
Chapter 3
Measure Theory

If topology derives its inspiration from the qualitative features of geometry, then the
subject of the present chapter, measure theory, may be thought to have its origins
in the quantitative concepts of length, area, and volume. However, a careful theory
of area, for example, turns out to be much more delicate than one might expect
initially, as any given set may possess an irregular feature, such as having a jagged
boundary or being dispersed across many subsets. Even in the setting of the real
line, if one has a set E of real numbers, then in what sense can the length of the set
E be defined and computed? Furthermore, to what extent can we expect the length
(or area, volume) of a union A [ B of disjoint sets A and B to be the sum of the
individual lengths (or areas, volumes) of A and B?

This present chapter is devoted to measure theory, which, among other things,
entails a rigorous treatment of length, area, and volume. However, as with the subject
of topology, the context and results of measure theory reach well beyond these basic
geometric quantities.

3.1 Measurable Spaces and Functions

Definition 3.1. If X is a set, then a � -algebra on X is a collection ˙ of subsets of
X with the following properties:

1. X 2˙ ;
2. Ec 2˙ for every E 2˙ ; and
3. for every countable family fEkgk2N of sets Ek 2˙ ,

[

k2N
Ek 2˙ :
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78 3 Measure Theory

The pair .X;˙/ is called a measurable space, and the elements E of ˙ are called
measurable sets.

The smallest and largest � -algebras on a set X are, respectively, ˙ D f;;Xg and
˙ D P.X/, the power set P.X/ of X. The following definition, while abstract in
essence, allows for the determination of more interesting, intermediate examples of
� -algebras.

Definition 3.2. If S is any collection of subsets of X, then the intersection of all
� -algebras on X that contain S is called the � -algebra generated by S .

It is elementary to verify that the � -algebra generated by a collection of S of
subsets of X is a � -algebra in the sense of Definition 3.1.

Definition 3.3. If .X;T / is a topological space, then the � -algebra generated by T
is called the � -algebra of Borel sets of X.

Let us now consider functions of interest for measure theory.

Definition 3.4. If .X;˙/ is a measurable space, then a function f W X ! R is
measurable if f �1.U/ 2˙ , for every open set U � R.

Proposition 3.5. If .X;˙/ is a measurable space, then the following statements are
equivalent for a function f W X ! R:

1. f �1 . .˛;1// 2˙ for all ˛ 2 R;
2. f �1 . Œ˛;1// 2˙ for all ˛ 2 R;
3. f �1 . .�1;˛// 2˙ for all ˛ 2 R;
4. f �1 . .�1;˛� / 2˙ for all ˛ 2 R.

Proof. To begin, observe that (2) follows from (1), because

f �1 .Œ˛;1//D f �1
 
\

k2N
.˛� 1

k
;1/

!
D
\

k2N
f �1

�
.˛� 1

k
;1/

�
2 ˙ :

Statement (3) follows easily from (2), since

f �1 ..�1;˛//D f �1 .Œ˛;1//c 2 ˙ :

Next, we see that (3) implies (4), because

f �1 ..�1;˛�/D f �1
 
\

k2N
.�1;˛C 1

k
/

!
D
\

k2N
f �1

�
.�1;˛C 1

k
/

�
2 ˙ :

Statement (4) implies (1), because

f �1 ..˛;1//D f �1 ..�1;˛�/c 2 ˙ ;

which completes the proof. ut
An additional equivalent condition for the measurability of a function is set aside,

for future reference, as the following result.
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Proposition 3.6 (Criterion for Measurability). If .X;˙/ is a measurable space,
then a function f W X ! R is measurable if and only if f �1 . .˛;1// 2 ˙ , for all
˛ 2 R.

Proof. By definition of measurable function, f �1 . .˛;1// 2 ˙ for all ˛ 2 R

because each .˛;1/ is open in R.
Conversely, assume that f �1 . .˛;1// 2˙ , for all ˛ 2 R. Let U � R be an open

set. By Cantor’s Lemma (Proposition 1.30), there is a family of pairwise disjoint
open intervals fJkgk2N such that U D

[

k

Jk. Because f �1.U/ D
[

k

f �1.Jk/ and ˙

is closed under countable unions, it is enough to prove that f �1.J/ 2 ˙ for every
open interval J. For open intervals of the form .˛;1/ and .�1;˛/, this is handled
by Proposition 3.5. If one has an open interval of the form J D .˛;ˇ/, then f �1.J/
is given by f �1.J/D f �1..�1;˛�/c \ f �1.Œˇ;1//c, which by Proposition 3.5 is the
intersection of two sets in ˙ . ut
Proposition 3.7. If .X;˙/ is a measurable space, if f ;g W X ! R are measurable
functions, and if � 2 R, then f C g, �f , jf j, and fg are measurable functions. If, in
addition, g.x/ 6D 0 for every x 2 X, then f=g is measurable function.

Proof. The equivalent criteria for measurability of Proposition 3.5 will be used in
each case. We begin with a proof that f C g is measurable.

Fix ˛ 2 R and consider the set S˛ D fx 2 X j f .x/C g.x/ > ˛g. Because f and g
are measurable, for each q 2 Q we have

fx 2 X j f .x/ > qg 2˙ and fx 2 X jq> ˛� g.x/g 2˙ :
Hence, as ˙ is closed under intersections and countable unions,

[

q2Q
.fx 2 X j f .x/ > qg\fx 2 X jq> ˛� g.x/g/ 2 ˙ : (3.1)

Let G denote the set in (3.1); we shall prove that S˛ D G. If y 2 S˛ , then f .y/ >
˛� g.y/. In fact, by the density of Q in R, there is a rational number qy 2 Q such
that f .y/ > qy > ˛� g.y/. Thus,

y 2 fx 2 X j f .x/ > qyg\fx 2 X jqy > ˛� g.x/g ;

which shows that S˛ � G. Conversely, if y 2 G, then there is a rational qy 2 Q such
that y 2 fx 2 X j f .x/ > qyg \ fx 2 X jqy > ˛ � g.x/g. Thus, f .y/ > qy > ˛ � g.y/
implies that f .y/Cg.y/ > ˛, whence y 2 S˛ and, consequently, G � S˛ . This proves
that f C g is measurable.

The proof that �f is measurable is clear, and we move to the proof that jf j is
measurable. Note that if ˛ 2 R, then jf j�1 ..˛;1//D X if ˛ < 0, and

jf j�1 ..˛;1//D f �1 ..˛;1//[ f �1 ..�1;�˛// ; if ˛ � 0:

In either case, jf j�1 ..˛;1// 2˙ , which proves that jf j is measurable.
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To prove that the product fg is measurable, first assume that h W X ! R is a
measurable function and consider h2. If ˛ 2R, then fx 2 X jh.x/2 > ˛g D X if ˛ < 0,
otherwise fx 2 X jh.x/2 > ˛g D jhj�1 �.p˛;1/

�
. In either case, the sets belong to

˙ . This proves that the square of a measurable function is measurable. To conclude
that fg is measurable, express fg as

fg D 1

4

�
.f C g/2 � .f � g/2

�
: (3.2)

As the sums, squares, and scalar multiples of measurable functions are measurable,
equation (3.2) demonstrates that fg is measurable.

If g.x/ 6D 0 for every x 2 X, then 1=g is measurable (Exercise 3.79), which implies
that the function f=g D f � .1=g/ is measurable. ut

Using the algebraic features exhibited in Proposition 3.7, one deduces that the
following functions are measurable as well.

Corollary 3.8. Suppose that f ;g W X ! R are measurable functions.

1. If max.f ;g/ is the function whose value at each x 2 X is the maximum of f .x/ and
g.x/, and if min.f ;g/ is the function whose value at each x 2 X is the minimum of
f .x/ and g.x/, then max.f ;g/ and min.f ;g/ are measurable.

2. f C is the function max.f ;0/ and f � is the function �min.f ;0/, then f C and f �
are measurable.

Proof. By Proposition 3.7, the sum, difference, and absolute value of measurable
functions are measurable. Therefore, the formulae

max.f ;g/ D 1=2.f C g Cjf � gj/;
min.f ;g/ D 1=2.f C g �jf � gj/;

f C D 1=2.jf jC f /; and
f � D 1=2.jf j� f /

imply the asserted conclusions. ut
The purpose of the following result is to use sequences of measurable functions

to determine new measurable functions.

Proposition 3.9. Suppose that fk W X !R is a measurable function for each k 2N. If

S D fx 2 X j supk fk.x/existsg;
LS D fx 2 X j limsupk fk.x/existsg;

I D fx 2 X j infk fk.x/existsg;
LI D fx 2 X j liminfk fk.x/existsg;and
L D fx 2 X j limk fk.x/existsg;



3.1 Measurable Spaces and Functions 81

then each of the sets S, LS, I, LI, and L is measurable. Moreover,

1. supk fk is a measurable function on S,
2. limsupk fk is a measurable function on LS,
3. infk fk is a measurable function on I,
4. liminfk fk is a measurable function on LI, and
5. lim fk is a measurable function on L.

Proof. The set f �1
k ..�1;q// is measurable for every k 2 N and q 2 Q; therefore,

so is
[

q2Q

\

k2N
f �1
k ..�1;q//D S :

Consider now the function supk fk defined on the (measurable) set S with values in
R. For every ˛ 2 R,

fx 2 S j sup
k

fk.x/ > ˛g D
[

k2N
fx 2 S j fk.x/ > ˛g 2 ˙.S/ :

Hence, supk fk is measurable as a function S ! R.
The proofs that I is a measurable set and that infk fk is a measurable function

I ! R are handled in a similar fashion. For example, in this case, I is given by

I D
[

q2Q

\

k2N
f �1
k ..q;1// :

For each k 2 N consider the measurable function gk W S ! N defined by

gk.x/D sup
n�k

fn.x/ ; x 2 S :

For every x 2 LS, lim supk fk is precisely infk gk. Moreover, by the discussion of the
previous paragraph, infgk is a measurable function on the (measurable) set

[

q2Q

\

k2N
g�1

k ..q;1//D LS :

Hence, as a function LS ! R, lim supk fk is measurable.
The proofs that LI is a measurable set and that liminfk fk is a measurable function

LI ! R are similarly handled.
Consider the measurable set E D LS \ LI and let h W E ! R be the function

h.x/D lim sup
k

fk.x/� lim inf
k

fk.x/ :

Note that h is measurable and that

L D fx 2 X j lim sup
k

fk.x/D lim inf
k

fk.x/g D h�1.f0g/ ;
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which is a measurable set because

h�1.f0g/D En�h�1.�1;0/[ h�1.0;1/
�
:

Finally, for every ˛ 2 R,

fx 2 L j lim
k

fk.x/ > ˛g D L \fx 2 L j limsup
k

fk.x/ > ˛g 2 ˙.L/ :

Therefore, limk fk is measurable as a function from L to R. ut
Definition 3.10. If X is a set, then the characteristic function of a subset E � X is
the function �E W X ! R defined by

�E.x/D 1; if x 2 E; and �E.x/D 0; if x 62 E:

From the definition above, the following proposition is immediate:

Proposition 3.11. If .X;˙/ is a measurable space and if E � X, then the charac-
teristic function �E W X ! R is a measurable function if and only if E 2˙ .

Characteristic functions can be used to restrict or extend the domain of functions
(Exercise 3.82).

Definition 3.12. If .X;˙/ is a measurable space, then a simple function is a
measurable function ' W X ! R such that ' assumes at most a finite number of
values in R.

Suppose that ' is a simple function on a measurable space .X;˙/. If '.X/ D
f˛1; : : : ;˛ng � R, then let Ek D '�1.f˛kg/ (which is a measurable set, as ' is a
measurable function) so that

' D
nX

kD1
˛k�Ek

represents ' as a linear combination of the characteristic functions �Ek .

Definition 3.13. A sequence ffkgk2N of real-valued functions fk on a set X is a
monotone increasing sequence if fk.x/� fkC1.x/ for every k 2 N and every x 2 X.

The analysis of measurable functions depends, to a very large extent, on the
following approximation theorem.

Theorem 3.14 (Approximation of Nonnegative Measurable Functions). For
every nonnegative measurable function f on a measurable space .X;˙/, there is
a monotone increasing sequence f'kgk2N of nonnegative simple functions 'k on X
such that

lim
k!1'k.x/D f .x/;

for every x 2 X.
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Proof. Let �n W Œ0;n� ! Z be the function whose value at t is the unique j 2 Z for
which t 2 Œ j

2n ;
jC1
2n /, and define !n W R ! Q by !n.t/D �n.t/=2n, if t 2 Œ0;n�, and by

!n.t/D 0 if t 2 .n;1/. The functions !n satisfy !n.t/ � t for every t 2 Œ0;1/ and
!n.t/ � !nC1.t/ for all n 2 N and t 2 Œ0;1/. Now let 'n D !n ı f . Thus, f'ngn is a
monotone increasing sequence of nonnegative functions, each with finite range. For
each x 2 X there is some n 2 N for which f .x/ 2 Œ0;n/.Thus, for every k > n,

f .x/�'k.x/ <
1

2k
;

which proves that lim
n!1'n.x/ D f .x/. All that remains is to verify that 'n is

measurable. To this end, select n 2 N and let

En D f �1.Œn;1// and Enj D f �1
��

j �1
2n

;
j

2n

��
; for 1� j � 2nn :

These are measurable sets and

'n D
2nnX

jD1

j �1
2n

�Enj C n�En :

Hence, 'n is a simple function. ut
By decomposing a real-valued function f into a difference its positive and

negative parts, namely f D f C � f �, where

f C D jf jC f

2
and f � D jf j� f

2
; (3.3)

we obtain the following approximation result for arbitrary measurable functions.

Corollary 3.15. If .X;˙/ is a measurable space and if f W X ! R is a measurable
function, then there is a sequence f kgk2N of simple functions  k W X ! R such that

lim
k!1 k.x/D f .x/ ; 8x 2 X :

3.2 Measure Spaces

Before continuing further, the values �1 and C1 will be added to the arithmetic
system of R. Formally, the extended real number system are the elements of the set
denoted by Œ�1;C1� and defined by f�1g [R[ fC1g. (Here, �1 and C1
are meant to denote the “ends” of the real axis.) The arithmetic of Œ�1;C1� is
prescribed by the following laws:

1. r � s and r C s are the usual product and sum in R, for all r;s 2 R;
2. 0 � .�1/D 0 � .C1/D 0;
3. r � .�1/D �1 and r � .C1/D C1, for all r 2 R with r > 0 and for r D C1;
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4. r � .�1/D C1 and r � .C1/D �1, for all r 2 R with r < 0 and for r D �1;
5. r C .�1/D �1 and r C .C1/D C1, for all r 2 R.

The sum of �1 and C1 is not defined in the extended real number system,
which is a small fact that will be of note in our study of signed measures in
Section 3.7.

Henceforth, Œ0;1� denotes the subset of the extended real numbers given by

Œ0;1�D Œ0;1/[fC1g:

The terminology below concerning families of sets will be used extensively,
beginning with the definition of measure in Definition 3.17.

Definition 3.16. A family fX˛g˛2� of subsets of a given set X is a family of pairwise
disjoint sets if X˛ \ Xˇ D ; for all ˛;ˇ 2� such that ˛ 6D ˇ.

Definition 3.17. A measure on a measurable space .X;˙/ is a function � W ˙ !
Œ0;C1� such that �.;/D 0 and

�

 
[

k2N
Ek

!
D
X

k2N
�.Ek/ ; (3.4)

for every sequence fEkgk2N of pairwise disjoint sets Ek 2˙ . Furthermore,

1. if �.X/ <1, then � is said to be a finite measure, and
2. if �.X/D 1, then � is said to be a probability measure.

The .X;˙;�/ is called a measure space.

Measures are not easy to construct or determine in general, but there are some
very simple examples nevertheless.

Example 3.18. Consider the measurable space .X;˙/ in which X is an uncount-
able infinite set and ˙ is the � -algebra of all subsets E � X that have the property
that E or Ec is countable (see Exercise 3.71). If � W˙ ! Œ0;C1� is defined by

�.E/D 0 if E is countable, and �.E/D 1 if Ec is countable;

then � is a measure on .X;˙/.

Example 3.19 (Dirac Measures). If ˙ is a � -algebra of subsets of X in which
fxg 2˙ for every x 2 X, then for each x 2 X the function ıx W˙ ! Œ0;1� given by

ıx.E/D 1 if x 2 E; and ıx.E/D 0 if x 62 E;

is a probability measure on .X;˙/. The measures ıx are called Dirac measures or
point mass measures.
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Example 3.20 (Counting Measure). Consider the measurable space .N;P.N//,
where P.N/ is the power set of N. If � W˙ ! Œ0;C1� is the function defined by

�.E/D the cardinality of E ;

then � is a measure on .N;P.N// and is called counting measure.

We turn now to some general properties of measures and measure spaces.

Proposition 3.21 (Monotonicity of Measure). Let .X;˙;�/ denote a measure
space. Suppose that E;F 2˙ are such that E � F. Then �.E/��.F/. Furthermore,
if �.F/ <1, then �.FnE/D �.F/��.E/.
Proof. Because E � F, we may express F as F D E [ .Ec \ F/, which is a union
of disjoint sets E and Ec \ F, each of which belongs to ˙ . Hence, �.F/D �.E/C
�.Ec \ F/� �.E/. ut
Proposition 3.22 (Continuity of Measure). Let .X;˙;�/ denote a measure space.
Suppose that fAkgk2N and fEkgk2N are sequences of sets Ek 2˙ .

1. If Ak � AkC1, for all k 2 N, then

�

 
[

k2N
Ak

!
D lim

k!1 �.Ak/ : (3.5)

2. If Ek � EkC1, for all k 2 N, and if �.E1/ <1, then

�

 
\

k2N
Ek

!
D lim

k!1 �.Ek/ : (3.6)

Proof. (1) Equation (3.5) plainly holds if �.Ak/ D 1 for at least one k; hence,
assume that �.Ak/ < 1 for all k 2 N. The sequence fAkgk2N is nested and
ascending, and so it is simple to produce from it a sequence of pairwise disjoint
sets Gk 2˙ by taking set differences: that is, define G1 to be A1 and let

Gk D AknAk�1 ; 8k � 2:

Observe that �.Ak/ < 1 implies that �.Gk/ D �.Ak/��.Ak�1/, by Proposi-

tion 3.21. Furthermore, the sets Gk are pairwise disjoint. Because Ak D
k[

nD1
Gn,

we have

[

k2N
Ak D

[

k2N
Gk :
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Thus, by the countable additivity of � on disjoint unions,

�

 
[

k2N
Ak

!
D �

 
[

k2N
Gk

!

D
X

k2N
�.Gk/

D �.A1/ C lim
n!1

nX

kD2
Œ�.Ak/��.Ak�1/�

D �.A1/ C
h

lim
n!1 �.An/

i
� �.A1/ ;

which establishes formula (3.5).
(2) The sequence fEkgk2N is nested and descending, and so it is simple to produce

from it a sequence of pairwise disjoint sets Fk 2˙ by taking set differences: that
is, let

Fk D EknEkC1 ; 8k 2 N :

Observe that Ek D EkC1 [ Fk and that EkC1 \ Fk D ;. Thus, by the countable
additivity of � on disjoint unions,

�.Ek/D �.EkC1/ C �.Fk/ ; 8k 2 N :

Because
 
\

k2N
Ek

!
\
 
[

k2N
Fk

!
D ; ;

and

E1 D
 
\

k2N
Ek

!
[
 
[

k2N
Fk

!
;

the countable additivity of � on disjoint unions yields

�.E1/ D �

 
\

k2N
Ek

!
C �

 
[

k2N
Fk

!

D �

 
\

k2N
Ek

!
C
X

k2N
�.Fk/

D �

 
\

k2N
Ek

!
C lim

n!1

nX

kD1
Œ�.Ek/��.EkC1/�

D �

 
\

k2N
Ek

!
C �.E1/ � lim

n!1�.EnC1/ ;

which establishes formula (3.6). ut
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As an application of the continuity of measure, the following result shows that
if a measurable function f on a finite measure space is unbounded, then the set on
which the values of f are very large has arbitrarily small measure.

Proposition 3.23. If .X;˙;�/ is a finite measure space and if f W X ! R is
measurable, then for each " > 0 there is an n 2 N such that

�.fx 2 X j jf .x/j> ng/ < ":

Proof. Let En D fx 2 X j jf .x/j > ng, for each n 2 N. Note that �.E1/ � �.X/ <1
and EnC1 � En for every n. Hence, by Proposition 3.22, if E D

\

n2N
En, then �.E/D

lim
n!1�.En/. Now because, in this particular case, E D ; and thus �.E/ D 0, we

deduce that for each " > 0 there is an n 2 N such that �.En/ < ". ut
One might not have a sequence of pairwise disjoint sets at hand. Nevertheless, it

is possible to obtain an estimate on the measure of their union.

Proposition 3.24 (Countable Subadditivity of Measure). Let .X;˙;�/ denote a
measure space. Suppose that fEkgk2N is any sequence of sets Ek 2˙ . Then,

�

 
[

k2N
Ek

!
�
X

k2N
�.Ek/ : (3.7)

Proof. For each k 2 N, let

Fk D Ek n
0

@
k�1[

jD1
Ej

1

A :

Note that the sequence fFkgk2N consists of pairwise disjoint elements of ˙ and that
each Fk � Ek. Thus, �.Fk/� �.Ek/, by Proposition 3.21. Also,

[

k2N
Ek D

[

k2N
Fk :

Thus,

�

 
[

k2N
Ek

!
D �

 
[

k2N
Fk

!
D
X

k2N
�.Fk/ �

X

k2N
�.Ek/ ;

which proves inequality (3.7). ut
There is a rather significant difference between those measure spaces .X;˙;�/

in which �.X/ is finite and those for which �.X/D 1. A hybrid between these two
alternatives occurs with the notion of a � -finite space.
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Definition 3.25. A measure space .X;˙;�/ is � -finite if there is a sequence
fXngn2N of measurable sets Xn 2˙ such that �.Xn/ <1 for every n and X D

[

n2N
Xn.

3.3 Outer Measures

Having examined to this point some properties of measures, we turn now to the issue
of constructing measures. This will be done by first defining an outer measure.

Definition 3.26. If X is a set, then a function �� W P.X/! Œ0;1� on the power set
P.X/ of X is an outer measure on X if

1. ��.;/D 0,
2. ��.S1/� ��.S2/, if S1 � S2, and

3. ��
 
[

k2N
Sk

!
�
X

k2N
��.Sk/ for every sequence fSkgk2N of subsets Sk � X.

An outer measure is generally not a measure. And note that the domain of an
outer measure is the power set P.X/, rather than some particular � -algebra of
subsets of X.

Definition 3.27. A sequential cover of X is a collection O of subsets of X with
the properties that ; 2 O and for every S � X there is a countable subcollection
fIkgk2N � O such that

S �
[

k2N
Ik :

Sequential covers lead to outer measures as follows.

Proposition 3.28. Assume that O is a sequential cover of a set X. If � WO ! Œ0;1/

is any function for which �.;/D 0, then the function�� WP.X/! Œ0;1� defined by

��.S/D inf

( 1X

kD1
�.Ik/ j fIkgk2N � O and S �

[

k2N
Ik

)
(3.8)

is an outer measure on X.

Proof. Clearly ��.;/D 0. If S � T , then any fIkgk2N � O that covers the set T also
covers the set S, and so ��.S/� ��.T/. Thus, all that remains is to verify that �� is
countable subadditive.

To this end, suppose that fSkgk2N is a sequence of subsets Sk � X. Since we aim
to show that

��
 
[

k2N
Sk

!
�
X

k2N
��.Sk/ ;
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only the case where the sum
P

k�
�.Sk/ converges need be considered. For this case,

suppose that " > 0. For each k 2 N there is a countable family fIkjgj2N � O such that
Sk �S

j Ikj and

X

j

�.Ikj/ � ��.Sk/C "

2k
:

Thus, fIkjgk;j2N forms a countable subcollection of sets from O that cover [kSk and
satisfies

��
 
[

k2N
Sk

!
�
X

k

X

j

�.Ikj/ �
X

k

�
��.Sk/C "

2k

�
�
X

k2N
��.Sk/ C " :

As " > 0 is chosen arbitrarily, �� is indeed countably subadditive. ut
The value of an outer measure is two-fold: (i) it is frequently easier to define

an outer measure on the power set of X than it is to define a measure on some � -
algebra of subsets of X (indeed, determining nontrivial � -algebras on X is in itself a
nontrivial task), and (ii) if one has an outer measure at hand, then there is a � -algebra
˙ of subsets of X for which the restriction of �� to ˙ is a measure on .X;˙/. This
latter fact is the content of the following theorem.

Theorem 3.29 (Carathéodory). If �� is an outer measure on a set X, then

1. the collection M��.X/ of all subsets E � X for which

��.S/D ��.E \ S/ C ��.Ec \ S/ ; 8S � X ;

is a � -algebra, and
2. the function � W M��.X/! Œ0;1� defined by �.E/D ��.E/, E 2 M��.X/, is a

measure on the measurable space .X;M��.X//.

The criterion (1) in Theorem 3.29 for membership in M��.X/ is called the
Carathéodory criterion. The proof of Theorem 3.29 requires the following lemma.

Lemma 3.30. If E1; : : : ;En 2 M��.X/, then

n[

kD1
Ek 2 M��.X/ :

Moreover, if E1; : : : ;En 2 M��.X/ are pairwise disjoint, then

��
 

S
\
"

n[

kD1
Ek

#!
D

nX

kD1
��.S \ Ek/ 8S � X : (3.9)

Proof. It is sufficient to consider the case n D 2, as the remaining cases follow by
induction on n.
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We shall prove that E1 [ E2 2 M��.X/, for all E1;E2 2 M��.X/ Let S � X be
arbitrary and note that S \ .E1[ E2/ can be written as

S \ .E1[ E2/D .S \ E1/[ .S \ E2/D .S \ E1/[ .ŒS \ Ec
1�\ E2/ :

Likewise,

S \ .E1[ E2/
c D S \ .Ec

1\ Ec
2/D .S \ Ec

1/\ Ec
2 :

Thus,

��.S/ � �� .S \ .E1[ E2// C �� .S \ .E1[ E2/c/

D �� �.S \ E1/[ .ŒS \ Ec
1�\ E2/

� C �� �ŒS \ Ec
1�\ Ec

2

�

� ��.S \ E1/ C �� �ŒS \ Ec
1�\ E2/

� C �� �ŒS \ Ec
1�\ Ec

2

�

D ��.S \ E1/ C ��.S \ Ec
1/

D ��.S/ ;

where the final two equalities are because of E2 2 M��.X/ and E1 2 M��.X/,
respectively. Hence,

��.S/D �� .S \ .E1[ E2// C �� .S \ .E1[ E2/
c/ ; 8S � X :

This proves that E1[ E2 2 M��.X/.
Next, let E1;E2 � X be disjoint elements of M��.X/. If S � X, then

ŒS \ .E1[ E2/�\ E2 D S \ E2 and
ŒS \ .E1[ E2/�\ Ec

2 D S \ E1 :
(3.10)

Thus, by using (3.10) together with the fact that E2 2 M��.X/, we obtain

��.S \ E1/ C ��.S \ E2/D �� .S \ .E1[ E2// ;

which completes the proof. ut
We are now equipped to prove Theorem 3.29.

Proof. To prove (1), namely that M��.X/ is a � -algebra, recall that a subset E � X
is an element of M��.X/ if and only if Ec 2 M��.X/. Hence, M��.X/ is closed
under complements. Further, the empty set ; clearly belongs to M��.X/. Thus, all
that remains is to prove that M��.X/ is closed under countable unions.

Lemma 3.30 states that M��.X/ is closed under finite unions. To get the same
result for finite intersections, note that
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E1;E2 2 M��.X/ H) Ec
1;E

c
2 2 M��.X/

H) Ec
1[ Ec

2 2 M��.X/

H) .Ec
1[ Ec

2/
c 2 M��.X/

H) .Ec
1/

c \ .Ec
2/

c D E1\ E2 2 M��.X/ :

That is, E1 \ E2 2 M��.X/. By induction, E1 \ � � � \ En 2 M��.X/, for all
E1; : : : ;En 2 M��.X/.

Now let fAkgk2N be a sequence for which Ak 2 M��.X/ for all k 2 N. Let E0 D ;
and

Ek D Ak n
k�1[

jD1
Aj ; 8k 2 N :

As M��.X/ is closed under finite unions and intersections, Ek 2 M��.X/ for all
k 2 N. Furthermore, by Exercise 3.76, fEkgk2N is a sequence of pairwise disjoint
sets for which

[

k2N
Ek D

[

k2N
Ak :

Let

E D
[

k2N
Ek and Fn D

n[

kD1
Ek ; 8n 2 N :

Because Fn � E, we have that Ec � Fc
n. The sets Fn are elements of M��.X/; thus,

for any subset S � X,

��.S/ D ��.S \ Fn/ C ��.S \ Fc
n/

� ��.S \ Fn/ C ��.S \ Ec/ :

Equation (3.9) of Lemma 3.30 yields

��.S \ Fn/D
nX

kD1
��.S \ Ek/ :

Thus, this equation and the inequality ��.S/� ��.S \ Fn/C��.S \ Ec/ imply that

��.S/ �
nX

kD1
��.S \ Ek/ C ��.S \ Ec/ ; 8n 2 N :

Therefore, by making use of the fact that �� is countably subadditive,
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��.S/ �
1X

kD1
��.S \ Ek/ C ��.S \ Ec/

� ��.S \ E/ C ��.S \ Ec/

� ��.S/ :

Hence, ��.S/D ��.S \ E/C��.S \ Ec/, which proves that E 2 M��.X/.
To prove (2), namely that �� restricted to M��.X/ is a measure, note first that

�.;/D 0 and that the range of � is obviously all of Œ0;1�.
Suppose now that fEkgk2N is a sequence in M��.X/ of pairwise disjoint sets and

let E DS
k Ek. We aim to prove that �.E/DP

k�.Ek/. Outer measure is countably
subadditive; thus,

�.E/D ��.E/ �
1X

kD1
��.Ek/D

1X

kD1
�.Ek/ :

Let S � X be arbitrary. By Lemma 3.30,

��
 

S
\
"

n[

kD1
Ek

#!
D

nX

kD1
��.S \ Ek/ for every n 2 N :

In particular, for S D X, this yields, for every n 2 N,

�

 
n[

kD1
Ek

!
D ��

 
n[

kD1
Ek

!
D

nX

kD1
��.Ek/D

nX

kD1
�.Ek/ :

Thus,

1X

kD1
�.Ek/� �

 1[

kD1
Ek

!
� �

 
n[

kD1
Ek

!
D

nX

kD1
�.Ek/ ;

for every n 2 N, and so �

 1[

kD1
Ek

!
D

1X

kD1
�.Ek/. ut

One useful consequence is the following simple result.

Proposition 3.31. Suppose that E;F 2 M.X/. If E � F and if ��.F/ < 1, then
��.FnE/D ��.F/���.E/.

Proof. Write F as F D .FnE/[ E, which is a disjoint union of elements of M.X/.
Both ��.F/ and ��.FnE/ are finite. Thus, ��.F/ D ��.FnE/C��.E/, by (3.9)
[with S D X]. ut
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The next definition and proposition indicate that sets that have zero outer measure
are measurable.

Definition 3.32. If �� is an outer measure on X, then a subset S � R is ��-null if
��.S/D 0.

Proposition 3.33. If �� is an outer measure on X and if E � X is ��-null, then
E 2 M��.X/.

Proof. Let E � X be a ��-null set. If S � X, then E \S � E and so 0���.E \S/�
��.E/D 0. Hence, by the subadditivity of outer measure,

��.S/ � ��.E \ S/ C ��.Ec \ S/D 0 C ��.Ec \ S/ � ��.S/ :

That is, ��.S/D ��.E \ S/C��.Ec \ S/ for every S � X. ut
What other subsets E � X will belong to the � -algebra M��.X/? The answer to

this question depends, of course, on the character of the outer measure ��. A useful
answer in the setting of metric spaces is given by Proposition 3.35 below, for which
following definition will be required.

Definition 3.34. If .X;d/ is a metric space and if A and B are nonempty subsets
of X, then the distance between A and B is the quantity denoted by dist.A;B/ and
defined by

dist.A;B/D inffd.a;b/ ja 2 A; b 2 Bg:

If, in a metric space .X;d/, the distance between subsets A and B is positive, then
A and B are disjoint and ��.A [ B/ � ��.A/C��.B/. If equality is achieved in all
such cases, then the induced � -algebra M��.X/ will contain the Borel sets of X.

Proposition 3.35. If an outer measure �� on a metric space .X;d/ has the
properties that ��.X/ <1 and that

��.A [ B/D ��.A/C��.B/;

for all subsets A;B � X for which dist.A;B/ > 0, then every Borel set of X belongs
to the � -algebra M��.X/ induced by ��.

Proof. By the Carathéodory criterion of Theorem 3.29, our objective is to show that,
for every open subset U � X, the equation

��.S/D ��.S \ U/C��.S \ Uc/

holds for all S � X.
To this end, select a nonempty subset S of X. If S \ U D ;, then the equation

��.S/D ��.S \ U/C��.S \ Uc/ holds trivially. Thus, assume that S \ U 6D ;, and
for each n 2 N let

Sn D
	

x 2 U \ S jdist.fxg;Uc/� 1

n



:
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Observe that Sn � SnC1 for all n 2 N and that U \ S D
[

n2N
Sn. By the hypothesis on

��, the distance inequalities dist.Sn;S \ Uc/� dist.Sn;Uc/� 1
n > 0 imply that

��.S/� �� ..S \ Uc/[ Sn/D ��.S \ Uc/C��.Sn/:

Because ��.X/ < 1 and because the sets Sn form an ascending sequence, the
limit lim

n!1�
�.Sn/ exists and is bounded above by ��.S \ U/. If it were known that

lim
n!1�

�.Sn/D ��.S \ U/, then the inequality above would lead to

��.S/� ��.S \ Uc/C��.S \ U/;

which, when coupled with the inequality ��.S/ � ��.S \ Uc/C��.S \ U/ arising
from the subadditivity of ��, would imply ��.S/ D ��.S \ U/C ��.S \ Uc/.
Therefore, all that remains is to prove that lim

n!1�
�.Sn/D ��.S \ U/.

For every n 2 N, let An D SnC1 n Sn. If m;n 2 N satisfy jm � nj � 2, then the
distance between Am and An is positive, and so ��.Am [ An/ D ��.Am/C��.An/.
Therefore, by induction,

nX

kD1
��.A2k/D ��

 
n[

kD1
A2k

!
� ��.S2nC1/� ��.S \ U/ <1:

Hence, the series
1X

kD1
��.A2k/ converges. Likewise,

1X

kD1
��.A2kC1/ converges, and

so the series
1X

kD1
��.Ak/ converges. Therefore, by the countable subadditivity of ��,

��.Sn/� ��.S \ U/� ��.Sn/C
1X

kDnC1
��.Ak/;

and so

j��.S \ U/���.Sn/j �
1X

kDnC1
��.Ak/:

The convergence of
1X

kD1
��.Ak/ yields lim

n!1 j��.S \ U/���.Sn/j D 0. ut
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3.4 Lebesgue Measure

The original motivation for the development of measure theory was to put the notion
of length, area, volume, and so forth on rigorous mathematical footing, with the
understanding that the sets to be measured may not be intervals, rectangles, or boxes.
The measures that captures length, area, and volume are called Lebesgue measures.

Proposition 3.36. The collection

On D
(

nY

iD1
.ai;bi/ jai;bi 2 R; ai < bi

)

is a sequential cover of Rn.

Proof. Let S � R
n. For each x 2 S there is a neighbourhood Ux of x of the form

Ux D Qn
iD1.ai;bi/. Let V D

[

x2S

Ux, which is an open set. By Proposition 1.26, the

set B of all finite open intervals with rational end points is a basis for the topology
of R. Thus,

Bn D
(

nY

iD1
.pi;qi/ jpi;qi 2 Q; pi < qi

)

is a basis for the topology of Rn. By Proposition 1.24, every open set is a union of
basic open sets. Thus, since Bn is countable, there is a countable family fIkgk2N �
Bn � On such that V D

[

k2N
Ik, whence S �

[

k2N
Ik. ut

Definition 3.37. Lebesgue outer measure on R
n is the function m� on P.Rn/

defined by

m�.S/D inf

( 1X

kD1
�.Ik/ j fIkgk2N � On and S �

[

k2N
Ik

)
;

where On is the sequential cover of Rn given by Proposition 3.36 and the function �
is defined by

�

 
nY

iD1
.ai;bi/

!
D

nY

iD1
.bi � ai/ :

Observe that if E � R
n is an open box in R

n (that is, E 2 On), then �.E/ is the
volume of E and m�.E/D �.E/.

The first proposition shows that, in the case n D 1, m� is a length function for all
finite intervals, open or otherwise.
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Proposition 3.38. If a;b 2 R are such that a< b, then

m� . Œa;b� /D m� ..a;b� /D m� . Œa;b//D m� ..a;b//D b � a :

Proof. Because m� is an outer measure, m�.S1/ � m�.S2/ if S1 � S2. Therefore,
m� ..a;b// � m� ..a;b� / � m� . Œa;b� / and m� ..a;b// � m� . Œa;b// � m� . Œa;b� /.
Since by definition, m� ..a;b//D b�a, it is enough to prove that m�.Œa;b�/D b�a.
To this end, observe that, for every " > 0, Œa;b� � .a � ";b C "/. Because this open
interval covers Œa;b�, we have that m�.Œa;b�/ � �..a � ";b C "// D b � a C 2". As
this is true for every " > 0, one concludes that m�.Œa;b�/� b � a D m� ..a;b//. ut

Similarly, one has:

Proposition 3.39. If E 2 On, then m�.E/D m�.E/.

Proof. Exercise 3.88.

The notion of ��-null set, for an outer measure �� on a set X, was introduced
earlier. To simplify the terminology here, we shall say a subset S � R is a null set if
its Lebesgue outer measure m�.S/ is 0. Thus, from Proposition 3.33, every null set
S � R

n is necessarily Lebesgue measurable.

Example 3.40 (Some Null Sets). The following subsets of Rn are null sets:

1. every finite or countably infinite set;
2. every countable union of null sets;
3. every subset of a null set;
4. the Cantor ternary set in R.

Proof. The details of these examples are left as an exercise (Exercise 3.89), but the
case of the Cantor set is described here.

The Cantor ternary set C is given by C DT
n2NCn, where each Cn is a union of

2n pairwise disjoint closed intervals Fn;j of length .1=3/n. Thus,

m�.C / � m�.Cn/D m�
0

@
2n[

jD1
Fn;j

1

A �
2nX

jD1
m�.Fn;j/D

�
2

3

�n

:

As the inequality above holds for all n 2 N, m�.C /D 0. ut
Proposition 3.41. If c is the cardinality of the continuum, then the cardinality of
M.R/ is 2c (the cardinality of the power set of R).

Proof. The Cantor ternary set C has the cardinality if the continuum (Proposi-
tion 1.83) and every subset of C is Lebesgue measurable. Hence, the cardinality
of M.R/ is the cardinality of the power set of R. ut

In addition to null sets, every open set is a Lebesgue measurable set.

Proposition 3.42. Every open set in R
n is Lebesgue measurable.
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Proof. If W D .a;b/ and U D .p;q/ are open intervals, and if a < p < b < q, then
W \U is the interval I D .p;b/ with length �.I/D .b�p/ and W \Uc is an interval
J D .a;p/ with length �.J/D .p � a/. Thus,

b � a D m�.W/D m�.I/C m�.J/D m�.W \ U/C m�.W \ Uc/:

The equation above holds in cases where the inequalities a < p < b < q are not
satisfied, because either one of W \ U or W \ Uc is empty, or W \ U and W \ Uc

are nonempty disjoint open intervals whose lengths sum to b � a.

A similar feature holds in R
n. If W D

nY

jD1
.aj;bj/ and U D

nY

jD1
.pj;qj/ are elements

of On, then either one of W \ U or W \ Uc is empty, or W \ U and W \ Uc are

nonempty disjoint elements of On whose volumes sum to
nY

jD1
.bj � aj/. Hence,

m�.W/D m�.W \ U/C m�.W \ Uc/

for all W;U 2 On.
To prove that every open set in R

n is Lebesgue measurable, assume that V �
R

n is an open set. Because R
n has a countable basis for its topology, every open

set is a countable union of open sets. Therefore, we may assume without loss of

generality that V is a basic open set: V D
nY

jD1
.aj;bj/, for some aj;bj 2 Q. Let S � R

n

be arbitrary and assume that " > 0. Select a covering fUkgk � On of S such thatX

k

�.Uk/� m�.S/C ". Because

S \ V �
[

k

.Uk \ V/ and S \ Vc �
[

k

.Uk \ Vc/;

we have that

m�.S \ V/C m�.S \ Vc/ � P
k .m

�.Uk \ V/C m�.Uk \ Vc//

D P
k m�.Uk/

� m�.S/C ":

As " > 0 is arbitrary, we deduce that m�.S/ D m� .S \ V/C m� .S \ Vc/, which
proves that the open set V is Lebesgue measurable. ut
Corollary 3.43. Every Borel subset of Rn is Lebesgue measurable.

If E and F are Lebesgue-measurable sets, then it is necessarily true that
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m.E [ F/C m.E \ F/D m.E/C m.F/:

Proposition 3.44 below extends this property to outer measure of arbitrary sets, but
at the expense of weakening the equality above to an inequality.

Proposition 3.44. For any subsets A;B � R
n,

m�.A [ B/C m�.A \ B/ � m�.A/C m�.B/:

Proof. Let " > 0 be given, and let fIkgk and fJigi be coverings of A and B,
respectively, by open boxes Ik and Ji such that

X

k

`.Ik/� m�.A/C " and
X

i

`.Ji/� m�.B/C ":

Let U D
[

k

Ik and V D
[

i

Ji. Thus, A � U and B � V , and A [ B � U [ V and

A \ B � U \ V . Because U and V are open sets, they are Lebesgue measurable and,
hence,

m�.A [ B/ C m�.A \ B/ � m�.U [ V/C m�.U \ V/D m.U [ V/C m.U \ V/

D m.U/C m.V/ �
X

k

m.Ik/C
X

i

m.Ji/ � m�.A/C m�.B/C2":

Because " > 0 is arbitrary, we have m�.A [ B/C m�.A \ B/� m�.A/C m�.B/. ut
The notion of � -finite measure space was introduced in Definition 3.25 as a

hybrid of finite measure space and infinite measure space. Lebesgue measure on
R

n is a concrete example of a � -finite space.

Proposition 3.45. The measure space .Rn;M.Rn/;m/ is � -finite.

Proof. If Kj D
nY

1

Œ�j; j� for each j 2 N, then Kj is measurable of finite measure

m.Kj/D .2j/n, and R
n D

[

j2N
Kj. ut

Every Borel subset of Rn is Lebesgue measurable, and Borel sets are determined
by open subsets. Therefore, it seems natural to expect that the measures of arbitrary
Lebesgue-measurable sets can be approximated by the measures of open and/or
closed sets—this is the notion of regularity. The idea of translation invariance of
measure is related to the fact, for example, that if one moved an n-cube C in R

n to
some other position in space, the volume of C would not change.

A tool in analysing the regularity and translation invariance of Lebesgue measure
is the following proposition.

Proposition 3.46. The following statements are equivalent for a subset E � R
n.
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1. E is a Lebesgue-measurable set.
2. For every " > 0 there is an open set U � R

n such that E � U and m�.UnE/ < ".
3. For every " > 0 there is a closed set F � R

n such that F � E and m�.EnF/ < ".

Proof. The logic of proof is slightly unusual in that following implications will be
established: (1))(2) and (1))(3), then followed by (3))(1) and (2))(1).

To prove that (1) implies (2), suppose that E �R
n is Lebesgue measurable and let

" > 0 be given. The cases where m�.E/ is finite or infinite will be treated separately.
In the first case, assume that m�.E/ < 1. By definition, there is countable

covering fIkgk2N � On of E such that

1X

kD1
�.Ik/ < m�.E/ C " :

Let U D
[

k

Ik, which is an open (and, hence, Lebesgue measurable) set containing

E. Note that

m�.E/ � m�.U/ �
1X

kD1
�.Ik/ < m�.E/ C " :

Because m�.U/ < 1 and E � U is a containment of Lebesgue-measurable sets,
Proposition 3.31 states that

m�.UnE/D m�.U/ � m�.E/ �
1X

kD1
�.Ik/ � m�.E/ < ";

which proves (2) in the case where m�.E/ <1.
Assume now that m�.E/D 1. Define Ek D E

T
.Œ�k;k�n/, for each k 2N. Hence,

m�.Ek/ � .2k/n and E D
[

k2N
Ek :

Because m�.Ek/ < 1, the first case implies there are open sets Uk � R
n such that

Ek � Uk and m�.UknEk/ <
"

2kC1 . Let U D
[

k

Uk, which is open and contains E.

Thus,

UnE �
[

k2N
UknEk

and

m�.UnE/ � m�
 
[

k2N
UknEk

!
�

1X

kD1
m�.UknEk/ � 1

2

1X

kD1

"

2k
< ";

which proves (2) in the case where m�.E/D 1.
For the proof of (1) implies (3), suppose that E � R

n is Lebesgue measurable
and let " > 0 be given. As E is Lebesgue measurable, so is Ec. Apply (1))(2) to
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Ec to conclude that there is an open set U such that Ec � U and m�.UnEc/ < ". Let
F D Uc, which is a closed set contained in E. Thus,

m�.EnF/D m�.E \ Fc/D m�.E \ U/D m�.UnEc/ < ";

thereby proving that (1) implies (3).
To prove that (3) implies (1), assume hypothesis (3) and let " > 0 be given. By

hypothesis, there is a closed set F such that F � E and m�.EnF/ < 	. Let S � R
n be

any set. Note that .S \ E/\ F D S \ F and .S \ E/\ Fc � E \ Fc; hence,

m�.S \ E/ D m� ..S \ E/\ F/ C m� ..S \ E/\ Fc/

� m�.S \ F/ C m�.E \ Fc/

D m�.S \ F/ C m�.EnF/

� m�.S \ F/ C " :

(3.11)

The inclusion F � E implies that

m�.S \ Ec/ � m�.S \ Fc/ : (3.12)

Therefore, (3.11) and (3.12) combine to produce

m�.S/ � m�.S \ E/ C m�.S \ Ec/

� " C m�.S \ F/ C m�.S \ Fc/

D " C m�.S/ :

(3.13)

(The final equality arises from the fact that F—being closed—is Lebesgue mea-
surable.) As " is arbitrary, the inequalities (3.13) imply that m�.S/ D m�.S \ E/C
m�.S \ Ec/. That is, E is Lebesgue measurable.

Lastly, the proof of (2) implies (1) is similar to the proof of the (3))(1) and is,
therefore, omitted. ut
Proposition 3.47 (Regularity of Lebesgue Measure). Lebesgue measure m on R

n

has the following properties:

1. m.K/ <1 for every compact subset K � R
n;

2. �.E/D inff�.U/ jU � R
n is open and E � Ug for every measurable set E;

3. �.E/D supf�.K/ jK is compact and K � Eg, for every measurable set E.

Proof. Assume that K �R
n is compact. For each x 2 K there is an open box Wx 2On

of volume 1 such that x 2 Wx. From the open cover fWxgx2K of the compact set K
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extract a finite subcover fWxjg`jD1 and deduce that

m.K/ �
X̀

jD1
m.Wxj/D ` < 1:

Next, assume that E � R
n is a Lebesgue-measurable set and that " > 0. By

Proposition 3.46, there is an open set U � R such that E � U and m.UnE/ < ".
Thus,

m.U/D m.E/ C m.UnE/ � m.E/ C " :

Hence, �.E/D inff�.U/ jU � R
n is open and E � Ug.

Now assume that E is a Lebesgue-measurable set such that the closure E of E
is compact. Let " > 0 be given. By the previous paragraph there is an open set U
containing E n E such that m.U/ < m.E n E/C ". Let K D E \ Uc, which is a closed
subset of the compact set E; hence, K is compact. Furthermore, if x 2 K, then x 2 E
and x 62 E \ Ec, which is to say that x 2 E. Thus, K � E. Because

m.E/� m.K/D m.E/� �m.E/� m.U/
�D m.U/ < m.E/� m.E/C ";

we deduce that m.E/ <m.K/C" and �.E/D supf�.K/ jK is compact and K � Eg.

For each k 2N, the set Bk D
nY

1

Œ�k;k� is compact. If Ek D E\Bk, then fEkgk2N is

an ascending sequence of sets such that E D
[

k2N
Ek. Thus, by continuity of measure,

m.E/D lim
k!1m.Ek/. Choose any positive r 2 R such that r < m.E/. Thus, there is a

k 2 N such that r < m.Ek/ < m.E/. Because Ek is compact, the previous paragraph
shows that there is a compact subset K of Ek such that r<m.K/. Now since Ek � E,
K is also a subset of E. As the choice of r < m.E/ is arbitrary, this shows that
�.E/D supf�.K/ jK is compact and K � Eg. ut

If x 2 R
n and S � R

n, then x C S denotes the subset of Rn defined by

x C S D fx C y jy 2 Sg:

Proposition 3.48 (Translation Invariance of Lebesgue Measure). If E � R
n is

Lebesgue measurable and if x 2 R, then x C E is Lebesgue measurable and

m.x C E/D m.E/ : (3.14)

Proof. If I 2 On is the open box I D
nY

jD1
.aj;bj/, then x C I and I have the same

volume. Thus, for any subset S 2 R
n and x 2 R

n, the outer measures of S and x C S
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coincide. Therefore, we aim to prove that xCE is a Lebesgue-measurable set if E is
a Lebesgue-measurable set. To this end, we shall employ Proposition 3.46.

Let " > 0. Because E is measurable, Proposition 3.46 states that there is an open
set U � R

n such that E � U and m�.UnE/ < ". Thus, there is a countable covering
of UnE by open boxes Ik such that

X

k2N
�.Ik/ < ":

For each k, xC Ik is an open box of volume �.xC Ik/D �.Ik/. Furthermore, because
U is a countable union of basic opens (all of which are open boxes), the set xCU is
open, the inclusion x C E � r C U is clear, and

.x C U/n.x C E/D fx C y jy 2 UnEg D x C .UnE/ �
[

k2N
.x C Ik/ :

Thus,

m� ..x C U/n.x C E// �
X

k2N
�.x C Ik/D

X

k2N
�.Ik/ < ":

Hence, x C E satisfies the hypothesis of Proposition 3.46, thereby completing the
proof that x C E is Lebesgue measurable. ut

It is natural to wonder whether every subset of R is Lebesgue measurable. That
is not the case, as the following theorem shows. Because the proof of the theorem
below requires the Axiom of Choice, the result is existential rather than constructive.

Theorem 3.49 (Vitali). There is a subset V of R such that V is not Lebesgue
measurable.

Proof. Consider the relation 	 on R defined by x 	 y if and only if y � x 2 Q. It
is not difficult to verify that 	 is an equivalence relation, and so the equivalence
classes Px of x 2 R form a partition of R. Note that Px D x CQ, for each x 2 R.

For each x 2 .�1;1/, let Ax D Px\.�1;1/. Of course, if x1;x2 2 .�1;1/, then either
Ax1 D Ax2 or Ax1 \ Ax2 D ;. By the Axiom of Choice, there is a set V such that, for
every x 2 .�1;1/, V \ Ax is a singleton set.

The set Q\ .�2;2/ is countable; hence, we may write

Q\ .�2;2/D fqk jk 2 Ng :
For each k 2 N, consider qk CV . Suppose that x 2 .qk CV /\ .qm CV /, for some
k;m 2 N. Then there are ck;cm 2 V such that qk C ck D qm C cm; that is, ck � cm D
qm � qk 2 Q, which implies that ck 2 Acm . As V \ Acm is a singleton set, it must be
that ck D cm and qk D qm. Hence, fqk CV gk2N is a countable family of pairwise
disjoint sets, each of which is obviously contained in the open interval .�3;3/.

Let x 2 .�1;1/ and consider Ax. By construction of V , there is precisely one
element y 2 .�1;1/ that is common to both Ax and V . Thus, x and y are equivalent,
which is to say that x�y 2 Q. Because x;y 2 .�1;1/, x�y 2 .�2;2/; hence, x�y D
qk, for some k 2 N. Therefore, x 2 qk CV .
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The arguments above establish that

.�1;1/ �
[

k2N
.qk CV / � .�3;3/ : (3.15)

If V were Lebesgue measurable, then each qk CV would be Lebesgue measur-
able, by Proposition 3.48, and m.qk CV / would equal m.V /. Therefore, if V were
Lebesgue measurable, then

m

 
[

k2N
.qk CV /

!
D
X

k2N
m.qk CV /D

X

k2N
m.V /

would hold. Furthermore, computation of Lebesgue measure in (3.15) would yield

2 <

1X

kD1
m.V / < 6: (3.16)

But there is no real number m.V / for which (3.16) can hold. Therefore, it cannot be
that V is a Lebesgue-measurable set. ut
Corollary 3.50. Outer measure m� on R is not countably additive. That is, there is
a sequence fSkgk2N of pairwise disjoint subsets Sk � R such that

m�
 
[

k2N
Sk

!
<
X

k2N
m�.Sk/ :

Proof. Let Sk D qk CV , as in the proof of Theorem 3.49. Because m� is countably
subadditive and because .�1;1/�

[

k2N
.qk CV /,

2 � m�
 
[

k2N
Sk

!
:

Therefore, because m�.qk CV / D m�.V /, we have that. m�.Sk/ D m�.S1/, for all
k 2 N, and the inequality above shows that m�.S1/ 6D 0. Thus,

X

k2N
m�.Sk/D 1 :

On the other hand,

[

k2N
Sk � .�3;3/ H) m�

 
[

k2N
Sk

!
� 6:

Hence,
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m�
 
[

k2N
Sk

!
<
X

k2N
m�.Sk/ ;

as claimed. ut
Vitali’s Theorem produces a nonmeasurable subset of .�1;1/; the argument can

be modified to produce a nonmeasurable subset of any measurable set of positive
measure.

Theorem 3.51. If E 2 M.R/ and if m.E/ > 0, then there is a subset V � E such
that V 62 M.R/.

Proof. Let Ak D E \ Œ�k;k� for each k 2 N. The sequence fAkgk2N is an ascending
sequence in M.R/ with union E. Hence, by continuity of measure,

0 < m.E/D lim
k!1 m.Ak/ ;

and so m.Ak0 / > 0 for some k0 2 N. Now apply the argument of Theorem 3.49
using E \ Œ�k0;k0� in place of .�1;1/ to determine a nonmeasurable subset V of
E \ Œ�k0;k0�. ut

The Borel sets and null sets determine the structure of Lebesgue-measurable sets.

Proposition 3.52. The following statements are equivalent for a subset E � R:

1. E is a Lebesgue-measurable set;
2. there exist B;E0 � R such that:

a. B is a Borel set,
b. E0 is a null set,
c. E0\ B D ;, and
d. E D B [ E0.

Proof. Exercise 3.91. ut
Proposition 3.52 shows how Borel sets can be used to characterise Lebesgue-

measurable sets. Much less obvious is the following theorem, which indicates that
these two � -algebras are in fact distinct.

Theorem 3.53 (Suslin). There exist Lebesgue-measurable subsets of R that are
not Borel sets. In fact, there are Lebesgue-measurable subsets of the Cantor ternary
set that are not Borel sets.

Proof. Let Q̊ denote an extension of the Cantor ternary function (see Proposi-
tion 1.86) ˚ W Œ0;1�! Œ0;1� to a function R ! Œ0;1� by setting Q̊ D 0 on .�1;0/,
Q̊ D ˚ on Œ0;1�, and Q̊ D 1 on .1;1/. Let f W R ! R be given by

f .x/D Q̊ .x/ C x ; 8x 2 R :

Observe that f is continuous and monotone increasing.
Define a collection ˙ of subsets of R as follows:
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˙ D fS � R j f .S/ 2 B.R/g :

We now show that ˙ is a � -algebra of subsets of R. Because R D f .R/, R 2 ˙ .
Moreover, if A 2˙ , then f .Ac/\ f .A/D ; and R D f .R/D f .A/[ f .Ac/ imply that
f .Ac/D f .A/c, whence Ac 2 ˙ . That is, ˙ is closed under complementation. Now
suppose that fAkgk2N �˙ ; then

f

 
[

k2N
Ak

!
D
[

k2N
f .Ak/ 2 B.R/ :

Hence, ˙ is a � -algebra.
If p;q 2 Q and p < q, then the continuity of f and the fact that f is monotone

increasing leads to f ..p;q// D .f .p/; f .q//. Therefore, .p;q/ 2 ˙ for all p;q 2 Q.
Because ˙ is a � -algebra and ˙ contains the base for the topology on R, ˙
necessarily contains the Borel sets of R. Hence,

f .B/ 2 B.R/ ; 8B 2 B.R/ : (3.17)

In particular, if C is the Cantor ternary set, then f .C / is a Borel set. We now show
that f .C / has positive measure.

To this end note that Œ0;1�nC is a union of countably many pairwise disjoint
intervals .ak;bk/, where ak;bk 2 C for all k 2 N. Proposition 1.86 shows that ˚ is
constant on each such open interval. Therefore,

2D m.Œ0;2�/ D m.f .Œ0;1//

D m.f .C [ .Œ0;1�nC ///

D m.f .C // C m.f .Œ0;1�nC //

D m.f .C // C
X

k2N
m..ak C˚.ak/; bk C˚.bk//

D m.f .C // C
X

k2N
.bk � ak/

D m.f .C // C m.Œ0;1�nC /

D m.f .C // C 1:

Thus, m.f .C //D 1 > 0 and so, by Theorem 3.51, f .C / contains a subset V that is
not Lebesgue measurable. Let Q D f �1.V /. Because f is an injective function, the
preimage Q of V under f must be contained in C . Thus, Q is a null set and, hence,
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is a Lebesgue-measurable set. However, Q is not a Borel set. (If Q were a Borel set,
then inclusion 3.17 would imply that f .Q/D V would be a Borel set—but it is not.)
Hence, Q 2 M.R/ and Q 62 B.R/. ut

Similar results hold in higher dimensions.

Theorem 3.54. Not every subset of Rn is Lebesgue measurable, and there exist
Lebesgue-measurable subsets of Rn that are not Borel measurable.

Proof. Exercise 3.92. ut

3.5 Atomic and Non-Atomic Measures

There are a variety of ways to distinguish between qualitative properties of
measures, and in this section we consider atomic measures and their polar opposites,
non-atomic measures.

Definition 3.55. Assume that .X;˙;�/ is a measure space.

1. A measurable subset E � X is an atom for � if �.E/ > 0 and one of �.E \ F/ or
�.E \ Fc/ is 0, for every F 2˙ .

2. The measure � on .X;˙/ is atomic if every measurable set of positive measure
contains an atom for �.

3. The measure � is non-atomic if � has no atoms.

Thus, counting measure on N is atomic, whereas Lebesgue measure on R is non-
atomic (Exercises 3.93 and 3.94). Every measure can be decomposed uniquely as
a sum of two such measures, as shown by Proposition 3.57 below. The proof will
make use of the following concept of singularity.

Definition 3.56. If � and Q� are measures on .X;˙/, then � is singular with respect
to Q� for each E 2˙ there exists a set F 2˙ with the properties that

1. F � E,
2. �.E/D �.F/, and
3. Q�.F/D 0.

The notation �S Q� indicates that � is singular with respect to Q�, and if both �S Q�
and Q�S� occur, then � and Q� are said to be mutually singular.

Proposition 3.57. Every measure � on a measurable space .X;˙/ has the form
� D �a C �na, for some mutually singular atomic measure �a and non-atomic
measure �na on .X;˙/. Moreover, if Q�a and Q�na are atomic and non-atomic
measures on .X;˙/ such that �D Q�a C Q�na, then Q�a D �a and Q�na D �na.

Proof. Let D be the family of all countable unions of sets that are atoms for �. For
each E 2˙ , define

�a.E/ D supf�.E \ D/ jD 2 Dg
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�na.E/ D supf�.E \ N/ j�a.N/D 0g:

Observe that �a and �na are measures on .X;˙/ and satisfy � D �a C�na. If
�a.N/ D 0, then �.N \ D/ D 0 for all D 2 D ; hence, �na.D/ D 0 for all D 2 D ,
and so �aS�na. By definition of �na, �na.D/D �na.D \ N/ and �a.N/D 0 imply
that �a.D \ N/D 0; hence, �naS�a.

To show that �a is atomic, suppose E 2 ˙ such that �a.E/ ¤ 0. Because
�a.E/D 0when�.E/D 0, we deduce that�.E/¤ 0. Furthermore, by the definition
of �a, �a.E/ ¤ 0 implies there is some D 2 D such that �.E \ D/ ¤ 0. By the
definition of D , we can write D D

[

n2N
Dn, where each Dn is an atom for �, and

so �.E \ Dn/ ¤ 0 for some n 2 N. Since E \ Dn is an atom for � such that
�a.E \ Dn/ ¤ 0, and because �a.E/ D 0 when �.E/ D 0, we see that E \ Dn is
an atom for �a. Thus, �a is an atomic measure.

To show that �na is non-atomic, suppose that �na.E/¤ 0. Therefore, �.E\N/¤
0 for some N 2 ˙ with �a.N/ D 0. The set E \ N is not an atom for �, because
�a.E \N/¤ 0 if E \N were an atom. Since �.E \N/¤ 0 and because E \N is not
an atom for�, there exists F 2˙ such that�.E\N \F/¤ 0 and�..E\N/nF/¤ 0.
Hence, �na.E \ F/¤ 0 and �na.E n F/¤ 0, implying that �na is non-atomic.

The proof of the uniqueness of the decomposition is left as Exercise 3.95. ut

3.6 Measures on Locally Compact Hausdorff Spaces

If one considers the Borel sets of a topological space X, then it is natural to expect
that certain topological features of X play a role in the measure theory of X. But for
this to occur, the particular measure under consideration needs to be aware of the
topology. One class of measures that is sensitive to topology is the class of regular
measures.

Definition 3.58. Let .X;T / be a topological space and consider a measurable
space .X;˙/ in which˙ contains the � -algebra B.X/ of Borel sets of X. A measure
� on .X;˙/ is said to be a regular measure if

1. �.K/ <1 for every compact subset K � X,
2. �.E/D inff�.U/ jU is open and E � Ug, for every E 2˙ , and
3. �.U/D supf�.K/ jK is compact and K � Ug, for every open set U.

Observe that Proposition 3.47 asserts that Lebesgue measure is regular.
The third property above for the measure of an open set extends to arbitrary

measurable sets of finite measure.

Proposition 3.59. Assume that � is a regular measure on .X;˙/, where X is a
topological space and where ˙ contains the Borel sets of X. If E 2 ˙ satisfies
�.E/ <1, then
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�.E/D supf�.K/ jK is compact and K � Eg:

Proof. Assume that E 2 ˙ has finite measure and let " > 0. Because �.E/ D
inff�.U/ jU is open and E � Ug, there is an open set U � X such that E � U and
�.U/ < �.E/C"=2. Hence, �.U/ <1 and �.U nE/ < "=2. Because U is open and
has finite measure, the same type of argument shows that there is a compact set A
with A � U and �.U/ < �.A/C"=2. Lastly, since �.U nE/ < "=2, there is an open
set W with U n E � W and �.W/ < "=2. The set Wc is closed and is contained in
Uc [E. Thus, K D A\Wc is a closed subset of a compact set and is, hence, compact.
Further,

K D A \ Wc � A \ .Uc [ E/D .A \ Uc/[ .A \ E/D A \ E � E

and

�.E/ � �.U/

< �.A/C "=2

D �.A \ W/C�.A \ Wc/C "=2

< "=2C�.K/C "=2:

Hence, K � E and �.E/ < �.K/C" implies that �.E/ is the least upperbound of all
real numbers �.K/ in which K is a compact subset of E. ut

Proposition 3.59 admits a formulation for � -finite spaces, which will be of use in
our analysis of Lp-spaces.

Proposition 3.60. If .X;˙;�/ is a � -finite measure space in which X is a topolog-
ical space, ˙ contains the Borel sets of X, and � is regular, then

�.E/D supf�.K/ jK is compact and K � Eg

for every E 2˙ .

Proof. Exercise 3.96. ut
Continuous functions are, from the point of view of analysis, fairly well under-

stood. In comparison, measurable functions appear to be harder to grasp because
of the existential nature of measurability. Therefore, in this light, the following
two theorems are striking, for they show that, under the appropriate conditions,
measurable functions within " of being continuous.

Theorem 3.61. Assume that � is a regular finite measure on .X;˙/, where X is a
compact Hausdorff space and where˙ contains the Borel sets of X. If f W X !R is a
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bounded measurable function, then for every " > 0 there exist a continuous function
g W X ! R and a compact set K such that gjK D fjK and �.Kc/ < ".

Proof. To begin with, assume f is a simple function with range f˛1; : : : ;˛ng,
where ˛1; : : : ;˛n 2 Œ0;1� are distinct real numbers. Let Ej D f �1.f˛jg/, which is a
measurable set; note that Ej \Ei D ; if i 6D j. Let "> 0 be given. By Proposition 3.59,
for each j there is a compact subset Kj � Ej with �.Kj/C "

n > �.Ej/. Thus,

�.Ej n Kj/ <
"
n for every j. Because Ej \ Ei D ; for i 6D j, if K D

n[

jD1
Kj, then

�.Kc/D �

0

@
n[

jD1
Ej n Kj

1

AD
nX

jD1
�.Ej n Kj/ < ":

The restriction fjK of f to the compact set K is plainly continuous. Since X is normal,
the Tietze Extension Theorem asserts that fjK has a continuous extension g W X !
Œ0;1�.

Assume now that f is an arbitrary measurable function with 0 � f .x/ � 1 for
every x 2 X. By Proposition 3.14 there is a monotone increasing sequence f'ngn2N
of nonnegative simple functions 'n on X such that lim

n!1'n.x/D f .x/ for every x 2
X. In fact, because f .X/ � Œ0;1�, the convergence of f'ngn to f is uniform on X
(Exercise 3.83). By the previous paragraph, for each n 2 N there is a compact set Kn

such that �.Kc
n/ < "=2

n and 'njKn is continuous. Observe that '1.x/C
NX

nD2
.'n.x/�

'n�1.x//D 'N.x/, and so '1C
1X

nD2
.'n �'n�1/D f . Because '1C

NX

nD2
.'n �'n�1/ is

continuous on K D
1\

nD1
Kn, and because '1C

1X

nD2
.'n �'n�1/ converges uniformly to

f , the measurable function f is continuous on K. By the Tietze Extension Theorem,
fjK has a continuous extension g W X ! Œ0;1�. Because

�.Kc/ �
1X

nD1
�.Kc

n/ < ";

this completes the proof of the theorem in the case where f .X/� Œ0;1�.
For the case of general f , select ˛ 2 R such that ˛f .X/� Œ�1;1�, and decompose

˛f as .˛f /C � .˛f /�, where .˛f /C and .˛f /� are measurable functions with ranges
contained in Œ0;1�. Thus, the case of general f follows readily from the case of f
with f .X/� Œ0;1�. ut

Theorem 3.62 (Lusin). Assume that � is a regular measure on .X;˙/, where X
is a locally compact Hausdorff space and where ˙ contains the Borel sets of X. If
f W X ! R is a measurable function with the property that fjEc D 0 for some E 2˙
with finite measure, then for every " > 0 there exists a continuous and bounded



110 3 Measure Theory

function g W X ! R such that

�.fx 2 X j f .x/¤ g.x/g/ < ":

Proof. By hypothesis, fjEc D 0; thus, En D fx 2 X j jf .x/j > ng is a subset of E for
every n 2 N. Because �.E/ < 1, Proposition 3.23 implies that �.En/ < "=6 for
some n 2 N. Hence, if F D E \ Ec

n, which is a set of finite measure, then fjF is
bounded.

By Proposition 3.59, there is a compact subset Y � F such that �.F n Y/ < "=6.
Consider the bounded measurable function fjY . By Theorem 3.61, there is a compact
subset K � Y and a continuous function g0 W Y ! R such that g0jK D fjK and �.Y n
K/ < "=6. Thus,

E n K D En [ .F n Y/[ .Y n K/

yields �.E n K/ < "=2.
The regularity of � again implies the existence of an open set U � X for which

E � U and �.U/ < �.E/C"=2. Hence, �.U/ is finite and �.U nE/ < "=2. Because
K is compact and K � U, Theorem 2.43 asserts that g0 admits a continuous and
bounded extension g W X ! R such that g.x/ D 0 for all x 62 U. Therefore, 0 D
gjUc D fjUc and, hence,

�.fx 2 X j f .x/¤ g.x/g/ D �.fx 2 E j f .x/¤ g.x/g/ C �.fx 2 Ec j f .x/¤ g.x/g/

< "=2 C "=2D ";

which completes the proof. ut

3.7 Signed and Complex Measures

Extending the notions of length, area, volume, and other arbitrary measures to
real- and complex-valued quantities results in the concepts of signed measure and
complex measure.

Definition 3.63. A function ! W˙ ! Œ�1;C1� on a measurable space .X;˙/ is
called a signed measure if !.;/D 0 and

!

 1[

kD1
Ek

!
D

1X

kD1
!.Ek/;

for every sequence fEkgk2N of pairwise disjoint sets Ek 2˙ .
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The definition of signed measure entails some subtleties. First of all, arithmetic
in the extended real number system Œ�1;C1� does not admit sums of the form
.�1/C .C1/ or .C1/C .�1/, which implies that for each E 2 ˙ at most one
of !.E/ or !.Ec/ can have an infinite value (because !.X/ D !.E/C!.Ec/). In
particular, this means that if there exists a measurable set E with !.E/D C1, then
necessarily !.X/D C1; and if there exists a measurable set E with !.E/D �1,
then !.X/D �1 necessarily. Therefore, !.X/ can achieve at most one of the values
�1 or C1. If � does not achieve either of these infinite values, then ! is said to
be a finite signed measure. The triple .X;˙;!/ is called a signed measure space.

Definition 3.64. If .X;˙;!/ is a signed measure space, and if P;N 2˙ , then

1. P is said to be positive with respect to ! if !.E \ P/� 0 for every E 2˙ , and
2. N is said to be negative with respect to ! if !.E \ N/� 0 for every E 2˙ .

Interestingly, a signed measure partitions a signed measure space into a positive
part and a negative part, as shown by the Hahn Decomposition Theorem below.

Theorem 3.65 (Hahn Decomposition of Signed Measures). If .X;˙;!/ is a
signed measure space, then there exist P;N 2˙ such that

1. P is positive with respect to ! and N is negative with respect to !,
2. P \ N D ;, and
3. X D P [ N.

Proof. We may assume without loss of generality that �1 is not one of the values
assumed by !. Let ˛ D inff!.E/ jE 2˙ is a negative setg. (Because ; is a negative
set, the infimum is defined.) Let fEkgk2N be a sequence of measurable sets for which

˛ D limk!.Ek/. For each k let Nk D Ek n
0

@
k�1[

jD1
Ek

1

A so that fNkgk2N is a sequence of

pairwise disjoint negative sets such that ˛ D infk!.Nk/. Thus, with N D
1[

kD1
Nk, we

have for every j 2 N that !.N/D
1X

kD1
!.Nk/ � !.Nj/. Hence, !.N/D ˛ and N is a

negative set. Because �1 is not in the range of !, it must be that !.N/ 2 R. Hence,
˛ is the minimum measure of all negative subsets of X.

Let P D Nc. Assume, contrary to what we aim to prove, that P is not a positive
set. Thus, there exists a measurable subset E � P such that !.E/ < 0. The set E is
not negative because, if it were, then N [ E would also be a negative set of measure
!.N [E/D ˛C!.E/ < ˛, which contradicts the fact that ˛ is the minimum measure
of all negative subsets of X. Hence, E must possess a measurable subset F of positive
measure. Let n1 2 N denote the smallest positive integer for which there exists a
measurable subset F1 � E of measure !.F1/� 1=n1. Since EnF1 and F1 are disjoint
and have union E, !.E/D !.E nF1/C!.F1/. That is, !.E nF1/D !.E/�!.F1/�
!.E/�n1�1 <!.E/. For the very same reasons given earlier, the set EnF1 cannot be
negative; thus, E n F1 contains a measurable subset of positive measure. Let n2 2 N
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denote the smallest positive integer for which there exists a measurable subset F2 �
.E n F1/ of measure !.F2/ � 1=n2. Repeating this argument inductively produces a
subset fnkgk2N � N and a sequence fFkgk2N of pairwise disjoint measurable subsets

Fk � E such that the set F D
1[

kD1
Fk satisfies

!.F/D
1X

kD1
!.Fk/�

1X

kD1

1

nk
> 0:

Therefore, the subset G D E n F of E satisfies !.G/ � !.G/C!.F/ D !.E/ < 0.
Since �1 is not in the range of !, !.G/ is a negative real number, and so

0 <

1X

kD1

1

nk
�

1X

kD1
!.Fk/D !.F/D !.E/�!.G/ < j!.G/j<1

implies that limk nk
�1 D limk!.Fk/ D 0. Therefore, if Q is a measurable subset of

G, then

Q � G D E \ Fc D E \
 1\

kD1
Fc

k

!
D

1\

kD1
.E n Fk/

implies that Q � E nFk for every k 2 N. If it were true that !.Q/ > 0, then for some
j 2 N we would have !.Q/ > 1

nj�1 , which is to say that Q is a subset of E n Fj of

measure !.Q/ > 1
nj�1 >

1
nj

, in contradiction to the property of nj being the smallest

positive integer for which EnFj has a subset A of measure!.A/> 1
nj

. Hence,!.Q/�
0 and the fact that Q is an arbitrary measurable subset of G implies that G is a
negative set. But G � P implies that G \ N D ; and so the negative subset G [ N
satisfies !.G [ N/ < ˛, which is in contradiction to the fact that ˛ is the minimum
measure of all negative subsets of X. Therefore, it must be that P is a positive set.

ut
The sets P and N that arise in Theorem 3.65 are said to be a Hahn decom-

position of the signed measure space .X;˙;!/. While this decomposition need
not be unique, Exercise 3.99 shows that if .P1;N1/ and .P2;N2/ are two Hahn
decompositions of a signed measure space .X;˙;!/, then

!.E \ P1/D !.E \ P2/ and !.E \ N1/D !.E \ N2/

for all E 2˙ . Therefore, the functions !C;!� W˙ ! Œ0;C1� defined by

!C.E/D !.E \ P/ and !�.E/D �!.E \ N/ (3.18)

are measures on .X;˙/ and are independent of the choice of Hahn decomposition
.P;N/ of .X;˙;!/. Note, also, that at least one of !C and !� is a finite measure.
These observations give rise to the next theorem.



3.7 Signed and Complex Measures 113

Theorem 3.66 (Jordan Decomposition Theorem). For every signed measure !
on a measurable space .X;˙/, there exist measures !C and !� on .X;˙/ such
that

1. at least one of !C and !� is a finite measure, and
2. !.E/D !C.E/�!�.E/, for every E 2˙ .

Furthermore, if 
;ı are measures on .X;˙/, where at least one of which is finite,
and if !.E/D 
.E/�ı.E/ for every E 2˙ , then !C.E/� 
.E/ and !�.E/� ı.E/,
for all E 2˙ .

Proof. Exercise 3.100. ut
Turning now to complex measures, the definition below departs from the

definitions of measure and signed measure in that it is assumed from the outset
that the measure is finite.

Definition 3.67. A function � W ˙ ! C on a measurable space .X;˙/ is called a
complex measure if �.;/D 0 and

�

 1[

kD1
Ek

!
D

1X

kD1
�.Ek/;

for every sequence fEkgk2N of pairwise disjoint sets Ek 2˙ .

By decomposing a complex measure � into its real and imaginary parts <� and
=�, two finite signed measures are obtained, each of which is a difference of finite
measures. Hence, there are finite measures �j on .X;˙/, for j D 1; : : : ;4, such that

� D .�1��2/C i.�3��4/:

By considering the function E 7! j�.E/j, something close to a measure is
obtained—but the triangle inequality makes this function countably subadditive
rather than additive on sequences of pairwise disjoint sets. Therefore, to obtain a
measure from a complex measure requires slightly more effort.

Definition 3.68. In a measurable space .X;˙/, a measurable partition of a mea-
surable set E � X is a family PE of countably many subsets A 2˙ such that A � E
for all A 2 PE,

S
A2PE

A D E, and A \ B D ; whenever A;B 2 PE are distinct.

Proposition 3.69. If � is a complex measure on a measurable space .X;˙/ and if
j�j W˙ ! Œ0;1� is defined by

j�j.A/D sup

8
<

:
X

E2PA

j�.E/j jPA is a measurable partition of A

9
=

; ;

then j�j is a finite measure on .X;˙/.
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Proof. Because P; D fA;Bg, where A D B D ;, is measurable partition of the
empty set ;, we have that �.;/D �.;/C�.;/ in C and so �.;/D 0.

To prove that j�j is countably additive, let fEkgk2N be a sequence of pairwise
disjoint measurable sets and let E D S

k2N Ek. For each k, consider an arbitrary

measurable partition fFkjgj2N of Ek; thus,
X

j

j�.Fkj/j � j�j.Ek/. Because fFkjgk;j2N

is an arbitrary measurable partition of E,

1X

kD1

1X

jD1
j�.Fkj/j � j�j.E/:

For each k, j�j.Ek/ is the supremum of
P

j j�.Fkj/j over all measurable partitions

fFkjgj2N of Ek, and therefore the inequality above yields
1X

kD1
j�j.Ek/� j�j.E/.

Conversely, select an arbitrary measurable partition fA`g`2N of E. Because the
sets fEkgk2N are pairwise disjoint, fA` \ Ekgk2N is a partition of A` for every ` 2 N,
and fA`\ Ekg`2N is a partition of Ek for every k 2 N. Thus,

1X

`D1
j�.A`/j �

1X

`D1

1X

kD1
j�.A`\ Ek/j D

1X

kD1

1X

`D1
j�.A`\ Ek/j �

1X

kD1
j�.Ek/j;

and so j�j.E/�
1X

kD1
j�.Ek/j. Hence, j�j is countably additive.

As indicated previously, there are finite measures �j on .X;˙/, for j D 1; : : : ;4,
such that � D .�1��2/C i.�3��4/. Thus, for any measurable set E 2˙ , j�.E/j �
4X

jD1
�j.E/. Therefore, if PX is a partition of X, then

X

E2PX

j�.E/j �
X

E2PX

4X

jD1
�j.E/D

4X

jD1

X

E2PX

�j.E/D
4X

jD1
�j.X/ <1:

Hence, j�j.X/�
4X

jD1
�j.X/, which proves that j�j is a finite measure. ut

Definition 3.70. In Proposition 3.69 above, the measure j�j on .X;˙/ induced by
the complex measure � is called the total variation of �.
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Problems

3.71. Show that the collection ˙ of all subsets E of an infinite set X for which E or
the complement Ec of E is countable is a � -algebra.

3.72. Prove that if � is a family of � -algebras on a subset X, then
\

˙2�
˙ is a � -

algebra.

3.73. Assume that˙ is a � -algebra of subsets of X. Show that, for each E 2˙ , the
collection ˙.E/ of subsets of X defined by

˙.E/D fE \ A jA 2˙g

is a � -algebra on E.

3.74. Let ˙ be a � -algebra of subsets of a nonempty set X, and let Ek 2 ˙ for
k 2 N. Define

lim supEk D T
k�1

�S
n�k En

�
;

lim infEk D S
k�1

�T
n�k En

�
:

Prove the following statements.

1. lim supEk and lim infEk belong to ˙ .
2. If E1 � E2 � E3 � : : : , then lim supEk D

[

k

Ek D lim infEk

3.75. Let Ek denote the closed interval Ek D Œ0; 1C .�1/k
k �. Determine the sets

lim supEk and lim infEk. (Suggestion: consider the cases k even and k odd sepa-
rately.)

3.76. Let X be a nonempty set X and let fAkgk2N be a sequence of subsets of X.
Define E0 D ; and, for n;m 2 N,

Em D
m[

kD1
Ak ; Fn D AnnEn�1 :

Prove the following statements.

1. fEngn is a monotone increasing sequence of sets (that is, En � EnC1 for all n).
2. fFngn is a sequence of pairwise disjoint sets.
3.
[

n

En D
[

n

Fn D
[

n

An.

3.77. Prove that if a � -algebra ˙ on an infinite set X has infinitely many elements,
then ˙ is uncountable.
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3.78. Prove that if .X;T / is a topological space, and if ˙T is the � -algebra
generated by T , then, with respect to the measurable space .X;˙T /, every
continuous function f W X ! R is a measurable function.

3.79. Suppose that .X;˙/ is a measurable space and that h W X !R is a measurable
function for which h.x/ 6D 0, for all x 2 X. Prove that the function 1=h is measurable.

3.80. Prove that if .X;˙/ is a measurable space and if E � X, then the characteristic
function �E W X ! R is a measurable function if and only if E 2˙ .

3.81. Let U be a nonempty subset of ˇN (see Section 2.6), and consider the
characteristic function �U . Prove that �U is continuous if and only if both U and
U are open in ˇN.

3.82. Assume that .X;˙/ is a measurable space and that E 2˙ .

1. If f W E ! R is a measurable function relative to the measurable space .E;˙.E//,
then prove that the extension Qf W X ! R of f defined by Qf D f�E is a measurable
function with respect to the measurable space .X;˙/.

2. Conversely, if Qf W X ! R is a measurable function with respect to the measurable
space .X;˙/, and if f D QfjE (the restriction of Qf to E), then prove that f W E ! R
is a measurable function with respect to the measurable space .E;˙.E//.

3.83. If f W X ! Œ0;1� is a measurable function, then prove that there is a monotone-
increasing sequence of nonnegative simple functions 'n W X ! Œ0;1� such that
lim

n!1'n.x/ D f .x/ uniformly—that is, for every " > 0 there is an N" 2 N such that

jf .x/�'n.x/j< " for all n � N" and all x 2 X.

3.84. Let X be an infinite set and let ˙ be the � -algebra in Exercise 3.71. Define a
function � W˙ ! Œ0;1� by �.E/D 0 if E 2˙ is countable and �.E/D 1 if E 2˙
is uncountable. Show that � is a measure on .X;˙/.

3.85. Consider the measurable space .N;P.N//, where P.N/ is the power set of
N. Prove that the function � W˙ ! Œ0;1� defined by

�.E/D the cardinality of E

defines a measure on .N;P.N//.

3.86. A function � W˙ ! Œ0;1/ on a measurable space .X;˙/ is finitely additive
if, for all finite sub-collections fEkgn

kD1 of pairwise disjoint measurable sets Ek,

�

 
n[

kD1
Ek

!
D

nX

kD1
�.Ek/:
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Prove that if a finitely additive function � also satisfies lim
k
�.Ak/ D 0, for every

descending sequence A1 � A2 � A3 � �� � of sets Aj 2 ˙ in which
1\

kD1
Ak D ;, then

� is in fact a measure on .X;˙/.

3.87. Assume that � is a measure on a measurable space .X;˙/. Prove that

�.E [ F/C�.E \ F/D �.E/C�.F/ ;

for all E;F 2˙ .

3.88. Prove that if E 2 On, then m�.E/D m�.E/, where

On D f
nY

iD1
.ai;bi/ jai;bi 2 R; ai � big:

3.89. Prove that each of the following subsets of Rn is a null set.

1. Every finite or countably infinite set.
2. Every countable union of null sets.
3. Every subset of a null set.

3.90. Prove that if E � R
n is Lebesgue measurable such that m.E/ > 0, then E

contains a nonmeasurable subset.

3.91. Prove that the following statements are equivalent for a subset E � R:

1. E is a Lebesgue-measurable set;
2. there exist B;E0 � R such that:

a. B is a Borel set,
b. E0 is a null set,
c. E0\ B D ;, and
d. E D B [ E0.

3.92. Prove that there exist subsets S of Rn that are not Lebesgue measurable, and
that there exist Lebesgue-measurable subsets E of Rn that are not Borel measurable.

3.93. Determine the atoms for counting measure on N.

3.94. Prove that Lebesgue measure on R
n is non-atomic.

3.95. Suppose that �D �a C�na D Q�a C Q�na are two decompositions of a measure
� on .X;˙/ as the sum of an atomic measure and a non-atomic measure, where
�aS�na, �naS�a, Q�aS Q�na, and Q�naS Q�a.

1. Show that �naS Q�a Q�aS�na

2. Show that Q�na.E/��na.E/� 0 and �a.E/� Q�a.E/� 0 dor every E 2˙
3. Show that Q�a D �a and Q�na D �na.
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3.96. Prove that if .X;˙;�/ is a � -finite measure space in which X is a topological
space, ˙ contains the Borel sets of X, and � is regular, then

�.E/D supf�.K/ jK is compact and K � Eg

for every E 2˙ .

3.97. Let˙ denote the Borel sets of X D Œ0;1� and define a function� W˙ ! Œ0;1�

by �.E/D m.E/, if 0 62 E, and �.E/D 1, if 0 2 E.

1. Prove that � is a measure on .X;˙/.
2. Prove that .X;˙;�/ is not a � -finite measure space.

3.98. Show that, in a signed measure space .X;˙;!/, the union and intersection of
finitely many positive sets are positive sets, and that the union and intersection of
finitely many negative sets are negative sets.

3.99. Suppose that .P1;N1/ and .P2;N2/ are Hahn decompositions of a signed
measure space .X;˙;!/. Prove that, for every E 2˙ ,

!.E \ P1/D !.E \ P1\ P2/D !.E \ P2/:

3.100. Assume that .X;˙;!/ is a signed measure space with Hahn decomposition
.P;N/. Show that the functions !C and !� defined by

!C.E/D !.E \ P/ and !�.E/D �!.E \ N/;

for E 2˙ are measures on .X;˙/ with the following properties:

1. at least one of !C and !� is a finite measure;
2. !.E/D !C.E/�!�.E/, for every E 2˙ ;
3. if 
;ı are measures on .X;˙/, where at least one of which is finite, and if !.E/D

.E/� ı.E/ for every E 2 ˙ , then !C.E/ � 
.E/ and !�.E/ � ı.E/, for all
E 2˙ .
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