
173© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_18

Chapter 18
Functions

R is a functional programming language, meaning that everything you do is basically
built on functions. However, moving beyond simply using pre-built functions to
writing your own functions is when your capabilities really start to take off and your
code development/writing takes on a new level of efficiency. Functions allow you to
reduce code duplication by automating a generalized task to be applied recursively.
Whenever you catch yourself repeating a function or copy-and-pasting code there is
a good change that you should write a function to eliminate the redundancies.

Unfortunately, due to their abstractness, grasping the idea of writing functions
(let alone writing them well) can take some time. However, in this chapter I will
provide you with the basic knowledge of how functions operate in R to get you
started on the right path. To do this, I cover the general components of functions,
specifying function arguments, scoping and evaluation rules, managing function
outputs, handling invalid parameters, and saving and sourcing functions for reuse.
This will provide you with the required knowledge to start building your own func-
tions. Lastly, I offer some additional resources that will help you learn more about
functions in R.

18.1  �Function Components

With the exception of primitive functions all R functions have three parts:

•	 body(): the code inside the function
•	 formals(): the list of arguments used to call the function
•	 environment(): the mapping of the location(s) of the function’s variables

For example, let’s build a function that calculates the present value (PV) of a
single future sum. The equation for a single sum PV is:

	 PV FV r n= +/ ()1 	

https://cran.r-project.org/doc/manuals/r-release/R-ints.html#g_t_002eInternal-vs-_002ePrimitive

174

where FV is future value, r is the interest rate, and n is the number of periods. In the
function that follows the body of the function includes the equation

	 FV r n/ ()1+ 	

and then rounding the output to two decimals. The formals (or arguments)
required for the function include FV, r, and n. And the environment shows that
function operates in the global environment.

PV <- function(FV, r, n) {
 PV <- FV / (1 + r)^n
 round(PV, 2)
}

body(PV)
{
PV <- FV / (1 + r)^n
round(PV, 2)
}

formals(PV)
$FV

$r

$n

environment(PV)
<environment: R_GlobalEnv>

18.2  �Arguments

To perform the PV() function we can call the arguments in different ways.

using argument names
PV(FV = 1000, r = .08, n = 5)
[1] 680.58

same as above but without using names (aka "positional matching")
PV(1000, .08, 5)
[1] 680.58

if using names you can change the order
PV(r = .08, FV = 1000, n = 5)
[1] 680.58

if not using names you must insert arguments in proper order
in this e.g. the function assumes FV = .08, r = 1000, and n = 5
PV(.08, 1000, 5)
[1] 0

18  Functions

175

Note that when building a function you can also set default values for arguments.
In our original PV() we did not provide any default values so if we do not supply
all the argument parameters an error will be returned. However, if we set default
values then the function will use the stated default if any parameters are missing:

missing the n argument
PV(1000, .08)
Error in PV(1000, 0.08): argument "n" is missing, with no default

creating default argument values
PV <- function(FV = 1000, r = .08, n = 5) {
 PV <- FV / (1 + r)^n
 round(PV, 2)
}

function will use default n value
PV(1000, .08)
[1] 680.58

specifying a different n value
PV(1000, .08, 3)
[1] 793.83

18.3  �Scoping Rules

Scoping refers to the set of rules a programming language uses to lookup the value
for variables and/or symbols. The following illustrates the basic concept behind the
lexical scoping rules that R follows.

A function will first look inside the function to identify all the variables being
called. If all variables exist then their is no additional search required to identify
variables.

PV1 <- function() {
 FV <- 1000
 r <- .08
 n <- 5
 FV / (1 + r)^n
}

PV1()
[1] 680.5832

However, if a variable does not exist within the function, R will look one level
up to see if the variable exists.

the FV variable is outside the function environment
FV <- 1000

18.3 � Scoping Rules

176

PV2 <- function() {
 r <- .08
 n <- 5
 FV / (1 + r)^n
}

PV2()
[1] 680.5832

This same concept applies if you have functions embedded within functions:

FV <- 1000

PV3 <- function() {
 r <- .08
 n <- 5
 denominator <- function() {
 (1 + r)^n
 }
 FV/denominator()
}

PV3()
[1] 680.5832

This also applies for functions in which some arguments are called but not all
variables used in the body are identified as arguments:

n is specified within the function
PV4 <- function(FV, r) {
 n <- 5
 FV / (1 + r)^n
}

PV4(1000, .08)
[1] 680.5832

n is specified within the function and
r is specified outside the function
r <- 0.08

PV5 <- function(FV) {
 n <- 5
 FV / (1 + r)^n
}

PV5(1000)
[1] 680.5832

18  Functions

177

18.4  �Lazy Evaluation

R functions perform “lazy” evaluation in which arguments are only evaluated if
required in the body of the function.

the y argument is not used so not including it causes
no harm
lazy <- function(x, y){
 x * 2
}
lazy(4)
[1] 8

however, if both arguments are required in the body
an error will result if an argument is missing
lazy2 <- function(x, y){
 (x + y) * 2
}
lazy2(4)
Error in lazy2(4): argument "y" is missing, with no default

18.5  �Returning Multiple Outputs from a Function

If a function performs multiple tasks and therefore has multiple results to report
then we have to include the c() function inside the function to display all the
results. If you do not include the c() function then the function output will only
return the last expression:

bad <- function(x, y) {
 2 * x + y
 x + 2 * y
 2 * x + 2 * y
 x / y
}
bad(1, 2)
[1] 0.5

good <- function(x, y) {
 output1 <- 2 * x + y
 output2 <- x + 2 * y
 output3 <- 2 * x + 2 * y
 output4 <- x / y
 c(output1, output2, output3, output4)
}
good(1, 2)
[1] 4.0 5.0 6.0 0.5

18.5 � Returning Multiple Outputs from a Function

178

Furthermore, when we have a function which performs multiple tasks (i.e. com-
putes multiple computations) then it is often useful to save the results in a list.

good_list <- function(x, y) {
 output1 <- 2 * x + y
 output2 <- x + 2 * y
 output3 <- 2 * x + 2 * y
 output4 <- x / y
 c(list(Output1 = output1, Output2 = output2,
 Output3 = output3, Output4 = output4))
}
good_list(1, 2)
$Output1
[1] 4

$Output2
[1] 5

$Output3
[1] 6

$Output4
[1] 0.5

18.6  �Dealing with Invalid Parameters

For functions that will be used again, and especially for those used by someone
other than the creator of the function, it is good to check the validity of arguments
within the function. One way to do this is to use the stop() function. The follow-
ing uses an if() statement to check if the class of each argument is numeric. If one
or more arguments are not numeric then the stop() function will be triggered to
provide a meaningful message to the user.

PV <- function(FV, r, n) {
 if(!is.numeric(FV) | !is.numeric(r) | !is.numeric(n)){
 stop('This function only works for numeric inputs!\n',
 'You have provided objects of the following classes:\n',
 'FV: ', class(FV), '\n',
 'r: ', class(r), '\n',
 'n: ', class(n))
 }
 PV <- FV / (1 + r)^n
 round(PV, 2)
}

18  Functions

179

PV("1000", 0.08, "5")
Error in PV("1000", 0.08, "5"): This function only works for numeric inputs!
You have provided objects of the following classes:
FV: character
r: numeric
n: character

Another concern is dealing with missing or NA values. Lets say you wanted to
perform the PV() function on a vector of potential future values. The function as is
will output NA in place of any missing values in the FV input vector. If you want to
remove the missing values then you can incorporate the na.rm parameter in the
function arguments along with an if statement to remove missing values if na.rm
= TRUE.

vector of future value inputs
fv <- c(800, 900, NA, 1100, NA)

original PV() function will return NAs
PV(fv, .08, 5)
[1] 544.47 612.52 NA 748.64 NA

add na.rm argument
PV <- function(FV, r, n, na.rm = FALSE) {
 if(!is.numeric(FV) | !is.numeric(r) | !is.numeric(n)){
 stop('This function only works for numeric inputs!\n',
 'You have provided objects of the following classes:\n',
 'FV: ', class(FV), '\n',
 'r: ', class(r), '\n',
 'n: ', class(n))
 }
 if(na.rm == TRUE) {
 FV <- FV[!is.na(FV)]
 }
 PV <- FV / (1 + r)^n
 round(PV, 2)
}

setting na.rm = TRUE argument eliminates NA outputs
PV(fv, 0.08, 5, na.rm = TRUE)
[1] 544.47 612.52 748.64

18.7  �Saving and Sourcing Functions

If you want to save a function to be used at other times and within other scripts there
are two main ways to do this. One way is to build a package which I do not cover in
this book but is discussed in more details in Hadley Wickhams R Packages book,
which is openly available at http://r-pkgs.had.co.nz/. Another option, and the one
discussed here, is to save the function in a script. For example, we can save a script
that contains the PV() function and save this script as PV.R.

18.7 � Saving and Sourcing Functions

http://r-pkgs.had.co.nz/
http://r-pkgs.had.co.nz/

180

Now, if we are working in a fresh script you’ll see that we have no objects and
functions in our working environment:

If we want to use the PV function in this new script we can simply read in the
function by sourcing the script using source("PV.R"). Now, you’ll notice that
we have the PV() function in our global environment and can use it as normal. Note
that if you are working in a different directory then where the PV.R file is located
you’ll need to include the proper path to access the relevant directory.

18  Functions

181

18.8  �Additional Resources

Functions are a fundamental building block of R and writing functions is a core
activity of an R programmer. It represents the key step of the transition from a mere
“user” to a developer who creates new functionality for R. As a result, its important
to turn your existing, informal knowledge of functions into a rigorous understand-
ing of what functions are and how they work. A few additional resources that can
help you get to the next step of understanding functions include:

•	 Hadley Wickham’s Advanced R book
•	 Roger Peng’s R Programming for Data Science book
•	 DataCamp’s Intermediate R course
•	 Coursera’s R Programming course

18.8 � Additional Resources

http://adv-r.had.co.nz/Functions.html
https://leanpub.com/rprogramming
https://www.datacamp.com/courses/intermediate-r?utm_source=functions_r_tutorial_post&utm_medium=blog&utm_campaign=functions_r_tutorial_post
https://www.coursera.org/course/rprog

	Chapter 18: Functions
	18.1 Function Components
	18.2 Arguments
	18.3 Scoping Rules
	18.4 Lazy Evaluation
	18.5 Returning Multiple Outputs from a Function
	18.6 Dealing with Invalid Parameters
	18.7 Saving and Sourcing Functions
	18.8 Additional Resources

