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Abstract. Computer algebra methods are used to study the properties
of a nonlinear algebraic system that determines equilibrium orientations
of a satellite moving along a circular orbit under the action of gravita-
tional and aerodynamic torques. An algorithm for the construction of a
Gröbner basis is proposed for determining the equilibrium orientations
of a satellite with given principal central moments of inertia and given
aerodynamic torque in special cases, when the center of pressure of aero-
dynamic forces is located in one of the principal central planes of inertia
of the satellite. The conditions of the equilibria existence are obtained,
depending on three dimensionless parameters of the problem. The num-
ber of equilibria depending on the parameters is found by the analysis
of real roots of algebraic equations from the constructed Gröbner basis.
The evolution of domains with fixed number of equilibria from 24 to 8
is investigated in detail. All bifurcation values of the system parameters
corresponding to the qualitative change of these domains are determined.

1 Introduction

In this work, a symbolic investigation of a satellite dynamics under the influence
of gravitational and aerodynamic torques is presented. The gravity orientation
systems are based on the result that a satellite with different moments of inertia
in the central Newtonian force field in a circular orbit has 24 equilibrium orien-
tations [1]. However, at altitudes from 250 up to 500 km, rotational motion of
a satellite is subjected to aerodynamic torque too. Therefore, it is necessary to
study the joint action of gravitational and aerodynamic torques and, in partic-
ular, to analyse all possible satellite equilibria in a circular orbit. Such solutions
are used in practical space technology in the design of attitude control systems
of satellites.

The basic problems of satellite dynamics with an aerodynamic attitude con-
trol system have been presented in [1]. The problem of determining the classes of
equilibrium orientations for general values of aerodynamic torque was considered
in [2,3]. In [4–6], some equilibrium orientations were found in special cases when
c© Springer International Publishing AG 2016
V.P. Gerdt et al. (Eds.): CASC 2016, LNCS 9890, pp. 243–254, 2016.
DOI: 10.1007/978-3-319-45641-6 16



244 S.A. Gutnik and V.A. Sarychev

the center of pressure is located on a satellite principal central axis of inertia and
on a satellite principal central plane of inertia. In [7], all equilibrium orientations
were found in the case of axisymmetric satellite.

The present work continues the study started in [6]. In this paper, all cases
when the center of pressure is located in the satellite principal central plane
of inertia are considered. All possible equilibrium orientations are investigated,
and their existence conditions are obtained. The equilibrium orientations are
determined by real roots of the system of nonlinear algebraic equations. The
investigation of equilibria was possible due to application of Computer Algebra
Gröbner basis method. The evolution of domains with a fixed number of equi-
libria is investigated in dependence of three dimensionless system parameters.

2 Equations of Motion

Consider the motion of a satellite subjected to gravitational and aerodynamic
torques in a circular orbit. We assume that (1) the gravity field of the Earth is
central and Newtonian, (2) the satellite is a triaxial rigid body, (3) the effect of
atmosphere on a satellite is reduced to the drag force applied at the center of
pressure and directed against the velocity of the satellite center of mass relative
to the air, and the center of pressure is fixed in the satellite body. To write the
equations of motion we introduce two right-handed Cartesian coordinate systems
with origin at the satellite center of mass O. OXY Z is the orbital reference frame.
The axis OZ is directed along the radius vector from the Earth center of mass to
the satellite center of mass, the axis OX is in the direction of a satellite orbital
motion. Oxyz is the satellite body reference frame; Ox, Oy, and Oz are the
principal central axes of inertia of the satellite. The orientation of the satellite
body coordinate system Oxyz with respect to the orbital coordinate system is
determined by means of the aircraft angles of pitch α, yaw β, and roll γ, and the
direction cosines in the transformation matrix between the orbital coordinate
system OXY Z and Oxyz are represented by the following expressions:

a11 = cos(x,X) = cos α cos β,

a12 = cos(y,X) = sinα sin γ − cos α sinβ cos γ,

a13 = cos(z,X) = sin α cos γ + cos α sinβ sin γ,

a21 = cos(x, Y ) = sinβ,

a22 = cos(y, Y ) = cos β cos γ, (1)
a23 = cos(z, Y ) = − cos β sin γ,

a31 = cos(x,Z) = − sin α cos β,

a32 = cos(y, Z) = cos α sin γ + sin α sinβ cos γ,

a33 = cos(z, Z) = cos α cos β − sin α sin β sin γ.

Then equations of the satellite attitude motion can be written in the Euler
form [1,4]:
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Aṗ + (C − B)qr − 3ω2
0(C − B)a32a33 = ω2

0(H2a13 − H3a12),
Bq̇ + (A − C)rp − 3ω2

0(A − C)a31a33 = ω2
0(H3a11 − H1a13),

Cṙ + (B − A)pq − 3ω2
0(B − A)a31a32 = ω2

0(H1a13 − H3a11), (2)
p = (α̇ + ω0)a21 + γ̇, q = (α̇ + ω0)a22 + β̇ sin γ,

r = (α̇ + ω0)a23 + β̇ cos γ.

Here p, q, and r are the projections of the satellite angular velocity onto the
axes Ox, Oy, and Oz; A, B, and C are the principal central moments of inertia
of the satellite (without loss of generality, we assume that B > A > C); ω0

is the angular velocity of the orbital motion of the satellite center of mass.
H1 = −aQ/ω2

0 , H2 = −bQ/ω2
0 , H3 = −cQ/ω2

0 , Q is the atmospheric drug force
acting on a satellite; a, b, and c are the coordinates of the center of pressure of
a satellite in the reference frame Oxyz. The dot designates differentiation with
respect to time t.

3 Equilibrium Orientations of a Satellite

Setting in (2) α = α0 = const, β = β0 = const, γ = γ0 = const, we obtain at
A �= B �= C the equations

(C − B)(a22a23 − 3a32a33) = H2a13 − H3a12,

(A − C)(a21a23 − 3a31a33) = H3a11 − H1a13, (3)
(B − A)(a21a22 − 3a31a32) = H1a12 − H2a11,

which allow us to determine the satellite equilibria in the orbital reference frame.
Substituting the expressions for the direction cosines from (1) in terms of the
aircraft angles and into Eq. (3), we obtain three equations with three unknowns
α, β, and γ. The second procedure for closing Eq. (3) is to add the following six
orthogonality conditions for the direction cosines

ai1aj1 + ai2aj2 + ai3aj3 − δij = 0, (4)

where δij is the Kronecker delta and i, j = 1, 2, 3. Equations (3) and (4) form
a closed system with respect to the direction cosines, which also specifies the
equilibrium solutions of the satellite.

The system (3) and (4) has been solved for general case of the problem when
H1 �= 0, H2 �= 0, H3 �= 0 [2,3]. With the help of computer algebra method
it was shown that equilibrium orientations are determined by real solutions of
algebraic equation of the twelfth degree. The equilibrium orientations and their
stability were analysed numerically. The problem has been solved analytically
only for some specific cases when the center of pressure is located on a satellite
principal central axis of inertia Ox, when H1 �= 0, H2 = H3 = 0 [4,5] and for
the case of axisymmetric satellite when A �= B = C [7]. When the pressure
center locates in the satellite principal central plane of inertia Oxz of the frame
Oxyz, in the case when H1 �= 0, H2 = 0, and H3 �= 0, very complex analytical
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study of the system (3) and (4) was conducted, and the equilibria were analysed
numerically [6]. In the present work, the problem of determination of the classes
of equilibrium orientations for all cases when the pressure center locates in one of
satellite principal central planes of inertia of the frame Oxyz, when (1) H1 �= 0,
H2 �= 0, and H3 = 0, (2) H1 �= 0, H2 = 0, and H3 �= 0 and (3) H1 = 0, H2 �= 0,
and H3 �= 0, with the help of Computer Algebra methods is investigated. The
existence of flat solutions in these cases is specified.

4 Investigation of Equilibria

4.1 Equilibria in the Case H3 = 0 (H1 �= 0, H2 �= 0)

We begin by considering the first case H1 �= 0, H2 �= 0, and H3 = 0 when the
pressure center is located in the plane Oxy. Introducing dimensionless parameters
hi = Hi/(B − C), ν = (B − A)/(B − C), (0 < ν < 1), system (3) takes the form

a22a23 − 3a32a33 + h2a13 = 0,

(1 − ν)(a23a21 − 3a33a31) + h1a13 = 0, (5)
ν(a21a22 − 3a31a32) − h1a12 + h2a11 = 0.

To solve the algebraic system (4), (5) we applied the algorithm of constructing
the Gröbner bases [8]. The method of constructing the Gröbner bases is an
algorithmic procedure for complete reduction of the problem in the case of the
system of polynomials in several variables to the polynomial of one variable.
Using the Gröbner[gbasis] Maple 15 package [9] for constructing Gröbner bases,
the lexicographic monomial order was chosen. We constructed the Gröbner basis
for the system of nine polynomials (4), (5) with nine variables direction cosines
aij (i, j = 1, 2, 3), and in the list of polynomials, we include the polynomials
from the left-hand sides fi (i = 1, 2, ...9) of the algebraic equations (4), (5):

G:=map(factor,Gröbner[gbasis]([f1, ... f9], plex(a11, ... a33))).

Here we write down the polynomial in the Gröbner basis that depends only on
one variable x = a33. This polynomial has the form

P (x) = P1(x)P2(x) = 0, (6)

where

P1(x) = x(x2 − 1),
P2(x) = p0x

4 + p1x
2 + p2,

p0 = 9(1 − ν)2p23,
p1 = p3(h6

1 − (1 − ν)(6ν − (3 − ν)h2
2)h

4
1

− (1 − ν)2((2ν − 3)h4
2 + 9ν2(2h2

2 − 1))h2
1 + (1 − ν)4(h2

2 + 3ν)2),
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p2 = −ν2h2
1h

2
2(h

6
1 − (1 − ν)(5ν + 1 − (3 − ν)h2

2)h
4
1

− (1 − ν)2((2ν − 3)h4
2 + 2(5ν2 − ν + 1)h2

2 − 3ν(2 + ν))h2
1

+ (1 − ν)4(h2
2 − 1)(h2

2 + 3ν)2),
p3 = h4

1 + 2(1 − ν)(h2
2 − 3ν)h2

1 + (1 − ν)2(h2
2 + 3ν)2.

It is necessary to consider three cases a33 = 0, a2
33 = 1, and P2(a2

33) = 0 to
investigate system (4), (5).

In the first case when a33 = 0, system (4), (5) takes the form

3νa31a32 + (h1a31 + h2a32)a23 = 0,

a2
31 + a2

32 = 1,

a2
23 = 1, (7)

a33 = a13 = a21 = a22 = 0,

a11 = −a23a32, a12 = a23a21.

The first two equations of system (7) can be written in a simpler form

9ν2a4
31 + 6νh2a

3
31 + (h2

1 + h2
2 − 9ν2)a2

31 − 6νh2a31 − h2
1 = 0, (8)

a32 = ∓ h1a31

(3νa31 ± h2)
.

Having solved system (8) one can determine the remaining direction cosines
from the equations of system (7). The first equation of system (7) represents
the equations of four hyperbolas. Their two branches pass through the origin of
coordinate system (a31 = 0 and a32 = 0) in the plane of variables a31 and a32,
while the second equation determines the unit circle in this plane. The number of
real solutions to system (7) (and, hence, to system (8)) depends on the character
of intersections of the hyperbolas with the circle. It is clear that two branches of
the hyperbolas that pass through the origin of coordinates always intersect the
circle at four points. If two other branches of the hyperbolas also intersect the
circle, we have four more solutions. In the case when hyperbola branches touch
the circle four solutions merge into two (there are two pairs of multiple roots) [7].
Thus, system (7), and hence system (8) too, has either eight or four solutions.
It follows from the reasoning presented above that bifurcation points are those
points of plane a31, a32, through which the branches of hyperbolas and the circle
pass simultaneously, and where tangents to these curves coincide. The condition
of coincidence of the tangents to two hyperbola branches and the circle has the
following form

d(a31)
d(a32)

= −3νa32 ± h1

3νa31 ± h2
= −2a31

2a32

or

3ν(a2
32 − a2

31) ± h1a32 ∓ h2a31 = 0. (9)
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Substituting the expression for a32 from (8) into the second equation of (7) and
equation (9), we get the following system of equations

h2
1a

2
31

(3νa31 + h2)2
= 1 − a2

31,
h2
1h2

(3νa31 + h2)2
= −(3νa31 + h2). (10)

Excluding h2
1 from system of equations (10), after some simple transformations

we get the relationship a31 = −(3ν)−1/3
h
1/3
2 . Finally, substituting the expression

for a31 into the second equation of (10) we arrive at the equation of astroid

h
2/3
1 + h

2/3
2 = (3ν)2/3. (11)

There are eight solutions inside the region h
2/3
1 + h

2/3
2 < (3ν)2/3; when pass-

ing through curve (11) (which is a bifurcation curve), the number of solutions
changes to four; there exist four solutions in the region h

2/3
1 + h

2/3
2 > (3ν)2/3.

Now let us consider the second case a2
33 = 1. In this case, system (4), (5)

takes the form

νa21a22 + (h1a21 + h2a22)a33 = 0,

a2
21 + a2

22 = 1,

a2
33 = 1, (12)

a31 = a32 = a13 = a23 = 0,

a11 = a22a33, a12 = − a21a33.

The first two equations of system (12) can be written in the following form:

ν2a4
21 + 2νh2a

3
21 + (h2

1 + h2
2 − ν2)a2

21 − 2νh2a31 − h2
1 = 0, (13)

a22 = ∓ h1a21

(νa21 ± h2)
.

Applying the approach suggested above for investigating system (7) one can
demonstrate that for system (12), the bifurcation curve separating the region of
existence of eight solutions from the region of existence of four solutions is also
the astroid

h
2/3
1 + h

2/3
2 = (ν)2/3. (14)

In Figs. 1, 2 and 3, astroids (11) and (14) for the ν values equal to 0.2, 0.5,
and 0.8 are presented, that separate in plane (h1, h2) three regions with dif-
ferent numbers of equilibrium orientations of the satellite under the action of
gravitational and aerodynamic torques. There exist 8, 6, and 4 real solutions
(16, 12, and 8 equilibria) of both Eqs. (8) and (13) for the first and second
cases in regions h

2/3
1 + h

2/3
2 < (ν)2/3; (ν)2/3 < h

2/3
1 + h

2/3
2 < (3ν)2/3, and

h
2/3
1 + h

2/3
2 > (3ν)2/3, respectively.

Let us consider the third case for which the satellite equilibria are determined
by the real roots of the biquadratic equation P2(x) = 0. The number of real roots
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of the biquadratic equation (6) is even and not greater than 4. For each solution,
one can find from the second polynomial from of the constructed Gröbner base
two values of a32 and, then, their respective values a31. For each set of values
a31, a32, and a33, one can unambiguously determine from original system (4)
and (5) the respective values of the direction cosines a11, a12, a13 a21, a22, and
a23. Thus, each real root of the biquadratic equation (6) is matched with two
sets of values aij (two equilibrium orientations). Since the number of real roots
of biquadratic equation (6) does not exceed 4, the satellite in the third case can
have no more than 8 equilibrium orientations.

For the variable t = x2 = a2
33, we get the quadratic equation

P2(t) = p0t
2 + p1t + p2 = 0. (15)

Equation (15) has two solutions

t1 =
−p1 −

√
p21 − 4p0p2

2p0
; t2 =

−p1 +
√

p21 − 4p0p2
2p0

. (16)

It is possible to show that the discriminant p21 − 4p0p2 ≥ 0 at any values of the
system parameters. Thus, in case of the inequality t1 = a2

33 > 0 satisfaction,
Eq. (15) has two real roots t1 and t2 which correspond to four a33 values, and
system (4), (5) (at a33 �= 0, a33 �= ±1) has 8 solutions, and these solutions
correspond to 8 satellite equilibrium orientations. These equilibria exist in the
domain bounded by the curve t1(h1, h2, ν) = 0. In Figs. 1, 2 and 3, these curves
are marked as t1.

In the domain bounded by the curves t1(h1, h2, ν) = 0, t2(h1, h2, ν) = 1
for which inequalities t1(h1, h2, ν) < 0 and 0 < t2(h1, h2, ν) < 1 take place, only
four equilibria exist, which correspond only to one root t2. Outside the boundary
t2(h1, h2, ν) = 1, there are no solutions of the third case. In Figs. 1, 2 and 3, these
curves are denoted as t2.

The results of the analysis of the equilibria total number in the third case
can be summarized as follows. The curves t1(h1, h2, ν) = 0, t2(h1, h2, ν) = 1
decompose the plane (h1, h2) into three domains where 8 equilibria, 4 equilibria,
and no equilibria exist.

The final decomposition of the plane (h1, h2) for all three cases is presented
in Figs. 1, 2 and 3 for ν = 0.2, ν = 0.5, and ν = 0.8. Curves (11), (14) and
t1(h1, h2, ν) = 0, t2(h1, h2, ν) = 1 separate the plane into domains with the
fixed number of equilibria equal to 24, 20, 16, 12, and 8.

4.2 Equilibria in the Case H1 = 0 (H2 �= 0, H3 �= 0)

Let us consider the next case H1 = 0, H2 �= 0, and H3 �= 0 when the pressure
center locates in the plane Oyz. System (3) in that case takes the form

a22a23 − 3a32a33 + h2a13 − h3a12 = 0,

(1 − ν)(a23a21 − 3a33a31) − h3a11 = 0, (17)
ν(a21a22 − 3a31a32) + h2a11 = 0.
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Fig. 1. The regions with the fixed number of equilibria for ν = 0.2

Fig. 2. The regions with the fixed number of equilibria for ν = 0.5

Applying the approach suggested above for investigating system (4), (5), we
used the algorithm of constructing the Gröbner bases for the polynomials on the
left-hand sides of the system (4), (17). The polynomial in the Gröbner basis that
depends only on one variable in that case a31 has the form

Ph1(a31) = P3(a31)P4(a31) = 0, (18)
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Fig. 3. Regions with the fixed number of equilibria for ν = 0.8

where

P3(a31) = a31(a2
31 − 1),

P4(a31) = p40a
4
31 + p41a

2
31 + p42,

p40 = 9ν2(1 − ν)2p243,
p41 = p43(ν4h6

3 + ν2(1 − ν)(6ν2 − (3ν − 1)h2
2)h

4
3

− ν(1 − ν)2((2ν − 3)h4
2 + 9ν(2h2

2 − ν2))h2
3 + (1 − ν)4h2

2(h
2
2 + 3ν)2),

p42 = −h2
2h

2
3(ν

4h6
3 + ν2(1 − ν)(ν2(5 + ν) + (1 − 3ν)h2

2)h
4
3

+ ν(1 − ν)2((3ν − 2)h4
2 + 2ν(ν(1 − ν) − 5)h2

2 + 3ν3(1 + 2ν))h2
3

+ (1 − ν)4(h2
2 − ν2)(h2

2 + 3ν)2),
p43 = ν2h4

3 + 2ν(1 − ν)(h2
2 − 3ν)h2

3 + (1 − ν)2(h2
2 + 3ν)2.

It is also necessary to consider three cases, a31 = 0, a2
31 = 1, and P42(a2

31) = 0
to investigate system (4), (17).

In the first case when a31 = 0, using the approach described above in Sub-
sect. 4.1, it is possible to obtain the bifurcation curve

h
2/3
2 + h

2/3
3 = 32/3,

which separates the plane (h2, h3) into two regions with eight and four equilib-
rium orientations of the satellite. In the second case when a2

31 = 1, applying the
above approach one can demonstrate that for system (17), the bifurcation curve
separating the region of existence of eight solutions from the region of existence
of four solutions is also the astroid

h
2/3
2 + h

2/3
3 = 1.
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Another two curves separating the regions with an equal number of equilibria
can be obtained from the conditions of existence of real roots of the biquadratic
equation P4(a31) = 0. The evolution of domains with a fixed number of equilib-
rium orientations in the plane of two parameters (h2, h3) is very similar to the
case described in 4.1.

4.3 Equilibria in the Case H2 = 0 (H1 �= 0, H3 �= 0)

In the last case H1 �= 0, H2 = 0, and H3 �= 0 when the pressure center locates
in the plane Oxz system (3) takes the form

a22a23 − 3a32a33 − h3a12 = 0,

(1 − ν)(a23a21 − 3a33a31) − h3a11 + h1a13 = 0, (19)
ν(a21a22 − 3a31a32) − h1a12 = 0.

Constructing the Gröbner bases for the polynomials on the left-hand sides of
system (4), (19), we will get the polynomial that depends only on one variable
a32 in the form

Ph2(a32) = P5(a32)P6(a32) = 0, (20)

where

P5(a32) = a32(a2
32 − 1),

P6(a32) = p60a
4
32 + p61a

2
32 + p62,

p60 = 9ν2p263,

p61 = p63(h6
1 + ν((2 + ν)h2

3 − 6(1 − ν))h4
1

+ ν2((2ν + 1)h4
3− 18(1 − ν)2h2

3 + 9(1 − ν)2)h2
1+ ν4h2

3(h
2
3+ 3(1 − ν))2),

p62 = −h2
1h

2
3(h

6
1 + ν((2 + ν))h2

3 + 5ν − 6)h4
1

+ ν2((2ν + 1)h4
3 + 2(9ν − 5ν2 − 5)h2

3 + 3(ν2 − 4ν + 3))h2
1

+ ν4(h2
3 − 1)(h2

3 + 3(1 − ν))2),
p63 = h4

1 + 2ν(h2
3 − 3(1 − ν))h2

1 + ν2(h2
3 + 3(1 − ν))2.

It is necessary to consider three cases a32 = 0, a2
32 = 1, P6(a32) = 0, to inves-

tigate the system (4), (19). In the first case when a32 = 0, using the approach
described in Subsect. 4.1, it is possible to obtain the bifurcation curve

h
2/3
1 + h

2/3
3 = (3(1 − ν))2/3,

which separates the plane (h1, h3) into two regions with eight and four equilib-
rium orientations of the satellite. In the second case when a2

32 = 1, the bifurca-
tion curve separating the region of existence of eight solutions from the region
of existence of four solutions is also the astroid

h
2/3
1 + h

2/3
3 = (1 − ν)2/3.
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Another two curves separating the regions with an equal number of equilibria
can be obtained from the conditions of existence of real roots of the biquadratic
equation P6(a32) = 0.

The evolution of domains with a fixed number of equilibrium orientations in
the plane of two parameters (h1, h3) is also very similar to the first case. In [6],
the sufficient conditions for stability of the equilibrium orientations for the last
case h1 �= 0, h2 = 0, and h3 �= 0 are obtained using the Lyapunov theorem.

Conditions a31 = 0, a2
31 = 1; a32 = 0, a2

32 = 1 and a33 = 0, a2
33 = 1 define all

flat solutions of the problem.

5 Conclusion

In this work, the attitude motion of the satellite under the action of gravita-
tional and aerodynamic torques in a circular orbit has been investigated. The
main attention was given to determination of the satellite equilibrium orienta-
tion in the orbital reference frame and to the analysis of their evolutions in three
cases when the center of pressure of aerodynamic forces is located in one of the
principal central planes of inertia of the satellite Oxy, Oxz, and Oyz.

The symbolic method of determination of all the satellite equilibria is sug-
gested in the cases when h1 = 0, or h2 = 0, or h3 = 0. The Computer algebra
system Maple is applied to reduce the satellite stationary motion system of nine
algebraic equations with nine variables to a single algebraic equation with one
variable, using the algorithm for the construction of Gröbner basis.

These results permit us to describe the change of the number of equilibrium
orientations of the satellite as a function of the parameters hi and ν. When the
aerodynamic torque is small enough, there exist 24 equilibria; when it is large
enough, there are 8. The evolution of domains with a fixed number of equilibrium
orientations was investigated both analytically and numerically in the plane of
two parameters (h1, h2) at different values of parameter ν. All bifurcation values
of the system parameters corresponding to the qualitative change of domains
with fixed number of equilibria were determined. The existence of flat solutions
of the problem was specified. The results of the study can be used at the stage
of preliminary design of the satellite with aerodynamic control system.
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