
A Survey of Satisfiability Modulo Theory

David Monniaux1,2(B)

1 Univ. Grenoble Alpes, VERIMAG, 38000 Grenoble, France
David.Monniaux@imag.fr

2 CNRS, VERIMAG, 38000 Grenoble, France

Abstract. Satisfiability modulo theory (SMT) consists in testing the
satisfiability of first-order formulas over linear integer or real arithmetic,
or other theories. In this survey, we explain the combination of propo-
sitional satisfiability and decision procedures for conjunctions known as
DPLL(T), and the alternative “natural domain” approaches. We also
cover quantifiers, Craig interpolants, polynomial arithmetic, and how
SMT solvers are used in automated software analysis.

1 Introduction

Satisfiability modulo theory (SMT) solving consists in deciding the satisfiability
of a first-order formula with unknowns and relations lying in certain theories.
For instance, the following formula has no solution x, y ∈ R:1

(x ≤ 0 ∨ x + y ≤ 0) ∧ y ≥ 1 ∧ x ≥ 1 . (1)

The formula may contain negations (¬), conjunctions (∧), disjunctions (∨) and,
possibly, quantifiers (∃, ∀).

A SMT-solver reports whether a formula is satisfiable, and if so, may pro-
vide a model of this satisfaction; for instance, if one omits x ≥ 1 in the preced-
ing formula, then its solutions include (x = 0, y = 1). Other possible features
include dynamic addition and retraction of constraints, production of proofs
and Craig interpolants (Sect. 4.2), and optimization (Sect. 4.3). SMT-solving has
major applications in the formal verification of hardware, software, and control
systems.

Quantifier-free SMT subsumes Boolean satisfiability (SAT), the canonical
NP-complete problem, and certain classes of formulas accepted by SMT-solvers
belong to higher complexity classes or are even undecidable. This has not
deterred researchers from looking for algorithms that, in practice, solve many

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013)/ERC Grant Agreement nr. 306595 “STATOR”.

1 This survey focuses on linear and polynomial numeric constraints over integers and
reals. SMT however encompasses theories as diverse as character strings, inductive
data structures, bit-vector arithmetic, and ordinary differential equations.

c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 401–425, 2016.
DOI: 10.1007/978-3-319-45641-6 26

402 D. Monniaux

relevant instances at reasonable costs. Care is taken that the worst-case cost
does not extend to situations that can be dealt with more cheaply.

Most SMT solvers follow the DPLL(T) framework (Sect. 2.2): a CDCL solver
for SAT (Sect. 2.1) is used to traverse the Boolean structure, and conjunctions
of atoms from the formula are passed to a solver for the theory. This approach
limits the interaction between theory values and Boolean reasoning, which led to
the introduction of natural domain approaches (Sect. 3). Finally, we shall see in
Sect. 4 how to go beyond mere quantifier-free satisfiability testing, by handling
quantifiers, providing Craig interpolants, or providing optimal solutions. Let us
now first see a few generalities, and how SMT-solving is used in practice.

1.1 Generalities

Consider quantifier-free propositional formulas, that is, formulas constructed
from unknowns (or variables) taking the values “true” (t) and “false” (f) and
propositional connectives ∨ (or), ∧ (and), ¬ (not); x̄ shall be short-hand for
¬x.2 A formula is: in negation normal form (NNF) if the only ¬ connectives are
at the leaves of its syntax tree (that is, wrap around unknowns but not larger
formulas); a clause if it is a disjunction of literals (a literal is an unknown or its
negation); in disjunctive normal form (DNF) if it is a disjunction of conjunctions
of literals; in conjunctive normal form (CNF) if it is a conjunction of clauses. If
A implies B, then A is stronger than B and B weaker than A. Uppercase letters
(F) shall denote formulas, lowercase letters (x) unknowns, and lowercase bold
letters (x) vectors of unknowns.

Satisfiability testing consists in deciding whether there exists a satisfying
assignment (or solution) for these unknowns, that is, an assignment making the
formula true. For instance, a = t, b = t, c = f is a satisfying assignment for
(a ∨ c) ∧ (b ∨ c) ∧ (ā ∨ c̄). In case the formula is satisfiable, a solver is generally
expected to provide such a satisfying assignment; in the case it is unsatisfiable,
it may be queried for an unsatisfiable core, a subset of the conjunction given as
input to the solver that is still unsatisfiable.

Satisfiability modulo theory extends propositional satisfiability by having
some atomic propositions be predicates from a theory. For instance, (x >
0 ∨ c) ∧ (y > 0 ∨ c) ∧ (x ≤ 0 ∨ c̄) is a formula over linear rational arithmetic
(LRA) or linear integer arithmetic (LIA), depending on whether x and y are to
be interpreted over the rationals or integers.

Different unknowns may range in different sets; for instance f(x) 	= f(y)∧x =
z +1∧z = y −1 has unknowns f : Z → Z and x, y, z ∈ Z. This formula is said to
be over the combination of uninterpreted functions and linear integer arithmetic
(UFLIA). In this formula, f is said to be uninterpreted because we give no
definition for it; we shall see in Sect. 2.6 that this formula has no satisfying
assignment and how to establish this fact automatically.

2 Further propositional connectives, such as exclusive-or, or “let x be e1 in e2” con-
structs may be also considered.

A Survey of Satisfiability Modulo Theory 403

Listing 1.1. Example of SMT-LIB 2 file. Assertions x ≥ 0, y ≤ 0, f(x) �= f(y) and
x+y ≤ 0 are added, then the problem is checked to be unsatisfiable. The last assertion
is retracted and replaced by x + y ≤ 1, the problem becomes satisfiable and a model is
requested (see Listing 1.2)

(set− logic QF UFLIA)
(set−option : produce−models t rue)
(declare−fun x () In t)
(declare−fun y () In t)
(declare−fun f (I n t) In t)
(as se r t (>= x 0))
(as se r t (>= y 0))
(as se r t (d i s t i n c t (f x) (f y)))
(push 1)
(as se r t (<= (+ x y) 0))
(check−sat)
(pop 1)
(as se r t (<= (+ x y) 1))
(check−sat)
(get−model)

1.2 The SMT-LIB Format and Available Theories

SMT solvers can be used (i) as a library, from an application programming
interface, typically from C/C++, Java, Python, or OCaml (ii) as an independent
process, from a textual representation, possibly through a bidirectional pipe.

APIs for SMT-solvers are not standardized, though there have been efforts such
as JavaSMT3 to provide a common layer for several solvers. In contrast,much effort
hasbeenput intodesigning and supporting the commonSMT-LIB [4] format, a tex-
tual representation (Listing 1.1); some solvers support other languages than SMT-
LIB, sometimes alongside it. Libraries of benchmark problems, sorted according

Listing 1.2. Z3’s answers to the SMT-LIB Listing 1.1

unsat
sa t
(model

(define−fun y () In t 1)
(define−fun x () In t 0)
(define−fun f ((x ! 1 In t)) In t

(i t e (= x ! 1 0) 2
(i t e (= x ! 1 1) 3

2)))
)

3 https://github.com/sosy-lab/java-smt [42].

https://github.com/sosy-lab/java-smt

404 D. Monniaux

to the theories involved and the presence or absence of quantifiers (Table 1), are
available in that format. New theories are proposed; for instance, a theory for con-
straints over IEEE-754 floating-point arithmetic [40] is under evaluation.

Table 1. Categories of formulas in SMT-LIB; e.g. QF UFLIA means quantifier-free com-
bination of uninterpreted functions.

Linear real arithmetic LRA

Linear integer arithmetic LIA

Linear mixed integer and real arithmetic LIRA

Bit-vector arithmetic BV

Nonlinear (polynomial) real arithmetic NRA

Nonlinear (polynomial) integer arithmetic NIA

Nonlinear (polynomial) mixed integer and real arithmetic NIRA

Uninterpreted functions UF

Arrays A/AX

Quantifier-free QF

Alas, some features, such as quantifier elimination or the extraction of Craig
interpolants (Sect. 4.2) do not have standard commands. Furthermore, not all
tools implement all operators and commands following the standard.

1.3 Use in Program Analysis Applications

A major use of SMT-solvers is the analysis of software. In most cases (but not
always), the solutions of the formula to be tested for satisfiability correspond
to execution traces of the software verifying certain desirable or undesirable
properties: for instance traces going into error states.

Symbolic Execution. In symbolic program execution [44], a program is exe-
cuted as though operating on symbolic inputs. Along a straight path in the
program, the semantics of the instructions and tests encountered accumulate
as a path condition, expressing the relationship between the final values and the
inputs. In case a branching instruction is encountered, the analyzer tests whether
either branch may be taken by checking for a solution to the conjunction of the
path condition and the guard associated with the branch: branches for which a
solution is known not to exist are not retained for the rest of the analysis. The
analysis thus explores a tree of possible executions, which in general does not
cover all possible executions of the program: this is acceptable in bug-finding
applications.

Pure symbolic execution may prove infeasible due to the large number of
paths to explore. This is especially true if the program involves loads and writes

A Survey of Satisfiability Modulo Theory 405

to memory, due to the aliasing conditions to test (“does this read correspond to
this write?”). Because of this, often what is done is a mixture of concrete and
symbolic execution, dubbed concolic: sometimes a non-symbolic value is picked
(e.g. memory allocation addresses) for simpler execution. In whitebox fuzzing,
concolic execution is applied from symbolic values coming from external inputs
(files, network communications) so as to reach security hazards [31].

Inductiveness Check and Bounded Model Checking. In some other cases
[30,36,37], the formula encodes the full set of executions between two control
locations in a program, such that there is no looping construct between these
locations: one Boolean variable is added per control location, expressing whether
or not the execution goes through that location.

In the Floyd-Hoare approach to proving the correctness of programs (see e.g.
[69]), the user is prompted for an inductive invariant for each looping construct: a
formula I that holds at loop initiation, and that, if it holds at one loop iteration,
holds at the next (inductiveness). In other words, there is no execution of the loop
guard and loop body that starts in I and ends in ¬I ′ (I ′ is I where the variables
are renamed in order to express their final, not initial, values). In modern tools,
the loop guard and body are turned into a first-order formula that is conjoined
with I and ¬I ′, then checked for unsatisfiability; or equivalently through aweakest
precondition computation, as in Frama-C [18].

Example 1. Consider the array fill program (assume n ≥ 0):

in t t [n] ;
for (in t i =0 ; i<n ; i ++) t [i] = 42 ;

In order to prove the postcondition ∀k 0 ≤ k < n ⇒ t[k] = 42, one needs the
loop invariant

I
�
= (0 ≤ i ≤ n) ∧ (∀k 0 ≤ 0 ≤ k < i ⇒ t[k] = 42) . (2)

The inductiveness condition is

(I ∧ i < n) ⇒ I[i �→ i + 1, t �→ update(t, i, 42)] , (3)

where update(t, i, 42) is the array t where i has been replaced by 42, and I[i �→ x]
is formula I where i has been replaced by x. This condition is checked by showing
that the negation of this formula is unsatisfiable — after Skolemization:

(0 ≤ i ≤ n) ∧ (∀k 0 ≤ k < i ⇒ t[k] = 42) ∧ i < n

∧ (¬(0 ≤ i + 1 ≤ n) ∨ (0 ≤ k0 ≤ i ∧ update(t, i, 42)[k0] 	= 42)) .
(4)

update(t, i, 42)[k0] expands into ite(k0 = i, 42, t[k0]) where ite(a, b, c) means “if a
then b else c”. The universal quantifier is instantiated with k = k0, a new unknown
tk = t[k] is introduced to handle the uninterpreted function f (Sect. 2.6) and the
resulting problem is solved over linear integer arithmetic (Sect. 2.4).

406 D. Monniaux

2 The DPLL(T) Architecture

Most SMT-solvers follow the DPLL(T) architecture: a solver for pure proposi-
tional formulas, following the DPLL or CDCL class of algorithms, drives decision
procedures for each theory (e.g. linear arithmetic) by adding or retracting con-
straints and querying for satisfiability. DPLL(T) and decision procedures for
many interesting logics are explained in more detail in e.g. [9,47].

2.1 CDCL Satisfiability Testing

We shall only give a cursory view of satisfiability testing and refer the reader to
e.g. [6] for more in-depth treatment.

Many algorithms for satisfiability testing for quantifier-free formulas only
accept formulas in conjunctive normal form (conjunction of clauses). Naive con-
version into conjunctive normal form, by application of distributivity of ∨ over
∧, incurs an exponential blowup. It is however possible to construct, from any
formula F , a formula F ′ in CNF but with additional free variables, such that
any satisfying assignment to F can be extended to a satisfying assignment on
F ′ and any satisfying assignment on F ′, restricted to the free variables of F , is
a satisfying assignment of F . Tseitin’s encoding is the simplest way to do so:
to any subformula e1 ∧ e2 of F , associate a new propositional variable xe1∧e2

and constrain it such that it is equivalent to e1 ∧ e2 by clauses ¬xe1∧e2 ∨ e1,
¬xe1∧e2 ∨ e2, ¬e1 ∨ ¬e2 ∨ xe1∧e2 (and similarly for e1 ∨ e2).

Example 2. Consider
(
(a ∧ b̄ ∧ c̄) ∨ (b ∧ c ∧ d̄)

) ∧ (b̄ ∨ c̄) . (5)

Assign propositional variables to sub-formulas:

e ≡ a ∧ b̄ ∧ c̄ f ≡ b ∧ c ∧ d̄ g ≡ e ∨ f h ≡ b̄ ∨ c̄ φ ≡ g ∧ h ; (6)

these equivalences are turned into clauses:

ē ∨ a ē ∨ b̄ ē ∨ c̄ ā ∨ b ∨ c ∨ e
f̄ ∨ b f̄ ∨ c f̄ ∨ d b̄ ∨ c̄ ∨ d ∨ f
ē ∨ g f̄ ∨ g ḡ ∨ e ∨ f
b ∨ h c ∨ h h̄ ∨ b̄ ∨ c̄
φ̄ ∨ g φ̄ ∨ h ḡ ∨ h̄ ∨ φ φ .

(7)

The model (a, b, c, d) = (t, f , f , t) of (5) is extended by (e, f, g) = (t, f , t),
producing a model of the system of clauses (7), i.e., the conjunction of these
clauses. Conversely, any model of that system, projected over (a, b, c, d), yields
a model of (5).

Let F ′ be the conjunction of clauses forming the problem. The Davis–
Putnam–Logemann–Loveland algorithm (DPLL) decides a propositional formula
in CNF (conjunction of clauses) by maintaining a partial assignment of the

A Survey of Satisfiability Modulo Theory 407

variables (that is, an assignment to only some of the variables) and Boolean
constraint propagation: if we have assigned a = f , b = t and we have a clause
a ∨ ¬b ∨ c, then we can derive c = t. If an assignment satisfies all clauses, then
the algorithm terminates with one solution. If it falsifies at least one clause, then
there is no solution for our starting partial assignment (thus no solution at all
if our starting partial assignment was empty). If propagation is insufficient to
conclude, then the algorithm chooses a variable x and a true value b and extends
the assignment with x = b; if no solution is found for that assignment, then it
backtracks and replaces it by x = b̄. The solver thus constructs a search tree.

The practical performance of the solver depends highly on the heuristics for
choosing x and b. Much effort has been put into researching these heuristics,
such as Variable State Independent Decaying Sum (VSIDS) [55]; understanding
why they work well is an active research topic. The Boolean constraint prop-
agation phase must be implemented very efficiently, using data structures that
minimize the traversal of irrelevant data (clauses that will not result in further
propagation); e.g. the two watched literals per clause scheme [49, Sect. 4.5.1.2].

From a run of the DPLL algorithm concluding to unsatisfiability one can
extract a resolution proof of unsatisfiability. The proof has the form of a tree
whose leaves are some of the original clauses of the problem (constituting an
unsatisfiable core) and whose inner nodes correspond to the choices made during
the search. Each inner node is the application of the resolution rule: knowing
C1 ∨ a and C2 ∨ ā, where C1 and C2 are clauses and a is a choice variable, one
can derive C1 ∨ C2, written:

C1 ∨ a C2 ∨ ā

C1 ∨ C2 . (8)

Example 3. Consider the system of clauses 7. Boolean clause propagation from
unit clause φ simplifies φ̄ ∨ g and φ̄ ∨ h into g and h respectively, and removes
clause ḡ ∨ h̄ ∨ φ. Since g and h are now t, we can remove clauses ē ∨ g and f̄ ∨ g,
b ∨ h, and c ∨ h, and simplify ḡ ∨ e ∨ f into e ∨ f and h̄ ∨ b̄ ∨ c̄ into b̄ ∨ c̄:

ē ∨ a ē ∨ b̄ ē ∨ c̄ ā ∨ b ∨ c ∨ e f̄ ∨ b
f̄ ∨ c f̄ ∨ d b̄ ∨ c̄ ∨ d ∨ f e ∨ f b̄ ∨ c̄ .

(9)

The system no longer has unit clauses to propagate and thus must pick a
literal, for instance b. By propagation, the system now reaches a contradiction.
Since contradiction was reached from assumption b, the converse b̄ must be
assumed. In fact, it is possible to derive the learned clause b̄ by resolution from
the set of clauses:

e ∨ f f̄ ∨ c
e ∨ c ē ∨ b̄

b̄ ∨ c b̄ ∨ c̄

b̄ . (10)

408 D. Monniaux

From any “unsatisfiable” run of a DPLL (even in the CDCL variant, see
below) solver, a resolution proof can be extracted. This is a fundamental limi-
tation of that approach, since it is known that for certain families of formulas,
such as the pigeonhole principle [33], any resolution proof has exponential size
in the size of the formula — thus any DPLL/CDCL solver will take exponential
time.

Performance was considerably increased by extending DPLL with clause
learning, yielding constraint-driven clause learning (CDCL) algorithms [49]. In
CDCL, when a partial assignments leads by propagation to the falsification of
a clause, the deductions made during this propagation are analyzed to obtain
a subset of the partial assignment sufficient to entail the falsification of this
clause. This subset yields a conjunction x̂1 ∧ · · · ∧ x̂n (where x̂i is either xi or
¬xi), such that its conjunction with F ′ is unsatisfiable. In other words, it yields
a clause ¬x̂1 ∨ · · · ∨ ¬x̂n that is a consequence of F ′ (in fact, that clause can
be obtained by resolution from F ′). This clause can thus be conjoined to the
problem F ′ without changing its set of solutions; but learning that clause may
help cut branches in the search tree early.

Again, the learned clause appears as the root of a resolution proof whose
leaves are clauses of the original problem. Since the same learned clause may be
used several times, the final proof appears as a directed acyclic graph (DAG, i.e.,
a tree with shared sub-branches). There exist formulas admitting DAG resolution
proofs exponentially shorter than the smallest tree resolution proof [67].

A resolution proof, or a more compact format, may thus be produced during
an “unsatisfiable” run. A highly optimized SAT or SMT solver is likely to contain
bugs, so it may be desirable to have an independent, simpler, possibly formally
verified checker reprocess such as proof [3,8,43].

2.2 DPLL(T)

The most common way to deal with atomic propositions inside satisfiability
testing is the so-called DPLL(T) scheme, combining a CDCL satisfiability solver
and a decision procedure for conjunctions of propositions from theory T . A
quantifier-free formula F over T , say

(x ≥ 0 ∨ 2x + y ≥ 1) ∧ (y ≥ 0) ∧ (x + y ≤ −1) , (11)

is converted into a propositional formula F ′ (here (a∨ b)∧ c∧d) by replacing
each atomic proposition by a propositional variable, using a dictionary (here,
x ≥ 0 �→ a, 2x + y ≥ 1 �→ b, y ≥ 0 �→ c, x + y ≤ −1 �→ d) and after conversion to
canonical form (so that e.g. x + y ≥ 1 and 2x + 2y − 2 ≥ 0 are considered the
same, and x + y < 1 is considered as ¬(x + y ≥ 1)). F ′ realizes a propositional
abstraction of F : any solution of F induces a solution of F ′, but not all solutions
of F ′ necessarily induce a solution of F .

Consider the solution a = t, b = f , c = t, d = t of F ′; it corresponds to

x ≥ 0 ∧ ¬(2x + y ≥ 1) ∧ y ≥ 0 ∧ x + y ≤ −1 . (12)

A Survey of Satisfiability Modulo Theory 409

The inequalities x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ −1 have no common solution; in
other words, ¬(a ∧ c ∧ d) is universally true. The theory clause ¬a ∨ ¬c ∨ ¬d can
be conjoined to F ′. There remains a solution a = f , b = t, c = t, d = t of F ′;
but it entails the contradiction 2x + y ≥ 1 ∧ y ≥ 0 ∧ x + y ≤ −1. The theory
clause b̄∨ c̄∨ d̄ is then conjoined to F ′. Then the propositional problem becomes
unsatisfiable, establishing that F has no solution. We have therefore refined the
propositional abstraction according to spurious counterexamples.

In current implementations, the propositional solver does not wait until a
total satisfying assignment is computed to call the decision procedure for con-
junctions of theory formulas. Partial assignments, commonly at each decision
point in the DPLL/CDCL algorithm, are tested for satisfiability. In addition,
the theory solver may, opportunistically, perform theory propagation: if it notices
that some asserted constraints imply the truth or falsehood of another known
predicate, it can signal it to the SAT solver. The theory solver should be incre-
mental, that is, suited for fast addition or retraction of theory constraints, keep-
ing enough internal state to avoid needless recomputation. The SAT solver should
be incremental as well, allowing the dynamic addition of clauses.

Multiple theories may be combined, most often by a variant of the Nelson–
Oppen approach [47, Chap. 10].

2.3 Linear Real Arithmetic

In the case of linear rational, or equivalently real, arithmetic (LRA), the the-
ory solver is typically implemented using a variant [24,25] of the simplex
algorithm [20,63]. The atomic (in)equalities from the formula, put in canoni-
cal form, are collected; new variables are introduced for the linear combinations
of variables that are not of the form ±x where x is a variable. For instance, (11)
is rewritten as (x ≥ 0 ∨ α ≥ 1) ∧ (y ≥ 0) ∧ (β ≤ −1), together with the system
of linear equalities α = 2x + y and β = x + y.

The simplex algorithm both maintains a tableau and, for each variable, a
current valuation and optional lower and upper bounds. At all times, the simplex
tableau contains a system of linear equalities equivalent to this system, such that
the variables are partitioned into those (basic variables) occurring (each alone)
on the left side and those occurring on the right side. The non-basic variables
are assigned one of their bounds, or at least a value between these bounds. The
simplex algorithm tries to fit each basic variable within its bounds; if one does
not fit, it makes it non-basic and assigns to it the bound that was exceeded,
and selects a formerly non-basic variable to make it basic, through a pivoting
operation maintaining the equivalence of the system of equalities.

The algorithm stops when either a candidate solution fitting all bounds is
found, either one equation in the simplex tableau can be shown to have no
solution using interval arithmetic from the bounds of the variables (the interval
obtained from the right hand side does not intersect that of the basic variable on
the left hand side). A pivot selection ordering is used to ensure that the algorithm
always terminates. Theory propagation may be performed by noticing that the
current tableau implies that some literals are satisfied.

410 D. Monniaux

Example 4. Consider the system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 ≤ 2x + y
−6 ≤ 2x − 3y

−1000 ≤ 2x + 3y ≤ 18
−2 ≤ −2x + 5y
20 ≤ x + y .

(13)

This system is turned into a system of equations (“tableau”) and a system
of inequalities on the variables:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a = 2x +y 2 ≤ a
b = 2x −3y −6 ≤ b
c = 2x 3y −1000 ≤ c ≤ 18
d = −2x +5y −2 ≤ d
e = x +y 20 ≤ e .

(14)

The variables on the left of the equal signs are deemed “nonbasic” and those
on the right are “basic”. The simplex algorithm performs pivoting steps on the
tableau, akin to those of Gaussian eliminations, until a tableau such as this one
is reached: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e = 7/16c −1/16d
a = 3/4c −1/4d
b = 1/4c −3/4d
x = 5/16c −3/16d
y = 1/8c +1/8d .

(15)

Now consider the first equation (e =). By interval analysis, knowing c ≤ 18
and d ≥ −2, −7/16c − 1/16d ≤ 8. Yet e ≥ 20, thus the system has no solu-
tion. These coefficients 7/16 and 1/16 can be applied to the original inequalities
constraining c and d, with coefficient 1 for that defining e, and the resulting
inequalities are summed into a trivially false one:

7/16 (−2x −3y) ≥ −7/16 × 18
1/16 (−2x +5y) ≥ −1/16 × 2
1 x +y ≥ 20

0 0 ≥ 28 .

(16)

By reading nonzero coefficients off the conflicting line of the simplex tableau,
one gets a minimal set of contradictory constraints: d+1 constraints, correspond-
ing to the nonbasic variable and the basic variables with nonzero multipliers,
where d is the dimension of the space. These multipliers may be presented as an
unsatisfiability witness to an independent proof checker.

Most SMT solvers implement the simplex algorithm using rational arith-
metic. In most cases arising from verification problems, rational arithmetic can
be performed using machine integers, without need for going into extended pre-
cision arithmetic [21]. A common implementation trick is to use a datatype
containing a machine-integer (numerator , denominator) pair or a pointer to an
extended precision rational.4 This approach is however very inefficient in the rare
4 e.g. ZArith https://forge.ocamlcore.org/projects/zarith.

https://forge.ocamlcore.org/projects/zarith

A Survey of Satisfiability Modulo Theory 411

cases where the solver goes a lot into extended precision: the size of numerators
and denominators grows fast.

This is why it was proposed to perform linear programming in floating-point
arithmetic [11,26,45,58].5 Because the results of floating-point computations
cannot be immediately trusted, some checking is needed. One idea is not to
recover floating-point numeric information, but the final partition between basic
and nonbasic variables [11,45,58]; once this partition is known, the tableau is
uniquely defined and can be computed by plain linear arithmetic — Gaussian
elimination, or better algorithms, including multimodular [66, Chap. 7] or p-
adic approaches.6 It is then easy to check the alleged conflicting line, in exact
precision.

In some cases, linear arithmetic reasoning may be used to prove the unsat-
isfiability of polynomial problems. One approach is to expand polynomials and
consider all monomials as independent variables (e.g. xy2 is replaced by a fresh
unknown vxy2). A refinement [50] is to consider lemmas stating that if two poly-
nomials are nonnegative, then so is their product: e.g. x− 1 ≥ 0∧ y − 2 ≥ 0 =⇒
vxy − 2x − y + 2 ≥ 0.7 Because the set of such products has size exponential in
the maximal degree, heuristics are used to pick the most promising ones. Exper-
iments have shown this approach to be competitive, even with a rudimentary
and sub-optimal connection between linear SMT-solver and nonlinear reasoning.

Some earlier solvers (e.g. CVC3) solver linear real arithmetic by Fourier-
Motzkin elimination [29]. This approach is generally not considered efficient,
since Fourier-Motzkin elimination tends to generate many redundant constraints,
which then may need to be eliminated by linear programming, which defeats the
purpose of avoiding using the simplex algorithm.

2.4 Linear Integer Arithmetic

In the case of linear integer arithmetic, the scheme generally used is the same as
the one generally used for integer linear programming: the solver first attempts
solving the rational relaxation of the problem (nonstrict inequalities are kept,
strict inequalities x < e are rewritten as x ≤ e − 1). If there is no solution over
the rationals, there is no integer solution. If a rational solution is found, and has
only integral coefficients (say, (x, y, z) = (0, 1, 2)), then the problem is decided.

If the proposed solution has non-integral coefficients (say, (x, y, z) = (13 , 0, 1)),
then it is excluded by a constraint removing not only that spurious solution but
5 The performance with linear programming solvers meant for large industrial

instances was however disappointing [26], due to overhead. Closer integration is
needed.

6 As implemented in e.g. Linbox (http://www.linalg.org/), IML (https://cs.uwaterloo.
ca/∼astorjoh/iml.html) [12] and SageMath (http://www.sagemath.org/).

7 One can in fact prove a form of completeness of that approach when the prob-
lem contains linear constraints defining a bounded polyhedron, and one nonlinear
constraint: if such a problem is unsatisfiable, then this can be proved by going to a
sufficiently high degree of products. This follows from Krivine–Handelman’s theorem
[34,46].

http://www.linalg.org/
https://cs.uwaterloo.ca/~astorjoh/iml.html
https://cs.uwaterloo.ca/~astorjoh/iml.html
http://www.sagemath.org/

412 D. Monniaux

a whole chunk of them. Traditional approaches include (i) branch-and-bound
[63, Sect. 24.1]: add a lemma excluding one segment of non-integral values of the
fractional unknowns (here, x ≤ 0 ∨ x ≥ 1); branching is however not guaranteed
to terminate in general [45]. (ii) Gomory cuts [63, Chap. 23] (iii) branch-and-cut
[56], a combination of both of the above iv) cuts from proofs or extended branches
[23], which can generate e.g. x ≤ z ∨ x ≥ z + 1.

The full integer linear decision procedure can be encapsulated and only
export theory lemmas and theory propagation, just as the rational linear proce-
dure, or export the branching lemma to the SMT solver, as a learned clause, so
as to allow propositional reasoning over it.

An alternative to linear programming plus branching and/or cuts is Pugh’s
Omega test [61], which may also be used to simplify constraints. This test is
based on Fourier-Motzkin elimination [29], with the twist that, due to divisibility
constraints, it may need to enumerate cases up to the least common multiple of
the divisors.

2.5 Exponential Behavior Due to Limited Predicate Vocabulary

Example 5. Let n > 0 be a constant integer. Let (ti)0≤i≤n, (xi)0≤i<n and
(yi)0≤i<n be real unknowns (or rational or integer). Let

Di
�
=(xi − ti ≤ 2) ∧ (yi − ti ≤ 3) ∧ ((ti+1 − xi ≤ 3) ∨ (ti+1 − yi ≤ 2)) , (17)

Pn
�
=

n−1∧

i=0

Di ∧ tn − t0 > 5n . (18)

These formulas are known as “diamond formulas” since they correspond to
paths in a difference graph composed of “diamonds”:

t0

x0

y0

t1

2

3

3

2

x1

y1

t2

2

3

3

2

tn−1

xn−1

yn−1

tn

2

3

3

2

To a human, it is obvious that Di ⇒ ti+1 ≤ ti + 5 and thus Pn is unsatisfiable.
A DPLL(T) solver, however, proceeds by elimination of contradictory conjunc-
tions of atoms from the original formula. Any contradictory conjunction of atoms
from Pn must include a conjunction of the form

∧n−1
i=0 Fi ∧ tn − t0 > 5n where

Fi is either (xi − ti ≤ 2)∧ (ti+1 −xi ≤ 3) or (yi − ti ≤ 3)∧ (ti+1 − yi ≤ 2). There
are an exponential number of such conjunctions, and a DPLL(T) solver has to
block them by theory lemmas one by one.

In other words, the proof system used by a DPLL(T) solver is sufficient to
prove that a “diamond formula” is unsolvable, but needs exponential proofs

A Survey of Satisfiability Modulo Theory 413

for doing so. Any pure DPLL(T) solver, whatever its heuristics and implemen-
tation, must thereof run in exponential time on this family of formulas. This
motivated the study of algorithms capable of inferring lemmas involving new
atoms (Sect. 3.2).

Diamond formulas are simplifications of formulas occurring in e.g. worst-case
execution time and scheduling applications. The solution proposed in [35] was
to pre-compute upper bounds tj − ti ≤ Bij on the difference of arrival times
between i and j (or, equivalently, the total time spent in the program between
i and j) and conjoin these bounds to the problems. These bounds are logically
implied by the original problem, and thus the set of solutions (valid execution
traces with timings) does not change; but the resulting formula isY considerably
more tractable. The lemmas tj − ti ≤ Bij and tk − tj ≤ Bik allow the solver to
avoid exploring many combinations of paths i → j and j → k: for instance, if
one searches for a path such that tk − ti ≥ 100, it is known that tk − tj ≤ 40,
and the solver explores a path i → j such that tj − ti ≤ 42 on this path, then
the solver can immediately cut the search without exploring the paths j → k in
detail.

2.6 Uninterpreted Functions and Arrays

There exists several variants of how to decide uninterpreted functions (UF) in
combination with other theories [47, Chap. 4]; we shall expose only one approach
here. A quantifier-free formula (e.g. f(x) 	= f(y) ∧ x = z + 1 ∧ z = y − 1) is
rewritten so that each application of an uninterpreted function is replaced by a
fresh variable (e.g. fx 	= fy ∧x = z +1∧z = y −1), several identical applications
getting the same variable. A solution in x, y, z, fx, fy is sought. If x = y but not
fx 	= fy in that solution, the implication x = y ⇒ fx = fy is conjoined to the
problem. Again, this is a counterexample-guided refinement of the theory.

Example 6. f(x) 	= f(y)∧x = z+1∧z = y−1, where x, y, z ∈ Z and f : Z → Z,
has no solution because x = z + 1 ∧ z = y − 1 implies that x = y, and it is then
impossible that f(x) 	= f(y). One may establish this by solving fx 	= fy ∧ x =
z + 1 ∧ z = y − 1, getting (x, y, z, fx, fy) = (1, 1, 0, 0, 1), noticing the conflict
between x = y and fx 	= fy and conjoining x = y ⇒ fx = fy.

Arrays are “functionally updatable” uninterpreted functions [47, Chap. 7]:
update(f, x0, y0) is the function mapping x 	= x0 to f [x] and x0 to y0.

3 Natural-Domain SMT

In DPLL(T) there is a fundamental difference between propositional and other
kinds of unknowns: the second are never dealt with directly during the search
process. In contrast, in natural-domain SMT, one directly constrains and assigns
to numeric unknowns during the search. After initial attempts [17,54], two main
directions arose.

414 D. Monniaux

3.1 Abstract CDCL (ACDCL)

The DPLL approach is to assign to each unknown (propositional variable) one
of t, f , and “undecided” — that is, a non-empty subset of the set of possible val-
ues {t, f}. Initially, all variables are assigned to “undecided”. Then, the Boolean
constraint propagation phase uses each individual clause as a constraint over
its literals: if all literals except for one are assigned to f , then the last one gets
assigned to t. In other words, information known about some variables leads to
information on other variables linked by the same constraint. If the information
derived is that some variable cannot be assigned some value (“contradiction”),
then it means the problem is unsatisfiable. In most cases, however, a contra-
diction cannot be derived by only the initial pass of propagation. In that case,
the system picks an undecided variable and splits the search between the t and
f cases. Several splits may be needed, thus the formation of a search tree. If
a contradiction is derived in a branch, that branch is closed and the system
backtracks to an earlier level.

That approach may be extended to variables lying within an arbitrary domain
D, say, the real numbers or the floating-point numbers. The system maintains
for each variable an assignment to a subset of D (several types of variables may
be used simultaneously, there may therefore be several D), chosen among an
abstract domain8 D� of subsets of D; say, for numeric variables, D� may be the
set of closed intervals of D. Constraints may now constrain variables of different
types, and each constraint acts as a propagator of information. For instance, if
there is a constraint x = y + z, and x is currently assigned the interval [1,+∞)
and y the interval [4, 10], then, applying z = x−y, one can derive x ∈ [−9,+∞):
the current interval for x may thus be refined.

Note that, for soundness, it is not important that the information propagated
should be optimally precise, as long as it contains the possible values: in the
above example, it would be sound to propagate x ∈ [−9.1,+∞) — but unsound
to derive xx ∈ [−8.99,+∞). In the case of interval propagation for D = R,
one sound way to implement it is using floating-point interval arithmetic with
directed rounding: the upper bound of an interval is rounded towards +∞, the
lower bound towards −∞.

ACDCL also applies clause learning, but in a more general manner than
CDCL [10, Sect. 5]. Consider F

�
= y = x ∧ z = x · y ∧ z ≤ −1 and a search

context with x ≤ −4. Then, by interval propagation, y ≤ −4, and z ≥ 16,
which contradicts z ≤ −1. CDCL-style clause learning would learn that x ≤ −4
contradicts F , and thus learn the clause ¬(x ≤ −4) ≡ x > −4. But there is a
weaker reason why such choice of x contradicts F : x < 0 is sufficient to ensure
contradiction; the solver can exclude a larger part of the search space by learning
the clause ¬(x < 0) ≡ x ≥ 0. Generalizing the reasons for a contradiction is a
form of abduction. One difficulty is that there may be no weakest generalization
expressible in the abstract domain: for instance, the choices x ≥ 10 and y ≥ 10
contradict the constraint x + y < 10, but x ≥ 0 ∧ y ≥ 10, x ≥ 5 ∧ y ≥ 5

8 Following the terminology of abstract interpretation; see [10] for more.

A Survey of Satisfiability Modulo Theory 415

and x ≥ 10 ∧ y ≥ 0 are three incomparable generalizations of the contradiction
(leading to three clauses x < 0 ∨ y < 10 etc.), which are optimal in the sense
that if one fixes the interval for x (resp. y), the interval for y (resp. x) is the
largest that still ensures contradiction.

3.2 Model-Constructing Satisfiability Calculus (MCSAT)

In DPLL(T) (i) only propositional atoms (including Boolean unknowns) are
assigned during the search (ii) the set of atoms considered does not change
throughout the search (this may cause exponential behavior, see Sect. 2.5
(iii) when the search process, after assigning b1, . . . , bn concludes that it is impos-
sible to assign a Boolean value to an atom bn+1, it derives a learned clause over
a subset of b1, . . . , bn that excludes the current assignment but also, hopefully,
many more. In contrast, in model-constructing satisfiability calculus (MCSAT)
[22], both propositional atoms and numeric unknowns get assigned during the
search, and new arithmetic predicates are generated through learning.

Linear Real Arithmetic. Assume variables x1, . . . , xn have been assigned
values v(x1), . . . , v(xn) in the current branch of the search, and that two atoms
xn+1 ≤ a and xn+1 ≥ b, where a and b are linear combinations of variables other
than xn+1, have been assigned to t, such that b > a in the assignment v; then it
is impossible to pick a value for xn+1 in that assignment. In fact, it is impossible
to pick a value for it in any assignment such that b > a.

Assignments that conflict for the same reason are eliminated by a Fourier-
Motzkin elimination [29] elementary step, valid for all x1, . . . , xn+1:

¬xn+1 ≤ a ∨ ¬xn+1 ≥ b ∨ a ≥ b . (19)

Example 7. Consider Example 5 with n = 3. The solver has clauses xi − ti ≤ 2,
yi − ti ≤ 3, ti+1 − xi ≤ 3 ∨ ti+1 − yi ≤ 2 for 0 ≤ i < 3, and t0 = 0, t3 ≥ 16.

The solver picks t0 �→ 0, t1 − x0 ≤ 3 �→ t, x0 �→ 0, t1 �→ 0, t2 − x1 ≤ 3 �→ t,
x1 �→ 0, t2 �→ 0, t3 − x2 ≤ 3 �→ t, x2 �→ 0. But then, there is no way to assign t3,
because of the current assignment x2 �→ 0 and the inequalities t3 − x2 ≤ 3 and
t3 ≥ 16. The solver then learns by Fourier-Motzkin:

¬(t3 ≥ 16) ∨ ¬(t3 − x2 ≤ 3) ∨ x2 ≥ 13 . (20)

which may in fact be immediately simplified by resolution with the original clause
t3 ≥ 16 to yield ¬(t3 − x2 ≤ 3) ∨ x2 ≥ 13. The assignment to x2 is retracted.

But then, there is no way to assign x2, because of the current assignment
t2 �→ 0 and the inequality x2−t2 ≤ 2. The solver then learns by Fourier-Motzkin:

¬(x2 ≥ 13) ∨ ¬(x2 − t2 ≤ 2) ∨ t2 ≥ 11 . (21)

By resolution, ¬(t3 − x2 ≤ 3) ∨ t2 ≥ 11. The truth assignment to t3 − x2 ≤ 3 is
retracted.

416 D. Monniaux

At this point, the solver has t0 �→ 0, t1 − x0 ≤ 3 �→ t, x0 �→ 0, t1 �→ 0,
t2 − x1 ≤ 3 �→ t, x1 �→ 0, t2 �→ 0, t3 − x2 ≤ 3 �→ f . By similar reasoning in
that branch, the solver derives t3 − x2 ≤ 3 ∨ t2 ≥ 11. By resolution between the
outcomes of both branches, one gets t2 ≥ 11.

By similar reasoning, one gets t1 ≥ 6 and then t0 ≥ 1, but then there is no
satisfying assignment to t0. The problem has no solution.

In contrast to the exponential behavior of DPLL(T) on Example 5, MCSAT
has linear behavior: each branch of each individual disjunction is explored only
once, and the whole disjunction is then summarized by an extra atom.

The dynamic generation of new atoms by MCSAT, as opposed to DPLL(T),
creates two issues. (i) If infinitely many new atoms may be generated, termina-
tion is no longer ensured. One can ensure termination by restricting the genera-
tion of new atoms to a finite basis (this basis of course depends on the original
formula); this is the case for instance if the numeric variables x1, . . . , xn are
always assigned in the same order, thus the generated new atoms are results of
Fourier-Motzkin elimination of xn, then of xn−1 etc. down to x2.9 In practice,
the interest of being able to choose variable ordering trumps the desire to prove
termination. (ii) Since many new atoms and clauses are generated, some garbage
collection must be applied, as with learned clauses in a CDCL solver.

Implementation-wise, note that, like a clause in CDCL, a linear inequality
is processed only when all variables except for one are assigned. Similar to two
watched literals per clause, one can apply two watched variables per inequality.

Nonlinear Arithmetic (NRA). The MCSAT approach can also be applied to
polynomial real arithmetic. Again, the problem is: assuming a set of polynomial
constraints over x1, . . . , xn, xn+1 have no solution over xn+1 for a given valuation
v(x1), . . . , v(xn), how can we explain this impossibility by a system of constraints
over x1, . . . , xn that excludes v(x1), . . . , v(xn) and hopefully many more?

Jovanović and de Moura [41] proposed applying a modified version of Collin’s
[15] projection operator in order to perform a partial cylindrical algebraic decom-
position. In that approach, known as NLSAT, one additional difficulty is that
assignments to variables may refer to algebraic reals, and thus the system needs
to compute to compute over algebraic reals, including as coefficients to polyno-
mials. It is yet unknown whether this approach could benefit from using other
projection operators such as Hong’s [39] or McCallum’s [51].

4 Beyond Quantifier-Free Decidability

4.1 Quantifiers

Quantifier Elimination by Virtual Substitution. In the case of some the-
ories, such as linear real arithmetic, a finite sequence of instantiations can be
9 Successive applications of Fourier-Motzkin may lead to very large sets of predicates,

thus this argument seems of mostly theoretical interest.

A Survey of Satisfiability Modulo Theory 417

produced such that F
�
= ∀x P (x) is equivalent to

∧n
i=1 P (vi); note that the vi

are not constants, but functions of the free variables of F , obtained by analyzing
the atoms of P . Because this approach amounts to substituting expressions into
the quantified variable, it is called substitution, or virtual substitution if appro-
priate data structures and algorithms avoid explicit substitution. Examples of
substitution-based methods include Cooper’s [16] for linear integer arithmetic,
Ferrante and Rackoff’s [27] and Loos and Weisfpenning’s [48] methods for linear
real arithmetic.

Example 8. Consider ∀y (y ≥ x ⇒ y ≥ 1). Loos and Weisfpenning’s method
collects the expression to which y is compared (here, x and 1) and then substi-
tutes them into y. For each expression e, one must also substitute e + ε where ε
is infinitesimal,10 and also substitute −∞ (equivalently, one can substitute e− ε
for each expression, and also +∞). The result is therefore

∧

e∈{x,x+ε,1,1+ε,−∞}
e ≥ x ⇒ e ≥ 1 (22)

or, after expansion and simplification, x ≥ 1.

We thus have eliminated the quantifier; by recursion over the structure of a
formula and starting at the leaves, we can transform any formula of linear real
arithmetic into an equivalent quantifier-free formula.11

In these eager approaches, the size of the substitution set may grow quickly
(especially for linear integer arithmetic, which may involve enumerating all cases
up to the least common multiple of the divisibility constants). For this rea-
son, lazy approaches were proposed where the substitutions are generated from
counterexamples, in much the same way that learned lemmas are generated in
DPLL(T) [7,60]. For a formula A(x)∧∀y B(x, y), the system first solves A(x) for
a solution x0, then checks whether there exists y such that ¬B(x0, y); if so, such
an y0 is generalized into one of the possible substitutions S1(x) and the system
restarts by solving A(x) ∧ B(x, S1(x). The process iterates until a solution is
found or the substitutions accumulated block all solutions for x; termination is
ensured because the set of possible symbolic substitutions is finite. Note that a
full quantifier elimination is not necessary to produce a solution.

Quantifier Elimination by Projection. In case a quantifier elimination, or
projection, algorithm, is available for conjunctions of constraints, as happens with
linear real arithmetic,12one can, given a formula ∃y F (x,y), find a conjunction

10 x ≥ K + ε with K real means x > K.
11 In the case of linear integer arithmetic, we need to enrich the language of the output

formula with constraints of divisibility by constants: e.g. ∃x y = 2x is equivalent to
quantifier-free 2 | x.

12 This amounts to projection of convex polyhedra, for which there exist algorithms
based on conversion to generators (vertices), Fourier-Motzkin elimination and prun-
ing, or parametric linear programming, among others [28].

418 D. Monniaux

C1 ⇒ F , project C1 over x as π(C1), conjoin ¬π(C1) to F and repeat the
process (generating C2 etc.) until the F becomes unsatisfiable [57].

∨
i Ci is

then equivalent to ∃y F . Again, this process may be made lazier, for nested
quantification in particular [59,60].

Instantiation Heuristics. The addition of quantifiers to theories (such as
linear integer arithmetic plus uninterpreted functions) may make them unde-
cidable. This does not however deter designers of SMT solvers from attempting
to have them decide as many formulas as possible. A basic approach is quanti-
fier instantiation by E-matching. If a formula in negation normal form contains
a subformula ∀x P (x), then this formula is replaced by a finite instantiation∧n

i=1 P (vi). The vi are extracted from the rest of the formula, possibly guided
by counterexamples. This approach is not guaranteed to converge: an infinite
sequence of instantiations may be produced for a given quantifier. In the case of
local theories, one can however prove termination.

4.2 Craig Interpolation

The following conjunction is satisfiable if and only if it is possible to go from a
model x0 of A to a model xn of B by a sequence of transitions (τi)1≤i≤n:

A(x0) ∧ τ1(x0,x1) ∧ · · · ∧ τn(xn−1,xn) ∧ B(xn) . (23)

In program analysis, A typically expresses a precondition, ¬B a postcondition,
xi the variables of the program after i instruction steps, and τi the semantics of
the i-th instruction in a sequence, and the formula is unsatisfiable if and only if
B is always true after executing that sequence of instruction starting from A.

A hand proof of unsatisfiability would often consist in exhibiting predicates
I1(x1), . . . , In−1(xn−1), such that, posing I0 = A and In = B, for all 0 ≤ i < n,

∀xi,xi+1 Ii(xi) ∧ τi+1(xi,xi+1) ⇒ Ii+1(xi+1) , (24)

along with proofs of these local inductiveness implications.13

A SMT-solver, in contrast, produces a monolithic proof of unsatisfiability
of (23): it mixes variables from different xi, that is, in program analysis, from
different times of the execution of the program. It is however possible to obtain
instead a sequence Ii satisfying (24) by post-processing that proof [13,14,52].

In any theory admitting quantifier elimination, such a sequence must exist:

Ii+1 ≡ ∃xi Ii(xi) ∧ τi+1(xi,xi+1) (25)

defines the strongest sequence of valid interpolants; the weakest is:

Ii ≡ ∀xi+1 τi+1(xi,xi+1) ⇒ Ii+1(xi+1) . (26)
13 In program analysis, this corresponds to stating “after the first instruction, the

program variables satisfy I1, but then if one executes the second instruction from
I1, the program variables then satisfy I2. . . ”, and {Ii} τi {Ii+1} constitute Hoare
triples.

A Survey of Satisfiability Modulo Theory 419

The strongest sequence corresponds to computing exactly the sequence of sets
of states reachable by τ1, then τ2 ◦ τ1 etc. from A.

Binary interpolation consists in: given A and B, produce I such that

∀x0,x1,x2 A(x0,x1) ⇒ I(x1) ⇒ B(x1,x2) , (27)

in which case, if the theory admits quantifier elimination, ∃x0 A(x0,x1) and
∀x2 B(x1,x2) are respectively the strongest and weakest interpolant, and any
I in between (∃x0 A(x0,x1) ⇒ I ⇒ ∀x2 B(x1,x2)) is also an interpolant.

One of the main uses of Craig interpolation in program analysis is to syn-
thesize inductive invariants, for instance by counterexample-guided abstraction
refinement in predicate abstraction (CEGAR) [53] or property-guided reacha-
bility (PDR). Interpolants obtained by quantifier elimination are too specific
(overfitting): for instance, strongest interpolants exactly fit the set of states
reachable in 1, 2, . . . steps. It has been argued that interpolants likely to be
useful as inductive invariants should be “simple” — short formula, with few
“magical constants”. A variety of approaches have been proposed for getting
such interpolants [2,65,68] or to simplify existing interpolants [38].

A

B

Fig. 1. Binary interpolation in linear arithmetic. The hashed areas represent A and B
(Eq. 28) respectively. A possible interpolant I between A and B (A ⇒ I, I ⇒ ¬B) is
the grey area x ≤ 1 ∨ y ≤ 1. The dashed lines define two other possible interpolants,
x + y ≤ 5 and x + 2y ≤ 9.

Example 9. Consider the interpolation problem A ⇒ I, I ⇒ ¬B (Fig. 1):

A1
�
= x ≤ 1 ∧ y ≤ 4 A2

�
= x ≤ 4 ∧ y ≤ 1

A
�
= A1 ∨ A2 B

�
= x ≥ 3 ∧ y ≥ 3 .

(28)

SMTInterpol14 and MathSAT15 produce I
�
= x ≤ 1∨y ≤ 1. This is due to

the way these tools produce interpolants from DPLL(T) proofs of unsatisfiability.
On this example, a DPLL(T) solver will essentially analyze both branches of
14 SMTInterpol 2.1-31-gafd0372-comp.
15 MathSAT 5.3.10.

420 D. Monniaux

A1 ∨ A2. The first branch yields A1 ⇒ ¬B. Finding I1 such that A1 ⇒ I1 and
I1 ⇒ ¬B amounts to finding a separating hyperplane between these two convex
polyhedra; I1

�
= x ≤ 1 works. Similarly, I2 such that A1 ⇒ I2 and I2 ⇒ ¬B can

be I2
�
= y ≤. I1 ∨ I2 is then produced as interpolant.

Yet, a search for a single separating hyperplane may produce x + 2y ≤ 9, or
x + y ≤ 5. The second hyperplane may seem preferable according to a criterion
limiting the magnitude of integer constants.

It is easy to see that if one can find interpolants for arbitrary conjunctions
A,B such that A ⇒ ¬B, one can find them between arbitrary quantifier-free for-
mulas, by putting them into DNF. Because such a procedure would be needlessly
costly due to disjunctive normal forms, the usual approach is to post-process a
DPLL(T) proof that A(x,y)∧B(y,z) is unsatisfiable [13,14]. First, interpolants
are derived for all theory lemmas: each lemma expresses that a conjunction of
atoms from the original formula is unsatisfiable, these atoms can thus be divided
into a conjunction α of atoms from A and a conjunction β of atoms from B, and
an interpolant I is derived for α ⇒ ¬β. Then, these interpolants are combined
following the resolution proof of the solver. This is how the interpolants from
Example 9 were produced by the solvers.

The problem is therefore: given A(x,y)∧B(y,z) unsatisfiable, where A and
B are conjunctions, how do we find I(y) such that A ⇒ I and I ⇒ ¬B? If
the theory is linear rational arithmetic, this amounts to finding a separating
hyperplane between the polyhedra A and B. Let us note

A
�
=

∧
i a

′′
i · x + ai · y ≥ a′

i , B
�
=

∧
j b

′′
j · z + bj · y ≥ b′

j . (29)

Each a′
i (resp. b′

j) is a pair (a′R
i , a′ε

i) lexicographically ordered, where a′R
i is

the real part and c′ε
i is infinitesimal; all other numbers are assumed to be real.

y ≥ (xR, xε) with xε > 0 and y ∈ R expresses that y > xR.
Since A∧B is unsatisfiable, by Farkas’ lemma, there exists an unsatisfiability

witness (λi), (μj), such that
∑

i λia
′′
i = 0

∑
j μjb

′′
j = 0∑

i λiai +
∑

j μjbj = 0
∑

i a′
i +

∑
j b′

j > 0 (30)

Such coefficients can in fact be read off the simplex tableau from the most
common way of implementing a DPLL(T) solver for linear real arithmetic, as
described in Sect. 2.3. Then the following is a valid interpolant (recall that the
right-hand side can contain infinitesimals, leading to >):

I
�
=

∑

i

(λiai) · y ≥
∑

i

λia
′
i (31)

For polynomial arithmetic, one approach replaces nonnegative reals by sums-
of-squares of polynomials, and Farkas’ lemma by Positivstellensatz [19].

A Survey of Satisfiability Modulo Theory 421

Another difficulty is posed for certain theories, for which the solving process
involves generating lemmas introducing atoms not present in the original. Con-
sider the approaches for linear integer arithmetic described in Sect. 2.4: except
for branch-and-bound, all can generate new constraints involving any of the
unknowns, without respecting the original partition of variables. This poses a
problem for interpolation: if interpolating for A(x, y) ∧ B(y, z) over linear real
arithmetic, we can rely on all atomic propositions being linear inequalities either
over x, y or y, z, but here, we have new atomic propositions that can involve both
x, z. Special theory-dependent methods are needed to get rid of these new propo-
sitions when processing the DPLL(T) proof into an interpolant [13,14].

4.3 Optimization

Instead of finding one solution, one may wish to find a solution that maximizes
(or nearly so) some function f .

A simple approach is binary search: provided one can get a lower bound l and
an upper bound h on the maximum f(x∗), one queries the solver for a solution
x such that f(x) ≥ m, where m = l+h

2 ; if such a solution is found, refine the
lower bound l := f(x) and restart, otherwise h := m and restart. Proceed until
l = h. This converges in finite time if f has integer value. This approach has
been successfully applied to e.g. worst-case execution time problems [35].

In the case of LRA (resp. LIA), optimization generalizes linear programming
(resp. linear integer programming) to formulas with disjunctions. In fact, lin-
ear programming can be applied locally to a polyhedron of solutions: when a
DPLL(T) solver finds a solution x of a formula F , it also finds a conjunction C
of atoms such that C ⇒ F ; C defines a polyhedron and one can optimize within
it, until a local optimum xl. Then one adds the constraint f(x) > f(xl) and
restart; the last xl found is the optimum (one can also detected unboundedness).
This approach can never enumerate the same C (or subsets thereof) twice and
thus must terminate. It may, however, scan an exponential number of useless
C’s; it may be combined with binary search for best effect [64].

5 Conclusion

Considerable progress has been made within the last 15 years on increasingly
practical decision procedures for increasingly large classes of formulas, even
though worst-case complexity is prohibitive, and sometimes even though the
class is undecidable.16 Major ingredients to that success were (i) lazy genera-
tion of lemmas, partial projections or instantiations, guided by counterexamples
16 Worst-case complexity, or completeness in complexity classes, is therefore not always

a good indicator of practical performance. Average complexity is difficult to define
(one needs to suppose a probability distribution on formulas) and may ill-describe
practical use cases: it is well-known that random SAT instances behave unlike indus-
trial examples [1], and same with random linear constraints [58]. For want of better
indication, performance is measured on libraries of benchmarks.

422 D. Monniaux

(as opposed to eager exhaustive generation, often explosive) (ii) generalization
of counterexamples so as to learn sufficiently general blocking lemmas (iii) tight
integration of propositional and theory-specific reasoning.

Nonlinear arithmetic reasoning (polynomials, or even transcendental
functions) is still a very open question. Current approaches in SMT [41] are based
on partial cylindrical algebraic decomposition [15]; possibly methods based on
critical points [5,32,62] could be investigated as well.

There are several challenges to using computer algebra procedures inside
a SMT solver. (i) These procedures may not admit addition or retraction of
constraints without recomputation. (ii) They may compute eagerly large sets
of formulas (as in conventional cylindrical algebraic decomposition). (iii) They
may be very complex and thus likely to contain bugs.17 Being able to produce
independently-checkable proof witnesses would help in this respect.

Acknowledgements. Thanks to the anonymous referees for their careful proofreading.

References

1. Achlioptas, D.: 8. In: [6], pp. 245–270
2. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,

H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013)
3. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular

integration of SAT/SMTsolvers to coq throughproofwitnesses. In: Jouannaud, J.-P.,
Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg (2011)

4. Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB). www.SMT-LIB.org (2016)

5. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer,
Berlin (2006)

6. Handbook of Satisfiability, vol. 185. IOS Press, Amsterdam (2009)
7. Bjørner, N.: Linear quantifier elimination as an abstract decision procedure. In:

Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 316–330. Springer,
Heidelberg (2010)

8. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kauf-
mann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer,
Heidelberg (2010)

9. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer, Berlin (2007)

10. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-
point logic with abstract conflict driven clause learning. Formal Methods Syst.
Des. 45(2), 213–245 (2014)

11. Barbosa, C., de Oliveira, D., Monniaux, D.: Experiments on the feasibility of using
a floating-point simplex in an SMT solver. In: Fontaine, P., Schmidt, R.A., Schulz,
S. (eds.) Workshop on Practical Aspects of Automated Reasoning (PAAR). EPiC
Series, vol. 21, pp. 19–28. Easychair (2012)

17 The author had several computer algebra packages crash or produce wrong results.
Perhaps running large libraries of benchmarks would help in finding such bugs.

www.SMT-LIB.org

A Survey of Satisfiability Modulo Theory 423

12. Chen, Z., Storjohann, A.: A BLAS based C library for exact linear algebra on
integer matrices. In: Proceedings of the ISSAC 2005, pp. 92–99. ACM, New York
(2005)

13. Christ, J.: Interpolation modulo theories. Ph.D. thesis, Albert-Ludwigs-
Universität, Freiburg (2015)

14. Christ, J., Hoenicke, J., Nutz, A.: Proof tree preserving interpolation. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 124–138.
Springer, Heidelberg (2013)

15. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975)

16. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Meltzer,
B., Michie, D. (eds.) Machine Intelligence 7, pp. 91–100. Edinburgh University
Press, Edinburgh (1972)

17. Cotton, S.: Natural domain SMT: a preliminary assessment. In: Chatterjee, K.,
Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 77–91. Springer,
Heidelberg (2010)

18. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012)

19. Dai, L., Xia, B., Zhan, N.: Generating non-linear interpolants by semidefinite pro-
gramming. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
364–380. Springer, Heidelberg (2013)

20. Dantzig, G.B., Thapa, M.N.: Linear Programming 1: Introduction. Springer,
New York (1997)

21. de Moura, L.M.: Personal communication
22. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In:

Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 1–12. Springer, Heidelberg (2013)

23. Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: a complete and practical tech-
nique for solving linear inequalities over integers. Form. Methods Syst. Des. 39(3),
246–260 (2011)

24. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

25. Dutertre, B., de Moura, L.M.: Integrating simplex with DPLL(T). Sri-csl-06-01,
SRI International, computer science laboratory (2006)

26. Faure, G., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: SAT modulo
the theory of linear arithmetic: exact, inexact and commercial solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 77–90. Springer,
Heidelberg (2008)

27. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real
addition with order. SIAM J. Comput. 4(1), 69–76 (1975)

28. Fouilhé, A.: Revisiting the abstract domain of polyhedra: constraints-only repre-
sentation and formula proof. Ph.D. thesis, Université de Grenoble (2015)

29. Fourier, J.: Histoire de l’acadmie, partie mathmatique. In: Mmoires de l’Acadmie
des sciences de l’Institut de France, vol. 7. Gauthier-Villars, xlvij-lv (1827) (1824)

30. Gawlitza, T., Monniaux, D.: Invariant generation through strategy iteration in
succinctly represented control flow graphs. Logic. Methods Comput. Sci. 8(3:29),
1–35 (2012)

424 D. Monniaux

31. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Queue 10(1), 20:20–20:27 (2012)

32. Grigor’ev, D.Y., Vorobjov Jr., N.N.: Solving systems of polynomial inequalities in
subexponential time. J. Symb. Comput. 5(1–2), 37–64 (1988)

33. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
34. Handelman, D.: Representing polynomials by positive linear functions on compact

convex polyhedra. Pacific J. Math. 132(1), 35–62 (1988)
35. Henry, J., Asavoae, M., Monniaux, D., Maiza, C.: How to compute worst-case

execution time by optimization modulo theory and a clever encoding of program
semantics. In: Zhang, Y., Kulkarni, P. (eds.) Languages, Compilers, Tools and
Theory for Embedded Systems (LCTES), pp. 43–52. ACM, New York (2014)

36. Henry, J., Monniaux, D., Moy, M.: PAGAI: a path sensitive static analyzer. In:
Jeannet, B. (ed.) Third Workshop on Tools for Automatic Program Analysis
(TAPAS 2012). Electronic Notes in Theoretical Computer Science 289, pp. 15–
25 (2012)

37. Henry, J., Monniaux, D., Moy, M.: Succinct representations for abstract interpre-
tation. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 283–299.
Springer, Heidelberg (2012)

38. Hoder, K., Kovács, L., Voronkov, A.: Playing in the grey area of proofs. In: Field,
J., Hicks, M. (eds.) ACM Symposium on Principles of Programming Languages
(POPL), pp. 259–272. ACM, New York (2012)

39. Hong, H.: An improvement of the projection operator in cylindrical algebraic
decomposition. In: Watanabe, S., Nagata, M. (eds.) Proceedings of the ISSAC
1990, pp. 261–264. ACM, New York (1990)

40. IEEE: IEEE standard for Binary floating-point arithmetic for microprocessor sys-
tems. ANSI/IEEE Standard 754–1985 (1985)

41. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Hei-
delberg (2012)

42. Karpenkov, E., Beyer, D., Friedberger, K.: JavaSMT: A unified interface for SMT
solvers in Java. In: VSTTE (2016, to appear)

43. Keller, C.: Extended resolution as certificates for propositional logic. In:
Blanchette, J.C., Urban, J. (eds.) Proof Exchange for Theorem Proving (PxTP).
EPiC Series, vol. 14, pp. 96–109. EasyChair (2013)

44. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

45. King, T., Barrett, C.W., Tinelli, C.: Leveraging linear and mixed integer program-
ming for SMT. In: Formal Methods in Computer-Aided Design, (FMCAD), pp.
139–146. IEEE (2014)

46. Krivine, J.L.: Anneaux préordonnés. J. d’analyse mathématique 12, 307–326
(1964)

47. Kroening, D., Strichman, O.: Decision Procedures. Springer, New York (2008)
48. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J.

36(5), 450–462 (1993)
49. Marques-Silva, J.P., Lynce, I., Malik, S.: 4. In: [6], pp. 131–153
50. Maréchal, A., Fouilhé, A., King, T., Monniaux, D., Périn, M.: Polyhedral approx-

imation of multivariate polynomials using Handelman’s theorem. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 166–184. Springer,
Berlin (2016)

A Survey of Satisfiability Modulo Theory 425

51. McCallum, S.: An improved projection operation for cylindrical algebraic decom-
position. In: Quantifier Elimination and Cylindrical Algebraic Decomposition, pp.
242–268. Springer, Wien (1998)

52. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1),
101–121 (2005)

53. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

54. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to richer logics. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476. Springer,
Heidelberg (2009)

55. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Design Automation Conference (DAC), pp.
530–535. ACM, New York (2001)

56. Mitchell, J.E.: Branch-and-cut algorithms for combinatorial optimization prob-
lems. In: Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Applied Optimiza-
tion. Oxford University Press, Oxford (2002)

57. Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330,
pp. 243–257. Springer, Heidelberg (2008)

58. Monniaux, D.: On using floating-point computations to help an exact linear arith-
metic decision procedure. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 570–583. Springer, Heidelberg (2009)

59. Monniaux, D.: Quantifier elimination by lazy model enumeration. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 585–599. Springer,
Heidelberg (2010)

60. Phan, A.D., Bjørner, N., Monniaux, D.: Anatomy of alternating quantifier sat-
isfiability (work in progress). In: Fontaine, P., Goel, A. (eds.) 10th International
Workshop on Satisfiability Modulo Theories (SMT), pp. 120–130 (2012)

61. Pugh, W.: The Omega test: A fast and practical integer programming algorithm
for dependence analysis. In: Supercomputing, pp. 4–13. ACM, New York (1991)

62. Safey El Din, M., Schost, É.: Polar varieties and computation of one point in each
connected component of a smooth real algebraic set. In: Proceedings of the ISSAC
2003, pp. 224–231. ACM, New York (2003)

63. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)
64. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) cost functions. In:

Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp.
484–498. Springer, Heidelberg (2012)

65. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg
(2012)

66. Stein, W.A.: Modular Forms, a Computational Approach. Graduate Studies in
Mathematics, vol. 79. AMS (2007)

67. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning: 2: Classical Papers
on Computational Logic 1967–1970, pp. 466–483. Springer, Berlin (1983)

68. Unno, H., Terauchi, T.: Inferring simple solutions to recursion-free horn clauses
via sampling. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
149–163. Springer, Heidelberg (2015)

69. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

	A Survey of Satisfiability Modulo Theory
	1 Introduction
	1.1 Generalities
	1.2 The SMT-LIB Format and Available Theories
	1.3 Use in Program Analysis Applications

	2 The DPLL(T) Architecture
	2.1 CDCL Satisfiability Testing
	2.2 DPLL(T)
	2.3 Linear Real Arithmetic
	2.4 Linear Integer Arithmetic
	2.5 Exponential Behavior Due to Limited Predicate Vocabulary
	2.6 Uninterpreted Functions and Arrays

	3 Natural-Domain SMT
	3.1 Abstract CDCL (ACDCL)
	3.2 Model-Constructing Satisfiability Calculus (MCSAT)

	4 Beyond Quantifier-Free Decidability
	4.1 Quantifiers
	4.2 Craig Interpolation
	4.3 Optimization

	5 Conclusion
	References

