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  Pref ace   

 Welcome to   Data Wrangling     with    R   ! In this book, I will help you learn the essentials 
of preprocessing data leveraging the R programming language to easily and quickly 
turn noisy data into usable pieces of information. Data wrangling, which is also 
commonly referred to as data munging, transformation, manipulation, janitor work, 
etc., can be a painstakingly laborious process. In fact, it has been stated that up to 
80 % of data analysis is spent on the process of cleaning and preparing data (cf. 
Wickham  2014 ; Dasu and Johnson  2003 ). However, being a prerequisite to the rest 
of the data analysis workfl ow (visualization, modeling, reporting), it’s essential that 
you become fl uent  and  effi cient in data wrangling techniques. 

 This book will guide you through the data wrangling process along with giving 
you a solid foundation of the basics of working with data in  R  . My goal is to teach 
you how to easily wrangle your data, so you can spend more time focused on under-
standing the content of your data via visualization, modeling, and reporting your 
results. By the time you fi nish reading this book, you will have learned:

•    How to work with the different types of data such as numerics, characters,  regu-
lar expressions  ,  factors  , and  dates.    

•   The difference between the various  data structures   and how to create, add addi-
tional components to, and how to subset each data structure.     

•   How to acquire and parse data from locations you may not have been able to 
access before such as web scraping or leveraging APIs.     

•   How to develop your own functions and use loop control structures to reduce 
code redundancy.  

•   How to use  pipe operators   to simplify your code and make it more readable.  
•   How to reshape the layout of your data, and manipulate, summarize, and join 

data sets.  

  Not only will you learn many base R functions, you’ll also learn how to use some 
of the latest data wrangling  packages   such as  tidyr ,  dplyr ,   httr   ,  stringr , 
 lubridate ,  readr ,   rvest   ,   magrittr   ,  xlsx ,  readxl  and others.      In 
essence, you will have the  data wrangling   toolbox required for modern day data 
analysis. 
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    Who This Book Is for 

 This book is meant to establish the baseline  R   vocabulary and knowledge for the 
primary  data wrangling   processes. This captures a wide range of programming 
activities which covers the full spectrum from understanding basic data objects in R 
to writing your own functions, applying loops, and web scraping. As a result, this 
book can be benefi cial to all  levels   of R programmers. Beginner R programmers 
will gain a basic understanding of the functionality of R along with learning how to 
work with data using R. Intermediate and advanced R programmers will likely fi nd 
the early chapters reiterating established knowledge; however, these programmers 
will benefi t from the mid and latter chapters by learning newer and more effi cient 
 data wrangling   techniques.  

    What You Need for This Book 

 Obviously to gain and retain knowledge from this book, it is highly recommended 
that you follow along and practice the code examples yourself. Furthermore, this 
book assumes that you will actually be performing  data wrangling   in R; therefore, 
it is assumed that you have or plan to have R installed on your computer. You will fi nd 
the latest ve rsion of R   for Linux, Mac OS, and Windows at   https://cran.r-project.org    . 
It is also recommended that you use an integrated development environment (IDE) 
as it will simplify and organize your coding environment greatly. There are several 
to choose from; however, I highly recommend the  RStudio   IDE which you can 
download at   https://www.rstudio.com    .  

    Reader Feedback 

 Reader comments are greatly appreciated. Please send any feedback regarding 
typos, mistakes, confusing statements, or opportunities for improvement to wran-
glingdata@gmail.com.
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   Part I 
   Introduction 

       With nothing but the power of your own mind, you operate 
on the symbols before you in such a way that you gradually 
lift yourself from a state of understanding less to one of 
understanding more.  

 Mortimer J. Adler            

 Data. Our world has become increasingly reliant upon, and awash in, this resource. 
Businesses are increasingly seeking to capitalize on data analysis as a means for 
gaining competitive advantages. Government agencies are using more types of data 
to improve operations and effi ciencies. Sports entities are increasing the range of 
data applications, from how teams are using data and analytics to how data are 
impacting the experience for the fan base. Journalism is increasing the role that 
numerical data are used in the production and distribution of information as evi-
denced by the emerging fi eld of data journalism. In fact, the need to work with data 
has become so prevalent that the U.S. alone is expected to have a shortage of 
140,000–190,000 data analysts by 2018. 1  Consequently, it is safe to say there is a 
need for becoming fl uent with the data analysis process. And I’m assuming that’s 
why you are reading this book. 

 Fluency in data analysis captures a wide range of activities. At its most basic 
structure, data analysis fl uency includes the ability to get, clean, transform, visual-
ize, and model data along with communicating your results as depicted in the fol-
lowing illustration.  

 From project to project, no analytic process will be the same. Each specifi c 
instance of data analysis includes unique, different, and often multiple requirements 
regarding the specifi c processes required for each stage. For instance, getting data 

1   Manyika et al. (2011). 

 Fig. 1    Analytic Process  
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† A modified version of Hadley Wickham’s analytic process    
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may include simply accessing an  Excel   fi le,  scraping data   from an  HTML   table, or 
using an application programming interface ( API  ) to access a database. Cleaning 
data may include reshaping data from a wide to long format, parsing or manipulat-
ing variables to different formats. Transforming data may include fi ltering, sum-
marizing, and applying common or uncommon functions to data along with joining 
multiple datasets. Visualizing data may range from common static exploratory data 
analysis plots to dynamic, interactive data visualizations in web browsers. And 
modeling data can be even more diverse covering the range of descriptive, predic-
tive, and prescriptive analytic techniques. 

 Consequently, the road to becoming an expert in data analysis can be daunting. 
And, in fact, obtaining expertise in the wide range of data analysis processes uti-
lized in your own respective fi eld is a career long process. However, the goal of this 
book is to help you take a step closer to fl uency in the early stages of the analytic 
process. Why? Because before using statistical literate programming to report your 
results, before developing an optimization or predictive model, before performing 
exploratory data analysis, and before visualizing your data, you need to be able 
to manage your data. You need to be able to import your data. You need to be able to 
work with the different data types. You need to be able to subset and parse your data. 
You need to be able to manipulate and transform your data. You need to be able to 
 wrangle  your data!      

Part I Introduction
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    Chapter 1   
 The Role of Data Wrangling                     

  Water, water, everywhere, nor any a drop to drink  

 Samuel Taylor Coleridge 

           Synonymous to Samuel Taylor Coleridge’s quote in  Rime of the Ancient Mariner , the 
degree to which data are useful is largely determined by an analyst’s ability to wrangle 
data. In spite of advances in technologies for working with data, analysts still spend an 
inordinate amount of time obtaining data, diagnosing data quality issues and pre-pro-
cessing data into a usable form. Research has illustrated that this portion of the data 
analysis process is the most tedious and time consuming component; often consuming 
50–80 % of an analyst’s time (cf. Wickham  2014 ; Dasu and Johnson  2003 ). Despite the 
challenges,  data wrangling   remains a fundamental building block that enables visual-
ization and statistical modeling. Only through data wrangling can we make data useful. 
Consequently, one’s ability to perform data wrangling tasks effectively and effi ciently 
is fundamental to becoming an expert data analyst in their respective domain. 

 So what exactly is this thing called   data wrangling   ? It’s the ability to take a 
messy, unrefi ned source of data and wrangle it into something useful. It’s the art of 
using computer programming to extract raw data and creating clear and actionable 
bits of information for your analysis. Data wrangling is the entire front end of the 
analytic process and requires numerous tasks that can be categorized within the  get , 
 clean , and  transform  components (Fig.  1.1 ).

   However, learning how to wrangle your data does not necessarily follow a linear 
progression as suggested by Fig.  1.1 . In fact, you need to start from scratch to under-
stand how to work with data in  R  . Consequently, this book takes a meandering route 
through the data wrangling process to help build a solid data wrangling 
foundation. 

 First, modern day data wrangling requires being comfortable writing code. If 
you are new to writing code,  R  , or  RStudio   you need to understand some of the 
basics of working in the “command line” environment. The next two chapters in this 
part will introduce you to R, discuss the benefi ts it provides, and then start to get you 
comfortable at the command line by walking you through the process of assigning 
and evaluating expressions, using  vectorization  ,  getting help  , managing your 
 workspace, and working with  packages  . Lastly, I offer some basic styling guidelines 
to help you write code that is easier to digest by others. 
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 Second,  data wrangling   requires the ability to work with different forms of data. 
Analysts and  organization  s are fi nding new and unique ways to leverage all forms 
of data so it’s important to be able to work not only with numbers but also with 
 character strings  , categorical variables, logical variables, regular  expression  , and 
 dates  . Part II explains how to work with these different classes of data so that when 
you start to learn how to manage the different  data structures  , which combines these 
data classes into multiple  dimensions  , you will have a strong knowledge base. 

 Third, modern day datasets often contain variables of different lengths and 
classes. Furthermore, many statistical and mathematical calculations operate on dif-
ferent types of  data structures  . Consequently,  data wrangling   requires a strong 
knowledge of the different structures to hold your datasets. Part III covers the differ-
ent types of  data structures   available in  R  , how they differ by dimensionality and 
how to create, add to, and subset the various  data structures  . Lastly, I cover how to 
deal with  missing values   in  data structures  . Consequently, this part provides a robust 
understanding of managing various forms of datasets. 

 Fourth, data are arriving from multiple sources at an alarming rate and analysts 
and  organizations   are seeking ways to leverage these new sources of information. 
Consequently, analysts need to understand how to  get  data from these sources. 
Furthermore, since analysis is often a collaborative effort, analysts also need to know 
how to share their data. Part IV covers the basics of importing tabular and spread-
sheet data,  scraping data   stored online, and  exporting data   for sharing purposes. 

 Fifth, minimizing duplication and writing simple and readable code is important 
to becoming an effective and effi cient data analyst. Moreover, clarity should always 
be a goal throughout the data analysis process. Part V introduces the art of writing 
functions and using  loop control statements   to reduce redundancy in code. I also 
discuss how to simplify your code using  pipe operators   to make your code more 
readable. Consequently, this part will help you to perform  data wrangling   tasks 
more effectively, effi ciently, and with more clarity. 

 Last,  data wrangling   is all about getting your data into the right form in order to 
feed it into the visualization and modeling stages. This typically requires a large 
amount of reshaping and transforming of your data. Part VI introduces some of the 
fundamental functions for “ tidying ” your data and for manipulating,  sorting  , sum-
marizing, and joining your data. These tasks will help to signifi cantly reduce the 
time you spend on the data wrangling process. 

 Individually, each part will provide you important tools for performing individual 
 data wrangling   tasks. Combined, these tools will help to make you more effective 
and effi cient in the front end of the data analysis process so that you can spend more 
of your time visualizing and modeling your data and communicating your results!    

  Fig. 1.1     Data Wrangling         
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    Chapter 2   
 Introduction to R                     

          A language for data analysis and graphics. This defi nition of R was used by Ross 
Ihaka and Robert Gentleman in the title of their 1996 paper (Ihaka and Gentleman 
 1996 ) outlining their experience of designing and implementing the R software. It’s 
safe to say this remains the essence of what  R   is; however, it’s tough to encapsulate 
such a diverse programming language into a single phrase. 

 During the last decade, the  R   programming language has become one of the most 
widely used tools for statistics and data science. Its application runs the gamut from 
data preprocessing, cleaning, web scraping and visualization to a wide range of 
analytic tasks such as computational statistics, econometrics, optimization, and 
natural language processing. In 2012 R had over two million users and continues to 
grow by  double  -digit percentage points every year. R has become an essential ana-
lytic software throughout industry; being used by  organizations   such as Google, 
Facebook, New York Times, Twitter, Etsy, Department of Defense, and even in 
presidential political campaigns. So what makes R such a popular tool? 

2.1     Open Source 

 R is an   open source    software created over 20 years ago by Ihaka and Gentleman at 
the University of Auckland, New Zealand. However, its history is even longer as its 
lineage goes back to the S programming language created by John Chambers out of 
Bell Labs back in the 1970s. 1  R is actually a combination of S with lexical scoping 
semantics inspired by Scheme (Morandat and Hill  2012 ). Whereas the resulting 
language is very similar in appearance to S, the underlying implementation and 
semantics are derived from Scheme. Unbeknownst to many the S language has been 
a popular vehicle for research in statistical methodology, and R provides an   open 
source    route to participate in that activity. 

1   Consequently, R is named partly after its authors (Ross and Robert) and partly as a play on the 
name of S. 
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 Although the history of S and  R   is interesting, 2  the principal artifact to observe is 
that R is an   open source    software. Although some contest that open-source software 
is merely a “craze”, 3  most evidence suggests that open-source is here to stay and 
represents a  new  4  norm for programming languages. Open-source software such as 
 R   blurs the distinction between developer and user, which provides the ability to 
extend and modify the analytic functionality to your, or your  organization  ’s needs. 
The data analysis process is rarely restricted to just a handful of tasks with predict-
able input and outputs that can be pre-defi ned by a fi xed user interface as is common 
in proprietary software. Rather, as previously mentioned in the introduction, data 
analyses include unique, different, and often multiple requirements regarding the 
specifi c tasks involved.  Open source   software allows more fl exibility for you, the 
data analyst, to manage how data are being transformed, manipulated, and modeled 
“under the hood” of software rather than relying on “stiff” point and click software 
interfaces.  Open source   also allows you to operate on every major platform rather 
than be restricted to what your personal budget allows or the idiosyncratic pur-
chases of  organizations  . 

 This invariably leads to new expectations for data analysts; however,  organiza-
tions   are proving to greatly value the increased technical abilities of  open source   
data analysts as evidenced by a recent O’Reilly survey revealing that data analysts 
focusing on  open source   technologies make more money than those still dealing in 
proprietary technologies.  

2.2     Flexibility 

 Another benefi t of  open source   is that anybody can access the source code, modify 
and improve it. As a result, many excellent programmers contribute to improving 
existing R code and developing new capabilities. Researchers from all walks of life 
(academic institutions, industry, and focus groups such as  RStudio   5  and  rOpenSci   6 ) 
are contributing to advancements of R’s capabilities and best practices. This has 
resulted in some powerful tools that advance both statistical and non-statistical 
modeling capabilities that are taking data analysis to new  levels  . 

2   See Roger Peng’s  R programming for Data Science  for further, yet concise, details on S and R’s 
history. 
3   This was recently argued by Pollack, Klimberg, and Boklage ( 2015 ) which was appropriately 
rebutted by Boehmke and Jackson ( 2016 ). 
4   Open-source is far from new as it has been around for decades (i.e. A-2 in the 1950s, IBM’s ACP 
in the ’60s, Tiny BASIC in the ’70s) but has gained prominence since the late 1990s. 
5   https://www.rstudio.com 
6   https://ropensci.org/packages 

2 Introduction to R
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 Many researchers in academic institutions are using and developing R code to 
develop the latest techniques in statistics and machine learning. As part of their 
research, they often publish an  R   package to accompany their research articles. 7  
This provides immediate access to the latest analytic techniques and implementa-
tions. And this research is not soley focused on generalized algorithms as many new 
capabilities are in the form of advancing analytic algorithms for tasks in specifi c 
domains. A quick assessment of the different task domains 8  for which code is being 
developed illustrates the wide spectrum—econometrics, fi nance, chemometrics and 
computational physics, pharmacokinetics, social sciences, etc. 

 Powerful tools are also being developed to perform many tasks that greatly aid 
the data analysis process. This is not limited to just new ways to wrangle your data 
but also new ways to visualize and communicate data. R  packages   are now making 
it easier than ever to create interactive graphics and websites and produce sophisti-
cated HTML and PDF  reports. R    packages   are also integrating communication with 
high-performance programming languages such as C, Fortran, and C++ making 
data analysis more powerful, effi cient, and posthaste than ever. 

 So although the analytic mantra “ use the right tool for the problem ” should 
always be in our prefrontal cortex, the advancements and fl exibility of R is making 
it the right tool for many problems.  

2.3     Community 

 The  R   community is fantastically diverse and engaged. On a daily basis, the R com-
munity generates opportunities and resources for learning about R. These cover the 
full spectrum of training—books, online courses, R user groups, workshops, confer-
ences, etc. And with over two million users and developers, fi nding help and techni-
cal expertise is only a simple click away. Support is available th rough R   mailing 
 lists  , Q&A websites, social media networks, and numerous blogs. 

 So now that you know how awesome R is, it’s time to learn how to use it.    
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    Chapter 3   
 The Basics                     

  Programming is like kicking yourself in the face, sooner or later 
your nose will bleed.  

 Kyle Woodbury 

           A computer language is described by its   syntax    and  semantics ; where  syntax   is 
about the grammar of the language and semantics the meaning behind the sentence. 
And jumping into a new programming language correlates to visiting a foreign 
country with only that ninth grade Spanish 101 class under your belt; there is no 
better way to learn than to immerse yourself in the environment! Although it’ll be 
painful early on and your nose will surely bleed, eventually you’ll learn the dialect 
and the quirks that come along with it. 

 Throughout this book you’ll learn much of the fundamental  syntax   and seman-
tics of the  R   programming language; and hopefully with minimal face kicking 
involved. However, this chapter serves to introduce you to many of the basics of R 
to get you comfortable. This includes  installing R and  RStudio   ,  understanding the 
 console   ,  how to get help ,  how to work with  packages   , understanding how to  assign 
and evaluate expressions , and the idea of   vectorization   . Finally, I offer some basic 
 styling guidelines  to help you write code that is easier to digest by others. 

3.1      Installing  R   and  RStudio   

 First, you need to download and install R, a free software environment for statistical 
computing and graphics from  CRAN  , the Comp rehensive R   Archive Network. It is 
highly recommended to install a precompiled binary distribution for your operating 
system; follow these instructions:

    1.    Go to   https://cran.r-project.org/       
   2.    Click “Download  R   for Mac/Windows”   
   3.    Download the appropriate fi le:

    (a)    Windows users click Base, and download the installer for the latest R 
version   

   (b)    Mac users select the fi le R-3.X.X.pkg that aligns with your OS version       

https://cran.r-project.org/
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   4.    Follow the instructions of the installer    

  Next, you can download  RStudio  ’s IDE (integrated development environment), 
a powerful user inte rface for R  . RStudio includes a text editor, so you do not have to 
install another stand-alone editor. Follow these instructions:

    1.    Go to RStudio for desktop   https://www.rstudio.com/products/rstudio/download/       
   2.    Select the install fi le for your OS   
   3.    Follow the instructions of the installer.    

  There a re other R   IDE’s available: Emacs, Microsoft R Open, Notepad++, etc; 
however, I have found  RStudio   to be my preferred route. When you are done install-
ing RStudio click on the icon that looks like (Fig.  3.1 ):

  Fig. 3.1    RStudio Icon       

  Fig. 3.2    RStudio Console       

   and you should get a window that looks like the following (Fig.  3.2 ):
   You are now ready to start programming!  
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3.2      Understanding the Console 

 The  RStudio    console   is where all the action happens. There are four fundamental 
windows in the console, each with their own purpose. I discuss each briefl y below 
but I highly suggest Oscar Torres-Reyna’s Introduction to  RStudio   1  for a thorough 
understanding of the console (Fig.  3.3 ).

3.2.1       Script Editor 

 The top left window is where your script fi les will display. There are multiple forms 
of script fi les but the basic one to start with is the . R   fi le. To create a new fi le you use 
the  File → New File  menu. To open an existing fi le you use either the  File → Open 
File…  menu or the  Recent Files  menu to select from recently opened fi les. 
 RStudio  ’s script editor includes a variety of productivity enhancing features includ-
ing  syntax   highlighting, code completion, multiple-fi le editing, and fi nd/replace. 
A good introduction to the  script editor   was written by  RStudio  ’s Josh Paulson. 2   

3.2.2     Workspace Environment 

 The top right window is the  workspace environment   which captures much of you r 
current R   working environment and includes any user-defi ned objects ( vectors  , 
matrices,  data frames  ,  lists  , functions). When saving your R working session, these 

1   You can access this tutorial at  http://dss.princeton.edu/training/RStudio101.pdf 
2   You can assess the script editor tutorial at  https://support.rstudio.com/hc/en-us/articles/
200484448-Editing-and-Executing-Code 

  Fig. 3.3    Four fundamental windows of the RStudio  console         

 

3.2  Understanding the Console

http://dss.princeton.edu/training/RStudio101.pdf
https://support.rstudio.com/hc/en-us/articles/200484448-Editing-and-Executing-Code
https://support.rstudio.com/hc/en-us/articles/200484448-Editing-and-Executing-Code
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are the components along with the script fi les that will be saved in your working 
directory, which is the default location for all fi le inputs and outputs. To get or set 
your working directory so you can direct where your fi les are saved use   getwd    and 
  setwd    in the  console   (note that you can type any comments in your code by pre-
ceding the comment with the hashtag ( # ) symbol; any values, symbols, and texts 
following # will not be evaluated.).

      # returns path for the current working directory   
   getwd()                        

  # set the working directory to a specifi ed directory   
  setwd(directory_name)   

    For example, if I call   getwd()    the fi le path “/Users/bradboehmke/Desktop/
Personal/ Data Wrangling  ” is returned. If I want to set the working directory to the 
“Workspace” folder within the “Data Wrangling” directory I would 
use   setwd    ("Workspace") . Now if I call   getwd()    again it returns “/Users/
bradboehmke/ Desktop/Personal/ Data Wrangling  /Workspace”. 

 The  workspace environment   will also  list   your user-defi ned objects such as  vec-
tors  , matrices,  data frames  , lists, and functions. To identify or remove the objects 
(i.e.  vectors  ,  data frames  , user  defi ned   functions, etc.) in you r current R   
environment:

      # list all objects   
   ls()                    

      # identify if an R object with a given name is present
exists("object_name")  

      # remove defi ned object from the environment   
   rm    ("object_name")                

      # you can remove multiple objects by using the c() function
rm(c("object1", "object2"))  

      # basically removes everything in the working environment -- use with   
  # caution!   
  rm(list =    ls()    )                

    You can also view previous commands in the  workspace environment   by clicking 
the  History  tab, by simply pressing the up arrow on your keyboard, or by typing into 
the  console  :

      # default shows 25 most recent commands   
   history()              

      # show 100 most recent commands   
  history(100)         

      # show entire saved history   
  history(Inf)       

3 The Basics
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    You can also save and load your workspaces. Saving your workspace will save all 
 R   fi les and objects within your workspace to a .RData fi le in your working directory 
and loading your workspace will load any .RData fi les in your working directory.

      # save all items in workspace to a .RData fi le   
   save.image()                                        

      # save specifi ed objects to a .RData fi le   
   save    (object1, object2, fi le = "myfi le.RData")        
  #    load     workspace into current session   
  load("myfi le.RData")   

    Note that saving the workspace without specifying the working directory will 
default to saving in the current directory. You can further specify where to save the 
.RData by including the path:   save    (object1, object2, fi le = "/users/
name/folder/myfi le.RData").  More information regarding saving and 
loading  R   objects such as .RData fi les will be discussed in Part IV of this book.  

3.2.3     Console 

 The bottom left window contains the  console  . You can code directly in this window 
but it will not save your code. It is best to use this window when you are simply 
performing  calculator   type functions. This is also where your outputs will be pre-
sented when you run code in your script.  

3.2.4     Misc. Displays 

 The bottom right window contains multiple tabs. The  Files  tab allows you to see 
which fi les are available in your working directory. The  Plots  tab will display any 
visualizations that are produced by your code. The  Packages  tab will  list   all  pack-
ages   downloaded to your computer and also the ones that are loaded (more on this 
concept of packages shortly). And the  Help  tab allows you to search for topics you 
need help on and will also display any help responses (more on this later as well).  

3.2.5     Workspace Options and Shortcuts 

 There are multiple options available for you to set and customize your  console  . You 
can view and set options for the cu rrent R   session:

      # learn about available    options     
  help(options)    

3.2  Understanding the Console
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      # view current option settings   
   options()                  

      # change a specifi c option (i.e. number of digits to print on output) 
options(digits=3)    

    As with most computer programs, there are numerous keyboard shortcuts for 
working with the  console  . To access a menu displaying all the shortcuts in RStudio 
you can use option + shift + k. Within  RStudio   you can also access them in the  Help 
menu → Keyboard Shortcuts . You can also fi nd the RStudio console cheatsheet by 
going to Help menu » Cheatsheets.   

3.3      Getting Help 

 Learning any new language requires lots of help. Luckily, the help documentation 
and support in R is comprehensive and easily accessible from the command line. To 
leverage general help resources you can use the following: 

3.3.1     General Help 

 To leverage general help resources you can use:

      # provides general    help     links  
  help.start()   

      # searches the help system for documentation matching a given character   
  # string   
  help.   search    ("text")      

    Note that the  help.search("some text here")  function requires a 
character  string   enclosed in quotation marks. So if you are in search of time series 
functions in  R  , using  help.search("time series")  will pull up a healthy 
 list   of vignettes and code demonstrations that illustrate  packages   and functions that 
work with time series data.  

3.3.2     Getting Help on Functions 

 For more direct help on functions that are installed on your computer:

      # provides details for    specifi c     function  
  help(functionname)  

3 The Basics
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      # provides same information as help(functionname)    
  ?functionname   

      # provides examples for said function  
  example(functionname)     

    Note that the   help()    and  ?  functions only work for functions within loaded 
 packages  . If you want to see details on a function in a package that is installed on 
your computer but not loaded in the active  R   session you can use 
 help(functionname, package = "packagename") . Another alterna-
tive is to use the  ::  operator as in  help(packagename::functionname) .  

3.3.3     Getting Help from the Web 

 Typically, a problem you may be encountering is not new and others have faced, 
solved, and documented the same issue online. The following resources can be used 
to search for online help. Although, I typically just google the problem and fi nd 
answers relatively quickly.

•     RSiteSearch("key phrase") : searches for the key phrase in help manuals 
and archived mailing  lists   on the R Project website at   http://search.r-project.org/    .  

•   Stack Overfl ow: a searchable Q&A site oriented toward programming issues. 
75 % of my answers typically come from Stack Overfl ow questions tagged fo r R   
at   http://stackoverfl ow.com/questions/tagged/r    .  

•   Cross Validated: a searchable Q&A site oriented toward statistical analysis. 
Many questions regarding specifi c statistical functions in  R   are tagged for R at 
  http://stats.stackexchange.com/questions/tagged/r    .  

•    R  -seek: a Google custom search that is focused on R-specifi c websites. Located 
at   http://rseek.org/      

•    R  -bloggers: a central hub of content collected from over 500 bloggers who pro-
vide news and tutorials about R. Located at   http://www.r-bloggers.com/          

3.4      Working with  Packages   

 In  R  , the fundamental unit of shareable code is the package. A package bundles 
together code, data, documentation, and tests and provides an easy method to share 
with others. As of June 2016 there were over 8000  packages   available on CRAN, 
1000 on Bioconductor, and countless more available through GitHub. This huge 
variety of packages is one of the reasons that R is so successful: chances are that 
someone has already solved a problem that you’re working on, and you can benefi t 
from their work by downloading their package. 

3.4  Working with  Packages  

http://search.r-project.org/
http://stackoverflow.com/questions/tagged/r
http://stats.stackexchange.com/questions/tagged/r
http://rseek.org/
http://www.r-bloggers.com/
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3.4.1     Installing Packages 

 Your primary source to obtain  packages   will likely be from  CRAN  . To install pack-
ages from CRAN:

      # install packages from CRAN   
   install.packages    ("packagename")     

    As previously stated,  packages   are also available through Bioconductor and 
GitHub. To download Bioconductor packages:

      # link to Bioconductor URL   
  source("http://bioconductor.org/biocLite.R")      

      # install core Bioconductor packages   
  biocLite()                                        

      # install specifi c Bioconductor package   
  biocLite("packagename")     

    And to download GitHub  packages  :

      # the devtools package provides a simply function to download GitHub   

  # packages   
  install.packages("devtools")                          

      # install package which exists at github.com/username/packagename 
devtools::install_github("username/packagename")    

3.4.2         Loading Packages 

 Once the package is downloaded to your computer you can access the functions and 
resources provided by the package in two different ways:

      # load the package to use in the current R session   
   library    (packagename)             

      # use a particular    function     within a package without loading the package
packagename::functionname      

    For instance, if you want to have full access to the tidyr package you would 
use   library    (tidyr) ; however, if you just wanted to use the   gather()    func-
tion without loading the  tidyr  package you can use  tidyr::gather(function  
  arguments    ) .  

3 The Basics
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3.4.3     Getting Help on Packages 

 For help on  packages   that are installed on your computer:

      # provides details regarding contents of a package
help(package = "packagename")  

      # see  all packages installed   
   library    ()           

      # see packages currently loaded   
   search()        

      # list vignettes available for a specifi c package   
   vignette    (package = "packagename")   

      # view specifi c vignette   
  vignette("vignettename")       

      # view all vignettes on your computer   
  vignette()      

    Note that some  packages   will have multiple vignettes. For instance 
 vignette(package = "grid")  will  list   the 13 vignettes available for the 
grid package. To access one of the specifi c vignettes you simply use   vignette    
("vignettename") .  

3.4.4     Useful  Packages   

 There are thousands of helpful  R    packages   for you to use, but navigating them all can 
be a challenge. To help you out,  RStudio   compiled a guide 3  to some of the best pack-
ages for loading, manipulating, visualizing, analyzing, and reporting data. In addi-
tion, their  list   captures packages that specialize in spatial data, time series and fi nancial 
data, increasing speed and performance, and developing your own R packages.   

3.5       Assignment and Evaluation 

 The fi rst operator you’ll run into is the  assignment   operator. The assignment opera-
tor is used to  assign  a value. For instance we can assign the value 3 to the vari-
able  x  using the  <-  assignment operator. We can then evaluate the variable by simply 
typing  x  at the command line which will return the value of  x . Note that prior to the 
value returned you’ll see  ## [1]  in the command line. This simply implies that the 
output returned is the fi rst output.

3   https://support.rstudio.com/hc/en-us/articles/201057987-Quick-list-of-useful-R-packages 
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      # assignment   
  x <- 3    

      # evaluation   
  x   
  ## [1] 3   

    Interestingly,  R   actually allows for fi ve  assignment   operators:

      # leftward assignment   
  x <- value   
  x = value   
  x <<- value    

      # rightward assignment   
  value -> x   
  value ->> x  

    The original  assignment   ope rator in R   was  <-  and has continued to be the pre-
ferred among R users. The  =  assignment operator was added in 2001 4  primarily 
because it is the accepted  assignment   operator in many other languages and begin-
ners to R coming from other languages were so prone to use it. However, R uses  =  to 
associate function  arguments   with values (i.e. f(x = 3) explicitly means to call func-
tion  f  and set the argument x to 3). Consequently, most R programmers prefer to 
keep  =  reserved for argument association and use  <-  for assignment. 

 The operator  <<-  is normally only used in functions which we will not get into 
the details. And the rightward  assignment   operators perform the same as their left-
ward counterparts; they just assign the value in an opposite direction. 

 Overwhelmed yet? Don’t be. This is just meant to show you that there are options 
and you will likely come across them sooner or later. My suggestion is to stick with 
the tried and true  <-  operator. This is the most conventional  assignment   operator 
used and is what you will fi nd in all the base  R   source code…which means it should 
be good enough for you. 

 Lastly, note that  R   is a case sensitive programming language. Meaning all vari-
ables, functions, and objects must be called by their exact spelling:

      x <- 1    
  y <- 3    
  z <- 4   
  x * y * z   
  ## [1] 12    

      x * Y * z    
  ## Error in eval(expr, envir, enclos): object 'Y' not found  

4   See  http://developer.r-project.org/equalAssign.html  for more details. 
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3.6          R   as a Calculator 

 At its most basic function R can be used as a  calculator  . When applying basic arith-
metic, the PEMBDAS order of operations applies:  p arentheses fi rst followed 
by  e xponentiation,  m ultiplication and  d ivision, and fi nally  a ddition and  s ubtraction.

      8 + 9 / 5 ^ 2   
  ## [1] 8.36    

      8 + 9 / (5 ^ 2)   
  ## [1] 8.36    

      8 + (9 / 5) ^ 2   
  ## [1] 11.24    

      (8 + 9) / 5 ^ 2   
  ## [1] 0.68   

    By default  R   will display seven digits but this can be changed using   options()    
as previously outlined.

      1 / 7   
  ## [1] 0.1428571    

      options(digits = 3)   

      1 / 7   
  ## [1] 0.143   

    Also, large numbers will be expressed in scientifi c notation which can also be 
adjusted using   options()   .

      888888 * 888888   
  ## [1] 7.9e+11    

      options(digits = 10)   

      888888 * 888888   
  ## [1] 790121876544   

    Note that the largest number of digits that can be displayed is 22. Requesting any 
larger number of digits will result in an error message.

      pi   
  ## [1] 3.141592654    
      options(digits = 22)   

      pi   
  ## [1] 3.141592653589793115998    

      options(digits = 23)   
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  ## Error in options(digits = 23): invalid 'digits' parameter, allowed 0…22   

      pi 
## [1] 3.141592653589793115998   

    When performing undefi ned calculations  R   will produce  Inf  and  NaN  outputs.

      1 / 0           # infi nity   
  ## [1] Inf    

      Inf - Inf       # infi nity minus infi nity   
  ## [1] NaN    

      -1 / 0          # negative infi nity   
  ## [1] -Inf    

      0 / 0           # not a number   
  ## [1] NaN    

      sqrt(-9)        # square root of -9   
  ## Warning in sqrt(-9): NaNs produced   
  ## [1] NaN   

    The last two functions to mention are the  integer   divide (%/%) and modulo (%%) 
functions. The integer divide function will give the integer part of a fraction while 
the modulo will provide the remainder.

      42 / 4          # regular division   
  ## [1] 10.5    

      42 %/% 4        # integer division   
  ## [1] 10    

      42 %% 4         # modulo (remainder)   
  ## [1] 2  

3.6.1        Vectorization 

 A key difference between  R   and many other languages is a topic known as  vector-
ization  . What does this mean? It means that many functions that are to be applied 
individually to each element in a  vector   of numbers require a  loop  assessment to 
evaluate; however, in R many of these functions have been coded in C to perform 
much faster than a   for  loop   would perform. For example, let’s say you want to add 
the elements of two separate  vectors   of numbers ( x  and  y ).

      x <- c(1, 3, 4)   
  y <- c(1, 2, 4)    

      x ## [1] 1 3 4   
  y ## [1] 1 2 4   

3 The Basics
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    In other languages you might have to run a loop to add two  vectors   together. In 
this   for     loop   I print each iteration to show that the loop calculates the sum for the 
fi rst elements in each  vector  , then performs the sum for the second elements, etc.

      # empty vector    
  z <-    as.vector    (NULL)    

      # for loop to add corresponding elements in each vector   
  for (i in seq_along(x)) {           
               z[i] <- x[i] + y[i]           
                print    (z)   
  }   
  ## [1] 2   
  ## [1] 2 5   
  ## [1] 2 5 8   

    Instead, in  R  , + is a vectorized function which can operate on entire  vectors   at once. 
So rather than creating   for    loops for many functions, you can just use simple  syntax  :

      x + y   
  ## [1] 2 5 8   

      x * y   
  ## [1]  1  6 16   

      x > y   
  ## [1] FALSE  TRUE FALSE   

    When performing  vector   operations in  R  , it is important to know about  recycling . 
When performing an operation on two or more vectors of unequal length, R will 
recycle elements of the shorter vector(s) to match the longest vector. For example:

      long <- 1:10   
  short <- 1:5    

      long   
  ##  [1]  1  2  3  4  5  6  7  8  9 10   
  short   
  ## [1] 1 2 3 4 5    

      long + short   
  ##  [1]  2  4  6  8 10  7  9 11 13 15   

    The elements of  long  and  short  are added together starting from the fi rst ele-
ment of both  vectors  . When  R   reaches the end of the  short   vector  , it starts again at 
the fi rst element of  short  and continues until it reaches the last element of 
the  long  vector. This functionality is very useful when you want to perform the 
same operation on every element of a vector. For example, say we want to multiply 
every element of our long vector by 3:

3.6   R   as a Calculator
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      long <- 1:10   
  c <- 3    

      long * c   
  ##  [1]  3  6  9 12 15 18 21 24 27 30   

    Remember there are no scala rs in R  , so  c  is actually a  vector   of length 1; in order 
to add its value to every element of  long , it is recycled to match the length of  long . 

 When the length of the longer object is a multiple of the shorter object length, the 
recycling occurs silently. When the longer object length is not a multiple of the 
shorter object length, a warning is given:

      even_length <- 1:10   
  odd_   length     <- 1:3    

      even_length + odd_length   
  ## Warning in even_length + odd_length: longer object length is not a   
  ## multiple of shorter object length   
  ##  [1]  2  4  6  5  7  9  8 10 12 11  

3.7           Styling Guide 

    Good coding style is like using correct punctuation. You can manage without it, but it sure 
makes things easier to read. —Hadley Wickham 

   As a medium of communication, it’s important to realize that the readability of 
code does in fact make a difference. Well-styled code has many benefi ts to include 
making it easy to read, extend, and debug. Unfortunately,  R   does not come with 
offi cial guidelines for code styling but such is an inconvenient truth of most  open 
source   software. However, this should not lead you to believe there is no style to be 
followed and over time implicit guidelines for proper code styling have been docu-
mented. What follows are guidelines that have been widely accepted as good prac-
tice in the  R   community and are based on Google’s and Hadley Wickham’s R  style 
guides  . 5  

3.7.1     Notation and  Naming   

 File names should be meaningful and end with a . R   extension.

      # Good   
  weather-analysis.R   
  emerson-text-analysis.R    

      # Bad   
  basic-stuff.r   
  detail.r   

5   Google’s style guide can be found at  https://google.github.io/styleguide/Rguide.xml  and Hadley 
Wickham’s can be found at  http://adv-r.had.co.nz/Style.html 
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    If fi les need to be run in  sequence  , prefi x them with numbers:

      0-download.R   
  1-preprocessing.R   
  2-explore.R   
  3-fi t-model.R   

    In  R  ,  naming   conventions for variables and function are famously muddled. 
They include the following:

      namingconvention         # all lower case; no separator 
naming.convention        # period separator   
  naming_convention           # underscore separator   
  namingConvention            # lower camel case   
  NamingConvention            # upper camel case   

    Historically, there has been no clearly preferred approach with multiple naming 
styles sometimes used within a single package. Bottom line, your  naming   conven-
tion will be driven by your preference but the ultimate goal should be consistency. 

 My personal preference is to use all lowercase with an underscore (_) to separate 
words within a name. This follows Hadley Wickham’s suggestions in his  style 
guide  . Furthermore, variable names should be nouns and function names should be 
verbs to help distinguish their purpose. Also, refrain from using existing names of 
functions (i.e. mean, sum, true).  

3.7.2     Organization 

 Organization of your code is also important. There’s nothing like trying to decipher 
2000 lines of code that has no  organization  . The easiest way to achieve organization 
is to comment your code. The general commenting scheme I use is the following. 

 I break up principal sections of my code that have a common purpose with:

      #################   
  # Download Data #   
  #################   
  lines of code here    

      ###################   
  # Preprocess Data #   
  ###################   

      lines of code here   

      ########################   
  # Exploratory Analysis #   
  ########################   
  lines of code here   

3.7  Styling Guide
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    Then comments for specifi c lines of code can be done as follows:

      code_1  # short comments can be placed to the right of code    
  code_2  # blah   
  code_3  # blah    

      # or comments can be placed above a line of code   
  code_4    

      # Or extremely long lines of commentary that go beyond the suggested 80
# characters per line can be broken up into multiple lines. Just don't   
  # forget to use the hash on each.   
  code_5   

3.7.3         Syntax 

 The maximum number of characters on a single line of code should be 80 or less. If 
you are using  RStudio   you can have a margin displayed so you know when you need 
to break to a new line. 6  This allows your code to be printed on a normal 8.5 × 11 page 
with a reasonably sized font. Also, when indenting your code use two spaces rather 
than using tabs. The only exception is if a line break occurs inside parentheses. In 
this case align the wrapped line with the fi rst character inside the parenthesis:

      super_long_name <- seq(ymd_hm("2015-1-1 0:00"),  
                         ymd_hm("2015-1-1 12:00"),  
                         by = "hour")   

    Proper spacing within your code also helps with readability. The following pulls 
straight from Hadley Wickham’s suggestions. 7  Place spaces around all infi x opera-
tors ( = ,  + ,  - ,  <- , etc.). The same rule applies when using  =  in function calls. Always 
put a space after a comma, and never before.

      # Good   
  average <-    mean    (feet / 12 + inches, na.rm = TRUE)    

      # Bad   
  average<-mean(feet/12+inches,na.rm=TRUE)   

    There’s a small exception to this rule:  : ,  ::  and  :::  don’t need spaces around them.

6   Go to  RStudio  on the menu bar then  Preferences   >   Code   >   Display  and you can select the “show 
margin” option and set the margin to 80. 
7   http://adv-r.had.co.nz/Style.html 
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      # Good   
  x <- 1:10   
  base::get    

      # Bad   
  x <- 1 : 10   
  base :: get   

    It is important to think about style when communicating any form of language. 
Writing code is no exception and is especially important if others will read your 
code. Following these basic  style guides   will get you on the right track for writing 
code that can be easily communicated to others.     

3.7  Styling Guide



   Part II 
   Working with Different Types of Data in R 

       Wait, there are different types of data?             
  R   is a fl exible language that allows you to work with many different  forms  of data. 
This includes numeric, character, categorical,  dates  , and logical. Technically, R 
classifi es all the different types of data into fi ve classes:

•     integer    
•   numeric  
•   character  
•   complex  
•   logical    

 Modern day analysis typically deals with every class so its important to gain 
 fl uency in dealing with these data forms. This section covers the fundamentals of 
handling the different data classes. First I cover the basics of dealing with   numbers     
so you understand the different classes of numbers, how to generate number 
 sequences  , compare numeric values, and round. I then provide an introduction to 
working with   characters     to get you comfortable with character  string   manipulation 
and set operations. This prepares you to then learn about   regular expressions        which 
deals with search patterns for character classes. Next I introduce   factors       , also refer-
red to as categorical variables, and how to create, convert, order, and re- level   this 
data class. Lastly, I cover how to manage   dates        as this can be a persnickety type of 
variable when performing data analysis. Throughout several of these chapters you’ll 
also gain an understanding of the  TRUE / FALSE  logical variables. 

 Together, this will give you a solid foundation for dealing with the basic data 
classes in  R   so that when you start to learn how to manage the different  data struc-
tures  , which combines these data classes into multiple  dimensions  , you will have a 
strong base from which to start.      
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    Chapter 4   
 Dealing with Numbers                     

          In this chapter you will learn the basics of working with numbe rs in R  . This includes 
understanding how to manage the numeric type ( integer vs. double ),    the different 
ways of generating  non-random  and  random  numbers, how to  set seed values     for 
 reproducible   random number generation, and the different ways to  compare  and 
 round  numeric values. 

4.1      Integer vs. Double 

 The two most common numeric classes used in  R   are  integer   and  double   (for 
double precision  fl oating   point numbers). R automatically converts between these 
two classes when needed for mathematical purposes. As a result, it’s feasible to 
use R and perform analyses for years without specifying these differences. 
To check whether a pre-existing  vector   is made up of  integer   or double values you 
can use   typeof(x)    which will tell you if the vector is a double, integer, logical, 
or character type. 

4.1.1     Creating Integer and Double Vectors 

 By default, when you create a numeric vector using the  c()  function it will produce 
a vector of double precision numeric values. To create a vector of integers using 
 c()  you must specify explicity by placing an  L  directly after each number.
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      # create a string of double-precision values  
  dbl_var <-   c  (1, 2.5, 4.5)  
  dbl_var  

  ## [1] 1.0 2.5 4.5  

  # placing an L after the values creates a string of integers  
  int_var <-   c  (1L, 6L, 10L)  
  int_var  

  ## [1]  1  6 10  

4.1.2         Converting Between Integer and Double Values 

 By default, if you read in data that has no decimal points or you  create numeric 
values  using the  x <- 1:10  method the numeric values will be coded as integer. 
If you want to change a double to an integer or vice versa you can specify one of the 
following:

      # converts integers to double-precision values  
  as.double  (int_var)  

  ## [1]  1  6 10  

  # identical to    as.double    ()  
   as.numeric    (int_var)  

  ## [1]  1  6 10  

  # converts doubles to    integers    
   as.integer    (dbl_var)  

  ## [1] 1 2 4  

4.2            Generating  Sequence      of Non-random Numbers 

 There a re a few R   operators and functions that are especially useful for creating 
 vectors   of non-random numbers. These functions provide multiple ways for gener-
ating  sequences   of numbers. 

4.2.1     Specifi ng Numbers Within a Sequence 

 To explicitly specify numbers in a sequence you can use the colon  :  operator to 
specify all  integers   between two specifi ed numbers or the combine  c()  function to 
explicity specify all numbers in the sequence.

4 Dealing with Numbers
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      # create a vector of integers between 1 and 10  
  1:10  

  ##  [1]  1  2  3  4  5  6  7  8  9 10  

  # create a vector consisting of 1, 5, and 10  
  c  (1, 5, 10)  

  ## [1]  1  5 10  

  # save the vector of integers between 1 and 10 as object x  
  x <- 1:10  
  x  

  ##  [1]  1  2  3  4  5  6  7  8  9 10  

4.2.2         Generating Regular Sequences 

 A generalization of  :  is the   seq()    function, which generates a  sequence   of num-
bers with a specifi ed arithmetic progression.

      # generate a sequence of numbers from 1 to 21 by increments of 2  
   seq    (from = 1, to = 21, by = 2)  

  ##  [1]  1  3  5  7  9 11 13 15 17 19 21  

  # generate a sequence of numbers from 1 to 21 that has 15 equal  
  # incremented numbers  
  seq  (0, 21, length.out = 15)  

  ##  [1]  0.0  1.5  3.0  4.5  6.0  7.5  9.0 10.5 12.0 13.5 15.0 16.5  
  ## [13] 18.0 19.5 21.0  

    The   rep    ()  function allows us to conveniently repeat specifi ed constants into 
long vectors. This function allows for collated and non-collated repetitions.

      # replicates the values in x a specifi ed number of times  
  rep  (1:4, times = 2)  

  ## [1] 1 2 3 4 1 2 3 4  

  # replicates the values in x in a collated fashion  
  rep  (1:4, each = 2)  

  ## [1] 1 1 2 2 3 3 4 4  

4.3           Generating  Sequence   of Random  Numbers   

 Simulation is a common practice in data analysis. Sometimes your analysis requires 
the implementation of a statistical procedure that requires random number 
generation or sampling (i.e. Monte Carlo simulation, bootstrap sampling, etc). 

4.3  Generating  Sequence   of Random  Numbers  
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R comes with a set of pseudo-random number generators that allow you to simulate 
the most common probability distributions such as Uniform, Normal,  Binomial  , 
Poisson, Exponential and Gamma. 

4.3.1      Uniform Numbers   

 To generate random numbers from a uniform distribution you can use the  runif()  
 function  . Alternatively, you can use   sample()    to take a random sample using with 
or without replacements.

      # generate n random numbers between the default values of 0 and 1  
  runif  (n)              

  # generate n random numbers between 0 and 25  
  runif  (n, min = 0, max = 25)         

  # generate n random numbers between 0 and 25 (with replacement)  
  sample  (0:25, n, replace = TRUE)     

  # generate n random numbers between 0 and 25 (without replacement)  
  sample  (0:25, n, replace = FALSE)    

    For example, to generate 25 random numbers between the values 0 and 10:

      runif  (25, min = 0, max = 10)   

  ##  [1] 6.11473003 9.72918761 0.04977565 0.98291110 8.53146606 1.17408103  
  ##  [7] 1.09907810 5.83266343 8.04336903 1.70783108 3.13275943 1.28380380  
  ## [13] 8.67087873 8.02653947 7.23398025 4.62386458 3.03617622 6.10895175  
  ## [19] 6.39970018 9.02183043 3.24990736 4.64181107 5.35496769 9.97374324  
  ## [25] 3.30954880  

    For each non-uniform probability distribution there are four primary functions 
available to generate random numbers, density (aka probability mass function), 
cumulative density, and quantiles. The prefi xes for these functions are:

•     r : random number generation  
•    d : density or probability mass function  
•    p : cumulative distribution  
•    q :  quantiles       

4.3.2     Normal Distribution Numbers 

 The normal (or Gaussian) distribution is the most common and well known distri-
bution. Within  R  , the  normal distribution   functions are written as  norm() .

4 Dealing with Numbers
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      # generate n random numbers from a normal distribution with given   
  # mean and standard deviation  
   rnorm    (n, mean = 0, sd = 1)      

  # generate CDF probabilities for value(s) in vector q   
   pnorm    (q, mean = 0, sd = 1)      

  # generate quantile for probabilities in vector p  
   qnorm    (p, mean = 0, sd = 1)      

  # generate density function probabilites for value(s) in vector x  
   dnorm    (x, mean = 0, sd = 1)      

    For example, to generate 25 random numbers from a  normal distribution   with 
  mean     = 100  and  standard deviation = 15 :

      x <-   rnorm  (25, mean = 100, sd = 15)   
  x  

  ##  [1]  97.43216  98.98658  96.43514  73.77727 100.51316 103.11050 111.36823  
  ##  [8] 102.09288 101.16769 114.54549  99.28044  97.51866 110.57522  87.85074  
  ## [15]  86.67675 108.95660  88.45750 106.28923 114.22225  80.17450 110.39667  
  ## [22]  96.87112 112.30709 110.54963  93.24365  

   summary    (x)  

  ##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.   
  ##   73.78   96.44  100.50  100.10  110.40  114.50  

    You can also pass a  vector   of values. For instance, say you want to know the 
CDF probabilities for each value in the vector  x  created above:

       pnorm    (x, mean = 100, sd = 15)   

  ##  [1] 0.43203732 0.47306731 0.40607337 0.04021628 0.51364538 0.58213815  
  ##  [7] 0.77573919 0.55548261 0.53102479 0.83390182 0.48086992 0.43430567  
  ## [13] 0.75959941 0.20898424 0.18721209 0.72478191 0.22079836 0.66249503  
  ## [19] 0.82847339 0.09313407 0.75588023 0.41738339 0.79402667 0.75906822  
  ## [25] 0.32620260  

4.3.3          Binomial   Distribution Numbers 

 This is conventionally interpreted as the number of successes in  size = x  trials 
and with  prob = p  probability of success:

      # generate a vector of length n displaying the number of successes   
  # from a trial size = 100 with a probability of success = 0.5  
   rbinom    (n, size = 100, prob = 0.5)    

      # generate CDF probabilities for value(s) in vector q  
   pbinom    (q, size = 100, prob = 0.5)   

4.3  Generating  Sequence   of Random  Numbers  
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      # generate quantile for probabilities in vector p  
   qbinom    (p, size = 100, prob = 0.5)   

      # generate density function probabilites for value(s) in vector x  
   dbinom    (x, size = 100, prob = 0.5)    

4.3.4         Poisson Distribution Numbers 

 The  Poisson distribution   is a discrete probability distribution that expresses the 
probability of a given number of events occurring in a fi xed interval of time and/or 
space if these events occur with a known average rate and independently of the time 
since the last event.

      # generate a vector of length n displaying the random number of   
  # events occurring when lambda (mean rate) equals 4.  
   rpois    (n, lambda = 4)    

      # generate CDF probabilities for value(s) in vector q when lambda   
  # (mean rate) equals 4.  
   ppois    (q, lambda = 4)    

      # generate quantile for probabilities in vector p when lambda   
  # (mean rate) equals 4.  
   qpois    (p, lambda = 4)    

      # generate density function probabilites for value(s) in vector x   
  # when lambda (mean rate) equals 4.  
   dpois    (x, lambda = 4)    

4.3.5         Exponential Distribution Numbers 

 The Exponential  probability   distribution describes the time between events in a 
Poisson process.

      # generate a vector of length n with rate = 1  
   rexp    (n, rate = 1)     

      # generate CDF probabilities for value(s) in vector q when rate = 4.  
   pexp    (q, rate = 1)     

      # generate quantile for probabilities in vector p when rate = 4.  
   qexp    (p, rate = 1)     

      # generate density function probabilites for value(s) in vector x   
  # when rate = 4.  
   dexp    (x, rate = 1)     

4 Dealing with Numbers



37

4.3.6         Gamma Distribution Numbers 

 The Gamma probability  distribution   is related to the Beta distribution and arises 
naturally in processes for which the waiting times between Poisson distributed 
events are relevant.

      # generate a vector of length n with shape parameter = 1  
   rgamma    (n, shape = 1)     

      # generate CDF probabilities for value(s) in vector q when shape   
  # parameter = 1.  
   pgamma    (q, shape = 1)     

      # generate quantile for probabilities in vector p when shape   
  # parameter = 1.  
   qgamma    (p, shape = 1)     

      # generate density function probabilites for value(s) in vector x   
  # when shape parameter = 1.  
   dgamma    (x, shape = 1)     

4.4           Setting the  Seed   for  Reproducible   Random Numbers 

 If you want to generate a  sequence   of random  numbers   and then be able to repro-
duce that same sequence of random numbers later you can set the random number 
seed generator with   set.seed    () . This is a critical aspect of   reproducible research       . 

 For example, we can reproduce a random generation of 10 values from a  normal 
distribution  :

      set.seed  (197)  
   rnorm    (n = 10, mean = 0, sd = 1)  

  ##  [1]  0.6091700 -1.4391423  2.0703326  0.7089004  0.6455311  0.7290563  
  ##  [7] -0.4658103  0.5971364 -0.5135480 -0.1866703  

  set.seed  (197)  
  rnorm  (n = 10, mean = 0, sd = 1)  

  ##  [1]  0.6091700 -1.4391423  2.0703326  0.7089004  0.6455311  0.7290563  
  ##  [7] -0.4658103  0.5971364 -0.5135480 -0.1866703  

4.5          Comparing Numeric Values 

 There are multiple ways to compare numeric values and  vectors  . This includes 
  logical operators     along with testing for  exact equality  and also  near equality    . 

4.5  Comparing Numeric Values
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4.5.1      Comparison Operators 

 The normal binary operators  allow   you to compare numeric values and provide the 
answer in logical form:

      x < y       # is x less than y  
  x > y       # is x greater than y  
  x <= y      # is x less than or equal to y  
  x >= y      # is x greater than or equal to y  
  x == y      # is x equal to y  
  x != y      # is x not equal to y  

    These operations can be used for single number comparison:

      x <- 9  
  y <- 10  

      x == y  

  ## [1] FALSE  

    and also for comparison of numbers within  vectors  :

      x <-   c  (1, 4, 9, 12)  
  y <-   c  (4, 4, 9, 13)  

      x == y  

  ## [1] FALSE  TRUE  TRUE FALSE  

    Note that logical values  TRUE  and  FALSE  equate to 1 and 0 respectively. So if 
you want to identify the number of equal values in two vectors you can wrap the 
operation in the   sum()    function:

      # How many pairwise equal values are in vectors x and y  
  sum  (x == y)      

  ## [1] 2  

    If you need to identify the location of pairwise equalities in two vectors you can 
wrap the operation in the   which()    function:

      # Where are the pairwise equal values located in vectors x and y  
  which  (x == y)      

  ## [1] 2 3  

4 Dealing with Numbers
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4.5.2           Exact Equality   

 To test if two objects are exactly equal:

      x <-   c  (4, 4, 9, 12)  
  y <-   c  (4, 4, 9, 13)  

       identical    (x, y)  

  ## [1] FALSE  

  x <-   c  (4, 4, 9, 12)  
  y <-   c  (4, 4, 9, 12)  

      identical  (x, y)  

  ## [1] TRUE  

4.5.3          Floating Point Comparison 

 Sometimes you wish to test for ‘ near equality  ’. The   all.equal    ()  function 
allows you to test for equality with a difference tolerance of 1.5e−8.

      x <-   c  (4.00000005, 4.00000008)  
  y <-   c  (4.00000002, 4.00000006)  

      all.equal  (x, y)  

  ## [1] TRUE  

    If the difference is greater than the tolerance  level   the function will return the 
mean relative difference:

      x <-   c  (4.005, 4.0008)  
  y <-   c  (4.002, 4.0006)  

      all.equal  (x, y)  

  ## [1] "   Mean     relative difference: 0.0003997102"  

4.6            Rounding   Numbers 

 There are many ways of rounding to the nearest  integer  , up, down, or toward a 
specifi ed decimal place. The following illustrates the common ways to round.

      x <-   c  (1, 1.35, 1.7, 2.05, 2.4, 2.75, 3.1, 3.45, 3.8, 4.15,   
         4.5, 4.85, 5.2, 5.55, 5.9)  

      # Round to the nearest integer  
  round  (x)  

  ##  [1] 1 1 2 2 2 3 3 3 4 4 4 5 5 6 6  

4.6   Rounding   Numbers
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  # Round up  
   ceiling    (x)  

  ##  [1] 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6  

  # Round down  
   fl oor    (x)  

  ##  [1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5  

  # Round to a specifi ed decimal  
  round  (x, digits = 1)  

  ##  [1] 1.0 1.4 1.7 2.0 2.4 2.8 3.1 3.5 3.8 4.2 4.5 4.8 5.2 5.5 5.9        

4 Dealing with Numbers
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    Chapter 5   
 Dealing with Character Strings                     

          Dealing with  character strings   is often under-emphasized in data analysis training. The 
focus typically remains on numeric values; however, the growth in data collection is 
also resulting in greater bits of information embedded in character strings. Consequently, 
handling, cleaning and processing character strings is becoming a prerequisite in daily 
data analysis. This chapter is meant to give you the foundation of working with char-
acters by covering some  basics  followed by learning how to  manipulate strings  using 
base   R   functions  along with using the simplifi ed   stringr    package  . 

5.1      Character String Basics 

 In this section you’ll learn the basics of creating, converting and printing character 
strings followed by how to assess the number of elements and characters in a string. 

5.1.1     Creating Strings 

 The most basic way to create strings is to use quotation marks and assign a string to 
an object similar to creating number  sequences  .

      a <- "learning to create"      # create string a  
  b <- "character strings"       # create string b  

    The   paste()    function provides a versatile means for creating and building 
strings. It takes one o r more R   objects, converts them to “character”, and then it 
concatenates (pastes) them to form one or several  character strings  .

      # paste together string a   &   b  
  paste  (a, b)                        
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  ## [1] "learning to create character strings"  

  # paste character and number strings (converts numbers to   
  # character class)  
  paste  ("The life of", pi)  

  ## [1] "The life of 3.14159265358979"  

  # paste multiple strings  
  paste  ("I", "love", "R")              

  ## [1] "I love R"  

  # paste multiple strings with a separating character  
  paste  ("I", "love", "R", sep = "-")    

  ## [1] "I-love-R"  

  # use paste0() to paste without spaces btwn characters  
  paste0  ("I", "love", "R")              

  ## [1] "IloveR"  

  # paste objects with different lengths  
  paste  ("R", 1:5, sep = " v1.")  

  ## [1] "R v1.1" "R v1.2" "R v1.3" "R v1.4" "R v1.5"  

5.1.2         Converting to Strings 

 Test if strings are characters with   is.character()    and convert strings to char-
acter with  as.character()  or with   toString()   .

      a <- "The life of"      
  b <- pi  

      is.character  (a)  

  ## [1] TRUE  

  is.character  (b)  

  ## [1] FALSE  

  c <-   as.character  (b)  
  is.character  (c)  

  ## [1] TRUE  

  toString  (  c  ("Aug", 24, 1980))  

  ## [1] "Aug, 24, 1980"  

5 Dealing with Character Strings
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5.1.3         Printing Strings 

 The common  printing   methods include:

•      print()   : generic printing  
•     noquote()   : print with no quotes  
•     cat()   : concatenate and print with no quotes  
•     sprintf()   : a wrapper for the C function  sprintf , that returns a character 

 vector   containing a formatted combination of text and variable values    

 The primary printing function in  R   is   print    () 

      x <- "learning to print strings"      

      # basic printing  
  print  (x)  

  ## [1] "learning to print strings"  

  # print without quotes  
  print  (x, quote = FALSE)  

  ## [1] learning to print strings  

    An alternative to printing a string without quotes is to use   noquote    () 

      noquote  (x)  

  ## [1] learning to print strings  

    Another very useful function is   cat()    which allows us to concatenate objects 
and print them either on screen or to a fi le. The output result is very similar to 
  noquote()   ; however,   cat()    does not print the numeric line indicator. As a 
result,  cat()  can be useful for printing nicely formatted responses to users.

      # basic printing (similar to noquote)  
  cat  (x)   

  ## learning to print strings  

  # combining character strings  
  cat  (x, "in R")  

  ## learning to print strings in R  

  # basic printing of alphabet  
  cat  (letters)       

  ## a b c d e f g h i j k l m n o p q r s t u v w x y z  

  # specify a separator between the combined characters  
  cat  (letters, sep = "-")    

  ## a-b-c-d-e-f-g-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-w-x-y-z  

5.1  Character String Basics
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  # collapse the space between the combine characters  
  cat  (letters, sep = "")    

  ## abcdefghijklmnopqrstuvwxyz  

    You can also format the line  width   for printing long strings using the  fi ll   argument  :

      x <- "Today I am learning how to print strings."  
  y <- "Tomorrow I plan to learn about textual analysis."  
  z <- "The day after I will take a break and drink a beer."  

      cat  (x, y, z, fi ll = 0)  

  ## Today I am learning how to print strings. Tomorrow I plan to 
learn about textual analysis. The day after I will take a break and 
drink a beer.  

  cat  (x, y, z, fi ll = 5)  

  ## Today I am learning how to print strings.   
  ## Tomorrow I plan to learn about textual analysis.   
  ## The day after I will take a break and drink a beer.  

      sprintf    ()  is a useful printing function for precise control of the output. It is 
a wrapper for the C function  sprintf  and returns a character  vector   containing a 
formatted combination of text and variable values.To substitute in a string or string 
variable, use  %s :

      x <- "print strings"  

      # substitute a single string/variable  
  sprintf  ("Learning to %s in R", x)   

  ## [1] "Learning to print strings in R"  

  # substitute multiple strings/variables  
  y <- "in R"  
  sprintf  ("Learning to %s %s", x, y)   

  ## [1] "Learning to print strings in R"  

    For  integers  , use  %d  or a variant:

      version <- 3  

      # substitute integer  
  sprintf  ("This is R version:%d", version)  

  ## [1] "This is R version:3"  

  # print with leading spaces  
  sprintf  ("This is R version:%4d", version)    

  ## [1] "This is R version:   3"  

5 Dealing with Character Strings
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  # can also lead with zeros  
  sprintf  ("This is R version:%04d", version)  

  ## [1] "This is R version:0003"  

    For fl oating-point numbers, use  %f  for  standard   notation, and  %e  or  %E  for expo-
nential notation:

      sprintf  ("%f", pi)      # '%f' indicates 'fi xed point' decimal notation  

  ## [1] "3.141593"  

  sprintf  ("%.3f", pi)     # decimal notation with 3 decimal digits  

  ## [1] "3.142"  

  sprintf  ("%1.0f", pi)     # 1 integer and 0 decimal digits  

  ## [1] "3"  

  sprintf  ("%5.1f", pi)     # decimal notation with 5 total decimal digits and   

  ## [1] "  3.1"          # only 1 to the right of the decimal point  

      sprintf  ("%05.1f", pi)    # same as above but fi ll empty digits with zeros  

  ## [1] "003.1"  

  sprintf  ("%+f", pi)      # print with sign (positive)  

  ## [1] "+3.141593"  

  sprintf  ("% f", pi)      # prefi x a space  

  ## [1] " 3.141593"  

  sprintf  ("%e", pi)       # exponential decimal notation 'e'  

  ## [1] "3.141593e+00"  

  sprintf  ("%E", pi)       # exponential decimal notation 'E'  

  ## [1] "3.141593E+00"  

5.1.4         Counting String Elements and Characters 

 To count the number of elements in a string use   length()   :

      length  ("How many elements are in this string?")  

  ## [1] 1  

5.1  Character String Basics
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  length  (  c  ("How", "many", "elements", "are", "in", "this", "string?"))  

  ## [1] 7  

    To count the number of  characters   in a string use   nchar    () :

      nchar  ("How many characters are in this string?")  

  ## [1] 39  

  nchar  (  c  ("How", "many", "characters", "are", "in", "this", "string?"))  

  ## [1]  3  4 10  3  2  4  7  

5.2            String Manipulation with Base  R   

 Basic  string manipulation   typically includes  case conversion  , simple character and 
substring replacement, adding/removing  whitespace  , and performing set operations to 
compare similarities and differences between two character  vectors  . These operations 
can all be performed with base R functions; however, some operations (or at least 
their  syntax  ) are simplifi ed with the   stringr  package   which we will discuss in the 
next section. This section illustrates the base R  string manipulation   capabilities. 

5.2.1     Case Conversion 

 To convert all upper case characters to lower case use   tolower    () :

      x <- "Learning To MANIPULATE strinGS in R"  

      tolower  (x)  

  ## [1] "learning to manipulate strings in r"  

    To convert all lower case characters to upper case use   toupper    () :

      toupper  (x)  

  ## [1] "LEARNING TO MANIPULATE STRINGS IN R"  

5.2.2         Simple  Character Replacement   

 To replace a character (or multiple characters) in a string you can use   chartr    () :

      # replace 'A' with 'a'  

5 Dealing with Character Strings
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  x <- "This is A string."  
  chartr  (old = "A", new = "a", x)  

  ## [1] "This is a string."  

  # multiple character replacements  
  # replace any 'd' with 't' and any 'z' with 'a'  
  y <- "Tomorrow I plzn do lezrn zbout dexduzl znzlysis."  
  chartr  (old = "dz", new = "ta", y)  

  ## [1] "Tomorrow I plan to learn about textual analysis."  

    Note that   chartr    ()  replaces every identifi ed letter for replacement so the only 
time I use it is when I am certain that I want to change every possible occurrence of 
a letter.  

5.2.3     String Abbreviations 

 To  abbreviate   strings you can use   abbreviate    () :

      streets <-   c  ("Main", "Elm", "Riverbend", "Mario", "Frederick")  

      # default abbreviations  
  abbreviate  (streets)  

  ##      Main       Elm Riverbend     Mario Frederick   
  ##    "Main"     "Elm"    "Rvrb"    "Mari"    "Frdr"  

  # set minimum length of abbreviation  
  abbreviate  (streets, minlength = 2)  

  ##      Main       Elm Riverbend     Mario Frederick   
  ##      "Mn"      "El"      "Rv"      "Mr"      "Fr"  

    Note that if you are working with U.S. states, R already has a pre-built  vector   
with state names ( state.name ). Also, there is a pre-built vector of abbreviated 
state names ( state.abb ).  

5.2.4     Extract/ Replace   Substrings 

 To extract or  replace substrings   in a character  vector   there are three prima ry base R   
functions to use:   substr    () ,   substring    () , and   strsplit    () . The purpose of 
  substr    ()  is to extract and replace substrings with specifi ed starting and stopping 
characters:

5.2  String Manipulation with Base  R  
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      alphabet <-   paste  (LETTERS, collapse = "")  

      # extract 18th character in string  
  substr  (alphabet, start = 18, stop = 18)  

  ## [1] "R"  

  # extract 18-24th characters in string  
  substr  (alphabet, start = 18, stop = 24)  

  ## [1] "RSTUVWX"  

  # replace 19-24th characters with `R`  
  substr  (alphabet, start = 19, stop = 24) <- "RRRRRR"  
  alphabet  

  ## [1] "ABCDEFGHIJKLMNOPQRRRRRRRYZ"  

    The purpose of   substring    ()  is to extract and  replace substrings   with only a 
specifi ed starting point.   substring    ()  also allows you to extract/replace in a 
recursive fashion:

      alphabet <-   paste  (LETTERS, collapse = "")  

      # extract 18th through last character  
  substring  (alphabet, fi rst = 18)  

  ## [1] "RSTUVWXYZ"  

  # recursive extraction; specify start position only  
  substring  (alphabet, fi rst = 18:24)  

  ## [1] "RSTUVWXYZ" "STUVWXYZ"  "TUVWXYZ"   "UVWXYZ"    "VWXYZ"     "WXYZ"       
  ## [7] "XYZ"  

  # recursive extraction; specify start and stop positions  
  substring  (alphabet, fi rst = 1:5, last = 3:7)  

  ## [1] "ABC" "BCD" "CDE" "DEF" "EFG"  

    To split the elements of a character  string   use   strsplit    () :

      z <- "The day after I will take a break and drink a beer."  
  strsplit  (z, split = " ")  

  ## [[1]]  
  ##  [1] "The"   "day"   "after" "I"     "will"  "take"  "a"     "break"  
  ##  [9] "and"   "drink" "a"     "beer."  

  a <- "Alabama-Alaska-Arizona-Arkansas-California"  
  strsplit  (a, split = "-")  

  ## [[1]]  
  ## [1] "Alabama"    "Alaska"     "Arizona"    "Arkansas"   "California"  

5 Dealing with Character Strings
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    Note that the output of   strsplit    ()  is a  list  . To  convert   the output to a simple 
atomic vector simply wrap in   unlist    () :

      unlist  (  strsplit  (a, split = "-"))  

  ## [1] "Alabama"    "Alaska"     "Arizona"    "Arkansas"   "California"  

5.3           String Manipulation with  stringr  

 The   stringr     package was developed by Hadley Wickham to act as simple wrap-
pers that make  R  ’s string functions more consistent, simple, and easier to use. To 
replicate the functions in this section you will need to install and load the  stringr  
package:

      # install stringr package  
   install.packages    ("stringr")  

      # load package  
   library    (stringr)  

5.3.1           Basic Operations 

 There are three stringr functions that are closely related to thei r base R   equivalents, 
but with a few enhancements:

•    Concatenate with  str_c()      
•   Number of characters with  str_length()      
•   Substring with  str_sub()        

   str_c    ()  is equivalent to the   paste    ()  functions:

      # same as    paste0    ()  
  str_c  ("Learning", "to", "use", "the", "stringr", "package")  

  ## [1] "Learningtousethestringrpackage"  

  # same as    paste    ()  
  str_c  ("Learning", "to", "use", "the", "stringr", "package", sep = " ")  

  ## [1] "Learning to use the stringr package"  

  # allows recycling   
  str_c  (letters, " is for", "…")  

  ##  [1] "a is for…" "b is for…" "c is for…" "d is for…" "e is for…"  
  ##  [6] "f is for…" "g is for…" "h is for…" "i is for…" "j is for…"  

5.3  String Manipulation with  stringr 
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  ## [11] "k is for…" "l is for…" "m is for…" "n is for…" "o is for…"  
  ## [16] "p is for…" "q is for…" "r is for…" "s is for…" "t is for…"  
  ## [21] "u is for…" "v is for…" "w is for…" "x is for…" "y is for…"  
  ## [26] "z is for…"  

     str_   length    ()  is similar to the   nchar    ()  function; however,   str_
length    ()  behaves more appropriately with missing (‘NA’) values:

      # some text with NA  
  text =   c  ("Learning", "to", NA, "use", "the", NA, "stringr", "package")  

      # compare `   str_length    ()` with `   nchar    ()`  
  nchar  (text)  
  ## [1]  8  2 2   3  3 2   7  7  
   str_length    (text)  
  ## [1]  8  2 NA  3  3 NA  7  7  

      str_sub    ()  is similar to   substr    () ; however, it returns a zero length vector 
if any of its inputs are zero length, and otherwise expands each  argument   to match 
the longest. It also accepts negative positions, which are calculated from the left of 
the last character.

      x <- "Learning to use the stringr package"  

      # alternative indexing  
  str_sub  (x, start = 1, end = 15)  

  ## [1] "Learning to use"  

  str_sub  (x, end = 15)  

  ## [1] "Learning to use"  

  str_sub  (x, start = 17)  

  ## [1] "the stringr package"  

  str_sub  (x, start =   c  (1, 17), end =   c  (15, 35))  

  ## [1] "Learning to use"     "the stringr package"  

  # using negative indices for start/end points from end of string  
  str_sub  (x, start = -1)  

  ## [1] "e"  

  str_sub  (x, start = -19)  

  ## [1] "the stringr package"  

  str_sub  (x, end = -21)  

  ## [1] "Learning to use"  

5 Dealing with Character Strings
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  # Replacement  
  str_sub  (x, end = 15) <- "I know how to use"  
  x  

  ## [1] "I know how to use the stringr package"  

5.3.2         Duplicate Characters Within a String 

 A new functionality that stringr provides in which base  R   does not have a specifi c 
function for is character duplication:

      str_   dup    ("beer", times = 3)  

  ## [1] "beerbeerbeer"  

  str_dup  ("beer", times = 1:3)  

  ## [1] "beer"         "beerbeer"     "beerbeerbeer"  

  # use with a vector of strings  
  states_i_luv <- state.name[  c  (6, 23, 34, 35)]  
  str_dup  (states_i_luv, times = 2)  

  ## [1] "ColoradoColorado"         "MinnesotaMinnesota"        
  ## [3] "North DakotaNorth Dakota" "OhioOhio"  

5.3.3         Remove Leading and Trailing Whitespace 

 A common task of string processing is that of parsing text into individual words. 
Often, this results in words having blank spaces (whitespaces) on either end of the 
word. The   str_trim    ()  can be used to remove these spaces:

      text <-   c  ("Text ", "  with", " whitespace ", " on", "both ", " sides ")  

      # remove whitespaces on the left side  
  str_trim  (text, side = "left")  

  ## [1] "Text "       "with"        "whitespace " "on"          "both "        
  ## [6] "sides "  

  # remove whitespaces on the right side  
  str_trim  (text, side = "right")  

  ## [1] "Text"        "  with"      " whitespace" " on"         "both"         
  ## [6] " sides"  

  # remove whitespaces on both sides  
  str_trim  (text, side = "both")  

  ## [1] "Text"       "with"       "whitespace" "on"         "both"        
  ## [6] "sides"  

5.3  String Manipulation with  stringr 
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5.3.4         Pad a String with Whitespace 

 To add  whitespace  , or to  pad  a string, use   str_pad    () . You can also use  str_
pad()  to pad a string with specifi ed characters.

      str_pad  ("beer", width = 10, side = "left")  

  ## [1] "      beer"  

  str_pad  ("beer", width = 10, side = "both")  

  ## [1] "   beer   "  

  str_pad  ("beer", width = 10, side = "right", pad = "!")  

  ## [1] "beer!!!!!!"  

5.4          Set Operatons for  Character Strings   

 There are also base  R   functions that allow for assessing the  set union  , intersection, 
difference, equality, and membership of two  vectors  . 

5.4.1     Set Union 

 To obtain the elements of the union between two character vectors use  union() :

      set_1 <-   c  ("lagunitas", "bells", "dogfi sh", "summit", "odell")  
  set_2 <-   c  ("sierra", "bells", "harpoon", "lagunitas", "founders")  

       union    (set_1, set_2)  

  ## [1] "lagunitas" "bells"     "dogfi sh"   "summit"    "odell"     "sierra"     
  ## [7] "harpoon"   "founders"  

5.4.2          Set   Intersection 

 To obtain the common elements of two character vectors use  intersect() :

       intersect    (set_1, set_2)  
  ## [1] "lagunitas" "bells"  

5 Dealing with Character Strings
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5.4.3         Identifying Different Elements 

 To obtain the non-common elements, or the difference, of two character vectors use 
 setdiff() :

      # returns elements in set_1 not in set_2  
  setdiff  (set_1, set_2)  

  ## [1] "dogfi sh" "summit"  "odell"  

  # returns elements in set_2 not in set_1  
  setdiff  (set_2, set_1)  

  ## [1] "sierra"   "harpoon"  "founders"  

5.4.4          Testing   for Element Equality 

 To test if two vectors contain the same elements regardless of order use 
  setequal()   :

      set_3 <-   c  ("woody", "buzz", "rex")  
  set_4 <-   c  ("woody", "andy", "buzz")  
  set_5 <-   c  ("andy", "buzz", "woody")  

      setequal  (set_3, set_4)  

  ## [1] FALSE  

  setequal  (set_4, set_5)  

  ## [1] TRUE  

5.4.5         Testing for   Exact  Equality   

 To test if two character  vectors   are equal in content and order use 
  identical    () :

      set_6 <-   c  ("woody", "andy", "buzz")  
  set_7 <-   c  ("andy", "buzz", "woody")  
  set_8 <-   c  ("woody", "andy", "buzz")  

      identical  (set_6, set_7)  

  ## [1] FALSE  

  identical  (set_6, set_8)  

  ## [1] TRUE  

5.4  Set Operatons for  Character Strings  
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5.4.6         Identifying If Elements Are Contained in a String 

 To test if an element is contained within a character vector use   is.element    ()  or 
 %in% :

      good <- "andy"  
  bad <- "sid"  

      is.element  (good, set_8)  

  ## [1] TRUE  

  good %in% set_8  

  ## [1] TRUE  

  bad %in% set_8  

  ## [1] FALSE  

5.4.7         Sorting a String 

 To sort a character  vector   use   sort    () :

      sort  (set_8)  

  ## [1] "andy"  "buzz"  "woody"  

  sort  (set_8, decreasing = TRUE)  

  ## [1] "woody" "buzz"  "andy"         

5 Dealing with Character Strings
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    Chapter 6   
 Dealing with Regular Expressions                     

          A regular  expression   (aka regex) is a  sequence   of characters that defi ne a search 
pattern, mainly for use in  pattern   matching with text strings. Typically, regex pat-
terns consist of a combination of alphanumeric characters as well as special charac-
ters. The pattern can also be as simple as a single character or it can be more complex 
and include several characters. 

 To understand how to work with regular expressions in R, we need to consider 
two primary features of regular expressions. One has to do with the  syntax , or the 
way regex patterns are exp ressed in R  . The other has to do with the  functions  used 
for regex matching in R. In this chapter, we will cover both of these aspects. First, 
I cover the  syntax     that allows you to perform  pattern matching   functions with meta 
characters, character and  POSIX   classes, and  quantifi ers  . This will provide you with 
the basic understanding of the syntax required to establish the pattern to fi nd. Then 
I cover the  functions  you can apply to identify, extract, replace, and split parts of 
 character strings   based on the regex pattern specifi ed. 

6.1      Regex Syntax 

 At fi rst glance (and second, third,…) the regex  syntax   can appear quite confusing. 
This section will provide you with the basic foundation of regex syntax; however, 
realize that there is a plethora of resources available that will give you far more 
detailed, and advanced, knowledge of regex syntax. To read more about the specifi -
cations and technicalities of regex in R you can fi nd help at  help(regex)  or 
 help(regexp) . 
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6.1.1      Metacharacters   

 Metacharacters consist of non-alphanumeric symbols such as:

   . \ | ( ) [ { $ * + ?    

 To match metacharacters in R you need to escape them with a  double   backslash 
“\\”. The following displays the general escape syntax for the most common 
 metacharacters   (Fig.  6.1 ):

   The following provides examples to show how to use the escape  syntax   to fi nd 
and replace  metacharacters  . For information on the   sub    and   gsub    functions used 
in this example visit the main regex functions page.

      # substitute $ with !  
  sub  (pattern = "\\$", "\\!", "I love R$")  
  ## [1] "I love R!"  

      # substitute ^ with carrot  
  sub  (pattern = "\\^", "carrot", "My daughter has a ̂  with almost every meal!")  
  ## [1] "My daughter has a carrot with almost every meal!"  

      # substitute \\ with whitespace  
  gsub  (pattern = "\\\\", " ", "I\\need\\space")  
  ## [1] "I need space"  

6.1.2         Sequences 

 To match a  sequence   of characters we can apply short-hand notation which captures 
the fundamental types of sequences. The following displays the general  syntax   for 
these common sequences (Fig.  6.2 ):

Metacharacter Literal Meaning Escape Syntax
. period or dot \\.
$ dollar sign \\$
* asterisk \\*
+ plus sign \\+
? question mark \\?
| vertical bar \\|
\\ double backslash \\\\
^ caret \\^
[ square bracket \\[
{ curly brace \\{
( parenthesis \\(

*adapted from Handling and Processing Strings in R (Sanchez, 2013)

  Fig. 6.1    Escape  syntax   for 
common  metacharacters         
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   The following provides examples to show how to use the anchor  syntax   to fi nd 
and replace  sequences  . For information on the   gsub    function used in this example 
visit the main regex functions page.

      # substitute any digit with an underscore  
  gsub  (pattern = "\\d", "_", "I'm working in RStudio v.0.99.484")  
  ## [1] "I'm working in RStudio v._.__.___"  

      # substitute any non-digit with an underscore  
  gsub  (pattern = "\\D", "_", "I'm working in RStudio v.0.99.484")  
  ## [1] "_________________________0_99_484"  

      # substitute any whitespace with underscore  
  gsub  (pattern = "\\s", "_", "I'm working in RStudio v.0.99.484")  
  ## [1] "I'm_working_in_RStudio_v.0.99.484"  

      # substitute any wording with underscore  
  gsub  (pattern = "\\w", "_", "I'm working in RStudio v.0.99.484")  
  ## [1] "_'_ _______ __ _______ _._.__.___"  

6.1.3         Character Classes 

 To match one of several characters in a specifi ed set we can enclose the characters 
of concern with square brackets  [ ] . In addition, to match any characters  not  in a 
specifi ed character set we can include the caret  ̂   at the beginning of the set within 
the brackets. The following displays the general  syntax   for common character 
classes but these can be altered easily as shown in the examples that follow 
(Fig.  6.3 ):

Anchor Description
\\d match a digit character
\\D match a non-digit character
\\s match a space character
\\S match a non-space character
\\w match a word
\\W match a non-word
\\b match a word boundary
\\B match a non-word boundary
\\h match a horizontal space
\\H match a non-horizontal space
\\v match a vertical space
\\V match a non-vertical space

*adapted from Handling and Processing Strings in R (Sanchez, 2013)

  Fig. 6.2    Anchors for 
common  sequences         
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   The following provides examples to show how to use the anchor  syntax   to match 
character classes. For information on the   grep    function used in this example visit 
the main regex functions page.

      x <-   c  ("RStudio", "v.0.99.484", "2015", "09-22-2015", "grep vs. grepl")  

      # fi nd any strings with numeric values between 0-9  
  grep  (pattern = "[0-9]", x, value = TRUE)  
  ## [1] "v.0.99.484" "2015"       "09-22-2015"  

      # fi nd any strings with numeric values between 6-9  
  grep  (pattern = "[6-9]", x, value = TRUE)  
  ## [1] "v.0.99.484" "09-22-2015"  

      # fi nd any strings with the character R or r  
  grep  (pattern = "[Rr]", x, value = TRUE)  
  ## [1] "RStudio"        "grep vs. grepl"  

      # fi nd any strings that have non-alphanumeric characters  
  grep  (pattern = "[^0-9a-zA-Z]", x, value = TRUE)  
  ## [1] "v.0.99.484"     "09-22-2015"     "grep vs. grepl"  

6.1.4          POSIX   Character Classes 

 Closely related to regex character classes are POSIX character classes which are 
expressed in  double   brackets  [[ ]]  (Fig.  6.4 ).

   The following provides examples to show how to use the anchor  syntax   to match 
 POSIX   character classes. For information on the  grep  function used in this exam-
ple visit the  main regex functions page .

      x <- "I like beer! #beer, @wheres_my_beer, I like R (v3.2.2) #rrrrrrr2015"  

      # remove space or tabs  
  gsub  (pattern = "[[:blank:]]", replacement = "", x)  
  ## [1] "Ilikebeer!#beer,@wheres_my_beer,IlikeR(v3.2.2)#rrrrrrr2015"  

Anchor Description
[aeiou] match any specified lower case vowel

[AEIOU] match any specified upper case vowel
[0123456789] match any specified numeric value

[0-9] match any range of specified numeric values
[a-z] match any range of lower case letter
[A-Z] match any range of upper case letter

[a-zA-Z0-9] match any of the above
[^aeiou] match anything other than a lowercase vowel
[^0-9] match anything other than the specified numeric values

*adapted from Handling and Processing Strings in R (Sanchez, 2013)

  Fig. 6.3    Anchors for common character classes       
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      # replace punctuation with whitespace  
  gsub  (pattern = "[[:punct:]]", replacement = " ", x)  
  ## [1] "I like beer   beer   wheres my beer  I like R  v3 2 2   rrrrrrr2015"  

      # remove alphanumeric characters  
  gsub  (pattern = "[[:alnum:]]", replacement = "", x)  
  ## [1] "  ! #, @__,    (..) #"  

6.1.5         Quantifi ers 

 When we want to match a  certain number  of characters that meet a certain criteria we 
can apply  quantifi ers   to our pattern searches. The quantifi ers we can use are (Fig.  6.5 ):

   The following provides examples to show how to use the quantifi er  syntax   
to match a  certain number  of characters patterns. For information on the   grep    
function used in this example visit the main regex functions page. Note that  state.
name  is a built in dataset within  R   that contains all the U.S. state names.

Anchor Description
[[:lower:]] lower-case letters
[[:upper:]] upper-case letters
[[:alpha:]] alphabetic characters [[:lower:]] + [[:upper:]]
[[:digit:]] numeric values

[[:alnum:]] alphanumeric characters      [[:alpha:]] + [[:digit:]]
[[:blank:]] blank characters (space & tab)
[[:cntrl:]] control characters
[[:punct:]] punctuation characters: ! " # % & ' ( ) * + , - . / : ;
[[:space:]] space characters: tab, newline, vertical tab, space, etc
[[:xdigit:]] hexadecimal digits: 0-9 A B C D E F a b c d e f
[[:print:]] printable characters      [[:alpha:]] + [[:punct:]] + space
[[:graph:]] graphical characters     [[:alpha:]] + [[:punct:]]

*adapted from Handling and Processing Strings in R (Sanchez, 2013)

  Fig. 6.4    Anchors for POSIX character classes       

Quantifier Description
? the preceding item is optional and will be matched at most once
* the preceding item will be matched zero or more times
+ the preceding item will be matched one or more times

{n} the preceding item is matched exactly n times
{n,} the preceding item is matched n or more times

{n,m} the preceding item is matched at least n times, but not more than m times
*adapted from Handling and Processing Strings in R (Sanchez, 2013)

  Fig. 6.5    Quantifi ers       
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      # match states that contain z   
  grep  (pattern = "z+", state.name, value = TRUE)  
  ## [1] "Arizona"  

      # match states with two s  
  grep  (pattern = "s{2}", state.name, value = TRUE)  
  ## [1] "Massachusetts" "Mississippi"   "Missouri"      "Tennessee"  

      # match states with one or two s  
  grep  (pattern = "s{1,2}", state.name, value = TRUE)  
  ##  [1] "Alaska"        "Arkansas"      "Illinois"      "Kansas"         
  ##  [5] "Louisiana"     "Massachusetts" "Minnesota"     "Mississippi"    
  ##  [9] "Missouri"      "Nebraska"      "New Hampshire" "New Jersey"     
  ## [13] "Pennsylvania"  "Rhode Island"  "Tennessee"     "Texas"          
  ## [17] "Washington"    "West Virginia" "Wisconsin"  

6.2           Regex Functions 

 Now that I’ve illustrated how R handles some of the most common regular  expres-
sion   elements, it’s time to present the functions you can use for working with regu-
lar expression. R contains a set of functions in the base package that we can use to 
fi nd pattern matches. Alternatively, the R package stringr also provides several 
functions for regex operations. We will cover both these alternatives. 

6.2.1      Main Regex Functions in R 

 The primary base R regex functions serve three primary purposes:  pattern matching , 
 pattern replacement    , and  character splitting . 

6.2.1.1      Pattern Matching 

 There are fi ve functions that provide  pattern matching   capabilities. The three func-
tions that I provide examples for (  grep    () ,   grepl    () , and   regexpr    () ) are ones 
that are most common. The primary difference between these three functions is the 
output they provide. The two other functions which I do not illustrate are  g   reg-
expr    ()  and  regexec() . These two functions provide similar capabilities as 
 regexpr()  but with the output in  list   form. 

 To fi nd a pattern in a character  vector   and to have the element values or indices 
as the output use   grep    () :
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      # use the built in data set state.division  
  head  (  as.character  (state.division))  
  ## [1] "East South Central" "Pacifi c"            "Mountain"            
  ## [4] "West South Central" "Pacifi c"            "Mountain"  

      # fi nd the elements which match the pattern  
  grep  ("North", state.division)  
  ##  [1] 13 14 15 16 22 23 25 27 34 35 41 49  

      # use value = TRUE to show the element value  
  grep  ("North", state.division, value = TRUE)  
  ##  [1] "East North Central" "East North Central" "West North Central"  
  ##  [4] "West North Central" "East North Central" "West North Central"  
  ##  [7] "West North Central" "West North Central" "West North Central"  
  ## [10] "East North Central" "West North Central" "East North Central"  

      # can use the invert argument to show the non-matching elements  
  grep  ("North | South", state.division, invert = TRUE)  
  ##  [1]  2  3  5  6  7  8  9 10 11 12 19 20 21 26 28 29 30 31 32 33 37 38 39  
  ## [24] 40 44 45 46 47 48 50  

    To fi nd a pattern in a character  vector   and to have logical (TRUE/FALSE) out-
puts use   grepl    () :

      grepl  ("North | South", state.division)  
  ##  [1]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  
  ## [12] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  
  ## [23]  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  
  ## [34]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  
  ## [45] FALSE FALSE FALSE FALSE  TRUE FALSE  

      # wrap in    sum()     to get the count of matches  
  sum  (  grepl  ("North | South", state.division))  
  ## [1] 20  

    To fi nd exactly where the pattern exists in a string use   regexpr    () :

      x <-   c  ("v.111", "0v.11", "00v.1", "000v.", "00000")  

      regexpr  ("v.", x)  
  ## [1]  1  2  3  4 -1  
  ## attr(,"match.length")  
  ## [1]  2  2  2  2 -1  
  ## attr(,"useBytes")  
  ## [1] TRUE  

    The output of   regexpr    ()  can be interpreted as follows. The fi rst element pro-
vides the starting position of the match in each element. Note that the value  −1  
means there is no match. The second element (attribute “match length”) provides 
the length of the match. The third element (attribute “useBytes”) has a value TRUE 
meaning matching was done byte-by-byte rather than character-by-character.  
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6.2.1.2      Pattern Replacement Functions 

 In addition to fi nding patterns in character  vectors  , its also common to want to 
 replace  a pattern in a string with a new patte rn. Base R   regex functions provide two 
options for this: ( a ) replace the fi rst matching occurrence or ( b ) replace all 
occurrences. 

 To replace the  fi rst  matching occurrence of a pattern use  sub() :

      new <-   c  ("New York", "new new York", "New New New York")  
  new  
  ## [1] "New York"         "new new York"     "New New New York"  

      # Default is case sensitive  
  sub  ("New", replacement = "Old", new)  
  ## [1] "Old York"         "new new York"     "Old New New York"  

      # use 'ignore.case = TRUE' to perform the obvious  
  sub  ("New", replacement = "Old", new, ignore.case = TRUE)  
  ## [1] "Old York"         "Old new York"     "Old New New York"  

    To replace  all  matching occurrences of a pattern use   gsub    () :

      # Default is case sensitive  
  gsub  ("New", replacement = "Old", new)  
  ## [1] "Old York"         "new new York"     "Old Old Old York"  

      # use ignore.case = TRUE to perform the obvious  
  gsub  ("New", replacement = "Old", new, ignore.case = TRUE)  
  ## [1] "Old York"         "Old Old York"     "Old Old Old York"  

6.2.1.3          Splitting Character Vectors 

 There will be times when you want to split the elements of a character  string   into 
separate elements. To divide the characters in a  vector   into individual components 
use   strsplit    () :

      x <-   paste  (state.name[1:10], collapse = " ")  

      # output will be a list  
  strsplit  (x, " ")  
  ## [[1]]  
  ##  [1] "Alabama"     "Alaska"      "Arizona"     "Arkansas"    "California"   
  ##  [6] "Colorado"    "Connecticut" "Delaware"    "Florida"     "Georgia"  

      # output as a vector rather than a list  
  unlist  (  strsplit  (x, " "))  
  ##  [1] "Alabama"     "Alaska"      "Arizona"     "Arkansas"    "California"   
  ##  [6] "Colorado"    "Connecticut" "Delaware"    "Florida"     "Georgia"  
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6.2.2          Regex Functions in  stringr  

 Similar to basic  string manipulation  , the  stringr  package also offers regex func-
tionality. In some cases the  stringr  performs the same functions as certain base 
 R   functions but with more consistent syntax. In other cases  stringr  offers addi-
tional functionality that is not available in base R functions.

      # install stringr package  
   install.packages    ("stringr")  

      # load package  
   library    (stringr)  

6.2.2.1        Detecting Patterns 

 To  detect  whether a  pattern   is present (or absent) in a string vector use the   str_
detect    () . This function is a wrapper for   grepl    () .

      # use the built in data set 'state.name'  
  head  (state.name)  
  ## [1] "Alabama"    "Alaska"     "Arizona"    "Arkansas"   "California"  
  ## [6] "Colorado"  

      str_detect  (state.name, pattern = "New")  
  ##  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  
  ## [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  
  ## [23] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  
  ## [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  
  ## [45] FALSE FALSE FALSE FALSE FALSE FALSE  

      # count the total matches by wrapping with sum  
  sum  (  str_detect  (state.name, pattern = "New"))  
  ## [1] 4  

6.2.2.2          Locating Patterns   

 To  locate  the occurrences of patterns  stringr  offers two options: ( a ) locate the 
fi rst matching occurrence or ( b ) locate all occurrences. To locate the position of the 
fi rst occurrence of a pattern in a string  vector   use   str_locate    () . The output pro-
vides the starting and ending position of the fi rst match found within each element.

      x <-   c  ("abcd", "a22bc1d", "ab3453cd46", "a1bc44d")  

      # locate 1st sequence of 1 or more consecutive numbers  
  str_locate  (x, "[0-9]+")  
  ##      start end  
  ## [1,]    NA  NA  
  ## [2,]     2   3  
  ## [3,]     3   6  
  ## [4,]     2   2  
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    To locate the positions of all pattern match occurrences in a character vector use 
  str_locate_all    () . The output provides a  list   the same length as the number 
of elements in the vector. Each list item will provide the starting and ending  positions 
for each pattern match occurrence in its respective element.

      # locate all sequences of 1 or more consecutive numbers  
  str_locate_all  (x, "[0-9]+")  
  ## [[1]]  
  ##      start end  
  ##   
  ## [[2]]  
  ##      start end  
  ## [1,]     2   3  
  ## [2,]     6   6  
  ##   
  ## [[3]]  
  ##      start end  
  ## [1,]     3   6  
  ## [2,]     9  10  
  ##   
  ## [[4]]  
  ##      start end  
  ## [1,]     2   2  
  ## [2,]     5   6  

6.2.2.3         Extracting Patterns 

 For extracting a string containing a  pattern  ,  stringr  offers two primary options: 
( a ) extract the fi rst matching occurrence or ( b ) extract all occurrences. To extract the 
fi rst occurrence of a pattern in a character  vector   use   str_extract    () . The out-
put will be the same length as the string and if no match is found the output will be 
 NA  for that element.

      y <-   c  ("I use R #useR2014", "I use R and love R #useR2015", "Beer")  

      str_extract  (y, pattern = "R")  
  ## [1] "R" "R" NA  

    To extract all occurrences of a pattern in a character  vector   use   str_extract_
all    () . The output provides a  list   the same length as the number of elements in the 
vector. Each list item will provide the matching pattern occurrence within that rela-
tive vector element.

      str_extract_all  (y, pattern = "[[:punct:]]*[a-zA-Z0-9]*R[a-zA-Z0-9]*")  
  ## [[1]]  
  ## [1] "R"         "#useR2014"  
  ##   
  ## [[2]]  
  ## [1] "R"         "R"         "#useR2015"  
  ##   
  ## [[3]]  
  ## character(0)  

6 Dealing with Regular Expressions



65

6.2.2.4          Replacing Patterns   

 For extracting a string containing a pattern,  stringr  offers two options: ( a ) 
replace the fi rst matching occurrence or ( b ) replace all occurrences. To replace the 
fi rst occurrence of a pattern in a character  vector   use   str_replace    () . This func-
tion is a wrapper for  sub() .

      cities <-   c  ("New York", "new new York", "New New New York")  
  cities  
  ## [1] "New York"         "new new York"     "New New New York"  

      # case sensitive  
  str_replace  (cities, pattern = "New", replacement = "Old")  
  ## [1] "Old York"         "new new York"     "Old New New York"  

      # to deal with case sensitivities use Regex syntax in the 'pattern' argument  
  str_replace  (cities, pattern = "[N]*[n]*ew", replacement = "Old")  
  ## [1] "Old York"         "Old new York"     "Old New New York"  

    To extract all occurrences of a pattern in a character vector use  str_replace_
all() . This function is a wrapper for   gsub    () .

       str_replace_all    (cities, pattern = "[N]*[n]*ew", replacement = "Old")  
  ## [1] "Old York"         "Old Old York"     "Old Old Old York"  

6.2.2.5          String Splitting   

 To split the elements of a character  string   use  str_split() . This function is a 
wrapper for   strsplit    () .

      z <- "The day after I will take a break and drink a beer."  
  str_split  (z, pattern = " ")  
  ## [[1]]  
  ##  [1] "The"   "day"   "after" "I"     "will"  "take"  "a"     "break"  
  ##  [9] "and"   "drink" "a"     "beer."  

      a <- "Alabama-Alaska-Arizona-Arkansas-California"  
  str_split  (a, pattern = "-")  
  ## [[1]]  
  ## [1] "Alabama"    "Alaska"     "Arizona"    "Arkansas"   "California"  

    Note that the output of  strs_plit()  is a  list  . To convert the output to a simple 
atomic  vector   simply wrap in   unlist    () :

      unlist  (  str_split  (a, pattern = "-"))  
  ## [1] "Alabama"    "Alaska"     "Arizona"    "Arkansas"   "California"  
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6.3           Additional Resources 

 Character strings are often considered semi-structured data. Text can be structured 
in a specifi ed fi eld; however, the quality and consistency of the text input can be far 
from structured. Consequently, managing and manipulating  character strings   can be 
extremely tedious and unique to each  data wrangling   process. As a result, taking the 
time to learn the nuances of dealing with  character strings   and regex functions can 
provide a great return on investment; however, the functions and techniques required 
will likely be greater than what I could offer here. So here are additional resources 
that are worth reading and learning from:

•    Handling and Processing Strings in R    1   
•   stringr Package Vignette 2   
•   Regular Expressions 3        

1   http://gastonsanchez.com/Handling_and_Processing_Strings_in_R.pdf 
2   https://cran.r-project.org/web/packages/stringr/vignettes/stringr.html 
3   http://www.regular-expressions.info/ 
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    Chapter 7   
 Dealing with Factors                     

          Factors are variables in  R  , which take on a limited number of different values; such 
variables are often referred to as   categorical variables    . One of the most important 
uses of  factors   is in statistical modeling; since categorical variables enter into statis-
tical models such as  lm  and  glm  differently than continuous variables, storing data 
as factors insures that the modeling functions will treat such data correctly. 

 One can think of a factor as an integer vector where each  integer   has a label. 1  In 
fact, factors are built on top of integer vectors using two attributes: the   class    ()  
“factor”, which makes them behave differently from regular integer  vectors  , and the 
  levels    () , which defi nes the set of allowed values. 2 

In this chapter I will cover the basics of dealing with  factors  , which includes 
 Creating, converting and inspecting factors ,  Ordering levels    ,  Revaluing levels , and 
 Dropping levels . 

7.1      Creating, Converting and Inspecting  Factors   

 Factor objects can be created with the   factor    ()  function:

      # create a factor string  
  gender <-   factor  (  c  ("male", "female", "female", "male", "female"))  
  gender  
  ## [1] male   female female male   female  
  ## Levels: female male  

      # inspect to see if it is a factor class  
  class  (gender)  
  ## [1] "factor"  

1   https://leanpub.com/rprogramming 
2   http://adv-r.had.co.nz/Data-structures.html 
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      # show that factors are just built on top of integers  
  typeof  (gender)  
  ## [1] "integer"  

      # See the underlying representation of factor  
   unclass    (gender)  
  ## [1] 2 1 1 2 1  
  ## attr(,"levels")  
  ## [1] "female" "male"  

      # what are the factor levels?  
  levels  (gender)  
  ## [1] "female" "male"  

      # show summary of counts  
  summary  (gender)  
  ## female   male   
  ##      3      2  

    If we have a  vector   of  character strings   or  integers   we can easily convert to 
 factors  :

      group <-   c  ("Group1", "Group2", "Group2", "Group1", "Group1")  
  str  (group)  
  ##  chr [1:5] "Group1" "Group2" "Group2" "Group1" "Group1"  

      # convert from characters to factors  
  as.factor  (group)  
  ## [1] Group1 Group2 Group2 Group1 Group1  
  ## Levels: Group1 Group2  

7.2          Ordering  Levels   

 When creating a factor we can control the ordering of the levels by using the   lev-
els     argument  :

      # when not specifi ed the default puts order as alphabetical  
  gender <-   factor  (  c  ("male", "female", "female", "male", "female"))  
  gender  
  ## [1] male   female female male   female  
  ## Levels: female male  

      # specifying order  
  gender <-   factor  (  c  ("male", "female", "female", "male", "female"),   
                   levels =   c  ("male", "female"))  
  gender  
  ## [1] male   female female male   female  
  ## Levels: male female  
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    We can also create ordinal factors in which a specifi c order is desired by using 
the  ordered = TRUE  argument. This will be refl ected in the output of the levels 
as shown below in which  low < middle < high :

      ses <-   c  ("low", "middle", "low", "low", "low", "low", "middle", "low", "middle",  
      "middle", "middle", "middle", "middle", "high", "high", "low", "middle",  
      "middle", "low", "high")  

      # create ordinal levels  
  ses <-   factor  (ses, levels =   c  ("low", "middle", "high"), ordered = TRUE)  
  ses  
  ##  [1] low    middle low    low    low    low    middle low    middle middle  
  ## [11] middle middle middle high   high   low    middle middle low    high    
  ## Levels: low < middle < high  

      # you can also reverse the order of levels if desired  
  factor  (ses, levels =   rev  (  levels  (ses)))  
  ##  [1] low    middle low    low    low    low    middle low    middle middle  
  ## [11] middle middle middle high   high   low    middle middle low    high    
  ## Levels: high < middle < low  

7.3          Revalue  Levels   

 To recode  factor   levels I usually use the   revalue    ()  function from the  plyr  
package.

      plyr::  revalue  (ses,   c  ("low" = "small", "middle" = "medium", "high" = "large"))  
  ##  [1] small  medium small  small  small  small  medium small  medium medium  
  ## [11] medium medium medium large  large  small  medium medium small  large   
  ## Levels: small < medium < large  

    Note that Using the  ::  notation allows you to access the  revalue()  function 
without having to fully load the  plyr  package.  

7.4      Dropping Levels 

 When you want to drop unused factor  levels  , use   droplevels    () :

      ses2 <- ses[ses != "middle"]  

      # lets say you have no observations in one level  
   summary    (ses2)  
  ##    low middle   high   
  ##      8      0      3  

      # you can drop that level if desired  
  droplevels  (ses2)  
  ##  [1] low  low  low  low  low  low  high high low  low  high  
  ## Levels: low < high        
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    Chapter 8   
 Dealing with Dates                     

          Real world data are often associated with  dates   and time; however, dealing with 
dates accurately can appear to be a complicated task due to the variety in formats 
and accounting for time-zone differences and leap yea rs. R   has a range of functions 
that allow you to work with dates and times. Furthermore,  packages   such as lub-
ridate make it easier to work with  dates   and times. 

 In this chapter I will introduce you to the basics of dealing with  dates  . This 
includes printing the  current date and time stamp ,  converting strings to dates , 
 extracting and manipulating parts of dates ,  creating date sequences    ,  performing cal-
culations with dates , and  dealing with time  zone   and daylight  savings   differences . 
I end with offering  additional resources  to learn and deal with date and time data. 

8.1      Getting Current  Date   and Time 

 To get current date and  time   information:

       Sys.timezone    ()  
  ## [1] "America/New_York"  

       Sys.Date    ()  
  ## [1] "2015-09-24"  

       Sys.time    ()  
  ## [1] "2015-09-24 15:08:57 EDT"  

    If using the  lubridate  package:

       library    (lubridate)  

      now  ()  
  ## [1] "2015-09-24 15:08:57 EDT"  
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8.2          Converting Strings to  Dates   

 When date and time data are impo rted into R   they will often default to a character 
 string  . This requires us to convert strings to dates. We may also have multiple strings 
that we want to merge to create a date variable. 

8.2.1     Convert Strings to Dates 

 To convert a string that is already in a date format (YYYY-MM-DD) into a date 
object use   as.Date    () :

      x <-   c  ("2015-07-01", "2015-08-01", "2015-09-01")  

      as.Date  (x)  
  ## [1] "2015-07-01" "2015-08-01" "2015-09-01"  

    Note that the default  date   format is YYYY-MM-DD; therefore, if your string is 
of different format you must incorporate the  format   argument  . There are multiple 
formats that dates can be in; for a complete  list   of formatting code options in  R   type 
 ?strftime  in your  console  .

      y <-   c  ("07/01/2015", "07/01/2015", "07/01/2015")  

      as.Date  (y, format = "%m/%d/%Y")  
  ## [1] "2015-07-01" "2015-07-01" "2015-07-01"  

    If using the  lubridate  package:

       library    (lubridate)  
   ymd    (x)  
  ## [1] "2015-07-01 UTC" "2015-08-01 UTC" "2015-09-01 UTC"  

       mdy    (y)  
  ## [1] "2015-07-01 UTC" "2015-07-01 UTC" "2015-07-01 UTC"  

    One of the many benefi ts of the  lubricate  package is that it automatically 
recognizes the common separators used when recording  dates   (“-”, “/”, “.”, and “”). 
As a result, you only need to focus on specifying the order of the date elements to 
determine the parsing function applied (Fig.  8.1 ):

Order of elements in date-time Parse function
year, month, day ymd()
year, day, month ydm()
month, day, year mdy()
day, month, year dmy()
hour, minute hm()
hour, minute, second hms()
year, month, day, hour, minute, second ymd_hms()

*adapted from Dates and Times Made Easy with lubridate (Grolemund & Wickham, 2011)

  Fig. 8.1    Parsing functions for lubridate       
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8.2.2        Create Dates by Merging Data 

 Sometimes  your   date data are collected in separate elements. To convert these sepa-
rate data into one date object incorporate the   ISOdate    ()  function:

      yr <-   c  ("2012", "2013", "2014", "2015")  
  mo <-   c  ("1", "5", "7", "2")  
  day <-   c  ("02", "22", "15", "28")  

      # ISOdate converts to a POSIXct object  
  ISOdate  (year = yr, month = mo, day = day)  
  ## [1] "2012-01-02 12:00:00 GMT" "2013-05-22 12:00:00 GMT"  
  ## [3] "2014-07-15 12:00:00 GMT" "2015-02-28 12:00:00 GMT"  

      # truncate the unused time data by converting with as.Date  
  as.Date  (  ISOdate  (year = yr, month = mo, day = day))  
  ## [1] "2012-01-02" "2013-05-22" "2014-07-15" "2015-02-28"  

    Note that  ISODate()  also has  arguments   to accept data for hours, minutes, 
seconds, and time-zone if  you   need to merge all these separate components.   

8.3       Extract   and  Manipulate   Parts of  Dates   

 To extract and manipulate individual elements of a  date   I typically use the   lub-
ridate  package   due to its simplistic function  syntax  . The functions provided by 
 lubridate  to perform extraction and manipulation of  dates   include (Fig.  8.2 ):

Date component Accessor
Year year()
Month month()
Week week()
Day of year yday()
Day of month mday()
Day of week wday()
Hour hour()
Minute minute()
Second second()
Time zone tz()

*adapted from Dates and Times Made Easy with 
lubridate (Grolemund & Wickham, 2011)

  Fig. 8.2    Accessor 
functions for lubridate       

   To extract an individual element of the date variable you simply use the accessor 
function desired. Note that the accessor variables have additional  arguments   that 
can be used to show the name of the date element in full or abbreviated form.
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       library    (lubridate)  

      x <-   c  ("2015-07-01", "2015-08-01", "2015-09-01")  

       year    (x)  
  ## [1] 2015 2015 2015  

      # default is numerical value  
   month    (x)  
  ## [1] 7 8 9  

      # show abbreviated name  
  month  (x, label = TRUE)  
  ## [1] Jul Aug Sep  
  ## 12 Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < … < Dec  

      # show unabbreviated name  
  month  (x, label = TRUE, abbr = FALSE)  
  ## [1] July      August    September  
  ## 12 Levels: January < February < March < April < May < June < … < December  

       wday    (x, label = TRUE, abbr = FALSE)  
  ## [1] Wednesday Saturday  Tuesday    
  ## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < … < Saturday  

    To manipulate or change the values of  date   elements we simply use the accessor 
function to extract the  element   of choice and then use the assignment function to 
assign a new  value  .

      # convert to date format  
  x <-    ymd    (x)  
  x  
  ## [1] "2015-07-01 UTC" "2015-08-01 UTC" "2015-09-01 UTC"  

      # change the days for the dates  
   mday    (x)  
  ## [1] 1 1 1  

      mday  (x) <-   c  (3, 10, 22)  
  x  
  ## [1] "2015-07-03 UTC" "2015-08-10 UTC" "2015-09-22 UTC"  

      # can also use    update    () function  
  update  (x, year =   c  (2013, 2014, 2015), month = 9)  
  ## [1] "2013-09-03 UTC" "2014-09-10 UTC" "2015-09-22 UTC"  

      # can also add/subtract units  
  x +   years  (1) -   days  (  c  (2, 9, 21))  
  ## [1] "2016-07-01 UTC" "2016-08-01 UTC" "2016-09-01 UTC"  

8 Dealing with Dates
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8.4          Creating  Date    Sequences   

 To create a  sequence   of  dates   we can leverage the  seq  () function. As with numeric 
 vectors  , you have to specify at least three of the four  arguments   ( from ,  to ,  by , and 
 length.out ).

      seq  (  as.Date  ("2010-1-1"),   as.Date  ("2015-1-1"), by = "years")  
  ## [1] "2010-01-01" "2011-01-01" "2012-01-01" "2013-01-01" "2014-01-01"  
  ## [6] "2015-01-01"  

      seq  (  as.Date  ("2015/1/1"),   as.Date  ("2015/12/30"), by = "quarter")  
  ## [1] "2015-01-01" "2015-04-01" "2015-07-01" "2015-10-01"  

      seq  (  as.Date  ('2015-09-15'),   as.Date  ('2015-09-30'), by = "2 days")  
  ## [1] "2015-09-15" "2015-09-17" "2015-09-19" "2015-09-21" "2015-09-23"  
  ## [6] "2015-09-25" "2015-09-27" "2015-09-29"  

    Using the   lubridate  package   is very similar. The only difference is  lubridate  
changes the way you specify the fi rst two  arguments   in the   seq    ()  function.

       library    (lubridate)  

      seq  (  ymd  ("2010-1-1"),   ymd  ("2015-1-1"), by = "years")  
  ## [1] "2010-01-01 UTC" "2011-01-01 UTC" "2012-01-01 UTC" "2013- 01- 01 UTC"  
  ## [5] "2014-01-01 UTC" "2015-01-01 UTC"  

      seq  (  ymd  ("2015/1/1"),   ymd  ("2015/12/30"), by = "quarter")  
  ## [1] "2015-01-01 UTC" "2015-04-01 UTC" "2015-07-01 UTC" "2015- 10- 01 UTC"  

      seq  (  ymd  ('2015-09-15'),   ymd  ('2015-09-30'), by = "2 days")  
  ## [1] "2015-09-15 UTC" "2015-09-17 UTC" "2015-09-19 UTC" "2015- 09- 21 UTC"  
  ## [5] "2015-09-23 UTC" "2015-09-25 UTC" "2015-09-27 UTC" "2015- 09- 29 UTC"  

    Creating  sequences   with time is very similar;  however  , we need to make sure our 
 date   object is  POSIXct   rather than just a Date object (as produced by  as.Date ):

      seq  (   as.POSIXct    ("2015-1-1 0:00"),   as.POSIXct  ("2015-1-1 12:00"), by = "hour")  
  ##  [1] "2015-01-01 00:00:00 EST" "2015-01-01 01:00:00 EST"  
  ##  [3] "2015-01-01 02:00:00 EST" "2015-01-01 03:00:00 EST"  
  ##  [5] "2015-01-01 04:00:00 EST" "2015-01-01 05:00:00 EST"  
  ##  [7] "2015-01-01 06:00:00 EST" "2015-01-01 07:00:00 EST"  
  ##  [9] "2015-01-01 08:00:00 EST" "2015-01-01 09:00:00 EST"  
  ## [11] "2015-01-01 10:00:00 EST" "2015-01-01 11:00:00 EST"  
  ## [13] "2015-01-01 12:00:00 EST"  

      # with lubridate  
  seq  (  ymd_hm  ("2015-1-1 0:00"),   ymd_hm  ("2015-1-1 12:00"), by = "hour")  
  ##  [1] "2015-01-01 00:00:00 UTC" "2015-01-01 01:00:00 UTC"  
  ##  [3] "2015-01-01 02:00:00 UTC" "2015-01-01 03:00:00 UTC"  
  ##  [5] "2015-01-01 04:00:00 UTC" "2015-01-01 05:00:00 UTC"  
  ##  [7] "2015-01-01 06:00:00 UTC" "2015-01-01 07:00:00 UTC"  
  ##  [9] "2015-01-01 08:00:00 UTC" "2015-01-01 09:00:00 UTC"  
  ## [11] "2015-01-01 10:00:00 UTC" "2015-01-01 11:00:00 UTC"  
  ## [13] "2015-01-01 12:00:00 UTC"  

8.4  Creating  Date    Sequences  
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8.5          Calculations with  Dates   

 Since  R   stores date and time objects as numbers, this allows you to perform various 
calculations such as logical comparisons, addition, subtraction, and working with 
 durations  .

      x <-    Sys.Date    ()  
  x  
  ## [1] "2015-09-26"  

      y <-   as.Date  ("2015-09-11")  

      x > y  
  ## [1] TRUE  

      x - y  
  ## Time difference of 15 days  

    The nice thing about the date/time classes is that they keep track of leap years, 
leap seconds,  daylight savings  , and  time zones  . Use   OlsonNames    ()  for a full  list 
  of acceptable time  zone   specifi cations.

      # last leap year  
  x <-   as.Date  ("2012-03-1")  
  y <-   as.Date  ("2012-02-28")  

      x - y  
  ## Time difference of 2 days  

      # example with time zones  
  x <-    as.POSIXct    ("2015-09-22 01:00:00", tz = "US/Eastern")  
  y <-   as.POSIXct  ("2015-09-22 01:00:00", tz = "US/Pacifi c")  

      y == x  
  ## [1] FALSE  

      y - x  
  ## Time difference of 3 hours  

    Similarly, the same functionality exists with the   lubridate  package   with the 
only difference being the accessor function(s) used.

       library    (lubridate)  

      x <-    now    ()  
  x  
  ## [1] "2015-09-26 10:08:18 EDT"  

      y <-   ymd  ("2015-09-11")  

      x > y  
  ## [1] TRUE  
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      x - y  
  ## Time difference of 15.5891 days  

      y +   days  (4)  
  ## [1] "2015-09-15 UTC"  

      x -   hours  (4)  
  ## [1] "2015-09-26 06:08:18 EDT"  

    We can also deal with time spans by using the  duration   functions in  lubridate . 
Durations simply measure the time span between start and end dates. Using base  R   
date functions for duration calculations is tedious and often results in wrong 
 measurements.  lubridate  provides simplistic  syntax   to calculate durations with 
the desired measurement (seconds, minutes, hours, etc.).

      # create new duration (represented in seconds)  
   new_duration    (60)  
  ## [1] "60s"  

      # create durations for minutes, hours, years  
   dminutes    (1)  
  ## [1] "60s"  

       dhours    (1)  
  ## [1] "3600 s (~1 hours)"  

       dyears    (1)  
  ## [1] "31536000 s (~365 days)"  

      # add/subtract durations from date/time object  
  x <-    ymd_hms    ("2015-09-22 12:00:00")  

      x +    dhours    (10)  
  ## [1] "2015-09-22 22:00:00 UTC"  

      x +   dhours  (10) +   dminutes  (33) +    dseconds    (54)  
  ## [1] "2015-09-22 22:33:54 UTC"  

8.6          Dealing with  Time Zones   and  Daylight Savings   

 To change the time zone for a  date  /time we can use the   with_tz    ()  function which 
will also update the clock time to align with the updated time zone:

       library    (lubridate)  

      time <-    now    ()  
  time  
  ## [1] "2015-09-26 10:30:32 EDT"  

      with_tz  (time, tzone = "MST")  
  ## [1] "2015-09-26 07:30:32 MST"  

8.6  Dealing with  Time Zones   and  Daylight Savings  



78

    If the time  zone   is incorrect or for some reason you need to change the time zone 
without changing the clock time you can force it with   force_tz    () :

      time  
  ## [1] "2015-09-26 10:30:32 EDT"  

      force_tz  (time, tzone = "MST")  
  ## [1] "2015-09-26 10:30:32 MST"  

    We can also easily work with  daylight savings   times to eliminate impacts on 
 date  /time calculations:

      # most recent daylight savings time  
  ds <-   ymd_hms  ("2015-03-08 01:59:59", tz = "US/Eastern")  

      # if we add a duration of 1 sec we gain an extra hour  
  ds +    dseconds    (1)  
  ## [1] "2015-03-08 03:00:00 EDT"  

      # add a duration of 2 hours will refl ect actual daylight savings clock time   
  # that occurred 2 hours after 01:59:59 on 2015-03-08  
  ds +    dhours    (2)  
  ## [1] "2015-03-08 04:59:59 EDT"  

      # add a period of two hours will refl ect clock time that normally occurs after  
  # 01:59:59 and is not infl uenced by daylight savings time.  
  ds +   hours  (2)  
  ## [1] "2015-03-08 03:59:59 EDT"  

8.7          Additional Resources 

 For additional resources on learning and dealing with  dates   I recommend the 
following:

•    Dates and times made easy with  lubridate  1   
•   Date and time classes in R 2        

1   http://www.jstatsoft.org/article/view/v040i03 
2   https://www.r-project.org/doc/Rnews/Rnews_2004-1.pdf 
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   Part III 
   Managing Data Structures in R 

       Smart data structures and dumb code works a lot better than 
the other way around  

 Eric S. Raymond            

 In the p revious   section I illustrated how to work with different types of data;  however, 
we primarily focused on data in a one-dimensional structure. In typical data analyses 
you often need more than one  dimension  . Many datasets can contain variables of dif-
ferent length and or types of values (i.e. numeric vs character). Furthermore, many 
statistical and mathematical calculations are based on matrices. R provides multiple 
types of  data structures   to deal with these different needs. 

 The basic data structures in R can be organized by their dimensionality (1D, 
2D, …,  n D) and their “likeness” (homogenous vs. heterogeneous). This results in 
fi ve data structure types most often used in data analysis; and almost all other 
objects in R are built from these foundational types:

    Basic Data Structures in R   

  

Dimensions Homogenous Heterogeneous
1D Atomic Vector List
2D Matrix Data frame
nD Array

*adapted from Advanced R (H. Wickham 2014)   

    In this section I will cover the basics of these data structures. I have not had the need 
to use multi-dimensional arrays, therefore, the topics I will go into details on will 
include   vectors       ,   lists       ,   matrices    , and   data frames    . These types represent the most 
commonly used  data structures   for day-to-day analyses. For each data structure I 
will illustrate how to create the structure, add additional elements to a pre-existing 
structure, add  attributes   to structures, and how to subset the various data structures. 
Lastly, I will cover how to deal with missing values    in data structures. Consequently, 
this section will provide a robust understanding of managing various forms of data-
sets depending on dimensionality needs.      

http://dx.doi.org/10.1007/978-3-319-45599-0_10
http://dx.doi.org/10.1007/978-3-319-45599-0_11
http://dx.doi.org/10.1007/978-3-319-45599-0_12
http://dx.doi.org/10.1007/978-3-319-45599-0_13
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    Chapter 9   
 Data Structure Basics                     

          Prior to jumping into the data structures, it’s benefi cial to understand two components 
of  data structures   - the  structure  and   attributes   . 

9.1      Identifying the Structure 

 Given an object, the best way to understand what data  structure   it represents is to 
use the structure function   str    (). str()  stands for  str ucture and provides a 
compact display of the internal structu re of an R   object.

      # different data structures  
  vector <- 1:10  
  list <-   list  (item1 = 1:10, item2 = LETTERS[1:18])  
  matrix <-   matrix  (1:12, nrow = 4)     
  df <-    data.frame    (item1 = 1:18, item2 = LETTERS[1:18])  

      # identify the structure of each object  
  str  (vector)  
  ##  int [1:10] 1 2 3 4 5 6 7 8 9 10  

      str  (list)  
  ## List of 2  
  ##  $ item1: int [1:10] 1 2 3 4 5 6 7 8 9 10  
  ##  $ item2: chr [1:18] "A" "B" "C" "D" …  

      str  (matrix)  
  ##  int [1:4, 1:3] 1 2 3 4 5 6 7 8 9 10 …  

      str  (df)  
  ## 'data.frame':    18 obs. of  2 variables:  
  ##  $ item1: int  1 2 3 4 5 6 7 8 9 10 …  
  ##  $ item2: Factor w/ 18 levels "A","B","C","D",..: 1 2 3 4 5 6 7 8 9 10 …  
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9.2          Attributes 

 R objects can have  attributes  , which are like metadata for the object. These meta-
data can be very useful in that they help to describe the object. For example, column 
names on a  data frame   help to tell us what data are contained in each of the columns. 
Some examples of R object attributes are:

•    names, dimnames  
•    dimensions   (e.g. matrices, arrays)  
•   class (e.g.  integer  , numeric)  
•   length  
•   other user-defi ned attributes/metadata    

 Attributes of an object (if any) can be accessed using the  attributes()  func-
tion. Not all R objects contain attributes, in which case the   attributes    ()  func-
tion returns NULL.

      # assess attributes of an object  
  attributes  (df)  
  ## $names  
  ## [1] "item1" "item2"  
  ##   
  ## $row.names  
  ##  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18  
  ##   
  ## $class  
  ## [1] "   data.frame    "  

      attributes  (matrix)  
  ## $dim  
  ## [1] 4 3  

      # assess names of an object  
  names  (df)  
  ## [1] "item1" "item2"  

      # assess the dimensions of an object  
  dim  (matrix)  
  ## [1] 4 3  

      # assess the class of an object  
  class  (list)  
  ## [1] "list"  

      # access the length of an object  
  length  (vector)  
  ## [1] 10  
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      # note that length will measure the number of items in  
  # a list or number of columns in a data frame  
  length  (list)  
  ## [1] 2  

      length  (df)  
  ## [1] 2  

    This chapter only shows you functions to assess these  attributes  . In the chapters 
that follow more details are provided on how to view and create attributes for each 
type of data  structure  .    

9.2 Attributes
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    Chapter 10   
 Managing Vectors                     

          The basic structu re in R   is the  vector  . A vector is a  sequence   of data elements of the 
same basic type:   integer       ,   double       , logical, or   character    . 1  The one-dimensional exam-
ples illustrated in the previous section are considered vectors. In this chapter I will 
illustrate how to  create vectors ,  add additional elements to pre-existing vectors ,  add 
attributes to vectors    , and  subset vectors . 

10.1      Creating Vectors 

 The colon  :  operator can be used to create a  vector   of integers between two speci-
fi ed numbers or the  c()  function can be used to create vectors of objects by concat-
enating elements together:

      # integer vector  
  w <- 8:17  
  w  
  ##  [1]  8  9 10 11 12 13 14 15 16 17  

      # double vector  
  x <-   c  (0.5, 0.6, 0.2)  
  x  
  ## [1] 0.5 0.6 0.2  

      # logical vector  
  y1 <-   c  (TRUE, FALSE, FALSE)  
  y1  
  ## [1]  TRUE FALSE FALSE  

1   There are two additional  vector  types which I will not discuss—complex and raw. 

http://dx.doi.org/10.1007/978-3-319-45599-0_4
http://dx.doi.org/10.1007/978-3-319-45599-0_4
http://dx.doi.org/10.1007/978-3-319-45599-0_5
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      # logical vector in shorthand  
  y2 <-   c  (T, F, F)   
  y2  
  ## [1]  TRUE FALSE FALSE  

      # Character vector  
  z <-   c  ("a", "b", "c")   
  z  
  ## [1] "a" "b" "c"  

    You can also use the   as.vector    ()  function to initialize vectors or change the 
vector type:

      v <-   as.vector  (8:17)  
  v  
  ##  [1]  8  9 10 11 12 13 14 15 16 17  

      # turn numerical vector to character  
  as.vector  (v, mode = "character")  
  ##  [1] "8"  "9"  "10" "11" "12" "13" "14" "15" "16" "17"  

    All elements of a vector must be the same type, so when you attempt to combine 
different types of elements they will be coerced to the most fl exible type possible:

      # numerics are turned to characters  
  str  (  c  ("a", "b", "c", 1, 2, 3))  
  ##  chr [1:6] "a" "b" "c" "1" "2" "3"  

      # logical are turned to numerics…  
  str  (  c  (1, 2, 3, TRUE, FALSE))  
  ##  num [1:5] 1 2 3 1 0  

      # or character  
  str  (  c  ("A", "B", "C", TRUE, FALSE))  
  ##  chr [1:5] "A" "B" "C" "TRUE" "FALSE"  

10.2         Adding On To Vectors 

 To add additional elements to a pre-existing vector we can continue to leverage the 
 c()  function. Also, note that vectors are always fl at so  nested    c()  functions will 
not add additional  dimensions   to the vector:

      v1 <- 8:17  

      c  (v1, 18:22)  
  ##  [1]  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22  

      # same as  
  c  (v1,   c  (18,   c  (19,   c  (20,   c  (21:22)))))  
  ##  [1]  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22  

10 Managing Vectors



87

10.3          Adding  Attributes   to Vectors 

 The attributes that you can add to vectors includes names and comments. If we 
continue with our vector  v1  we can see that the  vector   currently has no attributes:

      attributes  (v1)  
  ## NULL  

    We can add names to vectors using two approaches. The fi rst uses  names()  to 
assign names to each element of the vector. The second approach is to assign names 
when creating the vector.

      # assigning names to a pre-existing vector  
   names    (v1) <- letters[1:  length  (v1)]  
  v1  
  ##  a  b  c  d  e  f  g  h  i  j   
  ##  8  9 10 11 12 13 14 15 16 17  
  attributes  (v1)  
  ## $names  
  ##  [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"  

      # adding names when creating vectors  
  v2 <-   c  (name1 = 1, name2 = 2, name3 = 3)  
  v2  
  ## name1 name2 name3   
  ##     1     2     3  
  attributes  (v2)  
  ## $names  
  ## [1] "name1" "name2" "name3"  

    We can also add comments to  vectors   to act as a note to the user. This does not change 
how the vector behaves; rather, it simply acts as a form of metadata for the vector.

      comment  (v1) <- "This is a comment on a vector"  
  v1  
  ##  a  b  c  d  e  f  g  h  i  j   
  ##  8  9 10 11 12 13 14 15 16 17  
  attributes  (v1)  
  ## $names  
  ##  [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"  
  ##   
  ## $comment  
  ## [1] "This is a comment on a vector"  

10.3 Adding Attributes to Vectors
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10.4           Subsetting Vectors   

 The four main ways to subset a vector include combining square brackets [ ] with:

•     Positive integers      
•    Negative integers   
•    Logical values   
•    Names     

 You can also subset with  double   brackets  [[ ]]  for  simplifying     subsets. 

10.4.1       Subsetting   with Positive  Integers   

 Subsetting with positive  integers   returns the elements at the specifi ed positions:

      v1  
  ##  a  b  c  d  e  f  g  h  i  j   
  ##  8  9 10 11 12 13 14 15 16 17  

      v1[2]  
  ## b   
  ## 9  

      v1[2:4]  
  ##  b  c  d   
  ##  9 10 11  

      v1[  c  (2, 4, 6, 8)]  
  ##  b  d  f  h   
  ##  9 11 13 15  

      # note that you can duplicate index positions  
  v1[  c  (2, 2, 4)]  
  ##  b  b  d   
  ##  9  9 11  

10.4.2          Subsetting with Negative Integers 

 Subsetting with negative integers will omit the elements at the specifi ed positions:

      v1[-1]  
  ##  b  c  d  e  f  g  h  i  j   
  ##  9 10 11 12 13 14 15 16 17  

  v1[-  c  (2, 4, 6, 8)]  
  ##  a  c  e  g  i  j   
  ##  8 10 12 14 16 17  

10 Managing Vectors
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10.4.3           Subsetting   with Logical Values 

 Subsetting with logical values will select the elements where the corresponding 
logical value is  TRUE :

      v1[  c  (TRUE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE)]  
  ##  a  c  e  f  g  j   
  ##  8 10 12 13 14 17  

      v1[v1 < 12]  
  ##  a  b  c  d   
  ##  8  9 10 11  

      v1[v1 < 12 | v1 > 15]  
  ##  a  b  c  d  i  j   
  ##  8  9 10 11 16 17  

      # if logical vector is shorter than the length of the vector being  
  # subsetted, it will be recycled to be the same length  
  v1[  c  (TRUE, FALSE)]  
  ##  a  c  e  g  i   
  ##  8 10 12 14 16  

10.4.4           Subsetting   with Names 

 Subsetting with names will return the elements with the matching names specifi ed:

      v1["b"]  
  ## b   
  ## 9  

      v1[  c  ("a", "c", "h")]  
  ##  a  c  h   
  ##  8 10 15  

10.4.5          Simplifying vs. Preserving 

 Its also important to understand the difference between  simplifying   and  preserving   
when  subsetting  .  Simplifying  subsets returns the simplest possible data  structure   
that can represent the output.  Preserving  subsets keeps the structure of the output 
the same as the input. 
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 For  vectors  , subsetting with single brackets  [ ]  preserves while subsetting with 
 double   brackets  [[ ]]  simplifi es. The change you will notice when  simplifying   
vectors is the removal of names.

      v1[1]  
  ## a   
  ## 8  

      v1[[1]]  
  ## [1] 8         

10 Managing Vectors
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    Chapter 11   
 Managing Lists                     

          A  list   is an  R   structure that allows you to combine elements of different types and 
lengths. This can include a list embedded within a list. Many statistical outputs are 
provided as a list as well; therefore, its critical to understand how to work with lists. 
In this chapter I will illustrate how to  create lists ,  add additional elements to pre-
existing lists    ,  add attributes to lists    , and  subset lists . 

11.1      Creating Lists 

 To create a list we can use the   list    ()  function. Note how each of the four list items 
below are of different classes ( integer  , character, logical, and numeric) and different 
lengths.

      l <-   list  (1:3, "a",   c  (TRUE, FALSE, TRUE),   c  (2.5, 4.2))  
  str  (l)  
  ## List of 4  
  ##  $ : int [1:3] 1 2 3  
  ##  $ : chr "a"  
  ##  $ : logi [1:3] TRUE FALSE TRUE  
  ##  $ : num [1:2] 2.5 4.2  

      # a list containing a list  
  l <-   list  (1:3,   list  (letters[1:5],   c  (TRUE, FALSE, TRUE)))  
  str  (l)  
  ## List of 2  
  ##  $ : int [1:3] 1 2 3  
  ##  $ :List of 2  
  ##   ..$ : chr [1:5] "a" "b" "c" "d" …  
  ##   ..$ : logi [1:3] TRUE FALSE TRUE  
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11.2          Adding On To Lists 

 To add additional list components to a list we can leverage the   list    ()  and 
 append()  functions. We can illustrate with the following list.

      l1 <-   list  (1:3, "a",   c  (TRUE, FALSE, TRUE))  
  str  (l1)  
  ## List of 3  
  ##  $ : int [1:3] 1 2 3  
  ##  $ : chr "a"  
  ##  $ : logi [1:3] TRUE FALSE TRUE  

    If we add the new elements with   list    ()  it will create a list of two components, 
component 1 will be a  nested   list of the original list and component 2 will be the 
new elements added:

      l2 <-   list  (l1,   c  (2.5, 4.2))  
  str  (l2)  
  ## List of 2  
  ##  $ :List of 3  
  ##   ..$ : int [1:3] 1 2 3  
  ##   ..$ : chr "a"  
  ##   ..$ : logi [1:3] TRUE FALSE TRUE  
  ##  $ : num [1:2] 2.5 4.2  

    To simply add a fourth  list   component without creating  nested lists   we use the 
 append()  function:

      l3 <-   append  (l1,   list  (  c  (2.5, 4.2)))  
  str  (l3)  
  ## List of 4  
  ##  $ : int [1:3] 1 2 3  
  ##  $ : chr "a"  
  ##  $ : logi [1:3] TRUE FALSE TRUE  
  ##  $ : num [1:2] 2.5 4.2  

    Alternatively, we can also add a new  list   component by utilizing the ‘$’ sign and 
 naming   the new item:

      l3$item4 <- "new list item"  
  str  (l3)  
  ## List of 5  
  ##  $      : int [1:3] 1 2 3  
  ##  $      : chr "a"  
  ##  $      : logi [1:3] TRUE FALSE TRUE  
  ##  $      : num [1:2] 2.5 4.2  
  ##  $ item4: chr "new list item"  
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    To add individual elements to a specifi c list component we need to introduce 
some  subsetting   which is further discussed later in the chapter in the  Subsetting sec-
tion . We’ll continue with our original  l1  list:

      str  (l1)  
  ## List of 3  
  ##  $ : int [1:3] 1 2 3  
  ##  $ : chr "a"  
  ##  $ : logi [1:3] TRUE FALSE TRUE  

    To add additional values to a list item you need to subset for that specifi c list item 
and then you can use the  c()  function to add the additional elements to that list 
item:

      l1[[1]] <-   c  (l1[[1]], 4:6)  
  str  (l1)  
  ## List of 3  
  ##  $ : int [1:6] 1 2 3 4 5 6  
  ##  $ : chr "a"  
  ##  $ : logi [1:3] TRUE FALSE TRUE  

      l1[[2]] <-   c  (l1[[2]],   c  ("dding", "to a", "list"))  
  str  (l1)  
  ## List of 3  
  ##  $ : int [1:6] 1 2 3 4 5 6  
  ##  $ : chr [1:4] "a" "dding" "to a" "list"  
  ##  $ : logi [1:3] TRUE FALSE TRUE  

11.3          Adding  Attributes   to Lists 

 The attributes that you can add to lists include names, general comments, and spe-
cifi c  list   item comments. Currently, our  l1  list has no attributes:

      attributes  (l1)  
  ## NULL  

    We can add names to lists in two ways. First, we can use   names    ()  to assign 
names to list items in a pre-existing list. Second, we can add names to a list when 
we are creating a list.

      # adding names to a pre-existing list  
  names  (l1) <-   c  ("item1", "item2", "item3")  
  str  (l1)  
  ## List of 3  
  ##  $ item1: int [1:6] 1 2 3 4 5 6  
  ##  $ item2: chr [1:4] "a" "dding" "to a" "list"  
  ##  $ item3: logi [1:3] TRUE FALSE TRUE  
  attributes  (l1)  
  ## $names  
  ## [1] "item1" "item2" "item3"  

11.3 Adding Attributes to Lists
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      # adding names when creating lists  
  l2 <-   list  (item1 = 1:3, item2 = letters[1:5], item3 =   c  (T, F, T, T))  
  str  (l2)  
  ## List of 3  
  ##  $ item1: int [1:3] 1 2 3  
  ##  $ item2: chr [1:5] "a" "b" "c" "d" …  
  ##  $ item3: logi [1:4] TRUE FALSE TRUE TRUE  
  attributes  (l2)  
  ## $names  
  ## [1] "item1" "item2" "item3"  

    We can also add comments to lists. As previously mentioned, comments act as a 
note to the user without changing how the object behaves. With lists, we can add a 
general comment to the list using   comment    ()  and we can also add comments to 
specifi c list items with   attr    () .

      # adding a general comment to list l2 with    comment    ()  
  comment  (l2) <- "This is a comment on a list"  
  str  (l2)  
  ## List of 3  
  ##  $ item1: int [1:3] 1 2 3  
  ##  $ item2: chr [1:5] "a" "b" "c" "d" …  
  ##  $ item3: logi [1:4] TRUE FALSE TRUE TRUE  
  ## - attr(*, "comment")= chr "This is a comment on a list"  
  attributes  (l2)  
  ## $names  
  ## [1] "item1" "item2" "item3"  
  ##   
  ## $comment  
  ## [1] "This is a comment on a list"  

      # adding a comment to a specifi c list item with    attr    ()   
  attr  (l2, "item2") <- "Comment for item2"  
  str  (l2)  
  ## List of 3  
  ##  $ item1: int [1:3] 1 2 3  
  ##  $ item2: chr [1:5] "a" "b" "c" "d" …  
  ##  $ item3: logi [1:4] TRUE FALSE TRUE TRUE  
  ## - attr(*, "comment")= chr "This is a comment on a list"  
  ## - attr(*, "item2")= chr "Comment for item2"  
  attributes  (l2)  
  ## $names  
  ## [1] "item1" "item2" "item3"  
  ##   
  ## $comment  
  ## [1] "This is a comment on a list"  
  ##   
  ## $item2  
  ## [1] "Comment for item2"  

11 Managing Lists
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11.4            Subsetting   Lists 

    If list x is a train carrying objects, then x[[5]] is the object in car 5; x[4:6] is a train of cars 
4-6 —@RLangTip 

   To subset  lists   we can utilize the single bracket  [ ] ,  double   brackets  [[ ]] , and 
dollar sign  $  operators. Each approach provides a specifi c purpose and can be com-
bined in different ways to achieve the following subsetting objectives:

•     Subset list and preserve output as a list   
•    Subset list and simplify output   
•    Subset list to get elements out of a list   
•    Subset list with a nested list     

11.4.1      Subset List and Preserve Output as a  List   

 To extract one or more list items while   preserving    1  the output in list format use the 
 [ ]  operator:

      # extract fi rst list item  
  l2[1]  
  ## $item1  
  ## [1] 1 2 3  

      # same as above but using the item's name  
  l2["item1"]  
  ## $item1  
  ## [1] 1 2 3  

      # extract multiple list items  
  l2[  c  (1,3)]  
  ## $item1  
  ## [1] 1 2 3  
  ##   
  ## $item3  
  ## [1]  TRUE FALSE  TRUE  TRUE  

      # same as above but using the items' names  
  l2[  c  ("item1", "item3")]  
  ## $item1  
  ## [1] 1 2 3  
  ##   
  ## $item3  
  ## [1]  TRUE FALSE  TRUE  TRUE  

1   Its important to understand the difference between  simplifying  and preserving subsetting. 
 Simplifying  subsets returns the simplest possible data structure that can represent the output. 
 Preserving  subsets keeps the structure  of the output the same as the input. See Hadley Wickham’s 
section on  Simplifying vs. Preserving Subsetting  to learn more. 
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11.4.2          Subset List and Simplify Output 

 To extract one or more list items while   simplifying    the output use the  [[ ]]  or  $  
operator:

      # extract fi rst list item and simplify to a vector  
  l2[[1]]  
  ## [1] 1 2 3  

      # same as above but using the item's name  
  l2[["item1"]]  
  ## [1] 1 2 3  

      # same as above but using the `$` operator  
  l2$item1  
  ## [1] 1 2 3  

    One thing that differentiates the [[ operator from the $ is that the [[ operator can 
be used with computed indices. The $ operator can only be used with literal names.  

11.4.3      Subset  List   to Get Elements Out of a List 

 To extract individual elements out of a specifi c list item combine the  [[  (or  $ ) 
operator with the  [  operator:

      # extract third element from the second list item  
  l2[[2]][3]  
  ## [1] "c"  

      # same as above but using the item's name  
  l2[["item2"]][3]  
  ## [1] "c"  

      # same as above but using the `$` operator  
  l2$item2[3]  
  ## [1] "c"  

11.4.4          Subset List with a  Nested List   

 If you have nested lists you can expand the ideas above to extract items and ele-
ments. We’ll use the following list  l3  which has a nested list in item 2.

      l3 <-   list  (item1 = 1:3,   
             item2 =   list  (item2a = letters[1:5],   
                          item3b =   c  (T, F, T, T)))  
  str  (l3)  
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  ## List of 2  
  ##  $ item1: int [1:3] 1 2 3  
  ##  $ item2:List of 2  
  ##   ..$ item2a: chr [1:5] "a" "b" "c" "d" …  
  ##   ..$ item3b: logi [1:4] TRUE FALSE TRUE TRUE  

    If the goal is to subset  l3  to extract the nested list item  item2a  from  item2 , 
we can perform this multiple ways.

      # preserve the output as a list  
  l3[[2]][1]  
  ## $item2a  
  ## [1] "a" "b" "c" "d" "e"  

      # same as above but simplify the output  
  l3[[2]][[1]]  
  ## [1] "a" "b" "c" "d" "e"  

      # same as above with names  
  l3[["item2"]][["item2a"]]  
  ## [1] "a" "b" "c" "d" "e"  

      # same as above with `$` operator  
  l3$item2$item2a  
  ## [1] "a" "b" "c" "d" "e"  

      # extract individual element from a nested list item  
  l3[[2]][[1]][3]  
  ## [1] "c"         

11.4 Subsetting Lists
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    Chapter 12   
 Managing Matrices                     

          A  matrix   is a collection of data elements arranged in a two-dimensional rectangular 
layout. In  R  , the elements that make up a matrix must be of a consistent mode (i.e. all 
elements must be numeric, or character, etc.). Therefore, a matrix can be thought of as 
an atomic  vector   with a  dimension   attribute. Furthermore, all columns of a matrix must 
be of same length. In this chapter I will illustrate how to  create matrices ,  add additional 
elements to pre-existing matrices ,  add attributes to matrices    , and  subset matrices . 

12.1      Creating Matrices 

 Matrices are constructed column-wise, so entries can be thought of starting in the 
“upper left” corner and running down the columns. We can create a matrix using the 
 matrix()  function and specifying the values to fi ll in the matrix and the number 
of rows and columns to make the matrix.

      # numeric matrix  
  m1 <-    matrix    (1:6, nrow = 2, ncol = 3)  
  m1  
  ##      [,1] [,2] [,3]  
  ## [1,]    1    3    5  
  ## [2,]    2    4    6  

    The underlying structure of this matrix is simply an integer vector with an added 
2 × 3  dimension   attribute.

      str  (m1)  
  ##  int [1:2, 1:3] 1 2 3 4 5 6  
  attributes  (m1)  
  ## $dim  
  ## [1] 2 3  
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    Matrices can also contain character values. Whether a  matrix   contains data that 
are of numeric or character type, all the elements must be of the same class.

      # a character matrix  
  m2 <-   matrix  (letters[1:6], nrow = 2, ncol = 3)  
  m2  
  ##      [,1] [,2] [,3]  
  ## [1,] "a"  "c"  "e"   
  ## [2,] "b"  "d"  "f"  

      # structure of m2 is simply character vector with 2x3 dimension  
  str  (m2)  
  ##  chr [1:2, 1:3] "a" "b" "c" "d" "e" "f"  
  attributes  (m2)  
  ## $dim  
  ## [1] 2 3  

    Matrices can also be created using the column-bind   cbind    ()  and row-bind 
  rbind    ()  functions. However, keep in mind that the  vectors   that are being binded 
must be of equal length and mode.

      v1 <- 1:4  
  v2 <- 5:8  

      cbind  (v1, v2)  
  ##      v1 v2  
  ## [1,]  1  5  
  ## [2,]  2  6  
  ## [3,]  3  7  
  ## [4,]  4  8  

      rbind  (v1, v2)  
  ##    [,1] [,2] [,3] [,4]  
  ## v1    1    2    3    4  
  ## v2    5    6    7    8  

      # bind several vectors together  
  v3 <- 9:12  

      cbind  (v1, v2, v3)  
  ##      v1 v2 v3  
  ## [1,]  1  5  9  
  ## [2,]  2  6 10  
  ## [3,]  3  7 11  
  ## [4,]  4  8 12  

12.2          Adding On To Matrices 

 We can leverage the   cbind    ()  and   rbind    ()  functions for adding onto matrices 
as well. Again, its important to keep in mind that the vectors that are being binded 
must be of equal length and mode to the pre-existing  matrix  .
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      m1 <-   cbind  (v1, v2)  
  m1  
  ##      v1 v2  
  ## [1,]  1  5  
  ## [2,]  2  6  
  ## [3,]  3  7  
  ## [4,]  4  8  

      # add a new column  
  cbind  (m1, v3)  
  ##      v1 v2 v3  
  ## [1,]  1  5  9  
  ## [2,]  2  6 10  
  ## [3,]  3  7 11  
  ## [4,]  4  8 12  

      # or add a new row  
  rbind  (m1,   c  (4.1, 8.1))  
  ##       v1  v2  
  ## [1,] 1.0 5.0  
  ## [2,] 2.0 6.0  
  ## [3,] 3.0 7.0  
  ## [4,] 4.0 8.0  
  ## [5,] 4.1 8.1  

12.3          Adding  Attributes to Matrices   

 As previously mentioned, matrices by default will have a  dimension   attribute as 
illustrated in the following  matrix    m2 .

      # basic matrix  
  m2 <-   matrix  (1:12, nrow = 4, ncol = 3)  
  m2  
  ##      [,1] [,2] [,3]  
  ## [1,]    1    5    9  
  ## [2,]    2    6   10  
  ## [3,]    3    7   11  
  ## [4,]    4    8   12  

      # the dimension attribute shows this matrix has 4 rows and 3 columns  
  attributes  (m2)  
  ## $dim  
  ## [1] 4 3  

    However, matrices can also have additional  attributes   such as row names, column 
names, and comments. Adding names can be done individually, meaning we can 
add row names or column names separately.

12.3 Adding Attributes to Matrices
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      # add row names as an attribute  
   rownames    (m2) <-   c  ("row1", "row2", "row3", "row4")  
  m2  
  ##      [,1] [,2] [,3]  
  ## row1    1    5    9  
  ## row2    2    6   10  
  ## row3    3    7   11  
  ## row4    4    8   12  

      # attributes displayed will now show the dimension, list the row names  
  # and will show the column names as NULL  
  attributes  (m2)  
  ## $dim  
  ## [1] 4 3  
  ##   
  ## $dimnames  
  ## $dimnames[[1]]  
  ## [1] "row1" "row2" "row3" "row4"  
  ##   
  ## $dimnames[[2]]  
  ## NULL  

      # add column names  
  colnames  (m2) <-   c  ("col1", "col2", "col3")  
  m2  
  ##      col1 col2 col3  
  ## row1    1    5    9  
  ## row2    2    6   10  
  ## row3    3    7   11  
  ## row4    4    8   12  
  attributes  (m2)  
  ## $dim  
  ## [1] 4 3  
  ##   
  ## $dimnames  
  ## $dimnames[[1]]  
  ## [1] "row1" "row2" "row3" "row4"  
  ##   
  ## $dimnames[[2]]  
  ## [1] "col1" "col2" "col3"  

    Another option is to use the  dimnames()  function. To add row names you 
assign the names to   dimnames    (m2)[[1]]  and to add column names you assign 
the names to  dimnames(m2)[[2]] .

      dimnames  (m2)[[1]] <-   c  ("row_1", "row_2", "row_3", "row_4")  
  m2  
  ##       col1 col2 col3  
  ## row_1    1    5    9  
  ## row_2    2    6   10  
  ## row_3    3    7   11  
  ## row_4    4    8   12  
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      # column names are contained in the second list item  
  dimnames  (m2)[[2]] <-   c  ("col_1", "col_2", "col_3")  
  m2  
  ##       col_1 col_2 col_3  
  ## row_1     1     5     9  
  ## row_2     2     6    10  
  ## row_3     3     7    11  
  ## row_4     4     8    12  

    Lastly, similar to lists and vectors you can add a comment attribute to a list.

      comment  (m2) <- "adding a comment to a matrix"  
  attributes  (m2)  
  ## $dim  
  ## [1] 4 3  
  ##   
  ## $dimnames  
  ## $dimnames[[1]]  
  ## [1] "row_1" "row_2" "row_3" "row_4"  
  ##   
  ## $dimnames[[2]]  
  ## [1] "col_1" "col_2" "col_3"  
  ##   
  ##   
  ## $comment  
  ## [1] "adding a comment to a matrix"  

12.4           Subsetting Matrices   

 To subset matrices we use the  [  operator; however, since matrices have two  dimen-
sions   we need to incorporate  subsetting   arguments for both row and column  dimen-
sions  . A generic form of matrix subsetting looks like:   matrix    [rows, columns] . 
We can illustrate with matrix  m2 :

      m2  
  ##       col_1 col_2 col_3  
  ## row_1     1     5     9  
  ## row_2     2     6    10  
  ## row_3     3     7    11  
  ## row_4     4     8    12  

    By using different values in the  rows  and  columns  argument of  m2[rows, 
columns] , we can subset  m2  in multiple ways.

      # subset for rows 1 and 2 but keep all columns  
  m2[1:2, ]  
  ##       col_1 col_2 col_3  
  ## row_1     1     5     9  
  ## row_2     2     6    10  
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      # subset for columns 1 and 3 but keep all rows  
  m2[ ,   c  (1, 3)]  
  ##       col_1 col_3  
  ## row_1     1     9  
  ## row_2     2    10  
  ## row_3     3    11  
  ## row_4     4    12  

      # subset for both rows and columns  
  m2[1:2,   c  (1, 3)]  
  ##       col_1 col_3  
  ## row_1     1     9  
  ## row_2     2    10  

      # use a vector to subset  
  v <-   c  (1, 2, 4)  
  m2[v,   c  (1, 3)]  
  ##       col_1 col_3  
  ## row_1     1     9  
  ## row_2     2    10  
  ## row_4     4    12  

      # use names to subset  
  m2[  c  ("row_1", "row_3"), ]  
  ##       col_1 col_2 col_3  
  ## row_1     1     5     9  
  ## row_3     3     7    11  

    Note that subsetting matrices with the  [  operator will simplify the results to the 
lowest possible  dimension  . To avoid this you can introduce the  drop = FALSE  
 argument  :

      # simplifying results in a named vector  
  m2[, 2]  
  ## row_1 row_2 row_3 row_4   
  ##     5     6     7     8  

      # preserving results in a 4x1 matrix  
  m2[, 2, drop = FALSE]  
  ##       col_2  
  ## row_1     5  
  ## row_2     6  
  ## row_3     7  
  ## row_4     8        
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    Chapter 13   
 Managing Data Frames                     

          A  data frame   is the most common way of storing data in  R   and, generally, is the data 
 structure   most often used for data analyses. Under the hood, a  data frame   is a list of 
equal-length  vectors  . Each element of the  list   can be thought of as a column and the 
length of each element of the list is the number of rows. As a result,  data frames   can 
store different classes of objects in each column (i.e. numeric, character, factor). 
In essence, the easiest way to think of a data  frame   is as an  Excel   worksheet that 
contains columns of different types of data but are all of equal length rows. In this 
chapter I will illustrate how to  create data frames ,  add additional elements to 
 pre- existing data frames ,  add attributes to data frames    , and  subset data frames . 

13.1      Creating Data Frames 

 Data frames are usually created by reading in a dataset using   read.table()  or 
 read    .   csv    () ; this will be covered in the   importing     and   scraping data        chapters. 
However,  data frames   can also be created explicitly with the  data.frame()  
function or they can be coerced from other types of objects like lists. In this case I’ll 
create a simple data frame  df  and assess its basic structure:

      df <-   data.frame  (col1 = 1:3,   
                   col2 =   c  ("this", "is", "text"),   
                   col3 =   c  (TRUE, FALSE, TRUE),   
                   col4 =   c  (2.5, 4.2, pi))  

      # assess the structure of a data frame  
  str  (df)  
  ## 'data.frame':    3 obs. of  4 variables:  
  ##  $ col1: int  1 2 3  
  ##  $ col2: Factor w/ 3 levels "is","text","this": 3 1 2  
  ##  $ col3: logi  TRUE FALSE TRUE  
  ##  $ col4: num  2.5 4.2 3.14  

http://dx.doi.org/10.1007/978-3-319-45599-0_15
http://dx.doi.org/10.1007/978-3-319-45599-0_16
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      # number of rows  
   nrow    (df)  
  ## [1] 3  

      # number of columns  
   ncol    (df)  
  ## [1] 4  

    Note how  col2  in  df  was converted to a column of  factors  . This is because 
there is a default setting in   data.frame    ()  that converts character columns to 
 factors  . We can turn this off by setting the   stringsAsFactors     = FALSE  
 argument  :

      df <-   data.frame  (col1 = 1:3,   
                   col2 =   c  ("this", "is", "text"),   
                   col3 =   c  (TRUE, FALSE, TRUE),   
                   col4 =   c  (2.5, 4.2, pi),   
                   stringsAsFactors = FALSE)  

      # note how col2 now is of a character class  
  str  (df)  
  ## 'data.frame':    3 obs. of  4 variables:  
  ##  $ col1: int  1 2 3  
  ##  $ col2: chr  "this" "is" "text"  
  ##  $ col3: logi  TRUE FALSE TRUE  
  ##  $ col4: num  2.5 4.2 3.14  

    We can also convert pre-existing structures to a  data frame  . The following illus-
trates how we can turn multiple  vectors  , a  list  , or a  matrix   into a  data frame  :

      v1 <- 1:3  
  v2 <-  c  ("this", "is", "text")  
  v3 <-   c  (TRUE, FALSE, TRUE)  

      # convert same length vectors to a data frame using    data.frame    ()  
  data.frame  (col1 = v1, col2 = v2, col3 = v3)  
  ##   col1 col2  col3  
  ## 1    1 this  TRUE  
  ## 2    2   is FALSE  
  ## 3    3 text  TRUE  

      # convert a list to a data frame using as.   data.frame    ()  
  l <-   list  (item1 = 1:3,

item2 =   c  ("this", "is", "text"),   
            item3 =   c  (2.5, 4.2, 5.1))  
  l  
  ## $item1  
  ## [1] 1 2 3  
  ##   
  ## $item2  
  ## [1] "this" "is"   "text"  
  ##   
  ## $item3  
  ## [1] 2.5 4.2 5.1  
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      as.data.frame  (l)  
  ##   item1 item2 item3  
  ## 1     1  this   2.5  
  ## 2     2    is   4.2  
  ## 3     3  text   5.1  

      # convert a matrix to a data frame using as.   data.frame    ()  
  m1 <-   matrix  (1:12, nrow = 4, ncol = 3)  
  m1  
  ##      [,1] [,2] [,3]  
  ## [1,]    1    5    9  
  ## [2,]    2    6   10  
  ## [3,]    3    7   11  
  ## [4,]    4    8   12  

      as.data.frame  (m1)  
  ##   V1 V2 V3  
  ## 1  1  5  9  
  ## 2  2  6 10  
  ## 3  3  7 11  
  ## 4  4  8 12  

13.2         Adding On To Data Frames 

 We can leverage the   cbind    ()  function for adding columns to a  data frame  . Note 
that one of the objects being combined must already be a data frame otherwise 
  cbind    ()  could produce a  matrix  .

      df  
  ##   col1 col2  col3     col4  
  ## 1    1 this  TRUE 2.500000  
  ## 2    2   is FALSE 4.200000  
  ## 3    3 text  TRUE 3.141593  

      # add a new column  
  v4 <-   c  ("A", "B", "C")  
  cbind  (df, v4)  
  ##   col1 col2  col3     col4 v4  
  ## 1    1 this  TRUE 2.500000  A  
  ## 2    2   is FALSE 4.200000  B  
  ## 3    3 text  TRUE 3.141593  C  

    We can also use the   rbind    ()  function to add  data frame   rows together. 
However, severe caution should be taken because this can cause changes in the 
classes of the columns. For instance, our data frame  df  currently consists of an 
 integer  , character, logical, and numeric variables.

      df  
  ##   col1 col2  col3     col4  
  ## 1    1 this  TRUE 2.500000  
  ## 2    2   is FALSE 4.200000  

13.2 Adding On To Data Frames
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  ## 3    3 text  TRUE 3.141593  
  str  (df)  
  ## 'data.frame':    3 obs. of  4 variables:  
  ##  $ col1: int  1 2 3  
  ##  $ col2: chr  "this" "is" "text"  
  ##  $ col3: logi  TRUE FALSE TRUE  
  ##  $ col4: num  2.5 4.2 3.14  

    If we attempt to add a row using   rbind    ()  and  c()  it converts all columns to a 
character class. This is because all elements in the  vector   created by  c()  must be of 
the same class so they are all coerced to the character class which then coerces all 
the variables in the data frame to the character class.

      df2 <-   rbind  (df,   c  (4, "R", F, 1.1))  
  df2  
  ##   col1 col2  col3             col4  
  ## 1    1 this  TRUE              2.5  
  ## 2    2   is FALSE              4.2  
  ## 3    3 text  TRUE 3.14159265358979  
  ## 4    4    R FALSE              1.1  
  str  (df2)  
  ## 'data.frame':    4 obs. of  4 variables:  
  ##  $ col1: chr  "1" "2" "3" "4"  
  ##  $ col2: chr  "this" "is" "text" "R"  
  ##  $ col3: chr  "TRUE" "FALSE" "TRUE" "FALSE"  
  ##  $ col4: chr  "2.5" "4.2" "3.14159265358979" "1.1"  

    To add rows appropriately, we need to convert the items being added to a data 
frame and make sure the columns are the same class as the original data frame.

      adding_df <-   data.frame  (col1 = 4, 
 col2 = "R", 
 col3 = FALSE, 
 col4 = 1.1,   
   stringsAsFactors = FALSE)  

      df3 <-   rbind  (df, adding_df)  
  df3  
  ##   col1 col2  col3     col4  
  ## 1    1 this  TRUE 2.500000  
  ## 2    2   is FALSE 4.200000  
  ## 3    3 text  TRUE 3.141593  
  ## 4    4    R FALSE 1.100000  
  str  (df3)  
  ## 'data.frame':    4 obs. of  4 variables:  
  ##  $ col1: num  1 2 3 4  
  ##  $ col2: chr  "this" "is" "text" "R"  
  ##  $ col3: logi  TRUE FALSE TRUE FALSE  
  ##  $ col4: num  2.5 4.2 3.14 1.1  

    There are better ways to join data frames together than to use   cbind    ()  and 
  rbind    () . These are covered later on in the   transforming your data with dplyr     
chapter.  
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13.3      Adding  Attributes to Data Frames   

 Similar to matrices, data frames will have a dimension attribute. In addition, data 
frames can also have additional attributes such as row names, column names, and 
comments. We can illustrate with data frame  df .

      # basic    data frame    
  df  
  ##   col1 col2  col3     col4  
  ## 1    1 this  TRUE 2.500000  
  ## 2    2   is FALSE 4.200000  
  ## 3    3 text  TRUE 3.141593  
  dim  (df)  
  ## [1] 3 4  
  attributes  (df)  
  ## $names  
  ## [1] "col1" "col2" "col3" "col4"  
  ##   
  ## $row.names  
  ## [1] 1 2 3  
  ##   
  ## $class  
  ## [1] "data.frame"  

    Currently  df  does not have row names but we can add them with 
 rownames() :

      # add row names  
  rownames  (df) <-   c  ("row1", "row2", "row3")  
  df  
  ##      col1 col2  col3     col4  
  ## row1    1 this  TRUE 2.500000  
  ## row2    2   is FALSE 4.200000  
  ## row3    3 text  TRUE 3.141593  
  attributes  (df)  
  ## $names  
  ## [1] "col1" "col2" "col3" "col4"  
  ##   
  ## $row.names  
  ## [1] "row1" "row2" "row3"  
  ##   
  ## $class  
  ## [1] "data.frame"  

13.3 Adding Attributes to Data Frames
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    We can also change the existing column names by using   colnames    ()  or 
  names    () :

      # add/change column names with colnames()  
  colnames  (df) <-   c  ("col_1", "col_2", "col_3", "col_4")  
  df  
  ##      col_1 col_2 col_3    col_4  
  ## row1     1  this  TRUE 2.500000  
  ## row2     2    is FALSE 4.200000  
  ## row3     3  text  TRUE 3.141593  
  attributes  (df)  
  ## $names  
  ## [1] "col_1" "col_2" "col_3" "col_4"  
  ##   
  ## $row.names  
  ## [1] "row1" "row2" "row3"  
  ##   
  ## $class  
  ## [1] "data.frame"  

      # add/change column names with names()  
  names  (df) <-   c  ("col.1", "col.2", "col.3", "col.4")  
  df  
  ##      col.1 col.2 col.3    col.4  
  ## row1     1  this  TRUE 2.500000  
  ## row2     2    is FALSE 4.200000  
  ## row3     3  text  TRUE 3.141593  
  attributes  (df)  
  ## $names  
  ## [1] "col.1" "col.2" "col.3" "col.4"  
  ##   
  ## $row.names  
  ## [1] "row1" "row2" "row3"  
  ##   
  ## $class  
  ## [1] "data.frame"  

    Lastly, just like  vectors  ,  lists  , and matrices, we can add a comment to a  data 
frame   without affecting how it operates.

      # adding a comment attribute  
  comment  (df) <- "adding a comment to a data frame"  
  attributes  (df)  
  ## $names  
  ## [1] "col.1" "col.2" "col.3" "col.4"  
  ##   
  ## $row.names  
  ## [1] "row1" "row2" "row3"  
  ##   
  ## $class  
  ## [1] "data.frame"  
  ##   
  ## $comment  
  ## [1] "adding a comment to a data frame"  
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13.4           Subsetting Data Frames   

 Data frames possess the characteristics of both  lists   and matrices: if you subset with 
a single  vector  , they behave like lists and will return the selected columns with all 
rows; if you subset with two vectors, they behave like matrices and can be subset by 
row and column:

      df  
  ##      col.1 col.2 col.3    col.4  
  ## row1     1  this  TRUE 2.500000  
  ## row2     2    is FALSE 4.200000  
  ## row3     3  text  TRUE 3.141593  

      # subsetting by row numbers  
  df[2:3, ]  
  ##      col.1 col.2 col.3    col.4  
  ## row2     2    is FALSE 4.200000  
  ## row3     3  text  TRUE 3.141593  

      # subsetting by row names  
  df[  c  ("row2", "row3"), ]  
  ##      col.1 col.2 col.3    col.4  
  ## row2     2    is FALSE 4.200000  
  ## row3     3  text  TRUE 3.141593  

      # subsetting columns like a list  
  df[  c  ("col.2", "col.4")]  
  ##      col.2    col.4  
  ## row1  this 2.500000  
  ## row2    is 4.200000  
  ## row3  text 3.141593  

      # subsetting columns like a matrix  
  df[ ,   c  ("col.2", "col.4")]  
  ##      col.2    col.4  
  ## row1  this 2.500000  
  ## row2    is 4.200000  
  ## row3  text 3.141593  

      # subset for both rows and columns  
  df[1:2,   c  (1, 3)]  
  ##      col.1 col.3  
  ## row1     1  TRUE  
  ## row2     2 FALSE  

      # use a vector to subset  
  v <-   c  (1, 2, 4)  
  df[ , v]  
  ##      col.1 col.2    col.4  
  ## row1     1  this 2.500000  
  ## row2     2    is 4.200000  
  ## row3     3  text 3.141593  

13.4 Subsetting Data Frames
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    Note that  subsetting    data frames   with the  [  operator will simplify the results to 
the lowest possible  dimension  . To avoid this you can introduce the  drop = FALSE  
 argument  :

      # simplifying results in a named vector  
  df[, 2]  
  ## [1] "this" "is"   "text"  

      # preserving results in a 3x1 data frame  
  df[, 2, drop = FALSE]  
  ##      col.2  
  ## row1  this  
  ## row2    is  
  ## row3  text        
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    Chapter 14   
 Dealing with Missing Values                     

          A common task in data analysis is dealing with  missing values  . In R, missing values 
are often represented by  NA  or some other value that represents missing values (i.e. 
 99 ). We can easily work with missing values and in this chapter I illustrate how to 
 test for ,  recode , and  exclude  missing values in your data. 

14.1      Testing for  Missing Values   

 To identify missing values use  is.na()  which returns a logical  vector   with  TRUE  
in the element locations that contain missing values represented by  NA .   is.na    ()  
will work on  vectors  ,  lists  , matrices, and  data frames  .

      # vector with missing data  
  x <-   c  (1:4, NA, 6:7, NA)  
  x  
  ## [1]  1  2  3  4 NA  6  7 NA  

      is.na  (x)  
  ## [1] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  

      # data frame with missing data  
  df <-   data.frame  (col1 =   c  (1:3, NA),  
                   col2 =   c  ("this", NA,"is", "text"),   
                   col3 =   c  (TRUE, FALSE, TRUE, TRUE),   
                   col4 =   c  (2.5, 4.2, 3.2, NA),  
                   stringsAsFactors = FALSE)  

      # identify NAs in full data frame  
  is.na  (df)  
  ##       col1  col2  col3  col4  
  ## [1,] FALSE FALSE FALSE FALSE  
  ## [2,] FALSE  TRUE FALSE FALSE  
  ## [3,] FALSE FALSE FALSE FALSE  
  ## [4,]  TRUE FALSE FALSE  TRUE  
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      # identify NAs in specifi c data frame column  
  is.na  (df$col4)  
  ## [1] FALSE FALSE FALSE  TRUE  

    To identify the location or the number of NAs we can leverage the   which    ()  and 
  sum    ()  functions:

      # identify location of NAs in vector  
  which  (  is.na  (x))  
  ## [1] 5 8  

      # identify count of NAs in data frame  
  sum  (  is.na  (df))  
  ## [1] 3  

14.2          Recoding  Missing Values   

 To recode  missing values  ; or recode specifi c indicators that represent missing values, 
we can use normal  subsetting   and  assignment   operations. For example, we can recode 
 missing values   in  vector    x  with the mean values in  x  by fi rst  subsetting   the  vector   to 
identify  NA s and then assign these elements a value. Similarly, if missing values are 
represented by another value (i.e.  99 ) we can simply subset the data for the elements 
that contain that value and then assign a desired value to those elements.

      # recode missing values with the mean  
  x[  is.na  (x)] <-   mean  (x, na.rm = TRUE)  
   round    (x, 2)  
  ## [1] 1.00 2.00 3.00 4.00 3.83 6.00 7.00 3.83  

      # data frame that codes missing values as 99  
  df <-   data.frame  (col1 =   c  (1:3, 99), col2 =   c  (2.5, 4.2, 99, 3.2))  

      # change 99 s to NAs  
  df[df == 99] <- NA  
  df  
  ##   col1 col2  
  ## 1    1  2.5  
  ## 2    2  4.2  
  ## 3    3   NA  
  ## 4   NA  3.2  

14.3          Excluding  Missing Values   

 We can exclude missing values in a couple different ways. First, if we want to 
exclude missing values from mathematical operations use the  na.rm = TRUE  
 argument  . If you do not exclude these values most functions will return an  NA .
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      # A vector with missing values  
  x <-   c  (1:4, NA, 6:7, NA)  

      # including NA values will produce an NA output  
  mean  (x)  
  ## [1] NA  

      # excluding NA values will calculate the mathematical  
  # operation for all non-missing values  
  mean  (x, na.rm = TRUE)  
  ## [1] 3.833333  

    We may also desire to subset our data to obtain complete observations, those 
observations (rows) in our data that contain no missing data. We can do this a few 
different ways.

      # data frame with missing values  
  df <-   data.frame  (col1 =   c  (1:3, NA),  
                   col2 =   c  ("this", NA,"is", "text"),   
                   col3 =   c  (TRUE, FALSE, TRUE, TRUE),   
                   col4 =   c  (2.5, 4.2, 3.2, NA),  
                   stringsAsFactors = FALSE)  
  df  
  ##   col1 col2  col3 col4  
  ## 1    1 this  TRUE  2.5  
  ## 2    2 <NA> FALSE  4.2  
  ## 3    3   is  TRUE  3.2  
  ## 4   NA text  TRUE   NA  

    First, to fi nd complete cases we can leverage the   complete.cases    ()  function 
which returns a logical  vector   identifying rows which are complete cases. So in the fol-
lowing case rows 1 and 3 are complete cases. We can use this information to subset our 
 data frame   which will return the rows which   complete.cases    ()  found to be  TRUE .

      complete.cases  (df)  
  ## [1]  TRUE FALSE  TRUE FALSE  

      # subset with complete.cases to get complete cases  
  df[  complete.cases  (df), ]  
  ##   col1 col2 col3 col4  
  ## 1    1 this TRUE  2.5  
  ## 3    3   is TRUE  3.2  

      # or subset with `!` operator to get incomplete cases  
  df[!  complete.cases  (df), ]  
  ##   col1 col2  col3 col4  
  ## 2    2 <NA> FALSE  4.2  
  ## 4   NA text  TRUE   NA  

14.3 Excluding Missing Values
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    A shorthand alternative is to simply use   na.omit    ()  to omit all rows containing 
 missing values  .

      # or use    na.omit    () to get same as above  
  na.omit  (df)  
  ##   col1 col2 col3 col4  
  ## 1    1 this TRUE  2.5  
  ## 3    3   is TRUE  3.2        
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   Part IV 
   Importing, Scraping, and Exporting Data 

with R 
       What we have is a data glut.  

 Vernon Vinge            

 Data are being generated by everything around us at all times. Every digital process 
and social media exchange produces it. Systems, sensors and mobile devices trans-
mit it. Countless databases collect it. Data are arriving from multiple sources at an 
alarming rate and analysts and  organizations   are seeking ways to leverage these new 
sources of information. Consequently, analysts need to understand how to  get  data 
from these data sources. Furthermore, since analysis is often a collaborative effort 
analysts also need to know how to share their data. 

 This section covers the process of   importing    ,   scraping    , and   exporting     data. First, 
I cover the basics of importing tabular and spreadsheet data. Second, since modern 
day  data wrangling   often includes  scraping data   from the fl ood of web-based data 
becoming available to  organizations   and analysts, I cover the fundamentals of web- 
scraping with R. This includes importing spreadsheet data fi les stored online, scrap-
ing  HTML   text and data tables, and leveraging  APIs  . Third, although getting data 
into R is essential, I also cover the equally important process of getting data out of 
R. Consequently, this section will give you a strong foundation for the different 
ways to get your data into and out of  R  .      

http://dx.doi.org/DOI 10.1007/978-3-319-45599-0_15
http://dx.doi.org/DOI 10.1007/978-3-319-45599-0_16
http://dx.doi.org/DOI 10.1007/978-3-319-45599-0_17
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    Chapter 15   
 Importing Data                     

          The fi rst step to any data  analysis   process is to  get  the data. Data can come from 
many sources but two of the most common include text and  Excel   fi les. This chapter 
covers how to import data into  R   by reading data from common  text fi les  and  Excel 
spreadsheets . In addition, I cover how to load data from saved  R object fi les  for 
holding or transferring data that has been processed in R. In addition to the com-
monly used base R functions to perform data importing, I will also cover functions 
from the popular readr, xlsx, and readxl  packages  . 

15.1      Reading Data from Text Files 

 Text fi les are a popular way to hold and exchange tabular data as almost any data 
application supports exporting data to the  CSV   (or other text fi le) formats. Text fi le 
formats use delimiters to separate the different elements in a line, and each line of 
data is in its own line in the text fi le. Therefore, importing different kinds of text 
fi les can follow a fairly consistent process once you’ve identifi ed the delimiter. 

 There are two main groups of functions that we can use to read in text fi les:

•     Base R functions   
•    readr package functions     

15.1.1      Base  R   Functions 

   read.table()    is a multipurpose work-horse function in base  R   for  importing 
data  . The functions   read.csv()    and   read.delim()    are special cases of 
  read.table()    in which the defaults have been adjusted for effi ciency. 
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To illustrate these functions let’s work with a  CSV   fi le that is saved in our working 
directory which looks like:

      variable 1,variable 2,variable 3  
  10,beer,TRUE  
  25,wine,TRUE  
  8,cheese,FALSE  

    To read in the  CSV   fi le we can use   read.csv()   . Note that when we assess the 
structure of the data set that we read in,  variable.2  is automatically coerced to 
a  factor   variable and  variable.3  is automatically coerced to a logical variable. 
Furthermore, any  whitespace   in the column names are replaced with a “.”.

      mydata =   read.csv  ("mydata.csv")  
  mydata  
  ##   variable.1 variable.2 variable.3  
  ## 1         10       beer       TRUE  
  ## 2         25       wine       TRUE  
  ## 3          8     cheese      FALSE  

      str  (mydata)  
  ## 'data.frame':    3 obs. of  3 variables:  
  ##  $ variable.1: int  10 25 8  
  ##  $ variable.2: Factor w/ 3 levels "beer","cheese",..: 1 3 2  
  ##  $ variable.3: logi  TRUE TRUE FALSE  

    However, we may want to read in  variable.2  as a character variable rather 
then a  factor  . We can take care of this by changing the   stringsAsFactors     argu-
ment  . The default has  stringsAsFactors = TRUE ; however, setting it equal 
to  FALSE  will read in the variable as a character variable.

      mydata_2 =   read.csv  ("mydata.csv", stringsAsFactors = FALSE)  
  mydata_2  
  ##   variable.1 variable.2 variable.3  
  ## 1         10       beer       TRUE  
  ## 2         25       wine       TRUE  
  ## 3          8     cheese      FALSE  

      str  (mydata_2)  
  ## 'data.frame':    3 obs. of  3 variables:  
  ##  $ variable.1: int  10 25 8  
  ##  $ variable.2: chr  "beer" "wine" "cheese"  
  ##  $ variable.3: logi  TRUE TRUE FALSE  

    As previously stated  read.csv  is just a wrapper for  read.table  but with 
adjusted default  arguments  . Therefore, we can use  read.table  to read in this same 
data. The two  arguments   we need to be aware of are the fi eld separator ( sep ) and the 
 argument   indicating whether the fi le contains the names of the variables as its fi rst 
line ( header ). In  read.table  the defaults are  sep = ""  and  header = 
FALSE  whereas in  read.csv  the defaults are  sep = ","  and  header = TRUE . 
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There are multiple other  arguments   we can use for certain situations which we 
 illustrate below:

      # provides same results as read.csv above  
  read.table  ("mydata.csv", sep=",", header = TRUE, stringsAsFactors = FALSE)  
  ##   variable.1 variable.2 variable.3  
  ## 1         10       beer       TRUE  
  ## 2         25       wine       TRUE  
  ## 3          8     cheese      FALSE  

      # set column and row names  
  read.table  ("mydata.csv", sep=",", header = TRUE, stringsAsFactors 
= FALSE,  
             col.names =   c  ("Var 1", "Var 2", "Var 3"),  
             row.names =   c  ("Row 1", "Row 2", "Row 3"))  
  ##       Var.1  Var.2 Var.3  
  ## Row 1    10   beer  TRUE  
  ## Row 2    25   wine  TRUE  
  ## Row 3     8 cheese FALSE  

      # manually set the classes of the columns   
  set_classes <-   read.table  ("mydata.csv", sep=",", header = TRUE,  
                            colClasses =   c  ("numeric", "character", 
"character"))  
  str  (set_classes)  
  ## 'data.frame':    3 obs. of  3 variables:  
  ##  $ variable.1: num  10 25 8  
  ##  $ variable.2: chr  "beer" "wine" "cheese"  
  ##  $ variable.3: chr  "TRUE" "TRUE" "FALSE"  

      # limit the number of rows to read in  
  read.table  ("mydata.csv", sep=",", header = TRUE, nrows = 2)  
  ##   variable.1 variable.2 variable.3  
  ## 1         10       beer       TRUE  
  ## 2         25       wine       TRUE  

    In addition to  CSV   fi les, there are other text fi les that  read.table  works with. 
The primary difference is what separates the elements. For example, tab delimited 
text fi les typically end with the  .   txt    extension. You can also use the   read.
delim()    function as, similiar to   read.csv()   ,   read.delim()    is a wrapper of 
  read.table()    with defaults set specifi cally for tab delimited fi les.

      # reading in tab delimited text fi les  
  read.delim  ("mydata.txt")  
  ##   variable.1 variable.2 variable.3  
  ## 1         10       beer       TRUE  
  ## 2         25       wine       TRUE  
  ## 3          8     cheese      FALSE  

      # provides same results as read.delim  
  read.table  ("mydata.txt", sep="\t", header = TRUE)  
  ##   variable.1 variable.2 variable.3  
  ## 1         10       beer       TRUE  
  ## 2         25       wine       TRUE  
  ## 3          8     cheese      FALSE  
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15.1.2           readr Package   

 Compared to the equivalent base functions, readr functions are around 10× faster. 
They bring consistency to importing functions, they produce  data frames   in a 
 data.table  format which are easier to view for large data sets, the default set-
tings removes the “hassels” of   stringsAsFactors   , and they have a more fl ex-
ible column specifi cation. 

 To illustrate, we can use   read_csv()    which is equivalent to base  R  ’s   read.
csv()    function. However, note that   read_csv()    maintains the full variable 
name (whereas  read.csv  eliminates any spaces in variable names and fi lls it with 
‘.’). Also,   read_csv()    automatically sets  stringsAsFactors = FALSE , 
which can be a controversial topic. 1 

       library    (readr)  
  mydata_3 =   read_csv  ("mydata.csv")  
  mydata_3  
  ##   variable 1 variable 2 variable 3  
  ## 1         10       beer       TRUE  
  ## 2         25       wine       TRUE  
  ## 3          8     cheese      FALSE  

      str  (mydata_3)  
  ## Classes 'tbl_df', 'tbl' and 'data.frame':    3 obs. of  3 variables:  
  ##  $ variable 1: int  10 25 8  
  ##  $ variable 2: chr  "beer" "wine" "cheese"  
  ##  $ variable 3: logi  TRUE TRUE FALSE  

     read_csv  also offers many additional  arguments   for making adjustments to 
your data as you read it in:

      # specify the column class using col_types  
  read_csv  ("mydata.csv", col_types =   list  (  col_double  (),   
                                          col_character  (),   
                                          col_character  ()))  
  ##   variable 1 variable 2 variable 3  
  ## 1         10       beer       TRUE  
  ## 2         25       wine       TRUE  
  ## 3          8     cheese      FALSE  

      # we can also specify column classes with a string  
  # in this example d = double, _ skips column, c = character  
  read_csv  ("mydata.csv", col_types = "d_c")  
  ##   variable 1 variable 3  
  ## 1         10       TRUE  
  ## 2         25       TRUE  
  ## 3          8      FALSE  

1   An interesting biography of the stringsAsFactors argument can be found at  http://simplystatistics.
org/2015/07/24/stringsasfactors-an-unauthorized-biography/ 
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      # set column names  
  read_csv  ("mydata.csv", col_names =   c  ("Var 1", "Var 2", "Var 3"), skip = 1)  
  ##   Var 1  Var 2 Var 3  
  ## 1    10   beer  TRUE  
  ## 2    25   wine  TRUE  
  ## 3     8 cheese FALSE  

      # set the maximum number of lines to read in  
  read_csv  ("mydata.csv", n_max = 2)  
  ##   variable 1 variable 2 variable 3  
  ## 1         10       beer       TRUE  
  ## 2         25       wine       TRUE  

    Simila r to base R  ,  readr  also offers functions to import . txt   fi les ( read_
delim() ), fi xed-width fi les (  read_fwf()   ), general text fi les (  read_table()   ), 
and more. 

 These examples provide the basics for reading in text fi les. However, sometimes 
even text fi les can offer unanticipated diffi culties with their formatting. Both the 
base  R   and  readr  functions offer many  arguments   to deal with different formatting 
issues and I suggest you take time to look at the help fi les for these functions to learn 
more (i.e.  ?read.table ). Also, you will fi nd more resources at the end of this 
chapter for importing fi les.   

15.2      Reading Data from  Excel   Files 

 With  Excel   still being the spreadsheet software of choice its important to be able to 
effi ciently import and export data from these fi les. Often,  R   users will simply resort 
to exporting the Excel fi le as a  CSV   fi le and then import into R using  read.csv ; 
however, this is far from effi cient. This section will teach you how to eliminate the 
CSV step and to import data directly from  Excel   using two different  packages  :

•     xlsx package   
•    readxl package     

 Note that there are several  packages   available to connect  R   with  Excel   (i.e. 
  gdata   ,  RODBC ,  XLConnect ,  RExcel , etc.); however, I am only going to cover 
the two main  packages   that I use which provide all the fundamental requirements 
I’ve needed for dealing with  Excel  . 

15.2.1       xlsx Package   

 The xlsx package provides tools necessary to interact with  Excel   2007 (and older) 
fi les f rom R  . Many of the benefi ts of the  xlsx  come from being able to  export  and 
 format   Excel   fi les from R. Some of these capabilities will be covered in the 
Exporting Data chapter; however, in this section we will simply cover   importing  
data   from  Excel   with the  xlsx  package. 

15.2  Reading Data from  Excel   Files
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 To illustrate, we’ll use similar data from the previous section; however, saved as 
an .xlsx fi le in our working director. To import the  Excel   data we simply use the 
  read.xlsx()    function:

       library    (xlsx)  

      # read in fi rst worksheet using a sheet index or name  
  read.xlsx  ("mydata.xlsx", sheetName = "Sheet1")  
  ##   variable.1 variable.2 variable.3  
  ## 1         10       beer       TRUE  
  ## 2         25       wine       TRUE  
  ## 3          8     cheese      FALSE  

      read.xlsx  ("mydata.xlsx", sheetIndex = 1)  
  ##   variable.1 variable.2 variable.3  
  ## 1         10       beer       TRUE  
  ## 2         25       wine       TRUE  
  ## 3          8     cheese      FALSE  

      # read in second worksheet  
  read.xlsx  ("mydata.xlsx", sheetName = "Sheet2")  
  ##   variable.4 variable.5  
  ## 1     Dayton     johnny  
  ## 2   Columbus      amber  
  ## 3  Cleveland       tony  
  ## 4 Cincinnati      alice  

    Since  Excel   is such a fl exible spreadsheet software, people often make notes, 
comments, headers, etc. at the beginning or end of the fi les which we may not want 
to include. If we want to read in data that starts further down in the  Excel   worksheet 
we can include the  startRow   argument  . If we have a specifi c range of rows (or 
columns) to include we can use the  rowIndex  (or  colIndex )  argument  .

      # a worksheet with comments in the fi rst two lines  
  read.xlsx  ("mydata.xlsx", sheetName = "Sheet3")  
  ##                                         HEADER..COMPANY.A        NA.  
  ## 1 What if we want to disregard header text in Excel fi le?       <NA>  
  ## 2                                              variable 6 variable 7  
  ## 3                                                     200       Male  
  ## 4                                                     225     Female  
  ## 5                                                     400     Female  
  ## 6                                                     310       Male  

      # read in all data below the second line  
  read.xlsx  ("mydata.xlsx", sheetName = "Sheet3", startRow = 3)  
  ##   variable.6 variable.7  
  ## 1        200       Male  
  ## 2        225     Female  
  ## 3        400     Female  
  ## 4        310       Male  

      # read in a range of rows  
  read.xlsx  ("mydata.xlsx", sheetName = "Sheet3", rowIndex = 3:5)  
  ##   variable.6 variable.7  
  ## 1        200       Male  
  ## 2        225     Female  
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    We can also change the class type of the columns when we read them in:

      # read in data without changing class type  
  mydata_sheet1.1 <-   read.xlsx  ("mydata.xlsx", sheetName = "Sheet1")  

      str  (mydata_sheet1.1)  
  ## 'data.frame':    3 obs. of  3 variables:  
  ##  $ variable.1: num  10 25 8  
  ##  $ variable.2: Factor w/ 3 levels "beer","cheese",..: 1 3 2  
  ##  $ variable.3: logi  TRUE TRUE FALSE  

      # read in data and change class type  
  mydata_sheet1.2 <-   read.xlsx  ("mydata.xlsx", sheetName = "Sheet1",  
                               stringsAsFactors = FALSE,  
                               colClasses =   c  ("double", "character", 
"logical"))  

      str  (mydata_sheet1.2)  
  ## 'data.frame':    3 obs. of  3 variables:  
  ##  $ variable.1: num  10 25 8  
  ##  $ variable.2: chr  "beer" "wine" "cheese"  
  ##  $ variable.3: logi  TRUE TRUE FALSE  

    Another useful  argument   is  keepFormulas  which allows you to see the text 
of any formulas in the  Excel   spreadsheet:

      # by default keepFormula is set to FALSE so only  
  # the formula output will be read in  
  read.xlsx  ("mydata.xlsx", sheetName = "Sheet4")  
  ##   Future.Value  Rate Periods Present.Value  
  ## 1          500 0.065      10      266.3630  
  ## 2          600 0.085       6      367.7671  
  ## 3          750 0.080      11      321.6621  
  ## 4         1000 0.070      16      338.7346  

      # changing the keepFormula to TRUE will display the equations  
  read.xlsx  ("mydata.xlsx", sheetName = "Sheet4", keepFormulas = TRUE)  
  ##   Future.Value  Rate Periods Present.Value  
  ## 1          500 0.065      10  A2/(1+B2)^C2  
  ## 2          600 0.085       6  A3/(1+B3)^C3  
  ## 3          750 0.080      11  A4/(1+B4)^C4  
  ## 4         1000 0.070      16  A5/(1+B5)^C5  

15.2.2           readxl Package   

 readxl is one of the newest  packages   for accessing  Excel   data with  R   and was devel-
oped by Hadley Wickham and the RStudio team who also developed the   readr  
package  . This package works with both legacy .xls formats and the modern xml- 
based .xlsx format. Similar to  readr  the  readxl  functions are based on a C++ 
 library   so they are extremely fast. Unlike most other  packages   that deal with  Excel  , 
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 readxl  has no external dependencies, so you can use it to read  Excel   data on just 
about any platform. Additional benefi ts  readxl  provides includes the ability to 
load  dates   and times as  POSIXct   formatted  dates  , automatically drops blank col-
umns, and returns outputs as data.table formatted which provides easier viewing for 
large data sets. 

 To read in  Excel   data with  readxl  you use the   read_excel()    function 
which has very similar operations and  arguments   as  xlsx . A few important differ-
ences you will see below include:  readxl  will automatically convert  date   and 
 date  -time variables to  POSIXct   formatted variables, character variables will not be 
coerced to  factors  , and logical variables will be read in as  integers  .

       library    (readxl)  

      mydata <-   read_excel  ("mydata.xlsx", sheet = "Sheet5")  
  mydata  
  ##   variable 1 variable 2 variable 3 variable 4          variable 5  
  ## 1         10       beer          1 2015-11-20 2015-11-20 13:30:00  
  ## 2         25       wine          1       <NA> 2015-11-21 16:30:00  
  ## 3          8       <NA>          0 2015-11-22 2015-11-22 14:45:00  

      str  (mydata)  
  ## Classes 'tbl_df', 'tbl' and 'data.frame':    3 obs. of  5 variables:  
  ##  $ variable 1: num  10 25 8  
  ##  $ variable 2: chr  "beer" "wine" NA  
  ##  $ variable 3: num  1 1 0  
  ##  $ variable 4: POSIXct, format: "2015-11-20" NA …  
  ##  $ variable 5: POSIXct, format: "2015-11-20 13:30:00" "2015-11- 21 16:30:00" …  

    The available  arguments   allow you to change the data as you import it. Some 
examples are provided:

      # change variable names by skipping the fi rst row  
  # and using col_names to set the new names  
  read_excel  ("mydata.xlsx", sheet = "Sheet5", skip = 1,   
             col_names =   paste  ("Var", 1:5))  
  ##   Var 1 Var 2 Var 3 Var 4               Var 5  
  ## 1    10  beer     1 42328 2015-11-20 13:30:00  
  ## 2    25  wine     1    NA 2015-11-21 16:30:00  
  ## 3     8  <NA>     0 42330 2015-11-22 14:45:00  

      # sometimes missing values are set as a sentinel value  
  # rather than just left blank - (i.e. "999")  
  read_excel  ("mydata.xlsx", sheet = "Sheet6")  
  ##   variable 1 variable 2 variable 3 variable 4  
  ## 1         10       beer          1      42328  
  ## 2         25       wine          1        999  
  ## 3          8        999          0      42330  

      # we can change these to missing values with na argument  
  read_excel  ("mydata.xlsx", sheet = "Sheet6", na = "999")  
  ##   variable 1 variable 2 variable 3 variable 4  
  ## 1         10       beer          1      42328  
  ## 2         25       wine          1         NA  
  ## 3          8       <NA>          0      42330  
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    One unique difference between  readxl  and  xlsx  is how to deal with column 
types. Whereas   read.xlsx()    allows you to change the column types to  integer  , 
 double  , numeric, character, or logical;   read_excel()    restricts you to changing 
column types to blank, numeric,  date  , or text. The “blank” option allows you to skip 
columns; however, to change variable 3 to a logical  TRUE / FALSE  variable requires 
a second step.

      mydata_ex <-   read_excel  ("mydata.xlsx", sheet = "Sheet5",  
                          col_types =   c  ("numeric", "blank", "numeric",   
                                        "date", "blank"))  
  mydata_ex  
  ##   variable 1 variable 3 variable 4  
  ## 1         10          1 2015-11-20  
  ## 2         25          1       <NA>  
  ## 3          8          0 2015-11-22  

      # change variable 3 to a logical variable  
  mydata_ex$`variable 3` <-    as.logical    (mydata_ex$`variable 3`)  
  mydata_ex  
  ##   variable 1 variable 3 variable 4  
  ## 1         10       TRUE 2015-11-20  
  ## 2         25       TRUE       <NA>  
  ## 3          8      FALSE 2015-11-22  

15.3           Load Data f rom Saved R   Object File 

 Sometimes you may need to save data o r other R   objects outside of your workspace. 
You may want to share R data/objects with co-workers, transfer between projects or 
computers, or simply archive them. There are three primary ways that people tend 
to save R data/objects: as .RData, .rda, or as .rds fi les. The differences behind when 
you use each will be covered in the Saving data as an R object fi le section. This sec-
tion simply shows how to load these data/object forms.

       load    ("mydata.RData")  

      load  (fi le = "mydata.rda")  

      name <-    readRDS    ("mydata.rds")  

15.4         Additional Resources 

 In addition to text and  Excel   fi les, there are multiple other ways that data are stored 
and exchanged. Commercial statistical software such as SPSS, SAS, Stata, and 
Minitab often have the option to store data in a specifi c format for that software. 
In addition, analysts commonly use databases to store large quantities of data.  R   has 
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good support to work with these additional options which we did not cover here. 
The following provides a  list   of additional resources to learn about data importing 
for these specifi c cases:

•    R data import/export manual:   https://cran.r-project.org/doc/manuals/R-data.html      
•   Working with databases

 –    MySQL:   https://cran.r-project.org/web/packages/RMySQL/index.html      
 –   Oracle:   https://cran.r-project.org/web/packages/ROracle/index.html      
 –   PostgreSQL:   https://cran.r-project.org/web/packages/RPostgreSQL/index.html      
 –   SQLite:   https://cran.r-project.org/web/packages/RSQLite/index.html      
 –   Open Database Connectivity databases:   https://cran.rstudio.com/web/packages/

RODBC/         

•   Importing data from commercial software 2 

 –    The foreign package provides functions that help you load data fi les from 
other programs such as SPSS, SAS, Stata, and othe rs into R  .          

2   https://cran.r-project.org/doc/manuals/R-data.html#Importing-from-other-statistical-systems 
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    Chapter 16   
 Scraping Data                     

          Rapid growth of the World Wide Web has signifi cantly changed the way we share, 
collect, and publish data. Vast amount of information is being stored online, both in 
structured and unstructured forms. Regarding certain questions or research topics, 
this has resulted in a new problem—no longer is the concern of data scarcity and 
inaccessibility but, rather, one of overcoming the tangled masses of online data. 

 Collecting data from the web is not an easy process as there are many technolo-
gies used to distribute web content (i.e. HTML, XML, JSON). Therefore, dealing 
with more advanced web scraping requires familiarity in accessing data stored in 
these technologies via  R  . Through this chapter I will provide an introduction to 
some of the fundamental tools required to perform basic web scraping. This includes 
 importing spreadsheet data fi les stored online ,  scraping HTML text ,  scraping HTML 
table data , and  leveraging APIs     to scrape data. 

 My purpose in the following sections is to discuss these topics at a  level   meant to 
get you started in web scraping; however, this area is vast and complex and this 
chapter will far from provide you expertise  level   insight. To advance your knowl-
edge I highly recommend getting copies of  XML and Web Technologies for Data 
Sciences with R  (Nolan and Lang,  2014 ) and  Automated Data Collection with R  
(Munzert et al.,  2014 ). 

16.1      Importing Tabular and  Excel   Files Stored Online 

 The most basic form of getting data from online is to import tabular (i.e. . txt  , .csv) or 
 Excel   fi les that are being hosted online. This is often not considered  web scraping  1 ; 
however, I think its a good place to start introducing the user to interacting with the 
web for obtaining data. Importing tabular data is especially common for the many 

1   In Automated Data Collection with R Munzert et al. state that “[t]he fi rst way to get data from the 
web is almost too banal to be considered here and actually not a case of web scraping in the nar-
rower sense.” 
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types of government data available online. A quick perusal of Data.gov illustrates 
nearly 188,510 examples. In fact, we can provide our fi rst example of importing 
online tabular data by downloading the Data.gov  CSV   fi le that  lists   all the federal 
agencies that supply data to Data.gov.

      # the url for the online CSV  
  url <- "https://www.data.gov/media/federal-agency-participation.csv"  

      # use read.csv to import  
  data_gov <-   read.csv  (url, stringsAsFactors = FALSE)  

      # for brevity I only display fi rst 6 rows  
  data_gov[1:6,   c  (1,3:4)]  
  ##                                      Agency.Name Datasets Last.Entry  
  ## 1           Commodity Futures Trading Commission        3 01/12/2014  
  ## 2           Consumer Financial Protection Bureau        2 09/26/2015  
  ## 3           Consumer Financial Protection Bureau        2 09/26/2015  
  ## 4 Corporation for National and Community Service        3 01/12/2014  
  ## 5 Court Services and Offender Supervision Agency        1 01/12/2014  
  ## 6                      Department of Agriculture      698 12/01/2015  

    Downloading  Excel   spreadsheets hosted online can be performed just as easily. 
Recall that there is not a base  R   function for importing  Excel   data; however, several 
 packages   exist to handle this capability. One package that works smoothly with pull-
ing  Excel   data from URLs is gdata. With   gdata    we can use  read.xls()  to 
download this Fair Market Rents for Section 8 Housing  Excel   fi le from the given url.

       library    (gdata)  

      # the url for the online Excel fi le  
  url <- "http://www.huduser.org/portal/datasets/fmr/fmr2015f/FY2015F_4050_Final.xls"  

      # use read.xls to import  
  rents <-   read.xls  (url)  

      rents[1:6, 1:10]  
  ##    fi ps2000  fi ps2010 fmr2 fmr0 fmr1 fmr3 fmr4 county State CouSub  
  ## 1 100199999 100199999  788  628  663 1084 1288      1     1  99999  
  ## 2 100399999 100399999  762  494  643 1123 1318      3     1  99999  
  ## 3 100599999 100599999  670  492  495  834  895      5     1  99999  
  ## 4 100799999 100799999  773  545  652 1015 1142      7     1  99999  
  ## 5 100999999 100999999  773  545  652 1015 1142      9     1  99999  
  ## 6 101199999 101199999  599  481  505  791 1061     11     1  99999  

    Note that many of the  arguments   covered in the Importing Data chapter (i.e. 
specifying sheets to read from, skipping lines) also apply to  read.xls() . In addi-
tion,   gdata    provides some useful functions ( sheetCount()  and  sheet-
Names() ) for identifying if multiple sheets exist prior to downloading. 

 Another common form of fi le storage is using zip fi les. For instance, the Bureau 
of Labor Statistics (BLS) stores their public-use microdata for the Consumer 
Expenditure Survey in .zip fi les. 2  We can use   download.fi le()    to download the 
fi le to your working directory and then work with this data as desired.

2   http://www.bls.gov/cex/pumd_data.htm#csv 
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      url <- "http://www.bls.gov/cex/pumd/data/comma/diary14.zip"  

      # download .zip fi le and unzip contents  
  download.fi le  (url, dest="dataset.zip", mode="wb")   
   unzip     ("dataset.zip", exdir = "./")  

      # assess the fi les contained in the .zip fi le which  
  # unzips as a folder named "diary14"  
   list.fi les    ("diary14")  
  ##  [1] "dtbd141.csv" "dtbd142.csv" "dtbd143.csv" "dtbd144.csv" "dtid141.csv"  
  ##  [6] "dtid142.csv" "dtid143.csv" "dtid144.csv" "expd141.csv" "expd142.csv"  
  ## [11] "expd143.csv" "expd144.csv" "fmld141.csv" "fmld142.csv" "fmld143.csv"  
  ## [16] "fmld144.csv" "memd141.csv" "memd142.csv" "memd143.csv" "memd144.csv"  

      # alternatively, if we know the fi le we want prior to unzipping  
  # we can extract the fi le without unzipping using unz():  
  zip_data <-   read.csv  (  unz  ("dataset.zip", "diary14/expd141.csv"))  
  zip_data[1:5, 1:10]  
  ##     NEWID ALLOC COST GIFT PUB_FLAG    UCC EXPNSQDY EXPN_QDY EXPNWKDY   EXPN_KDY  
  ## 1 2825371     0 6.26    2        2 190112        1        D        3        D  
  ## 2 2825371     0 1.20    2        2 190322        1        D        3        D  
  ## 3 2825381     0 0.98    2        2  20510        3        D        2        D  
  ## 4 2825381     0 0.98    2        2  20510        3        D        2        D  
  ## 5 2825381     0 2.50    2        2  20510        3        D        2        D  

    The .zip archive fi le format is meant to compress fi les and are typically used on 
fi les of signifi cant size. For instance, the Consumer Expenditure Survey data we 
downloaded in the previous example is over 10 MB. Obviously there may be times 
in which we want to get specifi c data in the .zip fi le to analyze but not always per-
manently store the entire .zip fi le contents. In these instances we can use the follow-
ing process proposed by Dirk Eddelbuettel to temporarily download the .zip fi le, 
extract the desired data, and then discard the .zip fi le.

      # Create a temp. fi le name  
  temp <-    tempfi le  ()    

      # Use    download.fi le()     to fetch the fi le into the temp. fi le  
  download.fi le  ("http://www.bls.gov/cex/pumd/data/comma/diary14.zip",temp)  

      # Use unz() to extract the target fi le from temp. fi le  
  zip_data2 <-   read.csv  (  unz  (temp, "diary14/expd141.csv"))  

      # Remove the temp fi le via    unlink()    
  unlink  (temp)  

      zip_data2[1:5, 1:10]  
  ##     NEWID ALLOC COST GIFT PUB_FLAG    UCC EXPNSQDY EXPN_QDY EXPNWKDY   EXPN_KDY  
  ## 1 2825371     0 6.26    2        2 190112        1        D        3        D  
  ## 2 2825371     0 1.20    2        2 190322        1        D        3        D  
  ## 3 2825381     0 0.98    2        2  20510        3        D        2        D  
  ## 4 2825381     0 0.98    2        2  20510        3        D        2        D  
  ## 5 2825381     0 2.50    2        2  20510        3        D        2        D  
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    One last common scenario I’ll cover when importing spreadsheet data from 
online is when we identify multiple data sets that we’d like to download but are not 
centrally stored in a .zip format or the like. As a simple example lets look at the 
average consumer price data from the BLS. 3  The BLS holds multiple data sets for 
different types of commodities within one url; however, there are separate links for 
each individual data set. 4  More complicated cases of this will have the links to tabu-
lar data sets scattered throughout a webpage. 5  The XML  package   provides the use-
ful   getHTMLLinks()    function to identify these links.

       library    (XML)  

      # url hosting multiple links to data sets  
  url <- "http://download.bls.gov/pub/time.series/ap/"  

      # identify the links available  
  links <-   getHTMLLinks  (url)  

      links  
  ##  [1] "/pub/time.series/"                             
  ##  [2] "/pub/time.series/ap/ap.area"                   
  ##  [3] "/pub/time.series/ap/ap.contacts"               
  ##  [4] "/pub/time.series/ap/ap.data.0.Current"         
  ##  [5] "/pub/time.series/ap/ap.data.1.HouseholdFuels"  
  ##  [6] "/pub/time.series/ap/ap.data.2.Gasoline"        
  ##  [7] "/pub/time.series/ap/ap.data.3.Food"            
  ##  [8] "/pub/time.series/ap/ap.footnote"               
  ##  [9] "/pub/time.series/ap/ap.item"                   
  ## [10] "/pub/time.series/ap/ap.period"                 
  ## [11] "/pub/time.series/ap/ap.series"                 
  ## [12] "/pub/time.series/ap/ap.txt"  

    This allows us to assess which fi les exist that may be of interest. In this case the 
links that we are primarily interested in are the ones that contain “data” in their 
name (links 4–7 listed above). We can use the stringr package to extract these 
desired links which we will use to download the data.

       library    (stringr)  

      # extract names for desired links and paste to url  
  links_data <- links[  str_detect  (links, "data")]  

      # paste url to data links to have full url for data sets  
  # use str_sub and regexpr to paste links at appropriate   
  # starting point  
  fi lenames <-   paste0  (url,   str_sub  (links_data,   
                      start =   regexpr  ("ap.data", links_data)))  

3   http://www.bls.gov/data/#prices 
4   http://download.bls.gov/pub/time.series/ap/ 
5   An example is provided in Automated Data Collection with R in which they use a similar 
approach to extract desired CSV fi les scattered throughout the Maryland State Board of Elections 
websiteMaryland State Board of Elections website. 
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      fi lenames  
  ## [1] "http://download.bls.gov/pub/time.series/ap/ap.data.0.Current"         
  ## [2] "http://download.bls.gov/pub/time.series/ap/ap.data.1.HouseholdFuels"  
  ## [3] "http://download.bls.gov/pub/time.series/ap/ap.data.2.Gasoline"        
  ## [4] "http://download.bls.gov/pub/time.series/ap/ap.data.3.Food"  

    We can now proceed to develop a simple  for  loop function (which you will learn 
about in the loop control statements chapter) to download each data set. We store the 
results in a  list   which contains 4 items, one item for each data set. Each list item 
contains the url in which the data was extracted from and the dataframe containing 
the downloaded data. We’re now ready to analyze these data sets as necessary.

      # create empty list to dump data into  
  data_ls <-    list  ()    

      for(i in 1:  length  (fi lenames)){  
          url <- fi lenames[i]  
          data <-   read.delim  (url)  
          data_ls[[  length  (data_ls) + 1]] <-   list  (url = fi lenames[i], data = data)  
  }  

      str  (data_ls)  
  ## List of 4  
  ##  $ :List of 2  
  ##   ..$ url : chr "http://download.bls.gov/pub/time.series/ap/ap.data.0.Current"  
  ##   ..$ data:'data.frame': 144712 obs. of  5 variables:  
  ##   .. ..$ series_id     : Factor w/ 878 levels "APU0000701111    ",..: 1 1 …  
  ##   .. ..$ year          : int [1:144712] 1995 1995 1995 1995 1995 1995 …  
  ##   .. ..$ period        : Factor w/ 12 levels "M01","M02","M03",..: 1 2 3 4 …  
  ##   .. ..$ value         : num [1:144712] 0.238 0.242 0.242 0.236 0.244 …  
  ##   .. ..$ footnote_codes: logi [1:144712] NA NA NA NA NA NA …  
  ##  $ :List of 2  
  ##   ..$ url : chr "http://download.bls.gov/pub/time.series/ap/ap.data.1.Hou…"  
  ##   ..$ data:'data.frame': 90339 obs. of  5 variables:  
  ##   .. ..$ series_id     : Factor w/ 343 levels "APU000072511     ",..: 1 1 …  
  ##   .. ..$ year          : int [1:90339] 1978 1978 1979 1979 1979 1979 1979 …  
  ##   .. ..$ period        : Factor w/ 12 levels "M01","M02","M03",..: 11 12 …  
  ##   .. ..$ value         : num [1:90339] 0.533 0.545 0.555 0.577 0.605 0.627 …  
  ##   .. ..$ footnote_codes: logi [1:90339] NA NA NA NA NA NA …  
  ##  $ :List of 2  
  ##   ..$ url : chr "http://download.bls.gov/pub/time.series/ap/ap.data.2.Gas…"  
  ##   ..$ data:'data.frame': 69357 obs. of  5 variables:  
  ##   .. ..$ series_id     : Factor w/ 341 levels "APU000074712     ",..: 1 1 …  
  ##   .. ..$ year          : int [1:69357] 1973 1973 1973 1974 1974 1974 1974 …  
  ##   .. ..$ period        : Factor w/ 12 levels "M01","M02","M03",..: 10 11 …  
  ##   .. ..$ value         : num [1:69357] 0.402 0.418 0.437 0.465 0.491 0.528 …  
  ##   .. ..$ footnote_codes: logi [1:69357] NA NA NA NA NA NA …  
  ##  $ :List of 2  
  ##   ..$ url : chr "http://download.bls.gov/pub/time.series/ap/ap.data.3.Food"  
  ##   ..$ data:'data.frame': 122302 obs. of  5 variables:  
  ##   .. ..$ series_id     : Factor w/ 648 levels "APU0000701111    ",..: 1 1 …  
  ##   .. ..$ year          : int [1:122302] 1980 1980 1980 1980 1980 1980 1980 …  
  ##   .. ..$ period        : Factor w/ 12 levels "M01","M02","M03",..: 1 2 3 4 …  
  ##   .. ..$ value         : num [1:122302] 0.203 0.205 0.211 0.206 0.207 0.21 …  
  ##   .. ..$ footnote_codes: logi [1:122302] NA NA NA NA NA NA …  
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    These examples provide the basics required for downloading most tabular and 
 Excel   fi les from online. However, this is just the beginning of importing/ scraping 
data   from the web. Next, we’ll start exploring the more conventional forms of scrap-
ing text and data stored in  HTML   webpages.  

16.2      Scraping  HTML   Text 

 Vast amount of information exists across the interminable online webpages. Much 
of this information are “unstructured” text that may be useful in our analyses. This 
section covers the basics of scraping these texts from online sources. Throughout 
this section I will illustrate how to extract different text components of webpages by 
dissecting the Wikipedia page on web scraping. However, its important to fi rst cover 
one of the basic components of HTML elements as we will leverage this informa-
tion to pull desired information. I offer only enough insight required to begin scrap-
ing; I highly recommend  XML and Web Technologies for Data Sciences with R  and 
 Automated Data Collection with R  to learn more about HTML and XML element 
structures. 

  HTML   elements are written with a start tag, an end tag, and with the content in 
between:  <tagname>content</tagname> . The tags which typically contain 
the textual content we wish to scrape, and the tags we will leverage in the next two 
sections, include:

•     <h1> ,  <h2> ,…, <h6> : Largest heading, second largest heading, etc.  
•    <p> : Paragraph elements  
•    <ul> : Unordered bulleted list  
•    <ol> : Ordered  list    
•    <li> : Individual list item  
•    <div> : Division or section  
•    <table> : Table    

 For example, text in paragraph form that you see online are wrapped with the 
 HTML   paragraph tag  <p>  as in:

      <p>  
  This paragraph represents  
  a typical text paragraph  
  in HTML form  
  <  /  p>  

    It is through these tags that we can start to extract textual components (also 
referred to as nodes) of  HTML   webpages. 
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16.2.1     Scraping  HTML   Nodes 

 To scrape online text we’ll make use of the relatively newer rvest package.   rvest    
was created by the  RStudio   team inspired by libraries such as beautiful soup which 
has greatly simplifi ed web scraping.   rvest    provides multiple functionalities; how-
ever, in this section we will focus only on extracting  HTML   text with   rvest   . Its 
important to note that   rvest    makes use of the  pipe operator   ( %>% ) developed 
through the magrittr package. If you are not familiar with the functionality of  %>%  
I recommend you jump to the chapter on   Simplifying Your Code with %>%     so that 
you have a better understanding of what’s going on with the code. 

 To extract text from a webpage of interest, we specify what  HTML   elements we 
want to select by using   html_nodes()   . For instance, if we want to scrape the 
primary heading for the Web Scraping Wikipedia webpage we simply identify the 
 <h1>  node as the node we want to select.   html_nodes()    will identify all  <h1>  
nodes on the webpage and return the  HTML   element. In our example we see there 
is only one  <h1>  node on this webpage.

       library    (rvest)  

      scraping_wiki <-    read_html    ("https://en.wikipedia.org/wiki/Web_scraping")  

      scraping_wiki %>%  
          html_nodes  ("h1")  
  ## {xml:nodeset (1)}  
  ## [1] <h1 id="fi rstHeading" class="fi rstHeading" lang="en">Web scraping</h1>  

    To extract only the heading text for this  <h1>  node, and not include all the 
 HTML    syntax   we use   html_text()    which returns the heading text we see at the 
top of the Web Scraping Wikipedia page.

      scraping_wiki %>%  
          html_nodes  ("h1") %>%  
           html_text  ()    
  ## [1] "Web scraping"  

    If we want to identify all the second  level   headings on the webpage we follow the 
same process but instead select the  <h2>  nodes. In this example we see there are 
ten second  level   headings on the Web Scraping Wikipedia page.

      scraping_wiki %>%  
          html_nodes  ("h2") %>%  
           html_text  ()    
  ##  [1] "Contents"                               
  ##  [2] "Techniques[edit]"                       
  ##  [3] "Legal issues[edit]"                     
  ##  [4] "Notable tools[edit]"                    
  ##  [5] "See also[edit]"                         
  ##  [6] "Technical measures to stop bots[edit]"  
  ##  [7] "Articles[edit]"                         
  ##  [8] "References[edit]"                       
  ##  [9] "See also[edit]"                         
  ## [10] "Navigation menu"  
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    Next, we can move on to extracting much of the text on this webpage which is in 
paragraph form. We can follow the same process illustrated above but instead we’ll 
select all  <p>  nodes. This selects the 17 paragraph elements from the web page; 
which we can examine by  subsetting   the  list    p_nodes  to see the fi rst line of each 
paragraph along with the  HTML    syntax  . Just as before, to extract the text from these 
nodes and coerce them to a character  string   we simply apply   html_text()   .

      p_nodes <- scraping_wiki %>%   
          html_nodes  ("p")  

      length  (p_nodes)  
  ## [1] 17  

      p_nodes[1:6]  
  ## {xml:nodeset (6)}  
  ## [1] <p>Web scraping (web harvesting or web data extract …  
  ## [2] <p>Web scraping is closely related to <a href="/wiki/Web_indexing" t …  
  ## [3] <p/>  
  ## [4] <p/>  
  ## [5] <p>Web scraping is the process of automatically collecting informati …  
  ## [6] <p>Web scraping may be against the <a href="/wiki/Terms_of_use" titl …  

      p_text <- scraping_wiki %>%  
          html_nodes  ("p") %>%  
           html_text  ()    

      p_text[1]  
  ## [1] "Web scraping (web harvesting or web data extraction) is a 
computer software technique of extracting information from web-
sites. Usually, such software programs simulate human exploration 
of the World Wide Web by either implementing low-level Hypertext 
Transfer Protocol (HTTP), or embedding a fully-fl edged web browser, 
such as Mozilla Firefox."  

    Not too bad; however, we may not have captured all the text that we were hoping 
for. Since we extracted text for all  <p>  nodes, we collected all identifi ed paragraph 
text; however, this does not capture the text in the bulleted  lists  . For example, when 
you look at the Web Scraping Wikipedia page you will notice a signifi cant amount 
of text in bulleted  list   format following the third paragraph under the Techniques 
heading. If we look at our data we’ll see that that the text in this  list   format are not 
capture between the two paragraphs:

      p_text[5]  
  ## [1] "Web scraping is the process of automatically collecting 
information from the World Wide Web. It is a fi eld with active 
developments sharing a common goal with the semantic web vision, 
an ambitious initiative that still requires breakthroughs in text 
processing, semantic understanding, artifi cial intelligence and 
human-computer interactions. Current web scraping solutions range 
from the ad-hoc, requiring human effort, to fully automated sys-
tems that are able to convert entire web sites into structured 
information, with limitations."  
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      p_text[6]  
  ## [1] "Web scraping may be against the terms of use of some websites. 
The enforceability of these terms is unclear.[4] While outright duplica-
tion of original expression will in many cases be illegal, in the United 
States the courts ruled in Feist Publications v. Rural Telephone Service 
that duplication of facts is allowable. U.S. courts have acknowledged 
that users of \"scrapers\" or \"robots\" may be held liable for commit-
ting trespass to chattels,[5][6] which involves a computer system itself 
being considered personal property upon which the user of a scraper is 
 trespassing. The best known of these cases, eBay v. Bidder's Edge, 
resulted in an injunction ordering Bidder's Edge to stop accessing, col-
lecting, and indexing  auctions from the eBay web site. This case involved 
automatic placing of bids, known as auction sniping. However, in order 
to succeed on a claim of trespass to chattels, the plaintiff must dem-
onstrate that the defendant intentionally and without  authorization 
interfered with the plaintiff's possessory interest in the computer sys-
tem and that the defendant's unauthorized use caused damage to the plain-
tiff. Not all cases of web spidering brought before the courts have been 
considered trespass to chattels.[7]"  

    This is because the text in this  list   format are contained in  <ul>  nodes. To capture 
the text in lists, we can use the same steps as above but we select specifi c nodes which 
represent  HTML    lists   components. We can approach extracting  list   text two ways.

First, we can pull all list elements ( <ul> ). When scraping all  <ul>  text, the 
resulting data  structure   will be a character  string    vector   with each element repre-
senting a single  list   consisting of all list items in that list. In our running example 
there are 21 list elements as shown in the example that follows. You can see the fi rst 
list scraped is the table of contents and the second list scraped is the list in the 
Techniques section.

      ul_text <- scraping_wiki %>%  
          html_nodes  ("ul") %>%  
           html_text  ()    

      length  (ul_text)  
  ## [1] 21  

      ul_text[1]  
  ## [1] "\n1 Techniques\n2 Legal issues\n3 Notable tools\n4 See 
also\n5 Technical measures to stop bots\n6 Articles\n7 References\
n8 See also\n"  

      # read the fi rst 200 characters of the second list  
  substr  (ul_text[2], start = 1, stop = 200)  
  ## [1] "\nHuman copy-and-paste: Sometimes even the best web- 
scraping technology cannot replace a human’s manual examination 
and copy-and-paste, and sometimes this may be the only workable 
solution when the web"  

    An alternative approach is to pull all  <li>  nodes. This will pull the text con-
tained in each list item for all the lists. In our running example there’s 146 list items 
that we can extract from this Wikipedia page. The fi rst eight list items are the list of 
contents we see towards the top of the page. List items 9–17 are the list elements 
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contained in the “Techniques” section, list items 18–44 are the items listed under the 
“Notable Tools” section, and so on.

      li_text <- scraping_wiki %>%  
          html_nodes  ("li") %>%  
           html_text  ()    

      length  (li_text)  
  ## [1] 147  

      li_text[1:8]  
  ## [1] "1 Techniques"                      "2 Legal issues"                     
  ## [3] "3 Notable tools"                   "4 See also"                         
  ## [5] "5 Technical measures to stop bots" "6 Articles"                         
  ## [7] "7 References"                      "8 See also"  

    At this point we may believe we have all the text desired and proceed with join-
ing the paragraph ( p_text ) and list ( ul_text  or  li_text )  character strings   
and then perform the desired textual analysis. However, we may now have captured 
 more  text than we were hoping for. For example, by scraping all  lists   we are also 
capturing the listed links in the left margin of the webpage. If we look at the 104–
136  list   items that we scraped, we’ll see that these texts correspond to the left mar-
gin text.

      li_text[104:136]  
  ##  [1] "Main page"           "Contents"            "Featured content"     
  ##  [4] "Current events"      "Random article"      "Donate to Wikipedia"  
  ##  [7] "Wikipedia store"     "Help"                "About Wikipedia"      
  ## [10] "Community portal"    "Recent changes"      "Contact page"         
  ## [13] "What links here"     "Related changes"     "Upload fi le"          
  ## [16] "Special pages"       "Permanent link"      "Page information"     
  ## [19] "Wikidata item"       "Cite this page"      "Create a book"        
  ## [22] "Download as PDF"     "Printable version"   "Català"               
  ## [25] "Deutsch"             "Español"             "Français"             
  ## [28] "Íslenska"            "Italiano"            "Latviešu"             
  ## [31] "Nederlands"          " "              "Cpпcки / srpski"  

    If we desire to scrape every piece of text on the webpage than this won’t be of 
concern. In fact, if we want to scrape all the text regardless of the content they rep-
resent there is an easier approach. We can capture all the content to include text in 
paragraph ( <p> ),  lists   ( <ul> ,  <ol> , and  <li> ), and even data in tables ( <table> ) 
by using  <div> . This is because these other elements are usually a subsidiary of an 
 HTML   division or section so pulling all  <div>  nodes will extract all text contained 
in that division or section regardless if it is also contained in a paragraph or  list  .

      all_text <- scraping_wiki %>%  
          html_nodes  ("div") %>%   
           html_text  ()    
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16.2.2         Scraping Specifi c  HTML   Nodes 

 However, if we are concerned only with specifi c content on the webpage then we 
need to make our HTML node selection process a little more focused. To do this we, 
we can use our browser’s developer tools to examine the webpage we are scraping 
and get more details on specifi c nodes of interest. If you are using Chrome or Firefox 
you can open the developer tools by clicking F12 (Cmd + Opt + I for Mac) or for 
Safari you would use Command-Option-I. An additional option which is recom-
mended by Hadley Wickham is to use selectorgadget.com, a Chrome extension, to 
help identify the web page elements you need. 6  

 Once the developer’s tools are opened your primary concern is with the  element 
selector  . This is located in the top lefthand corner of the developers tools window.

    Developer Tools: Element Selector   

    

    Once you’ve selected the  element selector   you can now scroll over the elements 
of the webpage which will cause each element you scroll over to be highlighted. 
Once you’ve identifi ed the element you want to focus on, select it. This will cause 
the element to be identifi ed in the developer tools window. For example, if I am only 
interested in the main body of the Web Scraping content on the Wikipedia page then 
I would select the element that highlights the entire center component of the web-
page. This highlights the corresponding element  <div id="bodyContent" 
class="mw-body-content">  in the developer tools window as the following 
illustrates.

6   You can learn more about selectors at  fl ukeout.github.io 
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    Selecting Content of Interest   

    

    I can now use this information to select and scrape all the text from this specifi c 
 <div>  node by calling the ID name (“#mw-content-text”) in   html_nodes()    .  7  
As you can see below, the text that is scraped begins with the fi rst line in the main 
body of the Web Scraping content and ends with the text in the See Also section 
which is the last bit of text directly pertaining to Web Scraping on the webpage. 
Explicitly, we have pulled the specifi c text associated with the web content we desire.

      body_text <- scraping_wiki %>%  
          html_nodes  ("#mw-content-text") %>%   
           html_text  ()    

      # read the fi rst 207 characters  
  substr  (body_text, start = 1, stop = 207)  
  ## [1] "Web scraping (web harvesting or web data extraction) is a 
computer software technique of extracting information from web-
sites. Usually, such software programs simulate human exploration 
of the World Wide Web"  

      # read the last 73 characters  
  substr  (body_text, start =   nchar  (body_text)-73, stop =   nchar  (body_text))  
  ## [1] "See also[edit]\n\nData scraping\nData wrangling\nKnowledge 
extraction\n\n\n\n\n\n\n\n\n"  

7   You can simply assess the name of the ID in the highlighted element or you can right click the 
highlighted element in the developer tools window and select  Copy selector . You can then paste 
directly into ` html_nodes()  as it will paste the exact ID name that you need for that element. 
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    Using the developer tools approach allows us to be as specifi c as we desire. 
We can identify the class name for a specifi c  HTML   element and scrape the text for 
only that node rather than all the other elements with similar tags. This allows us to 
scrape the main body of content as we just illustrated or we can also identify specifi c 
headings, paragraphs,  lists  , and list components if we desire to scrape only these 
specifi c pieces of text:

      # Scraping a specifi c heading  
  scraping_wiki %>%  
          html_nodes  ("#Techniques") %>%   
           html_text  ()    
  ## [1] "Techniques"  

      # Scraping a specifi c paragraph  
  scraping_wiki %>%  
          html_nodes  ("#mw-content-text > p:nth-child(20)") %>%   
           html_text  ()    
  ## [1] "In Australia, the Spam Act 2003 outlaws some forms of web harvesting, 
although this only applies to email addresses.[20][21]"  

      # Scraping a specifi c list  
  scraping_wiki %>%  
          html_nodes  ("#mw-content-text > div:nth-child(22)") %>%   
           html_text  ()    
  ## [1] "\n\nApache Camel\nArchive.is\nAutomation Anywhere\nCon-
vertigo\ncURL\nData Toolbar\nDiffbot\nFirebug\nGreasemonkey\nHer-
itrix\nHtmlUnit\nHTTrack\niMacros\nImport.io\nJaxer\nNode.js\
nnokogiri\nPhantomJS\nScraperWiki\nScrapy\nSelenium\nSimpleTest\n
watir\nWget\nWireshark\nWSO2 Mashup Server\nYahoo! Query Language 
(YQL)\n\n"  

      # Scraping a specifi c reference list item  
  scraping_wiki %>%  
          html_nodes  ("#cite_note-22") %>%   
           html_text  ()    
  ## [1] "̂  \"Web Scraping: Everything You Wanted to Know (but were afraid to ask)\". 
Distil Networks. 2015-07-22. Retrieved 2015-11-04. "  

16.2.3         Cleaning Up 

 With any webscraping activity, especially involving text, there is likely to be some 
clean up involved. For example, in the previous example we saw that we can spe-
cifi cally pull the list of  Notable Tools ; however, you can see that in between each 
 list   item rather than a space there contains one or more  \n  which is used in  HTML   
to specify a new line. We can clean this up quickly with a little character string    
manipulation.
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       library    (magrittr)  

      scraping_wiki %>%  
          html_nodes  ("#mw-content-text > div:nth-child(22)") %>%   
           html_text  ()    
  ## [1] "\n\nApache Camel\nArchive.is\nAutomation Anywhere\nConvertigo\ncURL\nData 
Toolbar\nDiffbot\nFirebug\nGreasemonkey\nHeritrix\nHtmlUnit\nHTTrack\niMacros\nImport.
io\nJaxer\nNode.js\nnokogiri\nPhantomJS\nScraperWiki\nScrapy\nSelenium\nSimpleTest\n
watir\nWget\nWireshark\nWSO2 Mashup Server\nYahoo! Query Language (YQL)\n\n"  

      scraping_wiki %>%  
          html_nodes  ("#mw-content-text > div:nth-child(22)") %>%   
           html_text  ()     %>%   
          strsplit  (split = "\n") %>%  
           unlist  ()     %>%  
          .[. != ""]  
  ##  [1] "Apache Camel"                "Archive.is"                   
  ##  [3] "Automation Anywhere"         "Convertigo"                   
  ##  [5] "cURL"                        "Data Toolbar"                 
  ##  [7] "Diffbot"                     "Firebug"                      
  ##  [9] "Greasemonkey"                "Heritrix"                     
  ## [11] "HtmlUnit"                    "HTTrack"                      
  ## [13] "iMacros"                     "Import.io"                    
  ## [15] "Jaxer"                       "Node.js"                      
  ## [17] "nokogiri"                    "PhantomJS"                    
  ## [19] "ScraperWiki"                 "Scrapy"                       
  ## [21] "Selenium"                    "SimpleTest"                   
  ## [23] "watir"                       "Wget"                         
  ## [25] "Wireshark"                   "WSO2 Mashup Server"           
  ## [27] "Yahoo! Query Language (YQL)"  

    Similarly, as we saw in our example above with scraping the main body content 
( body_text ), there are extra characters (i.e.  \n ,  \ ,  ̂  ) in the text that we may not 
want. Using a little regex we can clean this up so that our character  string   consists 
of only text that we see on the screen and no additional  HTML   code embedded 
throughout the text.

       library    (stringr)  

      # read the last 700 characters  
  substr  (body_text, start =   nchar  (body_text)-700, stop =   nchar  (body_text))  
  ## [1] " 2010). \"Intellectual Property: Website Terms of Use\". Issue 26: June 2010. 
LK Shields Solicitors Update. p. 03. Retrieved 2012-04-19. \n̂  National Offi ce for 
the Information Economy (February 2004). \"Spam Act 2003: An overview for business\" 
(PDF). Australian Communications Authority. p. 6. Retrieved 2009-03-09. \n̂  National 
Offi ce for the Information Economy (February 2004). \"Spam Act 2003: A practical 
guide for business\" (PDF). Australian Communications Authority. p. 20. Retrieved 
2009-03-09. \n̂  \"Web Scraping: Everything You Wanted to Know (but were afraid to 
ask)\". Distil Networks. 2015-07-22. Retrieved 2015-11-04. \n\n\nSee 
also[edit]\n\nData scraping\nData wrangling\nKnowledge extraction\n\n\n\n\n\n\n\n\n"  
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      # clean up text  
  body_text %>%  
          str_replace_all  (pattern = "\n", replacement = " ") %>%  
          str_replace_all  (pattern = "[\\^]", replacement = " ") %>%  
          str_replace_all  (pattern = "\"", replacement = " ") %>%  
          str_replace_all  (pattern = "\\s+", replacement = " ") %>%  
          str_trim  (side = "both") %>%  
         
 substr  (start =   nchar  (body_text)-700, stop =   nchar  (body_text))  
  ## [1] "012-04-19. National Offi ce for the Information Economy (February 2004). Spam 
Act 2003: An overview for business (PDF). Australian Communications Authority. p. 6. 
Retrieved 2009-03-09. National Offi ce for the Information Economy (February 2004). 
Spam Act 2003: A practical guide for business (PDF). Australian Communications 
Authority. p. 20. Retrieved 2009-03-09. Web Scraping: Everything You Wanted to Know 
(but were afraid to ask) . Distil Networks. 2015-07-22. Retrieved 2015-11-04. See 
also[edit] Data scraping Data wrangling Knowledge extraction"  

    So there we have it, text scraping in a nutshell. Although not all encompassing, 
this section covered the basics of scraping text from  HTML   documents. Whether 
you want to scrape text from all common text-containing nodes such as  <div> , 
 <p> ,  <ul>  and the like or you want to scrape from a specifi c node using the specifi c 
ID, this section provides you the basic fundamentals of using   rvest    to scrape the 
text you need. In the next section we move on to  scraping data   from  HTML   tables.   

16.3      Scraping  HTML   Table Data 

 Another common structure of information storage on the Web is in the form of  HTML   
tables. This section reiterates some of the information from the previous section; 
however, we focus solely on  scraping data   from  HTML   tables. The simplest approach 
to scraping  HTML   table data directly into  R   is by using either the  rvest package  or the 
 XML package . To illustrate, I will focus on the BLS employment statistics webpage 
which contains multiple  HTML   tables from which we can scrape data. 

16.3.1      Scraping  HTML   Tables with  rvest   

 Recall that  HTML   elements are written with a start tag, an end tag, and with the 
content in between:  <tagname>content</tagname> .  HTML   tables are con-
tained within  <table>  tags; therefore, to extract the tables from the BLS employ-
ment statistics webpage we fi rst use the   html_nodes()    function to select the 
 <table>  nodes. In this case we are interested in all table nodes that exist on the 
webpage. In this example,  html_nodes  captures 15  HTML   tables. This includes 
data from the 10 data tables seen on the webpage but also includes data from a few 
additional tables used to format parts of the page (i.e. table of contents, table of 
fi gures, advertisements).
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       library    (rvest)  

      webpage <-    read_html    ("http://www.bls.gov/web/empsit/cesbmart.htm")  

      tbls <-   html_nodes  (webpage, "table")  

      head  (tbls)  
  ## {xml:nodeset (6)}  
  ## [1] <table id="main-content-table">&#13;\n\t<tr>&#13;\n\t\t<td id="secon …  
  ## [2] <table id="Table1" class="regular" cellspacing="0" cellpadding="0" x …  
  ## [3] <table id="Table2" class="regular" cellspacing="0" cellpadding="0" x …  
  ## [4] <table id="Table3" class="regular" cellspacing="0" cellpadding="0" x …  
  ## [5] <table id="Table4" class="regular" cellspacing="0" cellpadding="0" x …  
  ## [6] <table id="Exhibit1" class="regular" cellspacing="0" cellpadding="0" …  

    Remember that   html_nodes()    does not parse the data; rather, it acts as a CSS 
selector. To parse the  HTML   table data we use  html_table() , which would cre-
ate a  list   containing 15  data frames  . However, rarely do we need to scrape  every  
 HTML   table from a page, especially since some  HTML   tables don’t catch any infor-
mation we are likely interested in (i.e. table of contents, table of fi gures, footers). 

 More often than not we want to parse specifi c tables. Let’s assume we want to 
parse the second and third tables on the webpage:

•    Table 2. Nonfarm employment benchmarks by industry, March 2014 (in thou-
sands) and  

•   Table 3. Net birth/death estimates by industry supersector, April–December 2014 
(in thousands)    

 This can be accomplished two ways. First, we can assess the previous  tbls   list   
and try to identify the table(s) of interest. In this example it appears that  tbls  list 
items 3 and 4 correspond with Table 2 and Table 3, respectively. We can then subset 
the list of table nodes prior to parsing the data with  html_table() . This results 
in a list of two  data frames   containing the data of interest.

      # subset list of table nodes for items 3   &   4  
  tbls_ls <- webpage %>%  
          html_nodes  ("table") %>%  
          .[3:4] %>%  
          html_table  (fi ll = TRUE)  

      str  (tbls_ls)  
  ## List of 2  
  ##  $ :'data.frame':    147 obs. of  6 variables:  
  ##   ..$ CES Industry Code : chr [1:147] "Amount" "00-000000" "05- 000000" …  
  ##   ..$ CES Industry Title: chr [1:147] "Percent" "Total nonfarm" …  
  ##   ..$ Benchmark         : chr [1:147] NA "137,214" "114,989" "18,675" …  
  ##   ..$ Estimate          : chr [1:147] NA "137,147" "114,884" "18,558" …  
  ##   ..$ Differences       : num [1:147] NA 67 105 117 -50 -12 -16 -2.8 …  
  ##   ..$ NA                : chr [1:147] NA "(1)" "0.1" "0.6" …  
  ##  $ :'data.frame':    11 obs. of  12 variables:  
  ##   ..$ CES Industry Code : chr [1:11] "10-000000" "20-000000" "30-000000" …  
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  ##   ..$ CES Industry Title: chr [1:11] "Mining and logging" "Construction" …  
  ##   ..$ Apr               : int [1:11] 2 35 0 21 0 8 81 22 82 12 …  
  ##   ..$ May               : int [1:11] 2 37 6 24 5 8 22 13 81 6 …  
  ##   ..$ Jun               : int [1:11] 2 24 4 12 0 4 5 -14 86 6 …  
  ##   ..$ Jul               : int [1:11] 2 12 -3 7 -1 3 35 7 62 -2 …  
  ##   ..$ Aug               : int [1:11] 1 12 4 14 3 4 19 21 23 3 …  
  ##   ..$ Sep               : int [1:11] 1 7 1 9 -1 -1 -12 12 -33 -2 …  
  ##   ..$ Oct               : int [1:11] 1 12 3 28 6 16 76 35 -17 4 …  
  ##   ..$ Nov               : int [1:11] 1 -10 2 10 3 3 14 14 -22 1 …  
  ##   ..$ Dec               : int [1:11] 0 -21 0 4 0 10 -10 -3 4 1 …  
  ##   ..$ CumulativeTotal   : int [1:11] 12 108 17 129 15 55 230 107 266 29 …  

    An alternative approach, which is more explicit, is to use the element selector 
process described in the previous section to call the table ID name.

      # empty list to add table data to  
  tbls2_ls <-    list  ()    

      # scrape Table 2. Nonfarm employment…  
  tbls2_ls$Table1 <- webpage %>%  
          html_nodes  ("#Table2") %>%   
          html_table  (fi ll = TRUE) %>%  
          .[[1]]  

      # Table 3. Net birth/death…  
  tbls2_ls$Table2 <- webpage %>%  
          html_nodes  ("#Table3") %>%   
          html_table  () %>%  
          .[[1]]  

      str  (tbls2_ls)  
  ## List of 2  
  ##  $ Table1:'data.frame':  147 obs. of  6 variables:  
  ##   ..$ CES Industry Code : chr [1:147] "Amount" "00-000000" "05- 000000" …  
  ##   ..$ CES Industry Title: chr [1:147] "Percent" "Total nonfarm" …  
  ##   ..$ Benchmark         : chr [1:147] NA "137,214" "114,989" "18,675" …  
  ##   ..$ Estimate          : chr [1:147] NA "137,147" "114,884" "18,558" …  
  ##   ..$ Differences       : num [1:147] NA 67 105 117 -50 -12 -16 -2.8 …  
  ##   ..$ NA                : chr [1:147] NA "(1)" "0.1" "0.6" …  
  ##  $ Table2:'data.frame':  11 obs. of  12 variables:  
  ##   ..$ CES Industry Code : chr [1:11] "10-000000" "20-000000" "30-000000" …  
  ##   ..$ CES Industry Title: chr [1:11] "Mining and logging" "Construction" …  
  ##   ..$ Apr               : int [1:11] 2 35 0 21 0 8 81 22 82 12 …  
  ##   ..$ May               : int [1:11] 2 37 6 24 5 8 22 13 81 6 …  
  ##   ..$ Jun               : int [1:11] 2 24 4 12 0 4 5 -14 86 6 …  
  ##   ..$ Jul               : int [1:11] 2 12 -3 7 -1 3 35 7 62 -2 …  
  ##   ..$ Aug               : int [1:11] 1 12 4 14 3 4 19 21 23 3 …  
  ##   ..$ Sep               : int [1:11] 1 7 1 9 -1 -1 -12 12 -33 -2 …  
  ##   ..$ Oct               : int [1:11] 1 12 3 28 6 16 76 35 -17 4 …  
  ##   ..$ Nov               : int [1:11] 1 -10 2 10 3 3 14 14 -22 1 …  
  ##   ..$ Dec               : int [1:11] 0 -21 0 4 0 10 -10 -3 4 1 …  
  ##   ..$ CumulativeTotal   : int [1:11] 12 108 17 129 15 55 230 107 266 29 …  
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    One issue to note is when using   rvest   ’s  html_table()  to read a table with 
split column headings as in  Table 2. Nonfarm employment… .  html_table  will 
cause split headings to be included and can cause the fi rst row to include parts of the 
headings. We can see this with Table 2. This requires a little clean up.

      head  (tbls2_ls[[1]], 4)  
  ##   CES Industry Code CES Industry Title Benchmark Estimate Differences   NA  
  ## 1            Amount            Percent      <NA>     <NA>          NA <NA>  
  ## 2         00-000000      Total nonfarm   137,214  137,147          67  (1)  
  ## 3         05-000000      Total private   114,989  114,884         105  0.1  
  ## 4         06-000000    Goods-producing    18,675   18,558         117  0.6  

      # remove row 1 that includes part of the headings  
  tbls2_ls[[1]] <- tbls2_ls[[1]][-1,]  

      # rename table headings  
  colnames  (tbls2_ls[[1]]) <-   c  ("CES_Code", "Ind_Title", "Benchmark",  
                              "Estimate", "Amt_Diff", "Pct_Diff")  

      head  (tbls2_ls[[1]], 4)  
  ##    CES_Code         Ind_Title Benchmark Estimate Amt_Diff Pct_Diff  
  ## 2 00-000000     Total nonfarm   137,214  137,147       67      (1)  
  ## 3 05-000000     Total private   114,989  114,884      105      0.1  
  ## 4 06-000000   Goods-producing    18,675   18,558      117      0.6  
  ## 5 07-000000 Service-providing   118,539  118,589      -50      (1)  

16.3.2          Scraping  HTML   Tables with XML 

 An alternative to   rvest    for table scraping is to use the XML package. The XML 
package provides a convenient  readHTMLTable()  function to extract data from 
 HTML   tables in  HTML   documents. By passing the URL to  readHTMLTable() , 
the data in each table is read and stored as a  data frame  . In a situation like our run-
ning example where multiple tables exists, the  data frames   will be stored in a  list   
similar to  rvest ’s  html_table .

       library    (XML)  

      url <- "http://www.bls.gov/web/empsit/cesbmart.htm"  

      # read in HTML data  
  tbls_xml <-   readHTMLTable  (url)  

      typeof  (tbls_xml)  
  ## [1] "list"  

      length  (tbls_xml)  
  ## [1] 15  
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    You can see that  tbls_xml  captures the same 15  <table>  nodes that  html_
nodes  captured. To capture the same tables of interest we previously discussed 
( Table 2. Nonfarm employment…  and  Table 3. Net birth/death… ) we can use a cou-
ple approaches. First, we can assess  str(tbls_xml)  to identify the tables of 
interest and perform normal list subsetting. In our example list items 3 and 4 cor-
respond with our tables of interest.

      head  (tbls_xml[[3]])  
  ##          V1                        V2      V3      V4  V5   V6  
  ## 1 00-000000             Total nonfarm 137,214 137,147  67  (1)  
  ## 2 05-000000             Total private 114,989 114,884 105  0.1  
  ## 3 06-000000           Goods-producing  18,675  18,558 117  0.6  
  ## 4 07-000000         Service-providing 118,539 118,589 -50  (1)  
  ## 5 08-000000 Private service-providing  96,314  96,326 -12  (1)  
  ## 6 10-000000        Mining and logging     868     884 -16 -1.8  

      head  (tbls_xml[[4]], 3)  
  ##   CES Industry Code CES Industry Title Apr May Jun Jul Aug Sep Oct Nov Dec  
  ## 1         10-000000 Mining and logging   2   2   2   2   1   1   1   1   0  
  ## 2         20-000000       Construction  35  37  24  12  12   7  12 -10 -21  
  ## 3         30-000000      Manufacturing   0   6   4  -3   4   1   3   2   0  
  ##   CumulativeTotal  
  ## 1              12  
  ## 2             108  
  ## 3              17  

    Second, we can use the  which   argument   in  readHTMLTable()  which 
restricts the data importing to only those tables specifi ed numerically.

      # only parse the 3rd and 4th tables  
  emp_ls <-   readHTMLTable  (url, which =   c  (3, 4))  

      str  (emp_ls)  
  ## List of 2  
  ##  $ Table2:'data.frame':  145 obs. of  6 variables:  
  ##   ..$ V1: Factor w/ 145 levels "00-000000","05-000000",..: 1 2 3 4 5 6 7 8 …  
  ##   ..$ V2: Factor w/ 143 levels "Accommodation",..: 130 131 52 116 102 74 …  
  ##   ..$ V3: Factor w/ 145 levels "1,010.3","1,048.3",..: 40 35 48 37 145 140 …  
  ##   ..$ V4: Factor w/ 145 levels "1,008.4","1,052.3",..: 41 34 48 36 144 142 …  
  ##   ..$ V5: Factor w/ 123 levels "-0.3","-0.4",..: 113 68 71 48 9 19 29 11 …  
  ##   ..$ V6: Factor w/ 56 levels "-0.1","-0.2",..: 30 31 36 30 30 16 28 14 29 …  
  ##  $ Table3:'data.frame':  11 obs. of  12 variables:  
  ##   ..$ CES Industry Code : Factor w/ 11 levels "10-000000","20- 000000",..:1 …  
  ##   ..$ CES Industry Title: Factor w/ 11 levels "263","Construction",..: 8 2 …  
  ##   ..$ Apr               : Factor w/ 10 levels "0","12","2","204",..: 3 7 1 …  
  ##   ..$ May               : Factor w/ 10 levels "129","13","2",..: 3 6 8 5 7 …  
  ##   ..$ Jun               : Factor w/ 10 levels "-14","0","12",..: 5 6 7 3 2 …  
  ##   ..$ Jul               : Factor w/ 10 levels "-1","-2","-3",..: 6 5 3 10 …  
  ##   ..$ Aug               : Factor w/ 9 levels "-19","1","12",..: 2 3 9 4 8 …  
  ##   ..$ Sep               : Factor w/ 9 levels "-1","-12","-2",..: 5 8 5 9 1 …  
  ##   ..$ Oct               : Factor w/ 10 levels "-17","1","12",..: 2 3 6 5 9 …  
  ##   ..$ Nov               : Factor w/ 8 levels "-10","-15","-22",..: 4 1 7 5 …  
  ##   ..$ Dec               : Factor w/ 8 levels "-10","-21","-3",..: 4 2 4 7  …  
  ##   ..$ CumulativeTotal   : Factor w/ 10 levels "107","108","12",..: 3 2 6 4 …  
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    The third option involves explicitly  naming   the tables to parse. This process uses 
the element selector process described in the previous section to call the table by 
name. 8  We use   getNodeSet()    to select the specifi ed tables of interest. However, 
a key difference here is rather than copying the table ID names you want to copy the 
XPath. You can do this with the following: After you’ve highlighted the table ele-
ment of interest with the  element selector  , right click the highlighted element in the 
developer tools window and select Copy XPath. From here we just use  readHT-
MLTable()  to convert to  data frames   and we have our desired tables.

       library    (RCurl)  

      # parse url  
  url_parsed <-    htmlParse    (   getURL    (url), asText = TRUE)  

      # select table nodes of interest  
  tableNodes <-   getNodeSet  (url_parsed,   c  ('//*[@id="Table2"]', '//*[@
id="Table3"]'))  

      # convert HTML tables to data frames  
  bls_table2 <-   readHTMLTable  (tableNodes[[1]])  
  bls_table3 <-   readHTMLTable  (tableNodes[[2]])  

      head  (bls_table2)  
  ##          V1                        V2      V3      V4  V5   V6  
  ## 1 00-000000             Total nonfarm 137,214 137,147  67  (1)  
  ## 2 05-000000             Total private 114,989 114,884 105  0.1  
  ## 3 06-000000           Goods-producing  18,675  18,558 117  0.6  
  ## 4 07-000000         Service-providing 118,539 118,589 -50  (1)  
  ## 5 08-000000 Private service-providing  96,314  96,326 -12  (1)  
  ## 6 10-000000        Mining and logging     868     884 -16 -1.8  

      head  (bls_table3, 3)  
  ##   CES Industry Code CES Industry Title Apr May Jun Jul Aug Sep Oct Nov Dec  
  ## 1         10-000000 Mining and logging   2   2   2   2   1   1   1   1   0  
  ## 2         20-000000       Construction  35  37  24  12  12   7  12 -10 -21  
  ## 3         30-000000      Manufacturing   0   6   4  -3   4   1   3   2   0  
  ##   CumulativeTotal  
  ## 1              12  
  ## 2             108  
  ## 3              17  

    A few benefi ts of  XML ’s  readHTMLTable  that are routinely handy include:

•    We can specify names for the column headings  
•   We can specify the classes for each column  
•   We can specify rows to skip    

 For instance, if you look at  bls_table2  above notice that because of the split 
column headings on  Table 2. Nonfarm employment…   readHTMLTable  stripped 
and replaced the headings with generic names because  R   does not know which  variable 
names should align with each column. We can correct for this with the following:

8   See Sect. 16.2.2 Scraping Specifi c HTML Nodes for details regarding the element selector 
process. 
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      bls_table2 <-   readHTMLTable  (tableNodes[[1]],   
                              header =   c  ("CES_Code", "Ind_Title", "Benchmark",  
                              "Estimate", "Amt_Diff", "Pct_Diff"))  

      head  (bls_table2)  
  ##    CES_Code                 Ind_Title Benchmark Estimate Amt_Diff Pct_Diff  
  ## 1 00-000000             Total nonfarm   137,214  137,147       67      (1)  
  ## 2 05-000000             Total private   114,989  114,884      105      0.1  
  ## 3 06-000000           Goods-producing    18,675   18,558      117      0.6  
  ## 4 07-000000         Service-providing   118,539  118,589      -50      (1)  
  ## 5 08-000000 Private service-providing    96,314   96,326      -12      (1)  
  ## 6 10-000000        Mining and logging       868      884      -16     -1.8  

    Also, for  bls_table3  note that the net birth/death values parsed have been 
converted to  factor    levels  . We can use the  colClasses   argument   to correct this.

      str  (bls_table3)  
  ## 'data.frame':    11 obs. of  12 variables:  
  ##  $ CES Industry Code : Factor w/ 11 levels "10-000000","20- 000000",..: 1 2 …  
  ##  $ CES Industry Title: Factor w/ 11 levels "263","Construction",..: 8 2 7 …  
  ##  $ Apr               : Factor w/ 10 levels "0","12","2","204",..: 3 7 1 5 …  
  ##  $ May               : Factor w/ 10 levels "129","13","2",..: 3 6 8 5 7 9 …  
  ##  $ Jun               : Factor w/ 10 levels "-14","0","12",..: 5 6 7 3 2 7 …  
  ##  $ Jul               : Factor w/ 10 levels "-1","-2","-3",..: 6 5 3 10 1 7 …  
  ##  $ Aug               : Factor w/ 9 levels "-19","1","12",..: 2 3 9 4 8 9 5 …  
  ##  $ Sep               : Factor w/ 9 levels "-1","-12","-2",..: 5 8 5 9 1 1 …  
  ##  $ Oct               : Factor w/ 10 levels "-17","1","12",..: 2 3 6 5 9 4 …  
  ##  $ Nov               : Factor w/ 8 levels "-10","-15","-22",..: 4 1 7 5 8 …  
  ##  $ Dec               : Factor w/ 8 levels "-10","-21","-3",..: 4 2 4 7 4 6 …  
  ##  $ CumulativeTotal   : Factor w/ 10 levels "107","108","12",..: 3 2 6 4 5 …  

      bls_table3 <-   readHTMLTable  (tableNodes[[2]],   
                              colClasses =   c  ("character","character",   
                                              rep    ("integer", 10)))  

      str  (bls_table3)  
  ## 'data.frame':    11 obs. of  12 variables:  
  ##  $ CES Industry Code : Factor w/ 11 levels "10-000000","20- 
000000",..: 1 2 …  
  ##  $ CES Industry Title: Factor w/ 11 levels "263","Construction",..: 
8 2 7 …  
  ##  $ Apr               : int  2 35 0 21 0 8 81 22 82 12 …  
  ##  $ May               : int  2 37 6 24 5 8 22 13 81 6 …  
  ##  $ Jun               : int  2 24 4 12 0 4 5 -14 86 6 …  
  ##  $ Jul               : int  2 12 -3 7 -1 3 35 7 62 -2 …  
  ##  $ Aug               : int  1 12 4 14 3 4 19 21 23 3 …  
  ##  $ Sep               : int  1 7 1 9 -1 -1 -12 12 -33 -2 …  
  ##  $ Oct               : int  1 12 3 28 6 16 76 35 -17 4 …  
  ##  $ Nov               : int  1 -10 2 10 3 3 14 14 -22 1 …  
  ##  $ Dec               : int  0 -21 0 4 0 10 -10 -3 4 1 …  
  ##  $ CumulativeTotal   : int  12 108 17 129 15 55 230 107 266 29 …  

    Between   rvest    and  XML , scraping  HTML   tables is relatively easy once you get fl u-
ent with the  syntax   and the available options. This section covers just the basics of both 
these  packages   to get you moving forward with scraping tables. In the next section we 
move on to working with application program interfaces ( APIs  ) to get data from the web.   
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16.4      Working with  APIs   

 An application-programming interface ( API  ) in a nutshell is a method of communi-
cation between software programs.  APIs   allow programs to interact and use each 
other’s functions by acting as a middle man. Why is this useful? Let’s say you want 
to pull weather data from the NOAA. You have a few options:

•    You could query the data and download the spreadsheet or manually cut-n-paste 
the desired data and then impo rt into R  . Doesn’t get you any coolness points.  

•   You could use some webscraping techniques previously covered to parse the 
desired data. Golf clap. The downfall of this strategy is if NOAA changes their 
website structure down the road your code will need to be adjusted.  

•   Or, you can use the rnoaa  package   which allows you to send specifi c instructions 
to the NOAA API via  R  , the  API   will then perform the action requested and 
return the desired information. The benefi t of this strategy is if the NOAA 
changes its website structure it won’t impact the  API   data retreival structure 
which means no impact to your code. Standing ovation!    

 Consequently, APIs provide consistency in data retrieval processes which can be 
essential for recurring analyses. Luckily, the use of APIs by  organizations   that col-
lect data are growing exponentially. This is great for you and I as more and more 
data continues to be at our fi nger tips. So what do you need to get started? 

16.4.1     Prerequisites? 

 Each  API   is unique; however, there are a few fundamental pieces of information 
you’ll need to work with an API. First, the reason you’re using an API is to request 
specifi c types of data from a specifi c data set from a specifi c  organization  . You at 
least need to know a little something about each one of these:

    1.    The URL for the  organization   and data you are pulling. Most pre-built  API    pack-
ages   already have this connection established but when using   httr    you’ll need 
to specify.   

   2.    The data set you are trying to pull from. Most  organizations   have numerous data 
sets to peruse so you need to make yourself familiar with the names of the avail-
able data sets.   

   3.    The data content. You’ll need to specify the specifi c data variables you want the 
 API   to retrieve so you’ll need to be familiar with, or have access to, the data  library  .    

  In addition to these key components you will also, typically, need to provide a 
form of identifi cation and/or authorization. This is done via:

    1.     API    key   (aka token). A key is used to identify the user along with track and con-
trol how the  API   is being used (guard against malicious use). A key is often 
obtained by supplying basic information (i.e. name, email) to the  organization   
and in return they give you a multi-digit key.   
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   2.    OAuth.  OAuth   is an authorization framework that provides credentials as proof 
for access to certain information. 9  Multiple forms of credentials exist and  OAuth   
can actually be a fairly confusing topic; however, the   httr    package has simpli-
fi ed this greatly which we demonstrate at the end of this section.     

 Rather than dwell on these components, they’ll likely become clearer as we 
progress through examples. So, let’s move on to the fun stuff.  

16.4.2     Existing  API   Packages 

 Like everything else you do in  R  , when looking to work with an  API   your fi rst ques-
tion should be “Is there a package for that?” R has an extensive  list   of  packages   in 
which  API   data feeds have been hooked into R. You can fi nd a slew of them scat-
tered throughout the CRAN Task View: Web Technologies and Services web page, 10  
on the rOpenSci web page, 11  and elsewhere. 12  

 To give you a taste for how these  packages   typically work, I’ll quickly cover 
three  packages  :

•     blsAPI for pulling U.S. Bureau of Labor Statistics data   
•    rnoaa for pulling NOAA climate data   
•    rtimes for pulling data from multiple  APIs   offered by the New York Times     

16.4.2.1       blsAPI   

 The blsAPI allows users to request data for one or multiple series through the 
U.S. Bureau of Labor Statistics  API  . To use the   blsAPI    app you only need knowledge 
on the data; no key or  OAuth   are required. I lllustrate by pulling Mass Layoff Statistics 
data but you will fi nd all the available data sets and their series code information at 
  http://www.bls.gov/help/hlpforma.htm.     

 The key information you will be concerned about is contained in the series iden-
tifi er. For the Mass Layoff data the series ID code is MLUMS00NN0001003. Each 
component of this series code has meaning and can be adjusted to get specifi c Mass 
Layoff data. The BLS provides this breakdown for what each component means 
along with the available  list   of codes for this data set. 13  For instance, the  S00  
(MLUM S00 NN0001003) component represents the division/state. S00 will pull for 
all states but I could change to D30 to pull data for the Midwest or S39 to pull for 
Ohio. The  N0001  (MLUMS00N N0001 003) component represents the industry/
demographics. N0001 pulls data for all industries but I could change to N0008 to 
pull data for the food industry or C00A2 for all persons age 30–44. 

9   Read more about OAuth at https://oauth.net/ 
10   https://cran.r-project.org/web/views/WebTechnologies.html 
11   https://ropensci.org/packages/ 
12   http://stats.stackexchange.com/questions/12670/data-apis-feeds-available-as-packages-in-r 
13   http://www.bls.gov/help/hlpforma.htm#ML 
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 I simply call the series identifi er in the   blsAPI()    function which pulls the 
JSON data object. We can then use the   fromJSON()    function from the   rjson  
  package to conve rt to an R   data object (a  list   in this case). You can see that the raw 
data pull provides a  list   of 4 items. The fi rst three provide some metadata info (sta-
tus, response time, and message if applicable). The data we are concerned about is 
in the 4th ( Results$series$data )  list   item which contains 31 observations.

       library    (rjson)  
   library    (blsAPI)  

      # supply series identifi er to pull data (initial pull is in JSON data)  
  layoffs_json <-   blsAPI  ('MLUMS00NN0001003')   

      # convert from JSON into R object  
  layoffs <-   fromJSON  (layoffs_json)                     

      List of 4  
   $ status      : chr "REQUEST_SUCCEEDED"  
   $ responseTime: num 38  
   $ message     :    list  ()    
   $ Results     :List of 1  
    ..$ series:List of 1  
    .. ..$   :  List of 2  
    .. .. ..$ seriesID: chr "MLUMS00NN0001003"  
    .. .. ..$ data    :List of 31  
    .. .. .. ..$   :  List of 5  
    .. .. .. .. ..$ year      : chr "2013"  
    .. .. .. .. ..$ period    : chr "M05"  
    .. .. .. .. ..$ periodName: chr "May"  
    .. .. .. .. ..$ value     : chr "1383"  

    One of the inconveniences of an API is we do not get to specify how the data we 
receive is formatted. This is a minor price to pay considering all the other benefi ts 
 APIs   provide. Once we understand the received data format we can typically re- 
format using a little list subsetting which we previously covered and looping which 
we’ll cover in a future chapter.

      # create empty data frame to fi ll    
  layoff_df <-   data.frame  (NULL)  

      # extract data of interest from each nested year-month list    
  for(i in   seq_along  (layoffs$Results$series[[1]]$data)) {  
          df <-   data.frame  (layoffs$Results$series[[1]]$data[i][[1]][1:4])  
          layoff_df <-   rbind  (layoff_df, df)  
  }  

      head  (layoff_df)  
  ##   year period periodName value  
  ## 1 2013    M05        May  1383  
  ## 2 2013    M04      April  1174  
  ## 3 2013    M03      March  1132  
  ## 4 2013    M02   February   960  
  ## 5 2013    M01    January  1528  
  ## 6 2012    M13     Annual 17080  
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      blsAPI    also allows you to pull multiple data series and has optional  arguments   
(i.e. start year, end year, etc.). You can see other options at  help(package =  
  blsAPI    ) .  

16.4.2.2      rnoaa 

 The rnoaa  package   allows users to request climate data from multiple data sets 
through the National Climatic Data Center API. 14  Unlike   blsAPI   , the  rnoaa  app 
requires you to have an  API    key  . To request a key go to   http://www.ncdc.noaa.gov/
cdo-web/token     and provide your email; a key will immediately be emailed to you.

      key <- "vXTdwNoAVx…"   # truncated   

    With the key in hand, we can begin pulling data. The NOAA provides a compre-
hensive metadata library to familiarize yourself with the data available. Let’s start 
by pulling all the available NOAA climate stations near my residence. I live in 
Montgomery county Ohio so we can fi nd all the stations in this county by inserting 
the FIPS code. Furthermore, I’m interested in stations that provide data for the 
GHCND data set which contains records on numerous daily variables such as 
“maximum and minimum temperature, total daily precipitation, snowfall, and snow 
depth; however, about two thirds of the stations report precipitation only.” See 
 ?ncdc_stations  for other data sets available via  rnoaa .

       library    (rnoaa)  

      stations <-   ncdc_stations  (datasetid ='GHCND',   
                            locationid='FIPS:39113',  
                             token = key)  

      stations$data  
  ## Source: local data frame [23 x 9]  
  ##   
  ##    elevation    mindate    maxdate latitude  
  ##        (dbl)      (chr)      (chr)    (dbl)  
  ## 1      294.1 2009-02-09 2014-06-25  39.6314  
  ## 2      251.8 2009-03-01 2016-01-16  39.6807  
  ## 3      295.7 2009-03-25 2012-09-08  39.6252  
  ## 4      298.1 2009-08-24 2012-07-20  39.8070  
  ## 5      304.5 2010-04-02 2016-01-12  39.6949  
  ## 6      283.5 2012-07-01 2016-01-16  39.7373  
  ## 7      301.4 2012-07-29 2016-01-16  39.8795  
  ## 8      317.3 2012-09-08 2016-01-12  39.8329  
  ## 9      298.1 2012-09-07 2016-01-15  39.6247  
  ## 10     250.5 2012-09-11 2016-01-08  39.7180  
  ## ..       …        …        …      …  
  ## Variables not shown: name (chr), datacoverage (dbl), id (chr),  
  ##   elevationUnit (chr), longitude (dbl)  

14   http://www.ncdc.noaa.gov/cdo-web/webservices/v2 
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    So we see that several stations are available from which to pull data. To actually 
pull data from one of these stations we need the station ID. The station I want to pull 
data from is the Dayton International Airport station. We can see that this station 
provides data from 1948-present and I can get the station ID as illustrated. Note that 
I use some  dplyr  for data manipulation here; we will cover  dplyr  in a later chap-
ter but this just illustrates the fact that we received the data via the  API  .

       library    (dplyr)  

      stations$data %>%   
           fi lter    (name == "DAYTON INTERNATIONAL AIRPORT, OH US") %>%   
           select    (mindate, maxdate, id)  
  ## Source: local data frame [1 x 3]  
  ##   
  ##      mindate    maxdate                id  
  ##        (chr)      (chr)             (chr)  
  ## 1 1948-01-01 2016-01-15 GHCND:USW00093815  

    To pull all available GHCND data from this station we’ll use  ncdc() . We sim-
ply supply the data to pull, the start and end  dates   ( ncdc  restricts you to a 1 year 
limit), station ID, and your key. We can see that this station provides a full range of 
data types.

      climate <-   ncdc  (datasetid='GHCND',   
              startdate = '2015-01-01',   
              enddate = '2016-01-01',   
              stationid='GHCND:USW00093815',  
              token = key)  

      climate$data  
  ## Source: local data frame [25 x 8]  
  ##   
  ##                   date datatype           station value  fl _m  fl _q  
  ##                  (chr)    (chr)             (chr) (int) (chr) (chr)  
  ## 1  2015-01-01T00:00:00     AWND GHCND:USW00093815    72              
  ## 2  2015-01-01T00:00:00     PRCP GHCND:USW00093815     0              
  ## 3  2015-01-01T00:00:00     SNOW GHCND:USW00093815     0              
  ## 4  2015-01-01T00:00:00     SNWD GHCND:USW00093815     0              
  ## 5  2015-01-01T00:00:00     TAVG GHCND:USW00093815   -38     H        
  ## 6  2015-01-01T00:00:00     TMAX GHCND:USW00093815    28              
  ## 7  2015-01-01T00:00:00     TMIN GHCND:USW00093815   -71              
  ## 8  2015-01-01T00:00:00     WDF2 GHCND:USW00093815   240              
  ## 9  2015-01-01T00:00:00     WDF5 GHCND:USW00093815   240              
  ## 10 2015-01-01T00:00:00     WSF2 GHCND:USW00093815   130              
  ## ..                 …      …               …   …   …   …  
  ## Variables not shown: fl _so (chr), fl _t (chr)  

    Since we recently had some snow here let’s pull data on snow fall for 2015. We 
adjust the limit  argument   (by default  ncdc  limits results to 25) and identify the data 
type we want. By  sorting   we see what days experienced the greatest snowfall (don’t 
worry, the results are reported in mm!).

16 Scraping Data



155

      snow <-   ncdc  (datasetid='GHCND',   
              startdate = '2015-01-01',   
              enddate = '2015-12-31',   
              limit = 365,  
              stationid='GHCND:USW00093815',  
              datatypeid = 'SNOW',  
              token = key)  

      snow$data %>%   
          arrange  (  desc  (value))  
  ## Source: local data frame [365 x 8]  
  ##   
  ##                   date datatype           station value  fl _m  fl _q  
  ##                  (chr)    (chr)             (chr) (int) (chr) (chr)  
  ## 1  2015-03-01T00:00:00     SNOW GHCND:USW00093815   114              
  ## 2  2015-02-21T00:00:00     SNOW GHCND:USW00093815   109              
  ## 3  2015-01-25T00:00:00     SNOW GHCND:USW00093815    71              
  ## 4  2015-01-06T00:00:00     SNOW GHCND:USW00093815    66              
  ## 5  2015-02-16T00:00:00     SNOW GHCND:USW00093815    30              
  ## 6  2015-02-18T00:00:00     SNOW GHCND:USW00093815    25              
  ## 7  2015-02-14T00:00:00     SNOW GHCND:USW00093815    23              
  ## 8  2015-01-26T00:00:00     SNOW GHCND:USW00093815    20              
  ## 9  2015-02-04T00:00:00     SNOW GHCND:USW00093815    20              
  ## 10 2015-02-12T00:00:00     SNOW GHCND:USW00093815    20              
  ## ..                 …      …               …   …   …   …  
  ## Variables not shown: fl _so (chr), fl _t (chr)  

    This is just an intro to  rnoaa  as the package offers a slew of data sets to pull 
from and functions to apply. It even offers built in plotting functions. Use 
 help(package = "rnoaa")  to see all that  rnoaa  has to offer.  

16.4.2.3       rtimes   

 The rtimes package provides an interface to Congress, Campaign Finance, Article 
Search, and Geographic  APIs   offered by the New York Times. The data libraries 
and documentation for the several  APIs   available can be found at   http://developer.
nytimes.com/    . To use the Times’  API   you’ll need to get an  API    key  ,  which can also 
be found at the URL just provided.

      article_key <- "4f23572d8…"       # truncated  
  cfi nance_key <- "ee0b7cef…"       # truncated  
  congress_key <- "57b3e8a3…"       # truncated  

    Let’s start by searching NY Times articles. With the presidential elections upon 
us, we can illustrate by searching the least controversial candidate…Donald Trump. 
We can see that there are 4566 article hits for the term “Trump”. We can get more 
information on a particular article by  subsetting  .
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       library    (rtimes)  

      # article search for the term 'Trump'  
  articles <-   as_search  (q = "Trump",   
                          begin_date = "20150101",   
                          end_date = '20160101',  
                          key = article_key)  

      # summary  
  articles$meta  
  ##   hits time offset  
  ## 1 4565   28      0  

      # pull info on 3rd article  
  articles$data[3]  
  ## [[1]]  
  ## <NYTimes article>Donald Trumpâ€™s Strongest Supporters: A Certain Kind of Democrat  
  ##   Type: News  
  ##   Published: 2015-12-31T00:00:00Z  
  ##   Word count: 1469  
  ##   URL: http://www.nytimes.com/2015/12/31/upshot/donald-trumps- strongest-
supporters-a-certain-kind-of-democrat.html  
  ##   Snippet: In a survey, he also excels among low-turnout voters and among the less 
affl uent and the less educated, so the question is: Will they show up to vote?  

    We can use the campaign fi nance  API   and functions to gain some insight into 
Trumps compaign income and expenditures. The only special data you need is the 
FEC ID for the candidate of interest.

      trump <-   cf_candidate_details  (campaign_cycle = 2016,   
                                fec_id = 'P80001571',  
                                key = cfi nance_key)  

      # pull summary data  
  trump$meta  
  ##          id            name party  
  ## 1 P80001571 TRUMP, DONALD J   REP  
  ##                                             fec_uri  
  ## 1 http://docquery.fec.gov/cgi-bin/fecimg/?P80001571  
  ##                    committee  mailing_address mailing_city  
  ## 1 /committees/C00580100.json 725 FIFTH AVENUE     NEW YORK  
  ##   mailing_state mailing_zip status total_receipts  
  ## 1            NY       10022      O     1902410.45  
  ##   total_from_individuals total_from_pacs total_contributions  
  ## 1               92249.33               0            96298.97  
  ##   candidate_loans total_disbursements begin_cash  end_cash  
  ## 1      1804747.23          1414674.29          0 487736.16  
  ##   total_refunds debts_owed date_coverage_from date_coverage_to  
  ## 1             0 1804747.23         2015-04-02       2015-06-30  
  ##   independent_expenditures coordinated_expenditures  
  ## 1                1644396.8                        0  
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      rtimes    also allows us to gain some insight into what our locally elected offi -
cials are up to with the Congress  API  . First, I can get some informaton on my 
Senator and then use that information to see if he’s supporting my interest. For 
instance, I can pull the most recent bills that he is co-sponsoring.

      # pull info on OH senator  
  senator <-   cg_memberbystatedistrict  (chamber = "senate",   
                                      state = "OH",   
                                      key = congress_key)  
  senator$meta  
  ##        id           name               role gender party  
  ## 1 B000944 Sherrod  Brown Senator, 1st Class      M     D  
  ##   times_topics_url      twitter_id       youtube_id seniority  
  ## 1                  SenSherrodBrown SherrodBrownOhio         9  
  ##   next_election  
  ## 1          2018  
  ##                                                                               api_url  
  ## 1 http://api.nytimes.com/svc/politics/v3/us/legislative/congress/members/B000944.json  

      # use member ID to pull recent bill sponsorship  
  bills <-   cg_billscosponsor  (memberid = "B000944",   
                             type = "cosponsored",   
                             key = congress_key)  
  head  (bills$data)  
  ## Source: local data frame [6 x 11]  
  ##   
  ##   congress    number  
  ##      (chr)     (chr)  
  ## 1      114    S.2098  
  ## 2      114    S.2096  
  ## 3      114    S.2100  
  ## 4      114    S.2090  
  ## 5      114 S.RES.267  
  ## 6      114 S.RES.269  
  ## Variables not shown: bill_uri (chr), title (chr), cosponsored_date  
  ##   (chr), sponsor_id (chr), introduced_date (chr), cosponsors (chr),  
  ##   committees (chr), latest_major_action_date (chr),  
  ##   latest_major_action (chr)  

    It looks like the most recent bill Sherrod is co-sponsoring is S.2098—Student 
Right to Know Before You Go Act. Maybe I’ll do a NY Times article search with 
 as_   search()    to fi nd out more about this bill…an exercise for another time. 

 So this gives you some fl avor of how these API  packages   work. You typically 
need to know the data sets and variables requested along with an  API    key  . But once 
you get these basics its pretty straight forward on requesting the data. Your next 
question may be, what if the API that I want to get data from does not yet have an  R   
package developed for it?   

16.4  Working with  APIs  
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16.4.3      httr   for All Things Else 

 Although nume rous R    API    packages   are available, and cover a wide range of data, 
you may eventually run into a situation where you want to leverage an  organiza-
tion  ’s  API   but an R package does not exist. Enter httr.   httr    was developed by 
Hadley Wickham to easily work with web  APIs  . It offers multiple functions (i.e. 
 HEAD() ,  POST() ,  PATCH() ,  PUT()  and  DELETE() ); however, the function we 
are most concerned with today is   Get()   . We use the   Get()    function to access an 
 API  , provide it some request parameters, and receive an output. 

 To give you a taste for how the   httr    package works, I’ll quickly cover how to 
use it for a basic key-only  API   and an  OAuth  -required  API  :

•     Key-only API  is illustrated by pulling U.S. Department of Education data avail-
able on data.gov  

•    OAuth-required  API is illustrated by pulling tweets from my personal Twitter feed    

16.4.3.1      Key-Only  API   

 To demonstrate how to use the   httr    package for accessing a key-only  API  , I’ll 
illustrate with the College Scorecard API 15  provided by the Department of Education. 
First, you’ll need to request your API key, which can be done at   https://api.data.gov/
signup/    .

      # truncated key  
  edu_key <- "fd783wmS3Z…"       

    We can now proceed to use   httr    to request data from the  API   with the  GET()  
function. I went to North Dakota State University (NDSU) for my undergrad so I’m 
interested in pulling some data for this school. I can use the provided data library 
and query explanation to determine the parameters required. In this example, the 
 URL  includes the primary path (“  https://api.data.gov/ed/collegescorecard/    ”), the 
 API   version (“v1”), and the endpoint (“schools”). The question mark (“?”) at the 
end of the URL is included to begin the  list   of query parameters, which only includes 
my  API    key   and the school of interest.

       library    (httr)  

      URL <- "https://api.data.gov/ed/collegescorecard/v1/schools?"  

      # import all available data for NDSU  
  ndsu_req <-   GET  (URL, query =   list  (api_key = edu_key,  
                                    school.name = "North Dakota State University"))  

    This request provides me with every piece of information collected by the 
U.S. Department of Education for NDSU. To retrieve the contents of this request I 
use the   content()    function which will output the data as an  R   object (a  list   in this 

15   https://api.data.gov/docs/ed/ 
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case). The data is segmented into two main components:  metadata  and  results . I’m 
primarily interested in the results. 

 The results branch of this  list   provides information on lat-long location, school 
identifi er codes, some basic info on the school (city, number of branches, school 
website, accreditor, etc.), and then student data for the years 1997-2013.

      ndsu_data <-   content  (ndsu_req)  

      names  (ndsu_data)  
  ## [1] "metadata" "results"  

      names  (ndsu_data$results[[1]])  
  ##  [1] "2008"     "2009"     "2006"     "ope6_id"  "2007"     "2004"      
  ##  [7] "2013"     "2005"     "location" "2002"     "2003"     "id"        
  ## [13] "1996"     "1997"     "school"   "1998"     "2012"     "2011"      
  ## [19] "2010"     "ope8_id"  "1999"     "2001"     "2000"  

    To see what kind of student data categories are offered we can assess a single 
year. You can see that available data includes earnings, academics, student info/
demographics, admissions, costs, etc. With such a large data set, which includes 
many embedded  lists  , sometimes the easiest way to learn the data  structure   is to 
peruse names at different  levels  .

      # student data categories available by year  
  names  (ndsu_data$results[[1]]$`2013`)  
  ## [1] "earnings"   "academics"  "student"    "admissions" 
"repayment"   
  ## [6] "aid"        "cost"       "completion"  

      # cost categories available by year  
  names  (ndsu_data$results[[1]]$`2013`$cost)  
  ## [1] "title_iv"      "avg_net_price" "attendance"    "tuition"        
  ## [5] "net_price"  

      # Avg net price cost categories available by year  
  names  (ndsu_data$results[[1]]$`2013`$cost$avg_net_price)  
  ## [1] "other_academic_year" "overall"             "program_year"         
  ## [4] "public"              "private"  

    So if I’m interested in comparing the rise in cost versus the rise in student debt I 
can simply subset for this data once I’ve identifi ed its location and  naming   structure. 
Note that for this  subsetting   we use the magrittr package and the ‘sapply’ function; 
both we cover in later chapters but this is just meant to illustrate the types of data 
available through this  API  .

       library    (magrittr)  

      # subset list for annual student data only  
  ndsu_yr <- ndsu_data$results[[1]][  c  (  as.character  (1996:2013))]  

      # extract median debt data for each year  
  ndsu_yr %>%  
          sapply  (function(x) x$aid$median_debt$completers$overall) %>%   
           unlist  ()    
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  ##    1997    1998    1999    2000    2001    2002    2003    2004   
  ## 13388.0 13856.0 14500.0 15125.0 15507.0 15639.0 16251.0 16642.5   
  ##    2005    2006    2007    2008    2009    2010    2011    2012   
  ## 17125.0 17125.0 17125.0 17250.0 19125.0 21500.0 23000.0 24954.5   
  ##    2013   
  ## 25050.0  

      # extract net price for each year  
  ndsu_yr %>%   
           sapply    (function(x) x$cost$avg_net_price$overall) %>%   
           unlist  ()    
  ##  2009  2010  2011  2012  2013   
  ## 13474 12989 13808 15113 14404  

    Quite simple isn’t it…at least once you’ve learned how the query requests are 
formatted for a particular  API  .  

16.4.3.2       OAuth  -Required  API   

 At the outset I mentioned how  OAuth   is an authorization framework that provides 
credentials as proof for access. Many  APIs   are open to the public and only require 
an  API    key  ; however, some  APIs   require authorization to account data (think per-
sonal Facebook & Twitter accounts). To access these accounts we must provide 
proper credentials and OAuth authentication allows us to do this. This section is not 
meant to explain the details of OAuth but, rather, how to use   httr    in times when 
 OAuth   is required. 

 I’ll demonstrate by accessing the Twitter  API   using my Twitter account. The fi rst 
thing we need to do is identify the  OAuth   endpoints used to request access and 
authorization. To do this we can use  oauth_endpoint()     which typically 
requires a  request  URL,  authorization  URL, and  access  URL.   httr    also included 
some baked-in endpoints to include LinkedIn, Twitter, Vimeo, Google, Facebook, 
and GitHub. We can see the Twitter endpoints using the following:

      twitter_endpts <-   oauth_endpoints  ("twitter")  
  twitter_endpts  
  ## <oauth_endpoint>  
  ##  request:   https://api.twitter.com/oauth/request_token  
  ##  authorize: https://api.twitter.com/oauth/authenticate  
  ##  access:    https://api.twitter.com/oauth/access_token  

    Next, I register my application at   https://apps.twitter.com/    . One thing to note is 
during the registration process, it will ask you for the  callback url ; be sure to use 
“  http://127.0.0.1:1410    ”. Once registered, Twitter will provide you with keys and 
access tokens. The two we are concerned about are the  API key   and  API   Secret.

      twitter_key <- "BZgukbCol…"     # truncated  
  twitter_secret <- "YpB8Xy…"     # truncated  
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    We can then bundle the consumer key and secret into one object with  oauth_app() . 
The fi rst  argument  ,  appname  is simply used as a local identifi er; it does not need to 
match the name you gave the Twitter app you developed at   https://apps.twitter.com/    . 

 We are now ready to ask for access credentials. Since Twitter uses  OAuth   1.0 we 
use   oauth1.0_token()    function and incorporate the endpoints identifi ed and 
the  oauth_app  object we previously named  twitter_app .

      twitter_token <-   oauth1.0_token  (endpoint = twitter_endpts, twitter_app)  

      Waiting for authentication in browser…  
  Press Esc/Ctrl + C to abort  
  Authentication complete.  

    Once authentication is complete we can now use the  API  . I can pull all the tweets 
that show up on my personal timeline using the  GET()  function and the access 
cridentials I stored in  twitter_token . I then use   content()    to convert to a 
 list   and I can start to analyze the data. 

 In this case each tweet is saved as an individual  list   item and a full range of data 
are provided for each tweet (i.e. id, text, user, geo location, favorite count, etc). For 
instance, we can see that the fi rst tweet was by FiveThirtyEight concerning American 
politics and, at the time of this analysis, has been favorited by 3 people.

      # request Twitter data  
  req <-   GET  ("https://api.twitter.com/1.1/statuses/home_timeline.json",  
             confi g  (token = twitter_token))  

      # convert to R object  
  tweets <-   content  (req)  

      # available data for fi rst tweet on my timeline  
  names  (tweets[[1]])  
   [1] "created_at"                    "id"                             
   [3] "id_str"                        "text"                           
   [5] "source"                        "truncated"                      
   [7] "in_reply_to_status_id"         "in_reply_to_status_id_str"      
   [9] "in_reply_to_user_id"           "in_reply_to_user_id_str"        
  [11] "in_reply_to_screen_name"       "user"                           
  [13] "geo"                           "coordinates"                    
  [15] "place"                         "contributors"                   
  [17] "is_quote_status"               "retweet_count"                  
  [19] "favorite_count"                "entities"                       
  [21] "extended_entities"             "favorited"                      
  [23] "retweeted"                     "possibly_sensitive"             
  [25] "possibly_sensitive_appealable" "lang"   

      # further analysis of fi rst tweet on my timeline  
  tweets[[1]]$user$name  
  [1] "FiveThirtyEight"  

      tweets[[1]]$text  
  [1] "\U0001f3a7 A History Of Data In American Politics (Part 1): William Jennings 
Bryan to Barack Obama https://t.co/oCKzrXuRHf  https://t.co/6CvKKToxoH"  

      tweets[[1]]$favorite_count  
  [1] 3  

16.4  Working with  APIs  

https://apps.twitter.com/
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    This provides a fairly simple example of incorporating  OAuth   authorization. The 
  httr    provides several examples of accessing common social network  APIs   that 
require OAuth. I recommend you go through several of these examples to get famil-
iar with using  OAuth   authorization; see them at  demo(package = "   httr    ") . 
The most diffi cult aspect of creating your own connections with APIs is gaining an 
understanding of the  API   and the  arguments   they leverage. This obviously requires 
time and energy devoted to digging into the API documentation and data  library  . 
Next its just a matter of trial and error (likely more the latter than the former) to 
learn how to translate these  arguments   into   httr    function calls to pull the data of 
interest.Also, note that   httr    provides several other useful functions not covered 
here for communicating with  APIs   (i.e.  POST() ,  BROWSE() ). For more on these 
other   httr    capabilities see the   httr    quickstart vignette. 16     

16.5     Additional Resources 

 As I stated in the outset, this chapter is meant to provide an introduction to basic 
web scraping capabilities in  R  . This area is vast and complex and this chapter will 
far from provide you expertise  level   insight. To advance your knowledge in web-
scraping with R Automated Data Collection with R and  XML and Web Technologies 
for Data Sciences with R  offer the most detailed resources available. But this chap-
ter should be enough to get your curiosity piqued and to start pulling data from the 
tangled masses of online data.    
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    Chapter 17   
 Exporting Data                     

          Although getting data into  R   is essential, getting data out of R can be just as important. 
Whether you need to export data or analytic results simply to store, share, or feed into 
another system it is generally a straight forward process. This section will cover how to 
 export data to text fi les ,  Excel fi les  (along with some additional formatting capabilities), 
and  save to R data objects . In addition to the commonly used base R functions to perform 
data importing, I will also cover functions from the popular  readr  and  xlsx   packages   
along with a lesser known but useful   r2excel  package   for  Excel   formatting. 

17.1      Writing Data to Text Files 

 As mentioned in the  importing data   section, text fi les are a popular way to hold and 
exchange tabular data as almost any data application supports exporting data to the 
 CSV   (or other text fi le) formats. Consequently, exporting data to a text fi le is a 
pretty standard operation. Plus, since you’ve already learned how to import text fi les 
you pretty much have the basics required to write to text fi les, we just use a slightly 
different  naming   convention. 

 Similar to the examples provided in the importing text fi les section, the two main 
groups of functions that I will demonstrate to write to text fi les include  base  R   func-
tions  and    readr  package   functions . 

17.1.1      Base  R   Functions 

   write.table()    is the multipurpose work-horse function in base  R   for exporting 
data. The functions   write.csv()    and   write.delim()    are special cases of 
  write.table()    in which the defaults have been adjusted for effi ciency. To illus-
trate these functions let’s work with a  data frame   that we wish to export to a  CSV   
fi le in our working directory.
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      df <-   data.frame  (var1 =   c  (10, 25, 8),   
                   var2 =   c  ("beer", "wine", "cheese"),   
                   var3 =   c  (TRUE, TRUE, FALSE),  
                   row.names =   c  ("billy", "bob", "thornton"))  

      df  
  ##          var1   var2  var3  
  ## billy      10   beer  TRUE  
  ## bob        25   wine  TRUE  
  ## thornton    8 cheese FALSE  

    To export  df  to a  CSV   fi le we can use   write.csv()   . Additional  arguments   
allow you to exclude row and column names, specify what to use for  missing values  , 
add or remove quotations around  character strings  , etc.

      # write to a csv fi le  
  write.csv  (df, fi le = "export_csv")  

      # write to a csv and save in a different directory  
  write.csv  (df, fi le = "/folder/subfolder/subsubfolder/export_csv")  

      # write to a csv fi le with added arguments  
  write.csv  (df, fi le = "export_csv", row.names = FALSE, na = "MISSING!")  

    In addition to  CSV   fi les, we can also write to other text fi les using  write.
table  and   write.delim()   .

      # write to a tab delimited text fi les  
  write.delim  (df, fi le = "export_txt")  

      # provides same results as read.delim  
  write.table  (df, fi le = "export_txt", sep="\t")  

17.1.2           readr Package   

 The   readr  package   uses write functions simila r to base R  . However,  readr  write 
functions are about twice as fast and they do not write row names. One thing to note, 
where base R write functions use the  fi le =   argument  ,  readr  write functions use 
 path = .

       library    (readr)  

      # write to a csv fi le  
   write_csv    (df, path = "export_csv2")  

      # write to a csv and save in a different directory  
  write_csv  (df, path = "/folder/subfolder/subsubfolder/export_csv2")  

      # write to a csv fi le without column names  
  write_csv  (df, path = "export_csv2", col_names = FALSE)  
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      # write to a txt fi le without column names  
   write_delim    (df, path = "export_txt2", col_names = FALSE)  

17.2           Writing Data to  Excel   Files 

 As previously mentioned, many  organizations   still rely on  Excel   to hold and share 
data so exporting to Excel is a useful bit of knowledge. And rather than saving to a 
.csv fi le to send to a co-worker who wants to work in Excel, its more effi cient to just 
save  R   outputs directly to an Excel workbook. Since I covered  importing data   with 
the  xlsx  package, I’ll also cover exporting data with this package. However, the 
  readxl  package   which I demonstrated in the  importing data   section does not have 
a function to export to Excel. But there is a lesser known package called  r2excel  
that provides exporting and formatting functions for Excel which I will cover. 

17.2.1     xlsx Package 

 Saving a  data frame   to a .xlsx fi le is as easy as saving to a .csv fi le:

       library    (xlsx)  

      # write to a .xlsx fi le  
   write.xlsx    (df, fi le = "output_example.xlsx")  

      # write to a .xlsx fi le without row names  
  write.xlsx  (df, fi le = "output_example.xlsx", row.names = FALSE)  

    In some cases you may wish to create a .xlsx fi le that contains multiple  data 
frames  . In this you can just create an empty workbook and save the  data frames   on 
separate worksheets within the same workbook:

      # create empty workbook  
  multiple_df <-    createWorkbook    ()  

      # create worksheets within workbook  
  car_df <-    createSheet    (wb = multiple_df, sheetName = "Cars")  
  iris_df <-   createSheet  (wb = multiple_df, sheetName = "Iris")  

      # add data frames to worksheets; for this example I use the  
  # built in mtcars and iris data frames  
  addDataFrame  (x = mtcars, sheet = car_df)  
  addDataFrame  (x = iris, sheet = iris_df)  

      # save as a .xlsx fi le   
   saveWorkbook    (multiple_df, fi le = "output_example_2.xlsx")  

17.2  Writing Data to  Excel   Files
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    By default this saves the row and column names but this can be adjusted by add-
ing  col.names = FALSE  and/or  row.names = FALSE  to the  add-
DataFrame()  function. There is also the ability to do some formatting with the 
 xlsx  package. The following provides several examples of how you can edit titles, 
subtitles, borders, column width, etc. 1  Although at fi rst glance this can appear 
tedious for simple  Excel   editing, the real benefi ts present themselves when you 
integrate this editing into automated analyses.

      # create new workbook  
  wb <-    createWorkbook    ()  

      #--------------------  
  # DEFINE CELL STYLES   
  #--------------------  
  # title and subtitle styles  
  title_style <-   CellStyle  (wb) +   
                 Font  (wb, heightInPoints = 16,  
                      color = "blue",   
                      isBold = TRUE,   
                      underline = 1)  

      subtitle_style <-   CellStyle  (wb) +   
                    Font  (wb, heightInPoints = 14,  
                         isItalic = TRUE,  
                         isBold = FALSE)  

      # data table styles  
  rowname_style <-   CellStyle  (wb) +  
                   Font  (wb, isBold = TRUE)  

      colname_style <-   CellStyle  (wb) +  
                   Font  (wb, isBold = TRUE) +  
                   Alignment  (wrapText = TRUE, horizontal = "ALIGN_CENTER") +  
                   Border  (color = "black",  
                          position =   c  ("TOP", "BOTTOM"),  
                          pen =   c  ("BORDER_THIN", "BORDER_THICK"))  

      #-------------------------  
  # CREATE   &   EDIT WORKSHEET   
  #-------------------------  
  # create worksheet  
  Cars <-    createSheet    (wb, sheetName = "Cars")  

      # helper function to add titles  
  xlsx.addTitle <- function(sheet, rowIndex, title, titleStyle) {  
          rows <-   createRow  (sheet, rowIndex = rowIndex)  
          sheetTitle <-   createCell  (rows, colIndex = 1)  
          setCellValue  (sheetTitle[[1,1]], title)  
          setCellStyle  (sheetTitle[[1,1]], titleStyle)  
  }  

1   This example was derived from  http://www.sthda.com/english/  Additional options, such as add-
ing plot outputs can be found at STHDA and also in the  XML and Web Technologies for Data 
Sciences with R  book. 
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      # add title and sub title to worksheet  
  xlsx.addTitle  (sheet = Cars, rowIndex = 1,   
                title = "1974 Motor Trend Car Data",  
                titleStyle = title_style)  

      xlsx.addTitle  (sheet = Cars, rowIndex = 2,   
                title = "Performance and design attributes of 32 automobiles",  
                titleStyle = subtitle_style)  

      # add data frame to worksheet  
  addDataFrame  (mtcars, sheet = Cars, startRow = 3, startColumn = 1,  
               colnamesStyle = colname_style,   
               rownamesStyle = rowname_style)  

      # change row name column width  
  setColumnWidth  (sheet = Cars, colIndex = 1, colWidth = 18)  

      # save workbook  
   saveWorkbook    (wb, fi le = "output_example_3.xlsx")  

   

   Formatted  Excel   Output Example 1       

17.2.2         r2excel Package 

 Although Formatting  Excel   fi les using the  xlsx  package is possible, the last sec-
tion illustrated that it is a bit cumbersome. For this reason, A. Kassambara 2  created 
the   r2excel  package   which depends on the  xlsx  package but provides easy to 
use functions for  Excel   formatting. The following provides a simple example but 
you can fi nd many additional formatting functions at   http://www.sthda.com/    .

      # install.packages("devtools")  
  devtools::  install_github  ("kassambara/r2excel")  
   library    (r2excel)  

      # create new workbook  
  wb <-    createWorkbook    ()  

2   https://github.com/kassambara 
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      # create worksheet  
  Casualties <-    createSheet    (wb, sheetName = "Casualties")  

      # add title  
  xlsx.addHeader  (wb, sheet = Casualties,   
                 value = "Road Casualties",  
                 level = 1,   
                 color = "red",   
                 underline = 1)  

      # add subtitle  
  xlsx.addHeader  (wb, sheet = Casualties,   
                 value = "Great Britain 1969-84",  
                 level = 2,   
                 color = "black")  

      # add author information  
  author =   paste  ("Author: Bradley C. Boehmke \n",  
               "Date: January 15, 2016 \n",  
               "Contact: xxxxx@gmail.com", sep = "")  

      xlsx.addParagraph  (wb, sheet = Casualties,  
                    value = author,   
                    isItalic = TRUE,   
                    colSpan = 2,   
                    rowSpan = 4,   
                    fontColor = "darkgray",   
                    fontSize = 14)  

      # add hyperlink  
  xlsx.addHyperlink  (wb, sheet = Casualties,   
                    address = "http://bradleyboehmke.github.io/",   
                    friendlyName = "Vist my website", fontSize = 12)  

      xlsx.addLineBreak  (sheet = Casualties, 1)  

      # add data frame to worksheet, I'm using the built in  
  # Seatbelt data which you can view at data(Seatbelt)  
  xlsx.addTable  (wb, sheet = Casualties, data = Seatbelts, startCol = 2)  

  # save the workbook to an Excel fi le  
   saveWorkbook    (wb, fi le = "output_example_4.xlsx")  

   
   Formatted  Excel   Output Example 2       
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17.3           Saving Data as an  R   Object File 

 Sometimes you may need to save data or other R objects outside of your workspace. 
You may want to sha re R   data/objects with co-workers, transfer between projects or 
computers, or simply archive them. There are three primary ways that people tend to 
save R data/objects: as .RData, .rda, or as .rds fi les. .rda is just short for .RData, there-
fore, these fi le extensions represent the same underlying object type. You use the .rda 
or .RData fi le types when you want to save several, or all, objects and functions that 
exist in your global environment. On the other hand, if you only want to save a single 
 R object   such as a  data frame  , function, or statistical model results its best to use .rds 
fi le type. You can use .rda or .RData to save a single object but the benefi t of .rds is it 
only saves a representation of the object and not the name whereas .rda and .RData 
save both the object and its name. As a result, with .rds the saved object can be loaded 
into a named object within R that is different from the name it had when originally 
saved. The following illustrates how you save  R   objects with each type.

      #    save()     can be used to save multiple objects in you global environment,  
  # in this case I save two objects to a .RData fi le  
  x <- stats::  runif  (20)  
  y <-   list  (a = 1, b = TRUE, c = "oops")  
  save  (x, y, fi le = "xy.RData")  

      #    save.image()     s just a short-cut for saving your current
# workspace,     i.e. all objects in your global environment  
   save.image  ()    

      # save a single object to fi le  
   saveRDS    (x, "x.rds")  

      # restore it under a different name  
  x2 <-    readRDS    ("x.rds")  
  identical  (x, x2)  
  [1] TRUE  

17.4         Additional Resources 

 The following provides additional resources for exporting data:

•    R data import/export manual, which can be found at   https://cran.r-project.org/
doc/manuals/R-data.html      

•   WriteXLS package  
•   XLConnect package       

17.4  Additional Resources
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   Part V 
   Creating Effi cient and Readable Code in R 

       To iterate is human, to recurse divine.  

 L. Peter Deutsch            

 Don’t  repeat   yourself (DRY) is a software development principle aimed at reducing 
repetition. Formulated by Andy Hunt and Dave Thomas in their book The Pragmatic 
Programmer (Hunt and Thomas, 2000), the DRY principle states that “every piece 
of knowledge must have a single, unambiguous, authoritative representation within 
a system.” This principle has been widely adopted to imply that you should not 
duplicate code. Although the principle was meant to be far grander than that, 1  there’s 
plenty of merit behind this slight misinterpretation. 

 Removing duplication is an important part of writing effi cient code and reducing 
potential errors. First, reduced duplication of code can improve computing time and 
reduces the amount of code writing required. Second, less duplication results in less 
creation and saving of unnecessary objects. Ineffi cient code invariably creates cop-
ies of objects you have little interest in other than to feed into some future line of 
code; this wrecks havoc on properly managing your objects as it basically results in 
a global environment charlie foxtrot! Less duplication also results in less editing. 
When changes to code are required, duplicated code becomes tedious to edit and 
invariably mistakes or fat-fi ngering occur in the cut-and-paste editing process which 
just lengthens the editing that much more. 

 Furthermore, its important to have readable code. Clarity in your code creates 
clarity in your data analysis process. This is important as data analysis is a collab-
orative process so your code will likely need to be read and interpreted by others. 
Plus, invariably there will come a time where you will need to go back to an old 
analysis so your code also needs to be clear to your future-self. 

 This section covers the process of creating effi cient and readable code. First, I 
cover the basics of writing your own   functions     so that you can reduce code duplica-
tion and automate generalized tasks to be applied recursively. I then cover   loop 

1   According to Dave Thomas “DRY says that every piece of system knowledge should have one 
authoritative, unambiguous representation. Every piece of knowledge in the development of some-
thing should have a single representation. A system’s knowledge is far broader than just its code. 
It refers to database schemas, test plans, the build system, even documentation.” 

http://dx.doi.org/10.1007/978-3-319-45599-0_18
http://dx.doi.org/10.1007/978-3-319-45599-0_19
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control statements        which allow you to perform repetitive code processes with 
different intentions and allow these automated expressions to naturally respond to 
features of your data. Lastly, I demonstrate how you can   simplify your code     to make 
it more readable and clear. Combined, these tools will move you forward in writing 
effi cient, simple,  and  readable code. 
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Chapter 18
Functions

R is a functional programming language, meaning that everything you do is basically 
built on functions. However, moving beyond simply using pre-built functions to 
writing your own functions is when your capabilities really start to take off and your 
code development/writing takes on a new level of efficiency. Functions allow you to 
reduce code duplication by automating a generalized task to be applied recursively. 
Whenever you catch yourself repeating a function or copy-and-pasting code there is 
a good change that you should write a function to eliminate the redundancies.

Unfortunately, due to their abstractness, grasping the idea of writing functions 
(let alone writing them well) can take some time. However, in this chapter I will 
provide you with the basic knowledge of how functions operate in R to get you 
started on the right path. To do this, I cover the general components of functions, 
specifying function arguments, scoping and evaluation rules, managing function 
outputs, handling invalid parameters, and saving and sourcing functions for reuse. 
This will provide you with the required knowledge to start building your own func-
tions. Lastly, I offer some additional resources that will help you learn more about 
functions in R.

18.1  �Function Components

With the exception of primitive functions all R functions have three parts:

•	 body(): the code inside the function
•	 formals(): the list of arguments used to call the function
•	 environment(): the mapping of the location(s) of the function’s variables

For example, let’s build a function that calculates the present value (PV) of a 
single future sum. The equation for a single sum PV is:

	 PV FV r n= +/ ( )1 	

https://cran.r-project.org/doc/manuals/r-release/R-ints.html#g_t_002eInternal-vs-_002ePrimitive
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where FV is future value, r is the interest rate, and n is the number of periods. In the 
function that follows the body of the function includes the equation

	 FV r n/ ( )1+ 	

and then rounding the output to two decimals. The formals (or arguments) 
required for the function include FV, r, and n. And the environment shows that 
function operates in the global environment.

PV <- function(FV, r, n) {
        PV <- FV / (1 + r)^n
        round(PV, 2)
}

body(PV)
## {
##     PV <- FV / (1 + r)^n
##     round(PV, 2)
## }

formals(PV)
## $FV
## 
## 
## $r
## 
## 
## $n

environment(PV)
## <environment: R_GlobalEnv>

18.2  �Arguments

To perform the PV() function we can call the arguments in different ways.

# using argument names
PV(FV = 1000, r = .08, n = 5)
## [1] 680.58

# same as above but without using names (aka "positional matching")
PV(1000, .08, 5)
## [1] 680.58

# if using names you can change the order
PV(r = .08, FV = 1000, n = 5)
## [1] 680.58

# if not using names you must insert arguments in proper order
# in this e.g. the function assumes FV = .08, r = 1000, and n = 5
PV(.08, 1000, 5)
## [1] 0

18  Functions
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Note that when building a function you can also set default values for arguments. 
In our original PV() we did not provide any default values so if we do not supply 
all the argument parameters an error will be returned. However, if we set default 
values then the function will use the stated default if any parameters are missing:

# missing the n argument
PV(1000, .08)
## Error in PV(1000, 0.08): argument "n" is missing, with no default

# creating default argument values
PV <- function(FV = 1000, r = .08, n = 5) {
        PV <- FV / (1 + r)^n
        round(PV, 2)
}

# function will use default n value
PV(1000, .08)
## [1] 680.58

# specifying a different n value
PV(1000, .08, 3)
## [1] 793.83

18.3  �Scoping Rules

Scoping refers to the set of rules a programming language uses to lookup the value 
for variables and/or symbols. The following illustrates the basic concept behind the 
lexical scoping rules that R follows.

A function will first look inside the function to identify all the variables being 
called. If all variables exist then their is no additional search required to identify 
variables.

PV1 <- function() {
        FV <- 1000 
        r <- .08
        n <- 5
        FV / (1 + r)^n
}

PV1()
## [1] 680.5832

However, if a variable does not exist within the function, R will look one level 
up to see if the variable exists.

# the FV variable is outside the function environment
FV <- 1000 
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PV2 <- function() {
        r <- .08
        n <- 5
        FV / (1 + r)^n
}

PV2()
## [1] 680.5832

This same concept applies if you have functions embedded within functions:

FV <- 1000 

PV3 <- function() {
        r <- .08
        n <- 5
        denominator <- function() {
                (1 + r)^n
        }
        FV/denominator()
}

PV3()
## [1] 680.5832

This also applies for functions in which some arguments are called but not all 
variables used in the body are identified as arguments:

# n is specified within the function
PV4 <- function(FV, r) {
        n <- 5
        FV / (1 + r)^n
}

PV4(1000, .08)
## [1] 680.5832

# n is specified within the function and
# r is specified outside the function
r <- 0.08

PV5 <- function(FV) {
        n <- 5
        FV / (1 + r)^n
}

PV5(1000)
## [1] 680.5832
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18.4  �Lazy Evaluation

R functions perform “lazy” evaluation in which arguments are only evaluated if 
required in the body of the function.

# the y argument is not used so not including it causes
# no harm
lazy <- function(x, y){
        x * 2
}
lazy(4)
## [1] 8

# however, if both arguments are required in the body
# an error will result if an argument is missing
lazy2 <- function(x, y){
        (x + y) * 2
}
lazy2(4)
## Error in lazy2(4): argument "y" is missing, with no default

18.5  �Returning Multiple Outputs from a Function

If a function performs multiple tasks and therefore has multiple results to report 
then we have to include the c() function inside the function to display all the 
results. If you do not include the c() function then the function output will only 
return the last expression:

bad <- function(x, y) {
        2 * x + y
        x + 2 * y
        2 * x + 2 * y
        x / y
}
bad(1, 2)
## [1] 0.5

good <- function(x, y) {
        output1 <- 2 * x + y
        output2 <- x + 2 * y
        output3 <- 2 * x + 2 * y
        output4 <- x / y
        c(output1, output2, output3, output4)
}
good(1, 2)
## [1] 4.0 5.0 6.0 0.5
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Furthermore, when we have a function which performs multiple tasks (i.e. com-
putes multiple computations) then it is often useful to save the results in a list.

good_list <- function(x, y) {
        output1 <- 2 * x + y
        output2 <- x + 2 * y
        output3 <- 2 * x + 2 * y
        output4 <- x / y
        c(list(Output1 = output1, Output2 = output2, 
               Output3 = output3, Output4 = output4))
}
good_list(1, 2)
## $Output1
## [1] 4
## 
## $Output2
## [1] 5
## 
## $Output3
## [1] 6
## 
## $Output4
## [1] 0.5

18.6  �Dealing with Invalid Parameters

For functions that will be used again, and especially for those used by someone 
other than the creator of the function, it is good to check the validity of arguments 
within the function. One way to do this is to use the stop() function. The follow-
ing uses an if() statement to check if the class of each argument is numeric. If one 
or more arguments are not numeric then the stop() function will be triggered to 
provide a meaningful message to the user.

PV <- function(FV, r, n) {
        if(!is.numeric(FV) | !is.numeric(r) | !is.numeric(n)){
                stop('This function only works for numeric inputs!\n', 
                     'You have provided objects of the following classes:\n', 
                     'FV: ', class(FV), '\n',
                     'r: ', class(r), '\n',
                     'n: ', class(n))
        }
        PV <- FV / (1 + r)^n
        round(PV, 2)
}
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PV("1000", 0.08, "5")
## Error in PV("1000", 0.08, "5"): This function only works for numeric inputs!
## You have provided objects of the following classes:
## FV: character
## r: numeric
## n: character

Another concern is dealing with missing or NA values. Lets say you wanted to 
perform the PV() function on a vector of potential future values. The function as is 
will output NA in place of any missing values in the FV input vector. If you want to 
remove the missing values then you can incorporate the na.rm parameter in the 
function arguments along with an if statement to remove missing values if na.rm 
= TRUE.

# vector of future value inputs
fv <- c(800, 900, NA, 1100, NA)

# original PV() function will return NAs
PV(fv, .08, 5)
## [1] 544.47 612.52     NA 748.64     NA

# add na.rm argument
PV <- function(FV, r, n, na.rm = FALSE) {
        if(!is.numeric(FV) | !is.numeric(r) | !is.numeric(n)){
                stop('This function only works for numeric inputs!\n', 
                     'You have provided objects of the following classes:\n', 
                     'FV: ', class(FV), '\n',
                     'r: ', class(r), '\n',
                     'n: ', class(n))
        }
        if(na.rm == TRUE) {
                FV <- FV[!is.na(FV)]
        }
        PV <- FV / (1 + r)^n
        round(PV, 2)
}

# setting na.rm = TRUE argument eliminates NA outputs
PV(fv, 0.08, 5, na.rm = TRUE)
## [1] 544.47 612.52 748.64

18.7  �Saving and Sourcing Functions

If you want to save a function to be used at other times and within other scripts there 
are two main ways to do this. One way is to build a package which I do not cover in 
this book but is discussed in more details in Hadley Wickhams R Packages book, 
which is openly available at http://r-pkgs.had.co.nz/. Another option, and the one 
discussed here, is to save the function in a script. For example, we can save a script 
that contains the PV() function and save this script as PV.R.

18.7 � Saving and Sourcing Functions
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Now, if we are working in a fresh script you’ll see that we have no objects and 
functions in our working environment:

 

If we want to use the PV function in this new script we can simply read in the 
function by sourcing the script using source("PV.R"). Now, you’ll notice that 
we have the PV() function in our global environment and can use it as normal. Note 
that if you are working in a different directory then where the PV.R file is located 
you’ll need to include the proper path to access the relevant directory.
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18.8  �Additional Resources

Functions are a fundamental building block of R and writing functions is a core 
activity of an R programmer. It represents the key step of the transition from a mere 
“user” to a developer who creates new functionality for R. As a result, its important 
to turn your existing, informal knowledge of functions into a rigorous understand-
ing of what functions are and how they work. A few additional resources that can 
help you get to the next step of understanding functions include:

•	 Hadley Wickham’s Advanced R book
•	 Roger Peng’s R Programming for Data Science book
•	 DataCamp’s Intermediate R course
•	 Coursera’s R Programming course

18.8 � Additional Resources
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    Chapter 19   
 Loop Control Statements                     

          Looping is similiar to creating functions in that they are merely a means to automate 
a certain multi-step process by organizing  sequences   of  R   expressions. R consists of 
several  loop control statements   which allow you to perform repetitive code pro-
cesses with different intentions and allow these automated expressions to naturally 
respond to features of your data. Consequently, learning these  loop control state-
ments   will go a long ways in reducing code redundancy and becoming a more effi -
cient data wrangler. 

 This chapter starts by covering the  basic control statements  in  R  , which includes 
 if ,  else , along with the  for ,   while   , and   repeat     loop   control structures. In 
addition, I cover   break    and   next    which allow you to further control fl ow within 
the aforementioned control statements. Next I cover a set of vectorized functions 
known as the  apply family  of functions which minimize your need to explicitly cre-
ate loops. I then provide some  additional “loop-like” functions  that are helpful in 
everyday data analysis followed by a  list   of additional resources to learn more about 
control structures in R. 

19.1      Basic Control Statements (i.e.  if ,  for ,  while , etc.) 

19.1.1     if Statement 

 The conditional  if  statement is used to test an expression. If the  test_expres-
sion  is  TRUE , the  statement  gets executed. But if it’s  FALSE , nothing 
happens.

      # syntax of if statement  
  if (test_expression) {  
          statement  
  }  
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    The following is an example that tests if any values in a  vector   are negative. 
Notice there are two ways to write this   if  statement  ; since the body of the state-
ment is only one line you can write it with or without curly braces. I recommend 
getting in the habit of using curly braces, that way if you build onto if statements 
with additional functions in the body or add an  else   statement   later you will not 
run into issues with unexpected code procedures.

      x <-   c  (8, 3, -2, 5)  

      # without curly braces  
  if(  any  (x < 0))   print  ("x contains negative numbers")  
  ## [1] "x contains negative numbers"  

      # with curly braces produces same result  
  if(  any  (x < 0)){  
          print  ("x contains negative numbers")  
  }  
  ## [1] "x contains negative numbers"  

      # an if statement in which the test expression is FALSE  
  # does not produce any output  
  y <-   c  (8, 3, 2, 5)  

      if(  any  (y < 0)){  
          print  ("y contains negative numbers")  
  }  

19.1.2         if…else Statement 

 The conditional  if…else   statement   is used to test an expression similar to the   if  
statement  . However, rather than nothing happening if the  test_expression  is 
 FALSE , the  else  part of the function will be evaluated.

      #    syntax     of if…else    statement    
  if (test_expression) {  
          statement 1  
  } else {  
          statement 2  
  }  

    The following extends the previous example illustrated for the   if  statement   in 
which the   if  statement   tests if any values in a  vector   are negative; if  TRUE  it pro-
duces one output and if  FALSE  it produces the  else  output.

      # this test results in statement 1 being executed  
  x <-   c  (8, 3, -2, 5)  
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      if(  any  (x < 0)){  
          print  ("x contains negative numbers")  
  } else{  
          print  ("x contains all positive numbers")  
  }  
  ## [1] "x contains negative numbers"  

      # this test results in statement 2 (or the else statement) being executed  
  y <-   c  (8, 3, 2, 5)  

      if(  any  (y < 0)){  
          print  ("y contains negative numbers")  
  } else{  
          print  ("y contains all positive numbers")  
  }  
  ## [1] "y contains all positive numbers"  

    Simple  if…else  statements, as above, in which only one line of code is being 
executed in the statements can be written in a simplifi ed alternative manner. These 
alternatives are only recommended for very short  if…else  code because they can 
become diffi cult to read as the character length increases.

      x <-   c  (8, 3, 2, 5)  

      # alternative 1  
  if(  any  (x < 0))   print  ("x contains negative numbers") else   print  ("x contains all 
 positive numbers")  
  ## [1] "x contains all positive numbers"  

      # alternative 2 using the ifelse function  
   ifelse    (  any  (x < 0), "x contains negative numbers", "x contains all positive numbers")  
  ## [1] "x contains all positive numbers"  

    We can also nest as many  if…else  statements as required (or desired). For 
example:

      # this test results in statement 1 being executed  
  x <- 7  

      if(x >= 10){  
          print  ("x exceeds acceptable tolerance levels")  
  } else if(x >= 0 & x < 10){  
          print  ("x is within acceptable tolerance levels")  
  } else {  
           print  ("x is negative")  
  }  
  ## [1] "x is within acceptable tolerance levels"  

19.1  Basic Control Statements (i.e.  if ,  for ,  while , etc.)
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19.1.3         for Loop 

 The  for  loop is used to execute repetitive code statements for a particular number 
of times. The general  syntax   is provided below where  i  is the counter and as  i  
assumes each sequential value defi ned (1 through 100 in this example) the code in 
the body will be performed for that ith value.

      # syntax of for loop  
  for(i in 1:100) {  
          <do stuff here with i>  
  }  

    For example, the following for loop iterates through each value (2010, 2011, …, 
2016) and performs the  paste  and  print  functions inside the curly brackets.

      for(i in 2010:2016) {  
          output <-   paste  ("The year is", i)  
          print  (output)  
  }  
  ## [1] "The year is 2010"  
  ## [1] "The year is 2011"  
  ## [1] "The year is 2012"  
  ## [1] "The year is 2013"  
  ## [1] "The year is 2014"  
  ## [1] "The year is 2015"  
  ## [1] "The year is 2016"  

    If you want to perform the  for  loop but have the outputs combined into a  vector   
or other data  structure   than you can initiate the output data  structure   prior to the  for  
loop. For instance, if we want to have the previous outputs combined into a single 
 vector    x  we can initiate  x  fi rst and then append the  for  loop output to  x .

      x <- NULL  

      for(i in 2010:2016) {  
          output <-   paste  ("The year is", i)  
          x <- append(x, output)  
  }  

      x  
  ## [1] "The year is 2010" "The year is 2011" "The year is 2012" 
"The year is 2013"  
  ## [5] "The year is 2014" "The year is 2015" "The year is 2016"  

    However, an important lesson to learn is that  R   is not effi cient at  growing  data 
objects. As a result, it is more effi cient to create an empty data object and  fi ll  it with the 
 for  loop outputs. In the previous example we grew  x  by appending new values to it. 
A more effi cient practice is to initiate a  vector   (or other data  structure  ) of the right size 
and fi ll the elements. In the example that follows, we create the  vector    x  of the right 
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size and then fi ll in each element within the  for  loop. Although this ineffi ciency is not 
noticed in this small example, when you perform larger repetitions it will become 
noticeable so you might as well get in the habit of  fi lling  rather than  growing .

      x <- vector(mode = “numeric”, length = 7)  
  counter <- 1  

      for(i in 2010:2016) {  
          output <-   paste  ("The year is", i)  
          x[counter] <- output  
   counter <- counter + 1  
  }  

      x  
  ## [1] "The year is 2010" "The year is 2011" "The year is 2012" "The year is 2013"  
  ## [5] "The year is 2014" "The year is 2015" "The year is 2016"  

    Another example in which we create an empty  matrix   with 5 rows and 5 col-
umns. The  for  loop then iterates over each column (note how  i  takes on the values 
1 through the number of columns in the  my.mat  matrix) and takes a random draw 
of 5 values from a  Poisson distribution   with mean  i  in column  i :

      my.mat <-   matrix  (NA, nrow = 5, ncol = 5)  

      for(i in 1:  ncol  (my.mat)){  
          my.mat[, i] <-    rpois    (5, lambda = i)  
  }  
  my.mat  
  ##      [,1] [,2] [,3] [,4] [,5]  
  ## [1,]    0    2    1    7    1  
  ## [2,]    1    2    2    3    9  
  ## [3,]    2    1    5    6    6  
  ## [4,]    2    1    5    2   10  
  ## [5,]    0    2    2    2    4  

19.1.4         while Loop 

  While loop  s begin by testing a condition. If it is true, then they execute the state-
ment. Once the statement is executed, the condition is tested again, and so forth, 
until the condition is false, after which the loop exits. It’s considered a best practice 
to include a counter object to keep track of total iterations

      # syntax of while loop  
  counter <- 1  

       while    (test_expression) {  
          statement  
          counter <- counter + 1  
  }  
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      while  loops   can potentially result in infi nite loops if not written properly; there-
fore, you must use them with care. To provide a simple example to illustrate how 
similiar  for  and   while    loops are:

      counter <- 1  

      while(counter <= 10) {  
          print  (counter)  
          counter <- counter + 1  
  }  

      # this for loop provides the same output  
  counter <-   vector  (mode = "numeric", length = 10)  

      for(i in 1:  length  (counter)) {  
          print  (i)  
  }  

    The primary difference between a  for  loop and a   while    loop is: a  for  loop is 
used when the number of iterations a code should be run is known where a  while  
loop is used when the number of iterations is not known. For instance, the following 
takes value  x  and adds or subtracts 1 from the value randomly until  x  exceeds the 
values in the test expression. The output illustrates that the code runs 14 times until 
x exceeded the threshold with the value 9.

      counter <- 1  
  x <- 5  
  set.seed  (3)  

      while(x >= 3 && x <= 8 ) {  
          coin <-    rbinom    (1, 1, 0.5)  
          if(coin == 1) { ## random walk  
                  x <- x + 1  
          } else {  
                  x <- x - 1  
          }  
          cat  ("On iteration", counter, ", x =", x, '\n')  
          counter <- counter + 1  
  }  
  ## On iteration 1 , x = 4   
  ## On iteration 2 , x = 5   
  ## On iteration 3 , x = 4   
  ## On iteration 4 , x = 3   
  ## On iteration 5 , x = 4   
  ## On iteration 6 , x = 5   
  ## On iteration 7 , x = 4   
  ## On iteration 8 , x = 3   
  ## On iteration 9 , x = 4   
  ## On iteration 10 , x = 5   
  ## On iteration 11 , x = 6   
  ## On iteration 12 , x = 7   
  ## On iteration 13 , x = 8   
  ## On iteration 14 , x = 9  
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19.1.5          repeat   Loop 

 A   repeat     loop   is used to iterate over a block of code multiple number of times. 
There is not a test expression in a  repeat    loop   to end or exit the loop. Rather, we 
must put a condition statement explicitly inside the body of the loop and use the 
  break    function to exit the loop. Failing to do so will result into an infi nite loop.

      # syntax of    repeat     loop  
  counter <- 1  

       repeat     {  
          statement  
          if(test_expression){  
                  break  
          }  
          counter <- counter + 1  
  }  

    For example, say we want to randomly draw values from a uniform distribution 
between 1 and 25. Furthermore, we want to continue to draw values randomly until 
our sample contains at least each  integer   value between 1 and 25; however, we do 
not care if we’ve drawn a particular value multiple times. The following code repeats 
the random draws of values between 1 and 25 (which we round). We then include 
an   if  statement   to check if all values between 1 and 25 are present in our sample. 
If so, we use the break statement to exit the loop. If not, we add to our counter and 
let the loop  repeat   until the conditional   if  statement   is found to be true. We can 
then check the  counter  object to assess how many iterations were required to 
reach our conditional requirement.

      counter <- 1  
  x <- NULL  

       repeat     {  
          x <-   c  (x,   round  (  runif  (1, min = 1, max = 25)))  
          if(  all  (1:25 %in% x)){  
                  break  
          }  
          counter <- counter + 1  
  }  

      counter  
  ## [1] 75  

19.1.6         break Function to Exit a Loop 

 The  break  function is used to exit a loop immediately, regardless of what iteration 
the loop may be on.  break  functions are typically embedded in an   if  statement   in 
which a condition is assessed, if TRUE  break  out of the loop, if FALSE continue 
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on with the loop. In a  nested   looping situation, where there is a loop inside another 
loop, this statement exits from the innermost loop that is being evaluated.

      x <- 1:5  

      for (i in x) {  
          if (i == 3){  
                  break  
                  }  
          print  (i)  
  }  
  ## [1] 1  
  ## [1] 2  

19.1.7         next Function to Skip an Iteration in a Loop 

 The   next    statement is useful when we want to skip the current iteration of a loop 
without terminating it. On encountering next, the  R   parser skips further  evaluation   
and starts next iteration of the loop.

      x <- 1:5  

      for (i in x) {  
          if (i == 3){  
                  next  
                  }  
          print  (i)  
  }  
  ## [1] 1  
  ## [1] 2  
  ## [1] 4  
  ## [1] 5  

19.2           Apply Family 

 The  apply family   consists of vectorized functions which minimize your need to 
explicitly create loops. These functions will apply a specifi ed function to a data 
object and there primary difference is in the object class in which the function is 
applied to ( list   vs.  matrix  , etc) and the object class that will be returned from the 
function. The following presents the most common forms of apply functions that I 
use for data analysis but realize that additional functions exist ( mapply ,  rapply , 
and  vapply ) which are not covered here. 
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19.2.1     apply() for Matrices and Data Frames 

 The   apply()    function is most often used to apply a function to the rows or col-
umns (margins) of matrices or  data frames  . However, it can be used with general 
arrays, for example, to take the average of an array of matrices. Using   apply()    is 
not faster than using a loop function, but it is highly compact and can be written in 
one line. 

 The  syntax   for   apply()    is as follows where

•     x  is the  matrix  , dataframe or array  
•    MARGIN  is a  vector   giving the subscripts which the function will be applied over. 

E.g., for a  matrix   1 indicates rows, 2 indicates columns, c(1, 2) indicates rows 
and columns.  

•    FUN  is the function to be applied  
•    …  is for any other  arguments   to be passed to the function   

      # syntax of apply function  
  apply  (x, MARGIN, FUN, …)  

    To provide examples let’s use the  mtcars  data set provided in  R  :

      # show fi rst few rows of mtcars  
  head  (mtcars)  
  ##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb  
  ## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4  
  ## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4  
  ## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1  
  ## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1  
  ## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2  
  ## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1  

      # get the mean of each column   
  apply  (mtcars, 2, mean)  
  ##        mpg        cyl       disp         hp       drat         wt   
  ##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250   
  ##       qsec         vs         am       gear       carb   
  ##  17.848750   0.437500   0.406250   3.687500   2.812500  

      # get the sum of each row (not really relevant for this data  
  # but it illustrates the capability)  
  apply  (mtcars, 1, sum)  
  ##           Mazda RX4       Mazda RX4 Wag          Datsun 710   
  ##             328.980             329.795             259.580   
  ##      Hornet 4 Drive   Hornet Sportabout             Valiant   
  ##             426.135             590.310             385.540   
  ##          Duster 360           Merc 240D            Merc 230   
  ##             656.920             270.980             299.570   
  ##            Merc 280           Merc 280C          Merc 450SE   
  ##             350.460             349.660             510.740   
  ##          Merc 450SL         Merc 450SLC  Cadillac Fleetwood   
  ##             511.500             509.850             728.560   
  ## Lincoln Continental   Chrysler Imperial            Fiat 128   
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  ##             726.644             725.695             213.850   
  ##         Honda Civic      Toyota Corolla       Toyota Corona   
  ##             195.165             206.955             273.775   
  ##    Dodge Challenger         AMC Javelin          Camaro Z28   
  ##             519.650             506.085             646.280   
  ##    Pontiac Firebird           Fiat X1-9       Porsche 914-2   
  ##             631.175             208.215             272.570   
  ##        Lotus Europa      Ford Pantera L        Ferrari Dino   
  ##             273.683             670.690             379.590   
  ##       Maserati Bora          Volvo 142E   
  ##             694.710             288.890  

      # get column quantiles (notice the quantile percents as row names)  
  apply  (mtcars, 2, quantile, probs =   c  (0.10, 0.25, 0.50, 0.75, 0.90))  
  ##        mpg cyl    disp    hp  drat      wt    qsec vs am gear carb  
  ## 10% 14.340   4  80.610  66.0 3.007 1.95550 15.5340  0  0    3    1  
  ## 25% 15.425   4 120.825  96.5 3.080 2.58125 16.8925  0  0    3    2  
  ## 50% 19.200   6 196.300 123.0 3.695 3.32500 17.7100  0  0    4    2  
  ## 75% 22.800   8 326.000 180.0 3.920 3.61000 18.9000  1  1    4    4  
  ## 90% 30.090   8 396.000 243.5 4.209 4.04750 19.9900  1  1    5    4  

19.2.2          lapply()   for Lists…Output as a List 

 The   lapply()    function does the following simple series of operations:

    1.    it loops over a  list  , iterating over each element in that list   
   2.    it applies a function to each element of the list (a function that you specify)   
   3.    and returns a list (the l is for “list”).    

  The  syntax   for   lapply()    is as follows where

•     x  is the  list    
•    FUN  is the function to be applied  
•    …  is for any other  arguments   to be passed to the function   

      # syntax of lapply function  
  lapply  (x, FUN, …)  

    To provide examples we’ll generate a  list   of four items:

      data <-   list  (item1 = 1:4, item2 =   rnorm  (10),   
               item3 =   rnorm  (20, 1), item4 =    rnorm    (100, 5))  

      # get the mean of each list item   
  lapply  (data, mean)  
  ## $item1  
  ## [1] 2.5  
  ##   
  ## $item2  
  ## [1] 0.5529324  
  ##   
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  ## $item3  
  ## [1] 1.193884  
  ##   
  ## $item4  
  ## [1] 5.013019  

    The above provides a simple example where each list item is simply a  vector   of 
numeric values. However, consider the case where you have a  list   that contains  data 
frames   and you would like to loop through each list item and perform a function to the 
 data frame  . In this case we can embed an  apply  function within an  lapply  function. 

 For example, the following creates a list fo r R  ’s built in beaver data sets. 
The  lapply  function loops through each of the two list items and uses  apply  
to calculate the mean of the columns in both list items. Note that I wrap the apply 
function with   round    to provide an easier to read output.

      # list of R's built in beaver data  
  beaver_data <-   list  (beaver1 = beaver1, beaver2 = beaver2)  

      # get the mean of each list item   
  lapply  (beaver_data, function(x)   round  (  apply  (x, 2, mean), 2))  
  ## $beaver1  
  ##     day    time    temp   activ   
  ##  346.20 1312.02   36.86    0.05   
  ##   
  ## $beaver2  
  ##     day    time    temp   activ   
  ##  307.13 1446.20   37.60    0.62  

19.2.3          sapply()   for Lists…Output Simplifi ed 

 The   sapply()    function behaves similarly to   lapply()   ; the only real difference 
is in the return value.   sapply()    will try to simplify the result of   lapply()    if 
possible. Essentially,   sapply()    calls   lapply()    on its input and then applies the 
following algorithm:

•    If the result is a list where every element is length 1, then a  vector   is returned  
•   If the result is a  list   where every element is a vector of the same length (> 1), a 

 matrix   is returned.  
•   If neither of the above simplifi cations can be performed then a  list   is returned    

 To illustrate the differences we can use the previous example using a  list   with the 
beaver data and compare the  sapply  and  lapply  outputs:

      # list of R's built in beaver data  
  beaver_data <-   list  (beaver1 = beaver1, beaver2 = beaver2)  

19.2  Apply Family
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      # get the mean of each list item and return as a list  
  lapply  (beaver_data, function(x)   round  (  apply  (x, 2, mean), 2))  
  ## $beaver1  
  ##     day    time    temp   activ   
  ##  346.20 1312.02   36.86    0.05   
  ##   
  ## $beaver2  
  ##     day    time    temp   activ   
  ##  307.13 1446.20   37.60    0.62  

      # get the mean of each list item and simplify the output  
  sapply  (beaver_data, function(x)   round  (  apply  (x, 2, mean), 2))  
  ##       beaver1 beaver2  
  ## day    346.20  307.13  
  ## time  1312.02 1446.20  
  ## temp    36.86   37.60  
  ## activ    0.05    0.62  

19.2.4          tapply()   for Vectors 

   tapply()    is used to apply a function over subsets of a  vector  . It is primarily used 
when we have the following circumstances:

    1.    A dataset that can be broken up into groups (via categorical variables - aka 
 factors  )   

   2.    We desire to break the dataset up into groups   
   3.    Within each group, we want to apply a function    

  The  arguments   to   tapply()    are as follows:

•     x  is a  vector    
•    INDEX  is a factor or a  list   of factors (or else they are coerced to  factors  )  
•    FUN  is a function to be applied  
•    …  contains other  arguments   to be passed FUN  
•    simplify , should we simplify the result?   

      # syntax of tapply function  
  tapply  (x, INDEX, FUN, …, simplify = TRUE)  

    To provide an example we’ll use the built in mtcars dataset and calculate the 
mean of the  mpg  variable grouped by the  cyl  variable.

      # show fi rst few rows of mtcars  
  head  (mtcars)  
  ##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb  
  ## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4  
  ## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4  
  ## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1  
  ## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1  
  ## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2  
  ## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1  
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      # get the mean of the mpg column grouped by cylinders   
  tapply  (mtcars$mpg, mtcars$cyl, mean)  
  ##        4        6        8   
  ## 26.66364 19.74286 15.10000  

    Now let’s say you want to calculate the mean for  each  column in the mtcars 
dataset grouped by the cylinder categorical variable. To do this you can embed the 
 tapply  function within the  apply  function.

      # get the mean of all columns grouped by cylinders   
  apply  (mtcars, 2, function(x)   tapply  (x, mtcars$cyl, mean))  
  ##        mpg cyl     disp        hp     drat       wt     qsec        vs  
  ## 4 26.66364   4 105.1364  82.63636 4.070909 2.285727 19.13727 0.9090909  
  ## 6 19.74286   6 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286  
  ## 8 15.10000   8 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000  
  ##          am     gear     carb  
  ## 4 0.7272727 4.090909 1.545455  
  ## 6 0.4285714 3.857143 3.428571  
  ## 8 0.1428571 3.285714 3.500000  

    Note that this type of summarization can also be done using the   dplyr  package   
with clearer  syntax  . This is covered in the  Transforming Your Data with dplyr  
section.   

19.3      Other Useful “Loop-Like” Functions 

 In addition to the apply family which provides vectorized functions that minimize 
your need to explicitly create loops, there are also a few commonly applied  apply  
functions that have been further simplifi ed. These include the calculation of column 
and row sums, means, medians, standard deviations, variances, and summary quan-
tiles across the entire data set. 

 The most common apply functions include calculating the sums and means of 
columns and rows. For instance, to calculate the sum of columns across a  data frame   
or  matrix   you could do the following:

      apply  (mtcars, 2, sum)  
  ##      mpg      cyl     disp       hp     drat       wt     qsec       vs   
  ##  642.900  198.000 7383.100 4694.000  115.090  102.952  571.160   14.000   
  ##       am     gear     carb   
  ##   13.000  118.000   90.000  

    However, you can perform the same function with the shorter   colSums()    
function and it performs faster:

      colSums  (mtcars)  
  ##      mpg      cyl     disp       hp     drat       wt     qsec       vs   
  ##  642.900  198.000 7383.100 4694.000  115.090  102.952  571.160   14.000   
  ##       am     gear     carb   
  ##   13.000  118.000   90.000  

19.3  Other Useful “Loop-Like” Functions



196

    To illustrate the speed difference we can compare the performance of using the 
  apply()    function versus the   colSums()    function on a  matrix   with 100 million 
values (10K × 10K). You can see that the speed of   colSums()    is signifi cantly faster.

      # develop a 10,000 x 10,000 matrix  
  mat =   matrix  (  sample  (1:10, size=100000000, replace=TRUE), nrow=10000)  

      system.time  (  apply  (mat, 2, sum))  
  ##    user  system elapsed   
  ##   1.544   0.329   1.879  

      system.time  (  colSums  (mat))  
  ##    user  system elapsed   
  ##   0.126   0.000   0.127  

    Base  R   provides the following simplifi ed  apply  functions:

•     colSums (x, na.rm = FALSE)   
•    rowSums (x, na.rm = FALSE)   
•    colMeans(x, na.rm = FALSE)   
•    rowMeans(x, na.rm = FALSE)     

 In addition, the following functions are provided through the specifi ed 
 packages  :

•    miscTools package (note that these functions will work on  data frames  )

 –     colMedians()   
 –    rowMedians()      

•   matrixStats package (note that these functions only operate on matrices)

 –     colMedians()  and  rowMedians()   
 –    colSds()  and  rowSds()   
 –    colVar()  and  rowVar()   
 –    colRanges()  and  rowRanges()   
 –    colQuantiles()  and  rowQuantiles()   
 –   along with several additional summary  statistic   functions       

 In addition, the   summary()    function will provide relevant  summary statistics   
over each column of  data frames   and matrices. Note in the example that follows that 
for the fi rst four columns of the  iris  data set the  summary statistics   include min, 
med, mean, max, and fi rst and third quantiles. Whereas the last column ( Species ) 
only provides the total count since this is a  factor   variable.

      summary  (iris)  
  ##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width     
  ##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100    
  ##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300    
  ##  Median :5.800   Median :3.000   Median :4.350   Median :1.300    
  ##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199    
  ##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800    
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  ##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500    
  ##        Species    
  ##  setosa    :50    
  ##  versicolor:50    
  ##  virginica :50    
  ##                   
  ##                   
  ##   

19.4         Additional Resources 

 This provides an introduction to control statements in  R  . However, the following 
provides additional resources to learn more:

•    Tutorial on loops by DataCamp  
•   Roger Peng’s  R   Programming for Data Science  
•   Hadley Wickham’s Advanced R       

19.4  Additional Resources
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    Chapter 20   
 Simplify Your Code with  %>%                      

          Removing duplication is an important principle to keep in mind with your code; 
however, equally important is to keep your code effi cient and readable. Effi ciency is 
often accomplished by leveraging functions and control statements in your code. 
However, effi ciency also includes eliminating the creation and saving of unneces-
sary objects that often result when you are trying to make your code more readable, 
clear, and explicit. Consequently, writing code that is simple, readable,  and  effi cient 
is often considered contradictory. For this reason, the   magrittr    package is a pow-
erful tool to have in your  data wrangling   toolkit. 

 The magrittr package was created by Stefan Milton Bache and, in Stefan’s words, 
has two primary aims: “to decrease development time and to improve readability 
and maintainability of code.” Hence, it aims to increase effi ciency and improve 
readability; and in the process it greatly simplifi es your code. The following covers 
the basics of the   magrittr    toolkit. 

20.1     Pipe (%>%) Operator 

 The principal function provided by the   magrittr    package is  %>% , or what’s 
called the “pipe” operator. This operator will forward a value, or the result of an 
expression, into the next function call/expression. For instance a function to fi lter 
data can be written as:

       fi lter    (data, variable == numeric_value)  

    or

      data %>% fi lter(variable == numeric_value)  
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    Both functions complete the same task and the benefi t of using  %>%  may not be 
immediately evident; however, when you desire to perform multiple functions its 
advantage becomes obvious. For instance, if we want to fi lter some data, group it by 
categories, summarize it, and then order the summarized results we could write it 
out three different ways. Don’t worry, you’ll learn how to operate these specifi c 
functions in the next section. 

20.1.1     Nested Option 

        library    (magrittr)  
   library    (dplyr)  

      arrange  (  
     summarize  (  
         group_by  (  
              fi lter    (mtcars, carb > 1),  
             cyl  
            ),  
         Avg_mpg =   mean  (mpg)  
        ),  
     desc  (Avg_mpg)  
   )  
  ## Source: local data frame [3 x 2]  
  ##   
  ##     cyl Avg_mpg  
  ##   (dbl)   (dbl)  
  ## 1     4   25.90  
  ## 2     6   19.74  
  ## 3     8   15.10  

    This fi rst option is considered a “nested”    option such that functions are  nested   
within one another. Historically, this has been the traditional way of integrating code; 
however, it becomes extremely diffi cult to read what exactly the code is doing and it 
also becomes easier to make mistakes when making updates to your code. Although 
not in violation of the DRY principle, it defi nitely violates the basic principle of read-
ability and clarity, which makes communication of your analysis more diffi cult. To 
make things more readable, people often move to the following approach…  

20.1.2     Multiple Object Option 

       a <-   fi lter  (mtcars, carb > 1)  
  b <-   group_by  (a, cyl)  
  c <-   summarise  (b, Avg_mpg =   mean  (mpg))  
  d <-   arrange  (c,   desc  (Avg_mpg))  
  print  (d)  
  ## Source: local data frame [3 x 2]  
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  ##   
  ##     cyl Avg_mpg  
  ##   (dbl)   (dbl)  
  ## 1     4   25.90  
  ## 2     6   19.74  
  ## 3     8   15.10  

    This second option helps in making the  data wrangling   steps more explicit and 
obvious but defi nitely violates the DRY principle. By sequencing multiple functions in 
this way you are likely saving multiple outputs that are not very informative to you or 
others; rather, the only reason you save them is to insert them into the next function to 
eventually get the fi nal output you desire. This inevitably creates unnecessary copies 
and wrecks havoc on properly managing your objects…basically it results in a global 
environment charlie foxtrot! To provide the same readability (or even better), we can 
use  %>%  to string these  arguments   together without unnecessary object creation…  

20.1.3     %>% Option 

       mtcars %>%  
           fi lter    (carb > 1) %>%  
          group_by  (cyl) %>%  
          summarise  (Avg_mpg =   mean  (mpg)) %>%  
          arrange  (  desc  (Avg_mpg))  
  ## Source: local data frame [3 x 2]  
  ##   
  ##     cyl Avg_mpg  
  ##   (dbl)   (dbl)  
  ## 1     4   25.90  
  ## 2     6   19.74  
  ## 3     8   15.10  

    This fi nal option which integrates  %>%  operators makes for more effi cient  and  
legible code. Its effi cient in that it doesn’t save unnecessary objects (as in option 2) 
and performs as effectively (as both option 1 and 2) but makes your code more read-
able in the process. Its legible in that you can read this as you would read normal 
prose (we read the  %>%  as “ and then” ) - “take  mtcars   and then   fi lter   and then  
 group by   and then   summarize   and then   arrange .” 

 And since  R   is a  functional programming language  , meaning that everything you 
do is basically built on functions, you can use the  pipe operator   to feed into just 
about any  argument   call. For example, we can pipe into a linear regression function 
and then get the summary of the regression parameters. Note in this case I insert 
“ data = .”  into the  lm()  function. When using the  %>%  operator the default is 
the  argument   that you are forwarding will go in as the  fi rst   argument   of the function 
that follows the  %>% . However, in some functions the  argument   you are forwarding 
does not go into the default fi rst position. In these cases, you place “.” to signal 
which  argument   you want the forwarded expression to go to.

20.1  Pipe (%>%) Operator
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      mtcars %>%  
           fi lter    (carb > 1) %>%  
          lm  (mpg ~ cyl + hp, data = .) %>%  
           summary  ()    
  ##   
  ## Call:  
  ## lm(formula = mpg ~ cyl + hp, data = .)  
  ##   
  ## Residuals:  
  ##     Min      1Q  Median      3Q     Max   
  ## -4.6163 -1.4162 -0.1506  1.6181  5.2021   
  ##   
  ## Coeffi cients:  
  ##             Estimate Std. Error t value Pr(>|t|)      
  ## (Intercept) 35.67647    2.28382  15.621 2.16e-13 ***  
  ## cyl         -2.22014    0.52619  -4.219 0.000353 ***  
  ## hp          -0.01414    0.01323  -1.069 0.296633      
  ## ---  
  ## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
  ##   
  ## Residual standard error: 2.689 on 22 degrees of freedom  
  ## Multiple R-squared:  0.7601, Adjusted R-squared:  0.7383   
  ## F-statistic: 34.85 on 2 and 22 DF,  p-value: 1.516e-07  

    You can also use  %>%  to feed into plots:

       library    (ggplot2)  

      mtcars %>%  
          fi lter  (carb > 1) %>%  
          qplot  (x = wt, y = mpg, data = .)  
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    You will also fi nd that the  %>%  operator is now being built into  packages   to make 
programming much easier. For instance, in the section that follows where I illustrate 
how to reshape and transform your data with the  dplyr  and  tidyr   packages  , you 
will see that the  %>%  operator is already built into these  packages  . It is also built into the 
 ggvis  and  dygraphs   packages   (visualization  packages  ), the   httr    package (which 
we covered in the data scraping chapter), and a growing number of newer  packages  .   

20.2     Additional Functions 

 In addition to the  %>%  operator,   magrittr    provides several additional functions 
which make operations such as addition, multiplication,  logical operators  , re- 
 naming  , etc. more pleasant when composing chains using the  %>%  operator. Some 
examples follow but you can see the current  list   of the available aliased functions by 
typing  ?   magrittr    ::add  in your  console  .

      # subset with extract  
  mtcars %>%  
          extract  (, 1:4) %>%  
          head  
  ##                    mpg cyl disp  hp  
  ## Mazda RX4         21.0   6  160 110  
  ## Mazda RX4 Wag     21.0   6  160 110  
  ## Datsun 710        22.8   4  108  93  
  ## Hornet 4 Drive    21.4   6  258 110  
  ## Hornet Sportabout 18.7   8  360 175  
  ## Valiant           18.1   6  225 105  

      # add, subtract, multiply, divide and other operations are available  
  mtcars %>%   
          extract  (, "mpg") %>%   
          multiply_by  (5)  
  ##  [1] 105.0 105.0 114.0 107.0  93.5  90.5  71.5 122.0 114.0  96.0  89.0  
  ## [12]  82.0  86.5  76.0  52.0  52.0  73.5 162.0 152.0 169.5 107.5  77.5  
  ## [23]  76.0  66.5  96.0 136.5 130.0 152.0  79.0  98.5  75.0 107.0  

      # logical assessments and fi lters are available  
  mtcars %>%   
          extract  (, "cyl") %>%   
          equals  (4)  
  ##  [1] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  
  ## [12] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  
  ## [23] FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  

      # renaming columns and rows is available  
  mtcars %>%  
          head %>%  
          set_colnames  (  paste  ("Col", 1:11, sep = ""))  
  ##                   Col1 Col2 Col3 Col4 Col5  Col6  Col7 Col8 Col9 Col10  
  ## Mazda RX4         21.0    6  160  110 3.90 2.620 16.46    0    1     4  
  ## Mazda RX4 Wag     21.0    6  160  110 3.90 2.875 17.02    0    1     4  
  ## Datsun 710        22.8    4  108   93 3.85 2.320 18.61    1    1     4  
  ## Hornet 4 Drive    21.4    6  258  110 3.08 3.215 19.44    1    0     3  

20.2  Additional Functions



204

  ## Hornet Sportabout 18.7    8  360  175 3.15 3.440 17.02    0    0     3  
  ## Valiant           18.1    6  225  105 2.76 3.460 20.22    1    0     3  
  ##                   Col11  
  ## Mazda RX4             4  
  ## Mazda RX4 Wag         4  
  ## Datsun 710            1  
  ## Hornet 4 Drive        1  
  ## Hornet Sportabout     2  
  ## Valiant               1  

20.3         Additional Pipe Operators 

   magrittr    also offers some alternative  pipe operators  . Some functions, such as 
plotting functions, will cause the string of piped  arguments   to terminate. The tee 
( %T>% ) operator allows you to continue piping functions that normally cause 
termination.

      # normal piping terminates with the plot() function resulting in  
  # NULL results for the    summary()     function  
  mtcars %>%  
           fi lter    (carb > 1) %>%  
          extract  (, 1:4) %>%  
          plot  () %>%  
           summary  ()    
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        ## Length  Class   Mode   
  ##      0   NULL   NULL  

      # inserting %T>% allows you to plot and perform the functions that   
  # follow the plotting function  
  mtcars %>%  
           fi lter    (carb > 1) %>%  
          extract  (, 1:4) %T>%  
          plot  () %>%  
           summary  ()    
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   Tee Operator Allows You to Pipe Through a Plot       

        ##       mpg             cyl            disp             hp         
  ##  Min.   :10.40   Min.   :4.00   Min.   : 75.7   Min.   : 52.0    
  ##  1st Qu.:15.20   1st Qu.:6.00   1st Qu.:146.7   1st Qu.:110.0    
  ##  Median :17.80   Median :8.00   Median :275.8   Median :175.0    
  ##  Mean   :18.62   Mean   :6.64   Mean   :257.7   Mean   :163.7    
  ##  3rd Qu.:21.00   3rd Qu.:8.00   3rd Qu.:351.0   3rd Qu.:205.0    
  ##  Max.   :30.40   Max.   :8.00   Max.   :472.0   Max.   :335.0  

    The compound  assignment    %<>%  operator is used to update a value by fi rst pip-
ing it into one or more expressions, and then assigning the result. For instance, let’s 
say you want to transform the  mpg  variable in the  mtcars   data frame   to a square 
root measurement. Using  %<>%  will perform the functions to the right of  %<>%  and 
save the changes these functions perform to the variable or  data frame   called to the 
left of  %<>% .

20.3  Additional Pipe Operators



206

      # note that mpg is in its typical measurement  
  head  (mtcars)  
  ##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb  
  ## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4  
  ## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4  
  ## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1  
  ## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1  
  ## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2  
  ## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1  

      # we can square root mpg and save this change using %<>%  
  mtcars$mpg %<>% sqrt  

      head  (mtcars)  
  ##                        mpg cyl disp  hp drat    wt  qsec vs am gear carb  
  ## Mazda RX4         4.582576   6  160 110 3.90 2.620 16.46  0  1    4    4  
  ## Mazda RX4 Wag     4.582576   6  160 110 3.90 2.875 17.02  0  1    4    4  
  ## Datsun 710        4.774935   4  108  93 3.85 2.320 18.61  1  1    4    1  
  ## Hornet 4 Drive    4.626013   6  258 110 3.08 3.215 19.44  1  0    3    1  
  ## Hornet Sportabout 4.324350   8  360 175 3.15 3.440 17.02  0  0    3    2  
  ## Valiant           4.254409   6  225 105 2.76 3.460 20.22  1  0    3    1  

    Some functions (e.g. lm, aggregate, cor) have a data  argument  , which allows the 
direct use of names inside the data as part of the call. The exposition ( %$% ) operator 
is useful when you want to pipe a data frame, which may contain many columns, 
into a function that is only applied to some of the columns. For example, the correla-
tion ( cor ) function only requires an  x  and  y   argument   so if you pipe the  mtcars  
data into the  cor  function using  %>%  you will get an error because  cor  doesn’t 
know how to handle  mtcars . However, using  %$%  allows you to say “take this 
dataframe and then perform  cor()  on these specifi ed columns within  mtcars .”

      # regular piping results in an error  
  mtcars %>%  
          subset  (vs == 0) %>%  
          cor  (mpg, wt)  
  ## Error in pmatch(use, c("all.obs", "complete.obs", "pairwise.complete.obs", : 
object 'wt' not found  

      # using %$% allows you to specify variables of interest  
  mtcars %>%  
          subset  (vs == 0) %$%  
          cor  (mpg, wt)  
  ## [1] -0.830671  
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20.4         Additional Resources 

 The   magrittr    package and its  pipe operators   are a great tool for making your code 
simple, effi cient, and readable. There are limitations, or at least suggestions, on when 
and how you should use the operators. Garrett Grolemund and Hadley Wickham 
offer some advice on the proper use of  pipe operators   in their R for Data Science 
book. However, the  %>%  has greatly transformed our ability to write “simplifi ed” 
code in  R  . As the pipe gains in popularity you will likely fi nd it in more future  pack-
ages   and being familiar will likely result in better communication of your code. 

 Some additional resources regarding   magrittr    and the  pipe operators   you 
may fi nd useful:

•    The   magrittr    vignette ( vignette("   magrittr    ") ) in your  console  ) pro-
vides additional examples of using  pipe operators   and functions provided by 
  magrittr   .  

•   A blog post by Stefan Milton Bache regarding the past, present and future of 
  magrittr    1   

•   magrittr questions on Stack Overfl ow  
•   The ensurer package, also written by Stefan Milton Bache, provides a useful way 

of verifying and validating data outputs in a  sequence   of  pipe operators  .       

1   https://www.r-bloggers.com/simpler-r-coding-with-pipes-the-present-and-future-of-the-magrittr-
package/ 
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   Part VI 
   Shaping and Transforming 

Your Data with R 
       Up to 80 % of data analysis is spent on the process of cleaning 
and preparing data . 

 cf.Wickham (   2014    ) and Dasu and Johnson (  2003    )            

 A tremendous amount of time is spent on fundamental preprocessing tasks to get 
your data into the right form in order to feed it into the visualization and modeling 
stages. This typically requires a large amount of reshaping and transformation of 
your data. Although many fundamental data processing functions exist in  R  , they 
have been a bit convoluted to  date   and have lacked consistent coding and the ability 
to easily fl ow together. The RStudio team has been driving a lot of new  packages   to 
collate data management tasks and better integrate them with other analysis activi-
ties. As a result, a lot of data processing tasks are becoming packaged in more 
cohesive and consistent ways which leads to more effi cient code and easier to read 
 syntax  . This section covers two of these  packages  :   tidyr     and   dplyr    . 

 In this section, I start by providing a fundamental understanding of tidy data fol-
lowed by demonstrating how to to use  tidyr  to turn  wide data   to long,  long data   
to wide, splitting and combining variables, along with illustrating some lesser-
known functions. Subsequently, I provide an introduction to the  dplyr  package by 
covering seven primary functions  dplyr  provides for simplifi ed data transforma-
tion and manipulation. This includes tasks such as fi ltering, summarizing, ordering, 
joining, and much more. Understanding and using these two  packages   will help to 
signifi cantly reduce the time you spend on the  data wrangling   process.      

https://www.jstatsoft.org/article/view/v059i10
http://onlinelibrary.wiley.com/doi/10.1002/0471448354.ch4/summary
http://dx.doi.org/10.1007/978-3-319-45599-0_21
http://dx.doi.org/10.1007/978-3-319-45599-0_22
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    Chapter 21   
 Reshaping Your Data with  tidyr                      

  Cannot emphasize enough how much time you save by putting 
analysis efforts into tidying data fi rst.  

 Hilary Parker 

           Jenny Bryan stated that “classroom data are like teddy bears and real data are like a 
grizzley bear with salmon blood dripping out its mouth.” In essence, she was getting 
to the point that often when we learn how to perform a modeling approach in the 
classroom, the data used is provided in a format that appropriately feeds into the 
modeling tool of choice. In reality, datasets are messy and “every messy dataset is 
messy in its own way.” 1  The concept of “tidy data” was established by Hadley 
Wickham and represents “standardized way to link the structure of a dataset (its 
physical layout) with its semantics (its meaning).” 2  The objective should always be 
to get a dataset into a tidy form which consists of:

    1.    Each variable forms a column   
   2.    Each observation forms a row   
   3.    Each type of observational unit forms a table    

  To create tidy data you need to be able to reshape your data; preferably via effi -
cient and simple code. To help with this process Hadley created the  tidyr  pack-
age. This chapter covers the basics of  tidyr  to help you reshape your data as 
necessary. I demonstrate how to turn  wide data to long ,  long data to wide ,  splitting  
and  combining  variables, and fi nally I will cover some  lesser known functions  in 
 tidyr  that are useful. Note that throughout I use the  %>%  operator we covered in 
the last chapter. Although not required, the  tidyr  package has the  %>%  operator 
baked in to its functionality, which allows you to   sequence   multiple tidy functions 
together . 

1   Wickham, H. ( 2014 ). “Tidy data.” Journal of Statistical Software, 59(10). [ document ]. 
2   Ibid. 

http://jstatsoft.org/v59/i10
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21.1      Making  Wide Data   long 

 There are times when our data is considered “wide” or “unstacked” and a common 
attribute/variable of concern is spread out across columns. To reformat the data such 
that these common  attributes   are  gathered  together as a single variable, the 
  gather()    function will take multiple columns and collapse them into key-value 
pairs, duplicating all other columns as needed. 

 For example, let’s say we have the given  data frame  .

       library    (dplyr)   # I'm using dplyr just to create the data frame with tbl_df()  

      wide <-   tbl_df  (  read.table  (header = TRUE, text = "  
     Group   Year   Qtr.1  Qtr.2  Qtr.3  Qtr.4  
      1      2006   15     16     19     17  
      1      2007   12     13     27     23  
      1      2008   22     22     24     20  
      1      2009   10     14     20     16  
      2      2006   12     13     25     18  
      2      2007   16     14     21     19  
      2      2008   13     11     29     15  
      2      2009   23     20     26     20  
      3      2006   11     12     22     16  
      3      2007   13     11     27     21  
      3      2008   17     12     23     19  
      3      2009   14     9      31     24  
  "))  

    This data is considered wide since the  time  variable (represented as quarters) is 
structured such that each quarter represents a variable. To re-structure the time compo-
nent as an individual variable, we can  gather  each quarter within one column variable 
and also  gather  the values associated with each quarter in a second column variable.

       library    (tidyr)  

      long <- wide %>%   gather  (Quarter, Revenue, Qtr.1:Qtr.4)  

      # note, for brevity, I only show the fi rst 15 observations  
  head  (long, 15)   
  ## Source: local data frame [15 x 4]  
  ##   
  ##    Group  Year Quarter Revenue  
  ##    (int) (int)  (fctr)   (int)  
  ## 1      1  2006   Qtr.1      15  
  ## 2      1  2007   Qtr.1      12  
  ## 3      1  2008   Qtr.1      22  
  ## 4      1  2009   Qtr.1      10  
  ## 5      2  2006   Qtr.1      12  
  ## 6      2  2007   Qtr.1      16  
  ## 7      2  2008   Qtr.1      13  
  ## 8      2  2009   Qtr.1      23  
  ## 9      3  2006   Qtr.1      11  
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  ## 10     3  2007   Qtr.1      13  
  ## 11     3  2008   Qtr.1      17  
  ## 12     3  2009   Qtr.1      14  
  ## 13     1  2006   Qtr.2      16  
  ## 14     1  2007   Qtr.2      13  
  ## 15     1  2008   Qtr.2      22  

    It’s important to note that there is fl exibility in how you specify the columns you 
would like to gather. These all produce the same results:

      wide %>%   gather  (Quarter, Revenue, Qtr.1:Qtr.4)  
  wide %>%   gather  (Quarter, Revenue, -Group, -Year)  
  wide %>%   gather  (Quarter, Revenue, 3:6)  
  wide %>%   gather  (Quarter, Revenue, Qtr.1, Qtr.2, Qtr.3, Qtr.4)  

21.2          Making  Long Data   wide 

 There are also times when we are required to turn long formatted data into wide 
formatted data. As a complement to   gather()   , the   spread()    function spreads 
a key-value pair across multiple columns. So now let’s take our   long  data    frame   
from above and turn the  Quarter  variable into column headings and spread the 
 Revenue  values across the quarters they are related to.

      back2wide <- long %>%   spread  (Quarter, Revenue)  

      back2wide  
  ## Source: local data frame [12 x 6]  
  ##   
  ##    Group  Year Qtr.1 Qtr.2 Qtr.3 Qtr.4  
  ##    (int) (int) (int) (int) (int) (int)  
  ## 1      1  2006    15    16    19    17  
  ## 2      1  2007    12    13    27    23  
  ## 3      1  2008    22    22    24    20  
  ## 4      1  2009    10    14    20    16  
  ## 5      2  2006    12    13    25    18  
  ## 6      2  2007    16    14    21    19  
  ## 7      2  2008    13    11    29    15  
  ## 8      2  2009    23    20    26    20  
  ## 9      3  2006    11    12    22    16  
  ## 10     3  2007    13    11    27    21  
  ## 11     3  2008    17    12    23    19  
  ## 12     3  2009    14     9    31    24  

21.3          Splitting a Single Column into Multiple Columns 

 Many times a single column variable will capture multiple variables, or even parts of 
a variable you just don’t care about. This is exemplifi ed in the following  messy_df  
 data frame  . Here, the  Grp_Ind  variable combines an individual variable (a, b, c) 

21.3  Splitting a Single Column into Multiple Columns
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with the group variable (1, 2, 3), the  Yr_Mo  variable combines a year variable with 
a month variable, etc. In each case there may be a purpose for separating parts of 
these columns into  separate  variables.

      messy_df  
  ##   Grp_Ind    Yr_Mo       City_State Extra_variable  
  ## 1     1.a 2006_Jan      Dayton (OH)   XX01person_1  
  ## 2     1.b 2006_Feb Grand Forks (ND)   XX02person_2  
  ## 3     1.c 2006_Mar       Fargo (ND)   XX03person_3  
  ## 4     2.a 2007_Jan   Rochester (MN)   XX04person_4  

    This can be accomplished using the   separate()    function which turns a single 
character column into multiple columns. Additional  arguments   provide some fl exi-
bility with separating columns.

      # separate Grp_Ind column into two variables named "Grp"   &   "Ind"  
  messy_df %>%   separate  (col = Grp_Ind, into =   c  ("Grp", "Ind"))  
  ##   Grp Ind    Yr_Mo       City_State Extra_variable  
  ## 1   1   a 2006_Jan      Dayton (OH)   XX01person_1  
  ## 2   1   b 2006_Feb Grand Forks (ND)   XX02person_2  
  ## 3   1   c 2006_Mar       Fargo (ND)   XX03person_3  
  ## 4   2   a 2007_Jan   Rochester (MN)   XX04person_4  

      # default separater is any non alpha-numeric character but you can   
  # specify the specifi c character to separate at  
  messy_df %>%   separate  (col = Extra_variable, into =   c  ("X", "Y"), sep = "_")  
  ##   Grp_Ind    Yr_Mo       City_State          X Y  
  ## 1     1.a 2006_Jan      Dayton (OH) XX01person 1  
  ## 2     1.b 2006_Feb Grand Forks (ND) XX02person 2  
  ## 3     1.c 2006_Mar       Fargo (ND) XX03person 3  
  ## 4     2.a 2007_Jan   Rochester (MN) XX04person 4  

      # you can keep the original column that you are separating  
  messy_df %>%   separate  (col = Grp_Ind, into =   c  ("Grp", "Ind"), remove = FALSE)  
  ##   Grp_Ind Grp Ind    Yr_Mo       City_State Extra_variable  
  ## 1     1.a   1   a 2006_Jan      Dayton (OH)   XX01person_1  
  ## 2     1.b   1   b 2006_Feb Grand Forks (ND)   XX02person_2  
  ## 3     1.c   1   c 2006_Mar       Fargo (ND)   XX03person_3  
  ## 4     2.a   2   a 2007_Jan   Rochester (MN)   XX04person_4  

21.4          Combining Multiple Columns into a Single Column 

 Similarly, there are times when we would like to combine the values of two vari-
ables. As a compliment to   separate()   , the   unite()    function is a convenient 
function to paste together multiple variable values into one. Consider the following 
 data frame   that has separate  date   variables. To perform time series analysis or for 
visualizations we may desire to have a single date column.

21 Reshaping Your Data with  tidyr 
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      expenses <-   tbl_df  (  read.table  (header = TRUE, text = "  
          Year   Month   Day   Expense  
          2015      01    01       500  
          2015      02    05        90  
          2015      02    22       250  
          2015      03    10       325  
  "))  

    To perform time series analysis or for visualizations we may desire to have a 
single  date   column. We can accomplish this by  uniting  these columns into one vari-
able with   unite()   .

      # default separator when uniting is "_"  
  expenses %>%   unite  (col = "Date",   c  (Year, Month, Day))  
  ## Source: local data frame [4 x 2]  
  ##   
  ##        Date Expense  
  ##       (chr)   (int)  
  ## 1  2015_1_1     500  
  ## 2  2015_2_5      90  
  ## 3 2015_2_22     250  
  ## 4 2015_3_10     325  

      # specify sep argument to change separator  
  expenses %>%   unite  (col = "Date",   c  (Year, Month, Day), sep = "-")  
  ## Source: local data frame [4 x 2]  
  ##   
  ##        Date Expense  
  ##       (chr)   (int)  
  ## 1  2015-1-1     500  
  ## 2  2015-2-5      90  
  ## 3 2015-2-22     250  
  ## 4 2015-3-10     325  

21.5          Additional  tidyr  Functions 

 The previous four functions ( gather ,  spread ,  separate  and  unite ) are the 
primary functions you will fi nd yourself using on a continuous basis; however, there 
are some handy functions that are lesser known with the  tidyr  package.

      expenses <-   tbl_df  (  read.table  (header = TRUE, text = "  
          Dept    Year   Month   Day         Cost  
             A    2015      01    01      $500.00  
            NA      NA      02    05       $90.00  
            NA      NA      02    22    $1,250.45  
            NA      NA      03    NA      $325.10  
             B      NA      01    02      $260.00  
            NA      NA      02    05       $90.00  
  ", stringsAsFactors = FALSE))  

21.5  Additional  tidyr  Functions
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    Often  Excel   reports will not  repeat   certain variables. When we read these reports 
in, the empty cells are typically fi lled in with  NA  such as in the  Dept  and  Year  
columns of our  expense   data frame  . We can fi ll these values in with the previous 
entry using   fi ll()   .

      expenses %>%   fi ll  (Dept, Year)  
  ## Source: local data frame [6 x 5]  
  ##   
  ##    Dept  Year Month   Day      Cost  
  ##   (chr) (int) (int) (int)     (chr)  
  ## 1     A  2015     1     1   $500.00  
  ## 2     A  2015     2     5    $90.00  
  ## 3     A  2015     2    22 $1,250.45  
  ## 4     A  2015     3    NA   $325.10  
  ## 5     B  2015     1     2   $260.00  
  ## 6     B  2015     2     5    $90.00  

    Also, sometimes accounting values in  Excel   spreadsheet get read in as a charac-
ter value, which is the case for the  Cost  variable. We may wish to extract only the 
numeric part of this regular  expression  , which can be done with   extract_
numeric()   . Note that  extract_numeric  works on a single variable so when 
you pipe the  expense   data frame   into the function you need to use  %$%  operator 
as discussed in the last chapter.

       library    (magrittr)  

      expenses %$%   extract_numeric  (Cost)  
  ## [1]  500.00   90.00 1250.45  325.10  260.00   90.00  

      # you can use this to convert and save the Cost column to a  
  # numeric variable  
  expenses$Cost <- expenses %$%   extract_numeric  (Cost)  

      expenses  
  ## Source: local data frame [6 x 5]  
  ##   
  ##    Dept  Year Month   Day    Cost  
  ##   (chr) (int) (int) (int)   (dbl)  
  ## 1     A  2015     1     1  500.00  
  ## 2    NA    NA     2     5   90.00  
  ## 3    NA    NA     2    22 1250.45  
  ## 4    NA    NA     3    NA  325.10  
  ## 5     B    NA     1     2  260.00  
  ## 6    NA    NA     2     5   90.00  

    You can also easily replace missing (or  NA ) values with a specifi ed value:

       library    (magrittr)  

      # replace the missing Day value  
  expenses %>%    replace_na    (replace =   list  (Day = "unknown"))  
  ## Source: local data frame [6 x 5]  
  ##   
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  ##    Dept  Year Month     Day    Cost  
  ##   (chr) (int) (int)   (chr)   (dbl)  
  ## 1     A  2015     1       1  500.00  
  ## 2    NA    NA     2       5   90.00  
  ## 3    NA    NA     2      22 1250.45  
  ## 4    NA    NA     3 unknown  325.10  
  ## 5     B    NA     1       2  260.00  
  ## 6    NA    NA     2       5   90.00  

      # replace both the missing Day and Year values  
  expenses %>%    replace_na    (replace =   list  (Year = 2015, Day = "unknown"))  
  ## Source: local data frame [6 x 5]  
  ##   
  ##    Dept  Year Month     Day    Cost  
  ##   (chr) (dbl) (int)   (chr)   (dbl)  
  ## 1     A  2015     1       1  500.00  
  ## 2    NA  2015     2       5   90.00  
  ## 3    NA  2015     2      22 1250.45  
  ## 4    NA  2015     3 unknown  325.10  
  ## 5     B  2015     1       2  260.00  
  ## 6    NA  2015     2       5   90.00  

21.6          Sequencing Your  tidyr  Operations 

 Since the  %>%  operator is embedded in  tidyr , we can string multiple operations 
together to effi ciently tidy data  and  make the process easy to read and follow. To 
illustrate, let’s use the following data, which has multiple  messy   attributes  .

      a_mess <-   tbl_df  (  read.table  (header = TRUE, text = "  
     Dep_Unt   Year     Q1     Q2     Q3     Q4  
      A.1      2006     15     NA     19     17  
      B.1        NA     12     13     27     23  
      A.2        NA     22     22     24     20  
      B.2        NA     12     13     25     18  
      A.1      2007     16     14     21     19  
      B.2        NA     13     11     16     15  
      A.2        NA     23     20     26     20  
      B.2        NA     11     12     22     16  
  "))  

    In this case, a tidy dataset should result in columns of Dept, Unit, Year, Quarter, 
and Cost. Furthermore, we want to fi ll in the year column where  NA s currently exist. 
And we’ll assume that we know the missing value that exists in the Q2 column, and 
we’d like to update it.

      a_mess %>%  
          fi ll  (Year) %>%  
          gather  (Quarter, Cost, Q1:Q4) %>%  
          separate  (Dep_Unt, into =   c  ("Dept", "Unit")) %>%  
           replace_na    (replace =   list  (Cost = 17))  
  ## Source: local data frame [32 x 5]  

21.6  Sequencing Your  tidyr  Operations
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  ##   
  ##     Dept  Unit  Year Quarter  Cost  
  ##    (chr) (chr) (int)  (fctr) (dbl)  
  ## 1      A     1  2006      Q1    15  
  ## 2      B     1  2006      Q1    12  
  ## 3      A     2  2006      Q1    22  
  ## 4      B     2  2006      Q1    12  
  ## 5      A     1  2007      Q1    16  
  ## 6      B     2  2007      Q1    13  
  ## 7      A     2  2007      Q1    23  
  ## 8      B     2  2007      Q1    11  
  ## 9      A     1  2006      Q2    17  
  ## 10     B     1  2006      Q2    13  
  ## ..   …   …   …     …   …  

21.7         Additional Resources 

 This chapter covers most, but not all, of what  tidyr  provides. There are several 
other resources you can check out to learn more.

•    Data wrangling presentation I gave at Miami University 3   
•   Hadley Wickham’s tidy data (Wickham,  2014 )  
•   tidyr reference manual 4   
•    R   Studio’s Data wrangling with R and RStudio webinar 5   
•   R Studio’s Data wrangling cheat sheet 6         

   Bibliography 

    Wickham, Hadley (2014). Tidy data. Journal of Statistical Software, 59(10) 1–23.    

3   http://rpubs.com/bradleyboehmke/data_processing 
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    Chapter 22   
 Transforming Your Data with  dplyr                      

          Transforming your data is a basic part of  data wrangling  . This can include fi ltering, 
summarizing, and ordering your data by different means. This also includes com-
bining disparate data sets,  creating new variables  , and many other manipulation 
tasks. Although many fundamental data transformation and manipulation functions 
exist in  R  , historically they have been a bit convoluted and lacked a consistent and 
cohesive code structure. Consequently, Hadley Wickham developed the very popu-
lar   dplyr  package   to make these data processing tasks more effi cient along with a 
 syntax   that is consistent and easier to remember and read. 

  dplyr ’s roots originate in the popular  plyr  package, also produced by Hadley 
Wickham.  plyr  covers data transformation and manipulation for a range of  data 
structures   ( data frames  ,  lists  , arrays) whereas  dplyr  is focused on transformation 
and manipulation of  data frames  . And since the bulk of data analysis leverages  data 
frames   I am going to focus on  dplyr . Even so,  dplyr  offers far more functional-
ity than I can cover in one chapter. Consequently, I’m going to cover the seven pri-
mary functions  dplyr  provides for data transformation and manipulation. 
Throughout, I also mention additional, useful functions that can be integrated with 
these functions. The full  list   of capabilities can be found in the  dplyr  reference 
manual; I highly recommend going through it as there are many great functions 
provided by  dplyr  that I will not cover here. Also, similar to  tidyr ,  dplyr  has 
the  %>%  operator baked in to its functionality. 

 For most of these examples we’ll use the following census data which includes 
the K-12 public school expenditures by state. This data frame currently is 50 × 16 
and includes expenditure data for 14 unique years (50 states and has data through 
year 2011). Here I only show you a subset of the data.

      ##   Division      State   X1980    X1990    X2000    X2001    X2002    X2003  
  ## 1        6    Alabama 1146713  2275233  4176082  4354794  4444390  4657643  
  ## 2        9     Alaska  377947   828051  1183499  1229036  1284854  1326226  
  ## 3        8    Arizona  949753  2258660  4288739  4846105  5395814  5892227  
  ## 4        7   Arkansas  666949  1404545  2380331  2505179  2822877  2923401  
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  ## 5        9 California 9172158 21485782 38129479 42908787 46265544 47983402  
  ## 6        8   Colorado 1243049  2451833  4401010  4758173  5151003  5551506  
  ##      X2004    X2005    X2006    X2007    X2008    X2009    X2010    X2011  
  ## 1  4812479  5164406  5699076  6245031  6832439  6683843  6670517  6592925  
  ## 2  1354846  1442269  1529645  1634316  1918375  2007319  2084019  2201270  
  ## 3  6071785  6579957  7130341  7815720  8403221  8726755  8482552  8340211  
  ## 4  3109644  3546999  3808011  3997701  4156368  4240839  4459910  4578136  
  ## 5 49215866 50918654 53436103 57352599 61570555 60080929 58248662 57526835  
  ## 6  5666191  5994440  6368289  6579053  7338766  7187267  7429302  7409462  

22.1         Selecting Variables   of Interest 

 When working with a sizable data frame, often we desire to only assess specifi c vari-
ables. The   select()    function allows you to select and/or rename variables. Let’s 
say our goal is to only assess the fi ve most recent years worth of expenditure data. 
Applying the   select()    function we can  select  only the variables of concern.

      sub_exp <- expenditures %>%   select  (Division, State, X2007:X2011)  

      # for brevity only display fi rst 6 rows  
  head  (sub_exp)   
  ##   Division      State    X2007    X2008    X2009    X2010    X2011  
  ## 1        6    Alabama  6245031  6832439  6683843  6670517  6592925  
  ## 2        9     Alaska  1634316  1918375  2007319  2084019  2201270  
  ## 3        8    Arizona  7815720  8403221  8726755  8482552  8340211  
  ## 4        7   Arkansas  3997701  4156368  4240839  4459910  4578136  
  ## 5        9 California 57352599 61570555 60080929 58248662 57526835  
  ## 6        8   Colorado  6579053  7338766  7187267  7429302  7409462  

    We can also apply some of the special functions within   select()   . For instance 
we can select all variables that start with ‘X’ ( ?select  to see the available 
functions):

      expenditures %>%   
          select  (  starts_with  ("X")) %>%  
          head()  
  ##     X1980    X1990    X2000    X2001    X2002    X2003    X2004    X2005  
  ## 1 1146713  2275233  4176082  4354794  4444390  4657643  4812479  5164406  
  ## 2  377947   828051  1183499  1229036  1284854  1326226  1354846  1442269  
  ## 3  949753  2258660  4288739  4846105  5395814  5892227  6071785  6579957  
  ## 4  666949  1404545  2380331  2505179  2822877  2923401  3109644  3546999  
  ## 5 9172158 21485782 38129479 42908787 46265544 47983402 49215866 50918654  
  ## 6 1243049  2451833  4401010  4758173  5151003  5551506  5666191  5994440  
  ##      X2006    X2007    X2008    X2009    X2010    X2011  
  ## 1  5699076  6245031  6832439  6683843  6670517  6592925  
  ## 2  1529645  1634316  1918375  2007319  2084019  2201270  
  ## 3  7130341  7815720  8403221  8726755  8482552  8340211  
  ## 4  3808011  3997701  4156368  4240839  4459910  4578136  
  ## 5 53436103 57352599 61570555 60080929 58248662 57526835  
  ## 6  6368289  6579053  7338766  7187267  7429302  7409462  
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    You can also de-select variables by using “-” prior to name or function. The fol-
lowing produces the inverse of functions above:

      expenditures %>%   select  (-X1980:-X2006)  
  expenditures %>%   select  (-  starts_with  ("X"))  

    And for convenience, you can rename selected variables with two options:

      # select and rename a single column  
  expenditures %>%   select  (Yr_1980 = X1980)  

      # Select and rename the multiple variables with an "X" prefi x:  
  expenditures %>%   select  (Yr_ =   starts_with  ("X"))  

      # keep all variables and rename a single variable  
  expenditures %>%   rename  (`2011` = X2011)  

22.2         Filtering Rows 

  Filtering data   is a common task to identify/select observations in which a particular 
variable matches a specifi c value/condition. The   fi lter()    function provides this 
capability. Continuing with our  sub_exp  data frame which includes only the 
recent 5 years worth of expenditures, we can fi lter by  Division :

      sub_exp %>%   fi lter  (Division == 3)  
  ##   Division     State    X2007    X2008    X2009    X2010    X2011  
  ## 1    3          Illinois 20326591 21874484 23495271 24695773 24554467  
  ## 2      3          Indiana  9497077  9281709  9680895  9921243  9687949  
  ## 3       3         Michigan 17013259 17053521 17217584 17227515 16786444  
  ## 4     3             Ohio 18251361 18892374 19387318 19801670 19988921  
  ## 5       3        Wisconsin  9029660  9366134  9696228  9966244 10333016  

    We can apply multiple logic  rules   in the   fi lter()    function such as:

      <   Less than                    !=      Not equal to  
  >   Greater than                 %in%    Group membership  
  ==  Equal to                     is.na   is NA  
  <=  Less than or equal to        !is.na  is not NA  
  >=  Greater than or equal to     &,|,!   Boolean operators  

    For instance, we can fi lter for Division 3 and expenditures in 2011 that were 
greater than $10B. This results in Indiana being excluded since it falls within divi-
sion 3 and its expenditures were < $10B  (FYI—the raw census data are reported in 
units of $1000) .
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      # Raw census data are in units of $1000  
  sub_exp %>%   fi lter  (Division == 3, X2011 > 10000000)  
  ##   Division     State    X2007    X2008    X2009    X2010    X2011  
  ## 1        3  Illinois 20326591 21874484 23495271 24695773 24554467  
  ## 2        3  Michigan 17013259 17053521 17217584 17227515 16786444  
  ## 3        3      Ohio 18251361 18892374 19387318 19801670 19988921  
  ## 4        3 Wisconsin  9029660  9366134  9696228  9966244 10333016  

    There are additional fi ltering and  subsetting   functions that are quite useful:

      # remove duplicate rows  
  sub_exp %>%   distinct  ()   

      # random sample, 50% sample size without replacement  
  sub_exp %>%   sample_frac  (size = 0.5, replace = FALSE)  

      # random sample of 10 rows with replacement  
  sub_exp %>%   sample_n  (size = 10, replace = TRUE)  

      # select rows 3-5  
  sub_exp %>%   slice  (3:5)  

      # select top n entries - in this case ranks variable X2011 and selects  
  # the rows with the top 5 values  
  sub_exp %>%   top_n  (n = 5, wt = X2011)  

22.3          Grouping Data   by Categorical Variables 

 Often, observations are  nested   within groups or categories and our goal is to per-
form statistical analysis both at the observation  level   and also at the group  level  . The 
  group_by()    function allows us to create these categorical groupings. 

 The   group_by()    function is a  silent  function in which no observable manipu-
lation of the data is performed as a result of applying the function. Rather, the only 
change you’ll notice is, when you print the data frame you will notice underneath 
the  Source  information and prior to the actual data frame, an indicator of what vari-
able the data is grouped by will be provided. In the example that follows you’ll 
notice that we grouped by  Division  and there are nine categories for this vari-
able. The real magic of the   group_by()    function comes when we perform  sum-
mary statistics   which we will cover shortly.

      group.exp <- sub_exp %>%   group_by  (Division)  

      group.exp  
  ## Source: local data frame [50 x 7]  
  ## Groups: Division [9]  
  ##   
  ##    Division       State    X2007    X2008    X2009    X2010    X2011  
  ##       (int)       (chr)    (int)    (int)    (int)    (int)    (int)  
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  ## 1         6     Alabama  6245031  6832439  6683843  6670517  6592925  
  ## 2         9      Alaska  1634316  1918375  2007319  2084019  2201270  
  ## 3         8     Arizona  7815720  8403221  8726755  8482552  8340211  
  ## 4         7    Arkansas  3997701  4156368  4240839  4459910  4578136  
  ## 5         9  California 57352599 61570555 60080929 58248662 57526835  
  ## 6         8    Colorado  6579053  7338766  7187267  7429302  7409462  
  ## 7         1 Connecticut  7855459  8336789  8708294  8853337  9094036  
  ## 8         5    Delaware  1437707  1489594  1518786  1549812  1613304  
  ## 9         5     Florida 22887024 24224114 23328028 23349314 23870090  
  ## 10        5     Georgia 14828715 16030039 15976945 15730409 15527907  
  ## ..      …         …      …      …      …      …      …  

      # we can ungroup our data with  
   ungroup    (group.exp)  
  ## Source: local data frame [50 x 7]  
  ##   
  ##    Division       State    X2007    X2008    X2009    X2010    X2011  
  ##       (int)       (chr)    (int)    (int)    (int)    (int)    (int)  
  ## 1         6     Alabama  6245031  6832439  6683843  6670517  6592925  
  ## 2         9      Alaska  1634316  1918375  2007319  2084019  2201270  
  ## 3         8     Arizona  7815720  8403221  8726755  8482552  8340211  
  ## 4         7    Arkansas  3997701  4156368  4240839  4459910  4578136  
  ## 5         9  California 57352599 61570555 60080929 58248662 57526835  
  ## 6         8    Colorado  6579053  7338766  7187267  7429302  7409462  
  ## 7         1 Connecticut  7855459  8336789  8708294  8853337  9094036  
  ## 8         5    Delaware  1437707  1489594  1518786  1549812  1613304  
  ## 9         5     Florida 22887024 24224114 23328028 23349314 23870090  
  ## 10        5     Georgia 14828715 16030039 15976945 15730409 15527907  
  ## ..      …         …      …      …      …      …      …  

22.4         Performing  Summary Statistics   on Variables 

 Obviously the goal of all this  data  wrangling    is to be able to perform statistical 
analysis on our data. The   summarise()    function allows us to perform the major-
ity of  summary statistics   when performing exploratory data analysis. 

 Let’s get the mean expenditure value across all states in 2011:

      sub_exp %>%   summarise  (Mean_2011 =   mean  (X2011))  
  ##   Mean_2011  
  ## 1  10513678  

    Not too bad, let’s get some more summary stats:

      sub_exp %>%   summarise  (Min =   min  (X2011, na.rm = TRUE),  
                       Median =   median  (X2011, na.rm = TRUE),  
                       Mean =   mean  (X2011, na.rm = TRUE),  
                       Var =   var  (X2011, na.rm = TRUE),  
                       SD =   sd  (X2011, na.rm = TRUE),  
                       Max =   max  (X2011, na.rm = TRUE),  
                       N =   n  ())  
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  ##       Min  Median     Mean         Var       SD      Max  N  
  ## 1 1049772 6527404 10513678 1.48619e+14 12190938 57526835 50  

    This information is useful, but being able to compare  summary statistics   at mul-
tiple  levels   is when you really start to gather some insights. This is where the 
  group_by()    function comes in. First, let’s group by  Division  and see how the 
different regions compare across years 2010 and 2011.

      sub_exp %>%  
          group_by  (Division)%>%   
          summarise  (Mean_2010 =   mean  (X2010, na.rm = TRUE),  
                    Mean_2011 =   mean  (X2011, na.rm = TRUE))  
  ## Source: local data frame [9 x 3]  
  ##   
  ##   Division Mean_2010 Mean_2011  
  ##      (int)     (dbl)     (dbl)  
  ## 1        1   5121003   5222277  
  ## 2        2  32415457  32877923  
  ## 3        3  16322489  16270159  
  ## 4        4   4672332   4672687  
  ## 5        5  10975194  11023526  
  ## 6        6   6161967   6267490  
  ## 7        7  14916843  15000139  
  ## 8        8   3894003   3882159  
  ## 9        9  15540681  15468173  

    Now we’re starting to see some differences pop out. How about we compare 
states within a Division? We can start to apply multiple functions we’ve learned so 
far to get the 5 year average for each state within Division 3.

       library    (tidyr)  

      sub_exp %>%  
          gather  (Year, Expenditure, X2007:X2011) %>%     # turn wide data to long  
          fi lter  (Division == 3) %>%                      # only assess Division 3  
          group_by  (State) %>%                            # summarize data by state  
          summarise  (Mean =   mean  (Expenditure),            # calculate mean   &   SD  
                    SD =   sd  (Expenditure))  
  ## Source: local data frame [5 x 3]  
  ##   
  ##       State     Mean        SD  
  ##       (chr)    (dbl)     (dbl)  
  ## 1  Illinois 22989317 1867527.7  
  ## 2   Indiana  9613775  238971.6  
  ## 3  Michigan 17059665  180245.0  
  ## 4      Ohio 19264329  705930.2  
  ## 5 Wisconsin  9678256  507461.2  

    There are several built-in  summary functions   in  dplyr  as displayed below. You 
can also build in your own functions as well.
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   Built-in Summary Functions       

22.5         Arranging Variables by Value 

 Sometimes we wish to view observations in rank order for a particular variable(s). 
The   arrange()    function allows us to  order data   by variables in ascending or 
descending order. Let’s say we want to assess the average expenditures by division. 
We could apply the   arrange()    function at the end to order the divisions from low-
est to highest expenditure for 2011. This makes it easier to see the signifi cant differ-
ences between Divisions 8, 4, 1 and 6 as compared to Divisions 5, 7, 9, 3 and 2.

      sub_exp %>%  
          group_by  (Division)%>%   
          summarise  (Mean_2010 =   mean  (X2010, na.rm = TRUE),  
                    Mean_2011 =   mean  (X2011, na.rm = TRUE)) %>%  
          arrange  (Mean_2011)  
  ## Source: local data frame [9 x 3]  
  ##   
  ##   Division Mean_2010 Mean_2011  
  ##      (int)     (dbl)     (dbl)  
  ## 1        8   3894003   3882159  
  ## 2        4   4672332   4672687  
  ## 3        1   5121003   5222277  
  ## 4        6   6161967   6267490  
  ## 5        5  10975194  11023526  
  ## 6        7  14916843  15000139  
  ## 7        9  15540681  15468173  
  ## 8        3  16322489  16270159  
  ## 9        2  32415457  32877923  

    We can also apply a  descending   argument   to rank-order from highest to lowest. 
The following shows the same data but in descending order by applying  desc()  
within the   arrange()    function.

      sub_exp %>%  
          group_by  (Division)%>%   
          summarise  (Mean_2010 =   mean  (X2010, na.rm = TRUE),  
                    Mean_2011 =   mean  (X2011, na.rm = TRUE)) %>%  
          arrange  (  desc  (Mean_2011))  
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  ## Source: local data frame [9 x 3]  
  ##   
  ##   Division Mean_2010 Mean_2011  
  ##      (int)     (dbl)     (dbl)  
  ## 1        2  32415457  32877923  
  ## 2        3  16322489  16270159  
  ## 3        9  15540681  15468173  
  ## 4        7  14916843  15000139  
  ## 5        5  10975194  11023526  
  ## 6        6   6161967   6267490  
  ## 7        1   5121003   5222277  
  ## 8        4   4672332   4672687  
  ## 9        8   3894003   3882159  

22.6          Joining Data   Sets 

 Often we have separate data frames that can have common and differing variables 
for similar observations and we wish to  join  these data frames together.  dplyr  
offers multiple joining functions ( xxx_join() ) that provide alternative ways to 
join  data frames  :

•     inner_join()    
•    left_join()    
•    right_join()    
•    full_join()    
•    semi_join()    
•    anti_join()      

 Our public education expenditure data represents then-year dollars. To make any 
accurate assessments of longitudinal trends and comparisons we need to adjust for 
infl ation. I have the following  data frame   which provides infl ation adjustment  fac-
tors   for base-year 2012 dollars.

      ##    Year  Annual Infl ation  
  ## 28 2007 207.342 0.9030811  
  ## 29 2008 215.303 0.9377553  
  ## 30 2009 214.537 0.9344190  
  ## 31 2010 218.056 0.9497461  
  ## 32 2011 224.939 0.9797251  
  ## 33 2012 229.594 1.0000000  

    To join to my expenditure data I obviously need to get my expenditure data in the 
proper form that allows me to join these two  data frames  . I can apply the following 
functions to accomplish this:

      long_exp <- sub_exp %>%  
          gather  (Year, Expenditure, X2007:X2011) %>%           
          separate  (Year, into=  c  ("x", "Year"), sep = "X") %>%   
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          select  (-x) %>%                                       
          mutate  (Year =    as.numeric    (Year))                     

      head  (long_exp)  
  ##   Division      State Year Expenditure  
  ## 1        6    Alabama 2007     6245031  
  ## 2        9     Alaska 2007     1634316  
  ## 3        8    Arizona 2007     7815720  
  ## 4        7   Arkansas 2007     3997701  
  ## 5        9 California 2007    57352599  
  ## 6        8   Colorado 2007     6579053  

    I can now apply the   left_join()    function to join the infl ation data to the 
expenditure data. This aligns the data in both data frames by the  Year  variable and 
then joins the remaining infl ation data to the expenditure  data frame   as new 
variables.

      join_exp <- long_exp %>%   left_join  (infl ation)  

      head  (join_exp)  
  ##   Division      State Year Expenditure  Annual Infl ation  
  ## 1        6    Alabama 2007     6245031 207.342 0.9030811  
  ## 2        9     Alaska 2007     1634316 207.342 0.9030811  
  ## 3        8    Arizona 2007     7815720 207.342 0.9030811  
  ## 4        7   Arkansas 2007     3997701 207.342 0.9030811  
  ## 5        9 California 2007    57352599 207.342 0.9030811  
  ## 6        8   Colorado 2007     6579053 207.342 0.9030811  

    To illustrate the other joining methods we can use the  a  and  b   data frames   from 
the  EDAWR  package 1 :

       library    (EDAWR)  

      a  
  ##   x1 x2  
  ## 1  A  1  
  ## 2  B  2  
  ## 3  C  3  

      b  
  ##   x1    x2  
  ## 1  A  TRUE  
  ## 2  B FALSE  
  ## 3  D  TRUE  

  # include all of a, and join matching rows of b  
  left_join  (a, b, by = "x1")  
  ##   x1 x2.x  x2.y  
  ## 1  A    1  TRUE  
  ## 2  B    2 FALSE  
  ## 3  C    3    NA  

1   The EDAWR package contains multiple data sets and can be downloaded by executing 
devtools::install_github(“rstudio/EDAWR”) 
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      # include all of b, and join matching rows of a  
   right_join    (a, b, by = "x1")  
  ##   x1 x2.x  x2.y  
  ## 1  A    1  TRUE  
  ## 2  B    2 FALSE  
  ## 3  D   NA  TRUE  

      # join data, retain only matching rows in both data frames  
   inner_join    (a, b, by = "x1")  
  ##   x1 x2.x  x2.y  
  ## 1  A    1  TRUE  
  ## 2  B    2 FALSE  

      # join data, retain all values, all rows  
   full_join    (a, b, by = "x1")  
  ##   x1 x2.x  x2.y  
  ## 1  A    1  TRUE  
  ## 2  B    2 FALSE  
  ## 3  C    3    NA  
  ## 4  D   NA  TRUE  

      # keep all rows in a that have a match in b  
   semi_join    (a, b, by = "x1")  
  ##   x1 x2  
  ## 1  A  1  
  ## 2  B  2  

      # keep all rows in a that do not have a match in b  
  anti_join  (a, b, by = "x1")  
  ##   x1 x2  
  ## 1  C  3  

    There are additional  dplyr  functions for merging data sets worth exploring:

      intersect  (y, z)      # Rows that appear in both y and z  
   union    (y, z)          # Rows that appear in either or both y and z  
  setdiff  (y, z)        # Rows that appear in y but not z  
  bind_rows  (y, z)      # Append z to y as new rows  
  bind_cols  (y, z)      # Append z to y as new columns  

22.7         Creating New Variables 

 Often we want to create a new variable that is a function of the current variables in 
our  data frame   or we may just want to add a new variable that is external to our 
existing variables. The   mutate()    function allows us to add new variables while 
 preserving   the existing variables. If we go back to our previous  join_exp  
dataframe, remember that we joined infl ation rates to our non- infl ation adjusted 
expenditures for public schools. The dataframe looks like:
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      ##   Division      State Year Expenditure  Annual Infl ation  
  ## 1        6    Alabama 2007     6245031 207.342 0.9030811  
  ## 2        9     Alaska 2007     1634316 207.342 0.9030811  
  ## 3        8    Arizona 2007     7815720 207.342 0.9030811  
  ## 4        7   Arkansas 2007     3997701 207.342 0.9030811  
  ## 5        9 California 2007    57352599 207.342 0.9030811  
  ## 6        8   Colorado 2007     6579053 207.342 0.9030811  

    If we wanted to adjust our annual expenditures for infl ation we can use   mutate()    
to create a new infl ation adjusted cost variable which we’ll name  Adj_Exp :

      infl ation_adj <- join_exp %>%   mutate  (Adj_Exp = Expenditure / Infl ation)  

      head  (infl ation_adj)  
  ## Division  State  Year  Expenditure   Annual   Infl ation  Adj_Exp  
  ## 1  6    Alabama    2007     6245031     207.342 0.9030811  6915249  
  ##    9     Alaska    2007     1634316     207.342 0.9030811  1809711  
  ## 3  8    Arizona    2007     7815720     207.342 0.9030811  8654505  
  ## 4  7   Arkansas    2007     3997701     207.342 0.9030811  4426735  
  ## 5  9 California    2007    57352599     207.342 0.9030811 63507696  
  ## 6  8   Colorado    2007     6579053     207.342 0.9030811  7285119  

    Lets say we wanted to create a variable that rank-orders state- level   expenditures 
(infl ation adjusted) for the year 2010 from the highest level of expenditures to the 
lowest.

      rank_exp <- infl ation_adj %>%   
          fi lter  (Year == 2010) %>%  
          arrange  (  desc  (Adj_Exp)) %>%  
          mutate  (Rank = 1:  length  (Adj_Exp))  

      head  (rank_exp)  
  ##   Division      State Year Expenditure  Annual Infl ation  Adj_Exp Rank  
  ## 1        9 California 2010    58248662 218.056 0.9497461 61330774    1  
  ## 2        2   New York 2010    50251461 218.056 0.9497461 52910417    2  
  ## 3        7      Texas 2010    42621886 218.056 0.9497461 44877138    3  
  ## 4        3   Illinois 2010    24695773 218.056 0.9497461 26002501    4  
  ## 5        2 New Jersey 2010    24261392 218.056 0.9497461 25545135    5  
  ## 6        5    Florida 2010    23349314 218.056 0.9497461 24584797    6  

    If you wanted to assess the percent change in cost for a particular state you can 
use the  lag()  function within the   mutate()    function:

      infl ation_adj %>%  
          fi lter  (State == "Ohio") %>%  
          mutate  (Perc_Chg = (Adj_Exp -   lag  (Adj_Exp)) /   lag  (Adj_Exp))  
  ##   Division State Year Expenditure  Annual Infl ation  Adj_Exp     Perc_Chg  
  ## 1        3  Ohio 2007    18251361 207.342 0.9030811 20210102           NA  
  ## 2        3  Ohio 2008    18892374 215.303 0.9377553 20146378 -0.003153057  
  ## 3        3  Ohio 2009    19387318 214.537 0.9344190 20747992  0.029862103  
  ## 4        3  Ohio 2010    19801670 218.056 0.9497461 20849436  0.004889357  
  ## 5        3  Ohio 2011    19988921 224.939 0.9797251 20402582 -0.021432441  
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    You could also look at what percent of all US expenditures each state made up in 
2011. In this case we use   mutate()    to take each state’s infl ation adjusted expen-
diture and divide by the sum of the entire infl ation adjusted expenditure column. We 
also apply a second function within   mutate()    that provides the cumulative per-
cent in rank-order. This shows that in 2011, the top 8 states with the highest expen-
ditures represented over 50 % of the total U.S. expenditures in K-12 public schools. 
 (I remove the non-infl ation adjusted Expenditure, Annual & Infl ation columns so 
that the columns don’t wrap on the screen view) 

      cum_pct <- infl ation_adj %>%  
          fi lter  (Year == 2011) %>%  
          arrange  (  desc  (Adj_Exp)) %>%  
          mutate  (Pct_of_Total = Adj_Exp/  sum  (Adj_Exp),  
                 Cum_Perc =   cumsum  (Pct_of_Total)) %>%  
          select  (-Expenditure, -Annual, -Infl ation)       
  head  (cum_pct, 8)  
  ##   Division        State Year  Adj_Exp Pct_of_Total  Cum_Perc  
  ## 1        9   California 2011 58717324   0.10943237 0.1094324  
  ## 2        2     New York 2011 52575244   0.09798528 0.2074177  
  ## 3        7        Texas 2011 43751346   0.08154005 0.2889577  
  ## 4        3     Illinois 2011 25062609   0.04670957 0.3356673  
  ## 5        5      Florida 2011 24364070   0.04540769 0.3810750  
  ## 6        2   New Jersey 2011 24128484   0.04496862 0.4260436  
  ## 7        2 Pennsylvania 2011 23971218   0.04467552 0.4707191  
  ## 8        3         Ohio 2011 20402582   0.03802460 0.5087437  

    An alternative to   mutate()    is   transmute()    which creates a new variable 
and then drops the other variables. In essence, it allows you to create a new  data 
frame   with only the new variables created. We can perform the same string of 
 functions as above but this time use transmute to only keep the newly created 
variables.

      infl ation_adj %>%  
          fi lter  (Year == 2011) %>%  
          arrange  (  desc  (Adj_Exp)) %>%  
          transmute  (Pct_of_Total = Adj_Exp/  sum  (Adj_Exp),  
                 Cum_Perc =   cumsum  (Pct_of_Total)) %>%  
          head  ()  
  ##   Pct_of_Total  Cum_Perc  
  ## 1   0.10943237 0.1094324  
  ## 2   0.09798528 0.2074177  
  ## 3   0.08154005 0.2889577  
  ## 4   0.04670957 0.3356673  
  ## 5   0.04540769 0.3810750  
  ## 6   0.04496862 0.4260436  

    Lastly, you can apply the  summarise  and  mutate  functions to multiple col-
umns by using   summarise_each()    and   mutate_each()    respectively.
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      # calculate the mean for each division with summarise_each  
  # call the function of interest with the funs()    argument    
  sub_exp %>%  
          select  (-State) %>%  
          group_by  (Division) %>%  
          summarise_each  (  funs  (mean)) %>%  
          head  ()  
  ## Source: local data frame [6 x 6]  
  ##   
  ##   Division    X2007    X2008    X2009    X2010    X2011  
  ##      (int)    (dbl)    (dbl)    (dbl)    (dbl)    (dbl)  
  ## 1        1  4680691  4952992  5173184  5121003  5222277  
  ## 2        2 28844158 30652645 31304697 32415457 32877923  
  ## 3        3 14823590 15293644 15895459 16322489 16270159  
  ## 4        4  4175766  4425739  4658533  4672332  4672687  
  ## 5        5 10230416 10857410 11018102 10975194 11023526  
  ## 6        6  5584277  6023424  6076507  6161967  6267490  

      # for each division calculate the percent of total   
  # expenditures for each state across each year  
  sub_exp %>%  
          select  (-State) %>%  
          group_by  (Division) %>%  
          mutate_each  (  funs  (. /   sum  (.))) %>%  
          head  ()  
  ## Source: local data frame [6 x 6]  
  ## Groups: Division [4]  
  ##   
  ##   Division      X2007      X2008      X2009      X2010      X2011  
  ##      (int)      (dbl)      (dbl)      (dbl)      (dbl)      (dbl)  
  ## 1        6 0.27958099 0.28357787 0.27498705 0.27063262 0.26298109  
  ## 2        9 0.02184221 0.02387438 0.02515947 0.02682018 0.02846193  
  ## 3        8 0.28093187 0.27793321 0.28144201 0.27229536 0.26854292  
  ## 4        7 0.07854895 0.07565703 0.07402700 0.07474621 0.07630156  
  ## 5        9 0.76650258 0.76625202 0.75304632 0.74962818 0.74380904  
  ## 6        8 0.23648054 0.24272678 0.23179279 0.23848536 0.23857413  

    Similar to the summary  function  ,  dplyr  allows you to build in your own func-
tions to be applied within   mutate_each()    and also has the following built in 
functions that can be applied.

 
   Built-in Functions for   mutate_each()          

22.7  Creating New Variables
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22.8         Additional Resources 

 This chapter introduced you to  dplyr ’s basic set of tools and demonstrated how to 
use them on  data frames  . Additional resources are available that go into more detail 
or provide additional examples of how to use  dpyr . In addition, there are other 
resources that illustrate how  dplyr  can perform tasks not mentioned in this chapter 
such as connecting to remote databases and translating you r R   code into SQL code 
for data pulls.

•    Data wrangling presentation I gave at Miami University 2   
•   dplyr reference manual 3   
•   R Studio’s Data wrangling with R and  RStudio   webinar 4   
•   R Studio’s Data wrangling cheat sheet 5   
•   Hadley Wickham’s dplyr tutorial at useR! 2014, Part 1 6   
•   Hadley Wickham’s dplyr tutorial at useR! 2014, Part 2 7        

2   http://rpubs.com/bradleyboehmke/data_processing 
3   https://cran.r-project.org/web/packages/dplyr/dplyr.pdf 
4   https://www.rstudio.com/resources/webinars/ 
5   You can get the RStudio cheatsheets at  https://www.rstudio.com/resources/cheatsheets/ or within 
a working RStudio session by going to Help > Cheatsheets 
6   https://www.youtube.com/watch?v=8SGif63VW6E 
7   https://www.youtube.com/watch?v=Ue08LVuk790 
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