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Abstract. The purpose of this paper is to solve the 0–1 k-item quadratic
knapsack problem (kQKP ), a problem of maximizing a quadratic func-
tion subject to two linear constraints. We propose an exact method based
on semidefinite optimization. The semidefinite relaxation used in our
approach includes simple rank one constraints, which can be handled
efficiently by interior point methods. Furthermore, we strengthen the
relaxation by polyhedral constraints and obtain approximate solutions
to this semidefinite problem by applying a bundle method. We review
other exact solution methods and compare all these approaches by exper-
imenting with instances of various sizes and densities.

Keywords: Quadratic programming · 0–1 knapsack · k-cluster ·
Semidefinite programming

1 Introduction

The 0–1 k-item quadratic knapsack problem consists of maximizing a quadratic
objective function subject to a linear capacity constraint with an additional
equality cardinality constraint:

(kQKP )

⎧
⎪⎪⎨

⎪⎪⎩

max f(x) =
∑n

i=1

∑n
j=1 cijxixj

s.t.
∑n

j=1 ajxj ≤ b (1)
∑n

j=1 xj = k (2)
xj ∈ {0, 1} j = 1, . . . , n

where n denotes the number of items, and all the data, k (number of items
to be filled in the knapsack), aj (weight of item j), cij (profit associated with
the selection of items i and j) and b (capacity of the knapsack) are nonnegative
integers. Without loss of generality, matrix C = (cij) is assumed to be symmetric.
Moreover, we assume that maxj=1,...,n aj ≤ b <

∑n
j=1 aj in order to avoid either

trivial solutions or variable fixing via constraint (1). Let us denote by kmax the
largest number of items which could be filled in the knapsack, that is the largest
number of the smallest aj whose sum does not exceed b. We can assume that
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k ∈ {2, . . . , kmax}, where kmax can be found in O(n) time [2]. Otherwise, either
the value of the problem is equal to maxi=1,...,n cii (for k = 1), or the domain of
(kQKP ) is empty (for k > kmax).

(kQKP ) is an NP-hard problem as it includes two classical NP-hard subprob-
lems, the k-cluster problem [6] by dropping constraint (1), and the quadratic
knapsack problem [18] by dropping constraint (2). Even more, the work of
Bhaskara et al. [4] indicates that approximating k-cluster within a polynomial
factor might be a harder problem than Unique Games. Rader and Woeginger [19]
state negative results concerning the approximability of QKP if negative cost
coefficients are present.

Applications of (kQKP ) cover those found in previous references for k-cluster
or classical quadratic knapsack problems (e.g., task assignment problems in
a client-server architecture with limited memory), but also multivariate linear
regression and portfolio selection. Specific heuristic and exact methods includ-
ing branch-and-bound and branch-and-cut with surrogate relaxations have been
designed for these applications (see, e.g., [3,5,9,17,22]).

The purpose of this paper is twofold.

1. We introduce a new algorithm for solving (kQKP ) and
2. we briefly review other state of the art methods and compare the methods

by running numerical experiments.

Our new algorithm consists of a branch-and-bound framework using

– a combination of a semidefinite relaxation and polyhedral cutting planes to
obtain tight upper bounds and

– fast hybrid heuristics [16] for computing high quality lower bounds.

This paper is structured as follows. In Sect. 2 a semidefinite relaxation is
derived, followed by a discussion of solving the semidefinite problems in Sect. 3.
The relaxation is used inside a branch-and-bound framework, the various compo-
nents of this branch-and-bound algorithm are discussed in Sect. 4. Other methods
for solving (kQKP ) and numerical results are presented in Sect. 5 and Sect. 6
concludes.

Notation. We denote by e the vector of all ones of appropriate size. diag(X)
refers to diagonal of X as a vector and Diag(v) is the diagonal matrix having
diagonal v.

2 A Semidefinite Relaxation of (kQKP )

In order to develop a branch-and-bound algorithm for solving (kQKP ) to opti-
mality we aim in finding strong upper bounds. Semidefinite optimization proved
to provide such strong bounds, see e.g. [1,20,21].

A straightforward way to obtain a semidefinite relaxation is the following.
Express all functions involved as quadratic functions, i.e. functions in xxt, replace
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the product xxt by a matrix X and get rid of non-convexities by relaxing X = xxt

to X � xxt.
Hence, we apply the following changes:

– Replace the constraint etx = k by the constraint (etx − k)2 = 0.
– As for the capacity constraint, define b′ to be the sum of the weights of the k

smallest items. Clearly, b′ ≤ atx is a valid constraint for (kQKP ). Combining
this redundant constraint with the capacity constraint we obtain (b′ −atx)(b−
atx) ≤ 0.

– Transform the problem to a ±1 problem by setting y = 2x − e.
– Relax the problem by relaxing Y = yyt to Y � yyt, i.e., dropping the con-

straint Y being of rank one.

This procedure yields the following semidefinite problem:

max 〈C̃, Y 〉
s.t. diag(Y ) = e

〈Ẽ, Y 〉 = 0

〈Ã, Y 〉 ≤ (b − b′)2

Y � 0

(SDP1)

with Ẽ = ẽẽt, ẽ =
(

n − 2k
e

)

, Ã = ããt, ã =
(

ate − (b + b′)
a

)

, and appropriate C̃.

Observation 1. (SDP1) has no strictly feasible point and thus Slater’s condi-
tion does not hold.

Proof. Note that 〈Ẽ, Y 〉 = ẽtY ẽ = 0 together with Y � 0 implies Y being
singular and thus every feasible solution is singular.

��

Observe that ẽ =
(

n − 2k
e

)

is an eigenvector to the eigenvalue 0 of every feasible

Y . Now consider matrix V =
(

1
2k−net

In

)

. V spans the orthogonal complement

of the span of eigenvector ẽ. Set Y = V XV t to “project out” the 0-eigenvalue
and consider the n × n matrix X instead of the (n + 1) × (n + 1) matrix Y . The
relationship between X and Y is simply given by

Y = V XV t =
( 1

(2k−n)2 etXe 1
2k−n (Xe)t

1
2k−nXe X

)

.

Looking at the effect of the constraints of (SDP1) on matrix X, we derive the
following conditions.
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– From diag(Y ) = e we obtain the constraints

etXe = (2k − n)2

diag(X) = e

– The left-hand side of constraint 〈Ẽ, Y 〉 = 0 translates into

〈Ẽ, Y 〉 = 〈Ẽ, V XV t〉 = 〈V tẼV,X〉 = 〈0,X〉 = 0

and the constraint becomes obsolete.
– Constraint 〈Ã, Y 〉 ≤ (b − b′)2 yields the following.

〈Ã, Y 〉 = 〈Ã, V XV t〉 = 〈V tÃV,X〉 =

= 〈(ate − (b + b′)
2k − n

e + a)(
ate − (b + b′)

2k − n
e + a)t,X〉

Hence,

〈(ate − (b + b′)
2k − n

e + a)(
ate − (b + b′)

2k − n
e + a)t,X〉 ≤ (b − b′)2

Defining ā = (ate−(b+b′)
2k−n e + a) we finally obtain

max 〈C̄,X〉
s.t. diag(X) = e

〈E,X〉 = (2k − n)2

〈A,X〉 ≤ (b − b′)2

X � 0

(SDP )

where E = eet, A = āāt, and appropriate cost matrix C̄.

Strengthening the Relaxation. Since we derived a relaxation from a problem
in ±1 variables, we can further tighten the bound by adding the well known
triangle inequalities to the semidefinite relaxation (SDP ). These are for any
triple 1 ≤ i < j < k ≤ n:

xij + xik + xjk ≥ −1
−xij − xik + xjk ≥ −1
−xij + xik − xjk ≥ −1

xij − xik − xjk ≥ −1

(1)

For several problems formulated in ±1 variables adding these constraints sig-
nificantly improves the bound, see e.g. [20]. The set of matrices satisfying all
triangle-inequalities is called the metric polytope and is denoted by MET . Thus,
the strengthend semidefinite relaxation reads



170 L. Létocart and A. Wiegele

max 〈C̄,X〉
s.t. diag(X) = e

〈E,X〉 = (2k − n)2

〈A,X〉 ≤ (b − b′)2

X ∈ MET

X � 0

(SDPMET )

3 Solving the Semidefinite Relaxations

3.1 Solving the Basic Relaxation (SDP )

The most prominent methods for solving semidefinite optimization problems are
interior point methods. The interior point method is an iterative algorithm where
in each iteration Newton’s method is applied in order to compute new search
directions.

Consider the constraints A(X) = (
...) with A(X) =

⎛

⎜
⎜
⎜
⎝

〈A1,X〉
〈A2,X〉

...
〈Am,X〉

⎞

⎟
⎟
⎟
⎠

. In each iter-

ation we determine a search direction Δy (y are variables in the dual semidefinite
problem) by solving the system MΔy = rhs where

mij = trace(Z−1AjXAi).

Z denotes the (positive definite) matrix variable of the dual semidefinite
program.

Forming this system matrix requires O(mn3 +m2n2) steps and is among the
most time-consuming operations inside the interior point algorithm. (The other
time-consuming steps are maintaining positive definiteness of the matrices X
and Z and linear algebra operations such as forming inverse matrices.)

The primal-dual pair of (SDP ) in variables (X, s, y, Z, t) is given as follows.

max
{〈C̄,X〉
s.t. diag(X) = e, 〈E,X〉 = (2k − n)2, 〈A,X〉 + s = (b − b′)2, X � 0, s ≥ 0

}

min
{
ety1:n + (n − 2k)2yn+1 + (b − b′)2yn+2

s.t. Diag(y1:n) + yn+1E + yn+2A − Z = C̄, yn+2 − t = 0, Z � 0, t ≥ 0
}
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Hence, the set of constraints is rather simple and the system matrix M reads
⎛

⎝
Z−1 ◦ X diag(Z−1EX) diag(Z−1AX)

diag(Z−1EX)t 〈E,Z−1EX〉 〈E,Z−1AX〉
diag(Z−1AX)t 〈A,Z−1EX〉 〈A,Z−1AX〉 + s

t

⎞

⎠ .

Even more, all data matrices have rank one which can be exploited when com-
puting the inner products, e.g.,

〈A,Z−1AX〉 = trace(āātZ−1āātX) = (ātZ−1ā)(ātXā)

Thus, the computation of the inner products of the matrices simplifies and
computing the system matrix can be reduced from O(mn3 +m2n2) to O(mn2 +
m2n). And since m = n + 2 in our case, we end up with O(n3).

Hence, (SDP ) can be solved efficiently by interior point methods.

3.2 Solving the Strengthened Relaxation (SDPMET )

Problem (SDPMET ) has a considerably larger number of constraints than (SDP ).
Remember that X ∈ MET is described by 4

(
n
3

)
linear inequalities and thus solv-

ing (SDPMET ) by interior point methods is intractable. An alternative has been
proposed in [12]. Therein the concept of bundle methods is used, in order to obtain
an approximate optimizer on the dual functional and thus getting a valid upper
bound on (SDPMET ), leading to a valid upper bound on (kQKP ).

Bundle methods have been developed to minimize nonsmooth convex func-
tions. To characterize the problem to be solved, an oracle has to be supplied
that evaluates the function at a given point and computes an ε-subgradient. The
set of points, function values, and subgradients is collected in a “bundle”, which
is used to construct a cutting plane model minorizing the function to be mini-
mized. By doing a sequence of descent steps the cutting plane model is refined
and one gets closer to the minimizer of the function.

We will apply the bundle method to minimize the dual functional of
(SDPMET ). Let

X = {X � 0: diag(X) = e, 〈E,X〉 = (2k − n)2, 〈A,X〉 ≤ (b − b′)2}

i.e., the feasible region of (SDP ). We introduce the dual functional

f(γ) = max
X∈X

{〈C̄,X〉 + γt(e − T (X)}

= etγ + max
X∈X

〈C̄ − T t(γ),X〉
(2)

where T (X) ≤ e denotes the triangle inequalities (1). Minimizing f(γ) over
γ ≥ 0 gives a valid upper bound on (kQKP ). In fact, any γ̃ ≥ 0 gives a valid
upper bound

z∗ = min
γ≥0

f(γ) ≤ f(γ̃) for any γ̃ ≥ 0.
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Since we use this bound inside a branch-and-bound framework, this allows us
to stop early and prune a node as soon as f(γ̃) is smaller than some known
lower bound. Furthermore, we do not rely on getting to the optimum. We will
stop once we are “close” to optimum and branch, rather than investing time in
dropping the bound by a tiny number.

Evaluating function (2) (the most time consuming step in the bundle method)
amounts in solving (SDP ) (with varying cost matrix), which can be done effi-
ciently as discussed in the previous section. Having the maximizer X∗ of (SDP ),
i.e. the function evaluation, a subgradient is given by g∗ = e − T (X∗).

Dynamic Version of the Bundle Method. The number of variables γ in (2) is
4
(
n
3

)
. This number is substantially larger than the dimension of the problem

and we are interested only in those inequalities that are likely to be active at
the optimum. Thus, we do not consider all triangle inequalities but work with
a subset that is updated on a regular basis, say every fifth descent step. The
update consists of

1. adding the m inequalities being most violated by the current iterate X and
2. removing constraints with γ close to 0 (an indicator for an inactive

constraint).

In this way we are able to efficiently run the bundle algorithm by keeping the
size of the variable vector γ reasonably small.

4 Branch and Bound

We develop an exact solution method for solving (kQKP ) by designing a branch-
and-bound framework using relaxation (SDPMET ) discussed above for getting
upper bounds.

The remaining tools of our branch-and-bound algorithm are described in this
section.

4.1 Heuristics for Obtaining Lower Bounds

We use two heuristics to obtain a global lower bound inside our algorithm: one
that is executed at the root node and another one that is called at each other
node in the branch-and-bound tree.

As a heuristic method at the root node we chose the primal heuristic denoted
by Hpri in [16], which is an adaption of a well-known heuristic developed by
Billionnet and Calmels [7] for the classical quadratic knapsack problem (QKP).
This primal heuristic combines a greedy algorithm with local search.

At each node of the branch-and-bound tree, we apply a variable fixation
heuristic inspired from Hsdp [16]. This heuristic method uses the solution of
the semidefinite relaxation obtained at each node, it fixes variables under some
treshold ε > 0 to zero and applies the primal heuristic over the reduced problem.
It updates the solution by performing a fill-up and exchange procedure over the
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unreduced problem. This procedure iterates, increasing ε at each iteration, until
the reduced problem is empty.

Both heuristics, the primal and the variable fixation one, are very fast and
take only hundredths of a second for sizes of our interest.

4.2 Branching Rule and Search Strategy

As a branching variable we choose the “most fractional” variable, i.e., v =
argmini|12 − xi|. The vector x is extracted from matrix X given by the semi-
definite relaxation.

We traverse the search tree in a best first search manner, i.e., we always
consider the node in the tree having the smallest upper bound.

4.3 Speed up for Small k

Whenever k, the number of items to be filled in the knapsack, is small, a branch-
and-prune algorithm is triggered in order to speed-up the approach. No relax-
ation is performed at each node of the branch-and-prune tree and a fast depth
first search strategy, in priority fixing variables to one, is implemented. We only
check the feasibility of the current solution through the cardinality and capacity
constraints.

This branch-and-prune approach is very fast, at most a few seconds, for very
small k. So we embedded it into our branch-and-bound algorithm and run it at
nodes where the remaining number of items to be filled in the current knapsack is
very small (less or equal than 5 in practice). To solve the original problem, we can
also replace the global branch-and-bound method using this branch-and-prune
approach for small initial values of k, in practice we choose k ≤ 10.

5 Numerical Results

We coded the algorithm in C++. For the function evaluation (i.e., solving
(SDP )) we implemented a predictor-corrector variant of an interior point
algorithm [14]. We use the ConicBundle Library of Ch. Helmberg [13] as frame-
work for the bundle method to solve (SDPMET ).

We compare our method (B&C) to:

– (Cplex): IBM CPLEX solver, version 12.6.2 [11], with default settings. The
original nonconvex 0–1 quadratic problem is given directly to CPLEX which
is now able to deal with such a formulation.

– (MIQCR+Cplex): our implementation of the MIQCR method [8]. MIQCR
uses a semidefinite relaxation in order to obtain a problem having a convexified
objective function; the resulting convex integer problem can then be solved
by standard solvers. We use the CSDP solver [10] for solving the semidefinite
relaxation to convexify the objective function, and IBM CPLEX 12.6.2 [11]
with default settings to solve the reformulated convex problem.
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– (BiqCrunch): Also BiqCrunch [15] is an algorithm based on semidefinite and
polyhedral relaxations within a branch-and-bound framework. In BiqCrunch
a quadratic regularization term is added to the objective function of the semi-
definite problem and a quasi-Newton method is used to compute the bounds.
We use the BiqCrunch solver enhanced with our primal and variable fixation
heuristics described in Sect. 4.1.

All experiments have been performed on an Intel i7-2600 quad core 3.4 GHz
with 8 GB of RAM, using only one core. The computational results have been
obtained for randomly generated instances from [16] with up to 150 variables.
We choose k ∈ {1, . . . , �n

4 �}, b, aj and cij are positive integers. The time limit
for each approach is 3 h.

In Table 1 we display the run time of the overall algorithm, the gap at the
root node, and the number of nodes produced during the branch-and-bound
algorithm for each method. Each line of Table 1 represents average values over
10 instances for each n and δ where n is the number of variables and δ is the
density of the profit matrix C. We put the number of instances solved within
the time limit into brackets in case not all 10 instances could be solved. Average
values are computed only over instances solved within the time limit.

The numerical experiments demonstrate that the methods having semidefi-
nite optimization inside clearly outperform Cplex. In fact, Cplex already fails to
solve all instances of size n = 50 within the time limit.

Table 1. Numerical results comparing four approaches. (Time limit: 3 h)

Cplex MIQCR+Cplex BiqCrunch B&C
Gap root % Time (s) #Nodes Gap root % Time (s) #Nodes Gap root % Time (s) #Nodes Gap root % Time (s) #Nodes

n δ

50 25 102.7 3.7 3426.9 30.5 1.0 621.2 7.4 21.4 79.6 0.9 72.4 11.6
50 150.6 150.8 77807.9 25.2 1.0 1276.3 4.9 24.9 136.8 1.3 9.1 11.2
75 230.3 213.1 104419.5 102.0 0.7 656.7 56.1 26.6 98.6 0.6 3.6 9.1
100 356.5 (8) 53.1 (8) 14228.8 62.7 1.5 3620.0 31.4 23.0 89.6 0.9 73.0 38.1

60 25 60.8 3.0 917.1 127.4 0.9 621.2 123.0 32.2 85.2 0.6 18.3 18.4
50 93.7 282.4 134246.3 15.1 1.4 1280.3 4.7 39.7 136.8 2.0 110.3 88.1
75 212.7 (9) 50.9 (9) 8258.3 137.5 3.3 7594.5 131.4 71.3 123.0 1.3 75.8 28.2
100 284.5 (8) 188.6 (8) 55411.8 61.2 3.2 5808.1 47.8 63.0 147.2 0.3 21.5 18.4

70 25 130.2 23.7 12065.8 37.9 3.4 2884.9 13.8 109.6 147.7 4.5 259.3 42.0
50 177.1 (6) 213.8 (6) 63859.7 71.7 8.4 11221.8 59.2 141.0 207.4 2.2 128.2 139.7
75 382.4 (8) 873.0 (8) 105465.6 56.1 16.2 33821.0 17.4 196.2 211.7 3.5 246.8 114.9
100 252.2 (4) 60.2 (4) 10867.5 59.6 14.6 25809.6 53.0 153.3 243.2 4.0 319.7 338.8

80 25 111.2 226.6 89013.4 33.5 7.8 6115.3 13.0 149.6 195.2 7.5 390.9 86.1
50 271.6 (8) 872.9 (8) 181325.9 55.0 26.8 36346.3 20.9 373.9 366.2 8.6 544.8 213.6
75 313.3 (5) 278.7 (5) 14838.5 82.0 47.8 96543.3 70.8 615.1 745.2 2.6 413.4 359.0
100 473.0 (6) 1469.5 (6) 98024.5 43.0 96.5 216700.0 17.1 717.5 804.6 5.4 1849.4 1219.7

90 25 118.5 (9) 585.9 (9) 693035.0 111.5 23.3 22836.9 107.3 188.6 390.4 3.6 430.6 94.1
50 248.6 (6) 3708.5 (6) 312105.5 82.2 67.8 99574.6 72.3 532.3 810.0 3.4 729.1 404.9
75 388.7 (2) 2850.5 (2) 62190.5 37.9 735.1 1348558.3 14.2 1281.2 970.8 8.7 (7) 3234.1 (7) 2233.1
100 390.0 (3) 146.2 (3) 5047.5 26.6 180.4 282966.1 10.4 1094.7 5644.1 6.5 2740.9 1357.9

100 25 169.4 2308.1 623731.5 74.4 65.4 71449.9 61.6 392.5 617.4 10.9 1583.1 284.0
50 145.7 (6) 1724.3 (6) 122716.0 17.5 308.0 465749.5 7.6 986.9 882.0 8.0 (9) 3379.6 (9) 1488.6
75 270.9 (2) 4243.5 (2) 88176.5 21.8 856.8 1322350.0 6.8 980.0 967.8 14.8 (7) 2613.0 (7) 855.6
100 473.0 (5) 2658.8 (5) 120959.0 98.6 649.7 977246.9 94.0 (9) 723.8 (9) 5166.7 6.0 (7) 318.1 (7) 115.4

110 25 124.0 (6) 277.4 (6) 36270.2 72.2 327.0 288129.4 64.4 848.8 1003.6 13.5 (8) 2602.9 (8) 810.4
50 117.5 (3) 661.5 (3) 55327.0 14.3 1188.1 1089556.0 4.7 1010.2 727.8 5.7 (7) 2065.1 (7) 652.3
75 580.7 (6) 908.8 (6) 35891.8 138.7 (7) 27.4 (7) 37408.8 118.8 (8) 2305.7 (8) 4523.3 10.7 (7) 1062.7 (7) 297.7
100 332.2 (1) 1911.6 (1) 118552.0 19.6 (8) 758.0 (8) 956886.3 7.1 (8) 1438.1 (8) 1575.0 7.0 (6) 1789.2 (6) 511.7

120 25 55.1 (6) 320.1 (6) 94936.5 95.3 1771.4 1644176.9 111.8 424.3 447.6 5.7 (8) 1872.3 (8) 317.3
50 288.1 (3) 2995.9 (3) 81429.7 90.3 (7) 1888.9 (7) 1554792.4 82.5 (8) 1073.9 (8) 821 10.2 (6) 1725.3 (6) 427.5
75 507.6 (5) 305.0 (5) 11101.2 133.8 (6) 484.9 (6) 177043.8 128.7 (9) 3001.6 (9) 7996.3 7.9 (5) 0.8 (5) 0.0
100 179.7 (3) 41.9 (3) 4166.5 66.2 (6) 61.6 (6) 36075.0 68.7 (9) 1552.6 (9) 969.0 3.6 (6) 683.4 (6) 144.4

130 25 129.1 (6) 2014.5 (6) 383586.2 24.7 1256.6 698989.0 10.6 3341.8 2520.8 7.1 (8) 4194.0 (8) 850.7
50 411.8 (4) 3246.9 (4) 245787.0 67.3 (7) 493.0 (7) 384516.5 50.5 (8) 1719.6 (8) 2330.7 6.9 (7) 2590.8 (7) 450.8
75 207.3 (0) (0) 12.2 (5) 4975.3 (5) 3138617.2 3.8 (9) 2630.0 (9) 1000.3 11.9 (2) 6813.5 (2) 1430.0
100 383.5 (0) (0) 21.1 (4) 2250.4 (4) 1170285.3 8.8 (6) 4365.0 (6) 2437.4 14.1 (3) 2012.0 (3) 83.5

140 25 207.9 (5) 15.0 (5) 1180.5 48.8 (8) 1770.8 (8) 654605.8 44.4 2624.2 1993.3 13.3 (4) 2561.8 (4) 298.5
50 306.2 (1) 2401.8 (1) 106348.0 36.8 (5) 2692.3 (5) 2306370.0 16.4 (7) 4809.5 (7) 1134.1 24.0 (3) 3360.3 (3) 213.3
75 259.0 (0) (0) 19.6 (4) 2263.5 (4) 1520163.5 8.0 (5) 4065.2 (5) 1773.4 12.5 (1) 431.0 (1) 0.0
100 647.8 (2) 64.1 (2) 483.0 49.4 (4) 1042.9 (4) 1238929.3 37.1 (6) 6123.7 (6) 17745.3 13.3 (4) 2561.7 (4) 298.5

150 25 103.7 (4) 1744.3 (4) 202004.0 67.4 (6) 587.1 (6) 552495.8 69.1 (8) 3203.9 (8) 994.8 12.6 (3) 1458.0 (3) 164.3
50 105.6 (5) 91.8 (5) 5591.7 98.2 (7) 2240.0 (7) 935027.4 101.4 (7) 2761.5 (7) 2349.4 8.8 (5) 2797.7 (5) 3453.7
75 496.9 (0) (0) 7.9 (5) 957.2 (5) 300455.4 23.1 (3) 3908.7 (3) 876.3 17.5 (2) 155.0 (2) 0.0
100 171.1 (1) 1039.3 (1) 24546.0 43.7 (3) 3493.0 (3) 5264462.0 3.3 (4) 4320.1 (4) 2171.0 8.1 (3) 5391.7 (3) 554.3

Avg 258.5 (236) 787.0 (236) 127524.4 59.0 (372) 570.0 (372) 902502.7 45.7 (394) 1215.4 (394) 1487.2 7.4 (328) 1250.5 (328) 433.8
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Instances with up to n = 100 variables can be solved most efficiently by the
MIQCR approach, i.e., finding a convexified problem via semidefinite optimiza-
tion and then solve the resulting convex problem using Cplex.

For n > 100, BiqCrunch performs best in terms of overall run time, but the
domincance to MIQCR and our approach is not significant.

Our new approach provides by far the smallest gap at the root node. The
high quality of our bound is also reflected in the number of nodes in the branch-
and-bound tree. Our method explores a substantial smaller number of nodes
than the other approaches.

Our approach is not superior to MIQCR or BiqCrunch in terms of over-
all computation time, however, the implementation is a prototype and there is
room for speeding up the approach by experimenting with different settings in
the branch-and-bound framework (such as branching strategies) as well as para-
meter settings in the bundle algorithm and in the update of the set of triangle
inequalities. This is currently under investigation.

6 Conclusion

The 0–1 k-item quadratic knapsack problem is a challenging problem, as it
includes two NP-hard problems, namely quadratic knapsack and k-cluster. We
review approaches to solve this problem to optimality and introduce a new
method, where the bound computation is based on a semidefinite relaxation.
The derived basic semidefinite relaxation has only simple constraints, in fact
all constraints are of rank one. This can be exploited in interior point methods
to efficiently compute the system matrix. We strengthen the relaxation using
triangle inequalities and solve the resulting semidefinite problem by a dynamic
version of the bundle method.

To have a comparison with state of the art algorithms we implement the
convexification algorithm MIQCR [8], use BiqCrunch [15] enhanced with our
primal heuristics, and run Cplex. The numerical results prove that CPLEX is
clearly outperformed by all the methods based on semidefinite programming.
Our new method provides the tightest bound at the root node, while the overall
computation time is smallest for MIQCR for n ≤ 100 and BiqCrunch for larger
n. An optimized implementation and a study of the best parameter settings for
the various components inside our code is subject of further study.
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