (see [3] where it is named hypothesis symmetry) is clearly
related to both the previous ones

Probability Centre Symmetry. An IFPD confirmation measure C satisfies
Probability Center Symmetry (PCS) if

C(x, y) = −C(1 − x, 1 − y).

Note that in this case each point (x, y) is compared to its symmetric counterpart
with respect to the point (0.5, 0.5), namely the point (1 − x, 1 − y). We can
observe, for example, that Carnap’s d, Good’s G, K by Kemeny and Oppenheim
all satisfy each of the above defined symmetries. Instead Rescher’s Z satisfies
only PCS symmetry.

Kemeny’s measure K, which is also a normalized confirmation measure,
appears to be a particular smooth and balanced average of Z1 and Z2: its
monotonicity and symmetry properties strengthen the idea of an equilibrated
IFPD confirmation measure.

4.1 Degree of Symmetry

Various confirmation measures that are proposed in literature have not all the
properties satisfied by Kemeny’s K, like those proposed by Shogenji [18] or Crupi
et al. [4]. This is why we are interested in evaluating also the degree of symmetry
of an IFPD confirmation measure. At this aim, let us first remark that for any
given confirmation measure C it is possible to consider a transposed confirma-
tion function CT (see [19] where an analogous approach has been considered
for studying the degree of exchangeability of continuous identically distributed
random variables) which is defined by

CT (x, y) = C(y, x).

In this way, it is possible to restate the PPS condition as

C satisfies PPS ⇐⇒ C = −CT .



122 E. Celotto et al.

Observe that any confirmation measure admits the following decomposition

C = CPPS + CPPS

with

CPPS(x, y) =
C(x, y) − CT (x, y)

2
CPPS(x, y) =

C(x, y) + CT (x, y)
2

where CPPS and CPPS satisfy the relations

CPPS = −CT
PPS CPPS = C

T

PPS .

In this way any function C admits a decomposition into a PPS confirmation
function CPPS and a complementary function CPPS and, if C satisfies PPS,
then necessarily CPPS ≡ 0 and C = CPPS .

By referring now to the involution function i for which i(x, y) = (1−x, 1−y)
the CPS condition can be expressed as

C satisfies CPS ⇐⇒ C = CT ◦ i.

It is possible to rewrite any confirmation measure as a sum of a CPS confirmation
measure CCPS and of a complementary function CCPS

C = CCPS + CCPS

where

CCPS(x, y) =
C(x, y) + CT (i(x, y))

2
CCPS(x, y) =

C(x, y) − CT (i(x, y))
2

.

Clearly
CCPS = CT

CPS ◦ i CCPS = −C
T

CPS ◦ i.

Finally,
C satisfies PCS ⇐⇒ C = −C ◦ i

and by setting

CPCS(x, y) =
C(x, y) − C(i(x, y))

2
CPCS(x, y) =

C(x, y) + C(i(x, y))
2

where
CPCS = −CPCS ◦ i CPCS = CPCS ◦ i

we can again express C as a sum of functions, one of which is now a PCS
confirmation measure CPCS

C = CPCS + CPCS .

Table 3 presents the symmetric components of some well known IFPD confir-
mation measures and of some of the new measures presented in Table 1. Clearly,
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the symmetric component coincides with the corresponding confirmation mea-
sures when it satisfies the corresponding symmetry property. In Table 3 we con-
sider, in particular, Shogenji’s justification measures J [18] defined as

J(H,E) = 1 − ln[P (H|E)]/ ln[P (H)]

which is an example of an IFPD confirmation measure that does not satisfy any
of the proposed symmetries.

Observe that, calling σ any of the above defined symmetries, it is now possible
to evaluate the degree of symmetry of an IFPD measure C with respect to σ by
defining the norm ‖ · ‖σ (see [19])

‖C‖σ =
‖Cσ‖2 − ‖Cσ‖2

‖C‖2
where ‖ · ‖ is a norm on a function space F of real valued functions. Note
that when C itself satisfies PPS, CPS or PCS, then necessarily CPPS = 0,
CCPS = 0, CPCS = 0 so that ‖C‖PPS=1, ‖C‖CPS=1, ‖C‖PCS=1. In general
it is ‖C‖σ ≤ 1.

Table 3. Symmetry properties of IFPD confirmation measures: a repetition of mea-
sure’s name indicates that the measure itself is symmetric.

Measure C CPPS CCPS CPCS

d d d d

K K K K

hwm1 hwm1 hwm1 hwm1

hwm2
1
4

[
(x−y)
y(1−y)

+ (x−y)
x(1−x)

]
1
4

[
(x−y)
y(1−y)

+ (x−y)
x(1−x)

]
hwm2

hwm3
1
2

[
(x−y)

2y2−2y+1
+ x−y

2x2−2x+1

]
1
2

[
x−y

2y2−2y+1
+ (x−y)

2x2−2x+1

]
hwm3

Z

{
1
2

(x−y)(x−y+1)
x(1−y)

, x > y;
1
2

(x−y)(y−x+1)
y(1−x)

, x < y.

{
1
2

(x−y)(x−y+1)
x(1−y)

, x > y;
1
2

(x−y)(y−x+1)
y(1−x)

, x < y.
Z

G G G G

J 1
2

[
log y
log x

− log x
log y

]
1 − 1

2

[
log x
log y

+ log(1−y)
log(1−x)

]
1
2

[
log(1−x)
log(1−y)

− log x
log y

]

5 Conclusions

In this paper we investigated IFPD confirmation measures, some of their rela-
tionships, which have also a practical application, for example when inductive
rules need to be compared (see, e.g., [13]). Those measures are sometimes ordi-
nally equivalent and also when this does not happen it turns out that the links
among them are rather strong. It is in fact possible to observe that some mea-
sures can be obtained using some means of other ones: an interesting extension
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would be to make use of the huge amount of more general aggregation functions
(see, e.g., [11]), which could be the subject of a further promising research, as
far as we can see.

The new measures, as told, can be defined in order to have desired prop-
erties, as their particular use may require. But, in practice, which properties
do/should the new defined measures possess? The debate on that is not new,
of course. Here we tried to exploit the special structure of IFPD confirmation
measures, to study some of those properties. We focused in particular on a new
monotonicity definition, which appears to be a quite natural request for IFPD
confirmation measures. The particular structure of IFPD confirmation measures
also allows to define symmetry properties which are inspired directly by classi-
cal geometric symmetries on the plane (P (H|E), P (E)), in this way providing a
way to identify their symmetric component and also to suggest a way to mea-
sure their degree of symmetry. Some examples concerning both old and newly
defined IFPD measures illustrate the possibilities of future development, but
further investigations are needed to study the defined properties on an extended
set of IFPD confirmation measures.
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Universidade Federal do Rio Grande do Norte,

Campus Universitario, s/n, Lagoa Nova, Natal CEP 59078-970, Brazil
bedregal@dimap.ufm.br

5 Institute of Information Engineering, Automation and Mathematics,
Slovak University of Technology in Bratislava, Radlinskeho 9, Bratislava, Slovakia

zdenko.takac@stuba.sk
6 Institute of Mathematics, University of Silesia,

ul. Bankowa 14, 40-007 Katowice, Poland
michal.baczynski@us.edu.pl

7 Centro de Ciências Computacionais, Universidade Federal do Rio Grande,
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the analysis of these operators, both in the case of fuzzy sets [1,2,14,15] and
in the case of extensions [3–5,13,16]. A key problem in order to define these
operators is that of monotonicity. When implication operators are extended to
fuzzy extensions, this problem is not trivial, since for most of the fuzzy extensions
do not exist a linear order, whereas for some applications, as it is the case of
fuzzy rules-based classification systems, it is necessary to have the possibility of
comparing any two elements [12].

In this work, we propose the definition of implication operators in the
interval-valued setting defining its monotonicity in terms of the so-called admis-
sible orders [11]. This is a class of linear orders which extends the usual order
between intervals and which include the most widely used examples of linear
orders between intervals, as lexicographical and Xu and Yager ones.

As a first step in a deeper study of these interval-valued implications with
admissible orders, we show how implications which are defined in terms of admis-
sible orders can be used to build comparison measures which are of interest from
the point of view of applications.

The structure of the present work is as follows. In Sect. 2 we present some pre-
liminary definitions and results. In Sect. 3 we present the definition of interval-
valued implication function with respect to an admissible order. Section 4 is
devoted to obtaining equivalence and restricted equivalence functions with
respect to linear orders. In Sect. 5 we use our previous results to build com-
parison measures. We finish with some conclusions and references.

2 Preliminaries

In this section we introduce several well known notions and results which will
be useful for our subsequent developments.

We are going to work with closed subintervals of the unit interval. For this
reason, we define:

L([0, 1]) = {[X,X] | 0 ≤ X ≤ X ≤ 1}.

By ≤L we denote an arbitrary order relation on L([0, 1]) with 0L = [0, 0] as
its minimal element and 1L = [1, 1] as maximal element. This order relation can
be partial or total. If we must consider an arbitrary total order, we will denote
it by ≤TL.

Example 1. The partial order relation on L([0, 1]) induced by the usual partial
order in R

2 is:
[X,X] �L [Y , Y ] if X ≤ Y and X ≤ Y . (1)

As an example of total order in L([0, 1]) we have Xu and Yager’s order (see
[17]):

[X,X] ≤XY [Y , Y ] if

{
X + X < Y + Y or
X + X = Y + Y and X − X ≤ Y − Y .

(2)
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Definition 1. An admissible order in L([0, 1]) is a total order ≤TL which
extends the partial order �L.

In the following, whenever we speak of a total order we assume it is an
admissible order.

Definition 2. Let ≤L be an order relation in L([0, 1]). A function
N : L([0, 1]) → L([0, 1]) is an interval-valued negation function (IV negation)
if it is a decreasing function with respect to the order ≤L such that N(0L) = 1L

and N(1L) = 0L. A negation N is called strong negation if N(N(X)) = X for
every X ∈ L([0, 1]). A negation N is called non-filling if N(X) = 1L iff X = 0L,
while N is called non-vanishing if N(X) = 0L iff X = 1L.

We recall now the definition of interval-valued aggregation function.

Definition 3. Let n ≥ 2. An (n-dimensional) interval-valued (IV) aggregation
function in (L([0, 1]),≤L, 0L, 1L) is a mapping M : (L([0, 1]))n → L([0, 1]) which
verifies:

(i) M(0L, · · · , 0L) = 0L.
(ii) M(1L, · · · , 1L) = 1L.
(iii) M is an increasing function with respect to ≤L.

Example 2. Fix α ∈ [0, 1]. With the order ≤XY , the function

Mα : L([0, 1])2 → L([0, 1])

defined by

Mα([X,X], [Y , Y ]) = [αX + (1 − α)Y , αX + (1 − α)Y ]

is an IV aggregation function.

3 Interval-Valued Implication Functions

Definition 4 (cf. [5] and [2]). An interval-valued (IV) implication function in
(L([0, 1]),≤L, 0L, 1L) is a function I : (L([0, 1]))2 → L([0, 1]) which verifies the
following properties:

(i) I is a decreasing function in the first component and an increasing function
in the second component with respect to the order ≤L.

(ii) I(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L.
(iii) I(1L, 0L) = 0L.

Some properties that can be demanded to an IV implication function are the
following [10]:

I4: I(X,Y ) = 0L ⇔ X = 1L and Y = 0L.
I5: I(X,Y ) = 1L ⇔ X = 0L or Y = 1L.
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NP : I(1L, Y ) = Y for all Y ∈ L([0, 1]).
EP : I(X, I(Y,Z)) = I(Y, I(X,Z)) for all X,Y,Z ∈ L([0, 1]).
OP : I(X,Y ) = 1L ⇔ X ≤L Y .
SN : N(X) = I(X, 0L) is a strong IV negation.
I10: I(X,Y ) ≥L Y for all X,Y ∈ L([0, 1]).
IP : I(X,X) = 1L for all X ∈ L([0, 1]).
CP : I(X,Y ) = I(N(Y ), N(X)) for all X,Y ∈ L([0, 1]), where N is an IV
negation.
I14: I(X,N(X)) = N(X) for all X ∈ L([0, 1]), where N is an IV negation.

We can obtain IV implication functions from IV aggregation functions as
follows.

Proposition 1. Let M be an IV aggregation function such that

M(1L, 0L) = M(0L, 1L) = 0L

and let N be an IV negation in L([0, 1]), both with respect to the same order ≤L.
Then the function IM : L([0, 1])2 → L([0, 1]) given by

IM (X,Y ) = N(M(X,N(Y )))

is an IV implication function.

Proof. It follows from a straight calculation. ��
However, in this work we are going to focus on a different construction method
for IV implication functions.

Proposition 2. Let ≤TL be a total order in L([0, 1]), and let N be an IV nega-
tion function with respect to that order. The function I : L([0, 1])2 → L([0, 1])
defined by

I(X,Y ) =

{
1L, if X ≤TL Y,

∨(N(X), Y ), if X >TL Y.

is an IV implication function.

Proof. It is clear that the function I is an increasing function in the second
component and a decreasing function in the first component. Moreover

I(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L

and I(1L, 0L) = 0L. ��
This result can be further generalized as follows [15]:

Proposition 3. Let ≤TL be a total order in L([0, 1]), and let N be an IV nega-
tion function with respect to that order. If M : L([0, 1])2 → L([0, 1]) is an IV
aggregation function, then the function I : L([0, 1])2 → L([0, 1]) defined by

I(X,Y ) =

{
1L, if X ≤TL Y,

M(N(X), Y ), if X >TL Y,

is an IV implication function.
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4 Equivalence and Restricted Equivalence Functions
in L([0, 1]) with Respect to a Total Order

Along this section only total orders are considered.
The equivalence functions [6–8] are a fundamental tool in order to build

measures of similarity between fuzzy sets. In this section we construct interval-
valued equivalence functions from IV aggregation and negation functions.

Definition 5. A map F : L([0, 1])2 → L([0, 1]) is called an interval-valued (IV)
equivalence function in (L([0, 1]),≤TL) if F verifies:

(1) F (X,Y ) = F (Y,X) for every X,Y ∈ L([0, 1]).
(2) F (0L, 1L) = F (1L, 0L) = 0L.
(3) F (X,X) = 1L for all X ∈ L([0, 1]).
(4) If X ≤TL X ′ ≤TL Y ′ ≤TL Y , then F (X,Y ) ≤TL F (X ′, Y ′).

Theorem 1. Let M1 : L([0, 1])2 → L([0, 1]) be an IV aggregation function such
that M1(X,Y ) = M1(Y,X) for every X,Y ∈ L([0, 1]), M1(X,Y ) = 1L if and
only if X = Y = 1L and M1(X,Y ) = 0L if and only if X = 0L or Y = 0L. Let
M2 : L([0, 1])2 → L([0, 1]) be an IV aggregation function such that M2(X,Y ) =
1L if and only if X = 1L or Y = 1L and M2(X,Y ) = 0L if and only if X = Y =
0L. Then the function F : L([0, 1])2 → L([0, 1]) defined by

F (X,Y ) = M1(I(X,Y ), I(Y,X)),

with I the IV implication function defined in the Proposition 3 taking M = M2,
is an IV equivalence function.

Proof. Since

F (X,Y ) =

⎧
⎪⎨

⎪⎩

1L, if X = Y,

M1(M2(N(Y ),X), 1L), if X <TL Y,

M1(M2(N(X), Y ), 1L), if Y <TL X,

then F verifies the four properties in Definition 5. ��
In [8] the definition of equivalence function (in the real case) was modified in
order to define the so-called restricted equivalence function. Now we develop a
similar study for the case of IV equivalence functions.

Definition 6. Let N be an IV negation. A map F : L([0, 1])2 → L([0, 1]) is
called an interval valued (IV) restricted equivalence function (in (L([0, 1]),≤TL))
if F verifies the following properties:

1. F (X,Y ) = F (Y,X) for all X,Y ∈ L([0, 1]).
2. F (X,Y ) = 1L if and only if X = Y .
3. F (X,Y ) = 0L if and only if X = 0L and Y = 1L, or, X = 1L and Y = 0L.
4. F (X,Y ) = F (N(X), N(Y )) for all X,Y ∈ L([0, 1]).
5. If X ≤TL Y ≤TL Z, then F (X,Z) ≤TL F (X,Y ) and F (X,Z) ≤TL F (Y,Z).
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Theorem 2. Let N be an IV negation function. Let M1 : L([0, 1])2 → L([0, 1])
be an IV aggregation function such that M1(X,Y ) = M1(Y,X) for every X,Y ∈
L([0, 1]), M1(X,Y ) = 1L if and only if X = Y = 1L and M1(X,Y ) = 0L if and
only if X = 0L or Y = 0L. Let M2 : L([0, 1])2 → L([0, 1]) be an IV aggregation
function such that M2(X,Y ) = 1L if and only if X = 1L or Y = 1L and
M2(X,Y ) = 0L if and only if X = Y = 0L. Then the function F : L([0, 1])2 →
L([0, 1]) defined by

F (X,Y ) = M1(I(X,Y ), I(Y,X))

with I an IV implication function defined by

I(X,Y ) =

{
1L if X ≤TL Y

M2(N(X), Y ) otherwise,

verifies the properties (1) and (5) of Definition 6. Moreover, it satisfies property
(2) if N is non-filling and property (3) if N is non-vanishing.

Proof. Since

F (X,Y ) =

⎧
⎪⎨

⎪⎩

1L, if X = Y

M1(M2(N(Y ),X), 1L), if X <TL Y

M1(M2(N(X), Y ), 1L), if Y <TL X

then F verifies:

(1) F (X,Y ) = F (Y,X) trivially.
(5) If X ≤TL Y ≤TL Z, then N(Z) ≤TL N(Y ) ≤TL N(X). Since M1 is an

increasing function then F (X,Z) ≤TL F (X,Y ) and F (X,Z) ≤TL F (Y,Z).

Since M1(X,Y ) = 1L if and only if X = Y = 1L, then, if N is non-filling,
F (X,Y ) = 1L if and only if X = Y because

{
M2(N(Y ),X) 
= 1L, if X <TL Y

M2(N(X), Y ) 
= 1L, if X >TL Y.

Moreover, F (X,Y ) = 0L if and only if X >TL Y and M2(N(X), Y ) = 0L or
X <TL Y and M2(N(Y ),X) = 0L. Therefore, as N is non-vanishing, F (X,Y ) =
0L if and only if {

X = 0L or Y = 1L or
Y = 0L or X = 1L.

with X 
= Y . ��

5 Similarity Measures, Distances and Entropy Measures
in L([0, 1]) with Respect to a Total Order

Our constructions in the previous section can be used to build comparison mea-
sures between interval-valued fuzzy sets, and, more specifically, to obtain simi-
larity measures, distances in the sense of Fang and entropy measures. Along this
section, we only deal with a total order ≤TL.
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To start, let us consider a finite referential set of n elements, U =
{u1, . . . , un}. We denote by IV FS(U) the set of all interval-valued fuzzy sets
over U . Recall that an interval-valued fuzzy set A over U is a mapping A : U →
L([0, 1]) [9]. Note that the order ≤TL induces a partial order ≤TL in IV FS(U)
given, for A,B ∈ IV FS(U), by

A ≤TL B if A(ui) ≤TL B(ui) for every ui ∈ U.

First of all, we show how we can build a similarity between interval-valued
fuzzy sets defined over the same referential U . We start recalling the definition.

Definition 7 [8]. An interval-valued (IV) similarity measure on IV FS(U) is
a mapping SM : IV FS(U) × IV FS(U) → L([0, 1]) such that, for every
A,B,A′, B′ ∈ IV FS(U),

(SM1) SM is symmetric.
(SM2) SM(A,B) = 1L if and only if A = B.
(SM3) SM(A,B) = 0L if and only if {A(ui), B(ui)} = {0L, 1L} for every
ui ∈ U .
(SM4) If A ≤TL A′ ≤TL B′ ≤TL B, then SM(A,B) ≤TL SM(A′, B′).

Then we have the following result.

Theorem 3. Let M : L([0, 1])n → L([0, 1]) be an IV aggregation function with
respect to the total order ≤TL and such that M(X1, . . . , Xn) = 1L if and only if
X1 = · · · = Xn = 1L and M(X1, . . . , Xn) = 0L if and only if X1 = · · · = Xn =
0L. Then, the function SM : IV FS(U) × IV FS(U) → L([0, 1]) given by

SM(A,B) = M(F (A(u1), B(u1)), . . . , F (A(un), B(un)))

where F is defined as in Theorem 2 with non-filling and non-vanishing negation,
is an IV similarity measure.

Proof. It follows from a straightforward calculation. ��
We can make use of this construction method to recover both distances and
entropy measures. First of all, let’s recall the definition of both concepts.

Definition 8 [6]. A function D : IV FS(U) × IV FS(U) → L([0, 1]) is called
an IV distance measure on IV FS(U) if, for every A,B,A′, B′ ∈ IV FS(U), D
satisfies the following properties:

(D1) D(A,B) = D(B,A);
(D2) D(A,B) = 0L if and only if A = B;
(D3) D(A,B) = 1L if and only if A and B are complementary crisp sets;
(D4) If A ≤TL A′ ≤TL B′ ≤TL B, then D(A,B) ≥TL D(A′, B′).

Definition 9 [6]. A function E : IV FS(U) → L([0, 1]) is called an entropy on
IV FS(U) with respect to a strong IV negation N (with respect to ≤TL such that
there exists ε ∈ L([0, 1]) with N(ε) = ε if E has the following properties:
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(E1) E(A) = 0L if and only if A is crisp;
(E2) E(A) = 1L if and only if A = {(ui, A(ui) = ε)|ui ∈ U};
(E3) E(A) ≤TL E(B) if A refines B; that is, A(ui) ≤TL B(ui) ≤TL ε or

A(ui) ≥TL B(ui) ≥TL ε;
(E4) E(A) = E(N(A)).

Then the following two results are straight from Theorem 3.

Corollary 1. Let M : L([0, 1])n → L([0, 1]) be an IV aggregation function with
respect to the total order ≤TL such that M(X1, . . . , Xn) = 1L if and only if X1 =
· · · = Xn = 1L and M(X1, . . . , Xn) = 0L if and only if X1 = · · · = Xn = 0L and
let N be an IV negation with respect to the order ≤TL which is non filling and
non-vanishing. Then, the function D : IV FS(U) × IV FS(U) → L([0, 1]) given
by

D(A,B) = N(M(F (A(u1), B(u1)), . . . , F (A(un), B(un))))

where F is defined as in Theorem 2, is an IV distance measure.

Proof. It is straight from Theorem 3, since a similarity measure defines a distance
in a straightforward way. ��
Theorem 4. Let N be a strong IV negation (with respect to ≤TL) and such
that there exists ε ∈ L([0, 1]) with N(ε) = ε. Let M : L([0, 1])n → L([0, 1]) be
an IV aggregation function with respect to the total order ≤TL and such that
M(X1, . . . , Xn) = 1L if and only if X1 = · · · = Xn = 1L and M(X1, . . . , Xn) =
0L if and only if X1 = · · · = Xn = 0L. Then, the function E : IV FS(U) →
L([0, 1]) given by

E(A) = M(F (A(u1), N(A(u1))), . . . , F (A(un), N(A(un))))

where F is defined as in Theorem 2 with non-filling and non-vanishing negation,
is an IV entropy measure.

Proof. It follows from the well known fact that, for a given IV similarity SM ,
the function E(A) = SM(A,N(A)) is an IV entropy measure [6]. ��

6 Conclusions

In this paper we have considered the problem of defining interval-valued impli-
cations when the order relation is a total order. In particular, we have consid-
ered the case of admissible orders. We have also studied the construction of
interval-valued equivalence and similarity functions constructed with appropri-
ate interval-valued implication functions. Finally we have shown how our con-
structions can be used to get IV similarity measures, distances and entropy
measures with respect to total orders. In future works we will consider the use
of these functions in different image processing, classification or decision making
problems.
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Abstract. We suppose that all we know about the preferences of an
agent, is given by a (small) collection of relative preferences between
choices represented by their evaluations on a set of criteria. Taking les-
son from the success of the use of analogical proportions for predicting
the class of a new item from a set of classified examples, we explore the
possibility of using analogical proportions for completing a set of rela-
tive preferences. Such an approach is also motivated by a striking sim-
ilarity between the formal structure of the axiomatic characterization
of weighted averages and the logical definition of an analogical propor-
tion. This paper discusses how to apply an analogical proportion-based
approach to the learning of relative preferences, assuming that the pref-
erences are representable by a weighted average, and how to validate
experimental results. The approach is illustrated by examples.

1 Introduction

Guessing the preferences of a user, starting from a set of known examples of
his/her preferences between choices described by multiple criteria evaluations, is
now recognized as a problem of interest. This may be viewed as the elicitation
of a particular type of aggregation function that fits with the examples (see,
e.g., [8,18]), or more generally with a preference learning problem [5]. Known
preferences can be expressed by the values of global evaluations on an absolute
scale, or by relative preferences between pairs of choices. In the following we
assume the latter.

More generally, one may be interested in mechanisms which, from a set of
qualitative preferences expressed in a relative manner, are able to complete the
original set of preferences, by applying some general information principle. Early
examples of that can be found in [3]. Such an approach may be consistent with
the hypothesis of some implicit family of aggregation functions (e.g., Choquet
integrals in [6]).

It has been recently noticed [16] that the characteristic axiom of weighted
averages, which forbids contradictory tradeoffs, and which also characterizes
Choquet integral when its application is restricted to a smaller class of co-
monotone patterns, has some striking consonance with the logical modeling
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[12,14] of analogical proportions (i.e., statements of the form “a is to b as c
is to d”). This is still true for aggregation operators based on differences.

Analogical proportions have be proved to be successful for predicting classes
in machine learning [2]. The idea is to find triples of examples a, b, c with known
class, which together with a new item d to classify make analogical proportions
for each 4-tuple of feature values. Then, by solving an analogical proportion
equation, one may predict the class of d from those of a, b, c. The idea is to follow
a similar process for relative preference, but with the constraint of agreeing with
the underlying hypothesis of a special class of aggregation functions.

The paper is structured as follows. In Sect. 2, we recall the axiomatic charac-
terizations of aggregation operators based on differences, weighted averages, and
Choquet integrals. In Sect. 3 we provide the reader with the necessary background
on analogical proportions and analogical inference. In Sect. 4, we first propose an
“horizontal” reading of a family of characteristic axioms underlying aggregation
operators based on differences and related operators, which make these axioms
more intuitive, and which is consonant with the idea of arithmetic proportion.
Then, a “vertical” reading indicates another relation with analogical proportions.
In Sect. 5, based on the “vertical” reading, a prediction algorithm is proposed and
illustrated by an example. In Sect. 6, we discuss the problems raised by the valida-
tion of such a procedure. The paper ends with directions for further research.

2 Axiomatics of Some Aggregation Models

A choice x is assumed to be represented by the vector of its evaluations x =
(x1, . . . , xn) wrt n criteria. The criteria scale S is common for all criteria and
then a choice is an element of Cartesian product Sn. For a choice x, x−i denotes
the n-1-dimensional vector comprising the evaluations of x on all criteria but the
ith one. � denotes a preference relation. Many aggregation functions have the
property that they don’t reveal con-tradictory tradeoffs. A positive reformulation
of this property is as follows.

∀i, j,∀x, y, v, w ∈ Sn,∀α, β, γ, δ ∈ S,

if x−iγ � y−iδ and v−jα � w−jβ,

then, at least one of the following holds:
v−jγ � w−jδ or x−iα � y−iβ.

This property tells us the differences of preference1 between α and β, on the one
side, and between γ and δ, on the other side, can consistently be compared. In
other words, this property is tantamount to impose that the relation �∗ on the
pairs of levels in S defined by:

αβ �∗ γδ if ∀i, ∀x−i, y−i, x−iγ � y−iδ ⇒ x−iα � y−iβ

is a complete preorder.
1

Note that “preference difference” is not to be confused with “arithmetic difference”. For example,
a person who wants to buy a car at a maximal price of 20 ke will in general consider that an
arithmetic difference of 1 ke between 19 and 20 ke is a worse preference difference than the same
arithmetic difference between 14 and 15 ke.
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For preferences � which do not reveal contradictory tradeoffs, it is always
possible to substitute a difference of preferences on a criterion by a larger one
without reversing the preference direction. This property is verified by prefer-
ences that can be represented by a weighted sum of utilities, i.e., in case there
exist a real-valued function u defined on S and a set of n weights pi summing
up to 1, such that, ∀x, y, x � y if and only if U(x) =

∑n
i=1 piu(xi) ≥ U(y) =∑n

i=1 piu(yi).
For more general preferences that can be represented by a Choquet inte-

gral, such a substitution does not alter the preference provided that the choices
involved in the comparisons are comonotonic (see [15], Chap. 6). Not revealing
contradictory tradeoffs is a crucial property in the characterization of both the
preferences that can be represented by a weighted sum of utilities ([15], Theorem
IV.2.7) and by a Choquet integral ([15], Theorem VI.5.1).

A still more general category of preferences is obtained if the property
of non-revelation of contradictory tradeoffs is only imposed for all i = j, a
property called non-revelation of coordinate contradictory tradeoffs. In this
case, the preorder �∗ generally depends on i and the corresponding model is
the additive value function model, in which the preference can be represented
using n marginal value (or utility) functions ui; one has x � y if and only if
V (x) =

∑n
i=1 ui(xi) ≥ V (y) =

∑n
i=1 ui(yi). This model is characterized in [15],

Theorem III.6.6.

3 Background on Analogical Proportions

An analogical proportion is a statement of the form “a is to b as c is to d”. We
assume here that a, b, c, d are Boolean variables pertaining to the values of some
binary feature for four items (i.e., (a, b, c, d) ∈ {0, 1}4). Its logical expression [12],
denoted a : b :: c : d:

(a ∧ ¬b ≡ c ∧ ¬d) ∧ (¬a ∧ b ≡ ¬c ∧ d) (1)

A logically equivalent expression provides another view of analogy.

(a ∧ d ≡ b ∧ c) ∧ (a ∨ d ≡ b ∨ c) (2)

(1) expresses that “a differs from b as c differs from d, and b differs from a as
d differs from c”. This expression is only true for 6 valuation patterns (over
24 = 16):

(a, b, c, d) = (1, 1, 1, 1), (0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1).

It is worth noticing that this formalization agrees with characteristic prop-
erties of the analogical proportion (acknowledged since Aristotle):

– (i) a : b :: a : b (reflexivity);
– (ii) a : b :: c : d = c : d :: a : b (symmetry);
– (iii) a : b :: c : d = a : c :: b : d (central permutation).



138 M. Pirlot et al.

However note that a : b :: c : d = b : a :: c : d does not hold. This agrees with
the fact that “b is to a as c is to d” is a reversed analogical proportion [14],
with respect to a : b :: c : d, which is true for the two valuations (0, 1, 1, 0)
and (1, 0, 0, 1) that makes the analogical proportion false, as well as for the four
valuations (1, 1, 1, 1), (0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1) that are common with the
analogical proportion. Thus, only schemas (s, s, s, s), (s, s, t, t), and (s, t, s, t) are
valid for the analogical proportion, which excludes the schema (s, t, t, s) on the
one hand, et heterogeneous schemas (s, s, s, t), (s, s, t, s), (s, t, s, s), and (t, s, s, s)
on the other hand. There are two main graded extensions of the analogical
proportion; see [4] for their expressions. The first one, called “conservative”,
which is a direct extension of (2) is such that, where a, b, c, d ∈ [0, 1]

a : b ::C c : d = 1 ⇔ min(a, d) = min(b, c) and max(a, d) = max(b, c).

Again patterns (s, s, t, t), and (s, t, s, t) (and (s, s, s, s)) are the unique way to
have the analogical proportion fully true (equal to 1). The second one, more in
the spirit of (1), more “liberal” is such that

a : b ::L c : d = 1 ⇔ a − b = c − d (which is an arithmetic proportion).
Clearly, a : b ::C c : d = 1 ⇒ a : b ::L c : d = 1. Both extensions include

the Boolean case. Transitivity holds a : b :: c : d = 1, c : d :: e : f = 1 ⇒ a :
b :: e : f = 1. The analogical proportion extends to vectors in a straightforward
way:

a : b :: c : d if and only if ∀i, ai : bi :: ci : di, i = 1, n, and to nominal
variables [2].

The analogical inference principle is, logically speaking, an unsound inference
principle, but providing plausible conclusions [17,19]. It postulates that, given
4 vectors a , b, c,d such that the proportion holds on some components, then
it should also hold on the remaining ones. This can be stated as (where a =
(a1, a2, · · · , an), and J ⊂ {1, · · · , n}):

∀j ∈ J, aj : bj :: cj : dj
∀i ∈ {1, · · · , n} \ J, ai : bi :: ci : di

(analogical inference)

This principle leads to a prediction rule in the following context:

– 4 vectors a , b, c,d are given where d is partially known: only the components
of d with indexes in J are known.

– Using analogical inference, we can predict the missing components of d by
solving (w.r.t. di) the set of equations (if they are solvable):

∀i ∈ {1, · · · , n} \ J, ai : bi :: ci : di.

In the case where the items are such that their last component is a label, applying
this principle to a new element d whose label is unknown leads to predict a
candidate label for d . This prediction technique has been successfully applied to
classification [1,2].
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4 Analogy and Contradictory Tradeoffs

We now investigate the relations between analogical proportions and contradic-
tory tradeoffs.

4.1 A Proportion-Like Reading of the Axiom Forbidding
Contradictory Tradeoffs

Reading one by one the four preference statements appearing in the axiom (“hori-
zontal” reading) prompts an interpretation in terms of comparison of pairs rather
than in terms of equality as in analogical proportions. x−iα � y−iβ means that
the “difference” between α and β on criterion i is smaller than (i.e. does not
compensate) the “difference” between the vectors x−i and y−i on the rest of
the criteria. In contrast, x−iγ � y−iδ tells us that the difference between γ and
δ is larger than the difference between x−i and y−i. The two other preference
statements say that, whenever the difference between α and β on any criterion
j balances that between the vectors v−j and w−j on the rest of the criteria, it
is a fortiori the case that the difference between γ and δ on criterion j balances
the difference between v−j and w−j . What is implied is that the proportion or
the difference between γ and δ is at least as large as that between α and β,
independently of the criterion on which this difference shows up.

Three observations can be made about this interpretation. First, the prefer-
ence statements are interpreted as comparisons of proportions (or differences).
Second, the pairs of objects that are compared are of different natures: pairs of
levels on a single criterion vs. pairs of vectors of levels. Finally, the comparison
of pairs of levels is independent of the criterion on which they appear.

Since the theory of analogical proportions was not developed to deal with
comparisons of proportions but rather with the identity of changes within two
pairs, we shall not pursue the “horizontal” reading of the axiom but instead
turn to a “vertical” one, in Sect. 4.2. Interestingly enough, the use of quaternary
relation as expressed by the horizontal reading, where the difference (or the
dissimilarity) between a and b is greater (or smaller) than the difference between
c and d, rather than being equal to as in analogical proportion, has been also
recently introduced in machine learning [11].

4.2 A Vertical Analogical Reading of the Axiom Forbidding
Contradictory Exchanges

Looking at the patterns appearing in the expression of the axiom characterizing
the weighted average, we may notice that the 4 pairs of vectors

A : x−iα � y−iβ

B : x−iγ � y−iδ

C : v−jα � w−jβ

D : v−jγ ≺ w−jδ
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exhibit analogical proportions vertically, symbol by symbol (with the exception
of the preference relations). Namely (x, x, v, v), (i, i, j, j), (α, γ, α, γ), (y, y, w,w),
(β, δ, β, δ) are analogical proportion patterns. This is quite striking. However, it
is no longer exactly so if we look at the vectors component by component, as can
be seen on the following example.

Example. We consider 3 criteria, graded on an increasing scale with 5 levels 1,
2, 3, 4, 5. The columns 2 and 3 play the role of i and j respectively in the above
axiom. Let us consider the 4 pairs of vectors, which obey to the axiom pattern:

(1, 1, 3) � (1, 2, 3)
(1, 5, 3) � (1, 4, 3)
(2, 4, 1) � (1, 2, 2)
(2, 4, 5) � (1, 2, 4)

As can be seen, we have an analogical proportion pattern only in column 1 (with
(1, 1, 2, 2)). But no analogical proportion in column 2 or in column 3. Still, one
may consider that there are two analogical proportions that are intertwined in
positions i = 2 and j = 3. For instance, (1, 5, 4, 4) and (3, 3, 1, 5) are not analog-
ical proportion patterns, but (1, 5, 1, 5) and (3, 3, 4, 4) are. Let us assume that
all the criteria have the same importance then criteria values can be permuted
in the vectors, and for instance, (2, 4, 1) is the same as (2, 1, 4), (2, 4, 5) the same
as (2, 5, 4), and so on in the above example. This clearly enables us to restore
analogical proportion patterns in all the columns.

It is worth noticing that in the case the axiom is restricted to the particular
case i = j, which corresponds to the characterization of the aggregations based
on differences, there is no problem, the analogical proportions are preserved
without the help of any permutation.

Would it be possible to fictively make the hypothesis of equal importance?
Let a, b, c be the unknown respective relative weights of the 3 criteria in the
example (a+b+c = 1). Let multiply the respective criteria evaluation in order to
give the same importance to these rescaled evaluations (note that the evaluations
are no longer on the same scale)

(1 × 3a, 1 × 3b, 3 × 3c) < (1 × 3a, 2 × 3b, 3 × 3c)
(1 × 3a, 5 × 3b, 3 × 3c) > (1 × 3a, 4 × 3b, 3 × 3c)
(2 × 3a, 4 × 3b, 1 × 3c) > (1 × 3a, 2 × 3b, 2 × 3c)
(2 × 3a, 4 × 3b, 5 × 3c) > (1 × 3a, 2 × 3b, 4 × 3c)

After permutation, we get

(1 × 3a, 1 × 3b, 3 × 3c) < (1 × 3a, 2 × 3b, 3 × 3c)
(1 × 3a, 5 × 3b, 3 × 3c) > (1 × 3a, 4 × 3b, 3 × 3c)
(2 × 3a, 1 × 3c, 4 × 3b) > (1 × 3a, 2 × 3c, 2 × 3b)
(2 × 3a, 5 × 3c, 4 × 3b) > (1 × 3a, 4 × 3c, 2 × 3b)

We can see that analogical proportion patterns now appear again vertically
(including for the multiplicative factors).
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4.3 Example

Let us consider an extension of the example proposed by [13] in order to illustrate
preference completion by means of analogical proportions. We have to compare
cars w.r.t. three criteria, namely, cost, performance and comfort, assessed on a
qualitative scale. The criteria scales all have five levels 1, 2, 3, 4, 5, which carry
different interpretations. On the cost scale, 1, 2, 3, 4, 5 respectively correspond
to very expensive, rather expensive, moderately expensive, not expensive and
cheap. On the performance scale 1, 2, 3, 4, 5 are respectively interpreted as very
weak, weak, average, high and very high. Finally, regarding the comfort criterion,
1, 2, 3, 4, 5 respectively correspond to very poor, poor, medium, good and very
good.

Let us assume that the following preferences are known. A moderately expen-
sive car with weak performance and medium comfort is represented by the vector
(3, 2, 3). It is preferred to a very expensive car with average performance and
good level of comfort, which is represented by the vector (1, 3, 4). In contrast,
we know that a very expensive car with average performance and a medium
comfort level (1, 3, 3) is preferred to a moderately expensive car with weak per-
formance and a very poor comfort level (3, 2, 1). Finally, a rather expensive car
with average performance and a good comfort level (2, 3, 4) is preferred to a not
expensive car with very weak performance and a medium comfort level (4, 1, 3).

We have the following triplet of preferences:

A : (1, 3, 4) � (3, 2, 3)
B : (1, 3, 3) � (3, 2, 1)
C : (2, 3, 4) � (4, 1, 3).

The pattern is that of the axiom forbidding contradictory tradeoffs, with i =
j = 3. In case the preference can be represented by an additive value function
model, we should not have the reverse analogical proportion2:

D : (2, 3, 3) ≺ (4, 1, 1),

but instead:
D : (2, 3, 3) � (4, 1, 1).

Let us now consider another configuration (where C is modified). Assume
that we have six cars which verify the following preferences:

A : (1, 3, 4) � (3, 2, 3)
B : (1, 3, 3) � (3, 2, 1)
C : (2, 4, 3) � (4, 3, 1).

2
A and B suggest that the difference of preference (3, 1) on the third criterion (comfort) is “larger”
(or more important) than the difference of preference (4, 3) on the same criterion. Given C,
assuming that (2, 3, 3) is not preferred to (4, 1, 1) would reveal contradictory tradeoffs since it
implies that, in this context, the difference of preference (4, 3) on the third criterion is larger than
(3, 1).
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The pattern is that of the axiom forbidding contradictory tradeoffs, with
i = 3 and j = 2. In case the preference can be represented by a sum of weighted
utilities, we should not have the reverse analogical proportion:

D : (2, 3, 3) ≺ (4, 1, 1),

but instead:
D : (2, 3, 3) � (4, 1, 1).

For lack of space we do not provide here examples in which the choices
involved are comonotonic and the preference model is a Choquet integral of a
utility function.

4.4 Compatibility of Analogy with the Difference

Let 4 pairs of vectors such that (x1, y1), (x2, y2), (v1, w1), (v2, w2), as in the
pattern of the axiom expressing the absence of contradictory tradeoffs. Then
x1 : x2::v1 : v2 and y1 : y2::w1 : w2 means componentwise (for each criterion
i) x1

i : x2
i ::v

1
i : v2

i and y1
i : y2

i ::w
1
i : w2

i . Since taking the liberal extension,
x1
i : x2

i ::v
1
i : v2

i means algebraically x1
i − x2

i = v1
i − v2

i for each component i,
we can easily check that if x1 : x2::v1 : v2 and y1 : y2::w1 : w2 hold true,
it entails that x1 − y1 : x2 − y2::v1 − w1 : v2 − w2 holds true as well. This
expresses “vertically” the compatibility of analogical proportion with difference-
based comparisons, and further motivates the algorithm proposed in the section
for extrapolating preferences from known preferences.

5 Algorithms

Given a set of n criteria, each criterion i being evaluated on a scale S =
{1, 2, . . . , k}, a choice X is then represented as a vector of value {x1, . . . , xn},
each xi being the evaluation of criteria i (i.e. X ∈ Sn). It is assumed that the
scale S has the following semantics: the higher xi, the better the criteria i is
satisfied. Let us denote now � a preference relation over the universe Sn: � is
assumed to be transitive relation (supposed to be total in our case).

A set of preference examples ei = Xi � Yi (abbreviated as a simple pair
(Xi, Yi)), telling us that situation Xi is preferred to situation Yi, is assumed to
be provided. It gives rise to a set of other valid examples by transitivity. So if E
is a set of preference examples, we denote comp(E) the transitive completion of
E. We will use the following notation:

– isV alid(x, y, z, t) is a Boolean function leading to true if x : y :: z : t is a valid
analogy, and false otherwise.

– solvable(x, y, z) is a Boolean function leading to true if there is a (unique) t
such that x : y :: z : t, and false otherwise.

– when solvable(x, y, z) = true, sol(x, y, z) is the unique vector t such that
x : y :: z : t.

Two problems, discussed in the next two subsections, can be considered.
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5.1 Completion of a Preference Relation

We want to further complete comp(E). Keeping in mind the remarks made in
the previous sections, we have two options:

– first avoiding contradictory trade-offs in case we have triples of examples in
comp(E) which might lead to it for a fourth pair;

– second, apply the analogical proportion-based inference to the preference rela-
tions from suitable triples of examples for guessing the preference relation
between the elements of a fourth pair, making sure that we are not creating
contradictory trade-offs with respect to other triples.

We then get a bigger file denoted PrefCompletion(comp(E)). The algorithm
Preference Completion can be described as follows:

Algorithm 1. Preference completion
input: a sample E of preference examples
step 1) compute comp(E)(a)

step 2) init : PrefCompletion(comp(E)) = comp(E)
step 3) for each triple [(X1, Y1), (X2, Y2), (X3, Y3)] ∈ comp(E)3 s.t.
solvable(Y1, X2, X3) and solvable(X1, Y2, Y3)

PrefCompletion(comp(E)).add (sol(Y1, X2, X3) � sol(X1, Y2, Y3))
(b)

step 4) for each triple (X1, Y1), (X2, Y2), (X3, Y3) ∈ comp(E) s.t.
(3 cases of valid analogy including the preference relation symbol)
solvable(X1, X2, X3) and solvable(Y1, Y2, Y3)

PrefCompletion(comp(E)).add (sol(X1, X2, X3) � sol(Y1, Y2, Y3))
solvable(Y1, Y2, X3) and solvable(X1, X2, Y3)

PrefCompletion(comp(E)).add (sol(Y1, Y2, X3) � sol(X1, X2, Y3))
solvable(Y1, X2, Y3) and solvable(X1, Y2, X3)

PrefCompletion(comp(E)).add (sol(Y1, X2, Y3) � sol(X1, Y2, X3))
step 5) for each triple (X1, Y1), (X2, Y2), (X3, Y3) ∈ comp(E) s.t.
(2 remaining cases of valid analogy including the preference relation symbol)
solvable(X1, X2, Y3) and solvable(Y1, Y2, X3)

PrefCompletion(comp(E)).add (sol(X1, X2, Y3) � sol(Y1, Y2, X3))
solvable(X1, Y2, X3) and solvable(Y1, X2, Y3)

PrefCompletion(comp(E)).add (sol(X1, Y2, X3) � sol(Y1, X2, Y3))
(d)

return PrefCompletion(comp(E))

(a) The set of examples E is a finite. Standard algorithms exist for computing
comp(E).

(b) As explained in the previous sections, as soon as the preference relation is
representable by a weighted average, the 3 preferences X1 � Y1, X2 � Y2,
X3 � Y3, equivalent to the pattern

Y1 � X1

X2 � Y2

X3 � Y3
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entails
X4 � Y4 (in order to avoid contradictory tradeoffs)

where X4 = sol(Y1,X2,X3) and Y4 = sol(X1, Y2, Y3)
(c) This step applies analogical proportion to preference symbols for

triples for which step 2 does not apply. Three patterns are possible:
(i) (ii) (iii)
X1 � Y1 Y1 � X1 Y1 � X1

X2 � Y2 X2 � Y2 Y2 � X2

X3 � Y3 Y3 � X3 X3 � Y3

entails entails entails
sol(X1,X2,X3) � sol(Y1,X2, Y3) � sol(Y1, Y2,X3) �
sol(Y1, Y2, Y3) sol(X1, Y2,X3) sol(X1,X2, Y3)

(d) We have two remaining cases (where � is obtained between solutions)
(iv) (v)
X1 � Y1 X1 � Y1

Y2 � X2 X2 � Y2

X3 � Y3 Y3 � X3

entails entails
sol(X1, Y2,X3) � sol(Y1,X2, Y3) sol(X1,X2, Y3) � sol(Y1, Y2,X3)

5.2 Checking a Preference Relation

In that case, the problem is to decide if a given preference relation X � Y is a
valid consequence of a finite set E of valid preferences. Obviously two strategies
are available:

– Either we compute the preference completion PrefCompletion(comp(E)) as
explained in the previous section. Then the validity of X � Y is just the test:
X � Y ∈ PrefCompletion(comp(E)).

– A less expensive option is to check X � Y as follows:

Algorithm 2. Preference validity
input: a sample E of preference examples, a relation X � Y
step 1) compute comp(E)
step 2) if (there exists (X1, Y1), (X2, Y2), (X3, Y3) ∈ comp(E) s.t.
(isV alid(Y1, X2, X3, X) and isV alid(X1, Y2, Y3, Y )):

return true
step 3) else if (there exists (X1, Y1), (X2, Y2), (X3, Y3) ∈ comp(E) s.t.
(isV alid(X1, X2, X3, X) and isV alid(Y1, Y2, Y3, Y ))
or (isV alid(Y1, Y2, X3, X) and isV alid(X1, X2, Y3, Y ))
or (isV alid(Y1, X2, Y3, X) and isV alid(X1, Y2, X3, Y ))

return true
step 4) else if (there exists (X1, Y1), (X2, Y2), (X3, Y3) ∈ comp(E) s.t.
(isV alid(X1, X2, Y3, Y ) and isV alid(Y1, Y2, X3, X))
or (isV alid(X1, Y2, X3, Y ) and isV alid(Y1, X2, Y3, X))

return true
otherwise unknown
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Note that steps 3 and 4 above cover the 5 analogical situations of point (c)
in the previous algorithm.

5.3 Illustrative Example

Let us consider the following set of examples E = {(1, 3, 4) � (3, 2, 3), (1, 3, 3) �
(3, 2, 1), (2, 3, 4) � (4, 1, 3), (4, 1, 3) � (1, 4, 4), (4, 2, 2) � (2, 3, 2)}

Then the 3 first examples lead to adopt (2, 3, 3) � (4, 1, 1) for avoiding contra-
dictory trade-offs as in the example of Sect. 4.3. Completing known preferences
either by monotonicity and transitivity or by forbidding contradictory tradeoffs
can be considered as a prudent extension since many preference models satisfy
these properties. It is only when the application of transitivity or avoidance of
contradictory tradeoffs failed to provide an answer to the comparison of two
choices that we may consider the application of the analogical proportion-based
inference.

For instance, in the above example, noticing that

(4, 1, 2) � (1, 4, 4) (by transitivity from (4, 1, 3) � (1, 4, 4))
(4, 2, 2) � (2, 3, 2)
(3, 1, 2) � (1, 4, 4) (by transitivity from (4, 1, 3) � (1, 4, 4))

we obtain by application of the analogical proportion inference

(3, 2, 2) � (2, 3, 2).

Note that the result of this analogical proportion inference together with the
three premises can never form contradictory tradeoffs. This mode of completion
deserves further theoretical and experimental investigations.

6 Experimental Setting and Validation

The procedure presented above exploits transitivity, and avoids the introduction
of contradictory trade-off. Moreover the analogical proportion-based preference
provides a heuristic way of acknowledging the idea that the observation of similar
differences should lead to analogous preferences. It seems easy to experiment
with such a procedure. First choose a class of aggregation functions that avoids
contradictory trade-offs. We may first try weighted averages. For instance, we
may

– choose k = 5 for the scale and n = 3 (i.e., 3 criteria and 5 candidate values
per criterion),

– choose a weighted average function f from S = {1, . . . , 5}3 to R as follows
(the weights α, β, γ being positive real numbers such that α + β + γ = 1):
f(a, b, c) = α × a + β × b + γ × c;

– the � relation is deduced from f as follows: X � Y iff f(X) ≥ f(Y ),
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– choose a subset E of examples (X,Y ),
– apply the previous algorithm and check if the new preferences X � Y we get

are “valid”,
– compute the accuracy rate (cross validation).

What does ‘valid’ mean here? f(X) ≥ f(Y )? No!
Obviously, there are generally more than one set of weights (here α, β, γ) that

agree with a finite set of comparative rankings between pairs of choices. Indeed
let us take, for example, m= 3 criteria, and n comparative preferences vi =
(xi, yi, zi) � v′

i = (x′
i, y

′
i, z

′
i) for i = 1, n. Then, this is equivalent to ∃α, β, γ ≥ 0

such that α + β + γ = 1 satisfying α · xi + β · yi + γ · zi ≥ α · x′
i + β · y′

i + γ · z′
i for

i = 1, n, or if we prefer α · (xi−x′
i)+β · (yi−y′

i)+γ · (zi−z′
i) ≥ 0. For finding the

vertices of the polytope T of the (α, β, γ) simplex satisfying the above system
of linear inequalities, when it is not empty (if the preferences are consistent
with the assumed family of models, this set is not empty), is a matter of linear
programming. This problem has been extensively studied in e.g. [7,9,10]. Thus,
the validation requires to define a family of considered preference models (e.g.
weighted sums, weighted utilities, additive value functions, Choquet integral of
utilities, see Sect. 2) and to check if there is at least one model that agrees with
each prediction X � Y (for all models alluded to in Sect. 2, this can be done by
using linear programming).

7 Concluding Remarks

The paper has reported the first steps of a work in progress. It relies on the idea
that rather than learning an aggregation function (or any other general pref-
erence representation device, e.g., a CP-net [5]), one may try to take another
road, by proceeding in a transductive manner from examples without trying to
induce a general representation of the set of examples. Starting from the observa-
tion that many methods for handling multiple criteria try to avoid contradictory
trade-offs, and noticing the striking similarity of the structure of the axioms pre-
serving from such trade-offs with the notion of analogical proportion, we have
proposed a procedure able to predict new preferences directly from the examples
that does not create contradictory trade-offs, leading to an analogical completion
process of the preferences. The success of this type of approach in classification
is another motivation for proposing such a method. The next steps will be to
effectively validate the approach along the lines discussed in the previous section,
and to investigate how the capability of predicting preferences evolve with the
size of the set of examples (taken randomly from a generating function).
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9. Jacquet-Lagrèze, E., Siskos, Y.: Assessing a set of additive utility functions for
multicriteria decision making: the UTA method. Eur. J. Oper. Res. 10, 151–164
(1982)
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Abstract. Topic models have been used for unsupervised joint aspect
(or attribute) discovery and sentiment classification in on-line review
mining. However in existing methods the straightforward relations
between ratings, aspect importance weights and sentiments in reviews
are not explicitly exploited. In this paper we propose Rating Supervised
Latent Topic Model (RS-LTM) that incorporates these relations into
the framework of LDA to fulfill the task. We test the proposed model
on a review set crawled from Amazon.com. The preliminary experiment
results show that the proposed model outperforms state-of-the-art mod-
els by a considerable margin.

Keywords: Aspect discovery · Sentiment classification · Topic models ·
Review mining

1 Introduction

Joint aspect discovery and sentiment classification in review mining, that is
identifying aspects and sentiments simultaneously from review text, has been an
active topic in research communities in recent years. An aspect is an attribute
or component of a product and the goal of aspect discovery is to find a set of
relevant aspects for a target product [14]. The goal of sentiment classification is
to find out whether shoppers have positive or negative feedbacks on the aspects
of a target product. Joint aspect discovery and sentiment classification allows
for generating a high-level summary of the hundreds, even thousands of reviews
posted by previous shoppers on a product therefore it has very high research
value in product or service recommender systems. Many machine learning tech-
niques have been proposed to fulfill this task. Among those techniques, the one
that has recently drawn the most attention from research communities can be
probabilistic topic models due to their outstanding performances at relatively
low computation costs.

One of the most representative works in topic modeling is Latent Dirichlet
Allocation (LDA) [1]. LDA can cluster words that frequently co-occur in the
same documents into the same topic classes and have been widely used for topic
c© Springer International Publishing Switzerland 2016
V. Torra et al. (Eds.): MDAI 2016, LNAI 9880, pp. 151–164, 2016.
DOI: 10.1007/978-3-319-45656-0 13
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classification in text mining. Fletcher et al. [3] apply it to product attribute
discovery in review mining by equating the concept of “topic” in text mining
with the concept of “aspect” in review mining and assuming words related to
the same attribute must frequently co-occur in the same review sentences. Oh
et al. extend LDA by introducing sentiment polarities of words in reviews as
another latent component besides aspect labels into the topic model to get an
aspect-sentiment unification model (ASUM) for the aforementioned task [7].

ASUM or other LDA extensions usually suffer from such a problem: they
often cluster words with opposite sentiments into the same sentiment classes. In
a dataset with mixed ratings, an aspect word can appear with some particular
positive words in many reviews while it can also be described by some particular
negative words in other reviews. Therefore the positive words and the negative
words are very likely to be assigned with the same sentiment labels because
of their common dependency on the same aspect word. The rationale of LDA
determines that those problems can be hardly alleviated if without feeding extra
prior knowledge about the sentiments to those models.

In a realistic review dataset, the rating of a review always indicates the
overall sentiment orientations of product attributes covered in the very review.
For example, in a 5-star review most attributes are very likely to be in the
positive side; in an 1-star review most attributes are very likely to be in the
negative side; in a 3-star review some attributes can be in the positive side
while others can be in the negative side. In another word, review ratings can be
a very informative prior knowledge for sentiment classification. Besides, aspect
weights may also play an important role along with the ratings in the sentiments:
the most important aspects are very likely to be positive in reviews with high
ratings and to be negative in reviews with low ratings. We believe incorporating
the straightforward relations between ratings, aspect weights and sentiments into
topic models would result in considerable improvements.

In this paper we propose an extension of LDA, Rating Supervised Latent
Topic Model (RS-LTM) that takes into account the aforementioned relations.
We assume the sentiment polarity of each word in a review is drawn from a
binomial distribution that is further sampled from a Beta distribution whose
hyper parameters are determined by the review’s rating and aspect importance
weights. Given aspect weights are usually unknown beforehand and have to
be initialized with random values, we impose a rating regression problem that
captures the relation between ratings and aspect weights as a constraint on the
topic model to adjust the weights to be consistent with the training data. They
are the main contribution of this paper. With the learnt parameters, we can
not only derive aspect and sentiment labels of words, but also estimate aspect
weights and sentiment distributions under all rating-aspect pairs.

The rest of the paper is organized as follows. Section 2 presents a brief intro-
duction to existing related work. Section 3 elaborates the proposed approach and
Sect. 4 shows the experiment results. Section 5 concludes this paper with future
directions.
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2 Related Work

Since we focus on the task of joint aspect discovery and sentiment classification
for product review mining, there is a need to have a brief introduction to exist-
ing work in aspect discovery, sentiment classification, joint aspect discovery and
sentiment classification respectively. To our best knowledge, sentiment classifi-
cation usually involves aspect discovery and the methods that focus solely on
sentiment classification in this particular field are very rare. So in this section
we will only present related work about aspect discovery, joint aspect discovery
and sentiment classification.

Based on the methodologies used, we divide existing works in aspect discov-
ery into two schools: non-topic-model-based approaches and topic-model-based
approaches. One early representative work in the former school can be the one
proposed by Hu et al. [6]. In this work the authors first identify frequent fea-
ture words in a dataset then use association rule mining techniques to allot
those words into relevant aspect classes. Zhai et al. first identify leader fea-
ture expressions for each product aspect by harnessing the knowledge delivered
by co-occurring words and WordNet then assign corresponding aspect labels to
remaining unlabeled words through an EM based method [19]. Guo et al. pro-
pose a latent semantic association model that clusters words into relative aspects
according to their semantic structures and contexts [4].

In the latter school, a representative work can be MaxEnt-LDA proposed
by Zhao et al. [21]. In this model the authors differentiate between words in a
review sentence by their semantic labels and assume each of those labels has a
multinomial distribution over the vocabulary. Deriving those distributions would
allow for identifying aspects in each review. Zhai et al. extend LDA by adding
must-link and must-not-link constraints that mandate which words must be
labeled with the same aspects and which must be not respectively [20]. With
the help of the constraints, the words clustered into the same aspects are much
more relevant than that obtained by the original LDA model. Titov et al. propose
Multi-grain Topic Model in which each review document is associated with two
types of aspect distributions [16]: global aspect distribution that captures the
overall statistical characteristics of reviews and local aspect distribution that
reflects the dependency of locally co-occurring words.

Similarly, works in joint aspect and sentiment classification can be divided
into the same two schools as well. There are a few works can be found in the
non-topic-model-based school. Fahrni et al. take advantage of the rich knowl-
edge available on Wikipedia to identify aspects in reviews and use a seed set of
sentimental words to determine the sentiment polarity of each word through an
iterative propagation method [2]. Recently, Li et al. propose a CRF-based model
that exploits the conjunction and syntactic relations among words to generate
aspect-sentiment summaries of reviews [8].

Joint aspect and sentiment classification based on topic models is a relatively
new topic in the academia. Besides the aforementioned ASUM model, the JST
model proposed by Lin et al. [10] and the Sentiment-LDA proposed by Li et al.
[9] are very representative as well. Those works share similar latent components
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as ASUM but differentiate themselves from it by assuming different generative
processes. Mei et al. propose the TSM model [13] in which the authors divide
all the latent labels into two categories: generic backgrounds and sentimental
aspects therefore not only aspects and their sentiments but also backgrounds
in reviews can be identified. Mukherjee et al. first manually label seed sets of
aspect words with different sentiments then use LDA to learn the association
between the seed words and unlabeled words [15].

It is worth noting that none of those methods mentioned above takes into
account ratings that are usually available beforehand in a review dataset. Gen-
erally speaking, the rating score of a review reflects the overall sentiment orien-
tation of the review therefore ignoring it in an algorithm would compromise the
algorithm’s performance. It has been widely agreed that algorithms which exploit
both review text and ratings would generate better performances than the algo-
rithms only consider either textual content or ratings. A number of methods
based on this principle have been proposed. Wang et al. propose the LRR model
[17] in which the authors assume each aspect of a review has a latent rating and
the overall rating of the review is the weighted summation of the latent aspect
ratings. In this model, the authors first assign each sentence an aspect label
then infer the latent ratings through a regression approach. Yu et al. propose an
aspect ranking algorithm [18] that is similar as Wang’s work except for it using
a much more sophisticated approach to compute aspect weights. Moghaddam
et al. propose the ILDA model [14] in which they also use the concept of latent
aspect rating and derive those latent labels under the context of topic models.
Julie et al. propose a method that combines LDA and matrix factorization algo-
rithm into the same framework that uses LDA to process the textual content
and uses the matrix factorization algorithm to process the ratings [11].

Though review ratings are taken into account in those methods, to our best
knowledge, none of them explicitly exploits the straightforward relations between
ratings, aspect weights and sentiment polarities. Therefore in this paper we pro-
pose the RS-LTM model that considers the relations to try to fill in the gap. We
will show details in upcoming sections.

3 Rating Supervised Latend Topic Model

In this paper, we use m to denote a review and use d to denote a review sentence.
We treat each sentence instead of each review as a document and will use “sen-
tence” and “document” interchangeably in upcoming sections. We assume there
are two sentiment polarities: positive (denoted by “+”) and negative (denoted
by “−”) in the proposed model.

3.1 Model Description

By following the approaches of Sentiment-LDA [9] and other related works, we
assume the aspect label and sentiment polarity of each word are sampled from a
document-specific multinomial distribution over aspects Multi(θ) and a binomial
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distribution over sentiment polarities Bino(π), respectively. Usually, parameters
of the multinomial distribution θ are assumed to be further sampled from a
Dirichlet distribution; parameters of the binomial distribution π are assumed
to be sampled from a Beta distribution. Therefore the hyper parameters of the
Dirichlet distribution α would determine the expectation of θ and the hyper
parameters of the Beta distribution λ would determine the expectation of π. In
existing techniques α and λ are usually symmetric and assigned with empirical
values. In this paper, we maintain the same practice on α while making a dif-
ference on λ that allows review ratings and aspect weights to interfere in the
generation of sentimental labels in the model.

In our approach, we assume the sentiment distribution πkr of an aspect k
under a rating r is sampled from a Beta distribution whose hyper parameters
λkr = {λkr+, λkr−} are determined as follows:

λkr+ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp(r ∗ δk ∗ ρ) r > 0.5

exp(1) r = 0.5

exp(r) r < 0.5

λkr− =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp(1 − r) r > 0.5

exp(1) r = 0.5

exp((1 − r) ∗ δk ∗ ρ) r < 0.5

(1)

where r is the normalized rating, δk the importance weight of aspect k. ρ is an
adjustment coefficient that is defined on an ad-hoc basis to ensure δk ∗ ρ ≥ 1 for
any aspect k. The equation indicates that when a rating is greater than one-half
of the full scale rating, the hyper parameter λkr+ corresponding to the positive
sentiment weight πkr+ would be greater than the hyper parameter λkr− for the
negative sentiment weight πkr−; otherwise λkr− would be greater than λkr+.
According to the nature of Beta distribution, the expectation of a sentiment
distribution weight πkr sampled from Beta(λkr) can be computed as follows
(Table 1):

E(πkrs) =
λkrs

λkr+ + λkr−
(2)

By plugging λ described in Eq. (1) into the expectation equation, we can
easily get that: when r > 0.5, then E(πkr+) > E(πkr−); when r < 0.5,
E(πkr+) < E(πkr−). It leads to that a sentiment polarity drawn from Multi(πrs)
is inclined to be positive when the rating is greater than one-half of the full scale
rating and to be negative when it is less than one-half of the full scale rating. Fur-
thermore, it also implies that the inclinations on more important aspects would
be more clear than that on less important aspects. This can be interpreted in
plain English that with the help of λ, aspects are very likely to be positive in
reviews with high ratings and to be negative in reviews with low ratings; impor-
tant aspects are more likely to be positive than less important aspects in reviews
with high ratings, and conversely, important aspects are more likely to be neg-
ative in reviews with low ratings. Therefore the proposed Beta distribution can
capture the relations between aspect weights, sentiment polarities and ratings.
We replace the symmetric Beta distribution in existing work with the proposed
asymmetric ones and specify the generative process as follows:
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Table 1. Table of notations

M Total number of reviews

D Total number of review sentences

K Total number of aspects

T Total number of terms in vocabulary

S Total number of sentiment polarities

R Full rating scale

zdi Aspect label for the ith word in d

xdi Sentiment polarity for the ith word in d

gd The rating of review sentence d

θd K-dimensional aspect distribution for d

φks Word distribution in k under sentiment s

πkr Sentiment distribution in k under rating r

δk The importance weight of aspect k

For the review corpus:

1. For each aspect k under each rating score r, sample a sentiment distribution
πkr ∼ Beta(λkr)

2. For each aspect k under each sentiment s, sample a word distribution φks ∼
Dir(β)

For each document d with Nd words:

1. Sample an aspect distribution θd ∼ Dir(α)
2. For each word position i in d

2.1 sample an aspect zdi ∼ Multi(θ)
2.2 sample a sentiment polarity xdi ∼ Bino(πzdigd

)
2.3 sample a word wdi ∼ Multi(φzdixdi

)

We show the Bayesian network of the proposed model in Fig. 1. Based on the
Bayesian network, we can get:

Fig. 1. The Bayesian network of RS-LTM
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p(τ |Θ,Π,Φ, g) =
D∏

d=1

Nm∏

i=1

K∑

zdi=1

p(zdi|θd)
S∑

xdi=1

p(xdi|zdi, gd,Π)p(wdi|zdi, xdi, Φ)

(3)

p(Θ|α) =
D∏

d=1

Dir(θd|α) (4)

p(Π|λ) =
∏

k

∏

r

Beta(πkr|λkr) (5)

p(Φ|β) =
∏

k

∏

s

Dir(φks|β) (6)

where τ denotes the corpus. Θ,Π,Φ in Eq. (3) can be estimated by Gibbs sam-
pling [5]. However, the aspect weights that serve as a prior knowledge in the
topic model are unknown beforehand and have to be initialized with random
values. To justify the topic model, extra constraints on the weights need to be
imposed to reduce the randomness of the weights and make them consistent
with the training dataset. In this paper we adopt the rating regression model
proposed by Wang et al. [17] as the constraint. In this model the authors assume
each aspect k in a review m has a latent rating g′

mk and the overall rating gm

is sampled from a Gaussian distribution with the weighted summation of each
aspect’s latent rating as the mean.

gm ∼ N(
∑

k

δk ∗ g′
mk, σ) (7)

where δk is aspect k’s weight. σ denotes the variance and it is predefined to be
1 in this paper. The latent rating g′

mk of an aspect k in a review is simplified as
the normalized frequency of positive words labelled with the aspect. It can be
written as:

g′
mk = nmk+/Nm (8)

Optimal aspect weights δ can be computed by maximizing the rating likeli-
hood

∑
m log p(gm). Therefore we maximize both the corpus likelihood (3) and

the rating likelihood simultaneously. We can combine the topic model and the
constraint by solving the following combined optimization problem:

arg max
Ψ

, h(τ |Ψ, g) = p(τ |Ψ, g) +
∑

m

log p(gm) (9)

Ψ = {Θ,Φ,Π, δ}

3.2 Model Inference

Since the inference of the topic model is intractable, direct inference of the
optimization problem is out of the question [1]. In this paper we solve the problem
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by using an alternating algorithm. As aforementioned, Gibbs sampling can be
used to estimate Θ, Φ, Π, Z, X in the topic model. Given Z and X, we can
easily estimate each aspect’s latent rating. We plug the latent ratings into the
regression model and use gradient ascent to fit aspect weights δ. Then we feed
the resulting aspect weights δ into the Gibbs sampling process and alternate
between the two steps until convergent.

To use Gibbs sampling, we first initialize each word wdi in each document d
with a random aspect label zdi and a random sentiment polarity xdi. Then, we
update the aspect label zdi and sentiment polarity xdi of each word by condi-
tioning on the aspect labels Z−di and sentiment polarities X−di of the remaining
words in the corpus. Therefore we compute p(zdi = k, xdi = s|Z−di,X−di,W )
for the Gibbs sampling process. Assuming wdi = t, gd = r, by following method
presented by Heinrich [5], we can get

p(zdi = k, xdi = s|Z−di,X−di,W ) ∝ nt
ks,−di + βt

∑T
t=1 nt

ks,−di + βt

× λkrs + ns
kr,−di∑

s λkrs + ns
kr,−di

× (nk
d,−i + αk)

(10)

where nt
ks denotes the number of times that term t is assigned with aspect k

and sentiment polarity s in the corpus; ns
kr denotes the number of times aspect

k under rating r is assigned with sentiment polarity s in the corpus; nk
d denotes

the number of words is assigned with aspect k in document d.
In the aforementioned gradient ascent algorithm for the constraint, we initial-

ize aspect weights δ with same values used in the topic model. δ can be updated
in each iteration of the gradient ascent algorithm as follows:

δk = δk + γ ∗
∑

m

g′
mk(gm −

∑

k

g′
mkδk) (11)

where γ is the step size. Based on the above description we summarize the
inference process in Algorithm 1.

Fig. 2. Rating distribution in the training dataset
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Algorithm 1. Inference algorithm
procedure Inference(τ , g)

Initialize δ with random values
while not convergent do

run phase 1 then feed the results to phase 2
run phase 2 then feed the results to phase 1

end while
return Ψ

end procedure

Phase 1 -Gibbs sampling

Input: τ ,g,δ
Initialize Z and X with random values
repeat

for each document d in the corpus do
for each word i in d do

update zdi and xdi according to equation (10), then compute Θ,Φ,Π
end for

end for
until convergent
return Θ,Φ,Π,Z,X

Phase 2 -Gradient ascent

Input: Θ,Φ,Π,Z,X,g
repeat

update δ according to equation (11)
until convergent
return δ

4 Evaluation

In this section we evaluate the performance of the proposed model and com-
pare it with other state-of-the-art methods on a review data set crawled from
amazon.com [12]. In this dataset 3 categories of products are included: health,
beauty and cellphone. After removing items whose number of reviews is less
then 100, there are 2,687 items, and 253,730 reviews left in the beauty category,
1,581 items and totally 41,9491 reviews included in the health category, 1,200
items and 366,824 reviews included in the cellphone category. The distribution
of rating scores in each category is shown in Fig. 2.

We pre-process the data before feeding them into the proposed model as
follows. We first use Part-of-Speech (POS) taggers to give each word in each
sentence a POS tag then extract the trunks of each sentence. We use 3 sequen-
tial patterns to extract sentence trunks: noun+verb+(adv)+(adj)+(noun);
verb+(adj/adv)+noun+(adv)+(adj); adj+noun. The components in brackets
can appear for 0 or 1 time. In a sentence, we first check if there is any sub-
string matches the first pattern. If no match is found, we try the second one
and then the third one. For example, in a sentence “the phone allows you to
use many ring tones”, two parts: “phone allows”, “use many ring tones” will be
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extracted from the sentence. Finally we manually remove words that are usually
neutral from the sentence trunks.

We use 80 % of the reviews in each category as the training set and hold out
the remaining ones as the test set. In the test set, we manually cluster all the
words into different semantic classes. For example, we allot words like “battery”,
“charger”, “die” into a cluster labelled with “power” and allot words like “afford-
able”, “expensive”, “cheap” into another cluster labelled with “price”. We first
train the proposed model on the training set then use the learnt model parame-
ters to assign aspect and sentiment labels to words in the test set. We evaluate
the performance of the proposed model and compare it with 3 state-of-the-art
models: ILDA [14], sentiment-LDA [9], ASUM [7]. We use 3 metrics: accuracy of
aspect discovery, accuracy of sentiment classification, model perplexity to com-
pare their performances.

Accuracies of Aspect Discovery and Sentiment Classification. We use
Rand Index [14] to calculate the accuracy of aspect discovery. It can be calculated
by the following equation:

Accua =
2 × (nx + ny)

N
(12)

where nx is the number of word pairs that are assigned into the same clusters by
both the models and the manual labeling. ny is the number of word pairs that
are assigned into different clusters by both the models and the manual labeling.
N is the total number of word pairs in the test set.

We set the parameters for all the 4 models as follows: K ∈ [4, 7]; α = 2;
β = 0.5. We calculate the average accuracy of each model over all the parameter
settings on each category and report the results in Table 2. The results indicate
the proposed model performs better in average precision than the other three
models.

Table 2. Aspect discovery accuracies of RS-LTM, ASUM, ILDA, Senti-LDA

Cellphone Health Beauty Average

K=4 K=5 K=6 K=7 K=4 K=5 K=6 K=7 K=4 K=5 K=6 K=7 accuracy

RS-LTM 0.71 0.74 0.68 0.75 0.70 0.68 0.71 0.76 0.67 0.66 0.63 0.7 0.7042

ASUM 0.70 0.66 0.69 0.67 0.72 0.70 0.74 0.68 0.60 0.70 0.62 0.64 0.6767

ILDA 0.58 0.68 0.63 0.66 0.58 0.66 0.56 0.69 0.63 0.65 0.62 0.61 0.6342

Senti-LDA 0.74 0.75 0.68 0.69 0.76 0.70 0.60 0.68 0.60 0.58 0.66 0.60 0.6700

We manually label review sentences in the test set with sentiment polarities
and calculate the accuracy of sentiment classification as follows:

Accus =
nc

Nt
(13)
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Fig. 3. Sentiment classification accuracies of RS-LTM, ASUM, ILDA, Senti-LDA

where nc is the number of test review sentences whose sentiments are correctly
classified. Nt denotes the total number of test sentences. We compute the average
sentiment classification accuracies of each model over all the parameter settings
on the three product categories and report the results in Fig. 3.

The results indicate that the proposed model has much better performances
than that of other models on all the three categories. We attribute the consid-
erable improvement to that we use review ratings as a prior knowledge to learn
the sentiment distributions. It is worth noting that the proposed model improves
the most on the category of beauty because this category has a higher portion
of 1-star reviews than others therefore it can provide more “confident” evidence
for negative sentiments during the training process.

Model Perplexity. We compute the perplexity of each model [1] by the fol-
lowing equation and report the results in Fig. 4.

Fig. 4. Model and classification perplexities of RS-LTM, ASUM, ILDA, Senti-LDA
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perplexitym(Dtest) = exp(−
∑

d log p(wd)∑
d Nd

) (14)

A lower perplexity value means a better generalization performance. The
results indicate that the proposed model has a slightly lower model perplex-
ity than other models. This could be due to that the proposed model takes
into account relations between sentiment polarities, aspect weights and ratings.
Finally we show a snippet of the aspects extracted from the cellphone reviews
by the proposed model in Table 3.

Table 3. Examples of cellphone topics extracted by RS-LTM

Aspect 1 (screen) Aspect 2 (power) Aspect 3 (price) Aspect 4 (shipping)

Positive Negative Positive Negative Positive Negative Positive Negative

Clear Scratch Life Die Affordable Expensive Bubble Days

Size Small Long Shortly Cheap Waste Fast Broken

Big Borken Removable Lost Worthy Deal Delivery Protection

HD Disappointed Charge Burning Discount Refund Easy Dirt

Backlight Low Work Quickly Good Buck Proper Service

Film Noticeable Happy Lose Recommend Trick Arrive Disappear

Model Crack Excellent Backup Down Surprise Responsible Lie

Reading Pixel Adapter Junk Gift Bother Free Photo

Clean Poor Strong Hour Benefit Dollar Express Replace

Bright Toy Day Plastic Save Account Prime Missing

5 Conclusion

In this paper we propose Rating Supervised Latent Topic Model for joint aspect
discovery and sentiment classification. In this model the relations between rat-
ings, aspect weights and sentiments are taken into account. Experiment results
indicate that our approach leads to considerable improvements over a number
of state-of-the-art models. In the near future we will test the model on a much
larger dataset. Also we will conduct an in-depth analysis on the sentiment dis-
tributions of aspects under each rating generated by the model because the
Kullback-Leibler divergence between those distributions may give us a clue to
identify fake reviews.
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Abstract. Clustering is a very useful tool of data mining. A cluster-
ing method which is referred to as K-member clustering is to classify a
dataset into some clusters of which the size is more than a given constant
K. The K-member clustering is useful and it is applied to many applica-
tions. Naturally, clustering methods to classify a dataset into some even-
sized clusters can be considered and some even-sized clustering methods
have been proposed. However, conventional even-sized clustering meth-
ods often output inadequate results. One of the reasons is that they are
not based on optimization. Therefore, we proposed Even-sized Cluster-
ing Based on Optimization (ECBO) in our previous study. The simplex
method is used to calculate the belongingness of each object to clusters
in ECBO. In this study, ECBO is extended by introducing some ideas
which were introduced in k-means or fuzzy c-means to improve prob-
lems of initial-value dependence, robustness against outliers, calculation
cost, and nonlinear boundaries of clusters. Moreover, we reconsider the
relation between the dataset size, the cluster number, and K in ECBO.

1 Introduction

In recent years, collecting and accumulating vast amounts of data has become
very easy along with the improvement of computers and the spread of the inter-
net. The data which are collected and accumulated from many and unspecified
users is known as the big data. It becomes very difficult for us to deal with the
big data directly because of the scale of the big data, and then, data mining
technique, which is to obtain useful information and new knowledge beyond our
image automatically, has been very important.

Clustering is one of the data mining technique and it classifies a dataset into
some clusters automatically. The classification is based on degree of similarity
or dissimilarity between objects and do not need any supervised data. There-
fore, clustering is an unsupervised classification method. This approach has been
c© Springer International Publishing Switzerland 2016
V. Torra et al. (Eds.): MDAI 2016, LNAI 9880, pp. 165–177, 2016.
DOI: 10.1007/978-3-319-45656-0 14
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extensively studied from the second half of the 20th century, and many variations
of clustering methods have been devised. K-member clustering (KMC) is one
of the clustering method and it classifies a dataset into some clusters of which
the size is at least K. The following three methods are known as typical KMC
methods: greedy k-member clustering (GKC), one-pass k-means algorithm for
K-anonymization (OKA), and clustering-based K-anonymity (CBK).

However, those algorithms have some problems. The problem of GCK and
OKA is that the clusters have sometimes no sense of unity, and the problem of
CBK is that the cluster number is not maximized under the constraint that the
size of each cluster is or more than K. To solve the problem of CBK, two-division
clustering for K-anonymity of cluster maximization (2DCKM) was proposed and
2DCKM was extended by one of the authors which is referred to .as extended
two-division clustering for K-anonymity of cluster maximization [1] (E2DCKM).
Both of the methods are based on CBK, then they obtain final cluster division
from iteration of classification of one cluster into two clusters and adjustment of
each cluster size.

However, the classification accuracy of the above methods is not so high.
One of the reason is that those methods is not based on optimization unlike the
useful clustering methods such as hard c-means (HCM) and fuzzy c-means.

Typical useful clustering methods, e.g. FCM and HCM, are constructed based
on optimization of the given objective function. In addition, spectral clustering
is also constructed based on optimization. Therefore, construction of methods
based on optimization is one of the solution to the problem about classification
accuracy. Moreover, the objective function itself is also an evaluation guideline of
results of clustering methods which strongly depend on initial value. Considering
together extensibility from the mathematical point of view, there is the great
advantage to construct clustering methods in the framework of optimization.

From the above viewpoint, some of the authors was constructed an even-
sized clustering method, which is with more strengthened constraints of cluster
size than KMC, in the framework of optimization [2]. The constraint is that each
cluster size is K or K+1. Here we have to notice that the existence of the cluster
number c obviously depends on the dataset size n and K. For example, in case
that n = 10 and K = 6, the cluster number c which satisfies the conditions does
not exist. Conversely, K exists for any c (c < n). Therefore, a condition of n
and K for preventing the case is needed. The even-sized clustering algorithm
based on optimization is referred to as ECBO. ECBO is based on HCM and
its algorithm is constructed as iterative optimization. The belongingness of each
object to clusters are calculated by the simplex method in each iteration. Thus,
ECBO has high classification accuracy.

However, ECBO has also the following problems: (1) the results strongly
depend on initial values (initial-value dependence), (2) the algorithm is not
robust against outliers, (3) it needs a lot of calculation cost, and (4) it is very
difficult to classify datasets which consist of clusters with nonlinear boundary.
In this study, we describe various types of ECBO to solve the above problems
and estimate the methods in some numerical examples. Moreover, we mention
one extension of ECBO for dealing with datasets on a sphere.
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2 Even-Sized Clustering Based on Optimization (ECBO)

Let x ∈ �p be an object, and X = {x} be a set of objects. v ∈ �p and V is
a cluster center and a set of cluster centers, respectively. Ci is the i-th cluster.
Moreover, let U = (uki)k=1,...,n, i=1,...,c be a partition matrix of membership
grades. uki = 1 iff xk is in Ci and uki = 0 iff xk is not in Ci.

Even-sized clustering classifies datasets into some clusters of which the object
number are almost even. Depending on the size of dataset, it is not possible to
classify the dataset into completely evenly, then each cluster size is defined as
K or K + 1. Here, K is a given constant. As mentioned above, the existence of
c depends on the dataset size n and the given number K for cluster size. We
mention the condition of K later.

Even-Sized Clustering Based on Optimization (ECBO) is one of even-sized
clustering and it is based on HCM. The difference of ECBO from the conven-
tional even-sized clustering is that ECBO classifies datasets in the framework
of optimization, that is, ECBO minimizes a objective function under some con-
straints.

The objective function and constraints are as follows:

minimize JECBO(U, V ) =
n∑

k=1

c∑

i=1

uki‖xk − vi‖2 (1)

s.t.
c∑

i=1

uki = 1 (k = 1, . . . , n) (2)

K ≤
n∑

k=1

uki ≤ K + 1 (i = 1, . . . , c) (3)

(1) and (2) are the same objective function and constraint as HCM. (3) is the
constraints for even cluster size.

These equations are linear with uki, hence the optimal solution of uki is
obtained by the simplex method. The cluster centers vi can be calculated in the
same way of HCM.

Before starting the ECBO algorithm, we have to give a constant K or a
cluster number c. The relation between the dataset size n, c, and K in ECBO
was considered in Ref. [2]. Here, we reconsider more precise relation.

The relation between n, c and K is K =
⌊

n
c

⌋
. If n and c are given, K exists.

On the other hand, even if n and K are given, c does not always exist. Thus, it
is necessary to satisfy the following relation between n and K:

0 < n ≤ (K + 1)
n − (n mod K)

K
(4)

If (4) holds true,

c =
n − (n mod K)

K
.
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We present the ECBO algorithm as Algorithm 1.

Algorithm 1. ECBO
Step 0. Give the constants K or c.
Step 1. Give the initial cluster centers V randomly.
Step 2. Update U by the simplex method.
Step 3. Update V by vi =

∑n
k=1 ukixk/

∑n
k=1 uki.

Step 4. If V changes from previous V , go back to Step 2. Otherwise, stop.

3 Proposed Methods: Extended ECBO

3.1 ECBO++

We set the initial cluster centers randomly in the ECBO algorithm. However, the
ECBO is based on HCM and then, the ECBO has the same problem as HCM,
i.e., initial-value dependence. To the problem of HCM, k-means++ was proposed
by Arthur et al. [3]. In the method, the initial cluster centers are stochastically
selected and the improvement of initial-value dependence was proved theoreti-
cally. Therefore, we propose a new method ECBO++ to extend the ECBO by
using the same selection method of the initial cluster centers as k-means++.

The first cluster center is selected randomly. Next, we select each cluster
center on the probability D(x)2∑

x∈X D(x)2 . Here, D(x) is a distance between an object
x and the nearest cluster center which is already selected.

The ECBO++ uses the above procedure as selection of initial cluster centers.
The objective function and constraints of The ECBO++ are the same as ones
of the ECBO. We present the ECBO++ algorithm as Algorithm 2.

Algorithm 2. ECBO++
Step 0. Give the constants K or c.
Step 1. Select the initial cluster centers by following process:

Step 1a. Select an object x ∈ X randomly as a cluster center.
Step 1b. Select x ∈ X with the probability D(x)2/

∑
x∈X D(x)2 as a new center

vi.
Step 1c. Iterate Step 1b. until we select c cluster centers.

Step 2. Update U by the simplex method.
Step 3. Update V by vi =

∑n
k=1 ukixk/

∑n
k=1 uki.

Step 4. If V changes from previous V , go back to Step 2. Otherwise, stop.

3.2 L1ECBO

L1-norm, also referred to as Manhattan distance, is often used on data analysis.
The distance is presented as the following equation:
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‖x − y‖1 =
p∑

j=1

|xj − yj |.

Here, x = (x1, . . . , xp) ∈ �p and y = (y1, . . . , yp) ∈ �p. L1 fuzzy c-means [4]
(L1FCM) has higher robustness against outliers than FCM with squared Euclid-
ean distance. Therefore, it is expected that the robustness of outliers by ECBO is
improves by introducing the L1-norm similar to L1FCM. We consider an objec-
tive function with the L1-norm instead of the squared Euclidean distance in (1)
as follows:

JL1ECBO(U, V )=
n∑

k=1

c∑

i=1

uki‖xk − vi‖1 =
n∑

k=1

c∑

i=1

p∑

j=1

uki|xkj − vij | =
c∑

i=1

p∑

j=1

Jij .

The constraints are the same as ones of the ECBO. Here, Jij is referred to
as the semi-objective function.

When Jij for all i and j is minimized, the objective function JL1ECBO is also
minimized. Therefore, we can consider minimization of Jij instead of JL1ECBO.
Because Jij is a convex and piecewise linear function, the point that a sign of
∂Jij

∂vij
is changed from minus to plus is an optimal solution.

For exploring the solution, we sort the j-th coordinate of all objects
{x1j , . . . , xnj} in ascending order to xqj(1)j ≤ xqj(2)j ≤ . . . ≤ xqj(n)j . Here,
qj(k) (k = 1, . . . , n) are a permutation of {1, . . . , n}, and they correspond to the
object numbers. By using xqj(k) and Jij , we can rewrite Jij as follows:

Jij =
n∑

k=1

uki|xkj − vij | =
n∑

k=1

uqj(k)i|xqj(k)j − vij |.

Thus, ∂Jij

∂vij

∣
∣
∣
xq(k)j

is expressed as follows:

∂Jij

∂vij

∣
∣
∣
∣
xqj(r)j

= −
n∑

k=r+1

uqj(k)i +
r∑

k=1

uqj(k)i.

The point vij = xqj(r)j that the sign of derivative changes from negative to posi-
tive is the optimal solution. We present the L1ECBO algorithm as Algorithm 3.

Algorithm 3. L1ECBO
Step 0. Give the constants K or c.
Step 1. Give the initial cluster centers V randomly.
Step 2. Update U by the simplex method.
Step 3. Update V by minimizing Jij for vij .
Step 4. If V changes from previous V , go back to Step 2. Otherwise, stop.
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3.3 MECBO

k-medoids clustering [5] is a method in which each cluster center are represented
by an object that is the nearest to the center. Such an object is referred to as
the medoid. The k-medoids clustering can classify the dataset if the distances
between objects are given. It is known that the k-medoids clustering is more
robust against outliers than HCM [6].

A The method proposed by Park et al. [6] minimizes the objective function
by iterative optimization for the medoids V and the belongingness of each object
to clusters. xk ∈ Ci of which the sum of distance between xj ∈ Ci is minimum
for i is selected as a new medoid, that is,

vi = arg min
xk∈Xi

∑

xj∈Ci

dkj . (5)

Here, dkj = ‖xk − xj‖. Therefore, we apply the medoids to ECBO which is
referred to as medoid-ECBO (MECBO). The objective function and constraints
are the same as ones of the ECBO, but the measure of distance in the function
of the MECBO is Euclidean distance. We introduce the above procedure of k-
medoids clustering to ECBO to obtain V . The simplex method is used to obtain
the optimal solutions to U . We present the MECBO algorithm as Algorithm 4.

Algorithm 4. MECBO
Step 0. Give the constants K or c.
Step 1. Give the initial cluster centers V randomly.
Step 2. Update U by the simplex method.
Step 3. Update V by (5).
Step 4. If V changes from previous V , go back to Step 2. Otherwise, stop.

3.4 KECBO

Since the ECBO is based on the HCM, it can not classify datasets which consist
of clusters with nonlinear boundary. Therefore, we propose KECBO in which a
kernel function is introduced to classify such datasets.

Kernel Hard c-means (KHCM) proposed by Girolami [7] is a method based
on HCM to classify datasets which are not able to be classified with linear
boundaries. In KHCM, a kernel function, which maps objects in the original
space to a higher dimensional feature space, plays very important role. KHCM
classifies all objects not in the original space but in the feature space by the
kernel function. We introduce the idea of kernel functions in the ECBO.

Let φ : �p → F be mapping from the p-dimensional original space to a higher
feature space F . The objective function of KHCM and KECBO are the same as
follows:

JKECBO(U, V ) =
n∑

k=1

c∑

i=1

ukidφ(xk, vi) =
n∑

k=1

c∑

i=1

uki‖φ(xk) − vφ
i ‖2.
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Here, vφ
i is a cluster center on F . The constraints of KECBO are as same as the

ECBO.
If we calculated the distance on a feature space directly, calculation cost

becomes enormous. Therefore, the distance is usually calculated by using a the
following κ which represents a inner product of vectors on a feature space.

κ(x, y) = 〈φ(x), φ(y)〉.

κ is referred to as the kernel function.
The squared distance on a feature space dφ is calculated as follows:

dφ(x, y) = ‖φ(x) − φ(y)‖2 = κ(x, x) − 2κ(x, y),+κ(y, y)

We can calculate the inner product in F by using κ in the original space
without explicit definition of φ. Typical kernel function is the Gaussian kernel
as follows:

κ(xi, xj) = exp
(

−‖xi − xj‖2
2σ2

)

.

In general, the value of vφ
i or the cluster center can not be directly calculated in

the feature space. Thus, the distance between an object and a cluster center is
calculated by the following formula deformation:

‖φ(xk) − vφ
i ‖2 = κ(xk, xk) − 2

|Ci|
∑

xl∈Ci

κ(xk, xl) +
1

|Ci|2
∑

xl∈Ci

∑

xm∈Ci

κ(xl, xm).

(6)

KECBO updates a distance matrix Δ = (dφ(xk, vi))k=1∼n, i=1∼c instead of cal-
culation of V . The simplex method is used to obtain the optimal solutions to U .

We present the KECBO algorithm as Algorithm 5.

Algorithm 5. Kernel ECBO
Step 0. Give the constants K or c.
Step 1. Give the initial cluster centers V randomly.
Step 2. Calculate Δ.
Step 3. Update U by the simplex method.
Step 4. Update Δ.
Step 5. If U changes from previous U , go back to Step 3. Otherwise, stop.

4 Numerical Examples

We compared the proposed methods to an conventional method of E2DCKM
in some data sets. FCM was used as a method to classify one cluster into two
clusters in E2DCKM.
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4.1 Information Loss Function

We were not able to compare the results in each proposed method because
of difference of objective function. Therefore, we compared the results using
Information Loss function (IL) [8]. It is a function which measures suitability of
clustering. When loss of information is small, IL is small enough and the result
is able to be considered suitable. IL is expressed by the following expression:

IL =
c∑

i=1

|Ci| ·
p∑

j=1

N̂j(Ci) − Ňj(Ci)
N̂j(X) − Ňj(X)

.

N̂j(S) is the maximum value of the j-th coordinate of the object in the set
S ⊆ X, and Ňj(S) is the minimum value of the j-th coordinate of the object
in S.

If all objects are in a cluster, IL is the maximum value. Conversely, if each
object is in different clusters, IL is the minimum value 0.

4.2 Double Circle Data

We examined the dataset which have 50 objects in the small circle and 100
objects on the big circle. We present the dataset as Fig. 1. We examined the
dataset for 100 times by each method at c = 2, 3, 5.

Fig. 1. Double circle data Fig. 2. The result of ECBO for double
circle data (IL = 185.00)

We present the best values and average of IL values as Tables 1 and 2, respec-
tively. Compared to E2DCKM, the average of IL values of all proposed methods
had been very small. A little difference between the average and the minimum
of IL values means that good results are obtained stably by proposed methods.
We found little difference between IL values of ECBO and ECBO++. Further,
the L1ECBO showed the best value on c = 2, 5 and the second good value on
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Fig. 3. The result of KECBO for dou-
ble circle data (IL = 181.23)

Fig. 4. The result of ECBO for double
circle data (IL = 130.65)

Table 1. The best IL value of each
method in double circle data

c 2 3 5

E2DCKM 223.7 183.4 135.1

ECBO 224.6 185.0 130.7

ECBO++ 224.6 185.0 130.4

L1ECBO 224.5 181.5 127.8

MECBO 225.4 185.2 131.3

KECBO 237.3 181.2 134.3

Table 2. The average IL value of
each method in double circle data

c 2 3 5

E2DCKM 241.3 201.9 151.4

ECBO 234.0 188.4 138.2

ECBO++ 234.3 188.4 136.7

L1ECBO 228.5 192.9 140.6

MECBO 238.0 198.1 140.8

KECBO 257.4 212.1 171.2

c = 3. KECBO showed the good value on c = 3, but it showed the worst value
in other case.

We present the average execution time as Table 3. MECBO is the shortest
execution time, and KECBO is the longest execution time.

We present the results that ECBO and KECBO classified the dataset into
three clusters as Figs. 2 and 3, respectively. Against the linear classification of
ECBO, the classification of KECBO is nonlinear as the small circle and the big
one. Further, the IL value of KECBO is smaller than ECBO.

We also present the results that ECBO, KECBO and L1ECBO classified the
dataset into five clusters as Figs. 4, 5 and 6, respectively. In this case, the IL
value of L1ECBO is the minimum.

As mentioned above, KECBO can classify the dataset which consists of clus-
ters with nonlinear boundary. However, according to the dataset distribution, the
IL values of the classification results by KECBO are not always the minimum.

4.3 Fischer’s Iris Dataset

Fischer’s Iris dataset consists of 50 samples from each of three species of Iris.
Each sample has four features: the length and the width of the sepals and petals.
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We executed each method in c = 3 for 100 times and we compared the result
of each method by Adjusted Rand Index (AARI) [9]. We obtained the result
of HCM and FCM for comparison. We did not obtain IL value in the result of
HCM and FCM because the IL value is considered in the methods We present
the result of each method about AARI, IL value and execution time as Table 4.

Table 3. The average execution time of each method in double circle data [ms]

c 2 3 5

E2DCKM 0.48 0.77 0.92

ECBO 12.34 19.94 33.68

ECBO++ 13.53 19.73 30.52

L1ECBO 13.31 19.06 38.51

MECBO 10.64 16.01 29.58

KECBO 44.42 72.59 136.94

Fig. 5. The result of KECBO for dou-
ble circle data (IL = 134.32)

Fig. 6. The result of L1ECBO for dou-
ble circle data (IL = 127.77)

The ARI of ECBO, ECBO++, and MECBO is the same value, and the one of
L1ECBO and KECBO is larger than ECBO. In addition, ARI of each proposed
method is very large in comparison with E2DCKM, HCM, and FCM. Although
ARI of KECBO in σ = 0.6 is the largest, the variance of ARI is relatively large
and the minimum value of ARI is relatively small. Therefore, the classification
result in this case seems unstable. Furthermore, although ARI of KECBO in
σ = 2.0 is relatively small, the value is larger than HCM and FCM. In addition,
The variance of ARI is 0, and the result of classification in this case seems stable.

The execution time of ECBO++ is the shortest, and the one of MECBO is
the second shortest in the proposed methods.
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Table 4. Each value of each method in the Iris data

5 Extension of ECBO for Spherical Data

We extend this ECBO to apply data on a sphere. The data on a sphere is referred
to as the spherical data. Generally, each norm of spherical data is normalized
as a unit. In other words, all spherical data is on a unit sphere. Consequently,
each spherical datum has only direction. Therefore, cosine dissimilarity between
x and y is usually used when we handle spherical data as follows:

dSECBO(x, y) = α − cos(x, y) = α − 〈x, y〉. (||x|| = ||y|| = 1)

α ≥ 3/2 from the reason mentioned in Ref. [10].
The objective function of the extended ECBO for spherical data (called

SECBO) is as follows:

JSECBO =
n∑

k=1

c∑

i=1

ukidSECBO(xk, vi) =
n∑

k=1

c∑

i=1

uki(α − 〈xk, vi〉).

The constraints are as same as ECBO. Notice that minimization of JSECBO is
as same as maximization of

∑n
k=1

∑c
i=1 uki〈xk, vi〉.

The algorithm of SECBO is showed in Algorithm 6.

Algorithm 6. SECBO
Step 0. Give the constants K or c.
Step 1. Give the initial cluster centers V randomly.
Step 2. Update U by the simplex method.

Step 3. Update V by calculating the centroid of the cluster as vi =
∑c

i=1 ukixk

||∑c
i=1 ukixk|| .

Step 4. If V changes from previous V , go back to Step 2. Otherwise, stop.
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We’ll be able to construct SECBO++, L1SECBO, Medoid SECBO, and
KSECBO in similar way of ECBO. In particular, the idea for SECBO++ can
be found in spherical k-means++ clustering proposed by one of the author in
Ref. [10].

6 Conclusion

In this study, we proposed four types of even-sized clustering algorithm using
an optimization method, i.e., ECBO++, L1ECBO, MECBO, and KECBO.
ECBO++, L1ECBO, MECBO, and KECBO are solutions to solve the following
problems: (1) the results strongly depend on initial values (initial-value depen-
dence), (2) the algorithm is not robust against outliers, (3) it needs a lot of
calculation cost, and (4) it is very difficult to classify datasets which consist of
clusters with nonlinear boundary, respectively. Next, we estimated the effective-
ness of our proposed algorithms in some numerical examples. Third, we men-
tioned one extension of ECBO for dealing with datasets on a sphere.

As presented in the numerical examples, the proposed methods can decrease
the IL value in comparison with the conventional method. Whereas the best IL
values of E2DCKM were often smaller than the proposed methods, the average
of IL values of the proposed methods were always smaller than E2DCKM and
good results were stably obtained by the proposed methods.

The ECBO was constructed by adding the constraints for cluster size to
HCM and the membership grade was obtained by the simplex method. Thus,
each cluster shape was hyperspherical and the data well gather.

The ECBO++ was constructed by introducing the selection method of initial
cluster centers of k-means++ into the ECBO. The results of the minimum IL
values of ECBO and ECBO++ were almost the same, but the variance of IL
values and the execute time of ECBO++ were improved from ECBO.

The calculation of cluster centers in L1ECBO and MECBO were the same
as L1 fuzzy c-means and k-medoids, respectively. In this study, we presented
numerical examples on Euclidean space and with no outliers. However, It is
expected that both the methods have the robustness against outliers and that
MECBO can deal with the graph data.

KECBO was constructed by introducing a kernel function into ECBO. It
classified the datasets which consist of clusters with nonlinear boundary, and
the results of IL values were comparatively smaller.
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Abstract. In this study, a Bezdek-type fuzzified possibilistic cluster-
ing algorithm for spherical data (bPCS), its kernelization (K-bPCS),
and spectral clustering approach (sK-bPCS) are proposed. First, we
propose the bPCS by setting a fuzzification parameter of the Tsallis
entropy-based possibilistic clustering optimization problem for spheri-
cal data (tPCS) to infinity, and by modifying the cosine correlation-
based dissimilarity between objects and cluster centers. Next, we kernel-
ize bPCS to obtain K-bPCS, which can be applied to non-spherical data
with the help of a given kernel, e.g., a Gaussian kernel. Furthermore, we
propose a spectral clustering approach to K-bPCS called sK-bPCS, which
aims to solve the initialization problem of bPCS and K-bPCS. Further-
more, we demonstrate that this spectral clustering approach is equivalent
to kernelized principal component analysis (K-PCA). The validity of the
proposed methods is verified through numerical examples.

Keywords: Possibilistic clustering · Spherical data · Bezdek-type
fuzzification · Kernel clustering · Spectral clustering

1 Introduction

Fuzzy c-means (FCM), proposed by Bezdek [1], is the most popular algorithm
for performing fuzzy clustering on Euclidean data, which is fuzzified through
its membership in the hard c-means objective function [2]. Other hard c-means
fuzzification methods include entropy-regularized FCM (eFCM) [3] and Tsallis
entropy-based FCM (tFCM) [4].

The FCM family is a useful family of clustering methods; however, their
memberships do not always correspond well to the degree of belonging of the
data. To address this weakness of the FCM family, Krishnapuram and Keller [5]
proposed a possibilistic c-means (PCM) algorithm that uses a possibilistic mem-
bership function. Krishnapuram and Keller [6] and Ménard et al. [4] proposed
other possibilistic clustering techniques that employ Shannon entropy and Tsal-
lis entropy, respectively referred to as entropy-regularized PCM (ePCM) and
Tsallis-entropy-regularized PCM (tPCM).

c© Springer International Publishing Switzerland 2016
V. Torra et al. (Eds.): MDAI 2016, LNAI 9880, pp. 178–190, 2016.
DOI: 10.1007/978-3-319-45656-0 15
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All these clustering methods are designed for Euclidean data. However, in
some application domains, Euclidean data clustering methods may yield poor
results. For example, information retrieval applications show that cosine similar-
ity is a more accurate measure for clustering text documents than a Euclidean
distortion of dissimilarity [7]. Such domains require spherical data and only con-
sider the directions of the unit vectors. In particular, spherical K-means [8] and
its fuzzified variants [9–13] are designed to process spherical data. Furthermore,
two possibilistic clustering algorithms for spherical data have been proposed,
which are based on the Shannon and Tsallis entropies and respectively referred
to as entropy-based possibilistic clustering for spherical data (ePCS) and Tsallis-
entropy-based possibilistic clustering for spherical data (tPCS) [14]. However, a
Bezdek-type fuzzified possibilistic approach for clustering spherical data has not
been proposed in the literature; this was a motivation for this work.

In this study, a Bezdek-type fuzzified possibilistic clustering algorithm for
spherical data (bPCS), its kernelization (K-bPCS), and spectral clustering app-
roach (sK-bPCS) are proposed. First, we propose bPCS by setting the fuzzifi-
cation parameter of tPCS to infinity and modifying the cosine correlation-based
dissimilarity between the objects and cluster centers. Next, we kernelize bPCS
to obtain K-bPCS, which can be applied to non-spherical data with the help
of a given kernel, e.g., a Gaussian kernel. Furthermore, we propose a spectral
clustering approach to K-bPCS called sK-bPCS, which aims to solve the initial-
ization problem of K-bPCS. Furthermore, we see that this spectral clustering
approach is equivalent to kernelized principal component analysis (K-PCA) [15].
The validity of the proposed methods is verified through numerical examples.

The rest of this paper is organized as follows. In Sect. 2, the notation and the
conventional methods are introduced. Section 3 presents the proposed methods,
and Sect. 4 provides some numerical examples. Section 5 contains our concluding
remarks.

2 Preliminaries

Let X = {xk ∈ S
p−1 | k ∈ {1, . . . , N}} be a dataset of points on the surface of

a p-dimensional unit hypersphere S
p−1 = {x ∈ R

p | ‖x‖2 = 1}, which is referred
to as spherical data. The membership of an xk that belongs to the i-th cluster is
denoted by ui,k (i ∈ {1, . . . , C}, k ∈ {1, . . . , N}) and the set of ui,k is denoted by
u, which is also known as the partition matrix. The cluster center set is denoted
by v = {vi | vi ∈ S

p−1, i ∈ {1, . . . , C}}. The value 1 − xT
kvi can be used as the

dissimilarity between object xk and cluster center vi.
Three methods of fuzzy clustering for spherical data, Bezdek-type, entropy-

regularized, and Tsallis-entropy-based, can be obtained for the following opti-
mization problems:

minimize
u,v

C∑

i=1

N∑

k=1

(ui,k)m(1 − xT
kvi), (1)
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minimize
u,v

C∑

i=1

N∑

k=1

ui,k(1 − xT
kvi) + λ−1

C∑

i=1

N∑

k=1

ui,k log(ui,k), (2)

minimize
u,v

C∑

i=1

N∑

k=1

um
i,k(1 − xT

kvi) +
λ−1

m − 1

C∑

i=1

N∑

k=1

[um
i,k − ui,k], (3)

subject to

C∑

i=1

ui,k =1, (4)

‖vi‖2 =1, (5)

and referred to as bFCS [16], eFCS [9] and tFCS [13], respectively.
Two possibilistic clustering objective functions for spherical data, entropy-

based possibilistic clustering for spherical data (ePCS) [14] and Tsallis entropy-
based possibilistic clustering for spherical data (tPCS) [14], are obtained by using
the possibilistic constraint in place of the probabilistic constraint in Eq. (4) in
the fuzzy clustering objective functions for spherical data, as

minimize
u,v

C∑

i=1

N∑

k=1

ui,k(1 − xT
kvi) + λ−1

C∑

i=1

N∑

k=1

ui,k log(ui,k) − α

C∑

i=1

N∑

k=1

ui,k, (6)

minimize
u,v

C∑

i=1

N∑

k=1

um
i,k(1 − xT

kvi) +
λ−1

m − 1

C∑

i=1

N∑

k=1

[um
i,k − ui,k] − α

C∑

i=1

N∑

k=1

ui,k,

(7)

respectively, subject to Eq. (5), where α is a scale parameter and determined
such that the maximal membership value is one. However, to the best of our
knowledge, a possibilistic approach to Bezdek-type spherical clustering has not
yet been investigated.

3 Proposed Method

3.1 Basic Concept

Comparing the bFCS and tFCS optimization problems in Eqs. (1) and (3), we
find that the bFCS optimization problem is obtained by setting λ → +∞ in
tFCS. Therefore, the bPCS optimization problem, the basis of the proposed
method in this study, could also be obtained by setting λ → +∞ in tPCS, as

minimize
u,v

C∑

i=1

N∑

k=1

um
i,k(1 − xT

kvi) − α

C∑

i=1

N∑

k=1

ui,k (8)

subject to Eq. (5). However, the membership equation obtained by solving this
optimization problem is singular at xk = vi. A typical way of addressing sin-
gularities is regularization. Therefore, modifying the object-cluster dissimilarity
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from 1 − xT
kvi to η − xT

kvi with parameter η(�= 1), the singularity is removed,
and we obtain the bPCS optimization problem described as

minimize
u,v

C∑

i=1

N∑

k=1

um
i,k(η − xT

kvi) − α

C∑

i=1

N∑

k=1

ui,k (9)

subject to Eq. (5).
Here, we consider the condition of the pair of parameters (m, η) in bPCS

such that the bPCS optimization problem has a valid solution in situations such
that the data are on the first quadrant of sphere, and reserve the case in which
data are distributed over the whole sphere for future work. Data on the first
quadrant of sphere arises in document data, where the document-term frequency
is normalized on to the first quadrant of a unit sphere of dimension equal to the
number of terms. Through this consideration, we find that bPCS has a valid
parameter range such that not only m > 1, η > 1 but also 0 < m < 1, η ≤ 0.
We focus on the case where 0 < m < 1, η = 0, and will address the other cases
in future work. This is because the case with 0 < m < 1, η = 0 includes its
extension to the spectral clustering approach discussed in later.

We subsequently kernelize bPCS to obtain K-bPCS. The original bPCS can
only be applied to objects on the first quadrant of the unit hypersphere, whereas
its kernelized algorithm can be applied to wider classes of objects. Here, we
consider objects {xk}N

k=1 not on the first quadrant of the unit hypersphere. The
elements of the kernel matrix obtained from the Gaussian kernel are described
as

Kk,� = exp(−σ2‖xk − x�‖22). (10)

Note that

Kk,k = 1 and Kk,� ∈ [0, 1], (11)

that is, the norm induced by the inner product of each feature vector is 1, and
the inner product of a pair of feature vectors ranges from zero to one. This
implies that the feature vectors corresponding to the Gaussian kernel are on the
first quadrant of the unit hypersphere. Therefore, using an adequate kernel does
not restrict the dataset that can be applied to K-bPCS.

Finally, we derive a spectral clustering approach for K-bPCS. We can obtain
an equivalent maximization problem for the cluster centers by substituting the
membership update equation into the original problem. Next, assuming orthogo-
nality among cluster centers, an eigenproblem is obtained from the optimization
problem with the fuzzification parameter m = 0.5, using the coefficients by which
cluster centers are expressed as linear combinations of objects. This implies that
the globally optimal solution can be obtained by solving that eigenproblem.
Thus, no specific initial value setting is needed, so we expect to overcome the
local convergence problem of the original algorithm. Because the actual cluster
centers are not orthogonal, some iterations are executed to update the member-
ship values. Therefore, similar to spectral clustering, this algorithm consists of
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two stages: (1) solving the eigenproblem, and (2) updating the optimal solutions.
Furthermore, we see that this first stage is equivalent to K-PCA [15].

3.2 bPCS

In this subsection, the optimal solution of (u, v) for the bPCS optimization
problem in Eqs. (8) and (5) is derived and the bPCS algorithm is proposed. Let
us begin by considering the conditions on the pairs of parameters (m, η) in bPCS
such that the bPCS optimization problem has a valid solution in situations such
that the data are on the first quadrant of sphere. The Lagrange function L(u, v)
for the optimization problem is described as

L(u, v) =
C∑

i=1

N∑

k=1

(ui,k)m(η − xT
kvi) − α

C∑

i=1

N∑

k=1

ui,k +
C∑

i=1

νi(1 − ‖vi‖22) (12)

with Lagrange multiplier ν = (ν1, . . . , νC). For L(u, v) to have the optimal solu-
tion of (u, v), it is necessary for L(u, v) to be convex for u and v. The second
derivative of L(u, v) with respect to v is

∂2L(u, v)
∂2vi

= 2νi1, (13)

where 1 is the p-dimensional vector of all ones. Then, L(u, v) is convex for v with
positive values of ν. The fact that the value of ν is determined as a positive value
will be discussed later. The second derivative of L(u, v) with respect to u is

∂2L(u, v)
∂2ui,k

= m(m − 1)um−2
i,k (η − xT

kvi). (14)

Because memberships are non-negative, the necessary condition for L(u, v) con-
vexity is

m(m − 1)(η − xT
kvi) ≥ 0, (15)

from which we have three possible cases:(1) 1 < m, η ≥ xT
kvi, (2)

0 < m < 1, η ≤ xT
kvi, and (3) m < 0, η ≥ xT

kvi, where the last case is
useless because um

i,k in the objective function decreases for ui,k with m < 0.
Based on the fact that the data are on the first quadrant of the unit sphere,
and assuming naturally that clusters are also on the first quadrant of the unit
sphere, we have

xT
kvi ∈ [0, 1], (16)

and hence, 1 < m and η ≥ 1 covers the first case, and 0 < m < 1 and η ≥ 0
covers the second case.
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Hereafter, we focus on the case in which 0 < m < 1 and η = 0, that is, the
optimization problem is described as

minimize
u,v

C∑

i=1

N∑

k=1

(ui,k)m(−xT
kvi) − α

C∑

i=1

N∑

k=1

ui,k

⇔maxmize
u,v

C∑

i=1

N∑

k=1

(ui,k)mxT
kvi + α

C∑

i=1

N∑

k=1

ui,k (17)

subject to Eq. (5). The necessary conditions for optimality can be written as

∂L(u, v)
∂ui,k

= 0, (18)

∂L(u, v)
∂vi

= 0, (19)

∂L(u, v)
∂νi

= 0. (20)

Optimal membership is given by Eq. (18) in the form

ui,k = (si,k)1/(1−m), (21)

where

si,k = xT
kvi, (22)

and the scale parameter α is set to −m. The optimal cluster center is obtained
using Eq. (19) as

vi =
1

2νi

N∑

k=1

(ui,k)mxk (23)

with Lagrange multiplier νi. By considering the squared norm and taking
Eq. (20) ⇔ Eq. (5) into account, we have

1
(2νi)2

∥
∥
∥
∥
∥

N∑

k=1

(ui,k)mxk

∥
∥
∥
∥
∥

2

2

= 1 ⇔ 1
2νi

=
1

∥
∥
∥
∑N

k=1(ui,k)mxk

∥
∥
∥
2

. (24)

Inserting Eq. (24) into Eq. (23) and eliminating νi, we have

vi =
∑N

k=1(ui,k)mxk∥
∥
∥
∑N

k=1(ui,k)mxk

∥
∥
∥
2

. (25)

These equations are alternatively iterated until convergence as shown in
Algorithm 1.
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Algorithm 1 (bPCS)

Step 1. Given the number of clusters C,specify the fuzzification parameter m
and set the initial cluster centers as v.

Step 2. Calculate s using Eq. (22)
Step 3. Calculate u using Eq. (21).
Step 4. Calculate v using Eq. (25).
Step 5. Check the stopping criterion for (u, v).If the criterion is not satisfied,

go to Step 2. 
�

3.3 K-bPCS

For a given set of objects X = {xk | k ∈ {1, . . . , N}}, K-bPCS assumes that
the kernel matrix K ∈ R

N×N is known. Let H be a higher-dimensional feature
space, Φ : X → H be a map from the data set X to the feature space H, and
W = {Wi ∈ H | i ∈ {1, . . . , C}} be a set of cluster centers in the feature space.

K-bPCS solves the following optimization problem:

maximize
u,W

C∑

i=1

N∑

k=1

(ui,k)msi,k + α

C∑

i=1

N∑

k=1

ui,k (26)

subject to 〈Wi,Wi〉 = 1, (27)

where si,k = 〈Φ(xk),Wi〉. Lagrangian L(u, v) is described as

L(u, v) =
C∑

i=1

N∑

k=1

(ui,k)msi,k + α
C∑

i=1

N∑

k=1

ui,k +
C∑

i=1

νi

(
1 − ‖Wi‖2H

)
(28)

with Lagrange multipliers ν. Following a derivation similar to that of bPCS, the
optimal solutions of membership and cluster centers are described as

ui,k =(si,k)1/(1−m), (29)

Wi =
∑N

k=1(ui,k)mΦ(xk)
∥
∥
∥
∑N

k=1(ui,k)mΦ(xk)
∥
∥
∥
H

, (30)

where the scale parameter α is set to −m. Generally, Φ cannot be given
explicitly, so the K-bPCS algorithm assumes that a kernel function K : Rp×R

p →
R is given. This function describes the inner product value of pairs of the objects
in the feature space as K(xk, xj) = 〈Φ(xk), Φ(xj)〉. However, it can be interpreted
that Φ is given explicitly by allowing H = R

N , Φ(xk) = ek, where ek is the N -
dimensional unit vector whose 	-th element is the Kronecker delta δk,�, and by
introducing K ∈ R

N×N such that

Kk,j = 〈Φ(xk), Φ(xj)〉. (31)
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Using this kernel matrix K, si,k is described as

si,k =

〈

Φ(xk),

∑N
�=1 u

1
m

i,�Φ(x�)
∥
∥
∥
∑N

�=1 u
1
m

i,�Φ(x�)
∥
∥
∥
H

〉

=

∑N
�=1 u

1
m

i,�〈Φ(xk), Φ(x�)〉
√〈∑N

�=1 u
1
m

i,�Φ(x�),
∑N

r=1 u
1
m
i,rΦ(xr)

〉

=

∑N
�=1 u

1
m

i,�Kk,�
√

∑
�=1

∑N
r=1 u

1
m

i,�u
1
m
i,r〈Φ(x�), Φ(xr)〉

=

∑N
�=1 u

1
m

i,�Kk,�
√

∑N
�=1

∑N
r=1 u

1
m

i,�u
1
m
i,rK�,r

. (32)

Therefore, the K-bPCS algorithm consists of updating (u, s) as follows:

Algorithm 2 (K-bPCS)

Step 1. Given the number of clusters C and fuzzification parameter m, and set
the initial partition matrix to u.

Step 2. Calculate s using Eq. (32).
Step 3. Calculate u using Eq. (29).
Step 4. Check the stopping criterion for (u, s). If the criterion is not satisfied,

go to Step. 2. 
�
This algorithm can be applied to any kernel matrix, satisfying Eq. (11) such as
the Gaussian kernel and its variants (e.g., [17]).

3.4 Spectral Clustering Approach to K-bPCS

In this subsection, we propose a spectral clustering approach to K-bPCS. First,
we obtain an equivalent objective function to Eq. (26) with m = 0.5 as

C∑

i=1

N∑

k=1

(ui,k)0.5si,k − 0.5
C∑

i=1

N∑

k=1

ui,k =
C∑

i=1

N∑

k=1

(si,k)2 − 0.5
C∑

i=1

N∑

k=1

(si,k)2

= 0.5
C∑

i=1

N∑

k=1

(si,k)2 (33)

by substituting the membership update equation Eq. (29) into the original prob-
lem in Eq. (26). Furthermore, we rewrite cluster center Wi as a linear combina-
tion, similar to Eq. (30), i.e.,

Wi =
N∑

�=1

ai,�Φ(x�) (34)

with coefficients ai,�, si,k can be written as

si,k =〈Φ(xk),Wi〉 =
N∑

�=1

ai,�〈Φ(xk), Φ(x�)〉 =
N∑

�=1

ai,�Kk,�. (35)
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Therefore, the objective function for Eq. (33) that is equivalent to Eq. (26)
is given by

N∑

k=1

C∑

i=1

s2i,k =
N∑

k=1

C∑

i=1

(
N∑

�=1

ai,�Kk,�

)2

=
N∑

k=1

C∑

i=1

N∑

�=1

N∑

r=1

ai,�ai,rKk,�Kk,r

= trace(ATK2A), (36)

where the (	, i)-th element of A ∈ R
N×C is ai,�. Additionally, we assume orthog-

onality among cluster centers, where

〈Wi,Wj〉 =δi,j , (37)

and (34) implies that

〈Wi,Wj〉 =

〈
N∑

�=1

ai,�Φ(x�),
N∑

r=1

aj,rΦ(xr)

〉

=
N∑

�=1

N∑

r=1

ai,�aj,r〈Φ(x�), Φ(xr)〉

=
N∑

�=1

N∑

r=1

ai,�aj,rK�,r = δi,j , (38)

that is,

ATKA = E, (39)

where E is the N -dimensional unit matrix. Therefore, the optimization problem
of K-bPCS under the assumption in Eq. (37) is simply

maximize
A

trace(ATK2A) (40)

subject to ATKA = E. (41)

Using B = K
1
2 A, the above problem can be described as

maximize
B

trace(BTKB) (42)

subject to BTB = E,

whose globally optimal solution can be obtained from the first C eigenvectors
{bi}C

i=1 of K, written in descending order as B = (b1, . . . , bC), from which we
have A = K− 1

2 B. Then, si,k is given by

si,k =
N∑

�=1

ai,�Kk,� = eTkKai = eTkKK− 1
2 bi = eTkK

1
2 bi =

√
λie

T
k bi =

√
λibi,k,

(43)
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where λi is the eigenvalue corresponding to bi and ek is the k-th unit vector.
With this expression for si,k, the membership ui,k is described as

ui,k =s2i,k = λib
2
i,k. (44)

Because the actual situation is not well-separated, some iterations must be
executed to update the memberships according to Eqs. (29) and (32). The above
analysis suggests the following algorithm:

Algorithm 3 (Spectral Clustering Approach to K-bPCS)

Step 1. Given the number of clusters C, obtain the first C eigenpairs
{(λi, bi)}C

i=1 of K in descending order, and set the initial partition according
to Eq. (44).

Step 2. Calculate s using Eq. (32).
Step 3. Calculate u using Eq. (29).
Step 4. Check the stopping criterion for (u, s). If the criterion is not satisfied,

go to Step. 2. 
�
In this algorithm, a random initial value setting is not needed to solve the local
convergence problem of the original algorithm. Similar to other spectral cluster-
ing techniques, this algorithm consists of two stages: (1) solving the eigenprob-
lem, and (2) updating the optimal solutions.

Here, we see that solving the trace maximization problem in Eqs. (40) and
(41) is equal to K-PCA [15], that is, obtaining the subspace span{Wi ∈ H}C

i=1

of H such that the sum of squared distance between the original object Φ(xk)
and its projection

∑C
i=1〈Φ(xk),Wi〉Wi to this subspace is minimal such that the

value is described as

N∑

k=1

‖Φ(xk)‖2
H

− ‖
C∑

i=1

〈Φ(xk),Wi〉Wi‖2H. (45)

From the orthogonality of basis {Wi ∈ H}C
i=1 as in Eq. (37), Eq. (45) is

rewritten as

N∑

k=1

‖Φ(xk)‖2
H

−
C∑

i=1

〈Φ(xk),Wi〉2. (46)

Rewriting the basis Wi as a linear combination of objects {Φ(xk)}N
k=1, as in

Eq. (34), Eq. (46) can be described as

N∑

k=1

〈Φ(xk), Φ(xk)〉 −
C∑

i=1

〈Φ(xk),
N∑

�=1

ai,�Φ(x�)〉2

=
N∑

k=1

Kk,k −
C∑

i=1

(
N∑

�=1

ai,�Kk,�

)2
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=
N∑

k=1

Kk,k −
C∑

i=1

N∑

�=1

N∑

r=1

ai,�ai,rKk,�Kk,r

= trace(K − AK2A), (47)

and the orthogonality of basis {Wi ∈ H}C
i=1 is described as in Eq. (39). This min-

imization problem is equivalent to the trace maximization problem in Eqs. (40)
and (41). Therefore, the initialization step in Algorithm 3 obtains the basis of the
feature space induced from the kernel K such that the sum of squared distance
between the original object and its projection to the subspace span{Wi ∈ H}C

i=1

is minimal.

4 Numerical Examples

This section provides numerical examples based on artificial and actual datasets.
We use the adjusted Rand index (ARI) [18] to evaluate the clustering results.
ARI takes a value not greater than one, and higher values are preferred.

The first example illustrates the performance of bPCS (Algorithm 1) using
a dataset containing three clusters, each of which contains 50 points in the first
quadrant of the unit sphere (Fig. 1). Using the parameter setting m = 0.9, bPCS
achieves the highest ARI value, ARI = 1, and partitions this dataset adequately,
as shown in Fig. 2, where squares, circles, and triangles indicate the maximal
memberships generated by the algorithm during the test.

The second example shows the performance of bPCS (Algorithm 1) using a
dataset of the Oz books [16]; this is a corpus containing 39,353 terms from 21
Oz-related books, 14 authored by L. Frank Baum and seven authored by Ruth
Plumly Thompson. In this example, the dataset should be partitioned into two
clusters using the proposed methods. With the parameter setting m = 0.9, bPCS
achieves ARI = 1 and partitions this dataset adequately.

The third example illustrates the validity of K-bPCS and sK-bPCS (Algo-
rithms 2 and 3, respectively) using the artificial dataset shown in Fig. 3, which
consists of two nonlinearly bordered clusters. In both algorithms, the Gaussian
kernel

Kk,� = exp(−σ‖xk − x�‖22) (48)

is used, where the parameter σ = 0.1 for this dataset. K-bPCS was applied
to this dataset with C = 2, m = 0.5, and 100 different initial settings, and
the result with the minimal objective function value was selected. sK-bPCS
was also applied to the same dataset with C = 2, and no initial setting was
needed. Both algorithms achieves ARI = 1, and partition this dataset adequately
as shown in Fig. 4. However, K-bPCS partitions the data correctly using 57
initial settings and fails for the other 43 initial settings. This implies that some
initial settings risk partitioning failure. In contrast, sK-bPCS partitions the data
correctly without initial settings. Therefore, sK-bPCS seems to outperform K-
bPCS; however, this finding will be more thoroughly investigated with additional
datasets in future work.
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Fig. 1. Artificial dataset #1
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Fig. 2. Result for artificial dataset #1

-50

 0

 50

 100

 150

 200

 250

 300

 0  100  200  300  400  500

Fig. 3. Artificial dataset #2
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Fig. 4. Result for artificial dataset #2

5 Conclusions

In this study, a Bezdek-type fuzzified possibilistic clustering algorithm for spher-
ical data bPCS, its kernelization K-bPCS, and spectral clustering approach sK-
bPCS were proposed. In the theoretical discussion, the proposed spectral cluster-
ing approach was shown to be identical to K-PCA. The validity of the proposed
methods was confirmed through numerical examples.

In this study, data are assumed on the first quadrant of the unit sphere; how-
ever, in future work, we will consider the case in which data are distributed over
the whole sphere. In addition, we plan to consider cases with other parameter
values of (m, η) than those used in this study (i.e., 0 < m < 1 and η = 0). We will
also test the proposed algorithms on many additional datasets and compare with
conventional methods. Finally, we will apply sequential cluster extraction [19],
which is another algorithm for possibilistic clustering and develop a possibilistic
clustering approach for other data types.
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Abstract. The paper discusses a generalization of the nearest centroid
hierarchical clustering algorithm. A first extension deals with the incor-
poration of generic distance-based penalty minimizers instead of the clas-
sical aggregation by means of centroids. Due to that the presented algo-
rithm can be applied in spaces equipped with an arbitrary dissimilarity
measure (images, DNA sequences, etc.). Secondly, a correction prevent-
ing the formation of clusters of too highly unbalanced sizes is applied:
just like in the recently introduced Genie approach, which extends the
single linkage scheme, the new method averts a chosen inequity mea-
sure (e.g., the Gini-, de Vergottini-, or Bonferroni-index) of cluster sizes
from raising above a predefined threshold. Numerous benchmarks indi-
cate that the introduction of such a correction increases the quality of
the resulting clusterings significantly.

Keywords: Hierarchical clustering · Aggregation · Centroid ·
Gini-index · Genie algorithm

1 Introduction

A data analysis technique called clustering or data segmentation (see, e.g., [10])
aims at grouping – in an unsupervised manner – a family of objects into a number
of subsets in such a way that items within each cluster are more similar to
each other than to members of different clusters. The focus of this paper is on
hierarchical clustering procedures, i.e., on algorithms which do not require the
number of output clusters to be fixed a priori. Instead, each method of this sort
results in a sequence of nested partitions that can be cut at an arbitrary level.

Recently, we proposed a new algorithm, named Genie [8]. Its reference imple-
mentation has been included in the genie package for R [15] see http://cran.
r-project.org/web/packages/genie/. In short, the method is based on the single
linkage criterion: in each iteration, the pair of closest data points from two differ-
ent clusters is looked up in order to determine which subsets are to be merged.
However, if an economic inequity measure (e.g., the Gini-index) of current clus-
ter sizes raises above a given threshold, a forced merge of low-cardinality clusters
c© Springer International Publishing Switzerland 2016
V. Torra et al. (Eds.): MDAI 2016, LNAI 9880, pp. 191–202, 2016.
DOI: 10.1007/978-3-319-45656-0 16
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occurs so as to prevent creating a few very large clusters and many small ones.
Such an approach has many advantages:

– By definition, the Genie clustering is more resistant to outliers.
– A study conducted on 29 benchmark sets revealed that the new approach

reflects the underlying data structure better than not only when the average,
single, complete, and Ward linkages are used, but also when the k-means and
BIRCH algorithms are applied.

– It relies on arbitrary dissimilarity measures and thus may be used to cluster
not only points in the Euclidean space, but also images, DNA or protein
sequences, informetric data, etc., see [6].

– Just like the single linkage, it may be computed based on the minimal span-
ning tree. A modified, parallelizable Prim-like algorithm (see [14]) can be used
so as to guarantee that a chosen dissimilarity measure is computed exactly
once for each unique pair of data points. In such a case, its memory use is
linear and thus the algorithm can be used to cluster much larger data sets
than with the Ward, complete, or average linkage.

The current contribution is concerned with a generalization of the centroid
linkage scheme, which merges two clusters based on the proximity of their cen-
troids. We apply, analyze, and test the performance of the two following exten-
sions:

– First of all, we note that – similarly as in the case of the generalized fuzzy
(weighted) k-means algorithm [5] – the linkage can take into account arbitrary
distance-based penalty minimizers which are related to idempotent aggrega-
tion functions on spaces equipped with a dissimilarity measure.

– Secondly, we incorporate the Genie correction for cluster sizes in order to
increase the quality of the resulting data subdivision schemes.

The paper is set out as follows. The new linkage criterion is introduced in
Sect. 2. In Sect. 3 we test the quality of the resulting clusterings on benchmark
data of different kinds. A possible algorithm to employ the discussed linkage
criterion is given in Sect. 4. The paper is concluded in Sect. 5.

2 New Linkage Criterion

For some set X , let {x(1),x(2), . . . ,x(n)} ⊆ X be an input data sequence and
d be a pairwise dissimilarity measure (distance, see [6]), i.e., a function d :
X × X → [0,∞] such that (a) d is symmetric, i.e., d(x,y) = d(y,x) and (b)
(x = y) =⇒ d(x,y) = 0 for any x,y ∈ X .

Example 1. Numerous practically useful examples of spaces like (X , d) can be
found very easily. The clustered data sets may consist of points in R

d, character
strings (DNA and protein sequences in particular), rankings, graphs, equivalence
relations, intervals, fuzzy numbers, citation sequences, images, time series, and
so on. For each such X , many popular distances can be utilized, e.g., respectively,
the Euclidean, Levenshtein, Kendall, etc. ones, see, e.g., [5,6]. �
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Each hierarchical clustering procedure works in the following way. At the j-th
step, j = 0, . . . , n − 1, there are n − j clusters. It is always true that C(j) =
{C

(j)
1 , . . . , C

(j)
n−j} is a partition of the input data set. Formally, C

(j)
u ∩ C

(j)
v = ∅

for u 	= v, C
(j)
u 	= ∅, and

⋃n−j
u=1 C

(j)
u = {x(1),x(2), . . . ,x(n)}. Initially, the first

partitioning consists solely of singletons, i.e., we have that C
(0)
i = {x(i)} for

i = 1, . . . , n. When proceeding from step j − 1 to j, a predefined linkage scheme
determines which of the two clusters C

(j−1)
u and C

(j−1)
v , u < v, are to be merged

so as to we get C
(j)
i = C

(j−1)
i for u 	= i < v, C

(j)
u = C

(j−1)
u ∪ C

(j−1)
v , and

C
(j)
i = C

(j−1)
i+1 for i > v. For instance, the single (minimum) linkage scheme

assumes that u and v are such that:

arg min(u,v),u<v

(

min
a∈C

(j−1)
u ,b∈C

(j−1)
v

d(a,b)

)

,

the complete (maximum) linkage is based on:

arg min(u,v),u<v

(

max
a∈C

(j−1)
u ,b∈C

(j−1)
v

d(a,b)

)

,

and the average linkage on:

arg min(u,v),u<v

⎛

⎝ 1

|C(j−1)
u ||C(j−1)

v |
∑

a∈C
(j−1)
u ,b∈C

(j−1)
v

d(a,b)

⎞

⎠ ,

see, e.g., [10] for a discussion.
Moreover, assuming that X = R

d for some d ≥ 1 and that d is the Euclidean
metric, we may consider the centroid linkage criterion:

arg min(u,v),u<vd
(
µ(C(j−1)

u ),µ(C(j−1)
v )

)
,

where µ(C), C = {x(i1), . . . ,x(im)}, denotes the centroid of C given by:

µ({x(i1), . . . ,x(im)}) =

⎛

⎝ 1
m

m∑

j=1

x
(ij)
1 , . . . ,

1
m

m∑

j=1

x
(ij)
d

⎞

⎠ ,

that is, the componentwise arithmetic mean of points in C. It can easily be
shown that in such a setting we have that:

µ({x(i1), . . . ,x(im)}) = arg miny∈Rd

√
√
√
√ 1

m

m∑

j=1

d2(x(ij),y).

Just as in the case of the fuzzy k-means algorithm [5], again for an arbitrary
X and d, we may generalize the above cluster aggregation method as follows:

µϕ({x(i1), . . . ,x(im)}) = arg miny∈X ′ϕ−1

⎛

⎝ 1
m

m∑

j=1

ϕ
(
d(x(ij),y)

)
⎞

⎠ , (1)
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where X ′ ⊆ X and ϕ : [0,∞] → [0,∞] is a strictly increasing continuous function
such that ϕ(0) = 0. In other words,µϕ determines a minimizer of a distance-based
penalty function given via a quasi-arithmetic mean. Let us observe that it is an
idempotent fusion function, see [3,7]. Assuming that the solution to (1) exists and
is unique, the incorporation ofµϕ leads us to a generalized centroid linkage scheme
that can work in arbitrary spaces equipped with a dissimilarity measure.

Remark 1. Most commonly, ϕ is set to be a power fuction, i.e., ϕ(δ) = δp for
some p ≥ 1. For X ′ = X , the power-mean-based penalty minimizer correspond-
ing to p = 1 is usually called the 1-median, for p = 2 – centroid, and p = ∞ –
1-center. However, special attention should be paid to whether a chosen fusion
function can be computed sufficiently easily. In particular, if X = R

d, p = 2,
and d is the Euclidean distance, then we noted that the solution is the compo-
nentwise arithmetic mean. Moreover, if p = 1 and d is the Manhattan distance,
then we shall compute the componentwise median. On the other hand, for p = 1
or p = ∞ and d being the Euclidean distance, there is no open-form solution
(but, e.g., the Weiszfeld algorithm or a quadratic programming task can be
applied, see, e.g., [7]). However, e.g., the search for 1-median with respect to
the Levenshtein distance on the space of non-trivial character strings yields an
NP-complete problem. �

Remark 2. We can also set X ′ = {x(i1), . . . ,x(im)} which leads to the concept of
a set exemplar. In particular, if ϕ(d) = d, then the corresponding distance-based
penalty minimizer is named medoid. The computation of such a fusion function
is always relatively easy (O(m2)-time is needed). Yet, we should note that if
the set of penalty minimizers is non-unique, some tie breaking rule (e.g., point
index-based one) should be additionally introduced. �

In order to increase the clustering quality in the presence of potential outliers (at
least if the true underlying cluster structure is not heavily unbalanced), we can
also incorporate a correction used in the single-linkage-based Genie [8] algorithm.
In order to do so, firstly, let us recall the notion of an inequity index, see [2,4,9].

Definition 1. For a fixed n ∈ N, let G denote the set of all non-increasingly
ordered n-tuples with elements in the set of non-negative integers, i.e., G =
{(x1, . . . , xn) ∈ N

n
0 : x1 ≥ · · · ≥ xn}. Then F : G → [0, 1] is an inequity index,

whenever:

(a) it is Schur-convex, i.e., for any x,y ∈ G with
∑n

i=1 xi =
∑n

i=1 yi, if it holds
for all i = 1, . . . , n that

∑i
j=1 xj ≤ ∑i

j=1 yj, then F(x) ≤ F(y),
(b) infx∈G F(x) = 0,
(c) supx∈G F(x) = 1.

Example 2. Noteworthy instances of inequity indices, see [2], include the nor-
malized Gini-index:

G(x) =

∑n−1
i=1

∑n
j=i+1 |xi − xj |

(n − 1)
∑n

i=1 xi
, (2)



Hierarchical Clustering via Penalty-Based Aggregation 195

the normalized Bonferroni-index:

B(x) =
n

n − 1

(

1 −
∑n

i=1
1

n−i+1

∑n
j=i xj

∑n
i=1 xi

)

, (3)

or the normalized de Vergottini-index:

V(x) =
1

∑n
i=2

1
i

(∑n
i=1

1
i

∑i
j=1 xj

∑n
i=1 xi

− 1

)

. (4)

It may be shown that all the indices may be computed in O(n)-time given a
sorted x. �

Now let F be a fixed inequity index and g ∈ (0, 1] be some threshold. The Genie-
based generalized centroid linkage criterion proceeds as follows. At the j-th step
let ci = |C(j)

i | and denote with c(i) the i-th smallest value in (c1, . . . , cn−j). Now:

1. if F(c(n−j), . . . , c(1)) ≤ g, then apply the standard generalized centroid linkage
criterion:

arg min(u,v),u<vd
(
µϕ(C(j−1)

u ),µϕ(C(j−1)
v )

)
,

2. otherwise, i.e., if F(c(n−j), . . . , c(1)) > g, restrict the search domain only to
pairs of clusters such that one of them is of the smallest size:

arg min (u,v),u<v,
cu=c(1) or cv=c(1)

d
(
µϕ(C(j−1)

u ),µϕ(C(j−1)
v )

)
.

Such a linkage scheme prevents drastic increases of the selected inequity measure
and guarantees that small clusters are linked to some other ones much earlier.
Whatever the choice of F, for g = 1 we obtain the ordinary generalized centroid
linkage scheme. To recall, the original Genie algorithm [8] minimizes the value
of min

a∈C
(j−1)
u ,b∈C

(j−1)
v

d(a,b) instead of d
(
µϕ(C(j−1)

u ),µϕ(C(j−1)
v )

)
, which for

g = 1 reduces itself to the single linkage criterion.

3 Benchmarks

For testing purposes we use the benchmark data sets already studied in [8].
They are described in more detail and available for download at http://www.
gagolewski.com/resources/data/clustering/. These include 21 data sets in the
Euclidean space: iris, iris5, s1, s2, s3, s4, a1, a2, a3, g2-2-100, g2-16-100,
g2-64-100, unbalance, spiral, D31, R15, flame, jain, Aggregation, Compound,
pathbased as well as 6 non-Euclidean ones: strings over the {a, c, t, g} alpha-
bet (actg1, actg2, actg3, for use with the Levenshtein distance) and 0–1 vectors
of fixed lengths (binstr1, binstr2, binstr3, for use with the Hamming distance).
digits2k pixels and digits2k points were omitted from the analysis, as the perfor-
mance of all the clustering algorithms is very weak in their case.

http://www.gagolewski.com/resources/data/clustering/
http://www.gagolewski.com/resources/data/clustering/
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It is worth emphasizing that each data set comes with a vector of reference
labels, which can be used to assess the performance of a clustering algorithm. For
this purpose, we rely on the well-known notion of the FM-index, which gives the
value 1 if a computed clustering (a dendrogram should be cut at an appropriate
level) fully agrees with the reference one and 0 if it is totally discordant.

3.1 Choosing Different Inequity Measures

Firstly, let us study the effects of choosing different inequity measures on the
original Genie algorithm (in [8], only the Gini-index was considered, but the
algorithm’s performance was already outstanding).

Figure 1 depicts the average FM-index computed over 21 Euclidean bench-
mark sets as a function of an inequity index threshold, g. Three measures of
inequity are taken into account: the ones by Gini, Bonferroni, and de Vergottini.
Additionally, the shaded regions span from the 1st to the 3rd quartiles of the
empirical FM-index distributions.

The thresholds yielding the highest average FM-scores are equal to 0.2 in the
case of the Bonferroni- and the Gini-index and 0.1 for the de Vergottini-index.
Notably, in such cases the empirical FM-index distributions do not significantly
differ from each other (as measured by the Wilcoxon (paired) signed rank test,
all p-values > 0.1). This suggests that the actual choice of an inequity measure
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Fig. 1. The original Genie algorithm’s performance depending on the choice of an
inequity measure. The bold lines represent averaged FM-indices (21 benchmark sets),
while the filled areas span from the 1st to the 3rd quartile of the empirical FM-index
distribution.
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(at least, as far as indices given by (2)–(4) are concerned) is not so important –
special attention should rather be paid to the threshold selection.

For a better understanding of the reasons why it is so, let us focus on the
Aggregation dataset, which consists of 788 observations. Firstly, we determine
the dendrogram using the average linkage method with respect to the Euclid-
ean distance. Next, we cut the dendrogram so as to obtain 2, 3, . . . , 788 clusters.
Then, for each data set partition obtained in this manner, we compute the three
inequity indices for the cluster size distribution. Figure 2 depicts the relation-
ships between values of the three inequity indices. Of course, we observe that
each index is not a 1-to-1 function of another one, but the data points are
highly correlated (pairwise correlation coefficients – Gini vs Bonferroni: Pear-
son’s r = 0.98, Spearman’s � = 0.97; Gini vs de Vergottini: r = 0.77, � = 0.83;
Bonferroni vs de Vergottini: r = 0.71, � = 0.87). As for the other data sets
similar regularities are detected, we deduce that the actual choice of an inequity
index is not as important as choosing the right threshold. However, as far as the
current benchmark sets are concerned, from Fig. 1 it seems that such a threshold
can be found much more easily in the case of the Gini- or Bonferroni-index than
while the de Vergottini-index is in use.

Fig. 2. Pairwise relationships between three inequity indices for the cluster size distrib-
utions as a function of the number of clusters in the case of the Aggregation data set.
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3.2 Choosing Different Penalty Minimizers

Let us now compare the effects of choosing different penalty minimizers. Again,
21 data sets and the Euclidean metric is taken into account. We consider 5 dif-
ferent distance-based penalty minimizers: the centroid (ϕ(δ) = δ2,X ′ = R

d),
median (ϕ(δ) = δ,X ′ = R

d), medoid (ϕ(δ) = δ,X ′ = {x(i1), . . . ,x(im)}),
medoid2 (ϕ(δ) = δ2,X ′ = {x(i1), . . . ,x(im)}), medoid3 (ϕ(δ) = δ3,X ′ =
{x(i1), . . . ,x(im)}). The three latter fusion functions are instances of set exem-
plars. Moreover, the Gini-index is used.

Figure 3 depicts the box-and-whisker plots for the FM-score distributions.
Please note that the FM-indices may vary depending on the permutation of
observations in a data set, because the distance matrix may consist of non-
unique elements. Due to that, the median of 10 trials is computed (for different
random rearrangements of the input points). For each generalized centroid, we
report the results generated by considering two different Gini-index thresholds:
1.0 (no Genie correction applied at all) and the one maximizing the median
among the 21 FM-index measurements.

We see that in each case the application of the Genie correction has a positive
impact on the median FM-score. Among the considered distance-based penalty
minimizers, medoid2 yields the best results. When the Genie correction is in
use, please observe the similarity between the results generated by relying on
the 4 other fusion functions, especially between medoid and median (it should
be noted that the latter is much more difficult to compute). The new linkage’s
performance is comparable with the Ward one. On the other hand, if g = 1.0,
then the results are much more dependent on the choice of µ.

Fig. 3. Box-and-whisker plots representing FM-index distributions computed over
21 Euclidean benchmark sets for different clustering algorithms.
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Fig. 4. Box-and-whisker plots representing FM-index distributions computed over
6 non-Euclidean benchmark sets for different clustering algorithms.

3.3 Non-Euclidean Benchmark Sets

As an example of the usefulness of the introduced algorithm in non-Euclidean
spaces, let us now consider 6 different benchmark sets: binstr1,2,3 (fixed-length
0–1 strings, the Hamming distance) and actg1,2,3 (variable-length strings with
elements in {a, c, t, g}, the Levenshtein distance).

Figure 4 depicts the FM-index distribution in the case of the single, complete,
Ward, average, original Genie, and medoid2 -based (ϕ(δ) = δ2,X ′ = {x(i1), . . . ,
x(im)}) linkages. First of all, we observe that not only a too large inequity index
threshold, but also a too small one may lead to unsatisfying results. Secondly,
again, the Genie correction has a positive impact on the aggregated FM-index.

4 An Algorithm to Compute the New Linkage

The pseudocode of an O(n3)-time and O(n2)-space algorithm to compute the
introduced type of clustering task is given in Fig. 5 (the cost of computing a
selected penalty minimizer and inequity index is not included). The core of the
routine is a quite straightforward modification of Anderberg’s algorithm [1] as
given in [13]. Hence, we omit a detailed discussion on the role of the minidx,
mindist, etc. objects. The applied modifications include the Genie-like correction
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Fig. 5. A pseudocode for the introduced clustering algorithm.

(step 8.1.2, compare [8]) as well as a generic distance-based penalty minimizer
instead of the Lance and Williams formula [11] in step 8.4. Note that the original
Genie Algorithm [8] runs in O(n2)-time and O(n)-space.

5 Conclusion

We have proposed a generalization of the nearest centroid linkage scheme. First
of all, generic distance-based penalty minimizers may be taken into account.
Due to that, the algorithm can be computed in arbitrary spaces equipped with
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dissimilarity measures. Secondly, the clustering quality can be improved by using
a correction for the inequity of cluster size distribution, as known from the
original Genie algorithm.

We noted that the actual choice of an inequity index has no significant impact
on the benchmark FM-measures (at least as far as the Gini-, Bonferroni-, and
de Vergottini-indices are concerned). Interestingly, if the Genie correction is in
use, the choice of a distance-based penalty minimizer is not very important too.
If this is not the case, we observed that µ based on the quadratic mean (centroid,
medoid2 ) leads to more favorable results.

Finally, please note that, just like in the case of the original centroid and
Genie linkage criteria, the “heights” at which clusters are merged are not neces-
sarily being output in a nondecreasing order – the so-called reversals (inversions,
departures from ultrametricity, see [12]) may occur. Therefore, they should be
adjusted somehow when drawing corresponding dendrograms.

Acknowledgments. This study was supported by the National Science Center,
Poland, research project 2014/13/D/HS4/01700.
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Abstract. Graph theory is an evident paradigm for analyzing social net-
works, which are the main tool for collective behavior research, address-
ing the interrelations between members of a more or less well-defined
community. Particularly, social network analysis has important impli-
cations in the fight against organized crime, business associations with
fraudulent purposes or terrorism.

Classic centrality functions for graphs are able to identify the key
players of a network or their intermediaries. However, these functions
provide little information in large and heterogeneous graphs. Often the
most central elements of the network (usually too many) are not related
to a collective of actors of interest, such as be a group of drug traffickers
or fraudsters. Instead, its high centrality is due to the good relations of
these central elements with other honorable actors.

In this paper we introduce complicity functions, which are capable of
identifying the intermediaries in a group of actors, avoiding core elements
that have nothing to do with this group. These functions can classify a
group of criminals according to the strength of their relationships with
other actors to facilitate the detection of organized crime rings.

The proposed approach is illustrated by a real example provided by
the Spanish Tax Agency, including a network of 835 companies, of which
eight were fraudulent.

1 Introduction

Graph theory is able to represent the relationships between all kinds of objects,
such as human relationships, probabilistic relationships between events, elec-
tronic circuit components, computer networks, atomic networks... The analysis
of these networks can be useful for valuable tasks such as detecting business
associations with fraudulent purposes, counterterrorism investigation or politi-
cal communication.

A graph [20] is a pair G = (V,E), where V is the set of vertices or nodes and
set E includes the edges or arcs of the graph. We denote a vertex or node by
v ∈ V , and an arc by a pair of (not necessarily different) nodes (u, v). In that
case, both nodes, u and v, are neighboring nodes. If the arc (u, v) is different to
(v, u), then the graph is directed (a digraph).

c© Springer International Publishing Switzerland 2016
V. Torra et al. (Eds.): MDAI 2016, LNAI 9880, pp. 205–216, 2016.
DOI: 10.1007/978-3-319-45656-0 17
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We define the arc-node incidence of v in an undirected graph as the number
of arcs incident to or from node v, i.e., the number of arcs starting or ending
at v. If the graph is a digraph then we define the indegree of a node v as the
number of arcs ending at (or incident to) v and the outdegree as the number of
arcs starting at v. Therefore, the incidence degree is the sum of both.

The arcs of a graph can be assigned a weight, which denotes the intensity
of the relation between the endpoint nodes of the arc. In this case, the graph is
called a weighted graph.

The adjacency matrix of a given graph G with n nodes is an n × n matrix
AG = (aG

u,v), where aG
u,v = 1 if (u, v) ∈ E and aG

u,v = 0 otherwise. In a weighted
graph, this value will be the weight of the arc (u, v).

A path from u to v in a graph is a sequence of arcs, starting at node u and
ending at node v. If such a path exists, u and v are connected. A geodesic path
between two nodes of the graph is the shortest path between both nodes and
the geodesic distance is the length of the geodesic path.

A graph is connected when there is a path between each pair of nodes and
complete when all pairs of nodes are connected by an arc.

An important aspect in social network analysis is its visualization. A graph
can be displayed in different ways. Classic visualization algorithms are studied
in [4,8–10,19]. Secondly, the detection of communities, i.e., groups of nodes that
are clearly differentiated in the graph [6,11,17], is interesting in social network
analysis. Finally, another key feature of social network analysis is to identify
different roles depending on the position of each actor in the network. For exam-
ple, a social network may have key players, communication or action leaders that
attract many other actors. The detection of these leaders can be critical in the
development of information campaigns. We can also observe intermediate actors
connecting different communities or other key players. All these actors can be
identified by means of centrality and intermediation indicators.

The first studies on centrality in graphs date back to the 1950s and were
conducted at [7] the Massachusetts Institute of Technology Group Networks
Laboratory, in the field of sociology. Several works [1,16,21] report research into
the the centrality characteristics of a group and the efficiency in the development
of several more or less cooperative tasks. But the centrality concept in networks
was later proven to be useful for explaining and analyzing geographical [18],
political [2], economics or business [3] questions.

According to Freeman [7], it is difficult to define a centrality notion for graphs
that accounts for different situations and interests. Instead the central elements
are inspected to check that they have an intuitively evident set of properties.
These properties are as follows:

1. The elements of a network with a higher adjacency degree, i.e., nodes that
are more related with others nodes, are its central elements.

2. The elements of a network belonging to the highest possible number of geo-
desics between any two nodes of the network, are its central elements. These
nodes are good intermediaries because they have to be traversed along the
shortest path from one node to another.
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3. The elements of a network closest to the other nodes, i.e., nodes that minimize
the sum of geodesic distances to the other nodes, are its central elements.

Thus, the centrality function with the best trade-off between these three, not
necessarily conflicting but not strictly correlated, properties will be the best, as
we shall see later.

The first centrality functions in the literature were, predictably, functions
that primarily satisfied the first of the three properties. However, the adjacency
degree of the node it is not, by itself, a good centrality indicator. Consequently,
centrality measures should be collective, where the centrality of a node depends
not only on the local individual structure of the node, but also on the neighbor-
hood structure, i.e., the centrality of a node is a function not only of the number
of nodes connected to it, but also of the centrality of these nodes. This idea
directly leads to two major centrality indicators: eigenvector centrality [14] and
the PageRank coefficient [15], which is the basis of the Google engine search.

Besides, hub/authority centrality is based on the correlation between nodes
with a high indegree (authority nodes) and nodes with a high outdegree (hub
nodes). The HITS (Hiperlink-Induced Topic Search) [13] algorithm computes a
membership value from each node to each one of these classes.

In this paper we propose a five-phases procedure for organized crime ring
detection. The first phase computes the complicity of each actor with each fraud-
ulent actor. Section 2 introduces the concept of complicity or suspicion of col-
laboration between one actor and another previously identified as fraudulent.
Section 3 defines the strength of attraction between fraudulent actors, shown as
the set of fraudulent nodes projected using multidimensional scaling in a plane
(phase 3). These points are then grouped according to the DBSCAN algorithm
(phase 4). Finally each identified actor is added to the group of fraudulent actors
that maximizes its complicity (phase 5). Section 4 illustrates our approach with
a real example including 835 Spanish companies, eight of which are fraudulent.
Finally, some conclusions are provided in Sect. 5.

2 Dangerous Liaisons

The classic centrality measures are designed for graphs representing uniform
collectives. However, the fight against organized crime requires an analysis that
goes beyond the study of closed groups of individuals with common interests.
In our society, honest and fraudster people are interrelated, and the fraudster
take advantage of this circumstance and to commit crimes without being caught.
Fraudulent companies take advantage of good faith of honorable companies to
conceal fraudulent activities. Terrorists mix with citizens, and drug traffickers
often have the appearance of respectable business entrepreneurs, who pay taxes
and create jobs, etc. A good example are the so-called carousel fraud plots, in
which a group of companies cooperates to commit value added tax fraud. This
network of companies usually forges relationships with legitimate companies,
which are unaware of the fraudulent activity of their partners, suppliers and
clients.
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The good news is that countries have increasingly improved technologies,
capable of saving and monitoring networks of taxpayers, consumers, citizens,
businessmen..., and these networks include both the honest and the fraudster
subject. However, the above centrality functions do not work in these hetero-
geneous networks. For example, given a wide collective of companies, some of
which have committed carousel fraud, the question is which other companies
have a good relation with the companies implicated in fraud? In other words,
which companies are suspicious of aiding and abetting the carousel fraud? Cen-
trality measures are unable to identify these suspected companies, since they
make computations on the basis of the relations with all nodes, irrespective of
whether or not they are fraudsters.

2.1 Complicity Functions

We propose the concept of complicity or suspicion of collaboration between one
actor and another previously marked as toxic (fraudulent), rather than centrality
functions. In the following, we assume that the graph G is undirected, and we
consider a set of toxic nodes in G, F ⊂ V . Our aim is to study the relation
between the nodes in V − F and the toxic nodes and assign a complicity value
to those nodes depending on their relations.

The complicity function must satisfy the following three properties:

1. Nodes directly or indirectly connected to toxic nodes should have higher com-
plicity values than nodes not related to toxic nodes. In fact, nodes without a
direct or indirect connection to toxic nodes should be assigned zero complicity.

2. Distance should be penalized, i.e., the complicity of nodes that are closer to
toxic nodes is greater.

3. Node connection to toxic nodes should be considered, i.e., the complicity
nodes that are connected to a high number of toxic nodes is higher.

The above properties can be stated using the following expression, which
represents the complicity of v with respect to the set of toxic nodes F :

C(v) =
1

|F|
∑

u∈F
L(g(v, u)),

where L is a decreasing function and g(v, u) is the geodesic distance between u
and v. L can be an exponential or hyperbolic tangent function, as follows:

C(v) =
1

|F|
∑

u∈F
er(1−g(v,u))(exponential) or

C(v) =
1

|F|
∑

u∈F

1
2

[
er−rg(u,v) − erg(u,v)−r

erg(u,v)−r + er−rg(u,v)
+ 1

]

(hyperbolic tangent),

where g(v, u) is the geodesic distance from v to u without passing through any
toxic node and r is a constant that models the differences. These complicity
functions satisfy the above properties and output values within [0,1].
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The reason why we used geodesics that do not traverse the other toxic nodes
to compute each summand of the above expression is that the connection with
a toxic node could be overestimated if a toxic node is connected to other toxic
nodes, which is commonplace. If an actor is connected to a toxic node which is
in turn connected to other toxic nodes, then the actor is also connected to the
latter, but this would not be an indicator of complicity. However, if the actor is
connected repeatedly to the set of toxic nodes, then it is an accomplice.

These functions are suitable when the graph is connected. However, when the
graph is formed by two or more disconnected subgraphs (two or more connected
components), then the distance between two nodes belonging to different sub-
graphs is ∞, and the complicity of a node with respect to a fraudster in another
connected component is zero. Besides, complicity is also zero for a node in the
same component as, but at a large distance from, the fraudster. It is critical for
the classification model to be able to deal with these two situations; otherwise
disconnected plots would not be distinguishable from sets of nodes that are very
far apart within the same component. One possibility would be to smooth the
decrease by controlling parameter r, but this method does not yield good results
in practice since complicity would have to be negligible as of some value of the
geodesic distance. In this situation, a finite distance is the same as an infinite
distance, which does not solve the problem. To overcome this drawback, we have
to substitute a straight line (y = k > 0) (small) for the horizontal asymptote at
infinity within the hyperbolic tangent model and put a step in the infinity, i.e.,
we control the parameters α and β rather than parameter r in the expression:

C(v) =
1

|F|
∑

u∈F
α

[
er−rg(u,v) − erg(u,v)−r

erg(u,v)−r + er−rg(u,v)
+ β

]

,

such that

lim
x→∞α

[
er−rx − erx−r

erx−r + er−x
+ β

]

= α(β − 1) = k and

lim
x→−∞α

[
er−rx − erx−r

erx−r + er−x
+ β

]

= α(β + 1) = 1, i.e., β =
1 + k

1 − k
and α =

1 − k

2
.

2.2 Markov Chain-Based Approach

Markov chains are widely used to compute some classic centrality measures.
Markov chains can simulate dynamic systems with a set of possible states where
it is possible to pass from one state to another with certain probability.

In the above PageRank algorithm, given an adjacency matrix A = (aij),
where aij = 1 if there is an arc between ui and uj and aij = 0 otherwise. If
each row is divided by the sum of its elements, then we have a stochastic matrix
T = (tij) (where each row is a probability distribution). This matrix is called
a transition matrix since each element tij represents the probability of passing

from node ui to node uj . In fact, matrix Tn =
(
t
(n)
ij

)
represents the probability
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of reaching node uj in a path of length n starting at ui. This probability will be
higher if the number of paths connecting both nodes increase.

The complicity of a toxic node vj with another node ui can be computed as:

c(vj , ui) =
∞∑

n=1

αnt
j(n)
ij ,

where α ∈ (0, 1) penalizes the distance between the nodes and t
j(n)
ij are elements

of (T j)n, where T j is the transition matrix accounting for all nodes except toxic
nodes different to vj .

This function is similar to Katz centrality [12], except that we use the tran-
sition rather than the adjacency matrix and it is constrained to the toxic node
vj with respect to the node ui. In other words, we are interested in the commu-
nication channels between toxic nodes and other nodes rather than the relations
between all nodes in the graph, whereas Katz centrality sums all these values
and outputs a single value for each node using the adjacency matrix.

In practice, it is sufficient to define a limit value, such as the graph diam-
eter (length of the longest geodesic in the graph), δ, and compute the pow-
ers T j , (T j)2, ..., (T j)δ for each vj ∈ F . If we take the row in matrix Cj =
αT j +α2(T j)2 + ...+αδ(T j)δ corresponding to the toxic node vj and remove the
element corresponding to that toxic node vj , then we have a transposed vector
denoted by cj .

Now, let C be the rectangular matrix whose rows are the above transposed
vectors cj for the different toxic nodes, i.e. ∀vj ∈ F . Then, the total complicity of
each non-toxic node can be computed as the sum of the elements in the column
in C associated to that non-toxic node, and the complicity mean by dividing the
above amount by the number of toxic nodes:

c(ui) =
1

|F|
∑

vj∈F
c(vj , ui) =

1
|F|

∑

vj∈F

δ∑

n=1

αnt
(n)
ij .

2.3 Detection of Suspects of Complicity

The complicity function is useful for fighting against organized crime, identifying
all actors represented by nodes that are highly related to a list of toxic nodes. To
do this, we propose Algorithm 1, which accounts for a minimum number s ∈ N

(for example, s = 1) of toxic nodes to which the actor should be related in
order to be suspected of complicity. The higher the number is, the more suspect
the actor will be. Besides, we consider a percentile p ∈ (0, 100) as of which
complicity is significantly high. To do this, we look at the distribution of the
complicity values in the graph, considering the relation between the number of
toxic and non-toxic nodes.
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Algorithm 1. Detection of partners in crime
Input: (G undirected graph, F list of toxic nodes, s ∈ N minimum number of connected
toxic nodes with the suspect node, p ∈ (0, 100) value for the complicity percentile).

1. For each w ∈ V , compute the number s(w) of elements of F connected to w without
passing through other toxic actors.

2. For each element v ∈ F :
3. Remove all nodes u ∈ F such that u �= v from V .
4. ∀w ∈ V such that s(w) > s calculate c(w, v) = er(1−g(v,u)).
5. For each w ∈ V :
6. Compute C(w) = 1

|F|
∑

v∈F c(w, v).
7. Compute the percentile of order p from the vector C.
8. Save and rank all nodes with a complicity value above percentile p.

3 Detection of Organized Crime Rings

Each toxic node vi ∈ F is associated with a vector −→vi = (vi1, ..., vir) where
vij = c(vi, uj) is the complicity of the toxic node vi with the actor uj .

We define the strength of attraction between the toxic nodes vi and vk by
fik = −→vi · −→vk =

∑r
j=1 vijvkj , which can be normalized as follows: fik =

−→vi ·−→vk

|−→vi ||−→vk| ,
representing the cosine of the angle defined by vectors −→vi and −→vk.

Matrix f is a symmetrical, nonnegatively defined matrix such that the max-
imum value in the i-th row, fii = 1, is located on the diagonal, i.e., it is a
normalized similarity function, in which completely different nodes are in differ-
ent components, i.e., fij = 0 if and only if g(ui, uj) = ∞.

It is possible to derive a distance metric in [0,1] from the similarity func-
tion S as follows: d(u, v) =

√
S(u, u) − 2S(u, v) + S(v, v). In our case, d(u, v) =√

2 − 2f(u, v). We can use this distance to project all the nodes using multi-
dimensional scaling to represent fraudsters in [0,1]2 with a maximum distance√

2, which matches the maximum reachable distance by d when f(u, v) = 0. If a
larger area is required, then a nonnormalized distance could be used, d′ = a · d.

Multidimensional scaling (MDS) [22] is a visualization algorithm of high-
dimensional data arranged in a plane or 3D space. Data are represented by
means of points whose distance is proportional to the differences between the
data that they represent. The classic example illustrating this procedure is to
plot a geographic map in a plane where the only available information is the
distance between a set of cities.

Torgerson [22] proves that a matrix with the features of f (symmetrical
and nonnegatively defined) can be decomposed as f = UΛU t, where U is the
normalized eigenvector matrix and Λ is the eigenvalue diagonal matrix. If we
denote Y = UΛ1/2, then Y Y t = UΛ1/2Λ1/2U t = RRt.

If two matrices from two different bases have the same matrix of scalar prod-
ucts, then one is the transform of the other by a change of basis. Then, Y is the
matrix R in the basis of proper vectors, i.e., each row of Y is the strength vector
from a fraudster in the basis of proper vectors.
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Now, since Y = UΛ1/2, if the first p eigenvalues are somewhat larger than
the others, we can consider an approximation X̂ of the initial fraudster matrix,
which can be represented in p dimensions. If p = 2, fraudsters can be represented
by points in a plane where their distances are proportional to the complicity
differences of their related nodes.

Therefore, the percentage of the sum of the first two eigenvalues over the sum of
all eigenvalues is a measure of how good the visualization is, i.e., the visualization
is more realistic and better represents the differences, the greater the difference is
between the sum of the first two eigenvalues and the sum of all eigenvalues.

We proceed to group the nodes according to the distances from the MDS
projection on the plane of the set of toxic nodes. A simple and useful algorithm
for this purpose is the density-based spatial clustering of applications with noise
(DBSCAN) [5], which assesses the density of each region of the plane by comput-
ing the numbers of points that are within spheres with radius eps of each element
in the population. Accordingly, the density of a neighborhood is satisfactory if
the number of points in this neighborhood is equal to or greater than a prefixed
value MinPt. The initial parameters of the DBSCAN then are the radius eps
and the minimum density value MinPt. Note that the choice of these values is
a critical decision because if eps is very small, then the spheres only have one
point, whereas if they are too big, all points could belong to the sphere.

In summary, the procedure for ring detection is:

1. Compute the complicity of each node with each toxic node.
2. Compute the strength of attraction f between toxic nodes.
3. Project the set of toxic nodes using multidimensional scaling in a plane in

such a way that the distance between nodes are proportional to
√

2 − 2f .
4. Group the points of the projection according to the DBSCAN algorithm.
5. Add each non-toxic node to the group of toxic nodes that maximizes its

complicity.

After performing this assignment we can tune the algorithm considering con-
necting paths connecting partners in crime and toxic nodes.

4 An Illustrative Example

This section illustrates the ring detection procedure with a real example includ-
ing 835 linked companies, of which eight are fraudulent. Data was provided by
the Spanish Tax Agency. These are missing trade companies that are suspicious
of belonging to carousel fraud plots (EU VAT plots) for the year 2013. These com-
panies should have paid the full amount of VAT charged on an intra-Community
acquisition of goods (a commodity purchase by a EU member country destined
for a domestic market) to the national tax authorities. However, the company
disappeared after selling the commodity without making this payment.

Figure 1 shows a graph describing the relationships between the 835 compa-
nies, highlighting the fraudulent companies in green. These relationships refer
to any corporate, family, representation, management, authorization and co-
ownership bank accounts for the year 2013.
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Fig. 1. 835 linked companies (Color figure online)

Our goal is to compute the complicity of companies with the fraudsters,
group fraudsters depending on their relationship and complicity with each other
and, finally, assign each company to a group of fraudsters accounting for average
complicity with fraudsters from each ring following the procedure described in
Sect. 3.

Figure 2(a) shows the projection by multidimensional scaling of the fraudster
group, whereas Fig. 2(b) shows the resulting cluster after applying the DBSCAN
algorithm. Four clusters are identified using different colors. Specifically, compa-
nies 582 and 579 (in green) constitute a cluster, whereas companies 17, 34 and
58 (in red) form another cluster. Companies 121 and 460 are in the third cluster.
Finally company 240 is itself the fourth cluster.

Next, we build a ring for each cluster including the 827 remaining companies.
To do this, we compute the average complicity of each company regarding the
fraudster companies in each cluster. Thus, the company will be a member of the
ring with which it has the highest average complicity. Each company is located
in the selected cluster (ring) at a distance from the centroid of the cluster equal
to its average complicity. Figure 2(c) shows the rings for the four clusters. The
colors in the respective rings are associated with the percentiles of complicity
values. Specifically, companies whose average complicity regarding the fraudsters
in the corresponding cluster is under percentile 75 are shaded green, companies
above percentile 95 are colored red and yellow is used for companies between
the above percentiles.

Finally, Fig. 3 illustrates the original graph including the 835 linked compa-
nies in this case highlighting the companies with different colors (red, pink, blue
and so on) in the different rings with an average complicity above percentile 95.
These are the companies that could be considered as being suspicious of taking
part in an organized crime ring.

The Spanish Tax Agency is currently using the proposed approach to rank,
on the basis of the above average complicities, companies suspicious of fraud for
inspection, since the number of inspectors and their availability are limited. This
has led to an increment in the success rate.
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(a) Multidimensional scaling of fraudulent
nodes

(b) DBSCAN clustering

(c) Rings

Fig. 2. Detection of organized crime rings (Color figure online)

Fig. 3. Resulting organized crime rings (Color figure online)
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5 Conclusions

Social network analysis has important implications in the fight against organized
crime, business associations with fraudulent purposes or terrorism. We have
introduced several functions to measure the degree of complicity between the
actors in an heterogenous social network with a set of previously identified toxic
actors, with the aim of detecting the partners of an organized crime plot. This
complicity function naturally induces a similarity function between toxic nodes,
the strength of attraction, which can be transformed into a distance metric.

Then, toxic nodes can be projected as points in a plane where the distances
between points are proportional to the original distances between the toxic nodes
(multidimensional scaling algorithm). The DBSCAN algorithm then groups the
toxic nodes according to different high-density regions, and nodes with higher
complicity are assigned to the different rings accounting for the maximization of
average complicity.

The methodology has been illustrated by a real example, including 835 com-
panies, of which eight are fraudulent according to the Spanish Tax Agency. The
proposed approach detects organized crime rings and computes, for each ring,
the complicity level of its actors. The Spanish Tax Agency is currently using the
proposed approach to rank suspicious companies for inspection, since the num-
ber of inspectors and their availability are limited. This has led to an increment
in the success rate.

We propose as a future research line to conduct a comparative analysis
between the proposed method and other group detection methods, and between
the complicity function and other centrality functions. Besides, further avail-
able information about the considered companies could be incorporated into the
analysis and artificial intelligence tools, such as machine learning and statistics,
could be used to derive a more robust crime ring detection method.

Acknowledgments. The paper was supported by the project MTM2014-56949-
C3-2-R.
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Abstract. Generalization and Suppression are two of the most used
techniques to achieve k-anonymity. However, the generalization concept
is also used in machine learning to obtain domain models useful for the
classification task, and the suppression is the way to achieve such gen-
eralization. In this paper we want to address the anonymization of data
preserving the classification task. What we propose is to use machine
learning methods to obtain partial domain theories formed by partial
descriptions of classes. Differently than in machine learning, we impose
that such descriptions be as specific as possible, i.e., formed by the max-
imum number of attributes. This is achieved by suppressing some values
of some records. In our method, we suppress only a particular value of
an attribute in only a subset of records, that is, we use local suppression.
This avoids one of the problems of global suppression that is the loss of
more information than necessary.

Keywords: Machine learning · Lazy learning methods · Partial domain
models · k-anonymity · Supression

1 Introduction

Currently, the great amount of data available makes possible their analysis to
extract knowledge for a broad range of different purposes. For example, health
care data on the population can help in the prevention of certain diseases and
improving the quality of life of patients with chronic diseases. For companies, the
data about their clients and users, their opinions, their purchasing power, etc. are
useful information to improve services as e.g. product recommenders. However,
data transmission to data scientists or other experts for their analysis, or free
access can violate the privacy of clients and users. In order to avoid the exposure
of sensitive information about particular users, it is necessary to anonymize
these data prior to their dissemination. There are many algorithms for data
anonymisation satisfying privacy requirements. The main goal is to avoid the
access to sensitive information about particular individuals whereas the whole
data set is still valid for extracting useful information about the population.
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There exists several privacy models. One of the most common one is k-
anonymization [17,18]. It means that each record in a file is indistinguishable
from no fewer than k − 1 other records. Files compliant with k-anonymity can
be constructed by means of generalization, supression and microaggregation. See
e.g. Mondrian and Incognito [13,14] as methods to achieve k-anonymity based on
generalization, and [5] about using microaggregation for achieving k-anonymity.

Generalization consists on replacing a value by a less specific value. The
generalization is usually made using a domain hierarchy taxonomy provided
by the domain expert. The main shortcoming of this approach is the need of
this taxonomy. First, because it is not always trivial to build a non arbitrary
one. The construction of this taxonomy implies to have prior knowledge on the
domain. Then, different experts may consider different taxonomies. E.g., we can
generalize towns with respect to ZIP codes, counties and bishoprics. Appropriate
generalization will depend on the data use, and data protection will be typically
different when the different taxonomies do not match. Alternatively, we may
consider the construction of an arbitrary hierarchy that minimizes information
loss. In this case, the space of possible hierarchies [5] is large and the resulting
one may not have a meaningful interpretation.

Suppression refers to removing a certain attribute value and replacing the
occurrences of the value with a special one, i.e., unknown. Suppression can be
seen as a particular type of generalization: the maximum generalization. In other
words, when a given value cannot be further generalized it is suppressed. When
a single value is suppressed this is known as local suppression. In contrast, we
have global suppression as e.g. in Friedman et al. [6] when a certain value of
an attribute is suppressed from all the records where it appears. This procedure
usually leads to an excessive number of suppressions. Sometimes the value of a
specific attribute is related to the value of some other attributes [11]. By taking
into account such relation, the value could be maintained in some records.

The generalization concept is also used in machine learning to obtain domain
models useful for a classification task. From this point of view, the suppression
of one value of a record can be interpreted as a generalization of such record. For
instance, given a record R = (a, b, c, d), the record Rg = (a, ?, c, d) is a general-
ization of R. Inductive learning methods such as decision trees [16] build domain
models by generalizing a set of input examples. [12] states that induced domain
models are not useful for privacy because those attributes (quasi-identifiers or
not) absent from the model can distort some statistics of the anonymized file
with respect to the original one. In fact, the idea is that most of times class
descriptions are too general from the point of view of privacy. Notice that the
aim of anonymising a file is to deal with data that are almost as the original
ones. Conversely, descriptions forming the induced models are general in order
to cover the maximum number of examples, thus they are formed by (too) many
unknown values to be considered as similar to original data. In our opinion, this
issue can be addressed by imposing a minimum length for the induced descrip-
tions, avoiding in that way the proliferation of unknown values in one record.
Fung et al. [8] argue that publishing a classifier instead of the data is useful
when users are interested in classification, however, in general, data providers



Partial Domain Theories for Privacy 219

do not know the data use. This means that the classifier is grown to achieve the
maximum accuracy but the recipient could be interested in other aspects such
as interpretability, recall, etc.

Domain models obtained by inductive learning methods such as decision
trees, are global models in the sense that they use all the known examples to
build the model. However, it is possible to construct partial domain models by
using lazy learning methods. This kind of methods take into account only one
input example and try to classify it. As a consequence, they can obtain some
kind of description justifying the classification. As we will explain later, this
justification can be seen as a partial description of the class. What we propose
in this paper is to use such partial descriptions as a way to anonymize a file.

In [1] we have proposed the use of the lazy learning method LID [2] to
induce partial domain model theories. Given a problem p, LID proposes a class
C for p and gives a justification J of such classification. This justification can
be seen as a partial description of the class C since it describes a space of
problems that are similar to p and that belong to C. However, the description
is partial because there are other elements of C that may not satisfy J . In the
experiments performed in [1], we have seen that the descriptions composing the
partial domain model are more specific than the ones composing the global model
given by inductive learning methods.

Taking into account the previous results, what we propose in this paper is to
use LID to obtain a generalized k-anonymous file. Although we found that the
descriptions of the partial model are more specific than the ones of the global
model, we impose a minimum length for them. In this way we have original
records minimally generalized but still satisfying the k-anonymity requirement.
We think that this issue is different that what happens using a global classifier
that is the subject of the main concern of Fung [8] about using classifiers as
anonymized files.

Compared with other methods in the literature, our approach is able to deal
with missing values, and we do not need to start with a taxonomy of general-
izations. In addition, our method is evaluated satisfactorily with respect to the
performance of classifiers built from the protected data set. Note that classifiers
are standard tools in machine learning for constructing models of the data.

The structure of the paper is as follows. In Sect. 2 we review the related
work. In Sect. 3 we introduce the notation we use. In Sect. 4 we explain the lazy
learning method used in the anonymisation experiments. Section 5 we explain
the algorithm we propose for k-anonymization in detail. In Sect. 6 we present
the experiments we carried out on the Adult data set from the UCI Machine
Learning Repository. The paper finishes with some conclusions and lines for
future work.

2 Related Work

Approaches similar to the one in this paper are KADET [6] and kACTUS [12].
Both approaches involve decision trees in the anonymisation process. kACTUS
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is an algorithm oriented to support classification. It wraps a decision tree that
induces a domain model from the original file. Then this model is used by kAC-
TUS to apply k-anonymity by means of a multi-dimensional suppression method.

KADET [6] is a decision tree induction algorithm that guarantees k-
anonymity. In fact, the output of KADET is an anonymous decision tree. kAC-
TUS and KADET differ in how they handle the decision tree, so whereas the
former grows the tree with an inducer and it is during a sort of pruning phase
where the k-anonymity is achieved; the later grows the tree taking into account
k-anonymity. Our approach is more similar to kACTUS since we use LID in the
usual way to classify a record, and after the classification it is decided whether
or not the partial description can be stored.

An example of a lazy construction of a domain model is the Lazy Decision
Trees (LDT) [7]. Differently from pure inductive techniques, LDT builds a deci-
sion tree in a lazy way, i.e. each time that a new problem has to be classified,
the system reuses, if possible, the existing tree. Otherwise, a new branch clas-
sifying the new problem is added to the tree. Notice that, in fact, the decision
tree represents a general model of a domain and LDT builds it in a lazy way.
The general procedure of LID is similar to LDT but it does not grows any struc-
ture, it only gives a description that can be interpreted as a justification of the
proposed classification.

In [3], we proposed C-LID, implemented on top of LID, following a procedure
similar to the one of the current approach, although with different interpretation.
C-LID was used on the predictive toxicology domain where, most of times LID fin-
ishes with a description satisfied by examples of two solution classes. By storing
these descriptions we can have evidences of the classification of a new chemical
compound based on how many known examples satisfy each description. In the
current approach, only the descriptions corresponding to one solution class (in
fact, the class of the input example) are stored. Therefore, they perform as true
discriminant descriptions of classes like the ones obtained by inductive methods.

Our approach does not need the use of taxonomies to generalize a record. In
this sense, it is similar to TDR [8] although this latter work uses an aggressive
suppression approach that suppresses a given value in all records where it is
present without considering values of other attributes.

3 Preliminaries

Literature on data privacy usually distinguishes three kinds of attributes:

– Identifiers are the attributes that unambiguously identify a single individual
or entity (f.e., the passport number). They are usually removed or encrypted.

– Quasi-identifier attributes that are those that identify an individual with
some degree of ambiguity, but when used in combination provide an unam-
biguous identification of some records. They are usually masked.

– Confidential attributes that are those containing sensitive information that
are useful for static analysis. They are usually not modified.
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In [18] authors prove that removing the identifiers is no enough to protect the
identity of an individual. Therefore, the protection must be done on the quasi-
identifiers. In our approach, we deal with all attributes as quasi-identifiers. That
is, intruders can have access to any attribute. We consider that the only confiden-
tial attribute is the class. The confidential attribute is considered a non-quasi-
identifier. Currently, our approach is only applicable on categorical attributes.
At this moment, to deal with continuous attributes we have to discretize them.

4 Lazy Induction of Descriptions

Lazy Induction of Descriptions (LID) is a lazy learning method for classification
tasks. LID determines which are the most relevant features of a problem and
searches in a case base for cases sharing these relevant features. The problem p
is classified when LID finds a set of relevant features shared by a subset of cases
all belonging to the same solution class Ci. Then LID classifies the problem as
belonging to Ci. We call similitude term, D, the description formed by these
relevant features and discriminatory set, SD the set of cases satisfying D. In
fact, a similitude term D is a generalization of both p and the cases in SD.

Figure 1 shows the LID algorithm (see a details of LID in [2]). Given a prob-
lem p, LID initializes D as a description with no features and the discriminatory
set SD is initialized to the set of cases satisfying D (initially the whole original
file). Let D be the current similitude term, when the stopping condition is not
satisfied, the next step is to select a feature for specializing D. The specialization
of a term D is achieved by adding features to it. The most discriminatory feature
is heuristically selected using the López de Mántaras’ distance (LM) [15] over
the candidate features. Let fd be the feature assessed as the most discrimina-
tory, in such a situation the specialization of D defines a new similitude term D′

by adding to D the feature fd. After adding fd to D, the new similitude term
D′ = D + fd subsumes a subset of cases in SD, namely SD′ . LID is recursively
called with SD′ and D′. This process continues until either all the cases in SD′

belong to the same solution class Ci or D′ cannot be further specialized.

Function LID (p, SD, D, C)
SD := Discriminatory-set (D)
if stopping-condition(SD)

then return class(SD)
else fd := Select-feature (p, SD, C)

D′ := Add-feature(fd, D)
SD′ := Discriminatory-set (D′, SD)
LID (SD′ , p, D′, C)

end-if
end-function

Fig. 1. The LID algorithm. p is the problem to be solved, D is the similitude term, SD

is the discriminatory set associated to D, C is the set of solution classes, class(SD) is
the class Ci ∈ C to which all elements in SD belong.
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The similitude term D′ is a partial discriminant description of Ci since all the
cases satisfying D′ belong to Ci (according to one of the stopping conditions of
LID). Therefore, the D′ is a generalization of knowledge in the sense of inductive
learning methods, so similitude terms can be taken as domain rules since they
contain the relevant features for classifying a problem. The focus of a term Dj

of LID are the features of p. This means that all the input examples that do
not share with p some of the features assessed as relevant for the classification
of p will not satisfy Dj , although they belong to Ci. The conclusion is that Dj

is a description of Ci because classifies correctly objects of that class, however
Dj is a partial description of the class, because there are cases in Ci that do
not satisfy Dj . In other words, descriptions obtained by a lazy learning method
represent local descriptions, in contrast to descriptions from inductive methods,
since the later describe a space around the problem that has been solved.

5 Using LID to k-Anonymize a File

Our approach consists on storing the feature terms built by LID during the classifi-
cation process to form a domain Fig. 2 shows the procedure we followed to do this.
Let us suppose we have an original file where records are of the formRi = 〈Di, Ci〉.
Here, Di is the description of an object formed by a set of pairs attribute value.
These attributes are taken as quasi-identifiers. The confidential attribute is the
class Ci to which the object belongs. The procedure is based on the leave-one-out
method. It takes the descriptionDi of an objectRi (without the class labelCi) and
uses LID to obtain a classification for this description. According to the attribute-
value pairs of Di, LID proposes a classification cn and also gives a similitude term
Dn justifying the classification. When the class cn proposed by LID is the same
that the correct one Ci, the similitude term Dn, as we explained before, can be
taken as a partial description of the correct class, and a candidate to be stored.
However, previously to keep it, we test if it satisfies two conditions. First, to avoid
a high information loss, we check whether Dn has enough length. Let us suppose

Fig. 2. Scheme of the use of leave one out to generate an anonymized file.
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that an object Di is described by n attributes (again, notice that the class is not
considered), we require Dn to have as minimum length n− long attributes other-
wise the description is discarded. In our experiments, where domain objects are
described by 8 attributes, we consider long = 2, and thus, Dn needs a minimum
length of 6 attributes. Second, Dn has to be satisfy by at least k original records.
This condition is to assure k-anonymity. Therefore, if Dn satisfies the two condi-
tions above, it is stored in the anonymized file, otherwise it is rejected. In order to
improve the efficiency of the method, that could be seriously compromised when
the file is huge, we remove from the original file all records subsumed by the par-
tial description dn. In the next section we report some of the experiments we per-
formed using this procedure.

6 Experiments

We performed experiments on the Adult data set from the Machine Learning
Repository [4]. This data set is composed of 48842 records (with unknown values)
described by 14 attributes. As it was done by Iyengar [10] we considered only
eight of these attributes: age, workclass, education, marital status, occupation,
race, sex, native country and, in addition, the class label salary. The attribute
age is numerical and we discretized it in intervals of 5 (i.e., [20, 25), [25, 30) and
so on).

We also considered the labels low-20 and high-90 to include those records
placed on both sides of the global age range. All the other attributes are cat-
egorical. As in [11] we considered the class salary as confidential, being all the
other attributes quasi-confidential. Commonly, authors [10,11] discard around
3000 records due to unknown values. In our experiments we do not need to do
so because the algorithm is able to deal with unknown values. The data set as
it is downloaded from the Machine Learning Repository, is already splitted in a
training set having 32561 records, and a test set having 16281 records.

In the experiments, we address the classification task. The goal is to classify
people with salary up to 50K and down to 50K. We need to fix the input para-
meters k and long, the minimum length of the descriptions. We experimented
with k = 5, 10, 20 and 30. Concerning long, we have set it to 2, that is to say, the
maximum number of attributes that can have value unknown in the patterns is
2. We want to remark that there are many original records with two or more
unknown values, as our goal is to have an anonymized file as similar as possible
to the original one, selection of long equal to two seems a reasonable choice.

A simple way to test the equivalence of the original data base and the
anonymized one for the classification task, is to induce a domain model (for
instance, using a decision tree) for each data base and then evaluate the accu-
racy of the models on a test set. To construct the models of both the anonymized
data base and the original one, we used the J48 inductive learning method, a
clone of C4.5 [16] provided by Weka [9]. The accuracy has been evaluated on the
test set of the UCI repository. Notice that we cannot use n-fold cross-validation
on the anonymized file because what we will test were the generalized descrip-
tions instead of the original data.



224 E. Armengol and V. Torra

Table 1. Accuracy for k = 5, 10, 20 and 30 of the models with the original records and
the anonymized ones on the training set provided by the UCI ML Repository. We also
report the accuracy obtained by the method proposed in [10] (row Iyengar).

File k Accuracy Descriptions

Original with rep. – 83.12 –

Original without rep. – 82.16 –

Iyengar – 82.7/89.5 –

Anonymized 5 82.32 877

Anonymized 10 80.54 115

Anonymized 20 76.38 48

Anonymized 30 76.38 32

Table 1 shows the accuracy of the induced models. We see that the model
induced from the original file gives an accuracy around the 83 % and that the
anonymized file with k = 5 gives an accuracy around 82 %. We also see that high
values of k give lower values of accuracy. This is an expected result since as it
can already be seen in the Table, high values of k result in a lower number of
descriptions forming the model. In fact, when k = 20 and k = 30 the model is
formed only by descriptions for the ≤50K. This explains why both models have
exactly the same accuracy (it is the baseline). Our main conclusion is that this
approach is only convenient for low values of k. Although they are not completely
comparable, Table 1 also reports the accuracy from the method proposed in [10].
Depending on the value of k the accuracy goes from around 82 % for low values
of k to 89 % for values of k around 200.

The only preprocessing we applied to the original file was the discretization of
the attribute age. During a manual analysis of the original file, we have observed
that the discretization process produces a file with repeated objects. For instance,
let us consider these two records:

〈31, P rivate, 11th,Divorced, Public,White,Male, USA,LEQ 50〉
〈33, P rivate, 11th,Divorced, Public,White,Male, USA,LEQ 50〉

Notice that the only difference between both records is the value of age. After
discretization both records can collapse into:

〈B 35 39, P rivate, 11th,Divorced, Public,White,Male, USA,LEQ 50〉

As a consequence, we discovered that there are many records repeated more than
k times after preprocessing. This means that these records already represent a
k-anonymization as they are. The process followed using LID is not affected
by that redundancy since once one valid description is stored, all the records
of the original file satisfying it are discarded. Concerning the decision trees,
the redundancy influences the accuracy. To avoid overfitting, the J48 algorithm
prunes the decision tree. This means that some leaves can have a majority of
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objects belonging to one class and some others belonging to a different class.
Having repeated objects in the original file could lead to leaves with a majority
of objects that in fact, are all the same whereas without these repetitions the
classification for that leaf could be different. As a consequence of this, we decided
to discard all the repeated records and repeat the experiments. The new accuracy
is around the 82 % when using the anonymized file with k = 5. Figures are given
in Table 1. Note that the accuracies obtained for the two cases with the original
file and the case of k = 5 are rather similar.

7 Conclusions and Future Work

In this paper we introduced a new method for k-anonymization based on using a
lazy learning method with leave-one-out. In particular we used the LID method
that in addition to classify a domain object is able to give a justification of such
classification. Because that justification is composed of the attributes relevant
for the classification, we can consider it as a partial description of the class.
By imposing that these partial descriptions satisfy both k-anonymity and a
minimum length requirement, we can store them and form an anonymized file.
We proved that such anonymized file has a similar accuracy with respect to
the original file, but only for low values of k. Compared to the original file, the
anonymized file drastically reduces its size (from 48842 to 877 for k = 5), so we
should perform some additional analysis in order to study if it is still useful for
tasks different from classification.

We plan to analyze how many values are lost for each attribute and if the
resulting file follows the same statistical distributions than the original one. We
have also seen that the discretization process has produced repeated records that
can be interpreted as k-anonymized descriptions without applying any procedure
on them. We want to analyze in depth how discretization processes could be
used in privacy. In addition, we should to compare our approach with classical
methods of data privacy in order to establish the utility of our method, and also
to experiment in other data sets.
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Abstract. We consider the problem of privacy-preserving cloud-based
statistical computation on sensitive categorical data. Specifically, we
focus on protocols to obtain the contingency matrix and the sample
covariance matrix of the categorical data set. A multi-cloud is used not
only to store the sensitive data but also to perform computations on
them. However, the multi-cloud is semi-honest, that is, it follows the
protocols but is not authorized to learn the sensitive data. Hence, the
data must be stored and computed on by the multi-cloud in a privacy-
preserving format, which we choose to be vertical splitting among the
various clouds. We give a comparison of our proposals, based on the
secure scalar product, against a benchmark protocol consisting of down-
loading plus local computation.

Keywords: Data splitting · Privacy · Categorical data · Cloud
computing · Contingency tables · Distance covariance

1 Introduction

Data have become a crucial asset of many enterprises, organizations and pub-
lic administrations. Collecting and analyzing large amounts of data related to
individuals does not only improve research, but it also drives a tremendous busi-
ness [21]. However, local storage and processing of such big data is often unfeasi-
ble for the data controllers because of the associated costs (software, hardware,
energy, maintenance). The cloud offers a suitable alternative for these data-
intensive scenarios, by providing large and highly scalable storage/computation
resources at a low cost and with ubiquitous access. However, most controllers
holding (potentially) sensitive data are reluctant to embrace the cloud because
of security and privacy concerns regarding the cloud service provider (CSP) [3].
On the one hand, CSPs may read, use or even sell the data outsourced by their
customers (especially those CSPs that offer their services for free expecting to
monetize users’ data). On the other hand, CSPs may suffer attacks, accidents
or data leakages that may compromise the privacy of the subjects to whom the
outsourced data refer.
c© Springer International Publishing Switzerland 2016
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To allay these issues and win the trust of potential customers in cloud com-
puting, there is a need for secure, efficient and privacy-preserving storage and
processing methods for the (sensitive) data outsourced to the cloud. This is pre-
cisely the main goal of the European project CLARUS [6] in which the current
work is framed. CLARUS consists in a proxy located in a domain trusted by
the data controller (e.g., a server in her company’s intranet or a plug-in in her
device) that implements security and privacy-enabling features towards the CSP
so that (i) the CSP only receives privacy-protected versions of the controller’s
(or the controller’s users’) data, (ii) CLARUS makes the access to such data
transparent to the controller’s users (by adapting their queries and reconstruct-
ing the results retrieved from the cloud) and (iii) it remains possible for the users
to leverage the cloud to perform accurate computations on the outsourced data
without downloading them.

To do so, CLARUS particularly relies on data splitting as a data protection
technique: data are partitioned into several fragments, each of which is stored in
the clear in a cloud provided by a different CSP, see [1,5]. Data splitting is an
alternative that is more efficient and functionality-preserving than encryption-
based methods (e.g., CipherCloud, PerspecSys, SecureCloud, etc.). In general,
even though searchable and homomorphic encryption allow performing some
operations on ciphertext [10], computing on encrypted data is extremely lim-
ited and costly [15], and it requires careful management of encryption keys. In
contrast, the vertical data splitting implemented by CLARUS protects privacy
(confidential information on an individual is partitioned into fragments that
cannot be linked) and allows computation to be performed on clear data.

Yet, computing on split/distributed data is not easy. In fact, [23] acknowledge
that mining data from distributed sources remains a challenge and [24] identify
correlating the data from the various sources as the main hurdle. In this context,
we assume the CSPs to be semi-honest: they are not entitled to see the entire
data set, but they neither deviate from the protocols nor collude to aggregate
the data fragments they hold.

Contribution and Plan of This Paper

In [4], we evaluated several non-cryptographic proposals for statistical computa-
tion (basically correlations) on split data, and we enhanced and proposed some
protocols adapted to the CLARUS scenario. All these protocols and methods
were designed for numerical data. However, many of the (personal) data cur-
rently collected from a variety of sources (social networks, surveys, B2C transac-
tions, etc.) are not numerical (for example, user profiles [22], health records [13]
or transaction logs [21]).

In this paper, we adapt some of the methods proposed for split numerical data
to categorical data. Specifically, we describe two protocols (with and without cryp-
tography, respectively) to compute the contingency table and the sample covari-
ance matrix needed to measure the correlation between two categorical attributes
stored in different clouds. We also compare their computational and communica-
tion costs against a benchmark consisting of the CLARUS proxy downloading the
entire data set and locally computing on the downloaded data set.
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The rest of this paper is organized as follows. In Sect. 2, we review some
methods to measure the statistical dependence of categorical attributes. Section 3
focuses on the statistical analysis on vertically partitioned data; we give a non-
cryptographic protocol and a cryptographic protocol for computing contingency
tables and the sample covariance matrix. In Sect. 4, we compare the computa-
tional and communication costs of the protocols described in Sect. 3; a bench-
mark protocol is taken that consists of the CLARUS proxy downloading the
entire data set and computing locally on the downloaded data. Finally, Sect. 5
lists some conclusions and future research lines.

2 Statistical Dependence Analyses on Categorical Data

Numerical data (continuous or ordinal) are easy to analyze: correlations, covari-
ances, regressions and classifications can be computed using the standard arith-
metic operators. In contrast, analyzing categorical data, consisting of categorical
values lacking a total order, is more difficult: they must be either mapped to
numbers in some way [8] or they must be processed using methods specifically
designed to measure their differences [17], analyze their distributions [18] or esti-
mate their dependence [20]. A well-known, albeit simple, procedure to measure
the statistical dependence between two categorical attributes is the χ2-test of
independence [2]. This test uses the contingency tables associated to the cat-
egorical attributes as the input for a linear regression analysis. Even if it can
measure some degree of statistical dependence, the χ2-test only considers the
similarities between the distributions of categorical labels, but it fails to capture
the semantic similarity between the categories themselves.

In [20], a more recent and accurate way to measure the dependence between
two categorical attributes is proposed: the distance covariance/correlation
measure, meant to be an alternative to the standard numerical covari-
ance/correlation. The numerical covariance requires the values of attributes to
be totally ordered, and it measures dependence by checking whether greater
values of one attribute correspond to greater values of the other attribute, and
smaller values to smaller values. This does not work for non-ordinal categorical
attributes (i.e., nominal/textual), that lack total order. The distance covari-
ance is a viable alternative that quantifies to what extent the two attributes are
independently dispersed, where dispersion is measured according to the pair-
wise distances between all pairs of values of each attribute. Moreover, unlike
statistical tests based on contingency tables (i.e., value distributions), pairwise
distances can capture the semantics inherent to categorical values, which is cru-
cial to properly measure the correlation of non-numerical data [16]. To do so,
the pairwise distance can be calculated using similarity/distance measures [17],
that quantify how similar are the meanings of the concepts associated to the
categorical values, based on the semantic evidences gathered from one or several
knowledge sources (e.g., ontologies, corpora).
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3 Computation on Vertically Partitioned Data

When storing dynamically changing sensitive data in the cloud, vertical splitting
is very convenient: additions/updates are fast, because the other records (those
that do not change) do not need to be modified. On the contrary, if data stored
in the cloud are masked rather than split, any record addition/update requires
re-anonymizing the original data set including the added/updated record and
re-uploading the entire re-anonymized data set. Furthermore, if fragments are
stored at different CSPs and these do not collude, splitting is more privacy-
preserving than masking for dynamic data, because in masking the (single)
CSP might infer the value of some original records by comparing the succes-
sive anonymized versions of the data set.

In vertical splitting, analyses that involve single attributes (e.g., mean, vari-
ance) or attributes within a single fragment are fast and easy to compute: the
cloud storing the fragment can compute and send the output of the analysis
to the CLARUS proxy. However, statistical dependence analyses may involve
attributes stored in different fragments, and thus communication between sev-
eral clouds. In [4] we focused on computing the sample covariance matrix because
many of the statistical dependence analyses on numerical data are based on it.
Obtaining the sample covariance matrix in vertical splitting among several clouds
can be decomposed into several secure scalar products to be conducted between
pairs of clouds. Secure scalar products can be based on cryptography (the pro-
tocol in [11] involves homomorphic encryption), or not ([7,12] modify the data
before sharing them in such a way that the original data cannot be deduced from
the shared data but the final results are preserved).

As discussed in Sect. 2, for categorical data the problem is more compli-
cated. We focus here on the computation of the contingency tables needed for
the χ2-test and of the distance covariance matrix needed to measure the sta-
tistical dependence between categorical attributes. Section 3.1 reviews the best
two computation protocols on split numerical data, one that uses cryptogra-
phy and another that does not, adapted to the multi-cloud scenario considered
in CLARUS [4]. In Sects. 3.2 and 3.3, we modify these protocols to compute
contingency tables and the distance covariance matrix for categorical data.

3.1 Secure Scalar Product

Let x and y be two n-component vectors, respectively owned by Alice and Bob
(who can be two CSPs). The goal is to securely compute the product xT y.
Shannon wrote in [19]: “It is shown that perfect secrecy is possible, but requires,
if the number of messages is finite, the same number of possible keys.” The
privacy of the following protocol relies on the fact that the original vectors x
and y are not shared at any time; only linear transformations of them are, such
that the number of unknowns (randomness) added by the transformations is
greater than or equal to the number of private unknowns.
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In [9], the protocol is based on what they call a commodity server. Let Alice
and Bob be as previously defined and let a third, non-colluding cloud Charlie
play the role of the commodity server. In [4], we suggested the following variant:

Protocol 1

i. Charlie generates two random n-vectors rx and ry and computes p = rxT ry
(note that p is a number).

ii. Charlie sends rx to Alice, ry to Bob (or equivalently sends them the seeds
for a common random generator). Also, Charlie sends p to CLARUS.

iii. Alice computes x̂ = x + rx and sends it to Bob.
iv. Bob sends t = x̂T y to CLARUS and sends ŷ = y + ry to Alice.
v. Alice computes sx = rxT ŷ and sends it to CLARUS.
vi. CLARUS computes t − sx + p = (x + rx)T y − rxT (y + ry) + rT

x ry = xT y.

Security. Charlie receives nothing from the other clouds. Bob gets n linear equa-
tions with n degrees of randomness. Similarly, Alice gets n linear equations with
n degrees of randomness. Therefore, neither Alice’s vector x can be computed by
Bob, nor Bob’s vector y can be computed by Alice and they are both protected
according to the aforementioned Shannons principle.

In [11], the authors propose and justify the security of a cryptographic proto-
col based on the Paillier homomorphic cryptosystem [14]. The following variant
is proposed in [4]:

Protocol 2

Set-up phase:
i. Alice generates a private and public key pair (sk, pk) and sends pk to Bob.

Scalar product of Alice’s x = (x1, . . . , xn)T and Bob’s y =
(y1, . . . , yn)T :

ii. Alice generates the ciphertexts ci = Encpk
(xi; ri), where ri is a random

number in FN , for every i = 1, . . . , n, and sends them to Bob.
iii. Bob computes ω =

∏n
i=1 cyi

i .
iv. Bob generates a random plaintext sB, a random number r′, sends ω′ =

ωEncpk
(−sB ; r′) to Alice and sends sB to CLARUS.

v. Alice sends sA = Decsk
(ω′) = xT y − sB to CLARUS.

vi. CLARUS computes sA + sB = xT y.

Protocol 2 works in a finite field FN , where the order N is the product of two
primes p and q of the same length and such that gcd(pq, (p − 1)(q − 1)) = 1. In
case Alice and Bob need to execute this protocol several times, they can reuse
public and private keys and thus the set-up step (first step) needs to be executed
only once. The complexity of all these operations depends on N : the larger N ,
the more computationally demanding they are. Since we are computing xT y
mod N , if we do not want the result to be modified by the modulus, it must
hold that N > xT y. Let Mx = maxxi∈x xi and My = maxyi∈y yi. It is sufficient
to choose N > nMxMy.
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Security. The only modification with respect to the Protocol in [11] is that
Alice and Bob do not share their results sA and sB , but they send these values
to CLARUS. Hence, the security of the protocol is preserved and follows from
the security of the Paillier cryptosystem (see [14] for more details).

3.2 Contingency Table Computation

A contingency table (or cross-classification table) is a type of table containing the
(multivariate) frequency distributions of the categorical attributes. Let a and b
denote two categorical attributes, a with h categories c1(a), . . . , ch(a) and b with
k categories c1(b), . . . , ck(b). The contingency table has h rows and k columns
displaying the sample frequency counts of the h × k category combinations.

To obtain the contingency table in vertical splitting among several clouds,
one just needs to compute the table cells. Let (a1, . . . , an)T and (b1, . . . , bn)T be
the vectors of values from the categorical attributes a and b, owned by Alice and
Bob (who can be two CSPs), respectively. A cell Cij (for every i = 1, . . . , h and
j = 1, . . . , k) is computed by counting the number of records in the original data
set containing both the categories ci(a) and cj(b). Alice creates a new vector
x = (x1, . . . , xn)T such that

xl = 1 if al = ci(a), and xl = 0 otherwise, for l = 1, . . . , n. (1)

Bob creates y = (y1, . . . , yn)T such that

yl = 1 if bl = cj(b), and yl = 0 otherwise, for l = 1, . . . , n. (2)

The scalar product xT y gives the number Cij of records in the original data
set containing both the categories ci(a) and cj(b). Hence, Alice and Bob can use
Protocol 1 or Protocol 2 to securely compute Cij by just adding two preliminary
steps to the scalar product computation part: one step by Alice to generate x
from (a1, . . . , an)T using Expression (1), and another step by Bob to generate y
from (b1, . . . , bn)T using Expression (2).

Security. The only modification with respect to the Protocols 1 and 2 is that
Alice and Bob compute x and y, respectively. These computations are done by
the clouds without exchange of information, hence the security of the protocol
is preserved.

3.3 Distance Covariance Matrix Computation

As explained in Sect. 2, first of all we need to measure the pairwise (semantic)
distance between the categorical values of each attribute; see [17] for a survey of
semantic distance measures. Let x1 = (x1

1, . . . , x
1
n)T and x2 = (x2

1, . . . , x
2
n)T be

vectors of values of two categorical attributes owned by Alice and Bob, respec-
tively. We compute the matrices X1 = [x1

ij ]i,j≤n and X2 = [x2
ij ]i,j≤n where

x1
ij = |x1

i − x1
j | and x2

ij = |x2
i − x2

j | are the semantic distances between two
values of the same attribute x1 and x2, respectively. We define
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X1
kl = x1

kl − x̄1
k· − x̄1

·l + x̄1
·· for k, l = 1, . . . , n, (3)

where

x̄1
k· =

1
n

n∑

l=1

x1
kl, x̄1

·l =
1
n

n∑

k=1

x1
kl, x̄1

·· =
1
n2

n∑

k,l=1

x1
kl.

Similarly, we define X2
kl = x2

kl − x̄2
k· − x̄2

·l + x̄2
·· for k, l = 1, . . . , n.

Definition 1. The squared sample distance covariance is obtained as the arith-
metic average of the products X1

klX
2
kl:

dV2
n(x1,x2) =

1
n2

n∑

k,l=1

X1
klX

2
kl (4)

and the squared sample distance variance is obtained as

dV2
n(x1) = dV2

n(x1,x1) =
1
n2

n∑

k,l=1

X1
klX

1
kl.

See [20] for details and justification on the above definition. In general, if X =
(x1, . . . ,xm) is a data set with m attributes xj , j = 1, . . . ,m, the distance
covariance matrix Σ̂ of X is

Σ̂ =

⎛

⎜
⎜
⎜
⎝

dVn(x1) dVn(x1,x2) · · · dVn(x1,xm)
dVn(x2,x1) dVn(x2) · · · dVn(x2,xm)

...
...

. . .
...

dVn(xm,x1) dVn(xm,x2) · · · dVn(xm)

⎞

⎟
⎟
⎟
⎠

.

Note that dVn(xi,xj) is the square root of the number dV2
n(xi,xj), for

i, j = 1, . . . , m, and that Xj , Xj
kl, dVn(xj), for j = 1, . . . ,m, are separately

computed by the cloud storing the respective attribute. The most challenging
task is therefore calculating the squared sample distance covariance, i.e. Expres-
sion (4), which requires performing a secure scalar product of n vectors, each
held by two different parties (where “secure” means without any party disclos-
ing her vector to the other party). In fact, calling X1

k = (X1
k1, . . . , X

1
kn) and

X2
k = (X2

k1, . . . , X
2
kn) for k = 1, . . . , n, we can rewrite Expression (4) as

dV2
n(x1,x2) =

1
n2

n∑

k=1

(
n∑

l=1

X1
klX

2
kl

)

=
1
n2

n∑

k=1

(X1
k)T X2

k, (5)

where the n scalar products are (X1
k)T X2

k for k = 1, . . . , n. Therefore, obtaining
the distance covariance matrix in vertical splitting among several clouds can
be decomposed into several secure scalar products to be conducted between
pairs of clouds. Protocols 1 and 2 are perfectly suited to compute (X1

k)T X2
k for

k = 1, . . . , n (see Sect. 3.1). The only adaptation needed is to add two preliminary
steps: one step by Alice to compute x = X1

k from x1, an another step by Bob
to compute y = X2

k from x2.
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Security. The two preliminary steps added before the secure scalar product are
done separately by Alice and Bob, so there is no additional exchange of infor-
mation between the clouds. Hence the security of Protocols 1 and 2 is preserved.

4 Comparison Among Methods

We compare here the performance of the methods presented in Sects. 3.2 and 3.3
with the following benchmark solution:

Protocol 3

Set-up phase:
i. CLARUS encrypts the original data set E = Enc(X).
ii. CLARUS sends E to a cloud Alice for storage.

Computation phase:
iii. CLARUS downloads E from Alice, decrypts X = Dec(E) and performs the

desired computation.

Encryption and decryption can be performed using a fast symmetric cryp-
tosystem, such as the Advanced Encryption Standard (AES), which takes time
linear in the number of records/vector components n, as well as ciphertexts
similar in size to the corresponding plaintexts.

For simplicity, we consider a data set X with two attributes owned by
Alice and Bob, respectively (the generalization to more attributes and clouds
is straightforward). We now evaluate the computational cost for Alice, Bob,
CLARUS and the total computation under each protocol. Just giving the order
of magnitude of the complexity is not accurate enough (e.g. n additions are
faster than n multiplications, even if we have O(n) computation in both cases);
therefore, we give the complexity in terms of the costliest operation performed
in each case. For instance, “read” means reading the vector, “AESdecr” means
AES decryption of the vectors and “RNDgen” is the random key generation for
the AES encryption. Moreover, operations that do not need to be repeated each
time the protocol is executed, e.g. the generation of cryptographic keys in Pro-
tocol 2, are separately counted as set-up costs. Assuming that the clouds have
unlimited storage, it is reasonable to assume as well that those matrices or vec-
tors need to be generated only once and can be stored for subsequent reuse. In
contrast, we do not assume unlimited storage at CLARUS; therefore, we assume
the proxy just stores the random seeds and generates the matrices when needed.
Also, we have associated the communication cost with the sender and we use a
parameter γ to represent the maximum length of the numbers in the vectors and
matrices used in the protocols. For the case of Protocol 2, lengths are a function
of the size N of the field used by the Paillier cryptosystem: the public key is
3 log2 N bits long, the secret key is log2 N bits long, ciphertexts are 2 log2 N bits
long and plaintexts are log2 N bits long. We consider that whenever possible
the participants send the seeds of random vectors and matrices, rather than the
vectors and matrices themselves.
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4.1 Comparison for Contingency Table Computation

In Sect. 3.2, we adapted Protocols 1 and 2 to compute one cell value of the con-
tingency table. We compare here these adaptations with Protocol 3, where, in
step (iii), “desired computation” means “count the number of records in X con-
taining both the categories ci(a) and cj(b), where a and b are the two attributes
in X”.

Table 1. Long-term and temporary storage costs of Protocols 1, 2 and 3.
n is the number of records/vector components; γ represents the maximum length of
the numbers in the vectors and matrices used in the protocols; N is the size of the
plaintext field used by Paillier. Note: In protocols not requiring the presence of Bob or
Charlie, their costs are indicated with “−”.

Storage

Long-term Temporary

Alice Bob Charlie CLARUS Alice Bob Charlie CLARUS

Prot. 1 (n + 1)γ (n + 1)γ 0 0 (3n + 1)γ (3n + 1)γ (2n + 3)γ 3γ

Prot. 2 nγ+4 log2 N nγ − 0 (3n + 2)γ (2n + 4)γ − 3γ

Prot. 3 2nγ − − 2nγ 0 − − (4n + 1)γ

Only Protocols 2 and 3 require a set-up phase. When the stored data are
updated (that is, records are added, changed or removed), the set-up phase
(key generation) of Protocol 2 does not need to be repeated: since x and y
are binary vectors, we can fix a small order N > 2 of the finite field in use
(see Sect. 3.1). Protocol 3 requires a set-up phase, that is, the key generation for
the AES cryptosystem and the encryption of the private vectors. Compared to
Protocol 2, the set-up phase of Protocol 3 needs to be repeated every time that
the private vectors are changed. Only Protocols 2 and 3 present a communication
cost of the set-up phase, due to the exchange of the public key for the two former
protocols and the transmittal of the encrypted private vectors for the latter one.

Table 1 shows the long-term and temporary data storage costs (temporary
storage is the one needed only to conduct a certain calculation at some point).
In Protocol 1, Alice and Bob need long-term storage for (a1, . . . , an)T and
(b1, . . . , bn)T , respectively, and for the seed to create the random vector. Charlie
needs only temporary storage for rx, ry, their seeds and their product p. Alice
and Bob also need temporary storage to share (x, rx, x̂) and (y, ry, ŷ) and cre-
ate sx and t, respectively. In Protocol 2, long-term storage is required by Alice
and Bob to store their respective private vectors, as well as to store the public-
private key of the Paillier cryptosystem; Alice needs 4 log2 N space for the key
pair. The temporary storage depends on the computations as before. All data
splitting protocols need the same long-term storage space. On the other hand,
only the benchmark Protocol 3 requires CLARUS to store a large amount of
data, namely the decrypted data. Note that Protocol 3’s long-term storage is
2nγ as both n-vectors a and b are stored.
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Table 2. Execution costs for Protocols 1, 2 and 3. n is the number of
records/vector components; γ represents the maximum length of the numbers in the
vectors and matrices used in the protocols. Charlie only appears in Protocol 1 and
Bob does not appear in Protocol 3; we indicate the absence of a cloud with “−”. The
computation cost is presented in terms of the costliest operations performed in each
case; the communication cost is the exact amount of transmitted data.

Computational cost Communication cost Crypt

Alice Bob CLARUS Charlie Alice Bob CLARUS Charlie package

Pr.1 n prod.+ n

read

n prod. + n

read

2 sum. 2n RND-

gen

(n + 1)γ (n + 1)γ 0 3γ none

Pr.2 n RNDgen.

+ n encr.

+ n read

n prod.+ n

read

1 sum. − (n + 1)γ 2γ 0 − Alice

Pr.3 0 − n read + n

AESdecr

− 2nγ − 0 − CLARUS

Table 2 shows the computational and communication costs incurred by the
execution of the above mentioned protocols (after set-up). In Protocol 1, the
commodity server Charlie computes the scalar product of the two random vec-
tors (rx, ry), stores the result and sends the seeds of rx and ry to Alice and
Bob. Protocols 1 and 2 require reading vectors (a1, . . . , an)T and (b1, . . . , bn)T

to compute x and y. Protocols 1 and 2 have all similar costs for CLARUS, but
Protocol 2 needs encryption. Therefore, all in all, Protocol 1 seems to be the
most advantageous one. Nevertheless, if a cryptographic package is available,
Protocol 2 is suitable and fast.

4.2 Comparison for the Distance Covariance Matrix Computation

Section 3.3 showed that the distance covariance matrix calculation can be decom-
posed into computing several secure scalar products, each of which is conducted
between a pair of clouds. Therefore, we focus on the secure scalar product
between two vectors x = X1

k and y = X2
k computed by Alice and Bob, respec-

tively (see Expression (5)). We compare here these adaptations with Protocol 3,
where, in Step (iii), “desired computation” means “compute xT y”.

Note that all the computations to obtain x and y are performed by Alice and
Bob in all the protocols except for Protocol 3, where they are left to CLARUS.
Compared to the protocols in Sect. 4.1, these protocols differ only in the creation
of x and y. Therefore, in Table 1 the long-term storage remains unchanged, but
the temporary storage requires a supplement of storage related to Equation (3).
In Table 2, showing the execution costs, the sentences “n read” needs to be
changed by the complexity of the x and y computations: “(n2 + 3n) sums +
semantic distance complexity”.

Like in Sect. 4.1, Protocols 1 and 2 present all similar costs for CLARUS,
but Protocol 2 needs encryption. Therefore, all in all, Protocol 1 seems to be
the most advantageous one. Nevertheless, if a cryptographic package is available,
Protocol 2 is suitable and fast.
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5 Conclusions and Future Work

We have presented two protocols, a cryptographic one and a non-cryptographic
one, that allow statistical computation on protected sensitive categorical data
stored in semi-honest clouds. For the sake of flexibility and efficiency, we have
considered data splitting as a non-cryptographic method for data protection,
rather than the heavier fully homomorphic encryption. We have provided com-
plexity analyses and benchmarking for all proposed protocols, in order to show
their computational advantages for the cloud user. In this way, clouds are not
only used to store sensitive data, but also to perform computations on them in a
privacy-aware manner. This is especially interesting for large sensitive data sets.

In future research, it would be interesting to design protocols for computa-
tions other than contingency tables and distance covariance matrices. Also, here
we have considered only categorical attributes and in [4] we considered only
numerical attributes. Dealing with cloud-stored sensitive data sets containing
both types of attributes and using semi-honest clouds to perform computations
involving both attribute types would be highly relevant.
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22. Viejo, A., Sánchez, D., Castellà-Roca, J.: Preventing automatic user profiling in
Web 2.0 applications. Knowl. Based Syst. 36, 191–205 (2012)

23. Weiss, G.: Data mining in the real world: experiences, challenges, and recommen-
dations. In: DMIN, pp. 124–130 (2009)

24. Yang, Q., Wu, X.: 10 challenging problems in data mining research. Int. J. Inf.
Technol. Decis. Mak. 5(4), 597–604 (2006)

http://dx.doi.org/10.1007/978-3-319-18467-8_39


Machine Learning Combining
with Visualization for Intrusion Detection:

A Survey

Yang Yu, Jun Long, Fang Liu, and Zhiping Cai(&)

College of Computer, National University of Defense Technology,
Changsha 410073, Hunan, China

zpcai@nudt.edu.cn

Abstract. Intrusion detection is facing great challenges as network attacks
producing massive volumes of data are increasingly sophisticated and hetero-
geneous. In order to gain much more accurate and reliable detection results,
machine learning and visualization techniques have been respectively applied to
intrusion detection. In this paper, we review some important work related to
machine learning and visualization techniques for intrusion detection. We pre-
sent a collaborative analysis architecture for intrusion detection tasks which
integrate both machine learning and visualization techniques into intrusion
detection. We also discuss some significant issues related to the proposed col-
laborative analysis architecture.

Keywords: Intrusion detection � Machine learning � Visualization

1 Introduction

Intrusion detection is playing an important role in cybersecurity to prevent lots of
malicious attacks and threats. However, intrusion detection faces a variety of huge
challenges. First, the massive amounts of network data such as network traffic data are
difficult to be handled by using mainstream computing technologies [1]. Besides, large
volumes of highly heterogeneous network data compound the analytical difficulties
further, which leads to a strong requirement for much more advanced high performance
computing technology [2]. Moreover, a wide array of new types of possible attacks like
APT (Advanced Persistent Threat) along with the increasing sophistication of diverse
network attacks render inefficiency of traditional intrusion detection approaches. In
addition, traditional Intrusion Detection Systems (IDSs) [3] which detect anomalies
automatically still produce plenty of false positives and false negatives.

Machine learning has received highly concern in both academia and industry.
Machine learning in nature is an important branch of artificial intelligence that auto-
matically discovers patterns or knowledge from training data to make predictions or
improve system performance [4]. Since machine learning has well adaptive charac-
teristics and mathematical robustness, it has been widely applied in intrusion detection
recently and produces many fantastic research results [5]. Machine learning techniques
can automatically discover hidden patterns used for detecting network intrusion
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behaviors by training historical data. Besides, machine learning is statistically reliable
because it relies on methods and ideas from other disciplines like statistics and prob-
ability. However, one of the significant problems is that classifiers trained by lever-
aging machine leaning techniques have poor interpretability. Thus, it is considerably
hard for analysts to interpret and trust the detection results.

Fortunately, in combination with visual analysis techniques, many machine leaning
approaches can gain better performance and interpretability [6]. In particular, visual
perception has the advantages of high interpretability and good pattern recognition
capacities. Besides, visualization techniques are also widely leveraged to visualize
network security data [7–9]. One problem with visualization techniques is that rec-
ognizing a plethora of data can cause the overload problem which could result in
unexpected outcomes [10].

While this paper covers a wide spectrum of diverse domains, the topic of this
survey paper mainly focuses on solving intrusion detection problems by utilizing
machine learning and visualization analysis techniques. The organization of this paper
is as follows: Sect. 2 covers some significant machine learning techniques for intrusion
detection. Section 3 presents visualization techniques for intrusion detection and
machine learning. Section 4 discusses a collaborative analysis architecture and some
promising future work on intrusion detection. Finally, Sect. 5 concludes our work
presented in this survey paper.

2 Intrusion Detection Using Machine Learning Approaches

Figure 1 illustrates a generic framework for machine learning. In General, a machine
learning task incorporates the training phrase and testing phrase. In the training phrase,
the historical data are represented as feature vectors by feature extraction or feature
selection methods. The human experts then label each feature vector to gain the
training samples. Subsequently, the classification model is built through various
machine learning algorithms with the training samples as input data. In the testing
phase, similar to the way of gaining feature vectors in the training phase, the new data
are also transferred into feature vectors first. Then, the classification model is applied
on the feature vectors to acquire the ultimate classification results.

Based on the generic framework of machine learning, machine learning-based
intrusion detection involves domain-related features in the process of feature extraction
and learning algorithms. As features and learning algorithms are two essential com-
ponents of learning-based intrusion detection, we mainly review some previous
important studies related to them.

2.1 Features

Feature extraction or selection which greatly affects algorithm efficiency is regarded as
a very crucial part of based-learning intrusion detection. Currently, features utilized in
learning-based intrusion detection are classified into three categories, namely classical,
sequential and syntactical features [11].
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• Classical features. Lee and Stolfo [12] totally generalize 41 typical features applied
in intrusion classification by employing Data Mining techniques. These typical fea-
tures are divided into three types, i.e. basic features of the transport layer, content
features and statistical features of network traffic. The basic features of the transport
layer include protocol type, service type, the number of bytes transferred between
source address and destination address, etc. Content features mainly relate to login
information and the third type of features incorporate connection times and error
messages about SYN. Besides, to test efficiency of different machine learning algo-
rithms used for solving intrusion detection problems, “KDD CUP 1999” [13] utilizes
these features to constitute intrusion detection dataset. Ultimately, these features are
worldwide regarded as classical features of machine learning-based intrusion
detection. The performance of many machine learning algorithms for intrusion
detection problems such as anomaly detection [14] and feature selection [15] has been
measured on the intrusion detection dataset.While the proposed features considerably
facilitate application of machine learning approaches in intrusion detection, they are
restricted to attack types at that time and cannot cover all of attack types nowadays.

• Sequential features. The majority of network attacks have their specific pro-
gramming codes, which inevitably results in the discovery of classical sequential
patterns existed in the network traffic. Rieck and Laskov et al. [16, 17] elaborate the
sequential features and adapt the bag of token technique and q-grams method to
handle the application layer payload of network traffic. In fact, sequential features
are originally used in Natural Language Processing. Liao and Vemuri [18] treat the
symbol strings existed in network traffic as words of documents and apply text
categorization approaches based on the vector space model to intrusion detection.
Mahoney and Chan [19], Inghamet et al. [20] further cope with intrusion detection
problems using text categorization idea. In addition, Kruegel [21], Wang and Stolfo
et al. [22] employ q-grams model in Intrusion detection as q-grams model can
effectively represent closely related characters existed in the sequence. High-order
q-grams are further explored by Rieck, Laskow [23] and Wang et al. [24], where
they utilize unsupervised and semi-supervised learning algorithms respectively.

Fig. 1. Generic framework for machine learning
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• Syntactical features. Kruegel and Vigna [25] first utilize the syntactical features in
order to analyze the malicious contents in the HTTP requests. Afterwards, based on
the syntactical features, other related work such as anomalous system call detection
[26, 27] and SQL injection attacks detection [28] are conducted to solve intrusion
detection problems. Furthermore, Pang [29], Borisov [30] and Wondracek et al.
[31] construct syntax parser to derive syntax structure of network traffic. Besides,
the sub-graphs obtained from syntax structure of network traffic are embedded into
vector space in order to form syntactical features [11].

2.2 Learning Algorithms

Machine learning algorithms used in intrusion detection can be equally divided into
three kinds of classifiers, i.e. single classifiers, hybrid classifiers and ensemble
classifiers [32].

• Single classifiers. Generally, a single classifier solely uses one of various machine
leaning algorithms to deal with intrusion detection data. Classical algorithms for
single classifiers incorporate Naive Bayes classifier [33, 34], Support Vector
Machine (SVM) [35–37], Decision Trees [38, 39], Artificial Neural Network [40,
41], Logistic Regression [42] and Nearest Neighbor [43], etc.

• Hybrid classifiers. A hybrid classifier integrates more than one kind of machine
learning algorithms to enhance efficiency and performance of intrusion detection
system. One example for this is that the intermediate results generated from raw
data processed by one machine learning algorithm are as the inputs of another
algorithm to produce the ultimate results. Specifically, the combination of SVMs
and ant colony networks [44] along with integrating decision trees with SVMs [45],
is studied recently.

• Ensemble classifiers. A variety of weak classifiers aggregated by Adaboost algo-
rithm as well as a series of derivative algorithms constitute an ensemble classifier
which has much more better performance than a standalone weak classifier. For
instance, Artificial Neural Network and Bayesian Networks classifiers [46], as well
as Naive Bayes and Decision Trees classifiers [13] which usually are regards as the
weak classifiers can be aggregated into an ensemble classifier.

3 Visualization Techniques for Intrusion Detection
and Machine Learning

3.1 Visualization Techniques for Intrusion Detection

Visualization techniques can be helpful in addressing intrusion detection problems
because of the powerful cognitive and perceptual capabilities of human beings.
Essentially, human perception and thinking capacities are curial components of anal-
ysis process. Hence, compared with machine intelligence, visual perception has irre-
placeable advantages. Combining intrusion detection with visualization techniques
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aims at representing numerous cybersecurity data visually to facilitate user interactions
so that humans enable to effectively perceive and analyze cyberspace situational
awareness. Becker et al. [47] propose using parametric techniques to visualize network
data as early as 1995. According to Girardind et al. [48], visualization techniques
success in monitoring and analyzing log records.

Currently, most related studies mainly focus on exploring and analyzing network
anomalies through various visualization techniques such as heat maps analysis [49],
hierarchical edge bundles [50], abstract graphs representation [51], etc. Heat maps
analysis can be used to monitor network traffic and allows analysts to clearly observe
the network traffic distribution of target hosts from a less complex network topology.
Hierarchical edge bundles and abstract graphs representation, which can mitigate the
complexity of network nodes and links, are applied in large scale networks.

However, a standalone visualization approach encounters difficulties of monitoring
diverse intricate security events. Some researches hence integrate a variety of different
visual methods to provide a multilevel security model such as Spiral View [7], NVi-
sionIP [8], VisTracer [9], etc. Specifically, NVisionIP as shown in Fig. 2 [8] integrates
three views, namely the galaxy, small multiple, and machine views to monitoring
network anomalies.

3.2 Visualization Techniques for Machine Learning

In reality, network data are mostly high dimensional and heterogeneous, which leads to
both visualization and machine learning facing Big Heterogeneous Data challenges [2].
Actually machine learning and visualization techniques can complement each other in
some extent. In general, machine learning techniques leverage effective dimensionality
reduction algorithms to achieve visualization of high dimensional network data.
Conversely, visualization techniques, which take full advantages of human perception
capabilities to quickly handle visual symbols, facilitate the discovery of patterns hidden
in a myriad of network data. The studies on the combination of machine learning and
visualization have made great process in recent years. Dagstuhl Seminar “Information
Visualization, Visual Data Mining and Machine Learning” [52] and “Bridging

Fig. 2. Three views of NVisionIP [8]
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Information Visualization with Machine Learning” [10] have been held in 2012 and
2015 respectively, which brought together researchers in information visualization and
machine learning to discuss significant challenges and corresponding solutions of
integrating the two fields.

Currently, most studies are focusing on classifiers’ visualization and visualization
interaction of the learning process. While classification models of the majority of
machine learning algorithms are difficult to interpret, the interpretability of classifica-
tion model becomes an important bottleneck in the development of machine learning.
Visualization of classifiers emerges as a consequence of the high demands on the
interpretable classification model which is helpful for users in discovering and
exploring outliers or mislabeled samples, under-fitting or overfitting problems, the
spatial modality of diverse classification data [53–55], etc. In addition, visualization
interaction of the learning process enables users to interactively adjust parameters of
specific algorithms so as to improve learning performance. Related studies cover
network alarm triage [56] and interactive optimization which involved in the adjust-
ment of parameters for given performance constrains [6, 57, 58], etc.

4 Discussion and Future Work

4.1 Collaborative Analysis Architecture for Intrusion Detection

Over the past decades, various visualization and machine learning techniques have
been respectively applied in addressing intrusion detection problems. To the best of our
knowledge, however, there are few studies focusing on combining both machine
learning and visualization techniques for intrusion detection. In our previous work [59],
we have deeply studied the important features of anomaly detection based on visual-
ization technology. Based on our previous study, in this survey paper, we propose a
novel “Brain-Visual Perception-Machine Learning” collaborative analysis architecture
for intrusion detection from a holistic view as shown in Fig. 3. Machine Learning
automatically analyzes and discovers intrusion patterns hidden in the network data.
Meanwhile, as network data, learning process and results are presented by visualization
techniques, analysts can interact with a friendly visual interface in real time. In par-
ticular, humans play a significant role in this workflow. For instance, after capturing
visual information which is then processed by human brain, analysts can tune the
parameters of learning algorithms by means of visualization interaction in order to get
reliable and interpretable results of intrusion detection.

4.2 Future Work

The following main issues that need to be solved could be promising in the future
research:

• Representation of complex intrusion detection features. While classical features
of intrusion detection are expressed as feature vectors which can be directly utilized
by machine learning algorithms, sequential and syntactical features belonging to
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complex features are respectively represented by the forms of q-gram and syntax
trees [11]. Furthermore, as intrusion features are increasingly sophisticated, the
representation of these features requires a new kind of embedding language which
can embed intricate structure into the vector space and preserve information of
original data as much as possible.

• Dimensionality reduction problem. In general, the high dimensional data need to
be reduced into low dimensions such as two or three dimensions for visualization
purpose by leveraging classical dimensionality reduction algorithms including
principal component analysis [60], multidimensional scaling [61], locally linear
embedding [62], isomap [63], etc. However, how to combine specific features of
intrusion data with those dimensionality reduction algorithms still needs to be
further studied.

• Visualization of parameter space. Parameter adjustment is crucial to the success
of learning process which usually searches for optimal parameters by means of the
hill climbing method or heuristic algorithms. Visualizing parameters is helpful in
avoiding trapping in local optimum as analysts are involved in parameter adjust-
ment of learning process. Therefore, visualization of parameter space is also an
important issue that needs to be addressed.

5 Conclusion

Massive highly heterogeneous, sophisticated and distributed network security data pose
great challenges to both academia and industry [64–66]. In addition, applying machine
learning and visualization technologies respectively to address intrusion detection
issues has been heavily studied over the last decades. In recent years, the combination
of machine learning and visualization techniques has attracted many researchers’

Fig. 3. “Brain-Visual Perception-Machine Learning” collaborative analysis architecture for
intrusion detection
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attention. In this paper, we have reviewed some previous important studies related to
intrusion detection, machine learning and visualization. Compared to other survey
papers, this paper presents a novel collaborative analysis architecture for intrusion
detection from a reasonable and valid perspective. The main idea of this collaborative
analysis architecture is to integrate both machine learning and visualization techniques
for intrusion detection to drastically enhance performance of intrusion detection sys-
tems. We believe that collaborative analysis techniques which consist of three fields
mentioned above would be more efficient to solve intrusion detection issues.
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Abstract. We propose a method for network anonymization that con-
sists on sampling a subset of vertices and merging its neighborhoods
in the network. In such a way, by publishing the merged graph of the
network together with the sampled vertices and their locally anonymized
neighborhoods, we obtain a complete anonymized picture of the network.
We prove that the anonymization of the merged graph incurs in lower
information loss, hence, it has more utility than the direct anonymiza-
tion of the graph. It also yields an improvement on the quality of the
anonymization of the local neighbors of a given subset of vertices.

Keywords: Degree sequence ·Graph anonymization ·Graph sampling ·
Network privacy · k-anonymity

1 Introduction

Networks can be used to represent very diverse objects, such as organizations,
neural or metabolic networks, distribution networks, or social networks. Their
vertices and edges may have very different properties which may be used for rep-
resenting different things, such as individuals, objects, acquaintances, locations,
incomes, geographical proximity, among many others.

Online social networks have become a part of the daily lifes of most people.
With their increasing use and pervasiveness, researchers and enterprises have
found an oportunity to analyze them and extract information that may be valu-
able for the benefit of our society.

In order to extract that knowledge from networks they must be published
for their study. But this, in time, yields the possibility of revealing personal
characteristics of the members of the network, with the risk of reidentifying the
individuals behind the nodes and revealing their private attributes. This implies
the need for modification of characteristics that may lead to reidentification
or to revealing attributes that may be considered private, i.e., they must be
anonymized.

In this work we propose a method of sampling and merging the local neigh-
borhoods of given vertices of the graph. In such a way, the set of neighborhoods
can be anonymized separately from the rest of the graph. In [17], was shown that
anonymizing such set of non-overlapping neighborhoods improved the overall
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information loss in information rich graphs. However, if only the local neighbors
of the sampled vertices are published as in [17], then the global properties of
the original graph (e.g., connectivity, shortest paths, average path length) are
completely lost.

Therefore, in order to keep the global information of the original network,
a solution that we propose in this paper is the method of sampling and merg-
ing local neighborhoods. Afterwards, publishing the anonymized local neighbor-
hoods together with the merged graph. In this way a local and a global picture
of the graph are obtained, by following this procedure different anonymization
techniques may be used simultaneously for the local graphs and for the merged
graph. In this paper we focus the study only on the merged graph, we provide
k-degree subset anonymity for such graph and show that the information loss is
improved with respect to the k-degree anonymization of the original network.

2 Related Work

It was found by Backstrom et al. [3] that simple anonymization of a social net-
work (only replacing names or identifiers by a code name) may allow an attacker
to learn relations between targeted pairs of nodes and recover the original and
private names from the structure of the simply anonymized copy of a social
network.

With the aim of properly anonymizing the networks, there is always a tradeoff
between the utility and protection. Several measures have been considered for
social networks, most of them come from statistical disclosure control, such is
the case of k-anonymity [19,23]. The concept of k anonymity has several different
definitions for graphs depending on the assumption of the attacker’s knowledge,
e.g., k-degree anonymity [15], k-neighborhood anonymity [28], in general all of
them can be resumed as k-Candidate anonymity [11] or k − P-anonymity [6],
i.e., for a given a structural property P and a vertex in the graph G there are
at least k − 1 other vertices with the same property P.

Note that the most restrictive of all the structural properties, in the sense that
it implies all the others, is when P is the neighborhood, cf. [22]. On the other
hand, all these definitions imply k-degree anonymity, therefore the minimum
number of edge modifications needed to obtain k-degree anonymity is a lower
bound for all the other properties.

The standard approach to anonymization is to take into account all the ver-
tices of the network, and to anonymize all with the same parameter, e.g., k-
anonymity, t-closeness, and even differential privacy considers the entire set of
vertices. However, as [7] points out, altering the structure of one vertex necessi-
tates altering the structure of another simultaneously. Thus, they define a relax-
ation of k-degree anonymity that they call k-degree-based subset anonymiza-
tion problem (k-D-SAP) in which there is only a target subset X ⊆ V , to be
anonymized. Formally, the problem is to find a graph G′ = (V,E ∪ E′), such
that X is k-degree-anonymous in G′ and the number of new edges added, |E′|,
is minimized. This, has been noted since the work of Liu and Terzi [15] that
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is very restrictive, therefore a relaxation of this condition may be considered in
which edge modifications are allowed and not only edge additions. This is done
in such a way that the number of edges that the original and the anonymized
graph have in common is as large as possible.

Graph anonymization strategies are characterized in [29] as clustering based
or graph modification approaches. The modification based approaches anonymize
a graph by inserting or deleting edges or vertices, that can be done in a greedy
or a randomized way. Hay et al. [11] study a randomization method by changing
the original graph with m edge deletions and m insertions chosen uniformly at
random, and calculate the protection it provides.

Liu and Terzi proposed the model of k degree anoymity in [15], they obtained
a k-degree anonymous graph in two steps, first generating a k-anonymous
sequence by a dynamic programming method to minimize the degree anonymiza-
tion cost L1 and then constructing the graph with the given sequence. We use
the approach of [12] to calculate the k-anonymous sequence that minimizes the
L2 distance to the original sequence, and then obtain the graph by following the
algorithm sketched in [20].

Some sufficient conditions for degree sequences to be graphic and for appli-
cations to k-degree anonymization can be found in [20,21], these conditions
(namely P-Stability) may also be used for edge randomization while preserving
the degree sequences.

The clustering approaches for graph anonymization, consider clustering edges
(e.g., [27]) or vertices (e.g., [4,5,11]). Following the clustering approach, in [24]
the authors define an anonymized social network as AG = (AN ,AE) where
AN = {C1, . . . , Cv} are the nodes of the graph AG, and Ci is a node repre-
senting the centroid of ci a given cluster of nodes in G, with the additional
information of how many nodes and edges are in ci (inter-cluster generaliza-
tion pair). And AE is the set of edges between nodes in AN such that each
edge (Ci, Cj) ∈ AE has the additional information of how many edges has one
end-vertex in cluster ci and the other in cluster cj (intra-cluster generalization
value).

Hence, all nodes from a cluster c are collapsed into a super-node C, all the
edges also are collapsed into super-edges, and the information of how many edges
and nodes have been collapsed is published. In order to satisfy k-anonymity all
clusters must have at least k nodes.

Note that satisfying this k-anonymity definition implies the strictest defini-
tion of k-anonymity for graphs, they are protected against any structural prop-
erty, yet, this also means that the information loss increases (with respect to less
restrictive definitions of k-anonymity).

One of the difficulties of evaluating the utility of a graph that is k-anonymized
by a clustering technique, is that if the original graph has n nodes and all the
nodes in each cluster are collapsed into a supernode, then the anonymized graph
has at most n/k nodes. Thus, it is difficult to retain the distance properties of
the original graph (such as the diameter, or average path length). Therefore,
for the evaluation of the utility of the anonymized graphs in [24], the authors
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“de-anonymize” the graph to compare it with the original, they re-generate a
graph with n nodes by randomly generating graphs with the given number of
nodes and edges for each ci, and attach them randomly to a set of nodes cj with
a set of edges that is pre-specified as the inter-cluster generalization value for
the edge (Ci, Cj) ∈ AE .

Our proposed approach to anonymization is in between clustering and k-
degree anonymization. First we group the nodes in the neighborhoods of a given
subset of vertices and merge them altogether, then we modify the graph obtained
by this procedure to anonymize it. The set of anonymized neighborhoods may
also be published to give a more accurate local and global picture of the graph, cf.
[17]. We will explain our method after introducing some definitions and notations
in the following section.

3 Definitions

We denote the rectilinear and Euclidean distances respectively by L1 and L2.
Given two vectors v1 = (v11, v12, . . . v1n) and v2 = (v21, v22, . . . v2n), we define
L1(v1, v2) =

∑n
i=1 |v1i − v2i| and L2(v1, v2) =

∑n
i=1(v1i − v2i)2.

We denote a graph by G = (V,E) where V = V (G) denotes the set of vertices
and E = E(G) the set of edges of G.

A graph is simple if it does not contains loops nor multiple edges.
The component of a vertex is the set of all vertices that can be reached from

paths starting from the given vertex. A graph is connected if it has only one
component.

We consider undirected, simple and connected graphs. The connectivity
restriction is due to the fact that diameter, average path length and central-
ity measures are meaningful for connected graphs.

The neighborhood N(v) of a vertex v is the set of all adjacent vertices to v.
The degree is the number of edges connected to a vertex, in the case of simple

graphs it is the same as the number of vertices adjacent to a vertex.
Given a graph G and a sampled subset of nodes S, we denote the merged

graph by GS , that is defined next.

4 Sampling and Merging for Graph Anonymization

Given a graph G, we sample a dense subset of nodes S = {s1, . . . , st}, such that
their corresponding neighborhoods {N1, . . . , Nt} do not intersect, and merge all
the nodes in Ni onto a single node si to obtain the merged graph GS .

Formally, GS is the graph where v ∈ V (GS) if either v ∈ S or v ∈ R = V (G)\⋃t
i=1 Ni. And, (ui, uj) ∈ E(GS) if ui, uj ∈ R and (ui, uj) ∈ E(G); or ui ∈ R,

uj = sj ∈ S and there is a vertex w ∈ V (G) such that (ui, w), (w, sj) ∈ E(G);
or ui = si ∈ S, uj = sj ∈ S and there are two vertices x and w such that
(ui, x), (x,w), (w, sj) ∈ E(G) (Figs. 1 and 2).

Note that the assumption that the local subgraphs {N1, . . . , Nt} do not inter-
sect may be omitted. However, by taking the subgraphs {N1, . . . , Nt} to be
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disjoint, they can be anonymized without the most notable difficulty of graph
anonymization, that is, altering the neighborhood of a vertex also modifies other
vertices neighborhoods.

Since it is possible to define a categorical and structural distance between the
neighborhoods {N1, . . . , Nt} corresponding to nodes {s1, . . . , st} and the modi-
fications done to each neighborhood do not alter the others, then the “average
neighborhood graph” can be defined and the furthest graphs from the average
can be calculated. Hence, an approach to anonymization such as MDAV [8,9]
can now be applied to such graphs. In [17] the method used for anonymizing the
neighborhoods {N1, . . . , Nt} is a graph matching algorithm cf. [16]. The method
of sampling dense subgraphs (i.e., such that any vertex in the graph is at dis-
tance at most 2 from a given seed node) was tested for synthetic information
rich graphs and it improves the overall information loss measures compared with
the cases when overlapping neighbors are allowed, cf. [17].

Further properties are that it simplifies the networks (by merging the given
neighborhoods) and reduces the number of vertices in the merged graph, retaining
a correct global picture of the original graph, hence, it may increase the efficiency
of the experiments to be realized on the published graphs.

Fig. 1. Karate network G

Fig. 2. Subgraphs {N1, . . . , Nt} and merged network GS

In [14], different sampling techniques are defined, these are in three different
categories, deletion, contraction and exploration methods. These techniques are
applied to a given graph until a given number of nodes or edges is reached. Our
sampling technique is similar to the edge contractions, but has the particularity
that all the edges incident to a given vertex are contracted at a time.
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A more general definition for the method of sampling and merging could
allow for arbitrarily (or algorithmically) choosing the nodes which are to be
merged.

4.1 Experimental Evaluation

In our experiments, we compare two algorithms for k-degree anonymity, in fact,
we use the same algorithm but on two assumptions, the one of [15], and ours
from [20]. We do not use a dynamic program as Liu and Terzi, but from [12] we
know we obtain optimal partitions.

We use the L2 metric for anonymization instead of the L1 distance considered
in [15], that is, by taking the the mean value of the degree in a group of nodes (for
k-degree anonymization) instead of the median, we obtain a k-degree anonymous
graph which has more edges in common with the original graph. However, both
measures remain close, presumably because the mean and the median of the
subsets in our datasets are similar.

We compare a k-degree anonymity algorithm for the original and the merged
graph. Our approach to subset anonymization is the following: We obtain the
best approximation (considering a distance such as L2) for the subset of nodes
X by taking only the degree sequence of the vertices in X, denoted as dX , and
following the microaggregation procedure from [12] applied to dX .

We evaluate our techniques on real datasets coming from different kinds of
networks, that are Karate [26], PolBooks [13], Celegans [25], PolBlogs [1] and
Netscience [18], see Table 1. We consider the graph to be the main connected
component as we explained in the introduction. The global metrics considered
are explained in next section.

Table 1. Graph metrics

Karate PolBooks Celegans PolBlogs Netscience

|V | 34 105 297 1222 1589

|E| 78 441 2148 16714 2742

Diam 5 7 5 8 17

APL 2.40820 3.07875 2.45532 2.73753 5.82324

CC 0.29819 0.17195 0.37331 0.29432 0.00029

CB 0.40556 0.12044 0.29947 0.09666 0.02229

CD 0.37611 0.15962 0.40384 0.26507 0.01924

γ 2.12582 2.62186 3.34269 3.66713 3.60673

4.2 Information Loss Measures

The diameter is the maximum of the distances among all pairs of vertices in the
graph.
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We will denote the average path length as APL and is the average length of
the shortest path between all pairs of reachable nodes.

Next, we write the definitions of the degree, betweenness, and closeness cen-
trality measures for a network, cf. [10].

The degree centrality CD of a node v is the number of edges adjacent to the
node (degree) normalized to the interval [0, 1]. Thus, CD(v) = deg(v

n−1 .
The degree centrality of a graph G is defined as:

CD(G) =
∑n

i=1 |CD(v∗)−CD(vi)|
n−2 , where v∗ is the node that has the maximum

degree from all nodes in G.
The betweenness centrality of a node v is the normalized sum of the number of

shortest paths between any pair of nodes going through that node, divided by the

number of shortest paths between any pair of nodes. i.e., CB(v) =
2
∑

s �=v �=t
σst(v)

σst

(n−1)(n−2) ,
where σst is the number of shortest paths from s to t and σst(v) is the number
of shortest paths from s to t that go through v.

Thus, the betweeness centrality of a graph G is defined as:
CB(G) =

∑n
i=1 |CB(v∗)−CB(vi)|

n−1 , where v∗, in this case, is the node that has the
maximum betweeness centrality in G.

The closeness centrality of a node v is defined as the inverse of the average of
shortest paths lengths between the node v and all other nodes from G, normalized
to [0, 1]. i.e., CC(G) = n−1∑n

i=1 d(vi,v)
, where d(v, w) is the length of the shortest

path from v to w, or equivalently, the distance from v to w.
Therefore, the closeness centrality of a graph G is defined as: CC(G) =

∑n
i=1 |CC(v∗)−CC(vi)|
(n−1)(n−2)/(2n−3) , where v∗, in this case, is the node that has the maximum

closeness centrality in G.
We fitted a power law (cf. [2]) for the original and merged graphs, the value

of γ denotes the corresponding exponent for the power law.
As additional measure we consider the proportion of edges of the intersection

of the graph G and the anonymized graph Gk with respect to the total number
of edges in G and in Gk

4.3 Experimental Results

First we present the metrics for the merged graphs in Table 2.
Next, we apply k-degree anonymization technique to the original graph, and

on the other hand, sample/merging followed by k-degree anonymization. We
prove that by using the sampling/merging technique the utility is improved. In
particular, we apply k-degree anonymity and then compare how many edges in
proportion have been modified by both methods.

We denote the method to minimize the degree anonymization cost L1 as
Median the method that minimizes the L2 distance to the original sequence as
Mean, and the method of sampling and merging followed by k-degree anonymiza-
tion as Merged. See Figs. 3, 4, 5 and 6.

The value “% precision” is the value m(G̃) expressed as a percentage of
m(G), where G denotes either the original or the merged graph, G̃ is the k-
degree anonymized graph and m = APL,CB , CD, CC .
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Table 2. Merged graphs metrics

KarateS PolBooksS CelegansS PolBlogsS NetscienceS

|S| 3 9 11 103 452

|V | 26 53 238 1004 805

|E| 53 207 1516 13693 874

% of |V (G)| 76 51 80 82 50

% of |E(G)| 67 47 70 81 31

Diam 4 4 4 5 10

APL 2.19692 2.25181 2.24090 2.41158 4.70828

CC 0.33353 0.37289 0.50269 0.45409 0.00069

CB 0.41056 0.22225 0.35184 0.20729 0.03557

CD 0.43692 0.29209 0.52853 0.45436 0.04581

γ 2.08879 3.00645 2.86769 2.89354 3.20339
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Fig. 7. Error percentage for all measures and datasets

Finally, in Fig. 7 we present a graph considering the proportion of the errors
(% error) of both methods k-degree anonymity for the original graph (with
L1 and L2 metrics) and k-degree anonymity for the graph after sampling and
merging. We obtained this measure, by averaging among all different datasets,
all different measures, and taking the difference from the original graphs.

5 Conclusions

We compared two different methods for k-degree anonymity, namely optimiz-
ing the distance L1 and L2, also implemented a version of k-degree subset
anonymization (for k-degree anonymizing the merged graphs) and proposed a
new method for anonymization consisting of sampling and merging neighbor-
hoods in graphs. We showed that this approach may be used to provide differ-
ent anonymization guarantees for different subsets of nodes on the same graph.
We conducted an empirical evaluation of our algorithm on well-known network
datasets and obtained a considerable improvement in the information loss mea-
sures comparing a graph before and after sampling and merging.

There remain many open problems and questions, one may be that a possible
way of evaluating the quality of the method could follow the ideas of [24] of “de-
anonymizing” the graphs to evaluate the differences between graphs that have
a similar amount of vertices.

Another observation is that the sampling step could be done without the
requirement of non-overlapping neighborhoods, it remains the question if this
may decrease the quality of the anonymizations or it can keep it, while reducing
even more the size of the original graphs.

It is probable that this method will be more useful for anonymizing very
large datasets, since it reduces their size.

Acknowledgements. Support by Spanish MCYT under project SmartGlacis
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Abstract. Diabetic retinopathy is an ocular disease that involves an
important healthcare spending and is the most serious cause of sec-
ondary blindness. Precocious and precautionary detection through a
yearly screening of the eye fundus is difficult to make because of the large
number of diabetic patients. This paper presents a novel clinical decision
support system, based on fuzzy rules, that calculates the risk of develop-
ing diabetic retinopathy. The system has been trained and validated on a
dataset of patients from Sant Joan de Reus University Hospital. The sys-
tem achieves levels of sensitivity and specificity above 80 %, which is in
practice the minimum threshold required for the validity of clinical tests.

Keywords: Diabetic retinopathy · Fuzzy expert systems · Induction of
fuzzy decision trees

1 Introduction

Diabetes Mellitus has become a deep-seated disease with a high spread, as it is
suffered by 9 % of adults around the world [1]. Moreover, it is estimated that
46 % of diabetic patients are not even diagnosed [8]. The spread of diabetes has
been steadily growing in the last decades. In Spain, for example, the National
Health Surveys detected that diabetes has increased from 4.1 % of the population
in 1993 to 6.4 % in 2009, and it is expected to grow to 11.1 % by 2030 [19].

Diabetic retinopathy (DR) is one of the main complications of diabetes, being
a common cause of blindness for this kind of patients. As diabetes prevalence
grows, it does also the number of people suffering DR, being a main concern
for health care centres. Early screening may be done by means of non-mydriatic
fundus cameras [17]. Regular screening of diabetic patients may decrease the
economic impact of the therapy and minimize the development of blindness.
However, because of the large number of diabetic patients, it is too resource-
consuming and costly to make a preventive screening to all of them.
c© Springer International Publishing Switzerland 2016
V. Torra et al. (Eds.): MDAI 2016, LNAI 9880, pp. 263–274, 2016.
DOI: 10.1007/978-3-319-45656-0 22
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Doctors in the Ophthalmology Department of Sant Joan de Reus University
Hospital are screening around 15000 patients for diabetic retinopathy yearly.
They confirmed an incidence of about 8 % to 9 % of patients in 2012–2015 [18].
Although it is increasing, this low proportion indicates that many patients could
be safely screened only every 2 or 3 years, so that the screening resources could
be focused on the part of the diabetic population with more risk to develop
diabetic retinopathy [5,16].

In this scenario, the goal of this work is to build a Clinical Decision Support
System (CDSS) to help clinicians to estimate the risk of developing diabetic
retinopathy of new patients. A good prediction system would have three impor-
tant advantages: first, it would save costs to health care centres because they
would not need to make such a large number of screening tests and the workload
of ophthalmologist services would also be reduced; second, it would save time
to many patients that do not need a yearly screening test; and third, it would
permit to detect early stages of DR because those patients with more probability
of developing this disease could be screened with more frequency.

This new CDSS consists on a set of binary classification rules, that assess
whether a new patient has a high risk of developing DR or not. It is well known
that medical diagnosis has to deal with imprecision and uncertainty [21] because
Medicine is not a matter of precise numerical values. Doctors usually work with
linguistic assertions based on ranges of values. Although most of the indicators
have some established intervals corresponding to good/bad states, the limits
of these intervals are fuzzy because they may depend on other factors of each
patient. As a result, classification algorithms working with crisp data usually do
not give a high accuracy. For this reason, this study proposes a fuzzy rule-based
system (FRBS).

Fuzzy rule based systems are a good choice for dealing with medical data for
several reasons: (1) they represent the domain knowledge with a linguistic model
that can be easily interpreted and understood by doctors, (2) they naturally deal
with uncertainty and imprecision, (3) FRBS give also the degree of fulfillment
of the classification output, which is an interesting value for the doctor, and
(4) FRBS usually give a higher classification accuracy than crisp decision trees.
In classification problems for diagnosis, doctors are interested not only on the
classification result but also on how the system derived the answer [7]. In con-
trast, neural networks and linear programming models [15] usually get a high
classification accuracy but the decision process is a black box.

The rest of the paper is organized as follows. Section 2 presents related
work on induction of fuzzy decision trees. In Sect. 3 we introduce the algorithm
of induction of fuzzy decision trees used in this paper. Section 4 explains the
dataset, variables and fuzzification procedure. Section 5 presents the experimen-
tal results. Finally, Sect. 6 shows the conclusions and future work.

2 Related Works

In the literature there are diverse methods for the induction of fuzzy decision
trees (FDT). The classic ones, from the 1990s, are an extension of the ID3 method
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for crisp data. Two main approaches can be found to identify the best attribute
at each step of the construction of the tree: the ones based on information theory
[22] and the ones based on classification ambiguity measures [25].

There are different ways of calculating the fuzzy entropy in the information
theory model. Umanol et al. [22] initiated this approach with a fuzzy version
of the crisp entropy. Later, Levashenko and Zaitseva [13] defined a fuzzy condi-
tional entropy between attributes, which is based on joint information, to choose
an attribute for tree expansion. Some other authors have focused on the Hart-
ley function as a more general measure of uncertainty (which coincides with
Shannon’s entropy measure in the case of a uniform probability distribution).
For example, Li and Jiang [14] used a weight function (cut-standard) to solve
the influence of different fuzzy levels with Hartley measures. In [11] the authors
applied a generalized Hartley metric model with a fuzzy consciousness function
to consider the non-linearity in membership functions.

Yuan and Shaw proposed the minimization of the classification ambiguity as
a criterion to build the tree, instead of entropy ([25]). The new children of a
node must reduce the parent’s ambiguity to continue growing the tree or the
process is stopped. The classification ambiguity is a measure of non-specificity
of a possibilistic measure. In [24] Xiao proposed another classification ambiguity
function based on the probability distribution of class on data. Using a similar
approach, Wang and Yeung [23] proposed a selection criterion based on the
degree of influence of each attribute in a good classification. In this case a set of
weighted rules was obtained, and the reasoning method consisted on a weighted
average of similarity.

Some recent works combine different techniques, such as the construction of
a fuzzy rough tree in [2]. Fuzzy rough set theory is used for choosing the nodes
and partitioning branches when building the tree. Attributes are evaluated with
a fuzzy dependency function. Chang, Fan and Dzan presented a hybrid model
that merged three techniques ([6]). First, a case-based method built a weighted
distance metric that was used in a clustering algorithm. After that, a fuzzy
entropy measure was applied for node selection. Finally, a genetic algorithm was
used to increase the accuracy of the decision tree by detecting the best number
of terms to consider for each attribute.

Fuzzy decision trees have been applied in many fields, including health care.
In the medical area, fuzzy rules have been applied to some well-known diseases
[20]. For example, in [9] fuzzy trees were used in the diagnosis of breast cancer,
diabetes and liver malfunction. However, as far as we know there is no previous
work on the use of decision trees in the diagnosis of diabetic retinopathy.

Wang and Yeung [23] made a comparative study between the entropy-based
induction algorithm of Umanol et al. [22] and the classification ambiguity induc-
tion algorithm of Yuan and Shaw [25]. The comparative study covered the
attribute selection criteria, the complexity of the methods, the reasoning accu-
racy, the reasoning technique and the tree comprehensibility. This study con-
cluded that the performance is quite similar in both cases. The number of rules
is slightly larger in the method of Yuan and Shaw, but the accuracy of the
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prediction both in the training and testing sets is quite similar (slightly worse in
Yuan and Shaw for some datasets). After this analysis, we chose the fuzzy tree
induction algorithm proposed by Yuan and Shaw [25] because it takes a possi-
bilistic approach (i.e. a patient can belong to a certain degree to both classes)
rather than a probabilistic one.

3 Methodology

To construct the CDSS we have a labeled training dataset of patients from the
Sant Joan de Reus University Hospital. The data will be explained in Sect. 4.
The obtained set of rules is used to classify a different test dataset. We propose a
modification of the classic Mamdani inference procedure in subsect. 3.2 in order
to detect undecidable cases. The algorithm for the induction of a fuzzy decision
tree is described in this section.

3.1 Preliminaries

Let us consider the universe of discourse U = {u1, u2, ..., um}, where ui is an
object described by a collection of attributes A = {a1, ..., an}. In this case U
denotes the set of users (patients).

Each attribute a ∈ A takes values on a linguistic fuzzy partition [3] T =
{t1, ..., ts} with membership functions μti

∈ μT . These membership functions
can be understood as a possibility distribution.

The U-uncertainty (or non-specificity measure) of a possibility distribution
π on the set X = {x1, x2, ..., xd} is defined in [25] as:

g(π) =
d∑

i=1

(π∗
i − π∗

i+1) ln i (1)

where π∗ = {π∗
1 , π

∗
2 , ..., π

∗
d} is a permutation of π = {π(x1), π(x2), ..., π(xd)} such

that π∗
i ≥ π∗

i+1, for i = 1, ..., d, and π∗
d+1 = 0.

3.2 Fuzzy Tree Induction

The induction algorithm proposed in [25] is an extension of the classic ID3
method for crisp data. It incorporates two parameters to manage the uncertainty:

– The significance level (α) is used to filter evidence that is not relevant enough.
If the membership degree of a fuzzy evidence E is lower than the level α, it
is not used in the rule induction process.

μEα
(ui) =

{
μE(ui) if μE(ui) ≥ α
0 if μE(ui) < α

– The truth level threshold (β) fixes the minimum truth of the conclusion given
by a rule. Thus, it controls the growth of the decision tree. Lower values of β
may lead to smaller trees but with a lower classification accuracy.
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The main steps of the induction process of a fuzzy decision tree are the
following:

1. Select the best attribute for the root node v : the one with the smallest
ambiguity.

2. Create a new branch for each of the values of the attribute v for which we
have examples with support at least α.

3. Calculate the truth level of classification of the objects within a branch
into each class.

4. If the truth level of classification is above β for at least one of the classes Ci,
terminate the branch with a leaf with label Ci, corresponding to the class
with the highest truth level.

5. If the truth level is smaller than β for all classes, check if an additional
attribute will further reduce the classification ambiguity.

6. If it does, select the attribute with the smallest classification ambiguity
with the accumulated evidence as a new decision node from the branch.
Repeat from step 2 until no further growth is possible.

7. If it doesn’t, terminate the branch as a leaf with a label corresponding to the
class with the highest truth level.

The three measures shown in bold in the previous algorithm control the
construction of the tree. They are explained in the following paragraphs. Some
of these measures are based on the concept of Fuzzy Evidence, which is a fuzzy set
defined on the linguistic values taken by one or more attributes (i.e. a condition
given by one branch of the decision tree).

Ambiguity of an Attribute a ∈ A: Considering that attribute a takes values
on a linguistic fuzzy partition T = {t1, ..., ts} with membership functions μti

∈
μT , its ambiguity is calculated as

Ambiguity(a) =
1
m

m∑

i=1

g(πT (ui)) (2)

where πT is the normalized possibility distribution of μT on U :

πtr
(ui) = μtr

(ui)/max1≤j≤s{μtj
(ui)} (3)

Truth Level of Classification: Having a set of classes C = {C1, ..., Cp}, the
truth level of classification indicates the possibility of classifying an object ui

into a class Ck ∈ C given the fuzzy evidence E

Truth(Ck|E) = S(E,Ck)/max1≤j≤p{S(E,Cj)} (4)

where S is the subsethood of the fuzzy set X on the fuzzy set Y

S(X,Y ) =
M(X ∩ Y )

M(X)
=

∑m
i=1 min(μX(ui), μY (ui))∑m

i=1 μX(ui)
(5)

and M(X) is the cardinality or sigma count of the fuzzy set X. For the case
considered in this paper, the classes C are crisp, so μCk

will be just 0 or 1.
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The truth level can be understood as a possibility distribution on the set U .
As before, π(C|E) is the corresponding normalisation, which is used to define
the next concept.

Classification Ambiguity: Having a fuzzy partition P = {E1, ..., Ek} on fuzzy
evidence F , the classification ambiguity, denoted by G(P |F ), is calculated as

G(P |F ) =
k∑

i=1

W (Ei|F )g(π(C|Ei ∩ F )) (6)

where W (Ei|F ) is the weight which represents the relative size of the subset
(Ei ∩ F ) with respect to F (i.e. W (Ei|F ) = M(Ei ∩ F )/

∑k
i=1 M(Ei ∩ F )).

3.3 Classification Using the Fuzzy Rules

The Mamdani inference procedure is used for the binary classification in the
classes 0 (no DR) and 1 (suffering DR). An additional step is added at the end
of the classic procedure:

1. Calculate the satisfaction degree of a rule μR(u) using the t-norm minimum.
2. Calculate the membership to the conclusion class as the product between the

satisfaction degree μR(u) and the degree of support of the rule.
3. Aggregate all the memberships for the same class, given by different rules,

using the t-conorm maximum.
4. Compare the membership degrees for class 0 and class 1:

Class(u) =
{

“Unknown” , if |μc0(u) − μc1(u)| < δ
argmaxCk∈{c0,c1}(μCk

(u)) , otherwise
(7)

The difference threshold (δ) is used to check if an object belongs to the two
different classes with a similar membership degree. If the degree of membership
is not significantly different, the object is classified as “Unknown”. With this
additional step we can detect cases where conflicting inference is made, because
some variables support the classification to class 0 while others support class 1.
The identification of these cases is of extreme importance in this medical appli-
cation, because this corresponds to an atypical patient that needs to be manually
assessed by the doctors as the system is not able to determine the correct class.

4 The Data

The method presented in the previous section has been applied to data stored in
the Electronic Health Records (EHR) of patients treated at Sant Joan de Reus
University Hospital. This hospital serves an area of Catalonia with a population
of 247,174 inhabitants, having 17,792 patients with Diabetes Mellitus [18]. Var-
ious units of non-mydriatic cameras are used to screen these diabetic patients.
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Since 2007 several analytical, metabolic and demographic data have been sys-
tematically collected and stored in the Electronic Health Records of the different
units. An statistical analysis for the 8-year period from 2007 to 2014 was made
in order to determine the changes in the incidence of diabetic retinopathy [18].
It is observed that incidence was stable between 2007 and 2011 (around 8.1 %)
but since 2011 it has continuously increased until almost 9 %. This study also
analysed which are the main risk factors for developing DR. Out of the results
of this previous work, a set of 8 attributes have been taken for the construc-
tion of the fuzzy rule based system. Most of the attributes are numerical (e.g.
age, body mass index) but there are also some categorical attributes (e.g. sex,
medical treatment). We only present some of these attributes for confidentiality
reasons related to the research project development.

These data are used to build and test the classification model which helps
the doctor to decide whether or not the patient has a high risk of developing DR
on the basis of the selected attributes. The rules also associate a membership
degree to the conclusion that indicates the confidence on the class assignment.

4.1 Data Fuzzyfication

The first step was the definition of the fuzzy sets of the linguistic terms for
each numerical attribute. The meaning of the intervals is of great importance to
understand the classification rules that will be obtained. Thus, the membership
functions have been defined according to the standard intervals of some indica-
tors (such as Body Mass Index BMI) or according to the medical knowledge and
the findings of the statistical analysis [18], such as the age division (Fig. 1).

Fig. 1. Definition of linguistic labels for age and body mass index.

4.2 Preprocessing for Class Imbalance

In medical applications it is common that the low incidence of some diseases
generates imbalanced datasets. In this case, the hospital gave us the EHR of 2323
diabetic patients, who were already labeled regarding the diabetic retinopathy
disease (579 patients with DR (class 1) and 1744 patients not suffering from
DR (class 0)). The dataset was divided in two parts, one for training with 1212
examples (871 from class 0 and 341 from class 1) and another for testing with
1111 patients (873 from class 0 and 238 from class 1).

In this dataset only 25 % of the patients belong to class 1. Although the
incidence of the disease in diabetic patients is much greater than the one in the
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population (which is below 9 %) it still represents a high imbalance in favour
of class 0. This situation may cause some problems to the learning algorithm
because, as shown previously, it is based on proportions between both classes.

To avoid imbalanced data, a bunch of solutions exist at the algorithmic and
data levels [12]. In our case, for the training datasets, we have made a random
oversampling to balance the class distribution by replicating class 1 examples
until they become equal to the number of examples of class 0. Thus, finally the
training dataset had 871 patients of each class.

5 Experimental Results

In this section we study the influence of the parameters α, β and δ on the quality
of the classification rules. The usual classification measures applied in the medical
field are used for the evaluation: specificity and sensitivity.

For values of β below 0.5 the resulting tree was not useful because all the rules
predicted class 0 in the all cases (the truth level of classification is too low and
the rules cannot find the differential features of the patients with RD). Figure 2
shows the results with β = 0.6 and β = 0.7. Higher values of β generated very
large and complex trees without improving either the sensitivity or the specificity.

Figures 2(a), (b) and (c) show the influence of δ on the sensitivity and speci-
ficity, for values of α between 0 and 1. With α ≤ 0.5 the results are quite stable
(for β = 0.6 they do not change), but when the significance level is increased, the
sensitivity improvesand the specificity decreases.The figures show that increasing
δ increases the sensitivity and specificity for both values of β. The best balance
between sensitivity and specificity is found when β = 0.7, α = 0.2 and δ = 0.30,
in which sensitivity = 82.11 and specificity = 82.38 (see black square in Fig. 2(c)).

In fuzzy classification models one object can be classified in many classes
with different membership values. In our model, δ removes the uncertainty of
classifying to several classes. When the δ parameter is changed, the specificity
and sensitivity results behave in the same way depending on α. However, we
can see that the increase of the δ value brings an increase of both sensitivity
and specificity. The best value for δ is 0.30. Results do not improve with higher
values of δ.

Fixing δ = 0.3 we can study the number of unclassified patients (Fig. 2 (d))
and the number of generated rules (Fig. 2 (e)). Increasing β usually increases the
number of unclassified patients. Figure 2 (d) shows that the difference between
the number of unclassified patients for β = 0.6 and β = 0.7 is quite stable for
values of α lower than 0.8 (between 10 and 15 patients). Increasing α (up to 0.7)
increases the number of unclassified patients, but this number decreases when α
is 0.8 or 0.9.

β plays an important role in the construction of the fuzzy decision tree,
because it is used to decide if the current node is a leaf or not. Only the nodes
with a truth level of classification higher than β become leaves of the tree. Thus,
when β is high, the number and length of the rules increase, but it is still a
manageable number for a doctor. Figure 2(e) shows the effect of α on the number
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Fig. 2. Sensitivity and specificity for δ = 0.10 (a), δ = 0.20 (b), δ = 0.30 (c), num-
ber of unclassified objects (d), number of rules (e), comparison with other learning
algorithms (f)

of rules generated by the algorithm with β = 0.7 and β = 0.6. When α increases
the system uses less information and the number of rules is smaller. We can see
that the number of rules is always around 14 when β = 0.6, but it is higher for
β = 0.7 (between 20 and 46 rules).

Table 1 shows some more measures with δ = 0.3 and β = 0.7 because this is
the one with better results, highlighted by the black square in Fig. 2. Column
(NPV) shows the negative predictive value measure, TP is the number of true
positives, FN are the false negatives, FP are the false positives and TN is the
number of true negatives. In Clinical Decision Support Systems a False Negative
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is more dangerous than a False Positive, because an ill person is being classified
as healthy and is not being properly treated. Thus, it would be desirable to have a
low number of FNs. For this reason we want both sensitivity and specificity to be
high. In Table 1 the combination that gives the best balance between sensitivity
and specificity is highlighted.

The method used in this work (FDT) gives better results than some well-
known classification algorithms on the current dataset. Figure 2(f) shows a com-
parison between the results of some algorithms based on decision trees (ID3,
NBTree, ADTree, C4.5), rule-based algorithms (Conjunction Rule), and other
classification algorithms like Support Vector Machines (SVM),Bayes (Naive Ba-
yes) and Functions (VotedPerceptron) [10]. Balanced accuracy, sensitivity and
specificity are used for the comparison as they are good performance measures
for imbalanced datasets [4]. Balanced accuracy is the mean of specificity and
sensitivity. Naive Bayes and ID3 give high sensitivity but they have a low speci-
ficity and a low balanced accuracy, whereas on the other side Conjunction Rule
and SVM give a good specificity but a bad sensitivity. The method in this work
gives the best combination of sensitivity and specificity, and the highest balanced
accuracy as well.

Table 1. Classification results with β = 0.70 and δ = 0.30

α Precision Sensit Spec NPV TP FN FP TN

0 55.38 81.45 82.72 94.42 180 41 145 694

0.1 54.88 81.45 82.38 94.41 180 41 148 692

0.2 54.74 82.11 82.38 94.66 179 39 148 692

0.3 55.31 80.45 82.96 94.18 177 43 143 696

0.4 54.55 79.09 82.70 93.78 174 46 145 693

0.5 55.21 79.91 82.89 93.99 175 44 142 688

0.6 54.69 79.55 82.57 93.85 175 45 145 687

0.7 54.78 79.26 82.77 93.81 172 45 142 682

0.8 53.23 78.64 81.86 93.59 173 47 152 686

0.9 52.63 80.36 80.67 93.89 180 44 162 676

1 52.46 84.98 80.02 95.36 181 32 164 657

6 Conclusion and Future Work

Developing clinical decision support systems for diabetic retinopathy may
improve the diagnosis and avoid unnecessary screenings on patients, reducing
the workload of ophthalmologist services, focusing the use of resources on the
patients that really need them, and saving the time of doctors and patients.
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The fuzzy decision tree induction method presented in the paper (based on
minimizing the classification ambiguity) provides quite good results on the tests
done with data coming from the Sant Joan de Reus Hospital. It provides better
results than other non-fuzzy approaches, with a specificity and sensitivity above
80 % (as required for clinical systems). Therefore, it seems that fuzzy sets are
a suitable way of dealing with the ambiguity of the data stored in the EHR.
Moreover, obtaining linguistic rules is appreciated by doctors, because they can
easily understand the knowledge model and accept it as a valid estimation tool.

The next step will be the validation of the model with a larger dataset
obtained from different medical centres in the region. Although the studied
patients are representative of the area of Tarragona, it is important to know
if the model keeps the same level of prediction accuracy when used with people
living in other provinces. As future work, we are planning to extend the model
in order to predict also the severity of the diabetic retinopathy disease according
to the data available in the EHR. More complex classification models, such as
fuzzy random forests, are also currently being investigated.
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Abstract. In systems based robotic cells, the control of some elements such as
transport robot has some difficulties when planning operations dynamically. The
Flexible Job Shop scheduling Problem with Transportation times and Many
Robots (FJSPT-MR) is a generalization of the classical Job Shop scheduling
Problem (JSP) where a set of jobs have to be transported between them by
several transport robots. This paper proposes hybrid metaheuristics based on
clustered holonic multiagent model for the FJSPT-MR. Computational results
are presented using a set of literature benchmark instances. New upper bounds
are found, showing the effectiveness of the presented approach.

Keywords: Scheduling � Robots � Flexible job shop � Genetic algorithm �
Tabu search � Holonic multiagent

1 Introduction

The Flexible Job Shop scheduling Problem with Transportation times and Many
Robots (FJSPT-MR) is a generalization of the classical Job Shop scheduling Problem
(JSP) where a set of jobs have to be processed on a set of alternative machines and
additionally have to be transported between them by several transport robots. In the
FJSPT-MR, we have to consider two NP-hard problems simultaneously: the flexible
job-shop scheduling problem [5] and the robot routing problem, which is similar to the
pickup and delivery problem [10].

For the literature of the Flexible Job Shop scheduling Problem with Transportation
times and Many Robots, most of the researchers have considered the machine and robot
scheduling as two independent problems. Therefore, only few researchers have
emphasized the importance of simultaneous scheduling of jobs and several robots.
Bilge and Ulusoy [2] proposed an iterative heuristic based on the decomposition of the
master problem into two sub-problems, allowing a simultaneous resolution of this
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scheduling problem with time windows. A local search algorithm is proposed by
Hurink and Knust [6] for the job shop scheduling problem with a single robot, where
they supposed that the robot movements can be considered as a generalization of the
travelling salesman problem with time windows, and additional precedence constraints
must be respected. The used local search is based on a neighborhood structure inspired
from [11] to make the search process more effective. Abdelmaguid et al. [1] addressed
the problem of simultaneous scheduling of machines and identical robots in flexible
manufacturing systems, by developing a hybrid approach composed by a genetic
algorithm and a heuristic. The genetic algorithm is used for the jobs scheduling
problem and the robot assignment is made by the heuristic algorithm. Deroussi and
Norre [4] considered the flexible Job shop scheduling problem with transport robots,
where each operation can be realized by a subset of machines and adding the transport
movement after each machine operation. To solve this problem, an iterative local
search algorithm is proposed based on classical exchange, insertion and perturbation
moves. Then a simulated annealing schema is used for the acceptance criterion.
A hybrid metaheuristic approach is proposed by Zhang et al. [12] for the flexible Job
Shop problem with transport constraints and bounded processing times. This hybrid
approach is composed by a genetic algorithm to solve the assignment problem of
operations to machines, and then a tabu search procedure is used to find new improved
scheduling solutions. Lacomme et al. [8] solved the machines and robots simultaneous
scheduling problem in flexible manufacturing systems, by adapting a memetic algo-
rithm using a genetic coding containing two parts: a resource selection part for machine
operations and a sequencing part for transport operations.

In this paper, we propose a hybridization of two metaheuristics based on clustered
holonic multiagent model for the flexible job shop scheduling problem with trans-
portation robots. This new approach follows two principal hierarchical steps, where a
genetic algorithm is applied by a scheduler agent for a global exploration of the search
space. Then, a tabu search technique is used by a set of cluster agents to guide the
research in promising regions. Numerical tests were made to evaluate the performance
of our approach using the flexible data set of [4] and completed by comparisons with
other approaches.

The rest of the paper is organized as follows. In Sect. 2, we define the formulation
of the FJSPT-MR with its objective function and a simple problem instance. Then, in
Sect. 3, we detail the proposed hybrid approach with its holonic multiagent levels. The
experimental and comparison results are provided in Sect. 4. Finally, Sect. 5 ends the
paper with a conclusion.

2 Problem Formulation

There is a set of n jobs J ¼ J1; . . .; Jnf g to be processed without preemption on a set
M ¼ M0;M1; . . .;Mmf g of m + 1 machines (M0 represents the load/unload or LU
station from which jobs enter and leave the system). Each job Ji is formed by a
sequence of ni operations Oi;1;Oi;2; . . .;Oi;ni

� �
to be performed successively according

to the given sequence. For each operation Oi,j, there is a machine li;j 2 M0; . . .;Mmf g
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and a processing time pi,j associated with it. In addition, each job Ji J1; . . .; Jnð Þ is
composed by ni − 1 transport operations Ti;1; Ti;2; . . .; Ti;ni�1

� �
to be made by a set of

r robots R ¼ R1; . . .;Rrf g from one machine to another. In fact, for each transport
operation Ti,j there is two types of movements: travel transport operation and empty
transport operation.

Firstly, travel transport operation tRhli;j; li;jþ 1 must be considered for robot Rh 2
R1; . . .;Rrf g when an operation Oi,j is processed on machine µi,j and operation Oi,j+1 is

processed on machine µi,j+1. These transportation times are job-independent and
robot-dependent. Each transportation operation is assumed to be processed by only one
transport robot Rh which can handle at most one job at one time. For convenience,
tRhli;j; li;jþ 1 is used to denote both a transportation operation and a transportation time.

Secondly, empty transport operation t0Rhi;j have to be considered while the robot Rh

moves from machine Mi to machine Mj without carrying a job. So, it is possible to
assume, for each robot Rh, that t0Rhi;i ¼ 0 and tRhi;j  t0Rhi;j . All data pi;j; t

Rhli;j; li;jþ 1; t0Rhli;j;
li;jþ 1 are assumed to be nonnegative integers.

The objective is to determine a feasible schedule which minimizes the makespan
Cmax = Maxj = 1,n{Cj} where Cj denotes the completion time of the last operation Oi,ni

of job Ji including the processing times of machine operations and transport operations.

3 Hybrid Metaheuristics Based on Clustered Holonic
Multiagent Model

In this work, we propose a hybrid metaheuristic approach based on clustering pro-
cessing two general steps: a first step of global exploration using a genetic algorithm to
find promising areas in the search space and a clustering operator allowing to regroup
them in a set of clusters. In the second step, a tabu search algorithm is applied to find
the best individual solution for each cluster. The global process of the proposed
approach is implemented in two hierarchical holonic levels adopted by a recursive
multiagent model, named a hybrid Genetic Algorithm with Tabu Search based on
clustered HolonicMultiagent model (GATS + HM), see Fig. 1. The first holonic level
is composed by a Scheduler Agent which is the Master/Super-agent, preparing the best
promising regions of the search space, and the second holonic level containing a set of
Cluster Agents which are the Workers/Sub-agents, guiding the search to the global
optimum solution of the problem. Each holonic level of this model is responsible to
process a step of the hybrid metaheuristic approach and to cooperate between them to
attain the global solution of the problem.

3.1 Non Oriented Disjunctive Graph

In this work, we chose to use the disjunctive graph of [6] but with new extension for the
job shop problem with transportation times and many robots. Hurink and Knust [6]
presented in their disjunctive graph all conflicts for scheduling a set of machines and
one robot in a job shop environment. So, we have to improve this graph only by
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integrating the assignment of many robots to transport operations. To explain this
graph, a sample problem of three jobs and five machines with their transportation times
for each robot Rh is presented in Table 1.

The disjunctive graph G = (Vm [ Vt, C [ Dm [ Dr), see Fig. 2, is composed by: a
set of vertices Vm containing all machine operations, a set of vertices Vt is the set of
transport operations obtained by an assignment of a robot to each transport operation,
and two dummy nodes 0 and �. Also, this graph consists of: a set of conjunctions
C representing precedence constraints Oi;k ! tRhli;k; li;kþ 1 ! Oi;kþ 1, undirected
disjunctions for machines Dm, and undirected disjunctions for transport robots Dr. For
each job Ji, ni − 1 transport operations tRhli;k; li;kþ 1 are introduced including

Fig. 1. Hybrid metaheuristics based clustered holonic multiagent model

Table 1. One instance of flexible job shop problem with two robots

Processing times for each job Ji 
  M1 M2 M3 M4 M5 
J1 O11 2 9 4 5 1 

O12 - 6 - 4 - 
J2 O21 1 - 5 - 6 

O22 3 8 6 - - 
O23 - 5 9 3 9 

J3 O31 - 6 6 - - 

O32 3 - - 5 4 

Transportation times for each robot Rh 
 M1 M2 M3 M4 M5 
M1 0 1 2 3 4 
M2 1 0 1 2 3 
M3 2 1 0 1 2 
M4 3 2 1 0 1 
M5 4 3 2 1 0 
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precedence Oi;k ! tRhli;k; li;kþ 1 ! Oi;kþ 1. Each robot Rh may be considered as an
additional “machine” which can process all these transport operations. The arcs from
machine node to transport node are weighted with the machine operation durations.
Edges between machine operations represent disjunctions for machine operations
which have to be processed on the same machine and cannot use it simultaneously.

As for the classical job shop, the conjunctions C model the execution order of
operations within each job Ji. In addition to the classical set of undirected machine
disjunctions Dm, it is necessary to consider the set of undirected robot disjunctions Dr.
To solve the scheduling problem it is necessary to turn all undirected arcs in Dm [ Dr

into directed ones, and to assign one robot Rh to each transport operation, where the
final graph becomes an oriented disjunctive graph.

3.2 Scheduler Agent

The Scheduler Agent (SA) is responsible to process the first step of the hybrid algo-
rithm by using a genetic algorithm called NGA (Neighborhood-based Genetic Algo-
rithm) to identify areas with high average fitness in the search space during a fixed
number of iterationsMaxIter. Then, a clustering operator is integrated to divide the best
identified areas by the NGA in the search space to different parts where each part is a
cluster CLi 2 CL the set of clusters, where CL ¼ CL1;CL2; . . .;CLNf g. According to
the number of clusters N obtained after the integration of the clustering operator, the
SA creates N Cluster Agents (CAs) preparing the passage to the next step of the global
algorithm. After that, the SA remains in a waiting state until the reception of the best
solutions found by the CAs for each cluster CLi. Finally, it finishes the process by
displaying the final solution of the problem.

Individual’s Solution Presentation Based Oriented Disjunctive Graph. The Flex-
ible Job Shop scheduling Problem with Transportation times and Many Robots is
composed by two sub-problems: firstly the machines and robots selection, secondly the
operations scheduling problem, that is why the chromosome representation is encoded

Fig. 2. Non oriented disjunctive graph
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in two parts: Machines and Robots Selection part (MRS), and Job and Transport
operation Sequence part (JTS), see Fig. 3.

The first part MRS is a vector V1 with a length L equal to the total number of
operations and where each index represents the selected machine or robot to process an
operation indicated at position p, see Fig. 3(a). For example p = 3 and p = 7, V1(3) is
the selected machine M4 for the operation O1,2 and V1(7) is the selected robot R1 for the
operation T2,2. The second part JTS is a vector V2 having the same length of V1 and
where each index represents a machine operation Oi,j or a transport operation Ti,j
according to the predefined operations for each job, see Fig. 3(b). For example this
operation sequence 1-2-1-1-3-2-3-2-3-2-2 can be translated to: (O1,1, M5) ! (O2,1,
M1) ! (T1,1, R1) ! (O1,2, M4) ! (O3,1, M3) ! (T2,1, R2) ! (T3,1, R2) ! (O2,2,
M3) ! (O3,2, M1) ! (T2,2, R1) ! (O2,3, M2). In addition, for each job Ji (J1,. .., Ji)
ni − 1 transport operations are generated T1,1, T2,1, T2,2 and T3,1, and scheduled fol-
lowing the presented solution in vector JTS, allowing to fix the final path to be
considered by each robot Rh during the shop process.

To model an oriented disjunctive graph we should consider some rules. Let the
example in Fig. 4, if the edge is oriented in the direction Oi;k ! O0j;k it gets the weight
pi,k, else it takes p0j;k in the inverse case. If an arc is added from Ti,k to Tj,k′, its gets the

weight tRhOi;k;Oi;kþ 1þ t0RhOi;kþ 1;O0j;k and tRhO0j;k;O
0
j;kþ 1þ t0RhO0j;kþ 1;Oi;k if it is

oriented in the other direction.

Thus, basing on [6] we can define a fixed machine selection Sm called directed
Machine Disjunctions and a fixed transport selection Sr called directed Transport

Fig. 3. The chromosome representation of a scheduling solution

Fig. 4. Example of oriented machine and robot disjunctions
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Disjunctions, with their precedence relations C called operation Conjunctions. So, a
fully oriented disjunctive graph can be obtained using Ŝ ¼ C [ Sm [ Sr, which is called
a complete selection. In fact, the selections of the two sets of disjunctions Sm and Sr
with their set of conjunctions C are based on the two proposed vectors MRS and JTS,
where MRS allows to present the selected machines to process job operations and the
selected robots to process transport operations. JTS presents the execution order of the
job and transport operations in their selected machines and robots allowing to fix the
final Machine and Transport Disjunctions Sm [ Sr with their set of Conjunctions
C representing the precedence relations. The union C [ Sm [ Sr ¼ Ŝ fully describes a
solution if the resulting oriented disjunctive graph G ¼ Vm;Vt; Ŝ

� �
is acyclic. A fea-

sible schedule can be constructed by longest path calculation which permits to obtain
the earliest starting time of both machine and transport operations and fully defines a
semi-active schedule with the Cmax given by the length of the longest path from node
0 to *, see Fig. 5.

Noting that the chromosome fitness is calculated by Fitness(i) which is the fitness
function of each chromosome i and Cmax(i) is its makespan value, where i 2
1; . . .;Pf g and P is the total population size, see Eq. (1).

FitnessðiÞ ¼ 1
CmaxðiÞ ð1Þ

Population Initialization. The initial population is generated randomly basing on a
neighborhood parameter inspired from [3], calculated by verifying the difference
between two chromosomes in terms of the placement of each machine operation Oi,j on
its assigned machine µi,j and the placement of each transport operation Ti,j on its
assigned robot Rh in the Machines and Robots Selection V1 (MRS). Also, we have to
verify the execution order of all the shop operations Oi,j and Ti,j in the Job and Transport
operation Sequence V2 (JTS). Let Chrom1(MRS1, JTS1) and Chrom2(MRS2, JTS2) two

Fig. 5. Oriented disjunctive graph
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chromosomes of two different scheduling solutions, M(Oi,j) the number of alternative
machines for each machine operation Oi,j, R(Ti,j) the number of alternative robots for
each transport operation Ti,j, L is the total number of operations of all jobs and Dist is the
dissimilarity distance. The distance is calculated firstly by measuring the difference
between the Machines and Robots Selection vectors MRS1 and MRS2 which is in order
of O(n), then by verifying the execution order difference of the Job and Transport
operation Sequence vectors JTS1 and JTS2 which is in order of O(1), we give here how
to proceed:

Noting that Distmax is the maximal dissimilarity distance and it is calculated by
Eq. (2), representing 100 % of difference between two chromosomes.

Distmax ¼
Xn

i¼1
Xi;ni

i;1
M Oi;j
� �þ

Xi;ni�1
i;1

R Ti; j
� �þ L ð2Þ

Selection Operator. The selection operator is based on the fitness function and the
neighborhood parameter, where we propose a new Fitness-Neighborhood Selection
Operator (FNSO) allowing to add the dissimilarity distance parameter to the fitness
function to select the best parents for the crossover step. The FNSO chooses in each
iteration two parent individuals until engaging all the population to create the next
generation. The first parent takes successively in each case a solution i, where i 2 {1,.
.., P} and P is the total population size. The second parent obtains its solution j ran-
domly by the roulette wheel selection method based on the two Fitness and Neigh-
borhood parameters relative to the selected first parent, where j 2 {1,. .., P} \ {i} in the
P population and where j 6¼ i. In fact, to use this random method, we should calculate
the Fitness-Neighborhood total FN for the population, see Eq. (3), the selection
probability spk for each individual Ik, see Eq. (4), and the cumulative probability cpk,
see Eq. (5). After that, a random number r will be generated from the uniform range
[0,1]. If r � cp1 then the second parent takes the first individual I1, else it gets the k

th

individual Ik 2 {I2,. .., IP}\ {Ii} and where cpk – 1 < r � cpk. For Eqs. (3), (4) and (5),
k = {1, 2,. .., P} \ {i}.

282 H.E. Nouri et al.



• The Fitness-Neighborhood total FN for the population:

FN ¼
XP

k¼1 ½1=ðCmax½k� � Neighborhood½i�½k�Þ� ð3Þ

• The selection probability spk for each individual Ik:

spk ¼ 1=ðCmax½k� � Neighborhood½i�½k�Þ
FN

ð4Þ

• The cumulative probability cpk for each individual Ik:

cpk ¼
Xk

h¼1 sph ð5Þ

Crossover Operator. The crossover operator is applied with two different techniques
successively for the parent’s chromosome vectors MRS and JTS. Firstly, the MRS
crossover operator generates in each case a mixed vector between two parent vectors
Parent1-MRS1 and Parent2-MRS2, allowing to obtain two new children, Child1-MRS′1
and Child2-MRS′2. This uniform crossover is based on two assignment cases, if the
generated number r is less than 0.5, the first child Child1 gets the current machine value
of Parent1 and the second child Child2 takes the current machine value of Parent2. Else,
the two children change their assignment direction, first child Child1 to Parent2 and the
second child Child2 to Parent1. Secondly, the JTS crossover operator is an improved
precedence preserving order-based on crossover (iPOX), inspired from [9], and is
adapted for the parent operation vector JTS. This iPOX operator is applied following
four steps, a first step is selecting two parent operation vectors (JTS1 and JTS2) and
generating randomly two job sub-sets Js1/Js2 from all jobs. A second step is allowing to
copy any element in JTS1/JTS2 that belong to Js1/Js2 into child individual JTS′1/JTS′2
and retain them in the same position. Then the third step deletes the elements that are
already in the sub-set Js1/Js2 from JTS1/JTS2. Finally, fill orderly the empty positions in
JTS′1/JTS′2 with the reminder elements of JTS2/JTS1 in the fourth step.

Mutation Operator. The mutation operator is integrated to promote the children
generation diversity. Firstly, the MRS mutation operator uses a random selection of a
transport operation index from the vector MRS. Then, it replaces the current number in
the selected index by another belonging to the alternative set of machines (if machine
operation Oi,j) or the set of robots (if transport operation Ti,j). Secondly, the JTS
mutation operator selects randomly two indexes index1 and index2 from the vector JTS.
Next, it changes the position of the job number in the index1 to the second index2 and
inversely.

Replacement Operator. The replacement operator has an important role to prepare
the remaining surviving population to be considered for the next iterations. This
operator replaces in each case a parent by one of its children which has the best fitness
in its current family.

Optimizing Robot Movements in Flexible Job Shop Environment 283



Clustering Operator. By finishing the maximum iteration number MaxIter of the
genetic algorithm, the Scheduler Agent applies a clustering operator using the hierar-
chical clustering algorithm of [7] to divide the final population into N Clusters to be
treated by the Cluster Agents in the second step of the global process. The clustering
operator is based on the neighbourhood parameter which is the dissimilarity distance
between individuals. The clustering operator starts by assigning each individual Indiv
(i) to a cluster CLi, so if we have P individuals, we have P clusters containing just one
individual in each of them. For each case, we fixe an individual Indiv(i) and we verify
successively for each next individual Indiv(j) from the remaining population (where
i and j 2 {1,. .., P}, i 6¼ j) if the dissimilarity distance Dist between Indiv(i) and Indiv
(j) is less than or equal to a fixed threshold Distfix (representing a percentage of
difference X% relatively to Distmax, see Eq. (6)) and where Cluster(Indiv(i)) 6¼ Cluster
(Indiv(j)). If it is the case, Merge(Cluster(Indiv(i)),Cluster(Indiv(j))), else continue the
search for new combination with the remaining individuals. The stopping condition is
by browsing all the population individuals, where we obtained at the end N Clusters.

Distfix ¼ Distmax� X% ð6Þ

3.3 Cluster Agents

Each Cluster Agent CAi is responsible to apply successively to each cluster CLi a Tabu
Search algorithm to guide the research in promising regions of the search space. Let
E the elite solution of a cluster CLi, E′ 2 N(E) is a neighbor of the elite solution E, GLi
is the Global List of each CAi to receive new found elite solutions by the remaining
CAs, each CLi plays the role of the tabu list with a dynamic length and Cmax is the
makespan of the obtained solution. So, the search process of this local search starts
from an elite solution E using the move and insert method of [11], where each Cluster
Agent CAi changes the position of a machine operation Oi,j from a machine Mm to
another machine Mn belonging to the alternative set of machines and the position of a
transport operation Ti,j from a robot Rk to another robot Rh belonging to the alternative
set of robots in the vector MRS. In addition, modifies the execution order of an
operation from an index i to another index k in the vector JTS, searching to generate
new scheduling combination E′ 2 N(E). After that, verifying if the makespan value of
this new generated solution Cmax(E′) dominates Cmax(E), and if it is the case CAi

saves E′ in its tabu list (which is CLi) and sends it to all the other CAs agents to be
placed in their Global Lists GLs(E′,CAi), to ensure that it will not be used again by
them as a search point. Else continues the neighborhood search from the current
solution E. The stopping condition is by attaining the maximum allowed number of
neighbors for a solution E without improvement. We give here how to proceed:
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By finishing this local search step, the CAs agents terminate the process by sending
their last best solutions to the SA agent, which takes the best one for the FJSPT-MR.

4 Experimental Results

4.1 Experimental Setup

The proposed GATS + HM is implemented in java language on a 2.10 GHz Intel Core
2 Duo processor and 3 Gb of RAM memory, using the eclipse IDE to code the
approach and the multiagent platform Jade to create the holonic multiagent model. To
evaluate its efficiency, numerical tests are made based on the data instances of Deroussi
and Norre [4]. The used parameter settings for our algorithm are adjusted experi-
mentally and presented as follow: the crossover probability = 1.0, the mutation prob-
ability = 0.5, the maximum number of iterations = 1000 and the population
size = 200. The computational results are presented by three metrics in Table 2, such
as the best makespan, CPU time of our GATS + HM in minutes and the gap between
our approach and the best results in the literature of the FJSPT-MR, which is calculated
by Eq. (7). The Mko is the makespan obtained by Our approach and Mkc is the
makespan of one of the chosen algorithms for Comparisons.

Gap ¼ Mko�Mkcð Þ=Mkc½ � � 100 % ð7Þ

4.2 Experimental Comparisons

To show the efficiency of our GATS + HM approach, we compare its obtained results
from the previously cited data set with other well known algorithms in the literature of
the FJSPTMR. The chosen algorithms are: The shifting bottleneck (SBN) and the tabu
search procedure (Tabu) of [13] which are standard heuristic and metaheuristic
methods. The hybrid genetic algorithm-tabu search procedure (GATS) of [12] and the
combined genetic algorithm-tabu search-shifting bottleneck (GTSB) of [13] which are
two recent hybrid metaheuristic approaches.
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From results in Table 2, it can be seen that our approach GATS + HM is the best
one which solves all the Deroussi and Norre [4] instances, where we attain nine new
upper bounds. In fact, our approach shows its superiority to the first two methods SBN
and Tabu in all instances, with a same maximum gap of −36.36 % for the fjspt7
instance. For the comparison with the second two hybrid metaheurstic methods GTSB
and GATS, our approach GATS + HM outperforms them in all the nine instances, with
a maximum gap of −31.15 % for the GTSB and −32.26 % for the GATS by solving
the fjspt7 instance.

5 Conclusion

In this paper, we present a new metaheuristic hybridization approach based on clus-
tered holonic multiagent model, called GATS + HM, for the flexible job shop
scheduling problem with transportation times and many robots. To measure its per-
formance, numerical tests are made and where new upper bounds are found showing
the effectiveness of the presented approach. In the future work, we will search to treat
other extensions of the FJSPT-MR, such as by considering the constraints of a non-unit
transport capacity for the moving robots, where the problem becomes a flexible job
shop scheduling problem with moving robots and non-unit transport capacity. So, we
will make improvements to our approach to adapt it to this new transformation and
study its effects on the makespan.
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Abstract. The appearance of Web 2.0 and mobile technologies, the
increase of users participating on the Internet and the high amount
of available information have created the necessity of designing tools
capable of making the most out of this environment. In this paper, the
design of an Android application that is capable of aiding some experts
in carrying out a group decision making process in Web 2.0 and mobile
environments is presented. For this purpose, Fuzzy Ontologies are used
in order to deal with the high amount of information available for the
users. Thanks to the way that they deal with the information, they are
used in order to retrieve a small set of alternatives that the users can uti-
lize in order to carry out group decision making processes with a feasible
set of valid alternatives.

Keywords: Group decision making · Fuzzy ontologies · Decision
support system

1 Introduction

In its recent days, Internet was a static platform where a small minority of
experts uploaded all the information that the Internet users could download.
Since a small set of experts controlled all the information, the data was proved
valid and trustful. Nevertheless, the quantity of the information was low and
users did not have the chance to provide their own information and experience
to the users net.

Nowadays, situation has completely changed. The appearance of Web 2.0 [1]
technologies have allowed all the users from the Internet to share and consume
c© Springer International Publishing Switzerland 2016
V. Torra et al. (Eds.): MDAI 2016, LNAI 9880, pp. 289–300, 2016.
DOI: 10.1007/978-3-319-45656-0 24
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information at the same time. This paradigm change has provoke an increase in
the quantity of information available on the Internet. Nevertheless, since anyone
is able to become an information provider, validity and veracity of the informa-
tion can no longer be taken for granted. Furthermore, there is a need of tools
that are capable of sorting and organizing the information in a way that users
can benefit from it.

Along with the Web 2.0 technologies revolution, mobile phones have been
transformed from calling devices to small and portable computers. This has
provoked mobile phones, recently called smartphones, to become the item that
users want to use as assistant devices in their everyday life. Thanks to 3G/4G
technologies, smartphones have acquired the ability to connect and make use of
all the information that is stored on the Internet. Thanks to Web 2.0 and mobile
technologies combination, users can benefit from any kind of information stored
on the Internet, at any time, independently of their location.

There is no doubt that Web 2.0 and mobile technologies have drastically
transformed the way that users used to retrieve information and communicate
among themselves. Therefore, there is a need for traditional computational fields
to adapt and benefit from this new paradigm.

One of these traditional fields is group decision making [2]. Traditionally,
group decision making processes were carried out by a set of experts that reunite
in a single room and debate over a small set of alternatives. Nowadays, because of
the paradigm change, users need to carry out group decision making processes
about an unspecified high amount set of alternatives. Also, thanks to mobile
phones, experts do not want to reunite in an specific place any more. They are
willing to carry out decision making processes independently of where they are
located communicating among themselves using their mobile phones.

In order to achieve these goals, a novel Android decision support system is
presented in this paper. This system uses fuzzy ontologies [3] in order to reduce
the high amount of available alternatives into a feasible set. Also, experts use
their mobile phones in order to communicate and carry out the group decision
making process. Mobile phones features, like the GPS, are used in order to help
the fuzzy ontology to reduce the available set of alternatives. Thanks to this
novel developed method, experts can carry out group decision making processes
at any time independently of where they are located. In order to increase the
comprehensibility of the presented method, we will work with a concrete exam-
ple. In the proposed situation, experts are reunited in a restaurant and they
need to select a specific wine from a set containing a high amount of possibil-
ities. Fuzzy ontologies will help to reduce the available amount of alternatives
into a feasible one. Finally, a group decision making process is carried out in
order for the experts to select an specific wine from the list.

In Sect. 2, basis of all the tools needed to understand the designed Android
decision support system are exposed. In Sect. 3, the designed decision making
support system is presented. In Sect. 4, advantages and drawbacks of the devel-
oped method are highlighted. Finally, some conclusions are pointed out.
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2 Preliminaries

In this section, basic concepts needed to understand the presented design are
exposed. In Sect. 2.1, basis of group decision making methods are exposed. In
Sect. 2.2, basis of fuzzy ontologies are described.

2.1 Group Decision Making Methods

A common Group Decision Making method problem can be formally defined as
follows:

Let E = {e1, . . . , en} be a set of experts and X = {x1, . . . , xm} a set of alter-
natives that the experts must discuss about. A group decision making problem
consists in sorting X, or choosing the best alternative xb, using the preferences
values P k, ∀k ∈ [1, n], provided by the experts.

In order to carry out this process, the following steps are usually followed:

1. Providing Preferences: Experts provide their preferences about the alter-
natives. In the proposed method, linguistic label sets can be used. This way,
people can express themselves in a more comfortable way using words instead
of numbers. Also, preference relations are the chosen representation mean
due to the fact that they allow experts to carry out pairwise comparisons.
Although preference relations are not the unique possible choice, we have
selected them since they are capable of carrying out pairwise comparisons
among the alternatives. This way, experts can provide their preferences in a
comfortable and user-friendly way. A linguistic label set is provided for each
pair of alternatives.

2. Aggregation Step: After all the experts provide their preferences, they
are aggregated into a single collective preference relation. For this task, OWA
operator [4,5] or the mean operator can be used. When working with linguistic
information, it is possible to use specific operators such as the LOWA [6] one,
that is capable of aggregating linguistic information without having to deal
with any numeric conversion.

3. Selection Step: Once that the collective preference matrix has been calcu-
lated, selection operators are used in order to generate the ranking or select
the most preferred alternative. For this purpose, guided dominance degree
and guided non dominance degree are used [7,8].

4. Consensus Calculation Step: When carrying out a group decision making
process, it is very important to try to bring opinions closer and make all
the experts to converge to an unique solution. It is desirable for experts to
debate, express their points of view and select a solution together. For this
purpose, several group decision making rounds can be performed until they
reach a specific level of agreement. This level of agreement can be calculated
using consensus measures [9]. Therefore, if, after providing the preferences,
the level of agreement is low, experts are asked to carry out more debate and
resend their preferences. On the contrary, if the consensus level is high, final
decision results are calculated.

A scheme of this process can be seen in Fig. 1.
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Fig. 1. Group decision making scheme.

2.2 Fuzzy Ontologies

Fuzzy ontologies are constructions whose main purpose consists in representing
data in a sorted way using an organized structure. Using their representation
capabilities, it is possible to retrieve specific pieces of data from them using
queries that search elements with certain characteristics. A fuzzy ontology can
be formally expressed as follows:

Definition 1. A fuzzy ontology [10,11] is a quintuple OF = {I, C,R, F,A}
where I represents a set of individuals, C is a set of concepts, R is a the set of
relations, F is a set of fuzzy relations and A is the set of axioms. A regular fuzzy
ontology scheme is showed in Fig. 2.

The purpose of each of the required sets are specified below [3,12,13]:

– Individuals: Represent the entities that are stored in the fuzzy ontology.
These entities are usually formed by the set of elements that conform the
environment that we are describing.

– Concepts: They are the perceptions used to describe the individuals. Thanks
to the concepts, it is possible to carry out thorough descriptions of the indi-
viduals that conform the ontology.

– Relations: Their main purpose is to apply concepts to individuals. This way,
relations are in charge of determining which concepts are fulfilled by each of
the individuals. Individuals can be related among themselves or with concepts.
Relations among concepts are not usual. Information about relations should
be obtained from a trustful source of information.

– Axioms: They establish rules that must always be fulfilled by the defined
fuzzy ontology.

A graphical representation of a Fuzzy Ontology is shown in Fig. 2.
In order to increase the comprehension of the article, an example is given

below.
Imagine that we want to design an ontology describing all the smartphones

that are available at the market at a certain time. One of the possible ways
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Fig. 2. Fuzzy ontology scheme.

of representing the information is as follows. First, a list of the smartphones
and features that need to appear in the ontology are selected. Each smartphone
will be represented as an individual and each feature is modeled as a concept.
Relations link each individual with each concept at a certain degree. A linguistic
label set of 5 elements B = {very low, low, medium, high, very high} can be
used for the representation of every fuzzy relation. Smartphones features taken
into account in the design of the ontology can be the following ones:

– Screen Size: Represents the size of the screen. There are people that prefer
small screen size smartphones because they are easy to transport and there
are others that prefer bigger size ones.

– Screen Resolution: It refers to the definition of the screen. Some buyers
can prefer a high resolution smartphone in order to watch videos and others
probably do not care and prefer a normal or low resolution in order to decrease
the price.

– Processor Speed: Smartphone processor performance.
– Components Quality: It refers to the reliability of the smartphones com-

ponents.
– Brand: It allows the buyer to search for a specific brand. This concept is not

fuzzy.
– Capacity: Smartphone capacity. Depending on the use there can be different

preferences.
– Price: This will allow the search of smartphones that have specific price

ranges.
– Weight: Smartphone weight. A light smartphone is more comfortable to

transport that a heavy one but is likely to be more expensive.
– Battery: Type of battery that the smartphone has inside.

It is possible to extract information from fuzzy ontologies using queries. Users
specify the characteristics that they want the individuals to have and the most
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similar entries can be retrieved from the fuzzy ontology. In order to carry out
this process, the following steps are followed [14]:

1. Query Providing Step: The expert specifies the query that he/she wants
to perform. The queries are formed by the specific data that the expert wants
the retrieved elements to fulfil. That is, a set of concepts and relation values.
Once that the query is performed, data is sent to the ontology reasoner.

2. Ontology Searching Step: The ontology reasoner calculates the similarity
of each of the individuals relations of the ontology with the provided query.
The most similar individuals are selected and ordered according to their rank-
ing value. The rest of them are discarded.

3. Results Presentation Step: The calculated ranking is presented to the
user. He/she can work with the provided information as needed.

3 Android Platform Design

The designed Android platform follows a client-server model in order to carry
out the necessary operations. Thanks to this, heavy computational operations
can be held in the server while light ones can be performed on the experts
smartphones. In this paper, for the sake of comprehensibility, we work with an
specific example. A set of experts are attending a dinner in a restaurant and
they need to select a wine from a set of 600 alternatives. Information about the
alcohol and acidity level, country of origin and price is known for each of them.
The designed Fuzzy Ontology is created as follows:

– Individuals: Each individual of the fuzzy ontology refers to each of the wines.
– Concepts: Each concept is assigned to one of the properties (alcohol and

acidity levels, price, ...).
– Relations: Each of the individuals is related to all of the concepts of the

fuzzy ontology. Moreover, individuals are not related among them in this
case.

For example, the individual Zenato Veneto Rosso is a wine which is related
to all of the fuzzy ontology concepts. The relation values for each of them are
specified as follows:

– Price: Its numerical value is 9.99. A linguistic label set of five labels is used
for its representation. s1 is the linguistic label that represents the relation.

– Country: The country of origin is Italy. Since this is a crisp relation there is
no need of using the fuzzy sets computational environment.

– Alcohol: Its numerical value is 13.5. A linguistic label set with a granular-
ity value of 3 is used for representing this relation. The linguistic label that
represents the relation is s1.

– Acidity: Its numerical value is 5.1. Same representation as the alcohol is used.
The linguistic label s0 is used in this case.
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The process that the designed system follows in order to carry out the pre-
sented group decision making problem is exposed below:

1. Location Request: First, location of the experts is calculated using the
smartphones GPS technologies. This information will be used in order to
reduce the initial alternatives set and ease computations.

2. Parameters Providing Step: Experts provide the parameters that will
help the ontology reasoner to generate a reduced set of alternatives. They are
described below:
(a) Context : It refers to the dinner scenario and purpose. Depending on the

context, the list of adequate wines might change. For example, for a formal
meeting, a cheap wine might not be suitable. Experts are asked to select
among three options: candle, friends and formal.

(b) Food : It indicates the type of food that the experts are going to consume.
It is well-known that depending on the food, some wines can be more
suitable than others. For instance, red wines are more suitable for meat
dishes than white ones. Experts are asked to select among five different
options: game, fish, grilled food, chicken and shellfish.

(c) Number of people: The number of people that are participating in the
meal. This parameter is used in order for the system to known the number
of experts participating in the group decision making process.

(d) Number of wines: Minimum number of wines that the experts want to
discuss about. Minimum value is set to four. The purpose of this parame-
ter is to let experts decide the size of the alternatives set that they want
to discuss about.

3. Ontology Reasoning Process: In order to generate the ranking, four dif-
ferent criteria are followed. This way, experts can analyse results that comes
from different points of view. The four followed criteria are described below:
– Most famous wine: This criteria selects the most popular wine in the

place where the experts are located. This criteria provides a chance for
the experts to taste a famous local wine. Typically, this criteria leads to
the most popular wine of the location or the one that is most consumed
there.

– Lowest price wine: This criteria selects the cheapest option available at
the chosen place. This criteria is suitable for people that is not fond on
wines and want to go for the economic option.

– Most voted wine: This criteria selects the most chosen wine in an specific
location. Previous group decision making results are stored in a database
in order to find out how many times each wine is selected in each location.
If there is no wine selected at an specific location, this criterion is not
taken into account.

– Best wines according to the context and food : This criteria takes into
account the context and the food of the meeting. It selects the best wines
according to the options selected by the experts in the previous step.

Using these four criteria and the parameters specified in the previous step, a
list of wines and the criteria used for selection is showed to the experts.
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4. Group Decision Making Process: A group decision making process like
the one described in Subsect. 2.1 is carried out. Experts must discuss and
decide which wine they want to order among the presented ones. The approach
follows classical linguistic Group Decision Making methods [2,15,16].

5. Updating Wine Information: After choosing the wine that they want to
consume, the number of times that they wine has been selected is updated
and stored in the server database. This way, it is possible to keep track of how
many times a specific wine has been chosen in an specific location. This infor-
mation will be used in posteriors group decision making processes. A server
applet running in the server is in charge of carrying out this task.

Android screenshots can be seen in Figs. 3 and 4. Information about locations,
available wines and the number of times that a wine has been selected by the
experts is stored in a separate database. The database its quite simple, two tables
and one relationship is enough to store the required information:

– Wine Table: The main purpose of the wine table is to store the names of all
the wines that conform the ontology.

– Location Table: All the locations available in the system are stored here.
Thanks to the wine-location separability, it is possible to add wines and loca-
tions in a comfortable way at any time. We believe that scalability is very
important in this system since the fuzzy ontology should be updated contin-
uously in order to keep the information up to date.

– Wine Location Relationship: Wines and locations are related in order to
determine which wines are available in each location. A wine can belong to
many locations and, in each location, several wines can be found. The number
of times that a wine is chosen in each location is also stored here.

(a) (b)

Fig. 3. Android application: search information screenshot and wine ontology results
screenshot.
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(a) (b)

Fig. 4. Android application: questionnaire screenshot and temporary results decision
screenshot.

All the incoming requests from the mobile devices are handled by the server.
The server is in charge of creating a queue with all the petitions and attend
them. It connects with the fuzzy ontology and is also capable of retrieving infor-
mation from the wine-location database. Every time that a set of experts carry
out a group decision making process, the server retrieves the wines available at
their location and resolve the fuzzy ontology query carrying out the similarity
comparisons on the available wines. Results obtained are sent back to the mobile
device that has performed the request.

4 Discussion

In this paper, fuzzy ontologies and group decision making methods have been
combined in other to take advantage of the recent novelties that Internet and
mobile phones have brought to us. The main purpose of our method is to allow
experts to use their mobile phones in order to carry out group decisions making
processes including a high amount of alternatives.

Thanks to fuzzy ontologies, it is possible to deal with imprecise and linguis-
tic knowledge. Wine world is a clear example of a field where almost all the
information associated to the wines is imprecise and based on experts opinions.
In this kind of environments is where fuzzy ontologies benefits are more clear.
Linguistic modelling also allow experts to communicate with the system in a
more comfortable way using words instead of numbers.

Our developed method provides advice about which wine should experts
choose for the dinner. Using wine information and ontology reasoning techniques,
experts can benefit from a high amount of information in order to make a right
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choice. Thanks to group decision making methods and consensus measures, the
decision can be carried out in a efficient, organized and consensual way using
debates and trying to reach an unique solution. Thanks to consensus measures
[9,17], it is easy to determine is a consensus has been reached or if more debate
is needed.

In order to reduce the high number of available alternatives, GPS technologies
are used in order to reduce the search in a way that only the wines available at
a certain place are used. This way, unnecessary computations are avoided since
not available wines at the experts location are not eligible choices. Consequently,
thanks to GPS technologies, it is possible to design an application capable of
adapt itself to the place where the experts are located. In this paper, we have
used the novel design proposed in order to resolve the wine selection problem.
It is important to notice that this is just an application example in order to test
the validity of the developed method. Therefore, the same scheme can be used
for solving other kind of problems. Below, we present several example that can
be solved using the exposed approach:

– It would be possible to use the proposed approach in order to provide informa-
tion about loans from banks located in the place where experts are living. The
different loans and their characteristics can be stored in the fuzzy ontology in
order to help experts to choose the one that is more suitable to them.

– It would also be useful to store in the fuzzy ontology information about apart-
ments available for rent or sale in an specific location. This way, the expert can
make use of the information in order to find his/her most suitable apartment.

– It would be possible to use the proposed system in order to help experts to
choose the place that they want to go on holidays.

– The presented system is also suitable for storing companies generated knowl-
edge. This way, experts can use our system in order to carry out critical
decisions about the company management.

– The presented approach is also useful in order to help investors to choose the
places where they can invest money in a way that they can obtain the highest
benefit.

It is also possible to carry out several upgrades to the proposed method.
Some of them are described below:

– It will be desirable to allow experts to select several wines for the dinner, one
for each ordered dish.

– In the presented method, the number of available wines varies depending on
the location of the user. If GPS coordinates are precise enough, it would also
be possible to select the wines available at the restaurant where the experts
are attending the meal.

5 Conclusions

In this paper, a novel android decision support system is developed. The designed
system uses fuzzy ontologies in order to sort the information in an organized
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way and to provide the experts with a feasible set of alternatives that they can
use to carry out the group decision making process. Experts can express their
preferences in a linguistic way and they can benefit from consensus measures in
order to carry out a thorough debate before calculating the final results.

Thanks to smartphones, experts can make use of the fuzzy ontology infor-
mation at any place. Thanks to GPS technologies, it is possible to reduce the
number of available alternatives in order to focus only on those ones available
at the place where experts are located.
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Abstract. Early detection is the key of success in the treatment of
tumors. Establishing methods that can identify the presence and posi-
tion of tumors in their early stage is a current great challenge in med-
ical imaging. This study proposes a machine learning solution based on
binary decision trees and random forest technique, aiming at the detec-
tion and accurate segmentation of brain tumors from multispectral vol-
umetric MRI records. The training and testing of the proposed method
uses twelve selected volumes from the BRATS 2012/13 database. Image
volumes were preprocessed to extend the feature set with local informa-
tion of each voxel. Intending to enhance the segmentation accuracy, each
detected tumor pixel is validated or discarded according to a criterion
based on neighborhood information. A detailed preliminary investiga-
tion is carried out in order to identify and enhance the capabilities of
random forests trained with information originating from single image
records. The achieved accuracy is generally characterized by a Dice score
up to 0.9. Recommendation are formulated for the future development
of a complex, random forest based tumor detection and segmentation
system.

Keywords: Decision tree · Random forest · Machine learning · Image
segmentation

1 Introduction

The early detection of brain tumors is utmost important as it can save human
lives. The accurate segmentation of brain tumors is also essential, as it can assist
the medical staff in the planning of treatment and intervention. The manual
segmentation of tumors requires plenty of time even for a well-trained expert.
A fully automated segmentation and quantitative analysis of tumors is thus a
highly beneficial service. However, it is also a very challenging one, because of
the high variety of anatomical structures and low contrast of current imaging
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techniques which make the difference between normal regions and the tumor
hardly recognizable for the human eye [1]. Recent solutions, usually assisted by
the use of prior information, employ various image processing and pattern recog-
nition methodologies like: combination of multi-atlas based segmentation with
non-parametric intensity analysis [2], AdaBoost classifier [3], level sets [4], active
contour model [5], graph cut distribution matching [6], diffusion and perfusion
metrics [7], 3D blob detection [8], support vector machine [9], concatenated ran-
dom forests [10,11], and fuzzy c-means clustering [12].

The main goal of our research work is to build a reliable procedure for brain
tumor detection from multimodal MRI records, based on supervised machine
learning techniques, using the MICCAI BRATS data set that contains several
dozens of image volumes together with ground truth provided by human experts.
In this paper we propose a solution based on binary decision trees and random
forest, and present preliminary results together with a recommendations towards
a complex and reliable brain tumor detection system.

2 Materials and Methods

The main goal of this study is to establish a machine learning solution to detect
and localize tumors in MRI volumes. This paper presents preliminary results
obtained using the random forest technique. The algorithm is trained to separate
three tissue types, which are labeled as tumor, edema, and negative. The primary
focus is on establishing the presence or absence of the tumor, while the accurate
segmentation is a secondary goal.

2.1 BRATS Data Sets

Brain tumor image data used in this work were obtained from the MICCAI
2012 Challenge on Multimodal Brain Tumor Segmentation [13]. The challenge
database contains fully anonymized images originating from the following insti-
tutions: ETH Zürich, University of Bern, University of Debrecen, and University
of Utah. The image database consists of multi-contrast MR scans of 30 glioma
patient, out of which 20 have been acquired from high-grade (anaplastic astrocy-
tomas and glioblastoma multiform tumors) and 10 from low-grade (histological
diagnosis: astrocytomas or oligoastrocytomas) glioma patients. For each patient,
multimodal (T1, T2, FLAIR, and post-Gadolinium T1) MR images are avail-
able. All volumes were linearly co-registered to the T1 contrast image, skull
stripped, and interpolated to 1 mm isotropic resolution. Each records contains
approximately 1.5 millions of feature vectors. All images are stored as signed
16-bit integers, but only positives values are used. Each image set has a truth
image which contains the expert annotations for “active tumor” and “edema”.
Each voxel in a volume is represented by a four-dimensional feature vector:

x = [x(T1), x(T2), x(T1C), x(FLAIR)]T . (1)
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These are the observed features of each pixel. Since these four values do not
incorporate any information regarding the location or the neighborhood of the
pixel, there is a strong need to extend the feature vector with further, computed
features.

2.2 Data Preprocessing

Preprocessing steps in our application have three main goals.

1. Histogram normalization. Whether we like it or not, absolute intensity values
in magnetic resonance imaging say nothing about the observed tissue. Inten-
sities are relative and frequently contaminated with intensity inhomogeneity
[14]. Treating the latter problem stays outside the scope of this study, as the
MICCAI BRATS data set is free from intensity inhomogeneity. However, the
histogram of each volume needs to be mapped on a uniform scale. In this
order, all intensity values underwent a linear transformation x → αx + β,
where parameters α and β were established separately for each feature such
a way that the middle fifty percent of the data fell between 600 and 800 after
the transformation. Further on, we set up a minimum and maximum limit
for intensity values at 200 and 1200, respectively. Intensities situated beyond
the limit were replaced by the corresponding limit value.

2. Computed features. Since the observed data vectors bear no information on
the position of the pixel, we included eight more features into the feature
vector. For each of the four channels, two locally averaged intensities were
computed within 10-element and 26-element neighborhood. The former con-
tained eight direct neighbors within the slice and the two closest ones from
neighbor slices. The latter contained all neighbors of the given pixel situated
within a 3 × 3 × 3-sized cube. Pixels having no valid neighbors in the specific
neighborhood inherited the own intensity value of the pixel itself in the given
channel.

3. Missing Data. Some pixels have zero valued observed features standing for a
missing value. These pixels were not included in the main data processing.
However, all existing features were used at the computation of averaged fea-
tures, so pixels with missing values may have contributed to their neighbors,
before being discarded.

2.3 Decision Tree

Binary decision trees (BDT) can describe any hierarchy of crisp (non-fuzzy)
two-way decisions [15]. Given an input data set of vectors X = {x 1,x 2, . . . ,xn},
where x i = [xi,1, xi,2, . . . , xi,m]T , a BDT can be employed to learn the classi-
fication that corresponds to any set of labels Λ = {λ1, λ2, . . . , λn}. The clas-
sification learned by the BDT can be perfect if x i = x j implies λi = λj ,
∀i, j ∈ {1, 2, . . . , n}. The BDT is built during the learning process. Initially the
tree consists of a single node, the root, which has to make a decision regarding
all n input vectors. If not all n vectors have the same label, which is likely to
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be so, then the set of data is not homogeneous, there is a need for a separation.
The decision will compare a single feature, the one with index k (1 ≤ k ≤ m), of
the input vectors with a certain threshold α, and the comparison will separate
the vectors into two subgroups: those with xi,k < α (i = 1 . . . n), and those
with xi,k ≥ α (i = 1 . . . n). The root will then have two child nodes, each cor-
responding to one of the possible outcomes of the above decision. The left child
will further classify those n1 input vectors, which satisfied the former condition,
while the right child those n2 ones that satisfied the latter condition. Obviously,
we have n1 + n2 = n. For both child nodes, the procedure is the same as it was
for the root. When at a certain point of the learning algorithm, all vectors being
classified by a node have the same label λp, then the node is declared a leaf
node, which is attributed to the class with index p. Another case when a node is
declared leaf node is when all vectors to be separated by the node are identical,
so there is no possible condition to separate the vectors. In this case, the label
of the node is decided by the majority of labels, or if there is no majority, a
label should be chosen from the present ones. In our application, this kind of
rare cases use the priority list of labels defined as: (1) tumor, (2) edema, (3)
negative.

The separation of a finite set of data vectors always terminates in a finite
number of steps. The maximum depth of the tree highly depends on the way of
establishing the separation condition in each node. The most popular way, also
employed in our application, uses entropy based criteria to choose the separation
condition. Whenever a node has to establish its separation criterion for a subset
of vectors X ⊆ X containing n items with 1 < n ≤ n, the following algorithm is
performed:

1. Find all those features which have at least 2 different values in X.
2. Find all different values for each feature and sort them in increasing order.
3. Set a threshold candidate at the middle of the distance between each consec-

utive pair of values for each feature.
4. Choose that feature and that threshold, for which the entropy-based criterion

E = n1 log
n1

n
+ n2 log

n2

n
(2)

gives the minimum value, where n1 (n2) will be the cardinality of the subset
of vectors X1 (X2), for which the value of the tested feature is less than
(greater or equal than) the tested threshold value.

After having the BDT trained, it can be applied for the classification of test
data vectors. Any test vector is first fed to the root node, which according to
the stored condition and the feature values of the vector, decides towards which
child node to forward the vector. This strategy is followed then by the chosen
child node, and the vector will be forwarded to a further child. The classification
of a vector terminates at the moment when it is forwarded to a leaf node of the
tree. The test vector will be attributed to the class indicated by the labeling of
the reached leaf node.
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2.4 Random Forest

A binary decision tree is an excellent tool, when the task is to accurately learn
a certain complicated pattern. For example, it can reproduce every little detail
of any MRI volume applied as training data, while keeping the maximum depth
below one hundred. However, this marvellous property drags along a serious dan-
ger of overfitting. Learning all the small details of the train data builds a serious
obstacle for the decision tree in making correct decisions concerning major prop-
erties of the test data. This is why, we followed the recipe of Breiman [16], and
built forests of binary decision trees, using randomly chosen subsets of the learn-
ing data, and randomly chosen subset of features for each tree separately. Each
tree in a random forest is a weak classifier. A large set of trees trained with
randomly chosen data will make a single decision on a majority basis. In the
current stage of this research, we tested how accurate decisions can be made by
random forests trained by the data coming from a single MRI volume. There
were several important questions to answer:

1. What is the right number of trees in a random forest? Too few trees are not
likely to be accurate, while too many redundant ones will not be runtime
efficient.

2. What is the right number of feature vectors to train each tree in the random
forest? Again, to few vectors are not expected to lead to accurate decision,
while too many vectors bring the risk to overfitting.

3. How to make a random forest accurate and effective, when being trained with
data coming from several MRI volumes?

2.5 Post-Processing

Random forests are expected to identify the most part of vectors describing
tumor pixels. Since negative pixels belong to a great variety of normal tissues
(e.g. white matter, gray matter, cerebro-spinal fluid), some of them might be
classified as tumor or edema. To be able to discard such cases, we proposed
and implemented a posterior validation scheme for all pixels that are labeled as
tumor or edema by the random forest. For each such pixel, we defined a 250-
pixel neighborhood (all pixels situated at Euclidean distance below

√
15 units,

and counted how many of the neighbors are classified as tumor or edema. Those
having a number of such neighbors below the predefined neighborhood threshold,
are relabeled as negative pixels during post-processing. The appropriate value
of the threshold is to be established as well.

2.6 Evaluation of Accuracy

The Jaccard index (JI) is a normalized score of accuracy, computed as

JI =
TP

TP + FP + FN
, (3)
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where TP stands for the number of true positives, FP for the false positives, and
FN for false negatives. Further on, the Dice score (DS) can be computed as

DS =
2TP

2TP + FP + FN
=

2JI
1 + JI

. (4)

Both indices score 1 in case of an ideal clustering, while a fully random result is
indicated by a score close to zero.

3 Results and Discussion

Twelve volumes from the BRATS 2012/13 data set were selected for the evalu-
ation of the proposed methodology:

V = {HG01,HG02, . . . HG07,HG09,HG11,HG13,HG14,HG15}. (5)

Let us denote by DS(i → j) (i, j ∈ V) the Dice score given by the random
forest trained with data chosen from volume i while tested on the whole volume j.
Considering the size of the set V, there are 12×11 = 132 possible i 	= j scenarios,
and 12 ones with i = j. We performed all possible such tests with various settings
of main parameters like number of trees in the forest and number of samples used
for the training of each tree. At the training of individual decision trees, an equal
number of random samples were chosen from each of the three tissue types. For
example, the so-called 100-sample training refers to the use of a total number of
3 × 100 = 300 feature vectors.

Test cases in increasing order of obtained Dice Scores
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Dice Scores vs. number of samples used to train each tree of the random forest

5000 samples
1000 samples
  600 samples
  300 samples
  100 samples
    30 samples

Fig. 1. Classification accuracy benchmarks in case of random forests containing 100
trees, each tree trained with 3 × (30 to 5000) feature vectors. Exceptionally, training
with HG13 used 4000 samples instead of 5000, because it has less than 5000 tumor
pixels.
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Figure 1 exhibits the obtained Dice scores in case of trees trained by sample
sizes varying from 30 to 5000 items. Each forest in this experiment consisted of
100 trees. For each type of trees, the obtained DS(i → j) (i 	= j) Dice scores
were sorted in increasing order. The obtained curves indicate that the sample
size can strongly influence the classification accuracy. Generally the larger the
training sample, the more accurate the decisions, but at a certain level above
1000 samples per tissue type, traces of overfitting are observed. Table 1 shows
numerical values of the obtained average Dice scores. The last column also reveals
how accurate the classification can be when tested on the same volume that was
used for training. Obviously, overfitting does not disturb classification accuracy
on the train data set.

Table 1. Averaged accuracy benchmark scores obtained by forests of 100 trees each

Samples from
each tissue type

Mean Dice score
DS(i → i)

Percentage of Dice score
obtained for 1000 samples

Mean Dice score
DS(i → i)

5000 samples 0.4916 98.33 % 0.8124

1000 samples 0.5030 100.00 % 0.7810

600 samples 0.4976 98.93 % 0.7702

300 samples 0.4809 95.62 % 0.7626

100 samples 0.4510 89.66 % 0.7354

30 samples 0.4286 85.21 % 0.6912

Table 2. Dice scores obtained when training with one volume and testing on another,
trees of 1000 samples per tissue type, and 100 trees in the forest

Volume i Train data selected from volume i
Testing on each volume j �= i

Testing on volume j When trained
on each volume i �= j

Average SD Maximum Minimum Average SD Maximum Minimum

HG01 0.5216 0.1722 0.7822 0.2133 0.5857 0.1627 0.8304 0.2508

HG02 0.6191 0.1280 0.8262 0.3500 0.4637 0.2117 0.7416 0.1013

HG03 0.5721 0.1767 0.8615 0.2945 0.4532 0.2309 0.8082 0.1579

HG04 0.5107 0.1983 0.8304 0.2043 0.3902 0.1502 0.6377 0.1474

HG05 0.3872 0.2188 0.6652 0.0552 0.3848 0.1235 0.5279 0.1519

HG06 0.5648 0.1537 0.8386 0.3113 0.5918 0.0955 0.7273 0.6980

HG07 0.5815 0.1537 0.8270 0.3368 0.4796 0.1666 0.7052 0.2110

HG09 0.2662 0.1626 0.5126 0.0684 0.4659 0.1230 0.5789 0.2043

HG11 0.4939 0.2064 0.8564 0.2111 0.5718 0.1320 0.7090 0.2863

HG13 0.5630 0.1992 0.8082 0.2758 0.3368 0.2351 0.6995 0.0552

HG14 0.4721 0.1804 0.7299 0.1248 0.5628 0.1621 0.8270 0.3340

HG15 0.4837 0.1359 0.6426 0.2255 0.7493 0.1144 0.8615 0.5000

Table 2 gives a detailed statistical report on obtained DS(i → j) values, for
each individual image volume. The left panel summarizes benchmark values for
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cases when the given volume served as training data set, and the forest was
tested on all other volumes. The right panel reports testing on the given volume,
having forests trained with all other volumes separately. The two panels are far
from being symmetric, as the best performing train data sets were HG02, HG07,
and HG03, while highest accuracy benchmarks were obtained when testing on
volumes HG15, HG06, and HG01. The minimum values indicate that data from
a single volume cannot train a forest for high quality classification. On the other
hand, the maximum values show that data from each volume can contribute to
the classification accuracy, and for each test data set there exist possible training
sets that yield acceptable classification.

Another aspect that deserves to be remarked and analysed is the poor sym-
metry of the obtained Dice scores. Having obtained a high value for a certain
DS(i → j) does not necessarily mean that DS(j → i) will also have a high value.
In order to numerically characterize the symmetry of the obtained results, we
propose to compute the Averaged Symmetry Criterion (ASC), defined as:

ASC = exp

⎛

⎝ 1
|V|(|V| − 1)

∑

i,j∈V; i�=j

∣
∣
∣
∣log

DS(i → j)
DS(j → i)

∣
∣
∣
∣

⎞

⎠ , (6)

where |V| stands for the cardinality of V, namely 12 in our case. ASC values
obtained for various train samples sizes are reported in Table 3. Dices scores
seem to be closest, but still very far from symmetry at sample sizes that assure
highest accuracy.

For certain couples of different volumes (i, j), we performed 30 repeated train-
ing and testing processes. The goal was to monitor the variability of Dice scores
DS(i → j) obtained due to the random samples used for training. Figure 2
presents the outcome of repetitive evaluation. Seemingly using less samples
means higher variance in benchmark results.

The applied post-processing scheme led to relevant improvement of classi-
fication accuracy. Figure 3 shows the histogram of all DS(i → j) values before
and after post-processing. Here the train data consisted of 600 randomly chosen
samples per tissue type for each of the 100 trees in the forest. Dice scores after
post-processing reported here are the maximum values obtained by choosing the
optimal neighborhood threshold for each individual case. However, this cannot
be done automatically. We need to establish either an acceptable constant value
of the neighborhood threshold, or to define a strategy that sets the threshold
while testing.

Figure 3 also reports the effect of the post-processing. On the left side each
individual test is represented, showing the DS before and the maximum DS

Table 3. The relation between DS(i → j) and DS(j → i), for i, j ∈ V and i �= j

Train sample size per tissue type 30 100 300 600 1000 5000

Symmetry benchmark (ASC) 2.065 1.960 1.792 1.705 1.670 1.710
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Fig. 2. Reproducibility benchmark: outcome of repeated training on random data sam-
ples from a given volume and testing on another volume.

after post-processing. The single curve in the middle plot presents the average
effect of post-processing for each possible value of the neighborhood threshold,
indicating that it is possible to choose such a threshold value between 190 and
200, for which the average DS rises from 0.502 to 0.583. The bottom right side
of Fig. 3 shows those 25 test cases, which were most favorably affected by the
post-processing.

Figure 4 shows the outcome of tumor segmentation without and with post-
processing, by presenting detected and missed tumor pixels in several consecutive
slices of volume HG11. The forest used here consisted of 100 trees, and each tree
was trained using 600 samples of each tissue type, randomly selected from volume
HG15. In this image, black pixels are the true positive ones, while gray shades
represent false positives and false negatives. Post-processing in this certain case
rose the Dice score from 0.5339 to 0.8036, which was achieved by discarding lots
of false positives, mostly in slices where the real tumor was not present. Even this
result could be further improved by implementing another post-processing step
that would detect non-tumor (gray) pixels inside the tumor (among black pixels).

The size of tumors that are present in the volumes included in V varied
from 4.5 cm3 in volume HG13 to 110 cm3 in volume HG14. The segmentation
accuracy of tumors depends on the size of the tumor, as indicated in Fig. 5. The
post-processing seems to help more in case of small tumors, so it has a vital role
in detecting early stage tumors.

The experiments carried out during this study showed us that a random forest
trained with samples from a single volume cannot perform acceptably in all cases.
On the other hand, each tested volume had one or more corresponding train
volumes that assured fine detection and accurate segmentation of the tumor.
The latter allows us to envision a complex random forest that will be suitable for
a great majority of cases, which will be reliable enough for clinical deployment.
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Fig. 3. Effects of the proposed post-processing. Histogram of Dice scores DS(i → j):
(top left) before post-processing; (top middle) after post-processing; (top right) his-
togram of the differences caused by neighborhood-based post-processing; (bottom left)
Individual DS(i → j) values before and after post-processing; (bottom middle) The evo-
lution of average Dice score plotted against the value of the neighborhood threshold;
(bottom right) Variation of individual Dice scores DS(i → j) plotted against the value
of the neighborhood threshold, those 25 which are most affected by post-processing.

The future random forest solution will probably contain clusters of trees, where
different clusters will be trained each using its dedicated reduced number of
volumes. Clusters of trees will give their own opinion concerning test cases,
and the forest will have the role to aggregate these individual opinions and
produce the final positive or negative diagnosis. This preliminary study has
shown that a random forest based learning algorithm, even if trained with a
much more reduced number of features than other random forest based solutions
(e.g. [10,11]), can be suitable to detect the presence of the tumor.
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Fig. 4. (left) Detected tumor without post-processing; (right) Detected tumor with
neighborhood-based post-processing. Without validating each pixel classified as tumor,
several scattered false positives are present in the volume.
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Fig. 5. Obtained average and maximum Dice scores with or without post-processing,
plotted against the size of the tumor in the test volume. Linear trends are also indicated.

4 Conclusion

In this paper we presented an automatic tumor detection and segmentation
algorithm employing random forests and binary decision trees, in its preliminary
stage of implementation. The proposed methodology already reliably detects
tumors of 2 cm diameter. It is likely to obtain fine segmentation accuracy in the
future using a complex random forest trained with data from dozens of volumes.
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