
Use R !

Bradley C. Boehmke

Data
Wrangling
with R

 Use R!

 Series Editors:
 Robert Gentleman Kurt Hornik Giovanni Parmigiani

 More information about this series at http://www.springer.com/series/6991

http://www.springer.com/series/6991

Use R!

Wickham: ggplot2
Moore: Applied Survival Analysis Using R
Luke: A User’s Guide to Network Analysis in R
Monogan: Political Analysis Using R
Cano/M. Moguerza/Prieto Corcoba: Quality Control with R
Schwarzer/Carpenter/Rücker: Meta-Analysis with R
Gondro: Primer to Analysis of Genomic Data Using R
Chapman/Feit: R for Marketing Research and Analytics
Willekens: Multistate Analysis of Life Histories with R
Cortez: Modern Optimization with R
Kolaczyk/Csárdi: Statistical Analysis of Network Data with R
Swenson/Nathan: Functional and Phylogenetic Ecology in R
Nolan/Temple Lang: XML and Web Technologies for Data Sciences with R
Nagarajan/Scutari/Lèbre: Bayesian Networks in R
van den Boogaart/Tolosana-Delgado: Analyzing Compositional Data with R
Bivand/Pebesma/Gómez-Rubio: Applied Spatial Data Analysis with R

(2nd ed. 2013)
Eddelbuettel: Seamless R and C++ Integration with Rcpp
Knoblauch/Maloney: Modeling Psychophysical Data in R
Lin/Shkedy/Yekutieli/Amaratunga/Bijnens: Modeling Dose-Response Microarray

Data in Early Drug Development
Experiments Using R

Cano/M. Moguerza/Redchuk: Six Sigma with R
Soetaert/Cash/Mazzia: Solving Differential Equations in R

 Bradley C. Boehmke

 Data Wrangling with R

 ISSN 2197-5736 ISSN 2197-5744 (electronic)
 Use R!
 ISBN 978-3-319-45598-3 ISBN 978-3-319-45599-0 (eBook)
 DOI 10.1007/978-3-319-45599-0

 Library of Congress Control Number: 2016953509

 © Springer International Publishing Switzerland 2016
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
 The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

 Printed on acid-free paper

 This Springer imprint is published by Springer Nature
 The registered company is Springer International Publishing AG
 The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

 Bradley C. Boehmke, Ph.D.
 Air Force Institute of Technology
 Dayton , OH , USA

v

 Pref ace

 Welcome to Data Wrangling with R ! In this book, I will help you learn the essentials
of preprocessing data leveraging the R programming language to easily and quickly
turn noisy data into usable pieces of information. Data wrangling, which is also
commonly referred to as data munging, transformation, manipulation, janitor work,
etc., can be a painstakingly laborious process. In fact, it has been stated that up to
80 % of data analysis is spent on the process of cleaning and preparing data (cf.
Wickham 2014 ; Dasu and Johnson 2003). However, being a prerequisite to the rest
of the data analysis workfl ow (visualization, modeling, reporting), it’s essential that
you become fl uent and effi cient in data wrangling techniques.

 This book will guide you through the data wrangling process along with giving
you a solid foundation of the basics of working with data in R . My goal is to teach
you how to easily wrangle your data, so you can spend more time focused on under-
standing the content of your data via visualization, modeling, and reporting your
results. By the time you fi nish reading this book, you will have learned:

• How to work with the different types of data such as numerics, characters, regu-
lar expressions , factors , and dates.

• The difference between the various data structures and how to create, add addi-
tional components to, and how to subset each data structure.

• How to acquire and parse data from locations you may not have been able to
access before such as web scraping or leveraging APIs.

• How to develop your own functions and use loop control structures to reduce
code redundancy.

• How to use pipe operators to simplify your code and make it more readable.
• How to reshape the layout of your data, and manipulate, summarize, and join

data sets.

 Not only will you learn many base R functions, you’ll also learn how to use some
of the latest data wrangling packages such as tidyr , dplyr , httr , stringr ,
 lubridate , readr , rvest , magrittr , xlsx , readxl and others. In
essence, you will have the data wrangling toolbox required for modern day data
analysis.

vi

 Who This Book Is for

 This book is meant to establish the baseline R vocabulary and knowledge for the
primary data wrangling processes. This captures a wide range of programming
activities which covers the full spectrum from understanding basic data objects in R
to writing your own functions, applying loops, and web scraping. As a result, this
book can be benefi cial to all levels of R programmers. Beginner R programmers
will gain a basic understanding of the functionality of R along with learning how to
work with data using R. Intermediate and advanced R programmers will likely fi nd
the early chapters reiterating established knowledge; however, these programmers
will benefi t from the mid and latter chapters by learning newer and more effi cient
 data wrangling techniques.

 What You Need for This Book

 Obviously to gain and retain knowledge from this book, it is highly recommended
that you follow along and practice the code examples yourself. Furthermore, this
book assumes that you will actually be performing data wrangling in R; therefore,
it is assumed that you have or plan to have R installed on your computer. You will fi nd
the latest ve rsion of R for Linux, Mac OS, and Windows at https://cran.r-project.org .
It is also recommended that you use an integrated development environment (IDE)
as it will simplify and organize your coding environment greatly. There are several
to choose from; however, I highly recommend the RStudio IDE which you can
download at https://www.rstudio.com .

 Reader Feedback

 Reader comments are greatly appreciated. Please send any feedback regarding
typos, mistakes, confusing statements, or opportunities for improvement to wran-
glingdata@gmail.com.

 Bibliography

 Dasu, T., & Johnson, T. (2003). Exploratory Data Mining and Data Cleaning (Vol. 479). John
Wiley & Sons.

 Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59 (i10).

Preface

https://cran.r-project.org
https://www.rstudio.com/

vii

 Contents

 Part I Introduction

 1 The Role of Data Wrangling .. 3

 2 Introduction to R ... 7
 2.1 Open Source ... 7
 2.2 Flexibility ... 8
 2.3 Community .. 9

 3 The Basics .. 11
 3.1 Installing R and RStudio .. 11
 3.2 Understanding the Console .. 13

 3.2.1 Script Editor ... 13
 3.2.2 Workspace Environment .. 13
 3.2.3 Console .. 15
 3.2.4 Misc. Displays.. 15
 3.2.5 Workspace Options and Shortcuts 15

 3.3 Getting Help ... 16
 3.3.1 General Help .. 16
 3.3.2 Getting Help on Functions ... 16
 3.3.3 Getting Help from the Web .. 17

 3.4 Working with Packages .. 17
 3.4.1 Installing Packages ... 18
 3.4.2 Loading Packages .. 18
 3.4.3 Getting Help on Packages .. 19
 3.4.4 Useful Packages ... 19

 3.5 Assignment and Evaluation ... 19
 3.6 R as a Calculator .. 21

 3.6.1 Vectorization .. 22

viii

 3.7 Styling Guide ... 24
 3.7.1 Notation and Naming ... 24
 3.7.2 Organization ... 25
 3.7.3 Syntax .. 26

 Part II Working with Different Types of Data in R

 4 Dealing with Numbers .. 31
 4.1 Integer vs. Double .. 31

 4.1.1 Creating Integer and Double Vectors 31
 4.1.2 Converting Between Integer and Double Values 32

 4.2 Generating Sequence of Non-random Numbers 32
 4.2.1 Specifying Numbers Within a Sequence 32
 4.2.2 Generating Regular Sequences .. 33

 4.3 Generating Sequence of Random Numbers 33
 4.3.1 Uniform Numbers .. 34
 4.3.2 Normal Distribution Numbers ... 34
 4.3.3 Binomial Distribution Numbers ... 35
 4.3.4 Poisson Distribution Numbers ... 36
 4.3.5 Exponential Distribution Numbers 36
 4.3.6 Gamma Distribution Numbers ... 37

 4.4 Setting the Seed for Reproducible Random Numbers 37
 4.5 Comparing Numeric Values ... 37

 4.5.1 Comparison Operators ... 38
 4.5.2 Exact Equality .. 39
 4.5.3 Floating Point Comparison .. 39

 4.6 Rounding Numbers .. 39

 5 Dealing with Character Strings ... 41
 5.1 Character String Basics .. 41

 5.1.1 Creating Strings ... 41
 5.1.2 Converting to Strings ... 42
 5.1.3 Printing Strings .. 43
 5.1.4 Counting String Elements and Characters 45

 5.2 String Manipulation with Base R ... 46
 5.2.1 Case Conversion... 46
 5.2.2 Simple Character Replacement .. 46
 5.2.3 String Abbreviations .. 47
 5.2.4 Extract/ Replace Substrings .. 47

 5.3 String Manipulation with stringr ... 49
 5.3.1 Basic Operations .. 49
 5.3.2 Duplicate Characters Within a String 51
 5.3.3 Remove Leading and Trailing Whitespace 51
 5.3.4 Pad a String with Whitespace .. 52

Contents

ix

 5.4 Set Operatons for Character Strings .. 52
 5.4.1 Set Union ... 52
 5.4.2 Set Intersection... 52
 5.4.3 Identifying Different Elements .. 53
 5.4.4 Testing for Element Equality ... 53
 5.4.5 Testing for Exact Equality ... 53
 5.4.6 Identifying If Elements Are Contained in a String 54
 5.4.7 Sorting a String .. 54

 6 Dealing with Regular Expressions ... 55
 6.1 Regex Syntax ... 55

 6.1.1 Metacharacters ... 56
 6.1.2 Sequences ... 56
 6.1.3 Character Classes ... 57
 6.1.4 POSIX Character Classes .. 58
 6.1.5 Quantifi ers .. 59

 6.2 Regex Functions ... 60
 6.2.1 Main Regex Functions in R ... 60
 6.2.2 Regex Functions in stringr ... 63

 6.3 Additional Resources ... 66

 7 Dealing with Factors ... 67
 7.1 Creating, Converting and Inspecting Factors 67
 7.2 Ordering Levels .. 68
 7.3 Revalue Levels ... 69
 7.4 Dropping Levels ... 69

 8 Dealing with Dates .. 71
 8.1 Getting Current Date and Time .. 71
 8.2 Converting Strings to Dates ... 72

 8.2.1 Convert Strings to Dates .. 72
 8.2.2 Create Dates by Merging Data ... 73

 8.3 Extract and Manipulate Parts of Dates ... 73
 8.4 Creating Date Sequences ... 75
 8.5 Calculations with Dates ... 76
 8.6 Dealing with Time Zones and Daylight Savings 77
 8.7 Additional Resources ... 78

 Part III Managing Data Structures in R

 9 Data Structure Basics ... 81
 9.1 Identifying the Structure .. 81
 9.2 Attributes .. 82

Contents

x

 10 Managing Vectors .. 85
 10.1 Creating Vectors ... 85
 10.2 Adding On To Vectors.. 86
 10.3 Adding Attributes to Vectors.. 87
 10.4 Subsetting Vectors .. 88

 10.4.1 Subsetting with Positive Integers 88
 10.4.2 Subsetting with Negative Integers 88
 10.4.3 Subsetting with Logical Values .. 89
 10.4.4 Subsetting with Names ... 89
 10.4.5 Simplifying vs. Preserving ... 89

 11 Managing Lists .. 91
 11.1 Creating Lists ... 91
 11.2 Adding On To Lists .. 92
 11.3 Adding Attributes to Lists .. 93
 11.4 Subsetting Lists .. 95

 11.4.1 Subset List and Preserve Output as a List 95
 11.4.2 Subset List and Simplify Output 96
 11.4.3 Subset List to Get Elements Out of a List 96
 11.4.4 Subset List with a Nested List .. 96

 12 Managing Matrices ... 99
 12.1 Creating Matrices ... 99
 12.2 Adding On To Matrices.. 100
 12.3 Adding Attributes to Matrices.. 101
 12.4 Subsetting Matrices .. 103

 13 Managing Data Frames .. 105
 13.1 Creating Data Frames .. 105
 13.2 Adding On To Data Frames ... 107
 13.3 Adding Attributes to Data Frames ... 109
 13.4 Subsetting Data Frames ... 111

 14 Dealing with Missing Values .. 113
 14.1 Testing for Missing Values ... 113
 14.2 Recoding Missing Values ... 114
 14.3 Excluding Missing Values .. 114

 Part IV Importing, Scraping, and Exporting Data with R

 15 Importing Data .. 119
 15.1 Reading Data from Text Files .. 119

 15.1.1 Base R Functions.. 119
 15.1.2 readr Package ... 122

 15.2 Reading Data from Excel Files .. 123
 15.2.1 xlsx Package ... 123
 15.2.2 readxl Package ... 125

Contents

xi

 15.3 Load Data f rom Saved R Object File ... 127
 15.4 Additional Resources ... 127

 16 Scraping Data .. 129
 16.1 Importing Tabular and Excel Files Stored Online.......................... 129
 16.2 Scraping HTML Text ... 134

 16.2.1 Scraping HTML Nodes .. 135
 16.2.2 Scraping Specifi c HTML Nodes 139
 16.2.3 Cleaning Up ... 141

 16.3 Scraping HTML Table Data ... 143
 16.3.1 Scraping HTML Tables with rvest 143
 16.3.2 Scraping HTML Tables with XML 146

 16.4 Working with APIs ... 150
 16.4.1 Prerequisites? ... 150
 16.4.2 Existing API Packages ... 151
 16.4.3 httr for All Things Else .. 158

 16.5 Additional Resources ... 162

 17 Exporting Data .. 163
 17.1 Writing Data to Text Files .. 163

 17.1.1 Base R Functions.. 163
 17.1.2 readr Package ... 164

 17.2 Writing Data to Excel Files .. 165
 17.2.1 xlsx Package ... 165
 17.2.2 r2excel Package .. 167

 17.3 Saving Data as an R Object File .. 169
 17.4 Additional Resources ... 169

 Part V Creating Effi cient and Readable Code in R

 18 Functions .. 173
 18.1 Function Components .. 173
 18.2 Arguments .. 174
 18.3 Scoping Rules .. 175
 18.4 Lazy Evaluation ... 177
 18.5 Returning Multiple Outputs from a Function 177
 18.6 Dealing with Invalid Parameters .. 178
 18.7 Saving and Sourcing Functions.. 179
 18.8 Additional Resources ... 181

 19 Loop Control Statements.. 183
 19.1 Basic Control Statements (i.e. if , for , while , etc.) 183

 19.1.1 if Statement .. 183
 19.1.2 if…else Statement .. 184
 19.1.3 for Loop .. 186
 19.1.4 while Loop ... 187
 19.1.5 repeat Loop... 189

Contents

xii

 19.1.6 break Function to Exit a Loop .. 189
 19.1.7 next Function to Skip an Iteration in a Loop 190

 19.2 Apply Family ... 190
 19.2.1 apply() for Matrices and Data Frames 191
 19.2.2 lapply() for Lists…Output as a List 192
 19.2.3 sapply() for Lists…Output Simplifi ed 193
 19.2.4 tapply() for Vectors .. 194

 19.3 Other Useful “Loop-Like” Functions .. 195
 19.4 Additional Resources ... 197

 20 Simplify Your Code with %>% ... 199
 20.1 Pipe (%>%) Operator ... 199

 20.1.1 Nested Option... 200
 20.1.2 Multiple Object Option .. 200
 20.1.3 %>% Option ... 201

 20.2 Additional Functions .. 203
 20.3 Additional Pipe Operators .. 204
 20.4 Additional Resources ... 207

 Part VI Shaping and Transforming Your Data with R

 21 Reshaping Your Data with tidyr ... 211
 21.1 Making Wide Data long ... 212
 21.2 Making Long Data wide .. 213
 21.3 Splitting a Single Column into Multiple Columns 213
 21.4 Combining Multiple Columns into a Single Column 214
 21.5 Additional tidyr Functions ... 215
 21.6 Sequencing Your tidyr Operations ... 217
 21.7 Additional Resources ... 218

 22 Transforming Your Data with dplyr ... 219
 22.1 Selecting Variables of Interest ... 220
 22.2 Filtering Rows .. 221
 22.3 Grouping Data by Categorical Variables 222
 22.4 Performing Summary Statistics on Variables 223
 22.5 Arranging Variables by Value .. 225
 22.6 Joining Data Sets .. 226
 22.7 Creating New Variables ... 228
 22.8 Additional Resources ... 232

 Index ... 233

Contents

 Part I
 Introduction

 With nothing but the power of your own mind, you operate
on the symbols before you in such a way that you gradually
lift yourself from a state of understanding less to one of
understanding more.

 Mortimer J. Adler

 Data. Our world has become increasingly reliant upon, and awash in, this resource.
Businesses are increasingly seeking to capitalize on data analysis as a means for
gaining competitive advantages. Government agencies are using more types of data
to improve operations and effi ciencies. Sports entities are increasing the range of
data applications, from how teams are using data and analytics to how data are
impacting the experience for the fan base. Journalism is increasing the role that
numerical data are used in the production and distribution of information as evi-
denced by the emerging fi eld of data journalism. In fact, the need to work with data
has become so prevalent that the U.S. alone is expected to have a shortage of
140,000–190,000 data analysts by 2018. 1 Consequently, it is safe to say there is a
need for becoming fl uent with the data analysis process. And I’m assuming that’s
why you are reading this book.

 Fluency in data analysis captures a wide range of activities. At its most basic
structure, data analysis fl uency includes the ability to get, clean, transform, visual-
ize, and model data along with communicating your results as depicted in the fol-
lowing illustration.

 From project to project, no analytic process will be the same. Each specifi c
instance of data analysis includes unique, different, and often multiple requirements
regarding the specifi c processes required for each stage. For instance, getting data

1 Manyika et al. (2011).

 Fig. 1 Analytic Process

Get Clean Transform Communicate

Model

Visualize
Knowledge generation & extraction

† A modified version of Hadley Wickham’s analytic process

2

may include simply accessing an Excel fi le, scraping data from an HTML table, or
using an application programming interface (API) to access a database. Cleaning
data may include reshaping data from a wide to long format, parsing or manipulat-
ing variables to different formats. Transforming data may include fi ltering, sum-
marizing, and applying common or uncommon functions to data along with joining
multiple datasets. Visualizing data may range from common static exploratory data
analysis plots to dynamic, interactive data visualizations in web browsers. And
modeling data can be even more diverse covering the range of descriptive, predic-
tive, and prescriptive analytic techniques.

 Consequently, the road to becoming an expert in data analysis can be daunting.
And, in fact, obtaining expertise in the wide range of data analysis processes uti-
lized in your own respective fi eld is a career long process. However, the goal of this
book is to help you take a step closer to fl uency in the early stages of the analytic
process. Why? Because before using statistical literate programming to report your
results, before developing an optimization or predictive model, before performing
exploratory data analysis, and before visualizing your data, you need to be able
to manage your data. You need to be able to import your data. You need to be able to
work with the different data types. You need to be able to subset and parse your data.
You need to be able to manipulate and transform your data. You need to be able to
 wrangle your data!

Part I Introduction

3© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_1

 Chapter 1
 The Role of Data Wrangling

 Water, water, everywhere, nor any a drop to drink

 Samuel Taylor Coleridge

 Synonymous to Samuel Taylor Coleridge’s quote in Rime of the Ancient Mariner , the
degree to which data are useful is largely determined by an analyst’s ability to wrangle
data. In spite of advances in technologies for working with data, analysts still spend an
inordinate amount of time obtaining data, diagnosing data quality issues and pre-pro-
cessing data into a usable form. Research has illustrated that this portion of the data
analysis process is the most tedious and time consuming component; often consuming
50–80 % of an analyst’s time (cf. Wickham 2014 ; Dasu and Johnson 2003). Despite the
challenges, data wrangling remains a fundamental building block that enables visual-
ization and statistical modeling. Only through data wrangling can we make data useful.
Consequently, one’s ability to perform data wrangling tasks effectively and effi ciently
is fundamental to becoming an expert data analyst in their respective domain.

 So what exactly is this thing called data wrangling ? It’s the ability to take a
messy, unrefi ned source of data and wrangle it into something useful. It’s the art of
using computer programming to extract raw data and creating clear and actionable
bits of information for your analysis. Data wrangling is the entire front end of the
analytic process and requires numerous tasks that can be categorized within the get ,
 clean , and transform components (Fig. 1.1).

 However, learning how to wrangle your data does not necessarily follow a linear
progression as suggested by Fig. 1.1 . In fact, you need to start from scratch to under-
stand how to work with data in R . Consequently, this book takes a meandering route
through the data wrangling process to help build a solid data wrangling
foundation.

 First, modern day data wrangling requires being comfortable writing code. If
you are new to writing code, R , or RStudio you need to understand some of the
basics of working in the “command line” environment. The next two chapters in this
part will introduce you to R, discuss the benefi ts it provides, and then start to get you
comfortable at the command line by walking you through the process of assigning
and evaluating expressions, using vectorization , getting help , managing your
 workspace, and working with packages . Lastly, I offer some basic styling guidelines
to help you write code that is easier to digest by others.

4

 Second, data wrangling requires the ability to work with different forms of data.
Analysts and organization s are fi nding new and unique ways to leverage all forms
of data so it’s important to be able to work not only with numbers but also with
 character strings , categorical variables, logical variables, regular expression , and
 dates . Part II explains how to work with these different classes of data so that when
you start to learn how to manage the different data structures , which combines these
data classes into multiple dimensions , you will have a strong knowledge base.

 Third, modern day datasets often contain variables of different lengths and
classes. Furthermore, many statistical and mathematical calculations operate on dif-
ferent types of data structures . Consequently, data wrangling requires a strong
knowledge of the different structures to hold your datasets. Part III covers the differ-
ent types of data structures available in R , how they differ by dimensionality and
how to create, add to, and subset the various data structures . Lastly, I cover how to
deal with missing values in data structures . Consequently, this part provides a robust
understanding of managing various forms of datasets.

 Fourth, data are arriving from multiple sources at an alarming rate and analysts
and organizations are seeking ways to leverage these new sources of information.
Consequently, analysts need to understand how to get data from these sources.
Furthermore, since analysis is often a collaborative effort, analysts also need to know
how to share their data. Part IV covers the basics of importing tabular and spread-
sheet data, scraping data stored online, and exporting data for sharing purposes.

 Fifth, minimizing duplication and writing simple and readable code is important
to becoming an effective and effi cient data analyst. Moreover, clarity should always
be a goal throughout the data analysis process. Part V introduces the art of writing
functions and using loop control statements to reduce redundancy in code. I also
discuss how to simplify your code using pipe operators to make your code more
readable. Consequently, this part will help you to perform data wrangling tasks
more effectively, effi ciently, and with more clarity.

 Last, data wrangling is all about getting your data into the right form in order to
feed it into the visualization and modeling stages. This typically requires a large
amount of reshaping and transforming of your data. Part VI introduces some of the
fundamental functions for “ tidying ” your data and for manipulating, sorting , sum-
marizing, and joining your data. These tasks will help to signifi cantly reduce the
time you spend on the data wrangling process.

 Individually, each part will provide you important tools for performing individual
 data wrangling tasks. Combined, these tools will help to make you more effective
and effi cient in the front end of the data analysis process so that you can spend more
of your time visualizing and modeling your data and communicating your results!

 Fig. 1.1 Data Wrangling

1 The Role of Data Wrangling

5

 Bibliography

 Dasu, T., & Johnson, T. (2003). Exploratory Data Mining and Data Cleaning (Vol. 479). John
Wiley & Sons.

 Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., et al. (2011). Big data: The
next frontier for innovation, competition, and productivity. McKinsey.

 Wickham, H. (2014). Tidy data. Journal of Statistical Software , 59 (i10).

Bibliography

7© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_2

 Chapter 2
 Introduction to R

 A language for data analysis and graphics. This defi nition of R was used by Ross
Ihaka and Robert Gentleman in the title of their 1996 paper (Ihaka and Gentleman
 1996) outlining their experience of designing and implementing the R software. It’s
safe to say this remains the essence of what R is; however, it’s tough to encapsulate
such a diverse programming language into a single phrase.

 During the last decade, the R programming language has become one of the most
widely used tools for statistics and data science. Its application runs the gamut from
data preprocessing, cleaning, web scraping and visualization to a wide range of
analytic tasks such as computational statistics, econometrics, optimization, and
natural language processing. In 2012 R had over two million users and continues to
grow by double -digit percentage points every year. R has become an essential ana-
lytic software throughout industry; being used by organizations such as Google,
Facebook, New York Times, Twitter, Etsy, Department of Defense, and even in
presidential political campaigns. So what makes R such a popular tool?

2.1 Open Source

 R is an open source software created over 20 years ago by Ihaka and Gentleman at
the University of Auckland, New Zealand. However, its history is even longer as its
lineage goes back to the S programming language created by John Chambers out of
Bell Labs back in the 1970s. 1 R is actually a combination of S with lexical scoping
semantics inspired by Scheme (Morandat and Hill 2012). Whereas the resulting
language is very similar in appearance to S, the underlying implementation and
semantics are derived from Scheme. Unbeknownst to many the S language has been
a popular vehicle for research in statistical methodology, and R provides an open
source route to participate in that activity.

1 Consequently, R is named partly after its authors (Ross and Robert) and partly as a play on the
name of S.

8

 Although the history of S and R is interesting, 2 the principal artifact to observe is
that R is an open source software. Although some contest that open-source software
is merely a “craze”, 3 most evidence suggests that open-source is here to stay and
represents a new 4 norm for programming languages. Open-source software such as
 R blurs the distinction between developer and user, which provides the ability to
extend and modify the analytic functionality to your, or your organization ’s needs.
The data analysis process is rarely restricted to just a handful of tasks with predict-
able input and outputs that can be pre-defi ned by a fi xed user interface as is common
in proprietary software. Rather, as previously mentioned in the introduction, data
analyses include unique, different, and often multiple requirements regarding the
specifi c tasks involved. Open source software allows more fl exibility for you, the
data analyst, to manage how data are being transformed, manipulated, and modeled
“under the hood” of software rather than relying on “stiff” point and click software
interfaces. Open source also allows you to operate on every major platform rather
than be restricted to what your personal budget allows or the idiosyncratic pur-
chases of organizations .

 This invariably leads to new expectations for data analysts; however, organiza-
tions are proving to greatly value the increased technical abilities of open source
data analysts as evidenced by a recent O’Reilly survey revealing that data analysts
focusing on open source technologies make more money than those still dealing in
proprietary technologies.

2.2 Flexibility

 Another benefi t of open source is that anybody can access the source code, modify
and improve it. As a result, many excellent programmers contribute to improving
existing R code and developing new capabilities. Researchers from all walks of life
(academic institutions, industry, and focus groups such as RStudio 5 and rOpenSci 6)
are contributing to advancements of R’s capabilities and best practices. This has
resulted in some powerful tools that advance both statistical and non-statistical
modeling capabilities that are taking data analysis to new levels .

2 See Roger Peng’s R programming for Data Science for further, yet concise, details on S and R’s
history.
3 This was recently argued by Pollack, Klimberg, and Boklage (2015) which was appropriately
rebutted by Boehmke and Jackson (2016).
4 Open-source is far from new as it has been around for decades (i.e. A-2 in the 1950s, IBM’s ACP
in the ’60s, Tiny BASIC in the ’70s) but has gained prominence since the late 1990s.
5 https://www.rstudio.com
6 https://ropensci.org/packages

2 Introduction to R

https://www.rstudio.com/
https://ropensci.org/packages

9

 Many researchers in academic institutions are using and developing R code to
develop the latest techniques in statistics and machine learning. As part of their
research, they often publish an R package to accompany their research articles. 7
This provides immediate access to the latest analytic techniques and implementa-
tions. And this research is not soley focused on generalized algorithms as many new
capabilities are in the form of advancing analytic algorithms for tasks in specifi c
domains. A quick assessment of the different task domains 8 for which code is being
developed illustrates the wide spectrum—econometrics, fi nance, chemometrics and
computational physics, pharmacokinetics, social sciences, etc.

 Powerful tools are also being developed to perform many tasks that greatly aid
the data analysis process. This is not limited to just new ways to wrangle your data
but also new ways to visualize and communicate data. R packages are now making
it easier than ever to create interactive graphics and websites and produce sophisti-
cated HTML and PDF reports. R packages are also integrating communication with
high-performance programming languages such as C, Fortran, and C++ making
data analysis more powerful, effi cient, and posthaste than ever.

 So although the analytic mantra “ use the right tool for the problem ” should
always be in our prefrontal cortex, the advancements and fl exibility of R is making
it the right tool for many problems.

2.3 Community

 The R community is fantastically diverse and engaged. On a daily basis, the R com-
munity generates opportunities and resources for learning about R. These cover the
full spectrum of training—books, online courses, R user groups, workshops, confer-
ences, etc. And with over two million users and developers, fi nding help and techni-
cal expertise is only a simple click away. Support is available th rough R mailing
 lists , Q&A websites, social media networks, and numerous blogs.

 So now that you know how awesome R is, it’s time to learn how to use it.

 Bibliography

 Ihaka, Ross, and Robert Gentleman. “R: A language for data analysis and graphics.” Journal of
Computational and Graphical Statistics 5, no. 3 (1996):299–314.

 Morandat, Floréal, Brandon Hill, Leo Osvald, and Jan Vitek. “Evaluating the design of the R lan-
guage.” In European Conference on Object-Oriented Programming, pp. 104–131. Springer
Berlin Heidelberg, 2012.

 Pollack, R. D., Klimberg, R. K., and Boklage, S.H. “The true cost of ‘free’ statistical software.”
OR/MS Today, vol. 42, no. 5 (2015):34–35.

 Boehmke, Bradley C. and Jackson, Ross A. “Unpacking the true cost of ‘free’ statistical software.”
OR/MS Today, vol. 43, no. 1 (2016):26–27.

7 See The Journal of Statistical Software and The R Journal .
8 https://cran.r-project.org/web/views/

2.3 Community

https://cran.r-project.org/web/views/

11© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_3

 Chapter 3
 The Basics

 Programming is like kicking yourself in the face, sooner or later
your nose will bleed.

 Kyle Woodbury

 A computer language is described by its syntax and semantics ; where syntax is
about the grammar of the language and semantics the meaning behind the sentence.
And jumping into a new programming language correlates to visiting a foreign
country with only that ninth grade Spanish 101 class under your belt; there is no
better way to learn than to immerse yourself in the environment! Although it’ll be
painful early on and your nose will surely bleed, eventually you’ll learn the dialect
and the quirks that come along with it.

 Throughout this book you’ll learn much of the fundamental syntax and seman-
tics of the R programming language; and hopefully with minimal face kicking
involved. However, this chapter serves to introduce you to many of the basics of R
to get you comfortable. This includes installing R and RStudio , understanding the
 console , how to get help , how to work with packages , understanding how to assign
and evaluate expressions , and the idea of vectorization . Finally, I offer some basic
 styling guidelines to help you write code that is easier to digest by others.

3.1 Installing R and RStudio

 First, you need to download and install R, a free software environment for statistical
computing and graphics from CRAN , the Comp rehensive R Archive Network. It is
highly recommended to install a precompiled binary distribution for your operating
system; follow these instructions:

 1. Go to https://cran.r-project.org/
 2. Click “Download R for Mac/Windows”
 3. Download the appropriate fi le:

 (a) Windows users click Base, and download the installer for the latest R
version

 (b) Mac users select the fi le R-3.X.X.pkg that aligns with your OS version

https://cran.r-project.org/

12

 4. Follow the instructions of the installer

 Next, you can download RStudio ’s IDE (integrated development environment),
a powerful user inte rface for R . RStudio includes a text editor, so you do not have to
install another stand-alone editor. Follow these instructions:

 1. Go to RStudio for desktop https://www.rstudio.com/products/rstudio/download/
 2. Select the install fi le for your OS
 3. Follow the instructions of the installer.

 There a re other R IDE’s available: Emacs, Microsoft R Open, Notepad++, etc;
however, I have found RStudio to be my preferred route. When you are done install-
ing RStudio click on the icon that looks like (Fig. 3.1):

 Fig. 3.1 RStudio Icon

 Fig. 3.2 RStudio Console

 and you should get a window that looks like the following (Fig. 3.2):
 You are now ready to start programming!

3 The Basics

https://www.rstudio.com/products/rstudio/download/

13

3.2 Understanding the Console

 The RStudio console is where all the action happens. There are four fundamental
windows in the console, each with their own purpose. I discuss each briefl y below
but I highly suggest Oscar Torres-Reyna’s Introduction to RStudio 1 for a thorough
understanding of the console (Fig. 3.3).

3.2.1 Script Editor

 The top left window is where your script fi les will display. There are multiple forms
of script fi les but the basic one to start with is the . R fi le. To create a new fi le you use
the File → New File menu. To open an existing fi le you use either the File → Open
File… menu or the Recent Files menu to select from recently opened fi les.
 RStudio ’s script editor includes a variety of productivity enhancing features includ-
ing syntax highlighting, code completion, multiple-fi le editing, and fi nd/replace.
A good introduction to the script editor was written by RStudio ’s Josh Paulson. 2

3.2.2 Workspace Environment

 The top right window is the workspace environment which captures much of you r
current R working environment and includes any user-defi ned objects (vectors ,
matrices, data frames , lists , functions). When saving your R working session, these

1 You can access this tutorial at http://dss.princeton.edu/training/RStudio101.pdf
2 You can assess the script editor tutorial at https://support.rstudio.com/hc/en-us/articles/
200484448-Editing-and-Executing-Code

 Fig. 3.3 Four fundamental windows of the RStudio console

3.2 Understanding the Console

http://dss.princeton.edu/training/RStudio101.pdf
https://support.rstudio.com/hc/en-us/articles/200484448-Editing-and-Executing-Code
https://support.rstudio.com/hc/en-us/articles/200484448-Editing-and-Executing-Code

14

are the components along with the script fi les that will be saved in your working
directory, which is the default location for all fi le inputs and outputs. To get or set
your working directory so you can direct where your fi les are saved use getwd and
 setwd in the console (note that you can type any comments in your code by pre-
ceding the comment with the hashtag (#) symbol; any values, symbols, and texts
following # will not be evaluated.).

 # returns path for the current working directory
 getwd()

 # set the working directory to a specifi ed directory
 setwd(directory_name)

 For example, if I call getwd() the fi le path “/Users/bradboehmke/Desktop/
Personal/ Data Wrangling ” is returned. If I want to set the working directory to the
“Workspace” folder within the “Data Wrangling” directory I would
use setwd ("Workspace") . Now if I call getwd() again it returns “/Users/
bradboehmke/ Desktop/Personal/ Data Wrangling /Workspace”.

 The workspace environment will also list your user-defi ned objects such as vec-
tors , matrices, data frames , lists, and functions. To identify or remove the objects
(i.e. vectors , data frames , user defi ned functions, etc.) in you r current R
environment:

 # list all objects
 ls()

 # identify if an R object with a given name is present
exists("object_name")

 # remove defi ned object from the environment
 rm ("object_name")

 # you can remove multiple objects by using the c() function
rm(c("object1", "object2"))

 # basically removes everything in the working environment -- use with
 # caution!
 rm(list = ls())

 You can also view previous commands in the workspace environment by clicking
the History tab, by simply pressing the up arrow on your keyboard, or by typing into
the console :

 # default shows 25 most recent commands
 history()

 # show 100 most recent commands
 history(100)

 # show entire saved history
 history(Inf)

3 The Basics

15

 You can also save and load your workspaces. Saving your workspace will save all
 R fi les and objects within your workspace to a .RData fi le in your working directory
and loading your workspace will load any .RData fi les in your working directory.

 # save all items in workspace to a .RData fi le
 save.image()

 # save specifi ed objects to a .RData fi le
 save (object1, object2, fi le = "myfi le.RData")
 # load workspace into current session
 load("myfi le.RData")

 Note that saving the workspace without specifying the working directory will
default to saving in the current directory. You can further specify where to save the
.RData by including the path: save (object1, object2, fi le = "/users/
name/folder/myfi le.RData"). More information regarding saving and
loading R objects such as .RData fi les will be discussed in Part IV of this book.

3.2.3 Console

 The bottom left window contains the console . You can code directly in this window
but it will not save your code. It is best to use this window when you are simply
performing calculator type functions. This is also where your outputs will be pre-
sented when you run code in your script.

3.2.4 Misc. Displays

 The bottom right window contains multiple tabs. The Files tab allows you to see
which fi les are available in your working directory. The Plots tab will display any
visualizations that are produced by your code. The Packages tab will list all pack-
ages downloaded to your computer and also the ones that are loaded (more on this
concept of packages shortly). And the Help tab allows you to search for topics you
need help on and will also display any help responses (more on this later as well).

3.2.5 Workspace Options and Shortcuts

 There are multiple options available for you to set and customize your console . You
can view and set options for the cu rrent R session:

 # learn about available options
 help(options)

3.2 Understanding the Console

16

 # view current option settings
 options()

 # change a specifi c option (i.e. number of digits to print on output)
options(digits=3)

 As with most computer programs, there are numerous keyboard shortcuts for
working with the console . To access a menu displaying all the shortcuts in RStudio
you can use option + shift + k. Within RStudio you can also access them in the Help
menu → Keyboard Shortcuts . You can also fi nd the RStudio console cheatsheet by
going to Help menu » Cheatsheets.

3.3 Getting Help

 Learning any new language requires lots of help. Luckily, the help documentation
and support in R is comprehensive and easily accessible from the command line. To
leverage general help resources you can use the following:

3.3.1 General Help

 To leverage general help resources you can use:

 # provides general help links
 help.start()

 # searches the help system for documentation matching a given character
 # string
 help. search ("text")

 Note that the help.search("some text here") function requires a
character string enclosed in quotation marks. So if you are in search of time series
functions in R , using help.search("time series") will pull up a healthy
 list of vignettes and code demonstrations that illustrate packages and functions that
work with time series data.

3.3.2 Getting Help on Functions

 For more direct help on functions that are installed on your computer:

 # provides details for specifi c function
 help(functionname)

3 The Basics

17

 # provides same information as help(functionname)
 ?functionname

 # provides examples for said function
 example(functionname)

 Note that the help() and ? functions only work for functions within loaded
 packages . If you want to see details on a function in a package that is installed on
your computer but not loaded in the active R session you can use
 help(functionname, package = "packagename") . Another alterna-
tive is to use the :: operator as in help(packagename::functionname) .

3.3.3 Getting Help from the Web

 Typically, a problem you may be encountering is not new and others have faced,
solved, and documented the same issue online. The following resources can be used
to search for online help. Although, I typically just google the problem and fi nd
answers relatively quickly.

• RSiteSearch("key phrase") : searches for the key phrase in help manuals
and archived mailing lists on the R Project website at http://search.r-project.org/ .

• Stack Overfl ow: a searchable Q&A site oriented toward programming issues.
75 % of my answers typically come from Stack Overfl ow questions tagged fo r R
at http://stackoverfl ow.com/questions/tagged/r .

• Cross Validated: a searchable Q&A site oriented toward statistical analysis.
Many questions regarding specifi c statistical functions in R are tagged for R at
 http://stats.stackexchange.com/questions/tagged/r .

• R -seek: a Google custom search that is focused on R-specifi c websites. Located
at http://rseek.org/

• R -bloggers: a central hub of content collected from over 500 bloggers who pro-
vide news and tutorials about R. Located at http://www.r-bloggers.com/

3.4 Working with Packages

 In R , the fundamental unit of shareable code is the package. A package bundles
together code, data, documentation, and tests and provides an easy method to share
with others. As of June 2016 there were over 8000 packages available on CRAN,
1000 on Bioconductor, and countless more available through GitHub. This huge
variety of packages is one of the reasons that R is so successful: chances are that
someone has already solved a problem that you’re working on, and you can benefi t
from their work by downloading their package.

3.4 Working with Packages

http://search.r-project.org/
http://stackoverflow.com/questions/tagged/r
http://stats.stackexchange.com/questions/tagged/r
http://rseek.org/
http://www.r-bloggers.com/

18

3.4.1 Installing Packages

 Your primary source to obtain packages will likely be from CRAN . To install pack-
ages from CRAN:

 # install packages from CRAN
 install.packages ("packagename")

 As previously stated, packages are also available through Bioconductor and
GitHub. To download Bioconductor packages:

 # link to Bioconductor URL
 source("http://bioconductor.org/biocLite.R")

 # install core Bioconductor packages
 biocLite()

 # install specifi c Bioconductor package
 biocLite("packagename")

 And to download GitHub packages :

 # the devtools package provides a simply function to download GitHub

 # packages
 install.packages("devtools")

 # install package which exists at github.com/username/packagename
devtools::install_github("username/packagename")

3.4.2 Loading Packages

 Once the package is downloaded to your computer you can access the functions and
resources provided by the package in two different ways:

 # load the package to use in the current R session
 library (packagename)

 # use a particular function within a package without loading the package
packagename::functionname

 For instance, if you want to have full access to the tidyr package you would
use library (tidyr) ; however, if you just wanted to use the gather() func-
tion without loading the tidyr package you can use tidyr::gather(function
 arguments) .

3 The Basics

19

3.4.3 Getting Help on Packages

 For help on packages that are installed on your computer:

 # provides details regarding contents of a package
help(package = "packagename")

 # see all packages installed
 library ()

 # see packages currently loaded
 search()

 # list vignettes available for a specifi c package
 vignette (package = "packagename")

 # view specifi c vignette
 vignette("vignettename")

 # view all vignettes on your computer
 vignette()

 Note that some packages will have multiple vignettes. For instance
 vignette(package = "grid") will list the 13 vignettes available for the
grid package. To access one of the specifi c vignettes you simply use vignette
("vignettename") .

3.4.4 Useful Packages

 There are thousands of helpful R packages for you to use, but navigating them all can
be a challenge. To help you out, RStudio compiled a guide 3 to some of the best pack-
ages for loading, manipulating, visualizing, analyzing, and reporting data. In addi-
tion, their list captures packages that specialize in spatial data, time series and fi nancial
data, increasing speed and performance, and developing your own R packages.

3.5 Assignment and Evaluation

 The fi rst operator you’ll run into is the assignment operator. The assignment opera-
tor is used to assign a value. For instance we can assign the value 3 to the vari-
able x using the <- assignment operator. We can then evaluate the variable by simply
typing x at the command line which will return the value of x . Note that prior to the
value returned you’ll see ## [1] in the command line. This simply implies that the
output returned is the fi rst output.

3 https://support.rstudio.com/hc/en-us/articles/201057987-Quick-list-of-useful-R-packages

3.5 Assignment and Evaluation

http://support.rstudio.com/hc/en-us/articles/201057987-Quick-list-of-useful-R-packages

20

 # assignment
 x <- 3

 # evaluation
 x
 ## [1] 3

 Interestingly, R actually allows for fi ve assignment operators:

 # leftward assignment
 x <- value
 x = value
 x <<- value

 # rightward assignment
 value -> x
 value ->> x

 The original assignment ope rator in R was <- and has continued to be the pre-
ferred among R users. The = assignment operator was added in 2001 4 primarily
because it is the accepted assignment operator in many other languages and begin-
ners to R coming from other languages were so prone to use it. However, R uses = to
associate function arguments with values (i.e. f(x = 3) explicitly means to call func-
tion f and set the argument x to 3). Consequently, most R programmers prefer to
keep = reserved for argument association and use <- for assignment.

 The operator <<- is normally only used in functions which we will not get into
the details. And the rightward assignment operators perform the same as their left-
ward counterparts; they just assign the value in an opposite direction.

 Overwhelmed yet? Don’t be. This is just meant to show you that there are options
and you will likely come across them sooner or later. My suggestion is to stick with
the tried and true <- operator. This is the most conventional assignment operator
used and is what you will fi nd in all the base R source code…which means it should
be good enough for you.

 Lastly, note that R is a case sensitive programming language. Meaning all vari-
ables, functions, and objects must be called by their exact spelling:

 x <- 1
 y <- 3
 z <- 4
 x * y * z
 ## [1] 12

 x * Y * z
 ## Error in eval(expr, envir, enclos): object 'Y' not found

4 See http://developer.r-project.org/equalAssign.html for more details.

3 The Basics

http://developer.r-project.org/equalAssign.html

21

3.6 R as a Calculator

 At its most basic function R can be used as a calculator . When applying basic arith-
metic, the PEMBDAS order of operations applies: p arentheses fi rst followed
by e xponentiation, m ultiplication and d ivision, and fi nally a ddition and s ubtraction.

 8 + 9 / 5 ^ 2
 ## [1] 8.36

 8 + 9 / (5 ^ 2)
 ## [1] 8.36

 8 + (9 / 5) ^ 2
 ## [1] 11.24

 (8 + 9) / 5 ^ 2
 ## [1] 0.68

 By default R will display seven digits but this can be changed using options()
as previously outlined.

 1 / 7
 ## [1] 0.1428571

 options(digits = 3)

 1 / 7
 ## [1] 0.143

 Also, large numbers will be expressed in scientifi c notation which can also be
adjusted using options() .

 888888 * 888888
 ## [1] 7.9e+11

 options(digits = 10)

 888888 * 888888
 ## [1] 790121876544

 Note that the largest number of digits that can be displayed is 22. Requesting any
larger number of digits will result in an error message.

 pi
 ## [1] 3.141592654
 options(digits = 22)

 pi
 ## [1] 3.141592653589793115998

 options(digits = 23)

3.6 R as a Calculator

22

 ## Error in options(digits = 23): invalid 'digits' parameter, allowed 0…22

 pi
[1] 3.141592653589793115998

 When performing undefi ned calculations R will produce Inf and NaN outputs.

 1 / 0 # infi nity
 ## [1] Inf

 Inf - Inf # infi nity minus infi nity
 ## [1] NaN

 -1 / 0 # negative infi nity
 ## [1] -Inf

 0 / 0 # not a number
 ## [1] NaN

 sqrt(-9) # square root of -9
 ## Warning in sqrt(-9): NaNs produced
 ## [1] NaN

 The last two functions to mention are the integer divide (%/%) and modulo (%%)
functions. The integer divide function will give the integer part of a fraction while
the modulo will provide the remainder.

 42 / 4 # regular division
 ## [1] 10.5

 42 %/% 4 # integer division
 ## [1] 10

 42 %% 4 # modulo (remainder)
 ## [1] 2

3.6.1 Vectorization

 A key difference between R and many other languages is a topic known as vector-
ization . What does this mean? It means that many functions that are to be applied
individually to each element in a vector of numbers require a loop assessment to
evaluate; however, in R many of these functions have been coded in C to perform
much faster than a for loop would perform. For example, let’s say you want to add
the elements of two separate vectors of numbers (x and y).

 x <- c(1, 3, 4)
 y <- c(1, 2, 4)

 x ## [1] 1 3 4
 y ## [1] 1 2 4

3 The Basics

23

 In other languages you might have to run a loop to add two vectors together. In
this for loop I print each iteration to show that the loop calculates the sum for the
fi rst elements in each vector , then performs the sum for the second elements, etc.

 # empty vector
 z <- as.vector (NULL)

 # for loop to add corresponding elements in each vector
 for (i in seq_along(x)) {
 z[i] <- x[i] + y[i]
 print (z)
 }
 ## [1] 2
 ## [1] 2 5
 ## [1] 2 5 8

 Instead, in R , + is a vectorized function which can operate on entire vectors at once.
So rather than creating for loops for many functions, you can just use simple syntax :

 x + y
 ## [1] 2 5 8

 x * y
 ## [1] 1 6 16

 x > y
 ## [1] FALSE TRUE FALSE

 When performing vector operations in R , it is important to know about recycling .
When performing an operation on two or more vectors of unequal length, R will
recycle elements of the shorter vector(s) to match the longest vector. For example:

 long <- 1:10
 short <- 1:5

 long
 ## [1] 1 2 3 4 5 6 7 8 9 10
 short
 ## [1] 1 2 3 4 5

 long + short
 ## [1] 2 4 6 8 10 7 9 11 13 15

 The elements of long and short are added together starting from the fi rst ele-
ment of both vectors . When R reaches the end of the short vector , it starts again at
the fi rst element of short and continues until it reaches the last element of
the long vector. This functionality is very useful when you want to perform the
same operation on every element of a vector. For example, say we want to multiply
every element of our long vector by 3:

3.6 R as a Calculator

24

 long <- 1:10
 c <- 3

 long * c
 ## [1] 3 6 9 12 15 18 21 24 27 30

 Remember there are no scala rs in R , so c is actually a vector of length 1; in order
to add its value to every element of long , it is recycled to match the length of long .

 When the length of the longer object is a multiple of the shorter object length, the
recycling occurs silently. When the longer object length is not a multiple of the
shorter object length, a warning is given:

 even_length <- 1:10
 odd_ length <- 1:3

 even_length + odd_length
 ## Warning in even_length + odd_length: longer object length is not a
 ## multiple of shorter object length
 ## [1] 2 4 6 5 7 9 8 10 12 11

3.7 Styling Guide

 Good coding style is like using correct punctuation. You can manage without it, but it sure
makes things easier to read. —Hadley Wickham

 As a medium of communication, it’s important to realize that the readability of
code does in fact make a difference. Well-styled code has many benefi ts to include
making it easy to read, extend, and debug. Unfortunately, R does not come with
offi cial guidelines for code styling but such is an inconvenient truth of most open
source software. However, this should not lead you to believe there is no style to be
followed and over time implicit guidelines for proper code styling have been docu-
mented. What follows are guidelines that have been widely accepted as good prac-
tice in the R community and are based on Google’s and Hadley Wickham’s R style
guides . 5

3.7.1 Notation and Naming

 File names should be meaningful and end with a . R extension.

 # Good
 weather-analysis.R
 emerson-text-analysis.R

 # Bad
 basic-stuff.r
 detail.r

5 Google’s style guide can be found at https://google.github.io/styleguide/Rguide.xml and Hadley
Wickham’s can be found at http://adv-r.had.co.nz/Style.html

3 The Basics

https://google.github.io/styleguide/Rguide.xml
http://adv-r.had.co.nz/Style.html

25

 If fi les need to be run in sequence , prefi x them with numbers:

 0-download.R
 1-preprocessing.R
 2-explore.R
 3-fi t-model.R

 In R , naming conventions for variables and function are famously muddled.
They include the following:

 namingconvention # all lower case; no separator
naming.convention # period separator
 naming_convention # underscore separator
 namingConvention # lower camel case
 NamingConvention # upper camel case

 Historically, there has been no clearly preferred approach with multiple naming
styles sometimes used within a single package. Bottom line, your naming conven-
tion will be driven by your preference but the ultimate goal should be consistency.

 My personal preference is to use all lowercase with an underscore (_) to separate
words within a name. This follows Hadley Wickham’s suggestions in his style
guide . Furthermore, variable names should be nouns and function names should be
verbs to help distinguish their purpose. Also, refrain from using existing names of
functions (i.e. mean, sum, true).

3.7.2 Organization

 Organization of your code is also important. There’s nothing like trying to decipher
2000 lines of code that has no organization . The easiest way to achieve organization
is to comment your code. The general commenting scheme I use is the following.

 I break up principal sections of my code that have a common purpose with:

 #################
 # Download Data #
 #################
 lines of code here

 ###################
 # Preprocess Data #
 ###################

 lines of code here

 ########################
 # Exploratory Analysis #
 ########################
 lines of code here

3.7 Styling Guide

26

 Then comments for specifi c lines of code can be done as follows:

 code_1 # short comments can be placed to the right of code
 code_2 # blah
 code_3 # blah

 # or comments can be placed above a line of code
 code_4

 # Or extremely long lines of commentary that go beyond the suggested 80
characters per line can be broken up into multiple lines. Just don't
 # forget to use the hash on each.
 code_5

3.7.3 Syntax

 The maximum number of characters on a single line of code should be 80 or less. If
you are using RStudio you can have a margin displayed so you know when you need
to break to a new line. 6 This allows your code to be printed on a normal 8.5 × 11 page
with a reasonably sized font. Also, when indenting your code use two spaces rather
than using tabs. The only exception is if a line break occurs inside parentheses. In
this case align the wrapped line with the fi rst character inside the parenthesis:

 super_long_name <- seq(ymd_hm("2015-1-1 0:00"),
 ymd_hm("2015-1-1 12:00"),
 by = "hour")

 Proper spacing within your code also helps with readability. The following pulls
straight from Hadley Wickham’s suggestions. 7 Place spaces around all infi x opera-
tors (= , + , - , <- , etc.). The same rule applies when using = in function calls. Always
put a space after a comma, and never before.

 # Good
 average <- mean (feet / 12 + inches, na.rm = TRUE)

 # Bad
 average<-mean(feet/12+inches,na.rm=TRUE)

 There’s a small exception to this rule: : , :: and ::: don’t need spaces around them.

6 Go to RStudio on the menu bar then Preferences > Code > Display and you can select the “show
margin” option and set the margin to 80.
7 http://adv-r.had.co.nz/Style.html

3 The Basics

http://adv-r.had.co.nz/Style.html

27

 # Good
 x <- 1:10
 base::get

 # Bad
 x <- 1 : 10
 base :: get

 It is important to think about style when communicating any form of language.
Writing code is no exception and is especially important if others will read your
code. Following these basic style guides will get you on the right track for writing
code that can be easily communicated to others.

3.7 Styling Guide

 Part II
 Working with Different Types of Data in R

 Wait, there are different types of data?
 R is a fl exible language that allows you to work with many different forms of data.
This includes numeric, character, categorical, dates , and logical. Technically, R
classifi es all the different types of data into fi ve classes:

• integer
• numeric
• character
• complex
• logical

 Modern day analysis typically deals with every class so its important to gain
 fl uency in dealing with these data forms. This section covers the fundamentals of
handling the different data classes. First I cover the basics of dealing with numbers
so you understand the different classes of numbers, how to generate number
 sequences , compare numeric values, and round. I then provide an introduction to
working with characters to get you comfortable with character string manipulation
and set operations. This prepares you to then learn about regular expressions which
deals with search patterns for character classes. Next I introduce factors , also refer-
red to as categorical variables, and how to create, convert, order, and re- level this
data class. Lastly, I cover how to manage dates as this can be a persnickety type of
variable when performing data analysis. Throughout several of these chapters you’ll
also gain an understanding of the TRUE / FALSE logical variables.

 Together, this will give you a solid foundation for dealing with the basic data
classes in R so that when you start to learn how to manage the different data struc-
tures , which combines these data classes into multiple dimensions , you will have a
strong base from which to start.

http://dx.doi.org/10.1007/978-3-319-45599-0_4
http://dx.doi.org/10.1007/978-3-319-45599-0_5
http://dx.doi.org/10.1007/978-3-319-45599-0_6
http://dx.doi.org/10.1007/978-3-319-45599-0_7
http://dx.doi.org/10.1007/978-3-319-45599-0_8

31© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_4

 Chapter 4
 Dealing with Numbers

 In this chapter you will learn the basics of working with numbe rs in R . This includes
understanding how to manage the numeric type (integer vs. double), the different
ways of generating non-random and random numbers, how to set seed values for
 reproducible random number generation, and the different ways to compare and
 round numeric values.

4.1 Integer vs. Double

 The two most common numeric classes used in R are integer and double (for
double precision fl oating point numbers). R automatically converts between these
two classes when needed for mathematical purposes. As a result, it’s feasible to
use R and perform analyses for years without specifying these differences.
To check whether a pre-existing vector is made up of integer or double values you
can use typeof(x) which will tell you if the vector is a double, integer, logical,
or character type.

4.1.1 Creating Integer and Double Vectors

 By default, when you create a numeric vector using the c() function it will produce
a vector of double precision numeric values. To create a vector of integers using
 c() you must specify explicity by placing an L directly after each number.

32

 # create a string of double-precision values
 dbl_var <- c (1, 2.5, 4.5)
 dbl_var

 ## [1] 1.0 2.5 4.5

 # placing an L after the values creates a string of integers
 int_var <- c (1L, 6L, 10L)
 int_var

 ## [1] 1 6 10

4.1.2 Converting Between Integer and Double Values

 By default, if you read in data that has no decimal points or you create numeric
values using the x <- 1:10 method the numeric values will be coded as integer.
If you want to change a double to an integer or vice versa you can specify one of the
following:

 # converts integers to double-precision values
 as.double (int_var)

 ## [1] 1 6 10

 # identical to as.double ()
 as.numeric (int_var)

 ## [1] 1 6 10

 # converts doubles to integers
 as.integer (dbl_var)

 ## [1] 1 2 4

4.2 Generating Sequence of Non-random Numbers

 There a re a few R operators and functions that are especially useful for creating
 vectors of non-random numbers. These functions provide multiple ways for gener-
ating sequences of numbers.

4.2.1 Specifi ng Numbers Within a Sequence

 To explicitly specify numbers in a sequence you can use the colon : operator to
specify all integers between two specifi ed numbers or the combine c() function to
explicity specify all numbers in the sequence.

4 Dealing with Numbers

33

 # create a vector of integers between 1 and 10
 1:10

 ## [1] 1 2 3 4 5 6 7 8 9 10

 # create a vector consisting of 1, 5, and 10
 c (1, 5, 10)

 ## [1] 1 5 10

 # save the vector of integers between 1 and 10 as object x
 x <- 1:10
 x

 ## [1] 1 2 3 4 5 6 7 8 9 10

4.2.2 Generating Regular Sequences

 A generalization of : is the seq() function, which generates a sequence of num-
bers with a specifi ed arithmetic progression.

 # generate a sequence of numbers from 1 to 21 by increments of 2
 seq (from = 1, to = 21, by = 2)

 ## [1] 1 3 5 7 9 11 13 15 17 19 21

 # generate a sequence of numbers from 1 to 21 that has 15 equal
 # incremented numbers
 seq (0, 21, length.out = 15)

 ## [1] 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5
 ## [13] 18.0 19.5 21.0

 The rep () function allows us to conveniently repeat specifi ed constants into
long vectors. This function allows for collated and non-collated repetitions.

 # replicates the values in x a specifi ed number of times
 rep (1:4, times = 2)

 ## [1] 1 2 3 4 1 2 3 4

 # replicates the values in x in a collated fashion
 rep (1:4, each = 2)

 ## [1] 1 1 2 2 3 3 4 4

4.3 Generating Sequence of Random Numbers

 Simulation is a common practice in data analysis. Sometimes your analysis requires
the implementation of a statistical procedure that requires random number
generation or sampling (i.e. Monte Carlo simulation, bootstrap sampling, etc).

4.3 Generating Sequence of Random Numbers

34

R comes with a set of pseudo-random number generators that allow you to simulate
the most common probability distributions such as Uniform, Normal, Binomial ,
Poisson, Exponential and Gamma.

4.3.1 Uniform Numbers

 To generate random numbers from a uniform distribution you can use the runif()
 function . Alternatively, you can use sample() to take a random sample using with
or without replacements.

 # generate n random numbers between the default values of 0 and 1
 runif (n)

 # generate n random numbers between 0 and 25
 runif (n, min = 0, max = 25)

 # generate n random numbers between 0 and 25 (with replacement)
 sample (0:25, n, replace = TRUE)

 # generate n random numbers between 0 and 25 (without replacement)
 sample (0:25, n, replace = FALSE)

 For example, to generate 25 random numbers between the values 0 and 10:

 runif (25, min = 0, max = 10)

 ## [1] 6.11473003 9.72918761 0.04977565 0.98291110 8.53146606 1.17408103
 ## [7] 1.09907810 5.83266343 8.04336903 1.70783108 3.13275943 1.28380380
 ## [13] 8.67087873 8.02653947 7.23398025 4.62386458 3.03617622 6.10895175
 ## [19] 6.39970018 9.02183043 3.24990736 4.64181107 5.35496769 9.97374324
 ## [25] 3.30954880

 For each non-uniform probability distribution there are four primary functions
available to generate random numbers, density (aka probability mass function),
cumulative density, and quantiles. The prefi xes for these functions are:

• r : random number generation
• d : density or probability mass function
• p : cumulative distribution
• q : quantiles

4.3.2 Normal Distribution Numbers

 The normal (or Gaussian) distribution is the most common and well known distri-
bution. Within R , the normal distribution functions are written as norm() .

4 Dealing with Numbers

35

 # generate n random numbers from a normal distribution with given
 # mean and standard deviation
 rnorm (n, mean = 0, sd = 1)

 # generate CDF probabilities for value(s) in vector q
 pnorm (q, mean = 0, sd = 1)

 # generate quantile for probabilities in vector p
 qnorm (p, mean = 0, sd = 1)

 # generate density function probabilites for value(s) in vector x
 dnorm (x, mean = 0, sd = 1)

 For example, to generate 25 random numbers from a normal distribution with
 mean = 100 and standard deviation = 15 :

 x <- rnorm (25, mean = 100, sd = 15)
 x

 ## [1] 97.43216 98.98658 96.43514 73.77727 100.51316 103.11050 111.36823
 ## [8] 102.09288 101.16769 114.54549 99.28044 97.51866 110.57522 87.85074
 ## [15] 86.67675 108.95660 88.45750 106.28923 114.22225 80.17450 110.39667
 ## [22] 96.87112 112.30709 110.54963 93.24365

 summary (x)

 ## Min. 1st Qu. Median Mean 3rd Qu. Max.
 ## 73.78 96.44 100.50 100.10 110.40 114.50

 You can also pass a vector of values. For instance, say you want to know the
CDF probabilities for each value in the vector x created above:

 pnorm (x, mean = 100, sd = 15)

 ## [1] 0.43203732 0.47306731 0.40607337 0.04021628 0.51364538 0.58213815
 ## [7] 0.77573919 0.55548261 0.53102479 0.83390182 0.48086992 0.43430567
 ## [13] 0.75959941 0.20898424 0.18721209 0.72478191 0.22079836 0.66249503
 ## [19] 0.82847339 0.09313407 0.75588023 0.41738339 0.79402667 0.75906822
 ## [25] 0.32620260

4.3.3 Binomial Distribution Numbers

 This is conventionally interpreted as the number of successes in size = x trials
and with prob = p probability of success:

 # generate a vector of length n displaying the number of successes
 # from a trial size = 100 with a probability of success = 0.5
 rbinom (n, size = 100, prob = 0.5)

 # generate CDF probabilities for value(s) in vector q
 pbinom (q, size = 100, prob = 0.5)

4.3 Generating Sequence of Random Numbers

36

 # generate quantile for probabilities in vector p
 qbinom (p, size = 100, prob = 0.5)

 # generate density function probabilites for value(s) in vector x
 dbinom (x, size = 100, prob = 0.5)

4.3.4 Poisson Distribution Numbers

 The Poisson distribution is a discrete probability distribution that expresses the
probability of a given number of events occurring in a fi xed interval of time and/or
space if these events occur with a known average rate and independently of the time
since the last event.

 # generate a vector of length n displaying the random number of
 # events occurring when lambda (mean rate) equals 4.
 rpois (n, lambda = 4)

 # generate CDF probabilities for value(s) in vector q when lambda
 # (mean rate) equals 4.
 ppois (q, lambda = 4)

 # generate quantile for probabilities in vector p when lambda
 # (mean rate) equals 4.
 qpois (p, lambda = 4)

 # generate density function probabilites for value(s) in vector x
 # when lambda (mean rate) equals 4.
 dpois (x, lambda = 4)

4.3.5 Exponential Distribution Numbers

 The Exponential probability distribution describes the time between events in a
Poisson process.

 # generate a vector of length n with rate = 1
 rexp (n, rate = 1)

 # generate CDF probabilities for value(s) in vector q when rate = 4.
 pexp (q, rate = 1)

 # generate quantile for probabilities in vector p when rate = 4.
 qexp (p, rate = 1)

 # generate density function probabilites for value(s) in vector x
 # when rate = 4.
 dexp (x, rate = 1)

4 Dealing with Numbers

37

4.3.6 Gamma Distribution Numbers

 The Gamma probability distribution is related to the Beta distribution and arises
naturally in processes for which the waiting times between Poisson distributed
events are relevant.

 # generate a vector of length n with shape parameter = 1
 rgamma (n, shape = 1)

 # generate CDF probabilities for value(s) in vector q when shape
 # parameter = 1.
 pgamma (q, shape = 1)

 # generate quantile for probabilities in vector p when shape
 # parameter = 1.
 qgamma (p, shape = 1)

 # generate density function probabilites for value(s) in vector x
 # when shape parameter = 1.
 dgamma (x, shape = 1)

4.4 Setting the Seed for Reproducible Random Numbers

 If you want to generate a sequence of random numbers and then be able to repro-
duce that same sequence of random numbers later you can set the random number
seed generator with set.seed () . This is a critical aspect of reproducible research .

 For example, we can reproduce a random generation of 10 values from a normal
distribution :

 set.seed (197)
 rnorm (n = 10, mean = 0, sd = 1)

 ## [1] 0.6091700 -1.4391423 2.0703326 0.7089004 0.6455311 0.7290563
 ## [7] -0.4658103 0.5971364 -0.5135480 -0.1866703

 set.seed (197)
 rnorm (n = 10, mean = 0, sd = 1)

 ## [1] 0.6091700 -1.4391423 2.0703326 0.7089004 0.6455311 0.7290563
 ## [7] -0.4658103 0.5971364 -0.5135480 -0.1866703

4.5 Comparing Numeric Values

 There are multiple ways to compare numeric values and vectors . This includes
 logical operators along with testing for exact equality and also near equality .

4.5 Comparing Numeric Values

https://en.wikipedia.org/wiki/Reproducibility

38

4.5.1 Comparison Operators

 The normal binary operators allow you to compare numeric values and provide the
answer in logical form:

 x < y # is x less than y
 x > y # is x greater than y
 x <= y # is x less than or equal to y
 x >= y # is x greater than or equal to y
 x == y # is x equal to y
 x != y # is x not equal to y

 These operations can be used for single number comparison:

 x <- 9
 y <- 10

 x == y

 ## [1] FALSE

 and also for comparison of numbers within vectors :

 x <- c (1, 4, 9, 12)
 y <- c (4, 4, 9, 13)

 x == y

 ## [1] FALSE TRUE TRUE FALSE

 Note that logical values TRUE and FALSE equate to 1 and 0 respectively. So if
you want to identify the number of equal values in two vectors you can wrap the
operation in the sum() function:

 # How many pairwise equal values are in vectors x and y
 sum (x == y)

 ## [1] 2

 If you need to identify the location of pairwise equalities in two vectors you can
wrap the operation in the which() function:

 # Where are the pairwise equal values located in vectors x and y
 which (x == y)

 ## [1] 2 3

4 Dealing with Numbers

39

4.5.2 Exact Equality

 To test if two objects are exactly equal:

 x <- c (4, 4, 9, 12)
 y <- c (4, 4, 9, 13)

 identical (x, y)

 ## [1] FALSE

 x <- c (4, 4, 9, 12)
 y <- c (4, 4, 9, 12)

 identical (x, y)

 ## [1] TRUE

4.5.3 Floating Point Comparison

 Sometimes you wish to test for ‘ near equality ’. The all.equal () function
allows you to test for equality with a difference tolerance of 1.5e−8.

 x <- c (4.00000005, 4.00000008)
 y <- c (4.00000002, 4.00000006)

 all.equal (x, y)

 ## [1] TRUE

 If the difference is greater than the tolerance level the function will return the
mean relative difference:

 x <- c (4.005, 4.0008)
 y <- c (4.002, 4.0006)

 all.equal (x, y)

 ## [1] " Mean relative difference: 0.0003997102"

4.6 Rounding Numbers

 There are many ways of rounding to the nearest integer , up, down, or toward a
specifi ed decimal place. The following illustrates the common ways to round.

 x <- c (1, 1.35, 1.7, 2.05, 2.4, 2.75, 3.1, 3.45, 3.8, 4.15,
 4.5, 4.85, 5.2, 5.55, 5.9)

 # Round to the nearest integer
 round (x)

 ## [1] 1 1 2 2 2 3 3 3 4 4 4 5 5 6 6

4.6 Rounding Numbers

40

 # Round up
 ceiling (x)

 ## [1] 1 2 2 3 3 3 4 4 4 5 5 5 6 6 6

 # Round down
 fl oor (x)

 ## [1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

 # Round to a specifi ed decimal
 round (x, digits = 1)

 ## [1] 1.0 1.4 1.7 2.0 2.4 2.8 3.1 3.5 3.8 4.2 4.5 4.8 5.2 5.5 5.9

4 Dealing with Numbers

41© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_5

 Chapter 5
 Dealing with Character Strings

 Dealing with character strings is often under-emphasized in data analysis training. The
focus typically remains on numeric values; however, the growth in data collection is
also resulting in greater bits of information embedded in character strings. Consequently,
handling, cleaning and processing character strings is becoming a prerequisite in daily
data analysis. This chapter is meant to give you the foundation of working with char-
acters by covering some basics followed by learning how to manipulate strings using
base R functions along with using the simplifi ed stringr package .

5.1 Character String Basics

 In this section you’ll learn the basics of creating, converting and printing character
strings followed by how to assess the number of elements and characters in a string.

5.1.1 Creating Strings

 The most basic way to create strings is to use quotation marks and assign a string to
an object similar to creating number sequences .

 a <- "learning to create" # create string a
 b <- "character strings" # create string b

 The paste() function provides a versatile means for creating and building
strings. It takes one o r more R objects, converts them to “character”, and then it
concatenates (pastes) them to form one or several character strings .

 # paste together string a & b
 paste (a, b)

42

 ## [1] "learning to create character strings"

 # paste character and number strings (converts numbers to
 # character class)
 paste ("The life of", pi)

 ## [1] "The life of 3.14159265358979"

 # paste multiple strings
 paste ("I", "love", "R")

 ## [1] "I love R"

 # paste multiple strings with a separating character
 paste ("I", "love", "R", sep = "-")

 ## [1] "I-love-R"

 # use paste0() to paste without spaces btwn characters
 paste0 ("I", "love", "R")

 ## [1] "IloveR"

 # paste objects with different lengths
 paste ("R", 1:5, sep = " v1.")

 ## [1] "R v1.1" "R v1.2" "R v1.3" "R v1.4" "R v1.5"

5.1.2 Converting to Strings

 Test if strings are characters with is.character() and convert strings to char-
acter with as.character() or with toString() .

 a <- "The life of"
 b <- pi

 is.character (a)

 ## [1] TRUE

 is.character (b)

 ## [1] FALSE

 c <- as.character (b)
 is.character (c)

 ## [1] TRUE

 toString (c ("Aug", 24, 1980))

 ## [1] "Aug, 24, 1980"

5 Dealing with Character Strings

43

5.1.3 Printing Strings

 The common printing methods include:

• print() : generic printing
• noquote() : print with no quotes
• cat() : concatenate and print with no quotes
• sprintf() : a wrapper for the C function sprintf , that returns a character

 vector containing a formatted combination of text and variable values

 The primary printing function in R is print ()

 x <- "learning to print strings"

 # basic printing
 print (x)

 ## [1] "learning to print strings"

 # print without quotes
 print (x, quote = FALSE)

 ## [1] learning to print strings

 An alternative to printing a string without quotes is to use noquote ()

 noquote (x)

 ## [1] learning to print strings

 Another very useful function is cat() which allows us to concatenate objects
and print them either on screen or to a fi le. The output result is very similar to
 noquote() ; however, cat() does not print the numeric line indicator. As a
result, cat() can be useful for printing nicely formatted responses to users.

 # basic printing (similar to noquote)
 cat (x)

 ## learning to print strings

 # combining character strings
 cat (x, "in R")

 ## learning to print strings in R

 # basic printing of alphabet
 cat (letters)

 ## a b c d e f g h i j k l m n o p q r s t u v w x y z

 # specify a separator between the combined characters
 cat (letters, sep = "-")

 ## a-b-c-d-e-f-g-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-w-x-y-z

5.1 Character String Basics

44

 # collapse the space between the combine characters
 cat (letters, sep = "")

 ## abcdefghijklmnopqrstuvwxyz

 You can also format the line width for printing long strings using the fi ll argument :

 x <- "Today I am learning how to print strings."
 y <- "Tomorrow I plan to learn about textual analysis."
 z <- "The day after I will take a break and drink a beer."

 cat (x, y, z, fi ll = 0)

 ## Today I am learning how to print strings. Tomorrow I plan to
learn about textual analysis. The day after I will take a break and
drink a beer.

 cat (x, y, z, fi ll = 5)

 ## Today I am learning how to print strings.
 ## Tomorrow I plan to learn about textual analysis.
 ## The day after I will take a break and drink a beer.

 sprintf () is a useful printing function for precise control of the output. It is
a wrapper for the C function sprintf and returns a character vector containing a
formatted combination of text and variable values.To substitute in a string or string
variable, use %s :

 x <- "print strings"

 # substitute a single string/variable
 sprintf ("Learning to %s in R", x)

 ## [1] "Learning to print strings in R"

 # substitute multiple strings/variables
 y <- "in R"
 sprintf ("Learning to %s %s", x, y)

 ## [1] "Learning to print strings in R"

 For integers , use %d or a variant:

 version <- 3

 # substitute integer
 sprintf ("This is R version:%d", version)

 ## [1] "This is R version:3"

 # print with leading spaces
 sprintf ("This is R version:%4d", version)

 ## [1] "This is R version: 3"

5 Dealing with Character Strings

45

 # can also lead with zeros
 sprintf ("This is R version:%04d", version)

 ## [1] "This is R version:0003"

 For fl oating-point numbers, use %f for standard notation, and %e or %E for expo-
nential notation:

 sprintf ("%f", pi) # '%f' indicates 'fi xed point' decimal notation

 ## [1] "3.141593"

 sprintf ("%.3f", pi) # decimal notation with 3 decimal digits

 ## [1] "3.142"

 sprintf ("%1.0f", pi) # 1 integer and 0 decimal digits

 ## [1] "3"

 sprintf ("%5.1f", pi) # decimal notation with 5 total decimal digits and

 ## [1] " 3.1" # only 1 to the right of the decimal point

 sprintf ("%05.1f", pi) # same as above but fi ll empty digits with zeros

 ## [1] "003.1"

 sprintf ("%+f", pi) # print with sign (positive)

 ## [1] "+3.141593"

 sprintf ("% f", pi) # prefi x a space

 ## [1] " 3.141593"

 sprintf ("%e", pi) # exponential decimal notation 'e'

 ## [1] "3.141593e+00"

 sprintf ("%E", pi) # exponential decimal notation 'E'

 ## [1] "3.141593E+00"

5.1.4 Counting String Elements and Characters

 To count the number of elements in a string use length() :

 length ("How many elements are in this string?")

 ## [1] 1

5.1 Character String Basics

46

 length (c ("How", "many", "elements", "are", "in", "this", "string?"))

 ## [1] 7

 To count the number of characters in a string use nchar () :

 nchar ("How many characters are in this string?")

 ## [1] 39

 nchar (c ("How", "many", "characters", "are", "in", "this", "string?"))

 ## [1] 3 4 10 3 2 4 7

5.2 String Manipulation with Base R

 Basic string manipulation typically includes case conversion , simple character and
substring replacement, adding/removing whitespace , and performing set operations to
compare similarities and differences between two character vectors . These operations
can all be performed with base R functions; however, some operations (or at least
their syntax) are simplifi ed with the stringr package which we will discuss in the
next section. This section illustrates the base R string manipulation capabilities.

5.2.1 Case Conversion

 To convert all upper case characters to lower case use tolower () :

 x <- "Learning To MANIPULATE strinGS in R"

 tolower (x)

 ## [1] "learning to manipulate strings in r"

 To convert all lower case characters to upper case use toupper () :

 toupper (x)

 ## [1] "LEARNING TO MANIPULATE STRINGS IN R"

5.2.2 Simple Character Replacement

 To replace a character (or multiple characters) in a string you can use chartr () :

 # replace 'A' with 'a'

5 Dealing with Character Strings

47

 x <- "This is A string."
 chartr (old = "A", new = "a", x)

 ## [1] "This is a string."

 # multiple character replacements
 # replace any 'd' with 't' and any 'z' with 'a'
 y <- "Tomorrow I plzn do lezrn zbout dexduzl znzlysis."
 chartr (old = "dz", new = "ta", y)

 ## [1] "Tomorrow I plan to learn about textual analysis."

 Note that chartr () replaces every identifi ed letter for replacement so the only
time I use it is when I am certain that I want to change every possible occurrence of
a letter.

5.2.3 String Abbreviations

 To abbreviate strings you can use abbreviate () :

 streets <- c ("Main", "Elm", "Riverbend", "Mario", "Frederick")

 # default abbreviations
 abbreviate (streets)

 ## Main Elm Riverbend Mario Frederick
 ## "Main" "Elm" "Rvrb" "Mari" "Frdr"

 # set minimum length of abbreviation
 abbreviate (streets, minlength = 2)

 ## Main Elm Riverbend Mario Frederick
 ## "Mn" "El" "Rv" "Mr" "Fr"

 Note that if you are working with U.S. states, R already has a pre-built vector
with state names (state.name). Also, there is a pre-built vector of abbreviated
state names (state.abb).

5.2.4 Extract/ Replace Substrings

 To extract or replace substrings in a character vector there are three prima ry base R
functions to use: substr () , substring () , and strsplit () . The purpose of
 substr () is to extract and replace substrings with specifi ed starting and stopping
characters:

5.2 String Manipulation with Base R

48

 alphabet <- paste (LETTERS, collapse = "")

 # extract 18th character in string
 substr (alphabet, start = 18, stop = 18)

 ## [1] "R"

 # extract 18-24th characters in string
 substr (alphabet, start = 18, stop = 24)

 ## [1] "RSTUVWX"

 # replace 19-24th characters with `R`
 substr (alphabet, start = 19, stop = 24) <- "RRRRRR"
 alphabet

 ## [1] "ABCDEFGHIJKLMNOPQRRRRRRRYZ"

 The purpose of substring () is to extract and replace substrings with only a
specifi ed starting point. substring () also allows you to extract/replace in a
recursive fashion:

 alphabet <- paste (LETTERS, collapse = "")

 # extract 18th through last character
 substring (alphabet, fi rst = 18)

 ## [1] "RSTUVWXYZ"

 # recursive extraction; specify start position only
 substring (alphabet, fi rst = 18:24)

 ## [1] "RSTUVWXYZ" "STUVWXYZ" "TUVWXYZ" "UVWXYZ" "VWXYZ" "WXYZ"
 ## [7] "XYZ"

 # recursive extraction; specify start and stop positions
 substring (alphabet, fi rst = 1:5, last = 3:7)

 ## [1] "ABC" "BCD" "CDE" "DEF" "EFG"

 To split the elements of a character string use strsplit () :

 z <- "The day after I will take a break and drink a beer."
 strsplit (z, split = " ")

 ## [[1]]
 ## [1] "The" "day" "after" "I" "will" "take" "a" "break"
 ## [9] "and" "drink" "a" "beer."

 a <- "Alabama-Alaska-Arizona-Arkansas-California"
 strsplit (a, split = "-")

 ## [[1]]
 ## [1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"

5 Dealing with Character Strings

49

 Note that the output of strsplit () is a list . To convert the output to a simple
atomic vector simply wrap in unlist () :

 unlist (strsplit (a, split = "-"))

 ## [1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"

5.3 String Manipulation with stringr

 The stringr package was developed by Hadley Wickham to act as simple wrap-
pers that make R ’s string functions more consistent, simple, and easier to use. To
replicate the functions in this section you will need to install and load the stringr
package:

 # install stringr package
 install.packages ("stringr")

 # load package
 library (stringr)

5.3.1 Basic Operations

 There are three stringr functions that are closely related to thei r base R equivalents,
but with a few enhancements:

• Concatenate with str_c()
• Number of characters with str_length()
• Substring with str_sub()

 str_c () is equivalent to the paste () functions:

 # same as paste0 ()
 str_c ("Learning", "to", "use", "the", "stringr", "package")

 ## [1] "Learningtousethestringrpackage"

 # same as paste ()
 str_c ("Learning", "to", "use", "the", "stringr", "package", sep = " ")

 ## [1] "Learning to use the stringr package"

 # allows recycling
 str_c (letters, " is for", "…")

 ## [1] "a is for…" "b is for…" "c is for…" "d is for…" "e is for…"
 ## [6] "f is for…" "g is for…" "h is for…" "i is for…" "j is for…"

5.3 String Manipulation with stringr

http://cran.r-project.org/web/packages/stringr/index.html

50

 ## [11] "k is for…" "l is for…" "m is for…" "n is for…" "o is for…"
 ## [16] "p is for…" "q is for…" "r is for…" "s is for…" "t is for…"
 ## [21] "u is for…" "v is for…" "w is for…" "x is for…" "y is for…"
 ## [26] "z is for…"

 str_ length () is similar to the nchar () function; however, str_
length () behaves more appropriately with missing (‘NA’) values:

 # some text with NA
 text = c ("Learning", "to", NA, "use", "the", NA, "stringr", "package")

 # compare ` str_length ()` with ` nchar ()`
 nchar (text)
 ## [1] 8 2 2 3 3 2 7 7
 str_length (text)
 ## [1] 8 2 NA 3 3 NA 7 7

 str_sub () is similar to substr () ; however, it returns a zero length vector
if any of its inputs are zero length, and otherwise expands each argument to match
the longest. It also accepts negative positions, which are calculated from the left of
the last character.

 x <- "Learning to use the stringr package"

 # alternative indexing
 str_sub (x, start = 1, end = 15)

 ## [1] "Learning to use"

 str_sub (x, end = 15)

 ## [1] "Learning to use"

 str_sub (x, start = 17)

 ## [1] "the stringr package"

 str_sub (x, start = c (1, 17), end = c (15, 35))

 ## [1] "Learning to use" "the stringr package"

 # using negative indices for start/end points from end of string
 str_sub (x, start = -1)

 ## [1] "e"

 str_sub (x, start = -19)

 ## [1] "the stringr package"

 str_sub (x, end = -21)

 ## [1] "Learning to use"

5 Dealing with Character Strings

51

 # Replacement
 str_sub (x, end = 15) <- "I know how to use"
 x

 ## [1] "I know how to use the stringr package"

5.3.2 Duplicate Characters Within a String

 A new functionality that stringr provides in which base R does not have a specifi c
function for is character duplication:

 str_ dup ("beer", times = 3)

 ## [1] "beerbeerbeer"

 str_dup ("beer", times = 1:3)

 ## [1] "beer" "beerbeer" "beerbeerbeer"

 # use with a vector of strings
 states_i_luv <- state.name[c (6, 23, 34, 35)]
 str_dup (states_i_luv, times = 2)

 ## [1] "ColoradoColorado" "MinnesotaMinnesota"
 ## [3] "North DakotaNorth Dakota" "OhioOhio"

5.3.3 Remove Leading and Trailing Whitespace

 A common task of string processing is that of parsing text into individual words.
Often, this results in words having blank spaces (whitespaces) on either end of the
word. The str_trim () can be used to remove these spaces:

 text <- c ("Text ", " with", " whitespace ", " on", "both ", " sides ")

 # remove whitespaces on the left side
 str_trim (text, side = "left")

 ## [1] "Text " "with" "whitespace " "on" "both "
 ## [6] "sides "

 # remove whitespaces on the right side
 str_trim (text, side = "right")

 ## [1] "Text" " with" " whitespace" " on" "both"
 ## [6] " sides"

 # remove whitespaces on both sides
 str_trim (text, side = "both")

 ## [1] "Text" "with" "whitespace" "on" "both"
 ## [6] "sides"

5.3 String Manipulation with stringr

52

5.3.4 Pad a String with Whitespace

 To add whitespace , or to pad a string, use str_pad () . You can also use str_
pad() to pad a string with specifi ed characters.

 str_pad ("beer", width = 10, side = "left")

 ## [1] " beer"

 str_pad ("beer", width = 10, side = "both")

 ## [1] " beer "

 str_pad ("beer", width = 10, side = "right", pad = "!")

 ## [1] "beer!!!!!!"

5.4 Set Operatons for Character Strings

 There are also base R functions that allow for assessing the set union , intersection,
difference, equality, and membership of two vectors .

5.4.1 Set Union

 To obtain the elements of the union between two character vectors use union() :

 set_1 <- c ("lagunitas", "bells", "dogfi sh", "summit", "odell")
 set_2 <- c ("sierra", "bells", "harpoon", "lagunitas", "founders")

 union (set_1, set_2)

 ## [1] "lagunitas" "bells" "dogfi sh" "summit" "odell" "sierra"
 ## [7] "harpoon" "founders"

5.4.2 Set Intersection

 To obtain the common elements of two character vectors use intersect() :

 intersect (set_1, set_2)
 ## [1] "lagunitas" "bells"

5 Dealing with Character Strings

53

5.4.3 Identifying Different Elements

 To obtain the non-common elements, or the difference, of two character vectors use
 setdiff() :

 # returns elements in set_1 not in set_2
 setdiff (set_1, set_2)

 ## [1] "dogfi sh" "summit" "odell"

 # returns elements in set_2 not in set_1
 setdiff (set_2, set_1)

 ## [1] "sierra" "harpoon" "founders"

5.4.4 Testing for Element Equality

 To test if two vectors contain the same elements regardless of order use
 setequal() :

 set_3 <- c ("woody", "buzz", "rex")
 set_4 <- c ("woody", "andy", "buzz")
 set_5 <- c ("andy", "buzz", "woody")

 setequal (set_3, set_4)

 ## [1] FALSE

 setequal (set_4, set_5)

 ## [1] TRUE

5.4.5 Testing for Exact Equality

 To test if two character vectors are equal in content and order use
 identical () :

 set_6 <- c ("woody", "andy", "buzz")
 set_7 <- c ("andy", "buzz", "woody")
 set_8 <- c ("woody", "andy", "buzz")

 identical (set_6, set_7)

 ## [1] FALSE

 identical (set_6, set_8)

 ## [1] TRUE

5.4 Set Operatons for Character Strings

54

5.4.6 Identifying If Elements Are Contained in a String

 To test if an element is contained within a character vector use is.element () or
 %in% :

 good <- "andy"
 bad <- "sid"

 is.element (good, set_8)

 ## [1] TRUE

 good %in% set_8

 ## [1] TRUE

 bad %in% set_8

 ## [1] FALSE

5.4.7 Sorting a String

 To sort a character vector use sort () :

 sort (set_8)

 ## [1] "andy" "buzz" "woody"

 sort (set_8, decreasing = TRUE)

 ## [1] "woody" "buzz" "andy"

5 Dealing with Character Strings

55© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_6

 Chapter 6
 Dealing with Regular Expressions

 A regular expression (aka regex) is a sequence of characters that defi ne a search
pattern, mainly for use in pattern matching with text strings. Typically, regex pat-
terns consist of a combination of alphanumeric characters as well as special charac-
ters. The pattern can also be as simple as a single character or it can be more complex
and include several characters.

 To understand how to work with regular expressions in R, we need to consider
two primary features of regular expressions. One has to do with the syntax , or the
way regex patterns are exp ressed in R . The other has to do with the functions used
for regex matching in R. In this chapter, we will cover both of these aspects. First,
I cover the syntax that allows you to perform pattern matching functions with meta
characters, character and POSIX classes, and quantifi ers . This will provide you with
the basic understanding of the syntax required to establish the pattern to fi nd. Then
I cover the functions you can apply to identify, extract, replace, and split parts of
 character strings based on the regex pattern specifi ed.

6.1 Regex Syntax

 At fi rst glance (and second, third,…) the regex syntax can appear quite confusing.
This section will provide you with the basic foundation of regex syntax; however,
realize that there is a plethora of resources available that will give you far more
detailed, and advanced, knowledge of regex syntax. To read more about the specifi -
cations and technicalities of regex in R you can fi nd help at help(regex) or
 help(regexp) .

56

6.1.1 Metacharacters

 Metacharacters consist of non-alphanumeric symbols such as:

 . \ | () [{ $ * + ?

 To match metacharacters in R you need to escape them with a double backslash
“\\”. The following displays the general escape syntax for the most common
 metacharacters (Fig. 6.1):

 The following provides examples to show how to use the escape syntax to fi nd
and replace metacharacters . For information on the sub and gsub functions used
in this example visit the main regex functions page.

 # substitute $ with !
 sub (pattern = "\\$", "\\!", "I love R$")
 ## [1] "I love R!"

 # substitute ^ with carrot
 sub (pattern = "\\^", "carrot", "My daughter has a ̂ with almost every meal!")
 ## [1] "My daughter has a carrot with almost every meal!"

 # substitute \\ with whitespace
 gsub (pattern = "\\\\", " ", "I\\need\\space")
 ## [1] "I need space"

6.1.2 Sequences

 To match a sequence of characters we can apply short-hand notation which captures
the fundamental types of sequences. The following displays the general syntax for
these common sequences (Fig. 6.2):

Metacharacter Literal Meaning Escape Syntax
. period or dot \\.
$ dollar sign \\$
* asterisk *
+ plus sign \\+
? question mark \\?
| vertical bar \\|
\\ double backslash \\\\
^ caret \\^
[square bracket \\[
{ curly brace \\{
(parenthesis \\(

*adapted from Handling and Processing Strings in R (Sanchez, 2013)

 Fig. 6.1 Escape syntax for
common metacharacters

6 Dealing with Regular Expressions

57

 The following provides examples to show how to use the anchor syntax to fi nd
and replace sequences . For information on the gsub function used in this example
visit the main regex functions page.

 # substitute any digit with an underscore
 gsub (pattern = "\\d", "_", "I'm working in RStudio v.0.99.484")
 ## [1] "I'm working in RStudio v._.__.___"

 # substitute any non-digit with an underscore
 gsub (pattern = "\\D", "_", "I'm working in RStudio v.0.99.484")
 ## [1] "_________________________0_99_484"

 # substitute any whitespace with underscore
 gsub (pattern = "\\s", "_", "I'm working in RStudio v.0.99.484")
 ## [1] "I'm_working_in_RStudio_v.0.99.484"

 # substitute any wording with underscore
 gsub (pattern = "\\w", "_", "I'm working in RStudio v.0.99.484")
 ## [1] "_'_ _______ __ _______ _._.__.___"

6.1.3 Character Classes

 To match one of several characters in a specifi ed set we can enclose the characters
of concern with square brackets [] . In addition, to match any characters not in a
specifi ed character set we can include the caret ̂ at the beginning of the set within
the brackets. The following displays the general syntax for common character
classes but these can be altered easily as shown in the examples that follow
(Fig. 6.3):

Anchor Description
\\d match a digit character
\\D match a non-digit character
\\s match a space character
\\S match a non-space character
\\w match a word
\\W match a non-word
\\b match a word boundary
\\B match a non-word boundary
\\h match a horizontal space
\\H match a non-horizontal space
\\v match a vertical space
\\V match a non-vertical space

*adapted from Handling and Processing Strings in R (Sanchez, 2013)

 Fig. 6.2 Anchors for
common sequences

6.1 Regex Syntax

58

 The following provides examples to show how to use the anchor syntax to match
character classes. For information on the grep function used in this example visit
the main regex functions page.

 x <- c ("RStudio", "v.0.99.484", "2015", "09-22-2015", "grep vs. grepl")

 # fi nd any strings with numeric values between 0-9
 grep (pattern = "[0-9]", x, value = TRUE)
 ## [1] "v.0.99.484" "2015" "09-22-2015"

 # fi nd any strings with numeric values between 6-9
 grep (pattern = "[6-9]", x, value = TRUE)
 ## [1] "v.0.99.484" "09-22-2015"

 # fi nd any strings with the character R or r
 grep (pattern = "[Rr]", x, value = TRUE)
 ## [1] "RStudio" "grep vs. grepl"

 # fi nd any strings that have non-alphanumeric characters
 grep (pattern = "[^0-9a-zA-Z]", x, value = TRUE)
 ## [1] "v.0.99.484" "09-22-2015" "grep vs. grepl"

6.1.4 POSIX Character Classes

 Closely related to regex character classes are POSIX character classes which are
expressed in double brackets [[]] (Fig. 6.4).

 The following provides examples to show how to use the anchor syntax to match
 POSIX character classes. For information on the grep function used in this exam-
ple visit the main regex functions page .

 x <- "I like beer! #beer, @wheres_my_beer, I like R (v3.2.2) #rrrrrrr2015"

 # remove space or tabs
 gsub (pattern = "[[:blank:]]", replacement = "", x)
 ## [1] "Ilikebeer!#beer,@wheres_my_beer,IlikeR(v3.2.2)#rrrrrrr2015"

Anchor Description
[aeiou] match any specified lower case vowel

[AEIOU] match any specified upper case vowel
[0123456789] match any specified numeric value

[0-9] match any range of specified numeric values
[a-z] match any range of lower case letter
[A-Z] match any range of upper case letter

[a-zA-Z0-9] match any of the above
[^aeiou] match anything other than a lowercase vowel
[^0-9] match anything other than the specified numeric values

*adapted from Handling and Processing Strings in R (Sanchez, 2013)

 Fig. 6.3 Anchors for common character classes

6 Dealing with Regular Expressions

59

 # replace punctuation with whitespace
 gsub (pattern = "[[:punct:]]", replacement = " ", x)
 ## [1] "I like beer beer wheres my beer I like R v3 2 2 rrrrrrr2015"

 # remove alphanumeric characters
 gsub (pattern = "[[:alnum:]]", replacement = "", x)
 ## [1] " ! #, @__, (..) #"

6.1.5 Quantifi ers

 When we want to match a certain number of characters that meet a certain criteria we
can apply quantifi ers to our pattern searches. The quantifi ers we can use are (Fig. 6.5):

 The following provides examples to show how to use the quantifi er syntax
to match a certain number of characters patterns. For information on the grep
function used in this example visit the main regex functions page. Note that state.
name is a built in dataset within R that contains all the U.S. state names.

Anchor Description
[[:lower:]] lower-case letters
[[:upper:]] upper-case letters
[[:alpha:]] alphabetic characters [[:lower:]] + [[:upper:]]
[[:digit:]] numeric values

[[:alnum:]] alphanumeric characters [[:alpha:]] + [[:digit:]]
[[:blank:]] blank characters (space & tab)
[[:cntrl:]] control characters
[[:punct:]] punctuation characters: ! " # % & ' () * + , - . / : ;
[[:space:]] space characters: tab, newline, vertical tab, space, etc
[[:xdigit:]] hexadecimal digits: 0-9 A B C D E F a b c d e f
[[:print:]] printable characters [[:alpha:]] + [[:punct:]] + space
[[:graph:]] graphical characters [[:alpha:]] + [[:punct:]]

*adapted from Handling and Processing Strings in R (Sanchez, 2013)

 Fig. 6.4 Anchors for POSIX character classes

Quantifier Description
? the preceding item is optional and will be matched at most once
* the preceding item will be matched zero or more times
+ the preceding item will be matched one or more times

{n} the preceding item is matched exactly n times
{n,} the preceding item is matched n or more times

{n,m} the preceding item is matched at least n times, but not more than m times
*adapted from Handling and Processing Strings in R (Sanchez, 2013)

 Fig. 6.5 Quantifi ers

6.1 Regex Syntax

60

 # match states that contain z
 grep (pattern = "z+", state.name, value = TRUE)
 ## [1] "Arizona"

 # match states with two s
 grep (pattern = "s{2}", state.name, value = TRUE)
 ## [1] "Massachusetts" "Mississippi" "Missouri" "Tennessee"

 # match states with one or two s
 grep (pattern = "s{1,2}", state.name, value = TRUE)
 ## [1] "Alaska" "Arkansas" "Illinois" "Kansas"
 ## [5] "Louisiana" "Massachusetts" "Minnesota" "Mississippi"
 ## [9] "Missouri" "Nebraska" "New Hampshire" "New Jersey"
 ## [13] "Pennsylvania" "Rhode Island" "Tennessee" "Texas"
 ## [17] "Washington" "West Virginia" "Wisconsin"

6.2 Regex Functions

 Now that I’ve illustrated how R handles some of the most common regular expres-
sion elements, it’s time to present the functions you can use for working with regu-
lar expression. R contains a set of functions in the base package that we can use to
fi nd pattern matches. Alternatively, the R package stringr also provides several
functions for regex operations. We will cover both these alternatives.

6.2.1 Main Regex Functions in R

 The primary base R regex functions serve three primary purposes: pattern matching ,
 pattern replacement , and character splitting .

6.2.1.1 Pattern Matching

 There are fi ve functions that provide pattern matching capabilities. The three func-
tions that I provide examples for (grep () , grepl () , and regexpr ()) are ones
that are most common. The primary difference between these three functions is the
output they provide. The two other functions which I do not illustrate are g reg-
expr () and regexec() . These two functions provide similar capabilities as
 regexpr() but with the output in list form.

 To fi nd a pattern in a character vector and to have the element values or indices
as the output use grep () :

6 Dealing with Regular Expressions

61

 # use the built in data set state.division
 head (as.character (state.division))
 ## [1] "East South Central" "Pacifi c" "Mountain"
 ## [4] "West South Central" "Pacifi c" "Mountain"

 # fi nd the elements which match the pattern
 grep ("North", state.division)
 ## [1] 13 14 15 16 22 23 25 27 34 35 41 49

 # use value = TRUE to show the element value
 grep ("North", state.division, value = TRUE)
 ## [1] "East North Central" "East North Central" "West North Central"
 ## [4] "West North Central" "East North Central" "West North Central"
 ## [7] "West North Central" "West North Central" "West North Central"
 ## [10] "East North Central" "West North Central" "East North Central"

 # can use the invert argument to show the non-matching elements
 grep ("North | South", state.division, invert = TRUE)
 ## [1] 2 3 5 6 7 8 9 10 11 12 19 20 21 26 28 29 30 31 32 33 37 38 39
 ## [24] 40 44 45 46 47 48 50

 To fi nd a pattern in a character vector and to have logical (TRUE/FALSE) out-
puts use grepl () :

 grepl ("North | South", state.division)
 ## [1] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 ## [12] FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
 ## [23] TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 ## [34] TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
 ## [45] FALSE FALSE FALSE FALSE TRUE FALSE

 # wrap in sum() to get the count of matches
 sum (grepl ("North | South", state.division))
 ## [1] 20

 To fi nd exactly where the pattern exists in a string use regexpr () :

 x <- c ("v.111", "0v.11", "00v.1", "000v.", "00000")

 regexpr ("v.", x)
 ## [1] 1 2 3 4 -1
 ## attr(,"match.length")
 ## [1] 2 2 2 2 -1
 ## attr(,"useBytes")
 ## [1] TRUE

 The output of regexpr () can be interpreted as follows. The fi rst element pro-
vides the starting position of the match in each element. Note that the value −1
means there is no match. The second element (attribute “match length”) provides
the length of the match. The third element (attribute “useBytes”) has a value TRUE
meaning matching was done byte-by-byte rather than character-by-character.

6.2 Regex Functions

62

6.2.1.2 Pattern Replacement Functions

 In addition to fi nding patterns in character vectors , its also common to want to
 replace a pattern in a string with a new patte rn. Base R regex functions provide two
options for this: (a) replace the fi rst matching occurrence or (b) replace all
occurrences.

 To replace the fi rst matching occurrence of a pattern use sub() :

 new <- c ("New York", "new new York", "New New New York")
 new
 ## [1] "New York" "new new York" "New New New York"

 # Default is case sensitive
 sub ("New", replacement = "Old", new)
 ## [1] "Old York" "new new York" "Old New New York"

 # use 'ignore.case = TRUE' to perform the obvious
 sub ("New", replacement = "Old", new, ignore.case = TRUE)
 ## [1] "Old York" "Old new York" "Old New New York"

 To replace all matching occurrences of a pattern use gsub () :

 # Default is case sensitive
 gsub ("New", replacement = "Old", new)
 ## [1] "Old York" "new new York" "Old Old Old York"

 # use ignore.case = TRUE to perform the obvious
 gsub ("New", replacement = "Old", new, ignore.case = TRUE)
 ## [1] "Old York" "Old Old York" "Old Old Old York"

6.2.1.3 Splitting Character Vectors

 There will be times when you want to split the elements of a character string into
separate elements. To divide the characters in a vector into individual components
use strsplit () :

 x <- paste (state.name[1:10], collapse = " ")

 # output will be a list
 strsplit (x, " ")
 ## [[1]]
 ## [1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"
 ## [6] "Colorado" "Connecticut" "Delaware" "Florida" "Georgia"

 # output as a vector rather than a list
 unlist (strsplit (x, " "))
 ## [1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"
 ## [6] "Colorado" "Connecticut" "Delaware" "Florida" "Georgia"

6 Dealing with Regular Expressions

63

6.2.2 Regex Functions in stringr

 Similar to basic string manipulation , the stringr package also offers regex func-
tionality. In some cases the stringr performs the same functions as certain base
 R functions but with more consistent syntax. In other cases stringr offers addi-
tional functionality that is not available in base R functions.

 # install stringr package
 install.packages ("stringr")

 # load package
 library (stringr)

6.2.2.1 Detecting Patterns

 To detect whether a pattern is present (or absent) in a string vector use the str_
detect () . This function is a wrapper for grepl () .

 # use the built in data set 'state.name'
 head (state.name)
 ## [1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"
 ## [6] "Colorado"

 str_detect (state.name, pattern = "New")
 ## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 ## [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 ## [23] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE
 ## [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 ## [45] FALSE FALSE FALSE FALSE FALSE FALSE

 # count the total matches by wrapping with sum
 sum (str_detect (state.name, pattern = "New"))
 ## [1] 4

6.2.2.2 Locating Patterns

 To locate the occurrences of patterns stringr offers two options: (a) locate the
fi rst matching occurrence or (b) locate all occurrences. To locate the position of the
fi rst occurrence of a pattern in a string vector use str_locate () . The output pro-
vides the starting and ending position of the fi rst match found within each element.

 x <- c ("abcd", "a22bc1d", "ab3453cd46", "a1bc44d")

 # locate 1st sequence of 1 or more consecutive numbers
 str_locate (x, "[0-9]+")
 ## start end
 ## [1,] NA NA
 ## [2,] 2 3
 ## [3,] 3 6
 ## [4,] 2 2

6.2 Regex Functions

64

 To locate the positions of all pattern match occurrences in a character vector use
 str_locate_all () . The output provides a list the same length as the number
of elements in the vector. Each list item will provide the starting and ending positions
for each pattern match occurrence in its respective element.

 # locate all sequences of 1 or more consecutive numbers
 str_locate_all (x, "[0-9]+")
 ## [[1]]
 ## start end
 ##
 ## [[2]]
 ## start end
 ## [1,] 2 3
 ## [2,] 6 6
 ##
 ## [[3]]
 ## start end
 ## [1,] 3 6
 ## [2,] 9 10
 ##
 ## [[4]]
 ## start end
 ## [1,] 2 2
 ## [2,] 5 6

6.2.2.3 Extracting Patterns

 For extracting a string containing a pattern , stringr offers two primary options:
(a) extract the fi rst matching occurrence or (b) extract all occurrences. To extract the
fi rst occurrence of a pattern in a character vector use str_extract () . The out-
put will be the same length as the string and if no match is found the output will be
 NA for that element.

 y <- c ("I use R #useR2014", "I use R and love R #useR2015", "Beer")

 str_extract (y, pattern = "R")
 ## [1] "R" "R" NA

 To extract all occurrences of a pattern in a character vector use str_extract_
all () . The output provides a list the same length as the number of elements in the
vector. Each list item will provide the matching pattern occurrence within that rela-
tive vector element.

 str_extract_all (y, pattern = "[[:punct:]]*[a-zA-Z0-9]*R[a-zA-Z0-9]*")
 ## [[1]]
 ## [1] "R" "#useR2014"
 ##
 ## [[2]]
 ## [1] "R" "R" "#useR2015"
 ##
 ## [[3]]
 ## character(0)

6 Dealing with Regular Expressions

65

6.2.2.4 Replacing Patterns

 For extracting a string containing a pattern, stringr offers two options: (a)
replace the fi rst matching occurrence or (b) replace all occurrences. To replace the
fi rst occurrence of a pattern in a character vector use str_replace () . This func-
tion is a wrapper for sub() .

 cities <- c ("New York", "new new York", "New New New York")
 cities
 ## [1] "New York" "new new York" "New New New York"

 # case sensitive
 str_replace (cities, pattern = "New", replacement = "Old")
 ## [1] "Old York" "new new York" "Old New New York"

 # to deal with case sensitivities use Regex syntax in the 'pattern' argument
 str_replace (cities, pattern = "[N]*[n]*ew", replacement = "Old")
 ## [1] "Old York" "Old new York" "Old New New York"

 To extract all occurrences of a pattern in a character vector use str_replace_
all() . This function is a wrapper for gsub () .

 str_replace_all (cities, pattern = "[N]*[n]*ew", replacement = "Old")
 ## [1] "Old York" "Old Old York" "Old Old Old York"

6.2.2.5 String Splitting

 To split the elements of a character string use str_split() . This function is a
wrapper for strsplit () .

 z <- "The day after I will take a break and drink a beer."
 str_split (z, pattern = " ")
 ## [[1]]
 ## [1] "The" "day" "after" "I" "will" "take" "a" "break"
 ## [9] "and" "drink" "a" "beer."

 a <- "Alabama-Alaska-Arizona-Arkansas-California"
 str_split (a, pattern = "-")
 ## [[1]]
 ## [1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"

 Note that the output of strs_plit() is a list . To convert the output to a simple
atomic vector simply wrap in unlist () :

 unlist (str_split (a, pattern = "-"))
 ## [1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"

6.2 Regex Functions

66

6.3 Additional Resources

 Character strings are often considered semi-structured data. Text can be structured
in a specifi ed fi eld; however, the quality and consistency of the text input can be far
from structured. Consequently, managing and manipulating character strings can be
extremely tedious and unique to each data wrangling process. As a result, taking the
time to learn the nuances of dealing with character strings and regex functions can
provide a great return on investment; however, the functions and techniques required
will likely be greater than what I could offer here. So here are additional resources
that are worth reading and learning from:

• Handling and Processing Strings in R 1
• stringr Package Vignette 2
• Regular Expressions 3

1 http://gastonsanchez.com/Handling_and_Processing_Strings_in_R.pdf
2 https://cran.r-project.org/web/packages/stringr/vignettes/stringr.html
3 http://www.regular-expressions.info/

6 Dealing with Regular Expressions

http://gastonsanchez.com/Handling_and_Processing_Strings_in_R.pdf
https://cran.r-project.org/web/packages/stringr/vignettes/stringr.html
http://www.regular-expressions.info/

67© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_7

 Chapter 7
 Dealing with Factors

 Factors are variables in R , which take on a limited number of different values; such
variables are often referred to as categorical variables . One of the most important
uses of factors is in statistical modeling; since categorical variables enter into statis-
tical models such as lm and glm differently than continuous variables, storing data
as factors insures that the modeling functions will treat such data correctly.

 One can think of a factor as an integer vector where each integer has a label. 1 In
fact, factors are built on top of integer vectors using two attributes: the class ()
“factor”, which makes them behave differently from regular integer vectors , and the
 levels () , which defi nes the set of allowed values. 2

In this chapter I will cover the basics of dealing with factors , which includes
 Creating, converting and inspecting factors , Ordering levels , Revaluing levels , and
 Dropping levels .

7.1 Creating, Converting and Inspecting Factors

 Factor objects can be created with the factor () function:

 # create a factor string
 gender <- factor (c ("male", "female", "female", "male", "female"))
 gender
 ## [1] male female female male female
 ## Levels: female male

 # inspect to see if it is a factor class
 class (gender)
 ## [1] "factor"

1 https://leanpub.com/rprogramming
2 http://adv-r.had.co.nz/Data-structures.html

https://en.wikipedia.org/wiki/Categorical_variable
https://leanpub.com/rprogramming
http://adv-r.had.co.nz/Data-structures.html

68

 # show that factors are just built on top of integers
 typeof (gender)
 ## [1] "integer"

 # See the underlying representation of factor
 unclass (gender)
 ## [1] 2 1 1 2 1
 ## attr(,"levels")
 ## [1] "female" "male"

 # what are the factor levels?
 levels (gender)
 ## [1] "female" "male"

 # show summary of counts
 summary (gender)
 ## female male
 ## 3 2

 If we have a vector of character strings or integers we can easily convert to
 factors :

 group <- c ("Group1", "Group2", "Group2", "Group1", "Group1")
 str (group)
 ## chr [1:5] "Group1" "Group2" "Group2" "Group1" "Group1"

 # convert from characters to factors
 as.factor (group)
 ## [1] Group1 Group2 Group2 Group1 Group1
 ## Levels: Group1 Group2

7.2 Ordering Levels

 When creating a factor we can control the ordering of the levels by using the lev-
els argument :

 # when not specifi ed the default puts order as alphabetical
 gender <- factor (c ("male", "female", "female", "male", "female"))
 gender
 ## [1] male female female male female
 ## Levels: female male

 # specifying order
 gender <- factor (c ("male", "female", "female", "male", "female"),
 levels = c ("male", "female"))
 gender
 ## [1] male female female male female
 ## Levels: male female

7 Dealing with Factors

69

 We can also create ordinal factors in which a specifi c order is desired by using
the ordered = TRUE argument. This will be refl ected in the output of the levels
as shown below in which low < middle < high :

 ses <- c ("low", "middle", "low", "low", "low", "low", "middle", "low", "middle",
 "middle", "middle", "middle", "middle", "high", "high", "low", "middle",
 "middle", "low", "high")

 # create ordinal levels
 ses <- factor (ses, levels = c ("low", "middle", "high"), ordered = TRUE)
 ses
 ## [1] low middle low low low low middle low middle middle
 ## [11] middle middle middle high high low middle middle low high
 ## Levels: low < middle < high

 # you can also reverse the order of levels if desired
 factor (ses, levels = rev (levels (ses)))
 ## [1] low middle low low low low middle low middle middle
 ## [11] middle middle middle high high low middle middle low high
 ## Levels: high < middle < low

7.3 Revalue Levels

 To recode factor levels I usually use the revalue () function from the plyr
package.

 plyr:: revalue (ses, c ("low" = "small", "middle" = "medium", "high" = "large"))
 ## [1] small medium small small small small medium small medium medium
 ## [11] medium medium medium large large small medium medium small large
 ## Levels: small < medium < large

 Note that Using the :: notation allows you to access the revalue() function
without having to fully load the plyr package.

7.4 Dropping Levels

 When you want to drop unused factor levels , use droplevels () :

 ses2 <- ses[ses != "middle"]

 # lets say you have no observations in one level
 summary (ses2)
 ## low middle high
 ## 8 0 3

 # you can drop that level if desired
 droplevels (ses2)
 ## [1] low low low low low low high high low low high
 ## Levels: low < high

7.4 Dropping Levels

71© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_8

 Chapter 8
 Dealing with Dates

 Real world data are often associated with dates and time; however, dealing with
dates accurately can appear to be a complicated task due to the variety in formats
and accounting for time-zone differences and leap yea rs. R has a range of functions
that allow you to work with dates and times. Furthermore, packages such as lub-
ridate make it easier to work with dates and times.

 In this chapter I will introduce you to the basics of dealing with dates . This
includes printing the current date and time stamp , converting strings to dates ,
 extracting and manipulating parts of dates , creating date sequences , performing cal-
culations with dates , and dealing with time zone and daylight savings differences .
I end with offering additional resources to learn and deal with date and time data.

8.1 Getting Current Date and Time

 To get current date and time information:

 Sys.timezone ()
 ## [1] "America/New_York"

 Sys.Date ()
 ## [1] "2015-09-24"

 Sys.time ()
 ## [1] "2015-09-24 15:08:57 EDT"

 If using the lubridate package:

 library (lubridate)

 now ()
 ## [1] "2015-09-24 15:08:57 EDT"

72

8.2 Converting Strings to Dates

 When date and time data are impo rted into R they will often default to a character
 string . This requires us to convert strings to dates. We may also have multiple strings
that we want to merge to create a date variable.

8.2.1 Convert Strings to Dates

 To convert a string that is already in a date format (YYYY-MM-DD) into a date
object use as.Date () :

 x <- c ("2015-07-01", "2015-08-01", "2015-09-01")

 as.Date (x)
 ## [1] "2015-07-01" "2015-08-01" "2015-09-01"

 Note that the default date format is YYYY-MM-DD; therefore, if your string is
of different format you must incorporate the format argument . There are multiple
formats that dates can be in; for a complete list of formatting code options in R type
 ?strftime in your console .

 y <- c ("07/01/2015", "07/01/2015", "07/01/2015")

 as.Date (y, format = "%m/%d/%Y")
 ## [1] "2015-07-01" "2015-07-01" "2015-07-01"

 If using the lubridate package:

 library (lubridate)
 ymd (x)
 ## [1] "2015-07-01 UTC" "2015-08-01 UTC" "2015-09-01 UTC"

 mdy (y)
 ## [1] "2015-07-01 UTC" "2015-07-01 UTC" "2015-07-01 UTC"

 One of the many benefi ts of the lubricate package is that it automatically
recognizes the common separators used when recording dates (“-”, “/”, “.”, and “”).
As a result, you only need to focus on specifying the order of the date elements to
determine the parsing function applied (Fig. 8.1):

Order of elements in date-time Parse function
year, month, day ymd()
year, day, month ydm()
month, day, year mdy()
day, month, year dmy()
hour, minute hm()
hour, minute, second hms()
year, month, day, hour, minute, second ymd_hms()

*adapted from Dates and Times Made Easy with lubridate (Grolemund & Wickham, 2011)

 Fig. 8.1 Parsing functions for lubridate

8 Dealing with Dates

73

8.2.2 Create Dates by Merging Data

 Sometimes your date data are collected in separate elements. To convert these sepa-
rate data into one date object incorporate the ISOdate () function:

 yr <- c ("2012", "2013", "2014", "2015")
 mo <- c ("1", "5", "7", "2")
 day <- c ("02", "22", "15", "28")

 # ISOdate converts to a POSIXct object
 ISOdate (year = yr, month = mo, day = day)
 ## [1] "2012-01-02 12:00:00 GMT" "2013-05-22 12:00:00 GMT"
 ## [3] "2014-07-15 12:00:00 GMT" "2015-02-28 12:00:00 GMT"

 # truncate the unused time data by converting with as.Date
 as.Date (ISOdate (year = yr, month = mo, day = day))
 ## [1] "2012-01-02" "2013-05-22" "2014-07-15" "2015-02-28"

 Note that ISODate() also has arguments to accept data for hours, minutes,
seconds, and time-zone if you need to merge all these separate components.

8.3 Extract and Manipulate Parts of Dates

 To extract and manipulate individual elements of a date I typically use the lub-
ridate package due to its simplistic function syntax . The functions provided by
 lubridate to perform extraction and manipulation of dates include (Fig. 8.2):

Date component Accessor
Year year()
Month month()
Week week()
Day of year yday()
Day of month mday()
Day of week wday()
Hour hour()
Minute minute()
Second second()
Time zone tz()

*adapted from Dates and Times Made Easy with
lubridate (Grolemund & Wickham, 2011)

 Fig. 8.2 Accessor
functions for lubridate

 To extract an individual element of the date variable you simply use the accessor
function desired. Note that the accessor variables have additional arguments that
can be used to show the name of the date element in full or abbreviated form.

8.3 Extract and Manipulate Parts of Dates

74

 library (lubridate)

 x <- c ("2015-07-01", "2015-08-01", "2015-09-01")

 year (x)
 ## [1] 2015 2015 2015

 # default is numerical value
 month (x)
 ## [1] 7 8 9

 # show abbreviated name
 month (x, label = TRUE)
 ## [1] Jul Aug Sep
 ## 12 Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < … < Dec

 # show unabbreviated name
 month (x, label = TRUE, abbr = FALSE)
 ## [1] July August September
 ## 12 Levels: January < February < March < April < May < June < … < December

 wday (x, label = TRUE, abbr = FALSE)
 ## [1] Wednesday Saturday Tuesday
 ## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < … < Saturday

 To manipulate or change the values of date elements we simply use the accessor
function to extract the element of choice and then use the assignment function to
assign a new value .

 # convert to date format
 x <- ymd (x)
 x
 ## [1] "2015-07-01 UTC" "2015-08-01 UTC" "2015-09-01 UTC"

 # change the days for the dates
 mday (x)
 ## [1] 1 1 1

 mday (x) <- c (3, 10, 22)
 x
 ## [1] "2015-07-03 UTC" "2015-08-10 UTC" "2015-09-22 UTC"

 # can also use update () function
 update (x, year = c (2013, 2014, 2015), month = 9)
 ## [1] "2013-09-03 UTC" "2014-09-10 UTC" "2015-09-22 UTC"

 # can also add/subtract units
 x + years (1) - days (c (2, 9, 21))
 ## [1] "2016-07-01 UTC" "2016-08-01 UTC" "2016-09-01 UTC"

8 Dealing with Dates

75

8.4 Creating Date Sequences

 To create a sequence of dates we can leverage the seq () function. As with numeric
 vectors , you have to specify at least three of the four arguments (from , to , by , and
 length.out).

 seq (as.Date ("2010-1-1"), as.Date ("2015-1-1"), by = "years")
 ## [1] "2010-01-01" "2011-01-01" "2012-01-01" "2013-01-01" "2014-01-01"
 ## [6] "2015-01-01"

 seq (as.Date ("2015/1/1"), as.Date ("2015/12/30"), by = "quarter")
 ## [1] "2015-01-01" "2015-04-01" "2015-07-01" "2015-10-01"

 seq (as.Date ('2015-09-15'), as.Date ('2015-09-30'), by = "2 days")
 ## [1] "2015-09-15" "2015-09-17" "2015-09-19" "2015-09-21" "2015-09-23"
 ## [6] "2015-09-25" "2015-09-27" "2015-09-29"

 Using the lubridate package is very similar. The only difference is lubridate
changes the way you specify the fi rst two arguments in the seq () function.

 library (lubridate)

 seq (ymd ("2010-1-1"), ymd ("2015-1-1"), by = "years")
 ## [1] "2010-01-01 UTC" "2011-01-01 UTC" "2012-01-01 UTC" "2013- 01- 01 UTC"
 ## [5] "2014-01-01 UTC" "2015-01-01 UTC"

 seq (ymd ("2015/1/1"), ymd ("2015/12/30"), by = "quarter")
 ## [1] "2015-01-01 UTC" "2015-04-01 UTC" "2015-07-01 UTC" "2015- 10- 01 UTC"

 seq (ymd ('2015-09-15'), ymd ('2015-09-30'), by = "2 days")
 ## [1] "2015-09-15 UTC" "2015-09-17 UTC" "2015-09-19 UTC" "2015- 09- 21 UTC"
 ## [5] "2015-09-23 UTC" "2015-09-25 UTC" "2015-09-27 UTC" "2015- 09- 29 UTC"

 Creating sequences with time is very similar; however , we need to make sure our
 date object is POSIXct rather than just a Date object (as produced by as.Date):

 seq (as.POSIXct ("2015-1-1 0:00"), as.POSIXct ("2015-1-1 12:00"), by = "hour")
 ## [1] "2015-01-01 00:00:00 EST" "2015-01-01 01:00:00 EST"
 ## [3] "2015-01-01 02:00:00 EST" "2015-01-01 03:00:00 EST"
 ## [5] "2015-01-01 04:00:00 EST" "2015-01-01 05:00:00 EST"
 ## [7] "2015-01-01 06:00:00 EST" "2015-01-01 07:00:00 EST"
 ## [9] "2015-01-01 08:00:00 EST" "2015-01-01 09:00:00 EST"
 ## [11] "2015-01-01 10:00:00 EST" "2015-01-01 11:00:00 EST"
 ## [13] "2015-01-01 12:00:00 EST"

 # with lubridate
 seq (ymd_hm ("2015-1-1 0:00"), ymd_hm ("2015-1-1 12:00"), by = "hour")
 ## [1] "2015-01-01 00:00:00 UTC" "2015-01-01 01:00:00 UTC"
 ## [3] "2015-01-01 02:00:00 UTC" "2015-01-01 03:00:00 UTC"
 ## [5] "2015-01-01 04:00:00 UTC" "2015-01-01 05:00:00 UTC"
 ## [7] "2015-01-01 06:00:00 UTC" "2015-01-01 07:00:00 UTC"
 ## [9] "2015-01-01 08:00:00 UTC" "2015-01-01 09:00:00 UTC"
 ## [11] "2015-01-01 10:00:00 UTC" "2015-01-01 11:00:00 UTC"
 ## [13] "2015-01-01 12:00:00 UTC"

8.4 Creating Date Sequences

76

8.5 Calculations with Dates

 Since R stores date and time objects as numbers, this allows you to perform various
calculations such as logical comparisons, addition, subtraction, and working with
 durations .

 x <- Sys.Date ()
 x
 ## [1] "2015-09-26"

 y <- as.Date ("2015-09-11")

 x > y
 ## [1] TRUE

 x - y
 ## Time difference of 15 days

 The nice thing about the date/time classes is that they keep track of leap years,
leap seconds, daylight savings , and time zones . Use OlsonNames () for a full list
 of acceptable time zone specifi cations.

 # last leap year
 x <- as.Date ("2012-03-1")
 y <- as.Date ("2012-02-28")

 x - y
 ## Time difference of 2 days

 # example with time zones
 x <- as.POSIXct ("2015-09-22 01:00:00", tz = "US/Eastern")
 y <- as.POSIXct ("2015-09-22 01:00:00", tz = "US/Pacifi c")

 y == x
 ## [1] FALSE

 y - x
 ## Time difference of 3 hours

 Similarly, the same functionality exists with the lubridate package with the
only difference being the accessor function(s) used.

 library (lubridate)

 x <- now ()
 x
 ## [1] "2015-09-26 10:08:18 EDT"

 y <- ymd ("2015-09-11")

 x > y
 ## [1] TRUE

8 Dealing with Dates

77

 x - y
 ## Time difference of 15.5891 days

 y + days (4)
 ## [1] "2015-09-15 UTC"

 x - hours (4)
 ## [1] "2015-09-26 06:08:18 EDT"

 We can also deal with time spans by using the duration functions in lubridate .
Durations simply measure the time span between start and end dates. Using base R
date functions for duration calculations is tedious and often results in wrong
 measurements. lubridate provides simplistic syntax to calculate durations with
the desired measurement (seconds, minutes, hours, etc.).

 # create new duration (represented in seconds)
 new_duration (60)
 ## [1] "60s"

 # create durations for minutes, hours, years
 dminutes (1)
 ## [1] "60s"

 dhours (1)
 ## [1] "3600 s (~1 hours)"

 dyears (1)
 ## [1] "31536000 s (~365 days)"

 # add/subtract durations from date/time object
 x <- ymd_hms ("2015-09-22 12:00:00")

 x + dhours (10)
 ## [1] "2015-09-22 22:00:00 UTC"

 x + dhours (10) + dminutes (33) + dseconds (54)
 ## [1] "2015-09-22 22:33:54 UTC"

8.6 Dealing with Time Zones and Daylight Savings

 To change the time zone for a date /time we can use the with_tz () function which
will also update the clock time to align with the updated time zone:

 library (lubridate)

 time <- now ()
 time
 ## [1] "2015-09-26 10:30:32 EDT"

 with_tz (time, tzone = "MST")
 ## [1] "2015-09-26 07:30:32 MST"

8.6 Dealing with Time Zones and Daylight Savings

78

 If the time zone is incorrect or for some reason you need to change the time zone
without changing the clock time you can force it with force_tz () :

 time
 ## [1] "2015-09-26 10:30:32 EDT"

 force_tz (time, tzone = "MST")
 ## [1] "2015-09-26 10:30:32 MST"

 We can also easily work with daylight savings times to eliminate impacts on
 date /time calculations:

 # most recent daylight savings time
 ds <- ymd_hms ("2015-03-08 01:59:59", tz = "US/Eastern")

 # if we add a duration of 1 sec we gain an extra hour
 ds + dseconds (1)
 ## [1] "2015-03-08 03:00:00 EDT"

 # add a duration of 2 hours will refl ect actual daylight savings clock time
 # that occurred 2 hours after 01:59:59 on 2015-03-08
 ds + dhours (2)
 ## [1] "2015-03-08 04:59:59 EDT"

 # add a period of two hours will refl ect clock time that normally occurs after
 # 01:59:59 and is not infl uenced by daylight savings time.
 ds + hours (2)
 ## [1] "2015-03-08 03:59:59 EDT"

8.7 Additional Resources

 For additional resources on learning and dealing with dates I recommend the
following:

• Dates and times made easy with lubridate 1
• Date and time classes in R 2

1 http://www.jstatsoft.org/article/view/v040i03
2 https://www.r-project.org/doc/Rnews/Rnews_2004-1.pdf

8 Dealing with Dates

http://www.jstatsoft.org/article/view/v040i03
https://www.r-project.org/doc/Rnews/Rnews_2004-1.pdf

 Part III
 Managing Data Structures in R

 Smart data structures and dumb code works a lot better than
the other way around

 Eric S. Raymond

 In the p revious section I illustrated how to work with different types of data; however,
we primarily focused on data in a one-dimensional structure. In typical data analyses
you often need more than one dimension . Many datasets can contain variables of dif-
ferent length and or types of values (i.e. numeric vs character). Furthermore, many
statistical and mathematical calculations are based on matrices. R provides multiple
types of data structures to deal with these different needs.

 The basic data structures in R can be organized by their dimensionality (1D,
2D, …, n D) and their “likeness” (homogenous vs. heterogeneous). This results in
fi ve data structure types most often used in data analysis; and almost all other
objects in R are built from these foundational types:

 Basic Data Structures in R

Dimensions Homogenous Heterogeneous
1D Atomic Vector List
2D Matrix Data frame
nD Array

*adapted from Advanced R (H. Wickham 2014)

 In this section I will cover the basics of these data structures. I have not had the need
to use multi-dimensional arrays, therefore, the topics I will go into details on will
include vectors , lists , matrices , and data frames . These types represent the most
commonly used data structures for day-to-day analyses. For each data structure I
will illustrate how to create the structure, add additional elements to a pre-existing
structure, add attributes to structures, and how to subset the various data structures.
Lastly, I will cover how to deal with missing values in data structures. Consequently,
this section will provide a robust understanding of managing various forms of data-
sets depending on dimensionality needs.

http://dx.doi.org/10.1007/978-3-319-45599-0_10
http://dx.doi.org/10.1007/978-3-319-45599-0_11
http://dx.doi.org/10.1007/978-3-319-45599-0_12
http://dx.doi.org/10.1007/978-3-319-45599-0_13

81© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_9

 Chapter 9
 Data Structure Basics

 Prior to jumping into the data structures, it’s benefi cial to understand two components
of data structures - the structure and attributes .

9.1 Identifying the Structure

 Given an object, the best way to understand what data structure it represents is to
use the structure function str (). str() stands for str ucture and provides a
compact display of the internal structu re of an R object.

 # different data structures
 vector <- 1:10
 list <- list (item1 = 1:10, item2 = LETTERS[1:18])
 matrix <- matrix (1:12, nrow = 4)
 df <- data.frame (item1 = 1:18, item2 = LETTERS[1:18])

 # identify the structure of each object
 str (vector)
 ## int [1:10] 1 2 3 4 5 6 7 8 9 10

 str (list)
 ## List of 2
 ## $ item1: int [1:10] 1 2 3 4 5 6 7 8 9 10
 ## $ item2: chr [1:18] "A" "B" "C" "D" …

 str (matrix)
 ## int [1:4, 1:3] 1 2 3 4 5 6 7 8 9 10 …

 str (df)
 ## 'data.frame': 18 obs. of 2 variables:
 ## $ item1: int 1 2 3 4 5 6 7 8 9 10 …
 ## $ item2: Factor w/ 18 levels "A","B","C","D",..: 1 2 3 4 5 6 7 8 9 10 …

82

9.2 Attributes

 R objects can have attributes , which are like metadata for the object. These meta-
data can be very useful in that they help to describe the object. For example, column
names on a data frame help to tell us what data are contained in each of the columns.
Some examples of R object attributes are:

• names, dimnames
• dimensions (e.g. matrices, arrays)
• class (e.g. integer , numeric)
• length
• other user-defi ned attributes/metadata

 Attributes of an object (if any) can be accessed using the attributes() func-
tion. Not all R objects contain attributes, in which case the attributes () func-
tion returns NULL.

 # assess attributes of an object
 attributes (df)
 ## $names
 ## [1] "item1" "item2"
 ##
 ## $row.names
 ## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 ##
 ## $class
 ## [1] " data.frame "

 attributes (matrix)
 ## $dim
 ## [1] 4 3

 # assess names of an object
 names (df)
 ## [1] "item1" "item2"

 # assess the dimensions of an object
 dim (matrix)
 ## [1] 4 3

 # assess the class of an object
 class (list)
 ## [1] "list"

 # access the length of an object
 length (vector)
 ## [1] 10

9 Data Structure Basics

83

 # note that length will measure the number of items in
 # a list or number of columns in a data frame
 length (list)
 ## [1] 2

 length (df)
 ## [1] 2

 This chapter only shows you functions to assess these attributes . In the chapters
that follow more details are provided on how to view and create attributes for each
type of data structure .

9.2 Attributes

85© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_10

 Chapter 10
 Managing Vectors

 The basic structu re in R is the vector . A vector is a sequence of data elements of the
same basic type: integer , double , logical, or character . 1 The one-dimensional exam-
ples illustrated in the previous section are considered vectors. In this chapter I will
illustrate how to create vectors , add additional elements to pre-existing vectors , add
attributes to vectors , and subset vectors .

10.1 Creating Vectors

 The colon : operator can be used to create a vector of integers between two speci-
fi ed numbers or the c() function can be used to create vectors of objects by concat-
enating elements together:

 # integer vector
 w <- 8:17
 w
 ## [1] 8 9 10 11 12 13 14 15 16 17

 # double vector
 x <- c (0.5, 0.6, 0.2)
 x
 ## [1] 0.5 0.6 0.2

 # logical vector
 y1 <- c (TRUE, FALSE, FALSE)
 y1
 ## [1] TRUE FALSE FALSE

1 There are two additional vector types which I will not discuss—complex and raw.

http://dx.doi.org/10.1007/978-3-319-45599-0_4
http://dx.doi.org/10.1007/978-3-319-45599-0_4
http://dx.doi.org/10.1007/978-3-319-45599-0_5

86

 # logical vector in shorthand
 y2 <- c (T, F, F)
 y2
 ## [1] TRUE FALSE FALSE

 # Character vector
 z <- c ("a", "b", "c")
 z
 ## [1] "a" "b" "c"

 You can also use the as.vector () function to initialize vectors or change the
vector type:

 v <- as.vector (8:17)
 v
 ## [1] 8 9 10 11 12 13 14 15 16 17

 # turn numerical vector to character
 as.vector (v, mode = "character")
 ## [1] "8" "9" "10" "11" "12" "13" "14" "15" "16" "17"

 All elements of a vector must be the same type, so when you attempt to combine
different types of elements they will be coerced to the most fl exible type possible:

 # numerics are turned to characters
 str (c ("a", "b", "c", 1, 2, 3))
 ## chr [1:6] "a" "b" "c" "1" "2" "3"

 # logical are turned to numerics…
 str (c (1, 2, 3, TRUE, FALSE))
 ## num [1:5] 1 2 3 1 0

 # or character
 str (c ("A", "B", "C", TRUE, FALSE))
 ## chr [1:5] "A" "B" "C" "TRUE" "FALSE"

10.2 Adding On To Vectors

 To add additional elements to a pre-existing vector we can continue to leverage the
 c() function. Also, note that vectors are always fl at so nested c() functions will
not add additional dimensions to the vector:

 v1 <- 8:17

 c (v1, 18:22)
 ## [1] 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 # same as
 c (v1, c (18, c (19, c (20, c (21:22)))))
 ## [1] 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

10 Managing Vectors

87

10.3 Adding Attributes to Vectors

 The attributes that you can add to vectors includes names and comments. If we
continue with our vector v1 we can see that the vector currently has no attributes:

 attributes (v1)
 ## NULL

 We can add names to vectors using two approaches. The fi rst uses names() to
assign names to each element of the vector. The second approach is to assign names
when creating the vector.

 # assigning names to a pre-existing vector
 names (v1) <- letters[1: length (v1)]
 v1
 ## a b c d e f g h i j
 ## 8 9 10 11 12 13 14 15 16 17
 attributes (v1)
 ## $names
 ## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

 # adding names when creating vectors
 v2 <- c (name1 = 1, name2 = 2, name3 = 3)
 v2
 ## name1 name2 name3
 ## 1 2 3
 attributes (v2)
 ## $names
 ## [1] "name1" "name2" "name3"

 We can also add comments to vectors to act as a note to the user. This does not change
how the vector behaves; rather, it simply acts as a form of metadata for the vector.

 comment (v1) <- "This is a comment on a vector"
 v1
 ## a b c d e f g h i j
 ## 8 9 10 11 12 13 14 15 16 17
 attributes (v1)
 ## $names
 ## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
 ##
 ## $comment
 ## [1] "This is a comment on a vector"

10.3 Adding Attributes to Vectors

88

10.4 Subsetting Vectors

 The four main ways to subset a vector include combining square brackets [] with:

• Positive integers
• Negative integers
• Logical values
• Names

 You can also subset with double brackets [[]] for simplifying subsets.

10.4.1 Subsetting with Positive Integers

 Subsetting with positive integers returns the elements at the specifi ed positions:

 v1
 ## a b c d e f g h i j
 ## 8 9 10 11 12 13 14 15 16 17

 v1[2]
 ## b
 ## 9

 v1[2:4]
 ## b c d
 ## 9 10 11

 v1[c (2, 4, 6, 8)]
 ## b d f h
 ## 9 11 13 15

 # note that you can duplicate index positions
 v1[c (2, 2, 4)]
 ## b b d
 ## 9 9 11

10.4.2 Subsetting with Negative Integers

 Subsetting with negative integers will omit the elements at the specifi ed positions:

 v1[-1]
 ## b c d e f g h i j
 ## 9 10 11 12 13 14 15 16 17

 v1[- c (2, 4, 6, 8)]
 ## a c e g i j
 ## 8 10 12 14 16 17

10 Managing Vectors

89

10.4.3 Subsetting with Logical Values

 Subsetting with logical values will select the elements where the corresponding
logical value is TRUE :

 v1[c (TRUE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE)]
 ## a c e f g j
 ## 8 10 12 13 14 17

 v1[v1 < 12]
 ## a b c d
 ## 8 9 10 11

 v1[v1 < 12 | v1 > 15]
 ## a b c d i j
 ## 8 9 10 11 16 17

 # if logical vector is shorter than the length of the vector being
 # subsetted, it will be recycled to be the same length
 v1[c (TRUE, FALSE)]
 ## a c e g i
 ## 8 10 12 14 16

10.4.4 Subsetting with Names

 Subsetting with names will return the elements with the matching names specifi ed:

 v1["b"]
 ## b
 ## 9

 v1[c ("a", "c", "h")]
 ## a c h
 ## 8 10 15

10.4.5 Simplifying vs. Preserving

 Its also important to understand the difference between simplifying and preserving
when subsetting . Simplifying subsets returns the simplest possible data structure
that can represent the output. Preserving subsets keeps the structure of the output
the same as the input.

10.4 Subsetting Vectors

90

 For vectors , subsetting with single brackets [] preserves while subsetting with
 double brackets [[]] simplifi es. The change you will notice when simplifying
vectors is the removal of names.

 v1[1]
 ## a
 ## 8

 v1[[1]]
 ## [1] 8

10 Managing Vectors

91© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_11

 Chapter 11
 Managing Lists

 A list is an R structure that allows you to combine elements of different types and
lengths. This can include a list embedded within a list. Many statistical outputs are
provided as a list as well; therefore, its critical to understand how to work with lists.
In this chapter I will illustrate how to create lists , add additional elements to pre-
existing lists , add attributes to lists , and subset lists .

11.1 Creating Lists

 To create a list we can use the list () function. Note how each of the four list items
below are of different classes (integer , character, logical, and numeric) and different
lengths.

 l <- list (1:3, "a", c (TRUE, FALSE, TRUE), c (2.5, 4.2))
 str (l)
 ## List of 4
 ## $: int [1:3] 1 2 3
 ## $: chr "a"
 ## $: logi [1:3] TRUE FALSE TRUE
 ## $: num [1:2] 2.5 4.2

 # a list containing a list
 l <- list (1:3, list (letters[1:5], c (TRUE, FALSE, TRUE)))
 str (l)
 ## List of 2
 ## $: int [1:3] 1 2 3
 ## $:List of 2
 ## ..$: chr [1:5] "a" "b" "c" "d" …
 ## ..$: logi [1:3] TRUE FALSE TRUE

92

11.2 Adding On To Lists

 To add additional list components to a list we can leverage the list () and
 append() functions. We can illustrate with the following list.

 l1 <- list (1:3, "a", c (TRUE, FALSE, TRUE))
 str (l1)
 ## List of 3
 ## $: int [1:3] 1 2 3
 ## $: chr "a"
 ## $: logi [1:3] TRUE FALSE TRUE

 If we add the new elements with list () it will create a list of two components,
component 1 will be a nested list of the original list and component 2 will be the
new elements added:

 l2 <- list (l1, c (2.5, 4.2))
 str (l2)
 ## List of 2
 ## $:List of 3
 ## ..$: int [1:3] 1 2 3
 ## ..$: chr "a"
 ## ..$: logi [1:3] TRUE FALSE TRUE
 ## $: num [1:2] 2.5 4.2

 To simply add a fourth list component without creating nested lists we use the
 append() function:

 l3 <- append (l1, list (c (2.5, 4.2)))
 str (l3)
 ## List of 4
 ## $: int [1:3] 1 2 3
 ## $: chr "a"
 ## $: logi [1:3] TRUE FALSE TRUE
 ## $: num [1:2] 2.5 4.2

 Alternatively, we can also add a new list component by utilizing the ‘$’ sign and
 naming the new item:

 l3$item4 <- "new list item"
 str (l3)
 ## List of 5
 ## $: int [1:3] 1 2 3
 ## $: chr "a"
 ## $: logi [1:3] TRUE FALSE TRUE
 ## $: num [1:2] 2.5 4.2
 ## $ item4: chr "new list item"

11 Managing Lists

93

 To add individual elements to a specifi c list component we need to introduce
some subsetting which is further discussed later in the chapter in the Subsetting sec-
tion . We’ll continue with our original l1 list:

 str (l1)
 ## List of 3
 ## $: int [1:3] 1 2 3
 ## $: chr "a"
 ## $: logi [1:3] TRUE FALSE TRUE

 To add additional values to a list item you need to subset for that specifi c list item
and then you can use the c() function to add the additional elements to that list
item:

 l1[[1]] <- c (l1[[1]], 4:6)
 str (l1)
 ## List of 3
 ## $: int [1:6] 1 2 3 4 5 6
 ## $: chr "a"
 ## $: logi [1:3] TRUE FALSE TRUE

 l1[[2]] <- c (l1[[2]], c ("dding", "to a", "list"))
 str (l1)
 ## List of 3
 ## $: int [1:6] 1 2 3 4 5 6
 ## $: chr [1:4] "a" "dding" "to a" "list"
 ## $: logi [1:3] TRUE FALSE TRUE

11.3 Adding Attributes to Lists

 The attributes that you can add to lists include names, general comments, and spe-
cifi c list item comments. Currently, our l1 list has no attributes:

 attributes (l1)
 ## NULL

 We can add names to lists in two ways. First, we can use names () to assign
names to list items in a pre-existing list. Second, we can add names to a list when
we are creating a list.

 # adding names to a pre-existing list
 names (l1) <- c ("item1", "item2", "item3")
 str (l1)
 ## List of 3
 ## $ item1: int [1:6] 1 2 3 4 5 6
 ## $ item2: chr [1:4] "a" "dding" "to a" "list"
 ## $ item3: logi [1:3] TRUE FALSE TRUE
 attributes (l1)
 ## $names
 ## [1] "item1" "item2" "item3"

11.3 Adding Attributes to Lists

94

 # adding names when creating lists
 l2 <- list (item1 = 1:3, item2 = letters[1:5], item3 = c (T, F, T, T))
 str (l2)
 ## List of 3
 ## $ item1: int [1:3] 1 2 3
 ## $ item2: chr [1:5] "a" "b" "c" "d" …
 ## $ item3: logi [1:4] TRUE FALSE TRUE TRUE
 attributes (l2)
 ## $names
 ## [1] "item1" "item2" "item3"

 We can also add comments to lists. As previously mentioned, comments act as a
note to the user without changing how the object behaves. With lists, we can add a
general comment to the list using comment () and we can also add comments to
specifi c list items with attr () .

 # adding a general comment to list l2 with comment ()
 comment (l2) <- "This is a comment on a list"
 str (l2)
 ## List of 3
 ## $ item1: int [1:3] 1 2 3
 ## $ item2: chr [1:5] "a" "b" "c" "d" …
 ## $ item3: logi [1:4] TRUE FALSE TRUE TRUE
 ## - attr(*, "comment")= chr "This is a comment on a list"
 attributes (l2)
 ## $names
 ## [1] "item1" "item2" "item3"
 ##
 ## $comment
 ## [1] "This is a comment on a list"

 # adding a comment to a specifi c list item with attr ()
 attr (l2, "item2") <- "Comment for item2"
 str (l2)
 ## List of 3
 ## $ item1: int [1:3] 1 2 3
 ## $ item2: chr [1:5] "a" "b" "c" "d" …
 ## $ item3: logi [1:4] TRUE FALSE TRUE TRUE
 ## - attr(*, "comment")= chr "This is a comment on a list"
 ## - attr(*, "item2")= chr "Comment for item2"
 attributes (l2)
 ## $names
 ## [1] "item1" "item2" "item3"
 ##
 ## $comment
 ## [1] "This is a comment on a list"
 ##
 ## $item2
 ## [1] "Comment for item2"

11 Managing Lists

95

11.4 Subsetting Lists

 If list x is a train carrying objects, then x[[5]] is the object in car 5; x[4:6] is a train of cars
4-6 —@RLangTip

 To subset lists we can utilize the single bracket [] , double brackets [[]] , and
dollar sign $ operators. Each approach provides a specifi c purpose and can be com-
bined in different ways to achieve the following subsetting objectives:

• Subset list and preserve output as a list
• Subset list and simplify output
• Subset list to get elements out of a list
• Subset list with a nested list

11.4.1 Subset List and Preserve Output as a List

 To extract one or more list items while preserving 1 the output in list format use the
 [] operator:

 # extract fi rst list item
 l2[1]
 ## $item1
 ## [1] 1 2 3

 # same as above but using the item's name
 l2["item1"]
 ## $item1
 ## [1] 1 2 3

 # extract multiple list items
 l2[c (1,3)]
 ## $item1
 ## [1] 1 2 3
 ##
 ## $item3
 ## [1] TRUE FALSE TRUE TRUE

 # same as above but using the items' names
 l2[c ("item1", "item3")]
 ## $item1
 ## [1] 1 2 3
 ##
 ## $item3
 ## [1] TRUE FALSE TRUE TRUE

1 Its important to understand the difference between simplifying and preserving subsetting.
 Simplifying subsets returns the simplest possible data structure that can represent the output.
 Preserving subsets keeps the structure of the output the same as the input. See Hadley Wickham’s
section on Simplifying vs. Preserving Subsetting to learn more.

11.4 Subsetting Lists

http://adv-r.had.co.nz/Subsetting.html#subsetting-operators

96

11.4.2 Subset List and Simplify Output

 To extract one or more list items while simplifying the output use the [[]] or $
operator:

 # extract fi rst list item and simplify to a vector
 l2[[1]]
 ## [1] 1 2 3

 # same as above but using the item's name
 l2[["item1"]]
 ## [1] 1 2 3

 # same as above but using the `$` operator
 l2$item1
 ## [1] 1 2 3

 One thing that differentiates the [[operator from the $ is that the [[operator can
be used with computed indices. The $ operator can only be used with literal names.

11.4.3 Subset List to Get Elements Out of a List

 To extract individual elements out of a specifi c list item combine the [[(or $)
operator with the [operator:

 # extract third element from the second list item
 l2[[2]][3]
 ## [1] "c"

 # same as above but using the item's name
 l2[["item2"]][3]
 ## [1] "c"

 # same as above but using the `$` operator
 l2$item2[3]
 ## [1] "c"

11.4.4 Subset List with a Nested List

 If you have nested lists you can expand the ideas above to extract items and ele-
ments. We’ll use the following list l3 which has a nested list in item 2.

 l3 <- list (item1 = 1:3,
 item2 = list (item2a = letters[1:5],
 item3b = c (T, F, T, T)))
 str (l3)

11 Managing Lists

97

 ## List of 2
 ## $ item1: int [1:3] 1 2 3
 ## $ item2:List of 2
 ## ..$ item2a: chr [1:5] "a" "b" "c" "d" …
 ## ..$ item3b: logi [1:4] TRUE FALSE TRUE TRUE

 If the goal is to subset l3 to extract the nested list item item2a from item2 ,
we can perform this multiple ways.

 # preserve the output as a list
 l3[[2]][1]
 ## $item2a
 ## [1] "a" "b" "c" "d" "e"

 # same as above but simplify the output
 l3[[2]][[1]]
 ## [1] "a" "b" "c" "d" "e"

 # same as above with names
 l3[["item2"]][["item2a"]]
 ## [1] "a" "b" "c" "d" "e"

 # same as above with `$` operator
 l3$item2$item2a
 ## [1] "a" "b" "c" "d" "e"

 # extract individual element from a nested list item
 l3[[2]][[1]][3]
 ## [1] "c"

11.4 Subsetting Lists

99© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_12

 Chapter 12
 Managing Matrices

 A matrix is a collection of data elements arranged in a two-dimensional rectangular
layout. In R , the elements that make up a matrix must be of a consistent mode (i.e. all
elements must be numeric, or character, etc.). Therefore, a matrix can be thought of as
an atomic vector with a dimension attribute. Furthermore, all columns of a matrix must
be of same length. In this chapter I will illustrate how to create matrices , add additional
elements to pre-existing matrices , add attributes to matrices , and subset matrices .

12.1 Creating Matrices

 Matrices are constructed column-wise, so entries can be thought of starting in the
“upper left” corner and running down the columns. We can create a matrix using the
 matrix() function and specifying the values to fi ll in the matrix and the number
of rows and columns to make the matrix.

 # numeric matrix
 m1 <- matrix (1:6, nrow = 2, ncol = 3)
 m1
 ## [,1] [,2] [,3]
 ## [1,] 1 3 5
 ## [2,] 2 4 6

 The underlying structure of this matrix is simply an integer vector with an added
2 × 3 dimension attribute.

 str (m1)
 ## int [1:2, 1:3] 1 2 3 4 5 6
 attributes (m1)
 ## $dim
 ## [1] 2 3

100

 Matrices can also contain character values. Whether a matrix contains data that
are of numeric or character type, all the elements must be of the same class.

 # a character matrix
 m2 <- matrix (letters[1:6], nrow = 2, ncol = 3)
 m2
 ## [,1] [,2] [,3]
 ## [1,] "a" "c" "e"
 ## [2,] "b" "d" "f"

 # structure of m2 is simply character vector with 2x3 dimension
 str (m2)
 ## chr [1:2, 1:3] "a" "b" "c" "d" "e" "f"
 attributes (m2)
 ## $dim
 ## [1] 2 3

 Matrices can also be created using the column-bind cbind () and row-bind
 rbind () functions. However, keep in mind that the vectors that are being binded
must be of equal length and mode.

 v1 <- 1:4
 v2 <- 5:8

 cbind (v1, v2)
 ## v1 v2
 ## [1,] 1 5
 ## [2,] 2 6
 ## [3,] 3 7
 ## [4,] 4 8

 rbind (v1, v2)
 ## [,1] [,2] [,3] [,4]
 ## v1 1 2 3 4
 ## v2 5 6 7 8

 # bind several vectors together
 v3 <- 9:12

 cbind (v1, v2, v3)
 ## v1 v2 v3
 ## [1,] 1 5 9
 ## [2,] 2 6 10
 ## [3,] 3 7 11
 ## [4,] 4 8 12

12.2 Adding On To Matrices

 We can leverage the cbind () and rbind () functions for adding onto matrices
as well. Again, its important to keep in mind that the vectors that are being binded
must be of equal length and mode to the pre-existing matrix .

12 Managing Matrices

101

 m1 <- cbind (v1, v2)
 m1
 ## v1 v2
 ## [1,] 1 5
 ## [2,] 2 6
 ## [3,] 3 7
 ## [4,] 4 8

 # add a new column
 cbind (m1, v3)
 ## v1 v2 v3
 ## [1,] 1 5 9
 ## [2,] 2 6 10
 ## [3,] 3 7 11
 ## [4,] 4 8 12

 # or add a new row
 rbind (m1, c (4.1, 8.1))
 ## v1 v2
 ## [1,] 1.0 5.0
 ## [2,] 2.0 6.0
 ## [3,] 3.0 7.0
 ## [4,] 4.0 8.0
 ## [5,] 4.1 8.1

12.3 Adding Attributes to Matrices

 As previously mentioned, matrices by default will have a dimension attribute as
illustrated in the following matrix m2 .

 # basic matrix
 m2 <- matrix (1:12, nrow = 4, ncol = 3)
 m2
 ## [,1] [,2] [,3]
 ## [1,] 1 5 9
 ## [2,] 2 6 10
 ## [3,] 3 7 11
 ## [4,] 4 8 12

 # the dimension attribute shows this matrix has 4 rows and 3 columns
 attributes (m2)
 ## $dim
 ## [1] 4 3

 However, matrices can also have additional attributes such as row names, column
names, and comments. Adding names can be done individually, meaning we can
add row names or column names separately.

12.3 Adding Attributes to Matrices

102

 # add row names as an attribute
 rownames (m2) <- c ("row1", "row2", "row3", "row4")
 m2
 ## [,1] [,2] [,3]
 ## row1 1 5 9
 ## row2 2 6 10
 ## row3 3 7 11
 ## row4 4 8 12

 # attributes displayed will now show the dimension, list the row names
 # and will show the column names as NULL
 attributes (m2)
 ## $dim
 ## [1] 4 3
 ##
 ## $dimnames
 ## $dimnames[[1]]
 ## [1] "row1" "row2" "row3" "row4"
 ##
 ## $dimnames[[2]]
 ## NULL

 # add column names
 colnames (m2) <- c ("col1", "col2", "col3")
 m2
 ## col1 col2 col3
 ## row1 1 5 9
 ## row2 2 6 10
 ## row3 3 7 11
 ## row4 4 8 12
 attributes (m2)
 ## $dim
 ## [1] 4 3
 ##
 ## $dimnames
 ## $dimnames[[1]]
 ## [1] "row1" "row2" "row3" "row4"
 ##
 ## $dimnames[[2]]
 ## [1] "col1" "col2" "col3"

 Another option is to use the dimnames() function. To add row names you
assign the names to dimnames (m2)[[1]] and to add column names you assign
the names to dimnames(m2)[[2]] .

 dimnames (m2)[[1]] <- c ("row_1", "row_2", "row_3", "row_4")
 m2
 ## col1 col2 col3
 ## row_1 1 5 9
 ## row_2 2 6 10
 ## row_3 3 7 11
 ## row_4 4 8 12

12 Managing Matrices

103

 # column names are contained in the second list item
 dimnames (m2)[[2]] <- c ("col_1", "col_2", "col_3")
 m2
 ## col_1 col_2 col_3
 ## row_1 1 5 9
 ## row_2 2 6 10
 ## row_3 3 7 11
 ## row_4 4 8 12

 Lastly, similar to lists and vectors you can add a comment attribute to a list.

 comment (m2) <- "adding a comment to a matrix"
 attributes (m2)
 ## $dim
 ## [1] 4 3
 ##
 ## $dimnames
 ## $dimnames[[1]]
 ## [1] "row_1" "row_2" "row_3" "row_4"
 ##
 ## $dimnames[[2]]
 ## [1] "col_1" "col_2" "col_3"
 ##
 ##
 ## $comment
 ## [1] "adding a comment to a matrix"

12.4 Subsetting Matrices

 To subset matrices we use the [operator; however, since matrices have two dimen-
sions we need to incorporate subsetting arguments for both row and column dimen-
sions . A generic form of matrix subsetting looks like: matrix [rows, columns] .
We can illustrate with matrix m2 :

 m2
 ## col_1 col_2 col_3
 ## row_1 1 5 9
 ## row_2 2 6 10
 ## row_3 3 7 11
 ## row_4 4 8 12

 By using different values in the rows and columns argument of m2[rows,
columns] , we can subset m2 in multiple ways.

 # subset for rows 1 and 2 but keep all columns
 m2[1:2,]
 ## col_1 col_2 col_3
 ## row_1 1 5 9
 ## row_2 2 6 10

12.4 Subsetting Matrices

104

 # subset for columns 1 and 3 but keep all rows
 m2[, c (1, 3)]
 ## col_1 col_3
 ## row_1 1 9
 ## row_2 2 10
 ## row_3 3 11
 ## row_4 4 12

 # subset for both rows and columns
 m2[1:2, c (1, 3)]
 ## col_1 col_3
 ## row_1 1 9
 ## row_2 2 10

 # use a vector to subset
 v <- c (1, 2, 4)
 m2[v, c (1, 3)]
 ## col_1 col_3
 ## row_1 1 9
 ## row_2 2 10
 ## row_4 4 12

 # use names to subset
 m2[c ("row_1", "row_3"),]
 ## col_1 col_2 col_3
 ## row_1 1 5 9
 ## row_3 3 7 11

 Note that subsetting matrices with the [operator will simplify the results to the
lowest possible dimension . To avoid this you can introduce the drop = FALSE
 argument :

 # simplifying results in a named vector
 m2[, 2]
 ## row_1 row_2 row_3 row_4
 ## 5 6 7 8

 # preserving results in a 4x1 matrix
 m2[, 2, drop = FALSE]
 ## col_2
 ## row_1 5
 ## row_2 6
 ## row_3 7
 ## row_4 8

12 Managing Matrices

105© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_13

 Chapter 13
 Managing Data Frames

 A data frame is the most common way of storing data in R and, generally, is the data
 structure most often used for data analyses. Under the hood, a data frame is a list of
equal-length vectors . Each element of the list can be thought of as a column and the
length of each element of the list is the number of rows. As a result, data frames can
store different classes of objects in each column (i.e. numeric, character, factor).
In essence, the easiest way to think of a data frame is as an Excel worksheet that
contains columns of different types of data but are all of equal length rows. In this
chapter I will illustrate how to create data frames , add additional elements to
 pre- existing data frames , add attributes to data frames , and subset data frames .

13.1 Creating Data Frames

 Data frames are usually created by reading in a dataset using read.table() or
 read . csv () ; this will be covered in the importing and scraping data chapters.
However, data frames can also be created explicitly with the data.frame()
function or they can be coerced from other types of objects like lists. In this case I’ll
create a simple data frame df and assess its basic structure:

 df <- data.frame (col1 = 1:3,
 col2 = c ("this", "is", "text"),
 col3 = c (TRUE, FALSE, TRUE),
 col4 = c (2.5, 4.2, pi))

 # assess the structure of a data frame
 str (df)
 ## 'data.frame': 3 obs. of 4 variables:
 ## $ col1: int 1 2 3
 ## $ col2: Factor w/ 3 levels "is","text","this": 3 1 2
 ## $ col3: logi TRUE FALSE TRUE
 ## $ col4: num 2.5 4.2 3.14

http://dx.doi.org/10.1007/978-3-319-45599-0_15
http://dx.doi.org/10.1007/978-3-319-45599-0_16

106

 # number of rows
 nrow (df)
 ## [1] 3

 # number of columns
 ncol (df)
 ## [1] 4

 Note how col2 in df was converted to a column of factors . This is because
there is a default setting in data.frame () that converts character columns to
 factors . We can turn this off by setting the stringsAsFactors = FALSE
 argument :

 df <- data.frame (col1 = 1:3,
 col2 = c ("this", "is", "text"),
 col3 = c (TRUE, FALSE, TRUE),
 col4 = c (2.5, 4.2, pi),
 stringsAsFactors = FALSE)

 # note how col2 now is of a character class
 str (df)
 ## 'data.frame': 3 obs. of 4 variables:
 ## $ col1: int 1 2 3
 ## $ col2: chr "this" "is" "text"
 ## $ col3: logi TRUE FALSE TRUE
 ## $ col4: num 2.5 4.2 3.14

 We can also convert pre-existing structures to a data frame . The following illus-
trates how we can turn multiple vectors , a list , or a matrix into a data frame :

 v1 <- 1:3
 v2 <- c ("this", "is", "text")
 v3 <- c (TRUE, FALSE, TRUE)

 # convert same length vectors to a data frame using data.frame ()
 data.frame (col1 = v1, col2 = v2, col3 = v3)
 ## col1 col2 col3
 ## 1 1 this TRUE
 ## 2 2 is FALSE
 ## 3 3 text TRUE

 # convert a list to a data frame using as. data.frame ()
 l <- list (item1 = 1:3,

item2 = c ("this", "is", "text"),
 item3 = c (2.5, 4.2, 5.1))
 l
 ## $item1
 ## [1] 1 2 3
 ##
 ## $item2
 ## [1] "this" "is" "text"
 ##
 ## $item3
 ## [1] 2.5 4.2 5.1

13 Managing Data Frames

107

 as.data.frame (l)
 ## item1 item2 item3
 ## 1 1 this 2.5
 ## 2 2 is 4.2
 ## 3 3 text 5.1

 # convert a matrix to a data frame using as. data.frame ()
 m1 <- matrix (1:12, nrow = 4, ncol = 3)
 m1
 ## [,1] [,2] [,3]
 ## [1,] 1 5 9
 ## [2,] 2 6 10
 ## [3,] 3 7 11
 ## [4,] 4 8 12

 as.data.frame (m1)
 ## V1 V2 V3
 ## 1 1 5 9
 ## 2 2 6 10
 ## 3 3 7 11
 ## 4 4 8 12

13.2 Adding On To Data Frames

 We can leverage the cbind () function for adding columns to a data frame . Note
that one of the objects being combined must already be a data frame otherwise
 cbind () could produce a matrix .

 df
 ## col1 col2 col3 col4
 ## 1 1 this TRUE 2.500000
 ## 2 2 is FALSE 4.200000
 ## 3 3 text TRUE 3.141593

 # add a new column
 v4 <- c ("A", "B", "C")
 cbind (df, v4)
 ## col1 col2 col3 col4 v4
 ## 1 1 this TRUE 2.500000 A
 ## 2 2 is FALSE 4.200000 B
 ## 3 3 text TRUE 3.141593 C

 We can also use the rbind () function to add data frame rows together.
However, severe caution should be taken because this can cause changes in the
classes of the columns. For instance, our data frame df currently consists of an
 integer , character, logical, and numeric variables.

 df
 ## col1 col2 col3 col4
 ## 1 1 this TRUE 2.500000
 ## 2 2 is FALSE 4.200000

13.2 Adding On To Data Frames

108

 ## 3 3 text TRUE 3.141593
 str (df)
 ## 'data.frame': 3 obs. of 4 variables:
 ## $ col1: int 1 2 3
 ## $ col2: chr "this" "is" "text"
 ## $ col3: logi TRUE FALSE TRUE
 ## $ col4: num 2.5 4.2 3.14

 If we attempt to add a row using rbind () and c() it converts all columns to a
character class. This is because all elements in the vector created by c() must be of
the same class so they are all coerced to the character class which then coerces all
the variables in the data frame to the character class.

 df2 <- rbind (df, c (4, "R", F, 1.1))
 df2
 ## col1 col2 col3 col4
 ## 1 1 this TRUE 2.5
 ## 2 2 is FALSE 4.2
 ## 3 3 text TRUE 3.14159265358979
 ## 4 4 R FALSE 1.1
 str (df2)
 ## 'data.frame': 4 obs. of 4 variables:
 ## $ col1: chr "1" "2" "3" "4"
 ## $ col2: chr "this" "is" "text" "R"
 ## $ col3: chr "TRUE" "FALSE" "TRUE" "FALSE"
 ## $ col4: chr "2.5" "4.2" "3.14159265358979" "1.1"

 To add rows appropriately, we need to convert the items being added to a data
frame and make sure the columns are the same class as the original data frame.

 adding_df <- data.frame (col1 = 4,
 col2 = "R",
 col3 = FALSE,
 col4 = 1.1,
 stringsAsFactors = FALSE)

 df3 <- rbind (df, adding_df)
 df3
 ## col1 col2 col3 col4
 ## 1 1 this TRUE 2.500000
 ## 2 2 is FALSE 4.200000
 ## 3 3 text TRUE 3.141593
 ## 4 4 R FALSE 1.100000
 str (df3)
 ## 'data.frame': 4 obs. of 4 variables:
 ## $ col1: num 1 2 3 4
 ## $ col2: chr "this" "is" "text" "R"
 ## $ col3: logi TRUE FALSE TRUE FALSE
 ## $ col4: num 2.5 4.2 3.14 1.1

 There are better ways to join data frames together than to use cbind () and
 rbind () . These are covered later on in the transforming your data with dplyr
chapter.

13 Managing Data Frames

http://dx.doi.org/10.1007/978-3-319-45599-0_22

109

13.3 Adding Attributes to Data Frames

 Similar to matrices, data frames will have a dimension attribute. In addition, data
frames can also have additional attributes such as row names, column names, and
comments. We can illustrate with data frame df .

 # basic data frame
 df
 ## col1 col2 col3 col4
 ## 1 1 this TRUE 2.500000
 ## 2 2 is FALSE 4.200000
 ## 3 3 text TRUE 3.141593
 dim (df)
 ## [1] 3 4
 attributes (df)
 ## $names
 ## [1] "col1" "col2" "col3" "col4"
 ##
 ## $row.names
 ## [1] 1 2 3
 ##
 ## $class
 ## [1] "data.frame"

 Currently df does not have row names but we can add them with
 rownames() :

 # add row names
 rownames (df) <- c ("row1", "row2", "row3")
 df
 ## col1 col2 col3 col4
 ## row1 1 this TRUE 2.500000
 ## row2 2 is FALSE 4.200000
 ## row3 3 text TRUE 3.141593
 attributes (df)
 ## $names
 ## [1] "col1" "col2" "col3" "col4"
 ##
 ## $row.names
 ## [1] "row1" "row2" "row3"
 ##
 ## $class
 ## [1] "data.frame"

13.3 Adding Attributes to Data Frames

110

 We can also change the existing column names by using colnames () or
 names () :

 # add/change column names with colnames()
 colnames (df) <- c ("col_1", "col_2", "col_3", "col_4")
 df
 ## col_1 col_2 col_3 col_4
 ## row1 1 this TRUE 2.500000
 ## row2 2 is FALSE 4.200000
 ## row3 3 text TRUE 3.141593
 attributes (df)
 ## $names
 ## [1] "col_1" "col_2" "col_3" "col_4"
 ##
 ## $row.names
 ## [1] "row1" "row2" "row3"
 ##
 ## $class
 ## [1] "data.frame"

 # add/change column names with names()
 names (df) <- c ("col.1", "col.2", "col.3", "col.4")
 df
 ## col.1 col.2 col.3 col.4
 ## row1 1 this TRUE 2.500000
 ## row2 2 is FALSE 4.200000
 ## row3 3 text TRUE 3.141593
 attributes (df)
 ## $names
 ## [1] "col.1" "col.2" "col.3" "col.4"
 ##
 ## $row.names
 ## [1] "row1" "row2" "row3"
 ##
 ## $class
 ## [1] "data.frame"

 Lastly, just like vectors , lists , and matrices, we can add a comment to a data
frame without affecting how it operates.

 # adding a comment attribute
 comment (df) <- "adding a comment to a data frame"
 attributes (df)
 ## $names
 ## [1] "col.1" "col.2" "col.3" "col.4"
 ##
 ## $row.names
 ## [1] "row1" "row2" "row3"
 ##
 ## $class
 ## [1] "data.frame"
 ##
 ## $comment
 ## [1] "adding a comment to a data frame"

13 Managing Data Frames

111

13.4 Subsetting Data Frames

 Data frames possess the characteristics of both lists and matrices: if you subset with
a single vector , they behave like lists and will return the selected columns with all
rows; if you subset with two vectors, they behave like matrices and can be subset by
row and column:

 df
 ## col.1 col.2 col.3 col.4
 ## row1 1 this TRUE 2.500000
 ## row2 2 is FALSE 4.200000
 ## row3 3 text TRUE 3.141593

 # subsetting by row numbers
 df[2:3,]
 ## col.1 col.2 col.3 col.4
 ## row2 2 is FALSE 4.200000
 ## row3 3 text TRUE 3.141593

 # subsetting by row names
 df[c ("row2", "row3"),]
 ## col.1 col.2 col.3 col.4
 ## row2 2 is FALSE 4.200000
 ## row3 3 text TRUE 3.141593

 # subsetting columns like a list
 df[c ("col.2", "col.4")]
 ## col.2 col.4
 ## row1 this 2.500000
 ## row2 is 4.200000
 ## row3 text 3.141593

 # subsetting columns like a matrix
 df[, c ("col.2", "col.4")]
 ## col.2 col.4
 ## row1 this 2.500000
 ## row2 is 4.200000
 ## row3 text 3.141593

 # subset for both rows and columns
 df[1:2, c (1, 3)]
 ## col.1 col.3
 ## row1 1 TRUE
 ## row2 2 FALSE

 # use a vector to subset
 v <- c (1, 2, 4)
 df[, v]
 ## col.1 col.2 col.4
 ## row1 1 this 2.500000
 ## row2 2 is 4.200000
 ## row3 3 text 3.141593

13.4 Subsetting Data Frames

112

 Note that subsetting data frames with the [operator will simplify the results to
the lowest possible dimension . To avoid this you can introduce the drop = FALSE
 argument :

 # simplifying results in a named vector
 df[, 2]
 ## [1] "this" "is" "text"

 # preserving results in a 3x1 data frame
 df[, 2, drop = FALSE]
 ## col.2
 ## row1 this
 ## row2 is
 ## row3 text

13 Managing Data Frames

113© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_14

 Chapter 14
 Dealing with Missing Values

 A common task in data analysis is dealing with missing values . In R, missing values
are often represented by NA or some other value that represents missing values (i.e.
 99). We can easily work with missing values and in this chapter I illustrate how to
 test for , recode , and exclude missing values in your data.

14.1 Testing for Missing Values

 To identify missing values use is.na() which returns a logical vector with TRUE
in the element locations that contain missing values represented by NA . is.na ()
will work on vectors , lists , matrices, and data frames .

 # vector with missing data
 x <- c (1:4, NA, 6:7, NA)
 x
 ## [1] 1 2 3 4 NA 6 7 NA

 is.na (x)
 ## [1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE

 # data frame with missing data
 df <- data.frame (col1 = c (1:3, NA),
 col2 = c ("this", NA,"is", "text"),
 col3 = c (TRUE, FALSE, TRUE, TRUE),
 col4 = c (2.5, 4.2, 3.2, NA),
 stringsAsFactors = FALSE)

 # identify NAs in full data frame
 is.na (df)
 ## col1 col2 col3 col4
 ## [1,] FALSE FALSE FALSE FALSE
 ## [2,] FALSE TRUE FALSE FALSE
 ## [3,] FALSE FALSE FALSE FALSE
 ## [4,] TRUE FALSE FALSE TRUE

114

 # identify NAs in specifi c data frame column
 is.na (df$col4)
 ## [1] FALSE FALSE FALSE TRUE

 To identify the location or the number of NAs we can leverage the which () and
 sum () functions:

 # identify location of NAs in vector
 which (is.na (x))
 ## [1] 5 8

 # identify count of NAs in data frame
 sum (is.na (df))
 ## [1] 3

14.2 Recoding Missing Values

 To recode missing values ; or recode specifi c indicators that represent missing values,
we can use normal subsetting and assignment operations. For example, we can recode
 missing values in vector x with the mean values in x by fi rst subsetting the vector to
identify NA s and then assign these elements a value. Similarly, if missing values are
represented by another value (i.e. 99) we can simply subset the data for the elements
that contain that value and then assign a desired value to those elements.

 # recode missing values with the mean
 x[is.na (x)] <- mean (x, na.rm = TRUE)
 round (x, 2)
 ## [1] 1.00 2.00 3.00 4.00 3.83 6.00 7.00 3.83

 # data frame that codes missing values as 99
 df <- data.frame (col1 = c (1:3, 99), col2 = c (2.5, 4.2, 99, 3.2))

 # change 99 s to NAs
 df[df == 99] <- NA
 df
 ## col1 col2
 ## 1 1 2.5
 ## 2 2 4.2
 ## 3 3 NA
 ## 4 NA 3.2

14.3 Excluding Missing Values

 We can exclude missing values in a couple different ways. First, if we want to
exclude missing values from mathematical operations use the na.rm = TRUE
 argument . If you do not exclude these values most functions will return an NA .

14 Dealing with Missing Values

115

 # A vector with missing values
 x <- c (1:4, NA, 6:7, NA)

 # including NA values will produce an NA output
 mean (x)
 ## [1] NA

 # excluding NA values will calculate the mathematical
 # operation for all non-missing values
 mean (x, na.rm = TRUE)
 ## [1] 3.833333

 We may also desire to subset our data to obtain complete observations, those
observations (rows) in our data that contain no missing data. We can do this a few
different ways.

 # data frame with missing values
 df <- data.frame (col1 = c (1:3, NA),
 col2 = c ("this", NA,"is", "text"),
 col3 = c (TRUE, FALSE, TRUE, TRUE),
 col4 = c (2.5, 4.2, 3.2, NA),
 stringsAsFactors = FALSE)
 df
 ## col1 col2 col3 col4
 ## 1 1 this TRUE 2.5
 ## 2 2 <NA> FALSE 4.2
 ## 3 3 is TRUE 3.2
 ## 4 NA text TRUE NA

 First, to fi nd complete cases we can leverage the complete.cases () function
which returns a logical vector identifying rows which are complete cases. So in the fol-
lowing case rows 1 and 3 are complete cases. We can use this information to subset our
 data frame which will return the rows which complete.cases () found to be TRUE .

 complete.cases (df)
 ## [1] TRUE FALSE TRUE FALSE

 # subset with complete.cases to get complete cases
 df[complete.cases (df),]
 ## col1 col2 col3 col4
 ## 1 1 this TRUE 2.5
 ## 3 3 is TRUE 3.2

 # or subset with `!` operator to get incomplete cases
 df[! complete.cases (df),]
 ## col1 col2 col3 col4
 ## 2 2 <NA> FALSE 4.2
 ## 4 NA text TRUE NA

14.3 Excluding Missing Values

116

 A shorthand alternative is to simply use na.omit () to omit all rows containing
 missing values .

 # or use na.omit () to get same as above
 na.omit (df)
 ## col1 col2 col3 col4
 ## 1 1 this TRUE 2.5
 ## 3 3 is TRUE 3.2

14 Dealing with Missing Values

 Part IV
 Importing, Scraping, and Exporting Data

with R
 What we have is a data glut.

 Vernon Vinge

 Data are being generated by everything around us at all times. Every digital process
and social media exchange produces it. Systems, sensors and mobile devices trans-
mit it. Countless databases collect it. Data are arriving from multiple sources at an
alarming rate and analysts and organizations are seeking ways to leverage these new
sources of information. Consequently, analysts need to understand how to get data
from these data sources. Furthermore, since analysis is often a collaborative effort
analysts also need to know how to share their data.

 This section covers the process of importing , scraping , and exporting data. First,
I cover the basics of importing tabular and spreadsheet data. Second, since modern
day data wrangling often includes scraping data from the fl ood of web-based data
becoming available to organizations and analysts, I cover the fundamentals of web-
scraping with R. This includes importing spreadsheet data fi les stored online, scrap-
ing HTML text and data tables, and leveraging APIs . Third, although getting data
into R is essential, I also cover the equally important process of getting data out of
R. Consequently, this section will give you a strong foundation for the different
ways to get your data into and out of R .

http://dx.doi.org/DOI 10.1007/978-3-319-45599-0_15
http://dx.doi.org/DOI 10.1007/978-3-319-45599-0_16
http://dx.doi.org/DOI 10.1007/978-3-319-45599-0_17

119© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_15

 Chapter 15
 Importing Data

 The fi rst step to any data analysis process is to get the data. Data can come from
many sources but two of the most common include text and Excel fi les. This chapter
covers how to import data into R by reading data from common text fi les and Excel
spreadsheets . In addition, I cover how to load data from saved R object fi les for
holding or transferring data that has been processed in R. In addition to the com-
monly used base R functions to perform data importing, I will also cover functions
from the popular readr, xlsx, and readxl packages .

15.1 Reading Data from Text Files

 Text fi les are a popular way to hold and exchange tabular data as almost any data
application supports exporting data to the CSV (or other text fi le) formats. Text fi le
formats use delimiters to separate the different elements in a line, and each line of
data is in its own line in the text fi le. Therefore, importing different kinds of text
fi les can follow a fairly consistent process once you’ve identifi ed the delimiter.

 There are two main groups of functions that we can use to read in text fi les:

• Base R functions
• readr package functions

15.1.1 Base R Functions

 read.table() is a multipurpose work-horse function in base R for importing
data . The functions read.csv() and read.delim() are special cases of
 read.table() in which the defaults have been adjusted for effi ciency.

120

To illustrate these functions let’s work with a CSV fi le that is saved in our working
directory which looks like:

 variable 1,variable 2,variable 3
 10,beer,TRUE
 25,wine,TRUE
 8,cheese,FALSE

 To read in the CSV fi le we can use read.csv() . Note that when we assess the
structure of the data set that we read in, variable.2 is automatically coerced to
a factor variable and variable.3 is automatically coerced to a logical variable.
Furthermore, any whitespace in the column names are replaced with a “.”.

 mydata = read.csv ("mydata.csv")
 mydata
 ## variable.1 variable.2 variable.3
 ## 1 10 beer TRUE
 ## 2 25 wine TRUE
 ## 3 8 cheese FALSE

 str (mydata)
 ## 'data.frame': 3 obs. of 3 variables:
 ## $ variable.1: int 10 25 8
 ## $ variable.2: Factor w/ 3 levels "beer","cheese",..: 1 3 2
 ## $ variable.3: logi TRUE TRUE FALSE

 However, we may want to read in variable.2 as a character variable rather
then a factor . We can take care of this by changing the stringsAsFactors argu-
ment . The default has stringsAsFactors = TRUE ; however, setting it equal
to FALSE will read in the variable as a character variable.

 mydata_2 = read.csv ("mydata.csv", stringsAsFactors = FALSE)
 mydata_2
 ## variable.1 variable.2 variable.3
 ## 1 10 beer TRUE
 ## 2 25 wine TRUE
 ## 3 8 cheese FALSE

 str (mydata_2)
 ## 'data.frame': 3 obs. of 3 variables:
 ## $ variable.1: int 10 25 8
 ## $ variable.2: chr "beer" "wine" "cheese"
 ## $ variable.3: logi TRUE TRUE FALSE

 As previously stated read.csv is just a wrapper for read.table but with
adjusted default arguments . Therefore, we can use read.table to read in this same
data. The two arguments we need to be aware of are the fi eld separator (sep) and the
 argument indicating whether the fi le contains the names of the variables as its fi rst
line (header). In read.table the defaults are sep = "" and header =
FALSE whereas in read.csv the defaults are sep = "," and header = TRUE .

15 Importing Data

121

There are multiple other arguments we can use for certain situations which we
 illustrate below:

 # provides same results as read.csv above
 read.table ("mydata.csv", sep=",", header = TRUE, stringsAsFactors = FALSE)
 ## variable.1 variable.2 variable.3
 ## 1 10 beer TRUE
 ## 2 25 wine TRUE
 ## 3 8 cheese FALSE

 # set column and row names
 read.table ("mydata.csv", sep=",", header = TRUE, stringsAsFactors
= FALSE,
 col.names = c ("Var 1", "Var 2", "Var 3"),
 row.names = c ("Row 1", "Row 2", "Row 3"))
 ## Var.1 Var.2 Var.3
 ## Row 1 10 beer TRUE
 ## Row 2 25 wine TRUE
 ## Row 3 8 cheese FALSE

 # manually set the classes of the columns
 set_classes <- read.table ("mydata.csv", sep=",", header = TRUE,
 colClasses = c ("numeric", "character",
"character"))
 str (set_classes)
 ## 'data.frame': 3 obs. of 3 variables:
 ## $ variable.1: num 10 25 8
 ## $ variable.2: chr "beer" "wine" "cheese"
 ## $ variable.3: chr "TRUE" "TRUE" "FALSE"

 # limit the number of rows to read in
 read.table ("mydata.csv", sep=",", header = TRUE, nrows = 2)
 ## variable.1 variable.2 variable.3
 ## 1 10 beer TRUE
 ## 2 25 wine TRUE

 In addition to CSV fi les, there are other text fi les that read.table works with.
The primary difference is what separates the elements. For example, tab delimited
text fi les typically end with the . txt extension. You can also use the read.
delim() function as, similiar to read.csv() , read.delim() is a wrapper of
 read.table() with defaults set specifi cally for tab delimited fi les.

 # reading in tab delimited text fi les
 read.delim ("mydata.txt")
 ## variable.1 variable.2 variable.3
 ## 1 10 beer TRUE
 ## 2 25 wine TRUE
 ## 3 8 cheese FALSE

 # provides same results as read.delim
 read.table ("mydata.txt", sep="\t", header = TRUE)
 ## variable.1 variable.2 variable.3
 ## 1 10 beer TRUE
 ## 2 25 wine TRUE
 ## 3 8 cheese FALSE

15.1 Reading Data from Text Files

122

15.1.2 readr Package

 Compared to the equivalent base functions, readr functions are around 10× faster.
They bring consistency to importing functions, they produce data frames in a
 data.table format which are easier to view for large data sets, the default set-
tings removes the “hassels” of stringsAsFactors , and they have a more fl ex-
ible column specifi cation.

 To illustrate, we can use read_csv() which is equivalent to base R ’s read.
csv() function. However, note that read_csv() maintains the full variable
name (whereas read.csv eliminates any spaces in variable names and fi lls it with
‘.’). Also, read_csv() automatically sets stringsAsFactors = FALSE ,
which can be a controversial topic. 1

 library (readr)
 mydata_3 = read_csv ("mydata.csv")
 mydata_3
 ## variable 1 variable 2 variable 3
 ## 1 10 beer TRUE
 ## 2 25 wine TRUE
 ## 3 8 cheese FALSE

 str (mydata_3)
 ## Classes 'tbl_df', 'tbl' and 'data.frame': 3 obs. of 3 variables:
 ## $ variable 1: int 10 25 8
 ## $ variable 2: chr "beer" "wine" "cheese"
 ## $ variable 3: logi TRUE TRUE FALSE

 read_csv also offers many additional arguments for making adjustments to
your data as you read it in:

 # specify the column class using col_types
 read_csv ("mydata.csv", col_types = list (col_double (),
 col_character (),
 col_character ()))
 ## variable 1 variable 2 variable 3
 ## 1 10 beer TRUE
 ## 2 25 wine TRUE
 ## 3 8 cheese FALSE

 # we can also specify column classes with a string
 # in this example d = double, _ skips column, c = character
 read_csv ("mydata.csv", col_types = "d_c")
 ## variable 1 variable 3
 ## 1 10 TRUE
 ## 2 25 TRUE
 ## 3 8 FALSE

1 An interesting biography of the stringsAsFactors argument can be found at http://simplystatistics.
org/2015/07/24/stringsasfactors-an-unauthorized-biography/

15 Importing Data

https://simplystatistics.org/2015/07/24/stringsasfactors-an-unauthorized-biography/
https://simplystatistics.org/2015/07/24/stringsasfactors-an-unauthorized-biography/

123

 # set column names
 read_csv ("mydata.csv", col_names = c ("Var 1", "Var 2", "Var 3"), skip = 1)
 ## Var 1 Var 2 Var 3
 ## 1 10 beer TRUE
 ## 2 25 wine TRUE
 ## 3 8 cheese FALSE

 # set the maximum number of lines to read in
 read_csv ("mydata.csv", n_max = 2)
 ## variable 1 variable 2 variable 3
 ## 1 10 beer TRUE
 ## 2 25 wine TRUE

 Simila r to base R , readr also offers functions to import . txt fi les (read_
delim()), fi xed-width fi les (read_fwf()), general text fi les (read_table()),
and more.

 These examples provide the basics for reading in text fi les. However, sometimes
even text fi les can offer unanticipated diffi culties with their formatting. Both the
base R and readr functions offer many arguments to deal with different formatting
issues and I suggest you take time to look at the help fi les for these functions to learn
more (i.e. ?read.table). Also, you will fi nd more resources at the end of this
chapter for importing fi les.

15.2 Reading Data from Excel Files

 With Excel still being the spreadsheet software of choice its important to be able to
effi ciently import and export data from these fi les. Often, R users will simply resort
to exporting the Excel fi le as a CSV fi le and then import into R using read.csv ;
however, this is far from effi cient. This section will teach you how to eliminate the
CSV step and to import data directly from Excel using two different packages :

• xlsx package
• readxl package

 Note that there are several packages available to connect R with Excel (i.e.
 gdata , RODBC , XLConnect , RExcel , etc.); however, I am only going to cover
the two main packages that I use which provide all the fundamental requirements
I’ve needed for dealing with Excel .

15.2.1 xlsx Package

 The xlsx package provides tools necessary to interact with Excel 2007 (and older)
fi les f rom R . Many of the benefi ts of the xlsx come from being able to export and
 format Excel fi les from R. Some of these capabilities will be covered in the
Exporting Data chapter; however, in this section we will simply cover importing
data from Excel with the xlsx package.

15.2 Reading Data from Excel Files

124

 To illustrate, we’ll use similar data from the previous section; however, saved as
an .xlsx fi le in our working director. To import the Excel data we simply use the
 read.xlsx() function:

 library (xlsx)

 # read in fi rst worksheet using a sheet index or name
 read.xlsx ("mydata.xlsx", sheetName = "Sheet1")
 ## variable.1 variable.2 variable.3
 ## 1 10 beer TRUE
 ## 2 25 wine TRUE
 ## 3 8 cheese FALSE

 read.xlsx ("mydata.xlsx", sheetIndex = 1)
 ## variable.1 variable.2 variable.3
 ## 1 10 beer TRUE
 ## 2 25 wine TRUE
 ## 3 8 cheese FALSE

 # read in second worksheet
 read.xlsx ("mydata.xlsx", sheetName = "Sheet2")
 ## variable.4 variable.5
 ## 1 Dayton johnny
 ## 2 Columbus amber
 ## 3 Cleveland tony
 ## 4 Cincinnati alice

 Since Excel is such a fl exible spreadsheet software, people often make notes,
comments, headers, etc. at the beginning or end of the fi les which we may not want
to include. If we want to read in data that starts further down in the Excel worksheet
we can include the startRow argument . If we have a specifi c range of rows (or
columns) to include we can use the rowIndex (or colIndex) argument .

 # a worksheet with comments in the fi rst two lines
 read.xlsx ("mydata.xlsx", sheetName = "Sheet3")
 ## HEADER..COMPANY.A NA.
 ## 1 What if we want to disregard header text in Excel fi le? <NA>
 ## 2 variable 6 variable 7
 ## 3 200 Male
 ## 4 225 Female
 ## 5 400 Female
 ## 6 310 Male

 # read in all data below the second line
 read.xlsx ("mydata.xlsx", sheetName = "Sheet3", startRow = 3)
 ## variable.6 variable.7
 ## 1 200 Male
 ## 2 225 Female
 ## 3 400 Female
 ## 4 310 Male

 # read in a range of rows
 read.xlsx ("mydata.xlsx", sheetName = "Sheet3", rowIndex = 3:5)
 ## variable.6 variable.7
 ## 1 200 Male
 ## 2 225 Female

15 Importing Data

125

 We can also change the class type of the columns when we read them in:

 # read in data without changing class type
 mydata_sheet1.1 <- read.xlsx ("mydata.xlsx", sheetName = "Sheet1")

 str (mydata_sheet1.1)
 ## 'data.frame': 3 obs. of 3 variables:
 ## $ variable.1: num 10 25 8
 ## $ variable.2: Factor w/ 3 levels "beer","cheese",..: 1 3 2
 ## $ variable.3: logi TRUE TRUE FALSE

 # read in data and change class type
 mydata_sheet1.2 <- read.xlsx ("mydata.xlsx", sheetName = "Sheet1",
 stringsAsFactors = FALSE,
 colClasses = c ("double", "character",
"logical"))

 str (mydata_sheet1.2)
 ## 'data.frame': 3 obs. of 3 variables:
 ## $ variable.1: num 10 25 8
 ## $ variable.2: chr "beer" "wine" "cheese"
 ## $ variable.3: logi TRUE TRUE FALSE

 Another useful argument is keepFormulas which allows you to see the text
of any formulas in the Excel spreadsheet:

 # by default keepFormula is set to FALSE so only
 # the formula output will be read in
 read.xlsx ("mydata.xlsx", sheetName = "Sheet4")
 ## Future.Value Rate Periods Present.Value
 ## 1 500 0.065 10 266.3630
 ## 2 600 0.085 6 367.7671
 ## 3 750 0.080 11 321.6621
 ## 4 1000 0.070 16 338.7346

 # changing the keepFormula to TRUE will display the equations
 read.xlsx ("mydata.xlsx", sheetName = "Sheet4", keepFormulas = TRUE)
 ## Future.Value Rate Periods Present.Value
 ## 1 500 0.065 10 A2/(1+B2)^C2
 ## 2 600 0.085 6 A3/(1+B3)^C3
 ## 3 750 0.080 11 A4/(1+B4)^C4
 ## 4 1000 0.070 16 A5/(1+B5)^C5

15.2.2 readxl Package

 readxl is one of the newest packages for accessing Excel data with R and was devel-
oped by Hadley Wickham and the RStudio team who also developed the readr
package . This package works with both legacy .xls formats and the modern xml-
based .xlsx format. Similar to readr the readxl functions are based on a C++
 library so they are extremely fast. Unlike most other packages that deal with Excel ,

15.2 Reading Data from Excel Files

126

 readxl has no external dependencies, so you can use it to read Excel data on just
about any platform. Additional benefi ts readxl provides includes the ability to
load dates and times as POSIXct formatted dates , automatically drops blank col-
umns, and returns outputs as data.table formatted which provides easier viewing for
large data sets.

 To read in Excel data with readxl you use the read_excel() function
which has very similar operations and arguments as xlsx . A few important differ-
ences you will see below include: readxl will automatically convert date and
 date -time variables to POSIXct formatted variables, character variables will not be
coerced to factors , and logical variables will be read in as integers .

 library (readxl)

 mydata <- read_excel ("mydata.xlsx", sheet = "Sheet5")
 mydata
 ## variable 1 variable 2 variable 3 variable 4 variable 5
 ## 1 10 beer 1 2015-11-20 2015-11-20 13:30:00
 ## 2 25 wine 1 <NA> 2015-11-21 16:30:00
 ## 3 8 <NA> 0 2015-11-22 2015-11-22 14:45:00

 str (mydata)
 ## Classes 'tbl_df', 'tbl' and 'data.frame': 3 obs. of 5 variables:
 ## $ variable 1: num 10 25 8
 ## $ variable 2: chr "beer" "wine" NA
 ## $ variable 3: num 1 1 0
 ## $ variable 4: POSIXct, format: "2015-11-20" NA …
 ## $ variable 5: POSIXct, format: "2015-11-20 13:30:00" "2015-11- 21 16:30:00" …

 The available arguments allow you to change the data as you import it. Some
examples are provided:

 # change variable names by skipping the fi rst row
 # and using col_names to set the new names
 read_excel ("mydata.xlsx", sheet = "Sheet5", skip = 1,
 col_names = paste ("Var", 1:5))
 ## Var 1 Var 2 Var 3 Var 4 Var 5
 ## 1 10 beer 1 42328 2015-11-20 13:30:00
 ## 2 25 wine 1 NA 2015-11-21 16:30:00
 ## 3 8 <NA> 0 42330 2015-11-22 14:45:00

 # sometimes missing values are set as a sentinel value
 # rather than just left blank - (i.e. "999")
 read_excel ("mydata.xlsx", sheet = "Sheet6")
 ## variable 1 variable 2 variable 3 variable 4
 ## 1 10 beer 1 42328
 ## 2 25 wine 1 999
 ## 3 8 999 0 42330

 # we can change these to missing values with na argument
 read_excel ("mydata.xlsx", sheet = "Sheet6", na = "999")
 ## variable 1 variable 2 variable 3 variable 4
 ## 1 10 beer 1 42328
 ## 2 25 wine 1 NA
 ## 3 8 <NA> 0 42330

15 Importing Data

127

 One unique difference between readxl and xlsx is how to deal with column
types. Whereas read.xlsx() allows you to change the column types to integer ,
 double , numeric, character, or logical; read_excel() restricts you to changing
column types to blank, numeric, date , or text. The “blank” option allows you to skip
columns; however, to change variable 3 to a logical TRUE / FALSE variable requires
a second step.

 mydata_ex <- read_excel ("mydata.xlsx", sheet = "Sheet5",
 col_types = c ("numeric", "blank", "numeric",
 "date", "blank"))
 mydata_ex
 ## variable 1 variable 3 variable 4
 ## 1 10 1 2015-11-20
 ## 2 25 1 <NA>
 ## 3 8 0 2015-11-22

 # change variable 3 to a logical variable
 mydata_ex$`variable 3` <- as.logical (mydata_ex$`variable 3`)
 mydata_ex
 ## variable 1 variable 3 variable 4
 ## 1 10 TRUE 2015-11-20
 ## 2 25 TRUE <NA>
 ## 3 8 FALSE 2015-11-22

15.3 Load Data f rom Saved R Object File

 Sometimes you may need to save data o r other R objects outside of your workspace.
You may want to share R data/objects with co-workers, transfer between projects or
computers, or simply archive them. There are three primary ways that people tend
to save R data/objects: as .RData, .rda, or as .rds fi les. The differences behind when
you use each will be covered in the Saving data as an R object fi le section. This sec-
tion simply shows how to load these data/object forms.

 load ("mydata.RData")

 load (fi le = "mydata.rda")

 name <- readRDS ("mydata.rds")

15.4 Additional Resources

 In addition to text and Excel fi les, there are multiple other ways that data are stored
and exchanged. Commercial statistical software such as SPSS, SAS, Stata, and
Minitab often have the option to store data in a specifi c format for that software.
In addition, analysts commonly use databases to store large quantities of data. R has

15.4 Additional Resources

128

good support to work with these additional options which we did not cover here.
The following provides a list of additional resources to learn about data importing
for these specifi c cases:

• R data import/export manual: https://cran.r-project.org/doc/manuals/R-data.html
• Working with databases

 – MySQL: https://cran.r-project.org/web/packages/RMySQL/index.html
 – Oracle: https://cran.r-project.org/web/packages/ROracle/index.html
 – PostgreSQL: https://cran.r-project.org/web/packages/RPostgreSQL/index.html
 – SQLite: https://cran.r-project.org/web/packages/RSQLite/index.html
 – Open Database Connectivity databases: https://cran.rstudio.com/web/packages/

RODBC/

• Importing data from commercial software 2

 – The foreign package provides functions that help you load data fi les from
other programs such as SPSS, SAS, Stata, and othe rs into R .

2 https://cran.r-project.org/doc/manuals/R-data.html#Importing-from-other-statistical-systems

15 Importing Data

https://cran.r-project.org/doc/manuals/R-data.html
https://cran.r-project.org/web/packages/RMySQL/index.html
https://cran.r-project.org/web/packages/ROracle/index.html
https://cran.r-project.org/web/packages/RPostgreSQL/index.html
https://cran.r-project.org/web/packages/RSQLite/index.html
https://cran.rstudio.com/web/packages/RODBC/
https://cran.rstudio.com/web/packages/RODBC/
https://cran.r-project.org/doc/manuals/R-data.html#Importing-from-other-statistical-systems

129© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_16

 Chapter 16
 Scraping Data

 Rapid growth of the World Wide Web has signifi cantly changed the way we share,
collect, and publish data. Vast amount of information is being stored online, both in
structured and unstructured forms. Regarding certain questions or research topics,
this has resulted in a new problem—no longer is the concern of data scarcity and
inaccessibility but, rather, one of overcoming the tangled masses of online data.

 Collecting data from the web is not an easy process as there are many technolo-
gies used to distribute web content (i.e. HTML, XML, JSON). Therefore, dealing
with more advanced web scraping requires familiarity in accessing data stored in
these technologies via R . Through this chapter I will provide an introduction to
some of the fundamental tools required to perform basic web scraping. This includes
 importing spreadsheet data fi les stored online , scraping HTML text , scraping HTML
table data , and leveraging APIs to scrape data.

 My purpose in the following sections is to discuss these topics at a level meant to
get you started in web scraping; however, this area is vast and complex and this
chapter will far from provide you expertise level insight. To advance your knowl-
edge I highly recommend getting copies of XML and Web Technologies for Data
Sciences with R (Nolan and Lang, 2014) and Automated Data Collection with R
(Munzert et al., 2014).

16.1 Importing Tabular and Excel Files Stored Online

 The most basic form of getting data from online is to import tabular (i.e. . txt , .csv) or
 Excel fi les that are being hosted online. This is often not considered web scraping 1 ;
however, I think its a good place to start introducing the user to interacting with the
web for obtaining data. Importing tabular data is especially common for the many

1 In Automated Data Collection with R Munzert et al. state that “[t]he fi rst way to get data from the
web is almost too banal to be considered here and actually not a case of web scraping in the nar-
rower sense.”

130

types of government data available online. A quick perusal of Data.gov illustrates
nearly 188,510 examples. In fact, we can provide our fi rst example of importing
online tabular data by downloading the Data.gov CSV fi le that lists all the federal
agencies that supply data to Data.gov.

 # the url for the online CSV
 url <- "https://www.data.gov/media/federal-agency-participation.csv"

 # use read.csv to import
 data_gov <- read.csv (url, stringsAsFactors = FALSE)

 # for brevity I only display fi rst 6 rows
 data_gov[1:6, c (1,3:4)]
 ## Agency.Name Datasets Last.Entry
 ## 1 Commodity Futures Trading Commission 3 01/12/2014
 ## 2 Consumer Financial Protection Bureau 2 09/26/2015
 ## 3 Consumer Financial Protection Bureau 2 09/26/2015
 ## 4 Corporation for National and Community Service 3 01/12/2014
 ## 5 Court Services and Offender Supervision Agency 1 01/12/2014
 ## 6 Department of Agriculture 698 12/01/2015

 Downloading Excel spreadsheets hosted online can be performed just as easily.
Recall that there is not a base R function for importing Excel data; however, several
 packages exist to handle this capability. One package that works smoothly with pull-
ing Excel data from URLs is gdata. With gdata we can use read.xls() to
download this Fair Market Rents for Section 8 Housing Excel fi le from the given url.

 library (gdata)

 # the url for the online Excel fi le
 url <- "http://www.huduser.org/portal/datasets/fmr/fmr2015f/FY2015F_4050_Final.xls"

 # use read.xls to import
 rents <- read.xls (url)

 rents[1:6, 1:10]
 ## fi ps2000 fi ps2010 fmr2 fmr0 fmr1 fmr3 fmr4 county State CouSub
 ## 1 100199999 100199999 788 628 663 1084 1288 1 1 99999
 ## 2 100399999 100399999 762 494 643 1123 1318 3 1 99999
 ## 3 100599999 100599999 670 492 495 834 895 5 1 99999
 ## 4 100799999 100799999 773 545 652 1015 1142 7 1 99999
 ## 5 100999999 100999999 773 545 652 1015 1142 9 1 99999
 ## 6 101199999 101199999 599 481 505 791 1061 11 1 99999

 Note that many of the arguments covered in the Importing Data chapter (i.e.
specifying sheets to read from, skipping lines) also apply to read.xls() . In addi-
tion, gdata provides some useful functions (sheetCount() and sheet-
Names()) for identifying if multiple sheets exist prior to downloading.

 Another common form of fi le storage is using zip fi les. For instance, the Bureau
of Labor Statistics (BLS) stores their public-use microdata for the Consumer
Expenditure Survey in .zip fi les. 2 We can use download.fi le() to download the
fi le to your working directory and then work with this data as desired.

2 http://www.bls.gov/cex/pumd_data.htm#csv

16 Scraping Data

http://www.bls.gov/cex/pumd_data.htm#csv

131

 url <- "http://www.bls.gov/cex/pumd/data/comma/diary14.zip"

 # download .zip fi le and unzip contents
 download.fi le (url, dest="dataset.zip", mode="wb")
 unzip ("dataset.zip", exdir = "./")

 # assess the fi les contained in the .zip fi le which
 # unzips as a folder named "diary14"
 list.fi les ("diary14")
 ## [1] "dtbd141.csv" "dtbd142.csv" "dtbd143.csv" "dtbd144.csv" "dtid141.csv"
 ## [6] "dtid142.csv" "dtid143.csv" "dtid144.csv" "expd141.csv" "expd142.csv"
 ## [11] "expd143.csv" "expd144.csv" "fmld141.csv" "fmld142.csv" "fmld143.csv"
 ## [16] "fmld144.csv" "memd141.csv" "memd142.csv" "memd143.csv" "memd144.csv"

 # alternatively, if we know the fi le we want prior to unzipping
 # we can extract the fi le without unzipping using unz():
 zip_data <- read.csv (unz ("dataset.zip", "diary14/expd141.csv"))
 zip_data[1:5, 1:10]
 ## NEWID ALLOC COST GIFT PUB_FLAG UCC EXPNSQDY EXPN_QDY EXPNWKDY EXPN_KDY
 ## 1 2825371 0 6.26 2 2 190112 1 D 3 D
 ## 2 2825371 0 1.20 2 2 190322 1 D 3 D
 ## 3 2825381 0 0.98 2 2 20510 3 D 2 D
 ## 4 2825381 0 0.98 2 2 20510 3 D 2 D
 ## 5 2825381 0 2.50 2 2 20510 3 D 2 D

 The .zip archive fi le format is meant to compress fi les and are typically used on
fi les of signifi cant size. For instance, the Consumer Expenditure Survey data we
downloaded in the previous example is over 10 MB. Obviously there may be times
in which we want to get specifi c data in the .zip fi le to analyze but not always per-
manently store the entire .zip fi le contents. In these instances we can use the follow-
ing process proposed by Dirk Eddelbuettel to temporarily download the .zip fi le,
extract the desired data, and then discard the .zip fi le.

 # Create a temp. fi le name
 temp <- tempfi le ()

 # Use download.fi le() to fetch the fi le into the temp. fi le
 download.fi le ("http://www.bls.gov/cex/pumd/data/comma/diary14.zip",temp)

 # Use unz() to extract the target fi le from temp. fi le
 zip_data2 <- read.csv (unz (temp, "diary14/expd141.csv"))

 # Remove the temp fi le via unlink()
 unlink (temp)

 zip_data2[1:5, 1:10]
 ## NEWID ALLOC COST GIFT PUB_FLAG UCC EXPNSQDY EXPN_QDY EXPNWKDY EXPN_KDY
 ## 1 2825371 0 6.26 2 2 190112 1 D 3 D
 ## 2 2825371 0 1.20 2 2 190322 1 D 3 D
 ## 3 2825381 0 0.98 2 2 20510 3 D 2 D
 ## 4 2825381 0 0.98 2 2 20510 3 D 2 D
 ## 5 2825381 0 2.50 2 2 20510 3 D 2 D

16.1 Importing Tabular and Excel Files Stored Online

132

 One last common scenario I’ll cover when importing spreadsheet data from
online is when we identify multiple data sets that we’d like to download but are not
centrally stored in a .zip format or the like. As a simple example lets look at the
average consumer price data from the BLS. 3 The BLS holds multiple data sets for
different types of commodities within one url; however, there are separate links for
each individual data set. 4 More complicated cases of this will have the links to tabu-
lar data sets scattered throughout a webpage. 5 The XML package provides the use-
ful getHTMLLinks() function to identify these links.

 library (XML)

 # url hosting multiple links to data sets
 url <- "http://download.bls.gov/pub/time.series/ap/"

 # identify the links available
 links <- getHTMLLinks (url)

 links
 ## [1] "/pub/time.series/"
 ## [2] "/pub/time.series/ap/ap.area"
 ## [3] "/pub/time.series/ap/ap.contacts"
 ## [4] "/pub/time.series/ap/ap.data.0.Current"
 ## [5] "/pub/time.series/ap/ap.data.1.HouseholdFuels"
 ## [6] "/pub/time.series/ap/ap.data.2.Gasoline"
 ## [7] "/pub/time.series/ap/ap.data.3.Food"
 ## [8] "/pub/time.series/ap/ap.footnote"
 ## [9] "/pub/time.series/ap/ap.item"
 ## [10] "/pub/time.series/ap/ap.period"
 ## [11] "/pub/time.series/ap/ap.series"
 ## [12] "/pub/time.series/ap/ap.txt"

 This allows us to assess which fi les exist that may be of interest. In this case the
links that we are primarily interested in are the ones that contain “data” in their
name (links 4–7 listed above). We can use the stringr package to extract these
desired links which we will use to download the data.

 library (stringr)

 # extract names for desired links and paste to url
 links_data <- links[str_detect (links, "data")]

 # paste url to data links to have full url for data sets
 # use str_sub and regexpr to paste links at appropriate
 # starting point
 fi lenames <- paste0 (url, str_sub (links_data,
 start = regexpr ("ap.data", links_data)))

3 http://www.bls.gov/data/#prices
4 http://download.bls.gov/pub/time.series/ap/
5 An example is provided in Automated Data Collection with R in which they use a similar
approach to extract desired CSV fi les scattered throughout the Maryland State Board of Elections
websiteMaryland State Board of Elections website.

16 Scraping Data

http://www.bls.gov/data/#prices
http://download.bls.gov/pub/time.series/ap/

133

 fi lenames
 ## [1] "http://download.bls.gov/pub/time.series/ap/ap.data.0.Current"
 ## [2] "http://download.bls.gov/pub/time.series/ap/ap.data.1.HouseholdFuels"
 ## [3] "http://download.bls.gov/pub/time.series/ap/ap.data.2.Gasoline"
 ## [4] "http://download.bls.gov/pub/time.series/ap/ap.data.3.Food"

 We can now proceed to develop a simple for loop function (which you will learn
about in the loop control statements chapter) to download each data set. We store the
results in a list which contains 4 items, one item for each data set. Each list item
contains the url in which the data was extracted from and the dataframe containing
the downloaded data. We’re now ready to analyze these data sets as necessary.

 # create empty list to dump data into
 data_ls <- list ()

 for(i in 1: length (fi lenames)){
 url <- fi lenames[i]
 data <- read.delim (url)
 data_ls[[length (data_ls) + 1]] <- list (url = fi lenames[i], data = data)
 }

 str (data_ls)
 ## List of 4
 ## $:List of 2
 ## ..$ url : chr "http://download.bls.gov/pub/time.series/ap/ap.data.0.Current"
 ## ..$ data:'data.frame': 144712 obs. of 5 variables:
 ## $ series_id : Factor w/ 878 levels "APU0000701111 ",..: 1 1 …
 ## $ year : int [1:144712] 1995 1995 1995 1995 1995 1995 …
 ## $ period : Factor w/ 12 levels "M01","M02","M03",..: 1 2 3 4 …
 ## $ value : num [1:144712] 0.238 0.242 0.242 0.236 0.244 …
 ## $ footnote_codes: logi [1:144712] NA NA NA NA NA NA …
 ## $:List of 2
 ## ..$ url : chr "http://download.bls.gov/pub/time.series/ap/ap.data.1.Hou…"
 ## ..$ data:'data.frame': 90339 obs. of 5 variables:
 ## $ series_id : Factor w/ 343 levels "APU000072511 ",..: 1 1 …
 ## $ year : int [1:90339] 1978 1978 1979 1979 1979 1979 1979 …
 ## $ period : Factor w/ 12 levels "M01","M02","M03",..: 11 12 …
 ## $ value : num [1:90339] 0.533 0.545 0.555 0.577 0.605 0.627 …
 ## $ footnote_codes: logi [1:90339] NA NA NA NA NA NA …
 ## $:List of 2
 ## ..$ url : chr "http://download.bls.gov/pub/time.series/ap/ap.data.2.Gas…"
 ## ..$ data:'data.frame': 69357 obs. of 5 variables:
 ## $ series_id : Factor w/ 341 levels "APU000074712 ",..: 1 1 …
 ## $ year : int [1:69357] 1973 1973 1973 1974 1974 1974 1974 …
 ## $ period : Factor w/ 12 levels "M01","M02","M03",..: 10 11 …
 ## $ value : num [1:69357] 0.402 0.418 0.437 0.465 0.491 0.528 …
 ## $ footnote_codes: logi [1:69357] NA NA NA NA NA NA …
 ## $:List of 2
 ## ..$ url : chr "http://download.bls.gov/pub/time.series/ap/ap.data.3.Food"
 ## ..$ data:'data.frame': 122302 obs. of 5 variables:
 ## $ series_id : Factor w/ 648 levels "APU0000701111 ",..: 1 1 …
 ## $ year : int [1:122302] 1980 1980 1980 1980 1980 1980 1980 …
 ## $ period : Factor w/ 12 levels "M01","M02","M03",..: 1 2 3 4 …
 ## $ value : num [1:122302] 0.203 0.205 0.211 0.206 0.207 0.21 …
 ## $ footnote_codes: logi [1:122302] NA NA NA NA NA NA …

16.1 Importing Tabular and Excel Files Stored Online

134

 These examples provide the basics required for downloading most tabular and
 Excel fi les from online. However, this is just the beginning of importing/ scraping
data from the web. Next, we’ll start exploring the more conventional forms of scrap-
ing text and data stored in HTML webpages.

16.2 Scraping HTML Text

 Vast amount of information exists across the interminable online webpages. Much
of this information are “unstructured” text that may be useful in our analyses. This
section covers the basics of scraping these texts from online sources. Throughout
this section I will illustrate how to extract different text components of webpages by
dissecting the Wikipedia page on web scraping. However, its important to fi rst cover
one of the basic components of HTML elements as we will leverage this informa-
tion to pull desired information. I offer only enough insight required to begin scrap-
ing; I highly recommend XML and Web Technologies for Data Sciences with R and
 Automated Data Collection with R to learn more about HTML and XML element
structures.

 HTML elements are written with a start tag, an end tag, and with the content in
between: <tagname>content</tagname> . The tags which typically contain
the textual content we wish to scrape, and the tags we will leverage in the next two
sections, include:

• <h1> , <h2> ,…, <h6> : Largest heading, second largest heading, etc.
• <p> : Paragraph elements
• : Unordered bulleted list
• : Ordered list
• : Individual list item
• <div> : Division or section
• <table> : Table

 For example, text in paragraph form that you see online are wrapped with the
 HTML paragraph tag <p> as in:

 <p>
 This paragraph represents
 a typical text paragraph
 in HTML form
 < / p>

 It is through these tags that we can start to extract textual components (also
referred to as nodes) of HTML webpages.

16 Scraping Data

135

16.2.1 Scraping HTML Nodes

 To scrape online text we’ll make use of the relatively newer rvest package. rvest
was created by the RStudio team inspired by libraries such as beautiful soup which
has greatly simplifi ed web scraping. rvest provides multiple functionalities; how-
ever, in this section we will focus only on extracting HTML text with rvest . Its
important to note that rvest makes use of the pipe operator (%>%) developed
through the magrittr package. If you are not familiar with the functionality of %>%
I recommend you jump to the chapter on Simplifying Your Code with %>% so that
you have a better understanding of what’s going on with the code.

 To extract text from a webpage of interest, we specify what HTML elements we
want to select by using html_nodes() . For instance, if we want to scrape the
primary heading for the Web Scraping Wikipedia webpage we simply identify the
 <h1> node as the node we want to select. html_nodes() will identify all <h1>
nodes on the webpage and return the HTML element. In our example we see there
is only one <h1> node on this webpage.

 library (rvest)

 scraping_wiki <- read_html ("https://en.wikipedia.org/wiki/Web_scraping")

 scraping_wiki %>%
 html_nodes ("h1")
 ## {xml:nodeset (1)}
 ## [1] <h1 id="fi rstHeading" class="fi rstHeading" lang="en">Web scraping</h1>

 To extract only the heading text for this <h1> node, and not include all the
 HTML syntax we use html_text() which returns the heading text we see at the
top of the Web Scraping Wikipedia page.

 scraping_wiki %>%
 html_nodes ("h1") %>%
 html_text ()
 ## [1] "Web scraping"

 If we want to identify all the second level headings on the webpage we follow the
same process but instead select the <h2> nodes. In this example we see there are
ten second level headings on the Web Scraping Wikipedia page.

 scraping_wiki %>%
 html_nodes ("h2") %>%
 html_text ()
 ## [1] "Contents"
 ## [2] "Techniques[edit]"
 ## [3] "Legal issues[edit]"
 ## [4] "Notable tools[edit]"
 ## [5] "See also[edit]"
 ## [6] "Technical measures to stop bots[edit]"
 ## [7] "Articles[edit]"
 ## [8] "References[edit]"
 ## [9] "See also[edit]"
 ## [10] "Navigation menu"

16.2 Scraping HTML Text

http://dx.doi.org/10.1007/978-3-319-45599-0_20

136

 Next, we can move on to extracting much of the text on this webpage which is in
paragraph form. We can follow the same process illustrated above but instead we’ll
select all <p> nodes. This selects the 17 paragraph elements from the web page;
which we can examine by subsetting the list p_nodes to see the fi rst line of each
paragraph along with the HTML syntax . Just as before, to extract the text from these
nodes and coerce them to a character string we simply apply html_text() .

 p_nodes <- scraping_wiki %>%
 html_nodes ("p")

 length (p_nodes)
 ## [1] 17

 p_nodes[1:6]
 ## {xml:nodeset (6)}
 ## [1] <p>Web scraping (web harvesting or web data extract …
 ## [2] <p>Web scraping is closely related to <a href="/wiki/Web_indexing" t …
 ## [3] <p/>
 ## [4] <p/>
 ## [5] <p>Web scraping is the process of automatically collecting informati …
 ## [6] <p>Web scraping may be against the <a href="/wiki/Terms_of_use" titl …

 p_text <- scraping_wiki %>%
 html_nodes ("p") %>%
 html_text ()

 p_text[1]
 ## [1] "Web scraping (web harvesting or web data extraction) is a
computer software technique of extracting information from web-
sites. Usually, such software programs simulate human exploration
of the World Wide Web by either implementing low-level Hypertext
Transfer Protocol (HTTP), or embedding a fully-fl edged web browser,
such as Mozilla Firefox."

 Not too bad; however, we may not have captured all the text that we were hoping
for. Since we extracted text for all <p> nodes, we collected all identifi ed paragraph
text; however, this does not capture the text in the bulleted lists . For example, when
you look at the Web Scraping Wikipedia page you will notice a signifi cant amount
of text in bulleted list format following the third paragraph under the Techniques
heading. If we look at our data we’ll see that that the text in this list format are not
capture between the two paragraphs:

 p_text[5]
 ## [1] "Web scraping is the process of automatically collecting
information from the World Wide Web. It is a fi eld with active
developments sharing a common goal with the semantic web vision,
an ambitious initiative that still requires breakthroughs in text
processing, semantic understanding, artifi cial intelligence and
human-computer interactions. Current web scraping solutions range
from the ad-hoc, requiring human effort, to fully automated sys-
tems that are able to convert entire web sites into structured
information, with limitations."

16 Scraping Data

137

 p_text[6]
 ## [1] "Web scraping may be against the terms of use of some websites.
The enforceability of these terms is unclear.[4] While outright duplica-
tion of original expression will in many cases be illegal, in the United
States the courts ruled in Feist Publications v. Rural Telephone Service
that duplication of facts is allowable. U.S. courts have acknowledged
that users of \"scrapers\" or \"robots\" may be held liable for commit-
ting trespass to chattels,[5][6] which involves a computer system itself
being considered personal property upon which the user of a scraper is
 trespassing. The best known of these cases, eBay v. Bidder's Edge,
resulted in an injunction ordering Bidder's Edge to stop accessing, col-
lecting, and indexing auctions from the eBay web site. This case involved
automatic placing of bids, known as auction sniping. However, in order
to succeed on a claim of trespass to chattels, the plaintiff must dem-
onstrate that the defendant intentionally and without authorization
interfered with the plaintiff's possessory interest in the computer sys-
tem and that the defendant's unauthorized use caused damage to the plain-
tiff. Not all cases of web spidering brought before the courts have been
considered trespass to chattels.[7]"

 This is because the text in this list format are contained in nodes. To capture
the text in lists, we can use the same steps as above but we select specifi c nodes which
represent HTML lists components. We can approach extracting list text two ways.

First, we can pull all list elements (). When scraping all text, the
resulting data structure will be a character string vector with each element repre-
senting a single list consisting of all list items in that list. In our running example
there are 21 list elements as shown in the example that follows. You can see the fi rst
list scraped is the table of contents and the second list scraped is the list in the
Techniques section.

 ul_text <- scraping_wiki %>%
 html_nodes ("ul") %>%
 html_text ()

 length (ul_text)
 ## [1] 21

 ul_text[1]
 ## [1] "\n1 Techniques\n2 Legal issues\n3 Notable tools\n4 See
also\n5 Technical measures to stop bots\n6 Articles\n7 References\
n8 See also\n"

 # read the fi rst 200 characters of the second list
 substr (ul_text[2], start = 1, stop = 200)
 ## [1] "\nHuman copy-and-paste: Sometimes even the best web-
scraping technology cannot replace a human’s manual examination
and copy-and-paste, and sometimes this may be the only workable
solution when the web"

 An alternative approach is to pull all nodes. This will pull the text con-
tained in each list item for all the lists. In our running example there’s 146 list items
that we can extract from this Wikipedia page. The fi rst eight list items are the list of
contents we see towards the top of the page. List items 9–17 are the list elements

16.2 Scraping HTML Text

138

contained in the “Techniques” section, list items 18–44 are the items listed under the
“Notable Tools” section, and so on.

 li_text <- scraping_wiki %>%
 html_nodes ("li") %>%
 html_text ()

 length (li_text)
 ## [1] 147

 li_text[1:8]
 ## [1] "1 Techniques" "2 Legal issues"
 ## [3] "3 Notable tools" "4 See also"
 ## [5] "5 Technical measures to stop bots" "6 Articles"
 ## [7] "7 References" "8 See also"

 At this point we may believe we have all the text desired and proceed with join-
ing the paragraph (p_text) and list (ul_text or li_text) character strings
and then perform the desired textual analysis. However, we may now have captured
 more text than we were hoping for. For example, by scraping all lists we are also
capturing the listed links in the left margin of the webpage. If we look at the 104–
136 list items that we scraped, we’ll see that these texts correspond to the left mar-
gin text.

 li_text[104:136]
 ## [1] "Main page" "Contents" "Featured content"
 ## [4] "Current events" "Random article" "Donate to Wikipedia"
 ## [7] "Wikipedia store" "Help" "About Wikipedia"
 ## [10] "Community portal" "Recent changes" "Contact page"
 ## [13] "What links here" "Related changes" "Upload fi le"
 ## [16] "Special pages" "Permanent link" "Page information"
 ## [19] "Wikidata item" "Cite this page" "Create a book"
 ## [22] "Download as PDF" "Printable version" "Català"
 ## [25] "Deutsch" "Español" "Français"
 ## [28] "Íslenska" "Italiano" "Latviešu"
 ## [31] "Nederlands" " " "Cpпcки / srpski"

 If we desire to scrape every piece of text on the webpage than this won’t be of
concern. In fact, if we want to scrape all the text regardless of the content they rep-
resent there is an easier approach. We can capture all the content to include text in
paragraph (<p>), lists (, , and), and even data in tables (<table>)
by using <div> . This is because these other elements are usually a subsidiary of an
 HTML division or section so pulling all <div> nodes will extract all text contained
in that division or section regardless if it is also contained in a paragraph or list .

 all_text <- scraping_wiki %>%
 html_nodes ("div") %>%
 html_text ()

16 Scraping Data

139

16.2.2 Scraping Specifi c HTML Nodes

 However, if we are concerned only with specifi c content on the webpage then we
need to make our HTML node selection process a little more focused. To do this we,
we can use our browser’s developer tools to examine the webpage we are scraping
and get more details on specifi c nodes of interest. If you are using Chrome or Firefox
you can open the developer tools by clicking F12 (Cmd + Opt + I for Mac) or for
Safari you would use Command-Option-I. An additional option which is recom-
mended by Hadley Wickham is to use selectorgadget.com, a Chrome extension, to
help identify the web page elements you need. 6

 Once the developer’s tools are opened your primary concern is with the element
selector . This is located in the top lefthand corner of the developers tools window.

 Developer Tools: Element Selector

 Once you’ve selected the element selector you can now scroll over the elements
of the webpage which will cause each element you scroll over to be highlighted.
Once you’ve identifi ed the element you want to focus on, select it. This will cause
the element to be identifi ed in the developer tools window. For example, if I am only
interested in the main body of the Web Scraping content on the Wikipedia page then
I would select the element that highlights the entire center component of the web-
page. This highlights the corresponding element <div id="bodyContent"
class="mw-body-content"> in the developer tools window as the following
illustrates.

6 You can learn more about selectors at fl ukeout.github.io

16.2 Scraping HTML Text

flukeout.github.io

140

 Selecting Content of Interest

 I can now use this information to select and scrape all the text from this specifi c
 <div> node by calling the ID name (“#mw-content-text”) in html_nodes() . 7
As you can see below, the text that is scraped begins with the fi rst line in the main
body of the Web Scraping content and ends with the text in the See Also section
which is the last bit of text directly pertaining to Web Scraping on the webpage.
Explicitly, we have pulled the specifi c text associated with the web content we desire.

 body_text <- scraping_wiki %>%
 html_nodes ("#mw-content-text") %>%
 html_text ()

 # read the fi rst 207 characters
 substr (body_text, start = 1, stop = 207)
 ## [1] "Web scraping (web harvesting or web data extraction) is a
computer software technique of extracting information from web-
sites. Usually, such software programs simulate human exploration
of the World Wide Web"

 # read the last 73 characters
 substr (body_text, start = nchar (body_text)-73, stop = nchar (body_text))
 ## [1] "See also[edit]\n\nData scraping\nData wrangling\nKnowledge
extraction\n\n\n\n\n\n\n\n\n"

7 You can simply assess the name of the ID in the highlighted element or you can right click the
highlighted element in the developer tools window and select Copy selector . You can then paste
directly into ` html_nodes() as it will paste the exact ID name that you need for that element.

16 Scraping Data

141

 Using the developer tools approach allows us to be as specifi c as we desire.
We can identify the class name for a specifi c HTML element and scrape the text for
only that node rather than all the other elements with similar tags. This allows us to
scrape the main body of content as we just illustrated or we can also identify specifi c
headings, paragraphs, lists , and list components if we desire to scrape only these
specifi c pieces of text:

 # Scraping a specifi c heading
 scraping_wiki %>%
 html_nodes ("#Techniques") %>%
 html_text ()
 ## [1] "Techniques"

 # Scraping a specifi c paragraph
 scraping_wiki %>%
 html_nodes ("#mw-content-text > p:nth-child(20)") %>%
 html_text ()
 ## [1] "In Australia, the Spam Act 2003 outlaws some forms of web harvesting,
although this only applies to email addresses.[20][21]"

 # Scraping a specifi c list
 scraping_wiki %>%
 html_nodes ("#mw-content-text > div:nth-child(22)") %>%
 html_text ()
 ## [1] "\n\nApache Camel\nArchive.is\nAutomation Anywhere\nCon-
vertigo\ncURL\nData Toolbar\nDiffbot\nFirebug\nGreasemonkey\nHer-
itrix\nHtmlUnit\nHTTrack\niMacros\nImport.io\nJaxer\nNode.js\
nnokogiri\nPhantomJS\nScraperWiki\nScrapy\nSelenium\nSimpleTest\n
watir\nWget\nWireshark\nWSO2 Mashup Server\nYahoo! Query Language
(YQL)\n\n"

 # Scraping a specifi c reference list item
 scraping_wiki %>%
 html_nodes ("#cite_note-22") %>%
 html_text ()
 ## [1] "̂ \"Web Scraping: Everything You Wanted to Know (but were afraid to ask)\".
Distil Networks. 2015-07-22. Retrieved 2015-11-04. "

16.2.3 Cleaning Up

 With any webscraping activity, especially involving text, there is likely to be some
clean up involved. For example, in the previous example we saw that we can spe-
cifi cally pull the list of Notable Tools ; however, you can see that in between each
 list item rather than a space there contains one or more \n which is used in HTML
to specify a new line. We can clean this up quickly with a little character string
manipulation.

16.2 Scraping HTML Text

142

 library (magrittr)

 scraping_wiki %>%
 html_nodes ("#mw-content-text > div:nth-child(22)") %>%
 html_text ()
 ## [1] "\n\nApache Camel\nArchive.is\nAutomation Anywhere\nConvertigo\ncURL\nData
Toolbar\nDiffbot\nFirebug\nGreasemonkey\nHeritrix\nHtmlUnit\nHTTrack\niMacros\nImport.
io\nJaxer\nNode.js\nnokogiri\nPhantomJS\nScraperWiki\nScrapy\nSelenium\nSimpleTest\n
watir\nWget\nWireshark\nWSO2 Mashup Server\nYahoo! Query Language (YQL)\n\n"

 scraping_wiki %>%
 html_nodes ("#mw-content-text > div:nth-child(22)") %>%
 html_text () %>%
 strsplit (split = "\n") %>%
 unlist () %>%
 .[. != ""]
 ## [1] "Apache Camel" "Archive.is"
 ## [3] "Automation Anywhere" "Convertigo"
 ## [5] "cURL" "Data Toolbar"
 ## [7] "Diffbot" "Firebug"
 ## [9] "Greasemonkey" "Heritrix"
 ## [11] "HtmlUnit" "HTTrack"
 ## [13] "iMacros" "Import.io"
 ## [15] "Jaxer" "Node.js"
 ## [17] "nokogiri" "PhantomJS"
 ## [19] "ScraperWiki" "Scrapy"
 ## [21] "Selenium" "SimpleTest"
 ## [23] "watir" "Wget"
 ## [25] "Wireshark" "WSO2 Mashup Server"
 ## [27] "Yahoo! Query Language (YQL)"

 Similarly, as we saw in our example above with scraping the main body content
(body_text), there are extra characters (i.e. \n , \ , ̂) in the text that we may not
want. Using a little regex we can clean this up so that our character string consists
of only text that we see on the screen and no additional HTML code embedded
throughout the text.

 library (stringr)

 # read the last 700 characters
 substr (body_text, start = nchar (body_text)-700, stop = nchar (body_text))
 ## [1] " 2010). \"Intellectual Property: Website Terms of Use\". Issue 26: June 2010.
LK Shields Solicitors Update. p. 03. Retrieved 2012-04-19. \n̂ National Offi ce for
the Information Economy (February 2004). \"Spam Act 2003: An overview for business\"
(PDF). Australian Communications Authority. p. 6. Retrieved 2009-03-09. \n̂ National
Offi ce for the Information Economy (February 2004). \"Spam Act 2003: A practical
guide for business\" (PDF). Australian Communications Authority. p. 20. Retrieved
2009-03-09. \n̂ \"Web Scraping: Everything You Wanted to Know (but were afraid to
ask)\". Distil Networks. 2015-07-22. Retrieved 2015-11-04. \n\n\nSee
also[edit]\n\nData scraping\nData wrangling\nKnowledge extraction\n\n\n\n\n\n\n\n\n"

16 Scraping Data

143

 # clean up text
 body_text %>%
 str_replace_all (pattern = "\n", replacement = " ") %>%
 str_replace_all (pattern = "[\\^]", replacement = " ") %>%
 str_replace_all (pattern = "\"", replacement = " ") %>%
 str_replace_all (pattern = "\\s+", replacement = " ") %>%
 str_trim (side = "both") %>%

 substr (start = nchar (body_text)-700, stop = nchar (body_text))
 ## [1] "012-04-19. National Offi ce for the Information Economy (February 2004). Spam
Act 2003: An overview for business (PDF). Australian Communications Authority. p. 6.
Retrieved 2009-03-09. National Offi ce for the Information Economy (February 2004).
Spam Act 2003: A practical guide for business (PDF). Australian Communications
Authority. p. 20. Retrieved 2009-03-09. Web Scraping: Everything You Wanted to Know
(but were afraid to ask) . Distil Networks. 2015-07-22. Retrieved 2015-11-04. See
also[edit] Data scraping Data wrangling Knowledge extraction"

 So there we have it, text scraping in a nutshell. Although not all encompassing,
this section covered the basics of scraping text from HTML documents. Whether
you want to scrape text from all common text-containing nodes such as <div> ,
 <p> , and the like or you want to scrape from a specifi c node using the specifi c
ID, this section provides you the basic fundamentals of using rvest to scrape the
text you need. In the next section we move on to scraping data from HTML tables.

16.3 Scraping HTML Table Data

 Another common structure of information storage on the Web is in the form of HTML
tables. This section reiterates some of the information from the previous section;
however, we focus solely on scraping data from HTML tables. The simplest approach
to scraping HTML table data directly into R is by using either the rvest package or the
 XML package . To illustrate, I will focus on the BLS employment statistics webpage
which contains multiple HTML tables from which we can scrape data.

16.3.1 Scraping HTML Tables with rvest

 Recall that HTML elements are written with a start tag, an end tag, and with the
content in between: <tagname>content</tagname> . HTML tables are con-
tained within <table> tags; therefore, to extract the tables from the BLS employ-
ment statistics webpage we fi rst use the html_nodes() function to select the
 <table> nodes. In this case we are interested in all table nodes that exist on the
webpage. In this example, html_nodes captures 15 HTML tables. This includes
data from the 10 data tables seen on the webpage but also includes data from a few
additional tables used to format parts of the page (i.e. table of contents, table of
fi gures, advertisements).

16.3 Scraping HTML Table Data

144

 library (rvest)

 webpage <- read_html ("http://www.bls.gov/web/empsit/cesbmart.htm")

 tbls <- html_nodes (webpage, "table")

 head (tbls)
 ## {xml:nodeset (6)}
 ## [1] <table id="main-content-table">\n\t<tr>\n\t\t<td id="secon …
 ## [2] <table id="Table1" class="regular" cellspacing="0" cellpadding="0" x …
 ## [3] <table id="Table2" class="regular" cellspacing="0" cellpadding="0" x …
 ## [4] <table id="Table3" class="regular" cellspacing="0" cellpadding="0" x …
 ## [5] <table id="Table4" class="regular" cellspacing="0" cellpadding="0" x …
 ## [6] <table id="Exhibit1" class="regular" cellspacing="0" cellpadding="0" …

 Remember that html_nodes() does not parse the data; rather, it acts as a CSS
selector. To parse the HTML table data we use html_table() , which would cre-
ate a list containing 15 data frames . However, rarely do we need to scrape every
 HTML table from a page, especially since some HTML tables don’t catch any infor-
mation we are likely interested in (i.e. table of contents, table of fi gures, footers).

 More often than not we want to parse specifi c tables. Let’s assume we want to
parse the second and third tables on the webpage:

• Table 2. Nonfarm employment benchmarks by industry, March 2014 (in thou-
sands) and

• Table 3. Net birth/death estimates by industry supersector, April–December 2014
(in thousands)

 This can be accomplished two ways. First, we can assess the previous tbls list
and try to identify the table(s) of interest. In this example it appears that tbls list
items 3 and 4 correspond with Table 2 and Table 3, respectively. We can then subset
the list of table nodes prior to parsing the data with html_table() . This results
in a list of two data frames containing the data of interest.

 # subset list of table nodes for items 3 & 4
 tbls_ls <- webpage %>%
 html_nodes ("table") %>%
 .[3:4] %>%
 html_table (fi ll = TRUE)

 str (tbls_ls)
 ## List of 2
 ## $:'data.frame': 147 obs. of 6 variables:
 ## ..$ CES Industry Code : chr [1:147] "Amount" "00-000000" "05- 000000" …
 ## ..$ CES Industry Title: chr [1:147] "Percent" "Total nonfarm" …
 ## ..$ Benchmark : chr [1:147] NA "137,214" "114,989" "18,675" …
 ## ..$ Estimate : chr [1:147] NA "137,147" "114,884" "18,558" …
 ## ..$ Differences : num [1:147] NA 67 105 117 -50 -12 -16 -2.8 …
 ## ..$ NA : chr [1:147] NA "(1)" "0.1" "0.6" …
 ## $:'data.frame': 11 obs. of 12 variables:
 ## ..$ CES Industry Code : chr [1:11] "10-000000" "20-000000" "30-000000" …

16 Scraping Data

145

 ## ..$ CES Industry Title: chr [1:11] "Mining and logging" "Construction" …
 ## ..$ Apr : int [1:11] 2 35 0 21 0 8 81 22 82 12 …
 ## ..$ May : int [1:11] 2 37 6 24 5 8 22 13 81 6 …
 ## ..$ Jun : int [1:11] 2 24 4 12 0 4 5 -14 86 6 …
 ## ..$ Jul : int [1:11] 2 12 -3 7 -1 3 35 7 62 -2 …
 ## ..$ Aug : int [1:11] 1 12 4 14 3 4 19 21 23 3 …
 ## ..$ Sep : int [1:11] 1 7 1 9 -1 -1 -12 12 -33 -2 …
 ## ..$ Oct : int [1:11] 1 12 3 28 6 16 76 35 -17 4 …
 ## ..$ Nov : int [1:11] 1 -10 2 10 3 3 14 14 -22 1 …
 ## ..$ Dec : int [1:11] 0 -21 0 4 0 10 -10 -3 4 1 …
 ## ..$ CumulativeTotal : int [1:11] 12 108 17 129 15 55 230 107 266 29 …

 An alternative approach, which is more explicit, is to use the element selector
process described in the previous section to call the table ID name.

 # empty list to add table data to
 tbls2_ls <- list ()

 # scrape Table 2. Nonfarm employment…
 tbls2_ls$Table1 <- webpage %>%
 html_nodes ("#Table2") %>%
 html_table (fi ll = TRUE) %>%
 .[[1]]

 # Table 3. Net birth/death…
 tbls2_ls$Table2 <- webpage %>%
 html_nodes ("#Table3") %>%
 html_table () %>%
 .[[1]]

 str (tbls2_ls)
 ## List of 2
 ## $ Table1:'data.frame': 147 obs. of 6 variables:
 ## ..$ CES Industry Code : chr [1:147] "Amount" "00-000000" "05- 000000" …
 ## ..$ CES Industry Title: chr [1:147] "Percent" "Total nonfarm" …
 ## ..$ Benchmark : chr [1:147] NA "137,214" "114,989" "18,675" …
 ## ..$ Estimate : chr [1:147] NA "137,147" "114,884" "18,558" …
 ## ..$ Differences : num [1:147] NA 67 105 117 -50 -12 -16 -2.8 …
 ## ..$ NA : chr [1:147] NA "(1)" "0.1" "0.6" …
 ## $ Table2:'data.frame': 11 obs. of 12 variables:
 ## ..$ CES Industry Code : chr [1:11] "10-000000" "20-000000" "30-000000" …
 ## ..$ CES Industry Title: chr [1:11] "Mining and logging" "Construction" …
 ## ..$ Apr : int [1:11] 2 35 0 21 0 8 81 22 82 12 …
 ## ..$ May : int [1:11] 2 37 6 24 5 8 22 13 81 6 …
 ## ..$ Jun : int [1:11] 2 24 4 12 0 4 5 -14 86 6 …
 ## ..$ Jul : int [1:11] 2 12 -3 7 -1 3 35 7 62 -2 …
 ## ..$ Aug : int [1:11] 1 12 4 14 3 4 19 21 23 3 …
 ## ..$ Sep : int [1:11] 1 7 1 9 -1 -1 -12 12 -33 -2 …
 ## ..$ Oct : int [1:11] 1 12 3 28 6 16 76 35 -17 4 …
 ## ..$ Nov : int [1:11] 1 -10 2 10 3 3 14 14 -22 1 …
 ## ..$ Dec : int [1:11] 0 -21 0 4 0 10 -10 -3 4 1 …
 ## ..$ CumulativeTotal : int [1:11] 12 108 17 129 15 55 230 107 266 29 …

16.3 Scraping HTML Table Data

146

 One issue to note is when using rvest ’s html_table() to read a table with
split column headings as in Table 2. Nonfarm employment… . html_table will
cause split headings to be included and can cause the fi rst row to include parts of the
headings. We can see this with Table 2. This requires a little clean up.

 head (tbls2_ls[[1]], 4)
 ## CES Industry Code CES Industry Title Benchmark Estimate Differences NA
 ## 1 Amount Percent <NA> <NA> NA <NA>
 ## 2 00-000000 Total nonfarm 137,214 137,147 67 (1)
 ## 3 05-000000 Total private 114,989 114,884 105 0.1
 ## 4 06-000000 Goods-producing 18,675 18,558 117 0.6

 # remove row 1 that includes part of the headings
 tbls2_ls[[1]] <- tbls2_ls[[1]][-1,]

 # rename table headings
 colnames (tbls2_ls[[1]]) <- c ("CES_Code", "Ind_Title", "Benchmark",
 "Estimate", "Amt_Diff", "Pct_Diff")

 head (tbls2_ls[[1]], 4)
 ## CES_Code Ind_Title Benchmark Estimate Amt_Diff Pct_Diff
 ## 2 00-000000 Total nonfarm 137,214 137,147 67 (1)
 ## 3 05-000000 Total private 114,989 114,884 105 0.1
 ## 4 06-000000 Goods-producing 18,675 18,558 117 0.6
 ## 5 07-000000 Service-providing 118,539 118,589 -50 (1)

16.3.2 Scraping HTML Tables with XML

 An alternative to rvest for table scraping is to use the XML package. The XML
package provides a convenient readHTMLTable() function to extract data from
 HTML tables in HTML documents. By passing the URL to readHTMLTable() ,
the data in each table is read and stored as a data frame . In a situation like our run-
ning example where multiple tables exists, the data frames will be stored in a list
similar to rvest ’s html_table .

 library (XML)

 url <- "http://www.bls.gov/web/empsit/cesbmart.htm"

 # read in HTML data
 tbls_xml <- readHTMLTable (url)

 typeof (tbls_xml)
 ## [1] "list"

 length (tbls_xml)
 ## [1] 15

16 Scraping Data

147

 You can see that tbls_xml captures the same 15 <table> nodes that html_
nodes captured. To capture the same tables of interest we previously discussed
(Table 2. Nonfarm employment… and Table 3. Net birth/death…) we can use a cou-
ple approaches. First, we can assess str(tbls_xml) to identify the tables of
interest and perform normal list subsetting. In our example list items 3 and 4 cor-
respond with our tables of interest.

 head (tbls_xml[[3]])
 ## V1 V2 V3 V4 V5 V6
 ## 1 00-000000 Total nonfarm 137,214 137,147 67 (1)
 ## 2 05-000000 Total private 114,989 114,884 105 0.1
 ## 3 06-000000 Goods-producing 18,675 18,558 117 0.6
 ## 4 07-000000 Service-providing 118,539 118,589 -50 (1)
 ## 5 08-000000 Private service-providing 96,314 96,326 -12 (1)
 ## 6 10-000000 Mining and logging 868 884 -16 -1.8

 head (tbls_xml[[4]], 3)
 ## CES Industry Code CES Industry Title Apr May Jun Jul Aug Sep Oct Nov Dec
 ## 1 10-000000 Mining and logging 2 2 2 2 1 1 1 1 0
 ## 2 20-000000 Construction 35 37 24 12 12 7 12 -10 -21
 ## 3 30-000000 Manufacturing 0 6 4 -3 4 1 3 2 0
 ## CumulativeTotal
 ## 1 12
 ## 2 108
 ## 3 17

 Second, we can use the which argument in readHTMLTable() which
restricts the data importing to only those tables specifi ed numerically.

 # only parse the 3rd and 4th tables
 emp_ls <- readHTMLTable (url, which = c (3, 4))

 str (emp_ls)
 ## List of 2
 ## $ Table2:'data.frame': 145 obs. of 6 variables:
 ## ..$ V1: Factor w/ 145 levels "00-000000","05-000000",..: 1 2 3 4 5 6 7 8 …
 ## ..$ V2: Factor w/ 143 levels "Accommodation",..: 130 131 52 116 102 74 …
 ## ..$ V3: Factor w/ 145 levels "1,010.3","1,048.3",..: 40 35 48 37 145 140 …
 ## ..$ V4: Factor w/ 145 levels "1,008.4","1,052.3",..: 41 34 48 36 144 142 …
 ## ..$ V5: Factor w/ 123 levels "-0.3","-0.4",..: 113 68 71 48 9 19 29 11 …
 ## ..$ V6: Factor w/ 56 levels "-0.1","-0.2",..: 30 31 36 30 30 16 28 14 29 …
 ## $ Table3:'data.frame': 11 obs. of 12 variables:
 ## ..$ CES Industry Code : Factor w/ 11 levels "10-000000","20- 000000",..:1 …
 ## ..$ CES Industry Title: Factor w/ 11 levels "263","Construction",..: 8 2 …
 ## ..$ Apr : Factor w/ 10 levels "0","12","2","204",..: 3 7 1 …
 ## ..$ May : Factor w/ 10 levels "129","13","2",..: 3 6 8 5 7 …
 ## ..$ Jun : Factor w/ 10 levels "-14","0","12",..: 5 6 7 3 2 …
 ## ..$ Jul : Factor w/ 10 levels "-1","-2","-3",..: 6 5 3 10 …
 ## ..$ Aug : Factor w/ 9 levels "-19","1","12",..: 2 3 9 4 8 …
 ## ..$ Sep : Factor w/ 9 levels "-1","-12","-2",..: 5 8 5 9 1 …
 ## ..$ Oct : Factor w/ 10 levels "-17","1","12",..: 2 3 6 5 9 …
 ## ..$ Nov : Factor w/ 8 levels "-10","-15","-22",..: 4 1 7 5 …
 ## ..$ Dec : Factor w/ 8 levels "-10","-21","-3",..: 4 2 4 7 …
 ## ..$ CumulativeTotal : Factor w/ 10 levels "107","108","12",..: 3 2 6 4 …

16.3 Scraping HTML Table Data

148

 The third option involves explicitly naming the tables to parse. This process uses
the element selector process described in the previous section to call the table by
name. 8 We use getNodeSet() to select the specifi ed tables of interest. However,
a key difference here is rather than copying the table ID names you want to copy the
XPath. You can do this with the following: After you’ve highlighted the table ele-
ment of interest with the element selector , right click the highlighted element in the
developer tools window and select Copy XPath. From here we just use readHT-
MLTable() to convert to data frames and we have our desired tables.

 library (RCurl)

 # parse url
 url_parsed <- htmlParse (getURL (url), asText = TRUE)

 # select table nodes of interest
 tableNodes <- getNodeSet (url_parsed, c ('//*[@id="Table2"]', '//*[@
id="Table3"]'))

 # convert HTML tables to data frames
 bls_table2 <- readHTMLTable (tableNodes[[1]])
 bls_table3 <- readHTMLTable (tableNodes[[2]])

 head (bls_table2)
 ## V1 V2 V3 V4 V5 V6
 ## 1 00-000000 Total nonfarm 137,214 137,147 67 (1)
 ## 2 05-000000 Total private 114,989 114,884 105 0.1
 ## 3 06-000000 Goods-producing 18,675 18,558 117 0.6
 ## 4 07-000000 Service-providing 118,539 118,589 -50 (1)
 ## 5 08-000000 Private service-providing 96,314 96,326 -12 (1)
 ## 6 10-000000 Mining and logging 868 884 -16 -1.8

 head (bls_table3, 3)
 ## CES Industry Code CES Industry Title Apr May Jun Jul Aug Sep Oct Nov Dec
 ## 1 10-000000 Mining and logging 2 2 2 2 1 1 1 1 0
 ## 2 20-000000 Construction 35 37 24 12 12 7 12 -10 -21
 ## 3 30-000000 Manufacturing 0 6 4 -3 4 1 3 2 0
 ## CumulativeTotal
 ## 1 12
 ## 2 108
 ## 3 17

 A few benefi ts of XML ’s readHTMLTable that are routinely handy include:

• We can specify names for the column headings
• We can specify the classes for each column
• We can specify rows to skip

 For instance, if you look at bls_table2 above notice that because of the split
column headings on Table 2. Nonfarm employment… readHTMLTable stripped
and replaced the headings with generic names because R does not know which variable
names should align with each column. We can correct for this with the following:

8 See Sect. 16.2.2 Scraping Specifi c HTML Nodes for details regarding the element selector
process.

16 Scraping Data

149

 bls_table2 <- readHTMLTable (tableNodes[[1]],
 header = c ("CES_Code", "Ind_Title", "Benchmark",
 "Estimate", "Amt_Diff", "Pct_Diff"))

 head (bls_table2)
 ## CES_Code Ind_Title Benchmark Estimate Amt_Diff Pct_Diff
 ## 1 00-000000 Total nonfarm 137,214 137,147 67 (1)
 ## 2 05-000000 Total private 114,989 114,884 105 0.1
 ## 3 06-000000 Goods-producing 18,675 18,558 117 0.6
 ## 4 07-000000 Service-providing 118,539 118,589 -50 (1)
 ## 5 08-000000 Private service-providing 96,314 96,326 -12 (1)
 ## 6 10-000000 Mining and logging 868 884 -16 -1.8

 Also, for bls_table3 note that the net birth/death values parsed have been
converted to factor levels . We can use the colClasses argument to correct this.

 str (bls_table3)
 ## 'data.frame': 11 obs. of 12 variables:
 ## $ CES Industry Code : Factor w/ 11 levels "10-000000","20- 000000",..: 1 2 …
 ## $ CES Industry Title: Factor w/ 11 levels "263","Construction",..: 8 2 7 …
 ## $ Apr : Factor w/ 10 levels "0","12","2","204",..: 3 7 1 5 …
 ## $ May : Factor w/ 10 levels "129","13","2",..: 3 6 8 5 7 9 …
 ## $ Jun : Factor w/ 10 levels "-14","0","12",..: 5 6 7 3 2 7 …
 ## $ Jul : Factor w/ 10 levels "-1","-2","-3",..: 6 5 3 10 1 7 …
 ## $ Aug : Factor w/ 9 levels "-19","1","12",..: 2 3 9 4 8 9 5 …
 ## $ Sep : Factor w/ 9 levels "-1","-12","-2",..: 5 8 5 9 1 1 …
 ## $ Oct : Factor w/ 10 levels "-17","1","12",..: 2 3 6 5 9 4 …
 ## $ Nov : Factor w/ 8 levels "-10","-15","-22",..: 4 1 7 5 8 …
 ## $ Dec : Factor w/ 8 levels "-10","-21","-3",..: 4 2 4 7 4 6 …
 ## $ CumulativeTotal : Factor w/ 10 levels "107","108","12",..: 3 2 6 4 5 …

 bls_table3 <- readHTMLTable (tableNodes[[2]],
 colClasses = c ("character","character",
 rep ("integer", 10)))

 str (bls_table3)
 ## 'data.frame': 11 obs. of 12 variables:
 ## $ CES Industry Code : Factor w/ 11 levels "10-000000","20-
000000",..: 1 2 …
 ## $ CES Industry Title: Factor w/ 11 levels "263","Construction",..:
8 2 7 …
 ## $ Apr : int 2 35 0 21 0 8 81 22 82 12 …
 ## $ May : int 2 37 6 24 5 8 22 13 81 6 …
 ## $ Jun : int 2 24 4 12 0 4 5 -14 86 6 …
 ## $ Jul : int 2 12 -3 7 -1 3 35 7 62 -2 …
 ## $ Aug : int 1 12 4 14 3 4 19 21 23 3 …
 ## $ Sep : int 1 7 1 9 -1 -1 -12 12 -33 -2 …
 ## $ Oct : int 1 12 3 28 6 16 76 35 -17 4 …
 ## $ Nov : int 1 -10 2 10 3 3 14 14 -22 1 …
 ## $ Dec : int 0 -21 0 4 0 10 -10 -3 4 1 …
 ## $ CumulativeTotal : int 12 108 17 129 15 55 230 107 266 29 …

 Between rvest and XML , scraping HTML tables is relatively easy once you get fl u-
ent with the syntax and the available options. This section covers just the basics of both
these packages to get you moving forward with scraping tables. In the next section we
move on to working with application program interfaces (APIs) to get data from the web.

16.3 Scraping HTML Table Data

150

16.4 Working with APIs

 An application-programming interface (API) in a nutshell is a method of communi-
cation between software programs. APIs allow programs to interact and use each
other’s functions by acting as a middle man. Why is this useful? Let’s say you want
to pull weather data from the NOAA. You have a few options:

• You could query the data and download the spreadsheet or manually cut-n-paste
the desired data and then impo rt into R . Doesn’t get you any coolness points.

• You could use some webscraping techniques previously covered to parse the
desired data. Golf clap. The downfall of this strategy is if NOAA changes their
website structure down the road your code will need to be adjusted.

• Or, you can use the rnoaa package which allows you to send specifi c instructions
to the NOAA API via R , the API will then perform the action requested and
return the desired information. The benefi t of this strategy is if the NOAA
changes its website structure it won’t impact the API data retreival structure
which means no impact to your code. Standing ovation!

 Consequently, APIs provide consistency in data retrieval processes which can be
essential for recurring analyses. Luckily, the use of APIs by organizations that col-
lect data are growing exponentially. This is great for you and I as more and more
data continues to be at our fi nger tips. So what do you need to get started?

16.4.1 Prerequisites?

 Each API is unique; however, there are a few fundamental pieces of information
you’ll need to work with an API. First, the reason you’re using an API is to request
specifi c types of data from a specifi c data set from a specifi c organization . You at
least need to know a little something about each one of these:

 1. The URL for the organization and data you are pulling. Most pre-built API pack-
ages already have this connection established but when using httr you’ll need
to specify.

 2. The data set you are trying to pull from. Most organizations have numerous data
sets to peruse so you need to make yourself familiar with the names of the avail-
able data sets.

 3. The data content. You’ll need to specify the specifi c data variables you want the
 API to retrieve so you’ll need to be familiar with, or have access to, the data library .

 In addition to these key components you will also, typically, need to provide a
form of identifi cation and/or authorization. This is done via:

 1. API key (aka token). A key is used to identify the user along with track and con-
trol how the API is being used (guard against malicious use). A key is often
obtained by supplying basic information (i.e. name, email) to the organization
and in return they give you a multi-digit key.

16 Scraping Data

151

 2. OAuth. OAuth is an authorization framework that provides credentials as proof
for access to certain information. 9 Multiple forms of credentials exist and OAuth
can actually be a fairly confusing topic; however, the httr package has simpli-
fi ed this greatly which we demonstrate at the end of this section.

 Rather than dwell on these components, they’ll likely become clearer as we
progress through examples. So, let’s move on to the fun stuff.

16.4.2 Existing API Packages

 Like everything else you do in R , when looking to work with an API your fi rst ques-
tion should be “Is there a package for that?” R has an extensive list of packages in
which API data feeds have been hooked into R. You can fi nd a slew of them scat-
tered throughout the CRAN Task View: Web Technologies and Services web page, 10
on the rOpenSci web page, 11 and elsewhere. 12

 To give you a taste for how these packages typically work, I’ll quickly cover
three packages :

• blsAPI for pulling U.S. Bureau of Labor Statistics data
• rnoaa for pulling NOAA climate data
• rtimes for pulling data from multiple APIs offered by the New York Times

16.4.2.1 blsAPI

 The blsAPI allows users to request data for one or multiple series through the
U.S. Bureau of Labor Statistics API . To use the blsAPI app you only need knowledge
on the data; no key or OAuth are required. I lllustrate by pulling Mass Layoff Statistics
data but you will fi nd all the available data sets and their series code information at
 http://www.bls.gov/help/hlpforma.htm.

 The key information you will be concerned about is contained in the series iden-
tifi er. For the Mass Layoff data the series ID code is MLUMS00NN0001003. Each
component of this series code has meaning and can be adjusted to get specifi c Mass
Layoff data. The BLS provides this breakdown for what each component means
along with the available list of codes for this data set. 13 For instance, the S00
(MLUM S00 NN0001003) component represents the division/state. S00 will pull for
all states but I could change to D30 to pull data for the Midwest or S39 to pull for
Ohio. The N0001 (MLUMS00N N0001 003) component represents the industry/
demographics. N0001 pulls data for all industries but I could change to N0008 to
pull data for the food industry or C00A2 for all persons age 30–44.

9 Read more about OAuth at https://oauth.net/
10 https://cran.r-project.org/web/views/WebTechnologies.html
11 https://ropensci.org/packages/
12 http://stats.stackexchange.com/questions/12670/data-apis-feeds-available-as-packages-in-r
13 http://www.bls.gov/help/hlpforma.htm#ML

16.4 Working with APIs

http://www.bls.gov/help/hlpforma.htm.
https://oauth.net/
https://cran.r-project.org/web/views/WebTechnologies.html
https://ropensci.org/packages/
http://stats.stackexchange.com/questions/12670/data-apis-feeds-available-as-packages-in-r
http://www.bls.gov/help/hlpforma.htm#ML

152

 I simply call the series identifi er in the blsAPI() function which pulls the
JSON data object. We can then use the fromJSON() function from the rjson
 package to conve rt to an R data object (a list in this case). You can see that the raw
data pull provides a list of 4 items. The fi rst three provide some metadata info (sta-
tus, response time, and message if applicable). The data we are concerned about is
in the 4th (Results$series$data) list item which contains 31 observations.

 library (rjson)
 library (blsAPI)

 # supply series identifi er to pull data (initial pull is in JSON data)
 layoffs_json <- blsAPI ('MLUMS00NN0001003')

 # convert from JSON into R object
 layoffs <- fromJSON (layoffs_json)

 List of 4
 $ status : chr "REQUEST_SUCCEEDED"
 $ responseTime: num 38
 $ message : list ()
 $ Results :List of 1
 ..$ series:List of 1
 $: List of 2
 $ seriesID: chr "MLUMS00NN0001003"
 $ data :List of 31
 $: List of 5
 $ year : chr "2013"
 $ period : chr "M05"
 $ periodName: chr "May"
 $ value : chr "1383"

 One of the inconveniences of an API is we do not get to specify how the data we
receive is formatted. This is a minor price to pay considering all the other benefi ts
 APIs provide. Once we understand the received data format we can typically re-
format using a little list subsetting which we previously covered and looping which
we’ll cover in a future chapter.

 # create empty data frame to fi ll
 layoff_df <- data.frame (NULL)

 # extract data of interest from each nested year-month list
 for(i in seq_along (layoffs$Results$series[[1]]$data)) {
 df <- data.frame (layoffs$Results$series[[1]]$data[i][[1]][1:4])
 layoff_df <- rbind (layoff_df, df)
 }

 head (layoff_df)
 ## year period periodName value
 ## 1 2013 M05 May 1383
 ## 2 2013 M04 April 1174
 ## 3 2013 M03 March 1132
 ## 4 2013 M02 February 960
 ## 5 2013 M01 January 1528
 ## 6 2012 M13 Annual 17080

16 Scraping Data

153

 blsAPI also allows you to pull multiple data series and has optional arguments
(i.e. start year, end year, etc.). You can see other options at help(package =
 blsAPI) .

16.4.2.2 rnoaa

 The rnoaa package allows users to request climate data from multiple data sets
through the National Climatic Data Center API. 14 Unlike blsAPI , the rnoaa app
requires you to have an API key . To request a key go to http://www.ncdc.noaa.gov/
cdo-web/token and provide your email; a key will immediately be emailed to you.

 key <- "vXTdwNoAVx…" # truncated

 With the key in hand, we can begin pulling data. The NOAA provides a compre-
hensive metadata library to familiarize yourself with the data available. Let’s start
by pulling all the available NOAA climate stations near my residence. I live in
Montgomery county Ohio so we can fi nd all the stations in this county by inserting
the FIPS code. Furthermore, I’m interested in stations that provide data for the
GHCND data set which contains records on numerous daily variables such as
“maximum and minimum temperature, total daily precipitation, snowfall, and snow
depth; however, about two thirds of the stations report precipitation only.” See
 ?ncdc_stations for other data sets available via rnoaa .

 library (rnoaa)

 stations <- ncdc_stations (datasetid ='GHCND',
 locationid='FIPS:39113',
 token = key)

 stations$data
 ## Source: local data frame [23 x 9]
 ##
 ## elevation mindate maxdate latitude
 ## (dbl) (chr) (chr) (dbl)
 ## 1 294.1 2009-02-09 2014-06-25 39.6314
 ## 2 251.8 2009-03-01 2016-01-16 39.6807
 ## 3 295.7 2009-03-25 2012-09-08 39.6252
 ## 4 298.1 2009-08-24 2012-07-20 39.8070
 ## 5 304.5 2010-04-02 2016-01-12 39.6949
 ## 6 283.5 2012-07-01 2016-01-16 39.7373
 ## 7 301.4 2012-07-29 2016-01-16 39.8795
 ## 8 317.3 2012-09-08 2016-01-12 39.8329
 ## 9 298.1 2012-09-07 2016-01-15 39.6247
 ## 10 250.5 2012-09-11 2016-01-08 39.7180
 ## .. … … … …
 ## Variables not shown: name (chr), datacoverage (dbl), id (chr),
 ## elevationUnit (chr), longitude (dbl)

14 http://www.ncdc.noaa.gov/cdo-web/webservices/v2

16.4 Working with APIs

http://www.ncdc.noaa.gov/cdo-web/token
http://www.ncdc.noaa.gov/cdo-web/token
http://www.ncdc.noaa.gov/cdo-web/webservices/v2

154

 So we see that several stations are available from which to pull data. To actually
pull data from one of these stations we need the station ID. The station I want to pull
data from is the Dayton International Airport station. We can see that this station
provides data from 1948-present and I can get the station ID as illustrated. Note that
I use some dplyr for data manipulation here; we will cover dplyr in a later chap-
ter but this just illustrates the fact that we received the data via the API .

 library (dplyr)

 stations$data %>%
 fi lter (name == "DAYTON INTERNATIONAL AIRPORT, OH US") %>%
 select (mindate, maxdate, id)
 ## Source: local data frame [1 x 3]
 ##
 ## mindate maxdate id
 ## (chr) (chr) (chr)
 ## 1 1948-01-01 2016-01-15 GHCND:USW00093815

 To pull all available GHCND data from this station we’ll use ncdc() . We sim-
ply supply the data to pull, the start and end dates (ncdc restricts you to a 1 year
limit), station ID, and your key. We can see that this station provides a full range of
data types.

 climate <- ncdc (datasetid='GHCND',
 startdate = '2015-01-01',
 enddate = '2016-01-01',
 stationid='GHCND:USW00093815',
 token = key)

 climate$data
 ## Source: local data frame [25 x 8]
 ##
 ## date datatype station value fl _m fl _q
 ## (chr) (chr) (chr) (int) (chr) (chr)
 ## 1 2015-01-01T00:00:00 AWND GHCND:USW00093815 72
 ## 2 2015-01-01T00:00:00 PRCP GHCND:USW00093815 0
 ## 3 2015-01-01T00:00:00 SNOW GHCND:USW00093815 0
 ## 4 2015-01-01T00:00:00 SNWD GHCND:USW00093815 0
 ## 5 2015-01-01T00:00:00 TAVG GHCND:USW00093815 -38 H
 ## 6 2015-01-01T00:00:00 TMAX GHCND:USW00093815 28
 ## 7 2015-01-01T00:00:00 TMIN GHCND:USW00093815 -71
 ## 8 2015-01-01T00:00:00 WDF2 GHCND:USW00093815 240
 ## 9 2015-01-01T00:00:00 WDF5 GHCND:USW00093815 240
 ## 10 2015-01-01T00:00:00 WSF2 GHCND:USW00093815 130
 ## .. … … … … … …
 ## Variables not shown: fl _so (chr), fl _t (chr)

 Since we recently had some snow here let’s pull data on snow fall for 2015. We
adjust the limit argument (by default ncdc limits results to 25) and identify the data
type we want. By sorting we see what days experienced the greatest snowfall (don’t
worry, the results are reported in mm!).

16 Scraping Data

155

 snow <- ncdc (datasetid='GHCND',
 startdate = '2015-01-01',
 enddate = '2015-12-31',
 limit = 365,
 stationid='GHCND:USW00093815',
 datatypeid = 'SNOW',
 token = key)

 snow$data %>%
 arrange (desc (value))
 ## Source: local data frame [365 x 8]
 ##
 ## date datatype station value fl _m fl _q
 ## (chr) (chr) (chr) (int) (chr) (chr)
 ## 1 2015-03-01T00:00:00 SNOW GHCND:USW00093815 114
 ## 2 2015-02-21T00:00:00 SNOW GHCND:USW00093815 109
 ## 3 2015-01-25T00:00:00 SNOW GHCND:USW00093815 71
 ## 4 2015-01-06T00:00:00 SNOW GHCND:USW00093815 66
 ## 5 2015-02-16T00:00:00 SNOW GHCND:USW00093815 30
 ## 6 2015-02-18T00:00:00 SNOW GHCND:USW00093815 25
 ## 7 2015-02-14T00:00:00 SNOW GHCND:USW00093815 23
 ## 8 2015-01-26T00:00:00 SNOW GHCND:USW00093815 20
 ## 9 2015-02-04T00:00:00 SNOW GHCND:USW00093815 20
 ## 10 2015-02-12T00:00:00 SNOW GHCND:USW00093815 20
 ## .. … … … … … …
 ## Variables not shown: fl _so (chr), fl _t (chr)

 This is just an intro to rnoaa as the package offers a slew of data sets to pull
from and functions to apply. It even offers built in plotting functions. Use
 help(package = "rnoaa") to see all that rnoaa has to offer.

16.4.2.3 rtimes

 The rtimes package provides an interface to Congress, Campaign Finance, Article
Search, and Geographic APIs offered by the New York Times. The data libraries
and documentation for the several APIs available can be found at http://developer.
nytimes.com/ . To use the Times’ API you’ll need to get an API key , which can also
be found at the URL just provided.

 article_key <- "4f23572d8…" # truncated
 cfi nance_key <- "ee0b7cef…" # truncated
 congress_key <- "57b3e8a3…" # truncated

 Let’s start by searching NY Times articles. With the presidential elections upon
us, we can illustrate by searching the least controversial candidate…Donald Trump.
We can see that there are 4566 article hits for the term “Trump”. We can get more
information on a particular article by subsetting .

16.4 Working with APIs

http://developer.nytimes.com/
http://developer.nytimes.com/

156

 library (rtimes)

 # article search for the term 'Trump'
 articles <- as_search (q = "Trump",
 begin_date = "20150101",
 end_date = '20160101',
 key = article_key)

 # summary
 articles$meta
 ## hits time offset
 ## 1 4565 28 0

 # pull info on 3rd article
 articles$data[3]
 ## [[1]]
 ## <NYTimes article>Donald Trumpâ€™s Strongest Supporters: A Certain Kind of Democrat
 ## Type: News
 ## Published: 2015-12-31T00:00:00Z
 ## Word count: 1469
 ## URL: http://www.nytimes.com/2015/12/31/upshot/donald-trumps- strongest-
supporters-a-certain-kind-of-democrat.html
 ## Snippet: In a survey, he also excels among low-turnout voters and among the less
affl uent and the less educated, so the question is: Will they show up to vote?

 We can use the campaign fi nance API and functions to gain some insight into
Trumps compaign income and expenditures. The only special data you need is the
FEC ID for the candidate of interest.

 trump <- cf_candidate_details (campaign_cycle = 2016,
 fec_id = 'P80001571',
 key = cfi nance_key)

 # pull summary data
 trump$meta
 ## id name party
 ## 1 P80001571 TRUMP, DONALD J REP
 ## fec_uri
 ## 1 http://docquery.fec.gov/cgi-bin/fecimg/?P80001571
 ## committee mailing_address mailing_city
 ## 1 /committees/C00580100.json 725 FIFTH AVENUE NEW YORK
 ## mailing_state mailing_zip status total_receipts
 ## 1 NY 10022 O 1902410.45
 ## total_from_individuals total_from_pacs total_contributions
 ## 1 92249.33 0 96298.97
 ## candidate_loans total_disbursements begin_cash end_cash
 ## 1 1804747.23 1414674.29 0 487736.16
 ## total_refunds debts_owed date_coverage_from date_coverage_to
 ## 1 0 1804747.23 2015-04-02 2015-06-30
 ## independent_expenditures coordinated_expenditures
 ## 1 1644396.8 0

16 Scraping Data

157

 rtimes also allows us to gain some insight into what our locally elected offi -
cials are up to with the Congress API . First, I can get some informaton on my
Senator and then use that information to see if he’s supporting my interest. For
instance, I can pull the most recent bills that he is co-sponsoring.

 # pull info on OH senator
 senator <- cg_memberbystatedistrict (chamber = "senate",
 state = "OH",
 key = congress_key)
 senator$meta
 ## id name role gender party
 ## 1 B000944 Sherrod Brown Senator, 1st Class M D
 ## times_topics_url twitter_id youtube_id seniority
 ## 1 SenSherrodBrown SherrodBrownOhio 9
 ## next_election
 ## 1 2018
 ## api_url
 ## 1 http://api.nytimes.com/svc/politics/v3/us/legislative/congress/members/B000944.json

 # use member ID to pull recent bill sponsorship
 bills <- cg_billscosponsor (memberid = "B000944",
 type = "cosponsored",
 key = congress_key)
 head (bills$data)
 ## Source: local data frame [6 x 11]
 ##
 ## congress number
 ## (chr) (chr)
 ## 1 114 S.2098
 ## 2 114 S.2096
 ## 3 114 S.2100
 ## 4 114 S.2090
 ## 5 114 S.RES.267
 ## 6 114 S.RES.269
 ## Variables not shown: bill_uri (chr), title (chr), cosponsored_date
 ## (chr), sponsor_id (chr), introduced_date (chr), cosponsors (chr),
 ## committees (chr), latest_major_action_date (chr),
 ## latest_major_action (chr)

 It looks like the most recent bill Sherrod is co-sponsoring is S.2098—Student
Right to Know Before You Go Act. Maybe I’ll do a NY Times article search with
 as_ search() to fi nd out more about this bill…an exercise for another time.

 So this gives you some fl avor of how these API packages work. You typically
need to know the data sets and variables requested along with an API key . But once
you get these basics its pretty straight forward on requesting the data. Your next
question may be, what if the API that I want to get data from does not yet have an R
package developed for it?

16.4 Working with APIs

158

16.4.3 httr for All Things Else

 Although nume rous R API packages are available, and cover a wide range of data,
you may eventually run into a situation where you want to leverage an organiza-
tion ’s API but an R package does not exist. Enter httr. httr was developed by
Hadley Wickham to easily work with web APIs . It offers multiple functions (i.e.
 HEAD() , POST() , PATCH() , PUT() and DELETE()); however, the function we
are most concerned with today is Get() . We use the Get() function to access an
 API , provide it some request parameters, and receive an output.

 To give you a taste for how the httr package works, I’ll quickly cover how to
use it for a basic key-only API and an OAuth -required API :

• Key-only API is illustrated by pulling U.S. Department of Education data avail-
able on data.gov

• OAuth-required API is illustrated by pulling tweets from my personal Twitter feed

16.4.3.1 Key-Only API

 To demonstrate how to use the httr package for accessing a key-only API , I’ll
illustrate with the College Scorecard API 15 provided by the Department of Education.
First, you’ll need to request your API key, which can be done at https://api.data.gov/
signup/ .

 # truncated key
 edu_key <- "fd783wmS3Z…"

 We can now proceed to use httr to request data from the API with the GET()
function. I went to North Dakota State University (NDSU) for my undergrad so I’m
interested in pulling some data for this school. I can use the provided data library
and query explanation to determine the parameters required. In this example, the
 URL includes the primary path (“ https://api.data.gov/ed/collegescorecard/ ”), the
 API version (“v1”), and the endpoint (“schools”). The question mark (“?”) at the
end of the URL is included to begin the list of query parameters, which only includes
my API key and the school of interest.

 library (httr)

 URL <- "https://api.data.gov/ed/collegescorecard/v1/schools?"

 # import all available data for NDSU
 ndsu_req <- GET (URL, query = list (api_key = edu_key,
 school.name = "North Dakota State University"))

 This request provides me with every piece of information collected by the
U.S. Department of Education for NDSU. To retrieve the contents of this request I
use the content() function which will output the data as an R object (a list in this

15 https://api.data.gov/docs/ed/

16 Scraping Data

https://api.data.gov/signup/
https://api.data.gov/signup/
https://api.data.gov/ed/collegescorecard/
https://api.data.gov/docs/ed/

159

case). The data is segmented into two main components: metadata and results . I’m
primarily interested in the results.

 The results branch of this list provides information on lat-long location, school
identifi er codes, some basic info on the school (city, number of branches, school
website, accreditor, etc.), and then student data for the years 1997-2013.

 ndsu_data <- content (ndsu_req)

 names (ndsu_data)
 ## [1] "metadata" "results"

 names (ndsu_data$results[[1]])
 ## [1] "2008" "2009" "2006" "ope6_id" "2007" "2004"
 ## [7] "2013" "2005" "location" "2002" "2003" "id"
 ## [13] "1996" "1997" "school" "1998" "2012" "2011"
 ## [19] "2010" "ope8_id" "1999" "2001" "2000"

 To see what kind of student data categories are offered we can assess a single
year. You can see that available data includes earnings, academics, student info/
demographics, admissions, costs, etc. With such a large data set, which includes
many embedded lists , sometimes the easiest way to learn the data structure is to
peruse names at different levels .

 # student data categories available by year
 names (ndsu_data$results[[1]]$`2013`)
 ## [1] "earnings" "academics" "student" "admissions"
"repayment"
 ## [6] "aid" "cost" "completion"

 # cost categories available by year
 names (ndsu_data$results[[1]]$`2013`$cost)
 ## [1] "title_iv" "avg_net_price" "attendance" "tuition"
 ## [5] "net_price"

 # Avg net price cost categories available by year
 names (ndsu_data$results[[1]]$`2013`$cost$avg_net_price)
 ## [1] "other_academic_year" "overall" "program_year"
 ## [4] "public" "private"

 So if I’m interested in comparing the rise in cost versus the rise in student debt I
can simply subset for this data once I’ve identifi ed its location and naming structure.
Note that for this subsetting we use the magrittr package and the ‘sapply’ function;
both we cover in later chapters but this is just meant to illustrate the types of data
available through this API .

 library (magrittr)

 # subset list for annual student data only
 ndsu_yr <- ndsu_data$results[[1]][c (as.character (1996:2013))]

 # extract median debt data for each year
 ndsu_yr %>%
 sapply (function(x) xaidmedian_debt$completers$overall) %>%
 unlist ()

16.4 Working with APIs

160

 ## 1997 1998 1999 2000 2001 2002 2003 2004
 ## 13388.0 13856.0 14500.0 15125.0 15507.0 15639.0 16251.0 16642.5
 ## 2005 2006 2007 2008 2009 2010 2011 2012
 ## 17125.0 17125.0 17125.0 17250.0 19125.0 21500.0 23000.0 24954.5
 ## 2013
 ## 25050.0

 # extract net price for each year
 ndsu_yr %>%
 sapply (function(x) x$cost$avg_net_price$overall) %>%
 unlist ()
 ## 2009 2010 2011 2012 2013
 ## 13474 12989 13808 15113 14404

 Quite simple isn’t it…at least once you’ve learned how the query requests are
formatted for a particular API .

16.4.3.2 OAuth -Required API

 At the outset I mentioned how OAuth is an authorization framework that provides
credentials as proof for access. Many APIs are open to the public and only require
an API key ; however, some APIs require authorization to account data (think per-
sonal Facebook & Twitter accounts). To access these accounts we must provide
proper credentials and OAuth authentication allows us to do this. This section is not
meant to explain the details of OAuth but, rather, how to use httr in times when
 OAuth is required.

 I’ll demonstrate by accessing the Twitter API using my Twitter account. The fi rst
thing we need to do is identify the OAuth endpoints used to request access and
authorization. To do this we can use oauth_endpoint() which typically
requires a request URL, authorization URL, and access URL. httr also included
some baked-in endpoints to include LinkedIn, Twitter, Vimeo, Google, Facebook,
and GitHub. We can see the Twitter endpoints using the following:

 twitter_endpts <- oauth_endpoints ("twitter")
 twitter_endpts
 ## <oauth_endpoint>
 ## request: https://api.twitter.com/oauth/request_token
 ## authorize: https://api.twitter.com/oauth/authenticate
 ## access: https://api.twitter.com/oauth/access_token

 Next, I register my application at https://apps.twitter.com/ . One thing to note is
during the registration process, it will ask you for the callback url ; be sure to use
“ http://127.0.0.1:1410 ”. Once registered, Twitter will provide you with keys and
access tokens. The two we are concerned about are the API key and API Secret.

 twitter_key <- "BZgukbCol…" # truncated
 twitter_secret <- "YpB8Xy…" # truncated

16 Scraping Data

https://apps.twitter.com/
http://127.0.0.1:1410/

161

 We can then bundle the consumer key and secret into one object with oauth_app() .
The fi rst argument , appname is simply used as a local identifi er; it does not need to
match the name you gave the Twitter app you developed at https://apps.twitter.com/ .

 We are now ready to ask for access credentials. Since Twitter uses OAuth 1.0 we
use oauth1.0_token() function and incorporate the endpoints identifi ed and
the oauth_app object we previously named twitter_app .

 twitter_token <- oauth1.0_token (endpoint = twitter_endpts, twitter_app)

 Waiting for authentication in browser…
 Press Esc/Ctrl + C to abort
 Authentication complete.

 Once authentication is complete we can now use the API . I can pull all the tweets
that show up on my personal timeline using the GET() function and the access
cridentials I stored in twitter_token . I then use content() to convert to a
 list and I can start to analyze the data.

 In this case each tweet is saved as an individual list item and a full range of data
are provided for each tweet (i.e. id, text, user, geo location, favorite count, etc). For
instance, we can see that the fi rst tweet was by FiveThirtyEight concerning American
politics and, at the time of this analysis, has been favorited by 3 people.

 # request Twitter data
 req <- GET ("https://api.twitter.com/1.1/statuses/home_timeline.json",
 confi g (token = twitter_token))

 # convert to R object
 tweets <- content (req)

 # available data for fi rst tweet on my timeline
 names (tweets[[1]])
 [1] "created_at" "id"
 [3] "id_str" "text"
 [5] "source" "truncated"
 [7] "in_reply_to_status_id" "in_reply_to_status_id_str"
 [9] "in_reply_to_user_id" "in_reply_to_user_id_str"
 [11] "in_reply_to_screen_name" "user"
 [13] "geo" "coordinates"
 [15] "place" "contributors"
 [17] "is_quote_status" "retweet_count"
 [19] "favorite_count" "entities"
 [21] "extended_entities" "favorited"
 [23] "retweeted" "possibly_sensitive"
 [25] "possibly_sensitive_appealable" "lang"

 # further analysis of fi rst tweet on my timeline
 tweets[[1]]$user$name
 [1] "FiveThirtyEight"

 tweets[[1]]$text
 [1] "\U0001f3a7 A History Of Data In American Politics (Part 1): William Jennings
Bryan to Barack Obama https://t.co/oCKzrXuRHf https://t.co/6CvKKToxoH"

 tweets[[1]]$favorite_count
 [1] 3

16.4 Working with APIs

https://apps.twitter.com/

162

 This provides a fairly simple example of incorporating OAuth authorization. The
 httr provides several examples of accessing common social network APIs that
require OAuth. I recommend you go through several of these examples to get famil-
iar with using OAuth authorization; see them at demo(package = " httr ") .
The most diffi cult aspect of creating your own connections with APIs is gaining an
understanding of the API and the arguments they leverage. This obviously requires
time and energy devoted to digging into the API documentation and data library .
Next its just a matter of trial and error (likely more the latter than the former) to
learn how to translate these arguments into httr function calls to pull the data of
interest.Also, note that httr provides several other useful functions not covered
here for communicating with APIs (i.e. POST() , BROWSE()). For more on these
other httr capabilities see the httr quickstart vignette. 16

16.5 Additional Resources

 As I stated in the outset, this chapter is meant to provide an introduction to basic
web scraping capabilities in R . This area is vast and complex and this chapter will
far from provide you expertise level insight. To advance your knowledge in web-
scraping with R Automated Data Collection with R and XML and Web Technologies
for Data Sciences with R offer the most detailed resources available. But this chap-
ter should be enough to get your curiosity piqued and to start pulling data from the
tangled masses of online data.

 Bibliography

 Munzert, S., Rubba, C., Meißner, P., & Nyhuis, D. (2014). Automated data collection with R: A
practical guide to web scraping and text mining. John Wiley & Sons.

 Nolan, D., & Lang, D. T. (2014). XML and Web Technologies for Data Sciences with R. Springer.

16 https://cran.r-project.org/web/packages/httr/vignettes/quickstart.html

16 Scraping Data

https://cran.r-project.org/web/packages/httr/vignettes/quickstart.html

163© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_17

 Chapter 17
 Exporting Data

 Although getting data into R is essential, getting data out of R can be just as important.
Whether you need to export data or analytic results simply to store, share, or feed into
another system it is generally a straight forward process. This section will cover how to
 export data to text fi les , Excel fi les (along with some additional formatting capabilities),
and save to R data objects . In addition to the commonly used base R functions to perform
data importing, I will also cover functions from the popular readr and xlsx packages
along with a lesser known but useful r2excel package for Excel formatting.

17.1 Writing Data to Text Files

 As mentioned in the importing data section, text fi les are a popular way to hold and
exchange tabular data as almost any data application supports exporting data to the
 CSV (or other text fi le) formats. Consequently, exporting data to a text fi le is a
pretty standard operation. Plus, since you’ve already learned how to import text fi les
you pretty much have the basics required to write to text fi les, we just use a slightly
different naming convention.

 Similar to the examples provided in the importing text fi les section, the two main
groups of functions that I will demonstrate to write to text fi les include base R func-
tions and readr package functions .

17.1.1 Base R Functions

 write.table() is the multipurpose work-horse function in base R for exporting
data. The functions write.csv() and write.delim() are special cases of
 write.table() in which the defaults have been adjusted for effi ciency. To illus-
trate these functions let’s work with a data frame that we wish to export to a CSV
fi le in our working directory.

164

 df <- data.frame (var1 = c (10, 25, 8),
 var2 = c ("beer", "wine", "cheese"),
 var3 = c (TRUE, TRUE, FALSE),
 row.names = c ("billy", "bob", "thornton"))

 df
 ## var1 var2 var3
 ## billy 10 beer TRUE
 ## bob 25 wine TRUE
 ## thornton 8 cheese FALSE

 To export df to a CSV fi le we can use write.csv() . Additional arguments
allow you to exclude row and column names, specify what to use for missing values ,
add or remove quotations around character strings , etc.

 # write to a csv fi le
 write.csv (df, fi le = "export_csv")

 # write to a csv and save in a different directory
 write.csv (df, fi le = "/folder/subfolder/subsubfolder/export_csv")

 # write to a csv fi le with added arguments
 write.csv (df, fi le = "export_csv", row.names = FALSE, na = "MISSING!")

 In addition to CSV fi les, we can also write to other text fi les using write.
table and write.delim() .

 # write to a tab delimited text fi les
 write.delim (df, fi le = "export_txt")

 # provides same results as read.delim
 write.table (df, fi le = "export_txt", sep="\t")

17.1.2 readr Package

 The readr package uses write functions simila r to base R . However, readr write
functions are about twice as fast and they do not write row names. One thing to note,
where base R write functions use the fi le = argument , readr write functions use
 path = .

 library (readr)

 # write to a csv fi le
 write_csv (df, path = "export_csv2")

 # write to a csv and save in a different directory
 write_csv (df, path = "/folder/subfolder/subsubfolder/export_csv2")

 # write to a csv fi le without column names
 write_csv (df, path = "export_csv2", col_names = FALSE)

17 Exporting Data

165

 # write to a txt fi le without column names
 write_delim (df, path = "export_txt2", col_names = FALSE)

17.2 Writing Data to Excel Files

 As previously mentioned, many organizations still rely on Excel to hold and share
data so exporting to Excel is a useful bit of knowledge. And rather than saving to a
.csv fi le to send to a co-worker who wants to work in Excel, its more effi cient to just
save R outputs directly to an Excel workbook. Since I covered importing data with
the xlsx package, I’ll also cover exporting data with this package. However, the
 readxl package which I demonstrated in the importing data section does not have
a function to export to Excel. But there is a lesser known package called r2excel
that provides exporting and formatting functions for Excel which I will cover.

17.2.1 xlsx Package

 Saving a data frame to a .xlsx fi le is as easy as saving to a .csv fi le:

 library (xlsx)

 # write to a .xlsx fi le
 write.xlsx (df, fi le = "output_example.xlsx")

 # write to a .xlsx fi le without row names
 write.xlsx (df, fi le = "output_example.xlsx", row.names = FALSE)

 In some cases you may wish to create a .xlsx fi le that contains multiple data
frames . In this you can just create an empty workbook and save the data frames on
separate worksheets within the same workbook:

 # create empty workbook
 multiple_df <- createWorkbook ()

 # create worksheets within workbook
 car_df <- createSheet (wb = multiple_df, sheetName = "Cars")
 iris_df <- createSheet (wb = multiple_df, sheetName = "Iris")

 # add data frames to worksheets; for this example I use the
 # built in mtcars and iris data frames
 addDataFrame (x = mtcars, sheet = car_df)
 addDataFrame (x = iris, sheet = iris_df)

 # save as a .xlsx fi le
 saveWorkbook (multiple_df, fi le = "output_example_2.xlsx")

17.2 Writing Data to Excel Files

166

 By default this saves the row and column names but this can be adjusted by add-
ing col.names = FALSE and/or row.names = FALSE to the add-
DataFrame() function. There is also the ability to do some formatting with the
 xlsx package. The following provides several examples of how you can edit titles,
subtitles, borders, column width, etc. 1 Although at fi rst glance this can appear
tedious for simple Excel editing, the real benefi ts present themselves when you
integrate this editing into automated analyses.

 # create new workbook
 wb <- createWorkbook ()

 #--------------------
 # DEFINE CELL STYLES
 #--------------------
 # title and subtitle styles
 title_style <- CellStyle (wb) +
 Font (wb, heightInPoints = 16,
 color = "blue",
 isBold = TRUE,
 underline = 1)

 subtitle_style <- CellStyle (wb) +
 Font (wb, heightInPoints = 14,
 isItalic = TRUE,
 isBold = FALSE)

 # data table styles
 rowname_style <- CellStyle (wb) +
 Font (wb, isBold = TRUE)

 colname_style <- CellStyle (wb) +
 Font (wb, isBold = TRUE) +
 Alignment (wrapText = TRUE, horizontal = "ALIGN_CENTER") +
 Border (color = "black",
 position = c ("TOP", "BOTTOM"),
 pen = c ("BORDER_THIN", "BORDER_THICK"))

 #-------------------------
 # CREATE & EDIT WORKSHEET
 #-------------------------
 # create worksheet
 Cars <- createSheet (wb, sheetName = "Cars")

 # helper function to add titles
 xlsx.addTitle <- function(sheet, rowIndex, title, titleStyle) {
 rows <- createRow (sheet, rowIndex = rowIndex)
 sheetTitle <- createCell (rows, colIndex = 1)
 setCellValue (sheetTitle[[1,1]], title)
 setCellStyle (sheetTitle[[1,1]], titleStyle)
 }

1 This example was derived from http://www.sthda.com/english/ Additional options, such as add-
ing plot outputs can be found at STHDA and also in the XML and Web Technologies for Data
Sciences with R book.

17 Exporting Data

http://www.sthda.com/english/

167

 # add title and sub title to worksheet
 xlsx.addTitle (sheet = Cars, rowIndex = 1,
 title = "1974 Motor Trend Car Data",
 titleStyle = title_style)

 xlsx.addTitle (sheet = Cars, rowIndex = 2,
 title = "Performance and design attributes of 32 automobiles",
 titleStyle = subtitle_style)

 # add data frame to worksheet
 addDataFrame (mtcars, sheet = Cars, startRow = 3, startColumn = 1,
 colnamesStyle = colname_style,
 rownamesStyle = rowname_style)

 # change row name column width
 setColumnWidth (sheet = Cars, colIndex = 1, colWidth = 18)

 # save workbook
 saveWorkbook (wb, fi le = "output_example_3.xlsx")

 Formatted Excel Output Example 1

17.2.2 r2excel Package

 Although Formatting Excel fi les using the xlsx package is possible, the last sec-
tion illustrated that it is a bit cumbersome. For this reason, A. Kassambara 2 created
the r2excel package which depends on the xlsx package but provides easy to
use functions for Excel formatting. The following provides a simple example but
you can fi nd many additional formatting functions at http://www.sthda.com/ .

 # install.packages("devtools")
 devtools:: install_github ("kassambara/r2excel")
 library (r2excel)

 # create new workbook
 wb <- createWorkbook ()

2 https://github.com/kassambara

17.2 Writing Data to Excel Files

http://www.sthda.com/
https://github.com/kassambara

168

 # create worksheet
 Casualties <- createSheet (wb, sheetName = "Casualties")

 # add title
 xlsx.addHeader (wb, sheet = Casualties,
 value = "Road Casualties",
 level = 1,
 color = "red",
 underline = 1)

 # add subtitle
 xlsx.addHeader (wb, sheet = Casualties,
 value = "Great Britain 1969-84",
 level = 2,
 color = "black")

 # add author information
 author = paste ("Author: Bradley C. Boehmke \n",
 "Date: January 15, 2016 \n",
 "Contact: xxxxx@gmail.com", sep = "")

 xlsx.addParagraph (wb, sheet = Casualties,
 value = author,
 isItalic = TRUE,
 colSpan = 2,
 rowSpan = 4,
 fontColor = "darkgray",
 fontSize = 14)

 # add hyperlink
 xlsx.addHyperlink (wb, sheet = Casualties,
 address = "http://bradleyboehmke.github.io/",
 friendlyName = "Vist my website", fontSize = 12)

 xlsx.addLineBreak (sheet = Casualties, 1)

 # add data frame to worksheet, I'm using the built in
 # Seatbelt data which you can view at data(Seatbelt)
 xlsx.addTable (wb, sheet = Casualties, data = Seatbelts, startCol = 2)

 # save the workbook to an Excel fi le
 saveWorkbook (wb, fi le = "output_example_4.xlsx")

 Formatted Excel Output Example 2

17 Exporting Data

169

17.3 Saving Data as an R Object File

 Sometimes you may need to save data or other R objects outside of your workspace.
You may want to sha re R data/objects with co-workers, transfer between projects or
computers, or simply archive them. There are three primary ways that people tend to
save R data/objects: as .RData, .rda, or as .rds fi les. .rda is just short for .RData, there-
fore, these fi le extensions represent the same underlying object type. You use the .rda
or .RData fi le types when you want to save several, or all, objects and functions that
exist in your global environment. On the other hand, if you only want to save a single
 R object such as a data frame , function, or statistical model results its best to use .rds
fi le type. You can use .rda or .RData to save a single object but the benefi t of .rds is it
only saves a representation of the object and not the name whereas .rda and .RData
save both the object and its name. As a result, with .rds the saved object can be loaded
into a named object within R that is different from the name it had when originally
saved. The following illustrates how you save R objects with each type.

 # save() can be used to save multiple objects in you global environment,
 # in this case I save two objects to a .RData fi le
 x <- stats:: runif (20)
 y <- list (a = 1, b = TRUE, c = "oops")
 save (x, y, fi le = "xy.RData")

 # save.image() s just a short-cut for saving your current
workspace, i.e. all objects in your global environment
 save.image ()

 # save a single object to fi le
 saveRDS (x, "x.rds")

 # restore it under a different name
 x2 <- readRDS ("x.rds")
 identical (x, x2)
 [1] TRUE

17.4 Additional Resources

 The following provides additional resources for exporting data:

• R data import/export manual, which can be found at https://cran.r-project.org/
doc/manuals/R-data.html

• WriteXLS package
• XLConnect package

17.4 Additional Resources

https://cran.r-project.org/doc/manuals/R-data.html
https://cran.r-project.org/doc/manuals/R-data.html

 Part V
 Creating Effi cient and Readable Code in R

 To iterate is human, to recurse divine.

 L. Peter Deutsch

 Don’t repeat yourself (DRY) is a software development principle aimed at reducing
repetition. Formulated by Andy Hunt and Dave Thomas in their book The Pragmatic
Programmer (Hunt and Thomas, 2000), the DRY principle states that “every piece
of knowledge must have a single, unambiguous, authoritative representation within
a system.” This principle has been widely adopted to imply that you should not
duplicate code. Although the principle was meant to be far grander than that, 1 there’s
plenty of merit behind this slight misinterpretation.

 Removing duplication is an important part of writing effi cient code and reducing
potential errors. First, reduced duplication of code can improve computing time and
reduces the amount of code writing required. Second, less duplication results in less
creation and saving of unnecessary objects. Ineffi cient code invariably creates cop-
ies of objects you have little interest in other than to feed into some future line of
code; this wrecks havoc on properly managing your objects as it basically results in
a global environment charlie foxtrot! Less duplication also results in less editing.
When changes to code are required, duplicated code becomes tedious to edit and
invariably mistakes or fat-fi ngering occur in the cut-and-paste editing process which
just lengthens the editing that much more.

 Furthermore, its important to have readable code. Clarity in your code creates
clarity in your data analysis process. This is important as data analysis is a collab-
orative process so your code will likely need to be read and interpreted by others.
Plus, invariably there will come a time where you will need to go back to an old
analysis so your code also needs to be clear to your future-self.

 This section covers the process of creating effi cient and readable code. First, I
cover the basics of writing your own functions so that you can reduce code duplica-
tion and automate generalized tasks to be applied recursively. I then cover loop

1 According to Dave Thomas “DRY says that every piece of system knowledge should have one
authoritative, unambiguous representation. Every piece of knowledge in the development of some-
thing should have a single representation. A system’s knowledge is far broader than just its code.
It refers to database schemas, test plans, the build system, even documentation.”

http://dx.doi.org/10.1007/978-3-319-45599-0_18
http://dx.doi.org/10.1007/978-3-319-45599-0_19

172

control statements which allow you to perform repetitive code processes with
different intentions and allow these automated expressions to naturally respond to
features of your data. Lastly, I demonstrate how you can simplify your code to make
it more readable and clear. Combined, these tools will move you forward in writing
effi cient, simple, and readable code.

 Bibliography

 Hunt, A., & Thomas, D. (2000). The pragmatic programmer: from journeyman to master. Addison-
Wesley Professional.

Part V Creating Effi cient and Readable Code in R

http://dx.doi.org/10.1007/978-3-319-45599-0_19
http://dx.doi.org/10.1007/978-3-319-45599-0_20

173© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_18

Chapter 18
Functions

R is a functional programming language, meaning that everything you do is basically
built on functions. However, moving beyond simply using pre-built functions to
writing your own functions is when your capabilities really start to take off and your
code development/writing takes on a new level of efficiency. Functions allow you to
reduce code duplication by automating a generalized task to be applied recursively.
Whenever you catch yourself repeating a function or copy-and-pasting code there is
a good change that you should write a function to eliminate the redundancies.

Unfortunately, due to their abstractness, grasping the idea of writing functions
(let alone writing them well) can take some time. However, in this chapter I will
provide you with the basic knowledge of how functions operate in R to get you
started on the right path. To do this, I cover the general components of functions,
specifying function arguments, scoping and evaluation rules, managing function
outputs, handling invalid parameters, and saving and sourcing functions for reuse.
This will provide you with the required knowledge to start building your own func-
tions. Lastly, I offer some additional resources that will help you learn more about
functions in R.

18.1  �Function Components

With the exception of primitive functions all R functions have three parts:

•	 body(): the code inside the function
•	 formals(): the list of arguments used to call the function
•	 environment(): the mapping of the location(s) of the function’s variables

For example, let’s build a function that calculates the present value (PV) of a
single future sum. The equation for a single sum PV is:

	 PV FV r n= +/ ()1 	

https://cran.r-project.org/doc/manuals/r-release/R-ints.html#g_t_002eInternal-vs-_002ePrimitive

174

where FV is future value, r is the interest rate, and n is the number of periods. In the
function that follows the body of the function includes the equation

	 FV r n/ ()1+ 	

and then rounding the output to two decimals. The formals (or arguments)
required for the function include FV, r, and n. And the environment shows that
function operates in the global environment.

PV <- function(FV, r, n) {
 PV <- FV / (1 + r)^n
 round(PV, 2)
}

body(PV)
{
PV <- FV / (1 + r)^n
round(PV, 2)
}

formals(PV)
$FV

$r

$n

environment(PV)
<environment: R_GlobalEnv>

18.2  �Arguments

To perform the PV() function we can call the arguments in different ways.

using argument names
PV(FV = 1000, r = .08, n = 5)
[1] 680.58

same as above but without using names (aka "positional matching")
PV(1000, .08, 5)
[1] 680.58

if using names you can change the order
PV(r = .08, FV = 1000, n = 5)
[1] 680.58

if not using names you must insert arguments in proper order
in this e.g. the function assumes FV = .08, r = 1000, and n = 5
PV(.08, 1000, 5)
[1] 0

18  Functions

175

Note that when building a function you can also set default values for arguments.
In our original PV() we did not provide any default values so if we do not supply
all the argument parameters an error will be returned. However, if we set default
values then the function will use the stated default if any parameters are missing:

missing the n argument
PV(1000, .08)
Error in PV(1000, 0.08): argument "n" is missing, with no default

creating default argument values
PV <- function(FV = 1000, r = .08, n = 5) {
 PV <- FV / (1 + r)^n
 round(PV, 2)
}

function will use default n value
PV(1000, .08)
[1] 680.58

specifying a different n value
PV(1000, .08, 3)
[1] 793.83

18.3  �Scoping Rules

Scoping refers to the set of rules a programming language uses to lookup the value
for variables and/or symbols. The following illustrates the basic concept behind the
lexical scoping rules that R follows.

A function will first look inside the function to identify all the variables being
called. If all variables exist then their is no additional search required to identify
variables.

PV1 <- function() {
 FV <- 1000
 r <- .08
 n <- 5
 FV / (1 + r)^n
}

PV1()
[1] 680.5832

However, if a variable does not exist within the function, R will look one level
up to see if the variable exists.

the FV variable is outside the function environment
FV <- 1000

18.3 � Scoping Rules

176

PV2 <- function() {
 r <- .08
 n <- 5
 FV / (1 + r)^n
}

PV2()
[1] 680.5832

This same concept applies if you have functions embedded within functions:

FV <- 1000

PV3 <- function() {
 r <- .08
 n <- 5
 denominator <- function() {
 (1 + r)^n
 }
 FV/denominator()
}

PV3()
[1] 680.5832

This also applies for functions in which some arguments are called but not all
variables used in the body are identified as arguments:

n is specified within the function
PV4 <- function(FV, r) {
 n <- 5
 FV / (1 + r)^n
}

PV4(1000, .08)
[1] 680.5832

n is specified within the function and
r is specified outside the function
r <- 0.08

PV5 <- function(FV) {
 n <- 5
 FV / (1 + r)^n
}

PV5(1000)
[1] 680.5832

18  Functions

177

18.4  �Lazy Evaluation

R functions perform “lazy” evaluation in which arguments are only evaluated if
required in the body of the function.

the y argument is not used so not including it causes
no harm
lazy <- function(x, y){
 x * 2
}
lazy(4)
[1] 8

however, if both arguments are required in the body
an error will result if an argument is missing
lazy2 <- function(x, y){
 (x + y) * 2
}
lazy2(4)
Error in lazy2(4): argument "y" is missing, with no default

18.5  �Returning Multiple Outputs from a Function

If a function performs multiple tasks and therefore has multiple results to report
then we have to include the c() function inside the function to display all the
results. If you do not include the c() function then the function output will only
return the last expression:

bad <- function(x, y) {
 2 * x + y
 x + 2 * y
 2 * x + 2 * y
 x / y
}
bad(1, 2)
[1] 0.5

good <- function(x, y) {
 output1 <- 2 * x + y
 output2 <- x + 2 * y
 output3 <- 2 * x + 2 * y
 output4 <- x / y
 c(output1, output2, output3, output4)
}
good(1, 2)
[1] 4.0 5.0 6.0 0.5

18.5 � Returning Multiple Outputs from a Function

178

Furthermore, when we have a function which performs multiple tasks (i.e. com-
putes multiple computations) then it is often useful to save the results in a list.

good_list <- function(x, y) {
 output1 <- 2 * x + y
 output2 <- x + 2 * y
 output3 <- 2 * x + 2 * y
 output4 <- x / y
 c(list(Output1 = output1, Output2 = output2,
 Output3 = output3, Output4 = output4))
}
good_list(1, 2)
$Output1
[1] 4

$Output2
[1] 5

$Output3
[1] 6

$Output4
[1] 0.5

18.6  �Dealing with Invalid Parameters

For functions that will be used again, and especially for those used by someone
other than the creator of the function, it is good to check the validity of arguments
within the function. One way to do this is to use the stop() function. The follow-
ing uses an if() statement to check if the class of each argument is numeric. If one
or more arguments are not numeric then the stop() function will be triggered to
provide a meaningful message to the user.

PV <- function(FV, r, n) {
 if(!is.numeric(FV) | !is.numeric(r) | !is.numeric(n)){
 stop('This function only works for numeric inputs!\n',
 'You have provided objects of the following classes:\n',
 'FV: ', class(FV), '\n',
 'r: ', class(r), '\n',
 'n: ', class(n))
 }
 PV <- FV / (1 + r)^n
 round(PV, 2)
}

18  Functions

179

PV("1000", 0.08, "5")
Error in PV("1000", 0.08, "5"): This function only works for numeric inputs!
You have provided objects of the following classes:
FV: character
r: numeric
n: character

Another concern is dealing with missing or NA values. Lets say you wanted to
perform the PV() function on a vector of potential future values. The function as is
will output NA in place of any missing values in the FV input vector. If you want to
remove the missing values then you can incorporate the na.rm parameter in the
function arguments along with an if statement to remove missing values if na.rm
= TRUE.

vector of future value inputs
fv <- c(800, 900, NA, 1100, NA)

original PV() function will return NAs
PV(fv, .08, 5)
[1] 544.47 612.52 NA 748.64 NA

add na.rm argument
PV <- function(FV, r, n, na.rm = FALSE) {
 if(!is.numeric(FV) | !is.numeric(r) | !is.numeric(n)){
 stop('This function only works for numeric inputs!\n',
 'You have provided objects of the following classes:\n',
 'FV: ', class(FV), '\n',
 'r: ', class(r), '\n',
 'n: ', class(n))
 }
 if(na.rm == TRUE) {
 FV <- FV[!is.na(FV)]
 }
 PV <- FV / (1 + r)^n
 round(PV, 2)
}

setting na.rm = TRUE argument eliminates NA outputs
PV(fv, 0.08, 5, na.rm = TRUE)
[1] 544.47 612.52 748.64

18.7  �Saving and Sourcing Functions

If you want to save a function to be used at other times and within other scripts there
are two main ways to do this. One way is to build a package which I do not cover in
this book but is discussed in more details in Hadley Wickhams R Packages book,
which is openly available at http://r-pkgs.had.co.nz/. Another option, and the one
discussed here, is to save the function in a script. For example, we can save a script
that contains the PV() function and save this script as PV.R.

18.7 � Saving and Sourcing Functions

http://r-pkgs.had.co.nz/
http://r-pkgs.had.co.nz/

180

Now, if we are working in a fresh script you’ll see that we have no objects and
functions in our working environment:

If we want to use the PV function in this new script we can simply read in the
function by sourcing the script using source("PV.R"). Now, you’ll notice that
we have the PV() function in our global environment and can use it as normal. Note
that if you are working in a different directory then where the PV.R file is located
you’ll need to include the proper path to access the relevant directory.

18  Functions

181

18.8  �Additional Resources

Functions are a fundamental building block of R and writing functions is a core
activity of an R programmer. It represents the key step of the transition from a mere
“user” to a developer who creates new functionality for R. As a result, its important
to turn your existing, informal knowledge of functions into a rigorous understand-
ing of what functions are and how they work. A few additional resources that can
help you get to the next step of understanding functions include:

•	 Hadley Wickham’s Advanced R book
•	 Roger Peng’s R Programming for Data Science book
•	 DataCamp’s Intermediate R course
•	 Coursera’s R Programming course

18.8 � Additional Resources

http://adv-r.had.co.nz/Functions.html
https://leanpub.com/rprogramming
https://www.datacamp.com/courses/intermediate-r?utm_source=functions_r_tutorial_post&utm_medium=blog&utm_campaign=functions_r_tutorial_post
https://www.coursera.org/course/rprog

183© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_19

 Chapter 19
 Loop Control Statements

 Looping is similiar to creating functions in that they are merely a means to automate
a certain multi-step process by organizing sequences of R expressions. R consists of
several loop control statements which allow you to perform repetitive code pro-
cesses with different intentions and allow these automated expressions to naturally
respond to features of your data. Consequently, learning these loop control state-
ments will go a long ways in reducing code redundancy and becoming a more effi -
cient data wrangler.

 This chapter starts by covering the basic control statements in R , which includes
 if , else , along with the for , while , and repeat loop control structures. In
addition, I cover break and next which allow you to further control fl ow within
the aforementioned control statements. Next I cover a set of vectorized functions
known as the apply family of functions which minimize your need to explicitly cre-
ate loops. I then provide some additional “loop-like” functions that are helpful in
everyday data analysis followed by a list of additional resources to learn more about
control structures in R.

19.1 Basic Control Statements (i.e. if , for , while , etc.)

19.1.1 if Statement

 The conditional if statement is used to test an expression. If the test_expres-
sion is TRUE , the statement gets executed. But if it’s FALSE , nothing
happens.

 # syntax of if statement
 if (test_expression) {
 statement
 }

184

 The following is an example that tests if any values in a vector are negative.
Notice there are two ways to write this if statement ; since the body of the state-
ment is only one line you can write it with or without curly braces. I recommend
getting in the habit of using curly braces, that way if you build onto if statements
with additional functions in the body or add an else statement later you will not
run into issues with unexpected code procedures.

 x <- c (8, 3, -2, 5)

 # without curly braces
 if(any (x < 0)) print ("x contains negative numbers")
 ## [1] "x contains negative numbers"

 # with curly braces produces same result
 if(any (x < 0)){
 print ("x contains negative numbers")
 }
 ## [1] "x contains negative numbers"

 # an if statement in which the test expression is FALSE
 # does not produce any output
 y <- c (8, 3, 2, 5)

 if(any (y < 0)){
 print ("y contains negative numbers")
 }

19.1.2 if…else Statement

 The conditional if…else statement is used to test an expression similar to the if
statement . However, rather than nothing happening if the test_expression is
 FALSE , the else part of the function will be evaluated.

 # syntax of if…else statement
 if (test_expression) {
 statement 1
 } else {
 statement 2
 }

 The following extends the previous example illustrated for the if statement in
which the if statement tests if any values in a vector are negative; if TRUE it pro-
duces one output and if FALSE it produces the else output.

 # this test results in statement 1 being executed
 x <- c (8, 3, -2, 5)

19 Loop Control Statements

185

 if(any (x < 0)){
 print ("x contains negative numbers")
 } else{
 print ("x contains all positive numbers")
 }
 ## [1] "x contains negative numbers"

 # this test results in statement 2 (or the else statement) being executed
 y <- c (8, 3, 2, 5)

 if(any (y < 0)){
 print ("y contains negative numbers")
 } else{
 print ("y contains all positive numbers")
 }
 ## [1] "y contains all positive numbers"

 Simple if…else statements, as above, in which only one line of code is being
executed in the statements can be written in a simplifi ed alternative manner. These
alternatives are only recommended for very short if…else code because they can
become diffi cult to read as the character length increases.

 x <- c (8, 3, 2, 5)

 # alternative 1
 if(any (x < 0)) print ("x contains negative numbers") else print ("x contains all
 positive numbers")
 ## [1] "x contains all positive numbers"

 # alternative 2 using the ifelse function
 ifelse (any (x < 0), "x contains negative numbers", "x contains all positive numbers")
 ## [1] "x contains all positive numbers"

 We can also nest as many if…else statements as required (or desired). For
example:

 # this test results in statement 1 being executed
 x <- 7

 if(x >= 10){
 print ("x exceeds acceptable tolerance levels")
 } else if(x >= 0 & x < 10){
 print ("x is within acceptable tolerance levels")
 } else {
 print ("x is negative")
 }
 ## [1] "x is within acceptable tolerance levels"

19.1 Basic Control Statements (i.e. if , for , while , etc.)

186

19.1.3 for Loop

 The for loop is used to execute repetitive code statements for a particular number
of times. The general syntax is provided below where i is the counter and as i
assumes each sequential value defi ned (1 through 100 in this example) the code in
the body will be performed for that ith value.

 # syntax of for loop
 for(i in 1:100) {
 <do stuff here with i>
 }

 For example, the following for loop iterates through each value (2010, 2011, …,
2016) and performs the paste and print functions inside the curly brackets.

 for(i in 2010:2016) {
 output <- paste ("The year is", i)
 print (output)
 }
 ## [1] "The year is 2010"
 ## [1] "The year is 2011"
 ## [1] "The year is 2012"
 ## [1] "The year is 2013"
 ## [1] "The year is 2014"
 ## [1] "The year is 2015"
 ## [1] "The year is 2016"

 If you want to perform the for loop but have the outputs combined into a vector
or other data structure than you can initiate the output data structure prior to the for
loop. For instance, if we want to have the previous outputs combined into a single
 vector x we can initiate x fi rst and then append the for loop output to x .

 x <- NULL

 for(i in 2010:2016) {
 output <- paste ("The year is", i)
 x <- append(x, output)
 }

 x
 ## [1] "The year is 2010" "The year is 2011" "The year is 2012"
"The year is 2013"
 ## [5] "The year is 2014" "The year is 2015" "The year is 2016"

 However, an important lesson to learn is that R is not effi cient at growing data
objects. As a result, it is more effi cient to create an empty data object and fi ll it with the
 for loop outputs. In the previous example we grew x by appending new values to it.
A more effi cient practice is to initiate a vector (or other data structure) of the right size
and fi ll the elements. In the example that follows, we create the vector x of the right

19 Loop Control Statements

187

size and then fi ll in each element within the for loop. Although this ineffi ciency is not
noticed in this small example, when you perform larger repetitions it will become
noticeable so you might as well get in the habit of fi lling rather than growing .

 x <- vector(mode = “numeric”, length = 7)
 counter <- 1

 for(i in 2010:2016) {
 output <- paste ("The year is", i)
 x[counter] <- output
 counter <- counter + 1
 }

 x
 ## [1] "The year is 2010" "The year is 2011" "The year is 2012" "The year is 2013"
 ## [5] "The year is 2014" "The year is 2015" "The year is 2016"

 Another example in which we create an empty matrix with 5 rows and 5 col-
umns. The for loop then iterates over each column (note how i takes on the values
1 through the number of columns in the my.mat matrix) and takes a random draw
of 5 values from a Poisson distribution with mean i in column i :

 my.mat <- matrix (NA, nrow = 5, ncol = 5)

 for(i in 1: ncol (my.mat)){
 my.mat[, i] <- rpois (5, lambda = i)
 }
 my.mat
 ## [,1] [,2] [,3] [,4] [,5]
 ## [1,] 0 2 1 7 1
 ## [2,] 1 2 2 3 9
 ## [3,] 2 1 5 6 6
 ## [4,] 2 1 5 2 10
 ## [5,] 0 2 2 2 4

19.1.4 while Loop

 While loop s begin by testing a condition. If it is true, then they execute the state-
ment. Once the statement is executed, the condition is tested again, and so forth,
until the condition is false, after which the loop exits. It’s considered a best practice
to include a counter object to keep track of total iterations

 # syntax of while loop
 counter <- 1

 while (test_expression) {
 statement
 counter <- counter + 1
 }

19.1 Basic Control Statements (i.e. if , for , while , etc.)

188

 while loops can potentially result in infi nite loops if not written properly; there-
fore, you must use them with care. To provide a simple example to illustrate how
similiar for and while loops are:

 counter <- 1

 while(counter <= 10) {
 print (counter)
 counter <- counter + 1
 }

 # this for loop provides the same output
 counter <- vector (mode = "numeric", length = 10)

 for(i in 1: length (counter)) {
 print (i)
 }

 The primary difference between a for loop and a while loop is: a for loop is
used when the number of iterations a code should be run is known where a while
loop is used when the number of iterations is not known. For instance, the following
takes value x and adds or subtracts 1 from the value randomly until x exceeds the
values in the test expression. The output illustrates that the code runs 14 times until
x exceeded the threshold with the value 9.

 counter <- 1
 x <- 5
 set.seed (3)

 while(x >= 3 && x <= 8) {
 coin <- rbinom (1, 1, 0.5)
 if(coin == 1) { ## random walk
 x <- x + 1
 } else {
 x <- x - 1
 }
 cat ("On iteration", counter, ", x =", x, '\n')
 counter <- counter + 1
 }
 ## On iteration 1 , x = 4
 ## On iteration 2 , x = 5
 ## On iteration 3 , x = 4
 ## On iteration 4 , x = 3
 ## On iteration 5 , x = 4
 ## On iteration 6 , x = 5
 ## On iteration 7 , x = 4
 ## On iteration 8 , x = 3
 ## On iteration 9 , x = 4
 ## On iteration 10 , x = 5
 ## On iteration 11 , x = 6
 ## On iteration 12 , x = 7
 ## On iteration 13 , x = 8
 ## On iteration 14 , x = 9

19 Loop Control Statements

189

19.1.5 repeat Loop

 A repeat loop is used to iterate over a block of code multiple number of times.
There is not a test expression in a repeat loop to end or exit the loop. Rather, we
must put a condition statement explicitly inside the body of the loop and use the
 break function to exit the loop. Failing to do so will result into an infi nite loop.

 # syntax of repeat loop
 counter <- 1

 repeat {
 statement
 if(test_expression){
 break
 }
 counter <- counter + 1
 }

 For example, say we want to randomly draw values from a uniform distribution
between 1 and 25. Furthermore, we want to continue to draw values randomly until
our sample contains at least each integer value between 1 and 25; however, we do
not care if we’ve drawn a particular value multiple times. The following code repeats
the random draws of values between 1 and 25 (which we round). We then include
an if statement to check if all values between 1 and 25 are present in our sample.
If so, we use the break statement to exit the loop. If not, we add to our counter and
let the loop repeat until the conditional if statement is found to be true. We can
then check the counter object to assess how many iterations were required to
reach our conditional requirement.

 counter <- 1
 x <- NULL

 repeat {
 x <- c (x, round (runif (1, min = 1, max = 25)))
 if(all (1:25 %in% x)){
 break
 }
 counter <- counter + 1
 }

 counter
 ## [1] 75

19.1.6 break Function to Exit a Loop

 The break function is used to exit a loop immediately, regardless of what iteration
the loop may be on. break functions are typically embedded in an if statement in
which a condition is assessed, if TRUE break out of the loop, if FALSE continue

19.1 Basic Control Statements (i.e. if , for , while , etc.)

190

on with the loop. In a nested looping situation, where there is a loop inside another
loop, this statement exits from the innermost loop that is being evaluated.

 x <- 1:5

 for (i in x) {
 if (i == 3){
 break
 }
 print (i)
 }
 ## [1] 1
 ## [1] 2

19.1.7 next Function to Skip an Iteration in a Loop

 The next statement is useful when we want to skip the current iteration of a loop
without terminating it. On encountering next, the R parser skips further evaluation
and starts next iteration of the loop.

 x <- 1:5

 for (i in x) {
 if (i == 3){
 next
 }
 print (i)
 }
 ## [1] 1
 ## [1] 2
 ## [1] 4
 ## [1] 5

19.2 Apply Family

 The apply family consists of vectorized functions which minimize your need to
explicitly create loops. These functions will apply a specifi ed function to a data
object and there primary difference is in the object class in which the function is
applied to (list vs. matrix , etc) and the object class that will be returned from the
function. The following presents the most common forms of apply functions that I
use for data analysis but realize that additional functions exist (mapply , rapply ,
and vapply) which are not covered here.

19 Loop Control Statements

191

19.2.1 apply() for Matrices and Data Frames

 The apply() function is most often used to apply a function to the rows or col-
umns (margins) of matrices or data frames . However, it can be used with general
arrays, for example, to take the average of an array of matrices. Using apply() is
not faster than using a loop function, but it is highly compact and can be written in
one line.

 The syntax for apply() is as follows where

• x is the matrix , dataframe or array
• MARGIN is a vector giving the subscripts which the function will be applied over.

E.g., for a matrix 1 indicates rows, 2 indicates columns, c(1, 2) indicates rows
and columns.

• FUN is the function to be applied
• … is for any other arguments to be passed to the function

 # syntax of apply function
 apply (x, MARGIN, FUN, …)

 To provide examples let’s use the mtcars data set provided in R :

 # show fi rst few rows of mtcars
 head (mtcars)
 ## mpg cyl disp hp drat wt qsec vs am gear carb
 ## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
 ## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
 ## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
 ## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
 ## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

 # get the mean of each column
 apply (mtcars, 2, mean)
 ## mpg cyl disp hp drat wt
 ## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250
 ## qsec vs am gear carb
 ## 17.848750 0.437500 0.406250 3.687500 2.812500

 # get the sum of each row (not really relevant for this data
 # but it illustrates the capability)
 apply (mtcars, 1, sum)
 ## Mazda RX4 Mazda RX4 Wag Datsun 710
 ## 328.980 329.795 259.580
 ## Hornet 4 Drive Hornet Sportabout Valiant
 ## 426.135 590.310 385.540
 ## Duster 360 Merc 240D Merc 230
 ## 656.920 270.980 299.570
 ## Merc 280 Merc 280C Merc 450SE
 ## 350.460 349.660 510.740
 ## Merc 450SL Merc 450SLC Cadillac Fleetwood
 ## 511.500 509.850 728.560
 ## Lincoln Continental Chrysler Imperial Fiat 128

19.2 Apply Family

192

 ## 726.644 725.695 213.850
 ## Honda Civic Toyota Corolla Toyota Corona
 ## 195.165 206.955 273.775
 ## Dodge Challenger AMC Javelin Camaro Z28
 ## 519.650 506.085 646.280
 ## Pontiac Firebird Fiat X1-9 Porsche 914-2
 ## 631.175 208.215 272.570
 ## Lotus Europa Ford Pantera L Ferrari Dino
 ## 273.683 670.690 379.590
 ## Maserati Bora Volvo 142E
 ## 694.710 288.890

 # get column quantiles (notice the quantile percents as row names)
 apply (mtcars, 2, quantile, probs = c (0.10, 0.25, 0.50, 0.75, 0.90))
 ## mpg cyl disp hp drat wt qsec vs am gear carb
 ## 10% 14.340 4 80.610 66.0 3.007 1.95550 15.5340 0 0 3 1
 ## 25% 15.425 4 120.825 96.5 3.080 2.58125 16.8925 0 0 3 2
 ## 50% 19.200 6 196.300 123.0 3.695 3.32500 17.7100 0 0 4 2
 ## 75% 22.800 8 326.000 180.0 3.920 3.61000 18.9000 1 1 4 4
 ## 90% 30.090 8 396.000 243.5 4.209 4.04750 19.9900 1 1 5 4

19.2.2 lapply() for Lists…Output as a List

 The lapply() function does the following simple series of operations:

 1. it loops over a list , iterating over each element in that list
 2. it applies a function to each element of the list (a function that you specify)
 3. and returns a list (the l is for “list”).

 The syntax for lapply() is as follows where

• x is the list
• FUN is the function to be applied
• … is for any other arguments to be passed to the function

 # syntax of lapply function
 lapply (x, FUN, …)

 To provide examples we’ll generate a list of four items:

 data <- list (item1 = 1:4, item2 = rnorm (10),
 item3 = rnorm (20, 1), item4 = rnorm (100, 5))

 # get the mean of each list item
 lapply (data, mean)
 ## $item1
 ## [1] 2.5
 ##
 ## $item2
 ## [1] 0.5529324
 ##

19 Loop Control Statements

193

 ## $item3
 ## [1] 1.193884
 ##
 ## $item4
 ## [1] 5.013019

 The above provides a simple example where each list item is simply a vector of
numeric values. However, consider the case where you have a list that contains data
frames and you would like to loop through each list item and perform a function to the
 data frame . In this case we can embed an apply function within an lapply function.

 For example, the following creates a list fo r R ’s built in beaver data sets.
The lapply function loops through each of the two list items and uses apply
to calculate the mean of the columns in both list items. Note that I wrap the apply
function with round to provide an easier to read output.

 # list of R's built in beaver data
 beaver_data <- list (beaver1 = beaver1, beaver2 = beaver2)

 # get the mean of each list item
 lapply (beaver_data, function(x) round (apply (x, 2, mean), 2))
 ## $beaver1
 ## day time temp activ
 ## 346.20 1312.02 36.86 0.05
 ##
 ## $beaver2
 ## day time temp activ
 ## 307.13 1446.20 37.60 0.62

19.2.3 sapply() for Lists…Output Simplifi ed

 The sapply() function behaves similarly to lapply() ; the only real difference
is in the return value. sapply() will try to simplify the result of lapply() if
possible. Essentially, sapply() calls lapply() on its input and then applies the
following algorithm:

• If the result is a list where every element is length 1, then a vector is returned
• If the result is a list where every element is a vector of the same length (> 1), a

 matrix is returned.
• If neither of the above simplifi cations can be performed then a list is returned

 To illustrate the differences we can use the previous example using a list with the
beaver data and compare the sapply and lapply outputs:

 # list of R's built in beaver data
 beaver_data <- list (beaver1 = beaver1, beaver2 = beaver2)

19.2 Apply Family

194

 # get the mean of each list item and return as a list
 lapply (beaver_data, function(x) round (apply (x, 2, mean), 2))
 ## $beaver1
 ## day time temp activ
 ## 346.20 1312.02 36.86 0.05
 ##
 ## $beaver2
 ## day time temp activ
 ## 307.13 1446.20 37.60 0.62

 # get the mean of each list item and simplify the output
 sapply (beaver_data, function(x) round (apply (x, 2, mean), 2))
 ## beaver1 beaver2
 ## day 346.20 307.13
 ## time 1312.02 1446.20
 ## temp 36.86 37.60
 ## activ 0.05 0.62

19.2.4 tapply() for Vectors

 tapply() is used to apply a function over subsets of a vector . It is primarily used
when we have the following circumstances:

 1. A dataset that can be broken up into groups (via categorical variables - aka
 factors)

 2. We desire to break the dataset up into groups
 3. Within each group, we want to apply a function

 The arguments to tapply() are as follows:

• x is a vector
• INDEX is a factor or a list of factors (or else they are coerced to factors)
• FUN is a function to be applied
• … contains other arguments to be passed FUN
• simplify , should we simplify the result?

 # syntax of tapply function
 tapply (x, INDEX, FUN, …, simplify = TRUE)

 To provide an example we’ll use the built in mtcars dataset and calculate the
mean of the mpg variable grouped by the cyl variable.

 # show fi rst few rows of mtcars
 head (mtcars)
 ## mpg cyl disp hp drat wt qsec vs am gear carb
 ## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
 ## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
 ## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
 ## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
 ## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

19 Loop Control Statements

195

 # get the mean of the mpg column grouped by cylinders
 tapply (mtcars$mpg, mtcars$cyl, mean)
 ## 4 6 8
 ## 26.66364 19.74286 15.10000

 Now let’s say you want to calculate the mean for each column in the mtcars
dataset grouped by the cylinder categorical variable. To do this you can embed the
 tapply function within the apply function.

 # get the mean of all columns grouped by cylinders
 apply (mtcars, 2, function(x) tapply (x, mtcars$cyl, mean))
 ## mpg cyl disp hp drat wt qsec vs
 ## 4 26.66364 4 105.1364 82.63636 4.070909 2.285727 19.13727 0.9090909
 ## 6 19.74286 6 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286
 ## 8 15.10000 8 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000
 ## am gear carb
 ## 4 0.7272727 4.090909 1.545455
 ## 6 0.4285714 3.857143 3.428571
 ## 8 0.1428571 3.285714 3.500000

 Note that this type of summarization can also be done using the dplyr package
with clearer syntax . This is covered in the Transforming Your Data with dplyr
section.

19.3 Other Useful “Loop-Like” Functions

 In addition to the apply family which provides vectorized functions that minimize
your need to explicitly create loops, there are also a few commonly applied apply
functions that have been further simplifi ed. These include the calculation of column
and row sums, means, medians, standard deviations, variances, and summary quan-
tiles across the entire data set.

 The most common apply functions include calculating the sums and means of
columns and rows. For instance, to calculate the sum of columns across a data frame
or matrix you could do the following:

 apply (mtcars, 2, sum)
 ## mpg cyl disp hp drat wt qsec vs
 ## 642.900 198.000 7383.100 4694.000 115.090 102.952 571.160 14.000
 ## am gear carb
 ## 13.000 118.000 90.000

 However, you can perform the same function with the shorter colSums()
function and it performs faster:

 colSums (mtcars)
 ## mpg cyl disp hp drat wt qsec vs
 ## 642.900 198.000 7383.100 4694.000 115.090 102.952 571.160 14.000
 ## am gear carb
 ## 13.000 118.000 90.000

19.3 Other Useful “Loop-Like” Functions

196

 To illustrate the speed difference we can compare the performance of using the
 apply() function versus the colSums() function on a matrix with 100 million
values (10K × 10K). You can see that the speed of colSums() is signifi cantly faster.

 # develop a 10,000 x 10,000 matrix
 mat = matrix (sample (1:10, size=100000000, replace=TRUE), nrow=10000)

 system.time (apply (mat, 2, sum))
 ## user system elapsed
 ## 1.544 0.329 1.879

 system.time (colSums (mat))
 ## user system elapsed
 ## 0.126 0.000 0.127

 Base R provides the following simplifi ed apply functions:

• colSums (x, na.rm = FALSE)
• rowSums (x, na.rm = FALSE)
• colMeans(x, na.rm = FALSE)
• rowMeans(x, na.rm = FALSE)

 In addition, the following functions are provided through the specifi ed
 packages :

• miscTools package (note that these functions will work on data frames)

 – colMedians()
 – rowMedians()

• matrixStats package (note that these functions only operate on matrices)

 – colMedians() and rowMedians()
 – colSds() and rowSds()
 – colVar() and rowVar()
 – colRanges() and rowRanges()
 – colQuantiles() and rowQuantiles()
 – along with several additional summary statistic functions

 In addition, the summary() function will provide relevant summary statistics
over each column of data frames and matrices. Note in the example that follows that
for the fi rst four columns of the iris data set the summary statistics include min,
med, mean, max, and fi rst and third quantiles. Whereas the last column (Species)
only provides the total count since this is a factor variable.

 summary (iris)
 ## Sepal.Length Sepal.Width Petal.Length Petal.Width
 ## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
 ## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
 ## Median :5.800 Median :3.000 Median :4.350 Median :1.300
 ## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
 ## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

19 Loop Control Statements

197

 ## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
 ## Species
 ## setosa :50
 ## versicolor:50
 ## virginica :50
 ##
 ##
 ##

19.4 Additional Resources

 This provides an introduction to control statements in R . However, the following
provides additional resources to learn more:

• Tutorial on loops by DataCamp
• Roger Peng’s R Programming for Data Science
• Hadley Wickham’s Advanced R

19.4 Additional Resources

199© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_20

 Chapter 20
 Simplify Your Code with %>%

 Removing duplication is an important principle to keep in mind with your code;
however, equally important is to keep your code effi cient and readable. Effi ciency is
often accomplished by leveraging functions and control statements in your code.
However, effi ciency also includes eliminating the creation and saving of unneces-
sary objects that often result when you are trying to make your code more readable,
clear, and explicit. Consequently, writing code that is simple, readable, and effi cient
is often considered contradictory. For this reason, the magrittr package is a pow-
erful tool to have in your data wrangling toolkit.

 The magrittr package was created by Stefan Milton Bache and, in Stefan’s words,
has two primary aims: “to decrease development time and to improve readability
and maintainability of code.” Hence, it aims to increase effi ciency and improve
readability; and in the process it greatly simplifi es your code. The following covers
the basics of the magrittr toolkit.

20.1 Pipe (%>%) Operator

 The principal function provided by the magrittr package is %>% , or what’s
called the “pipe” operator. This operator will forward a value, or the result of an
expression, into the next function call/expression. For instance a function to fi lter
data can be written as:

 fi lter (data, variable == numeric_value)

 or

 data %>% fi lter(variable == numeric_value)

200

 Both functions complete the same task and the benefi t of using %>% may not be
immediately evident; however, when you desire to perform multiple functions its
advantage becomes obvious. For instance, if we want to fi lter some data, group it by
categories, summarize it, and then order the summarized results we could write it
out three different ways. Don’t worry, you’ll learn how to operate these specifi c
functions in the next section.

20.1.1 Nested Option

 library (magrittr)
 library (dplyr)

 arrange (
 summarize (
 group_by (
 fi lter (mtcars, carb > 1),
 cyl
),
 Avg_mpg = mean (mpg)
),
 desc (Avg_mpg)
)
 ## Source: local data frame [3 x 2]
 ##
 ## cyl Avg_mpg
 ## (dbl) (dbl)
 ## 1 4 25.90
 ## 2 6 19.74
 ## 3 8 15.10

 This fi rst option is considered a “nested” option such that functions are nested
within one another. Historically, this has been the traditional way of integrating code;
however, it becomes extremely diffi cult to read what exactly the code is doing and it
also becomes easier to make mistakes when making updates to your code. Although
not in violation of the DRY principle, it defi nitely violates the basic principle of read-
ability and clarity, which makes communication of your analysis more diffi cult. To
make things more readable, people often move to the following approach…

20.1.2 Multiple Object Option

 a <- fi lter (mtcars, carb > 1)
 b <- group_by (a, cyl)
 c <- summarise (b, Avg_mpg = mean (mpg))
 d <- arrange (c, desc (Avg_mpg))
 print (d)
 ## Source: local data frame [3 x 2]

20 Simplify Your Code with %>%

201

 ##
 ## cyl Avg_mpg
 ## (dbl) (dbl)
 ## 1 4 25.90
 ## 2 6 19.74
 ## 3 8 15.10

 This second option helps in making the data wrangling steps more explicit and
obvious but defi nitely violates the DRY principle. By sequencing multiple functions in
this way you are likely saving multiple outputs that are not very informative to you or
others; rather, the only reason you save them is to insert them into the next function to
eventually get the fi nal output you desire. This inevitably creates unnecessary copies
and wrecks havoc on properly managing your objects…basically it results in a global
environment charlie foxtrot! To provide the same readability (or even better), we can
use %>% to string these arguments together without unnecessary object creation…

20.1.3 %>% Option

 mtcars %>%
 fi lter (carb > 1) %>%
 group_by (cyl) %>%
 summarise (Avg_mpg = mean (mpg)) %>%
 arrange (desc (Avg_mpg))
 ## Source: local data frame [3 x 2]
 ##
 ## cyl Avg_mpg
 ## (dbl) (dbl)
 ## 1 4 25.90
 ## 2 6 19.74
 ## 3 8 15.10

 This fi nal option which integrates %>% operators makes for more effi cient and
legible code. Its effi cient in that it doesn’t save unnecessary objects (as in option 2)
and performs as effectively (as both option 1 and 2) but makes your code more read-
able in the process. Its legible in that you can read this as you would read normal
prose (we read the %>% as “ and then”) - “take mtcars and then fi lter and then
 group by and then summarize and then arrange .”

 And since R is a functional programming language , meaning that everything you
do is basically built on functions, you can use the pipe operator to feed into just
about any argument call. For example, we can pipe into a linear regression function
and then get the summary of the regression parameters. Note in this case I insert
“ data = .” into the lm() function. When using the %>% operator the default is
the argument that you are forwarding will go in as the fi rst argument of the function
that follows the %>% . However, in some functions the argument you are forwarding
does not go into the default fi rst position. In these cases, you place “.” to signal
which argument you want the forwarded expression to go to.

20.1 Pipe (%>%) Operator

202

 mtcars %>%
 fi lter (carb > 1) %>%
 lm (mpg ~ cyl + hp, data = .) %>%
 summary ()
 ##
 ## Call:
 ## lm(formula = mpg ~ cyl + hp, data = .)
 ##
 ## Residuals:
 ## Min 1Q Median 3Q Max
 ## -4.6163 -1.4162 -0.1506 1.6181 5.2021
 ##
 ## Coeffi cients:
 ## Estimate Std. Error t value Pr(>|t|)
 ## (Intercept) 35.67647 2.28382 15.621 2.16e-13 ***
 ## cyl -2.22014 0.52619 -4.219 0.000353 ***
 ## hp -0.01414 0.01323 -1.069 0.296633
 ## ---
 ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 ##
 ## Residual standard error: 2.689 on 22 degrees of freedom
 ## Multiple R-squared: 0.7601, Adjusted R-squared: 0.7383
 ## F-statistic: 34.85 on 2 and 22 DF, p-value: 1.516e-07

 You can also use %>% to feed into plots:

 library (ggplot2)

 mtcars %>%
 fi lter (carb > 1) %>%
 qplot (x = wt, y = mpg, data = .)

543
wt

Piping into a Plot

2

10

15

20m
pg

25

30

20 Simplify Your Code with %>%

203

 You will also fi nd that the %>% operator is now being built into packages to make
programming much easier. For instance, in the section that follows where I illustrate
how to reshape and transform your data with the dplyr and tidyr packages , you
will see that the %>% operator is already built into these packages . It is also built into the
 ggvis and dygraphs packages (visualization packages), the httr package (which
we covered in the data scraping chapter), and a growing number of newer packages .

20.2 Additional Functions

 In addition to the %>% operator, magrittr provides several additional functions
which make operations such as addition, multiplication, logical operators , re-
 naming , etc. more pleasant when composing chains using the %>% operator. Some
examples follow but you can see the current list of the available aliased functions by
typing ? magrittr ::add in your console .

 # subset with extract
 mtcars %>%
 extract (, 1:4) %>%
 head
 ## mpg cyl disp hp
 ## Mazda RX4 21.0 6 160 110
 ## Mazda RX4 Wag 21.0 6 160 110
 ## Datsun 710 22.8 4 108 93
 ## Hornet 4 Drive 21.4 6 258 110
 ## Hornet Sportabout 18.7 8 360 175
 ## Valiant 18.1 6 225 105

 # add, subtract, multiply, divide and other operations are available
 mtcars %>%
 extract (, "mpg") %>%
 multiply_by (5)
 ## [1] 105.0 105.0 114.0 107.0 93.5 90.5 71.5 122.0 114.0 96.0 89.0
 ## [12] 82.0 86.5 76.0 52.0 52.0 73.5 162.0 152.0 169.5 107.5 77.5
 ## [23] 76.0 66.5 96.0 136.5 130.0 152.0 79.0 98.5 75.0 107.0

 # logical assessments and fi lters are available
 mtcars %>%
 extract (, "cyl") %>%
 equals (4)
 ## [1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
 ## [12] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE
 ## [23] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE

 # renaming columns and rows is available
 mtcars %>%
 head %>%
 set_colnames (paste ("Col", 1:11, sep = ""))
 ## Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 Col10
 ## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4
 ## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4
 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4
 ## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3

20.2 Additional Functions

204

 ## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3
 ## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3
 ## Col11
 ## Mazda RX4 4
 ## Mazda RX4 Wag 4
 ## Datsun 710 1
 ## Hornet 4 Drive 1
 ## Hornet Sportabout 2
 ## Valiant 1

20.3 Additional Pipe Operators

 magrittr also offers some alternative pipe operators . Some functions, such as
plotting functions, will cause the string of piped arguments to terminate. The tee
(%T>%) operator allows you to continue piping functions that normally cause
termination.

 # normal piping terminates with the plot() function resulting in
 # NULL results for the summary() function
 mtcars %>%
 fi lter (carb > 1) %>%
 extract (, 1:4) %>%
 plot () %>%
 summary ()

disp

hp

4003002001003025201510

50
15

0
25

0
4

5
6

7
8

4 5 6 7 8 50 150 250

30
20

10
10

0
30

0
mpg

cyl

 Regular Pipe Operator Terminates String of Functions at a Plot

20 Simplify Your Code with %>%

205

 ## Length Class Mode
 ## 0 NULL NULL

 # inserting %T>% allows you to plot and perform the functions that
 # follow the plotting function
 mtcars %>%
 fi lter (carb > 1) %>%
 extract (, 1:4) %T>%
 plot () %>%
 summary ()

 4003002001003025201510

50
15

0
25

0
4

5
6

7
8

4 5 6 7 8 50 150 250

30
20

10
10

0
30

0

disp

hp

mpg

cyl

 Tee Operator Allows You to Pipe Through a Plot

 ## mpg cyl disp hp
 ## Min. :10.40 Min. :4.00 Min. : 75.7 Min. : 52.0
 ## 1st Qu.:15.20 1st Qu.:6.00 1st Qu.:146.7 1st Qu.:110.0
 ## Median :17.80 Median :8.00 Median :275.8 Median :175.0
 ## Mean :18.62 Mean :6.64 Mean :257.7 Mean :163.7
 ## 3rd Qu.:21.00 3rd Qu.:8.00 3rd Qu.:351.0 3rd Qu.:205.0
 ## Max. :30.40 Max. :8.00 Max. :472.0 Max. :335.0

 The compound assignment %<>% operator is used to update a value by fi rst pip-
ing it into one or more expressions, and then assigning the result. For instance, let’s
say you want to transform the mpg variable in the mtcars data frame to a square
root measurement. Using %<>% will perform the functions to the right of %<>% and
save the changes these functions perform to the variable or data frame called to the
left of %<>% .

20.3 Additional Pipe Operators

206

 # note that mpg is in its typical measurement
 head (mtcars)
 ## mpg cyl disp hp drat wt qsec vs am gear carb
 ## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
 ## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
 ## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
 ## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
 ## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

 # we can square root mpg and save this change using %<>%
 mtcars$mpg %<>% sqrt

 head (mtcars)
 ## mpg cyl disp hp drat wt qsec vs am gear carb
 ## Mazda RX4 4.582576 6 160 110 3.90 2.620 16.46 0 1 4 4
 ## Mazda RX4 Wag 4.582576 6 160 110 3.90 2.875 17.02 0 1 4 4
 ## Datsun 710 4.774935 4 108 93 3.85 2.320 18.61 1 1 4 1
 ## Hornet 4 Drive 4.626013 6 258 110 3.08 3.215 19.44 1 0 3 1
 ## Hornet Sportabout 4.324350 8 360 175 3.15 3.440 17.02 0 0 3 2
 ## Valiant 4.254409 6 225 105 2.76 3.460 20.22 1 0 3 1

 Some functions (e.g. lm, aggregate, cor) have a data argument , which allows the
direct use of names inside the data as part of the call. The exposition (%$%) operator
is useful when you want to pipe a data frame, which may contain many columns,
into a function that is only applied to some of the columns. For example, the correla-
tion (cor) function only requires an x and y argument so if you pipe the mtcars
data into the cor function using %>% you will get an error because cor doesn’t
know how to handle mtcars . However, using %$% allows you to say “take this
dataframe and then perform cor() on these specifi ed columns within mtcars .”

 # regular piping results in an error
 mtcars %>%
 subset (vs == 0) %>%
 cor (mpg, wt)
 ## Error in pmatch(use, c("all.obs", "complete.obs", "pairwise.complete.obs", :
object 'wt' not found

 # using %$% allows you to specify variables of interest
 mtcars %>%
 subset (vs == 0) %$%
 cor (mpg, wt)
 ## [1] -0.830671

20 Simplify Your Code with %>%

207

20.4 Additional Resources

 The magrittr package and its pipe operators are a great tool for making your code
simple, effi cient, and readable. There are limitations, or at least suggestions, on when
and how you should use the operators. Garrett Grolemund and Hadley Wickham
offer some advice on the proper use of pipe operators in their R for Data Science
book. However, the %>% has greatly transformed our ability to write “simplifi ed”
code in R . As the pipe gains in popularity you will likely fi nd it in more future pack-
ages and being familiar will likely result in better communication of your code.

 Some additional resources regarding magrittr and the pipe operators you
may fi nd useful:

• The magrittr vignette (vignette(" magrittr ")) in your console) pro-
vides additional examples of using pipe operators and functions provided by
 magrittr .

• A blog post by Stefan Milton Bache regarding the past, present and future of
 magrittr 1

• magrittr questions on Stack Overfl ow
• The ensurer package, also written by Stefan Milton Bache, provides a useful way

of verifying and validating data outputs in a sequence of pipe operators .

1 https://www.r-bloggers.com/simpler-r-coding-with-pipes-the-present-and-future-of-the-magrittr-
package/

20.4 Additional Resources

https://www.r-bloggers.com/simpler-r-coding-with-pipes-the-present-and-future-of-the-magrittr-package/
https://www.r-bloggers.com/simpler-r-coding-with-pipes-the-present-and-future-of-the-magrittr-package/

 Part VI
 Shaping and Transforming

Your Data with R
 Up to 80 % of data analysis is spent on the process of cleaning
and preparing data .

 cf.Wickham (2014) and Dasu and Johnson (2003)

 A tremendous amount of time is spent on fundamental preprocessing tasks to get
your data into the right form in order to feed it into the visualization and modeling
stages. This typically requires a large amount of reshaping and transformation of
your data. Although many fundamental data processing functions exist in R , they
have been a bit convoluted to date and have lacked consistent coding and the ability
to easily fl ow together. The RStudio team has been driving a lot of new packages to
collate data management tasks and better integrate them with other analysis activi-
ties. As a result, a lot of data processing tasks are becoming packaged in more
cohesive and consistent ways which leads to more effi cient code and easier to read
 syntax . This section covers two of these packages : tidyr and dplyr .

 In this section, I start by providing a fundamental understanding of tidy data fol-
lowed by demonstrating how to to use tidyr to turn wide data to long, long data
to wide, splitting and combining variables, along with illustrating some lesser-
known functions. Subsequently, I provide an introduction to the dplyr package by
covering seven primary functions dplyr provides for simplifi ed data transforma-
tion and manipulation. This includes tasks such as fi ltering, summarizing, ordering,
joining, and much more. Understanding and using these two packages will help to
signifi cantly reduce the time you spend on the data wrangling process.

https://www.jstatsoft.org/article/view/v059i10
http://onlinelibrary.wiley.com/doi/10.1002/0471448354.ch4/summary
http://dx.doi.org/10.1007/978-3-319-45599-0_21
http://dx.doi.org/10.1007/978-3-319-45599-0_22

211© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_21

 Chapter 21
 Reshaping Your Data with tidyr

 Cannot emphasize enough how much time you save by putting
analysis efforts into tidying data fi rst.

 Hilary Parker

 Jenny Bryan stated that “classroom data are like teddy bears and real data are like a
grizzley bear with salmon blood dripping out its mouth.” In essence, she was getting
to the point that often when we learn how to perform a modeling approach in the
classroom, the data used is provided in a format that appropriately feeds into the
modeling tool of choice. In reality, datasets are messy and “every messy dataset is
messy in its own way.” 1 The concept of “tidy data” was established by Hadley
Wickham and represents “standardized way to link the structure of a dataset (its
physical layout) with its semantics (its meaning).” 2 The objective should always be
to get a dataset into a tidy form which consists of:

 1. Each variable forms a column
 2. Each observation forms a row
 3. Each type of observational unit forms a table

 To create tidy data you need to be able to reshape your data; preferably via effi -
cient and simple code. To help with this process Hadley created the tidyr pack-
age. This chapter covers the basics of tidyr to help you reshape your data as
necessary. I demonstrate how to turn wide data to long , long data to wide , splitting
and combining variables, and fi nally I will cover some lesser known functions in
 tidyr that are useful. Note that throughout I use the %>% operator we covered in
the last chapter. Although not required, the tidyr package has the %>% operator
baked in to its functionality, which allows you to sequence multiple tidy functions
together .

1 Wickham, H. (2014). “Tidy data.” Journal of Statistical Software, 59(10). [document].
2 Ibid.

http://jstatsoft.org/v59/i10

212

21.1 Making Wide Data long

 There are times when our data is considered “wide” or “unstacked” and a common
attribute/variable of concern is spread out across columns. To reformat the data such
that these common attributes are gathered together as a single variable, the
 gather() function will take multiple columns and collapse them into key-value
pairs, duplicating all other columns as needed.

 For example, let’s say we have the given data frame .

 library (dplyr) # I'm using dplyr just to create the data frame with tbl_df()

 wide <- tbl_df (read.table (header = TRUE, text = "
 Group Year Qtr.1 Qtr.2 Qtr.3 Qtr.4
 1 2006 15 16 19 17
 1 2007 12 13 27 23
 1 2008 22 22 24 20
 1 2009 10 14 20 16
 2 2006 12 13 25 18
 2 2007 16 14 21 19
 2 2008 13 11 29 15
 2 2009 23 20 26 20
 3 2006 11 12 22 16
 3 2007 13 11 27 21
 3 2008 17 12 23 19
 3 2009 14 9 31 24
 "))

 This data is considered wide since the time variable (represented as quarters) is
structured such that each quarter represents a variable. To re-structure the time compo-
nent as an individual variable, we can gather each quarter within one column variable
and also gather the values associated with each quarter in a second column variable.

 library (tidyr)

 long <- wide %>% gather (Quarter, Revenue, Qtr.1:Qtr.4)

 # note, for brevity, I only show the fi rst 15 observations
 head (long, 15)
 ## Source: local data frame [15 x 4]
 ##
 ## Group Year Quarter Revenue
 ## (int) (int) (fctr) (int)
 ## 1 1 2006 Qtr.1 15
 ## 2 1 2007 Qtr.1 12
 ## 3 1 2008 Qtr.1 22
 ## 4 1 2009 Qtr.1 10
 ## 5 2 2006 Qtr.1 12
 ## 6 2 2007 Qtr.1 16
 ## 7 2 2008 Qtr.1 13
 ## 8 2 2009 Qtr.1 23
 ## 9 3 2006 Qtr.1 11

21 Reshaping Your Data with tidyr

213

 ## 10 3 2007 Qtr.1 13
 ## 11 3 2008 Qtr.1 17
 ## 12 3 2009 Qtr.1 14
 ## 13 1 2006 Qtr.2 16
 ## 14 1 2007 Qtr.2 13
 ## 15 1 2008 Qtr.2 22

 It’s important to note that there is fl exibility in how you specify the columns you
would like to gather. These all produce the same results:

 wide %>% gather (Quarter, Revenue, Qtr.1:Qtr.4)
 wide %>% gather (Quarter, Revenue, -Group, -Year)
 wide %>% gather (Quarter, Revenue, 3:6)
 wide %>% gather (Quarter, Revenue, Qtr.1, Qtr.2, Qtr.3, Qtr.4)

21.2 Making Long Data wide

 There are also times when we are required to turn long formatted data into wide
formatted data. As a complement to gather() , the spread() function spreads
a key-value pair across multiple columns. So now let’s take our long data frame
from above and turn the Quarter variable into column headings and spread the
 Revenue values across the quarters they are related to.

 back2wide <- long %>% spread (Quarter, Revenue)

 back2wide
 ## Source: local data frame [12 x 6]
 ##
 ## Group Year Qtr.1 Qtr.2 Qtr.3 Qtr.4
 ## (int) (int) (int) (int) (int) (int)
 ## 1 1 2006 15 16 19 17
 ## 2 1 2007 12 13 27 23
 ## 3 1 2008 22 22 24 20
 ## 4 1 2009 10 14 20 16
 ## 5 2 2006 12 13 25 18
 ## 6 2 2007 16 14 21 19
 ## 7 2 2008 13 11 29 15
 ## 8 2 2009 23 20 26 20
 ## 9 3 2006 11 12 22 16
 ## 10 3 2007 13 11 27 21
 ## 11 3 2008 17 12 23 19
 ## 12 3 2009 14 9 31 24

21.3 Splitting a Single Column into Multiple Columns

 Many times a single column variable will capture multiple variables, or even parts of
a variable you just don’t care about. This is exemplifi ed in the following messy_df
 data frame . Here, the Grp_Ind variable combines an individual variable (a, b, c)

21.3 Splitting a Single Column into Multiple Columns

214

with the group variable (1, 2, 3), the Yr_Mo variable combines a year variable with
a month variable, etc. In each case there may be a purpose for separating parts of
these columns into separate variables.

 messy_df
 ## Grp_Ind Yr_Mo City_State Extra_variable
 ## 1 1.a 2006_Jan Dayton (OH) XX01person_1
 ## 2 1.b 2006_Feb Grand Forks (ND) XX02person_2
 ## 3 1.c 2006_Mar Fargo (ND) XX03person_3
 ## 4 2.a 2007_Jan Rochester (MN) XX04person_4

 This can be accomplished using the separate() function which turns a single
character column into multiple columns. Additional arguments provide some fl exi-
bility with separating columns.

 # separate Grp_Ind column into two variables named "Grp" & "Ind"
 messy_df %>% separate (col = Grp_Ind, into = c ("Grp", "Ind"))
 ## Grp Ind Yr_Mo City_State Extra_variable
 ## 1 1 a 2006_Jan Dayton (OH) XX01person_1
 ## 2 1 b 2006_Feb Grand Forks (ND) XX02person_2
 ## 3 1 c 2006_Mar Fargo (ND) XX03person_3
 ## 4 2 a 2007_Jan Rochester (MN) XX04person_4

 # default separater is any non alpha-numeric character but you can
 # specify the specifi c character to separate at
 messy_df %>% separate (col = Extra_variable, into = c ("X", "Y"), sep = "_")
 ## Grp_Ind Yr_Mo City_State X Y
 ## 1 1.a 2006_Jan Dayton (OH) XX01person 1
 ## 2 1.b 2006_Feb Grand Forks (ND) XX02person 2
 ## 3 1.c 2006_Mar Fargo (ND) XX03person 3
 ## 4 2.a 2007_Jan Rochester (MN) XX04person 4

 # you can keep the original column that you are separating
 messy_df %>% separate (col = Grp_Ind, into = c ("Grp", "Ind"), remove = FALSE)
 ## Grp_Ind Grp Ind Yr_Mo City_State Extra_variable
 ## 1 1.a 1 a 2006_Jan Dayton (OH) XX01person_1
 ## 2 1.b 1 b 2006_Feb Grand Forks (ND) XX02person_2
 ## 3 1.c 1 c 2006_Mar Fargo (ND) XX03person_3
 ## 4 2.a 2 a 2007_Jan Rochester (MN) XX04person_4

21.4 Combining Multiple Columns into a Single Column

 Similarly, there are times when we would like to combine the values of two vari-
ables. As a compliment to separate() , the unite() function is a convenient
function to paste together multiple variable values into one. Consider the following
 data frame that has separate date variables. To perform time series analysis or for
visualizations we may desire to have a single date column.

21 Reshaping Your Data with tidyr

215

 expenses <- tbl_df (read.table (header = TRUE, text = "
 Year Month Day Expense
 2015 01 01 500
 2015 02 05 90
 2015 02 22 250
 2015 03 10 325
 "))

 To perform time series analysis or for visualizations we may desire to have a
single date column. We can accomplish this by uniting these columns into one vari-
able with unite() .

 # default separator when uniting is "_"
 expenses %>% unite (col = "Date", c (Year, Month, Day))
 ## Source: local data frame [4 x 2]
 ##
 ## Date Expense
 ## (chr) (int)
 ## 1 2015_1_1 500
 ## 2 2015_2_5 90
 ## 3 2015_2_22 250
 ## 4 2015_3_10 325

 # specify sep argument to change separator
 expenses %>% unite (col = "Date", c (Year, Month, Day), sep = "-")
 ## Source: local data frame [4 x 2]
 ##
 ## Date Expense
 ## (chr) (int)
 ## 1 2015-1-1 500
 ## 2 2015-2-5 90
 ## 3 2015-2-22 250
 ## 4 2015-3-10 325

21.5 Additional tidyr Functions

 The previous four functions (gather , spread , separate and unite) are the
primary functions you will fi nd yourself using on a continuous basis; however, there
are some handy functions that are lesser known with the tidyr package.

 expenses <- tbl_df (read.table (header = TRUE, text = "
 Dept Year Month Day Cost
 A 2015 01 01 $500.00
 NA NA 02 05 $90.00
 NA NA 02 22 $1,250.45
 NA NA 03 NA $325.10
 B NA 01 02 $260.00
 NA NA 02 05 $90.00
 ", stringsAsFactors = FALSE))

21.5 Additional tidyr Functions

216

 Often Excel reports will not repeat certain variables. When we read these reports
in, the empty cells are typically fi lled in with NA such as in the Dept and Year
columns of our expense data frame . We can fi ll these values in with the previous
entry using fi ll() .

 expenses %>% fi ll (Dept, Year)
 ## Source: local data frame [6 x 5]
 ##
 ## Dept Year Month Day Cost
 ## (chr) (int) (int) (int) (chr)
 ## 1 A 2015 1 1 $500.00
 ## 2 A 2015 2 5 $90.00
 ## 3 A 2015 2 22 $1,250.45
 ## 4 A 2015 3 NA $325.10
 ## 5 B 2015 1 2 $260.00
 ## 6 B 2015 2 5 $90.00

 Also, sometimes accounting values in Excel spreadsheet get read in as a charac-
ter value, which is the case for the Cost variable. We may wish to extract only the
numeric part of this regular expression , which can be done with extract_
numeric() . Note that extract_numeric works on a single variable so when
you pipe the expense data frame into the function you need to use %$% operator
as discussed in the last chapter.

 library (magrittr)

 expenses %$% extract_numeric (Cost)
 ## [1] 500.00 90.00 1250.45 325.10 260.00 90.00

 # you can use this to convert and save the Cost column to a
 # numeric variable
 expenses$Cost <- expenses %$% extract_numeric (Cost)

 expenses
 ## Source: local data frame [6 x 5]
 ##
 ## Dept Year Month Day Cost
 ## (chr) (int) (int) (int) (dbl)
 ## 1 A 2015 1 1 500.00
 ## 2 NA NA 2 5 90.00
 ## 3 NA NA 2 22 1250.45
 ## 4 NA NA 3 NA 325.10
 ## 5 B NA 1 2 260.00
 ## 6 NA NA 2 5 90.00

 You can also easily replace missing (or NA) values with a specifi ed value:

 library (magrittr)

 # replace the missing Day value
 expenses %>% replace_na (replace = list (Day = "unknown"))
 ## Source: local data frame [6 x 5]
 ##

21 Reshaping Your Data with tidyr

217

 ## Dept Year Month Day Cost
 ## (chr) (int) (int) (chr) (dbl)
 ## 1 A 2015 1 1 500.00
 ## 2 NA NA 2 5 90.00
 ## 3 NA NA 2 22 1250.45
 ## 4 NA NA 3 unknown 325.10
 ## 5 B NA 1 2 260.00
 ## 6 NA NA 2 5 90.00

 # replace both the missing Day and Year values
 expenses %>% replace_na (replace = list (Year = 2015, Day = "unknown"))
 ## Source: local data frame [6 x 5]
 ##
 ## Dept Year Month Day Cost
 ## (chr) (dbl) (int) (chr) (dbl)
 ## 1 A 2015 1 1 500.00
 ## 2 NA 2015 2 5 90.00
 ## 3 NA 2015 2 22 1250.45
 ## 4 NA 2015 3 unknown 325.10
 ## 5 B 2015 1 2 260.00
 ## 6 NA 2015 2 5 90.00

21.6 Sequencing Your tidyr Operations

 Since the %>% operator is embedded in tidyr , we can string multiple operations
together to effi ciently tidy data and make the process easy to read and follow. To
illustrate, let’s use the following data, which has multiple messy attributes .

 a_mess <- tbl_df (read.table (header = TRUE, text = "
 Dep_Unt Year Q1 Q2 Q3 Q4
 A.1 2006 15 NA 19 17
 B.1 NA 12 13 27 23
 A.2 NA 22 22 24 20
 B.2 NA 12 13 25 18
 A.1 2007 16 14 21 19
 B.2 NA 13 11 16 15
 A.2 NA 23 20 26 20
 B.2 NA 11 12 22 16
 "))

 In this case, a tidy dataset should result in columns of Dept, Unit, Year, Quarter,
and Cost. Furthermore, we want to fi ll in the year column where NA s currently exist.
And we’ll assume that we know the missing value that exists in the Q2 column, and
we’d like to update it.

 a_mess %>%
 fi ll (Year) %>%
 gather (Quarter, Cost, Q1:Q4) %>%
 separate (Dep_Unt, into = c ("Dept", "Unit")) %>%
 replace_na (replace = list (Cost = 17))
 ## Source: local data frame [32 x 5]

21.6 Sequencing Your tidyr Operations

218

 ##
 ## Dept Unit Year Quarter Cost
 ## (chr) (chr) (int) (fctr) (dbl)
 ## 1 A 1 2006 Q1 15
 ## 2 B 1 2006 Q1 12
 ## 3 A 2 2006 Q1 22
 ## 4 B 2 2006 Q1 12
 ## 5 A 1 2007 Q1 16
 ## 6 B 2 2007 Q1 13
 ## 7 A 2 2007 Q1 23
 ## 8 B 2 2007 Q1 11
 ## 9 A 1 2006 Q2 17
 ## 10 B 1 2006 Q2 13
 ## .. … … … … …

21.7 Additional Resources

 This chapter covers most, but not all, of what tidyr provides. There are several
other resources you can check out to learn more.

• Data wrangling presentation I gave at Miami University 3
• Hadley Wickham’s tidy data (Wickham, 2014)
• tidyr reference manual 4
• R Studio’s Data wrangling with R and RStudio webinar 5
• R Studio’s Data wrangling cheat sheet 6

 Bibliography

 Wickham, Hadley (2014). Tidy data. Journal of Statistical Software, 59(10) 1–23.

3 http://rpubs.com/bradleyboehmke/data_processing
4 https://cran.r-project.org/web/packages/tidyr/tidyr.pdf
5 https://www.rstudio.com/resources/webinars/
6 You can get the RStudio cheatsheets at https://www.rstudio.com/resources/cheatsheets/ or within
a working RStudio session by going to Help > Cheatsheets

21 Reshaping Your Data with tidyr

http://rpubs.com/bradleyboehmke/data_processing
https://cran.r-project.org/web/packages/tidyr/tidyr.pdf
https://www.rstudio.com/resources/webinars/
https://www.rstudio.com/resources/cheatsheets/

219© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0_22

 Chapter 22
 Transforming Your Data with dplyr

 Transforming your data is a basic part of data wrangling . This can include fi ltering,
summarizing, and ordering your data by different means. This also includes com-
bining disparate data sets, creating new variables , and many other manipulation
tasks. Although many fundamental data transformation and manipulation functions
exist in R , historically they have been a bit convoluted and lacked a consistent and
cohesive code structure. Consequently, Hadley Wickham developed the very popu-
lar dplyr package to make these data processing tasks more effi cient along with a
 syntax that is consistent and easier to remember and read.

 dplyr ’s roots originate in the popular plyr package, also produced by Hadley
Wickham. plyr covers data transformation and manipulation for a range of data
structures (data frames , lists , arrays) whereas dplyr is focused on transformation
and manipulation of data frames . And since the bulk of data analysis leverages data
frames I am going to focus on dplyr . Even so, dplyr offers far more functional-
ity than I can cover in one chapter. Consequently, I’m going to cover the seven pri-
mary functions dplyr provides for data transformation and manipulation.
Throughout, I also mention additional, useful functions that can be integrated with
these functions. The full list of capabilities can be found in the dplyr reference
manual; I highly recommend going through it as there are many great functions
provided by dplyr that I will not cover here. Also, similar to tidyr , dplyr has
the %>% operator baked in to its functionality.

 For most of these examples we’ll use the following census data which includes
the K-12 public school expenditures by state. This data frame currently is 50 × 16
and includes expenditure data for 14 unique years (50 states and has data through
year 2011). Here I only show you a subset of the data.

 ## Division State X1980 X1990 X2000 X2001 X2002 X2003
 ## 1 6 Alabama 1146713 2275233 4176082 4354794 4444390 4657643
 ## 2 9 Alaska 377947 828051 1183499 1229036 1284854 1326226
 ## 3 8 Arizona 949753 2258660 4288739 4846105 5395814 5892227
 ## 4 7 Arkansas 666949 1404545 2380331 2505179 2822877 2923401

220

 ## 5 9 California 9172158 21485782 38129479 42908787 46265544 47983402
 ## 6 8 Colorado 1243049 2451833 4401010 4758173 5151003 5551506
 ## X2004 X2005 X2006 X2007 X2008 X2009 X2010 X2011
 ## 1 4812479 5164406 5699076 6245031 6832439 6683843 6670517 6592925
 ## 2 1354846 1442269 1529645 1634316 1918375 2007319 2084019 2201270
 ## 3 6071785 6579957 7130341 7815720 8403221 8726755 8482552 8340211
 ## 4 3109644 3546999 3808011 3997701 4156368 4240839 4459910 4578136
 ## 5 49215866 50918654 53436103 57352599 61570555 60080929 58248662 57526835
 ## 6 5666191 5994440 6368289 6579053 7338766 7187267 7429302 7409462

22.1 Selecting Variables of Interest

 When working with a sizable data frame, often we desire to only assess specifi c vari-
ables. The select() function allows you to select and/or rename variables. Let’s
say our goal is to only assess the fi ve most recent years worth of expenditure data.
Applying the select() function we can select only the variables of concern.

 sub_exp <- expenditures %>% select (Division, State, X2007:X2011)

 # for brevity only display fi rst 6 rows
 head (sub_exp)
 ## Division State X2007 X2008 X2009 X2010 X2011
 ## 1 6 Alabama 6245031 6832439 6683843 6670517 6592925
 ## 2 9 Alaska 1634316 1918375 2007319 2084019 2201270
 ## 3 8 Arizona 7815720 8403221 8726755 8482552 8340211
 ## 4 7 Arkansas 3997701 4156368 4240839 4459910 4578136
 ## 5 9 California 57352599 61570555 60080929 58248662 57526835
 ## 6 8 Colorado 6579053 7338766 7187267 7429302 7409462

 We can also apply some of the special functions within select() . For instance
we can select all variables that start with ‘X’ (?select to see the available
functions):

 expenditures %>%
 select (starts_with ("X")) %>%
 head()
 ## X1980 X1990 X2000 X2001 X2002 X2003 X2004 X2005
 ## 1 1146713 2275233 4176082 4354794 4444390 4657643 4812479 5164406
 ## 2 377947 828051 1183499 1229036 1284854 1326226 1354846 1442269
 ## 3 949753 2258660 4288739 4846105 5395814 5892227 6071785 6579957
 ## 4 666949 1404545 2380331 2505179 2822877 2923401 3109644 3546999
 ## 5 9172158 21485782 38129479 42908787 46265544 47983402 49215866 50918654
 ## 6 1243049 2451833 4401010 4758173 5151003 5551506 5666191 5994440
 ## X2006 X2007 X2008 X2009 X2010 X2011
 ## 1 5699076 6245031 6832439 6683843 6670517 6592925
 ## 2 1529645 1634316 1918375 2007319 2084019 2201270
 ## 3 7130341 7815720 8403221 8726755 8482552 8340211
 ## 4 3808011 3997701 4156368 4240839 4459910 4578136
 ## 5 53436103 57352599 61570555 60080929 58248662 57526835
 ## 6 6368289 6579053 7338766 7187267 7429302 7409462

22 Transforming Your Data with dplyr

221

 You can also de-select variables by using “-” prior to name or function. The fol-
lowing produces the inverse of functions above:

 expenditures %>% select (-X1980:-X2006)
 expenditures %>% select (- starts_with ("X"))

 And for convenience, you can rename selected variables with two options:

 # select and rename a single column
 expenditures %>% select (Yr_1980 = X1980)

 # Select and rename the multiple variables with an "X" prefi x:
 expenditures %>% select (Yr_ = starts_with ("X"))

 # keep all variables and rename a single variable
 expenditures %>% rename (`2011` = X2011)

22.2 Filtering Rows

 Filtering data is a common task to identify/select observations in which a particular
variable matches a specifi c value/condition. The fi lter() function provides this
capability. Continuing with our sub_exp data frame which includes only the
recent 5 years worth of expenditures, we can fi lter by Division :

 sub_exp %>% fi lter (Division == 3)
 ## Division State X2007 X2008 X2009 X2010 X2011
 ## 1 3 Illinois 20326591 21874484 23495271 24695773 24554467
 ## 2 3 Indiana 9497077 9281709 9680895 9921243 9687949
 ## 3 3 Michigan 17013259 17053521 17217584 17227515 16786444
 ## 4 3 Ohio 18251361 18892374 19387318 19801670 19988921
 ## 5 3 Wisconsin 9029660 9366134 9696228 9966244 10333016

 We can apply multiple logic rules in the fi lter() function such as:

 < Less than != Not equal to
 > Greater than %in% Group membership
 == Equal to is.na is NA
 <= Less than or equal to !is.na is not NA
 >= Greater than or equal to &,|,! Boolean operators

 For instance, we can fi lter for Division 3 and expenditures in 2011 that were
greater than $10B. This results in Indiana being excluded since it falls within divi-
sion 3 and its expenditures were < $10B (FYI—the raw census data are reported in
units of $1000) .

22.2 Filtering Rows

222

 # Raw census data are in units of $1000
 sub_exp %>% fi lter (Division == 3, X2011 > 10000000)
 ## Division State X2007 X2008 X2009 X2010 X2011
 ## 1 3 Illinois 20326591 21874484 23495271 24695773 24554467
 ## 2 3 Michigan 17013259 17053521 17217584 17227515 16786444
 ## 3 3 Ohio 18251361 18892374 19387318 19801670 19988921
 ## 4 3 Wisconsin 9029660 9366134 9696228 9966244 10333016

 There are additional fi ltering and subsetting functions that are quite useful:

 # remove duplicate rows
 sub_exp %>% distinct ()

 # random sample, 50% sample size without replacement
 sub_exp %>% sample_frac (size = 0.5, replace = FALSE)

 # random sample of 10 rows with replacement
 sub_exp %>% sample_n (size = 10, replace = TRUE)

 # select rows 3-5
 sub_exp %>% slice (3:5)

 # select top n entries - in this case ranks variable X2011 and selects
 # the rows with the top 5 values
 sub_exp %>% top_n (n = 5, wt = X2011)

22.3 Grouping Data by Categorical Variables

 Often, observations are nested within groups or categories and our goal is to per-
form statistical analysis both at the observation level and also at the group level . The
 group_by() function allows us to create these categorical groupings.

 The group_by() function is a silent function in which no observable manipu-
lation of the data is performed as a result of applying the function. Rather, the only
change you’ll notice is, when you print the data frame you will notice underneath
the Source information and prior to the actual data frame, an indicator of what vari-
able the data is grouped by will be provided. In the example that follows you’ll
notice that we grouped by Division and there are nine categories for this vari-
able. The real magic of the group_by() function comes when we perform sum-
mary statistics which we will cover shortly.

 group.exp <- sub_exp %>% group_by (Division)

 group.exp
 ## Source: local data frame [50 x 7]
 ## Groups: Division [9]
 ##
 ## Division State X2007 X2008 X2009 X2010 X2011
 ## (int) (chr) (int) (int) (int) (int) (int)

22 Transforming Your Data with dplyr

223

 ## 1 6 Alabama 6245031 6832439 6683843 6670517 6592925
 ## 2 9 Alaska 1634316 1918375 2007319 2084019 2201270
 ## 3 8 Arizona 7815720 8403221 8726755 8482552 8340211
 ## 4 7 Arkansas 3997701 4156368 4240839 4459910 4578136
 ## 5 9 California 57352599 61570555 60080929 58248662 57526835
 ## 6 8 Colorado 6579053 7338766 7187267 7429302 7409462
 ## 7 1 Connecticut 7855459 8336789 8708294 8853337 9094036
 ## 8 5 Delaware 1437707 1489594 1518786 1549812 1613304
 ## 9 5 Florida 22887024 24224114 23328028 23349314 23870090
 ## 10 5 Georgia 14828715 16030039 15976945 15730409 15527907
 ## .. … … … … … … …

 # we can ungroup our data with
 ungroup (group.exp)
 ## Source: local data frame [50 x 7]
 ##
 ## Division State X2007 X2008 X2009 X2010 X2011
 ## (int) (chr) (int) (int) (int) (int) (int)
 ## 1 6 Alabama 6245031 6832439 6683843 6670517 6592925
 ## 2 9 Alaska 1634316 1918375 2007319 2084019 2201270
 ## 3 8 Arizona 7815720 8403221 8726755 8482552 8340211
 ## 4 7 Arkansas 3997701 4156368 4240839 4459910 4578136
 ## 5 9 California 57352599 61570555 60080929 58248662 57526835
 ## 6 8 Colorado 6579053 7338766 7187267 7429302 7409462
 ## 7 1 Connecticut 7855459 8336789 8708294 8853337 9094036
 ## 8 5 Delaware 1437707 1489594 1518786 1549812 1613304
 ## 9 5 Florida 22887024 24224114 23328028 23349314 23870090
 ## 10 5 Georgia 14828715 16030039 15976945 15730409 15527907
 ## .. … … … … … … …

22.4 Performing Summary Statistics on Variables

 Obviously the goal of all this data wrangling is to be able to perform statistical
analysis on our data. The summarise() function allows us to perform the major-
ity of summary statistics when performing exploratory data analysis.

 Let’s get the mean expenditure value across all states in 2011:

 sub_exp %>% summarise (Mean_2011 = mean (X2011))
 ## Mean_2011
 ## 1 10513678

 Not too bad, let’s get some more summary stats:

 sub_exp %>% summarise (Min = min (X2011, na.rm = TRUE),
 Median = median (X2011, na.rm = TRUE),
 Mean = mean (X2011, na.rm = TRUE),
 Var = var (X2011, na.rm = TRUE),
 SD = sd (X2011, na.rm = TRUE),
 Max = max (X2011, na.rm = TRUE),
 N = n ())

22.4 Performing Summary Statistics on Variables

224

 ## Min Median Mean Var SD Max N
 ## 1 1049772 6527404 10513678 1.48619e+14 12190938 57526835 50

 This information is useful, but being able to compare summary statistics at mul-
tiple levels is when you really start to gather some insights. This is where the
 group_by() function comes in. First, let’s group by Division and see how the
different regions compare across years 2010 and 2011.

 sub_exp %>%
 group_by (Division)%>%
 summarise (Mean_2010 = mean (X2010, na.rm = TRUE),
 Mean_2011 = mean (X2011, na.rm = TRUE))
 ## Source: local data frame [9 x 3]
 ##
 ## Division Mean_2010 Mean_2011
 ## (int) (dbl) (dbl)
 ## 1 1 5121003 5222277
 ## 2 2 32415457 32877923
 ## 3 3 16322489 16270159
 ## 4 4 4672332 4672687
 ## 5 5 10975194 11023526
 ## 6 6 6161967 6267490
 ## 7 7 14916843 15000139
 ## 8 8 3894003 3882159
 ## 9 9 15540681 15468173

 Now we’re starting to see some differences pop out. How about we compare
states within a Division? We can start to apply multiple functions we’ve learned so
far to get the 5 year average for each state within Division 3.

 library (tidyr)

 sub_exp %>%
 gather (Year, Expenditure, X2007:X2011) %>% # turn wide data to long
 fi lter (Division == 3) %>% # only assess Division 3
 group_by (State) %>% # summarize data by state
 summarise (Mean = mean (Expenditure), # calculate mean & SD
 SD = sd (Expenditure))
 ## Source: local data frame [5 x 3]
 ##
 ## State Mean SD
 ## (chr) (dbl) (dbl)
 ## 1 Illinois 22989317 1867527.7
 ## 2 Indiana 9613775 238971.6
 ## 3 Michigan 17059665 180245.0
 ## 4 Ohio 19264329 705930.2
 ## 5 Wisconsin 9678256 507461.2

 There are several built-in summary functions in dplyr as displayed below. You
can also build in your own functions as well.

22 Transforming Your Data with dplyr

225

 Built-in Summary Functions

22.5 Arranging Variables by Value

 Sometimes we wish to view observations in rank order for a particular variable(s).
The arrange() function allows us to order data by variables in ascending or
descending order. Let’s say we want to assess the average expenditures by division.
We could apply the arrange() function at the end to order the divisions from low-
est to highest expenditure for 2011. This makes it easier to see the signifi cant differ-
ences between Divisions 8, 4, 1 and 6 as compared to Divisions 5, 7, 9, 3 and 2.

 sub_exp %>%
 group_by (Division)%>%
 summarise (Mean_2010 = mean (X2010, na.rm = TRUE),
 Mean_2011 = mean (X2011, na.rm = TRUE)) %>%
 arrange (Mean_2011)
 ## Source: local data frame [9 x 3]
 ##
 ## Division Mean_2010 Mean_2011
 ## (int) (dbl) (dbl)
 ## 1 8 3894003 3882159
 ## 2 4 4672332 4672687
 ## 3 1 5121003 5222277
 ## 4 6 6161967 6267490
 ## 5 5 10975194 11023526
 ## 6 7 14916843 15000139
 ## 7 9 15540681 15468173
 ## 8 3 16322489 16270159
 ## 9 2 32415457 32877923

 We can also apply a descending argument to rank-order from highest to lowest.
The following shows the same data but in descending order by applying desc()
within the arrange() function.

 sub_exp %>%
 group_by (Division)%>%
 summarise (Mean_2010 = mean (X2010, na.rm = TRUE),
 Mean_2011 = mean (X2011, na.rm = TRUE)) %>%
 arrange (desc (Mean_2011))

22.5 Arranging Variables by Value

226

 ## Source: local data frame [9 x 3]
 ##
 ## Division Mean_2010 Mean_2011
 ## (int) (dbl) (dbl)
 ## 1 2 32415457 32877923
 ## 2 3 16322489 16270159
 ## 3 9 15540681 15468173
 ## 4 7 14916843 15000139
 ## 5 5 10975194 11023526
 ## 6 6 6161967 6267490
 ## 7 1 5121003 5222277
 ## 8 4 4672332 4672687
 ## 9 8 3894003 3882159

22.6 Joining Data Sets

 Often we have separate data frames that can have common and differing variables
for similar observations and we wish to join these data frames together. dplyr
offers multiple joining functions (xxx_join()) that provide alternative ways to
join data frames :

• inner_join()
• left_join()
• right_join()
• full_join()
• semi_join()
• anti_join()

 Our public education expenditure data represents then-year dollars. To make any
accurate assessments of longitudinal trends and comparisons we need to adjust for
infl ation. I have the following data frame which provides infl ation adjustment fac-
tors for base-year 2012 dollars.

 ## Year Annual Infl ation
 ## 28 2007 207.342 0.9030811
 ## 29 2008 215.303 0.9377553
 ## 30 2009 214.537 0.9344190
 ## 31 2010 218.056 0.9497461
 ## 32 2011 224.939 0.9797251
 ## 33 2012 229.594 1.0000000

 To join to my expenditure data I obviously need to get my expenditure data in the
proper form that allows me to join these two data frames . I can apply the following
functions to accomplish this:

 long_exp <- sub_exp %>%
 gather (Year, Expenditure, X2007:X2011) %>%
 separate (Year, into= c ("x", "Year"), sep = "X") %>%

22 Transforming Your Data with dplyr

227

 select (-x) %>%
 mutate (Year = as.numeric (Year))

 head (long_exp)
 ## Division State Year Expenditure
 ## 1 6 Alabama 2007 6245031
 ## 2 9 Alaska 2007 1634316
 ## 3 8 Arizona 2007 7815720
 ## 4 7 Arkansas 2007 3997701
 ## 5 9 California 2007 57352599
 ## 6 8 Colorado 2007 6579053

 I can now apply the left_join() function to join the infl ation data to the
expenditure data. This aligns the data in both data frames by the Year variable and
then joins the remaining infl ation data to the expenditure data frame as new
variables.

 join_exp <- long_exp %>% left_join (infl ation)

 head (join_exp)
 ## Division State Year Expenditure Annual Infl ation
 ## 1 6 Alabama 2007 6245031 207.342 0.9030811
 ## 2 9 Alaska 2007 1634316 207.342 0.9030811
 ## 3 8 Arizona 2007 7815720 207.342 0.9030811
 ## 4 7 Arkansas 2007 3997701 207.342 0.9030811
 ## 5 9 California 2007 57352599 207.342 0.9030811
 ## 6 8 Colorado 2007 6579053 207.342 0.9030811

 To illustrate the other joining methods we can use the a and b data frames from
the EDAWR package 1 :

 library (EDAWR)

 a
 ## x1 x2
 ## 1 A 1
 ## 2 B 2
 ## 3 C 3

 b
 ## x1 x2
 ## 1 A TRUE
 ## 2 B FALSE
 ## 3 D TRUE

 # include all of a, and join matching rows of b
 left_join (a, b, by = "x1")
 ## x1 x2.x x2.y
 ## 1 A 1 TRUE
 ## 2 B 2 FALSE
 ## 3 C 3 NA

1 The EDAWR package contains multiple data sets and can be downloaded by executing
devtools::install_github(“rstudio/EDAWR”)

22.6 Joining Data Sets

228

 # include all of b, and join matching rows of a
 right_join (a, b, by = "x1")
 ## x1 x2.x x2.y
 ## 1 A 1 TRUE
 ## 2 B 2 FALSE
 ## 3 D NA TRUE

 # join data, retain only matching rows in both data frames
 inner_join (a, b, by = "x1")
 ## x1 x2.x x2.y
 ## 1 A 1 TRUE
 ## 2 B 2 FALSE

 # join data, retain all values, all rows
 full_join (a, b, by = "x1")
 ## x1 x2.x x2.y
 ## 1 A 1 TRUE
 ## 2 B 2 FALSE
 ## 3 C 3 NA
 ## 4 D NA TRUE

 # keep all rows in a that have a match in b
 semi_join (a, b, by = "x1")
 ## x1 x2
 ## 1 A 1
 ## 2 B 2

 # keep all rows in a that do not have a match in b
 anti_join (a, b, by = "x1")
 ## x1 x2
 ## 1 C 3

 There are additional dplyr functions for merging data sets worth exploring:

 intersect (y, z) # Rows that appear in both y and z
 union (y, z) # Rows that appear in either or both y and z
 setdiff (y, z) # Rows that appear in y but not z
 bind_rows (y, z) # Append z to y as new rows
 bind_cols (y, z) # Append z to y as new columns

22.7 Creating New Variables

 Often we want to create a new variable that is a function of the current variables in
our data frame or we may just want to add a new variable that is external to our
existing variables. The mutate() function allows us to add new variables while
 preserving the existing variables. If we go back to our previous join_exp
dataframe, remember that we joined infl ation rates to our non- infl ation adjusted
expenditures for public schools. The dataframe looks like:

22 Transforming Your Data with dplyr

229

 ## Division State Year Expenditure Annual Infl ation
 ## 1 6 Alabama 2007 6245031 207.342 0.9030811
 ## 2 9 Alaska 2007 1634316 207.342 0.9030811
 ## 3 8 Arizona 2007 7815720 207.342 0.9030811
 ## 4 7 Arkansas 2007 3997701 207.342 0.9030811
 ## 5 9 California 2007 57352599 207.342 0.9030811
 ## 6 8 Colorado 2007 6579053 207.342 0.9030811

 If we wanted to adjust our annual expenditures for infl ation we can use mutate()
to create a new infl ation adjusted cost variable which we’ll name Adj_Exp :

 infl ation_adj <- join_exp %>% mutate (Adj_Exp = Expenditure / Infl ation)

 head (infl ation_adj)
 ## Division State Year Expenditure Annual Infl ation Adj_Exp
 ## 1 6 Alabama 2007 6245031 207.342 0.9030811 6915249
 ## 9 Alaska 2007 1634316 207.342 0.9030811 1809711
 ## 3 8 Arizona 2007 7815720 207.342 0.9030811 8654505
 ## 4 7 Arkansas 2007 3997701 207.342 0.9030811 4426735
 ## 5 9 California 2007 57352599 207.342 0.9030811 63507696
 ## 6 8 Colorado 2007 6579053 207.342 0.9030811 7285119

 Lets say we wanted to create a variable that rank-orders state- level expenditures
(infl ation adjusted) for the year 2010 from the highest level of expenditures to the
lowest.

 rank_exp <- infl ation_adj %>%
 fi lter (Year == 2010) %>%
 arrange (desc (Adj_Exp)) %>%
 mutate (Rank = 1: length (Adj_Exp))

 head (rank_exp)
 ## Division State Year Expenditure Annual Infl ation Adj_Exp Rank
 ## 1 9 California 2010 58248662 218.056 0.9497461 61330774 1
 ## 2 2 New York 2010 50251461 218.056 0.9497461 52910417 2
 ## 3 7 Texas 2010 42621886 218.056 0.9497461 44877138 3
 ## 4 3 Illinois 2010 24695773 218.056 0.9497461 26002501 4
 ## 5 2 New Jersey 2010 24261392 218.056 0.9497461 25545135 5
 ## 6 5 Florida 2010 23349314 218.056 0.9497461 24584797 6

 If you wanted to assess the percent change in cost for a particular state you can
use the lag() function within the mutate() function:

 infl ation_adj %>%
 fi lter (State == "Ohio") %>%
 mutate (Perc_Chg = (Adj_Exp - lag (Adj_Exp)) / lag (Adj_Exp))
 ## Division State Year Expenditure Annual Infl ation Adj_Exp Perc_Chg
 ## 1 3 Ohio 2007 18251361 207.342 0.9030811 20210102 NA
 ## 2 3 Ohio 2008 18892374 215.303 0.9377553 20146378 -0.003153057
 ## 3 3 Ohio 2009 19387318 214.537 0.9344190 20747992 0.029862103
 ## 4 3 Ohio 2010 19801670 218.056 0.9497461 20849436 0.004889357
 ## 5 3 Ohio 2011 19988921 224.939 0.9797251 20402582 -0.021432441

22.7 Creating New Variables

230

 You could also look at what percent of all US expenditures each state made up in
2011. In this case we use mutate() to take each state’s infl ation adjusted expen-
diture and divide by the sum of the entire infl ation adjusted expenditure column. We
also apply a second function within mutate() that provides the cumulative per-
cent in rank-order. This shows that in 2011, the top 8 states with the highest expen-
ditures represented over 50 % of the total U.S. expenditures in K-12 public schools.
 (I remove the non-infl ation adjusted Expenditure, Annual & Infl ation columns so
that the columns don’t wrap on the screen view)

 cum_pct <- infl ation_adj %>%
 fi lter (Year == 2011) %>%
 arrange (desc (Adj_Exp)) %>%
 mutate (Pct_of_Total = Adj_Exp/ sum (Adj_Exp),
 Cum_Perc = cumsum (Pct_of_Total)) %>%
 select (-Expenditure, -Annual, -Infl ation)
 head (cum_pct, 8)
 ## Division State Year Adj_Exp Pct_of_Total Cum_Perc
 ## 1 9 California 2011 58717324 0.10943237 0.1094324
 ## 2 2 New York 2011 52575244 0.09798528 0.2074177
 ## 3 7 Texas 2011 43751346 0.08154005 0.2889577
 ## 4 3 Illinois 2011 25062609 0.04670957 0.3356673
 ## 5 5 Florida 2011 24364070 0.04540769 0.3810750
 ## 6 2 New Jersey 2011 24128484 0.04496862 0.4260436
 ## 7 2 Pennsylvania 2011 23971218 0.04467552 0.4707191
 ## 8 3 Ohio 2011 20402582 0.03802460 0.5087437

 An alternative to mutate() is transmute() which creates a new variable
and then drops the other variables. In essence, it allows you to create a new data
frame with only the new variables created. We can perform the same string of
 functions as above but this time use transmute to only keep the newly created
variables.

 infl ation_adj %>%
 fi lter (Year == 2011) %>%
 arrange (desc (Adj_Exp)) %>%
 transmute (Pct_of_Total = Adj_Exp/ sum (Adj_Exp),
 Cum_Perc = cumsum (Pct_of_Total)) %>%
 head ()
 ## Pct_of_Total Cum_Perc
 ## 1 0.10943237 0.1094324
 ## 2 0.09798528 0.2074177
 ## 3 0.08154005 0.2889577
 ## 4 0.04670957 0.3356673
 ## 5 0.04540769 0.3810750
 ## 6 0.04496862 0.4260436

 Lastly, you can apply the summarise and mutate functions to multiple col-
umns by using summarise_each() and mutate_each() respectively.

22 Transforming Your Data with dplyr

231

 # calculate the mean for each division with summarise_each
 # call the function of interest with the funs() argument
 sub_exp %>%
 select (-State) %>%
 group_by (Division) %>%
 summarise_each (funs (mean)) %>%
 head ()
 ## Source: local data frame [6 x 6]
 ##
 ## Division X2007 X2008 X2009 X2010 X2011
 ## (int) (dbl) (dbl) (dbl) (dbl) (dbl)
 ## 1 1 4680691 4952992 5173184 5121003 5222277
 ## 2 2 28844158 30652645 31304697 32415457 32877923
 ## 3 3 14823590 15293644 15895459 16322489 16270159
 ## 4 4 4175766 4425739 4658533 4672332 4672687
 ## 5 5 10230416 10857410 11018102 10975194 11023526
 ## 6 6 5584277 6023424 6076507 6161967 6267490

 # for each division calculate the percent of total
 # expenditures for each state across each year
 sub_exp %>%
 select (-State) %>%
 group_by (Division) %>%
 mutate_each (funs (. / sum (.))) %>%
 head ()
 ## Source: local data frame [6 x 6]
 ## Groups: Division [4]
 ##
 ## Division X2007 X2008 X2009 X2010 X2011
 ## (int) (dbl) (dbl) (dbl) (dbl) (dbl)
 ## 1 6 0.27958099 0.28357787 0.27498705 0.27063262 0.26298109
 ## 2 9 0.02184221 0.02387438 0.02515947 0.02682018 0.02846193
 ## 3 8 0.28093187 0.27793321 0.28144201 0.27229536 0.26854292
 ## 4 7 0.07854895 0.07565703 0.07402700 0.07474621 0.07630156
 ## 5 9 0.76650258 0.76625202 0.75304632 0.74962818 0.74380904
 ## 6 8 0.23648054 0.24272678 0.23179279 0.23848536 0.23857413

 Similar to the summary function , dplyr allows you to build in your own func-
tions to be applied within mutate_each() and also has the following built in
functions that can be applied.

 Built-in Functions for mutate_each()

22.7 Creating New Variables

232

22.8 Additional Resources

 This chapter introduced you to dplyr ’s basic set of tools and demonstrated how to
use them on data frames . Additional resources are available that go into more detail
or provide additional examples of how to use dpyr . In addition, there are other
resources that illustrate how dplyr can perform tasks not mentioned in this chapter
such as connecting to remote databases and translating you r R code into SQL code
for data pulls.

• Data wrangling presentation I gave at Miami University 2
• dplyr reference manual 3
• R Studio’s Data wrangling with R and RStudio webinar 4
• R Studio’s Data wrangling cheat sheet 5
• Hadley Wickham’s dplyr tutorial at useR! 2014, Part 1 6
• Hadley Wickham’s dplyr tutorial at useR! 2014, Part 2 7

2 http://rpubs.com/bradleyboehmke/data_processing
3 https://cran.r-project.org/web/packages/dplyr/dplyr.pdf
4 https://www.rstudio.com/resources/webinars/
5 You can get the RStudio cheatsheets at https://www.rstudio.com/resources/cheatsheets/ or within
a working RStudio session by going to Help > Cheatsheets
6 https://www.youtube.com/watch?v=8SGif63VW6E
7 https://www.youtube.com/watch?v=Ue08LVuk790

22 Transforming Your Data with dplyr

http://rpubs.com/bradleyboehmke/data_processing
https://cran.r-project.org/web/packages/dplyr/dplyr.pdf
https://rstudio.com/resources/webinars/
https://www.rstudio.com/resources/cheatsheets/
https://www.youtube.com/watch?v=8SGif63VW6E
https://www.youtube.com/watch?v=Ue08LVuk790

233© Springer International Publishing Switzerland 2016
B.C. Boehmke, Data Wrangling with R, Use R!, DOI 10.1007/978-3-319-45599-0

 Function

A
 abbreviate , 47
 addDataFrame , 165 , 167
 all.equal , 39
 anti_join , 226
 apply , 191 , 196
 arrange , 225
 as.character , 42 , 61 , 159
 as.data.frame , 106 , 107
 as.Date , 72
 as.double , 32
 as.factor , 68
 as.integer , 32
 as.logical , 127
 as.numeric , 32 , 227
 as.POSIXct , 75 , 76
 as.vector , 23 , 86
 attr , 94
 attributes , 82

 B
 blsAPI , 152
 body , 173
 break , 183 , 189

 C
 cat , 43
 cbind , 100 , 107 , 108
 ceiling , 40
 chartr , 46 , 47
 class , 67
 colnames , 110

 colsums , 195 , 196
 comment , 94
 complete.cases , 115
 content , 158 , 161
 createSheet , 165 , 166 , 168
 createWorkbook , 165–167

 D
 data.frame , 81 , 82 , 106 , 107
 dbinom , 36
 dexp , 36
 dgamma , 37
 dhours , 77 , 78
 dimnames , 102
 dminutes , 77
 dnorm , 35
 download.fi le , 130 , 131
 dpois , 36
 droplevels , 69
 dseconds , 77 , 78
 dyears , 77

 E
 environment , 173
 extract_numeric , 216

 F
 factor , 67
 fi ll , 216
 fi lter , 154 , 199–202 , 204 , 205 , 221
 fl oor , 40
 for , 23
 force_tz , 78
 formals , 173

 Index

234

 fromJSON , 152
 full_join , 226 , 228
 function , 14 , 16 , 18

 G
 gather , 18 , 212 , 213
 GET , 158
 getHTMLLinks , 132
 getNodeSet , 148
 getURL , 148
 getwd , 14
 grep , 58–60
 grepl , 60 , 61 , 63
 group_by , 222 , 224
 gsub , 56 , 57 , 62 , 65

 H
 help , 16 , 17
 history , 14
 html_nodes , 135 , 140 , 143 , 144
 htmlParse , 148
 html_text , 135–138 , 140–142
 Iidentical , 39 , 53
 if , 178
 ifelse , 185
 inner_join , 226 , 228
 install.packages , 18 , 49 , 63
 intersect , 52 , 228
 is.character , 42
 is.element , 54
 is.na , 113
 ISOdate , 73

 L
 lapply , 192–193
 left_join , 226 , 227
 length , 24 , 45 , 49 , 50
 levels , 67
 library , 18 , 19 , 49 , 63 , 71 , 72 , 74–77 , 122 ,

 124–126 , 130 , 132 , 135 , 142 , 144 , 146 ,
 148 , 151–154 , 156 , 158 , 159 , 162 , 164 ,
 165 , 167 , 200 , 202 , 212 , 216 , 224 , 227

 list , 91 , 92 , 133 , 145 , 152
 list.fi les , 131
 load , 15 , 127
 ls , 14

 M
 matrix , 99
 mday , 74
 mdy , 72

 mean , 26 , 35 , 39
 month , 74
 mutate , 228–230
 mutate_each , 230 , 231

 N
 na.omit , 116
 names , 87 , 93 , 110
 nchar , 46 , 50
 ncol , 106
 new_duration , 77
 next , 183 , 190
 noquote , 43
 now , 76 , 77
 nrow , 106

 O
 oauth_endpoints , 160
 oauth1.0_token , 161
 OlsonNames , 76
 options , 15 , 16 , 21

 P
 paste , 41 , 49
 paste0 , 49
 pbinom , 35
 pexp , 36
 pgamma , 37
 pnorm , 35
 ppois , 36
 print , 23 , 43

 Q
 qbinom , 36
 qexp , 36
 qgamma , 37
 qnorm , 35
 qpois , 36

 R
 rbind , 100 , 107 , 108
 rbinom , 35 , 188
 read.csv , 105 , 119–122
 read.delim , 119 , 121
 read.table , 105 , 119 , 121
 read.xls , 127
 read.xlsx , 124
 read_csv , 122
 read_excel , 126 , 127
 read_fwf , 123

Index

235

 read_html , 135 , 144
 read_table , 123
 readRDS , 127 , 169
 regexpr , 60 , 61
 rep , 33 , 149
 repeat , 183 , 189 , 216
 replace_na , 216 , 217
 revalue , 69
 rexp , 36
 rgamma , 37
 right_join , 226 , 228
 rm , 14
 rnorm , 35 , 37 , 192
 round , 114 , 178 , 193
 rownames , 102
 rpois , 36 , 187
 runif , 34

 S
 sample , 34
 sapply , 160 , 193–194
 save , 15 , 169
 save.image , 15 , 169
 saveRDS , 169
 saveWorkbook , 165 , 167 , 168
 search , 16 , 19 , 157
 select , 154 , 220
 semi_join , 226 , 228
 separate , 214
 seq , 33 , 75
 set.seed , 37
 setdiff , 52
 setequal , 53
 setwd , 14
 sort , 54
 spread , 213
 sprint , 43 , 44
 str , 81
 str_c , 49
 str_detect , 63
 str_dub , 51
 str_extract , 64
 str_extract_all , 64
 str_length , 50
 str_locate , 63
 str_locate_all , 64
 str_pad , 52
 str_replace , 65
 str_replace_all , 65
 str_sub , 49 , 50
 str_trim , 51
 stringsAsFactors , 106 ,

 120 , 122
 strsplit , 47–49 , 62 , 65

 sub , 56
 substr , 47 , 50
 substring , 47 , 48
 sum , 38 , 61 , 114
 summarise , 223
 summarise_each , 230
 summary , 35 , 69 , 196 , 202 ,

204 , 205
 Sys.Date , 71 , 76
 Sys.time , 71
 Sys.timezone , 71

 T
 tapply , 194–195
 tempfi le , 131
 tolower , 46
 toString , 42
 toupper , 46
 transmute , 230
 typeof , 31

 U
 unclass , 68
 ungroup , 223
 union , 52 , 228
 unite , 214 , 215
 unlink , 131
 unlist , 49 , 65 , 142 , 159 , 160
 unzip , 131
 update , 74

 V
 vignette , 19

 W
 wday , 74
 which , 38 , 114
 while , 183 , 187 , 188
 with_tz , 77
 write.csv , 163 , 164
 write.delim , 163 , 164
 write.table , 163
 write.xlsx , 165
 write_csv , 164
 write_delim , 165

 Y
 year , 74
 ymd , 72 , 74
 ymd_hms , 77

Index

236

 Words

A
 Abbreviate , 47
 API key , 151 , 153 , 155 , 157 , 158 , 160
 Application-programming interface (API) ,

 129 , 150–162
 Apply family , 190
 Arguments , 18 , 20 , 44 , 50 , 68 , 72 , 73 , 75 ,

 104 , 112 , 114 , 120–126 , 130 , 147 ,
 149 , 153 , 154 , 161 , 162 , 164 ,
 173–179 , 191 , 192 , 194 , 201 , 204 ,
 206 , 214 , 225 , 231

 Assignment , 19 , 20 , 114 , 205
 Attributes , 81–83 , 85 , 87–88 , 91 , 93–95 , 99 ,

 101–103 , 105 , 109–111 , 212 , 217

 B
 Binomial distribution , 34–36
 BlsAPI package , 151–153

 C
 Calculator , 15 , 21
 Case conversion , 46
 Character replacement , 46–47
 Character strings , 4 , 16 , 41 , 48 , 52–55 , 62 , 65 ,

 66 , 68 , 72 , 136–138 , 141 , 142 , 164
 Comparison operators , 38
 Console , 11 , 13–16 , 72 , 203 , 207
 CRAN , 11 , 18
 Create dates , 73
 Creating new variables , 219
 CSV , 119–121 , 123 , 130 , 163 , 164
 Current date & time , 71

 D
 Data frame , 13 , 14 , 82 , 105–107 , 110 , 112 ,

 113 , 115 , 122 , 144 , 146 , 148 , 163 , 165 ,
 169 , 191 , 193 , 195 , 196 , 205 , 212–214 ,
 216 , 219 , 226–228 , 230 , 232

 Data structures , 4 , 81 , 83 , 89 , 95 , 105 , 137 ,
 159 , 186 , 219

 Data wrangling , 3 , 4 , 14 , 66 , 199 , 201 , 219 ,
 223

 Dates , 4 , 71–78 , 126 , 127 , 154 , 214 , 215
 Date sequences , 71 , 75–76
 Daylight savings , 71 , 76–78
 Detecting patterns , 63
 Dimensions , 4 , 82 , 86 , 99 , 101 , 103 , 104 , 112

 Double , 7 , 31 , 56 , 58 , 85 , 88 , 90 , 95 , 127
 Dplyr package , 195 , 219
 Duration , 76 , 77

 E
 Element equality , 53
 Element selector , 139 , 148
 Evaluation , 177 , 190
 Exact equality , 39 , 53–54
 Excel , 105 , 119 , 123–127 , 129–134 , 163 ,

 165–169 , 216
 Exponential distribution , 36
 Exporting data , 4 , 15
 Extract dates , 73–75
 Extracting patterns , 64
 Extract substrings , 47–49

 F
 Factors , 67–69 , 105 , 106 , 120 , 126 , 149 , 194 ,

 196 , 226
 Filtering data , 221
 Floating point numbers , 31
 for loop , 22 , 23
 Function components , 173–175
 Functional programming language ,

173 , 201

 G
 Gamma distribution , 37
 gdata package , 123 , 130
 Getting help , 3
 Grouping data , 222–223

 H
 HTML , 134–150
 httr package , 150 , 151 , 158–162 , 203

 I
 if statement , 179 , 184 , 189
 if…else statement , 184
 Importing data , 119 , 123 , 163 , 165
 Integer , 22 , 31 , 32 , 39 , 44 , 67 , 68 , 82 , 85 , 88 ,

 91 , 107 , 126 , 127 , 189
 Invalid parameters , 178–179

 J
 Joining data , 226–228

Index

237

 L
 Lazy evaluation , 177
 Levels , 8 , 39 , 67–69 , 129 , 135 , 149 , 159 , 162 ,

 173 , 175 , 222 , 224 , 229
 List , 9 , 13–17 , 19 , 49 , 60 , 64 , 65 , 72 , 76 ,

 91–93 , 95–97 , 105 , 106 , 110 , 111 , 113 ,
 128 , 130 , 133 , 134 , 136–138 , 141 , 144 ,
 146 , 151 , 152 , 158 , 159 , 161 , 173 , 178 ,
 183 , 190 , 192–194 , 203 , 219

 Locating patterns , 63–64
 Logical operators , 37 , 203
 Long data , 213
 Loop control statements , 4 , 183
 Lubridate package , 73 , 75 , 76

 M
 Magrittr package , 199 , 203 , 204 , 207
 Manipulate dates , 73–75
 Matrix , 99–101 , 103 , 106 , 107 , 109 , 187 , 190 ,

 191 , 193 , 195 , 196
 Metacharacters , 56
 Missing values , 4 , 113–116 , 164 , 179

 N
 Naming , 24–25 , 92 , 148 , 159 , 163 , 203
 Near equality , 37 , 39
 Nested list , 86 , 92 , 97 , 190 , 200 , 222
 Normal distribution , 34 , 35 , 37

 O
 OAuth , 151 , 158 , 160–162
 Open source , 7 , 8 , 24
 Order data , 225
 Organization , 4 , 7 , 8 , 25 , 150 , 151 , 158 , 165

 P
 Packages , 3 , 9 , 11 , 15–19 , 71 , 119 , 123 , 125 , 130 ,

 150 , 151 , 157 , 158 , 163 , 196 , 203 , 207
 Pattern matching , 55 , 60
 Pattern replacement , 60
 Pipe operator , 4 , 135 , 201 , 204 , 207
 Poisson distribution , 36 , 187
 POSIX , 55 , 58–59
 POSIXct , 75 , 126
 Preserving , 89 , 95 , 228
 Printing strings , 43–46

 Q
 Quantifi ers , 55 , 59

 R
 R , 3 , 4 , 7–9 , 11–17 , 19–25 , 31 , 32 , 34 , 41 , 43 ,

 46–49 , 51 , 52 , 55 , 59 , 62 , 63 , 66 , 67 ,
 71 , 72 , 76 , 77 , 81 , 85 , 91 , 99 , 105 ,
 119–123 , 125 , 127–130 , 143 , 148 ,
 150–152 , 157 , 158 , 162–165 , 169 ,
 173 , 175 , 177 , 181 , 183 , 186 , 190 ,
 191 , 193 , 196 , 197 , 201 , 207 , 218 ,
 219 , 232

 r2excel package , 163 , 167
 RCurl package , 148
 readr package , 122–123 , 125 , 163–165
 readxl package , 125–127 , 165
 Regular expressions , 4 , 55 , 60 , 216
 Repeat loop , 183 , 189
 Replace substrings , 47 , 48
 Replacing patterns , 65
 Reproducible , 31 , 37
 rjson package , 152
 rnoaa package , 150 , 153
 R object , 169
 rOpenSci , 8
 Rounding , 39–40 , 174
 RStudio , 3 , 8 , 11–13 , 16 , 19 , 26 , 135 , 232
 rtimes package , 155–157
 rvest package , 135 , 143–146 , 150

 S
 Scoping rules , 175
 Scraping data , 4 , 105 , 134 , 143
 Script editor , 13
 Seed , 31 , 37
 Selecting variables , 220–221
 Sequence of non-random numbers , 32–33
 Sequence of random numbers , 33–37
 sequences , 25 , 32–37 , 41 , 55–57 , 75 , 85 , 183 ,

 207 , 211
 Set intersection , 52–53
 Set union , 52
 Simplifying , 88–90 , 95 , 96
 Sorting , 4 , 154
 Sourcing functions , 173
 String manipulation , 46 , 63
 String splitting , 65–66
 stringr package , 41 , 46
 Style guide , 24 , 25 , 27
 Subsetting , 88–90 , 93 , 95–97 , 103–104 ,

 111–112 , 114 , 136 , 155 , 159 , 222
 Summary functions , 224 , 231
 Summary statistics , 196 , 222–225
 Syntax , 11 , 13 , 23 , 46 , 55–59 , 73 , 77 , 135 ,

 136 , 150 , 184 , 186 , 191 , 192 , 195 ,
 219

Index

238

 T
 tidyr package , 18
 Time zones , 71 , 76–78
 TXT , 121 , 123 , 129

 U
 Uniform numbers , 34

 V
 Vector , 13 , 14 , 22–24 , 31 , 32 , 35 , 37 , 38 , 43 ,

 44 , 46 , 47 , 52–54 , 60–65 , 67 , 68 , 75 ,
 85 , 87 , 90 , 99 , 100 , 105 , 106 , 108 , 110 ,

 111 , 113–115 , 137 , 179 , 184 , 186 , 191 ,
 193 , 194

 Vectorization , 3 , 11 , 22

 W
 while loop , 187 , 188
 whitespace , 46 , 52 , 120
 Wide data , 212–213
 Workspace environment , 13 , 14

 X
 xlsx package , 123–125
 XML package , 132

Index

	Preface
	Who This Book Is for
	 What You Need for This Book
	 Reader Feedback

	Contents
	Part I: Introduction
	Chapter 1: The Role of Data Wrangling
	Bibliography

	Chapter 2: Introduction to R
	2.1 Open Source
	2.2 Flexibility
	2.3 Community
	Bibliography

	Chapter 3: The Basics
	3.1 Installing R and RStudio
	3.2 Understanding the Console
	3.2.1 Script Editor
	3.2.2 Workspace Environment
	3.2.3 Console
	3.2.4 Misc. Displays
	3.2.5 Workspace Options and Shortcuts

	3.3 Getting Help
	3.3.1 General Help
	3.3.2 Getting Help on Functions
	3.3.3 Getting Help from the Web

	3.4 Working with Packages
	3.4.1 Installing Packages
	3.4.2 Loading Packages
	3.4.3 Getting Help on Packages
	3.4.4 Useful Packages

	3.5 Assignment and Evaluation
	3.6 R as a Calculator
	3.6.1 Vectorization

	3.7 Styling Guide
	3.7.1 Notation and Naming
	3.7.2 Organization
	3.7.3 Syntax

	Part II: Working with Different Types of Data in R
	Chapter 4: Dealing with Numbers
	4.1 Integer vs. Double
	4.1.1 Creating Integer and Double Vectors
	4.1.2 Converting Between Integer and Double Values

	4.2 Generating Sequence of Non-random Numbers
	4.2.1 Specifing Numbers Within a Sequence
	4.2.2 Generating Regular Sequences

	4.3 Generating Sequence of Random Numbers
	4.3.1 Uniform Numbers
	4.3.2 Normal Distribution Numbers
	4.3.3 Binomial Distribution Numbers
	4.3.4 Poisson Distribution Numbers
	4.3.5 Exponential Distribution Numbers
	4.3.6 Gamma Distribution Numbers

	4.4 Setting the Seed for Reproducible Random Numbers
	4.5 Comparing Numeric Values
	4.5.1 Comparison Operators
	4.5.2 Exact Equality
	4.5.3 Floating Point Comparison

	4.6 Rounding Numbers

	Chapter 5: Dealing with Character Strings
	5.1 Character String Basics
	5.1.1 Creating Strings
	5.1.2 Converting to Strings
	5.1.3 Printing Strings
	5.1.4 Counting String Elements and Characters

	5.2 String Manipulation with Base R
	5.2.1 Case Conversion
	5.2.2 Simple Character Replacement
	5.2.3 String Abbreviations
	5.2.4 Extract/Replace Substrings

	5.3 String Manipulation with stringr
	5.3.1 Basic Operations
	5.3.2 Duplicate Characters Within a String
	5.3.3 Remove Leading and Trailing Whitespace
	5.3.4 Pad a String with Whitespace

	5.4 Set Operatons for Character Strings
	5.4.1 Set Union
	5.4.2 Set Intersection
	5.4.3 Identifying Different Elements
	5.4.4 Testing for Element Equality
	5.4.5 Testing for Exact Equality
	5.4.6 Identifying If Elements Are Contained in a String
	5.4.7 Sorting a String

	Chapter 6: Dealing with Regular Expressions
	6.1 Regex Syntax
	6.1.1 Metacharacters
	6.1.2 Sequences
	6.1.3 Character Classes
	6.1.4 POSIX Character Classes
	6.1.5 Quantifiers

	6.2 Regex Functions
	6.2.1 Main Regex Functions in R
	6.2.1.1 Pattern Matching
	6.2.1.2 Pattern Replacement Functions
	6.2.1.3 Splitting Character Vectors

	6.2.2 Regex Functions in stringr
	6.2.2.1 Detecting Patterns
	6.2.2.2 Locating Patterns
	6.2.2.3 Extracting Patterns
	6.2.2.4 Replacing Patterns
	6.2.2.5 String Splitting

	6.3 Additional Resources

	Chapter 7: Dealing with Factors
	7.1 Creating, Converting and Inspecting Factors
	7.2 Ordering Levels
	7.3 Revalue Levels
	7.4 Dropping Levels

	Chapter 8: Dealing with Dates
	8.1 Getting Current Date and Time
	8.2 Converting Strings to Dates
	8.2.1 Convert Strings to Dates
	8.2.2 Create Dates by Merging Data

	8.3 Extract and Manipulate Parts of Dates
	8.4 Creating Date Sequences
	8.5 Calculations with Dates
	8.6 Dealing with Time Zones and Daylight Savings
	8.7 Additional Resources

	Part III: Managing Data Structures in R
	Chapter 9: Data Structure Basics
	9.1 Identifying the Structure
	9.2 Attributes

	Chapter 10: Managing Vectors
	10.1 Creating Vectors
	10.2 Adding On To Vectors
	10.3 Adding Attributes to Vectors
	10.4 Subsetting Vectors
	10.4.1 Subsetting with Positive Integers
	10.4.2 Subsetting with Negative Integers
	10.4.3 Subsetting with Logical Values
	10.4.4 Subsetting with Names
	10.4.5 Simplifying vs. Preserving

	Chapter 11: Managing Lists
	11.1 Creating Lists
	11.2 Adding On To Lists
	11.3 Adding Attributes to Lists
	11.4 Subsetting Lists
	11.4.1 Subset List and Preserve Output as a List
	11.4.2 Subset List and Simplify Output
	11.4.3 Subset List to Get Elements Out of a List
	11.4.4 Subset List with a Nested List

	Chapter 12: Managing Matrices
	12.1 Creating Matrices
	12.2 Adding On To Matrices
	12.3 Adding Attributes to Matrices
	12.4 Subsetting Matrices

	Chapter 13: Managing Data Frames
	13.1 Creating Data Frames
	13.2 Adding On To Data Frames
	13.3 Adding Attributes to Data Frames
	13.4 Subsetting Data Frames

	Chapter 14: Dealing with Missing Values
	14.1 Testing for Missing Values
	14.2 Recoding Missing Values
	14.3 Excluding Missing Values

	Part IV: Importing, Scraping, and Exporting Data with R
	Chapter 15: Importing Data
	15.1 Reading Data from Text Files
	15.1.1 Base R Functions
	15.1.2 readr Package

	15.2 Reading Data from Excel Files
	15.2.1 xlsx Package
	15.2.2 readxl Package

	15.3 Load Data from Saved R Object File
	15.4 Additional Resources

	Chapter 16: Scraping Data
	16.1 Importing Tabular and Excel Files Stored Online
	16.2 Scraping HTML Text
	16.2.1 Scraping HTML Nodes
	16.2.2 Scraping Specific HTML Nodes
	16.2.3 Cleaning Up

	16.3 Scraping HTML Table Data
	16.3.1 Scraping HTML Tables with rvest
	16.3.2 Scraping HTML Tables with XML

	16.4 Working with APIs
	16.4.1 Prerequisites?
	16.4.2 Existing API Packages
	16.4.2.1 blsAPI
	16.4.2.2 rnoaa
	16.4.2.3 rtimes

	16.4.3 httr for All Things Else
	16.4.3.1 Key-Only API
	16.4.3.2 OAuth-Required API

	16.5 Additional Resources
	Bibliography

	Chapter 17: Exporting Data
	17.1 Writing Data to Text Files
	17.1.1 Base R Functions
	17.1.2 readr Package

	17.2 Writing Data to Excel Files
	17.2.1 xlsx Package
	17.2.2 r2excel Package

	17.3 Saving Data as an R Object File
	17.4 Additional Resources

	Part V: Creating Efficient and Readable Code in R
	Chapter 18: Functions
	18.1 Function Components
	18.2 Arguments
	18.3 Scoping Rules
	18.4 Lazy Evaluation
	18.5 Returning Multiple Outputs from a Function
	18.6 Dealing with Invalid Parameters
	18.7 Saving and Sourcing Functions
	18.8 Additional Resources

	Chapter 19: Loop Control Statements
	19.1 Basic Control Statements (i.e. if, for, while, etc.)
	19.1.1 if Statement
	19.1.2 if…else Statement
	19.1.3 for Loop
	19.1.4 while Loop
	19.1.5 repeat Loop
	19.1.6 break Function to Exit a Loop
	19.1.7 next Function to Skip an Iteration in a Loop

	19.2 Apply Family
	19.2.1 apply() for Matrices and Data Frames
	19.2.2 lapply() for Lists…Output as a List
	19.2.3 sapply() for Lists…Output Simplified
	19.2.4 tapply() for Vectors

	19.3 Other Useful “Loop-Like” Functions
	19.4 Additional Resources

	Chapter 20: Simplify Your Code with %>%
	20.1 Pipe (%>%) Operator
	20.1.1 Nested Option
	20.1.2 Multiple Object Option
	20.1.3 %>% Option

	20.2 Additional Functions
	20.3 Additional Pipe Operators
	20.4 Additional Resources

	Part VI: Shaping and Transforming Your Data with R
	Chapter 21: Reshaping Your Data with tidyr
	21.1 Making Wide Data long
	21.2 Making Long Data wide
	21.3 Splitting a Single Column into Multiple Columns
	21.4 Combining Multiple Columns into a Single Column
	21.5 Additional tidyr Functions
	21.6 Sequencing Your tidyr Operations
	21.7 Additional Resources
	Bibliography

	Chapter 22: Transforming Your Data with dplyr
	22.1 Selecting Variables of Interest
	22.2 Filtering Rows
	22.3 Grouping Data by Categorical Variables
	22.4 Performing Summary Statistics on Variables
	22.5 Arranging Variables by Value
	22.6 Joining Data Sets
	22.7 Creating New Variables
	22.8 Additional Resources

	Index

