
Chapter 11
The Irreversibility Transition in Amorphous
Solids Under Periodic Shear

Ido Regev and Turab Lookman

Abstract A fundamental problem in the physics of amorphous materials is
understanding the transition from reversible to irreversible plastic behavior and its
connection to the concept of yield. Currently, continuum materials modeling relies
on the use of phenomenological yield thresholds, however, in many cases the transi-
tion from elastic to plastic behavior is gradual, which makes it difficult to identify an
exact yield criterion. Recent work has shown that under periodic shear, amorphous
solids undergo a transition from deterministic, periodic behavior to chaotic, diffusive
behavior as a function of the strain amplitude. Furthermore, this transition has been
related to a depinning-like transition in which cooperative avalanche events become
system-spanning at the same point. Here we provide an overview of recent work
focused on an understanding of the nature of yield in amorphous systems from a
cooperative and dynamical point of view.

11.1 Introduction

Amorphous solids such as plastics,windowglass and amorphousmetals are an impor-
tant and ubiquitous form ofmatter. Industrial processing of suchmaterials commonly
involves plastic deformation. Although amicroscopicmechanismof plastic deforma-
tion in these materials was identified [1–3], the collective behavior on the mesoscale
is still being debated [4–7]. The main issues are the definition and nature of yield,
how to describe the structural changes that occur during plastic deformation (this is
related to the topics of ergodicity and entropy production which are some of the main
issues in the general problem of the statistical mechanics description of glasses) and
the role of long-range elastic interactions. As we will explain below, these issues
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play a role in the irreversibility transition discovered not long ago. Recent experi-
ments and simulations on superconductor vortices, dilute colloidal dispersions and
loosely packed granularmaterials show that thesematerials undergo a transition from
reversible to irreversible diffusive behavior by varying the strength of an oscillatory
external field [8–17]. These transitions have been ascribed to chaotic scattering [11]
and/or to an absorbing phase transition [10].

11.2 Yield as an Irreversibility Transition

Recently, a similar transition was observed in amorphous solids under oscillatory
shear, in simulations and experiments performed by several groups [8, 17–28]. These
simulations and experiments studied highly condensed jammedmaterials (well above
the jamming transition) under oscillatory shear and showed that for small strain
amplitudes, after a transient, the system reaches a configuration which is completely
reversible in the sense that particles return to the same position after one or more
cycles (see Fig. 11.1). For large strain amplitudes, however, the particles are always
diffusing (see Fig. 11.2). There have been several suggestions as to what causes this
transition. One suggestion is that the transition from reversible to irreversible dynam-
ics is an absorbing phase transition [24], which is a second order non-equilibrium
phase transition, possibly of the directed percolation universality class [18]. The
motivation behind this interpretation is that if one looks at the displacement of the
particles from their positions before and after a cycle, at low strain amplitudes, one
observes transient patches ofmoving particleswhich keep decreasing in size until one
cannot observe any motion. This is very similar to the dynamics in directed percola-
tion systems where below the percolation threshold there is random dynamics which
stops after some time. The state where there is no dynamics is called the “absorbing
phase” [29]. While this description is appealing, a closer look shows that there are
states in which there is no overall diffusion but the particles do not return to their orig-
inal positions after one cycle. However, after several cycles, the particles do return to
their original positions and for that reason there is no overall diffusion. Furthermore,
in all cases the dynamics during a cycle exhibits random particle rearrangements
of considerable sizes [30, 31]. These rearrangements are dissipative and thus result
in energy fluctuations, but they are completely repetitive (see Fig. 11.3). Therefore,
the work being done on the material is transformed wholly into heat and structural
rearrangements are reversible. Above a critical strain amplitude, the system does not
settle into a limit cycle and the motion is chaotic with a positive maximal Lyapunov
exponent. This allows us to define a yield pointwith a physicalmeaning.A yield point
can be difficult to determine from a standard stress–strain curve since the behavior
can be monotonic and there need not be a stress–peak as this depends on the way that
the system is prepared. For example, the green curve in Fig. 11.6 was prepared by a
fast quench compared to the blue curve in the inset which was prepared via a slow
quench. Identifying and understanding the underlying dynamical behavior opens the
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Fig. 11.1 (color online) Experimental evidence for the existence of irreversible states in a sheared
colloidal suspension: dark colors represent areas that did not return to their original positions after
a different number of cycles: a the first cycle of deformation with γ0 = 0.07, b after 7 cycles, c
cycles 1–3 and d cycles 10–12 (Taken from Keim et al. [17])
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Fig. 11.2 Mean square displacement from simulations with different values of the maximal strain
amplitude: γmax = 0.07 (dark blue circles), 0.08 (blue squares), 0.09 (greed diamonds), 0.1 (green
down facing triangles), 0.12 (orange up facing triangles), and 0.14 (purple stars). The simulations
were averaged over different runs with samples of N = 4000 particles quenched from T = 0.466
(closed symbols) and T = 1.0 (open symbols). Note the transition between an arrested and diffusive
regime as γmax is increased (Taken from Fiocco et al. [18])

possibility for a quantitative description of the structural changes in these systems
after yield and their relation to the dynamics.

In all of the experiments and simulations that are mentioned, the strain is applied
in a periodic manner: either in a “sawtooth” fashion or as a sinusoidal function [17].
For the “sawtooth” strain profile, the strain is applied in the following manner: First,
positive strain steps are applied. When a maximal pre-decided strain εmax is reached,
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Fig. 11.3 (color online) The potential energy as a function of cumulative strain during two cycles
(red line marks the end of the first cycle)

Fig. 11.4 (color online) Transient behavior of the potential energy before reaching a limit-cycle
for three different strain-amplitudes (strain amplitude growing from top to bottom). Red lines are
the point at which periodic behavior begins

the strain is reversed by applying strain steps in the opposite direction. This proceeds
until the strain reaches the negative value of the maximal strain −εmax . At this point
the strain steps are reversed until the system returns to zero strain, completing the
elementary cycle of a specific maximal strain amplitude. The elementary cycle is
then repeated and the response of the material per cycle is observed.

Different experiments and simulations [8, 17–24, 27, 28] have found that for small
strain amplitudes these systems show randomdynamicswhich gradually settles into a
periodic limit-cycle (see Fig. 11.4). As the strain amplitude is increased, the transient
times increase accordingly, until the transient time is so large that the system does
not reach a limit cycle. Two main approaches have been suggested for describing
the level of periodicity of the system. The first approach focuses on comparing the
positions of particles before and after a limit-cycle. The long-time dynamics is than
analysed by comparing howmany particles changed their positions after a cycle [24],
howmuch particles diffused and how the potential energy changed [18]. A limitation
of this approach is that the dynamics inside the limit-cycle, which has interesting
characteristics, as we will see below, is ignored. A different approach, is based on
examining the dynamics inside the limit-cycle and comparing consecutive cycles in
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order to understand what happens as the system approaches the critical point [19].
In order to measure the time it takes for the system to reach a periodic limit cycle,
a cycle decorrelation function was defined using the total potential energy of the
system U (t):

R(n) =
∫

dt |U (t, n) −U (t, n − p)|. (11.1)

When p = 1, this function compares the difference between potential energy fluctua-
tions in two consecutive cycles (n is the number of cycles that the system underwent).
For small strain amplitudes this function reaches a value close to zero after n cycles.
However, in some cases the system reaches a limit cycle of periodicity p larger
than one. Therefore, if periodic behavior is not observed p is increased by one and
the function is recalculated. The process was repeated until a value of p for which
the function reaches R(n) = 0 for some n was reached. If periodicity smaller than
p = 11 was not observed p was set to its default value p = 1. In all cases period-
icity larger than p = 5 was not observed. Figure11.5 shows this function averaged
over 30 different samples of size N = 16,384, each prepared from a different initial
condition in the liquid state and than quenched using the same protocol that was
used to create the green curve in Fig. 11.6. One can observe that for the strain ampli-
tudes γ = 0.06, 0.07, 0.75, 0.85, 0.88, 0.09, 0.093, 0.095 the function relaxes, after
a transient time, to zero, while for larger strain amplitudes (γ = 0.12, 0.15) the func-
tion R(n) does not decay to zero but relaxes to some asymptotic finite value. In the
inset to Fig. 11.7 we can see that the relaxation time, the time it takes the cycle-
decorrelation function to go below 1% of its initial value, follows a power-law with a
critical point at γc = 0.11. This critical strain amplitude is close to the yield strain as
estimated from the blue linear stress–strain curve in the inset of Fig. 11.6, even though
for the oscillatory shear that was used the faster quench protocol that corresponds
to the green curve in Fig. 11.6. The transition from a repetitive to random behav-
ior in a deterministic, dissipative system (no external noise is added) suggests that
the transition might be a “transition to chaos” which is a well known phenomenon
observed in various dynamical systems from the low-dimensional Lorenz system
[32] to the high dimensional coupled chaotic maps [33] and involves a divergence
(usually power-law) in the time it takes the system to reach periodic behavior as a
parameter is varied. A transition to chaos might be associated with a phase transition
as we will discuss below, though the connection between the two was not studied
extensively, as much as we are aware. The main indication that a system exhibits
chaotic behavior is sensitivity to initial conditions: trajectories starting from close-
by initial conditions diverge exponentially [34, 35] (see Fig. 11.8). The sensitivity
to initial conditions is estimated by measuring the maximal Lyapunov exponent λ
which describes the rate of growth of the distance between two phase-space trajecto-
ries (solutions of the equations of motion with different initial conditions) x(t) and
xε(t) which are initially separated by a diminishing distance |x(0) − xε(0)| = ε:

λmax = lim
t→∞ lim

ε→0

1

t
ln

|x(t) − xε(t)|
ε

. (11.2)



232 I. Regev and T. Lookman

Fig. 11.5 Cycle decorrelation function as a function of the number of cycles, for system size N =
16,384 particles for strain amplitudes γ = 0.06, 0.07, 0.75, 0.85, 0.88, 0.09, 0.093, 0.095 (from
left to right). (inset) The same function for strain amplitudes γ = 0.12 (blue), γ = 0.15 (green)

Fig. 11.6 (color online) Stress–strain curve frommolecular dynamics simulations for 16,384 parti-
cles under quasi-static shear. Red dots represent the number of cycles, n, required to reach periodic
behavior under oscillatory shear (scale is on the right side of the figure in red). The red line is
the strain amplitude for which the time to reach reversible behavior diverges. Inset Stress–strain
behavior for the same parameters as the green curve but with different initial particle configurations
- the red line is the same as in the larger figure

For a periodic system λmax = 0 whereas a chaotic system will have λmax > 0
[34]. There are different methods for calculating the maximal Lyapunov exponent.
In [19] the method suggested by Kantz [35, 36] which extracts the largest Lyapunov
exponent from a time-series of one of the observables (in our case the potential
energy: ui = {u0, u1, u2, . . .}) was used. The advantages of this method is that it
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Fig. 11.7 (color online)
Slowing down: Accumulated
strain to reach a limit-cycle
as a function of the maximal
strain amplitude minus the
critical strain amplitude
�c = 0.11
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Fig. 11.8 (color online) In a
chaotic system, the distance
between phase-space
trajectories diverges
exponentially fast
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has been widely tested, a highly tested code is available in the author’s website and
that the results give a relatively clear distinction between chaotic and non-chaotic
time-series, as we shall see below. Since we are analyzing a time-series, instead of
looking at the distance between two different solutions of the equations of motion,
we look for points in the time-series which are at some-point close to each other,
i.e. |ui − uk | < ε and check how the distance grows over time d� = |ui+� − uk+�|.
However, since ui is a one dimensional function of the multi-dimensional phase-
space, a simple measure of the distance between them does not reflect the actual
distance of the phase-space coordinates that generated them. To overcome this we
use Taken’s delay embedding theorem [37] which asserts that for an embedding
dimension m > 2DA where DA is the dimension of the chaotic attractor (the part in
phase-space at which the chaotic behavior occurs), a set of m variables generated by
sampling the time-series at regular intervals τ m:

(un−(m−1)τ , un−(m−2)τ , . . . , un−τ , un), (11.3)

will have an attractor with the same topological properties as the underlying attractor.
As an example we show the reconstruction for the Lorenz system:
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Fig. 11.9 Phase space
trajectory which is part of the
“strange” attractor of the
Lorenz system

dx

dt
= σ(y − x) ,

dy

dt
= x(ρ − z) − y ,

dz

dt
= xy − βz. (11.4)

In Fig. 11.9 we show the dynamics as a function of all three coordinates which
shows the famed Lorenz attractor which is chaotic for the parameters that we chose.
To demonstrate reconstruction we take the time-series of one of the coordinates
(Fig. 11.10) and construct three new coordinates using time-delay:

(xn−2τ , xn−τ , xn), (11.5)

where we chose m = 3 and an appropriate τ . We now plot the new coordinates in
Fig. 11.11. One can see the resemblance in the structure of the reconstructed attractor
and the original one (Fig. 11.9).

Typically, in a dissipative system, a chaotic attractor will have a smaller dimen-
sionality than the phase space-dimension. Defining:

sn = (un−(m−1)τ , un−(m−2)τ , . . . , un−τ , un). (11.6)

as the delay-coordinates vector, for large enough τ and m, the distance d = |si − sk |
will represent the actual phase-space distance and if the underlying dynamics is
chaotic, d� = |si+� − sk+�| will grow exponentially fast. The value of τ is usually
taken to be the de-correlation time of the time-series (τ ≈ 600 in this case) but m is
unknown since we do not know a-priori the dimension of the attractor. In order to
find a numerical estimate of the largest Lyapunov exponent the algorithm calculates
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Fig. 11.10 A representative time-series of the x-coordinate of the Lorenz system in the chaotic
regime

Fig. 11.11 Attractor
reconstructed from the x
coordinate which shares the
same topological structure as
the original attractor

the finite-time maximal Lyapunov exponent for a trajectory starting at a point i :

λi
� = 1

�
ln

||si+� − sk+�||
ε

. (11.7)

where ||si − sk || < ε with respect to some norm ||..|| (the actual norm used in the
algorithm is ||si − sk || = |ui − uk | for reasons explained in [35]). For each point si
and a small distance ε a set of points sk such that ||si − sk || < ε is gathered which
allows to calculate the average distance from the point si as a function of �:
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λi
� = 1

�
ln

1

Ui

∑
k

||si+� − sk+�||
ε

. (11.8)

where Ui is the total number of points sk that are ε close to si . The process is repeated
for different initial points si which leads to further averaging. The actual function
that we calculate is:

S� = 1

W
∑
i

ln

(
1

Ui

∑
k

||si+� − sk+�||
ε

)
. (11.9)

where W is the number of starting points i collected. Since this function describes
the ln of the averaged growth of distances as a function of time, we expect that in a
chaotic system (λmax > 0) S� will show linear behavior with a positive slope for large
enough �. However, there are two caveats for this: the maximal Lyapunov exponent
becomes dominant only after several time steps �0:

||si+� − sk+�|| =
∑
i

ai e
λi � ≈

�>�0
amax e

λmax �. (11.10)

The second caveat is that for large � the distance ||si+� − sk+�|| can reach the size
of the attractor and thus the trajectories start to fold back. When that happens S�

saturates. In Fig. 11.12 one can see the function S� for a potential energy time-series of
a system of size N = 4096 sheared at maximal strain amplitudes γ = 0.12, 0.15, 0.2
which are all above the critical amplitude [19]. Since the dimension of the attractor
is not known a-priory all the values of m starting from m = 1 were checked until
the shape of S� did not change under further increase (remember that according to
Takens theorem the delay coordinates should give the right result for any m > 2DA

where DA is the dimension of the attractor). For m values 5, 6, 6 respectively, the
function S� shows a linear regime with a positive slope which indicates a positive
maximal Lyapunov exponent.

In Fig. 11.13we can see the result of applying the algorithm for one of the periodic
limit-cycles with different values of m. One can see that the behavior is significantly
different from that observed for the chaotic time-series: there is no linear regime and
the values of S� are negative for large enough values of m. This function shows a
distinct behavior when calculated for chaotic time-series: for an intermediate range
of � it will have a linear, positive slope where the value of the slope is the value of
the Lyapunov exponent. In Fig. 11.12 we can see the function S� for a time-series
of potential energy values for a system of size N = 4096 sheared at maximal strain
amplitudes γ = 0.12, 0.15, 0.2 all above the critical amplitude. In all three cases
the function shows linear behavior for intermediate values of � indicating a positive
Lyapunov exponent and hence chaotic behavior. These results are consistent with
previous results for the maximal Lyapunov exponent for amorphous solids under
linear shearing obtained in experiments [38] and simulations [39]. These results
suggest that amorphous solids undergo a transition to chaos at a strain amplitude
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Fig. 11.12 Estimation of
Lyapunov exponents: The
function S� of the time delay
� for a system of size
N = 4096 under oscillatory
shear in different strain
amplitudes larger than the
critical amplitude. The
straight lines are shown as a
guide to the eye

Fig. 11.13 The function S�

applied for a periodic
limit-cycle. The behavior is
strikingly different than the
one shown in Fig. 11.12 and
includes negative values

coincident with yield at least under oscillatory shear. One should note that a transition
to chaos is not necessarily accompanied by a nonequilibrium phase transition and
although it shows behavior similar to critical slowing down, it is not necessarily
accompanied by critical fluctuations and a growing correlation length, which are
expected in a non equilibrium phase transition such as directed percolation. However,
it has been suggested that in high dimensional systems, such as fluid turbulence and
ecological systems, a transition to chaos (or turbulence) can be accompanied and
even be a result of, a non equilibrium phase transition such as directed percolation
[40, 41]. Below we discuss how the transition to chaos is related to a different non
equilibrium phase transition.
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Fig. 11.14 Displacement
field after a local particle
rearrangement. Arrows
indicate the direction and
magnitude of displacement
of each of the particles

11.2.1 Analysis of Periodic Behavior

As we explained above, for strain amplitudes smaller than the critical value, after a
transient regime, the system shows fluctuating but periodic behavior. This resembles
the reversible regimeof dilute colloidal systems, of the types studied in [10, 11].How-
ever, in these systems, the dynamics in a limit-cycle is quite trivial since the response
becomes periodic only once the particles reach a configuration in which they do not
touch each other during the cycle. On the contrary, in a highly condensed amorphous
solid, particles change positions and rearrange in a non trivial manner, causing non
affine deformation, even during a reversible limit cycle. Typically, this involves a
large number of rearrangements of the T1 type (two next-nearest neighbours becom-
ing nearest neighbors) which generate elastic-inclusion like displacement fields (see
Fig. 11.14) and appear as energy drops in the potential energy time-series. The repet-
itive behavior can also be observed by following the trajectory of any single particle
over consecutive cycles (blue and red lines in Fig. 11.15). The non-affine nature of
the displacement of the particle is clearly seen in the figure. One should note that
contrary to the usual notion the rearrangement events that are observed in the limit
cycles are completely repetitive so that one can think of the dynamics inside a limit-
cycle as a special form of non-linear elasticity rather than plasticity. It seems that
the oscillatory loading reveals a distinction between plastic and nonlinear elastic
rearrangements (for example, the phenomenon of super-elasticity in shape memory
alloys [42–44]) which is somewhat subtle.

In Fig. 11.16 energy drops (rearrangement events) are identified and marked as
black lines. The points in the limit cycle where these drops occur are marked as black
dots in the columns of Fig. 11.17 where time advances from bottom to top. The x-axis
in Fig. 11.17 is the strain amplitude. This is repeated for different strain amplitudes
with the same initial conditions. It was found that for small strain amplitudes limit-
cycles that start from the same initial conditions are similar to each other and an
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Fig. 11.15 Two consecutive
trajectories of one particle
taken when the system is in a
limit-cycle: blue is the first
cycle and red is the one just
after it. The trajectories are
very similar

Fig. 11.16 (color online)
Analysis of one limit cycle
with a certain strain
amplitude: Energy drops
(rearrangement events) are
identified and marked as
black lines on this curve

Fig. 11.17 (color online) A
plot of the position of energy
drops (marked as black dots)
on the limit cycle as a
function of the strain
amplitude (x-axis) for one
system of size N = 1024.
The y-axis is the time inside
a limit-cycle

increase of the strain amplitude changes the limit-cycle in a gradual manner. How-
ever, for large strain amplitudes small increments in the strain amplitude result in a
completely different limit-cycle. This might be a manifestation of the coexistence of
many different limit-cycles which occupy different parts of the state-space and of the
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existence of “riddled basins of attraction” where infinitesimally close initial points
in state-space lead to completely different attractors [34, 45]. In Fig. 11.18 we can
see the effect of applying Langevin noise to a system that is already in a limit-cycle
(these simulations were performed using overdamped dynamics). After a few cycles
the system escapes from the initial limit-cycle and settles in a different limit-cycle.
This is another indication that there are a large number of nearby limit-cycles and also
shows that a limit-cycle can survive a small level of thermal noise. While the limit
cycle that is shown in Fig. 11.15 repeat themselves after one cycle, for large strain
amplitudes cycles that repeat themselves after 2, 3, 4 and 5 cycles were observed (see
Figs. 11.19, 11.20) which is a phenomenon observed in many dynamical systems and
in some cases can lead to a transition from periodic to chaotic behavior. This can
happen in systems that show “frequency locking” or “period doubling bifurcations”.
In a system showing a transition to chaos due to period doubling, the period of the
limit-cycle doubles for certain values of the control parameters. A succession of
period doubling bifurcations (a period doubling cascade) leads to an infinite period
and chaos. Belowwewill describe a possible explanation for the connection between
the observed period doubling and the transition to chaos in amorphous solids.

Fig. 11.18 Effect of thermal
noise: System relaxes into a
limit-cycle after initial
overdamped dynamics
(green). It is then subject to
the same dynamics
accompanied by a small
Langevin noise. After some
time it “hops” to another
limit-cycle

Fig. 11.19 (color online)
Periodic limit cycles with
period 5 at strain amplitude
γ = 0.09. The green curve is
the applied strain (not to
scale). Red lines represent
the start and the end of a
cycle



11 The Irreversibility Transition in Amorphous Solids Under Periodic Shear 241

Steps

S
tr
ai
n Right

Left

(a) (b) (c)

(d)

Fig. 11.20 Limit cycles: Repetitive particle trajectories in a period-two limit-cycle. a shows the
entire system, b shows local environment and the trajectories that each particle is undergoing
and c shows the trajectory of one particle. d shows the strain applied using the Lees Edwards
boundary conditions (purple arrows show how the Lees-Edwards boundaries move with respect to
the simulation square when the system is sheared in the positive direction). Since the limit cycle has
period two the trajectories repeat themselves only after two shearing cycles (the blue and green lines
in d). The particle starts from the orange initial point and moves to the right on the blue trajectory,
due to the external strain that shears the material to the right, then moves back to the center and
to the right, when the strain is changed accordingly (blue curve on d). When the strain is set back
to zero, the particle reaches the purple point. Then, when the strain is applied again to the right,
the particle moves accordingly, but this time on the green trajectory. The particle then moves to the
center and to the left due to the applied strain (green curve in d). Eventually the particle comes back
to the orange point, the initial condition. The next two cycles repeat the same two trajectories, and
the same for the following cycles

11.3 Ergodicity

The emergence of chaotic behavior can explain an important aspect of the physics
of amorphous solids. In previous studies [46–48] it was shown that the effective
or “fictive” temperature that describes the structure of an amorphous solid depends
on the initial quench of the system. However, when the material is deformed, the
effective temperature of systems thatwere quenched using different cooling protocols
converge to the same steady-state value which depends on the work performed on the
system (and on the thermal bath temperature, when it is larger than zero). This has
been described as overaging or rejuvenation of the amorphous solid [46], depending
on whether the effective temperature increases or decreases. We can understand
this behavior in terms of the onset of chaos. The existence of a positive maximal
Lyapunov exponent is an indication that the system is not only chaotic, but that the
dynamics is ergodic on a chaotic attractor which occupies part of the state-space (this
is different than ergodicity in Hamiltonian systems in which the entire state-space
for a given energy is explored). Since every initial condition ends up on the attractor,
and the dynamics on the attractor is ergodic, averaged observables will eventually
show the same values independent of the initial configuration. In Fig. 11.21 we see
three different limit cycles all simulated with the same system size and sub-yield
strain amplitude but with different initial conditions. We observe that whereas the
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Fig. 11.21 (color online)
Several different limit-cycles
that were obtained using the
same control parameters
(number of particles,
shearing steps, amplitude of
shear) but different initial
conditions

period is the same, the details of the cycles (energy fluctuations) depend on the initial
configuration which indicates that the final state depends on the initial conditions, as
we expect from a non-ergodic system. This dependence on initial conditions is clearly
seen when one looks at the average potential energy as a function of the cumulative
strain (Fig. 11.22 taken from Fiocco et al. [18]). One can observe that starting from
two different initial quenches, with different potential energies, the final potential
energy depends on the initial quench when the maximal strain amplitude is sub-yield
and does not depend on the initial conditions when the maximal strain amplitude is
above-yield which indicates that the system regains some kind of ergodicity above
yield.

11.4 Interactions and a Non-equilibrium Phase Transition

It is well known that solids under plastic deformation exhibit power-law noise due to
large correlated plastic events which resemble avalanches [31, 49] (see Fig. 11.23).
A connection between the avalanche statistics and the irreversibility transition was
explored by studying the avalanche statistics for different maximal strain amplitudes
and system sizes [30]. Since the simulations were athermal, potential energy drops
were identified with plastic rearrangement events. For each simulation, all of the
energy drops in the last shear cycle (to avoid transient effects), were extracted and
used to create a histogramof the energy dropswhichwas used to calculate the average
energy drop for each maximal strain amplitude [30]. We observe in Fig. 11.24 a cusp
in the average potential energy at the point at which the irreversibility transition
occurs, followed by saturation to a value which depends on the system size, at large
strain amplitudes. The cusp suggests that the irreversibility transition is related to a
change in the avalanche dynamics, and the system size dependence of the saturation
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Fig. 11.22 Ergodicity breaking - Potential energy per particle E for zero-strain configurations, for
different maximal strain amplitude γmax [0.07 (dark blue circles), 0.08 (blue squares), 0.09 (green
diamonds), 0.1 (green down facing triangles), 0.12 (orange up facing triangles), and 0.14 (purple
stars)], averaged over different runs with samples of N = 4000 particles quenched from T = 0.466
(closed symbols) and T = 1.0 (open symbols). (Taken from Fiocco et al. [18])

suggests that there is a saturating correlation length both indicative of critical behavior
[50, 51].

The avalanche statistics was interpreted using a simple model [52] that belongs
to the same universality class as the theory of front depinning which was originally
developed to explain the motion of an interface in a random media. This motion
involves parts of an interface overcoming local energy barriers due to external forc-
ing and neighbouring locations in the interface “pulling” the site back. The forward
motion of the interface occurs in avalanches. In the case of long-range interactions,
such as the ones that exist in elasto-plastic systems, the notion of a “front” becomes
more abstract since sites that are far apart affect each other and the notion of locality
becomes blurred (see Fig. 11.25 for illustration). This explains why the same equa-
tions can also describe avalanche behavior associated with the plasticity of amor-
phous solids in which the dynamics involves overcoming random energy barriers and
long-range interactions, even if an actual frontmay not exist. The equations ofmotion
describing the time evolution of the plastic displacement field u(r, t) controlled by
overdamped dynamics are [52]:

η
∂u(r, t)

∂t
=

F +
∫

d2r ′ J (r − r′) [u(r′, t) − u(r, t)] − fR(u, r), (11.11)
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Fig. 11.23 Reversible (repetitive)Avalanches. An avalanche in a sub-critical limit-cycle for a sys-
tem with N = 16,384 particles and maximal strain amplitude � = 0.1. Even though the avalanche
spans a large part of the system, it is repeated under repeating strain cycles of identical strain
amplitude. The arrows mark the displacement during the avalanche and the colors represent the
magnitude of the displacement (warm - large displacement, cold - small displacement)

Fig. 11.24 Mean energy
drops. The mean energy
drop as a function of the
maximal strain amplitude for
the largest system size. Note
the distinct cusp at the
irreversibility point
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whereη is the viscosity, F is an externally applied force, r is a position of a deformable
region (Shear transformation zone), J (r − r′) is the Green’s function for the elastic
interaction between different “soft” regions located at points r and r′ and fR(u, r)
is a random pinning potential representing the structural disorder inherent to such
systems. This model assumes that the nature of the structure (the distribution of the
random pinning forces fR(u, r)) does not change as a function of time. In amorphous
solids the randomness is self-generated and can (and typically does) change under
plastic deformation. However, when the system is at a steady-state under linear or
cyclic shearing, one can assume that the disorder is fixed. Also, the scaling behavior
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Forcing

(a)

(b)

(c)

Fig. 11.25 Depinning theory in the amorphous plasticity context. aDepinning theory describes
the motion of an elastic interface (here a one-dimensional front) in a random potential. The circles
represent the (plastic) displacement of each point in the front. The front is subject to an applied force
which causes it to move but elements of the front are pinned locally and need to overcome energy
barriers. The different elements of the front are connected by springs so that if one pinned site
overcomes the energy barrier it is pulling its nearest neighbors (and only them). b If the interactions
are long range, different pinned elements of the front interact with distant elements and the actual
structure of the front becomes immaterial. c In this case there is no real difference between the
equations that describe a front and the equations that describe the interaction of some collection
of pinning sites distributed in the material. A simple model of plasticity [52] that belongs to the
depinning universality class, has been shown to describe the dynamics of an amorphous solid under
shear where “shear transformation zones” or “weak spots” are dispersed in the material and affect
each other with long-range elastic interactions

of the model predictions do not change if the pinning stresses randomly change
in time. This model exhibits a non-equilibrium phase transition between a pinned,
static state and a flowing state as the stress is slowly increased past a critical force
Fc [52]. The transition is a critical point involving correlated displacement jumps.
These correlations are described in terms of a scaling theory, which was derived from
a mean-field (infinite interaction range) approximation and renormalization group
theory [52, 53]. This theory was indeed shown to give a good description of the
statistics of avalanches during plastic deformation in crystals [54–57] and is now
also being applied to amorphous solids [58–60]. For an applied external force, at
zero velocity (quasi-static limit) it was found that at a critical force Fc the avalanche
size distribution scales as:

D(S) ∼ S−τ , (11.12)

where S is the avalanche size and τ is a universal critical exponent. Below Fc the
distribution follows the same power law but with a maximal size (cutoff):
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Smax ∼ (Fc − F)−1/σ, (11.13)

where σ is the cutoff exponent. Then the distribution function takes the form:

D(S, F) ∼ S−τD(S/Smax) ∼ S−τD(S(Fc − F)1/σ), (11.14)

where D(x) ∼ A e−Bx is a universal cutoff scaling function but the constants A and
B are system specific [52, 53].

11.4.1 Statistics Under Oscillatory Shear

The application of depinning theory for amorphous solids under oscillatory shear
involves modifying the theory to take into account different factors that were not
included in the theory described above which assumes a steady force. One issue
is that the disorder in amorphous solids is not quenched which can affect the sta-
tistics. For example, there could be weakening effects during an avalanche event,
where the same site can be triggered more than once. This has been addressed by
Dahmen et al. [52] and was shown to affect the stress–strain curve but not the scaling
exponents [53]. The second effect of having dynamic disorder is that the distribution
which describes the random variable fR(u, r) can change during a cycle. This issue
was avoided by performing statistics only for avalanches in “steady-state” cycles,
when the avalanche statistics is stable. It is known that the exact distribution of the
disorder does not affect the avalanche statistics so even if the disorder is different
in different cycles, that should not change the scaling functions. Another issue is
that the forcing is a “sawtooth”, periodic strain profile. In order to take that into
account (11.14) was rewritten in terms of the strain and integrate over the different
strain amplitudes. The relation between the stress and the strain shows hysteresis
due to the nonlinear nature of plastic deformation. One immediate consequence of
the existence of avalanches (and plastic events in general) is that the stress–strain
curve becomes non-linear and exhibits hysteresis - the stress becomes a multivalued
function of the strain (see Fig. 11.26). In principle, this nonlinearity can be deduced
directly from the avalanche statistics. In the case of amorphous plasticity, however,
in order to get an analytical solution certain approximation were needed as will be
explained below. Since the forward and reverse straining branches of the hysteresis
curve are statistically identical, we take into account only the forward direction. For
the forward branch, we can model the relation between stress and strain using the
scaling relation:

(�c − �) ∼ (�c − �)δ. (11.15)

where�c is the critical strain and�c is the critical stress which is related to the critical
force Fc in a manner which will be explained below. The exponent δ was found to
be δ = 1.25 by fitting (see Fig. 11.27). The increment in plastic displacement u p due
to an infinitesimal change in the force is [52]:
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dup ∼ 〈S〉FdF, (11.16)

for a small force increment dF over the current force F (the avalanche size S is
the amount of slip or displacement in an avalanche event and 〈S〉F is the average
avalanche size for a constant applied force F). This can be translated to an equation
for the force-displacement behavior, using the theoretical scaling law for 〈S〉F :

dup
dF

= C
(

Fc

Fc − F

)α

= C f −α, (11.17)

where C is a constant with dimensions of length/force, f = Fc−F
Fc

and α is a crit-
ical exponent. When the avalanche size diverges, the behavior will be affected by
finite size effects. If we assume that the irreversibility transition under oscillatory
shear occurs at the same maximal strain amplitude as the non-equilibrium phase
transition one can explain the finite-size dependence the results obtained by Fiocco
et al. [18] which observed that the critical strain amplitude for the irreversibility
transition decreases with system size: The maximal strain amplitude � is related to
the maximal displacement by � = u/L . If we integrate (11.17) directly, we expect
to get up ∼ ln L−1/ν when F → Fc, where ν is the critical exponent associated with
the correlation length since the correlation length ξ ∝ f −ν must be smaller than
the system size L . This gives a system size dependence of the plastic critical strain
amplitude:

�p,c ∼ ln L

L
. (11.18)

However, the total yield strain is the sum of the elastic �p,c and the plastic �e,c yield
strains:

�c = �p,c + �e,c ∼ b
ln L

L
+ �c/μ (11.19)

such that for L → ∞
�c → �c/μ, (11.20)

whereμ is the shearmodulus, b is a constant and�c is the critical stress for depinning.
This prediction is compared in Fig. 11.28 to the transition to chaos points obtained
from our simulations for three different system sizes. By fitting the critical strain was
estimated to be �c ≈ 0.11 for infinite systems. This should also be compared with
other theoretical results that predict a yield strain due to the appearance of a system
spanning plastic event [61]. We substitute (11.15) into (11.14) and obtain a scaling
relation for the avalanche size distribution as a function of the strain amplitude:

D(S, �) ∼ S−τD(S(�c − �)δ/σ), (11.21)

which would be expected to describe the avalanche statistics close to the critical
strain amplitude. However, for oscillatory driving, the scaling function D(S, �)
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Fig. 11.26 Stress–strain
curve exhibiting Hysteresis.
Red and green branches are
the relevant parts of the
curve for the avalanche
statistics. In the calculation
we assume that they provide
identical statistics
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Fig. 11.27 Comparison of
30 stress–strain curves from
simulations (N = 16,384,
� = 0.097) with (11.5) in
the main text, (thick
dark-yellow curve) with a
critical exponent δ = 1.25

Fig. 11.28 Finite size
effects in the critical strain
amplitude
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requires corrections since the avalanche size distribution measured is a result of
integration over a varying amount of applied strain. Since the strain increases and
decreases periodically, the system spends time both below and above the critical
strain amplitude. Because we are averaging over cycles, we need to integrate over
the different strain amplitudes.

Below the transition we get the equation:
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P(S, �) ∼
∫ �

−�

dε S−τD(S(�c − ε)δ/σ), (11.22)

where P(S, �) is the distribution of avalanche sizes at maximal strain amplitude �,
and ε is the instantaneous strain amplitude during a cycle ε ∈ [−�,�].

By changing the variable of integration in (11.22), we get:

P(S, �) ∼
∫ �

−�

dε S−τD(S(�c − ε)δ/σ)

=
∫ �

0
dε S−τD(S(�c − ε)δ/σ)

+
∫ 0

−�

dε S−τD(S(�c − ε)δ/σ). (11.23)

Next, we make two simplifications: first, we perform the integral only in the forward
shearing direction (the red part of the curve in Fig. 11.26) since the statistics are
symmetric to the shearing direction, second, we neglect the second integral because
for strain amplitudes that are away from the critical point (the blue parts of the
curve in Fig. 11.26) the fluctuations are very small (the distribution function is an
exponential). Substituting for D(x), we get:

P(S, �) ∼
∫ �

0
dε S−τD(S(�c − ε)δ/σ) (11.24)

=
∫ �

0
dε S−τ Ae−BS(�c−ε)δ/σ (11.25)

substituting
x = BS(�c − ε)δ/σ (11.26)

ε = �c −
( x

BS
)σ/δ

(11.27)

we get:

P(S, �) = −S−τ−σ/δ Aσ/δ

Bσ/δ

∫ BS(�c−�)δ/σ

BS(�c)δ/σ
dx xσ/δ−1e−x (11.28)

close to the critical point� → �c the typical avalanche sizeS is very large. Therefore,
we assume that taking the lower limit to infinity will contribute a negligible change
to the result:

∼ −S−τ−σ/δ Aσ/δ

Bσ/δ

∫ BS(�c−�)δ/σ

∞
dx xσ/δ−1e−x (11.29)
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Fig. 11.29 Fluctuations:
Energy drop distribution
generated from log
histograms for five different
maximal strain amplitudes
below the transition for
strain amplitudes
� = 0.05, 0.07, 0.08, 0.085
and 0.093
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This gives the scaling function for the fluctuations below the critical point:

P(S, �)Sλ ∼ F(S(�c − �)χ), (11.30)

where λ = τ + σ/δ and χ = δ/σ. The scaling function is generally unknown. How-
ever, for mean-field depinning theory it was calculated to be F(x) = −γ(1/χ,−x),
where γ(a, x) is the complementary gamma function and seems to agree with the
data collapse (see Figs. 11.29, 11.30). Avalanche sizes in plasticity are usually asso-
ciated with the amount of slip, which is proportional to the stress drop. However, as
was shown in refs [49, 62], in the steady-state the fluctuations of stress and potential
energy drops are proportional due to a sum rule. This was assumed to apply here as
well. If the maximal strain amplitude � is larger than the critical value, we have to
average over the statistics both below and above the critical strain amplitude. Due
to the quasi-static forcing (zero strain-rate), for strains larger or equal to the criti-
cal strain amplitude, the system is expected to be exactly at criticality [63], and the
avalanche statistics is expected to behave as a pure power-law:

D(S, ε ≥ �c) ∼ S−τ . (11.31)

Substituting, we obtain:

P(S, �) ∼
∫ �c

0
dε S−τ Ae−BS(�c−ε)δ/σ

+ (� − �c) S−τ ,

where we have performed the integral over the last term.
As demonstrated by Lerner et al. [62] and further developed by Salerno et al. [64]

when the system is in a steady-state, there is a simple relation between an energy
drop and the concurrent stress drop. The relation stems from the fact that at the
steady-state, the work done on the system by the straining is balanced by the energy
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Fig. 11.30 Data collapse:
Data collapse for five
different maximal strain
amplitudes below the
transition compared to the
mean-field scaling function
F(x) = −γ(σ/δ,−x),
where γ(a, x) is the
complementary gamma
function (marked by a black
line)
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Fig. 11.31 Average energy
drops versus stress drops for
three different maximal
strain amplitudes. The figure
shows that the energy drops
grow linearly with the stress
drops
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drops. Thus, they got the sum rule:

〈�s〉
4μ

∑
i

��i =
∑
j

�Uj (11.32)

whereμ is the shearmodulus,��i is a stress drop,�Uj is an energy drop andwe have
assumed that there is a well-defined average stress 〈�s〉 at the steady-state. Under
oscillatory shear conditions the steady-state stress depends on the strain amplitude,
but for a small strain interval this relation should still hold. Therefore, at the steady-
state the sum of the energy drops is proportional to the sum of the stress drops. For
large avalanches, which are dominant in determining the power-laws, this suggests
that individual stress and energy drops are also proportional. This was confirmed in
the simulations by Salerno et al. [64]. Indeed, this behavior was also observed for
oscillatory shear where the stress and energy drops were found to be proportional
(see Fig. 11.31).
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Using (11.30), data collapse was found for five maximal strain amplitudes � =
0.05, 0.07, 0.08, 0.085 and 0.093 at system size N = 16,384 (Figs. 11.29, 11.30)
from which λ and χ were extracted.

We expect to have data collapse only for intermediate strain amplitudes - for strain
amplitudes smaller than � = 0.05 the statistics are not good enough because there
are not many energy drops (about 10 per cycle or less). Furthermore, far from the
critical point the avalanche statistics is not expected to show the same behavior since
the system is far from the singularity. For strain amplitudes that are too close to the
critical point, finite size effects dominate. Close to the critical point we typically use
the following expression:

g( f ) = ξα/νg0(L/ξ) (11.33)

where ξ = f −ν is the correlation length, f = F−Fc
Fc

is the rescaled force, g(x) is our
scaling function, L is the system size, α and ν are the critical exponents (ν is the
critical exponent of the correlation length) and g0(x) is the finite size scaling function
who’s properties are:

g0(x) → xα/ν, x → ∞ (11.34)

and:
g0(x) → C, x → 0 (11.35)

where C is a constant. Therefore, close to the critical point we get:

g( f ) ∼ Lα/ν (11.36)

which means that one cannot use the same function to describe the scaling behavior
for maximal strain amplitudes in the intermediate range and close to the transition.

Using the estimate of δ, the critical exponents values τ = 1.04[0.26], σ =
0.59[0.04] were found from the data collapse. The exponents deviate from the expo-
nents foundusingmean-field depinning theory,which are τ = 1.5 andσ = 0.5.There
are several possible reasons for that. The first possibility is that inertia effects are
changing the exponents as was suggested by Salerno et al. [49], for simulations under
direct shear (not alternating). This might be an issue since in [19, 30] the FIRE (Fast
Inertial Relaxation Engine) algorithm was used to minimise the potential energy.
Another possibility is that since the elastic interactions can be both positive and neg-
ative, contrary to the only positive interactions exhibited by most depinning models,
the mean field is in a “marginal state” [65] which dictates different scaling behavior.
The main caveat to this approach, as we see it, is that the theoretical predictions that
assume such behavior, based on scaling arguments [66, 67] and analytic calculations
for hard spheres at infinite dimensionality [68] does not show the behavior that we
are observing here. We believe that the discrepancy from both depinning theory and
marginal stability might be a result of having anisotropic interactions which causes
the formation of plastic events in specific directions [69], something that as much
as we are aware, is not been taken explicitly into account in both theories. Another
possibility is that the upper critical dimension is higher in amorphous solids than in
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standard depinning and in that case one may have to take into account corrections to
the critical exponents. We hope that further work will clarify these points.

11.4.2 Average Fluctuations

From the relevant critical exponents we can obtain the average energy fluctuations
introduced in Fig. 11.24 using similar analysis as above. In order to calculate the
average fluctuation size in a cycle we integrate over the same probability distributions
but divide by the strain amplitude:

〈Sn〉� ∼
∫ Sco

0
dS SnS−τ 2

�

∫ �

0
dε Ae−BS(�−ε)δ/σ (11.37)

for � < �c and:

〈Sn〉� ∼
∫ Sco

0
dS 2

�

∫ �c

0
dε SnS−τ Ae−BS(�c−ε)δ/σ (11.38)

+
∫ Sco

0
dS 2

�

∫ �

�c

SnS−τ (11.39)

for � > �c. After integration:

〈Sn〉� ∼
∫ Sco

0
dS 2

�

∫ �c

0
dε SnS−τ Ae−BS(�c−ε)δ/σ (11.40)

+
∫ Sco

0
dS SnS−τ (� − �c)

�
(11.41)

〈S〉 ∼
∫ Sco

0
dS 2

�

∫ �c

0
dε S1−τ Ae−BS(�c−ε)δ/σ

+ (� − �c)

�

∫ Sco

0
dS S1−τ , (11.42)

where Sco is a cutoff avalanche size which depends on the system size in an unknown
way, and the integralwas divided by� in order to perform a cycle-average. The values
of the critical exponents τ and σ that where used where τ = 1.04 and σ = 0.59
which were obtained from the data collapse shown in Figs. 11.29 and 11.30. For the
critical maximal strain amplitude the values �c = 0.135 for N = 1024, �c = 0.12
for N = 4096 and �c = 0.115 for N = 16,384 were chosen since they correspond
to the values found for the transition to chaos. The maximal cluster size Sco was
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assumed to be proportional to a power-law of the system size since at the steady-
state the correlations span the entire system (ξ ∼ L):

Sco = KN�. (11.43)

whereK and� are constants. The parameter valuesK ∼ 0.4, A ∼ 4.547, B ∼ 30.51
and � ∼ 0.482 were found by minimising the normalised L2 norm of (11.42) with
respect to the data from simulations:

L2 = 1

N

√∑
i

(〈�U〉sim,i − 〈S〉theory,i)2 (11.44)

the best fit resulted in L2 ∼ 0.114. Note that the value of� ∼ 0.482 is approximately
consistent with avalanches concentrated along a shear-band and thus proportional to
the linear system size L ∼ N 1/2. Figure11.32 shows the first moment of the potential
energy fluctuations 〈�U〉 obtained from the simulations as a function of the maximal
strain amplitude �, compared to (11.42) for three different system sizes. The most
obvious features of 〈�U〉 as a function of the maximal strain amplitudes is the
crossover (cusp) in behavior at the critical point (Figs. 11.32, 11.33), which was
mentioned above, and the system size dependent saturation of 〈�U〉 for very large
strain amplitudes.As one can see in the figures, both of these features are described by
the theory. The saturation, and dependence on system size can be explained by noting
that for very large maximal strain amplitudes � → ∞, the normalized distribution
function converges to the usual power-law statistics P(S) ∼ S−τ and respectively
〈�U〉 ∼ 〈�S〉 → S−τ

co . One feature that was observed in the simulations that is not
explained by the current theory is that �c changes slightly with the strain amplitude
due to structural rearrangements. In the theory (11.11), structural rearrangements
will amount to a change in the properties of the distribution of the random pinning
fR(u, t). However, this effect is small (changes in �c are less than 5%) and was not
taken into account when fitting the data to the theory. By analyzing the avalanche
statistics using scaling forms predicted by depinning theory, it was shown that there is
a critical point at a critical strain amplitude� = �c which is the same strain amplitude
at which the system undergoes an irreversibility transition. However, this raises the
question of why the two occur at the same point. An explanation for this intriguing
concurrency will be provided below.

11.5 Connection Between Dynamics and Critical Behavior

The most interesting question that arises in view of the findings mentioned above is
the connection between depinning and the observed dynamics in the reversible and
irreversible regimes. The essence of this connection is that at depinning, the external
force F suppresses all the energy barriers (see Fig. 11.34a, b) which changes the
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Fig. 11.32 First moment:
Average potential energy
drops versus maximal strain
amplitude for different
system sizes: N =
16,384( ), N = 4096(�), N
= 1024(�). The yellow lines
are the theoretical results
(11.42) where the integral
was calculated numerically.
The red dashed line marks
the transition to chaos point
for N = 16,384
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Fig. 11.33 Transition
point: Scaled up version of
Fig. 11.32. Note the change
in curvature at the critical
points �c = 0.115,
0.12, 0.135 for N =
16,384( ), N = 4096(�), N
= 1024(�) respectively.
Yellow lines are theoretical
results
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topology of the energy landscape - instead of a set of disconnected energy minima,
we have a fully connected set of energy minima in terms of strain. This affects the
dynamics and reversibility of the system (a related explanation was suggested for
the dynamics of supercooled liquids, see [70]).

Limit cycles: Since the system is dissipative, it will always flow to an attractor
occupying a limited part of phase-space (see Fig. 11.34c and [34]). This attractor will
be composed of a finite or infinite set of configurations of the system connected to
each other by elastic or plastic displacement (see Fig. 11.34d). For a system under
linear shear, when the external forcing is below depinning, it is guaranteed that after
some amount of strain the system will find a local minimum of the potential energy
(will become pinned). For cyclic strain, if the maximal strain amplitude is below
depinning, the system will find, after transient dynamics, a set of configurations all
below the critical stress. Since the stress is lower than the critical depinning stress,
this set of states is guaranteed to be linearly stable or nonlinearly stable. In the
case that is nonlinearly stable, if the stress is increased, the system will overcome
a close-by energy barrier but will “fall” into an adjunct energy barrier (see also
Fig. 11.34a) which means that the next configuration in the attractor is separated by
a finite energy barrier. Therefore, in this case, the attractor is not chaotic and it must
be a limit-cycle (periodic). This situation is not so different to an absorbing phase
transition, which was suggested as an explanation for similar phenomena [10, 24],
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Fig. 11.34 Nonlinear stability: a Tilted energy landscape - nonlinearly stable. b Tilted energy
landscape - completely unstable. Chaotic behavior is possible in this scenario. c A simple example
of an attractor: for a dissipative system, different initial conditions which are in the same basin of
attraction result in trajectories (blue and green lines) which end-up in the same limit-cycle. d Below
the critical strain amplitude, for each strain amplitude, the system finds, after a transient (arrow), a
stable configuration (circles)

although we suggest that depinning provides greater physical insight into the reason
for the system to reach an absorbing state.

Chaotic attractor: When the stress is close to depinnig values, a small increase in
stress, due to a strain step will supress all of the energy barriers (see Fig. 11.34b). In
this case the system will be completely unstable, for a short time. In the quasi-static
shearing scenario, the system will reach another minimum of the potential energy
when the minimization algorithm or dissipation lowers the energy again but before
that happens it will spend some time in boundless motion. Since there are effectively
no energy barriers in this time, there are no retrieving forces and chaotic motion is
possible (in some systems with quenched disorder and with a “no passing” property
fulfilled [71], such as charge density waves and certain random magnets, chaotic
motion is not possible and there always is a limit-cycle [72], but this is not the case
in plasticity in amorphous solids in which disorder is not strictly quenched and for
which the no passing rule is broken).

Period doubling: when the system is close but still not exactly at criticality, there
are less and less stable “pinned” configurations. Therefore, the likelihood of the
system being able to “construct” a limit-cycle that returns to the same point after
one period is smaller and it may be required to have more than one cycle before the
system can return to the initial configuration.

To summarize, if the strain amplitude is below depinning, the system can always
self organize into cycles composed of states in which the stress fluctuations never
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reach depinning values. In that case the dynamics will always be bounded, either
linearly or nonlinearly (overcoming one energy barrier). If the strain amplitude is
large enough, there are always states in which the stress is very close to depinning.
In that case small increase in the stress, due to straining, will generate stresses that
are larger than the depinning value, and thus will cause unbounded motion which
can lead to sensitivity to initial conditions and chaos.

11.5.1 Relaxation Dynamics

Depinning mean-field theory predicts that close to a depinning transition, the system
will “slide” for a long time before it becomes pinned due to critical slowing-down.
Therefore, the accumulated strain to reach a steady-state (the number of cycles times
4�) is expected to diverge as function of the applied force:

εacc ∼ (Fc − F)−zν, (11.45)

with mean-field depinning theory, which was derived for linear shear, predicting a
value of zν = 1 [52]. Since the steady-state is a limit-cycle composed of a set of
pinned states, we expect that also under oscillatory shear, the accumulated strain to
reach a steady-state will scale in the same way as the strain needed to pin one
state. Since the control parameters was the maximal strain amplitude, we obtain on
substituting:

εacc ∼ (�c − �)−zνδ. (11.46)

The simulations found [30] power-law scaling with zν ∼ 2.4 for a choice �c = 0.11
(Fig. 11.7), and zν ∼ 1.38 for a slightly smaller �c = 0.1 for the largest system that
was (N = 16,384). The dynamical exponent zν = 1 predicted by mean-field theory
is in rough agreement with the scaling of the time to reach steady-state measured
in the experiments of Nagamanasa et al. [24] on colloidal glasses which gave zν ∼
1.1/δ ∼ 0.88.

11.6 Summary

The recent discovery of a reversibility transition connected to yield has raised the
possibility that yield is a result of a transition from periodic to chaotic behavior.
However, a number of questions arise regarding the nature of the transition and
the implications to ergodicity and entropy production in these systems. The results
described in this chapter suggest that the critical behavior might be caused by a
transition to chaos [19], a phenomenon well studied in dynamical systems theory,
which seems to be a result of a change in the topology of the energy landscape [30].
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Furthermore, it is suggested that the change in energy landscape topology may be a
result of a depinning-like dynamical non-equilibrium phase transition.

The existence of an irreversibility transition is supported by several experimen-
tal results based on the shearing of colloidal suspensions [17, 20, 24]. Similarly,
experiments on granular piles have also shown that the onset of irreversible behav-
ior is associated with the appearance of system spanning events [12], consistent
with our findings. Therefore, it appears that the existence of an irreversibility transi-
tion/transition to chaos in colloidal systems is reasonably well substantiated. How-
ever, it is still not clear what happens in the thermodynamic limit and in molecular
amorphous solids, such as bulk metallic glasses. Furthermore, the existence and
nature of a non-equilibrium critical point at yield is still under debate. There are sug-
gestions that the transition is actually first-order in nature rather than showing critical
behavior [73, 74]. It will be interesting to see if one can explain the irreversibility
transition based on a first-order non equilibrium phase transition.

References

1. A. Argon, Acta metallurgica 27, 47 (1979)
2. C. Maloney, A. Lemaître, Phys. Rev. E 74, 016118 (2006)
3. P. Schall, D.A. Weitz, F. Spaepen, Science 318, 1895 (2007)
4. M. Falk, J. Langer, Phys. Rev. E 57, 7192 (1998)
5. P. Sollich, Phys. Rev. E 58, 738 (1998)
6. P. Sollich, F. Lequeux, P. Hébraud, M. Cates, Phys. Rev. Lett. 78, 2020 (1997)
7. L. Bocquet, A. Colin, A. Ajdari, Phys. Rev. Lett. 103, 36001 (2009)
8. N.V. Priezjev, Phys. Rev. E 87, 052302 (2013)
9. N. Mangan, C. Reichhardt, C. Reichhardt, Phys. Rev. Lett. 100, 187002 (2008)
10. L. Corté, P. Chaikin, J. Gollub, D. Pine, Nat. Phys. 4, 420 (2008)
11. D. Pine, J. Gollub, J. Brady, A. Leshansky, Nature 438, 997 (2005)
12. S. Slotterback, M. Mailman, K. Ronaszegi, M. van Hecke, M. Girvan, W. Losert, Phys. Rev. E

85, 021309 (2012)
13. G. Petekidis, A. Moussaïd, P. Pusey, Phys. Rev. E 66, 051402 (2002)
14. M. Lundberg, K. Krishan, N. Xu, C. O’Hern, M. Dennin, Phys. Rev. E 77, 041505 (2008)
15. C.F. Schreck, R.S. Hoy, M.D. Shattuck, C.S. O’Hern (2013). arXiv preprint arXiv:1301.7492
16. N.C. Keim, S.R. Nagel, Phys. Rev. Lett. 107, 10603 (2011)
17. N.C. Keim, P.E. Arratia, Soft Matter (2013)
18. D. Fiocco, G. Foffi, S. Sastry, Phys. Rev. E, 020301(R) (2013)
19. I. Regev, T. Lookman, C. Reichhardt, Phys. Rev. E 88, 062401 (2013)
20. N.C. Keim, P.E. Arratia, Phys. Rev. Lett. 112, 028302 (2014)
21. N. Perchikov, E. Bouchbinder, Phys. Rev. E 89, 062307 (2014)
22. N.V. Priezjev, Phys. Rev. E 89, 012601 (2014)
23. R. Jeanneret, D. Bartolo, Nat. Commun. 5 (2014)
24. K.H. Nagamanasa, S. Gokhale, A. Sood, R. Ganapathy, Phys. Rev. E 89, 062308 (2014)
25. M.C. Rogers, K. Chen, L. Andrzejewski, S. Narayanan, S. Ramakrishnan, R.L. Leheny, J.L.

Harden, Phys. Rev. E 90, 062310 (2014)
26. E. Tjhung, L. Berthier, Phys. Rev. Lett. 114, 148301 (2015)
27. D. Fiocco, G. Foffi, S. Sastry, J. Phys.: Condens. Matter 27, 194130 (2015)
28. M. Schulz, B.M. Schulz, S. Herminghaus, Phys. Rev. E 67, 052301 (2003)
29. H. Hinrichsen, Adv. Phys. 49, 815 (2000)

http://arxiv.org/abs/1301.7492


11 The Irreversibility Transition in Amorphous Solids Under Periodic Shear 259

30. I. Regev, J. Weber, C. Reichhardt, K.A. Dahmen, T. Lookman, Nat. Commun. 6 (2015)
31. D. Fiocco, G. Foffi, S. Sastry, Phys. Rev. Lett. 112, 025702 (2014)
32. J. Yorke, E. Yorke, J. Stat. Phys. 21, 263 (1979)
33. T. Tél, Y. Lai, Phys. Rep. 460, 245 (2008)
34. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 2002)
35. H. Kantz, Phys. Lett. A 185, 77 (1994)
36. H. Kantz, T. Schreiber, R. Mackay, Nonlinear Time Series Analysis, vol. 2000 (Cambridge

University Press, Cambridge, 1997)
37. F. Takens, inDynamical Systems and Turbulence, Warwick 1980 (Springer, Heidelberg, 1981),

pp. 366–381
38. Z. Liu, G. Wang, K. Chan, J. Ren, Y. Huang, X. Bian, X. Xu, D. Zhang, Y. Gao, Q. Zhai, J.

Appl. Phys. 114, 033521 (2013)
39. E.J. Banigan, M.K. Illich, D.J. Stace-Naughton, D.A. Egolf, Nat. Phys. 9, 288 (2013)
40. J. Knebel, M.F. Weber, E. Frey, Nat. Phys. 12, 204 (2016)
41. H.-Y. Shih, T.-L. Hsieh, N. Goldenfeld, Nat. Phys. (2015)
42. S. Li, X. Ding, J. Deng, T. Lookman, J. Li, X. Ren, J. Sun, A. Saxena, Phys. Rev. B 82, 205435

(2010)
43. T. Lookman, S. Shenoy, K. Rasmussen, A. Saxena, A. Bishop, Phys. Rev. B 67, 024114 (2003)
44. A. Kityk, W. Schranz, P. Sondergeld, D. Havlik, E. Salje, J. Scott, Phys. Rev. B 61, 946 (2000)
45. E. Ott, J. Sommerer, Phys. Lett. A 188, 39 (1994)
46. D.J. Lacks, M.J. Osborne, Phys. Rev. Lett. 93, 255501 (2004)
47. E. Bouchbinder, J. Langer, I. Procaccia, Phys. Rev. E 75, 036108 (2007)
48. L. Boué, H. Hentschel, I. Procaccia, I. Regev, J. Zylberg, Phys. Rev. B 81, 100201 (2010)
49. K.M. Salerno, C.E. Maloney, M.O. Robbins, Phys. Rev. Lett. 109, 105703 (2012)
50. N. Goldenfeld, Lectures on phase transitions and the renormalization group (Addison-Wesley,

Advanced Book Program, 1992)
51. M. Kardar, Statistical Physics of Fields (Cambridge University Press, Cambridge, 2007)
52. K.A. Dahmen, Y. Ben-Zion, J.T. Uhl, Phys. Rev. Lett. 102, 175501 (2009)
53. D.S. Fisher, K. Dahmen, S. Ramanathan, Y. Ben-Zion, Phys. Rev. Lett. 78, 4885 (1997)
54. P.Y. Chan, G. Tsekenis, J. Dantzig, K.A. Dahmen, N. Goldenfeld, Phys. Rev. Lett. 105, 015502

(2010)
55. N. Friedman,A.T. Jennings, G. Tsekenis, J.-Y.Kim,M. Tao, J.T. Uhl, J.R. Greer, K.A.Dahmen,

Phys. Rev. Lett. 109, 095507 (2012)
56. D.M. Dimiduk, C. Woodward, R. LeSar, M.D. Uchic, Science 312, 1188 (2006)
57. F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, S. Zapperi, Science 318, 251 (2007)
58. J. Antonaglia, X. Xie, G. Schwarz, M. Wraith, J. Qiao, Y. Zhang, P.K. Liaw, J.T. Uhl, K.A.

Dahmen, Sci. Rep. 4 (2014)
59. J. Antonaglia, W.J. Wright, X. Gu, R.R. Byer, T.C. Hufnagel, M. LeBlanc, J.T. Uhl, K.A.

Dahmen, Phys. Rev. Lett. 112, 155501 (2014)
60. A.R. Jie Lin, E. Lerner, M. Wyart (2014). arXiv:1403.6735v2 [cond-mat.soft]
61. R. Dasgupta, H. Hentschel, I. Procaccia, Phys. Rev. Lett. 109, 255502 (2012)
62. E. Lerner, I. Procaccia, Phys. Rev. E 79, 066109 (2009)
63. J.P. Sethna, K.A. Dahmen, C.R. Myers, Nature 410, 242 (2001)
64. K.M. Salerno, M.O. Robbins, Phys. Rev. E 88, 062206 (2013)
65. J. Lin, A. Saade, E. Lerner, A. Rosso, M. Wyart, EPL (Europhys. Lett.) 105, 26003 (2014)
66. J. Lin, T. Gueudré, A. Rosso, M. Wyart, Phys. Rev. Lett. 115, 168001 (2015)
67. P.D. Ispánovity, L. Laurson, M. Zaiser, I. Groma, S. Zapperi, M.J. Alava, Phys. Rev. Lett. 112,

235501 (2014)
68. C. Rainone, P. Urbani, H. Yoshino, F. Zamponi, Phys. Rev. Lett. 114, 015701 (2015)
69. B. Tyukodi, S. Patinet, S. Roux, D. Vandembroucq (2015). arXiv preprint arXiv:1502.07694
70. A. Cavagna, Phys. Rep. 476, 51 (2009)
71. J.P. Sethna, K. Dahmen, S. Kartha, J.A. Krumhansl, B.W. Roberts, J.D. Shore, Phys. Rev. Lett.

70, 3347 (1993)
72. A.A. Middleton, D.S. Fisher, Phys. Rev. B 47, 3530 (1993)
73. P. Jaiswal, I. Procaccia, C. Rainone, M. Singh (2016). arXiv preprint arXiv:1601.02196
74. T. Kawasaki, L. Berthier (2015). arXiv preprint arXiv:1507.04120

http://arxiv.org/abs/1403.6735v2
http://arxiv.org/abs/1502.07694
http://arxiv.org/abs/1601.02196
http://arxiv.org/abs/1507.04120

	11 The Irreversibility Transition in Amorphous Solids Under Periodic Shear
	11.1 Introduction
	11.2 Yield as an Irreversibility Transition
	11.2.1 Analysis of Periodic Behavior

	11.3 Ergodicity
	11.4 Interactions and a Non-equilibrium Phase Transition
	11.4.1 Statistics Under Oscillatory Shear
	11.4.2 Average Fluctuations

	11.5 Connection Between Dynamics and Critical Behavior
	11.5.1 Relaxation Dynamics

	11.6 Summary
	References


