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1 Introduction

Phthalides are a relatively small group of natural compounds found in several

higher and lower plant and fungal genera. Classifiable by structure, the monomeric

and dimeric phthalides are known principally as the bioactive constituents in

several plants used in traditional medicine in Asia, Europe, and North America.

Phthalides are also isolated from several species of fungi.

Although the ancient historical record is fragmentary, there is evidence of the

exchange of medicinal herbs between Asia and Europe along the Silk Road trading
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routes established by Alexander the Great (356–326 BC), and several old Chinese

texts mention medicinal plants that contain phthalides that were included in these

routes. In northern Mexico and the southern United States, the medicinal use of the

phthalide-containing rootstock of Ligusticum porteri has been recorded since the

eighteenth century. Relatively few reviews have addressed the phthalides [1–3]. This

contribution aims to provide a broad treatment of the topic, with an overview of

phthalide chemical structures, natural sources, research methodologies, selected

chemical syntheses and reactions, and the main reported bioactivities of phthalides.

1.1 Traditional Uses of Plants that Contain Phthalides

Compiled in ca. 200 AD from ancient oral traditions (ca. 2800 BC), the “Shen Nong

Bencaojing” is one of the oldest Chinese texts on agriculture and plants used

traditionally to include a description of the use of “Danggui” (Angelica sinensis
(Oliv.) Diels roots, family Umbelliferae, a plant that contains phthalides) “for

enriching the blood” [4]. This plant is included in the Pharmacopoeia of the

People’s Republic of China, together with other two phthalide-containing plants,

Ligusticum sinenseOliv. (“Rhizoma Ligustici”, “Chinese Lovage”, “Gaoben”, used

to relieve pain) and Ligusticum chuanxiong S.H. Qiu, Y.Q. Zeng, K.Y. Pan,

Y.C. Tang & J.M. Xu (“Rhizoma Chuanxiong” or “Szechwan Lovage Rhizome”,

used to promote the flow of blood) [5]. The traditional uses, as well as the chemical

constituents and bioactivities of the latter species have been reviewed [6, 7],

including bioactivities with other plants [8].

A tea prepared with the rootstock of the North American phthalide-containing

species, Ligusticum porteri J.M. Coult. & Rose, is commonly used to alleviate

stomachache and colic [9], ulcers and diarrhea as well as to treat diabetes and

circulatory problems [10, 11]. Infusions of this plant also play a role in the ritual-

curing ceremonies in northern Mexico and the southern United States, for which

this medicinal plant is highly regarded, mainly by the native Raramuri ethnic group

[12]. Some illustrations of this plant material in different stages are shown in Fig. 1.

Not confined in the human sphere of activity, Kodiak bears have been reported to

chew the roots of this plant, and to rub the root-saliva mixture into their fur [13].

1.2 Early Chemical Studies (1897–1977) of Phthalides
in the Family Umbelliferae

Several of the first reports on the chemistry of phthalides appeared at the end of the

nineteenth century, where they were identified as the odor constituents of celery

(Apium graveolens L.) by the Italian researchers Ciamician and Silber in 1897. The

provision of essential oil from celery seed (by the Schimmel Company, Leipzig,

Germany) allowed Ciamician and Silber (working in Bologna, Italy) to isolate what

Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and. . . 129



they called sedanolide and sedanonic anhydride [14]; “sedane” is the Italian

translation of celery. These substances could be structurally characterized as a

result of their transformation to sedanonic acid [15], for which structure 1 was

proposed and later, following the analyses of derivatives [16] and intermediates

[16, 17], proven to be correct. The published account on these experiments [18]

was, according to Barton, “one of the early classics of natural products chemistry”

Fig. 1 Ligusticum porteri J. M. Coult. & Rose (Umbelliferae). (a) Flowers of L. porteri, photo:
M. E. Harte, Bugwood.org; (b) Immature flowers of L. porteri, photo: R. Bye and E. Linares,

Instituto de Biologı́a, Universidad Nacional Autónoma de México; (c) Wild plant, L. porteri
(Colorado, USA), photo: D. Powell, USDA Forest Service, Bugwood.org; (d) Cultivated plant,

L. porteri (Mexico City), photo: G. Delgado; (e) Rootstocks of mature plants of L. porteri, photo:
R. Bye and E. Linares, Instituto de Biologı́a, Universidad Nacional Autónoma de México;

(f) Young rootstock of cultivated L. porteri, photo: G. Delgado
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[19]. A decade later, in 1910, Swenholt obtained the volatile fraction from celery

seeds provided by the John A. Salzer Seed Company (La Crosse, Wisconsin, USA).

This fraction was saponified and from the organic residue sedanonic acid (1) was

characterized [20]. Fourteen years later, Berlingozzi established that the odorant

properties of celery correlated with the nature of the side chain of phthalides [21–

25], a finding subsequently confirmed by other authors [26, 27].

In 1921, Murayama, when leading a chemical investigation of the highly regarded

Japanese drug “Sen-Kyu”, isolated “cnidium lactone”, a compound that had been

named previously by Sakai in 1916. This compound was also obtained from the roots

ofCnidium officinaleMakino, which has a long history in traditional Asian medicine,

and is named “Hsiung-Ch’uang” in mainland China [28]. Following re-isolation from

a second population of the same species [26], it was concluded that “cnidium lactone”

was similar in structure to sedanolide, isolated by Ciamician and Silber. However, the

instability and the practical difficulties of isolating phthalides hampered any further

characterization or identification of these substances.

In 1934, Noguchi reisolated “cnidium lactone” and noting its close structural

relationship with sedanolide, proposed that stereoisomeric characteristics may

underlie any structural differences [27].

From the saponified extract of the fruits of another species in the Umbelliferae,

Ligusticum acutilobum Siebold & Zucc., Kariyone and Kotani [29], isolated an

acid, which could be transformed to a lactone; and these two compounds were later

characterized as valerophenone o-benzoic acid (2) and (Z )-butylidenephthalide (3)
[30, 31]. Although the structures of sedanolide and “cnidium lactone” remained

unclear [32], a study of the essential oil of lovage by Naves [33], resulted in the

characterization of (Z )-butylidenephthalide (3), butylphthalide (4) and what

Ciamician and Silber had named sedanonic anhydride (sedanonic acid lactone),

which was found to be (Z )-6,7-dihydro-ligustilide (5). Compound 2was obtained as

a saponification product of the essential oil of the crude drug named “Toki”

(Angelica acutiloba (Siebold & Zucc.) Kitag.) [34].

OH
O

O
1 (sedanonic acid)

OH
O

O
2 (valerophenone

o-benzoic acid)

O

O
3 ((Z)-butylidenephthalide)

O

O
4 ((S)-3-butylphthalide) 

O

O
5 ((Z)-6,7-dihydroligustilide,

sedanonic anhydride) 
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Barton and de Vries [19] then determined the chemical formulas of

sedanolide 6 (by NaBH4-mediated reduction of sedanonic acid (1)), and cnidium

lactone (7, cnidilide), although without assigning the configurations of the chiral

carbons.

(Z)-Ligustilide (8) was characterized from the roots of Ligusticum acutilobum
(common name in Japanese: “Hokkai-Toki”) and from Cnidium officinale by

Mitsuhashi and Nagai [35]. The 6,7-dihydro derivative 5 was found to generate

sedanonic acid (1) following its saponification. The structures of neocnidilide (6)

and cnidilide (7), determined following extraction from the roots of C. officinale,
indicated that sedanolide (represented by formula 6, leaving aside the configura-

tional assignments), actually comprised a mixture of neocnidilide (6) and

butylphthalide (4) [36]. The configurations at C-3, C-3a, and C-7a for cnidilide

(cnidium lactone) and at C-3 of isocnidilide (trans-sedanolide) were determined as

shown in formulas 7 and 9, respectively, by using chiroptical methods [37, 38]. The

synthesis of butyltetra- and hexahydrophthalides was used to establish the identity

of neocnidilide and trans-sedanenolide with the configurational assignments

showed in formula 6, and also confirmed structures 7 and 9 for cnidilide and

isocnidilide, respectively [39].

At the same time, phthalides 3, 4, and 8 were characterized from Meum
athamanticum Jacq. [40] and some experimental improvements for the separation

and characterization of phthalides were reported [41].

O

O
6 (neocninilide,

(trans)-sedanolide)

O

O
7 (cnidilide,

cnidium lactone)

O

O
8 ((Z)-ligustilide)

O

O
9 (isocnidilide, 

(cis)-sedanolide)

1

3

4

6

8

Phthalides 10–13 were isolated from celery, indicating that they are responsible

for its characteristic odor [42], since these substances were structurally similar to

those reported by Berlingozzi and associates more than three decades earlier [21–

25]. Butylphthalide (4), sedanolide (6), 3-n-butylhexahydrophthalide (14) [43], as

well as senkyunolide A (formerly named sedanenolide) (15) were also isolated from

celery [44].
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O

O

10 ((Z)-isobutylidene-
3a,4-dihydrophthalide)

O

O

11 ((Z)-isovalidene-
3a,4-dihydrophthalide)

O

O

12 ((Z)-isobutylidene-
phthalide)

O

O

13 ((Z)-isovalidene-
phthalide)

O

O

14 (3-butyl-
hexahydrophthalide)

O

O

15 (sedanenolide,
senkyunolide A)

3-Butylphthalide (4) and cnidilide (7) were characterized from the essential oil

of the Chinese medicinal plant “Gaoben” (Ligusticum sinense) [45]. Reinvestigation
of Cnidium officinale subsequently allowed the characterization of compounds 3–5,

8 and 15 (permitting the (3S)-configuration for 15 to be defined), and a mass

spectrometric fragmentation pattern for these compounds was proposed [46].

A 1979 review of the phthalides in the family Umbelliferae included their

chemotaxonomic aspects, biosynthesis, and stereochemical assignments [47]. It is

interesting to note that, at that time, no dimeric phthalides had yet been isolated.

2 Distribution of Phthalides in Nature

2.1 Phthalides in the Umbelliferae (syn. Apiaceae)

A number of studies on phthalides from Umbelliferae family members have been

conducted to verify the presence of phthalides, with investigations on the volatile odor

constituents of celery (Apium graveolens). These studies permitted the characterization

of compounds 3, 4, 8, and 10 [48], and 3, 6, 8, and 16 [49]. Additionally, the monomeric

phthalides 3, 4, 6, 7, 8, and 15 were identified from Cnidium officinale [50].
The first dimeric phthalide reported in the literature was angeolide (17), which

was isolated from Angelica glauca Edgew. (a species distributed in the Western

Himalayas). The chemical structure of angeolide was confirmed to be a Diels–Alder

adduct of (E)-ligustilide (18), which acts as diene and dienophile. Both (E)-17 and (Z)-
ligustilide (8) were isolated and characterized from this plant species [51]. The direct

nomenclature used to name the ligustilide dimers incorporates: (a) the numbers of the

connected atoms (describing the adduct derived from the reaction diene+dienophile);

(b) the stereochemical descriptors endo- and exo-, and (c) the name of the monomers.

Therefore, angeolide (17) could be named as endo-[3.30a,8.60]-(E,E0)-diligustilide.
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The monomeric phthalides 4, 6, 8, and 18 were identified from the roots of

Cenolophium denudatum (Fisch. ex Hornem.) Tutin and Coriandrum sativum
L. (coriander) [52]; compounds 3, 8, 15, 18, and 19–21 were found as constituents

of the essential oil from the roots of Levisticum officinaleW.D.J. Koch [53], and from

the roots of Silaum silaus (L.) Schinz & Thell. and Anethum sowa Roxb. ex Fleming,

5, 6, 8, and 15 were characterized [54]. Neocnidilide (6), (Z)-ligustilide (8), and

senkyunolide A (15) were present in Anethum graveolens L. (dill); phthalide 8 was

characterized from Todaroa montana Webb ex Christ [55] and compounds 3, 4, 8,

and 15 were identified from the roots of Opopanax chironium Koch.

O

O
20 ((Z)-propylidene-

phthalide)

O

O
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4,5-dihydrophthalide)

O

O
21 ((E)-butylidene-

phthalide)

From Ligusticum wallichii Franch. were isolated a trans-diol named (Z)-
ligustidiol (22) [56] (later renamed as senkyunolide I, see below), and the Diels–

Alder adduct of (Z)-ligustilide, termed (Z,Z0)-diligustilide (23) [57] (later renamed by

H€ofle as levistolide A, see below). This last compound could be named endo-
[3a.70,6.60]-(Z,Z0)-diligustilide, following the nomenclature that indicates the connec-

tions between the monomers. The [π2s + π2s] dimer, [6.80,7.30]-(Z,Z0)-diligustilide
24, named riligustilide, was characterized from Ligusticum acutilobum [58].
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Compounds 25 ((Z )-3-butylidene-7-hydroxy-phthalide, later renamed

senkyunolide B), 26 (cis-6,7-dihydroxy-ligustilide, later renamed senkyunolide

H), and 22 (senkyunolide I) were isolated from Ligusticum wallichii, together
with a dimer named wallichilide 27 [59]. It is interesting to note that methyl ester

27 could be an artifact derived from the ring opening of diligustilide (levistolide A,

23) and esterification, given its isolation from a hot water extract, followed by

HPLC purification using MeOH–H2O–HOAc.

A series of hydroxyphthalide derivatives were isolated from the rhizomes of

Cnidium officinale by Mitsuhashi and associates; these were senkyunolides A (15),

B (initially 25, but later corrected to 37, see below), C (28), D (29), E (30), F (31), G

(32), H (26), I (22), and J (33). With the exception of senkyunolide J, all were

optically inactive [60].
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(Z)-Ligustilide (8) was found in the roots of Capnophyllum peregrinum Lange,

while compounds 7, 8, and 15, were identified from the roots of Peucedanum
ostruthium (L.) W.D.J. Koch [61]. (Z )-5-Hydroxy-butylidene-phthalide ((28)

senkyunolide C) and the dihydroxyphthalide 34, were characterized from the

rhizomes of Ligusticum wallichii [62].
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(Z)- and (E)-Butylidenephthalides ((3) and (21)), butylphthalide (4), (Z)-
ligustilide (8), senkyunolide A (15), angeolide (17), (Z,Z0)-diligustilide ((23),

renamed by H€ofle as levistolide A), and levistolide B (35), were all identified

from the underground parts of Levisticum officinale (“Radix Levici”) [63]. This

last compound could be also named endo-[3a.70,6.60]-(E,Z0)-diligustilide.
The [π2s + π2s]-cyclodimer derived from ligustilide, termed angelicolide (36),

was found as an additional constituent from Angelica glauca, and its structure was

confirmed by X-ray analysis as a derivative of (E)-ligustilide (18) [64].
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34 ((Z)-4,5-dihydroxy-3-
butylidenephthalide)
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36 (angelicolide,
[8,8'.3,3']-(E,E')-

diligustilide)

Three phthalide derivatives, 15, 22, and 23, were isolated from the rhizomes

of Meum athamanticum [65]. Additional compounds including senkyunolides

I (22), H (26), C (28), E (30), and F (31) were also identified. The structure

of senkyunolide B was corrected from 7-hydroxy- (25) to 4-hydroxy-

butylidenephthalide (37) by comparison of spectroscopic properties, which was

possible by their occurrence in this natural source [66].

From the roots of Apium graveolens were identified phthalides 4, 6, 7, 8, and 15,
and from A. graveolens var. rapaceum (Mill.) DC., compounds 3, 4, 6, 8, 15, and 18

were characterized. Petroselinum crispum (Mill.) Fuss. var. tuberosum (Bernh. ex

Richb.) Soó (parsley) was used to isolate 8 and 15, while from Bifora testiculata
(L.) Roth, compounds 6, 8, and 15 were found [67]. A study of Angelicae Radix

(“Chinese Tang-kuei”) allowed the characterization of (Z )-butylidenephthalide (3),
butylphthalide (4), and (Z )-ligustilide (8) [68].

Diligustilide (levistolide A (23)), riligustilide (24), (Z )-6,7-epoxy-ligustilide
(38), and an additional dimer, 3,8-dihydro-[6.60,7.3a0]-(Z0)-diligustilide (39), were

all identified from the rhizomes of Ligusticum wallichii [69]. The structure of this
last dimer was corrected to structure 40 [70], which was then reisolated from

Ligusticum chuanxiong and later renamed senkyunolide P [71].
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The known senkyunolides I (22), H (26), E (30), F (31), as well as levistolide A

(23), were found as constituents of Angelica acutiloba, along with 11-angeloyl-

senkyunolide F (41), tokinolide A (42), and tokinolide B (43) [72]. A series of

known monomeric phthalides, together with senkyunolides K (44), L (45), and M

(46), was characterized from Ligusticum wallichii [73]. (Z)-Ligustilide (8), (Z,Z0)-
diligustilide ((23) levistolide A) and riligustilide (24) were found as constituents of

Ligusticum porteri [70], and senkyunolides O (47) and P (40) were identified from

Ligusticum chuanxiong [71]. The 1H and 13C NMR spectroscopic data of some

monomeric phthalides have been reported in the literature [74].
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(Z)-Ligustilide (8) has been proposed as a benchmarking constituent for prepara-

tions of Ligusticum officinale [75], and its relative abundance in the essential oil of

this species has been studied [76]. Both (Z)-butylidenephthalide (3), and (Z)-
ligustilide (8) have been found in Pituranthos tortuosus (Desf.) Benth. & Hook.

f. ex Asch. & Schweinf. [77], and these compounds together with (E)-ligustilide and
monoterpenes were found as constituents of the rootstock of Ligusticum porteri [78].

The volatile aroma constituents of celery and related species have been the

subject of several investigations [79, 80], and despite a wide variation in the

chemical constituents reported [81, 82], these studies confirmed early observations

that monomeric phthalides were responsible for the characteristic aroma of celery.

Volatile components isolated from celery plants grown with different fertilizers

have also been analyzed [83]. Compound NG-072 (48), purported as being useful

for the treatment of Alzheimer’s disease, was characterized from celery, although

without assigning the configuration of the chiral centers [84]. Phthalides 3, 4, 6, 9,

15, and 21, as well as the unstable compound 49, were characterized from parsley

(Petroselinum crispum) [85]. The Diels–Alder adduct 50, derived from (Z)-
ligustilide (8) (diene) and (E)-ligustilide (18) (dienophile), were isolated from

Angelica sinensis and named E-232 [86]. An additional series of phthalides was

isolated from Ligusticum chuanxiong, including (E)-senkyunolide E (51),
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senkyunolide N (52), and senkyunolide J (33) [44]. The absolute configurations of

these last two compounds were established as depicted in their structural formulas

[87]. From this source were isolated senkyunolide Q (53) and methyl

2-(1-oxo-pentyl)-benzoate (54) [88], which is the methyl ester of compound 2 char-

acterized by Noguchi in earlier investigations of Ligusticum species [30, 31].
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48 (NG-072)

HO
OCH3

O

O

49 (3-butyl-5,6-dihydro-
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53 (senkyunolide Q)
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54 (methyl 2-(1-oxo-pentyl)-
benzoate)

The preparation of derivatives of the monomeric and dimeric phthalides has

been limited to structural studies. The reactivity of (Z )-ligustilide (8) acting as a

biological electrophile, has been explored by Beck and Stermitz [89], and their

interesting results obtained are described in Sect. 5.1.4.

(Z)-Ligustilide (8) was characterized from Ligusticum mutellina (L.) Crantz [90]
and Angelica sinensis [91] and the monomeric phthalides 3, 8, 21, and 22 were

found in Angelica glauca roots [92]. Both senkyunolide R (55) and senkyunolide S

(56) were characterized as constituents of Ligusticum chuanxiong [93].

O

O

55 (senkyunolide R)

HO
OH

OH
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56 (senkyunolide S)

HO
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The separation of 3-butylphthalide enantiomers ((S)-enantiomer: structure 4)

and their odor thresholds have now been established [94]. Enantioselective analyses

of the flavor-imparting compounds (3-butylphthalide derivatives) in celery, cele-

riac, and fennel have also been investigated [95] with seasonal variations in the

composition of volatile components (including phthalides) from different parts of

the lovage plant reported [96]; compound 8 was found in the essential oils of

138 A. León et al.



Lomatium torreyi J.M. Coult. & Rose [97], Meum athamanticum [98] and

Trachyspermum roxburghianum H. Wolff [99]. (Z )-Ligustilide (8) was also found

as a constituent of non-polar extracts of the roots from Ligusticum porteri,
L. filicinum, and L. tenuifolium [100].

From elicitor-treated parsley cell suspension cultures were isolated four

phthalides, namely, 3-butylidene-7-hydroxy-phthalide (25), and 3-butylidene-5-

hydroxy-phthalide (senkyunolide C (28)) and its 7-O-β-D-glucopyranoside (57)

and 7-O-(60-malonyl)-β-D-glucopyranoside (58) derivatives [101]. An analysis of

the water-soluble fraction of the methanol extract of celery seed afforded three

more phthalide glycosides, named celephthalide A (59), celephthalide B (60) (with

an unresolved configuration at C-3), and celephthalide C (61) [102]. As noted in

Beck and Chou’s review on phthalides [2], the structure of celephthalide C (61) was

found to be similar to that of neocnidilide (6).
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The accumulation of some secondary metabolites of Ligusticum chuanxiong
(including phthalides) has been correlated with the developmental stages of the

plant [103], with (Z )-butylidenephthalide (3) and (Z )-ligustilide (8) found as

volatiles of Angelica tenuissima Nakai [104] and Meum athamanticum [105].

Several dimeric phthalides were isolated from Ligusticum chuanxiong, and
characterized as levistolide A (23), riligustilide (24), tokinolide B (43), 4,5-

dehydrotokinolide B (62), and 3,8-dihydrolevistolide A (63) [106]. This last

compound had been previously prepared by catalytic reduction of [6.60,7,3a0]-
(Z,Z0)-diligustilide A (syn: levistolide A (23)) and its structure was firmly

established [70]; therefore, the compound isolated from L. chuanxiong requires

structural revision. A series of phthalides, including butylphthalide (4), cnidilide

(7), (Z )-ligustilide (8), senkyunolide I (22), levistolide A (23), riligustilide (24),

(Z )-7-hydroxy-butylidenephthalide (25), senkyunolide H (26), tokinolide B

(43), the triol 64 [107], (S)-4-hydroxy-butylphthalide (65) [108] and the dimeric
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phthalides chuanxiognolides A (66) and B (67), were also reported as constituents of

L. chuanxiong [103].
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The dimeric phthalides riligustilide (24) and gelispirolide (68) were isolated

from Angelica sinensis [109], with three new phthalides (69–71) purified from the

same plant [110]. (Z)-Butylidenephthalide (3), (Z)-ligustilide (8), levistolide

A (23), riligustilide (24), and compounds 72 and 73 were also isolated from a

population of A. sinensis [111]. From an aqueous extract of Ligusticum chuanxiong
was isolated a lactone derivative (74) considered as a phthalide analog [112].
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Ligusticum chuanxiong is recognized widely as an effective medicinal plant.

Of more than 200 compounds that have been isolated from this species, the

phthalides are considered to be the characteristic metabolites. Recent reviews

compiling the chemical profile of L. chuanxiong [113] and its pharmacological

properties [114] have been published.

Four not previously reported phthalides (75–78), together with compounds 4, 7,

8, 22, 23, 27, and 43, have also been isolated from Ligusticum chuanxiong [115].

Sedanonic acid (1) and phthalides 6, 22, 26, 52, and 79–85, were isolated from

Ligusticum sinense Oliv. cv. chaxiong, with some compounds displaying activity

against neuronal injury [116]. From the roots of the same species were isolated (Z)-
ligustilide (8), and the dimeric phthalides chaxiongnolide A (86) and chaxiongnolide

B (87) [117]. This last-mentioned compound had been previously characterized as a

semisynthetic substance that was obtained by the differentiated cyclization of the

ketoacid derived from tokinolide B (43) [118]. 7-Acetyl-senkyunolide H (88) was

isolated from the roots of Angelica sinensis [119], and (Z)-ligustilide (8) has been

found in good yields in different plant parts of Kelussia odoratissima Mozaff [120].
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2.2 Phthalides in Other Plant Families

This section refers to the presence of phthalides that have been found in several

plant families, other than the Umbelliferae (Apiaceae).

2.2.1 Bignoniaceae

From a methanol extract of the wood of Catalpa ovata G. Don, used traditionally as
a diuretic in Japan, was isolated catalpalactone (89) [121]. Inouye and co-workers

confirmed its structure, by preparing several derivatives. Compound 89 was

obtained from the same plant several years later [122, 123].

O

O

O

O

89 (catalpalactone)

2.2.2 Cactaceae

Compounds from the leaves, flowers and fruits of Opuntia leindheimeiri var.
linguiformis (Griffiths) L.D. Benson, the leaves and flowers of O. macrorhiza
Engelm., and the leaves of O. microdasys (Lehm.) Pfeiff. were extracted

by steam distillation, and (E)-butylidenephthalide (21) was identified by

GC-MS [124].

2.2.3 Compositae (syn. Asteraceae)

Several species of the genus Helichrysum have yielded phthalides.

5,7-Dihydroxyphthalide (90) and 5-methoxy-7-hydroxy-phthalide (91) were iso-

lated from H. italicum (Roth) G. Don [125, 126]. Both phthalides and

arenophthalide A (92) were contained in the organic extracts of H. arenarium
(L.) Moench [127, 128]. On the other hand, H. platypterum DC. yielded

platyphterophthalide (93) [129]. Venditti and co-workers carried out a chemical
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analysis of a chromatographic fraction ofH. microphyllum (Willd.) Benth. & Hook.

f. ex Kirk of medium polarity, and characterized phthalides 94 and 95 [130].
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Talapatra and co-workers [131] analyzed the petroleum ether, chloroform, and

alcoholic extracts of Anaphalis contorta (D. Don) Hook. f., and from these were

isolated 5,7-dihydroxyphthalide (90), 5-methoxy-7-hydroxyphthalide (91), and

5-hydroxy-7-O-(30-methyl-but-20-enyl)phthalide (anaphatol, 96). Phthalidochromene

(97), araneophthalide (98) and aranochromanophthalide (99) were later obtained

from the aerial parts of Anaphalis araneosa DC. [129].
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A 3-substituted phthalide with thiophene, which was called chrycolide (100),

was isolated from an extract of Chrysanthemum coronarium L. [132].
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Stuppner’s research group analyzed Scorzonera tomentosa L., a plant that has

been used traditionally for the treatment of infertility and as an analgesic,

anthelmintic, and antirheumatic in Turkey. From the methanol extract were isolated

three phthalides as racemic mixtures, namely, (�)-scorzophthalide (101), (�)-

hydramacrophyllol A (102), and (�)-hydromacrophyllol B (103) [133].

From the aerial parts of Gnaphalium adnatum DC. (Wall.) ex Thwaites [134]

were isolated compounds 90 and 104–108.
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(±)-101 (scorzophthalide) R1 = a -H, R2 = Me2
(±)-102 (hydramacrophyllol A) R1 = a -OH, R2 = H
(±)-103 (hydramacrophyllol B)  R1 = b -OH, R2 = H

2.2.4 Fumaraceae

In a search for spirobenzyl-isoquinolines from Fumaria parviflora Lam., four

phthalideisoquinolines were found, namely, (+)-adlumidine (109), (–)-corlumine

(110), (+)-bicuculline (111), and (+)-α-hydrastine (112) [135].
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2.2.5 Gentianaceae

From the leaves of Gentiana pedicellata (Wall. ex D. Don) Griseb., pedicelloside

(113) [136] and pedirutinoside (114) were isolated by Chulia and co-workers

[137]. Garcia and associates analyzed the aerial parts of Gentiana pyrenaica
L. and obtained 3-(3-O-β-D-glucosylpropyl)phthalide, which was named

pediglucoside (115), and 3-[3-(6-vanilloyloxy-O-β-D-glucosyl)propyl]phthalide,
or 60-vanilloylpediglucoside (116) [138].

113 (pedicelloside)

O

O

O

O

HO O
O

OH

OH
OH

HO
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OH
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115 (pediglucoside) R = H
116 (6'-vanilloylpediglucoside) R = vanilloyl

O
O

HO
OH

OH
OR

2.2.6 Lamiaceae

Scutellaria baicalensisGeorgi has been used in Chinese traditional medicine for the

treatment of diarrhea and inflammatory diseases. Its phytochemical investigation

has yielded butylidenephthalide (3), (S)-butylphthalide (4), neocnidilide (6), cnidilide
(7), (Z )-ligustilide (8), and senkyunolide A (15) [139].

2.2.7 Leguminosae (syn. Fabaceae)

Malan and Roux performed the isolation of 5,6-dihydroxyphthalide (117), identi-

fied as meconine (118) after methylation with diazomethane, in the chemical

analysis of Peltogyne pubescens Benth. and Peltogyne venosa (Vahl) Benth.

[140]. 4,6-Dimethoxyphthalide (119) was isolated from a methanolic extract of Albizzia
julibrissin Durazz. [141].

2.2.8 Loganiaceae

Preparations from the stem bark of Anthocleista djalonensis A. Chev. have been

used traditionally for curing fever, as a purgative, and for stomachache, and from

the organic extract of this species, 4-carbomethoxy-5,7-dimethoxy-6-methyl-

phthalide (120) (djalonensin) was obtained [142].

O

O

117

HO

O

O

118

O

HO O
O

O

119

O

O

O

OO

120 (djalonensin)

O O

O
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2.2.9 Oleaceae

From the essential oil of the stem bark of Forsythia japonicaMakino, Kameoka and

co-workers isolated and characterized 3-ethyl-7-hydroxyphthalide (121) [143].

2.2.10 Onocleaceae

(�)-Matteucen C (122) and (�)-matteucen D (123) were isolated as racemic

products, along with some isocoumarins, from the rhizomes of Matteuccia
orientalis (Hook.) Trevis. [144].

HO
O

O

HO

OH

HO
O

O

HO

OH
122 ((±)-matteucen C) 123 ((±)-matteucen D)

O

OOH

121

2.2.11 Orchidaceae

Shihunine (124) is a secondary metabolite of Dendrobium lohohense Tang &

F.T. Wang. It was found as a racemic mixture, as deduced by the lack of optical

properties [145, 146]. Pierardine (126) was isolated from the methanol extract

of Dendrobium pierardii Roxb. ex Hook. as an optically active compound

[147]. Later, it was synthesized and its absolute configuration (S) was assigned by

comparison of its physical characteristics with those previously reported for (3S)-
butylphthalide (4) [148]. Shihunine (124) was also reported as a metabolite of

D. pierardii, as well as betaine (125), which exists in polar solvents.

O

N

O

O

126 (pierardine) 

124 (shihunine) 

O

N

125 (betaine) 

O

O
N
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2.2.12 Papaveraceae

Setigerumine I (127) was isolated from Papaver setigerum DC., which also yielded

the well known α-noscapine (128). The relative configuration of the new phthalide

was determined through NMR spectroscopic experiments, and it was isolated as a

racemic mixture [149].

OO

O

128 (α-noscapine)127 (setigerumine I)

O

N
O

O
O O

O

O

N O

O

O

O
O

2.2.13 Pittosporaceae

From the Chinese and Taiwanese Pittosporum illicioides Makino var. illicioides,
were isolated six hitherto unknown phthalides, 129–134. According to the method

described, enantiomers 129 and 132 eluted differentially by column chromatogra-

phy over silica gel [150]; since this is not possible, a compound configurational

error in this report seems probable [150]. The absolute configurations of the

compounds were determined by comparison of their specific rotations with

known 3-alkylphthalides [151].

O

OOR2

129 R1 = R2 = H 
130 R1 = OMe, R2 = H 
131 R1 = OMe, R2 = Me

R1

O
O

OOH

132

O
O

OOR

133 R = H
134 R = Me

O
O

O

135 (4-hydroxyphthalide)

OH

2.2.14 Poaceae (syn. Gramineae)

4-Hydroxyphthalide (135) was isolated from an acetone extract of crushed oat grain

(both Avena fatua L. and Avena sativa L.). Considering that 4-oxygen-substituted

phthalides are seldom found in Nature, the author suggested that it cannot be ruled

out that 4-oxy-phthalides have another biosynthetic origin than that through the

more common 3-alkyl and 3,5- and/or 7-oxygen substituted phthalides [152].
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2.2.15 Polygonaceae

From the methanol extract of the root tubers of Polygonum multiflorum Thunb.,

a medicinal plant used traditionally for the treatment of hyperlipidemia, were

obtained trans- and cis-(E)-3-butylidene-4,5,6,7-tetrahydro-6,7-dihydroxy-3H-
isobenzofuranone 136 and 137. The absolute configurations of these compounds

were not determined [153].

2.2.16 Saxifragaceae

Thunberginol F (138) is a phthalide isolated from the methanol extract of

“Hydrangeae Dulcis Folium”, i.e. the fermented and dried leaves of Hydrangea
macrophylla (Thunb.) Ser. var. thunbergii Makino. The double bond configuration

was established by NOE experiments of its trimethyl derivative [154, 155]. From

the ethyl acetate-soluble part of the same extract, were found hydramacrophyllols A

(102) and B (103), the former with low optical purity and the last as a racemic

mixture, suggesting that 103 is an artifact. The absolute configuration of 102 was

not determined [155–157].

2.2.17 Typhaceae

The phytochemical investigation of the rhizomes of Typha capensis (Rohrb.)

N.E. Br. yielded typhaphthalide (139) and radulanolide (140) [158].

O

O

136

O

O

137

OH
HO HO

OH

O

OOH

138 (thunberginol F)

OH

OH

139 (typhaphthalide)

O

OOH

140 (radulanolide)

O

OOH

O
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2.3 Phthalides in Fungi

In 1913, Alsberg and Black reported the isolation of an acid of molecular formula

C17H20O6, which they called mycophenolic acid (MPA (141)), from Penicillium
stonoliferum Thom [159]. Its structure was not correctly determined until the late

1940s and early 1950s as 141 [160–162]. This phthalide was also found in cultures

of fifteen strains of Penicillium brevicompactum Dierckx and Penicillium
biourgeianum K.M. Zalessky [163], as well as Penicillium brunneostoloniferum
S. Abe [164], Penicillium echinulatum Raper & Thom ex Fassat. [165], Penicil-
lium roqueforti Thom [166], Penicillum verrucosum Dierckx [167], and

Phomopsis longicolla Hobbs [168]. San Martin and co-workers reported that

P. brevicompactum produces not only mycophenolic acid, but also its methyl

ester 142 [169]. From Penicillium crustosum Thom was also isolated 5-hydroxy-

7-methoxy-4-methylphthalide (143) [170].

Structurally similar compounds to 141 have been isolated from different sources.

Euparvic acid (144) and the phthalides 145–147 were isolated from Eupenicillium
parvum Raper et Fennell [171], and compound 147 and penicacids A–C (148–150)

were found to be metabolites from Penicillium sp. SOF07 [172]. Phthalides 151

[173], 152, and 153 [174] were obtained from Penicillium brevicompactum, but
their configurations were not established. In all these cases, MPA (141) was isolated

along with the aforementioned compounds.

O

O
O

OH
RO

O

141 (mycophenolic acid) R = H
142 R = Me

O

O
HO

O

143 (5-hydroxy-7-methoxy-
4-methylphthalide)

O

O
O

OR1
HO

O

147 R1 = H; R2 = OH
148 (penicacid A) R1 = CH3; R2 = OH
149 (penicacid B) R1 = H; R2 = OGlc

R2

O

HO
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HO

O
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144 (euparvic acid) R = H
145 R = Me

O

O

HO
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O

O

OH
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O
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O

OH

150 (penicacid C)

HO2C

O

O
O

OR1

152 R = OH
153 R = Me

O

R

OH
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Birkingshaw and co-workers [175] isolated cyclopaldic acid (154) from cultures

of two strains of Penicillium cyclopium Westling. This compound has also been

found to be a secondary metabolite of Aspergillus duricaulis Raper et Fennell

[176], Seiridium cupressi (Guba) Boessew. [177], Penicillium commune Thom,

and Penicillium mononematosum (Frisvad, Filt. & Wicklow) Frisvad [178]. Com-

pound 154 was found in some Penicillium spp. along with the related metabolite

deoxycyclopaldic acid (155) [179], which was also isolated fromMicrosphaeropsis
arundinis PSU-G18 [180]. Aspergillus duricaulis also yielded chromanols 156–159

as additional terpenoidal phthalides [181].

Two sesquiterpene-cyclopaldic acid hybrid derivatives were found to be metab-

olites from Pestalotiopsis sp., an endophytic fungus isolated from the leaves

of the mangrove Rhizophora mucronata Lam. These phthalides were named

pestaliotiopens A (160) and B (161), and their configurations were determined

through spectroscopic methods and theoretical calculations. The sesquiterpene

moiety is derived from altiloxin B, which preserves its absolute configuration in

the hybrid compounds. The authors suggested that the formation of each individual

scaffold (mycophenolic acid and altiloxin B) occurs previously and then both

moieties join to form these compounds [182].
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O
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154 (cyclopaldic acid) R = OH
155 (deoxycyclopaldic acid) R = H

O
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HO
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O
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COOH

HO
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OO

HO

O

O

COOH

HO

O
OOO
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160 (pestalotiopen A) 161 (pestalotiopen B)

McGowan and coworkers isolated gladiolic acid (162) from a culture of Peni-
cillium gladioli L. McCullogh & Thom. This compound was found to display

antibacterial and fungistatic activities [183]. Grove established its structure,

suggesting that should there be a tautomeric equilibrium between the
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hydroxylactone 162 and the aldehydic acid 163, as occurs with mycophenolic acid

(141) [184, 185].

Other studies have shown that gladiolic acid (162) and dihydrogladiolic acid

(164) (which also exists in an equilibrium with aldehydic acid 165) are constituents

of the culture of Penicillium gladioli [186–188]. A modification of the experimental

procedure originally employed for the isolation, allowed the characterization

of compound 166, which was considered an artifact [189]. From the endophytic

fungal strain Phomopsis sp. A123 was isolated dihydrogladiolic acid (164) as

an optically active compound, along with its 3-ethoxy derivative, 167, named

phomotone [190].

O

OO

162 (gladiolic acid)

OHCHO

O

CHO
CHO

O

OH

163

O

OO

164 (dihydrogladiolic
acid)

O

CHO

O

OH

165

O

OO

OR
HOHOHO

OH

166 R = Me
167 R = Et (phomotone)

Alternaria kikuchiana S. Tanaka is a well-known parasite, which causes

black spot disease in Japanese pears. Chemical investigation of the culture

filtrates of the broth yielded iso-ochracinic acid (168) [191], and this compound

has also been characterized from a fungicolous hyphomycete resembling

Cladosporium [192].

Herbaric acid (169), an analog of iso-ochracinic acid, is produced by

Cladosporium herbarium (Pers.) Link, a fungus associated with the Indonesian

sponge Callyspongia aerizusa. It is interesting to note that other strains of

this fungus, isolated from Aplysina aerophoba, collected in the Mediterranean

Sea, did not produce this phthalide [193]. A closely related phthalide to herbaric

acid is acetophthalidin (170), which was isolated from the fungal strain

BM923 [194].

Phthalide 171 and its β-D-glucopyranoside 172 were isolated from a mycophilic

Hansfordia species, along with other natural products [195].
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168 (iso-ochracinic acid)

O

OOH
169 (herbaric acid)

O
HO

HO
O

OOH

170 (acetophthalidin)
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Several anti-Helicobacter pylori phthalides (173–179) were isolated from the

basidiomycete Phanerochaete velutina CL6387, but these phthalides did not dis-

play antibacterial activities against other microorganisms against which they were

evaluated. The stereochemical assignments of some of these compounds were not

completed [196].

O

OO

O

R

3

173 (CJ-12,954)

OO

O

O

174 (CJ-13,014)
O

O

175 (CJ-13,015)

176 (CJ-13,102)
O

OAc

177 (CJ-13,103)

O

O
5

5
OH

178 (CJ-13,104)

5
OH

179 (CJ-13,108)

From the culture broth of Penicillium vulpinum (Cooke & Massee) Seifert &

Samson were isolated several natural products including 3-butyl-7-hydroxy-

phthalide (180), which did not display cytotoxic activity [197].
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The phthalide 181, as well as its derivative 182, were isolated by Sobolevskaya

and co-workers from the mycelial fungus Penicillium claviforme Bainter, as found
on the surface of the seagrass, Zostera marina L. They determined the absolute

configuration of 181 by comparison of its specific rotation with previously reported

data [198]. The absolute configuration at the carbinolic carbon of 182 was deter-

mined through the modified Mosher method as (R) (the corrected drawing is

depicted in the present contribution since in the original paper the (S)-enantiomer

appeared).

Chemical analysis of the culture filtrate of Aspergillus silvaticus Fennell and

Raper IFO8173 yielded silvaticol (183), O-methylsilvaticol (184), and nidulol

(185) [199].

O

O

Bu

OH

180 (3-butyl-7-hydroxy-
phthalide)

O

OOH

R

181 R = H
182 R = OH

O

O

OR1

R2O

183 (silvaticol) R1 = Me; R2 = H
184 (O-methylsilvaticol) R1 = R2 = Me

O

O

HO

O

185 (nidulol)

From Sporotrichum laxum CBS 578.63 were isolated two long-chain phthalides

named spirolaxine (186) and sporotricale (187) [200].

O

O

HO

O

O
O

186 (spirolaxine)

O

O

HO

O

O OH

187 (sporotricale)

6

The fungus Phomopsis convolvulusOrmeno-Nu~nez, Reedeler, & A.K. Waston is

a pathogen of the perennial plant Convolvulus arvensis L. (Convolvulaceae), and
has been studied for the potential biological control of this plant. A chemical

investigation of this fungus afforded the phthalides convolvulanic acid A (188),

convolvulanic acid B (189), and convolvulol (190) [201].

Compounds 189–191 and xylariphthalide A (192) were also isolated from the

fungus Everniastrum cirhatum (Fr.) Hale ex Sipman (Xylariaceae) [202]. The

authors reported that compound 192 displayed a low specific rotation value,

presumably due to tautomerism of the hemiacetal group.

154 A. León et al.



O

OO

R2
R1

R1

OH
H
H
H

OH

R2

COOH
COOH
CH2OH
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188 (convolvulanic acid A)
189 (convolvulanic acid B)
190 (convolvulol)
191
192 (xylariphthalide A)

Isopestacin (193) is a 3-phenylsubstituted phthalide found as a racemic mixture in

a culture of Pestalotiopsis microspore (Speg.) But. & Peres, an endophyte from

Terminalia morobensis Coode [203]. A similar phthalide is cryphonectric acid

(194), an optically active abundant metabolite of Cryphonectria parasitica
(Murrill) M.E. Barr [204].

An antioxidant phthalide, 4,5,6-trihydroxy-7-methylphthalide, named epicoccone

(195), was isolated from the fungus Epicoccum sp. [205]. Phthalides 195 and 196

were purified and characterized from a culture of the fungus Cephalosporium
sp. AL031 [206].

From the antibacterial active culture broth of Cytospora sp. and Diaporthe
sp. collected in Costa Rica, several octaketides were obtained, including the

bioactive phthalide cytosporone E (197) [207].

During a screening protocol to discover compounds that bind to the cancer target

Akt1, it was found that the fungal culture of Oidiodendron sp. displayed activity.

From this sample, a new phthalide was isolated and characterized as 3-methyl-

4,5,6-trihydroxy-phthalide (198) [208].
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HO

193 (isopestacin) R1 = Me, R2 = H
194 (cryphonectric acid) 

R1 = OH, R2 = COOH
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HO

HO

198 (3-methyl-4,5,6-tri-
hydroxyphthalide)

OH

OH

R1
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The fungus Alternaria porri (Ellis) Cif. is a pathogen of onion, from a culture

broth of which 5-(30,30-dimethylallyloxy)-7-methoxy-6-methylphthalide (199) was

characterized [209], along with 200 [210]. Phthalide 199 was also isolated from a

liquid culture of endophytic Pestalotiopsis photiniae (Th€um) Y.X. Chen, obtained

from the plant Podocarpus macrophyllus D. Don [211, 212].

The O-prenylated phthalides 201 and 202were isolated from an unidentified fungus

named “Sterile Dark”. Both of these displayed modest antifungal activity against
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Cladosporium herbarium, but only phthalide 201was active againstGaeumannomyces
gramini var. tritici J. Walker, which causes the “take-all” disease in plants [213].

Silvaticol (185) and marilones A–C (203–205) were obtained from the culture

medium of the fungus Stachylidium sp., which was isolated from the sponge

Callispongia sp. Compound 203 displayed antiplasmodial activity, and 205 showed

antagonistic activity towards the 5-HT2B serotonin receptor [214].

Compounds 199, 200, and 206–208 were characterized from Pestalotiopsis
photiniae as antifungal constituents against Fusarium graminearum, Botrytis
cinerea and Phytophtora nicotianae, which are considered plant pathogens

[211]. Yoganathan and co-workers [215] isolated fuscinarin (209) from the soil

fungus Oidiodendron griseum Robak.

Salfredin B11 (210) is a prenylated phthalide isolated from Crucibilum sp. (strain

RF-3817), which displayed aldose reductase inhibitory activity [216].

O

O
HO

200

O

O

O

O

O

199

O

OOH
201

OHOOC
O

OOH
rac-202

OHOOC

O

O

RO

O

R =

204 (marilone B) R = H
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From a marine fungus of the order Pleosporales were isolated (3S,30R)-3-
(30-hydroxybutyl)-7-methoxy-phthalide (211) and the deoxy derivative 212. This

last compound displayed weak cytotoxic activity against selected cancer cell lines

[217]. The absolute configuration of 211 was determined through the Mosher ester

method, and the absolute configuration of 212was determined by comparison of the

specific rotations of both these compounds.

The organic extract of the fermentation culture of the endophytic fungus

Pestalotiopsis foedan exhibited activity against Candida albicans, Geotrichum
candidum, and Aspergillus fumigatus. From this extract were isolated

pestaphthalides A (213) and B (214), and compounds 215–217. Phthalides 213

and 214 exhibited modest activity toward the above-mentioned fungi [218].

156 A. León et al.



O

O

211 R = OH
212 R = H

O

R

O

OOH

HO

213 (pestaphthalide A)

HO

O

OOH

HO

214 (pestaphthalide B)

HO

O

O
HO

215

O
OH

O

OOH

HO

216

HO

O

OOH

HO

217

HO

From the edible and cultivable mushroom Sparassis crispa (Japanese common

name: “Hanabiratake”), were purified the phthalides 218–223, in addition to other

constituents [219]. Compounds 218–220 were named hanabiratakelides A–C,

respectively [219]. Phthalides 221–223 were previously found from other sources

[131, 220]. These compounds displayed discernible antioxidant, antiinflammatory,

and cytotoxic activities.

The fungus Pestalotiopsis heterocornis (Guba) Y.X. Chen was isolated from the

stems of Bruguiera gymnorhiza (L.) Lam. (Rhizophoraceae), and phthalides 171,

224, and 227 were isolated a fermentation broth [221].

Several radical scavenging and cytotoxic isocoumarins along with the antioxidant

phthalide 226 were isolated from the endophytic fungus Colletotrichum sp. [222].
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Microsphaeropsis arundinis PSU-G18 is a source of a wide range of phthalides.

From its broth and mycelial ethyl acetate extract were characterized

deoxycyclopaldic acid (155), microsphaerophthalides A–G (227–233), and another

four highly substituted phthalides 234–237. Microsphaerophthalides C–G (229–

233) belong to the less common 3-oxygenated phthalides. The absolute configura-

tions of these compounds were determined by comparison of their specific

rotations [180].
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233 (microsphaerophthalide G)

A crude extract obtained from the culture broth of the fungus Acremonium
sp., an endophyte from the mangrove plant Rhizophora apiculata Blume

(Rhizophoraceae), displayed antibiotic activity towards Candida albicans and

Cryptococcus neoformans. Several isocoumarin derivatives and a phthalide

named acremonide (238) were obtained from this endophytic fungus, and these

compounds displayed activity toward both microorganisms [223].

The fungus Bipolaris sp. was isolated from the seagrass Halophila ovalis
(R. Br.) Hook. f., and from this fungus were purified and characterized several

chromanones, anthraquinones, and phenolic compounds, including the phthalide

bipolaride (239) [224].

The absolute configuration of sporotricale (187) was determined using the

Mosher ester method, and 6-hydroxysporotricale (240) was characterized from

Sporotrichum laxum (syn: Phanerochaete pruinosum) CBS 578.63 [225]. This

fungus was recently reinvestigated and the anti-Helicobacter pylori phthalides

spirolaxine (186) and sporotricale (187) were reisolated [226].

Pseudaboydins A (241) and B (242) were obtained from the fungus

Pseudallescheria boydii associated with the starfish Acanthaster planci. The
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configuration of both phthalides was established using their CD spectra, using

previously developed empirical rules [227]. A Penicillium sp. (strain ZH58) was

found to produce phthalide 243 [228]. Phthalide 244 was isolated from the fermen-

tation broth of the fungus Pezicula sp., occurring in the twigs of Forsythia
viridissima Lindl. (Oleaceae) [229].

Paecilocin A (245) was isolated from Paecilomyces variotii, a fungus obtained
from the jellyfish Nepolinema nomurai. The absolute configuration of paecilocin A
(245) was assigned by comparison of its specific rotation with that of (3S)-
butylphthalide (4) [230]. 5,7-Dihydroxy-4-methylphthalide (148) was character-

ized from a culture filtrate of Aspergillus flavus [231]. Xylaral (246) was isolated
from Xylaria polymorphus (Pers.) Grev., the well-known “dead man’s fingers”

fungus [232].
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7-Hydroxy-4,6-dimethylphthalide (247)was isolated fromPenicilliummegasporum
NHL2977 [233]. It was also found in a culture of Diaporthe phaseolorum (Cooke &

Ellis) Sacc. [234]. Compounds 248, 249, and 250 were characterized from

Phomopsis sp. A123 [235]. Phthalide 250 has been previously isolated from the

marine fungus Diaporthe sp. [236].
Excelsione, also named phomopsidone (251), was almost simultaneously iso-

lated from an unidentified fungus growing in the inner stem of the tree Knightia
excelsa R. Br. [237], and from Phomopsis strain E02091 [238]. Phomopsidone A

(252), a phthalide that includes an oxetane ring in its structure, was found also in

this last-named fungus [235].
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As a result of an investigation of Penicillium vermiculatum Dang., a cytotoxic

compound was isolated and named vermistatin [239–241]. Its structure was later eluci-

dated as 253, and its absolute configuration was assigned by analysis of the CD spectrum

[241]. Compound 253 has also been found in Penicillium verruculosum [242], and

Talaromyces flavus FKI-0076 and IFM52668 [243, 244]. This compound was named

fijiensin when it was isolated from Mycosphaerella fijiensis Morelet in 1990 [245].

From Mycosphaerella fijiensis, 253 was isolated with its dihydro- (254),

acetoxydihydro- (255), and hydroxydihydro- (256) derivatives, as well as

penisimplicissin (257). The absolute configurations of 254 and 255 were determined

through the Mosher ester method [246]. Compounds 253 and 257 were also isolated

from a culture of Talaromyces thailandiasis T. Douthop, L. Manoch, A. Kijjoa,

M. Pinto, L. Gales, A. Damas, A.M.S. Silva, G. Eaton & W. Herz, together with

256 [247], and from Penicillium rubrum Stoll together with 254 [248].

The absolute configuration of 253 was confirmed through X-ray analysis, when

it was isolated from the fungus Guignardia sp. no. 4382, along with two new

derivatives, 258 and 259, for which the absolute configurations were in turn

assigned by comparison of their CD spectra with that of 253. Compounds 253

and 258 were characterized from the fungus Eurotium rubrum [249].

The fungus Penicillium sp. HN29-2B1 was found to be a source of

several derivatives. From its mycelium and culture medium were characterized

253, 258–259, 6-demethylvermistatin (260), 6-demethylpenicimplissinin (261),

50-hydroxypenisimplicissin (262), and 200-epi-hydroxydihydrovermistatin (263).

The absolute configurations of 260 and 261 were determined by analysis of their

CD data, while that of 263 was assigned as (3R,200S) by means of single-crystal

X-ray diffraction [250]. Phthalide 260 has been previously isolated from

Guignardia sp. no. 4832 [251]. Compounds 257, 258, 260, and neosarphenol A

(264) were isolated from an ethanol extract of the culture of Neosartorya glabra
CGMCC32286 by Liu and co-workers [252].
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Two anthraquinone phthalides, namely, rubellins C and D (265 and 266,

respectively), were found in extracts from a strain of Mycosphaerella rubella
(Niessl & J. Schr€ot.) Magnus [253]. Rubiginone H (267) was isolated from the

methanol extract of the mycelium of Streptomyces sp. (strain Go N1/5) [254].
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An extract from the culture broth of Penicillium rubrum Stoll yielded

rubralides A–C (268–270) [255]. The absolute configurations of 268 and 270

were established by comparison of their CD spectra with that of vermistatin

(253), while the absolute configuration of 269 was not determined. Compound
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269 and talaromycolides A–C (271–273) were isolated from Talaromyces
pinophilus AF-02 [256].

From a methanol extract of the culture of Penicillium sp. IFB-E022, an endo-

phytic fungal strain residing in the stems of Quercus variabilis Blume (Fagaceae),

were isolated penicidones A (274) and B (275) by Tan and co-workers [257].

The absolute configuration at C-8 for both compounds was established as (8R)
by comparison of the specific rotation with those of vermistatin (253),

dihydrovermistatin (254), and penisimplicissin (257).
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Phthalides bearing two substituents at C-3 are not found frequently as natural

products. One example is compound 276, which was isolated from an ethyl acetate

extract of the culture broth of Halloroselinia oceanica BCC 5149 [258]. This

phthalide was also found in broth cultures of Leptosphaeria sp. KTC 727 [259]

and Paraphoma radicina (McAlpine) Morgan-Jones & J.F. White [260]. Hashimoto

and coworkers characterized compounds 276 and 277 from Leptosphaeria sp. KTC
727 [259]. Another example of this class of phthalides is compound 278, isolated

from an extract of the culture of Emericella unguis Malloch & Cain

[261]. Corollosporine (279) is a compound from Corollospora maritimaWerderm.,

which was characterized as a racemic mixture. It displayed antibacterial activity

against S. aureus and other bacteria [262].
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2.4 Phthalides in Lichens

Takenaka and co-workers isolated 3,5-dihydroxyphthalic acid and the phthalides

280–282 from the polyspore-derived mycobionts of Graphis proserpens
Vain. [263].

O

O

HO

OR

280 R = Me
281 R = H

O

OO

282

HO

HOHO

2.5 Phthalides in Liverworts

Asakawa and co-workers reported that radulanolide (140) was isolated from an

organic extract from Radula complanata (L.) Dumont, a liverwort which causes

allergic contact dermatitis [264]. The methanol extract of Balantiopsis rosea
Berggr. yielded balantiolide (283), for which the structure was established by

analysis of its spectroscopic data and by the preparation of its acetyl derivative

(284) [265].

Asakawa’s group [266] obtained 3-(40-methoxy-benzyl)-5,6-dimethoxy-

phthalide (285) from the ether extract of the liverwort Frullania falciloba Taylor

ex Lehm. This structure was similar to 3-substituted phthalides previously isolated

from Radula complanata [264] and Balantiopsis rosea [265]. The same group

reported the phthalide 286 [267]).

Kraut and co-workers [268] analyzed the constituents of the liverwort Frullania
muscicola Steph., and from a crude extract was purified the previously isolated

balantiolide (283) [265] as well as 3-(30,40-dimethoxybenzyl)-5,7-dimethoxyphthalide

(287) and 3-(40-hydroxy-30-methoxybenzyl)-5,7-dimethoxyphthalide (288). From an

organic extract of Plagiochila killarniensis Pears., Rycroft and co-workers character-

ized killarniesolide (289). Acetylation of compound 289 afforded 290, establishing the

substitution of the benzylic ring [269].
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Chemical investigation of Plagiochila buchtiniana Steph. provided 3-(40-
methoxybenzyl)-7-hydroxyphthalide (291), whereas work-up of P. diversifolia
Lindenb. & Gottsche yielded 3-(40-methoxybenzyl)-7-methoxyphthalide (292),

3-(30,40-dimethoxybenzyl)-7-methoxyphthalide (293), and 3-(30,40,50-trimethoxy-

benzyl)-7-methoxyphthalide (294) [270].

Chemical analysis of the organic extracts of Frullania falciloba afforded 3-(40-
methoxybenzyl)-5,7-dimethoxyphthalide (295) [271], for which the structure was

drawn in an erroneous manner in reference [266].
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3 Analytical Aspects

This section summarizes some methods employed for the extraction, isolation,

chemical characterization, dereplication, and to achieve quality control of

phthalides.

3.1 Extraction, Isolation, and Chemical Characterization

Historically, the extraction techniques for obtaining phthalides have focused on the

use of non-polar solvents such as petroleum ether [127, 140, 272], hexane [36, 78,

142], and pentane [50]. Steam distillation has been employed for the extraction of

several phthalides, such as sedanenolide ((15) senkyunolide A), (Z)- (8) and (E)-
lingustilide (18), (Z)- (3) and (E)-butylidenephthalide (21), and butylphthalide (4)

[42, 44, 273–275]. For obtaining polar compounds such as the diols, senkyunolide I

(22) and senkyunolide H (26), in older work the plant rhizomes were defatted with

non-polar solvents and then extracted with more polar solvents such as chloroform

[65], or with water, followed by partition with an organic solvent [59], or extracted

with acetone and methanol [60, 101, 276]. Several conventional procedures such as

decoction [277, 278], percolation [279], sonication [279, 280], and reflux [281]

have been used. Other techniques employed include supercritical fluid extraction

(SFE) [274, 282–284], solid-phase microextraction (SPME) [285], microwave-

assisted extraction [113, 286], and the use of biomembranes [287]. Pressurized

liquid extraction (PLE) is an option that allows the quantification of phthalides

[288–290]. A recently developed high-pressure ultrasonic-assisted extracted tech-

nology method has been applied for the purification of this type of phytochemicals

[291, 292].

Regarding phthalide isolation, in earlier work, crude organic extracts were

subjected to basic aqueous partitioning to remove acid and phenolic compounds

[42, 293]. The organic layer obtained was then subjected to distillation for obtaining

several fractions, yielding phthalides [19, 293]. A frequently used method for the

isolation of phthalides is column chromatography (CC) over adsorbents or solid

supports such as silica gel [103, 116], alumina [51], polyamide (CC6) [69],

Sephadex LH-20 [66], and reversed-phase (C18) silica gel [153]. Other reported

methods are preparative thin-layer chromatography (PTLC) [294], vacuum-liquid

chromatography (VLC) [294, 295], medium-pressure liquid chromatography

(MPLC) [294], high-vacuum distillation [80, 106], centrifugal circular thin-layer

chromatography (CCTLC) [69], high-speed countercurrent chromatography

(HSCCC) [106, 296–298], and droplet-countercurrent chromatography (DCCC)

[110]. Normal- [299], reversed-phase [110, 295], and high-performance liquid

chromatography (HPLC) are common methods used for the isolation of phthalides.
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The chemical characterization of phthalides has involved the determination of

melting points [293], boiling points [36, 42], and chemical transformations such as

saponification [293], hydrolysis [293], hydrogenation [35], ozonolysis [36], and

oxidation [36], among others. Later on, these procedures were complemented with

methods including infrared spectrometry [41, 44], ultraviolet spectroscopy [42, 44,

293], refractive indices [19, 293], optical rotations [293], gas chromatography

(GC) [42], mass spectrometry (MS) [42], and NMR spectroscopy [36, 41]. Later,

GC coupled to selective mass detectors and high resolution mass spectrometry

(GC-MS) [44, 48] were included. The use of NMR spectroscopy [41, 51] and X-ray

diffraction analysis has increased [51, 103], and a combination of both has been

applied [93, 103, 300].

Figures 2, 3, and 4 show the 1H NMR spectra for compounds 8, 23, and 43,

which are natural constituents of Ligusticum porteri [70].

3.2 Dereplication and Quality Control (HPLC, MS, NMR)

Dereplication is a process that facilitates the determination of the composition of a

mixture of substances or of an extract [301]. It is focused on the rapid analysis of
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Fig. 2 1H NMR spectrum (500 MHz, CDCl3) of (Z )-ligustilide (8)
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Fig. 4 1H NMR spectrum (500 MHz, CDCl3) of tokinolide B (43)
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known components present in crude plant material or medicinal herbal products

without the isolation of compounds, and is based on the use of TLC, HPLC, and

HPLC-coupled spectroscopic techniques, for instance, LC-MS and LCMS/MS

[302, 303], and GC-MS [304]. Access to 1D 1H NMR data at the initial steps of

dereplication of crude extracts can accelerate substantially the whole process,

e.g. the identification of the constituents in a crude acetone extract from rhizomes

of Ligusticum porteri [300] (Fig. 5).
Quality control aims to ensure the consistency, efficacy, and safety of prepara-

tions from plants used in traditional medicine. A chemical fingerprint indicates the

presence of multiple chemical markers within a sample. It has been used for

determining the presence of phthalides in several Asian medicinal plants and herbal

remedies [277, 305]. Among the phthalides present, (Z)-ligustilide (8) typically has
been selected as a marker compound to perform the quality control of the roots of

Angelica sinensis or Ligusticum chuanxiong, and HPLC and GC-MS are the main

analytical methods for its quantification [281, 288, 305–308].

The identification and quantification of two major phthalides from Ligusticum
porteri were established using a HPLC-diode array (DAD) method for quality
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Fig. 5 Analysis of the components of Ligusticum porteri acetone extract by 1H NMR spectros-

copy (500 MHz, CDCl3) [300]
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control purposes [309]. The secondary metabolite profiles of plants may be

affected by many factors, including seasonal changes, harvesting time, cultivation

sites, post-harvesting processing, adulterants or substitutes of raw materials, and

procedures of extraction and preparation [60, 310, 311]. A practical tool for

determining the variation of the constituents of plants (in the form of crude fresh

extracts) is NMR spectroscopy. A qualitative chemical analytical procedure of an

acetone extract of the rhizomes of Ligusticum porteri using 1H NMR spectroscopy

has been reported to establish the presence of the individual components (Fig. 5).

This analysis verified that the dimeric phthalides diligustilide (23), riligustilide

(24), and tokinolide B (43) occur as natural products in fresh L. porteri rhizomes.

A protocol involving NMR spectroscopy has been developed for quantifying some

of the constituents from this natural source [300].

Qin and co-workers reported the use of NMR spectroscopy to analyze

Ligusticum chuanxiong rhizomes of several commercial types, collected from

different regions in mainland China. The 1H NMR spectra and HPLC profiles

allowed comparison of the characteristics of the major constituents [311].

3.3 DOSY Experiments of Extracts of Ligusticum porteri

NMR spectroscopy is a powerful analytical technique for the examination of

mixtures of organic compounds, which includes a specific procedure called Pulsed

Gradient Spin Echo (PGSE) NMR, or the so-called Diffusion Ordered Spectros-

copY (DOSY). This experimental technique is a tool for analyzing complex

mixtures based on different translation diffusion coefficients, D, which depend on

the molecular weight, size and shape of each compound. DOSY spectra show the

diffusion coefficients on the vertical axis and the 1H NMR chemical shifts on the

horizontal axis [312, 313].

DOSY analysis [300] allowed the determination of the presence of (Z)-
butylidenephthalide (3), (Z )-ligustilide (8), tokinolide B (43), diligustilide (23),

ferulic acid (296), and coniferyl ferulate (297) in an acetone extract of the dried

rhizomes of Ligusticum porteri. The NMR spectrum revealed four main diffusion

rate levels: A, B, C, and D (Figs. 6 and 7). Looking at the δ 7.00–4.3 ppm region, the

signals that appeared with a diffusion coefficient of 1.75� 10�10 m2/s (highlighted

as level A), corresponding to a mixture of ferulic acid (296) and coniferyl ferulate

(297). At levels B and C (diffusion coefficient range 2.20–2.45� 10�10 m2/s), the

most representative signals were found for diligustilide (23) (H-70 at δ 7.50, H-8 at δ
5.35 and H-80 at δ 4.90 ppm) and tokinolide B (43) (H-70 at δ 7.64 and H-80 at δ
4.45 ppm). This analysis confirmed the occurrence of dimeric phthalides. The

monomer (Z)-ligustilide (8) displayed a diffusion coefficient of 3.65� 10�10 m2/s

(level D). DOSY NMR is a useful tool for detection of adulterants in plant extracts,
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or for fast and complete analysis of the phytochemical content of extracts and

herbal medicines.

4 Biosynthesis of Phthalides

The study of the biosynthesis of phthalides began with the structural determination

of mycophenolic acid (141), which is constituted by a phthalide fragment (derived

from the polyketide pathway) and a terpene fragment (derived from the isoprenoid

pathway). Birch and co-workers reported labeling studies with [1-14C], identifying

the polyketide and terpenoid pathways [314]. Afterwards, the presence of methoxy

and methyl groups in the benzene ring of mycophenolic acid was demonstrated by

the same group of investigators, using feeding experiments incorporating [14CH3]-

methionine in cultures of Penicillium brevicompactum [315].

In 1966, the biosynthesis of phthalides was investigated also by Mitsuhashi and

Nomura [272]. They studied the biogenetic origin of butylphthalides by conducting

feeding experiments to explain the formation of ligustilide (8) in Levisticum
officinale, and determined that the alkylphthalides have polyketide precursors.

In further work of this type, Canonica and co-workers [316] demonstrated by

labeling experiments that the methyl group at C-4 in mycophenolic acid is incor-

porated at the tetraketide step, and that the formation of the benzene ring was

carried out followed by subsequent transformations, yielding 5,7-dihydroxy-4-

methylphthalide. Bedford et al. [317] studied the nature of the polyketide interme-

diates in the biosynthetic pathway from basic units, as acetate and mevalonate.

Their study was performed with comparative incorporation experiments using [10-
14C]-orsellinic acid and [10-14C]-4,6-dihydroxy-2,3-dimethylbenzoic acid, showing

that the latter compound is a precursor of mycophenolic acid (141). A detailed

review including the biosynthesis of mycophenolic acid (141) was published by

Bentley [318].

The production of MPA (141) and analogs has been proposed using metabolic

engineering as shown in Chart 1. Regueira et al. carried out experiments on the

discovery of the involved enzymes (polyketide synthases, starter unit acyl carrier

protein transacylase, β-ketoacylsynthase, acyltransferase, and methyltransferase, as

well as the product template and acyl carrier protein responsible for the backbone

synthesis of 141) by means of the production of mpaC (which assembled the

phthalide fragment of 141) in a “gene cluster” in Penicillium brevicompactum
[319].

Recently, Su and co-workers reported that phthalides could be biosynthesized

through the acetate-malonate pathway. (Z )-Ligustilide (8), sedanolide (6), and

some other derivatives are the result of reductions, oxidations, decarboxylation,

cyclization, and dehydration [116].
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5 Reactions of Phthalides

Phthalides have been studied widely by some investigators, in attempts to under-

stand the reactivity of this class of natural products, as well as aiming to establish

structure-activity relationships (SAR) of biologically active natural phthalides, or

determining their structures.

5.1 Derivatives of Monomeric Phthalides

5.1.1 Diels–Alder Adducts from (Z )-Ligustilide

One remarkable feature of the apparently simple structure of (Z)-ligustilide (8) is the
conjugated cyclohexadiene moiety, which makes it able to undergo Diels–Alder

reactions, both as diene and dienophile. Several natural dimeric phthalides, such as

diligustilide (23) and tokinolide B (43), are Diels–Alder adducts of (Z)-ligustilide (8),
and have been partially synthesized from this compound [320, 321] (see Sect. 6.2.1).

Some semisynthetic derivatives have been prepared from (Z )-ligustilide (8) and
several dienophiles through Diels–Alder reactions. Thus, in the early 1960s,

Mitsuhashi and co-workers [35] carried out the reaction of this phthalide with

maleic anhydride, obtaining both endo-298 and exo-298 isomers. A 3:1 ratio for

the products was reported more recently (see Fig. 8) [322]. The reaction with ethyl

acrylate afforded exo- and endo-299, with this last compound being the major

product. Theoretical calculations agreed with the experimental results, since the

transition state involved in the formation of the major isomer was lower in energy.
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Chart 1 Biosynthesis route for mycophenolic acid ((141) MPA) (adapted from [319])
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When (Z)-ligustilide (8) was reacted with allyl alcohol in the presence of

p-TsOH, or with acrylic acid 301 and 302 were obtained. The regio- and

stereoselectivity of both reactions is noteworthy, since only one product was

observed in each case. In the same study, Alder–Rickert reactions of (Z )-ligustilide
(8) with ethyl propiolate or dimethyl acetylenedicarboxylate (DMAD) were carried

out, yielding butylidenephthalide-type derivatives 303–305 [322].

5.1.2 Preparation of Linear Dimers from (Z )-Ligustilide

In an attempt to explore the [π4s + π2s] cycloadditions of (Z )-ligustilide (8) cata-

lyzed by Lewis acids, the formation of the linear dimers 306–309 was reported,

rather than of Diels–Alder adducts [323].
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Fig. 8 Diels–Alder adducts of (Z )-ligustilide (8) with: (a) maleic anhydride; (b) ethyl acrylate, (c)

acrylic acid, and (d) allyl alcohol. Alder–Rickert reaction products of (Z )-ligustilide (8) with (e)

DMAD and (f) ethyl propiolate
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The authors suggested that complexation of Lewis acids with carbonyl oxygen or

olefinic carbons, promoted cationic mechanisms. Thus, as depicted in Chart 2, it was

proposed that the formation of the major product proceeded by a nucleophilic attack

from C-6–C-7 double bond electrons towards C-8, in a 1,6-addition, facilitated by

the complexation of Lewis acid with oxygen. Subsequent isomerizations through

proton transfer reactions led to a cyclohexadiene that was dehydrogenated to yield

the observed product 306 [323] (Chart 2).

Similarly, the presence of Lewis acid promoted 1,2 addition of one olefin moiety

of (Z)-ligustilide (8) to the C-6–C-7 double bond of another (Z )-ligustilide (8)

molecule through other carbocations (Chart 3). It is interesting to note that the

second major product corresponds to the formation of an allyl cation at C-7, which

is more stable than that formed when the cation is formed at C-6 [323].
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Then, nucleophilic attack of one molecule of 8 to one of the cationic interme-

diates produces the carbon–carbon bonds necessary to yield dimers 307–309, for

which the formation takes place after acid–base equilibration steps, and dehydro-

genation (in the case of 307) [323].

5.1.3 Instability of (Z )-Ligustilide

Pauli and co-workers evaluated the purity and relative stability of isolates of

(Z)-ligustilide (8) through quantitative NMR spectroscopy and GC-MS, and

found that this compound decomposed rapidly when stored in CDCl3 solution,

or without solvent, even at �30�C. It was observed that the degradation process

was slower when (Z)-ligustilide (8) was stored in hexane, methanol, DMSO,

or in a mixture of hexane, ethyl acetate, methanol, and water (9:1:9:1). The

degradation pathway was characterized by combining NMR and GC-MS tech-

niques, leading to the determination of an epoxide, 4,5-dihydro-3-hydroxy-8-oxo-

butylphthalide (310), butyraldehyde, and phthalic anhydride as degradation

products [324].
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Lin and co-workers detected that (Z)-ligustilide (8) spontaneously produced

minor amounts of the dimeric phthalides diligustilide (levistolide A, 23),

riligustilide (24), and a mixture of cis- and trans-ligustidiol (22 and 26), suggesting
that these phthalides could be artifacts [310]. However, various attempts to trans-

form (Z )-ligustilide (8) into its Diels–Alder adducts on a preparative scale, did not

proceed in good yields [35, 320, 321]. In addition, dimeric phthalides have been

found in freshly prepared extracts of L. porteri [300], confirming their existence as

natural products.

Hu and co-workers established that decomposition of (Z )-ligustilide (8) is

influenced by temperature, light, and oxygen, and that the addition of vitamin C

delays its transformation [325].

Additional evidence of the facile transformation of (Z)-ligustilide (8) were

provided by Lau and co-workers. They analyzed the chemical composition

of crude extracts of Angelica sinensis roots and Ligusticum chuangxiong
rhizomes by gas chromatography-triple quadrupole mass spectrometry, and

comparison of the extracts of the same plants before and after treatment with

wine. (S)-Butylphthalide (4), (Z )-butylidenephthalide (3), senkyunolide A (15),
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(Z)-ligustilide (8), and ferulic acid (296) were used as chemical markers. It was

concluded that there were variations of the relative content of these compounds

after wine treatment, indicating that the stability of phthalides depends on the

presence of other compounds [326].

More recently, it was observed that (Z )-ligustilide (8), when exposed to

sunlight at room temperature, was transformed into (Z )-6,7-epoxyligustilide (38),

senkyunolide I (22), senkyunolide H (26), 311, and 312, as racemic mixtures,

confirming the main degradation products of (Z)-ligustilide (8) [327].

5.1.4 Functional Group Transformations

Many reactions of phthalides have been carried out to determine the reactivity of

this group of compounds, to establish structure–activity relationships, or as a tool

for their structure elucidation.

Mitsuhashi and Kobayashi reported the epoxidation of (Z )-ligustilide (8)

followed by hydrolysis, yielding senkyunolides H (26) and G (22), while

senkyunolide A (15) gave senkyunolide J (33) [328]. When the hydrolysis of

epoxyligustilide was conducted with hydrochloric acid, senkyunolide L (45), a

chlorohydrin, was formed [73]. The same group also obtained reduced derivatives

of ligustilide (8) [35], and, in an attempt to prepare the Diels–Alder adducts

(tokinolide B (43) or diligustilide (23)), they subjected (Z )-ligustilide (8) to pyrol-

ysis. The dimers were not observed, but instead small amounts of a dialdehyde, a

product of oxidation of the C-6–C-7 double bond, was observed [72].

Beck and Stermitz submitted (Z)-ligustilide (8) to nitrogen and sulfur nucleo-

philes, obtaining a 1,2-addition product from the former nucleophile (313). It was

found that the sulfur nucleophile gave a 1,6-addition to the α,β,γ,δ–unsaturated
carbonyl fragment (314), and another addition–elimination product (315), and a

disubstitution product (316). The results were in agreement with hard and soft acid

and base theory [89].
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Cyclopaldic acid (154) exhibited insect-biting deterrent and larvicidal activities.

Thus, in order to establish a structure–activity relationship (SAR) profile, Cimmino

and co-workers [329] synthesized isocyclopaldic acid (317) and prepared other
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cyclopaldic acid derivatives: this compound was mono- and tetraacetylated to

afford 318 and 319. The aldehyde reacted with 2,4-dinitrophenylhydrazine to

give the corresponding hydrazone (320). Treatment of cyclopaldic acid with dansyl

hydrazine yielded products 321 and 322. The natural phthalide was also treated

with 5-azidopentanoic acid and N,N0-dicyclohexylcarbodiimide, giving 323.

Finally, when the natural phthalide was treated with NaBH4, the products 324

and 325 were obtained (see Chart 4) [329].

Wu and co-workers [330] prepared derivatives of mycophenolic acid (141). Its

protected derivative was subjected to aminolysis, yielding the amidophenol 326.

The phenolic group was then transformed to thioacetate 327, azide 328 and

mesylate 329. Furthermore, the mesyl derivative was used for the preparation of

three new heterocyclic compounds, the corresponding 2,3-dihydroisoindolone

(330), 2,3-dihydro-N-methylisoindolone (331), and benzothiophenone (332).
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Chart 4 Cyclopaldic acid derivatives
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5.2 Derivatives of Dimeric Phthalides

The natural dimeric phthalides are obtained basically as [π4s + π2s] and [π2s + π2s]
cycloadducts from two units of monomeric phthalides such as (Z )-ligustilide (8)

and from (Z)-butylidenephthalide (3). They display interesting reactivities due to

their topological characteristics and the presence of several reactive sites.

One of the first reports concerning the reactivity of dimers led to the correction of a

structure obtained from Ligusticum wallichii by means of the catalytic hydrogenation

of diligustilide (23), which yielded a mixture of 3,8,70,7a0-tetrahydrodiligustilide
(333) and (Z0)-3,8-dihydro-[6.60,7.3a0]-diligustilide (39). This last compound had

been previously reported as a natural compound, but spectroscopic data analysis

permitted a structural correction to 40 (Chart 5) [70].

5.2.1 Intramolecular Condensations of Dimeric Phthalides

Alkaline treatment of diligustilide (23) under different conditions yielded the

intramolecular condensation products 339, 340 and 343. The mechanism was
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proposed as follows: the diketo diester 334 (obtained from the methanolysis of

diligustilide (23)) underwent intramolecular reaction through deprotonation of the

methylene at C-80 (intermediate 335), and subsequent addition to the carbonyl

group-generated intermediates 336 and 337. The carbanion of this last compound

reacted intramolecularly to yield intermediate 338, which equilibrated yielding 339

and 340 (Chart 6). O-Alkylation of tautomers 341 and 342 afforded 343 [331].
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Treatment of diligustilide (23) with Na2CO3 in Me2CO/MeOH/H2O afforded

340, 339, 343, 344 (demethylwallichilide), and 345 (Chart 7).

Attempts to find better conditions to obtain products 339 and 343 and the

hydrolysis products 344 and 345 from diligustilide (23) were made [332].

Treatment of tokinolide B (43) under basic conditions (NaOH in THF) yielded

cyclotokinolide B (346) derived from an intramolecular condensation procedure. Its

formation began with a chemoselective nucleophilic attack of the hydroxide ion to the

carbonyl group at C-1, to produce an enolate (intermediate A), followed by Michael

addition of the carbanion to the enone, by means of 5-exo-trigonal cyclization, yielding
intermediate B, which produced cyclotokinolide B (346) (Chart 8). The results showed

that intramolecular cyclizations are a general feature for these dimeric phthalides [333].

Treatment of tokinolide B (43) with base in acetone under reflux afforded

ketoacid 347 by chemoselective lactone ring opening.

The reaction of ketoacid 347 with the chiral amines ((–)-(S)-α-methyl-

benzylamine and (+)-(R)-α-methylbenzylamine) under pressure afforded product

87, tokinolide B (43), and the starting material (Chart 9).

The ketoacid of tokinolide B (347) displayed chemoselectivity under basic

conditions. Strong alkaline conditions afforded 346 via C-alkylation, while mild

alkaline conditions produced compound 87 (via O-alkylation) [118] (Chart 10).
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This last compound was later characterized as a natural product from Ligusticum
sinense cv. chaxiong and named chaxiongnolide B (87) [117] (see Chart 10).

Comparison of calculated energies for compounds 87, 346, and 347 indicated that

87 had a lower energy, followed by 346, and this outcome may be correlated with the

number of rings and conformational constraints of the structures (Fig. 9) [118].

The results on derivatives of intramolecular condensation provided evidence of

the particular chemical reactivity of the natural dimeric phthalides.

5.2.2 Synthesis and Stereochemical Assignments of Enantiopure

Derivatives

Taking in consideration that natural dimeric phthalides are found as racemic

mixtures [70], enantiomeric derivatives of tokinolide B (43) and diligustilide
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(23) were prepared and evaluated as cytotoxic agents. Treatment of 43with (+)-(R)-
α-methylbenzylamine ((R)-MBA) and (–)-(S)-α-methylbenzylamine ((S)-MBA)

afforded pairs of diastereomeric products, namely, (�)-348+ (+)-349 and (+)-348

+ (�)-349 (Chart 11) [334].
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Fig. 9 Representation of total energies of 87, 346, and 347. (Molecular computations were done

at the B3LYP/6-311G level of theory)
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The absolute configurations of (�)-348, (+)-349, (+)-348, and (�)-349 were

determined by analyzing their ECD curves, using the exciton chirality method and

defining the direction of the transition dipole moments of the chromophores.

In a complementary manner, the enantiopure derivatives (�)-350+ (+)-351, and

(+)-350 + (�)-351, were obtained, in turn, by treatment of diligustilide (23) with

(R)- and (S)-α-MBA (Chart 12) [335].

The absolute configurations of the amides were determined by the interpretation

of the electronic circular dichroism curves (ECD), as previously described for the

derivatives of tokinolide B (43) [334, 335].

5.3 Biotransformations

Mycophenolic acid (141) and 143 were isolated from a culture of Penicillium
crustosum, when mixtures of either ferulic (296) and quinic acids (352) or

3-methoxy-4-hydroxycinnamic acid (353) and 3,4-methylenedioxycinnamic (354)

acids were added to the medium [170].
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(S)-Butylidenephthalide (3) was prepared in 99% enantiomeric excess through

microbial reduction of methyl 2-butyrylbenzoate (355) or microbial oxidation of

methyl 2-pentylbenzoate (356) [336] (Chart 13).

Other derivatizations have been carried out for the resolution of racemic

mixtures of phthalides. For example, the enzymatic resolution of racemic

3-butylidenephthalide (3) was achieved with Novozyme 435, which catalyzed the

reaction between (S)-butylidenephthalide (3) and acetic anhydride to afford

2-((1S)-acetoxypentyl)-benzoic acid (357) in 98% ee, with up to 50.9% of

unreacted 3-butylidenephthalide (3) remaining in 95.7% ee of the (R)-enantiomer

[337–340] (Chart 14).

Several derivatives (358–365) of mycophenolic acid (141) were obtained by

treatment with Streptomyces sp. [341, 342].
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Other modifications of 141 have been carried out by subjecting this phthalide to

microbial transformation by 21 different species of bacteria, fungi and algae,

furnishing phthalides 360 and 366–382. The most common and abundant transfor-

mation products were the hydroxylactone 367, resulting from oxidation at C-3, and

360, by benzylic oxidation of the methyl group. Compound 372 was also obtained

in relatively good yield. It is noteworthy that several Penicillium spp. were able

transform mycophenolic acid (141) [343].
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When Polyporus brumalis (Pers.) Fr. was supplemented with the

phthalideisoquinoline derivative, (–)-β-hydrastine (383), this compound was

hydroxylated with retention of configuration, yielding 384, probably due to the

action of a cytochrome-P450-dependent monooxygenase [344] (Chart 15).
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O
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Chart 14 Enzymatic resolution of rac-3
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Spirolaxine (186) has been biotransformed by several microorganisms. Bacillus
megaterium yielded phthalides 385–387 and Cunninghamella echinulata yielded

388 [345]. Trametes hirsuta transformed 186 into 389, while Absidia cuneospora
produced 390 [346] (Chart 16).

6 Synthesis of Phthalides

In view of the relevant biological properties of phthalides and, in particular, their

chemical reactivity, many investigations have been devoted to the synthesis of

these compounds. Research on this topic has resulted in a number of specific and

interesting methodological procedures. In this section, selected approaches

concerned with this topic are described. As a prior consideration, it is important

to mention that Mal and co-workers [3] recently published a review covering part of

this topic; nonetheless, in the present chapter the specific syntheses of naturally

occurring phthalides are featured.

N
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O O
O

N

O
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O

O O
O

OH

383 ((–)-β-hydrastine) 384

Polyporus
brumalis

Chart 15 Hydroxylation of (–)-β-hydrastine (383)
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6.1 Synthesis of Monomeric Phthalides

The most direct approach for the synthesis of natural phthalides is to start

from other natural phthalides. For example, Cimmino and co-workers prepared

isocyclopaldic acid through a Canizzaro reaction, by treatment of cyclopaldic acid

with base, reducing C-3 and oxidizing the formaldehyde at C-5 [329]. Other

examples of this approach are the semisynthesis of senkyunolides H-J (26, 22,

and 33) and L (45) [73, 328] (see above).

Salfredin B11 (210) was synthesized by Babu and Mali [347] from 90 and

3-chloro-3-methylbutyne, and subsequent thermal cyclization with dimethyl-

phenylamine (Chart 17).

The terpenoid phthalide 151 was proved to be involved in the biosynthesis of

mycophenolic acid (141), and was prepared by semi- and total synthesis [173]

(Chart 18). Mycophenolic acid (141) was reduced to the corresponding aldehyde

O

OOH

HO

1. Cl

K2CO3, KI, CuI, DMF

2. PhN(CH3)2, 210ºC
6 h, or

MW 3 min

O

OOH

O

21090

Chart 17 Synthesis of salfredin B11 (210)
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Chart 18 Semisynthesis and total synthesis of phthalide 151
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and coupled with propenyl lithium. The resulting compound yielded the natural

product 151 after a Claisen-type rearrangement and hydrolysis. On the other hand,

the total synthesis consisted basically of transforming (E,E)-farnesol into

10-bromo-4,8-dimethyl-deca-4,8-dienoic acid, and conducting the alkylation of

5,7-dihydroxy-3-methylphthalide with the former compound, in the presence of

Ag2O.

A number of more complex total syntheses of natural phthalides have been

developed and some selected examples are described below.

6.1.1 Formation of the Cyclohexane Ring: The Alder–Rickert Reaction

The Diels–Alder reaction between cyclohexadienes and acetylenes, followed by

retrocycloaddition, yields substituted benzenes and ethylene. This transformation is

called the Alder–Rickert reaction and has been employed widely for the synthesis

of phthalides substituted at C-4, C-5, C-6, and/or C-7 [348].

One of the first reports using the Alder–Rickert reaction was Birch and Wright’s
total synthesis of mycophenolic acid (141) [315], devoted to the formation of the

benzene ring needed for the phthalide moiety, as depicted in Chart 19. The synthesis

started from resorcinyl dimethyl ether, which was subjected twice to sequential

Vilsmeier–Haack formylation/Wolff–Kishner reduction steps, followed by Birch’s
reduction and isomerization of the product. The resulting cyclohexadiene was

subjected to an Alder–Rickert reaction with dimethyl acetylene dicarboxylate

(DMAD), yielding a substituted dimethyl phthalic ester. It was then demethylated

and converted into the corresponding phthalic anhydride, which was in turn

O
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2. Wolff-Kishner

x2

1. Birch
2. t -BuOK/DMSO DMAD

O

OH

O
O

OH

O

1. K2CO3

Br
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2.
CHOPh3P

HO2C

O

O
O

OHEtO2C P(OEt)2

O

OO

141

391

392

Chart 19 Birch’s synthesis of mycophenolic acid (141)

188 A. León et al.



selectively reduced with Zn/HCl. Alkylation of the hydroxy group followed by

Claisen rearrangement furnished 391. This last compound was subjected to

ozonolysis, then to a Wittig reaction, and next to the Horner–Wadsworth–Emmons

reaction, yielding the ethyl ester of dehydromycophenolic acid 392. Finally, this

compound was hydrolyzed and reduced with diimide to yield MPA (141) (see

Chart 19).

Patterson also reported a synthesis of 141 involving the Alder–Rickert reaction

between trimethylsilyloxy enol 393 and DMAD, as shown in Chart 20 [349]. The

product was then isomerized through a Claisen rearrangement. The resulting

dimethyl o-dicarboxylbenzoate 394 was reduced with Zn to yield phthalide 395,

which was subjected to ozonolysis. This aldehyde was reacted with 2-propenyl

magnesium bromide, and the thermolysis of the resulting alcohol with triethyl

orthoacetate in the presence of propionic acid yielded MPA (141). More recently,

Barrett and co-workers [350] reported an additional total synthesis of MPA (141) in

12 steps, which included a biomimetic cyclization–aromatization step starting from

a polyketide-like compound.

The fungal phthalides 5-(30,30-dimethylallyloxy)-7-methoxy-6-methylphthalide

(199), 6-(30,30-dimethylallyloxy)-4-methoxy-5-methylphthalide (207), and silvaticol

(183) were prepared by Hariprakasha and co-workers [351] using the Alder–Rickert

reaction between diene 396 and DMAD to furnish a polysubstituted benzene ring that

was then O-prenylated and hydrolyzed to furnish 397 (see Chart 21).

Acid-catalyzed dehydration of diacid 397 yielded the corresponding phthalic

anhydride, which was reduced with NaBH4 and hydrolyzed with K2CO3, yielding

silvaticol (183) (Chart 22).

A mixture of prenylated phthalides 199 and 207 was obtained, accomplishing

the cyclization of phthalic acid 397 with DCC, and then reducing with NaBH4. An

alternative approach to these phthalides is to reduce the dimethyl phthalic ester 398

with DIBAL, followed by oxidative cyclization of the diol with PCC. It is interest-

ing to note that the use of each procedure produces a switch in regioselectivity.

Thus, the former methodology forms phthalides 199 and 207 in a 1:4 ratio; on the

other hand, the ratio using the second methodology was 3:1 (see Chart 23) [351].
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Chart 20 Patterson’s synthesis of mycophenolic acid (141)
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Kuwahara and co-workers [352] prepared both enantiomers of the fungal

phthalide 202 starting from the protected dienol 399, which underwent an

Alder–Rickert reaction and then deprotection to yield 4-hydroxy-6-methoxy-

3,5-dimethyl-1,2-benzene-dicarboxylate (400). Alkaline hydrolysis and reduc-

tion with Zn in aqueous HCl furnished phthalide 401. After O-alkylation with

the appropriate bromoester, deprotection, and oxidation, both enantiomers of

202 were obtained. The preparation of both enantiomers allowed identification

of (S)-202 as the natural product (see Chart 24).

6.1.2 Preformed Cyclohexane Ring and Formation of the Lactone Ring

The syntheses of less substituted phthalides, and mainly 3-substituted phthalides,

have been investigated widely. In these cases, the use of accessible preformed

benzene rings is a common feature, and there are several procedures for obtaining

the lactone ring. A procedure for the preparation of 3-(2,6-dihydroxyphenyl)

O

O
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Chart 21 Synthesis of silvaticol (183) (Part 1)
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phthalides was developed by Mal and co-workers. It is based on the reaction of

phthalaldehydic acids with enamines of 1,3-cyclohexanediones and subsequent

aromatization, and it was used for the preparation of isopestacin (193) and

cryphonectric acid (194). This latter compound was esterified and hydrolyzed

for its characterization. Attempts to prepare these natural products in an

enantioselective manner were futile (see Charts 25 and 26) [353].
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Ohzeki and Mori carried out four approaches to obtain corollosporine (279),

which are shown in Chart 27. The first of these consisted of a one-step reaction of

3-hydroxyphthalic anhydride (402) with hexylmagnesium bromide, which was the

most direct route (36% yield), although it lacked effectiveness because of difficulties

in purification. The secondmethod involved the preparation ofN,N-diethylacetamide

of o-methoxybenzoic acid, followed by the ortho-metalation of Snieckus conducted

with sec-butyllithium in the presence of tetramethylethylenediamine (TMEDA),

and then N,N-dimethylformamide (DMF), furnishing 403. This product was first

converted into a secondary alcohol through a Grignard reaction with hexyl-

magnesium bromide, then oxidized to the ketone, and finally hydrolyzed and

demethylated with hydrobromic acid to yield 279. Another synthetic route avoided

the Grignard reaction of 403 by treatment of an ortho-metallated anion with

heptanal and following the above-described steps (oxidation, hydrolysis, and

demethylation), afforded the desired compound. The last strategy consisted of a

reaction of N,N-diethylacetamide 404 with the appropriate Weinreb amide and

hydrolysis and demethylation of the furnished ketone 405 to yield 279 [354].

In the procedure described byRanade and co-workers, ethyl 3,5-dimethoxybenzoate

(406) was reduced, acetylated, and formylated (by means of the Vilsmeier–Haack

reaction) to produce 407. An oxidative cyclization of this last compound led
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to naturally occurring 5,7-dimethoxyphthalide (221), which was mono- or

bidemethylated with AlCl3 to yield the corresponding natural phthalides 90 and 91

(see Chart 28) [355].

Similarly, Talapatra and Talapatra synthesized these three natural phthalides

starting from methyl 2-formyl-3,5-hydroxybenzoate, with protection and selective

reduction with LAH, yielding one of the natural phthalides (221). Compounds 90

and 91 were obtained through partial or total demethylation, almost in the same

conditions reported previously (see Chart 29) [356].

The synthesis of 3-substituted phthalides, among them senkyunolides B (37) and

C (28), was achieved starting from appropriate 3-hydroxybenzoates (408 or 409)

that were converted into nonaflates, to effect cross coupling of the resulting

products with alkynes through a palladium-catalyzed Negishi type reaction. Hydro-

lysis of the resulting 2-alkynylbenzoates (410 or 411) and selective 5-exo-dig
cyclization catalyzed by silver powder gave these phthalides in good yield. It is

worth mentioning that when AgNO3 was used as the catalyst instead of Ag powder,

the resulting products were the analogous isocoumarins. In addition, senkyunolide

E (30) was synthesized by saponification of methyl 2-(3-hydroxypentynyl)benzoate

[357]. This procedure is shown in Chart 30.
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In a similar manner, Kanazawa and Terada synthesized (Z )-butylidenephthalide
(3) from o-pentynylbenzoic acid by means of a nucleophilic intramolecular addi-

tion, catalyzed by DBU (see Chart 31) [358].

Kuethe and Maloney employed a method essentially based on halogen–metal

exchange of methyl o-iodoesters via a Barbier-type reaction with i-PrMgCl-LiCl,

followed by quenching with carbonyl compounds, yielding racemic mixtures of the

natural phthalides 3-butylidenephthalide (rac-3) and chrycolide (100) [359]

(Chart 32).

Mondal and Argade reported regioselective procedures starting from 5,7-

dihydroxyphthalide (90) and an α,β-unsaturated aldehyde, through which it proved

possible to obtain selectively two kinds of skeletons, representing an adequate

synthetic procedure for salfredin B11 (210) and phthalidochromene (97). When
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the starting phthalide was treated with DBU or other diaza-bases, a dianion was

formed, and the more reactive C-6 anion underwent a nucleophilic attack

(1,2-addition) at the carbonyl carbon from 3-methyl-3-butenal. The subsequent

attack from oxygen at the remaining vinylic system, followed by dehydration,

furnished the linear structure of salfredin B11-like products. However, if

5,7-dihydroxyphthalide (90) was refluxed in methanol, with subsequent additions

of the aldehyde, the “angular” tricycle was obtained exclusively, after methylation

in the presence of Ag2O, leading to the natural product 97 (see Chart 33) [360].

Wakamatsu and co-workers developed a synthetic pathway consisting of the

lithiation of 2-methoxy-N-phenylbenzamide 412 (prepared from the corresponding

carboxylic acid) with butyllithium in the presence of TMEDA, followed by nucle-

ophilic attack on (trans)-2-pentenal, hydrolysis, and thermal cyclization, affording

phthalide 414, which was further isomerized and demethylated to yield the natural

compound (Z )-3-butylidene-7-hydroxyphthalide (25). Similarly, (Z )-3-butylidene-
5-hydroxyphthalide (28) was obtained starting from benzamide 413 and phthalide

415 as the intermediate (see Chart 34) [361].

Li’s group synthesized (Z )-ligustilide (8) starting from o-formylbenzoic acid,

which was converted into a 1:1 (E)/(Z) mixture of 2-butylidenebenzoic acid

through a Wittig reaction, then oxidized with H2O2. The resulting threo/erythro
mixture of 8-hydroxy-3-butylphthalide was reduced under Birch conditions, and

the hydroxyphthalide obtained was dehydrated, affording 8 (see Chart 35) [362].

Beck and Stermitz reported an improved methodology for synthesizing

phthalide 8 in three steps, starting from phthalide, which was treated with lithium

diisopropyl amide (LDA) and then butyraldehyde, followed by Birch reduction and

dehydration with MsCl (see Chart 36) [89].
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Chart 33 Synthesis of tricyclic terpenoid phthalides
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Kobayashi and co-workers developed a procedure in which 5,7-dihydroxy-4-

methylisobenzofuran-1-(3H )-one (146) was synthesized from benzocyclobutenone

416 (prepared from 2,4-dimethoxybenzaldehyde, which was brominated and then

reduced through a Clemmensen reaction to afford 1-bromo-2,4-dimethoxy-5-

methylbenzene, and then treated with 1,1-dimethoxyethylene under Birch condi-

tions. This compound (416) was transformed into the natural phthalide through

reduction (LiAlH4) and subsequent oxidation (with Pb(OAc)4) [363]. Phthalide 146

can be used for the synthesis of MPA (141), so it constitutes a formal synthesis of

the last-mentioned compound (see Chart 37).

The synthesis of naturally occurring 7-hydroxy-4,6-dimethylphthalide (247) was

achieved by Takei and co-workers by means of the silylation of butenolide 417with

trialkylsilyl chloride, furnishing a furan-type diene 418. The key step in this

synthetic procedure was the Diels–Alder reaction between the former compound

and maleic anhydride, for which the product, under hydrolysis, yielded the

substituted phthalic anhydride 419. This product was selectively reduced with
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NaBH4 (as a result of chelation of sodium cation with the hydroxy and carbonyl

groups; intermediate 420), yielding 247 (see Chart 38) [364].

Allison and Newbold accomplished the synthesis of naturally occurring

5,7-dihydroxyphthalide (90) and 7-hydroxy-5-methoxyphthalide (91) by benzylic

bromination of ethyl dibromo orsellinate (421) or ethyl everninate (422) (producing

423 and 424, respectively), followed by treatment with aqueous dioxane, which

furnished 91. To obtain 90, a further step of hydrogenolysis of 425 was necessary.

An alternative method to obtain 91, also using the hydrolysis/cyclization process as

an essential feature, took advantage of the by-product of the bromination reaction,

i.e. the dibromo derivative of ethyl everninate, which, after hydrolysis, furnished

phthalide 426. Through a hydrogenolysis of the resulting product, the bromine atom

attached to C-4 was replaced by hydrogen, yielding 91 [365] (Chart 39).
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O

O

R2O
R1

R3

OH

425 R1 = Br, R2 = H, R3 = Br
426 R1 = Br, R2 = Me, R3 = H

O

O

hydrogenolysis RO

OH

90 R = H
91 R = Me

O

O

Chart 39 Synthesis of 90 and 91
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Canonica and co-workers carried out the preparation of the phthalide framework

necessary for the synthesis of MPA (141), via Michael addition of sodium

diethylmalonate to 3-methyl-3-penten-2-one and subsequent Dieckmann conden-

sation. The resulting product was aromatized and then methylated; the

corresponding acid was obtained under hydrolysis, and its chloride was prepared

and reacted with ammonia, producing an amide, which was N-chlorinated. The

product was photolytically converted and demethylated to produce 146, which after

alkylation and other functional group transformations, yielded 141 (see

Chart 40) [366].

Mali and Patil reported a synthesis procedure in which a Wittig reaction between

427 and n-butylidenetriphenylphosphorane provided the corresponding vinyl

benzoic acid, which was iodinated and cyclized with I2/KI aqueous solution.

After treatment with NaOAc in EtOH, HI was eliminated. Finally, the oxygen at

C-7 was demethylated with AlCl3 in CH2Cl2 to yield (Z )-3-butylidene-7-
hydroxyphthalide (25), a natural compound isolated from Ligusticum wallichii
(see Chart 41) [367].

Thibonnet’s group synthesized natural phthalides 432 and 433, using as a key

step a Sonogashira coupling-oxacyclization, between o-iodobenzoic acid 428 and

acetylenes 429 or 430. It is noteworthy that due to the presence of methoxy

substituents on benzene, the only observed products are phthalides 431 and 432,

from a 5-endo-dig oxacyclization, and not the coumarin, which would be formed

through a 6-exo-dig attack (see Chart 42) [368].

O

OEt

O

OEt
+

O
EtOH

O

O

CO2Et
O

O

CONHCl

HO

OH

O

O

1. t-BuClO, hν
2. KOH/EtOH-H2O

3. BCl3/CH2Cl2

HO

OH

O

O
R

RBr
AgO

R =
CO2Me

146

141

Chart 40 Canonica’s synthesis of compound 141
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MeOH
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O

Pr

427 25

Chart 41 Synthesis of phthalide 25
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Ohzeki and Mori used a simple two-step procedure consisting of ortho-
lithiation of N,N-diethyl-o-methoxybenzamide (434) followed by nucleophilic

attack on pentanal and lactonization to obtain a racemic mixture of 3-butyl-7-

hydroxyphthalide (rac-212) (see Chart 43) [369].

6.1.3 Lactone Ring Formed Prior to Benzene Ring

Maldonado and co-workers reported an original synthesis of demethyl nidulol

(435), a natural phthalide from Aspergillus nidulans (Eidam) G. Winter and

A. duricaulis, where the formation of the lactone preceded the formation of the

benzene ring. The procedure consisted of the preparation of compounds 436 and

437, which were able to undergo an intramolecular Michael addition from the anion

of the diactivated methylene moiety to the α,β-unsaturated propargyl or iodovinyl

carbonyl fragments to afford the lactone ring. A subsequent Dieckmann condensa-

tion led to 435 (see Chart 44) [370].

O

O

R

O

O+ R

428

429 R = CH2OTHP
430 R = p-OMe-Ph

1. CuI, K2CO3
DMF

2. H2/Pd-C

O

O

I

OH

O

431 R = OTHP
432 R = p-OMe-Ph

HO

OH

CO2H

O

O

433 (from 431)

Chart 42 Synthesis of compounds 432 and 433
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O
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Chart 43 Synthesis of rac-212
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O O
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O

O O
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O

I
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OO
O

O

O

t-BuOK

THF

436 437

Chart 44 Preparation of demethyl nidulol (435)
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6.1.4 Stereoselective Syntheses of Phthalides

Butylphthalide (4), (+)-matteucen C ((+)-122), (�)-matteucen C ((�)-122), and

demethyl pestaphthalide (216), were synthesized by Santhosh and co-workers, as

shown in Chart 45, via oxidative cyclization of the corresponding o-cyanostyrenes
(437, 438, and 439), achieved with chiral oxo osmium complexes AD-mix (α- or
β-). The mechanism of cyclization was investigated through indirect experiments,

and was suggested to consist of oxidation of the carbon–carbon double bond with

two of the oxygen atoms bonded to osmium, followed by nucleophilic attacks of the

benzylic oxygen to nitrile carbon and of nitrile nitrogen to osmium. Subsequent

hydrolysis yielded the desired phthalide. It is worth mentioning that the synthesis of

both (+)- and (�)-matteucen C (122) confirmed the syn relationship of the sub-

stituents at C-3 and C-8 (See Chart 45) [371].

Koert and co-workers prepared (+)-pestaphthalide A (213) and (�)-

pestaphthalide B (214), as depicted in Chart 46, by a stereodivergent synthesis

from 2,6-dimethoxytoluene, which was selectively meta borylated. The result-

ing arylboronate was submitted to Suzuki-Miyaura coupling with (Z )-1-
bromopropene, delivering a (Z )-alkene, which was epoxidized asymmetrically

under Katsuki–Jacobsen conditions, and subsequently hydrolyzed either with aque-

ous perchloric acid in the presence of manganese III catalyst, or with aqueous

10-camphorsulphonic acid, leading to 4:1 and 1:3 mixtures of cis/trans diols,

R3

CN

R2

R1

1. AD-mix-α or βa 
t-BuOH, THF, H2O
2. BBr3 in CH2Cl2

or Barton-McCombie
protocolb

8
3R1

R3
R4

OR2

O

4 R1 = R2 = R4 = H; R3 = Pr
(3S,8S)-122 R1 = R2 = R4 = OH; R3 = Ph
(3R,8R)-122 R1 = R2 = R4 = OH; R3 = Ph
(3S,8S)-216 R1 = R2 = R4 = OH; R3 = Me

438 R1 = R2 = R4 = H; R3 = Pr
439 R 1 = R2 = R4 = OH; R3 = Ph
440 R1 = R2 = R4 = OMe; R3 = Me

Mechanism:

R

CN

R

O
Os

O

N

O

O

L*

1. H2O
2. NaHSO4 O

HO
R

OR = Me or CO2Et

Chart 45 Enantioselective synthesis of matteucen C (122), demethylpestephthalide (216) and

butylphthalide (4), and the underlying stereoselective determining step. (a) AD-mix-β was used

for (�)-matteucen C (122); (b) Barton–McCombie protocol was used for synthesizing

butylphthalide (4)
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respectively. The former was converted into cyclic carbonates with triphosgene.

The convenient carbonate was subjected to bromination (with NBS), and then

bromine–lithium exchange yielded an intermediate that rearranged to the

corresponding phthalide, when heated to 20�C (see Chart 46) [372].

Watanabe and co-workers prepared a mixture of enantiomerically pure (�)-(S)-
sedanenolide (senkyunolide A, 15) and (�)-(3S)-butylphthalide (4) and a mixture

of their enantiomers. This was achieved by esterification of 2,4-pentadienoic acid

with the appropriate enantiomer of 1-heptyn-3-ol. The resulting ester was cyclized

through a Diels–Alder reaction to give the corresponding mixture of (–)-(S)-
sedanenolide (15) and (�)-(3S)-butylphthalide (4) or their enantiomers (see

Chart 47) [373].

In another approach, summarized in Chart 48, (R)-butylphthalide ((R)-4) and
other phthalides were prepared enantioselectively via Grignard-type reactions with

o-oxazynyl-substituted benzaldehydes as electrophiles, yielding the appropriate

alcohol in a diastereoselective manner, according to the Felkin–Ahn model. Hydro-

lysis of the oxazine moiety led to the corresponding ethylacetal, which, after

oxidation with MCPBA and BF3�OEt2, afforded phthalide (R)-4 [374].

A reverse Wacker oxidation, aided by the presence of lactone oxygen, was used

by Brimble and co-workers to prepare (�)-herbaric acid ((�)-169), in the following

manner. An enantiomerically pure benzylic alcohol (accessible by enzymatic

resolution), was reacted with carbonyl diimidazole (CDI) and diethylamine, yield-

ing a carbamate, which was lactonized by bromine–lithium exchange. The desired

product ((�)-169) was obtained from the 5,7-dimethoxy-3-vinyl-phthalide, by

O

O

O
O

O

1. triphosgene, py, CH2Cl2
2. NBS, MeCN
3. BBr3, CH2Cl2 

Suzuki-Miyaura
Katsuki-Jacobsen

OH

OH
O

O

HO

213

HClO4 aq. 
Me2CO

or
10-camphor-

sulphonic
acid

OH

OH

OH

OH
O

O

O

O

+

HO

OH O

O

1. triphosgene, py, CH2Cl2
2. NBS, MeCN
3. BBr3, CH2Cl2

OH

OH
O

O

HO

214

HO

OH O

O

Chart 46 Syntheses of pestaphthalides A (213) and B (214)
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reverse Wacker oxidation (PdCl2, CuCl, O2, DMF), oxidation of the resulting

aldehyde (oxone, DMF), esterification, demethylation, and hydrolysis. This proce-

dure is depicted in Chart 49 [375].

The syntheses of both enantiomers of acetophthalidin (S)-(170) and (R)-(170)
were accomplished by Kitahara and co-workers, through stereoselective Sharpless

dihydroxylation of 5-(1-propenyl)-bisbenzyl-resorcinol with either AD-mix-α
or AD-mix-β, yielding (S,S)- and (R,R)- hydroxyphthalides, respectively. Oxidation
of the alcohol to the ketone with Dess–Martin periodinane, followed by

hydrogenolysis, yielded the enantioenriched (S)-(170) and (R)-(170) (see

Chart 50) [376].

In order to confirm the configuration of (�)-3-butyl-4-hydroxyphthalide (65),

Mitsuhashi’s research group developed an asymmetric synthesis for this compound,

as shown in Chart 51. Thus, the chiral aminal of m-methoxybenzaldehyde (441)

was ortho-alkylated stereoselectively with n-pentanal, and, after acidulation, a

diastereomeric mixture of lactols was obtained. This mixture was oxidized to the

* Bu

OH

CO2H

PhCOCl, Et3N
DMAP

O

O

Bu*

4,4-thiabis(6-t-
butylcresol)

Tol, Δ

O

Bu

O

*
O

Bu

O

*

(S)-15
43% (98% ee)

(R)-15
50% (96.2% ee)

(S)-4
12% (99.6% ee)

(R)-4
11% (97% ee)

+

enzymatically
resolved pure
enantiomers

Chart 47 Syntheses of sedanenolide (15) and butylphthalide (4)

N
O

Bn CHO
N

O

Bn

O

O

Bu

BuLi
THF

1. HCl 2% in EtOH  
2. MCPBA
BF3OEt2
CH2Cl2

(R)-4
HO Bu

Chart 48 Enantioselective synthesis of (R)-butylphthalide ((R)-4)

CO2H

O

HO

OH

O

chemoenzymatically 
resolved benzylic alcohol

1. CDI, HNEt2
2. BuLi/THF

3. HCl/dioxane

O

O

O

O

1. PdCl2,CuCl, O2
DMF, H2O

2. Oxone, DMF
3. H2SO4, MeOH
4. BBr3, CH2Cl2

5. NaOH/H2O-MeOH

OH

Br

O

O

(–)-169

Chart 49 Synthesis of (�)-herbaric acid ((�)169)
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corresponding lactone and the methyl ether was deprotected with BBr3, affording

phthalide 65 [108].

Another approach for the syntheses of chiral 3-substituted alkylphthalides with

high enantiomeric excesses, was the use of o-phthalaldehyde. This, after reaction
with an appropriate enantiomerically pure N-alkylvalinol, yielded oxazolidinyl

benzaldehyde 442, which was reacted with alkylmetallic reagents. The resulting

product was further transformed to give enantioenriched 3-substituted natural

phthalides (4, 443, 444). The stereoselective alkylation step was strongly influenced

by the solvent, achieving enantiomeric excesses up to 90% of the (R)-enantiomer in

a mixture of THF and dioxane, and 33% of the (S)-enantiomer in diethyl ether (see

Chart 52) [151].

Both enantiomers of 3-butyl-7-hydroxyphthalide (212) were synthesized by

Ohzeki and Mori, starting from methyl 2,6-dihydroxybenzoate, which was

alkylated through a Suzuki–Miyaura coupling. The resulting olefin was

dihydroxylated with either AD-mix-α or AD-mix-β to obtain enantiomerically

pure diols. Further transformations gave both (R)- and (S)-enantiomers of the

phthalide. The well-known stereochemistry of the Sharpless’ epoxidation was

used to confirm the configuration of the natural product as (S) (see Chart 53) [369].

BnO

OBn

O

O

O
HO

OH

HO

O

O
BnO

OBn

O

O

O
HO

OH

HO

O

O
BnO

OBn

1. Dess-Martin periodinane
CH2Cl2

2. H2, Pd(OH)2/C
AcOEt

AD-mix-α

MeSO2NH2
t-BuOH, H2O

AD-mix-β

(R)-170

(S)-170

Chart 50 Synthesis of both enantiomers of acetophthalidin ((S)-170) and (R)-(170))

O
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N
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1. BuLi
2. BuCHO

3. HCl O

Bu

OH

O

O

Bu

O

OH

1. Ag2O
2. BBr3

65441

Chart 51 Synthesis of (�)-3-butyl-4-hydroxyphthalide (65)
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6.2 Synthesis of Dimeric Phthalides

The synthesis of dimeric phthalides has been studied, mainly using (Z )-ligustilide
(8) as starting material. It is interesting to note that dimeric phthalides have been

isolated as racemic mixtures from members of the Apiaceae (Umbelliferae) plant

family, and have displayed several biological activities (see Sect. 7). Diligustilide

(levistolide A, 23) and tokinolide B (43) have been derivatized to enantiomerically

pure compounds, as described in Sect. 5.2.2.

6.2.1 [π4s +π2s] Cycloadditions

Wakamatsu and co-workers [320] described the preparation of diligustilide

(levistolide A, 23) and tokinolide B (43) from (Z )-ligustilide (8), by a Diels–

Alder process. It was observed that tokinolide B (43) was transformed partially to

levistolide A (23) under the reaction conditions (Chart 54). Calculations of HOMO

and LUMO of (Z)-ligustilide (8) were also carried out to explain the

regioselectivity of the dimers formed. A similar thermal reaction in a sealed tube

of (Z )-ligustilide (8) allowed its conversion to diligustilide (23), confirming the

regio- and stereoselectivity of the reaction [321] (see Chart 54).

H

O

H

O

+
N
H

R

OH RN

O

O

H

1. R'M
2. p-TsOH

3. PCC O
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(R)-4 R '= Bu
(R)-443 R '= Et
(R)-444 R '= Me
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Chart 52 Syntheses of enantiomerically pure 3-alkylphthalides
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Chart 53 Synthesis of (S)-212. The enantiomer ((R)-212) was obtained using AD-mix α
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6.2.2 [π2s +π2s] Cycloadditions

Although the majority of natural dimeric phthalides are formed by [π4s + π2s]
reactions, several dimeric phthalides such as riligustilide (24), tokinolide A (42),

and endo-(Z,Z0)-[3.30,8.80]-diligustilide (445) are biosynthesized through [π2s
+ π2s] cycloadditions [72, 304, 377, 378].

3

8

O
O

Pr

3'

8'

O
O

Pr

445 (endo-(Z,Z')-[3.3',8.8']-
diligustilide)

The situ-, regio- and stereochemical possibilities of the three olefins of

(Z)-ligustilide (8) have been considered in the formation of [π2s + π2s]
photocyclodimers, but there are no direct guidelines available to predict the struc-

ture of the products. (Z )-Ligustilide (8) was exposed to photochemical conditions,

affording the natural product riligustilide (24), endo-(Z,Z0)-[3.80,8.30]-diligustilide
(446), endo-(Z,Z0)-[3a.7a0,7a.3a0]-diligustilide (447) and exo-(Z,Z0)-[3a.7a0,7a.3a0]-
diligustilide (448) (Chart 55). It was found that in the triplet state the carbon atoms

of the side chain of 8 were quasi-coplanar with the lactone ring, bringing down the

steric hindrance for the transition states, and also that the regioselectivity was

determined by orbital coefficients and energies. Frontier molecular orbitals and

M€ulliken charge calculations agreed with the experimental yields obtained for the

reaction products [378].

Diels-Alder

200°C

O

Pr

O

8 ((Z)-ligustilide) 23 ((Z,Z')-diligustilide, 
levistolide A)

O

Pr

O
Pr

O

O

OO

O O

Pr

Pr

43 (tokinolide B)

Chart 54 Diels–Alder reaction of (Z )-ligustilide (8)
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7 Biological Activity

The evaluation of biological activity has been a prominent aspect of phthalide

research. While a number of biological activities have been attributed to natural

product extracts containing phthalides, these data have been complicated by the

presence of more than one active constituent (i.e. the biologically active constitu-

ents are not exclusively phthalides). With this in mind, the present contribution

reviews mainly the bioactivities of natural and semisynthetic phthalides as pure

compounds.

Several reviews on related topics have been published [1, 114, 379–382], with

some of them focusing exclusively on one compound, such as mycophenolic acid

(141) [318] or noscapine (128) [383–386]. The current review is neither intended to

be a comprehensive treatment of the biological activity of natural phthalides as

whole, nor on the individual compounds mentioned. Instead, an integrated over-

view is presented of the most relevant biological activities of this type of com-

pounds is presented here.

448 (exo-(Z,Z')-[3a.7'a,7a.3'a]-
diligustilide)

3'a

7'a

447 (endo-(Z,Z')-[3a.7'a,7a.3'a]-
diligustilide)

446 (endo-(Z,Z')-[3.8',8,3']-
diligustilide)

24 (endo-(Z,Z')-[3.7',8,6']-
diligustilide
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3'
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Chart 55 Photocyclodimerization of (Z )-ligustilide (8)
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7.1 Antioxidant Effects

Several human diseases are associated with oxidative damage. The overproduc-

tion of reactive oxygen species (ROS) damages the cell [387], and eukaryotic cells

have developed defensive enzymatic systems. (Z )-Butylidenephthalide (3), (Z )-
ligustilide (8), senkyunolide I (22), sinaspirolide (70), and ansaspirolide (71), were

screened for their antioxidant activity at 100 μM. All these compounds showed

activity in scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. Also,

ansaspirolide (71) was the most active in inducing the activity of NAD(P)H-

quinone oxidoreductase 1 (NQO1), but was also cytotoxic for the host hepatoma

cells (Hepa1c1c7). (Z )-Butylidenephthalide (3) and (Z )-ligustilide (8) also success-
fully induced NQO1. The transcription of several antioxidant enzymes is regulated

by antioxidant response elements (ARE) in promoter units. (Z)-Ligustilide (8)

induced ARE reporter activity in a dose-dependent manner (5–20 μM)

[388]. Senkyunolides I (22) and H (26) both induced heme oxygenase-1 (HO-1),

with senkyunolide H showing the most potent effect, and the induction was related

to the activation of Nrf2 (nuclear factor E2-related factor-2)/ARE pathway. Both

compounds were inhibitors of ROS formation and lipid peroxidation in human liver

hepatocellular carcinoma cells (HepG2) [389]. Colletotrialide (226) demonstrated a

low antioxidant activity, scavenging DPPH with an IC50 value of >324 μM. It also

inhibited weakly superoxide anion radical formation (by xanthine/xanthine oxi-

dase) (IC50> 648 μM); superoxide anion radical generation (in differentiated

human promyelocytic leukemia cells (HL-60)) (IC50> 130 μM); xanthine oxidase

(IC50> 648 μM), and aromatase (IC50> 16.2 μM) [222].

The antioxidant properties of (Z )-ligustilide (8) and cis-(Z,Z0)-3a.7a0,7a.3a0-
diligustilide (447) have been assessed using human umbilical vein endothelial

cells (HUVECs), evaluating the oxidative damage caused by hydrogen peroxide

(H2O2). Treatment with 447 protected HUVECs (IC50¼ 15.14 μM), with (Z )-
ligustilide (8) displaying an IC50 of 0.55 μM. Lactate dehydrogenase (LDH)

leakage provoked by H2O2 was also reduced by 447 at concentrations of 25, 50,

and 100 μM. The application of 447 also increased superoxide dismutase (SOD)

activity and decreased malondialdehyde (MDA) levels, confirming its antioxidant

properties [387].

Epicoccone (195) prevented lipid peroxidation (62%) when used at 37 μg/cm3

[205], while isopestacin (193) was found to scavenge hydroxyl radicals at a

concentration of 0.22 mM and the superoxide radicals at 0.185 mM [203].

7.2 Analgesic Effects

(Z)-Ligustilide (8) has analgesic effects, since administration to mice at doses of

2.5, 5, and 10 mg/kg (p.o.), caused a dose-dependent reduction in the both the
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writhing response induced by acetic acid and formalin-induced licking time

[390]. Compound 8 has also been evaluated at the higher dosages of 20, 60, and

100 mg/kg, with the same results: a delayed licking time and reduced writhing

response both occurred [391]. In a similar study, (Z )-butylidenephthalide (3), (Z )-
ligustilide (8), and diligustilide (23), suppressed the irritation induced by acetic

acid, with diligustilide (23) showing the greatest effect. (Z )-Butylidenephthalide (3)
and (Z)-ligustilide (8) also demonstrated an antinociceptive effect when using a

hot-plate assay [392].

7.3 Antihyperglycemic Effects

Type 2 diabetes mellitus is a chronic condition associated with abnormal levels of

blood glucose. Both (Z )-butylidenephthalide (3) and (Z )-ligustilide (8) decreased

the postprandial blood glucose peak in mice treated with streptozotocin [393]. (Z )-
Butylidenephthalide (3) also inhibited the activity of yeast α-glucosidase in vitro

in a concentration-dependent manner (IC50¼ 2.35 mM). Docking analysis (using

the (E)-isomer (21)) showed that this compound binds close to the catalytic

site [393].

In screens for competitive binding to PPAR-γ, paecilocin A (245) used at

100 μM demonstrated comparable activities to rosiglitazone, a PPAR-γ agonist

used for the treatment of type 2 diabetes mellitus. Compounds 449 and 450 also

showed comparable binding properties to rosiglitazone, whereas 451–454, which

contain benzyl or methyl groups, were less effective. The introduction of additional

substituents failed to enhance activity, as shown for compounds 452–454 and 457–

460. Phthalides 455 and 456 showed no enhanced activity, with compound 455

slightly more active than 456 [394].
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7.4 Antithrombotic and Antiplatelet Effects

Thrombosis is the main cause of the thromboembolic complications of ischemic

disorders. One pharmacological strategy has been to re-establish the blood flow to

the ischemic site by dissolving the clot. Another strategy is to prevent clot forma-

tion. To this end, the search for new antithrombotic agents has continued [395]. (Z )-
Ligustilide (8), administered for three days at doses of 10 or 40 mg/kg (p.o.),

demonstrated both antithrombotic and antiplatelet activities [395]. (Z )-
Butylidenephthalide (3) showed antiplatelet activity, and inhibited the aggregation

of washed rabbit-derived platelets, induced by collagen, arachidonic acid, platelet

activating factor, and adenosine diphosphate (ADP). (Z)-Butylidenephthalide (3)

also inhibited the release of adenosine triphosphate (ATP) from these platelets

[396]. (R)-Butylphthalide (ent-4) and (S)-butylphthalide (4) inhibited also platelet

aggregation [397], with blood viscosity reduced by rac-butylphthalide (rac-4),
cnidilide (7), senkyunolide A (15), senkyunolide P (40), and tokinolide B

(43) [398].

7.5 Neurological Effects

7.5.1 Stroke

Stroke is a leading cause of disability in adults and is the third most prevalent cause

of mortality in the world [399, 400]. Treatment options are currently limited.

Intraperitoneal administration of (Z)-ligustilide (8) to mice undergoing transient

forebrain cerebral ischemia/reperfusion (I/R), at dosages of 5 and 20 mg/kg, reduced

infarct volume in a dose-dependent manner. The administration of 8 also decreased

MDA content, restored the activities of glutathione peroxidase (GSH-PX) and SOD

in ischemic brain tissues, and regulated pro- and antiapoptotic effector proteins

[401]. Oral administration of (Z)-ligustilide (8) at doses of 20 or 80 mg/kg to rats

with middle cerebral artery occlusion (MCAO) also showed, after 24 h of obstruc-

tion, a marked reduction in infarct volume and brain edema. (Z)-Ligustilide
also ameliorated neurobehavioral impairment and improved survival rate [400]. In

terms of the immune response, microglia are activated during ischemia. Both

(Z)-ligustilide (8) and senkyunolide A (15) inhibited neuroinflammation, blocked

the production of TNF-α and nitrites in murine microglial cells (BV-2), and

reduced TNF-α production from peripheral blood monocyte-derived macrophages

(PBMac) [399].

Oral administration of (Z )-ligustilide (8) at doses of 20, 40 or 80 mg/kg, 3 and

0.5 h before the MCAO procedure, reduced the neurological deficit score, and the

infarct volume in a dose-dependent manner. The expression of erythropoietin

(EPO, an endogenous protective factor) was also enhanced and the level of the

stress-induced protein RTP801 (an endogenous detrimental factor) was reduced.
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The cytoprotection conferred by EPO could be mediated by the phosphorylation of

ERK promoted by 8. (Z )-Ligustilide (8) also increased cell viability and decreased

the leakage of LDH, although concentrations above of 5 μM were cytotoxic to

neurons maintained in cell culture. Transfection of human neuroblastoma cells

(SH-SY5Y) with the pcDNA3.1-RTP801 plasmid DNA increased LDH leakage

and RTP801 expression, both of which were inhibited by (Z)-ligustilide (8)

[402]. Compound 8 protected PC12 cells from apoptosis induced by oxygen-

glucose deprivation (OGD), induced tolerance to oxidative stress, induced HO-1

expression, and promoted translocation of Nrf2 [403] to the nucleus (an inducible

transcription factor that regulates multiple cellular antioxidant systems during

stroke) [404]. (Z )-Ligustilide (8) also regulated the homeostasis of glutathione

(GSH) [403].

Zhu et al. evaluated the effect of (Z )-ligustilide (8) on the Nrf2/HO-1 pathway,

and it was found that this compound provoked a significant decrease of infarct

volume, improved neurological function, and attenuated neuronal loss (at 16 and

32 mg/kg, i.v.) in transient MCAO-induced damage [404]. The results concerning

the Nrf2 and HO-1 proteins were similar to those obtained by Rong et al. [403]. (Z )-
Ligustilide (8) activates the Nrf2 pathway, with its protective action possibly

mediated by the Nrf2/HO-1 pathway [404]. Noscapine (128) improved clinical

prognosis in ischemic stroke patients [405].

Subarachnoid hemorrhage (SAH) is a stroke subtype that can lead to cerebral

vasospasm. The treatment of rats with (Z )-ligustilide (8) at a dose of 20 mg/kg

improved neurobehavioral scores, reduced edema, improved the permeability of

the blood brain barrier, and with vasospasms diminished. (Z )-Ligustilide (8)

may ameliorate tissue damage caused by SAH by mechanisms that involve

apoptosis [406].

Permanent bilateral ligation of the common carotid artery is an experimental

model for cerebral hypoperfusion (used for the study of dementia), which impairs

memory and learning. Administration of (Z )-ligustilide (8) prevented the structural
and functional abnormalities in the brain of rats subjected to this procedure. (Z )-
Ligustilide also protected the hippocampus from damage, ameliorated cognitive

deficits, decreased MDA and acetylcholinesterase (AChE) levels, and increased the

activity of the SOD and choline acetyltransferase (ChAT) [407].

7.5.2 Alzheimer’s Disease and Cognitive Impairment

Alzheimer’s disease is a progressive neurodegenerative disease characterized by

damage to the regions of the brain that regulate cognitive function in the elderly

[408]. The cytotoxicity induced by the amyloid β-peptide (Aβ) in Alzheimer’s
disease, together the effects of (Z )-ligustilide (8) and 11-angeloylsenkyunolide F

(41), have been evaluated. Cell viabilities following exposure to Aβ1–40 were 61.6
and 69.4%, respectively, at 10 and 50 μg/cm3 for (Z)-ligustilide (8). The same

concentrations of 11-angeloylsenkyunolide F (41) produced viabilities of 59.5 and
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67.1%. The toxicities of these compounds were also analyzed, with 50 μg/cm3 (Z )-
ligustilide (8) shown to be toxic (53.0% of cell viability) [408].

A second group of investigators reported cytotoxicity data using Aβ25–35 and

oral administration of 8 (40 mg/kg) for 15 days (from the 6th to 20th day). (Z )-
Ligustilide (8) prevented cognitive dysfunction and attenuated the morphologic

changes and neuronal loss induced by injection of Aβ25–35. The injection of Aβ25–35
increased the expression of Aβ, amyloid precursor protein, and Tau protein, with

(Z)-ligustilide (8) preventing all of these effects [409].

Some studies have suggested that the widespread loss of ACh-containing neu-

rons, and the reduction in activity of ChAT, are early biological signs of

Alzheimer’s disease. (Z )-Ligustilide (8) (at 10 or 40 mg/kg daily for 26 days)

was tested on an model of Alzheimer’s disease using scopolamine, which increases

AChE activity and decreases ChAT activity. Phthalide 8 improved spatial long-

term memory, prevented spatial short-term memory deficits, inhibited AChE activ-

ity (IC50¼ 6.48 mg/kg), and increased ChAT activity (ED50¼ 7.66 mg/kg)

[410]. (Z )-Ligustilide (8) has also demonstrated a cytoprotective effect, and

protected against the cognitive impairment and neurotoxicity induced by D-galac-

tose (at a dose of 80 mg/kg/8 weeks) in aged mice brains, by improving spatial

learning and memory. MDA levels and the expression of cleaved caspase-3 were

both diminished on the administration of 8. The decline in activity of Na+–K+-

ATPase provoked by D-galactose was also prevented by (Z )-ligustilide (8), with a

diminution of astrocytic activation [411].

Phthalide NG-072 (48) has been reported to be effective in the potential treat-

ment of Alzheimer’s disease, by enhancing axon growth [84].

7.5.3 Parkinson’s Disease

Parkinson’s disease is a neurodegenerative pathology characterized by a progres-

sive loss of dopaminergic nigrostriatal neurons. Current therapies for Parkinson’s
disease depend mainly on dopamine replacement using levodopa (L-dopa) and

antioxidants; however, there is certain evidence of the toxicity of dopamine and

its metabolites. Dopamine at concentrations ranging from 200 to 800 μM affected

the viability of PC12 cells in a concentration-dependent manner. (Z )-Ligustilide (8)
used at 50 μM decreased cell viability by 9.6%, but the combination of 8 (50 μM)

and dopamine (500 μM) was even more cytotoxic to PC12 rat dopaminergic cells,

reducing viability by almost 90%. The same treatment as for PC12 on the SH-SY5Y

(human neuroblastoma), HepG2 (human hepatoma), MCF-7 (human breast adeno-

carcinoma), HeLa (human epithelial carcinoma), and PC3 (human prostate cancer)

cell lines, revealed that only the dopaminergic cell lines were adversely affected.

Cells treated with dopamine or (Z )-ligustilide (8) died via apoptosis and necrosis,

with a mixture of these compounds increasing levels of cell death to 56.8%, and

decreasing GSH levels to 28.8% [412].
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7.5.4 GABAergic and Sedative Effects

The GABAA receptor is a target for drugs that modulate sedative, anxiolytic,

anticonvulsant, muscle relaxant, and amnesic activities. Binding to the GABAA

receptor using [3H] flunitrazepam and diazepam as positive controls, demonstrated

that both gelispirolide (68) and riligustilide (24) inhibited [3H]diazepam binding to

GABAA receptors (the IC50 values were 29 and 24 μM) [109].

(Z)-Ligustilide (8) at 5–20 mg/kg, and (Z)-butylidenephthalide (3) at 10–30 mg/

kg (i.p.) reversed pentobarbital-induced sleep shortened by social isolation stress.

Both phthalides (at 20 mg/kg) attenuated the effects of methoxamine and yohim-

bine, which decreased the time of the pentobarbital sleep period. (Z )-Ligustilide
(8) potentiated the effects of diazepam in pentobarbital-induced sleep in mice,

suggesting noradrenergic suppression. Both phthalides also attenuated the effect

of a benzodiazepine receptor inverse agonist. Taken together, the GABAA receptor

may be implicated in the activity of these compounds [413].

The hypnotic time induced by sodium pentobarbital in mice increased signifi-

cantly by pretreatment with 50 mg/kg of (Z )-ligustilide (8), diligustilide (23),

tokinolide B (43), senkyunolide F (31) and several semi-synthetic products, includ-

ing the diketo diacid of diligustilide (345), demethylwallichilide (344), rel-(30S)-
30,80-dihydrodemethylwallichilide (461), and rel-(30R)-30,80-dihydrotokinolide B

(462). The increases in hypnosis, expressed as percentages, were 46.3, 24.6, 70.8,

34.6, 66.0, 52.3, 36.2, and 100%, respectively. Compounds 43 and 462 demon-

strated the highest activities [276]. In the same model, compounds 15 and

4 displayed similar effects [414]. Phthalideisoquinolines, (+)-bicuculline (111)

[415, 416], (+)-hydrastine (112), and corlumine (110) were found to be antagonists

of the GABAA receptor, with the most potent antagonist proving to be 112, with 111

more potent than 110; all three phthalides are convulsive agents [417].

462 (rel-(3'R)-3',8'-
dihydrotokinolide B)

OO

O O

COOH

O

O

461 (rel-(3'S)-3',8'-dihydro
demethylwallichilide)

OH

7.5.5 Anticonvulsive Effects

Epilepsy is a disorder characterized by abnormal neuronal electrical activity

[418] with periodic and unpredictable seizures [419]. rac-Butylphthalide (rac-4)
and senkyunolide A (15) were shown to be anticonvulsive agents against metrazole,

electroshock-, and audio-induced seizures [420]. Yang et al. confirmed the
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anticonvulsive effects of both phthalides [421]. rac-Butylphthalide protected

against chronic epilepsy induced by coriaria lactone [422], and at 700 mg/kg

prevented abnormalities in the hippocampus [423]. Both enantiomers of

butylphthalide (4) protected from the seizures induced by electro-shock [424].

7.6 Progestogenic Effects

The hormone progesterone is necessary for menstrual and reproductive health.

During menopause, hormone replacement therapy is an effective treatment against

hormonal disorders. Some phthalides have shown progesterone-like activity.

For example, 3,8-dihydrodiligustilide (63) (EC50¼ 91 nM) was shown to be a

potent and specific activator of the progesterone receptor, with riligustilide (24)

(EC50¼ 81 μM) displaying weaker activity. Levistolide A ((23) (Z,Z0)-diligustilide)
was inactive, which demonstrates the importance of minor structural variations in

this type of molecule for biological activity [106].

7.7 Cytotoxic Effects

The current lack of specificity for multiple antitumor therapies has led to a search

for novel, more targeted agents [219]. 3-Methyl-4,5,6-trihydroxyphthalide (198) is

an agent that has been tested for activity against the serine/threonine-protein kinase

Akt1, which regulates metabolism, proliferation, and cell survival, and showed an

IC50 value of 19.7 μM. The IC50 for the functional inhibition of Bad phosphoryla-

tion by Akt1 was 30.4 μM [208]. Cytotoxicities for 198 against several cancer cell

lines are listed in Table 1.

In the treatment of liver fibrosis, suppression of the growth of liver stellate cells

(HSC) with the induction of apoptosis has been suggested to be a plausible

therapeutic approach. (Z,Z0)-[6.80,7.30]-Diligustilide (24) and levistolide A (23)

Table 1 IC50 values for 3-methyl-4,5,6-trihydroxyphthalide (198) against several human cancer

cell lines [208]

Cell line IC50/μM
T cell lymphoblast (Jurkat) 20

Myeloma cells derived from peripheral blood lymphocytes (RPMI-8226) 67

Central nervous system cancer (SNB-75) 60

Melanoma (SK-MEL-28) 37

Ovarian cancer (OVCAR-5) 74

Breast cancer (BT-549) 24

Lymphoma (U937) 60
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((Z,Z0)-diligustilide) were found to reduce the cell proliferation stimulated by

platelet-derived growth factor (PDGF-BB) in immortalized liver stellate cells

(HSC-T6) and in immortalized human stellate cells (LI-90), with 23 showing a

higher potency than 24. Both compounds induced apoptosis in HSC stimulated by

PDGF-BB, without significant toxicity to primary hepatocytes, when used at

5–40 μM for 24, and 1–20 μM for 23 [425].

Noscapine (128) has been in Phase I/II clinical trials for non-Hodgkin’s lym-

phoma or chronic lymphocytic leukemia refractory to chemotherapy [426]. In

addition, noscapine also displayed activity against HT-29, colon carcinoma

(SW480), and the human colon adenocarcinoma (LoVo) cell lines, with selectivity

against the latter cell line (IC50¼ 75 μM) [427]. There have been several studies of

the bioactivity of noscapine (128), which concluded that its mechanism of action is

related to microtubule assembly [428–430].

Topoisomerases are enzymes that are involved in the progression of the cell

cycle and their inhibition can be used as targets for cancer chemotherapy.

Senkyunolides N (52) and J (33), and sedanolide (6) exhibited inhibitory effects

against topoisomerases I and II, with 6 completely inhibiting both enzymes at

100 μg/cm3 [431]. The cytotoxic and antiproliferative effects of senkyunolide A

(15), (Z )-ligustilide (8), and (Z)-butylidenephthalide (3) were evaluated using the

human colon cancer cell line (HT-29) and the normal human colon fibroblast cell

line (CCD-18Co). The phthalides decreased cell viability for tumor-derived cell

lines (IC50 values ranging from 8.6 to 51.2 μM), without any significant effect on

the viability of normal cells. Of these agents, senkyunolide A (15) was the most

selective [432].

(Z)-Butylidenephthalide (3) prevented cell cycle entry in glioblastoma

multiforme brain tumor cells, when used at 75 μg/cm3. This compound also induced

apoptosis and prolonged the survival of mice after malignant brain tumor cell

implantation [433].

(S)-3-Butyl-7-methoxyphthalide (212) is a natural product that has been previ-

ously synthesized; its IC50 values against several cell lines are shown in

Table 2 [217].

Compound 199 displayed activity against HeLa and KB cells (IC50 36.0 and

14.0 μg/cm3) [210, 212]. Porriolide (200) also displayed activity against KB cells

Table 2 IC50 values for (S)-3-butyl-7-methoxyphthalide (212) against several cancer cell lines

Cell line IC50/μg cm�3

Human lung carcinoma (A549) 44.0

Human epidermoid carcinoma of the mouth (KB) 32.0

HeLa 31.0

Human mammary adenocarcinoma (T47 D) 30.0

Murine leukemia cell line (P388) 25.8
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(IC50¼ 59.0 μg/cm3) [209]. Phthalide 199 induced apoptosis, with the authors

suggesting that proliferation was inhibited by a G1 phase arrest in HeLa cells [212].

Hanabiratakelides A ((218) HA), B ((219) HB), and C ((220) HC) were found to

display cytotoxic activities against colon cancer cells (Caco-2 and colon-26 cells).

The respective IC50 values for HA (218) and HC (220) were 342 and 535 μM in

Caco-2 cells. In turn, the IC50 values for colon-26 cells were 96 μM for HA (218),

18 μM for HB (219), and 49 μM for HC (220). These compounds also showed

superoxide dismutase (SOD)-like activity, with IC50 values of 15.7, 49.0, and

3.2 μM for HA (218), HB (219), and HC (220), respectively [219].

Marilones A (203), and C (205) also showed weak cytotoxic activities against

three cell lines: NCI-H460 (lung), MCF7 (breast), and SF268 (central nervous

system). Cytotoxicities were comparable for 203 (LC50> 100 μM) and 205

(LC50¼ 99.6 μM) against NCI-H460 and MCF7 [214].

Colletotrialide (226) has been tested against several cell lines with IC50 values of

162.1 μM for HuCCA-1, HepG2, and the A549 cell lines, and slightly less, at

147.8 μM, for the acute lymphoblastic leukemia line (MOLT-3) [222].

Several additional natural and semi-synthetic phthalides have been assayed

for their bioactivities against three cancer cell lines. The enantiomers (–)-348,

(+)-349, (+)-348, (–)-349, (–)-350, (+)-350, (+)-351, (–)-351, were more active

(see Table 3), with helenalin used as a positive control [118, 334, 335].

Table 3 IC50 values of several natural and semi-synthetic phthalides against three human cancer

cell lines

Compound

IC50/μM
Cell line

Leukemia (K562) Colon (HCT-15) Lung (SK-LU-1)

Dilustilide (23) 26.6 10.5 7.1

Rilugustilide (24) 46.1 44.8 13.2

Tokinolide B (43) 26.6 10.5 7.1

Chaxiongnolide B (87) 30.6 23.1 37.4

Demethylwallichilide (344) 47.2 >100 >100

Diketo diacid of dilustilide (345) 19.9 71.6 42.6

Cyclotokinolide (346) 21.9 28.4 22.9

Ketoacid of tokinolide B (347) >100 >100 >100

(–)-348 5.7 5.4 4.1

(+)-348 13.9 7.5 4.9

(–)-349 5.2 5.2 4.3

(+)-349 21.7 8.5 5.9

(–)-350 13.8 36.7 27.0

(+)-350 4.4 12.2 7.3

(–)-351 17.1 9.6 7.1

(+)-351 10.4 32.5 26.9
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5-(30,30-Dimethylallyloxy)-7-hydroxy-6-methylphthalide (463) exhibited mod-

erate activity against the myeloid liver carcinoma (SMMC-7721) and MCF-7 cell

lines, with IC50 values of 1.8 and 29.0 μM [434].

O

O

OOH

463

Multi-drug resistance (MDR) is an obstacle for many current cancer therapies.

One of the mechanisms involved in MDR is the elimination of compounds by

conjugating them by phase II enzymes, including glutathione S-transferase (GST).
11-Angeloylsenkyunolide F (41) and tokinolide B (43) inhibited GST enzyme (IC50

16.8 and 7.3 μM, respectively), in a reversible and noncompetitive process, docking

analysis showed that both compounds interacted with the active site. Compounds

41 and 43 showed low cytotoxicity against the A549 and MDA-MB-231 cell lines,

with both reversing MDR in these cell lines [435].

7.8 Inhibition of the Abnormal Proliferation of Vascular
Smooth Muscle Cells

Another biological activity that has been investigated for natural occurring

phthalide derivatives is the proliferation of vascular smooth muscle cells. Abnormal

proliferation is seen in atherosclerosis and in atherosclerotic plaques [436, 437].

Some phthalides have been reported to inhibit this proliferation in a concentration-

dependent manner. Senkyunolide H (26) was the most active (IC50¼ 0.1 μg/cm3) of

the following compounds: (Z )-butylidenephthalide (3) (IC50¼ 3.25 μg/cm3), (Z)-
ligustilide (8) (IC50¼ 1.68 μg/cm3), senkyunolide A (15) (IC50¼ 1.52 μg/cm3), and

neocnidilide (6) (IC50¼ 6.22 μg/cm3). 3-Butylphthalide (4), cnidilide (7), and

senkyunolide I (22) also demonstrated weak effects [436].

Kobayashi et al. also investigated the effect of various phthalides on the

competence and progression of the cell cycle proliferation. The most active

phthalide was senkyunolide L (45), followed by senkyunolide H (26), senkyunolide

J (33), senkyunolide I (22), (Z)-ligustilide (8), senkyunolide A (15), and (Z)-
butylidenephthalide (3) [437].

The effect of phthalide 8 on the abnormal proliferation of vascular smooth

muscle cells was related to its inhibition of ROS production [438]. (Z)-
Butylidenephthalide (3) and (Z )-ligustilide (8) both inhibited the proliferation of

vascular smooth muscle cells stimulated with basic fibroblast growth factor [439].

Compound 8 also displayed positive effects in a rat model of atherosclerosis [440].
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7.9 Insecticidal Effects

The larvicidal activities of (Z )-butylidenephthalide (3) and (Z )-ligustilide (8) were
evaluated against Drosophila melanogaster. Compound 3 was found to be more

active than 8 (LC50¼ 0.94 μmol/cm3 and LC50¼ 2.54 μmol/cm3), although both

were less effective than rotenone. Acute adulticidal activity, resulting in 100%

mortality, was seen when compound 3 was used at a dose of 5.0 μg/adult
(LD50¼ 0.84 μg/adult), and was more potent than the value obtained for

rotenone [441].

(Z)-Ligustilide (8) deterred the biting of both Aedes aegypti and Anopheles
stephensi at 25 nmol/cm2 more effectively than N,N-diethyl-3-methylbenzamide,

which is considered to be one of the most effective mosquito repellents [442].

Sedanolide (6) showed 100% of mortality at 50 μg/cm3 against A. aegypti [294].
Bemisia tabaci is one of the most important insect pests and participates in

the transmission of numerous plant-pathogenic viruses. The most pathogenic

biotypes of B. tabaci are the B- and Q-biotypes. The residual contact toxicities

of (Z )-ligustilide (8) (LC50¼ 268.4 ppm), and (Z )-butylidenephthalide (3)

(LC50¼ 254.2 ppm) were comparable to cypermethrin, but lower than other insec-

ticides; 3 was more toxic than (S)-butylphthalide (4) (LC50¼ 338.9 ppm) against

the B-biotype females. The toxicity of these compounds against the Q-biotype

females was also tested. (Z )-Ligustilide (8) and (Z )-butylidenephthalide (3) showed
more pronounced toxicity against the B-biotype females than the Q-biotype. (Z )-
Butylidenephthalide (3) also demonstrated acaricidal activity against two dust mite

species, Dermatophagoides farina and D. pteronyssinus [443].

7.10 Bactericidal, Antifungal, Antiviral, Immunosuppressant,
and Antiparasitic Effects

Mycophenolic acid (141) is an antibiotic agent with activity against a broad

range of microorganisms including Cryptococcus neoformans, Candida albicans,
C. stellatoidean, C. tropicalis, C. parakrusei, and Trichophyton species, and

showed moderate inhibition of Staphylococcus aureus [444], which has developed

some resistance to this antibiotic [445]. Mycophenolic acid (141; MPA) was

effective in suppressing psoriasis [446], and its morpholine ester was useful in

reducing episodes of allograft rejection [447]. The pharmacokinetics and pharma-

codynamics of MPA analogs have been reviewed recently [448, 449].

The increasing prevalence of multidrug resistant organisms has led to the search

for new, more effective, and nontoxic agents. (Z)-Ligustilide (8) showed a moder-

ate potentiation of norfloxacin activity against a norfloxacin-resistant strain of

S. aureus. It also reduced the minimum inhibitory concentration of norfloxacin

(MICnorfloxacin¼ 16 μg/cm3) at 50 μg/cm3 [450].
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Sedanolide (6) displayed 100%mortality against Panagrellus redivivus at 25 μg/
cm3, and also against Caenorhabditis elegans at 50 μg/cm3. Senkyunolides N (52)

and J (33) also showed nematicidal effects against P. redivivus at 100 μg/cm3 [294].

(Z)-Ligustilide (8) and the semi-synthetic product [7-(methyl thioglycolyl)-

(6,7-dihydro)]-(Z)-ligustilide (315) showed weak activities against Bacillus
subtilis, Staphylococcus aureus, Candida albicans, Sacharomyces cerevisiae, and
Klebsiella pneumoniae. Phthalide 8 also displayed weak antiviral activity. (Z)-
Ligustilide has a number of electrophilic sites and can accept nucleophiles, which

might explain some of the mechanisms related to these bioactivities [89].

Cytosporone E (197) showed activity against Staphylococcus aureus, Entero-
coccus faecalis, Escherichia coli, and Candida albicans [207], while corollosporine
(279) was active against S. aureus [262]. The antibacterial activity of some syn-

thetic analogs was determined. Data for MIC values and the minimum bactericidal

concentrations (MBC) after 24 h against the Helicobacter pylori strain 11637 are

listed in Table 4.

Epimers 173 and 178 containing a 5,5-spiroacetal functionality were found to be

potent anti-Helicobacter pylori derivatives. The (200R) diastereomer 464 showed

less potent bioactivity than the (200S) isomer 465 [451].
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Spirolaxine (186) and sporotricale (187) showed specific activity against

Helicobacter pylori. Awaad et al. also found that (–)-β-hydrastine (383), inhibited
the growth of H. pylori (MIC 100 μg/cm3) [452]. Marilone A (203) exhibited

Table 4 Efficacy of some

phthalides against

Helicobacter pylori

Compound MIC/μg cm�3 MBC/μg cm�3

CJ-13,102 (176) 1.25 2.5

CJ-13,104 (178) 12.5 50

CJ-13,108 (179) 10 10–20

CJ-13,015 (175) 2.5 5

CJ-12,954 (173) 0.02 0.02

CJ-13,014 (174) 0.02 0.02

Spirolaxine (186) 0.2 >2

464 0.5 1

465 0.125 0.125
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antiplasmodial activity (against Plasmodium berghei) in a dose-dependent manner

(IC50¼ 12.1 μM) [214].

Microsphaerophthalide B (228) and microsphaerophthalide F (232) both

displayed activity against Microsporum gypseum SH-MU-4 and Cryptococcus
neoformans, respectively, both with a MIC value of 64 μg/cm3. Compound 232

showed weak activity against M. gypseum (MIC¼ 200 μg/cm3) [180].

(Z)-Butylidenephthalide (3), (S)-butylphthalide (4), (Z )-ligustilide (8), and (E)-
butylidenephthalide (21), were evaluated against Mycobacterium tuberculosis
H37Rv, and M. bovis BCG. All had comparable IC50 values, ranging from 200 to

250 mg/dm3 [453]. (�)-Concentricolide (466) inhibited the cytopathic effect

(EC50¼ 0.31 μg/cm3) induced by HIV-1 in C8166 cells [454].

O

466 ((+)-concentricolide)

O O

–

7.11 Herbicidal and Antifungal Effects on Plant Pathogens

The search for agents with phytotoxic and antifungal activities is relevant to the

control of weeds in agricultural crops. Convolvulanic acid B (189) was found to be a

potent phytotoxic substance, inhibiting growth (100%) and chlorosis of Lemna
paucicostata plants at concentrations of 5.9� 10�4 and 3.5� 10�4 M, respectively.

Convolvulanic acid A (188) and convolvulol (190) also inhibited the growth of

L. paucicostata, in turn, by 80% and 50% [201]. Phthalide 201 showed antifungal

activity againstGaeumannomyces graminis var. tritici and Cladosporium herbarum.
Compound 202 also displayed activity against Cladosporium herbarum [352].

Phthalides 199, 206, 208, and porriolide (200) were evaluated for their activity

against Fusarium graminearum, Botrytis cinerea, and Phytophthora nicotianae
(see Table 5). Porriolide (200) was found to be the most active phthalide, with

MIC values comparable to ketoconazole, which was used as a reference

compound [211].

Table 5 Activities of

phthalides against some

fungal plant pathogens
Compound

MIC/μg cm�3

F. graminearum B. cinerea P. nicotianae

206 6.3 6.3 6.3

208 6.3 12.5 6.3

199 3.1 25 6.3

200 3.1 6.3 6.3
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Some phthalides alter the development of plants and fungi. Thus, rubralides A

(268) and B (269) inhibited the root growth of Lactuca sativa at 100 mg/dm3 [255],

cryphonectric acid (194) influenced the formation of tomato seedlings at 100 μM
[204], basidifferquinones A (467), B (468), and C (469) induced fruiting-body

formation of Favolus arcularius [455, 456], and isopestacin (193) had an inhibitory
effect against Pythium ultimum, a plant pathogenic oomycete [203].

O

O

OH
OR2

R1

HO
O O 467 (basidifferquinone A)

468 (basidifferquinone B)
469 (basidifferquinone C)

R1

Me
H
H

R2

OH
OH
H

7.12 Bioavailability and Routes of Administration

The majority of previous studies have analyzed the effects of (Z)-butylidenephthalide
(3) and (Z)-ligustilide (8), with reports of the low bioavailability of these compounds.

The absorption, distribution, metabolism and excretion of isotopically labeled

(Z)-butylidenephthalide (3) after hot or cold dermal administration have been

evaluated. Compound 3 was subsequently detected in the liver, bile, and kidney

at 0 h, and in the intestinal contents at 4 h. Radioactivity was maximal at 0 h in the

skin and plasma (and then decreased, t1/2 0.5–1 h), and was sustained in the liver,

bile, and kidney until 1 h, and thereafter accumulated in the small and large

intestines, cecum and its contents, reaching maximal values 1–2 h later. Altogether,

70% of the unaltered or metabolized (Z)-butylidenephthalide (3) was captured from
the urine at 8 h, increasing to 80% within 24 h; only 5% was excreted into the feces

within 24 h. The cysteine conjugate 470 was detected in both the urine and feces. It

was demonstrated that (Z )-butylidenephthalide (3) immediately permeated through

the skin into the circulatory system [457].

Multiple types of pharmacokinetic studies on (Z )-ligustilide (8) have been

conducted. After intravenous (i.v.) administration, compound 8 (15.6 mg/kg)

exhibited extensive distribution through the body (Vd 3.76 L/kg), with rapid elim-

ination from the plasma (t1/2 0.31 h). When (Z )-ligustilide (8) was administered

intraperitoneally (i.p.) at a low dose (26 mg/kg), it was rapidly absorbed (Tmax

0.05 h) and eliminated (t1/2 0.36 h), with i.p. bioavailability estimated to be 52%,

which indicated an extensive hepatic first-pass metabolism. At a higher dose

(52 mg/kg), the bioavailability was 98%, suggesting nonlinear and dose-dependent

pharmacokinetics. In the case of oral administration, pharmacokinetic parameters

could only be obtained at a concentration of 500 mg/kg. Compound 8 was found to

be rapidly absorbed (Cmax 0.66 μg/cm3), with oral bioavailability established at
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2.6%. Eight metabolites were identified, among them (Z )-butylidenephthalide (3),
senkyunolides I (22) and H (26), and 3-hydroxybutylphthalide (471), as well as

11-hydroxyligustilide (472), 473, and 474. All metabolites were generated by

NADPH-dependent monooxygenases [458]. Ding et al. also evaluated metabolite

production after the oral administration of compound 8 (200 mg/kg), and obtained

similar results to those obtained by Yan et al. [458], in addition to characterizing the

metabolites 28, 475, and 476 [459].

470 (cysteine conjugate)

Cys

O

O

471 (3-hydroxybutylphthalide)
O

OH
O

472 (11-hydroxyligustilide)
O

OH

O

473 (isomer of 
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Compound 8 has a neuroprotective effect (see above) with a rapid onset of

action following direct transport from the nasal cavity to the central nervous

system (CNS). Phthalide 8 was administered to each rat nostril at 45 mg/kg, and

brain tissues were collected at sequential periods of time (5–240 min) after

administration. HPLC analyses of the brain tissue homogenates, together with a

pharmacokinetic study, showed that 8 could be detected 5 min after administration.

It was concluded that intranasal administration of (Z )-ligustilide (8) could have

a rapid effect and might be more effective in the treatment of acute CNS

diseases [460].

The use of nano-emulsions as a strategy to increase bioavailability is under

active consideration. For instance, the anti-inflammatory effects (endotoxin-

induced uveitis in rats) of orally administered (Z )-ligustilide (8) versus a nano-

emulsion of ligustilide (LIGNE) were evaluated. The emulsion improved absorp-

tion given that (Z )-ligustilide (8) (20 mg/kg) was not detectable in plasma, while

LIGNE remained detectable for up to 1.5 h. The nano-emulsion also improved the

anti-inflammatory effect of 8 [461].

A complex of (Z )-ligustilide (8) and hydroxypropyl-β-cyclodextrin
(LIG/HP-β-CD) was also prepared and quantified in rat plasma; its absolute bio-

availability was found to be higher than that for (Z )-ligustilide (8) alone [462].
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The pharmacokinetics of noscapine (128) were evaluated in male and female

mice following oral (75, 150, and 300 mg/kg) and i.v. (10 mg/kg) administration.

Noscapine (128) was easily absorbed (Cmax 13.37, 24.48 and 49.47 μg/cm3 in male

mice, and 12.18, 22.00, and 44.00 μg/cm3 in female mice). The AUClast at 75 and

150 mg/kg were similar, but at 300 mg/kg were threefold higher, which suggested a

nonlinear or saturable behavior. The t1/2 values were similar at 75 and 300 mg/kg,

but were lower at 150 mg/kg for both male and female mice. After

i.v. administration, 128 was almost undetectable after 3–4 h of infusion; the t1/2
values were 0.39 and 1.05 for males and females, respectively. It was shown that

noscapine (128) was absorbed rapidly, and widely distributed at all doses [426].

8 Concluding Remarks

Studies on the occurrence of phthalides in Nature suggest that they are mainly

confined to several higher plant families, fungi, lichens, and liverworts, with some

sections of the Apiaceae plant family providing the major natural sources of these

compounds. Structural analogues of (Z )-ligustilide and their dimers, together with

mycophenolic acid analogues, could be considered as chemical markers for plant

and fungal phthalides, respectively.

Chemical derivatization studies on monomeric and dimeric phthalides have

demonstrated that their distinct chemical reactivities could be explained in terms

of specific stereoelectronic characteristics and relative instabilities.

In the future, new analytical techniques will accelerate the structural character-

ization of additional minor compounds from different natural sources, establishing

their interactions with macromolecular receptors and their metabolism as xenobi-

otic agents.

Synthesis strategies for phthalides have evolved from linear preparations to

convergent ones that include efficient enantiodifferentiated reactions using new

catalysts. It is foreseeable that progress in the chemistry of phthalides will focus on

the exploration of their chemical and biological spaces by means of greener

methodologies, including more efficient syntheses and bioassays.

Phthalides have been extensively evaluated in terms of their bioactivity, with a

considerable recent literature being available on this topic. For instance,

mycophenolic acid analogues are commercially available immunosupressants pre-

scribed for autoimmune diseases, with other applications under study. Many natural

phthalides display a variety of biological activities, and, in the case of compounds

from the Apiaceae, most agree with the traditional medicinal uses of their natural

plant sources. It has been stated that “phthalides are responsible for numerous

bioactivities; however their exact mode of action is not yet realized. . .” [2]. One

would envisage that future efforts to investigate the biological activities of

phthalides, particularly in terms of neurological diseases, might show considerable

promise.
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