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Abstract. This paper investigates a variant of the Hamiltonian cycle,
the parity Hamiltonian cycle (PHC) problem: a PHC in a directed graph
is a closed walk (possibly using an arc more than once) which visits
every vertex odd number of times. Nishiyama et al. (2015) investigated
the undirected version of the PHC problem, and gave a simple charac-
terization that a connected undirected graph has a PHC if and only if it
has even order or it is non-bipartite. This paper gives a complete char-
acterization when a directed graph has a PHC, and shows that the PHC
problem in a directed graph is solved in polynomial time. The character-
ization, unlike with the undirected case, is described by a linear system
over GF(2).
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1 Introduction

It is said that the graph theory has its origin in the seven bridges of Königsberg
settled by Leonhard Euler [2]. An Eulerian cycle, named after him in modern
terminology, is a cycle which uses every edge exactly once, and it is now well-
known that a connected undirected graph has an Eulerian cycle if and only
if every vertex has an even degree. A Hamiltonian cycle (HC), a similar but
completely different notion, is a cycle which visits every vertex exactly once.
In contrast to the clear characterization of an Eulerian graph, the question if
a given graph has a Hamiltonian cycle is a celebrated NP-complete problem
due to Karp [11]. The HC problem is widely interested in computer science or
mathematics, and has been approached with several variants or related problems.
The traveling salesman problem (TSP) in a graph, which is NP-hard since the HC
problem is so, is regarded as a relaxed version of the HC problem, in which the
condition of visiting number on each vertex is relaxed to more than once. Another
example may be a two-factor (in cubic graphs), which relaxes the condition of
the connectivity of an HC, but a two-factor must contain each vertex exactly
once (cf. [3,4,8,9]).

It could be a natural idea for the HC problem to modify the condition on the
visiting number keeping the connectivity condition. The parity Hamiltonian cycle
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(PHC) problem, which this paper is involved in, is a variant of the Hamiltonian
cycle problem: a PHC is a closed walk (possibly using each edge more than
once) which visits every vertex an odd number of times. Note that the PHC
problem allows natural variations, directed or undirected, cycle or path, so does
the HC. Brigham et al. [5] showed that any connected undirected graph has a
parity Hamiltonian path or cycle, by giving an algorithm based on the depth first
search. Thirty years later, Nishiyama et al. [14] investigated the PHC problem
in undirected graphs, and gave a complete characterization that a connected
undirected graph has a PHC if and only if it has an even order or it is non-
bipartite. They also showed that any graph satisfying the condition admits a
PHC which uses each edge at most four times, by presenting an algorithm to
find a PHC using T -joins. On the other hand, the PHC problem becomes NP-
complete if each edge is restricted to be used in a PHC at most three times.

This paper investigates a directed version of the PHC problem. We give two
characterizations when a directed graph admits a PHC. The characterizations,
unlike with the undirected case, are described by linear systems over GF(2).
Our characterizations directly imply that the PHC problem in a directed graph
is solved in polynomial time. We then give a faster algorithm to recognize if a
directed graph has a PHC, which runs in linear time without (explicitly) solving
the linear system over GF(2). In the linear time algorithm, T -joins play a key
role. We also discuss a problem extended to GF(p), in Sect. 4.

Notice that the condition that an HC visits each vertex 1 ∈ R times is
replaced by 1 ∈ GF(2) times in a PHC. Modification of the field is found in group-
labeled graphs or nowhere-zero flows [10,12]. It was recently shown that the
extension complexity of the TSP is exponential [6,7,17], while it is an interesting
question if the PHC problem has an efficient (extended) formulation over GF(2).

2 Definitions and Notations

This section introduces definitions and notations. A directed graph (digraph for
short) D = (V,A) is given by a vertex set V and an arc set A (sometimes we
use V (D) and A(D) to clarify the graph which we are focusing on). Let δ+(v)
(resp. δ−(v)) for v ∈ V denote the set of outgoing (resp. incoming) arcs; that
is, arcs that leave v (resp. enter v). The sizes |δ+(v)| and |δ−(v)| are called the
out-degree and the in-degree of v, respectively.

A directed walk is a sequence of vertices and arcs v0a1 · · · a�v�, where ai =
(vi−1, vi) ∈ A for each i (1 ≤ i ≤ �). A directed walk is closed if v� = v0. A
directed path is a directed walk which contains each vertex at most once except
the start vertex v0 and the end vertex v�. A directed closed path is called a
directed cycle. A digraph D is strongly connected if there exists a directed path
from u to v for any pair of vertices u, v ∈ V (D). For convenience, we often
represent a directed closed walk by an integer vector x̃ ∈ Z

A
≥0, in which x̃(a)

denotes the number of occurrences of arc a in the closed walk.
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A cycle basis of D is a set of directed cycles {C1, C2, . . . , Ck} which satisfies
conditions: (i) Their incidence vectors c1, c2, . . . , ck ∈ {0, 1}A are linearly inde-
pendent over GF(2), and (ii) the incidence vector of every cycle, including those
are not directed, can be represented as a linear combination of c1, c2, . . . , ck. We
call each cycle Ci a fundamental cycle. It is known that the size k of cycle basis
is equal to |A(D)| − |V (D)| + 1 [1], and a cycle basis of a digraph can be found
in linear time [1,16].

Parity Hamiltonian Cycle Problem. A parity Hamiltonian cycle (PHC for
short) of a digraph D is a directed closed walk in which each vertex appears odd
number of times except the starting vertex. In other words, a PHC is a connected
closed walk which satisfies a parity condition:

∑
a∈δ+(v) x̃(a) ≡ ∑

a∈δ−(v) x̃(a) ≡
1 (mod 2) for each v ∈ V . Note that a PHC may use each arc more than once,
unlike with HC’s. The parity Hamiltonian cycle problem is a decision problem
to decide whether an input graph has a PHC. Note that only strongly con-
nected digraphs have PHC’s, thus we assume that the input digraph is strongly
connected in what follows.

3 Main Results

In this section we explain our main result. In Sect. 3.1 we show a characterization
of digraphs which have PHC’s, and in Sect. 3.2 we give an algorithm for the PHC
problem and one for finding a PHC, and discuss their time complexities.

3.1 Characterization

To state our main result, we define two matrices M and Q. For a digraph D, let
M+ = [m+

va] andM− = [m−
va] ∈ {0, 1}|V |×|A| be matrices respectively defined by

m+
va =

{
1 if a ∈ δ+(v),
0 otherwise, and m−

va =
{

1 if a ∈ δ−(v),
0 otherwise.

Thus the parity condition of a PHC is written as M+x̃ ≡ M−x̃ ≡ 1 (mod 2).
We define a matrix M over {0, 1}2|V |×|A| by

M =
[

M+

M−

]

.

Let {C1, C2, . . . , Ck} (k = |A| − |V | + 1) be a cycle basis of D and let
c1, c1, . . . , ck ∈ {0, 1}A their incidence vectors. Let R = [c1, c1, . . . , ck]. We
define a matrix Q ∈ {0, 1}|V |×k by

Q = M+R. (1)

Remark that Q = M−R holds, since for each i, the column vector qi ∈ {0, 1}V

of Q is a vector such that qi(v) = 1 if and only if Ci contains v ∈ V .
Now we are ready to state our main result.
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Theorem 1. The following three conditions are equivalent:

(a) A strongly connected digraph D = (V,A) has a PHC,
(b) Mx ≡ 1 (mod 2) has a solution x ∈ {0, 1}A,
(c) Qβ ≡ 1 (mod 2) has a solution β ∈ {0, 1}k,

where k = |A| − |V | + 1 and 1 denotes the all 1 vector.

Proof. The proofs of (c) ⇒ (a) and (a) ⇒ (b) are easy, while the other way (b)
⇒ (a) and (a) ⇒ (c), as well as (b) ⇒ (c) directly are not trivial. First we show
(a) ⇔ (b), then we show (a) ⇔ (c).

(a) ⇒ (b). Let x̃ ∈ Z
A
≥0 be a vector in which x̃(a) denotes the number of uses

of a ∈ A in a PHC. By the parity condition of PHC, we have M+x̃ ≡ M−x̃ ≡ 1
(mod 2). Then let x ∈ {0, 1}A be defined by x ≡ x̃ (mod 2), we have M+x ≡
M−x ≡ 1 (mod 2), and thus Mx ≡ 1 (mod 2).

(b) ⇒ (a). Suppose that x ∈ {0, 1}A is a solution of Mx ≡ 1 (mod 2), then we
explain how to construct a PHC. Remark that a graph indicated by x satisfies
the parity condition of the visiting number on each vertex, but may not satisfy
the Eulerian condition, meaning that

∑
a∈δ+(v) x(a) =

∑
a∈δ−(v) x(a) may not

hold for some vertex v, and connectivity.
First, we construct x ′ ∈ Z

A
≥0 satisfying both of the parity condition Mx ′ ≡ 1

(mod 2) and the Eulerian condition
∑

a∈δ+(v) x′(a) =
∑

a∈δ−(v) x′(a) for each
v ∈ V . Let φ(v) =

∑
a∈δ+(v) x(a) − ∑

a∈δ−(v) x(a) for each v ∈ V , denoting
the difference between out-degree and in-degree of v in x. Then x is Eulerian
if and only if φ(v) = 0 for all v. Notice that

∑
v∈V φ(v) = 0 holds since the

total of out-degrees is equal to the total of in-degrees. We also remark that
φ(v) is even for each v ∈ V , since Mx ≡ 1 (mod 2) implies that both of out-
degree (

∑
a∈δ+(v) x(a)) and in-degree (

∑
a∈δ−(v) x(a)) are odd. Then we apply

the following Procedure 1 to x:

Procedure 1

1. Find u, v ∈ V such that φ(u) < 0 and φ(v) > 0.
2. Find a directed path P from u to v (P always exists since D is strongly

connected).
3. x(a) := x(a) + 2 for each a ∈ A(P ).

Procedure 1 preserves the parity condition Mx ≡ 1 (mod 2), and decreases
the value of

∑
v∈V |φ(v)| (by four). By recursively applying Procedure 1 until∑

v∈V |φ(v)| is zero, we obtain a desired closed walk x ′.
If x ′ suggests a connected walk, we obtain a PHC. Suppose that x ′ is not

connected. Then we apply the following Procedure 2 to x′:

Procedure 2

1. Find u, v ∈ V which are in distinct connected components.
2. Find directed paths P from u to v and P ′ from v to u.
3. x′(a) := x′(a) + 2 for each a ∈ A(P ) ∪ A(P ′).
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Procedure 2 preserves the parity condition Mx ≡ 1 (mod 2) and the
Eulerian condition, and decreases the number of connected components. By
recursively applying Procedure 2, we obtain a connected walk, which is in fact
a PHC.

(c) ⇒ (a). We construct a PHC from the solution β ∈ {0, 1}k. Let

αi =
{

1 if βi = 1,
2 if βi = 0,

(2)

and set x̃ = Rα. Notice that x̃ indicates a closed walk since it is a sum of cycles.
We claim that the closed walk indicated by x̃, say γ, is a PHC. The walk γ is
connected since γ uses all edges of D at least once, and D is strongly connected.
Then, we have

M+x̃ = M+Rα = Qα ≡ Qβ ≡ 1 (mod 2),

where the second last congruence comes from (2) and the last congruence follows
from the assumption that β is a solution of Qβ ≡ 1 (mod 2). Hence, γ satisfies
the parity condition, and thus γ is a PHC.

(a) ⇒ (c). To show the necessity we show the following lemma.

Lemma 2. Let γ be any closed walk of D, and let x̃ ∈ Z
A
≥0 be a vector in which

x̃(a) denotes the number of uses of a ∈ A in γ. Then Rβ ≡ x̃ (mod 2) has a
solution β ∈ {0, 1}k.

Proof. Since γ is an Eulerian walk in a multi-digraph, meaning that γ consists
of simple cycles, x̃ is represented by

x̃ =
�∑

j=1

αjγj , (3)

with appropriate positive integer �, where each αj is a nonnegative integer and
each γj ∈ {0, 1}A is the incidence vector of a directed cycle of D. Remark that
each γj is represented by a linear combination of incidence vectors of fundamen-
tal cycles c1, . . . , ck, such that γj ≡ ∑k

i=1 β′
ijci (mod 2) for some 0-1 coefficients

β′
ij for each j. Let βi ∈ {0, 1} be defined by βi ≡ ∑�

j=1 β′
ijαj (mod 2), then

x̃ ≡
�∑

j=1

αj

k∑

i=1

β′
ijci ≡

k∑

i=1

βici (mod 2)

holds. Notice that
∑k

i=1 βici = Rβ, then we obtain the claim. �	
Suppose that γ is a PHC of D, and that x̃ ∈ Z

A
≥0 is a vector in which x̃(a)

denotes the number of uses of a ∈ A in γ. Since a PHC is a closed walk, Lemma 2
implies that there is a vector β ∈ {0, 1}k such that x̃ ≡ Rβ (mod 2). Then

Qβ = M+Rβ ≡ M+x̃ ≡ 1 (mod 2),

where the last congruence comes from the fact that x̃ indicates a PHC. �	
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3.2 Recognition in Linear Time

By Theorem 1, we can decide whether or not a given directed graph D has a
PHC in polynomial time, by solving a linear system Mx ≡ 1 (mod 2) or Qβ ≡ 1
(mod 2), which costs O(|V ||A|2) time. This section improves the time complexity
for the query to O(|A|).

Given an undirected graph G = (V,E) and T ⊆ V , a T -join of G is an edge
set J such that every vertex in T has odd degree and every other vertex has even
degree in the subgraph induced by J . There exists a T -join of G if and only if
|C ∩ T | is even in each component C of G [15]. Also, a T -join of any undirected
graph can be found in linear time [13].

For a digraph D = (V,A), let BG(D) be an undirected bipartite graph
(V +, V −;E), where V + and V − are the copies of V and E = {u+v− | (u, v) ∈
A}. One can easily see that the map is bijective. Observe that M of D coincides
with the incidence matrix of BG(D), and hence |E| = |A|.
Lemma 3. Mx ≡ 1 (mod 2) has a solution if and only if BG(D) =
(V +, V −;E) has a (V + ∪ V −)-join.

Proof. Let F be any subset of E, and let xF ∈ {0, 1}E be its incidence vector.
Since M is the incidence matrix of BG(D), the v-th entry of the vector MxF ,
(MxF )v, denotes the degree of v in xF . Let x ∈ {0, 1}E be a solution of Mx ≡ 1
(mod 2). Then x indicates a subgraph of BG(D) in which every vertex has odd
degree, which is a (V + ∪ V −)-join of BG(D). Conversely, if xF ∈ {0, 1}E is the
incidence vector of a (V + ∪ V −)-join F , xF satisfies MxF ≡ 1 (mod 2). �	

Since BG(D) and a T -join are computed in linear time, we see the following.

Theorem 4. The PHC problem in digraphs is solved in linear time. �	
Finally we remark the time complexity to find a PHC of a given directed

graph D. The proof of Lemma 3 implies that we can obtain a solution x ∈ {0, 1}A

of Mx ≡ 1 (mod 2) by finding a (V + ∪ V −)-join of BG(D). Once we obtain a
solution x , we can construct a PHC according to the proof of Theorem 3.1 for
(b) ⇒ (a). The algorithm is summarized in Algorithm 3.1.

It takes O(|A|) time in line 1. In line 2, we repeatedly find paths, each path
is found in O(|A|) time and repeated O(|A|) time thus O(|A|2) time in total. In
line 3, we repeatedly find pairs of paths, each is done in O(|A|) and repeated
O(|V |) time, thus O(|V ||A|) time in total. Consequently the time complexity of
Algorithm 3.1 is O(|A|2).

4 Extension to GF(p)

This section is concerned with the following problem, generalization of the
PHC problem: Given a digraph D and an integer p and an integer vector
r ∈ {0, 1, . . . , p − 1}A, decide if there exists a closed walk which visits each
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Algorithm 3.1 Finding a PHC in a digraph.
1: Find a (V + ∪ V −)-join J of BG(D) and x ← χJ

2: Repeat Procedure 1 until x satisfies the Eulerian condition
3: Repeat Procedure 2 until x becomes connected
4: return x

vertex v r(v) times modulo p. In other words, the problem asks to find a con-
nected closed walk that satisfies the condition M+x̃ ≡ M−x̃ ≡ r (mod p),
where x̃ ∈ Z

A
≥0 is a vector in which x̃(a) denotes the number of uses of arc a

in the closed walk. One can see that this is the PHC problem when p = 2 and
r = 1. We give a characterization similar to Theorem 1 (b).

Theorem 5. A strongly connected digraph D has a connected closed walk which
satisfies M+x̃ ≡ M−x̃ ≡ r (mod p) if and only if M+x ≡ M−x ≡ r (mod p)
has a solution x ∈ {0, . . . , p − 1}A.

Proof. The proof is similar to (a) ⇔ (b) of Theorem 1.

Necessity. Let x̃ ∈ Z
A
≥0 be a vector in which x̃(a) denotes the number of

uses of a ∈ A in a connected closed walk which satisfies M+x̃ ≡ M−x̃ ≡ r
(mod p). Then let x ∈ {0, . . . , p − 1}A be defined by x ≡ x̃ (mod p), we have
M+x ≡ M−x ≡ r (mod p).

Sufficiency. Suppose that x ∈ {0, . . . , p−1}A is a solution of M+x ≡ M−x ≡ r
(mod p), then we explain how to construct a closed walk which satisfies M+x̃ ≡
M−x̃ ≡ r (mod p). Remark that a graph indicated by x may not satisfy the
Eulerian condition, meaning that

∑
a∈δ+(v) x(a) =

∑
a∈δ−(v) x(a) may not hold

for some vertex v.
First, we construct x ′ ∈ Z

A
≥0 satisfying the condition M+x ′ ≡ M−x ′ ≡ r

(mod p) and the Eulerian condition
∑

a∈δ+(v) x′(a) =
∑

a∈δ−(v) x′(a) for each
v ∈ V . Let φ(v) =

∑
a∈δ+(v) x(a) − ∑

a∈δ−(v) x(a) for each v ∈ V , denoting
the difference between out-degree and in-degree of v in x. Then x is Eulerian if
and only if φ(v) = 0 for all v. Notice that

∑
v∈V φ(v) = 0 holds since the total

of out-degrees is equal to the total of in-degrees. We also remark that φ(v) is a
multiple of p for each v ∈ V , since M+x ≡ M−x ≡ r (mod p) implies that both
of out-degree (

∑
a∈δ+(v) x(a)) and in-degree (

∑
a∈δ−(v) x(a)) are r(v) modulo p.

Then we apply the following Procedure 1’ to x:

Procedure 1’

1. Find u, v ∈ V such that φ(u) < 0 and φ(v) > 0.
2. Find a directed path P from u to v (P always exists since D is strongly

connected).
3. x(a) := x(a) + p for each a ∈ A(P ).

Procedure 1’ preserves the condition M+x ≡ M−x ≡ r (mod p), and
decreases the value of

∑
v∈V |φ(v)| (by 2p). By recursively applying Procedure

1’ until
∑

v∈V |φ(v)| is zero, we obtain a desired closed walk x ′.
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Fig. 1. An undirected graph which has a PHC but does not have a PHC orientation.
The arrow indicates a PHC.

If x ′ suggests a connected walk, we obtain a closed walk which satisfies
M+x̃ ≡ M−x̃ ≡ r (mod p). Suppose that x ′ is not connected. Then we apply
the following Procedure 2’ to x′:

Procedure 2’

1. Find u, v ∈ V which are in distinct connected components.
2. Find directed paths P from u to v and P ′ from v to u.
3. x′(a) := x′(a) + p for each a ∈ A(P ) ∪ A(P ′).

Procedure 2’ preserves the condition M+x ≡ M−x ≡ r (mod p) and the
Eulerian condition, and decreases the number of connected components. By
recursively applying Procedure 2’, we obtain a connected closed walk which
satisfies M+x̃ ≡ M−x̃ ≡ r (mod p). �	

If p is prime or power of a prime, the linear system M+x ≡ M−x ≡ r
(mod p) is solved over GF(p), and we obtain a desired closed walk in polynomial
time. Otherwise GF(p) is not a field, and we need an extra observation to solve
the equation efficiently.

5 Concluding Remarks

This paper gave two characterizations when a directed graph has a PHC. We have
also shown that the characterization by M is generalized to problems over GF(p).

The PHC orientation problem is a problem to decide if a given undirected
graph has an orientation which has a PHC. Figure 1 shows an example of an
undirected graph which has a PHC, but does not admit a PHC orientation. It
is open if the PHC orientation problem is solved in polynomial time. Another
interesting question is if a PHC in a directed graph has an efficient (extended)
formulation. Notice that minimizing the length of a PHC is NP-hard, since a
PHC with length n is exactly a Hamiltonian cycle. A further connection between
PHC and HC is a future work.
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