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Preface

This volume contains the full-papers presented at ISCO 2016, the 4th International
Symposium on Combinatorial Optimization, held in Vietri Sul Mare (Italy) during May
16–18, 2016. ISCO 2016 was followed by the Spring School on “Extended Formu-
lations for Combinatorial Optimization” given by Volker Kaibel and Samuel Fiorni.
ISCO is a biennial symposium. The first event was held in Hammamet, Tunisia, in
March 2010, the second in Athens, Greece, in April 2012, and the third in Lisbon,
Portugal, in March 2014. The symposium aims to bring together researchers from all
the communities related to combinatorial optimization, including algorithms and
complexity, mathematical programming, operations research, stochastic optimization,
graphs, and combinatorics. It is intended to be a forum for presenting original research
on all aspects of combinatorial optimization, ranging from mathematical foundations
and theory of algorithms to computational studies and practical applications, and
especially their intersections. In response to the call for papers, ISCO 2016 received 98
fullpaper submissions. Each submission was reviewed by at least three reviewers, with
at least two of them belonging to the Program Committee (PC). The submissions were
judged on their originality and technical quality and the PC had to discuss in length the
reviews and make tough decisions. As a result, the PC selected 38 fullpapers to be
presented at the symposium, giving an acceptance rate of 39 % (57 short papers were
also selected from both regular and short submissions). Four eminent invited speakers,
R. Ravi (Carnegie Mellon University), András Frank (Egerváry Research Group,
Eövös University Budapest), Adam N. Letchford (Lancaster University), and Volker
Kaibel (Otto-von-Guericke University, Magdeburg), gave talks at the symposium. The
revised versions of the accepted full-papers, as well as the abstracts of the invited talks,
are included in this volume. We would like to thank all the authors who submitted their
work to ISCO 2016, and the PC members and external reviewers for their excellent
work. We would also like to thank our invited speakers as well as the speakers of the
Spring School for their exciting lectures. They all greatly contributed to the quality
of the symposium. Finally, we would like to thank the Organizing Committee members
for their dedicated work in preparing this conference, and we gratefully acknowledge
our sponsoring institutions for their assistance and support.

July 2016 Raffaele Cerulli
Satoru Fujishige

A. Ridha Mahjoub
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Abstracts



New Graph Optimization Problems
in NP\co-NP

András Frank

Egerváry Research Group, Eötvös University Budapest
frank@cs.elte.hu

We show that the following three problems in graph theory belong to NP\co-NP.
1. Wang and Kleitman (1972) characterized degree-sequences of simple

k-connected undirected graphs. We solve the corresponding problem for
digraphs.

2. Edmonds (1973) characterized digraphs admitting k disjoint spanning arbores-
cences of given root, and his result could be extended to the case when there is
no prescription for the localization of the roots. Here we exhibit a much more
general result that characterizes digraphs admitting k disjoint branchings with
specified sizes μ1, μ2,���, μk.

3. Ryser (1958) solved the maximum term rank problem which consisted of char-
acterizing the row-sums and column-sums of (0, 1)-matrices with term-rank at
least μ, or equivalently, characterize the degree-sequences of simple bipartite
graphs with matching number at least μ. Recently, it turned out that the maximum
term rank problem, though not particularly difficult, is not tractable with network
flow or matroid techniques since the weighted version is NP-complete. Yet, we
found a necessary and sufficient condition for the existence of a simple bipartite
graph with matching number at least μ such that the degree of each node lies
between specified lower and upper bounds.

As a major novelty, we show that these three apparently quite distant problems
stem out from one common root: a general theorem on covering a supermodular
function by a minimal simple digraph. Since the corresponding weighted optimization
version includes NP-complete problems, the new results are certainly out of the range
of classic general frameworks such as the one of submodular flows.

In the talk, I outline first the origin and the history of optimization problems con-
cerning optimal coverings of supermodular functions and exhibit then the new devel-
opments giving rise to the characterizations indicated above. Finally, some open
problems are sketched that are hopeful to be attacked successfully with the new
approach.



Describing Integer Points in Polyhedra

Volker Kaibel

Otto-von-Guericke University, Magdeburg
kaibel@ovgu.de

Linear mixed integer models are fundamental in treating combinatorial problems via
Mathematical Programming. In this lecture we are going to discuss the question how
small such formulations one can obtain for different problems. It turns out that for
several problems including, e.g., the traveling salesman problem and the spanning tree
problem, the use of additional variables is essential for the design of polynomial sized
integer programming formulations. In fact, we prove that their standard exponential
size formulations are asymptotically minimal among the formulations based on inci-
dence vectors only. We also treat bounds for general sets of 0/1-points and briey
discuss the question for the role of rationality of coefficients in formulations.



Some Hard Combinatorial Optimization
Problems from Mobile Wireless

Communications

Adam N. Letchford

Lancaster University
a.n.letchford@lancaster.ac.uk

In the past decade, a revolution in telecommunications has been taking place. There has
been an inexorable trend towards mobile wireless communications, in which there are a
large number of portable devices (such as smartphones) scattered across a geographical
region. Each such region is divided into a number of so-called cells. Each cell contains
a powerful transmitter called a base station. When they wish to send or receive data,
the portable devices have to send requests to one or more nearby base stations.

It turns out that mobile wireless communications are a rich source of new and
difficult combinatorial optimisation problems. These include strategic problems, such
as where and when to locate new base stations, tactical problems, such as how much
power to give to each base station, and operational problems, such as how to assign
incoming user requests to the available frequency bands.

In this talk, we focus on operational problems associated with so-called orthogonal
frequency-division multiple access (OFDMA) systems. In these systems, there are a
large number of channels available, each of which can be allocated to at most one user.
On the other hand, a user can be assigned to more than one channel. The rate at which
data is transmitted over a given channel is a nonlinear function of the power allocated
to that channel, the bandwidth of the channel, and the noise associated with the
channel. So one faces the problem of simultaneously assigning channels to users and
allocating the available power to the channels. This leads to several different combi-
natorial optimization problems, depending on the particular objective in question, the
side-constraints imposed, and the time-horizon of interest.

We show that some of these joint channel assignment and power allocation
problems can be tackled successfully via mixed-integer linear programming, especially
if one uses clever pre-processing tricks, strong cutting planes, and symmetry-breaking
techniques. On the other hand, some of the problems still present a formidable
challenge.



Improved Approximations for Graph-TSP
in Regular Graphs

R. Ravi

Carnegie Mellon University
ravi@andrew.cmu.edu

A tour in a graph is a connected walk that visits every vertex at least once, and returns
to the starting vertex. We describe improved approximation results for a tour with the
minimum number of edges in regular graphs. En route we illustrate the main ideas used
recently in designing improved approximation algorithms for graph TSP.
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Abstract. This paper addresses a class of problems under interval data
uncertainty composed of min-max regret versions of classical 0–1 opti-
mization problems with interval costs. We refer to them as interval 0–1
min-max regret problems. The state-of-the-art exact algorithms for this
class of problems work by solving a corresponding mixed integer linear
programming formulation in a Benders’ decomposition fashion. Each of
the possibly exponentially many Benders’ cuts is separated on the fly
through the resolution of an instance of the classical 0–1 optimization
problem counterpart. Since these separation subproblems may be NP-
hard, not all of them can be modeled by means of linear programming,
unless P = NP. In these cases, the convergence of the aforementioned
algorithms are not guaranteed in a straightforward manner. In fact, to
the best of our knowledge, their finite convergence has not been explic-
itly proved for any interval 0–1 min-max regret problem. In this work,
we formally describe these algorithms through the definition of a logic-
based Benders’ decomposition framework and prove their convergence to
an optimal solution in a finite number of iterations. As this framework is
applicable to any interval 0–1 min-max regret problem, its finite optimal
convergence also holds in the cases where the separation subproblems
are NP-hard.

L. Assunção—Partially supported by the Coordination for the Improvement of
Higher Education Personnel, Brazil (CAPES).
L. Assunção—The author thanks Vitor A. A. Souza and Phillippe Samer for the
valuable discussions throughout the conception of this work.

c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 1–12, 2016.
DOI: 10.1007/978-3-319-45587-7 1



2 L. Assunção et al.

1 Introduction

Robust Optimization (RO) [14] has drawn particular attention as an alternative
to stochastic programming [22] in modeling uncertainty. In RO, instead of con-
sidering a probabilistic description known a priori, the variability of the data
is represented by deterministic values in the context of scenarios. A scenario
corresponds to a parameters assignment, i.e., a value is fixed for each parameter
subject to uncertainty. Two main approaches are adopted to model RO prob-
lems: the discrete scenarios model and the interval data model. In the former,
a discrete set of possible scenarios is considered. In the latter, the uncertainty
referred to a parameter is represented by a continuous interval of possible values.
Differently from the discrete scenarios model, the infinite many possible scenar-
ios that arise in the interval data model are not explicitly given. Nevertheless,
in both models, a classical (i.e., parameters known in advance) optimization
problem takes place whenever a scenario is established.

The most commonly adopted RO criteria are the absolute robustness crite-
rion, the min-max regret (also known as robust deviation criterion) and the min-
max relative regret (also known as relative robustness criterion). The absolute
robustness criterion is based on the anticipation of the worst possible conditions.
Solutions for RO problems under such criterion tend to be conservative, as they
optimize only a worst-case scenario. On the other hand, the min-max regret
and the min-max relative regret are less conservative criteria and, for this rea-
son, they have been addressed in several works (e.g., [3,5,17,18,20]). Intuitively
speaking, the regret (robust deviation) of a solution in a given scenario is the cost
difference between such solution and an optimal one for this scenario. In turn,
the relative regret of a solution in a given scenario consists of the corresponding
regret normalized by the cost of an optimal solution for the scenario considered.
The (relative) robustness cost of a solution is defined as its maximum (relative)
regret over all scenarios. In this sense, the min-max (relative) regret criterion
aims at finding a solution that has the minimum (relative) robustness cost. Such
solution is referred to as a robust solution.

RO versions of several combinatorial optimization problems have been stud-
ied in the literature, addressing, for example, uncertainties over costs. Handling
uncertain costs brings an extra level of difficulty, such that even polynomi-
ally solvable problems become NP-hard in their corresponding robust versions
[13,19,20,23]. In this study, we are interested in a particular class of RO prob-
lems, namely interval 0–1 min-max regret problems, which consist of min-max
regret versions of Binary Integer Linear Programming (BILP) problems with
interval costs. Notice that a large variety of classical optimization problems can
be modeled as BILP problems, including (i) polynomially solvable problems,
such as the shortest path problem, the minimum spanning tree problem and
the assignment problem, and (ii) NP-hard combinatorial problems, such as the
0–1 knapsack problem, the set covering problem, the traveling salesman problem
and the restricted shortest path problem [9]. An especially challenging subclass
of interval 0–1 min-max regret problems, referred to as interval 0–1 robust-hard
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problems, arises when we address interval 0–1 min-max regret versions of classical
NP-hard combinatorial problems as those aforementioned in (ii).

Aissi et al. [1] showed that, for any interval 0–1 min-max regret problem
(including interval 0–1 robust-hard problems), the robustness cost of a solution
can be computed by solving a single instance of the classical optimization prob-
lem counterpart (i.e., costs known in advance) in a particular scenario. Therefore,
one does not have to consider all the infinite many possible scenarios during the
search for a robust solution, but only a subset of them, one for each feasible
solution. Nevertheless, since the number of these promising scenarios can still
be huge, the state-of-the-art exact algorithms for interval 0–1 min-max regret
problems work by implicitly separating them on the fly, in a Benders’ decom-
position [4] fashion (see, e.g., [17,18,21]). Precisely, each Benders’ cut is gener-
ated through the resolution of an instance of the classical optimization problem
counterpart. Notice that, for interval 0–1 robust-hard problems, these separa-
tion subproblems are NP-hard and, thus, they cannot be modeled by means of
Linear Programming (LP), unless P = NP. In these cases, the convergence of
the aforementioned algorithms are not guaranteed in a straightforward manner.

These exact algorithms, which have their roots in logic-based Benders’ decom-
position [11] (also see [6]), have been successfully applied to solve several interval
0–1 min-max regret problems (e.g., [17,19,20]), including interval 0–1 robust-
hard problems, such as the robust traveling salesman problem [18] and the robust
set covering problem [21]. However, to the best of our knowledge, their conver-
gence has not been explicitly proved for any interval 0–1 min-max regret problem.
In this work, we formally describe these algorithms through the definition of a
logic-based Benders’ decomposition framework and prove their finite convergence
to an optimal solution. Precisely, we show, by contradiction, that a new cut is
always generated per iteration, in a finite space of possible solutions. As the
framework is applicable to any interval 0–1 min-max regret problem, its finite
optimal convergence also holds in solving interval 0–1 robust-hard problems, i.e.,
in the cases where the separation subproblems are NP-hard.

The remainder of this work is organized as follows. The Benders’ decomposi-
tion method is briefly introduced in Sect. 2, followed by the description of a stan-
dard modeling technique for interval 0–1 min-max regret problems (Sect. 2.1).
In addition, a generalization of state-of-the-art exact algorithms for interval 0–
1 min-max regret problems is devised through the description of a logic-based
Benders’ decomposition framework (Sect. 2.2). The finite convergence of these
algorithms to optimal solutions is proved in the same section, and concluding
remarks are given in the last section.

2 A Logic-Based Benders’ Decomposition Framework
for Interval 0–1 Min-Max Regret Problems

The classical Benders’ decomposition method [4] was originally proposed to
tackle Mixed Integer Linear Programming (MILP) problems of the form P :
min{cx + dy : Ax + By ≥ b, x ∈ Z

n1
+ , y ≥ 0}. In this case, there are n1
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integer variables and n2 continuous ones, which are represented by the col-
umn vectors x and y, respectively, and their corresponding cost values are
given by the row vectors c and d. Moreover, b is an m-dimensional column
vector, and A and B are m × n1 and m × n2 matrices, respectively. Given
a vector x̄ ∈ Z

n1
+ , the classical Benders’ reformulation starts by defining an

LP primal subproblem PS(x̄) : min{dy : By ≥ b − Ax̄, y ≥ 0} through
the projection of the continuous variables y in the space defined by x̄. Notice
that PS(x̄) can be represented by means of the corresponding dual subproblem
DS(x̄) : max{μ(b − Ax̄) : μB ≤ d, μ ≥ 0}, where μ is an m-dimensional row
vector referred to the dual variables.

Let EP (x̄) and ER(x̄) be, respectively, the sets of extreme points and
extreme rays of a given DS(x̄) subproblem. One may observe that the feasible
region of DS(x̄) does not depend on the value assumed by x̄. Thus, hereafter,
these sets are referred to as EP and ER for all x̄ ∈ Z

n1
+ .

Considering a nonnegative continuous variable ρ, the resolution of each dual
subproblem DS(x̄) leads to a new linear constraint (i) ρ ≥ μ̄(b − Ax), if DS(x̄)
has a bounded optimal solution μ̄ ∈ EP , or (ii) ν̄(b − Ax) ≤ 0, if DP has an
unbounded solution, represented by ν̄ ∈ ER. The Benders’ cuts described in (i)
are called optimality cuts, whereas the ones in (ii) are called feasibility cuts. Both
types of cuts are used to populate on the fly a reformulated problem, defined as:

(RP ) min {cx + ρ} (1)
s.t. ρ ≥ μ̄(b − Ax) ∀ μ̄ ∈ EP, (2)

ν̄(b − Ax) ≤ 0 ∀ ν̄ ∈ ER, (3)
ρ ≥ 0, (4)
x ∈ Z

n1
+ . (5)

Let MRP be a relaxed RP problem, called master problem, which considers
only a subset of the extreme points and extreme rays associated with constraints
(2) and (3), respectively. At each iteration of the classical Benders’ decomposition
algorithm, the master problem is solved, obtaining a solution (x̄, ρ̄) ∈ Z

n1
+ ×R+.

If (x̄, ρ̄) is not feasible for the original reformulated problem RP , a correspond-
ing DS(x̄) subproblem is solved in order to generate a new Benders’ cut, either
a feasibility cut or an optimality one. The new cut is added to the master prob-
lem MRP and the algorithm iterates until a feasible (and, therefore, optimal)
solution for RP is found.

The finite convergence of the classical Benders’ decomposition method is
guaranteed by the fact that the polyhedron referred to any LP problem can be
described by finite sets of extreme points and extreme rays, and that a new
Benders’ cut is generated per iteration of the algorithm. We refer to [4] for the
detailed proof. Methodologies able to improve the convergence of the method
were studied in several works (see, e.g., [8,15,16]). In addition, nonlinear con-
vex duality theory was later applied to devise a generalized approach, namely
generalized Benders’ decomposition, applicable to mixed integer nonlinear
problems [10].
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More recently, Hooker and Ottosson [11] introduced the idea of the so-called
logic-based Benders’ decomposition, a Benders-like decomposition approach that
is suitable for a broader class of problems. In fact, the latter approach is intended
to tackle any optimization problem by exploring the concept of an inference dual
subproblem. In particular, that is the problem of inferring a strongest possible
bound for a set of constraints from the original problem that are relaxed in
the master problem. Notice that the aforementioned inference subproblems are
not restricted to linear and nonlinear continuous problems. In fact, they can
even be NP-hard combinatorial problems (see, e.g., [7]). Therefore, the conver-
gence of the logic-based Benders’ decomposition method cannot be showed in a
straightforward manner for all classes of optimization problems. As pointed out
in [11], the convergence of the method relies on some peculiarities of the (logic-
based) Benders’ reformulation, such as the way the inference dual subproblems
are devised and the finiteness of the search space referred to them.

In the remainder of this section, we describe a framework that generalizes
state-of-the-art logic-based Benders’ decomposition algorithms widely used to
solve interval 0–1 min-max regret problems [17–21]. In addition, we show its
convergence to an optimal solution in a finite number of iterations. The frame-
work addresses MILP formulations with typically an exponential number of con-
straints, as detailed in the sequel.

2.1 Mathematical Formulation

Consider G, a generic BILP minimization problem defined as follows.

(G) min cx (6)
s.t. Ax ≥ b, (7)

x ∈ {0, 1}n. (8)

The binary variables are represented by an n-dimensional column vector x,
whereas their corresponding cost values are given by an n-dimensional row vector
c. Moreover, b is an m-dimensional column vector, and A is an m × n matrix.
The feasible region of G is given by Ω = {x : Ax ≥ b, x ∈ {0, 1}n}. We highlight
that, although the results of this work are presented by the assumption of G
being a minimization problem, they also hold for interval 0–1 min-max regret
versions of maximization problems, with minor modifications.

Now, let R be an interval min-max regret RO version of G, where a continuous
cost interval [li, ui], with li, ui ∈ Z+ and li ≤ ui, is associated with each binary
variable xi, i = 1, . . . , n. The following definitions describe R formally.

Definition 1. A scenario s is an assignment of costs to the binary variables,
i.e., a cost cs

i ∈ [li, ui] is fixed for all xi, i = 1, . . . , n.

Let S be the set of all possible cost scenarios, which consists of the cartesian
product of the continuous intervals [li, ui], i = 1, . . . , n. The cost of a solution

x ∈ Ω in a scenario s ∈ S is given by csx =
n∑

i=1

cs
i xi.
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Definition 2. A solution opt(s) ∈ Ω is said to be optimal for a scenario s ∈ S
if it has the smallest cost in s among all the solutions in Ω, i.e., opt(s) =
arg min

x∈Ω
csx.

Definition 3. The regret (robust deviation) of a solution x ∈ Ω in a scenario
s ∈ S, denoted by rs

x, is the difference between the cost of x in s and the cost of
opt(s) in s, i.e., rs

x = csx − csopt(s).

Definition 4. The robustness cost of a solution x ∈ Ω, denoted by Rx, is the
maximum regret of x among all possible scenarios, i.e., Rx = max

s∈S
rs
x.

Definition 5. A solution x∗ ∈ Ω is said to be robust if it has the smallest
robustness cost among all the solutions in Ω, i.e., x∗ = arg min

x∈Ω
Rx.

Definition 6. The interval min-max regret problem R consists in finding a
robust solution x∗ ∈ Ω.

For each scenario s ∈ S, let G(s) denote the corresponding problem G under
cost vector cs ∈ R

n
+, i.e., the problem of finding an optimal solution opt(s) for

s. Also consider y, an n-dimensional vector of binary variables. Then, R can be
generically modeled as follows.

(R) min max
s∈S

(csx −
(G(s))

︷ ︸︸ ︷
min
y∈Ω

csy) (9)

s.t. x ∈ Ω. (10)

The basic result presented below has been explicitly proved for several inter-
val min-max regret problems (see, e.g., [12,18,23]) and generalized for the case
of interval 0–1 min-max regret problems [1] (also see [2]).

Proposition 1 (Aissi et al. [1]). The regret of any feasible solution x ∈ Ω is
maximum in the scenario s(x) induced by x, defined as follows:

for all i ∈ {1, . . . , n}, c
s(x)
i =

{
ui, if xi = 1,
li, if xi = 0.

From Proposition 1, R can be rewritten as

(R̃) min
(
cs(x)x − min

y∈Ω
cs(x)y

)
(11)

s.t. x ∈ Ω. (12)

One may note that the inner minimization in (11) does not define an LP
problem, but a BILP one. Since, in general, there is no guarantee of integrality
in solving the linear relaxation of this problem, we cannot represent it by means
of extreme points and extreme rays, as in a classical Benders’ reformulation [4].
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Alternatively, we reformulate R̃ by adding a free variable ρ and linear constraints
that explicitly bound ρ with respect to all the feasible solutions that y can
represent. The resulting MILP formulation (see, e.g., [1]) is provided from (13)
to (16).

(F) min (
n∑

i=1

uixi − ρ) (13)

s.t. ρ ≤
n∑

i=1

(li + (ui − li)xi)ȳi ∀ ȳ ∈ Ω, (14)

x ∈ Ω, (15)
ρ free. (16)

Constraints (14) ensure that ρ does not exceed the value related to the inner
minimization in (11). Note that, in (14), ȳ is a constant vector, one for each
solution in Ω. These constraints are tight whenever ȳ is optimal for the classical
counterpart problem G in the scenario s(x). Constraints (15) define the feasible
region referred to the x variables, and constraint (16) gives the domain of the
variable ρ. Notice that the feasibility of F solely relies on the feasibility of the
corresponding classical optimization problem G. Thus, for simplicity, we assume
that F is feasible in the remainder of this work.

The number of constraints (14) corresponds to the number of feasible solu-
tions in Ω. As the size of this region may grow exponentially with the number
of binary variables, this fomulation is particularly suitable to be handled by
decomposition methods, such as the logic-based Benders’ decomposition frame-
work detailed below.

2.2 Logic-Based Benders’ Algorithm

The logic-based Benders’ algorithm here described relies on the fact that, since
several of constraints (14) might be inactive at optimality, they can be generated
on demand whenever they are violated. In this sense, given a set Γ ⊆ Ω, Γ �= ∅,
consider the relaxed robustness cost metric defined as follows.

Definition 7. A solution opt(s, Γ ) ∈ Γ is said to be Γ -relaxed optimal for a
scenario s ∈ S if it has the smallest cost in s among all the solutions in Γ , i.e.,
opt(s, Γ ) = arg min

x∈Γ
csx.

Definition 8. The Γ -relaxed robustness cost of a solution x ∈ Ω, denoted by
RΓ

x , is the difference between the cost of x in the scenario s(x) induced by x
and the cost of a Γ -relaxed optimal solution opt(s(x), Γ ) in s(x), i.e., RΓ

x =
cs(x)x − cs(x)opt(s(x), Γ ).

Proposition 2. For any Γ ⊆ Ω, Γ �= ∅, and any solution x ∈ Ω, the Γ -relaxed
robustness cost RΓ

x of x gives a lower bound on the robustness cost Rx of x.
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Proof. Consider a set Γ ⊆ Ω, Γ �= ∅, and a solution x ∈ Ω. According to
Proposition 1, the robustness cost of x is given by Rx = r

s(x)
x = cs(x)x −

cs(x)opt(s(x)), where opt(s(x)) is an optimal solution for the scenario s(x)
induced by x. By definition, the Γ -relaxed robustness cost of x is given by RΓ

x =
cs(x)x − cs(x)opt(s(x), Γ ), where opt(s(x), Γ ) is a Γ -relaxed optimal solution for
s(x). Notice that cs(x)opt(s(x)) ≤ cs(x)x′ for all x′ ∈ Ω, including opt(s(x), Γ ).
Therefore,

RΓ
x = cs(x)x − cs(x)opt(s(x), Γ ) ≤ cs(x)x − cs(x)opt(s(x)) = Rx. (17)

	

Proposition 3. If Γ = Ω, then, for any solution x ∈ Ω, it holds that RΓ

x = Rx.

Proof. Consider the set Γ = Ω and a solution x ∈ Ω. In this case, a Γ -relaxed
optimal solution opt(s(x), Γ ) for s(x) is also an optimal solution opt(s(x)) for
this scenario. Therefore, considering Proposition 1,

RΓ
x = cs(x)x − cs(x)opt(s(x), Γ ) = cs(x)x − cs(x)opt(s(x)) = Rx. (18)

	

Definition 9. A solution x̃∗ ∈ Ω is said to be Γ -relaxed robust if it has the
smallest Γ -relaxed robustness cost among all the solutions in Ω, i.e., x̃∗ =
arg min

x∈Ω
RΓ

x .

Considering the relaxed metric discussed above, we detail a logic-based
Benders’ algorithm to solve formulation F , given by (13)–(16). The procedure
is described in Algorithm 1. Let Ωψ ⊆ Ω be the set of solutions ȳ ∈ Ω (Benders’
cuts) available at an iteration ψ. Also let Fψ be a relaxed version of F in which
constraints (14) are replaced by

ρ ≤
n∑

i=1

(li + (ui − li)xi)ȳi ∀ ȳ ∈ Ωψ. (19)

Thus, the relaxed problem Fψ, called master problem, is defined by (13),
(15), (16) and (19). One may observe that Fψ is precisely the problem of finding
a Γ -relaxed robust solution, with Γ = Ωψ.

Let ubψ keep the best upper bound found (until an iteration ψ) on the solu-
tion of F . Notice that, at the beginning of Algorithm1, Ω1 contains the initial
Benders’ cuts available, whereas ub1 keeps the initial upper bound on the solu-
tion of F . In this case, Ω1 = ∅ and ub1 := +∞. At each iteration ψ, the algorithm
obtains a solution by solving a corresponding master problem Fψ and seeks a
constraint (14) that is most violated by this solution. Initially, no constraint (19)
is considered, since Ω1 = ∅. An initialization step is then necessary to add at
least one solution to Ω1, thus avoiding unbounded solutions during the first res-
olution of the master problem. To this end, it is computed an optimal solution
for the worst-case scenario su, in which csu = u (Step I, Algorithm 1).
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Algorithm 1. Logic-based Benders’ algorithm.
Input: Cost intervals [li, ui] referred to xi, i = 1, . . . , n.
Output: (x̄∗, R∗), where x̄∗ is a robust solution for F , and R∗ is its corresponding

robustness cost.
ψ := 1; ub1 := +∞; Ω1 := ∅;
Step I. (Initialization)
Find an optimal solution ȳ1 = opt(su) for the worst-case scenario su;
Ω1 := Ω1 ∪ {ȳ1};
Step II. (Master problem)
Solve the relaxed problem Fψ, obtaining a solution (x̄ψ, ρ̄ψ);
Step III. (Separation subproblem)
Find an optimal solution ȳψ = opt(s(x̄ψ)) for the scenario s(x̄ψ) induced by x̄ψ and
use it to compute Rx̄ψ , the robustness cost of x̄ψ;
Step IV. (Stopping condition)
lbψ := ux̄ψ − ρ̄ψ;
if lbψ ≥ Rx̄ψ then

x̄∗ := x̄ψ;
R∗ := Rx̄ψ ;
Return (x̄∗, R∗);

end
else

ubψ := min{ubψ, Rx̄ψ };
ubψ+1 := ubψ;
Ωψ+1 := Ωψ ∪ {ȳψ};
ψ := ψ + 1;
Go to Step II;

end

After the initialization step, the iterative procedure takes place. At each iter-
ation ψ, the corresponding relaxed problem Fψ is solved (Step II, Algorithm 1),
obtaining a solution (x̄ψ, ρ̄ψ). Then, the algorithm checks if (x̄ψ, ρ̄ψ) violates any
constraint (14) of the original problem F , i.e., if there is a constraint (19) that
should have been considered in Fψ and was not. For this purpose, it is solved a
separation subproblem that computes Rx̄ψ (the actual robustness cost of x̄ψ) by
finding an optimal solution ȳψ = opt(s(x̄ψ)) for the scenario s(x̄ψ) induced by
x̄ψ (see Step III, Algorithm 1). Notice that the separation subproblems involve
solving a classical optimization problem G(x̄ψ), i.e., problem G, given by (6)–(8),
in the scenario s(x̄ψ).

Let lbψ = ux̄ψ − ρ̄ψ be the value of the objective function in (13) related
to the solution (x̄ψ, ρ̄ψ) of the current master problem Fψ. Notice that, consid-
ering Γ = Ωψ, lbψ corresponds to the Γ -relaxed robustness cost of x̄ψ. Thus,
according to Proposition 2, lbψ gives a lower (dual) bound on the solution of
F . Moreover, since x̄ψ is a feasible solution in Ω, its robustness cost Rx̄ψ gives
an upper (primal) bound on the solution of F . Accordingly, if lbψ reaches Rx̄ψ ,
the algorithm stops. Otherwise, ubψ and ubψ+1 are both set to the best upper
bound found by the algorithm until the iteration ψ. In addition, a new constraint
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(19) is generated from ȳψ and added to Fψ+1 by setting Ωψ+1 := Ωψ ∪ {ȳψ}
(see Step IV of Algorithm 1). Notice that the algorithm stops when the value
ρ̄ψ corresponds to the cost of ȳψ = opt(s(x̄ψ)) in the scenario s(x̄ψ), i.e., the
optimal solution for Fψ is also feasible (and, therefore, optimal) for the original
problem F . The convergence of the algorithm is ensured by Proposition 3 and
the following results.

Lemma 1. Every separation subproblem that arises during the execution of
Algorithm1 is feasible.

Proof. Assuming F feasible, we must have Ω �= ∅. This implies the existence of
at least one feasible solution for every scenario s ∈ S, and, thus, any classical
problem G that arises while executing Algorithm 1 is feasible. 	

Proposition 4. At each iteration ψ ≥ 1 of Algorithm1, if the stopping condi-
tion is not satisfied, then the resolution of the corresponding separation subprob-
lem leads to a new solution ȳψ ∈ Ω\Ωψ.

Proof. Consider an iteration ψ ≥ 1 of Algorithm 1 and assume, by contradic-
tion, that (I) the stopping condition is not satisfied, and (II) the resolution of
the separation subproblem of the current iteration ψ does not lead to a solu-
tion in Ω\Ωψ. Let (x̄ψ, ρ̄ψ) be the solution obtained from the resolution of the
corresponding master problem Fψ. From Lemma 1, the subproblem referred to
iteration ψ is feasible, and, thus, its resolution leads to an optimal solution
ȳψ = opt(s(x̄ψ)) ∈ Ω for the scenario s(x̄ψ) induced by x̄ψ. From assumption
(I), we must have lbψ < Rx̄ψ . Considering Proposition 1 and letting Γ = Ωψ, we
have that lbψ = RΓ

x̄ψ , and, moreover,

cs(x̄ψ)x̄ψ − cs(x̄ψ)opt(s(x̄ψ), Γ ) = RΓ
x̄ψ (20)

= lbψ (21)
< Rx̄ψ (22)

= cs(x̄ψ)x̄ψ − cs(x̄ψ)opt(s(x̄ψ)), (23)

where opt(s(x̄ψ), Γ ) is a Γ -relaxed optimal solution for s(x̄ψ), and opt(s(x̄ψ)) is
an optimal solution for s(x̄ψ). From (20)–(23), we obtain

cs(x̄ψ)opt(s(x̄ψ), Γ ) > cs(x̄ψ)opt(s(x̄ψ)). (24)

Notice that, since ȳψ is also an optimal solution for s(x̄ψ), it follows, from
(24), that

cs(x̄ψ)opt(s(x̄ψ), Γ ) > cs(x̄ψ)opt(s(x̄ψ)) = cs(x̄ψ)ȳψ. (25)

Nevertheless, as opt(s(x̄ψ), Γ ) is a Γ -relaxed optimal solution for s(x̄ψ), and,
from Lemma 1 and assumption (II), ȳψ belongs to Ωψ = Γ , we also have that

cs(x̄ψ)opt(s(x̄ψ), Γ ) ≤ cs(x̄ψ)ȳψ, (26)

which, considering (25), defines a contradiction. 	
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Theorem 1. Algorithm1 solves problem F at optimality within a finite number
of iterations.

Proof. As Ω is defined in terms of binary variables, it consists of a finite dis-
crete set of solutions. Thus, the convergence of Algorithm 1 is guaranteed by
Propositions 3 and 4. 	


3 Concluding Remarks

In this work, we presented the first formal proof of the finite convergence of
state-of-the-art logic-based Benders’ decomposition algorithms for a class of
robust optimization problems, namely interval 0–1 min-max regret problems.
These algorithms were generically described by means of a logic-based Benders’
decomposition framework, which was proved to converge to an optimal solution
in a finite number of iterations.
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7. Côté, J.F., Dell’Amico, M., Iori, M.: Combinatorial Benders’ cuts for the strip
packing problem. Oper. Res. 62(3), 643–661 (2014)

8. Fischetti, M., Salvagnin, D., Zanette, A.: A note on the selection of Benders’ cuts.
Math. Program. 124(1–2), 175–182 (2010)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

10. Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theo. Appl. 10(4),
237–260 (1972)

11. Hooker, J., Ottosson, G.: Logic-based Benders decomposition. Math. Program.
96(1), 33–60 (2003)
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Abstract. Consider a {0, 1} assignment matrix where each column con-
tains exactly one coefficient equal to 1 and let h be the index of the lowest
row that is not identically equal to the zero row. We give a full description
of the convex hull of all feasible assignments appended with the extra
parameter h. This polytope and some of its variants naturally appear in
the context of several combinatorial optimization problems including fre-
quency assignment, job scheduling, graph orientation, maximum clique,
etc. We also show that the underlying separation problems are solvable
in polynomial time and thus optimization over those polytopes can be
done in polynomial time.

1 Introduction and Motivations

Let us consider combinatorial optimization problems involving n ∈ N\{0} vari-
ables zi each of which can be assigned an integer number in �1, k� and let
h ≡ minn

i=1 zi. A natural polytope related to these problems is given by

P = Conv

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

y1
k y2

k · · · yn
k

...
...

. . .
...

y1
2 y2

2 · · · yn
2

y1
1 y2

1 · · · yn
1

⎤

⎥
⎥
⎥
⎦

, h

⎞

⎟
⎟
⎟
⎠

∈ Mk,n × N\{0}

∣
∣
∣
∣
∣
∣
∣

k∑

l=1

yi
l = 1, ∀i ∈ �1, n�,

h = min
i∈�1,n�

∑k
l=1 lyi

l ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

where Mk,n is the set of all k-by-n matrices with coefficients in {0, 1} and the
variables yi

l are interpreted as follows: yi
l = 1 if and only if zi = l.

The matrix (yi
j) can be seen as a {0, 1} assignment matrix where each column

contains exactly one coefficient equal to 1 while h denotes the index of the lowest
row that is not identically equal to the zero row (cf. Fig. 1).

Another variant of P is obtained by considering the index of the highest row
that is not identically equal to the zero row. In this case we get the polytope

P ′ = Conv

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

⎡
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⎢
⎢
⎣

x1
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. . .
...
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2 x2

2 · · · xn
2

x1
1 x2

1 · · · xn
1

⎤

⎥
⎥
⎥
⎦

, g

⎞

⎟
⎟
⎟
⎠

∈ Mk,n × N\{0}

∣
∣
∣
∣
∣
∣
∣

k∑

l=1

xi
l = 1, ∀i ∈ �1, n�,

g = max
i∈�1,n�

∑k
l=1 lxi

l,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.
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z1 z2 z3 · · · zn

k

.

.

.

h −→ ←− h
3
2
1

Fig. 1. On this grid representing a k-by-n matrix, each column is a zi variable and
the height of its black cell is the value assigned to it. h thus corresponds to the first
non-empty row of the grid starting from the bottom (in this case, h = 4).

Polytopes P and P ′ naturally appear in the context of several combina-
torial optimization. Let us for example consider the minimum-span frequency-
assignment problem which is a variant of the NP-hard frequency-assignment prob-
lem [8]. Given a simple graph G = (V,E) that is generally called the interference
graph, the frequency assignment problem consists in assigning a frequency f from
a set of available frequencies F to each vertex v ∈ V in such a way that each pair
of antennas uv ∈ E that may interfere with one another are assigned different
frequencies. Frequencies can be seen as ordered integer numbers. To reduce inter-
ferences, one might impose stronger constraints: a minimum separation between
the frequencies assigned to u and v is required. If frequency i is assigned to u
and j is assigned to v, then |i − j| ≥ suv where suv is a given number. The
minimum-span frequency-assignment problem (or MS-FAP) consists in assign-
ing frequencies to nodes taking into account the separation requirements and
minimizing the difference between the largest assigned number (frequency) and
the smallest assigned number (see, e.g., [7]).

If we consider that V = {v1, · · · , vn}, F = �1, k� where k is an upper bound
of the minimum-span, then we obtain the following formulation for MS-FAP

⎧
⎪⎨

⎪⎩

min g

s.t. xi
l + xj

l′ ≤ 1, ∀(i, j, l, l′) ∈ �1, n�2 × �1, k�2 such that vivj ∈ E, |l − l′| < svivj

(x, g) ∈ P ′, x ∈ Mk,n.

where the interpretation of the x variable is the following: xi
l = 1 if and only if

the frequency l is assigned to the antenna vi.
Another example is the minimum makespan scheduling, which is a central

problem in the scheduling area (see [10]). Given a set J of jobs, a set M of
machines that can all process at most one job at a time, and the time ti,j ∈ N

taken to process job j ∈ J on machine i ∈ M , the goal of the minimum makespan
scheduling problem is to assign a machine p ∈ M for each job j ∈ J so as
to minimize the makespan, i.e. the maximum processing time of any machine.
Several approximation schemes have been developed to deal with this NP-hard
problem [3], e.g. [4,5]. Since the processing times are integers, the timeline is



A Full Description of Polytopes Related to the Index 15

discretized in identical units of time, e.g. days. We consider here the variant
where all the machines in M are identical (or IM-MMS) and preemptions are
not allowed. In other words, for any job j ∈ J , ti,j = tj , ∀i ∈ M . In this
case, assigning a machine to each job is equivalent to assigning a day d′ to be
the last day of processing this job, which also determines the first day d of
processing and will therefore be processed by a machine free during the period
[d, d′]. Now to make a formulation for IM-MMS with the set of jobs J = �1, n� and
m ∈ N\{0} identical machines, we take k =

∑n
i=1 ti and the variable x ∈ Mk,n

whose interpretation is the following: xi
l = 1 if and only if the processing of the

job i ends on the day l. Then we have the following formulation for IM-MMS
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min g

s.t.
∑k

l=1lx
i
l ≥ ti, ∀i ∈ �1, n�,

∑n
i=1

∑min(l+ti−1,k)
l′=l xi

l′ ≤ m, ∀l ∈ �1, k�,

(x, g) ∈ P ′, x ∈ Mk,n.

For a job i ∈ �1, n�,
∑k

l=1 lxi
l ≥ ti ensures that its processing ends after

enough time has passed for i to be processed, and for a day l ∈ �1, k�,
∑n

i=1

∑min(l+ti−1,k)
l′=l xi

l′ ≤ m ensures that no more than m jobs are being
processed. Some additional constraints can be added to this formulation such
as a necessary precedence or release time. If we want a job i ∈ �1, n� to be
processed before another job j ∈ �1, n�\{i} starts processing, we add the con-
straint

∑k
l=1 lxi

l ≤ ∑k
l=1 lxj

l − tj . If we want a job i ∈ �1, n� to be processed
before (resp. on, after) a day d ∈ �1, k�, we add the constraint

∑d−1
l=1 xi

l = 1
(resp. xi

d = 1,
∑k

l=d+1 xi
l = 1). The objective function can also be any linear

function depending on the x and g variables.
Another example is given by the problem of the most imbalanced orientation

of a graph (or MaxIm) that consists in orienting the edges of a graph such
that the minimum over all the vertices of the absolute difference between the
outdegree and the indegree of a vertex is maximized (NP-complete) [1]. In other
words, for a simple graph G = (V,E), MaxIm(G) = max

Λ∈−→
O (G)

min
v∈V

|d+Λ(v)−d−
Λ(v)|,

where
−→
O (G) denotes the set of all the orientations of G and d+Λ(v) (resp. d−

Λ(v))
denotes the outdegree (resp. indegree) of v in G with respect to Λ. Now if we
consider the graph G to be arbitrarily oriented and take its incidence matrix
B ∈ {−1, 0, 1}|V |×|E|, we can describe an orientation of G with the variable
x ∈ {−1, 1}|E| interpreted as follows. For each edge uv ∈ E, its orientation
is kept from the original one if xuv = 1 and reversed otherwise. Then if we
look at the product of B with an orientation vector x ∈ {−1, 1}|E| we obtain
Bvx = d+x (v) − d−

x (v), ∀v ∈ V , where Bv denotes the row of B corresponding
to node v. In order to make a formulation of MaxIm, we consider indicator
variables tvl ∈ {0, 1} with v ∈ V and l ∈ �−k, k�, k being the maximum degree
of the vertices of G, that have the following interpretation: tvl = 1 if and only if
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Bvx = d+x (v) − d−
x (v) = l, and thus we obtain the formulation
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max h

s.t. h ≤ ∑k
l=−k|l|tvl , ∀v ∈ V,

∑k
l=−ktvl = 1, ∀v ∈ V,

∑k
l=−kltvl = Bvx, ∀v ∈ V,

x ∈ [−1; 1]|E|, t ∈ Mn,2k+1, h ∈ R.

Introducing variables yv
l = tv−l + tvl , ∀(v, l) ∈ V × �1, k�, it becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max h

s.t.
∑k

l=−kltvl = Bvx, ∀v ∈ V,

yv
l = tv−l + tvl , ∀(v, l) ∈ V × �1, k�,

x ∈ [−1; 1]|E|, (y, h) ∈ P, t ∈ Mn,2k+1.

Considering the last formulation, a polyhedral analysis of the polytope P may be
helpful in strengthening the linear relaxation of the original formulation within
the framework of a cutting-plane algorithm (see, e.g. [2,11]).

Polytope P also appears in the context of the maximum clique problem. A
discretized formulation is proposed in [9] where a variable wi

q indicates whether
the vertex i belongs to a clique of size q. These variables are of course linked
to standard vertex variables (xi = 1 if i belongs to the maximum clique). The
problem is then equivalent to maximizing q such that wi

q = 1 for some i. This is
again related to polytope P .

More generally, several combinatorial optimization problems where dis-
cretization techniques are used can benefit from a description of either P or
some of its variants.

The rest of the paper is organized as follows. First we give a complete linear
description of P in Sect. 2. Then we show that the separation problem with
respect to P can be solved in polynomial time in Sect. 3. Finally we give similar
results for the polyhedron P ′ and others in Sect. 4 and conclude in Sect. 5.

2 A Full Description of P

Let us define a set of inequalities that will prove to be an hyperplane represen-
tation of P .

P̃ =

⎧
⎪⎪⎨

⎪⎪⎩

∑k
l=1 yi

l = 1, ∀i ∈ �1, n�,
∑k

l=2

∑n
i=1 λi

ly
i
l ≥ h − 1, ∀λ ∈ Λ,

∑hmax−1
l=1

∑n
i=1(l − hmax)yi

l + hmax ≤ h, ∀hmax ∈ �1, k�,
yi

l ≥ 0, ∀(i, l) ∈ �1, n� × �1, k�, h ∈ R,

where

Λ =
{

λ = (λi
l)(i,l)∈�1,n�×�1,k� ∈ N

nk

∣
∣
∣
∣
λi

l+1 ≥ λi
l, ∀(i, l) ∈ �1, n� × �1, k − 1�∑n

i=1 λi
l = l − 1, ∀l ∈ �1, k�

}

.
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Any element λ of Λ can be constructed as follows: we start with λi
1 = 0, ∀i ∈

�1, n�, choose an index i2 ∈ �1, n� and set λi2
2 = 1 and λi

2 = 0, ∀i ∈ �1, n�\{i2}.
And we proceed like this for l = 2, · · · , k, we choose an index il ∈ �1, n� and set
λil

l = λil
l−1 + 1 and λi

l = λi
l−1, ∀i ∈ �1, n�\{il}.

Lemma 1
P ⊆ P̃

Proof. Since P is the convex hull of integer points, it suffices to show that each
of those points satisfies all the inequalities in P̃ . Let (y, h) ∈ P be one of those
points, that is to say (y, h) ∈ Mk,n × N\{0},

∑k
l=1 yi

l = 1, ∀i ∈ �1, n� and
h = mini∈�1,n�

∑k
l=1 lyi

l . We firstly show that
∑k

l=2

∑n
i=1 λi

ly
i
l ≥ h − 1, ∀λ ∈ Λ.

For all i ∈ �1, n�, there exists li ∈ �h, k� such that yi
li

= 1. Now since for a given
i ∈ �1, n�, λi

l increases with l, we have

k∑

l=2

n∑

i=1

λi
ly

i
l =

n∑

i=1

λi
li ≥

n∑

i=1

λi
h = h − 1.

Now we take hmax ∈ �1, k�, and we show that hmax − ∑hmax−1
l=1 (hmax − l)∑n

i=1 yi
l ≤ h. We have

hmax −
hmax−1∑

l=1

(hmax − l)
n∑

i=1

yi
l

= hmax +
k∑

l=1

min(l − hmax, 0)
n∑

i=1

yi
l

= hmax +
k∑

l=1

min(l − 1, hmax − 1)
n∑

i=1

yi
l − n(hmax − 1)

=
n∑

i=1

k∑

l=2

min(l − 1, hmax − 1)yi
l + 1 − (n − 1)(hmax − 1)

There exists i∗ ∈ �1, n� such that yi∗
h = 1, then

n∑

i=1

k∑

l=2

min(l − 1, hmax − 1)yi
l

=
n∑

i=1
i�=i∗

k∑

l=2

min(l − 1, hmax − 1)yi
l +

k∑

l=2

min(l − 1, hmax − 1)yi∗
l

≤
n∑

i=1
i�=i∗

k∑

l=2

(hmax − 1)yi
l +

k∑

l=2

(l − 1)yi∗
l ≤

n∑

i=1
i�=i∗

(hmax − 1) + h − 1

= (n − 1)(hmax − 1) + h − 1.


�
Now to prove that P coincides with P̃ , we show that all facet-defining inequal-

ities for P are among those defining P̃ . Two inequalities are said to be equivalent
if one can be obtained from the other by multiplying it by a non-zero scalar and
adding a combination of equations of the type

∑k
l=1 yi

l = 1.
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Lemma 2. Let
k∑

l=1

n∑

i=1

βi
ly

i
l + γ ≥ 0, (1)

be a facet-defining inequality of P , with βi
l ∈ R, ∀(i, l) ∈ �1, n� × �1, k�, γ ∈ R.

Then there exists (i, l) ∈ �1, n� × �1, k� such that (1) is equivalent to yi
l ≥ 0.

For an extreme point (y, h) of P and (̃i, l̃, l̃′) ∈ �1, n� × �1, k�2, such that
yĩ

l̃
= 1 and l̃ �= l̃′, we denote by (y

l̃
ĩ−→l̃′

, h
l̃

ĩ−→l̃′
) the extreme point (y′, h′) of P

such that y′i
l = yi

l , ∀(i, l) ∈ �1, n� × �1, k�\{(̃i, l̃), (̃i, l̃′)}, y ′̃i
l̃

= 0, y ′̃i
l̃′

= 1 and

h′ = mini∈�1,n�

∑k
l=1 ly′i

l . For l̃ ∈ �1, k�, we denote by (y→l̃, l̃) the point of P

such that yi
l̃
= 1, ∀i ∈ �1, n� and yi

l = 0, ∀(i, l) ∈ �1, n� × (�1, k�\{l̃}).

Proof. First, since for each i ∈ �1, n�, we have
∑k

l=1 yi
l = 1, we can replace yi

1 by
1−∑k

l=2 yi
l and get new coefficients β̃i

1 = 0 and β̃i
l = βi

l−βi
1, ∀l ∈ �2, k� and a new

γ̃ = γ +
∑n

i=1 βi
1. Hence, without loss of generality, we can assume that βi

1 = 0
for all i ∈ �1, n�. Suppose that the facet defined by (1) is not equivalent to a facet
defined by an inequality of the type yi

l ≥ 0. If we take (̃i, l̃) ∈ �1, n�×�1, k−1�, we
know that there exists an extreme point (y, h) of P saturating (1) and such that
yĩ

l̃
= 1, otherwise all the extreme points saturating (1) would saturate yĩ

l̃
≥ 0

thus contradicting the fact that (1) is facet-defining and not equivalent to yi
l ≥ 0

for some (i, l) ∈ �1, n� × �1, k�. Since (y′, h′) = (y
l̃

ĩ−→l̃+1
, h

l̃
ĩ−→l̃+1

) ∈ P , we have
∑k

l=1

∑n
i=1 βi

ly
i
l + γ = 0 and

∑k
l=1

∑n
i=1 βi

ly
′i
l + γ ≥ 0 which yields β ĩ

l̃+1
≥

β ĩ
l̃
. Similarly, taking an extreme point (y, h) of P saturating (1) and such that

yĩ
l̃+1

= 1 and (y′, h′) = (y
l̃+1

ĩ−→l̃
, h

l̃+1
ĩ−→l̃

) ∈ P , we have
∑k

l=1

∑n
i=1 βi

ly
i
l +γ = 0

and
∑k

l=1

∑n
i=1 βi

ly
′i
l + γ ≥ 0, yielding β ĩ

l̃
≥ β ĩ

l̃+1
. Hence, for all (i, l) ∈ �1, n� ×

�1, k − 1�, we have βi
l = βi

l+1, in other words, βi
l = 0, ∀(i, l) ∈ �1, n� × �1, k�,

and (1) is not facet-defining. 
�
Lemma 3. Let

k∑

l=1

n∑

i=1

βi
ly

i
l + γ ≥ h, (2)

be a facet-defining inequality of P , with βi
l ∈ R, ∀(i, l) ∈ �1, n� × �1, k�, γ ∈ R.

Then there exists λ ∈ Λ such that (2) is equivalent to
∑k

l=2

∑n
i=1 λi

ly
i
l ≥ h − 1.

Proof. Again, without loss of generality, we assume that βi
1 = 0 for all i ∈ �1, n�.

For an (̃i, l̃) ∈ �1, n� × �1, k − 1�, there exists an extreme point (y, h) of P

saturating (2) and such that yĩ
l̃

= 1. Since (y′, h′) = (y
l̃

ĩ−→l̃+1
, h

l̃
ĩ−→l̃+1

) ∈ P ,

we have
∑k

l=1

∑n
i=1 βi

ly
i
l + γ = h and

∑k
l=1

∑n
i=1 βi

ly
′i
l + γ ≥ h′ ≥ h which

yields β ĩ
l̃+1

≥ β ĩ
l̃
. Hence for all i ∈ �1, n�, (βi

l )l is increasing with l and therefore
non-negative since βi

1 = 0, ∀i ∈ �1, n�.
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If we consider the point (y, h) = (y→1, 1), we obtain that γ ≥ 1. If we now
consider an extreme point (y, h) of P saturating (2) and such that yĩ

1 = 1 for an
ĩ ∈ �1, n�, we get

∑k
l=1

∑n
i=1 βi

ly
′i
l + γ = h = 1. But since both the βi

l and the
yi

l are non-negative, then so is
∑k

l=1

∑n
i=1 βi

ly
′i
l . Hence γ ≤ 1, yielding γ = 1.

Considering (y→l, l) ∈ P for l ∈ �1, k�, we obtain
∑n

i=1 βi
l ≥ l − 1. Let us

show by induction on l that
∑n

i=1 βi
l = l − 1, ∀l ∈ �1, k�. Our induction is

already initialized by
∑n

i=1 βi
1 = 0. We suppose that for a l̃ ∈ �1, k − 1�, we have

∑n
i=1 βi

l̃
= l̃ − 1 and show that

∑n
i=1 βi

l̃+1
= l̃. Suppose that all the extreme

points (y, h) of P saturating (2) and such that yi
l̃+1

= 1 for some i ∈ �1, n� verify

h ≤ l̃. Then for each ĩ ∈ �1, n�, take one of those extreme saturating points such
that yĩ

l̃+1
= 1 and let (y′, h′) = (y

l̃+1
ĩ−→l̃

, h
l̃+1

ĩ−→l̃
) ∈ P . Since β ĩ

l̃+1
≥ β ĩ

l̃
, we

have h′ − 1 ≤ ∑k
l=1

∑n
i=1 βi

ly
′i
l ≤ ∑k

l=1

∑n
i=1 βi

ly
i
l = h − 1, and since h ≤ l̃, we

have h = h′ and therefore,
∑k

l=1

∑n
i=1 βi

ly
′i
l =

∑k
l=1

∑n
i=1 βi

ly
i
l = h − 1, yielding

β ĩ
l̃+1

= β ĩ
l̃
. Thus

∑n
i=1 βi

l̃+1
=

∑n
i=1 βi

l̃
= l̃ − 1 which contradicts

∑n
i=1 βi

l̃+1
≥ l̃.

So there exists ĩ ∈ �1, n� and (y, h) an extreme point of P saturating (2) such
that yĩ

l̃+1
= 1 and h = l̃ + 1. We have l̃ ≤ ∑n

i=1 βi
l̃+1

≤ ∑k
l=1

∑n
i=1 βi

ly
i
l = l̃,

hence
∑n

i=1 βi
l̃+1

= l̃, which concludes our induction.
Now let us show by induction on l that for all (i, l) ∈ �1, n� × �1, k�, βi

l

is an integer. This induction is trivially initialized for βi
1 = 0, ∀i ∈ �1, n�.

We suppose that for a l̃ ∈ �1, k − 1� we have that the βi
l̃

for i ∈ �1, n� are
integers and we show that the same holds for the βi

l̃+1
for i ∈ �1, n�. We note

αi = βi
l̃+1

−βi
l̃
, ∀i ∈ �1, n� and for each i ∈ �1, n� we build a new set of inequality

coefficients: β
(i),j
l = βj

l − αj + δi,j , ∀(j, l) ∈ �1, n� × �1, k�, where δi,j equals 1 if
i = j and 0 otherwise. Let (y, h) be an extreme point of P and for all j ∈ �1, n�,
let lj ∈ �h, k� be such that yj

lj
= 1. Then, since

∑n
i=1 αi = 1, we have for

i ∈ �1, n�

k∑

l=1

n∑

j=1

β
(i),j
l yj

l =
k∑

l=1

n∑

j=1

(βj
l − αj + δi,j)y

j
l

=
n∑

j=1

(βj
lj

− αj + δi,j) =
n∑

j=1

βj
lj

≥
n∑

i=1

βi
h = h − 1,

which means that for all i ∈ �1, n�,
∑k

l=1

∑n
j=1 β

(i),j
l yj

l + 1 ≥ h is valid for P .
Now since for (j, l) ∈ �1, n� × �1, k�,
(

n∑

i=1

αiβ(i)

)j

l

=
n∑

i=1

αi
(
βj
l − αj + δi,j

)
=

(
n∑

i=1

αi

)

βj
l −
(

n∑

i=1

αi

)

αj+
n∑

i=1

αiδi,j = βj
l

and αi ≥ 0, ∀i ∈ �1, n�, (2) is a convex combination of these inequalities.
Moreover, if any of the βi

l+1, i ∈ �1, n� was not an integer, then the convex



20 W. Ben-Ameur et al.

combination would be non-trivial, which would contradict the fact that (2) is
facet-defining. Concluding our induction, we obtain that for all (i, l) ∈ �1, n� ×
�1, k�, βi

l is an integer. And thus that β ∈ Λ, i.e. (2) belongs to the set of
inequalities defining P̃ . 
�
Lemma 4. Let

k∑

l=1

n∑

i=1

βi
ly

i
l + γ ≤ h, (3)

be a facet-defining inequality of P , with βi
l ∈ R, ∀(i, l) ∈ �1, n� × �1, k�, γ ∈ R.

Then it is equivalent to hmax −∑hmax−1
l=1 (hmax − l)

∑n
i=1 yi

l ≤ h for some hmax ∈
�1, k�.

Proof. Since for each i ∈ �1, n�, we have
∑k

l=1 yi
l = 1, we can replace βi

l by
β̃i

l = βi
l − vi, for some vi ≥ 0 such that β̃i

l ≤ 0, ∀(i, l) ∈ �1, n� × �1, k�, and γ by
γ̃ = γ +

∑n
i=1 vi and thus get new coefficients β̃ which are non-positive without

changing (3). So without loss of generality, we can assume that β is non-positive
and furthermore that γ is minimal for a non-positive β.

For (̃i, l̃) ∈ �1, n�× �2, k�, we take an extreme point (y, h) of P saturating (3)
such that yĩ

l̃
= 1 and (y′, h′) = (y

l̃
ĩ−→l̃−1

, h
l̃

ĩ−→l̃−1
). We have

∑k
l=1

∑n
i=1 βi

ly
i
l +

γ = h and
∑k

l=1

∑n
i=1 βi

ly
′i
l +γ ≤ h′ ≤ h, which yields β ĩ

l̃−1
≤ β ĩ

l̃
. In other words,

βi
l is increasing with l, for all i ∈ �1, n�. This implies that for all i ∈ �1, n�, there

exists li ∈ �1, k� such that βi
l = 0, ∀l ∈ �li, k� and βi

l < 0 for l < li because
suppose there exists i ∈ �1, n� for which βi

k > 0, then we can replace βi
l by

βi
l − βi

k for all l ∈ �1, k� and subtract βi
k from γ and thus get new non-positive

coefficients β̃ with a γ̃ < γ, which contradicts the minimality of γ.
Let (̃i, l̃) ∈ �1, n�×�1, k� such that β ĩ

l̃
< 0 (i.e., l̃ < l̃i), we know there exists an

extreme point (y, h) of P saturating (3) such that yĩ
l̃
= 1. Suppose that h < l̃, we

take (y′, h′) an extreme point of P such that y′i
l = yi

l , ∀(i, l) ∈ �1, n�\{̃i}×�1, k�,
y ′̃i

lĩ
= 1 and obtain h =

∑k
l=1

∑n
i=1 βi

ly
i
l + γ ≤ ∑k

l=1

∑n
i=1 βi

ly
′i
l + γ ≤ h′ = h,

that yields β ĩ
l̃

= 0, which is a contradiction. Hence h = l̃, so if we take the

extreme point (y′, h′) of P such that y ′̃i
l̃

= 1, y′i
k = 1, ∀i ∈ �1, n�\{̃i} and

yi
l = 0, ∀(i, l) ∈ �1, n� × �1, k�\({(̃i, l̃)} ∪ {(i, k), i ∈ �1, n�\{̃i}}), we have

l̃ =
k∑

l=1

n∑

i=1

βi
ly

i
l + γ ≤

k∑

l=1

n∑

i=1

βi
ly

′i
l + γ = β ĩ

l̃
+ γ ≤ h′ = l̃.

This gives us that for all i ∈ �1, n�, βi
l = l − γ, ∀l ∈ �1, li − 1�. Consider

the extreme point (y, h) of P such that for all i ∈ �1, n�, yi
li

= 1, we have
γ ≤ mini∈�1,n� li. We call hmax the maximum value of h among the extreme
points (y, h) of P saturating (3).

If we take an extreme point (y, h) of P realizing hmax, i.e. saturating (3)
and such that h = hmax, we have

∑k
l=1

∑n
i=1 βi

ly
i
l + γ = hmax which, since
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∑k
l=1

∑n
i=1 βi

ly
i
l is non-positive, yields hmax ≤ γ. Now for ĩ ∈ �1, n�, there exists

an extreme point (y, h) of P saturating (3) such that yĩ
lĩ−1 = 1. Suppose that

h < l̃i − 1, we take (y′, h′) an extreme point of P such that y′i
l = yi

l , ∀(i, l) ∈
�1, n�\{̃i} × �1, k�, yĩ

lĩ
= 1 and obtain

h =
k∑

l=1

n∑

i=1

βi
ly

i
l + γ ≤

k∑

l=1

n∑

i=1

βi
ly

′i
l + γ ≤ h′ = h,

that yields β ĩ
lĩ−1 = 0, which is a contradiction. So h = l̃i −1, hence hmax ≥ l̃i −1.

We obtain maxi∈�1,n� li − 1 ≤ hmax ≤ γ ≤ mini∈�1,n� li ≤ maxi∈�1,n� li. There
are two possibilities, either mini∈�1,n� li = maxi∈�1,n� li, or maxi∈�1,n� li − 1 =
mini∈�1,n� li. Suppose maxi∈�1,n� li − 1 = hmax = γ = mini∈�1,n� li, then there
exists ĩ ∈ �1, n� such that l̃i = 1+hmax, which implies that β ĩ

hmax
�= 0 and β ĩ

hmax
=

hmax − γ = 0 which is a contradiction. So mini∈�1,n� li = maxi∈�1,n� li =: L and

L − 1 ≤ hmax ≤ γ ≤ L.

Let us assume that hmax = L−1. Then we know that γ < L, otherwise if γ = L,
the extreme point of P (y→L, L) would saturate (3) and thus contradict the
maximality of hmax. We consider the following inequality

L−1∑

l=1

n∑

i=1

(l − L)yi
l + L ≤ h. (4)

Let us show that it is a valid inequality for P , that is to say, that every
extreme point (y, h) of P verifies it. If h ≥ L, then

∑L−1
l=1

∑n
i=1(l − L)yi

l = 0
and we are done. If h ≤ L − 1, then there exists ĩ ∈ �1, n� such that yĩ

h = 1.
Combining this with the validity of (3) implies

L−1∑

l=1

n∑

i=1

(l−L)yi
l+L =

L−1∑

l=1

n∑

i=1

(l−γ)yi
l+γ+

L−1∑

l=1

n∑

i=1

(γ−L)yi
l+L−γ ≤ h+γ−L+L−γ = h.

Moreover, if (y, h) is an extreme point of P saturating (3), then there exists ĩ ∈
�1, n� such that yĩ

h = 1 and h ≤ hmax = L−1 which yields
∑L−1

l=1

∑n
i=1(l−γ)yi

l +
γ = h =

∑L−1
l=1

∑n
i=1
i�=ĩ

(l − γ)yi
l + h − γ + γ. So we have

∑L−1
l=1

∑n
i=1
i�=ĩ

(l − γ)yi
l = 0

which implies that yi
l = 0, ∀(i, l) ∈ (�1, n�\{̃i}) × �1, L − 1�. Thus

L−1∑

l=1

n∑

i=1

(l−L)yi
l+L =

L−1∑

l=1

n∑

i=1

(l−γ)yi
l+γ+

L−1∑

l=1

n∑

i=1

(γ−L)yi
l+L−γ = h+γ−L+L−γ = h.

Consequently, all points saturating (3) saturate (4), furthermore, (y→L, L) sat-
urates (4) and not (3). This means that the face of the polyhedron defined by
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(3) is strictly contained in the face defined by (4) contradicting the fact that
(3) is facet-defining, hence hmax = γ = L and (3) becomes

∑hmax−1
l=1

∑n
i=1(l −

hmax)yi
l + hmax ≤ h with hmax ∈ �1, n�. 
�

Theorem 5
P = P̃

Proof. With Lemma 1, we know that P ⊆ P̃ . Take any facet-defining inequality
of P

∑k
l=1

∑n
i=1 βi

ly
i
l + γ ≥ αh, where βi

l ∈ R, ∀(i, l) ∈ �1, n� × �1, k�, (γ, α) ∈
R × {−1, 0, 1}. If α = 0 (resp. α = 1, α = −1), then Lemma 2 (resp. Lemmas 3,
4) gives us that this inequality is equivalent to one of those defining P̃ .

3 Separation Problem

P is defined by n equalities, kn non-negativity constraints, k constraints of
type

∑hmax−1
l=1

∑n
i=1(l − hmax)yi

l + hmax ≤ h and nk−1 of inequalities of type
∑k

l=2

∑n
i=1 λi

ly
i
l ≥ h − 1. The total number of inequalities is then exponential.

However, the following holds.

Theorem 6. The separation problem which consists in deciding if a vector
(y, h) ∈ R

nk+1 is in P , and if not in returning a constraint of P violated by
(y, h) can be solved in polynomial time.

Proof. Let (y, h) ∈ R
nk+1, first, one can verify in linear time if (y, h) ∈ [0, 1]nk ×

[1, k] is such that
∑k

l=1 yi
l = 1, ∀i ∈ �1, n� and verifies the k inequalities of type

∑hmax−1
l=1

∑n
i=1(l − hmax)yi

l + hmax ≤ h. If not, we return a violated constraint.
Otherwise, we build λ̃ ∈ Λ as follows: λ̃i

1 = 0, ∀i ∈ �1, n�, and for l = 2, · · · , k, let
ĩl = arg mini∈�1,n�y

i
l +yi

l+1 + · · ·+yi
k and set λ̃ĩl

l = λ̃ĩl
l−1 +1 and λ̃i

l = λ̃i
l−1, ∀i ∈

�1, n�\{̃il}. We will show that if (y, h) satisfies the inequality of P corresponding
to λ̃, then it satisfies all the inequalities corresponding to an element of Λ.
Suppose

∑k
l=2

∑n
i=1 λ̃i

ly
i
l ≥ h − 1 and let λ ∈ Λ and (i2, · · · , ik) ∈ �1, n�k−1 the

indices corresponding to the building of λ, i.e. for l = 2, · · · , k, λil
l = λil

l−1 + 1
and λi

l = λi
l−1, ∀i ∈ �1, n�\{il}. By construction of i2, · · · , ik and ĩ2, · · · , ĩk, we

have

k∑

l=2

n∑

i=1

λi
ly

i
l =

k∑

l=2

(y
il
l +y

il
l+1+· · ·+y

il
k ) ≥

k∑

l=2

(y
ĩl
l +y

ĩl
l+1+· · ·+y

ĩl
k ) =

k∑

l=2

n∑

i=1

λ̃i
ly

i
l ≥ h−1,

hence the inequality of P corresponding to λ is satisfied. So we can conclude that
if (y, h) satisfies the inequality of P corresponding to λ̃, then it satisfies all the
inequalities of P corresponding to an element of Λ. And since the construction
of λ̃ is done in polynomial time, the separation problem is indeed polynomial. 
�

The previous result is very useful in the context of cutting plane algorithms
where only violated inequalities are added and not all valid inequalities.
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4 Variants

Linear programming formulations aiming to maximize (resp. minimize) the index
of the lowest (resp. highest) nonzero row of an assignment matrix are related
to polytope Q (resp. Q′) described below. Observe that h (resp. g) is only
required to be less (resp. more) than or equal to mini∈�1,n�

∑k
l=1 lyi

l (resp.
maxi∈�1,n�

∑k
l=1 lxi

l).

Q = Conv

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

y1
k y2

k · · · yn
k

...
...

. . .
...

y1
2 y2

2 · · · yn
2

y1
1 y2

1 · · · yn
1

⎤

⎥
⎥
⎥
⎦

, h

⎞

⎟
⎟
⎟
⎠

∈ Mk,n × N\{0}
∣
∣
∣
∣

∑k
l=1 yi

l = 1, ∀i ∈ �1, n�,

h ≤ mini∈�1,n�

∑k
l=1 lyi

l ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Q′ = Conv

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

x1
k x2

k · · · xn
k

...
...

. . .
...

x1
2 x2

2 · · · xn
2

x1
1 x2

1 · · · xn
1

⎤

⎥
⎥
⎥
⎦

, g

⎞

⎟
⎟
⎟
⎠

∈ Mk,n × N\{0}
∣
∣
∣
∣

∑k
l=1 xi

l = 1, ∀i ∈ �1, n�,

g ≥ maxi∈�1,n�

∑k
l=1 lxi

l,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

A full description of Q is given below.

Theorem 7

Q =

⎧
⎨

⎩

∑k
l=1 yi

l = 1, ∀i ∈ �1, n�,
∑k

l=2

∑n
i=1 λi

ly
i
l ≥ h − 1, ∀λ ∈ Λ,

yi
l ≥ 0, ∀(i, l) ∈ �1, n� × �1, k�, h ≥ 1.


�
Proof. It is a simple fact that h ≥ 1 is the only possible facet of type (3) while
the positivity constraints are the only possible facets of type (1). Let us consider
an inequality of type (2) defining a facet of Q. Any extreme point of Q saturating
such a facet necessarily satisfies h = mini∈�1,n�

∑k
l=1 lyi

l implying that it is also
a point of P . Using this observation and the fact that Q and P have the same
dimension, we deduce that any facet of Q of type (2) is also a facet of P . Using
the description of P , we get the result. 
�
Similarly to Theorem6 we can deduce that the separation problem with respect
to Q is solvable in polynomial time as well.

We can also derive a full description of P ′ and Q′ from the previous results.

Theorem 8

P ′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑k
l=1 xi

l = 1, ∀i ∈ �1, n�,
∑k−1

l=1

∑n
i=1 λi

lx
i
l ≤ g − k, ∀λ ∈ Λ̃,

∑k
l=gmin+1

∑n
i=1(l − gmin)xi

l + gmin ≥ g, ∀gmin ∈ �1, k�,

xi
l ≥ 0, ∀(i, l) ∈ �1, n� × �1, k�, g ∈ R,
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Q′ =

⎧
⎨

⎩

∑k
l=1 xi

l = 1, ∀i ∈ �1, n�,
∑k−1

l=1

∑n
i=1 λi

lx
i
l ≤ g − k, ∀λ ∈ Λ̃,

xi
l ≥ 0, ∀(i, l) ∈ �1, n� × �1, k�, g ≤ k

where

Λ̃ =
{

λ = (λi
l)(i,l)∈�1,n�×�1,k� ∈ N

nk

∣
∣
∣
∣
λi

l+1 ≤ λi
l, ∀(i, l) ∈ �1, n� × �1, k − 1�∑n

i=1 λi
l = k − l, ∀l ∈ �1, k�

}

.

Proof. Take an extreme point (y, h) of P , and let (x, g) ∈ Mk,n × N\{0}
such that xi

l = yi
k−l+1, ∀(i, l) ∈ �1, n� × �1, k� and g = k − h + 1, then

g = maxi∈�1,n�

∑k
l=1 lxi

l, hence (x, g) ∈ P ′. Conversely, any extreme point (x, g)
of P ′ can be obtained from an extreme point of P in this manner. So P ′ is
obtained from P doing the change of variables xi

l = yi
k−l+1, ∀(i, l) ∈ �1, n�×�1, k�

and g = k −h+1. Therefore its hyperplane representation is obtained from that
of P in Theorem 5. Similarly, Q′ is obtained from Q doing the same change of
variables and its hyperplane representation is thus obtained from Theorem7. 
�

The previous results imply that the separation problems related to P ′ and
Q′ can be solved in polynomial time.

5 Conclusion

In this paper we exhibited a family of polyhedra emerging in very diverse com-
binatorial optimization problems including the most imbalanced orientation of a
graph, the minimum span frequency assignment and some scheduling problems.
Then a full description of these polyhedra has been derived. We also proved that
the separation problems related to these polyhedra can be solved in polynomial
time and thus optimization over them can be done in polynomial time.

We think that many combinatorial optimization problems where discretiza-
tion techniques are used can benefit from the description of the polyhedra intro-
duced in this paper. We are currently carrying out experimentations to study the
efficiency of cutting plane algorithms based on these polyhedra. Future work may
be directed towards investigations on extensions of the polyhedra we considered
here in order to get better approximations while still keeping the feature of com-
putational tractability. One can, for example, study {0, 1} assignment matrices
appended with both h and g (the index of the lowest (resp. highest) nonzero
row of the matrix). The related polytope is included in the intersection of P or
Q. Some preliminary investigations show that more inequalities are necessary to
describe the polytope.
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Abstract. We consider a variant of the single item lot sizing problem
where the product, when stored, suffers from a proportional loss, and
in which the product demand is affected by uncertainty. This setting is
particularly relevant in the energy sector, where the demands must be
satisfied in a timely manner and storage losses are, often, unavoidable.
We propose a two-stage robust optimization approach to tackle the prob-
lem with second stage storage variables. We first show that, in the case of
uncertain demands, the robust problem can be solved as an instance of
the deterministic one. We then address an application of robust lot siz-
ing arising in the context of heat and power cogeneration and show that,
even in this case, we can solve the problem as an instance of the deter-
ministic lot sizing problem. Computational experiments are reported and
illustrated.

1 Introduction

Lot Sizing (LS) is a fundamental problem in a large part of modern production
planning systems. In its basic version, given a demand for a single good over
a finite time horizon, the problem calls for a feasible production plan which
minimizes storage, production, and setup costs, also guaranteeing that certain
lower and upper bounds on both the production and the amount of good that
is stored at each point in time are met.

In the paper, we focus on a generalized variant of lot sizing where the prod-
uct suffers from proportional losses when stored and the objective function is
not necessarily a linear function of the production variables. We also assume
uncertain product demands and, consequently, we tackle the problem from a
robust optimization perspective. This suits the case of many applications in the
energy sector where the product demands of, typically, heat or power, are often
not known in advance, especially when the decision maker has to commit to a
production plan some time before it becomes operational.

In the paper, we first show that the robust counterpart of this generalized
variant of the lot sizing problem can be solved as a special instance of its deter-
ministic counterpart with suitably defined demands and storage upper bounds.
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 26–37, 2016.
DOI: 10.1007/978-3-319-45587-7 3
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We next investigate an application of this result to a production planning prob-
lem arising in the context of Combined Heat and Power Production (CHPP),
which we also show to be solvable as a special instance of the same deterministic
generalized variant of the lot sizing problem that we consider.

The paper is organized as follows. In Sect. 2, we report on some previous
work on lot sizing and introduce some relevant robust optimization concepts.
Our main contribution, the reduction of the generalized variant of the robust
lot sizing problem that we consider to its deterministic counterpart, is outlined
in Sect. 3. Section 4 illustrates the application to heat and power cogeneration,
while Sect. 5 reports on some computational results and observations. Section 6
concludes the paper with some final comments.

2 Previous Work

In this section, we give a brief account of some relevant works on different versions
of the lot sizing problem, also encompassing the uncertain case.

2.1 Deterministic Case

Many variants of the deterministic lot sizing problem have been studied. For
an extensive account of the most relevant works, we refer the reader to the
monograph [PW06]. The problem is known to be in P for the case with linear
costs, complete conservation (i.e., no losses in the stored product), zero storage
lower bounds, nonzero time dependent storage upper bounds, and no produc-
tion bounds, as shown by Atamtürk and Küçükyavuz in [AK08]. A similar result
holds for nonnegative and nondecreasing concave cost functions, complete con-
servation, production bounds which are constant over time, and unrestricted
storage, as shown by Hellion, Mangione, and Penz in [HMP12]. For a polyno-
mial time algorithm for the case with storage losses and nondecreasing concave
costs, but no storage or production bounds, see the work of Hsu [Hsu00]. As
to NP-hard cases, Florian, Lenstra, and Kan in [FLK80] provide a number of
examples. These include the case of linear as well as fixed production costs,
no inventory costs, no storage bounds, and no lower production bounds, but
nonconstant production upper bounds.

2.2 Uncertain Case

Classical approaches to handle uncertainties in lot sizing are, historically, sto-
chastic in nature, dating back as early as 1960 [Sca60]. The idea is to first assign a
probability distribution to the uncertain demand and, then, to solve the problem
by looking for a solution of minimum expected cost. Unfortunately, as pointed
out in [LS05], even when the distribution is estimated within sufficient precision
from historical data, such methods can yield solutions which, when implemented
with the demand that realizes in practice, can be substantially more costly than
those that were predicted with the stochastic approach. Moreover, and regardless
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of the accuracy of the estimation, these techniques are, in many cases, intrin-
sically doomed to suffer from the curse of dimensionality [BT06]. Indeed, they
usually require a computing time which is, at least, linear in the size of the (dis-
crete) probability space to which the realized demand belongs, which is typically
exponential in the size of the instance.

A different option, arguably more affordable from a computational stand-
point, is of resorting to a robust optimization approach. It corresponds to
looking for solutions which are feasible for any realization of the uncertain
demand belonging to a given uncertainty set, and which also minimize the
worst case cost. Two seminal papers in this direction are those of Bertsimas
and Thiele [BT04,BT06], tackling the uncapacitated lot sizing problem with
backlogging and fixed costs, with demands subject to a so-called Γ -robustness
model of uncertainty.1,2 Among other results, they show that the Γ -robust coun-
terpart of the variant of lot sizing they consider can be solved as a version of
the deterministic problem with modified demands, also for the case where pro-
duction bounds are in place. We remark that, for the result of Bertsimas and
Thiele to hold, bounds on the storage cannot be enforced. This is an issue in the
energy sector, where backlogging is not tolerable as the demand of energy, be it
heat or electrical power, must be satisfied when issued.

3 Robust Lot Sizing Under Demand Uncertainty

In this section, we first introduce the generalized variant of lot sizing that we
will address. After presenting its robust counterpart, we illustrate how to reduce
the robust problem to a special version of the deterministic one and draw some
computational complexity considerations.

3.1 Lot Sizing with Deterioration and Storage Bounds

Consider a single product and a time horizon T = {1, . . . , n}. For each time step
t ∈ T , let dt ≥ 0 be the product demand, qt ≥ 0 the production variable, cit
the inventory cost, zt ∈ {0, 1} an indicator variable equal to 1 if qt > 0, and
ut ≥ 0 a variable corresponding to the value of the storage at the end of time
period t. Let also u0 ≥ 0 be the initial storage value. We assume time dependent
bounds Q

t
≤ qt ≤ Qt on the production and U t ≤ ut ≤ U t on the storage.

The generalized variant of lot sizing that we consider can be cast as the following

1 In case of backlogging, shortages in the inventory are allowed—or, said differently,
unmet demand can be postponed, at a cost, to the future.

2 When applied to the lot sizing problem, the idea of Γ -robustness is of assuming
that the uncertain parameters, i.e., the demand at different time steps, belong to
symmetric intervals and that, given an integer Γ , the total number of time steps in
which the uncertain demand deviates from its nominal value to either of the extremes
of its intervals is bounded by Γ in any constraint of the problem. See [BS03,BS04].
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Mixed-Integer Linear Programming (MILP) problem:

(LS − DET) min f(q, z) +
∑

t∈T

citut (1a)

s.t. αtut−1 + qt = ut + dt ∀t ∈ T (1b)

Ut ≤ ut ≤ Ut ∀t ∈ T (1c)

ztQt ≤ qt ≤ ztQt ∀t ∈ T (1d)

zt ∈ {0, 1} ∀t ∈ T (1e)
qt ≥ 0 ∀t ∈ T (1f)
ut ≥ 0 ∀t ∈ T. (1g)

The generalization goes along two directions. First, we assume that Objec-
tive (1a) be the sum of a (general) function f(q, z) of variables q, z and a lin-
ear one of u, namely:

∑
t∈T citut. The classical case is obtained for f(q, z) =∑

t∈T (atqt + btzt), where at and bt are, respectively, the unit production cost
and the setup cost at time t ∈ T . Secondly, we assume that, at the end of each
time period t ∈ T , a fraction (1−αt) of the stored product is lost, as determined
by the (possibly time dependent) conservation factor αt ∈ (0, 1].

We remark that, similarly to the classical case where αt = 1 for all t ∈ T ,
ut is uniquely determined as a function of qt, ut−1, and dt in every feasible
solution (q, z, u) of LS-DET. Indeed, from Constraints (1b), we deduce, by sub-
stitution from t = 1 to t = |T |:

ut :=

(
t∏

k=1

αk

)

u0 +
t∑

i=1

(
t∏

k=i+1

αk

)

(qi − di) ∀t ∈ T. (2)

Note that Eq. (2) is causal, as the value of the storage at time t only depends
on the demand (and production) at times 1, . . . , t − 1. From the equation, it
follows that a pair (q, z) suffices to fully characterize a solution to LS-DET, as
the (unique) value of the missing vector u can be calculated a posteriori via
Eq. (2). We call a pair (q, z) satisfying Constraints (1d)–(1f) a production plan
and denote by ILS-DET(q, z) = (q, z, u), with u as in Eq. (2), its induced solution
to LS-DET.

3.2 Uncertain Demands

Assuming that the uncertain demand vector d takes values in the uncertainty
set D, the robust counterpart of LS-DET, i.e., a version of the problem where
we look for a solution (q, z, u) which is feasible for all realizations d ∈ D, has to
be a solution to:

(LS − ROB) min (1a) (3a)
s.t. αtut−1 + qt = ut + dt ∀t ∈ T, d ∈ D (3b)

(1c) − (1g), (3c)
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where the original Constraints (1b) (which are called Constraints (3b) here) are
enforced for all realizations dt ∈ D. As we will better explain in the following,
we remark that, in this case, all the variables are first stage variables, as they
are required to take a single value independently of the realization of d.

For any nontrivial D, the following holds:

Proposition 1. If ∃{d1, d2} ⊆ D with d1 �= d2, then LS-ROB is infeasible.

Proof. For any value of q, d, Constraints (3b) induce the linear system Au =
q − d + e1α1u0, where A is a full rank matrix with the all-one vector as main
diagonal and the vector −α as the diagonal below it. Assuming that LS-ROB
is feasible, we have ∃u : Au = q − d1 + e1α1u0 and Au = q − d2 + e1α1u0.
This implies A−1(q − d1 + e1α1u0) = A−1(q − d2 + e1α1u0), that is, d1 = d2, a
contradiction. 	


It is thus natural, as well as very reasonable in practice, to assume that the
value of the storage ut at time t ∈ T could be adapted as a function ut(d) of
the demand d ∈ D which has realized up to time t − 1, i.e., that u be a second
stage variable. A direct formulation for the robust counterpart of LS-DET with
a second stage u is thus:

(LS − ROB2) min f(q, z) + η (4a)
s.t. αtut−1(d) + qt = ut(d) + dt ∀t ∈ T, d ∈ D (4b)

Ut ≤ ut(d) ≤ Ut ∀t ∈ T, d ∈ D (4c)

η ≥
∑

t∈T

citut(d) ∀d ∈ D (4d)

(1d) − (1f) (4e)
ut(d) ≥ 0 ∀t ∈ T, d ∈ D (4f)
η ≥ 0. (4g)

The newly introduced variable η accounts for the worst case storage cost
over all d ∈ D (a so-called, partial, epigraph reformulation). Assuming, as it is
the case for a discrete scenario approach, a finite D, LS-ROB2 calls for a vector
u(d) ≥ 0 for each d ∈ D satisfying Constraints (4b)–(4d). Clearly, LS-ROB2
can be solved directly by employing a mixed-integer linear programming solver,
although at the cost of expressing Constraints (4b)–(4d) and (4f) |D| times.

3.3 Solving LS-ROB2 as an Instance of LS-DET

We now present a more efficient way to solve LS-ROB2 as an instance of LS-DET
with suitably chosen demand and storage upper bound vectors d and U .

As for LS-DET, a production plan (q, z) is required to satisfy Con-
straints (1d)–(1f)—which are condensed, in LS-ROB2, in Constraint (4e). Its
induced solution ILS-ROB2(q, z) = (q, z, u(d), η) to LS-ROB2 can be defined,
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without loss of generality, as:

ut(d) :=

(
t∏

k=1

αk

)

u0 +
t∑

i=1

(
t∏

k=i+1

αk

)

(qi − di) ∀t ∈ T, d ∈ D (5a)

η := max
d∈D

{
∑

t∈T

citut(d)

}

. (5b)

Note that, differently from the case of LS-DET, in this case another
induced solution can be constructed by selecting any η satisfying η >
maxd∈D

{∑
t∈T citut(d)

}
. Clearly though, such solution cannot be optimal.

Our main result follows:

Theorem 1. For an uncertainty set D over which a linear function can be opti-
mized in polynomial time, LS-ROB2 can be polynomially reduced (with respect to
production plans) to an instance of LS-DET with d = d′ and U = U

′
thus defined:

d′
t := max

d∈D

{

dt −
t−1∑

i=1

(
t∏

k=i+1

αk

)
(
d′
i − di

)
}

∀t ∈ T (6a)

U
′
t := U t − Δt ∀t ∈ T (6b)

Δt := max
d∈D

{
t∑

i=1

(
t∏

k=i+1

αk

)
(
d′
i − di

)
}

∀t ∈ T. (6c)

Proof. First, note that the values for d′
t and U

′
t can be computed iteratively,

from t = 1 to t = |T |, in polynomial time due to the assumptions on D.
For a given production plan (q, z), adopting d = d′ and U = U

′
, we show

that ILS-ROB2(q, z) = (q, z, u(d), η) is feasible for LS-ROB2 if and only if
ILS-DET(q, z) = (q, z, u) is feasible for LS-DET. We deduce the following:

d′
t ≥ 0 ∀t ∈ T (7a)

ut = min
d∈D

{ut(d)} ∀t ∈ T (7b)

ut + Δt = max
d∈D

{ut(d)} ∀t ∈ T (7c)

η =
∑

t∈T

citut + max
d∈D

{
∑

t∈T

cit

t∑

i=1

(
t∏

k=i

αk

)

(d′
i − di)

}

︸ ︷︷ ︸
const

(7d)

For the derivations, which we omit due to space reasons, we refer the reader to the
Online Appendix [CKS16], available from the authors upon request. We are to
show that Constraints (4c) are satisfied by u(d) if and only if Constraints (1c) are
satisfied by u (all the other constraints are satisfied by definition of production
plan). This is shown by observing that, for all t ∈ T , the following holds true:

U t ≤ ut(d)∀d ∈ D ⇔ U t ≤ min
d∈D

{ut(d)} ⇔ U t ≤ ut

ut(d) ≤ U t ∀d ∈ D ⇔ max
d∈D

{ut(d)} ≤ U t ⇔ ut + Δt ≤ U t ⇔ ut ≤ U
′
t.
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Since Objectives (4a) and (1a) are equal up to a constant additive term, i.e.:

f(q, z) + η = f(q, z) +
∑

t∈T

citut + const, (8)

we deduce that a production plan is optimal for LS-ROB2 if and only if it is
optimal for LS-DET. 	


Intuitively, the newly defined demand d′
t induces a lower bound on the prod-

uct which has to be available at time t ∈ T , thus ensuring that every demand
d ∈ D can be met. The value Δ reduces the storage upper bound of the trans-
formed problem to prevent that, when a large production is realized but, sud-
denly, a large deficit in demand occurs (an event which would result in an over-
flow of storage), the actual storage upper bound U t is not exceeded.

We remark that the assumptions in Theorem 1 subsume the cases of many
widely employed robustness models, including polyhedral uncertainty sets (such
as the Γ -robustness one), discrete scenario uncertainty sets, and ellipsoidal
uncertainty sets, such as those used in [BTEGN09].

From a computational complexity perspective, the following holds:

Corollary 1. Given an uncertainty set D over which a linear function can be
optimized in polynomial time, LS-ROB2 is in P (respectively, NP-hard) if and
only if the corresponding version of LS-DET is in P (respectively, NP-hard).

Proof. We use Lemma 1 to polynomially reduce LS-ROB2 to LS-DET. For the
polynomial reduction from LS-DET to LS-ROB2, it suffices to consider that every
deterministic problem can be regarded as a robust optimization problem. 	


Note that, as a consequence of Corollary 1, LS-ROB2 is in P for all the
polynomially solvable cases of LS-DET that we reported in Sect. 2, provided that
their algorithm allows for the introduction of time dependent upper bounds U
on u. This is, for instance, the case of the problem studied in [HMP12].

We conclude by noting that our result can be slightly extended as follows:

Remark 1. Theorem 1 and Corollary 1 still hold if we introduce additional con-
straints on z and q or assumptions on the givens (except for d and U). They are
also valid for Ut = ∞ and for not necessarily nonnegative demands d.

4 Application to Heat and Power Cogeneration

In this section, we consider an application of the previous results to the case
of Combined Heat and Power Production (CHPP). CHPP plants are produc-
tion units in which the heat that is generated when cooling down the plant
is extracted and, at least partially, utilized for heating purposes. The units are
equipped with a storage tank where the heat in excess can be temporarily stored,
subject to constant (over time) proportional losses due to dissipation effects.

From a production planning perspective, two products and two demands are
present: one of heat and one of power.3 Power in excess or defect with respect
3 Although “electrical energy” would be more precise, we will refer to “power” in the

following. Due to the hourly time scale, this quantity is, indeed, a measure of power.
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to the given demand can be sold or bought from the power market. Storage is
costless, while a cost is incurred for fuel consumption. In principle, we can out-
line three sources of uncertainty: heat demands, power demands, and power mar-
ket prices. Among the three, heat demands are, arguably, the most critical ones.
This is because poorly estimated heat demands can lead to infeasible produc-
tion plans by which the storage bounds are violated. Differently, poorly estimated
power demands or market prices can only introduce an extra cost into the objec-
tive function. For this reason, in the following we will focus solely on uncertain
heat demands.

4.1 Problem Formulation

We adopt the same variables as in LS-DET, with q, u, and dh representing
the amount of heat which is, respectively, produced, stored, and required as a
demand. For power, we introduce a second production variable pt, indicating
the amount of power that is generated at time t ∈ T , two market variables, pb

and ps, representing the amount of power that is, at each point in time, bought
and sold, and a demand vector dp. Let cp be the vector of market prices for both
buying and selling a MWh of power and let cf be the vector of fuel prices. Fuel
consumption at time t, as denoted by the variable ft, is modeled as the linear
function sqt + hzt, where hzt is a constant term corresponding to the activation
of the CHPP unit. We assume that heat and power are produced with a fixed
proportion ρ ∈ (0, 1) and that α is constant over the time horizon T .

Let Dh be the uncertainty set for the heat demands. As for LS-ROB2,
we assume second stage storage variables u(dh) as a function of the uncer-
tain heat demand dh ∈ Dh. We introduce the following robust two-stage MILP
formulation:

(CHPP − ROB2) min
∑

t∈T

(
cpt (p

b
t − pst ) + cft ft

)
(9a)

s.t. αut−1(dh) + qt = ut(dh) + dht ∀t ∈ T, dh ∈ Dh

(9b)

ppt + pbt = dpt + pst ∀t ∈ T (9c)

U ≤ ut(dh) ≤ U ∀t ∈ T, dh ∈ Dh

(9d)

ztQ ≤ qt ≤ ztQ ∀t ∈ T (9e)

ft = sqt + hzt ∀t ∈ T (9f)
ppt = ρqt ∀t ∈ T (9g)

qt, ft, p
p
t , p

b
t , p

s
t ≥ 0 ∀t ∈ T (9h)

ut(dh) ≥ 0 ∀t ∈ T, dh ∈ Dh (9i)
zt ∈ {0, 1} ∀t ∈ T. (9j)
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Given a production plan (q, z), its induced solution to CHPP-ROB2, i.e.,
ICHPP-ROB2(q, z) = (q, z, f, pp, pb, ps, u(dh)), is defined as:

ut(dh) = αtu0 +
t∑

i=1

αt−i
(
qi − dhi

) ∀t ∈ T (10a)

ft = sqt + hzt ∀t ∈ T (10b)
ppt = ρqt ∀t ∈ T (10c)

pbt = max{dpt − ppt , 0} (10d)
pst = max{ppt − dpt , 0}. (10e)

The following holds:

Proposition 2. CHPP-ROB2 can be solved as an instance of LS-DET.

Proof. By substitution from Constraints (9g), Constraints (9c) become, for all
t ∈ T :

pbt − pst = dpt − ρqt

which, after substitution in Objective (9a) together with Constraints (9f), yield:
∑

t∈T

(
cpt (d

p
t − ρqt) + cft (sqt + hzt)

)
=

∑

t∈T

(
(cft s − cpt ρ)qt + cft hzt

)
+

∑

t∈T

cpt d
p
t

︸ ︷︷ ︸
const

.

By setting:

f(q, z) :=
∑

t∈T

(
(cft s − cpt ρ)qt + cft hzt

)
(11a)

αt := α ∀t ∈ T (11b)

cit := 0 ∀t ∈ T (11c)

and dropping the constant term, we obtain an instance of LS-ROB2. The corre-
sponding instance of LS-DET is obtained by applying Corollary 1. 	


Unfortunately, we are not aware of any specialized algorithm capable of solv-
ing LS-DET with αt < 1 in combination with (constant) lower and upper produc-
tion bounds. In spite of this, in the next section we will rely on the transformation
into LS-DET to solve CHPP-ROB2 via mixed-integer linear programming tech-
niques in a much shorter amount of computing time than when tackling the
problem directly in its original form.

5 Computational Results

We report and illustrate a set of computational experiments carried out on
a CHPP-ROB2 problem originating within the project Robuste Optimierung
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der Stromversorgungsysteme (Robust Optimization of Power Supply Systems),
funded by the German Bundesministerium für Wirtschaft und Energie (Federal
Ministry for Economic Affairs and Energy, BMWi).

We consider a dataset of 232 days, spanning a period of two years (with some
missing months). Market prices for the power market are taken from EPEX
STOP (the European Power Exchange). The power demand is taken from his-
torical data for the whole country of Germany, downscaled to 50000 households,
while the heat demand is taken from historical data of a portion of Frank-
furt (of around 50000 households). We assume s = 1.51 EUR/MWh, h = 5.43
EUR/MWh, and ρ = 0.4. The bounds are set to U = 0 MWh, U = 120 MWh,
Q = 37.5 MWh, Q = 125 MWh. We also set u0 = 36 MWh.

We adopt a discrete scenario uncertainty set Dh, built from a heat demand
forecast provided by our industrial partner ProCom GmbH. The first scenario
of Dh is the original forecast for the current day, as produced by ProCom. It
is generated in a two-stage fashion, with an autoregressive component and a
neural network one, with temperature and calendar events as main influence
factors. We then single out the 50 days from the set of historical time series
where the corresponding pair of demand and forecast is closest in L1 norm.
After computing the forecast error between the two, we create a scenario where
such error is added to the forecast demand of the current day (for which the
problem is being solved). This way we, intuitively, “learn” the forecast error
from historical data and apply it to the current forecast, creating 50 additional
scenarios. The general idea is that the forecast error follows certain patterns, so
that it is more likely that combinations of the historical errors will also apply to
the error of the current day for which CHPP-ROB2 is being solved.

The experiments are run on an Intel i7-3770 3.40 GHz machine with 32 GB
RAM using CPLEX 12.6 and AMPL as modeling language. We consider four
settings, with a time horizon of, respectively, 24, 48, 72, and 96 h. The total
time in seconds to solve all the instances, as well as the corresponding standard
deviation, are reported in the following table. In it, as well as in the charts that
will follow, CHPP-ROB2 accounts for the problem when solved via the origi-
nal Formulation (9a)–(9j), whereas LS-DET corresponds the problem solved via
Formulation (1a)–(1g) after having been transformed, by applying Theorem1,
into an instance of the deterministic lot sizing problem. Proportional speedup
factors are also reported.

CHPP-ROB2 LS-DET Speedup

Horizon totTime stdev totTime stdev totTime stdev

24 h 37.05 0.05 7.96 0.01 4.65 5.00

48 h 140.01 0.17 16.32 0.03 8.58 5.67

72 h 323.95 0.47 34.77 0.15 9.32 3.13

96 h 805.86 2.65 64.49 0.42 12.50 6.31
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Fig. 1. Computing times when solving CHPP-ROB2 in its original form vs. those when
solving it as an instance of LS-DET via the transformation outlined in Theorem 1.
Instances are sorted by nondecreasing computing time for CHPP-ROB2.

As the table illustrates, the improvement in computing time achieved when
solving the problem as an instance of LS-DET, rather than in its original form,
steeply increases with the size of the instances. From an average speedup of 4.65
times for the 24 h instances, we register one of 8.58 times for the 48 h instances,
one of 9.32 times for the 72 h instances, and one of 12.5 times for the 96 h
instances. On average, the speedup is of 7.69 times. This illustrates that, even in
a mixed-integer linear programming setting, the transformation proposed with
Theorem 1 allows for a substantial reduction in the computing time. The table
also shows that the computing time, if seen as a stochastic process, becomes
much more stable when Theorem 1 is employed. Indeed, with its application, we
observe a reduction in the standard deviation ranging between 3.13 times for
the 72 h instances to 6.31 times for the 96 h ones, with an average reduction of
5.03 times. A visual depiction is reported in Fig. 1.

6 Concluding Remarks

We have considered a generalized variant of lot sizing with proportional storage
losses and a nonlinear objective function, showing how, for the case of uncertain
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demands, the problem can be solved as a special instance of the deterministic one
via a polynomial time transformation. We have then considered an application to
heat and power cogeneration systems, showing that, when uncertain demands
are considered, even that problem can be tackled as a special instance of lot
sizing. Computational experiments have shown that our transformation allows
for a much shorter computing time even when using a general purpose mixed-
integer linear programming solver.

Acknowledgement. This work is supported by the German Federal Ministry for
Economic Affairs and Energy, BMWi, grant 03ET7528B.
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[AK08] Atamtürk, A., Küçükyavuz, S.: An algorithm for lot sizing with inventory
bounds and fixed costs. Oper. Res. Lett. 36(3), 297–299 (2008)

[BS03] Bertsimas, D., Sim, M.: Robust discrete optimization and network flows.
Mathe. Program. 98(1–3), 49–71 (2003)

[BS04] Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53
(2004)

[BT04] Bertsimas, D., Thiele, A.: A robust optimization approach to supply
chain management. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO 2004.
LNCS, vol. 3064, pp. 86–100. Springer, Heidelberg (2004)

[BT06] Bertsimas, D., Thiele, A.: A robust optimization approach to inventory
theory. Oper. Res. 54(1), 150–168 (2006)

[BTEGN09] Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Prince-
ton University Press, Princeton (2009)

[CKS16] Coniglio, S., Koster, A.M.C.A., Spiekermann, N.: Online appendix (2016)
[FLK80] Florian, M., Lenstra, J.K., Kan, A.H.G.R.: Deterministic production plan-

ning: algorithms and complexity. Manage. Sci. 26(7), 669–679 (1980)
[HMP12] Hellion, B., Mangione, F., Penz, B.: A polynomial time algorithm to solve

the single-item capacitated lot sizing problem with minimum order quan-
tities and concave costs. Euro. J. Oper. Res. 222(1), 10–16 (2012)

[Hsu00] Hsu, V.N.: Dynamic economic lot size model with perishable inventory.
Manage. Sci. 46(8), 1159–1169 (2000)

[LS05] Liyanage, L.H., Shanthikumar, J.G.: A practical inventory control policy
using operational statistics. Oper. Res. Lett. 33(4), 341–348 (2005)

[PW06] Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Pro-
gramming. Springer Series in Operations Research and Financial Engi-
neering. Springer, New York (2006)

[Sca60] Scarft, H.: The Optimally of (S, s) Policies in the Dynamic Inventory
Problem. Mathemtical Methods in the Social Sciences, vol. 1, p. 196.
Stanford University Press, New York (1960)



Reducing the Clique and Chromatic Number
via Edge Contractions and Vertex Deletions
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Abstract. We consider the following problem: can a certain graph para-
meter of some given graph G be reduced by at least d, for some integer d,
via at most k graph operations from some specified set S, for some given
integer k? As graph parameters we take the chromatic number and the
clique number. We let the set S consist of either an edge contraction
or a vertex deletion. As all these problems are NP-complete for general
graphs even if d is fixed, we restrict the input graph G to some special
graph class. We continue a line of research that considers these problems
for subclasses of perfect graphs, but our main results are full classifica-
tions, from a computational complexity point of view, for graph classes
characterized by forbidding a single induced connected subgraph H.

1 Introduction

When considering a graph modification problem, we usually fix a graph class
G and then, given a graph G, a set S of one or more graph operations and an
integer k, we ask whether G can be transformed into a graph G′ ∈ G using at
most k operations from S. Now, instead of fixing a particular graph class, one
may be interested in fixing a certain graph parameter π. In this setting we ask,
given a graph G, a set S of one or more graph operations and an integer k,
whether G can be transformed into a graph G′ by using at most k operations
from S such that π(G′) ≤ π(G) − d, for some threshold d ≥ 0. Such problems
are called blocker problems, as the set of vertices or edges involved can be seen
as “blocking” some desirable graph property (such as being colorable with only
a few colors). Identifying the part of the graph responsible for a significant
decrease of the graph parameter under consideration gives crucial information
on the graph.

Blocker problems have been given much attention over the last years
[1–4,6,7,13,15,16]. Graph parameters considered were the chromatic number,
the independence number, the clique number, the matching number and the
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vertex cover number. So far, the set S always consisted of a single graph oper-
ation, which was a vertex deletion, edge deletion, edge contraction, or an edge
addition. Here, we consider the chromatic number and the clique number. We
keep the restriction on the size of S and let S consist of an edge contraction or a
vertex deletion. Thus, we continue the research initiated by Bentz et al. [4] and
Diner et al. [7]. In the latter paper, classes of perfect graphs are considered. Here,
we also consider classes of perfect graphs, but in our main results we restrict the
input to graphs that are defined by a single forbidden induced subgraph H, that
is, to so-called H-free graphs.

Definitions. The contraction of an edge uv of a graph G removes the vertices
u and v from G, and replaces them by a new vertex made adjacent to precisely
those vertices that were adjacent to u or v in G (neither self-loops nor multiple
edges are introduced). Then G can be k-contracted into a graph H if G can
be modified into H by a sequence of at most k edge contractions. For a subset
V ′ ⊆ V , let G − V ′ be the graph obtained from G after deleting the vertices of
V ′. Let χ(G) and ω(G) denote the chromatic number and the clique number of
G. We now define our two blocker problems formally, where π ∈ {χ, ω} is the
(fixed) graph parameter:

Contraction Blocker(π)
Input: A graph G and two integers d, k ≥ 0.
Question: Can G be k-contracted into a graph G′ such that π(G′) ≤ π(G) − d?

Deletion Blocker(π)
Input: A graph G = (V,E) and two integers d, k ≥ 0.
Question: Is there a set V ′ ⊆ V , with |V ′| ≤ k, such that π(G−V ′) ≤ π(G)−d?

If we remove d from the input and fix it instead, we call the resulting problems
d-Contraction Blocker(π) and d-Deletion Blocker(π), respectively.

Relations to known problems. In Sect. 3, we will pinpoint a close relationship
between the blocker problem and the problem of deciding whether the graph
parameter under consideration (chromatic number or clique number) is bounded
by some constant (in order to prove a number of hardness results). We also
observe that blocker problems generalize graph transversal problems. To explain
the latter type of problems, for a family of graphs H, the H-transversal
problem is that of finding a set V ′ ⊆ V in a graph G = (V,E) of size |V ′| ≤ k for
some integer k, such that G − V ′ contains no induced subgraph isomorphic to a
graph in H. By letting, for instance, H be the family of all complete graphs on
at least two vertices, we find that H-transversal is equivalent to Deletion
Blocker(ω) restricted to instances (G, d = ω(G) − 1, k).

Our Results. In Sect. 2, we introduce some more terminology and give a number
of known results used to prove our results. In Sect. 3, we show how the compu-
tational hardness of the decision problems for χ, ω relates to the computational
hardness of the blocker variants. There, we also give a number of additional
results on subclasses of perfect graphs. We need these results for our proofs.
However, these results may be of independent interest, as they continue similar
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work on perfect graphs in [7]. In Sect. 4 we present our results for Contrac-
tion Blocker(π) and d-Contraction Blocker(π) for H-free graphs, where
π ∈ {χ, ω}. Amongst others we prove complete dichotomies for all connected
graphs H. In Sect. 5 we perform the same study for Deletion Blocker(π) and
d-Deletion Blocker(π), where π ∈ {χ, ω} to obtain complete dichotomies for
all connected graphs H. We conclude our paper in Sect. 6.

2 Preliminaries

All graphs considered are finite, undirected and without self-loops or multiple
edges. The complement of G is the graph G = (V,E) with vertex set V and an
edge between two vertices u and v if and only if uv /∈ E. For a subset S ⊆ V ,
we let G[S] denote the subgraph of G induced by S, which has vertex set S and
edge set {uv ∈ E | u, v ∈ S}. We write H ⊆i G if a graph H is an induced
subgraph of G. For a vertex v ∈ V , we write G − v = G[V \ {v}]. Recall that for
a subset V ′ ⊆ V we write G − V ′ = G[V \ V ′]. When we contract an edge uv,
we may also say that a vertex u is contracted onto v, and we use v to denote the
new vertex resulting from the edge contraction.

Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint graphs. The
disjoint union G+H has vertex set VG ∪VH and edge set EG ∪EH . The disjoint
union of k copies of G is denoted by kG. Let {H1, . . . , Hp} be a set of graphs.
We say that G is (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to
a graph in {H1, . . . , Hp}. If p = 1 we may write H1-free instead of (H1)-free.
A subset C ⊆ V is called a clique of G if any two vertices in C are adjacent
to each other. The clique number ω(G) is the number of vertices in a maximum
clique of G. The Clique problem tests if a graph contains a clique of size at
least k for some given integer k ≥ 0. For a positive integer k, a k-coloring of G
is a mapping c : V → {1, 2, . . . , k} such that c(u) �= c(v) whenever uv ∈ E. The
chromatic number χ(G) is the smallest integer k for which G has a k-coloring.
The Coloring problem tests if a graph has a k-coloring for some given integer k.
If k is fixed, that is, not part of the input, then we write k-Coloring instead.

A graph G = (V,E) is a split graph if G has a split partition, which is a
partition of its vertex set into a clique K and an independent set I. A graph
is cobipartite if it is the complement of a bipartite (2-colorable) graph. A graph
is chordal if it has no induced cycles on more than three vertices. A graph is
perfect if the chromatic number of every induced subgraph equals the size of a
largest clique in that subgraph. Let Cn, Pn and Kn denote the n-vertex cycle,
path and clique, respectively. Let Kn,m denote the complete bipartite graph with
partition classes of size m and n, respectively. The cobanner, bull and butterfly
are displayed in Fig. 1. We finish this section by stating some known results.

Lemma 1 ([14]). Clique is NP-complete for the following classes: (C5, P5)-free
graphs, K1,3-free graphs, cobanner-free graphs and (bull, P5)-free graphs.

Lemma 2 ([10]). Let H be a graph. For the class of H-free graphs, Coloring
is polynomial-time solvable if H is an induced subgraph of P4 or of P1 + P3 and
NP-complete otherwise.
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(b) (c)(a)

Fig. 1. (a) Cobanner. (b) Bull. (c) Butterfly.

Lemma 3 ([11]). 3-Coloring is NP-complete for the class of K3-free graphs.

Lemma 4 ([7]). 1-Contraction Blocker(ω) is NP-complete for graphs with
clique number 3.

Lemma 5 ([7]). For π ∈ {χ, ω}, both problems Contraction Blocker(π)
and Deletion Blocker(π) can be solved in polynomial time for P4-free graphs,
but are NP-compete on split graphs.

3 Hardness Conditions and Results for Perfect Graphs

In this section we give some results that we need for the proofs of our main results
in later sections. In the proof of Lemma 4 [7] it is readily seen that the graph
obtained in the reduction as input graph for 1-Contraction Blocker(ω) is
in fact (K4, 2P1 + P2, butterfly)-free. This gives us the following result.

Lemma 6 ([7]). 1-Contraction Blocker(ω) is NP-complete for the class
of (K4, 2P1 + P2, butterfly)-free graphs.

Let G be a graph class closed under adding a vertex-disjoint copy of the
same graph or of a complete graph. We call such a graph class clique-proof. The
following result establishes a close relation between Coloring (resp. Clique)
and 1-Contraction Blocker(χ) (resp. 1-Contraction Blocker(ω)).

Theorem 1. Let G be a clique-proof graph class. Then the following two state-
ments hold:

(i) if Coloring is NP-complete for G, then so is 1-Contraction
Blocker(χ).

(ii) if Clique is NP-complete for G, then so is 1-Contraction Blocker(ω).

Proof. We only give the proof for Coloring and 1-Contraction
Blocker(χ), as the proof for Clique and 1-Contraction Blocker(ω) can
be obtained by the same arguments. Let G be a graph class that is clique-proof.
From a given graph G ∈ G and integer � ≥ 1 we construct the graph G′ =
2G + K�+1. Note that G′ ∈ G by definition and that χ(G′) = max{χ(G), � + 1}.
We claim that G is �-colorable if and only if G′ can be 1-contracted into
a graph G∗ with χ(G∗) ≤ χ(G′) − 1. First suppose that G is �-colorable.
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Then, in G′, we contract an edge of K�+1 in order to obtain a graph G∗ that
is �-colorable. Conversely, suppose that G′ can be 1-contracted into a graph
G∗ with χ(G∗) ≤ χ(G′) − 1. As contracting an edge in a copy of G does not
lower the chromatic number, the contracted edge must be in K�+1. Then, as
χ(G∗) ≤ χ(G′) − 1, this implies that χ(G′) = � + 1 and χ(G∗) = �. Hence, as
χ(G∗) = max{χ(G), �}, we conclude that χ(G) ≤ �. 	


Our next result is on cobipartite graphs (we omit its proof).

Theorem 2. For π ∈ {χ, ω}, Contraction Blocker(π) is NP-complete for
cobipartite graphs.

As cobipartite graphs are 3P1-free, we immediately obtain the following.

Corollary 1. For π ∈ {χ, ω}, Contraction Blocker(π) is NP-complete for
3P1-free graphs.

We will continue with some further results on subclasses of perfect graphs.
We need a known lemma.

Lemma 7 ([7]). Let G = (V,E) be a C4-free graph and let v1v2 ∈ E. Let
G|v1v2 be the graph obtained after the contraction of v1v2 and let v12 be the new
vertex replacing v1 and v2. Then every maximal clique K in G|v1v2 containing
v12 corresponds to a maximal clique K ′ in G and vice versa, such that

(a) either |K| = |K ′| and K \ {v12} = K ′ \ {v1};
(b) or |K| = |K ′| and K \ {v12} = K ′ \ {v2};
(c) or |K| = |K ′| − 1 and K \ {v12} = K ′ \ {v1, v2}.
Moreover, every maximal clique in G|v1v2 not containing v12 is a maximal clique
in G and vice versa.

Theorem 3. For π ∈ {χ, ω}, 1-Contraction Blocker(π) is NP-complete
for chordal graphs.

Proof. Since chordal graphs are perfect and closed under taking edge contrac-
tions, we may assume without loss of generality that π = ω. Let G = (V,E) be
a graph that together with an integer k forms an instance of Vertex Cover,
which is the problem of deciding whether a graph G has a vertex cover of size at
most k, that is, a subset S of vertices of size at most k such that each edge is inci-
dent with at least one vertex of S. Vertex Cover is a well-known NP-complete
problem (see [9]).

From G we construct a chordal graph G′ as follows. We introduce a new
vertex y not in G. We represent each edge e of G by a clique Ke in G′ of size
|V | so that Ke ∩ Kf = ∅ whenever e �= f . We represent each vertex v of G by
a vertex in G′ that we also denote by v. Then we let the vertex set of G′ be
V ∪ ⋃

e∈E Ke ∪ {y}. We add an edge between every vertex in Ke and a vertex
v ∈ V if and only if v is incident with e in G. In G′ we let the vertices of V form
a clique. Finally, we add all edges between y and any vertex in V ∪ ⋃

e∈E Ke.
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Note that the resulting graph G′ is indeed chordal. Also note that ω(G′) = |V |+3
(every maximum clique consists of y, the vertices of a clique Ke and their two
neighbours in V ).

We claim that G has a vertex cover of size at most k if and only if G′ can
be k-contracted to a graph H with ω(H) ≤ ω(G′) − 1. First suppose that G
has a vertex cover U of size at most k. For each vertex v ∈ U , we contract the
corresponding vertex v in G′ to y. As |U | ≤ k, this means that we k-contracted G′

into a graph H. Since U is a vertex cover, we obtain ω(H) ≤ |V |+2 = ω(G′)−1.
Now suppose that G′ can be k-contracted to a graph H with ω(H) ≤ ω(G′)−1.

Let S be a corresponding sequence of edge contractions (so |S| ≤ k holds). By
Lemma 7 and the fact that chordal graphs are closed under taking edge contrac-
tions, we find that no contraction in S results in a new maximum clique. Hence, as
we need to reduce the size of each maximum clique Kuv ∪{u, v, y} by at least 1, we
may assume without loss of generality that each contraction in S concerns an edge
with both its end-vertices in V ∪{y}. We construct a set U as follows. If S contains
the contraction of an edge uy we select u. If S contains the contraction of an edge
uv, we select one of u, v arbitrarily. Because each maximum clique Kuv ∪{u, v, y}
must be reduced, we find that U ⊆ V is a vertex cover. By construction, |U | ≤ k.
This completes the proof. 	

Similar arguments as in the above proof can be readily used to show the following.

Theorem 4. For π ∈ {χ, ω}, 1-Deletion Blocker(π) is NP-complete for
chordal graphs.

We will finish this section with a result on C4-free perfect graphs.

Theorem 5. For π ∈ {χ, ω}, 1-Contraction Blocker(π) is NP-complete
for the class of C4-free perfect graphs.

Proof. Let π = ω, or equivalently, π = χ. We adapt the construction used in
the proof of Lemma 4 by doing as follows for each edge e of the graph G in this
proof. First we subdivide e. This gives us two new edges e1 and e2. We introduce
two new non-adjacent vertices ue and ve and make them adjacent to both end-
vertices of e1. Denote the resulting graph by G∗. Notice that we do not create
any induced C4 this way. Hence G∗ is C4-free. The vertices of the original graph
together with the subdivision vertices form a bipartite graph on top of which
we placed a number of triangles. Hence, G∗ contains no induced hole of odd size
and no induced antihole of odd size, where a hole is an induced cycle on at least
five vertices and an antihole is the complement of a hole. Then, by the Strong
Perfect Graph Theorem [5], G∗ is perfect as well.

We increase the allowed number of edge contractions accordingly and observe
that, because of the presence of the vertices ue and ve for each edge e, we are
always forced to contract the edge e1, which gives us back the original construc-
tion extended with a number of pendant edges (which do not play a role). Note
that we have left the class of C4-free perfect graphs after contracting away the
triangles, but this is allowed. 	
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4 Contraction Blocker in H-Free Graphs

In this section, we will consider both problems Contraction Blocker(π)
and d-Contraction Blocker(π) for π ∈ {ω, χ} and present our classifica-
tion results for H-free graphs. We start with π = χ and H being a connected
graph. In this case, we obtain a complete dichotomy for both problems Con-
traction Blocker(χ) and d-Contraction Blocker(χ) concerning their
computational complexity.1

Theorem 6. Let H be a connected graph. If H is an induced subgraph of P4

then Contraction Blocker(χ) is polynomial-time solvable for H-free graphs.
Otherwise even 1-Contraction Blocker(χ) is NP-hard for H-free graphs.

Proof. Let H be a connected graph. If H is an induced subgraph of P4, then
we use Lemma 5. Now suppose that H is not an induced subgraph of P4. Then
Coloring is NP-complete for H-free graphs by Lemma 2. If H is not a clique,
then the class of H-free graphs is clique-proof. Hence, we can use Theorem 1. So
suppose H is a clique. It suffices to show NP-completeness for H = K3. We reduce
from 3-Coloring restricted to K3-free graphs. This problem is NP-complete by
Lemma 3. Let G be a K3-free graph representing an instance of 3-Coloring.
We obtain an instance of 1-Contraction Blocker(χ) as follows. Take two
copies of G and the 4-chromatic Grötzsch graph F (see [17], p. 184). Call the
resulting graph G′, i.e. G′ = 2G + F . We claim that G is 3-colorable if and only
if it is possible to contract precisely one edge of G′ so that the new graph G∗

has chromatic number χ(G′) − 1. We prove this claim via similar arguments as
used in the proof of Theorem1. 	


For the case when H is a general graph (not necessarily connected), we obtain
a complete dichotomy for Contraction Blocker(χ).

Theorem 7. Let H be a graph. If H is an induced subgraph of P4 then Con-
traction Blocker(χ) is polynomial-time solvable for H-free graphs, otherwise
it is NP-hard for H-free graphs.

Proof. If H is connected then we use Theorem 6. Suppose H is disconnected.
If H contains a component that is not an induced subgraph of P4 then we use
Theorem 6 again. Assume that each connected component of H is an induced
subgraph of P4. If 2P2 ⊆i H or 3P1 ⊆i H then we use Lemma 5 and the fact that
split graphs are (2P2, C4, C5)-free (see [8]) or Corollary 1, respectively. Hence,
H ∈ {2P1, P2 + P1}, so H ⊆i P4 and we can use again Theorem 6. 	

Completing the classification of the computational complexity of d-
Contraction Blocker(χ) for general graphs H (not necessarily connected)
is still open.

We now consider the case π = ω. Also in this case we obtain a complete
dichotomy when H is connected.
1 We can modify the gadgets for proving NP-completeness for the case d = 1 in a

straightforward way to obtain NP-completeness for every constant d ≥ 2. A similar
remark holds for other theorems. Details will be given in the journal version.



Reducing the Clique and Chromatic Number via Edge Contractions 45

Theorem 8. Let H be a connected graph. If H is an induced subgraph of P4

or of P1 + P3 then Contraction Blocker(ω) is polynomial-time solvable for
H-free graphs. Otherwise 1-Contraction Blocker(ω) is NP-hard for H-free
graphs.

Proof. Let H be a connected graph. If H contains an induced C4, use Theorem 5.
If H has an induced K4, 2P1 + P2 or butterfly, use Lemma 6. If H contains an
induced K1,3, C5, P5, bull or cobanner, use Lemma 1 with Theorem 1. So we may
assume that H is (C4, C5, P5,K1,3,K4, 2P1 + P2, bull, butterfly, cobanner)-free.

We claim that H is an induced subgraph of P4 or of P1 + P3. For contradic-
tion, assume that H �⊆i P4 and H �⊆i P1 + P3. First suppose that H contains no
cycle. Then, as H is connected, H is a tree. Because H is K1,3-free, H is a path.
Our assumption that H is not an induced subgraph of P4 or of P1 + P3 implies
that H contains an induced P5, which is not possible as H is P5-free.

Now suppose that H contains a cycle C. Then C must have exactly three ver-
tices, because H is (C4, C5, P5)-free. As H is not an induced subgraph of P1 + P3,
we find that H contains at least one vertex x not on C. As H is connected, we
may assume that x has a neighbour on C. Because H is (2P1 + P2,K4)-free, x
has exactly one neighbour on C. Let v be this neighbour. Hence, H contains an
induced P1 + P3 (consisting of x, v and the other two vertices of C). As H is not
an induced subgraph of P1 + P3 and H is connected, it follows that H contains
a vertex y /∈ V (C) ∪ {x} that is adjacent to a vertex on C or to x.

First suppose y is adjacent to a vertex of C. Then, as H is (2P1 + P2,K4)-
free, y has exactly one neighbour u in C. If u = v then H either contains an
induced claw (if x and y are non-adjacent) or an induced butterfly (if x and y are
adjacent). Since, by our assumption, this is not possible, it follows that u �= v.
Then, because H is bull-free, we deduce that x and y are adjacent. However, then
the vertices, u, v, x, y form an induced C4, which is not possible as H is C4-free.
We conclude that y is not adjacent to a vertex of C, so y must be adjacent to
x only. But then H contains an induced cobanner, a contradiction. Hence, H is
an induced subgraph of P4 or of P1 + P3 as we claimed.

If H is an induced subgraph of P4 then we use Lemma 5. If H is an induced
subgraph of P1 + P3, then we know from [12] that either G is K3-free or G
is complete multipartite. In the first case one must contract all the edges of
an H-free graph in order to decrease its clique number. Hence Contraction
Blocker(ω) is polynomial-time solvable for K3-free graphs. In the second case
H is P4-free, so we can use Lemma 5 again. 	

For general graphs H, we have one open case for Contraction Blocker(ω)
(while for d-Contraction Blocker(ω) there are many more open cases).

Theorem 9. Let H �= K3 + P1 be a graph. If H is an induced subgraph of P4

or of P1 + P3 then Contraction Blocker(ω) is polynomial-time solvable for
H-free graphs, otherwise it is NP-hard for H-free graphs.

Proof. If H is connected, use Theorem 8. Suppose H is disconnected. If H con-
tains a component that is not an induced subgraph of P4 or P1 + P3 then we use
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Theorem 8 again. Assume that each component of H is an induced subgraph of
P4 or P1 + P3. If 2P2 ⊆i H or 3P1 ⊆i H then we use Lemma 5 or Corollary 1,
respectively. Hence, H ∈ {2P1, P2 +P1,K3 +P1}. In the first two cases H ⊆i P4

and thus we can use Theorem 8, whereas we excluded the last case. 	


5 Deletion Blocker in H-Free Graphs

We adapt the proof of Theorem1 to present relations between Coloring and
1-Deletion Blocker(χ) and between Clique and 1-Deletion Blocker(ω).

Theorem 10. Let G be a clique-proof graph class. Then the following two state-
ments hold:

(i) if Coloring is NP-complete for G, then so is 1-Deletion Blocker(χ).
(ii) if Clique is NP-complete for G, then so is 1-Deletion Blocker(ω).

We notice a relation between 1-Deletion Blocker(ω) and Vertex Cover.

Lemma 8. Let G be a triangle-free graph containing at least one edge and let
k ≥ 1 be an integer. Then (G, k) is a yes-instance for 1-Deletion Blocker(ω)
if and only if (G, k) is a yes-instance for Vertex Cover.

Proof. Let G = (V,E) be a triangle-free graph with |E| ≥ 1. Thus, ω(G) = 2.
Let k ≥ 1 be an integer. First suppose that (G, k) is a yes-instance for Vertex
Cover and let V ′ be a solution, i.e. for every edge e ∈ E, there exists a vertex
v ∈ V ′ such that v is an endvertex of e. It follows that by deleting all vertices
in V ′, we obtain a graph G′ containing no edges and hence ω(G′) ≤ 1. We
conclude that (G, k) is a yes-instance for 1-Deletion Blocker(ω). Conversely,
suppose that (G, k) is a yes-instance for 1-Deletion Blocker(ω) and let V ’ be
a solution, i.e. the graph obtained form G by deleting the vertices in V ′ satisfies
ω(G′) ≤ 1. But this implies that G′ contains no edges and thus V ′ is a vertex
cover of size at most k. So (G, k) is a yes-instance for Vertex Cover. 	

Corollary 2. 1-Deletion Blocker(ω) is NP-complete for the class of
(C3, C4)-free graphs.

Proof. This follows immediately from Lemma 8 and the fact that Vertex
Cover is NP-complete for (C3, C4)-free graphs (see [14]). 	


We are now ready to prove the first main result of this section.

Theorem 11. Let H be a connected graph. If H is an induced subgraph of P4,
then Deletion Blocker(ω) is polynomial-time solvable on H-free graphs. Oth-
erwise 1-Deletion Blocker(ω) is NP-hard for H-free graphs.

Proof. If H contains a cycle Cr, r ∈ {3, 4}, we use Corollary 2. If H contains
a cycle Cr, ≥ 5, we use Lemma 1 combined with Theorem 10. Hence, we may
assume now that H is a tree. If H contains an induced K3,1, we use Lemma 1
combined with Theorem 10. Thus, H is a path. If this path has length at most 4,
we use Lemma 5. Otherwise, we use Lemma 1 combined with Theorem 10. This
completes the proof. 	
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If H is disconnected, finding such a dichotomy is open. In particular, the cases
when H ∈ {2P2, 3P1} are unknown. Moreover, in contrast to the Contraction
Blocker(ω) problem, Deletion Blocker(ω) is polynomial-time solvable on
cobipartite graphs [6], which form a subclass of 3P1-free graphs. We now focus
on π = χ. The proof of Theorem6 can easily be adapted to get the following.

Theorem 12. Let H be a connected graph. If H is an induced subgraph of P4,
then Deletion Blocker(χ) is polynomial-time solvable on H-free graphs. Oth-
erwise, 1-Deletion Blocker(χ) is NP-hard for the class of H-free graphs.

If H is disconnected, it seems much harder to get a dichotomy even when d
is part of the input. In contrast to the case of ω, we can prove that Deletion
Blocker(χ) is polynomial-time solvable for 3P1-free graphs.

Theorem 13. Deletion Blocker(χ) can be solved in polynomial time for the
class of 3P1-free graphs.

Proof. Let G = (V,E) be a 3P1-free graph with |V | = n and let k ≥ 1 be an
integer. Consider an instance (G, k, d) of Deletion Blocker(χ). We proceed
as follows. First consider an optimal coloring of G, which can be obtained in
polynomial time [10]. Since G is 3P1-free, the size of each color class is at most
2. Also the number of color classes of size 1 is the same for every optimal coloring
of G. Let � be this number. Hence, there are n−�

2 color classes of size 2 and χ(G) =
� + n−�

2 . Now (G, k, d) is a yes-instance if and only if we can obtain a graph G′

from G by deleting at most k vertices such that χ(G′) ≤ χ(G)−d = �+ n−�
2 −d.

Since G′ is also 3P1-free, the color classes in any optimal coloring of G′ have size
at most 2 and thus, G′ contains at most 2(� + n−�

2 − d) = n + � − 2d vertices.
In other words, we need to delete at least 2d − � vertices from G in order to get
such a graph G′. So (G, k, d) is clearly a no-instance if k < 2d − �. Next we will
show that if k ≥ 2d − �, then (G, k, d) is a yes-instance and this will complete
the proof. If d ≤ �, we delete d vertices representing color classes of size 1. If
d > �, we delete the � vertices representing the color classes of size 1 and 2(d− �)
vertices of d − � color classes of size 2. This way, we clearly obtain a graph G′

whose chromatic number is exactly χ(G) − d. 	


6 Conclusions

We considered the problems (d-)Contraction Blocker(π) and (d-)Deletion
Blocker(π), where π ∈ {χ, ω}. We mainly focused on H-free graphs and ana-
lyzed the computational complexity of these problems. We obtained a complete
dichotomy for both problems and both when d is fixed and when d is part of
the input, if H is a connected graph. If H is an arbitrary graph that is not
necessarily connected, further research is needed: What is the complexity of the
problems d-Contraction Blocker(χ) and d-Contraction Blocker(ω) for
H-free graphs when H is disconnected? What is the complexity of Contrac-
tion Blocker(ω) for (K3 + P1)-free graphs? What are the complexities of



48 D. Paulusma et al.

Table 1. Results for subclasses of perfect graphs closed under edge contraction (apart
from the classes of bipartite and perfect graphs), where NP-c stands for NP-complete
and P for polynomial-time solvable; results marked with a ∗ correspond to results of
this paper; the unmarked results for perfect graphs follow directly from other results.

Contraction Blocker(π) Deletion Blocker(π)

Class π = α π = ω(= χ) π = α π = ω(= χ)

Bipartite ? P (trivial) P [6] P∗

Cobipartite d = 1: NP-c [7] NP-c∗; d fixed: P [7] P∗ P [6]

Chordal ? d = 1: NP-c∗ ? d = 1: NP-c∗

Interval ? P [7] ? P [7]

Split NP-c; d fixed: P [7] NP-c; d fixed: P [7] NP-c; d fixed: P [6] NP-c; d fixed: P [6]

Cograph P [7] P [7] P [7] P [7]

C4-free Perfect ? d = 1: NP-c∗ ? ?

Perfect d = 1: NP-c d = 1: NP-c NP-c; d fixed: ? d = 1: NP-c

(d-)Deletion Blocker(χ) and (d-)Deletion Blocker(ω) for H-free graphs
when H is disconnected? In particular, what is the complexity of d-Deletion
Blocker(ω) for 2P2-free graphs and 3P1-free graphs?

Besides considering the parameters χ and ω, we may of course choose any
other graph parameter π, such as π = α, where α is the independence num-
ber (the size of a largest independent set in a graph). Note that d-Deletion
Blocker(ω) in a graph G is equivalent to d-Deletion Blocker(α) in its
complement G. Studying the complexity of d-Contraction Blocker(α) and
d-Deletion Blocker(α) for H-free graphs is left as future research.

In addition to our results on H-free graphs, we also obtained some new
results for subclasses of perfect graphs. We used these as auxiliary results for
our classifications but also in order to continue a line of research started in
[7]. Table 1 gives an overview of the known results and the new results of this
paper for such classes of graphs. Notice that χ = ω holds by definition of a per-
fect graph. In the table we also added results for Contraction Blocker(α)
and Deletion Blocker(α), since these problems have been studied in [6,7]
and since some of our new results immediately imply corresponding results for
the case π = α. In particular, the polynomial-time solvability of d-Deletion
Blocker(ω) for bipartite graphs (and therefore d-Deletion Blocker(α) in
cobipartite graphs) follows from Corollary 2 and the fact that Vertex Cover
is polynomial-time solvable in bipartite graphs. The proof that shows that Con-
traction Blocker(ω) is polynomial-time solvable for interval graphs can eas-
ily be adapted to show that Deletion Blocker(ω) is polynomial-time solvable
for interval graphs.

As can be seen from Table 1 there are several open cases (marked by “?”).
Some of these open cases form challenging open problems related to interval and
chordal graphs, namely what is the complexity of Contraction Blocker(α)
and d-Contraction Blocker(α) for interval graphs and for chordal graphs?
What are the complexities of the problems Deletion Blocker(α) and d-
Deletion Blocker(α) for interval graphs and for chordal graphs?
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17. West, D.B.: Introduction to Graph Theory. Prentice-Hall, Upper Saddle River
(1996)



The Parity Hamiltonian Cycle Problem
in Directed Graphs

Hiroshi Nishiyama(B), Yukiko Yamauchi, Shuji Kijima,
and Masafumi Yamashita

Graduate School of Information Science and Electrical Engineering,
Kyushu University, Fukuoka, Japan

{hiroshi.nishiyama,yamauchi,kijima,mak}@inf.kyushu-u.ac.jp

Abstract. This paper investigates a variant of the Hamiltonian cycle,
the parity Hamiltonian cycle (PHC) problem: a PHC in a directed graph
is a closed walk (possibly using an arc more than once) which visits
every vertex odd number of times. Nishiyama et al. (2015) investigated
the undirected version of the PHC problem, and gave a simple charac-
terization that a connected undirected graph has a PHC if and only if it
has even order or it is non-bipartite. This paper gives a complete char-
acterization when a directed graph has a PHC, and shows that the PHC
problem in a directed graph is solved in polynomial time. The character-
ization, unlike with the undirected case, is described by a linear system
over GF(2).

Keywords: Hamiltonian cycle · T -joins · Linear system over GF(2)

1 Introduction

It is said that the graph theory has its origin in the seven bridges of Königsberg
settled by Leonhard Euler [2]. An Eulerian cycle, named after him in modern
terminology, is a cycle which uses every edge exactly once, and it is now well-
known that a connected undirected graph has an Eulerian cycle if and only
if every vertex has an even degree. A Hamiltonian cycle (HC), a similar but
completely different notion, is a cycle which visits every vertex exactly once.
In contrast to the clear characterization of an Eulerian graph, the question if
a given graph has a Hamiltonian cycle is a celebrated NP-complete problem
due to Karp [11]. The HC problem is widely interested in computer science or
mathematics, and has been approached with several variants or related problems.
The traveling salesman problem (TSP) in a graph, which is NP-hard since the HC
problem is so, is regarded as a relaxed version of the HC problem, in which the
condition of visiting number on each vertex is relaxed to more than once. Another
example may be a two-factor (in cubic graphs), which relaxes the condition of
the connectivity of an HC, but a two-factor must contain each vertex exactly
once (cf. [3,4,8,9]).

It could be a natural idea for the HC problem to modify the condition on the
visiting number keeping the connectivity condition. The parity Hamiltonian cycle
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 50–58, 2016.
DOI: 10.1007/978-3-319-45587-7 5
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(PHC) problem, which this paper is involved in, is a variant of the Hamiltonian
cycle problem: a PHC is a closed walk (possibly using each edge more than
once) which visits every vertex an odd number of times. Note that the PHC
problem allows natural variations, directed or undirected, cycle or path, so does
the HC. Brigham et al. [5] showed that any connected undirected graph has a
parity Hamiltonian path or cycle, by giving an algorithm based on the depth first
search. Thirty years later, Nishiyama et al. [14] investigated the PHC problem
in undirected graphs, and gave a complete characterization that a connected
undirected graph has a PHC if and only if it has an even order or it is non-
bipartite. They also showed that any graph satisfying the condition admits a
PHC which uses each edge at most four times, by presenting an algorithm to
find a PHC using T -joins. On the other hand, the PHC problem becomes NP-
complete if each edge is restricted to be used in a PHC at most three times.

This paper investigates a directed version of the PHC problem. We give two
characterizations when a directed graph admits a PHC. The characterizations,
unlike with the undirected case, are described by linear systems over GF(2).
Our characterizations directly imply that the PHC problem in a directed graph
is solved in polynomial time. We then give a faster algorithm to recognize if a
directed graph has a PHC, which runs in linear time without (explicitly) solving
the linear system over GF(2). In the linear time algorithm, T -joins play a key
role. We also discuss a problem extended to GF(p), in Sect. 4.

Notice that the condition that an HC visits each vertex 1 ∈ R times is
replaced by 1 ∈ GF(2) times in a PHC. Modification of the field is found in group-
labeled graphs or nowhere-zero flows [10,12]. It was recently shown that the
extension complexity of the TSP is exponential [6,7,17], while it is an interesting
question if the PHC problem has an efficient (extended) formulation over GF(2).

2 Definitions and Notations

This section introduces definitions and notations. A directed graph (digraph for
short) D = (V,A) is given by a vertex set V and an arc set A (sometimes we
use V (D) and A(D) to clarify the graph which we are focusing on). Let δ+(v)
(resp. δ−(v)) for v ∈ V denote the set of outgoing (resp. incoming) arcs; that
is, arcs that leave v (resp. enter v). The sizes |δ+(v)| and |δ−(v)| are called the
out-degree and the in-degree of v, respectively.

A directed walk is a sequence of vertices and arcs v0a1 · · · a�v�, where ai =
(vi−1, vi) ∈ A for each i (1 ≤ i ≤ �). A directed walk is closed if v� = v0. A
directed path is a directed walk which contains each vertex at most once except
the start vertex v0 and the end vertex v�. A directed closed path is called a
directed cycle. A digraph D is strongly connected if there exists a directed path
from u to v for any pair of vertices u, v ∈ V (D). For convenience, we often
represent a directed closed walk by an integer vector x̃ ∈ Z

A
≥0, in which x̃(a)

denotes the number of occurrences of arc a in the closed walk.
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A cycle basis of D is a set of directed cycles {C1, C2, . . . , Ck} which satisfies
conditions: (i) Their incidence vectors c1, c2, . . . , ck ∈ {0, 1}A are linearly inde-
pendent over GF(2), and (ii) the incidence vector of every cycle, including those
are not directed, can be represented as a linear combination of c1, c2, . . . , ck. We
call each cycle Ci a fundamental cycle. It is known that the size k of cycle basis
is equal to |A(D)| − |V (D)| + 1 [1], and a cycle basis of a digraph can be found
in linear time [1,16].

Parity Hamiltonian Cycle Problem. A parity Hamiltonian cycle (PHC for
short) of a digraph D is a directed closed walk in which each vertex appears odd
number of times except the starting vertex. In other words, a PHC is a connected
closed walk which satisfies a parity condition:

∑
a∈δ+(v) x̃(a) ≡ ∑

a∈δ−(v) x̃(a) ≡
1 (mod 2) for each v ∈ V . Note that a PHC may use each arc more than once,
unlike with HC’s. The parity Hamiltonian cycle problem is a decision problem
to decide whether an input graph has a PHC. Note that only strongly con-
nected digraphs have PHC’s, thus we assume that the input digraph is strongly
connected in what follows.

3 Main Results

In this section we explain our main result. In Sect. 3.1 we show a characterization
of digraphs which have PHC’s, and in Sect. 3.2 we give an algorithm for the PHC
problem and one for finding a PHC, and discuss their time complexities.

3.1 Characterization

To state our main result, we define two matrices M and Q. For a digraph D, let
M+ = [m+

va] andM− = [m−
va] ∈ {0, 1}|V |×|A| be matrices respectively defined by

m+
va =

{
1 if a ∈ δ+(v),
0 otherwise, and m−

va =
{

1 if a ∈ δ−(v),
0 otherwise.

Thus the parity condition of a PHC is written as M+x̃ ≡ M−x̃ ≡ 1 (mod 2).
We define a matrix M over {0, 1}2|V |×|A| by

M =
[

M+

M−

]

.

Let {C1, C2, . . . , Ck} (k = |A| − |V | + 1) be a cycle basis of D and let
c1, c1, . . . , ck ∈ {0, 1}A their incidence vectors. Let R = [c1, c1, . . . , ck]. We
define a matrix Q ∈ {0, 1}|V |×k by

Q = M+R. (1)

Remark that Q = M−R holds, since for each i, the column vector qi ∈ {0, 1}V

of Q is a vector such that qi(v) = 1 if and only if Ci contains v ∈ V .
Now we are ready to state our main result.



The Parity Hamiltonian Cycle Problem in Directed Graphs 53

Theorem 1. The following three conditions are equivalent:

(a) A strongly connected digraph D = (V,A) has a PHC,
(b) Mx ≡ 1 (mod 2) has a solution x ∈ {0, 1}A,
(c) Qβ ≡ 1 (mod 2) has a solution β ∈ {0, 1}k,

where k = |A| − |V | + 1 and 1 denotes the all 1 vector.

Proof. The proofs of (c) ⇒ (a) and (a) ⇒ (b) are easy, while the other way (b)
⇒ (a) and (a) ⇒ (c), as well as (b) ⇒ (c) directly are not trivial. First we show
(a) ⇔ (b), then we show (a) ⇔ (c).

(a) ⇒ (b). Let x̃ ∈ Z
A
≥0 be a vector in which x̃(a) denotes the number of uses

of a ∈ A in a PHC. By the parity condition of PHC, we have M+x̃ ≡ M−x̃ ≡ 1
(mod 2). Then let x ∈ {0, 1}A be defined by x ≡ x̃ (mod 2), we have M+x ≡
M−x ≡ 1 (mod 2), and thus Mx ≡ 1 (mod 2).

(b) ⇒ (a). Suppose that x ∈ {0, 1}A is a solution of Mx ≡ 1 (mod 2), then we
explain how to construct a PHC. Remark that a graph indicated by x satisfies
the parity condition of the visiting number on each vertex, but may not satisfy
the Eulerian condition, meaning that

∑
a∈δ+(v) x(a) =

∑
a∈δ−(v) x(a) may not

hold for some vertex v, and connectivity.
First, we construct x ′ ∈ Z

A
≥0 satisfying both of the parity condition Mx ′ ≡ 1

(mod 2) and the Eulerian condition
∑

a∈δ+(v) x′(a) =
∑

a∈δ−(v) x′(a) for each
v ∈ V . Let φ(v) =

∑
a∈δ+(v) x(a) − ∑

a∈δ−(v) x(a) for each v ∈ V , denoting
the difference between out-degree and in-degree of v in x. Then x is Eulerian
if and only if φ(v) = 0 for all v. Notice that

∑
v∈V φ(v) = 0 holds since the

total of out-degrees is equal to the total of in-degrees. We also remark that
φ(v) is even for each v ∈ V , since Mx ≡ 1 (mod 2) implies that both of out-
degree (

∑
a∈δ+(v) x(a)) and in-degree (

∑
a∈δ−(v) x(a)) are odd. Then we apply

the following Procedure 1 to x:

Procedure 1

1. Find u, v ∈ V such that φ(u) < 0 and φ(v) > 0.
2. Find a directed path P from u to v (P always exists since D is strongly

connected).
3. x(a) := x(a) + 2 for each a ∈ A(P ).

Procedure 1 preserves the parity condition Mx ≡ 1 (mod 2), and decreases
the value of

∑
v∈V |φ(v)| (by four). By recursively applying Procedure 1 until∑

v∈V |φ(v)| is zero, we obtain a desired closed walk x ′.
If x ′ suggests a connected walk, we obtain a PHC. Suppose that x ′ is not

connected. Then we apply the following Procedure 2 to x′:

Procedure 2

1. Find u, v ∈ V which are in distinct connected components.
2. Find directed paths P from u to v and P ′ from v to u.
3. x′(a) := x′(a) + 2 for each a ∈ A(P ) ∪ A(P ′).
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Procedure 2 preserves the parity condition Mx ≡ 1 (mod 2) and the
Eulerian condition, and decreases the number of connected components. By
recursively applying Procedure 2, we obtain a connected walk, which is in fact
a PHC.

(c) ⇒ (a). We construct a PHC from the solution β ∈ {0, 1}k. Let

αi =
{

1 if βi = 1,
2 if βi = 0,

(2)

and set x̃ = Rα. Notice that x̃ indicates a closed walk since it is a sum of cycles.
We claim that the closed walk indicated by x̃, say γ, is a PHC. The walk γ is
connected since γ uses all edges of D at least once, and D is strongly connected.
Then, we have

M+x̃ = M+Rα = Qα ≡ Qβ ≡ 1 (mod 2),

where the second last congruence comes from (2) and the last congruence follows
from the assumption that β is a solution of Qβ ≡ 1 (mod 2). Hence, γ satisfies
the parity condition, and thus γ is a PHC.

(a) ⇒ (c). To show the necessity we show the following lemma.

Lemma 2. Let γ be any closed walk of D, and let x̃ ∈ Z
A
≥0 be a vector in which

x̃(a) denotes the number of uses of a ∈ A in γ. Then Rβ ≡ x̃ (mod 2) has a
solution β ∈ {0, 1}k.

Proof. Since γ is an Eulerian walk in a multi-digraph, meaning that γ consists
of simple cycles, x̃ is represented by

x̃ =
�∑

j=1

αjγj , (3)

with appropriate positive integer �, where each αj is a nonnegative integer and
each γj ∈ {0, 1}A is the incidence vector of a directed cycle of D. Remark that
each γj is represented by a linear combination of incidence vectors of fundamen-
tal cycles c1, . . . , ck, such that γj ≡ ∑k

i=1 β′
ijci (mod 2) for some 0-1 coefficients

β′
ij for each j. Let βi ∈ {0, 1} be defined by βi ≡ ∑�

j=1 β′
ijαj (mod 2), then

x̃ ≡
�∑

j=1

αj

k∑

i=1

β′
ijci ≡

k∑

i=1

βici (mod 2)

holds. Notice that
∑k

i=1 βici = Rβ, then we obtain the claim. �	
Suppose that γ is a PHC of D, and that x̃ ∈ Z

A
≥0 is a vector in which x̃(a)

denotes the number of uses of a ∈ A in γ. Since a PHC is a closed walk, Lemma 2
implies that there is a vector β ∈ {0, 1}k such that x̃ ≡ Rβ (mod 2). Then

Qβ = M+Rβ ≡ M+x̃ ≡ 1 (mod 2),

where the last congruence comes from the fact that x̃ indicates a PHC. �	
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3.2 Recognition in Linear Time

By Theorem 1, we can decide whether or not a given directed graph D has a
PHC in polynomial time, by solving a linear system Mx ≡ 1 (mod 2) or Qβ ≡ 1
(mod 2), which costs O(|V ||A|2) time. This section improves the time complexity
for the query to O(|A|).

Given an undirected graph G = (V,E) and T ⊆ V , a T -join of G is an edge
set J such that every vertex in T has odd degree and every other vertex has even
degree in the subgraph induced by J . There exists a T -join of G if and only if
|C ∩ T | is even in each component C of G [15]. Also, a T -join of any undirected
graph can be found in linear time [13].

For a digraph D = (V,A), let BG(D) be an undirected bipartite graph
(V +, V −;E), where V + and V − are the copies of V and E = {u+v− | (u, v) ∈
A}. One can easily see that the map is bijective. Observe that M of D coincides
with the incidence matrix of BG(D), and hence |E| = |A|.
Lemma 3. Mx ≡ 1 (mod 2) has a solution if and only if BG(D) =
(V +, V −;E) has a (V + ∪ V −)-join.

Proof. Let F be any subset of E, and let xF ∈ {0, 1}E be its incidence vector.
Since M is the incidence matrix of BG(D), the v-th entry of the vector MxF ,
(MxF )v, denotes the degree of v in xF . Let x ∈ {0, 1}E be a solution of Mx ≡ 1
(mod 2). Then x indicates a subgraph of BG(D) in which every vertex has odd
degree, which is a (V + ∪ V −)-join of BG(D). Conversely, if xF ∈ {0, 1}E is the
incidence vector of a (V + ∪ V −)-join F , xF satisfies MxF ≡ 1 (mod 2). �	

Since BG(D) and a T -join are computed in linear time, we see the following.

Theorem 4. The PHC problem in digraphs is solved in linear time. �	
Finally we remark the time complexity to find a PHC of a given directed

graph D. The proof of Lemma 3 implies that we can obtain a solution x ∈ {0, 1}A

of Mx ≡ 1 (mod 2) by finding a (V + ∪ V −)-join of BG(D). Once we obtain a
solution x , we can construct a PHC according to the proof of Theorem 3.1 for
(b) ⇒ (a). The algorithm is summarized in Algorithm 3.1.

It takes O(|A|) time in line 1. In line 2, we repeatedly find paths, each path
is found in O(|A|) time and repeated O(|A|) time thus O(|A|2) time in total. In
line 3, we repeatedly find pairs of paths, each is done in O(|A|) and repeated
O(|V |) time, thus O(|V ||A|) time in total. Consequently the time complexity of
Algorithm 3.1 is O(|A|2).

4 Extension to GF(p)

This section is concerned with the following problem, generalization of the
PHC problem: Given a digraph D and an integer p and an integer vector
r ∈ {0, 1, . . . , p − 1}A, decide if there exists a closed walk which visits each
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Algorithm 3.1 Finding a PHC in a digraph.
1: Find a (V + ∪ V −)-join J of BG(D) and x ← χJ

2: Repeat Procedure 1 until x satisfies the Eulerian condition
3: Repeat Procedure 2 until x becomes connected
4: return x

vertex v r(v) times modulo p. In other words, the problem asks to find a con-
nected closed walk that satisfies the condition M+x̃ ≡ M−x̃ ≡ r (mod p),
where x̃ ∈ Z

A
≥0 is a vector in which x̃(a) denotes the number of uses of arc a

in the closed walk. One can see that this is the PHC problem when p = 2 and
r = 1. We give a characterization similar to Theorem 1 (b).

Theorem 5. A strongly connected digraph D has a connected closed walk which
satisfies M+x̃ ≡ M−x̃ ≡ r (mod p) if and only if M+x ≡ M−x ≡ r (mod p)
has a solution x ∈ {0, . . . , p − 1}A.

Proof. The proof is similar to (a) ⇔ (b) of Theorem 1.

Necessity. Let x̃ ∈ Z
A
≥0 be a vector in which x̃(a) denotes the number of

uses of a ∈ A in a connected closed walk which satisfies M+x̃ ≡ M−x̃ ≡ r
(mod p). Then let x ∈ {0, . . . , p − 1}A be defined by x ≡ x̃ (mod p), we have
M+x ≡ M−x ≡ r (mod p).

Sufficiency. Suppose that x ∈ {0, . . . , p−1}A is a solution of M+x ≡ M−x ≡ r
(mod p), then we explain how to construct a closed walk which satisfies M+x̃ ≡
M−x̃ ≡ r (mod p). Remark that a graph indicated by x may not satisfy the
Eulerian condition, meaning that

∑
a∈δ+(v) x(a) =

∑
a∈δ−(v) x(a) may not hold

for some vertex v.
First, we construct x ′ ∈ Z

A
≥0 satisfying the condition M+x ′ ≡ M−x ′ ≡ r

(mod p) and the Eulerian condition
∑

a∈δ+(v) x′(a) =
∑

a∈δ−(v) x′(a) for each
v ∈ V . Let φ(v) =

∑
a∈δ+(v) x(a) − ∑

a∈δ−(v) x(a) for each v ∈ V , denoting
the difference between out-degree and in-degree of v in x. Then x is Eulerian if
and only if φ(v) = 0 for all v. Notice that

∑
v∈V φ(v) = 0 holds since the total

of out-degrees is equal to the total of in-degrees. We also remark that φ(v) is a
multiple of p for each v ∈ V , since M+x ≡ M−x ≡ r (mod p) implies that both
of out-degree (

∑
a∈δ+(v) x(a)) and in-degree (

∑
a∈δ−(v) x(a)) are r(v) modulo p.

Then we apply the following Procedure 1’ to x:

Procedure 1’

1. Find u, v ∈ V such that φ(u) < 0 and φ(v) > 0.
2. Find a directed path P from u to v (P always exists since D is strongly

connected).
3. x(a) := x(a) + p for each a ∈ A(P ).

Procedure 1’ preserves the condition M+x ≡ M−x ≡ r (mod p), and
decreases the value of

∑
v∈V |φ(v)| (by 2p). By recursively applying Procedure

1’ until
∑

v∈V |φ(v)| is zero, we obtain a desired closed walk x ′.
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Fig. 1. An undirected graph which has a PHC but does not have a PHC orientation.
The arrow indicates a PHC.

If x ′ suggests a connected walk, we obtain a closed walk which satisfies
M+x̃ ≡ M−x̃ ≡ r (mod p). Suppose that x ′ is not connected. Then we apply
the following Procedure 2’ to x′:

Procedure 2’

1. Find u, v ∈ V which are in distinct connected components.
2. Find directed paths P from u to v and P ′ from v to u.
3. x′(a) := x′(a) + p for each a ∈ A(P ) ∪ A(P ′).

Procedure 2’ preserves the condition M+x ≡ M−x ≡ r (mod p) and the
Eulerian condition, and decreases the number of connected components. By
recursively applying Procedure 2’, we obtain a connected closed walk which
satisfies M+x̃ ≡ M−x̃ ≡ r (mod p). �	

If p is prime or power of a prime, the linear system M+x ≡ M−x ≡ r
(mod p) is solved over GF(p), and we obtain a desired closed walk in polynomial
time. Otherwise GF(p) is not a field, and we need an extra observation to solve
the equation efficiently.

5 Concluding Remarks

This paper gave two characterizations when a directed graph has a PHC. We have
also shown that the characterization by M is generalized to problems over GF(p).

The PHC orientation problem is a problem to decide if a given undirected
graph has an orientation which has a PHC. Figure 1 shows an example of an
undirected graph which has a PHC, but does not admit a PHC orientation. It
is open if the PHC orientation problem is solved in polynomial time. Another
interesting question is if a PHC in a directed graph has an efficient (extended)
formulation. Notice that minimizing the length of a PHC is NP-hard, since a
PHC with length n is exactly a Hamiltonian cycle. A further connection between
PHC and HC is a future work.
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Abstract. The subject of this work is the study of the Lovász-Schrijver
PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the sta-
ble set polytope STAB(G) of a graph G. We are interested in the prob-
lem of characterizing the graphs G for which STAB(G) is achieved in one
iteration of the LS+-operator, called LS+-perfect graphs, and to find a
polyhedral relaxation of STAB(G) that coincides with LS+(ESTAB(G))
and STAB(G) if and only if G is LS+-perfect. An according conjecture
has been recently formulated (LS+-Perfect Graph Conjecture); here we
verify it for the well-studied class of claw-free graphs.

1 Introduction

The context of this work is the study of the stable set polytope, some of its linear
and semi-definite relaxations, and graph classes for which certain relaxations are
tight. Our focus lies on those graphs where a single application of the Lovász-
Schrijver positive semi-definite operator introduced in [22] to the edge relaxation
yields the stable set polytope.

The stable set polytope STAB(G) of a graph G = (V,E) is defined as the
convex hull of the incidence vectors of all stable sets of G (in a stable set all
nodes are mutually nonadjacent). Two canonical relaxations of STAB(G) are
the edge constraint stable set polytope

ESTAB(G) = {x ∈ [0, 1]V : xi + xj ≤ 1, ij ∈ E},

and the clique constraint stable set polytope

QSTAB(G) = {x ∈ [0, 1]V : x(Q) =
∑

i∈Q

xi ≤ 1, Q ⊆ V clique}

(in a clique all nodes are mutually adjacent, hence a clique and a stable set share
at most one node). We have STAB(G) ⊆ QSTAB(G) ⊆ ESTAB(G) for any
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graph, where STAB(G) equals ESTAB(G) for bipartite graphs, and QSTAB(G)
for perfect graphs only [5].

According to a famous characterization achieved by Chudnovsky et al. [3],
perfect graphs are precisely the graphs without chordless cycles C2k+1 with k ≥
2, termed odd holes, or their complements, the odd antiholes C2k+1. This shows
that odd holes and odd antiholes are the only minimally imperfect graphs.

Perfect graphs turned out to be an interesting and important class with a
rich structure and a nice algorithmic behavior [18]. However, solving the stable
set problem for a perfect graph G by maximizing over QSTAB(G) does not work
directly [17], but only via a detour involving a geometric representation of graphs
[21] and a semi-definite relaxation TH(G) introduced in [18].

For some N ∈ Z+, an orthonormal representation of a graph G = (V,E)
is a sequence (ui : i ∈ V ) of |V | unit-length vectors ui ∈ RN , such that
ui

Tuj = 0 for all ij �∈ E. For any orthonormal representation of G and any
additional unit-length vector c ∈ RN , the orthonormal representation constraint
is

∑
i∈V (cTui)2xi ≤ 1. TH(G) denotes the convex set of all vectors x ∈ R|V |

+

satisfying all orthonormal representation constraints for G. For any graph G,

STAB(G) ⊆ TH(G) ⊆ QSTAB(G)

holds and approximating a linear objective function over TH(G) can be done
with arbitrary precision in polynomial time [18]. Most notably, the same authors
proved a beautiful characterization of perfect graphs:

G is perfect ⇔ TH(G) = STAB(G) ⇔ TH(G) = QSTAB(G). (1)

For all imperfect graphs, STAB(G) does not coincide with any of the above relax-
ations. It is, thus, natural to study further relaxations and to combinatorially
characterize those graphs where STAB(G) equals one of them.

Linear relaxations and related graphs. A natural generalization of the clique
constraints are rank constraints x(G′) =

∑
i∈G′ xi ≤ α(G′) associated with

arbitrary induced subgraphs G′ ⊆ G. By the choice of the right hand side α(G′),
denoting the size of a largest stable set in G′, rank constraints are valid for
STAB(G). A graph G is called rank-perfect by [32] if and only if STAB(G) is
described by rank constraints only.

By definition, rank-perfect graphs include all perfect graphs. By restricting
the facet set to rank constraints associated with certain subgraphs, several well-
known graph classes are defined, e.g., near-perfect graphs [29] where only rank
constraints associated with cliques and the whole graph are allowed, or t-perfect
[5] and h-perfect graphs [18] where rank constraints associated with edges, tri-
angles and odd holes resp. cliques of arbitrary size and odd holes suffice.

As common generalization of perfect, t-perfect, and h-perfect graphs, the
class of a-perfect graphs was introduced in [33] as graphs G where STAB(G) is
given by rank constraints associated with antiwebs. An antiweb Ak

n is a graph
with n nodes 0, . . . , n−1 and edges ij if and only if k ≤ |i−j| ≤ n−k and i �= j.
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Antiwebs include all complete graphs Kn = A1
n, odd holes C2k+1 = Ak

2k+1, and
their complements C2k+1 = A2

2k+1. Antiwebs are a-perfect by [33].
A more general type of inequalities is obtained from complete joins of anti-

webs, called joined antiweb constraints

∑

i≤k

1
α(Ai)

x(Ai) + x(Q) ≤ 1,

associated with the join of some antiwebs A1, . . . , Ak and a clique Q. We denote
the linear relaxation of STAB(G) obtained by all joined antiweb constraints by
ASTAB∗(G). By construction, we see that

STAB(G) ⊆ ASTAB∗(G) ⊆ QSTAB(G) ⊆ ESTAB(G).

In [6], a graph G is called joined a-perfect if and only if STAB(G) coincides with
ASTAB∗(G). Besides all a-perfect graphs, further examples of joined a-perfect
graphs are near-bipartite graphs (where the non-neighbors of every node induce
a bipartite graph) due to [30].

A semi-definite relaxation and LS+-perfect graphs. In the early nineties, Lovász
and Schrijver introduced the PSD-operator LS+ (called N+ in [22]) which,
applied to ESTAB(G), generates a positive semi-definite relaxation of STAB(G)
stronger than TH(G) (see Sect. 2.1 for details). In order to simplify the notation
we write LS+(G) = LS+(ESTAB(G)). In [22] it is shown that

STAB(G) ⊆ LS+(G) ⊆ ASTAB∗(G).

As in the case of perfect graphs, the stable set problem can be solved in polyno-
mial time for the class of graphs for which LS+(G) = STAB(G). These graphs
are called LS+-perfect, and all other graphs LS+-imperfect (note that they are
also called N+-(im)perfect, see e.g. [1]). In [1], the authors look for a charac-
terization of LS+-perfect graphs similar to the characterization (1) for perfect
graphs. More precisely, they intend to find an appropriate polyhedral relaxation
P (G) of STAB(G) such that

G is LS+-perfect ⇔ LS+(G) = STAB(G) ⇔ LS+(G) = P (G). (2)

A conjecture has been recently proposed in [2], which can be equivalently refor-
mulated as follows [12]:

Conjecture 1 (LS+-Perfect Graph Conjecture). A graph G is LS+-perfect if and
only if LS+(G) = ASTAB∗(G).

The results of Lovász and Schrijver [22] prove that joined a-perfect graphs
are LS+-perfect, thus, the conjecture states that LS+-perfect graphs coincide
with joined a-perfect graphs and that ASTAB∗(G) is the studied polyhedral
relaxation of STAB(G) playing the role of P (G) in (2).
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Fig. 1. The graphs GLT (on the left) and GEMN (on the right).

In addition, every subgraph of an LS+-perfect graph is also LS+-perfect.
This motivates the definition of minimally LS+-imperfect graphs as these LS+-
imperfect graphs whose proper induced subgraphs are all LS+-perfect. The two
smallest such graphs, found by [10,20], are depicted in Fig. 1.

Conjecture 1 has been already verified for near-perfect graphs by [1], for fs-
perfect graphs (where the only facet-defining subgraphs are cliques and the graph
itself) by [2], for webs (the complements W k

n = A
k

n of antiwebs) by [11] and for
line graphs (obtained by turning adjacent edges of a root graph into adjacent
nodes of the line graph) by [12], see Sect. 2.1 for details.

The LS+-Perfect Graph Conjecture for claw-free graphs. The aim of this con-
tribution is to verify Conjecture 1 for a well-studied graph class containing all
webs, all line graphs and the complements of near-bipartite graphs: the class of
claw-free graphs (i.e., the graphs not containing the complete join of a single
node and a stable set of size three).

Claw-free graphs attracted much attention due to their seemingly asymmetric
behavior w.r.t. the stable set problem. On the one hand, the first combinatorial
algorithms to solve the problem in polynomial time for claw-free graphs [23,28]
date back to 1980. Therefore, the polynomial equivalence of optimization and
separation due to [18] implies that it is possible to optimize over the stable
set polytope of a claw-free graph in polynomial time. On the other hand, the
problem of characterizing the stable set polytope of claw-free graphs in terms
of an explicit description by means of a facet-defining system, originally posed
in [18], was open for several decades. This motivated the study of claw-free graphs
and its different subclasses, that finally answered this long-standing problem only
recently (see Sect. 2.2 for details).

To verify the conjecture for claw-free graphs, we need not only to rely on
structural results and complete facet-descriptions of their stable set polytope, but
also to ensure that all facet-inducing subgraphs different from cliques, antiwebs
or their complete joins are LS+-imperfect. A graph G is said to be facet-defining
if STAB(G) has a full-support facet.

The paper is organized as follows: In Sect. 2, we present the State-of-the-Art
on LS+-perfect graphs (including families of LS+-imperfect graphs needed for
the subsequent proofs) and on claw-free graphs, their relevant subclasses and
the results concerning the facet-description of their stable set polytopes from
the literature. In Sect. 4, we verify, relying on the previously presented results,
Conjecture 1 for the studied subclasses of claw-free graphs. As a conclusion, we
obtain as our main result:
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Theorem 1. The LS+-Perfect Graph Conjecture is true for all claw-free graphs.

We close with some further remarks and an outlook to future lines of research.

2 State-of-the-Art

2.1 About LS+-Perfect Graphs

We denote by e0, e1, . . . , en the vectors of the canonical basis of Rn+1 (where
the first coordinate is indexed zero), 1 the vector with all components equal to 1
and Sn

+ the convex cone of (n×n) symmetric and positive semi-definite matrices
with real entries. Given a convex set K in [0, 1]n, let

cone(K) =
{(

x0

x

)

∈ Rn+1 : x = x0y; y ∈ K

}

.

Then, we define the polyhedral set

M+(K) =
{
Y ∈ Sn+1

+ : Y e0 = diag(Y ),
Y ei ∈ cone(K),
Y (e0 − ei) ∈ cone(K), i = 1, . . . , n} ,

where diag(Y ) denotes the vector whose i-th entry is Yii, for every i = 0, . . . , n.
Projecting this lifting back to the space Rn results in

LS+(K) =
{

x ∈ [0, 1]n :
(

1
x

)

= Y e0, for some Y ∈ M+(K)
}

.

In [22], Lovász and Schrijver proved that LS+(K) is a relaxation of the convex
hull of integer solutions in K and that LSn

+(K) = conv(K ∩ {0, 1}n), where
LS0

+(K) = K and LSk
+(K) = LS+(LSk−1

+ (K)) for every k ≥ 1.
In this work we focus on the behavior of a single application of the LS+-

operator to the edge relaxation of the stable set polytope of a graph.
Recall that GLT and GEMN are the smallest LS+-imperfect graphs. Further

LS+-imperfect graphs can be obtained by applying operations preserving LS+-
imperfection.

In [20], the stretching of a node v is introduced as follows: Partition its
neighborhood N(v) into two nonempty, disjoint sets A1 and A2 (so A1 ∪ A2 =
N(v), and A1 ∩ A2 = ∅). A stretching of v is obtained by replacing v by two
adjacent nodes v1 and v2, joining vi with every node in Ai for i ∈ {1, 2}, and
subdividing the edge v1v2 by one node w. In [20] it is shown:

Theorem 2 ([20]). The stretching of a node preserves LS+-imperfection.

Hence, all stretchings of GLT and GEMN are LS+-imperfect, see Fig. 2 for
some examples.

In [12], the authors characterized LS+-perfect line graphs by showing that
the only minimally LS+-imperfect line graphs are stretchings of GLT and GEMN

and occur as subgraphs in all facet-defining line graphs different from cliques and
odd holes:
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Fig. 2. Some node stretchings (v1, w, v2 in black) of GLT and GEMN .

Theorem 3 ([12]). A facet-defining line graph G is N+-perfect if and only if G
is a clique or an odd hole.

The proof relies on a result of Edmonds & Pulleyblank [8] who showed that a
line graph L(H) is facet-defining if and only if H is a 2-connected hypomatchable
graph (that is, for all nodes v of H, H−v admits a perfect matching). Such graphs
H have an ear decomposition H0,H1, . . . , Hk = H where H0 is an odd hole and
Hi is obtained from Hi−1 by adding an odd path (ear) between distinct nodes
of Hi−1. In [12], it is shown that the line graph L(H1) of any ear decomposition
is a node stretching of GLT and GEMN and, thus, LS+-imperfect by [20].

Again, using stretchings of GLT and GEMN and exhibiting one more mini-
mally LS+-imperfect graph, namely the web W 2

10, LS+-perfect webs are charac-
terized in [11] as follows:

Theorem 4 ([11]). A web is LS+-perfect if and only if it is perfect or minimally
imperfect.

The proof shows that all imperfect not minimally imperfect webs with sta-
bility number 2 contain GEMN and all webs W 2

n different from W 2
7 ,W 2

10, some
stretching of GLT . Furthermore, all other webs contain some LS+-imperfect W 2

n′

and are, thus, also LS+-imperfect.
Finally, in [1], there is another family of LS+-imperfect graphs presented

that will play a central role in some subsequent proofs:

Theorem 5 ([1]). Let G be a graph with α(G) = 2 such that G − v is an odd
antihole for some node v. G is LS+-perfect if and only if v is completely joined
to G − v.

2.2 About Claw-Free Graphs

In several respects, claw-free graphs are generalizations of line graphs. An inter-
mediate class between line graphs and claw-free graphs form quasi-line graphs,
where the neighborhood of any node can be partitioned into two cliques (i.e.,
quasi-line graphs are the complements of near-bipartite graphs).

For this class, it turned out that so-called clique family inequalities suffice
to describe the stable set polytope. Given a graph G, a family F of cliques and
an integer p < n = |F|, the clique family inequality (F , p) is the following valid
inequality for STAB(G)

(p − r)
∑

i∈W

xi + (p − r − 1)
∑

i∈Wo

xi ≤ (p − r)
⌊

n

p

⌋

(3)
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where r = nmod p and W (resp. Wo) is the set of nodes contained in at least p
(resp. exactly p − 1) cliques of F .

This generalizes the results of Edmods [7] and Edmonds & Pulleyblank [8]
that STAB(L(H)) is described by clique constraints and rank constraints

x(L(H ′)) ≤ 1
2
(|V (H ′)| − 1) (4)

associated with the line graphs of 2-connected hypomatchable induced subgraphs
H ′ ⊆ H. Note that the rank constraints of type (4) are special clique family
inequalities. Chudnovsky and Seymour [4] extended this result to a superclass
of line graphs. They showed that a connected quasi-line graph G is either a
fuzzy circular interval graph or STAB(G) is given by clique constraints and rank
constraints of type (4).

Let C be a circle, I a collection of intervals in C without proper containments
and common endpoints, and V a multiset of points in C. The fuzzy circular
interval graph G(V, I) has node set V and two nodes are adjacent if both belong
to one interval I ∈ I, where edges between different endpoints of the same
interval may be omitted.

Semi-line graphs are either line graphs or quasi-line graphs without a rep-
resentation as a fuzzy circular interval graph. Due to [4], semi-line graphs are
rank-perfect with line graphs as only facet-defining subgraphs.

Eisenbrand et al. [9] proved that clique family inequalities suffice to describe
the stable set polytope of fuzzy circular interval graphs. Stauffer [31] verified a
conjecture of [25] that every facet-defining clique family inequality of a fuzzy
circular interval graph G is associated with a web in G.

All these results together complete the picture for quasi-line graphs. However,
there are claw-free graphs which are not quasi-line; the 5-wheel is the smallest
such graph and has stability number 2. Due to Cook (see [30]), all facets for
graphs G with α(G) = 2 are clique-neighborhood constraints

2x(Q) + x(N ′(Q)) ≤ 2 (5)

where Q ⊆ G is a clique and N ′(Q) = {v ∈ V (G) : Q ⊆ N(v)}. Therefore all
non-trivial facets in this case are 1, 2-valued.

This is not the case for graphs G with α(G) = 3. In fact, all the known
difficult facets of claw-free graphs occur in this class. Some non-rank facets with
up to five different non-zero coefficients are presented in [16,19]. All of these
facets turned out to be so-called co-spanning 1-forest constraints due to [26],
where it is also shown that it is possible to build a claw-free graph with stability
number three inducing a co-spanning 1-forest facet with b different left hand side
coefficients, for every positive integer b.

The problem of characterizing STAB(G) when G is a connected claw-free but
not quasi-line graph with α(G) ≥ 4 was studied by Galluccio et al.: In a series
of results [13–15], it is shown that if such a graph G does not contain a clique
cutset, then 1,2-valued constraints suffice to describe STAB(G). Here, besides
5-wheels, different rank and non-rank facet-defining inequalities of the geared
graph G shown in Fig. 3 play a central role.
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In addition, graphs of this type can be decomposed into strips. A strip
(G, a, b) is a (not necessarily connected) graph with two designated simplicial
nodes a and b (a node is simplicial if its neighborhood is a clique). A claw-free
strip containing a 5-wheel as induced subgraph is a 5-wheel strip. Given two
node-disjoint strips (G1, a1, b1) and (G2, a2, b2), their composition is the union
of G1 \ {a1, b1} and G2 \ {a2, b2} together with all edges between NG1(a1) and
NG2(a2), and between NG1(b1) and NG2(b2) [4].

As shown in [24], this composition operation can be generalized to more than
two strips: Every claw-free but not quasi-line graph G with α(G) ≥ 4 admits
a decomposition into strips, where at most one strip is quasi-line and all the
remaining ones are 5-wheel strips having stability number at most 3. There are
only three “basic” types of 5-wheel strips (see Fig. 3) which can be extended by
adding nodes belonging to the neighborhood of the 5-wheels (see [24] for details).

Note that a claw-free but not quasi-line graph G with α(G) ≥ 4 containing
a clique cutset may have a facet-inducing subgraph G′ with α(G′) = 3 (inside a
5-wheel strip of type 3), see [27] for examples.

Taking all these results together into account gives the complete list of facets
needed to describe the stable set polytope of claw-free graphs.

type 1 type 2 (gear) type 3

Fig. 3. The three types of basic 5-wheel strips.

3 LS+-Perfect Graph Conjecture for Claw-Free Graphs

In this section, we verify the LS+-Perfect Graph Conjecture for all relevant
subclasses of claw-free graphs.

Graphs with α(G) = 2 play a crucial role. Relying on the behavior of the stable
set polytope under taking complete joins [5] and the result on LS+-(im)perfect
graphs G with α(G) = 2 (Theorem 5), we can prove:

Theorem 6. All facet-inducing LS+-perfect graphs G with α(G) = 2 are odd
antiholes or complete joins of odd antihole(s) and a (possibly empty) clique.

This shows that all facet-inducing LS+-perfect graphs G with α(G) = 2 are
joined a-perfect, and we conclude:

Corollary 1. The LS+-Perfect Graph Conjecture is true for graphs with stabil-
ity number 2.
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Quasi-line graphs partition into the two subclasses of semi-line graphs and fuzzy
circular interval graphs.

Chudnovsky and Seymour [4] proved that the stable set polytope of a semi-
line graph is given by rank constraints associated with cliques and the line graphs
of 2-connected hypomatchable graphs. Together with the result from [12] (pre-
sented in Theorem 3), we directly conclude that the LS+-Perfect Graph Conjec-
ture holds for semi-line graphs.

Based on the results of Eisenbrand et al. [9] and Stauffer [31], combined with
the characterization of LS+-imperfect webs from [11] (Theorem 4), we are able
to show:

Theorem 7. All facet-inducing LS+-perfect fuzzy circular interval graphs are
cliques, odd holes or odd antiholes.

As a consequence, every LS+-perfect fuzzy circular interval graph is a-perfect.
This verifies the LS+-Perfect Graph Conjecture for fuzzy circular interval graphs.

Since the class of quasi-line graphs partitions into semi-line graphs and fuzzy
circular interval graphs, we obtain as direct consequence:

Corollary 2. The LS+-Perfect Graph Conjecture is true for quasi-line graphs.

Claw-free graphs that are not quasi-line are distinguished according to their
stability number.

Relying on the behavior of the stable set polytope under clique identification
[5] and the result on LS+-(im)perfect graphs from Theorem 5, we can prove:

Theorem 8. Every facet-defining claw-free not quasi-line graph G with α(G) =
3 is LS+-imperfect.

Hence, the only facet-defining subgraphs G′ of LS+-perfect claw-free not
quasi-line graphs G with α(G) = 3 have α(G′) = 2 and are, by Theorem6,
cliques, odd antiholes or their complete joins. We conclude that LS+-perfect
facet-defining claw-free not quasi-line graphs G with α(G) = 3 are joined a-
perfect and, thus, the LS+-Perfect Graph Conjecture is true for this class.

To treat the case of claw-free not quasi-line graphs G with α(G) ≥ 4, we
rely on the decomposition of such graphs into strips, where at most one strip
is quasi-line and all the remaining ones are 5-wheel strips [24]. By noting that
5-wheel strips of type 3 contain GLT and exhibiting LS+-imperfect line graphs
in the other two cases, we are able to show:

Theorem 9. Every facet-defining claw-free not quasi-line graph G with α(G) ≥
4 is LS+-imperfect.

This together with Theorem 8 shows that the only facet-defining subgraphs
G′ of LS+-perfect claw-free not quasi-line graphs G with α(G) ≥ 4 have α(G′) =
2 and are, by Theorem6, cliques, odd antiholes or their complete joins. Thus,
every LS+-perfect claw-free not quasi-line graph G with α(G) ≥ 4 is joined a-
perfect and, thus, the LS+-Perfect Graph Conjecture holds true for this class.
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Combining Corollary 1 with the above results shows that all LS+-perfect
claw-free but not quasi-line graphs are joined a-perfect and we obtain:

Corollary 3. The LS+-Perfect Graph Conjecture is true for all claw-free graphs
that are not quasi-line.

Finally, we obtain our main result as direct consequence of Corollaries 2 and 3:
The LS+-Perfect Graph Conjecture is true for all claw-free graphs.

4 Conclusion and Future Research

The context of this work was the study of LS+-perfect graphs, i.e., graphs where
a single application of the Lovász-Schrijver PSD-operator LS+ to the edge relax-
ation yields the stable set polytope. Hereby, we are particularly interested in
finding an appropriate polyhedral relaxation P (G) of STAB(G) that coincides
with LS+(G) and STAB(G) if and only if G is LS+-perfect. An according con-
jecture has been recently formulated (LS+-Perfect Graph Conjecture); here we
verified it for the well-studied class of claw-free graphs (Theorem1).

Note further that, besides verifying the LS+-Perfect Graph Conjecture for
claw-free graphs, we obtained the complete list of all minimally LS+-imperfect
claw-free graphs. In fact, the results in [1,11,12] imply that the following graphs
are minimally LS+-imperfect:

– graphs G with α(G) = 2 such that G − v is an odd antihole for some node v,
not completely joined to G − v,

– the web W 2
10,

– LS+-imperfect line graphs (which are all node stretchings of GLT or GEMN ).

Our results from Sect. 3 on facet-defining LS+-perfect claw-free graphs imply
that they are the only minimally LS+-imperfect claw-free graphs.

Finally, the subject of the present work has parallels to the well-developed
research area of perfect graph theory also in terms of polynomial time com-
putability. In fact, it has the potential of reaching even stronger results due the
following reasons. Recall that calculating the value

η+(G) = max1Tx, x ∈ LS+(G)

can be done in polynomial time for every graph G by [22]. Thus, the stable set
problem can be solved in polynomial time for a strict superset of perfect graphs,
the LS+-perfect graphs, by α(G) = η+(G). Hence, our future lines of research
include to find

– new families of graphs where the conjecture holds (e.g., by characterizing the
minimally LS+-imperfect graphs within the class),

– new subclasses of LS+-perfect or joined a-perfect graphs,
– classes of graphs G where STAB(G) and LS+(G) are “close enough” to have

α(G) = �η+(G)�.
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In particular, the class of graphs G with α(G) = �η+(G)� can be expected to
be large since LS+(G) is a much stronger relaxation of STAB(G) than TH(G).
In all cases, the stable set problem could be solved in polynomial time in these
graph classes by optimizing over LS+(G). Finally, note that LS+(P (G)) with

STAB(G) ⊆ P (G) ⊆ ESTAB(G)

clearly gives an even stronger relaxation of STAB(G) than LS+(G). However,
already optimizing over LS+(QSTAB(G)) cannot be done in polynomial time
anymore for all graphs G by [22]. Hence, in view of the polynomial time solv-
ability of the stable set problem, LS+-perfect graphs or their generalizations
satisfying α(G) = �η+(G)� are the most promising cases in this context.
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Lipták and Tunçel’s conjecture. Oper. Res. Lett. 34, 639–646 (2006)

11. Escalante, M., Nasini, G.: Lovász and Schrijver N+-relaxation on web graphs. In:
Fouilhoux, P., Gouveia, L.E.N., Mahjoub, A.R., Paschos, V.T. (eds.) ISCO 2014.
LNCS, vol. 8596, pp. 221–229. Springer, Heidelberg (2014)

12. Escalante, M., Nasini, G., Wagler, A.: Characterizing N+-perfect line graphs. Int.
Trans. Oper. Res. (2016, to appear)

13. Galluccio, A., Gentile, C., Ventura, P.: Gear composition and the stable set poly-
tope. Oper. Res. Lett. 36, 419–423 (2008)

14. Galluccio, A., Gentile, C., Ventura, P.: The stable set polytope of claw-free graphs
with stability number at least four. I. Fuzzy antihat graphs are W-perfect. J. Comb.
Theory Ser. B 107, 92–122 (2014)

15. Galluccio, A., Gentile, C., Ventura, P.: The stable set polytope of claw-free graphs
with stability number at least four. II. Striped graphs are G-perfect. J. Comb.
Theory Ser. B 108, 1–28 (2014)



70 S. Bianchi et al.

16. Giles, R., Trotter, L.E.: On stable set polyhedra for K1,3 -free graphs. J. Comb.
Theory 31, 313–326 (1981)

17. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1, 169–197 (1981)

18. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, New York (1988)

19. Liebling, T.M., Oriolo, G., Spille, B., Stauffer, G.: On non-rank facets of the stable
set polytope of claw-free graphs and circulant graphs. Math. Methods Oper. Res.
59(1), 25–35 (2004)
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Abstract. Given a capacitated network, we consider the problem of
choosing the edges to be activated to ensure the routing of a set of
traffic demands. Both splittable and unsplittable flows are investigated.
We present polyhedral results and develop a branch-and-cut algorithm
based on a Benders decomposition approach to solve the problem.

1 Introduction

In traditional network design problems the aim is to find capacities for the edges
to route a set of demands between node pairs (commodities). However, many
real-life networks are already capacitated and the decision is to select the edges
to be activated to ensure the routing of the commodities. This is the case, for
example, when the edges can be switched on and off to save energy [2]. We refer
to this problem as the Edge Activation (EA) problem. We denote by EAU the
problem with unsplittable flows (commodities must be routed on a single path)
and by EAS the one with unrestricted (splittable) flows. The capacity installation
version of the problem, also known as the Network Loading (NL) problem, has
received a lot of attention in the literature and many variants of the problem
have been considered. Instead, the EA problem is somehow less studied and
there are very few attempts to use a Benders-like approach. Unsplittable flows
are considered in [2,5,8], while papers [10,12,13] deal with splittable flows. In
[2] a problem with edge activation and survivability requirements is considered.
Working and backup paths for the commodities must be provided and the edges
used only by backup paths are switched off to save energy. In [5] the authors
discuss a problem where multiple capacity modules are available on the edges and
they can be activated separately, but the commodities cannot be split, not even
on modules of the same edge. They present valid inequalities obtained from the
polyhedron of the single edge problem and develop a branch-and-cut algorithm.
In [8] a Benders decomposition approach to solve a connectivity problem with
survivability restrictions and hop constraints is discussed. Lagrangian relaxations
are investigated in [10] and a branch-and-cut-and-price approach is presented in
[12]. In [13] a Lagrangian heuristic to be embedded into a branch-and-bound
scheme is proposed.

In this paper we present a Benders-like reformulation for both the EAU and
the EAS problem. We identify valid and facet-defining inequalities and propose a
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 71–80, 2016.
DOI: 10.1007/978-3-319-45587-7 7



72 S. Mattia

branch-and-cut algorithm to solve the problem. Projecting out the routing vari-
ables is a popular approach for problems with splittable flows [4,6,7,11,15,19],
but not for unsplittable ones. To the best of our knowledge, the only recent papers
considering Benders decomposition for unsplittable flows are [2,8]. However, both
papers differ from what we do here. In [2] the authors do not use a pure capacity
formulation, as only a part of the flow variables is projected out. In the problem
addressed in [8] only connectivity must be ensured or, equivalently, the amount
of each demand is one. This has some consequences that do not hold in our case,
making our problem more difficult to solve. We show that, differently from the NL
problem, the convex-hull of integer feasible solutions of the Benders formulation is
not completely described by inequalities having a metric left-hand-side, non even
for splittable flows. On the other hand, some classes of inequalities that are known
to be facets for the NL problem, remain facets for EAS, but not necessarily for
EAU. We concentrate on inequalities deriving from partitions of the node set and
provide conditions for facets of a problem corresponding to a partition (p-node
problem, see Sect. 3) to be extended to facets of the original problem.

The paper is structured as follows. In Sect. 2 we present formulations for the
EAU and the EAS problem. In Sect. 3 we investigate the polyhedral properties of
the projected formulation of EAU and EAS, providing valid and facet-defining
inequalities. In Sect. 4 we discuss the results of a preliminary computational
testing. In Sect. 5 conclusions are presented.

2 Models

Let G(V,E) be an undirected graph and let K be the set of commodities. Each
commodity k ∈ K has a source node sk, a destination node tk and an amount dk.
Each edge e ∈ E can be activated at cost ce > 0. We assume that the capacity
U is the same for all the edges and that U > dk for all k ∈ K. Both the EAS and
the EAU problem are NP-hard, as they include the Steiner tree problem. Set
Ni = {j ∈ V : (i, j) ∈ E} denotes the neighborhood of node i. The EAU problem
can be formulated in a compact way (constraints and variables are polynomial
in the input size) as follows.

FU min
∑

e∈E

cexe

∑

j∈Ni

(fk
ij − fk

ji) =

⎧
⎨

⎩

1 i = sk

−1 i = tk
0 otherwise

i ∈ V, k ∈ K (1)

∑

k∈K

dk(fk
ij + fk

ji) ≤ Uxe e ∈ E (2)

x ∈ {0, 1}|E|, f ∈ {0, 1}2×|E|×|K|

Binary variable xe represents the activation of edge e ∈ E. Binary variable fk
ij

(fk
ji) takes value one if commodity k is routed on edge e from i to j (from j to i)
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and zero otherwise. Constraints (1) ensure that the commodities are routed and
constraints (2) impose that the edge capacities are not exceeded. Let FS be
the flow formulation for the EAS problem obtained by relaxing the integrality
requirements on f .

Now we derive the non-compact projected formulations using a Benders-like
approach. Let us consider the EAS problem. A vector 0 ≤ x̄ ≤ 1 corresponds
to a feasible set of active edges if the following problem admits a solution (β, f)
with β ≥ 0.

FSfix max β

(πk
i )

∑

j∈Ni

(fk
ij − fk

ji) = −dski i ∈ V, k ∈ K (3)

(μe)
∑

k∈K

(fk
ij + fk

ji) ≤ Ux̄e − β e ∈ E (4)

f ∈ R
2×|E|×|K|
+

If not so, by duality we get the feasibility conditions (5), leading to the capacity
formulation below, where variables π and μ are the dual variables corresponding
to constraints (3) and (4) respectively.

PS min
∑

e∈E

cexe

∑

e∈E

μexe ≥
∑

k∈K

πk
tk

dk

U
μ ≥ 0 (5)

x ∈ {0, 1}|E|

For the NL problem inequalities (5) are also known as metric inequalities [14,23].
The right-hand-side can be strengthened obtaining the so-called tight metric
(TM) inequalities [4]. This is done by replacing the right-hand-side by the opti-
mal value Rµ, obtained when μ is used as objective function of the problem.
Here we call inequalities (5) Benders (BE) inequalities.

When the flows are unsplittable, PS is not a formulation of the problem
anymore, not even for a 2-node problem (see Sect. 3). One option is to replace
the BE inequalities by their TM version (Rµ must be computed considering
unsplittable solutions). However, such a formulation would be of little practical
use, as separating the TM inequalities is very hard in practice, as it requires the
solution of bilevel programs, even for splittable flows [18]. Another possibility is
to use combinatorial Benders-like (CB) cuts [9], similarly to what done in [8].

PU min
∑

e∈E

cexe

∑

e∈E0
y

xe ≥ 1 y ∈ F (6)

x ∈ {0, 1}|E|
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F is the set of the activation vectors y not allowing an unsplittable routing and
E0

y = {e ∈ E : ye = 0}.

Lemma 1. PU is a formulation of the EAU problem.

3 Facets and Valid Inequalities

We denote by FS, FU , PS and PU respectively the convex-hull of the binary
feasible solutions of FS, FU, PS and PU. We now study PS and PU . Any
inequality that is valid for PS (FS) is valid for PU (FU) and any inequality
that is valid for PS (PU) is valid for FS (FU). An edge e is a bridge if its
removal makes the problem infeasible. We also say that T ⊆ E is a bridge set
if the simultaneous removal of the edges in T makes the problem infeasible.
Without loss of generality, we assume that E contains no bridges. If so, the
following holds.

Lemma 2. PS (PU) is full-dimensional.

Let us now consider non-negativity constraints and upper-bound inequalities.

xe ≥ 0 e ∈ E (7)
xe ≤ 1 e ∈ E (8)

Theorem 1. The following results hold:

1. inequalities (7) are facet-defining for PS (PU) if no {e, h} is a bridge set,
for any h ∈ E \ {e};

2. inequalities (8) are facet-defining for PS (PU).

When x is an unrestricted general integer instead of a binary vector, PS and
PU are completely described by (7) and TM inequalities [4,20,21]. In our case
this is no longer true.

Example 1. Let G(V,E) be the complete undirected graph on five nodes. Let
the demands be d12 = d13 = d23 = d45 = 1, dij = 0 otherwise and assume that
U = 1. Inequality x12 + x13 + x14 + x23 + x24 ≥ 2 is a facet of PS, but it is
neither a bound inequality nor a TM. The same happens for unsplittable flows.

However, we can prove that no inequality with negative coefficients can be a
facet but inequalities (8).

Theorem 2. Let aTx ≥ b be a valid inequality for PS (PU). If ∃e : ae < 0 then
either it is the upper bound inequality (8) or it is not a facet of PS (PU).

We note that any TM inequality is a binary knapsack, therefore all the inequal-
ities that are valid for the knapsack polyhedron corresponding to a given TM
are valid for PS and PU . A popular class of valid inequalities for the NL prob-
lem includes inequalities derived from partitions of the node set [3,16,22]. Here
we give conditions for them to provide facets for the EA problem. Consider a
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partition P = {V1 : . . . Vp} of the node set (p-partition). Let EI be the set of
edges having endpoints in the same set of the partition and let EC = E \ EI .
Let KI be the commodities having source and destination in the same set and
let KC = K \ KI . Denote by GP (P,EP ) the graph having a node for any set
of the partition and an edge for any original edge e ∈ EC . Denote by KP the
demand set having a commodity for any original commodity in KC . Hence, each
commodity (edge) in KC (EC) corresponds to one commodity (edge) of KP

(EP ) and there may exist parallel commodities (edges). Given a p-partition P ,
let the corresponding p-node EAS (EAU) problem be the problem on graph GP

with demands KP . Let x be a feasible solution of the p-node problem, let the
complementary problem associated with the p-node problem and with x be the
problem on graph Gc

x(V,Ec
x) with demand set K. Edge set Ec

x contains the edges
in EI , while the ones in EC are either already active (if xe = 1) or removed (if
xe = 0).

Definition 1. A partition P = {V1 : . . . Vp} is shrinkable if, for any feasible
solution x of the p-node problem, e is not a bridge for the complementary problem
corresponding to x for any e ∈ EI .

Let PSp (PUp) be the convex-hull of the binary feasible solutions of the projected
formulation of the p-node EAS (EAU) problem corresponding to partition P . Let
aTx ≥ b be a valid inequality for PSp (PUp), we call inequality

∑
e∈EC

atexe ≥ b

the extended inequality derived from aTx ≥ b, where te is the original edge
corresponding to e ∈ Ep. PSp (PUp) and PS (PU) are related in the following
way.

Theorem 3. The following results hold:

1. if aTx ≥ b is valid for PSp (PUp), then the extended inequality is valid for
PS (PU);

2. if P is shrinkable and each Vi is connected, then for any facet aTx ≥ b of
PSp (PUp), the extended inequality is a facet of PS (PU).

Let a cut {S : V − S} be a 2-partition of the nodes and let δ(S) and K(S) be
the edges and the demands separated by the cut. Let d(S) =

∑
k∈K(S) dk/U and

D(S) = �d(S)�. Inequalities (9) are known as cutset (CS) inequalities.
∑

e∈δ(S)

xe ≥ D(S) S ⊆ V (9)

The CS inequalities define facets of PS2.

Theorem 4. The following results hold:

1. the CS inequalities are valid for PS2;
2. they are facet-defining for PS2 if and only if |E| > D(S) > 0.

It follows from Theorem 3 that the extended CS inequality is valid and facet-
defining for PS, under some conditions. The same does not hold for PU .
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Example 2. Consider a graph with two nodes and four parallel edges with
U = 10. Suppose to have three parallel commodities, each of them with amount
6. Let {{1} : {2}} be the unique non trivial cut. The right-hand-side of the
corresponding CS inequality is 2, but there is no feasible unsplittable solution
using less than three active edges.

Solving the 2-node EAS problem is trivially polynomial, as it is solving the 2-
node NL problem, both for splittable and for unsplittable flows. On the contrary,
solving the 2-node EAU problem is hard, as it corresponds to a bin-packing
problem, which consists of minimizing the number of bins needed to pack a set
of objects of different sizes.

Theorem 5. The 2-node EAU problem is NP-hard.

Then, we can strengthen the CS inequalities using the same technique adopted
for the bin-packing problem [17]. The aim is to replace value D(S) by a better
lower bound on the optimal value. D(S) is close to the optimum when dk << U
for all k. An alternative bound can be computed as follows. Let 0 ≤ α ≤ U/2,
K1(S) = {k ∈ K(S) : dk > U − α}, K2(S) = {k ∈ K(S) : U/2 < dk ≤ U − α},
K3 = {α ≤ dk ≤ U/2} and let b(S) be the value computed as follow.

b(S) = |K1(S)| + |K2(S)| + max

{

0,

⌈∑
k∈K3(S) dk − (|K2(S)|U −∑k∈K2(S) dk)

U

⌉}

Finally, let B(S) = maxα≥0 {b(S)}. The strengthened cutset (SCS) inequality
(10) is valid for PU and dominates the CS inequality, since B(S) ≥ D(S).

∑

e∈δ(S)

xe ≥ B(S) S ⊆ V (10)

Although the worst case performance of lower bound B(S) is better than the
one of D(S), which is 1/2, it is still 2/3 [17]. Therefore, SCS are not necessarily
facets too.

Consider now a 3-partition P = {V1 : V2 : V3} of the node set. Let D(Vi) be
the right-hand-side of the CS inequality corresponding to cut {Vi : V \ Vi} for
i = 1, . . . , 3. Let Eij be the set of edges going from Vi to Vj and let E = E12 ∪
E13 ∪ E23. Let D(3P ) =

⌈
D(V1)+D(V2)+D(V3)

2

⌉
. The 3-partition (3P) inequality

below is clearly valid for PS and PU , although not necessarily facet defining for
PU , even if values D(Vi) are replaced by B(Vi).

∑

e∈E12

xe +
∑

e∈E13

xe +
∑

e∈E23

xe ≥ D(3P ) P = {V1 : V2 : V3} (11)

4 Preliminary Computational Testing

We now discuss the computational performance of the mentioned formulations
and inequalities, based on preliminary experiments. We generated instances con-
sidering two U values (u1 and u5 with u5 > u1), two node sizes (15, 20), three
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edge connectivity values (20%, 40%, 60%) and three demand density values
(30%, 60%, 90%). For each configuration (number of nodes, edges, demands
and capacity) three instances are generated, for a total number of 108 instances.
Network topologies are generated using the GT-ITM tool [1]. We added ran-
domly generated edges for the nodes having degree less than two. The demands
are randomly generated. The computation has been done on a 4× Intel Core
i5@3.20 GHz using single thread CPLEX 12.6 with a time limit of one hour.

We implemented and tested six different algorithms: flow formulation for
the splittable and the unsplittable problem solved by cplex with default settings
(FDS and FDU); flow formulation for the splittable and the unsplittable problem
solved by adding cutting planes (FCS and FCU); Benders formulation for the
splittable and the unsplittable problem (FBS and FBU). In all the approaches
with generation of cuts we use CS inequalities and 3P inequalities. For FBS and
FBU we also use Benders cuts and, for BU only, combinatorial Benders cuts.
For the flow formulation we also add variable upper bound inequalities (VA) and
energy cover inequalities (ECOV) as in [2].

VA fk
ij + fk

ji ≤ xe e = (i, j) ∈ E, k ∈ K

ECOV
∑

k∈C

(fk
ij + fk

ji) ≤ (|C| − 1)xe C ⊆ K :
∑

k∈C

dk > U, e = (i, j) ∈ E

We add one cut at a time, checking the inequalities in the following order:
VA (if the case), CS, 3P, BE (if the case), ECOV (if the case), CB (if the case
and if the current solution is integer). Cuts are added only at the root node, but
for feasibility cuts BE and CB, which are used also in the other nodes. For FBS
and FBU CPLEX cuts and heuristics are turned off, as they proved to be of
limited utility. Single node CS inequalities are added to the initial formulation
for all the cutting plane approaches. VA inequalities are polynomially many and
they are separated by lookup. CS and 3P inequalities are separated heuristically,
by randomly choosing an initial partition and then applying a local search. BE
inequalities are separated solving the dual of FSfix (for aggregated commodities).
ECOV are separated as in [2]. CE inequalities are first separated heuristically and
then exactly using formulation FU for fixed x. The heuristic separation works
as follows. Given the current solution x̄, we build an auxiliary graph Gk(E1

x̄)
including only the edges that take value one in the current solution. If there
is no sk-tk path in G(E1

x̄) for at least one commodity, then the solution is not
feasible.

Tables 1, 2, 3, and 4 report number of instances solved depending on the num-
ber of nodes, edges, demands and capacity size respectively. Figures 1, 2, 3, and 4
show how the average computing time changes according to the considered para-
meters. Computing time is set to the time limit for the unsolved instances. For all
the approaches the computing time increases when the considered control parame-
ters increase and, on average, the Benders formulation is faster than the other two
approaches, although some approaches can solve more instances. Instead, when
the capacity increases the problem becomes easier to solve. For large capacities,
FB seems to have a great advantage on the other approaches (Table 4), both for
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Table 1. Solved (nodes)

splittable unspslittable

n15 n20 n15 n20

FD 54 44 42 13

FC 54 45 42 10

FB 54 43 40 30

Fig. 1. Average times (nodes)

Table 2. Solved (edges)

splittable unspslittable

e20 e40 e60 e20 e40 e60

FD 36 34 28 28 16 11

FC 36 35 28 26 16 10

FB 36 33 28 33 22 15

Fig. 2. Average times (edges)

Table 3. Solved (demands)

splittable unspslittable

d30 d60 d90 d30 d60 d90

FD 34 33 31 26 16 13

FC 35 33 31 24 15 13

FB 34 32 31 26 23 21

Fig. 3. Average times (demands)

Table 4. Solved (capacity)

splittable unspslittable

u1 u5 u1 u5

FD 52 46 21 34

FC 52 47 18 34

FB 43 54 19 51

Fig. 4. Average times (capacity)
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splittable and for unsplittable flows. For unsplittable flows, the behavior of the
Benders formulation is less influenced by the control parameters than the other
approaches. In fact, the number of solved instances for FD and FC immediately
decreases if the number of nodes, edges or demands increases, whereas it is not so
for FB (Tables 1, 2, and 3). The same does not happen for splittable flows, where
all the algorithms seem to show a behavior that is less dependent from the control
parameters. This is possibly do to the fact that the considered instances are more
difficult for unsplittable than for splittable flows and then larger instances should
also be tested.

5 Conclusions

We considered the problem of choosing the edges to be activated in a capacitated
network to guarantee the routing of a set of commodities. Two routing policies
are investigated: splittable (unrestricted routing) and unsplittable (single path
routing). We studied both from the theoretical and from the computational
point of view a Benders-like formulation of the problem. We presented polyhe-
dral results showing that, contrary to what happens for the capacity allocation
version of the problem, the Benders-like formulation is not completely defined
by inequalities having metric left-hand-side coefficients. We focused on inequal-
ities generated by subproblems obtained by partitioning the node set. We gave
a condition stating when a facet of the p-node problem can be extended to a
facet of the original problem. We also proved that for splittable flows the well-
known cutset inequalities remain facets for the splittable problem, whereas this
is not true for unsplittable flows. Indeed, contrary to what happen for the NL
problem, even the 2-node unsplittable EA problem is NP-hard, as it is equiva-
lent to a bin-packing problem. A preliminary testing showed that, on average,
the Benders formulation is faster than the complete formulation. Moreover, for
unsplittable flows it is less affected by an increasing of the number of edge, nodes
and commodities.
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Abstract. In this work we investigate the problem of order batching
and picker routing in inventories. These are labour and capital intensive
problems, often responsible for a substantial share of warehouse operat-
ing costs. In particular, we consider the case of online grocery shopping
in which orders may be composed of dozens of items. To the best of our
knowledge, no exact algorithms have been proposed for this problem. We
therefore introduce three integer programming formulations for the joint
problem of batching and routing, one of them involving exponentially
many constraints to enforce connectivity requirements and two compact
formulations based on network flows. For the former we implement a
branch-and-cut algorithm which separates connectivity constraints. We
built a test instance generator, partially based on publicly-available real
world data, in order to compare empirically the three formulations.

Keywords: Order batching · Picker routing · Inventory management ·
Integer programming

1 Introduction

Warehouses require intensive product handling operations, amongst those order
picking is known to be the most labour and machine intensive. Its cost is esti-
mated to be as much as 55 % [15] of total warehouse operating expenses, as
online shopping has grown in popularity in recent years we also believe that
this figure is likely increasing. Order picking is defined as being the process of
retrieving products from storage in response to specific customer requests.

Material handling activities can be differentiated as parts-to-picker systems,
in which automated units deliver the items to stationary pickers, and picker-
to-parts systems, in which pickers walk/ride through the warehouse collecting
requested items. With respect to the latter, three planning problems can be
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distinguished: assignment of products to locations, grouping of customer orders
into batches, routing of order pickers [13]. This paper deals jointly with the last
two activities, which are critical to the efficiency of warehouse operations.

In particular, we consider the case of online grocery shopping, where orders
can be composed of dozens of items. As practical aspects of this problem we
highlight (i) the heterogeneity of products (which can be of various shapes, sizes
or expiration dates) and (ii) the fact that the picking can be performed in ware-
houses that are either closed or open to the public (such as supermarkets); due
to such features pickers generally walk/ride the warehouse, collecting products
manually instead of relying on automated systems.

In this paper we formulate and solve the Joint Order Batching and Picker
Routing Problem (JOBPRP). The task is to find minimum-cost closed walks, not
necessarily Hamiltonian, where each picker visits all locations required to pick
all products from their assigned orders. Locations may be visited more than
once if necessary. To the best of our knowledge, no exact methods have been
proposed to solve JOBPRP. We introduce three integer programming formula-
tions for JOBPRP, each one being the basis for a different branch-and-bound
algorithm. One of the formulations is a new directed model that involves expo-
nentially many constraints to enforce connectivity requirements for closed walks.
The other two are compact formulations based on network flows. We introduce
a Branch-and-cut algorithm that relies on the non-compact model and put the
compact formulations into the CPLEX branch-and-bound solver. We also intro-
duce a JOBPRP test instance generator based on publicly available real-world
data. In particular, we consider the special case where orders may be composed of
dozens of items; in such situations mixing orders in the same basket or splitting
an order among different pickers is generally avoided to reduce order processing
errors.

The remainder of this paper is organised as follows. Section 2 presents a
description and a literature review of the problem. Section 3 introduces JOBPRP
as a graph optimisation problem and Sect. 4 presents the three integer program-
ming formulations aforementioned. Section 5 briefly discusses some implementa-
tion details. Finally, Sect. 6 empirically compares the three formulations and, in
Sect. 7, we present some concluding remarks and future research directions.

2 Problem Description and Literature Review

We consider a warehouse to be composed of vertical aisles which contain slots
on both sides, each slot holds one type of product; slots can also be stacked
vertically in shelves. We assume that pickers move in the centre of an aisle and
that products on both sides can be reached by the picker. A warehouse may also
contain cross-aisles. Every warehouse has one cross-aisle in the top and another
in the bottom, it may also contain extra cross-aisles which divide aisles into
subaisles.

A typical warehouse layout with three cross-aisles and two shelves, together
with its sparse graph representation, can be seen in Fig. 1. White vertices rep-
resent locations from where the picker reaches products, i.e. from the top left
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Fig. 1. Example of warehouse / graph
layout

Fig. 2. Warehouse with reduced graph

white vertex the picker reaches products in slots 1, 2, 19 and 20. Black vertices
represent “artificial” locations which connect aisles and cross-aisles, while the
“Origin” indicates the starting and return point for pickers. Often, however, not
all locations need to be visited as the joint set of orders does not contain prod-
ucts in all locations. It is therefore possible to reduce the graph that depicts the
warehouse by eliminating such locations, as it can be seen in Fig. 2, where, for
example, no products in slots 3, 4, 21 and 22 are needed.

Pickers use trolleys that accommodate a limited number of baskets. The num-
ber of baskets necessary to carry each order is assumed to be known. In fact, in
this work, we consider that all baskets carry a fixed number of items, irrespective
of their shapes and sizes. Baskets needed to carry a batch must not exceed trol-
ley capacity. Following general practice in supermarkets, orders from different
customers cannot be put together in the same basket and a single order cannot
be split between different trolleys. Mixing and dividing orders could reduce pick-
ing time, however this benefit is often offset by necessary post-processing and a
higher risk of errors.

There is a vast literature on the problems of order batching and picking.
An extensive survey relating to different picking strategies was presented by de
Koster et al. [15], where order picking is shown to be the most critical activity for
productivity growth in the sector. Wave picking is an example of an alternative
manual picking strategy, where the warehouse is divided in zones, each zone
being assigned to one or more pickers; however in this strategy post-processing
of orders is necessary. In this paper we deal with batch picking, where a picker
collects products for one or more orders.

Many algorithms have been proposed for the problem of routing a single
picker. An evaluation of several heuristics is given in [26], it also includes an exact
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algorithm for when the warehouse has two cross-aisles (one in the top and one
in the bottom). Roodbergen and de Koster introduced a dynamic programming
algorithm for picker routing in warehouses with up to three cross-aisles in [28]
and heuristics for warehouses with multiple cross-aisles in [27]. The latter is
compared to a branch-and-bound algorithm based on a classical TSP formulation
of the problem, which assumes a hamiltonian circuit in a complete graph where
all vertices must be visited exactly once (no artificial vertices are considered).
Theys et al. [29] adapted the TSP LKH heuristic [20] for single-picker routing
and Dekker et al. [6] studied the case of a Dutch retail company whose layout is
composed of multiple cross aisles, two floors and different origin and destination
points for the pickers.

One particular interesting case, which assumes a single picker and where the
set of required locations are known, was studied in [4,7,24] and is known as the
Steiner Travelling Salesman Problem (STSP). Two compact formulations for
the STSP, which inspired the compact formulations introduced here, were pro-
posed by Letchford et al. [18]. Apart from having multiple trolleys, the problem
proposed in this work differs from the STSP since the assignment of required
vertices to each route is not defined a priori.

Several heuristics have also been proposed for batching and routing multiple
pickers, very often routing distances are estimated using single-picker heuristics
during the solution of the batching problem. An extensive survey of batching
methods can be found in [11].

For warehouses with two cross-aisles, a VNS heuristic was proposed by
Albareda-Sambola et al. [1] and Tabu Search and Hill Climbing heuristics were
introduced by Henn and Wäscher [13], the latter methods were adapted in [12]
to a problem that also considers order sequencing. Azadnia et al. [2] proposed
heuristics that solve sequencing and batching first, then routing in a second stage.
For warehouses with three cross-aisles, Matusiak et al. [22] proposed a simulated
annealing algorithm which includes precedence constraints (for instance, a heav-
ier box has to be at the bottom of a container), in their method the routing of
candidate batches is solved with the A*-algorithm [10].

For general warehouses, several batching methods are presented by de Koster
et al. [16], where routing distances are estimated using single-picker methods.
Gibson and Sharp [8] introduced batching heuristics based on two and four-
dimensional space-filling curves. A genetic algorithm that jointly considers both
routing and batching was proposed by Hsu et al. [14]. An integer programming
formulation for batching is shown in [17], where routing distances are estimated.
The problem is solved with a heuristic based on fuzzy logic. An association-
based clustering approach to batching considering customer demands (instead
of routing distance) is presented by Chen et al. [3].

As far as we are aware of, no exact methods have been proposed for the joint
batching and routing problem. Also, the specific case of grocery shopping, where
orders are generally composed of dozens items, has not been explicitly dealt with
in any of the previous works here cited.
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3 The Joint Problem of Order Batching and Picker
Routing: A Graph Optimisation Problem

Let P be the set of products whose storage slot in the warehouse are known
and L be the set of locations in the warehouse from where a picker can collect
products, i.e. the middle of an aisle containing products on both sides, in different
shelves, and from where the picker can reach those products. Each location
L ∈ L contains a subset PL ⊂ P of products. A warehouse graph representation
includes a vertex for every location, represented by the white vertices in Fig. 1.

Let O be the set of orders that must be collected, each order o ∈ O contains
a subset of products Po ⊆ P. Accordingly, for each order o ∈ O, the subset
of locations Lo ⊆ L contains all products in Po - it is possible that multiple
products of the same order are in a single location. L(O) =

⋃
o∈O Lo represents

the set of locations that contains all products that need to be picked in all orders.
Also let d�m ≥ 0 be the distance between locations �,m ∈ L, symmetric so that
d�m = dm�.

In practice, very often L(O) �= L, i.e. there are locations for which none of
their products are present in any of the outstanding orders. In such cases, the
graph that represents a warehouse can be reduced by eliminating all vertices
that represent locations in L \ L(O). An example of such reduced graph can
be seen in Fig. 2, where several vertices were removed as discussed previously.
If v is eliminated, and there are arcs (u, v), (v, u), (w, v), (v, w), we create arcs
(u,w), (w, u) where duw = dwu = duv + dvw = dwv + dvu.

Let T denote the set of available pickers (or trolleys), T = |T |, B be the
number of baskets that a trolley can carry and bo be the known number of
baskets needed to carry order o ∈ O. We assume that a basket will only contain
products from a single order, even if it is partially empty, i.e., it is not possible
to put products of different orders in the same basket. Finally, let s be the
origin point from where the trolleys depart (and to where they must return),
and accordingly let ds� ≥ 0 be the distance between location � and s.

To define JOBPRP, we introduce a directed and connected graph D = (V,A).
The set of vertices V is given by the union of s (the origin point), a set V (O) con-
taining a vertex for every location � ∈ L(O) and a set VA of “artificial locations”.
These artificial locations are placed in corners between aisles and cross-aisles, and
do not contain products that must be picked. We also define sets Vo containing
a vertex for every location � ∈ Lo,

⋃
o∈O Vo = V (O). Thus, V = {s}∪V (O)∪VA

and |V | = 1 + |V (O)| + |VA|. In Fig. 2, the origin represents s, the 17 white
vertices represent V (O) and the 9 black vertices represent VA.

Given a vertex i ∈ V (O), define �(i) : V (O) → L(O) as the location to
which the vertex refers. Arcs in set A connect two neighbour vertices of V . For
instance, arc (i, j) connects location �(i) to location �(j). d�(i),�(j) ≥ 0 represents
the distance between vertices i and j. For readability we write dij instead of
d�(i),�(j).

A solution to JOBPRP in D is a collection of T ∗ ≤ T closed walks, one
for each trolley. Each closed walk t = 1, . . . , T ∗ is associated with a subgraph
(Vt ∪{s}, At) of D. Each walk starts at s, traverses a set At ⊆ A of selected arcs
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and returns to s. For each t = 1, . . . , T ∗, let Ot ⊆ O denote the subset of orders
collected during walk t and, for i ∈ V , let Oi ⊆ O be the set of orders which
must pick a product in vertex i. For i ∈ VA ∪ {s}, Oi = ∅.

The following requirements must be met by solutions to JOBPRP:

– Capacity constraints impose that, for every t = 1, . . . , T ∗,
∑

o∈Ot
bo ≤ B.

– Indivisibility of the products Po in each order o ∈ Ot collected by each trolley
imposes that, for every o ∈ Ot, there exists at least one walk t where if
i ∈ Vt : �(i) ∈ Lo, then every j : �(j) ∈ Lo must also be visited by t, i.e.,
j ∈ Vt.

– Finally, in order to guarantee that the T ∗ walks collect all orders, we must
impose that ∪T ∗

t=1Ot = O. We assume that there are at least as many orders
as there are trolleys available.

JOBPRP is then the problem of finding T ∗ ≤ T closed walks, meet-
ing the requirements outlined above, in order to minimize the total length
∑T ∗

t=1

∑
(i,j)∈At

dij .
In real applications, D is very likely a sparse graph, since vertices in V (O)

typically have only two neighbours while those in VA do not connect to more
than four other vertices. Because of the types of graphs resulting from typical
applications, a feasible trolley walk for JOBPRP may be forced to not only repeat
vertices but also visit vertices from non-collected orders. For instance, this could
occur if a product from a non-collected order happens to be between two distinct
products in a collected order. However, under reasonable assumptions, we can
prove that the optimal solution to JOBPRP is composed of walks that may
repeat vertices, but will not repeat arcs. An explicit proof can be found in the
appendix of [19], for a closely related problem.

Lemma 1. Let us assume that D is such that for every arc (i, j) there is a
corresponding arc (j, i) and that dij = dji ≥ 0. Then, in the optimal solution T ∗

to JOBPRP, every walk t ∈ T ∗ visits each arc in At exactly once.

4 Integer Programming Formulations for the JOBPRP

Based on Lemma 1, we introduce three integer programming formulations for
the JOBPRP. These formulations allow vertices to be visited multiple times, but
enforce that each arc cannot be traversed more than once. The first model uses
exponentially many constraints to enforce connectivity of the closed walks. The
other two are based on single and multiple commodity network flows. For all of
them, let δ−(W ) = {(i, j) ∈ A : i �∈ W, j ∈ W}, δ+(W ) = {(i, j) ∈ A : i ∈ W, j �∈
W} and A(W ) = {(i, j) ∈ A : i ∈ W, j ∈ W}.

4.1 A Formulation Based on Exponentially Many Constraints

Thefirst formulationusesbinarydecisionvariableszot to indicatewhether (zot = 1)
or not (zot = 0) trolley tpicks order o ∈ O,xtij to indicatewhether (xtij = 1) or not
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(xtij = 0) arc (i, j) ∈ A is traversed by trolley t, yti to indicate whether (yti = 1)
or not (yti = 0) vertex i ∈ V \{s} is visited by trolley t. In addition, the model also
uses variables gti ∈ Z+ to indicate the outdegree of vertex i ∈ V in the closed walk
for trolley t.

JOBPRP can be stated as the following Integer Program:

min

⎧
⎨

⎩

∑

t∈T

∑

(i,j)∈A

dijxtij : (z, x, y, g) ∈ Pg ∩ (B|O|T ,B|A|T ,B(|V |−1)T ,ZT |V |)

⎫
⎬

⎭
,

(1)
where polytope Pg is given by:

∑

o∈O

bozot ≤ B, ∀t ∈ T (2)

∑

t∈T
zot = 1, ∀o ∈ O (3)

∑

(i,j)∈δ+(i)

xtij ≥ zot, ∀o ∈ O, t ∈ T , i : �(i) ∈ Lo, (4)

∑

(i,j)∈δ+(i)

xtij =
∑

(j,i)∈δ−(i)

xtji, ∀i ∈ V, t ∈ T (5)

∑

(s,j)∈δ+(s)

xtsj ≥ zot, ∀t ∈ T , o ∈ O (6)

∑

(i,j)∈δ+(i)

xtij = gti, ∀i ∈ V, t ∈ T (7)

yti ≥ xtij , ∀(i, j) ∈ A, t ∈ T (8)
∑

j∈W

gtj ≥ yti +
∑

(j,k)∈A(W )

xtjk, ∀i ∈ W,W ⊆ V \ {s}, |W | > 1, t ∈ T

(9)

0 ≤ xtij ≤ 1, ∀(i, j) ∈ A, t ∈ T (10)
zot ≥ 0, ∀o ∈ O, t ∈ T (11)
gti ≥ 0, ∀i ∈ V, t ∈ T (12)
yti ≤ 1, ∀i ∈ V, t ∈ T (13)

Constraints (2) guarantee that the number of baskets in a trolley does not
exceed its available capacity while constraints (3) ensure that each order will
be collected by precisely one trolley. Constraints (4) enforce that if an order is
assigned to a trolley, then every vertex that stores a product of this order will
be visited by the trolley at least once. Constraints (5) make sure that for every
arc that reaches a vertex, there is one that leaves it. Constraints (6) ensure
that if a trolley picks any order, then it necessarily departs from the origin.
Constraints (7) and (8) define the outdegree and the y variables for each vertex.
Note that if the maximum outdegree of each vertex was not allowed to be greater
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than one, but instead, if gti ∈ {0, 1}, we would have yti = gti, and constraints (9)
would change to the generalized subtour breaking constraints

∑
(j,k)∈A(W ) xtjk ≤

∑
j∈W\{i} ytj [21]. Constraints (9) do allow subtours found in closed walks as

long as at least one vertex in the cycle has an outdegree of 2.

4.2 Compact Formulations

The JOBPRP formulations we discuss in this section make use of network flows in
order to model the trolleys’ closed walks. The first model assigns one commodity
for each order o ∈ O and makes |Lo| units of that commodity available at
the origin s. Whenever a trolley t implements an order o, |Lo| units of that
commodity are shipped from s and one unit of that commodity must be retained
by each vertex i ∈ V (O) : �(i) ∈ Lo. This introduces real valued flow variables
fot

ij , to indicate the amount of commodity from order o passing through arc (i, j)
in trolley t. The formulation is

min

⎧
⎨

⎩

∑

t∈T

∑

(i,j)∈A

dijxtij : (z, x, f) ∈ Pf ∩ (B|O|T ,B|A|T ,RT |A||O|)

⎫
⎬

⎭
, (14)

where polyhedral region Pf is the intersection of (2)–(6), (10)–(11) and:

∑

(j,i)∈δ−(i)

fot
ji −

∑

(i,j)∈δ+(i)

fot
ij = zot, ∀i ∈ V (O), o ∈ Oi, t ∈ T (15)

∑

(j,i)∈δ−(i)

fot
ji −

∑

(i,j)∈δ+(i)

fot
ij = 0, ∀i ∈ V \ {s}, o ∈ O \ Oi, t ∈ T (16)

0 ≤ fot
ij ≤ |Lo|xtij , ∀(i, j) ∈ A, o ∈ O, t ∈ T (17)

Constraints (15) and (16) impose flow balance constraints. According to (15),
whenever an order o has products to be picked in location �(i) and trolley t
collects that order (zot = 1), vertex i must keep one unit of commodity ot.
On the other hand, constraints (16) enforce that vertices must not retain any
commodity whose order is not assigned to their locations.

A multi-commodity network flow formulation for JOBPRP can be obtained
by defining flow variables hoti

jk to indicate if commodity oti passes through arc
(j, k) ∈ A. Whenever zot = 1, t ∈ T , o ∈ O, one unit of commodity oti, i : �(i) ∈
Lo is shipped from s to vertex i. The formulation is

min

⎧
⎨

⎩

∑

t∈T

∑

(i,j)∈A

dijxtij : (z, x, h) ∈ Ph ∩ (B|O|T ,B|A|T ,RT |A||O||V (O)|)

⎫
⎬

⎭
, (18)
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where polytope Ph is given by (2)–(6), (10)–(11) and:
∑

(j,i)∈δ−(i)

hoti
ji −

∑

(i,j)∈δ+(i)

hoti
ij = zot, ∀o ∈ O, t ∈ T , i ∈ Vo, (19)

∑

(k,j)∈δ−(j)

hoti
kj −

∑

(j,k)∈δ+(j)

hoti
jk = 0, ∀o ∈ O, ∀j ∈ V \ {s, i}, t ∈ T , i ∈ Vo, (20)

∑

(j,s)∈δ−(s)

hoti
js −

∑

(s,j)∈δ+(s)

hoti
sj = −zot, o ∈ O, t ∈ T , ∀i ∈ Vo, (21)

0 ≤ hoti
jk ≤ xtjk, ∀o ∈ O, t ∈ T , i ∈ Vo, (j, k) ∈ A (22)

Constraints (19) ensure that commodity oti is retained by vertex i if and
only if order o is picked by trolley t. Constraints (20) enforce flow balance and
constraints (21) make sure that one unit of commodity oti leaves the origin.

4.3 Symmetry Breaking Constraints

Due to the artificial indexation of trolleys, formulations Pg, Pf and Ph suffer sig-
nificantly from symmetry. That means that identical order to walk assignments
lead to different vector representations, when we simply change the indices of the
trolleys to which the closed walks are assigned. Branch-and-bound algorithms
based on symmetric formulations tend to perform poorly, since they enumerate
search regions that essentially lead to the same solutions. As an attempt to over-
come symmetry for JOBPRP, we add the following constraints to formulations
Pg, Pf and Ph:

o∑

t=1

zot ≥ 1, o = 1, . . . , T (23)

Here we ensure that the first order, o = 1, will be picked by the trolley
assigned to the first index t = 1. The second order, o = 2, is either picked by
either trolley 1 or 2, and so forth.

5 Implementation Details

In this section, we highlight some implementation details regarding the algorithm
based on the formulations outlined above.

Branch-and-cut. We employ a Branch-and-cut algorithm [25] which separates
inequalities (9). Let gti, yti and xtij be the values taken by the corresponding
variables gti, yti and xtij in an optimal solution to polytope Pg. For every t ∈ T ∗,
let V

t ⊆ V \ s be the set of vertices where yti > 0 and A(V
t
) ⊆ A be the set

of arcs with both ends in V
t

where xtij > 0. The problem consists of finding a
subset of vertices W ⊆ V

t
and a vertex i ∈ W for which a constraint of type (9)

is violated.
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This problem can be polynomially solved by finding the minimum cut (max-
imum flow) on a network given by the graph D

t
= (V

t
, A(V

t
)) with capacities

xtij∀(i, j) ∈ A(V
t
). Given any arbitrary W ⊂ V

t
, constraints (7) ensure that∑

j∈W gtj − ∑
(j,k)∈A(W ) xtjk =

∑
(j,�)∈δ+(W ) xtj�, which is exactly the value of

the cut that separates W from V
t \ W .

To solve the minimum cut/maximum flow problem, we employ the push-
relabel algorithm first introduced by Goldberg and Tarjan [9]. Since the problem
has to be solved separately for every t ∈ T ∗, a violated cut for t is temporarily
kept in a cut pool and checked for violation in subsequent iterations for other
trolleys.

Heuristic. We implemented a constructive heuristic to provide an initial solu-
tion for all three formulations. Batching is computed via the time savings heuris-
tic as explained in Sect. 2.2.1 of [16], but the savings matrix is not recalculated
as orders are clustered.

For the estimation of partial route distances, we employed picker routing
heuristics introduced in [27], which are specific for warehouses with multiple
cross-aisles. Partial routes are computed by running each of the following heuris-
tics: S-shape, Largest gap, Combined and Combined+. The best solution among
these four different methods is taken as the input value in the savings matrix.

Solver Tuning. We employed CPLEX 12.6.0 [5] as the the solver for all three
formulations. Branching priority is given to zot variables and probing level is
set to 1. For the compact formulations, the remaining parameters are set to
default values, including enabled presolve and the automatic generation of solver-
separated cuts.

For formulation Pg, in which we explicitly separate constraints (9), we disable
the solver presolve (including dual and nonlinear reductions). Most solver cuts
are also disabled, except for Lift-and-project, Zero-half, Mixed Integer Rounding
(MIR), Gomory and Cover cuts. All the other settings are left as default. Parallel
processing is disabled for Pg and set to the solver default value for Pf and Ph.

6 Computational Experience

We conducted a series of experiments to empirically compare the algorithms
based on the three formulations introduced in Sect. 4. The generation of test
problems is explained below.

6.1 Test Problems

In order to simulate a realistic supermarket environment, we make use of the
publicly available Foodmart database [23]. The database is composed of 2 years
worth of anonymised customer purchases for a chain of supermarkets. There
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are a total of 1560 distinct products, separated in product classes containing 4
different category levels. It also contains approximately 270000 orders for the
period 1997–1998, each composed of a customer id, a list of distinct products
purchased, the number of items for each distinct product and the purchase date.

Warehouse. No information about warehouse layouts and product placement
exists in Foodmart, therefore we built a warehouse layout generator to simulate
both. The generator is based on a previous version developed and kindly provided
by Dr. Birger Raa [29]. The generator creates warehouses that must be able
to hold a minimum predetermined number of distinct products given a (fixed)
number of aisles, cross-aisles and shelves. Arbitrary lengths are also given, in
metres, for aisles and cross-aisles width, as well as rack depth and slot width.
The distance from the origin to its closest artificial vertex (the black vertex in
the top left corner of Fig. 1) is also given.

The generator computes the number of slots a shelf in an aisle side must
have in order to hold at least the required number of products, while keeping
the number of empty slots to a minimum. As an example, the warehouse in Fig. 1
was computed for a minimum of 104 products, while having 3 aisles, 3 cross-aisles
and 2 shelves. Each shelf in each aisle side must have at least 9 slots, so that the
total number of individual products in the warehouse is 108 (four slots would be
empty in this example). The generator also computes the position of cross-aisles
such that aisles are divided in subaisles as equal (in terms of number of slots) as
possible.

The placement of products in slots is done by sorting all products from the
highest category level to the lowest, and placing them in consecutive slots, so
that similar products are close to each other.

A single warehouse layout is used for all test sets created for this work. It
contains 8 aisles, 3 cross-aisles and 3 shelves. Each shelf in each aisle side holds
33 slots, so this warehouse can store 1584 distinct products (enough for all 1560
products in the Foodmart database). The distance from the origin to the first
artificial vertex is 4 m, the aisle and cross-aisle widths are 3 m, and both the slot
width and rack depth are 1 m.

Orders. We observed in the Foodmart database that orders are generally very
small (the vast majority containing up to only 4 or 5 distinct products). On the
other hand, online orders (which inspired this problem) may be composed of
dozens of items.

To produce larger orders, we combined different Foodmart orders into a single
one. For every customer, all of their purchases made in the first Δ days are
combined into a single order. The combined order may contain not only more
distinct products, but also a higher quantity of items of a single product.

A test instance is taken as the O orders with the highest number of distinct
products. If O = 5, the 5 largest combined orders make up the test set; if O = 6,
we take the same orders as in O = 5 plus the sixth largest combined order. We
created several test instances for Δ = {5, 10, 20} and O = {5, . . . , 30}. Table 1
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shows the number of distinct products, the total number of items and the number
of required baskets for the largest 30 orders (for each value of Δ). We consider
that each basket may carry up to 40 items.

Capacity of Baskets and Number of Trolleys. With regard to parameter
values we set B = 8, each basket holding a maximum of 40 items, irrespective of
their sizes or weights. For every test instance, we define the number of trolleys
T =

⌈∑
o∈O bo
B +0.2

⌉
. Finding the exact minimum T required to service all orders

is an optimisation problem on its own, we however do not tackle this problem
in this work. Not all trolleys need to be used as the solution may leave some
trolleys idle.

Table 1. Largest combined orders for Δ = {5, 10, 20}

Order index Δ = 5 Δ = 10 Δ = 20

Products Items Baskets Products Items Baskets Products Items Baskets

1 18 63 2 23 79 2 23 79 2

2 11 39 1 23 66 2 23 66 2

3 11 39 1 12 34 1 16 45 2

4 11 35 1 11 40 1 15 42 2

5 8 28 1 11 39 1 14 50 2

6 8 28 1 11 39 1 14 49 2

7 7 28 1 11 36 1 14 40 1

8 7 27 1 11 35 1 13 42 2

9 7 27 1 11 31 1 13 41 2

10 7 24 1 10 38 1 13 40 1

11 7 24 1 10 36 1 13 39 1

12 7 23 1 10 32 1 12 48 2

13 7 23 1 10 30 1 12 45 2

14 7 22 1 10 29 1 12 43 2

15 7 21 1 9 28 1 12 41 2

16 7 20 1 9 26 1 12 39 1

17 7 20 1 8 27 1 12 36 1

18 7 20 1 8 25 1 12 34 1

19 7 20 1 8 22 1 12 34 1

20 7 19 1 7 26 1 12 33 1

21 7 19 1 7 23 1 11 43 2

22 7 19 1 7 23 1 11 40 1

23 7 18 1 7 22 1 11 39 1

24 7 18 1 7 20 1 11 39 1

25 7 10 1 7 20 1 11 38 1

26 6 21 1 7 20 1 11 38 1

27 6 19 1 7 19 1 11 37 1

28 6 17 1 7 18 1 11 36 1

29 6 14 1 7 17 1 11 33 1

30 6 9 1 7 10 1 11 31 1
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Table 2. Instances features

O Δ = 5 Δ = 10 Δ = 20
∑

o∈O bo T T ∗ |V | |A| ∑o∈O bo T T ∗ |V | |A| ∑o∈O bo T T ∗ |V | |A|
5 6 1 1 76 192 7 2 1 90 220 10 2 2 104 248

6 7 2 1 82 204 8 2 1 101 242 11 2 2 114 268

7 8 2 1 89 218 9 2 2 109 258 13 2 2 123 286

8 9 2 2 95 230 10 2 2 114 268 14 2 2 133 306

9 10 2 2 101 242 11 2 2 123 286 16 3 2 141 322

10 11 2 2 106 252 12 2 2 131 302 17 3 3 147 334

11 12 2 2 111 262 13 2 2 140 320 19 3 3 149 338

12 13 2 2 116 272 14 2 2 145 330 20 3 3 153 346

13 14 2 2 121 282 15 3 2 150 340 21 3 3 157 354

14 15 3 2 128 296 16 3 2 156 352 23 4 3 162 364

15 16 3 2 132 304 17 3 3 160 360 24 4 3 169 378

20 21 3 3 153 346 22 3 3 179 398 32 5 4 196 432

25 26 4 4 174 388 27 4 4 195 430 38 5 5 211 462

30 31 5 4 186 412 32 5 4 207 454 43 6 6 228 496

Details about test instances are shown in Table 2. For each value of Δ =
{5, 10, 20}, there are five columns: The total number of baskets needed to carry
all orders (labelled as

∑
o∈O bo), the number of available trolleys T , the actual

number of trolleys T ∗ required to service all orders and the number of vertices
|V | and edges |A| of each respective graph D. For higher values of Δ, both the
total number of products and the number of distinct products increase, this is
reflected in the higher number of baskets required and the larger number of
vertices and arcs for higher values of Δ.

6.2 Computational Results

In this section, we present computational results for our three formulations. We
used an Intel Xeon with 24 cores @ 2.40 GHz with 32 GB of RAM and Linux
as the operating system. The code was written in C++ and CPLEX 12.6.0 [5]
was used as the mixed-integer solver. The heuristic described in Sect. 5 is used to
warm start the three algorithms with valid JOBPRP upper bounds. A maximum
time limit of 6 CPU hours was imposed to each algorithm and instance.

Table 3 compares the three algorithms for a selection of instances from our
test set. For each algorithm, we include six columns. T(s) denotes the total
elapsed time, in seconds, UB and LB respectively represent the best upper and
lower bounds obtained at the end of the search, when either the instance was
solved to proven optimality or when the time limit has hit. GAP is defined as
100(UB − LB)/UB. FLB is the lower bound obtained at the end of the first
node of the branch-and-bound search tree and NS stands for the total number
of nodes investigated during the search.
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Table 3. Comparison of algorithms based on formulations Pg, Pf and Ph. A symbol
“−” for T(s) entries indicates that the instance was not solved when the time limit
was hit.

Δ O
Branch-and-cut algorithm based on Pg Branch-and-bound algorithm based on Pf Branch-and-bound algorithm based on Ph

T(s) UB GAP LB FLB NS T(s) UB GAP LB FLB NS T(s) UB GAP LB FLB NS

5 5 8.2 348.6 – – 345.6 132 4.3 348.6 – – 328.7 1136 21.7 348.6 – – 345.6 61

6 10.7 364.8 – – 364.8 4 9.8 364.8 – – 353.7 456 23.5 364.8 – – 364.8 1

7 18.2 374.8 – – 372.8 176 47.1 374.8 – – 357.3 2333 105.1 374.8 – – 372.8 182

8 168.2 503.8 – – 403.7 1195 116.5 503.8 – – 400.9 6882 331.7 503.8 – – 409.9 198

9 474.1 539.6 – – 411.9 3376 463.4 539.6 – – 390.6 24782 858.3 539.6 – – 421.4 759

10 1517.5 581.4 – – 433.2 6940 849.3 581.4 – – 434.1 45617 941.5 581.4 – – 451.1 129

11 9816.6 613.5 – – 442.4 58893 3931.0 613.5 – – 427.6 297642 2853.6 613.5 – – 460.1 1168

12 – 621.8 1.6 611.7 450.3 76162 2958.1 621.4 – – 456.2 166718 7519.4 621.4 – – 472.4 5600

13 14618.4 623.4 – – 461.0 50388 3428.0 623.4 – – 447.9 185231 3907.0 623.4 – – 478.5 223

14 – 647.5 10.1 581.9 467.7 14572 – 639.3 5.9 601.4 445.3 175800 – 639.3 0.1 638.5 495.0 5067

15 – 657.3 10.6 587.9 474.1 16981 – 661.5 9.6 597.9 450.0 184100 18578.3 653.4 – – 500.2 1135

20 – 930.5 29.7 654.5 519.2 14001 – 932.8 33.6 619.0 478.8 91400 – 985.3 42.5 566.9 552.0 101

25 – 1252.4 50.5 619.9 539.8 5072 – 1193.9 52.3 569.4 494.5 12553 – 1252.4 100.0 0.0 – 0

30 – 1387.4 56.0 610.8 548.0 2820 – 1509.3 64.2 541.0 519.0 946 – 1509.3 100.0 0.0 – 0

10 5 14.4 371.1 – – 369.1 4 9.2 371.1 – – 360.9 413 27.4 371.1 – – 371.1 1

6 19.4 377.1 – – 374.7 178 34.9 377.1 – – 365.6 1187 197.3 377.1 – – 374.7 401

7 228.0 549.8 – – 428.3 651 514.6 549.8 – – 405.6 39097 650.7 549.8 – – 424.7 175

8 551.9 584.2 – – 438.3 3555 707.8 584.2 – – 395.6 73183 723.6 584.2 – – 436.0 235

9 10472.3 637.4 – – 447.2 70742 4934.4 637.4 – – 423.2 429781 – 637.4 0.4 634.8 464.1 11372

10 – 661.8 1.6 650.9 468.6 89314 13810.6 661.8 – – 428.2 1092715 – 661.9 0.9 655.8 480.2 4348

11 – 709.8 7.8 654.7 486.0 57096 – 701.8 3.7 676.0 443.8 923700 – 699.8 2.0 685.7 504.7 3233

12 – 721.7 7.3 669.1 493.6 58310 – 707.8 1.2 699.0 445.5 1219600 20067.4 707.7 – – 509.2 2514

13 – 725.8 11.2 644.6 503.3 29495 – 745.4 16.7 620.8 461.0 328300 – 738.2 10.9 657.6 522.2 285

14 – 746.2 13.9 642.1 511.0 26700 – 735.8 17.4 608.2 463.1 240200 – 743.2 11.1 660.6 530.4 149

15 – 930.5 31.6 636.9 525.6 8474 – 940.0 31.1 647.5 474.8 191000 – 1045.3 42.6 599.5 556.3 13

20 – 1055.3 33.0 707.0 563.0 12300 – 1042.4 36.9 657.4 507.4 74214 – 1113.3 42.7 637.5 603.7 14

25 – 1300.4 47.8 678.7 593.4 4623 – 1294.0 54.8 585.3 532.6 5814 – 1300.4 100.0 0.0 – 0

30 – 1590.1 58.2 664.9 609.2 3483 – 1589.5 62.5 595.6 551.1 645 – 1615.5 100.0 0.0 – 0

20 5 273.1 573.8 – – 443.6 3147 498.3 573.8 – – 427.9 62001 512.5 573.8 – – 445.9 720

6 3015.6 656.2 – – 479.6 36421 1742.6 656.2 – – 450.7 229530 2460.8 656.2 – – 487.2 1608

7 5316.9 689.8 – – 499.5 50250 6847.5 689.8 – – 478.1 806672 3220.9 689.8 – – 515.4 1240

8 14848.3 697.8 – – 505.2 116551 7080.1 697.8 – – 457.0 772937 9247.2 697.8 – – 504.1 4129

9 – 727.7 4.7 693.9 505.1 67558 – 735.4 9.7 664.1 471.1 743300 – 727.7 0.1 726.9 527.0 3292

10 – 952.5 19.9 763.3 538.8 21163 – 944.0 22.4 732.8 491.7 568000 – 927.0 21.6 726.5 557.3 343

11 – 1037.3 27.1 755.8 546.3 18031 – 1017.0 23.6 777.2 502.3 1467500 – 1022.6 29.9 716.8 580.3 177

12 – 1051.3 27.0 767.4 558.0 19900 – 1017.0 23.1 781.7 501.3 761400 – 1048.8 31.4 719.4 585.3 190

13 – 1049.0 26.8 768.1 559.9 20947 – 1032.9 27.1 753.0 512.4 409700 – 1075.3 39.0 656.3 601.0 94

14 – 1064.9 32.8 715.7 563.8 10004 – 1064.9 35.0 691.9 525.0 79300 – 1078.9 43.1 613.7 613.7 1

15 – 1126.7 36.1 720.2 560.1 7542 – 1071.0 35.7 688.6 525.7 70900 – 1300.0 100.0 0.0 – 0

20 – 1428.4 48.8 730.8 614.7 3605 – 1426.1 53.6 661.9 565.5 7011 – 1428.4 100.0 0.0 – 0

25 – 1775.5 58.5 736.5 635.6 3019 – 1757.5 63.1 647.6 578.6 3202 – 1777.5 100.0 0.0 – 0

30 – 2076.0 64.7 733.2 654.0 1409 – 2076.0 69.2 638.3 589.1 36 – 2076.0 100.0 0.0 – 0

The branch-and-bound algorithms based on formulations Ph and Pf man-
aged to solve 19 out of 42 instances to proven optimality. The Branch-and-cut
algorithm based on Pg solved only 17 instances, within the imposed time limit.
For the 21 instances that were solved to optimality by one of the methods intro-
duced here, the best elapsed times are highlighted in bold. Out of these 21 cases,
the branch-and-bound algorithm based on Pf had the best CPU times in 12
instances. However, two instances could only be solved by the branch-and-bound
method based on Ph.

For the other 21 unsolved instances, we highlight, in bold, the best upper
bound and the smallest duality gap yet to be closed, when the time limit was
hit. Once again, the branch-and-bound algorithm based on Pf is shown to be a
competitive choice, as it provided, at the end of the time limit, the best upper
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bound in 13 out of these 21 instances. As the number of orders grows, however,
the branch-and-cut algorithm based on Pg consistently obtained lower gaps and
higher final lower bounds. For Δ = 20, for instance, it obtained the strongest
final lower bounds for every instance where O ≥ 13.

The strongest root node lower bounds were obtained by formulation Ph. As
one could expect, the evaluation of multi-commodity lower bounds become very
expensive as the size of the instances grows, so that these bounds could not be
evaluated within the time limit for 8 cases in our test set. The root node lower
bounds obtained by the algorithm that relies on Pg is often weaker than Ph

counterparts. Despite that, the Branch-and-cut algorithm based on Pg is more
scalable, although for large instances, its final optimality gaps are high (64.7 %
for Δ = 20 and O = 30).

All three formulations benefited from contraints (23). Although not reported
here due to space constraints, FLBs were on average 3.4 % lower when these
constraints were not included (for all formulations).

In summary, the algorithms based on formulations Pf and Ph tend to perform
better than that based on Pg for small and medium sized instances. A possible
reason is that commercial solvers such as CPLEX are very competitive due
to presolve reduction and built-in general-purpose cuts generation. Important
CPLEX features had to be disabled when our callback separation routine was
turned on, for the Branch-and-cut algorithm based on Pg. We have observed,
however, that Pg, having less variables than Pf and Ph, is more scalable as
instances get larger.

7 Conclusions and Future Work

In this work we investigated the joint order batching and picker routing problem
(JOBPRP) in inventories. In particular, we considered the case of online grocery
shopping where orders may be composed of dozens of items. According to our
literature review, no exact methods have been proposed for jointly solving both
batching and routing as a single problem.

We introduced three formulations and branch-and-bound algorithms for the
JOBPRP. The first model involves exponentially many constraints to enforce
connectivity and is solved via a branch-and-cut algorithm. The other two are
compact formulations based on network flows, the first considering a single com-
modity and the second considering multiple commodities. For all three formula-
tions, we proposed symmetry breaking constraints and we implemented a con-
structive heuristic to warm start the three branch-and-bound algorithms.

We also developed an instance generator that creates warehouse layouts with
multiple aisles, cross-aisles and shelves. We make use of publicly available real-
world supermarket data to generate orders and to place products in the ware-
house. We generated instances with a varying number of orders of varying sizes.

We empirically compared the formulations and algorithms and concluded
that the formulations based on network flows tend to perform better for small
and medium sized instances. We believe this is in part due to the competitiveness
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of CPLEX, the mixed-integer solver chosen. However, as the number of orders
grows, the formulation with an exponential number of connectivity constraints
is more scalable as, within the time limit, stronger lower bounds are obtained.

In future we plan to conduct a theoretical study of the strength of each formu-
lation and to characterize new valid inequalities that could be added to reinforce
their linear relaxation bounds. On the practical side, we also intend to develop
meta-heuristics to obtain stronger upper bounds, in the expectation of solving
(or nearly solving) instances of industrial scale in competitive computational
times.
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Abstract. We study uniqueness of Nash equilibria in atomic split-
table congestion games and derive a uniqueness result based on poly-
matroid theory: when the strategy space of every player is a bidirectional
flow polymatroid, then equilibria are unique. Bidirectional flow polyma-
troids are introduced as a subclass of polymatroids possessing certain
exchange properties. We show that important cases such as base order-
able matroids can be recovered as a special case of bidirectional flow
polymatroids. On the other hand we show that matroidal set systems
are in some sense necessary to guarantee uniqueness of equilibria: for
every atomic splittable congestion game with at least three players and
non-matroidal set systems per player, there is an isomorphic game hav-
ing multiple equilibria. Our results leave a gap between base orderable
matroids and general matroids for which we do not know whether equi-
libria are unique.

1 Introduction

We revisit the issue of uniqueness of equilibria in atomic splittable congestion
games. In this class of games there is a finite set of resources E, a finite set
of players N , and each player i ∈ N is associated with a weight di ≥ 0 and a
collection of allowable subsets of resources Si ⊆ 2E . A strategy for player i is
a (possibly fractional) distribution xi ∈ R

|Si|
+ of the weight over the allowable

subsets Si. Thus, we can compactly represent the strategy space of every player
i ∈ N by the following polytope

Pi := {xi ∈ R
|Si|
+ :

∑

S∈Si

xS = di}. (1)

We denote by x = (xi)i∈N the overall strategy profile. The induced load under
xi at resource e is defined as xi,e :=

∑
S∈Si:e∈S xS and the total load on e

is then given as xe :=
∑

i∈N xi,e. Resources have player-specific cost functions
ci,e : R+ → R+ which are assumed to be non-negative, increasing, differentiable
and convex. The total cost of player i in strategy distribution x is defined as

πi(x) =
∑

e∈E

xi,e ci,e(xe).
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Each player wants to minimize the total cost on the used resources and a Nash
equilibrium is a strategy profile x from which no player can unilaterally deviate
and reduce its total cost. Using that the strategy space is compact and cost
functions are increasing and convex Kakutanis’ fixed point theorem implies the
existence of a Nash equilibrium.

Example 1. A well-known special case of the above formulation arises when the
resources E correspond to edges of a graph G = (V,E) and the allowable subsets
Si correspond to the set of si-ti-paths for some (si, ti) ∈ V × V . In this case, we
speak of an atomic splittable network congestion game.

1.1 Uniqueness of Equilibria

Uniqueness of equilibria is fundamental to predict the outcome of distributed
resource allocation: if there are multiple equilibria it is not clear upfront which
equilibrium will be selected by the players. An intriguing question in the field of
atomic splittable congestion games is the possible non-uniqueness of equilibria.
Multiple equilibria x,y exist whenever there exists a player i and resource e such
that xi,e �= yi,e. A variant on this question is whether or not there exist multiple
equilibria such that there exists at least one resource e for which xe �= ye. We
call this variant “uniqueness up to induced load on the resources”.

For non-atomic players and network congestion games on directed graphs,
Milchtaich [18] proved that Nash equilibria are not unique when cost functions
are player-specific. Uniqueness is only guaranteed if the underlying graph is two
terminal s-t-nearly-parallel. Richman and Shimkin [22] extended this result to
hold for atomic splittable network games. Bhaskar et al. [5] looked at uniqueness
up to induced load on the resources. They proved that even when all players
experience the same cost on a resource, there can exist multiple equilibria. They
further proved that for two players, the Nash equilibrium is unique if and only
if the underlying undirected graph is generalized series-parallel. For multiple
players of two types (players are of the same type if they have the same weight
and share the same origin-destination pair), there is a unique equilibrium if
and only if the underlying undirected graph is s-t-series-parallel. For more than
two types of players, there is a unique equilibrium if and only if the underlying
undirected graph is generalized nearly-parallel.

1.2 Our Results and Outline of the Paper

In this paper we study the uniqueness of equilibria for general set systems
(Si)i∈N . Interesting combinatorial structures of the Si’s beyond paths may be
trees, forests, Steiner trees or tours in a directed or undirected graph, or bases
of matroids.

As our main result we give a sufficient condition for uniqueness based on the
theory of polymatroids. We show that if the strategy space of every player is a
polymatroid base polytope satisfying a special exchange property – we term this
class of polymatroids bidirectional flow polymatroids – the equilibria are unique.1

1 The formal definition of bidirectional flow polymatroids appears in Definition 1.
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We demonstrate that bidirectional flow polymatroids are quite general, as they
contain base-orderable matroids, gammoids, transversal and laminar matroids.
For an overview of special cases that follow from our main result, we refer to the
full version of this paper [14].

The uniqueness result is stated in Sect. 4. In Sect. 5 we show that base-
orderable matroids are a special case of bidirectional flow polymatroids. Defin-
itions of polymatroid congestion games and bidirectional flow polymatroids are
introduced in Sects. 2 and 3, respectively. In Sect. 6 we complement our unique-
ness result by showing the following. Consider a game with at least three players
for which the set systems Si of all players i ∈ N are not bases of a matroid. Then
there exists a game with strategy spaces φ(Si) isomorphic to Si which admits
multiple equilibria. Here, the term isomorphic means that there is no a priori
description on how the individual strategy spaces of players interweave in the
ground set of resources. Our results leave a gap between general matroids and
base orderable matroids for which we do not know whether or not equilibria are
unique.

In Sect. 7 we consider uniqueness of equilibria if the set systems Si correspond
to paths in an undirected graph. The instance used for showing multiplicity of
equilibria of non-matroid games can be seen as a 3-player game played on an
undirected 3-vertex cycle graph. From this we can derive a new characterization
of uniqueness of equilibria in undirected graphs. If we assume at least three
players and if we do not specify beforehand which vertices of the graph serve as
sources or sinks, an undirected graph induces unique equilibria if and only if the
graph has no cycle of length at least 3.

1.3 Further Related Work

Atomic splittable (network) congestion games have been first proposed by Orda
et al. [20] and Altman et al. [3] in the context of modeling routing in commu-
nication networks. Other applications include traffic and freight networks (cf.
Cominetti et al. [8]) and scheduling (cf. Huang [16]). Haurie and Marcotte [15]
showed that classical nonatomic congestion games (cf. Beckmann et al. [4] and
Wardrop [26]) can be modeled as atomic splittable congestion games by con-
structing a sequence of games and taking the limit with respect to the number
of players. It follows that atomic splittable congestion games are strictly more
general than their nonatomic counterpart. Cominetti et al. [8], Harks [10] and
Roughgarden and Schoppmann [23] studied the price of anarchy in atomic split-
table congestion games.

Integral polymatroid congestion games were introduced in Harks, Klimm
and Peis [11] and later they were studied from an optimization perspective in
Harks, Oosterwijk and Vredeveld [12]. Polymatroid theory was recently used in
the context of nonatomic congestion games, where it is shown that matroid set
systems are immune to the Braess paradox, see Fujishige et al. [9].
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2 Polymatroid Congestion Games

In polymatroid congestion games we assume that the strategy space for every
player corresponds to a polymatroid base polytope.

In order to define polymatroids we first have to introduce submodular
functions. A function ρ : 2E → R is called submodular if ρ(U) + ρ(V ) ≥
ρ(U ∪ V ) + ρ(U ∩ V ) for all U, V ⊆ E. It is called monotone if ρ(U) ≤ ρ(V )
for all U ⊆ V , and normalized if ρ(∅) = 0. Given a submodular, monotone and
normalized function ρ, the pair (E, ρ) is called a polymatroid. The associated
polymatroid base polytope is defined as:

Pρ :=
{
x ∈ R

E
+ | x(U) ≤ ρ(U) ∀U ⊆ E, x(E) = ρ(E)

}
,

where x(U) :=
∑

e∈U xe for all U ⊆ E.
In a polymatroid congestion game, we associate with every player i a player-

specific polymatroid (E, ρi) and assume that the strategy space of player i is
defined by the (player-specific) polymatroid base polytope Pρi

. From now on,
when we mention a polymatroid congestion game, we mean a weighted atomic
splittable polymatroid congestion game. A special case of polymatroid congestion
games are the matroid congestion games:

Example 2 (Matroid Congestion Games). Consider an atomic splittable matroid
congestion game, where for every i ∈ N the allowable subsets are the base set
Bi of a matroid Mi = (E, Ii). The rank function rki : 2E → R of matroid
Mi is defined as: rki(S) := max{|U | | U ⊆ S and U ∈ Ii} for all S ⊆ E, and is
submodular, monotone and normalized [21]. Moreover, the characteristic vectors
of the bases in Bi are exactly the vertices of the polymatroid base polytope Prki

.
It follows that the polytope Pi := {x ∈ R

|Bi|
+ |∑B∈Bi

xB = di} corresponds to
strategy distributions that lead to load vectors in the following polytope:

Pdi·rki
=

{
xi ∈ R

E
+|xi(U) ≤ di · rki(U) ∀U ⊆ E, xi(E) = di · rki(E)

}
.

Hence matroid congestion games are a special case of polymatroid congestion
games. Two practical examples of polymatroid congestion games can be found
in the full version of this paper [14].

3 Bidirectional Flow Polymatroids

We provide a sufficient condition for a class of polymatroid congestion games to
have a unique Nash equilibrium. We prove that if the strategy space of every
player is the base polytope of a bidirectional flow polymatroid, Nash equilibria
are unique. In order to define the class of bidirectional flow polymatroids we first
discuss some basic properties of polymatroids. We start with a generalization of
the strong exchange property for matroids. Let χe ∈ Z

|E| be the characteristic
vector with χe(e) = 1, and χe(e′) = 0 for all e′ �= e.
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Lemma 1 (Strong exchange property polymatroids (Murota [19])). Let
Pρ be a polymatroid base polytope defined on (E, ρ). Let x,y ∈ Pρ and suppose
xe > ye for some e ∈ E. Then there exists an e′ ∈ E with xe′ < ye′ and an ε > 0
such that:

x + ε(χe′ − χe) ∈ Pρ and y + ε(χe − χe′) ∈ Pρ.

This exchange property will play an important role in the definition of bidi-
rectional flow polymatroids. Given a strategy x in the base polytope of polyma-
troid (E, ρ), we are interested in the exchanges that can be made between xe

and xe′ for some resources in e, e′ ∈ E. For any x,y ∈ Pρ define the capacitated
graph D(x,y) on vertices E. An edge (e, e′) exists if there is an ε > 0 such that
x+ ε(χ′

e − χe) ∈ Pρ and y + ε(χe − χ′
e) ∈ Pρ. For edge (e, e′) we define capacity

ĉx,y(e, e′) as follows:

ĉx,y(e, e′) := max{α|x + α(χe′ − χe) ∈ Pρ and y + α(χe − χe′) ∈ Pρ}.

A bidirectional flow is a flow in D(x,y) where every resource e with xe > ye has
supply of xe−ye and every resource e with xe < ye has a demand of ye−xe. Such
a flow might not exist. In that case we say that x and y are conflicting strategies.
We are now ready to define the class of bidirectional flow polymatroids:

Definition 1 (Bidirectional flow polymatroid). A polymatroid (E, ρ) is
called a bidirectional flow polymatroid if for every pair of vectors x,y in base
polytope Pρ, there exists a bidirectional flow in D(x,y).

Not all polymatroids are bidirectional flow polymatroids, like the graphic
matroid on the K4. Note that there does exist a flow if capacities are defined
as ĉx,y(e, e′) := max{α|x + α(χe′ − χe) ∈ Pρ} instead. This is proven by
Wallacher and Zimmermann under the name of the strong difference theorem [25,
Theorem 7], and a shorter proof can be found in the full version of this paper [14].

4 A Uniqueness Result

In this section we prove that when the strategy space of every player is the base
polytope of a bidirectional flow polymatroid, equilibria are unique. We denote
the marginal cost of player i on resource e ∈ E by μi,e(x) = ci,e(xe)+xi,ec

′
i,e(xe).

An equilibrium condition for polymatroid congestion games, a result that
follows from [10, Lemma 1], is as follows:

Lemma 2. Let x be a Nash equilibrium in a polymatroid congestion game. If
xi,e > 0, then for all e′ ∈ E for which there is an ε > 0 such that xi+ε(χe′−χe) ∈
Pρi

, we have μi,e(x) ≤ μi,e′(x).

In the rest of this section we will prove the following theorem:

Theorem 1. If for a polymatroid congestion game, the strategy space for every
player is the base polytope of a bidirectional flow polymatroid, then the equilibria
of this game are unique in the sense that xi,e = yi,e for all i ∈ N and e ∈ E.
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From now on we assume x = (xi)i∈N and y = (yi)i∈N are strategy profiles,
where strategies xi and yi are taken from the base polytope Pρi

of a player-
specific bidirectional flow polymatroid. Before we prove Theorem 1, we first
introduce some new notation. We define E+ = {e ∈ E|xe > ye} and E− = {e ∈
E|xe < ye} as the sets of globally overloaded and underloaded resources. Define
E= = {e ∈ E|xe = ye} as the set of resources on which the total load does not
change. In the same way we define player-specific sets of locally underloaded and
overloaded resources Ei,+ = {e ∈ E|xi,e > yi,e} and Ei,− = {e ∈ E|xi,e < yi,e}.
We also introduce player set N+

> = {i ∈ N |∑e∈E+(xi,e − yi,e) > 0}. We can
distinguish between two cases. Either E = E=, thus xe = ye for all resources
e ∈ E, or E �= E=, which implies that E+ and E− are non-empty. Note that in
this last case N+

> �= ∅.
For each player i we create a graph G(xi,yi) from graph D(xi,yi) by adding

a super-source si and a super-sink ti to D(xi,yi). We add edges from si to
e ∈ Ei,+ with capacity xi,e − yi,e and edges from e ∈ Ei,− to ti with capacity
yi,e − xi,e. Graph G(xi,yi) is visualized in Fig. 1.

si

e1

ek

ti

Ei,+ Ei,−

Cut δ(E+)

Fig. 1. Visualization of graph G(xi,yi) and cut δ(E+) used in the proof of Lemma 3.

Recall that strategies xi and yi are both chosen from the base polytope of
a bidirectional flow polymatroid. Therefore there exists a flow fi in D(xi,yi)
where every resource e ∈ Ei,+ has a supply of xi,e − yi,e and e ∈ Ei,− a demand
of yi,e − xi,e. Using fi we define a si − ti flow f ′

i in G(xi,yi) as follows:

f ′
i(e, e

′) =

⎧
⎪⎨

⎪⎩

xi,e − yi,e, if e = si and e′ ∈ Ei,+,

yi,e − xi,e, if e ∈ Ei,− and e′ = ti,

fi(e, e′), otherwise.
(2)

Lemma 3. For x �= y, there exists a player i and a path (si, e1, . . . , ek, ti) in
G(xi,yi) such that e1 ∈ Ei,+ ∩ (E+ ∪ E=) and ek ∈ Ei,− ∩ (E− ∪ E=).
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Proof. If E �= E=, then N+
> �= ∅, and we pick a player i ∈ N+

> . Flow f ′
i can be

decomposed into flow carrying si-ti paths, and we will show that there exists
a path in this path decomposition that goes from si to a vertex e1 ∈ Ei,+ ∩
E+, and, after visiting possibly other vertices, finally goes through a vertex
ek ∈ Ei,− ∩ E− to ti. To see this consider the cut δ(E+), following notation by
Schrijver [24], as visualized in Fig. 1. Recall that i ∈ N+

> , hence,
∑

e∈E+(xi,e −
yi,e) > 0. Thus, in f ′

i more load enters E+ from si, than leaves E+ to ti. This
implies that in the flow decomposition of f ′

i there must be a path that goes from
si to a vertex e1 ∈ Ei,+ ∩ E+, crosses cut δ(E+) an odd number of times to a
vertex ek ∈ Ei,− ∩ (E− ∪E=) before ending in ti. As this is a flow-carrying path
in f ′

i , it exists in G(xi,yi).
If E = E=, pick any player i for which there exists a resource e with xi,e �= yi,e

and look at the path decomposition of f ′
i . Every path (si, e1, . . . , ek, ti) in this

decomposition is a path such that e1 ∈ Ei,+ and ek ∈ Ei,−. As E = E=, it also
holds that e1 ∈ Ei,+ ∩ E= and ek ∈ Ei,− ∩ E=. As this is a flow-carrying path
in f ′

i , it exists in G(xi,yi).

Proof (Theorem 1). Assume x and y are both Nash equilibria. Using Lemma 3
we find a path (si, e1, . . . , ek, ti) in G(xi,yi) such that e1 ∈ Ei,+ ∩ (E+ ∪ E=)
and ek ∈ Ei,− ∩ (E− ∪ E=). Since every edge (ej , ej+1) exists in G(xi,yi), for
all j ∈ {1, . . . , k − 1} we get:

xi + ε(χej+1 − χej
) ∈ Pρi

and yi + ε(χej
− χej+1) ∈ Pρi

.

Using Lemma 2 we obtain for x:

μi,e1(x) ≤ μi,e2(x) ≤ · · · ≤ μi,ek
(x), (3)

and similarly for y:

μi,ek
(y) ≤ μi,ek−1(y) ≤ · · · ≤ μi,e1(y). (4)

Recall that μi,e(x) = ci,e(xe)+xi,ec
′
i,e(xe). As e1 ∈ Ei,+, we have that xi,e1 >

yi,e1 . Because ci,e1 is strictly increasing and e1 ∈ (E+ ∪ E=) we get ci,e1(xe1) ≥
ci,e1(ye1) and c′

i,e1
(xe1) > 0 using xe1 ≥ xi,e1 > 0. Moreover, since ci,e1 is

convex, the slope of ci,e1 is non-decreasing and, hence, c′
i,e1

(xe1) ≥ c′
i,e1

(ye1).
Putting things together, we get

μi,e1(y) < μi,e1(x). (5)

Similarly, as ek ∈ Ei,− ∩ (E− ∪ E=), we have:

μi,ek
(x) ≤ μi,ek

(y). (6)

Combining (3), (4), (5) and (6), we have:

μi,ek
(x) ≤ μi,ek

(y) ≤ μi,e1(y) < μi,e1(x) ≤ μi,ek
(x).

This is a contradiction and therefore either strategy xi or yi is not a Nash
equilibrium for player i. �
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5 Applications

In this section we demonstrate that bidirectional flow polymatroids are gen-
eral enough to allow for meaningful applications. As described in Example 2,
matroid congestion games belong to polymatroid congestion games. A subclass
of matroids are base orderable matroids introduced by Brualdi [6] and Brualdi
and Scrimger [7].

Definition 2 (Base orderable matroid). A matroid M = (E, I) is called
base orderable if for every pair of bases (B,B′) there exists a bijective function
gB,B′ : B → B′ such that for all e ∈ B both B − e + gB,B′(e) ∈ B and B′ + e −
gB,B′(e) ∈ B.

We prove that polymatroids defined by the rank function of a base order-
able matroid belong to the class of bidirectional flow polymatroids. Therefore,
all matroid congestion games for which the player-specific matroids are base
orderable have unique equilibria.

Theorem 2. Let rk be the rank function of a base orderable matroid (E, rk).
Then, for any d ≥ 0, the polymatroid (E, d · rk) is a bidirectional flow polyma-
troid.

Proof. Polytope Pi in Example 2 describes exactly how some player-specific
weight di can be divided over different bases in Bi to obtain a feasible strategy
xi ∈ Pdi·rki

. In this proof we use the same polytope structures, but remove
the player specific index i. Thus polytope P describes how weight d can be
divided over bases in B to obtain a feasible strategy x ∈ Pd·rk. We call vector
x′ ∈ P a base decomposition of x if it satisfies xe =

∑
B∈B;e∈B x′

B for all e ∈ E.
Given two vectors x,y ∈ Pd·rk, we look at the differences between two base
decompositions x′,y′ ∈ P . We introduce sets B+,B− ⊂ B that will contain
respectively the overloaded and underloaded bases: B+ = {B ∈ B|x′

B > y′
B} and

B− = {B ∈ B|x′
B < y′

B}.
Using these sets we create the complete directed bipartite graph DB(x,y)

on vertices (B+,B−), where bases B ∈ B+ have a supply x′
B − y′

B and bases
B ∈ B− have a demand y′

B − x′
B. As the total supply equals the total demand,

there exists a transshipment t from strategies B ∈ B+ to strategies B′ ∈ B−,
such that, when carried out, we obtain y′ from x′. We denote by t(B,B′) the
amount of load transshipped from B ∈ B+ to B′ ∈ B−.

In the remainder of the proof, we use transshipment t to construct a flow f
in graph D(x,y). As the polymatroid is defined by the rank function of a base
orderable matroid, for every pair of bases (B,B′) there exists a bijective function
gB,B′ : B → B′ such that both B − e + gB,B′(e) ∈ B and B′ + e − gB,B′(e) ∈ B
for all e ∈ B. Note that when e ∈ B ∩ B′, gB,B′(e) = e. Define

B2
e,e′ :=

{
(B,B′) ∈ B+ × B−|e ∈ B, e′ ∈ B′ and gB,B(e) = e′} .
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Then we define flow f as: f(e,e′) =
∑

(B,B′)∈B2
e,e′

tB,B′ for all (e, e′) ∈ E × E.

Flow f does satisfy all demands and supplies in D(x,y) as f is created from
base decompositions x′,y′ for strategy profiles x and y. If we define:

x′′ := x′ +
∑

(B,B′)∈B2
e,e′

tB,B′ ·
(
χB−e+gB,B′ (e) − χB

)
∈ P,

then x′′ is a base decomposition of strategy x+f(e,e′)(χe′ −χe), and thus f(e,e′) ≤
ĉx,y(e, e′). Therefore f is a bidirectional flow between x and y. �

For graphic matroids, the generalized series-parallel graph is the maximal
graph structure that allows for a bidirectional flow between every pair of strate-
gies (See the full version of this paper for the proof of this statement [14]).

6 Non-matroid Set Systems

We now derive necessary conditions on a given set system (Si)i∈N so that any
atomic splittable congestion game based on (Si)i∈N admits unique equilibria. We
show that the matroid property is a necessary condition on the players’ strat-
egy spaces that guarantees uniqueness of equilibria without taking into account
how the strategy spaces of different players interweave.2 To state this property
mathematically precisely, we introduce the notion of embeddings of Si in E. An
embedding is a map τ := (τi)i∈N , where every τi : Ei → E is an injective map
from Ei := ∪S∈Si

S to E. For X ⊆ Ei, we denote τi(X) := {τi(e) | e ∈ X}.
Mapping τi induces an isomorphism φτi : Si → S ′

i with S �→ τi(S) and
S ′

i := {τi(S) | S ∈ Si}. Isomorphism φτ = (φτi)i∈N induces the isomorphic
strategy space φτ (S) = (φτi(Si))i∈N .

Definition 3. A family of set systems Si ⊆ 2Ei , for i ∈ N is said to have
the strong uniqueness property if for all embeddings τ , the induced game with
isomorphic strategy space φτ (S) has unique Nash equilibria.

Since for bases of matroids any embedding τi with isomorphism φτi has the
property that φτi(Si) is again a collection of bases of a matroid, we obtain the
following immediate consequence of Theorem 1.

Corollary 1. If (Si)i∈N consists of bases of a base-orderable matroid Mi =
(E, Ii), i ∈ N , then (Si)i∈N possess the strong uniqueness property.

For obtaining necessary conditions we need a certain property of non-
matroids stated in the following Lemma. Its proof can be derived from the proof
of Lemma 5.1 in [13], or the proof of Lemma 16 in [2].

2 The term “interweaving” has been introduced by Ackermann et al. [1,2].
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Lemma 4. If Si ⊆ 2Ei with Si �= ∅ is a non-matroid, then there exist X,Y ∈ Si

and {a, b, c} ⊆ XΔY := (X \ Y ) ∪ (Y \ X) such that for each set Z ∈ Si with
Z ⊆ X ∪ Y , either a ∈ Z or {b, c} ⊆ Z.

Theorem 3. Let |N | ≥ 3 and assume that for all i ∈ N , Si is a non-matroid
set system. Then, (Si)i∈N does not have the strong uniqueness property.

Proof. We will show that there are embeddings τi : Ei → E, i ∈ N , such that
the isomorphic strategy space φτ (S) = (φτ1(S1), . . . , φτn(Sn)) admits a game
with multiple equilibria. We can assume w.l.o.g. that each set system Si forms
an anti-chain (in the sense that X ∈ Si,X ⊂ Y implies Y �∈ Si) since cost
functions are non-negative and strictly increasing. Let us call a non-empty set
system Si ⊆ 2Ei a non-matroid if Si is an anti-chain and (Ei, {X ⊆ S : S ∈ Si})
is not a matroid.

Let Ẽ =
⋃

i∈N τi(Ei) denote the set of all resources under the embeddings
τi, i ∈ N . The costs on all resources in Ẽ \ (τ1(E1) ∪ τ2(E2) ∪ τ3(E3)) are set to
zero. Also, the demands of all players di with i ∈ N \ {1, 2, 3} are set to zero.
This way, the game is basically determined by the players 1, 2, 3. We set the
demands d1 = d2 = d3 = 1.

Let us choose two sets X,Y in S1 and {a, b, c} ⊆ X ∪ Y as described in
Lemma 4. Let e := τ1(a), f := τ1(b) and g := τ1(c). We set the costs of all
resources in τ1(E1)\(τ1(X) ∪ τ1(Y )) to some very large cost M (large enough so
that player 1 would never use any of these resources). The cost on all resources
in (τ1(X) ∪ τ1(Y )) \ {e, f, g} is set to zero. This way, player 1 always chooses
a strategy τ1(Z) ⊆ τ1(X) ∪ τ1(Y ) which, by Lemma 4, either contains e, or
it contains both f and g. We apply the same construction for player 2 and 3,
only changing the role of e to act as f and g, respectively. Note that the so-
constructed game is essentially isomorphic to the routing game illustrated in
Fig. 2 if we interpret resource e as arc (s1, t1), resource f as arc (s2, t2), and
resource g as arc (s3, t3).

s1, t3

s2, t1

s3, t2

e

f

g

e f g

Player 1 x3 x + 1 x + 1

Player 2 x + 1 x3 x + 1

Player 3 x + 1 x + 1 x3

Fig. 2. Example that admits multiple Nash equilibria

Every player has two possible paths: the direct path using only one edge, or the
indirect path using two edges. Using the cost functions in Fig. 2, we show that the
game where everyone puts all their weight on the direct path is a Nash equilibrium,
as is the game where everybody puts their weight on the indirect path.
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If all players put their weight on the direct route, then player 1 cannot deviate
to decrease it’s costs, as: c1,e(1)+c′

1,e(1) ·1 = 1+3 ≤ 2+2 = c1,f (1)+c1,g(1). On
the other hand, when all players put their weight on the indirect direct route,
player 1 can also not deviate, as: c1,f (2) + c′

1,f (2) · 1 + c1,g(2) + c′
1,g(2) · 1 =

3 + 1 + 3 + 1 ≤ 8 = c1,e(2). The same inequalities hold for player 2 and 3. And
therefore everyone playing the direct route, or everyone playing the indirect route
both results in a Nash equilibrium. �

7 A Characterization for Undirected Graphs

In Sect. 6 we proved that non-matroid set systems in general do not have the
strong uniqueness property when there are at least three players, by constructing
embeddings τi that lead to the counter example in Fig. 2. This example also
gives new insights in uniqueness of equilibria in network congestion games. In
the following, we give a characterization of graphs that guarantee uniqueness of
Nash equilibria even when player-specific cost functions are allowed.

Definition 4. An undirected (multi)graph G is said to have the uniqueness
property if for any atomic splittable network congestion game on G = (V,E),
equilibria are unique.

Note that in the above definition, we do not specify how source- and sink
vertices are distributed in V . We obtain the following result which is related
to Theorem 3 of Meunier and Pradeau [17], where a similar result is given for
non-atomic congestion games with player-specific cost functions. The proof can
be found in the full version of this paper [14].

Theorem 4. An undirected graph has the uniqueness property if and only if G
has no cycle of length 3 or more.

Acknowledgements. We thank Umang Bhaskar, Britta Peis and Satoru Fujishige
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Abstract. We present a coordinate ascent method for a class of semidef-
inite programming problems that arise in non-convex quadratic integer
optimization. These semidefinite programs are characterized by a small
total number of active constraints and by low-rank constraint matrices.
We exploit this special structure by solving the dual problem, using a bar-
rier method in combination with a coordinate-wise exact line search. The
main ingredient of our algorithm is the computationally cheap update
at each iteration and an easy computation of the exact step size. Com-
pared to interior point methods, our approach is much faster in obtaining
strong dual bounds. Moreover, no explicit separation and reoptimization
is necessary even if the set of primal constraints is large, since in our dual
approach this is covered by implicitly considering all primal constraints
when selecting the next coordinate.

Keywords: Semidefinite programming · Non-convex quadratic integer
optimization · Coordinate descent method

1 Introduction

The importance of Mixed-Integer Quadratic Programming (MIQP) lies in both
theory and practice of mathematical optimization. On one hand, a wide range
of problems arising in practical applications can be formulated as MIQP. On
the other hand, it is the most natural generalization of Mixed-Integer Linear
Programming (MILP). However, it is well known that MIQP is NP-hard, as it
contains MILP as a special case. Moreover, contrarily to what happens in MILP,
the hardness of MIQP is not resolved by relaxing the integrality requirement on
the variables: while convex quadratic problems can be solved in polynomial time
by either the ellipsoid method [6] or interior point methods [5,9], the general
problem of minimizing a non-convex quadratic function over a box is NP-hard,
even if only one eigenvalue of the Hessian is negative [8].
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Buchheim and Wiegele [2] proposed the use of semidefinite relaxations and
a specialized branching scheme (Q-MIST) for solving unconstrained non-convex
quadratic minimization problems where the variable domains are arbitrary closed
subsets of R. Their work is a generalization of the well-known semidefinite pro-
gramming approach to the maximum cut problem or, equivalently, to uncon-
strained quadratic minimization over variables in the domain {−1, 1}. Q-MIST
needs to solve a semidefinite program (SDP) at each node of the branch-and-
bound tree, which can be done using any standard SDP solver. In [2], an interior
point method was used for this task, namely the CSDP library [1]. It is well-
known that interior point algorithms are theoretically efficient to solve SDPs,
they are able to solve small to medium size problems with high accuracy, but
they are memory and time consuming for large scale instances.

A related approach to solve the same kind of non-convex quadratic prob-
lems was presented by Dong [3]. A convex quadratic relaxation is produced by
means of a cutting surface procedure, based on multiple diagonal perturbations.
The separation problem is formulated as a semidefinite problem and is solved
by coordinate-wise optimization methods. More precisely, the author defines a
barrier problem and solves it using coordinate descent methods with exact line
search. Due to the particular structure of the problem, the descent direction
and the step length can be computed by closed formulae, and fast updates are
possible using the Sherman-Morrison-Woodbury formula (we will refer to it just
as Woodbury formula in the following). Computational results show that this
approach produces lower bounds as strong as the ones provided by Q-MIST and
it runs much faster for instances of large size.

In this paper, we adapt and generalize the coordinate-wise approach of [3] in
order to solve the dual of the SDP relaxation arising in the Q-MIST approach.
In our setting, it is still true that an exact coordinate-wise line search can be
performed efficiently by using a closed-form expression, based on the Woodbury
formula. Essentially, each iteration of the algorithm involves the update of one
coordinate of the vector of dual variables and the computation of an inverse
of a matrix that changes by a rank-two constraint matrix when changing the
value of the dual variable. Altogether, our approach fully exploits the specific
structure of our problem, namely a small total number of (active) constraints
and low-rank constraint matrices of the semidefinite relaxation. Furthermore, in
our model the set of dual variables can be very large, so that the selection of the
best coordinate requires more care than in [3]. However, our new approach is
much more efficient than the corresponding separation approach for the primal
problem described in [2].

2 Preliminaries

We consider non-convex quadratic mixed-integer optimization problems of the
form

min x�Q̂x + l̂�x + ĉ

s.t. x ∈ D1 × · · · × Dn , (1)
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where Q̂ ∈ R
n×n is symmetric but not necessarily positive semidefinite, l̂ ∈ R

n,
ĉ ∈ R, and Di = {li, . . . , ui} ⊆ Z is finite for all i = 1, . . . , n. Buchheim and
Wiegele [2] have studied the more general case where each Di is an arbitrary
closed subset of R. The authors have implemented a branch-and-bound approach
called Q-MIST, it mainly consists in reformulating Problem (1) as a semidefinite
optimization problem and solving a relaxation of the transformed problem within
a branch-and-bound framework. In this section, first we describe how to obtain
a semidefinite relaxation of Problem (1), then we formulate it in a matrix form
and compute the dual problem.

2.1 Semidefinite Relaxation

Semidefinite relaxations for quadratic optimization problems can already be
found in an early paper of Lovász in 1979 [7], but it was not until the work
of Goemans and Williamson in 1995 [4] that they started to catch interest.
The basic idea is as follows: given any vector x ∈ R

n, the matrix xx� ∈ R
n×n is

rank-one, symmetric and positive semidefinite. In particular, also the augmented
matrix

�(x) :=
(

1
x

) (
1
x

)�
=

(
1 x�

x xx�

)

∈ R
(n+1)×(n+1)

is positive semidefinite. This well-known fact leads to semidefinite reformulations
of various quadratic problems. Defining a matrix

Q :=
(

ĉ 1
2 l̂�

1
2 l̂ Q̂

)

,

Problem (1) can be rewritten as

min 〈Q,X〉
s.t. X ∈ �(D1 × · · · × Dn) ,

so that it remains to investigate the set �(D1 × · · · × Dn). The following result
was proven in [2].
Theorem 1. Let X ∈ R

(n+1)×(n+1) be symmetric. Then X ∈ �(D1 × · · · × Dn)
if and only if
(a) (xi0, xii) ∈ P (Di) := conv{(u, u2) | u ∈ Di} for all i = 1, . . . , n,
(b) x00 = 1,
(c) rank(X) = 1, and
(d) X � 0.

We derive that the following optimization problem is a convex relaxation of (1),
obtained by dropping the rank-one constraint of Theorem1 (c):

min 〈Q,X〉
s.t. (xi0, xii) ∈ P (Di) ∀i = 1, . . . n (2)

x00 = 1
X � 0
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This is an SDP, since the constraints (xi0, xii) ∈ P (Di) can be replaced by a set
of linear constraints, as discussed in the next section.

2.2 Matrix Formulation

In the case of finite Di considered here, the set P (Di) is a polytope in R
2

with |Di| many extreme points. It can thus be described equivalently by a set
of |Di| linear inequalities.

Lemma 1. For Di = {li, . . . , ui}, the polytope P (Di) is completely described by
lower bounding facets −xii+(j+(j+1))x0i ≤ j(j+1) for j = li, li+1, . . . , ui−1
and one upper bounding facet xii − (li + ui)x0i ≤ −liui.

Exploiting x00 = 1, we may rewrite the polyhedral description of P (Di) pre-
sented in the previous lemma as

(1 − j(j + 1))x00 − xii + (j + (j + 1))x0i ≤ 1, j = li, li + 1, . . . , ui − 1
(1 + liui)x00 + xii − (li + ui)x0i ≤ 1 .

We write the resulting inequalities in matrix form as 〈Aij ,X〉 ≤ 1. To keep
analogy with the facets, the index ij represents the inequalities corresponding
to lower bounding facets if j = li, li + 1, . . . , ui − 1 whereas j = ui corresponds
to the upper facet; see Fig. 1.

1 2−1−2

x0i

xii

Fig. 1. The polytope P ({−2,−1, 0, 1, 2}). Lower bounding facets are indexed, from left
to right, by j = −2,−1, 0, 1, the upper bounding facet is indexed by 2.

Moreover, we write the constraint x00 = 1 in matrix form as 〈A0,X〉 = 1,
where A0 := e0e

�
0 . In summary, Problem (2) can now be stated as

min 〈Q,X〉
s.t. 〈A0,X〉 = 1 (3)

〈Aij ,X〉 ≤ 1 ∀j = li, . . . , ui,∀i = 1, . . . , n

X � 0.
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The following simple observation is crucial for our algorithm presented in the
following section.

Lemma 2. The constraint matrix A0 has rank one. All constraint matrices Aij

have rank one or two. The rank of Aij is one if and only if j = ui and ui−li = 2.

2.3 Dual Problem

In order to derive the dual problem of (3), we define

A(X) :=
( 〈A0,X〉

〈Aij ,X〉j∈{li,...,ui},i∈{1,...,n}

)

and associate a dual variable y0 ∈ R with the constraint 〈A0,X〉 = 1 as well as
dual variables yij ≤ 0 with 〈Aij ,X〉 ≤ 1, for j ∈ {li, . . . , ui} and i ∈ {1, . . . , n}.
We then define y ∈ R

m+1 as

y :=
(

y0
(yij)j∈{li,...,ui},i∈{1,...,n}

)

.

The dual semidefinite program of Problem (3) is

max 〈b, y〉
s.t. Q − A�y � 0 (4)

y0 ∈ R

yij ≤ 0 ∀j = li, . . . , ui,∀i = 1, . . . , n,

the vector b ∈ R
m+1 being the all-ones vector. It is easy to verify that the

primal problem (3) is strictly feasible if |Di| ≥ 2 for all i = 1, . . . , n, so that
strong duality holds in all non-trivial cases.

We conclude this section by emphasizing some characteristics of any feasible
solution of Problem (3).

Lemma 3. Let X∗ be a feasible solution of Problem (3). For i ∈ {1, . . . , n},
consider the active set

Ai = {j ∈ {li, . . . , ui} | 〈Aij ,X
∗〉 = 1}

corresponding to variable i. Then

(i) for all i ∈ {1, . . . , n}, |Ai| ≤ 2, and
(ii) if |Ai| = 2, then x∗

ii = x∗
0i

2 and x∗
i0 ∈ Di.

Proof. The polytope P (Di) is two-dimensional with non-degenerate vertices.
Due to the way the inequalities 〈Aij ,X〉 ≤ 1 are defined it is impossible to
have more than two inequalities intersecting at one point. Therefore, a given
point (xii, xi0) ∈ P (Di) satisfies zero, one, or two inequalities with equality. In
the last case, we have xii = x2

i0 by construction, which implies xi0 ∈ Di. 
�
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For the dual problem (4), Lemma 3 (i) means that at most 2n+1 out of the m+1
variables can be non-zero in an optimal solution. Clearly, such a small number of
non-zero variables is beneficial in a coordinate-wise optimization method. More-
over, by Lemma 3 (ii), if two dual variables corresponding to the same primal
variable are non-zero in an optimal dual solution, then this primal variable will
obtain an integer feasible value in the optimal primal solution.

3 A Coordinate Ascent Method

We aim at solving the dual problem (4) by coordinate-wise optimization, in order
to obtain fast lower bounds to be used inside the branch-and-bound framework
Q-MIST. Our approach is motivated by an algorithm proposed by Dong [3]. The
author formulates Problem (1) as a convex quadratically constrained problem,
and devises a cutting surface procedure based on diagonal perturbations to con-
struct convex relaxations. The separation problem turns out to be a semidefinite
problem with convex non-smooth objective function, and it is solved by a primal
barrier coordinate minimization algorithm with exact line search.

The dual Problem (4) has a similar structure to the semidefinite problem
solved in [3], therefore similar ideas can be applied. Our SDP is more general
however, it contains more general constraints with matrices of rank two (instead
of one) and most of our variables are constrained to be non-positive. Another
difference is that we deal with a very large number of constraints, out of which
only a few are non-zero however. On the other hand, our objective function is
linear, which is not true for the problem considered in [3].

As a first step, we introduce a penalty term modeling the semidefinite con-
straint Q − A�y � 0 of Problem (4) and obtain

max f(y;σ) := 〈b, y〉 + σ log det(Q − A�y)

s.t. Q − A�y � 0 (5)
y0 ∈ R

yij ≤ 0 ∀j = li, . . . , ui,∀i = 1, . . . , n

for σ > 0. The gradient of the objective function of Problem (5) is

∇yf(y;σ) = b − σA((Q − A�y)−1).

For the following, we denote W := (Q − A�y)−1, so that

∇yf(y;σ) = b − σA(W ) . (6)

We will see later that, using the Woodbury formula, the matrix W can be
updated quickly when changing the value of a dual variable, which is crucial for
the performance of the algorithm proposed. We begin by describing a general
algorithm to solve (5) in a coordinate maximization manner. In the following,
we explain each step of this algorithm in detail.
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Outline of a barrier coordinate ascent algorithm for Problem (4)

1 Starting point: choose any feasible solution y of (5);
2 Direction: choose a coordinate direction eij ;
3 Step size: using exact line search, determine the step length s;
4 Move along chosen coordinate: y ← y + seij ;
5 Update the matrix W accordingly;
6 Decrease the penalty parameter σ;
7 Go to (2), unless some stopping criterion is satisfied;

3.1 Definition of a Starting Point

If Q � 0, we can safely choose y(0) = 0 as starting point. Otherwise, define a ∈ R
n

by ai = (Aiui
)0i for i = 1, . . . , n. Moreover, define

ỹ := min{λmin(Q̂) − 1, 0},

y0 := ĉ − ỹ

n∑

i=1

(1 + liui) − 1 − ( 12 l̂ − ỹa)�( 12 l̂ − ỹa),

and y(0) ∈ R
m+1 as

y(0) :=
(

y0
(yij)j∈{li,...,ui},i∈{1,...,n}

)

, yij =

{
ỹ, j = ui, i = 1, . . . , n

0, otherwise.

Then the following lemma can be proved.

Lemma 4. The vector y(0) is feasible for (5).

3.2 Choice of an Ascent Direction

We improve the objective function coordinate-wise: at each iteration k of the
algorithm, we choose an ascent direction eij(k) ∈ R

m where ij(k) is the coordinate
of the gradient with maximum absolute value

ij(k) := arg maxij |∇yf(y;σ)ij | . (7)

However, moving a coordinate ij to a positive direction is allowed only if yij < 0,
so that the coordinate ij(k) in (7) has to be chosen among those satisfying

(∇yf(y;σ)ij > 0 and yij < 0) or ∇yf(y;σ)ij < 0 .

The entries of the gradient depend on the type of inequality. By (6), we have

∇yf(y;σ)ij = 1 − σ〈W,Aij〉.
The number of lower bounding facets for a single primal variable i is ui − li,
which is not polynomial in the input size from a theoretical point of view.
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From a practical point of view, a large domain Di may slow down the coor-
dinate selection if all potential coordinates have to be evaluated explicitly.

However, the regular structure of the gradient entries corresponding to lower
bounding facets for variable i allows to limit the search to at most three candi-
dates per variable. To this end, we define the function

ϕi(j) := 1 − σ〈W,Aij〉 = 1 − σ
(
(1 − j(j + 1))w00 + (2j + 1)w0i − wii

)

and aim at finding a minimizer of |ϕ| over {li, . . . , ui − 1}. As ϕi is a univari-
ate quadratic function, we can restrict our search to at most three candidates,
namely the bounds li and ui − 1 and the rounded global minimizer of ϕi, if it
belongs to li, . . . , ui − 1; the latter is

⌈
w0i
w00

− 1
2

⌋
.

In summary, taking into account also the upper bounding facets and the coor-
dinate zero, we need to test at most 4n + 1 candidates in order to solve (7),
independently of the bounds li and ui.

3.3 Computation of the Step Size

We compute the step size s(k) by exact line search in the chosen direction. For
this, we need to solve the following one-dimensional maximization problem

s(k) = arg maxs{f(y(k)+seij(k) ;σ) | Q−A�(y(k)+seij(k)) � 0, s ≤ −yij(k)} (8)

unless the chosen coordinate is zero, in which case the upper bound on s is
dropped. Note that s �→ f(y(k) + seij(k) ;σ) is strictly concave on

{s ∈ R | Q − A�(y(k) + seij(k)) � 0} .

By the first order optimality conditions, we thus need to find the unique s(k) ∈ R

satisfying the semidefinite constraint Q−A�(y(k)+s(k)eij(k)) � 0 such that either

∇sf(y(k) + s(k)eij(k) ;σ) = 0 and yij(k) + s(k) ≤ 0

or
∇sf(y(k) + s(k)eij(k) ;σ) > 0 and s(k) = −y

(k)

ij(k) .

In order to simplify the notation, we omit the superindex (k) in the following.
From the definition,

f(y + seij ;σ) = 〈b, y〉 + s〈b, eij〉 + σ log det(Q − A�y − sA�(eij))

= 〈b, y〉 + s + σ log det(W−1 − sAij).

Then, the gradient with respect to s is

∇sf(y + seij ;σ) = 1 − σ〈Aij , (W−1 − sAij)−1〉. (9)
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Now the crucial task is to compute the inverse of the matrix W−1 − sAij , which
is of dimension n + 1. For this purpose, notice that W−1 is changed by a rank-
one or rank-two matrix sAij ; see Lemma 2. Therefore, we can compute both the
inverse matrix (W−1 − sAij)−1 and the optimal step length by means of the
Woodbury formula for the rank-one or rank-two update. In the latter case, the
formula is quadratic in s and may thus yield two candidates for the optimal step
length. In order to satisfy Q − A�(y + seij) � 0, we then have to choose the
smaller one of the candidates.

Finally, we have to point out that the zero coordinate can also be chosen as
ascent direction, in that case the gradient is

∇sf(y + se0;σ) = 1 − σ〈A0, (W−1 − sA0)−1〉,

and the computation of the step size is analogous.

3.4 Algorithm Overview

Our approach to solve Problem (4) is summarized in Algorithm CD.

Algorithm CD: Barrier coordinate ascent algorithm for Problem (4)

Input: Q ∈ R
(n+1)×(n+1)

Output: A lower bound on the optimal value of Problem (3)
1 Use Lemma 4 to compute y(0) such that Q − A�y(0) � 0
2 Compute W (0) ← (Q − A�y(0))−1

3 for k ← 0 until max-iterations do
4 Choose a coordinate direction eij(k) as described in Sect. 3.2
5 Compute the step size s(k) as described in Sect. 3.3
6 Update y(k+1) ← y(k) + s(k)eij(k)

7 Update W (k) using the Woodbury formula
8 Update σ
9 Terminate if some stopping criterion is met

10 return 〈b, y(k)〉

Before entering the main loop, the running time of AlgorithmCD is dom-
inated by the computation of the minimum eigenvalue of Q̂ needed to com-
pute y(0) and by the computation of the inverse matrix of Q − A�y(0). Both
can be done in O(n3) time. Each iteration of the algorithm can be performed
in O(n2). Indeed, as discussed in Sect. 3.2, we need to consider O(n) candidates
for the coordinate selection, so that this task can be performed in O(n2) time.
For calculating the step size and updating the matrix W (k), we also need O(n2)
time using the Woodbury formula.

Notice that the algorithm produces a feasible solution y(k) of Problem (4)
at every iteration and hence a valid lower bound 〈b, y(k)〉 for Problem (3). In
particular, when used within a branch-and-bound algorithm, this means that
Algorithm CD can be stopped as soon as 〈b, y(k)〉 exceeds a known upper bound
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for Problem (3). Otherwise, the algorithm can be stopped after a fixed number
of iterations or when other criteria show that only a small further improvement
of the bound can be expected.

The choice of an appropriate termination rule however is closely related to
the update of σ performed in Step 8. The aim is to find a good balance between
the convergence for fixed σ and the decrease of σ. In our implementation, we
use the following rule: whenever the entry of the gradient corresponding to the
chosen coordinate has an absolute value below 0.01, we multiply σ by 0.25. As
soon as σ falls below 10−5, we fix it to this value.

3.5 Two-Dimensional Update

In Algorithm CD, we change only one coordinate in each iteration, as this allows
to update the matrix W (k) in O(n2) time using the Woodbury formula. This was
due to the fact that all constraint matrices in the primal SDP (3) have rank at
most two. However, taking into account the special structure of the constraint
matrix A0, one can see that every linear combination of any constraint matrix Aij

with A0 still has rank at most two. In other words, we can simultaneously update
the dual variables y0 and yij and still recompute W (k) in O(n2) time.

In order to improve the convergence of AlgorithmCD, we choose a coordi-
nate ij as explained in Sect. 3.2 and then perform an exact plane-search in the
two-dimensional space corresponding to the directions e0 and eij , i.e., we solve
the bivariate problem

arg max(s0,s) {f(y+s0e0+seij ;σ) | Q−A�(y+s0e0+seij) � 0, s ≤ −yij} , (10)

where we again omit the superscript (k) for sake of readibilty. Similar to the one-
dimensional case in (8), due to strict concavity of (s0, s) �→ f(y + s0e0 + seij ;σ)
over {(s0, s) ∈ R

2 | Q − A�(y + s0e0 + seij) � 0}, solving (10) is equivalent to
finding the unique pair (s0, s) ∈ R

2 such that

∇s0f(y + s0e0 + seij ;σ) = 0

and either
∇sf(y + s0e0 + seij ;σ) = 0 and yij + s ≤ 0

or
∇sf(y + s0e0 + seij ;σ) > 0 and s = −yij .

To determine (s0, s), it thus suffices to set both gradients to zero and solve the
resulting two-dimensional system of equations. If it turns out that yij + s > 0,
we fix s := −yij and recompute s0 by solving

∇s0f(y + s0e0 + seij ;σ) = 0.

Proceeding as before, we have

f(y + s0e0 + seij ;σ) = 〈b, y〉 + s0 + s + σ log det(W−1 − s0A0 − sAij),
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and the gradients with respect to s0 and s are

∇s0f(y + s0e0 + seij ;σ) = 1 − σ〈A0, (W−1 − s0A0 − sAij)−1〉
∇sf(y + s0e0 + seij ;σ) = 1 − σ〈Aij , (W−1 − s0A0 − sAij)−1〉 .

The matrix s0A0 + sAij is of rank two; replacing (W−1 − s0A0 − sAij)−1 by
the Woodbury formula and setting the gradients to zero, we obtain a system
of two quadratic equations. Using these ideas, a slightly different version of
Algorithm CD is obtained by changing Steps 5 and 6 adequately, which we call
Algorithm CD2D.

4 Experiments

For our experiments, we generate random instances in the same way as pro-
posed in [2]: the objective matrix is Q̂ =

∑n
i=1 μiviv

�
i , where the n numbers μi

are chosen as follows: for a given value of p ∈ [0, 100], the first pn/100 μi’s are
generated uniformly from [−1, 0] and the remaining ones from [0, 1]. Addition-
ally, we generate n vectors of dimension n, with entries uniformly at random
from [−1, 1], and orthonormalize them to obtain the vectors vi. The parameter p
represents the percentage of negative eigenvalues, so that Q̂ is positive semidef-
inite for p = 0, negative semidefinite for p = 100 and indefinite for any other
value p ∈ (0, 100). The entries of the vector l̂ are generated uniformly at ran-
dom from [−1, 1], and ĉ = 0. In this paper, we restrict our evaluation to ternary
instances, i.e., instances with Di = {−1, 0, 1}.

We evaluate the performance of both AlgorithmsCD and CD2D in the root
node of the branch-and-bound tree and compare them with CSDP, the SDP
solver used in [2]. Our experiments were performed on an Intel Xeon processor
running at 2.5 GHz. AlgorithmsCD and CD2D were implemented in C++, using
routines from the LAPACK package only in the initial phase for computing a
starting point and the inverse matrix W (0).

The main motivation to consider a fast coordinate ascent method was to
obtain quick and good lower bounds for the quadratic integer problem (1). We
are thus interested in the improvement of the lower bound over time. In Fig. 2,
we plotted the lower bounds obtained by CSDP and by the AlgorithmsCD
and CD2D in the root node for two ternary instances of size n = 100, for the
two values p = 0 and p = 100. Notice that we use a log scale for the y-axis.

From Fig. 2, we see that Algorithm CD2D clearly dominates both other
approaches: the lower bound it produces exceeds the other bounds until all
approaches come close to the optimum of (2). This is true in particular for
the instance with p = 100. Even Algorithm CD is stronger than CSDP in the
beginning, but then CSDP takes over. Note that the computation of the root
bound for the instance shown in Fig. 2(a) involves one re-optimization due to
separation. For this reason, the lower bound given by CSDP has to restart with
a very weak value.
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Fig. 2. Comparison of the lower bounds in the root node obtained by Q-MIST with
CSDP, CD and CD2D; for p = 0 (top) and p = 100 (bottom)

As a next step, we will integrate the Algorithm CD2D into the branch-and-
bound framework of Q-MIST. We are confident that this will improve the run-
ning times of Q-MIST significantly when choosing the stopping criteria carefully.
This is left as future work.
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Abstract. A rich lot-sizing problem is studied in this manuscript which
comes from a real-world application. Our new lot-sizing problem com-
bines several features, i.e., parallel machines, production time windows,
backlogging, lost sale and setup carryover. Three mixed integer program-
ming formulations are proposed. We theoretically and computationally
compare these different formulations, testing them on real-world and
randomly generated instances. Our study is the first step for efficiently
tackling and solving this challenging real-world lot-sizing problem.

Keywords: Lot-sizing · Setup carryover · Mixed integer programming ·
Computational tests

1 Introduction

The Lot-sizing Problem (LSP) aims to plan the production in order to satisfy
customer demands and to minimize operational costs. A number of different LSP
variants have been studied in the literature developing Mixed Integer Program-
ming (MIP) formulations. We refer the interested readers to [11] for a complete
survey on the topic. In this manuscript, we study a rich real-world LSP variant
presented in detail in the following.

Case Study. The problem is the core of a consulting project with an apparel
company developed by DecisionBrain. The company runs multiple plants over
Asia and provides services for many international brands. The production has
to be planned in order to satisfy customer demands given limited resources.
To produce one piece of clothes, a sequence of steps are required such as cut-
ting, embroidery, sewing and washing. We concentrate on the bottleneck of the
production process, i.e., the sewing process. This is the only step executed by
workers instead of machines. A product can be executed by any production line
consisting of a team of workers. When a production line switches production
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from one product to another, a setup adjustment occurs which consumes capac-
ities and generates costs. In this problem, each demand consists of a quantity of
one product to be produced between its release date and due date. The release
date is due to material availability and the production for this demand can only
start from this date. Before the due date, the demand can be satisfied at any
time without extra cost. After the due date, the demand can still be satisfied
causing an additional tardiness cost. Two levels of tardiness costs are considered:
the first is due to a transport cost (an air transport instead of a maritime one
necessary to meet the due date), while the second is due to a discount offered to
the customer for compensation. Moreover, the unsatisfaction of demands is also
allowed with a very high penalty cost. The goal of the company is to plan its pro-
duction in order to minimize the cost. Considering that the production lines are
nearly fully loaded, an efficient production planning is crucial to increase com-
pany competitiveness. This project focuses on medium-term planning decisions,
in which the planning horizon is divided into a set of consecutive time buckets,
such as weeks. The medium-term planning decides the production quantities in
each time bucket for each production line. This problem can be modeled as a
capacitated lot-sizing problem with setup carryover, parallel machines, produc-
tion time windows, backlogging and lost sale.

Main Problem Features. Any product can be produced on any production
line, called machine for brevity in the following. The assigned machine must be
tuned at a state according to the product, which is called a setup state for the
product. When the machine switches from one setup state to another within a
time bucket, a setup occurs which causes a setup capacity and a setup cost. The
last setup state of a time bucket is carried over to the beginning of the next time
bucket, which is known as setup carryover [4]. Therefore, if the last setup state
of t − 1 is for product i, then producing i at the beginning of t does not cause
any setup cost or setup capacity. Setting up the machines for the production of a
product is only allowed once for each time bucket. The LSP with setup carryover
has been first studied in [4], in which a MIP model has been proposed and a fix-
and-relax heuristic algorithm has been developed. Different MIP formulations
have been also proposed, see [6–8,13,14].

Another major difficulties of our problem comes from parallel machines.
Based on the application, we consider uniform parallel machines, in which the
machines have independent capacities and the consumed capacity for each prod-
uct only depends on the product itself. The introduction of parallel machines
may lead to a large amount of symmetric solutions, therefore it increases the dif-
ficulties of the problem. In our application, there are up to 29 parallel machines
with different capacities. In [15] two branch and bound algorithms are devel-
oped to solve the LSP with parallel machines. Also the Lagrangian relaxation is
a widely used technique to address this problem [5,16].

In the LSP with Production Time Window (PTW), the production for each
demand can only happen between its release time and due date. The release time
represents several situations such as raw material available dates. The LSP with
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PTW has been first addressed by [3]. Polyhedral studies and exact algorithms
have been developed in [2,3,9,17].

Backlogging and Lost sale (BL) (see [12,18]) are also considered in our prob-
lem, which means that the demands can be satisfied later than their due dates or
even not satisfied incurring in a penalty cost. These are quite common features
in real-world applications when the production capacity is insufficient to satisfy
all the demands. The LSP with PTW and BL has been studied in [1], for the
case of single product and an uncapacitated machine.

Problem Definition. The input parameters of our problem are:

– T = {1, 2, . . . , T}: set of time buckets.
– M = {1, 2, . . . ,M}: set of machines.
– N = {1, 2, . . . , N}: set of products.
– D = {1, 2, . . . ,D}: set of demands.
– caprt: capacity of machine r in time bucket t (r ∈ M, t ∈ T ).
– capi: capacity required by unitary production of product i (i ∈ N ).
– stir: setup capacity for product i on machine r (i ∈ N ,r ∈ M).
– scir: setup cost for product i on machine r (i ∈ N ,r ∈ M).
– pd ∈ N : the required product of the demand d (d ∈ D).
– qd: quantity of product pd required by demand d (d ∈ D).
– bd: release date of demand d (d ∈ D).
– e1d: first due date of demand d (d ∈ D). No extra cost in interval [bd, e

1
d).

– e2d: second due date of demand d (d ∈ D).
– tc1d: unitary extra cost for demand d satisfied at or after e1d (d ∈ D).
– tc2d: unitary extra cost for demand d satisfied at or after e2d (d ∈ D).
– lcd: unitary cost for unsatisfied demand d (d ∈ D, lcd > tc1d + tc2d).

The problem is to decide for each machine r ∈ M and for each time bucket
t ∈ T , how much to produce of each product i ∈ N . The objective is to minimize
the total cost including lost sale cost, tardiness cost and setup cost without
exceeding the machine capacities caprt for each machine r and time bucket t
(r ∈ M, t ∈ T ). Note that the production is used to satisfy demands directly so
there are no inventory costs.

To the best of our knowledge, it is the first time that such a rich LSP is
studied combining many of the important real-world features.

2 MIP Formulations

Different formulations concerning setup carryover have been proposed in the
literature. In this section, we extend 3 MIP formulations for the LSP defined
above. These formulations mainly differ in the way the setup carryover is mod-
elled. They all share a common part concerning the Lost Sale costs, the Tardiness
cost and material flow conservation constraints.

For each product i ∈ N , each machine r ∈ M, each time bucket t ∈ T and
each demand d ∈ D, we introduce the following decision variables:
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– xirt ∈ R
+: the production quantity of product i on machine r during time t.

– ydt ∈ [0, qd]: the satisfied quantity of demand d in time bucket t ≥ bd.
– yd ∈ [0, qd]: the unsatisfied quantity of demand d.

The lost Lost Sale and Tardiness cost are defined as follows:

LostSaleCost =
∑

d∈D
lcdyd , (1)

TardinessCost =
∑

d∈D,t∈T :t≥e1
d

tc1dydt +
∑

d∈D,t∈T :t≥e2
d

tc2dydt , (2)

The constraints modelling the demand satisfaction can be written as follows:
∑

r∈M
xirt =

∑

d∈D:pd=i

ydt i ∈ N , t ∈ T (3)

∑

t∈T
ydt + yd = qd d ∈ D (4)

0 ≤ xirt i ∈ N , r ∈ M, t ∈ T (5)
0 ≤ ydt, yd ≤ qd d ∈ D, t ≥ bd (6)

The material flow conservation is formulated as (3). Constraints (4) guarantee
that for each demand, the summation of the satisfied amount and the unsatisfied
amount equals to the required quantity. Finally, due to the release date, ydt is
only defined from the release time bd for each demand d in (6).

If no setup is considered, the problem is a linear programming problem,
which can be solved in polynomial time. Therefore, the complexity mainly comes
from the setup. The machine capacity is both consumed by production capacity
ProdCap(r, t) and setup capacity. The capacity consumption due to production
can be expressed as follows:

ProdCap(r, t) =
∑

i∈N
capixirt r ∈ M, t ∈ T . (7)

In the next sections, we present 3 different ways to model the setup cost and
setup capacity consumption.

2.1 Formulation 1

In Haase [8], a MIP formulation for the LSP on a single machine with setup
carryover has been introduced. We adapt this formulation to our problem and
introduce setup variables for each product i ∈ N , each machine r ∈ M and each
time bucket t ∈ T as follows:

– vrt ∈ [0, 1], vrt > 0 indicates if more than one product is produced in time
bucket t and for machine r.

– zirt ∈ {0, 1} equals to 1 if a setup state for product i on machine r exists in
time bucket t and 0 otherwise.
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– zc
irt ∈ {0, 1} equals to 1 if the setup state for product i is carried over from

time bucket t − 1 to time bucket t on machine r and 0 otherwise.

Then the first formulation (Form1) is formally given as follows (T̃ = T \ {1}):

min (1) + (2) +
∑

i∈N ,r∈M,t∈T
scir(zirt − zc

irt) (8)

s.t. (3) − (6)

ProdCap(r, t) +
∑

i∈N
stir(zirt − zc

irt) ≤ caprt r ∈ M, t ∈ T (9)

xirt ≤ Θirtzirt i ∈ N , r ∈ M, t ∈ T (10)
∑

i∈N
zc

irt ≤ 1 r ∈ M, t ∈ T (11)

zc
irt ≤ zir,t−1 i ∈ N , r ∈ M, t ∈ T̃ (12)

zc
irt ≤ zirt i ∈ N , r ∈ M, t ∈ T (13)

zc
irt + zc

ir,t−1 + vr,t−1 ≤ 2 i ∈ N , r ∈ M, t ∈ T̃ (14)

Nvrt −
∑

i∈N
zirt + 1 ≥ 0 r ∈ M, t ∈ T (15)

zc
irt, zirt ∈ {0, 1} i ∈ N , r ∈ M, t ∈ T (16)

vrt ∈ [0, 1] r ∈ M, t ∈ T (17)

where Θirt is a large enough constant that never unnecessarily limits the pro-
duction xirt.

According to the definition of setup carryover, a setup cost has to be paid
when there is a setup (zirt = 1) which is not carried over from the last time
bucket (zc

irt = 0). Constraints (9) ensure that the capacity is not exceeded on
each machine in each time bucket, where the setup capacity consumption is
formulated similarly to the setup cost. Constraints (10) link the production and
the setup since a positive production of i on r at t requires a setup state for i
on r at t. For the setup carryover, there is at most one setup state to be carried
over to the next time bucket, which is guaranteed by constraints (11). A setup
state of i on r carried over from t − 1 to t implies that this state is included
in both t − 1 (12) and t (13). If there is more than one setup state in one time
bucket, i.e., vrt > 0, the initial setup state and the last setup state are necessarily
different. This is formulated as constraints (14). Finally, to fulfill the definition of
variable vrt, we have the constraints (15) (N = |N |, i.e., the number of different
products).

2.2 Formulation 2

In Sox et al. [13], several MIP formulations for the LSP on single machine with
setup carryover are presented. We adapt one of them to our problem introducing
the following setup variables for each product i ∈ N , each machine r ∈ M and
each time bucket t ∈ T :
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– z0irt ∈ {0, 1} equals to 1 if the initial setup state is for product i on machine
r in time bucket t, implying that the final setup state for t − 1 on r is for
product i.

– z+irt ∈ {0, 1} equals to 1 if there is a state switch for product i on machine r
in time bucket t.

Then the second formulation (Form2) is formally given as follows:

min (1) + (2) +
∑

i∈N ,r∈M,t∈T
scirz

+
irt (18)

s.t. (3) − (6)

ProdCap(r, t) +
∑

i∈N
stirz

+
irt ≤ caprt r ∈ M, t ∈ T (19)

xirt ≤ Θirt(z0irt + z+irt) i ∈ N , r ∈ M, t ∈ T (20)
∑

i∈N
z0irt = 1 r ∈ M, t ∈ T (21)

z0irt ≤ z0ir,t−1 + z+ir,t−1 i ∈ N , r ∈ M, t ∈ T̃ (22)

z+jr,t−1 ≤ 2 − z0ir,t−1 − z0irt i, j �= i ∈ N , r ∈ M, t ∈ T̃ (23)

z0irt, z
+
irt ∈ {0, 1} i ∈ N , r ∈ M, t ∈ T (24)

The total setup cost is formulated as
∑

i∈N ,r∈M,t∈T scirz
+
irt since the setup

cost has to be paid only when there is a setup switch (z+irt = 1). Constraints (19)
ensure that the total used capacity does not exceed the available capacity, where
the setup capacity consumption is formulated similarly to the setup cost. Con-
straints (20) link the setup and production since a positive production of i on r
at t requires a setup state for i on r at t, which is either from an initial setup
state or a setup switch. There is a unique initial setup state for each time bucket
on each machine, which is established by constraints (21). Also, the initial setup
state must be one of the setup states in the previous time bucket (22). However,
constraints (23) ensure that, on machine r during time bucket t, no setup switch
is possible when the initial setup state and the last setup state of t (i.e., the
initial setup state of the next time bucket t + 1) are both for the same product.

2.3 Formulation 3

In Suerie et al. [14], a MIP formulation for the LSP on single or multi-level
with setup carryover is presented. This formulation is similar to the Form2. In
addition to the previously defined binary variables z0irt ∈ {0, 1} and z+irt ∈ {0, 1}
for each product i ∈ N , for each machine r ∈ M, each time bucket t ∈ T ,
additional variables wrt ∈ {0, 1} are introduced. wrt equals to 1 if only one
product is produced on r in t, and 0 otherwise. Then the third formulation
(Form3) is formally given as follows:
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min (1) + (2) +
∑

i∈N ,r∈M,t∈T
scirz

+
irt (25)

s.t. (3) − (6), (19) − (22), (24)

z0irt + z0ir,t−1 ≤ 1 + wr,t−1 i ∈ N , r ∈ M, t ∈ T̃ (26)

z+irt + wrt ≤ 1 i ∈ N , r ∈ M, t ∈ T (27)
0 ≤ wrt ≤ 1 ∀r ∈ M, t ∈ T (28)

Constraints (26) implies that on machine r, the initial setup states at t − 1
and t have to be different when more than one product is produced during
t − 1 (wr,t−1 = 0). Constraints (27) ensures that wrt = 0 when there are more
than one setup state during time bucket t. Thanks to the other constraints of
the formulation, it is not necessary to impose integrality contraints for the wrt

variables. Due to constraints (21) and (22), we have z0ir,t+1 = z0irt = 1, which
forces wrt = 1.

3 Theoretical Comparison

In this section, we compare the previously introduced MIP formulations strength
in terms of lower bounds given by the Linear Programming (LP) relaxation.

Let (x̃, ỹ, z̃c, z̃, ṽ), (x̄, ȳ, z̄0, z̄+) and (ẋ, ẏ, ż0, ż+, ẇ) be optimal solutions
of the LP relaxation of Form1, Form2 and Form3 respectively, while
f1(x̃, ỹ, z̃c, z̃, ṽ), f2(x̄, ȳ, z̄0, z̄+) and f3(ẋ, ẏ, ż0, ż+, ẇ) are the corresponding opti-
mal objective function values. Then the following theorem holds:

Theorem 1

f2(x̄, ȳ, z̄0, z̄+) = f3(ẋ, ẏ, ż0, ż+, ẇ) ≥ f1(x̃, ỹ, z̃c, z̃, ṽ) .

This theorem shows that the LP relaxation of Form2 and Form3 provide equiv-
alently better lower bounds than Form1. The proof of the theorem requires a
number of technicalities and for reason of space we decided to omit the proof.

A comparison of the formulation size is summarized in the Table 1. They
all have the same number of binary variables, while Form2 has less continuous
variables than the other two. The number of constraints increases in the order
Form3, Form1 and Form2.

Table 1. Formulation size comparison

Form Number of variables # Binary Number of constraints

Form1 3NMT + MT + DT + D 2NMT NT + MT + 3NMT − 2NM + Π

Form2 3NMT + DT + D 2NMT MT + NM(T − 1) +
N(N−1)

2
M(T − 1) + Π

Form3 3NMT + MT + DT + D 2NMT MT + 2NMT − NM + Π

Π := NMT + NT + MT + D
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4 Computational Comparison

In this section, we test the performances of the three MIP formulations, by
comparing the computational difficulties to find optimal solutions using CPLEX
12.6 as a MIP solver.

The testbed consists of 3 real-world instances and 810 randomly generated
instances. The 3 real-world instances have the following features: T = 27, 36, 30,
M = 3, 28, 29, N = 3, 18, 1, D = 313, 1188, 595, and R = 0.99, 0.14, 0.33, where
R is a indicator representing the capacity usage defined as R =

∑
d∈D cappd

qd∑
r∈M,t∈T caprt

.
Although R does not consider the setup capacity, it is an indicator of the machine
loads. For the randomly generated instances, we consider the following parame-
ters: T ∈ {4, 9, 13}, M ∈ {1, 5, 10}, N ∈ {4, 8, 12}, D ∈ {50, 100, 200} and
R ≈ {0.75, 0.9}. Assuming that one time bucket corresponds to one week, we
choose the number of time buckets from one month (T = 4) to a season (T = 13).
The other parameters are chosen to generate instances with different levels of
difficulty. For each possible combination of the parameters, we generate five dif-
ferent instances to limit bias. All the experiments run on one core of an Intel
Core i7-4790 2.50 GHz 3.60, with 16 GB shared memory, under the Linux Ubuntu
12.4 operating system.

In the Table 2, we present the computational results using CPLEX to solve
the MIP and LP models on the benchmark instances setting a time limit of
10 min. In the table, the computing time is expressed in seconds. The results are
presented for the randomly generated instances in the upper part of the table
and for the 3 real-world instances in the bottom part. For the randomly gener-
ated instances, we give the average results for each value of the parameter T ,
M , D, N and R. Averages values over all the randomly generated instances are
reported in the Row TOT/AVG. The Column #Opt reports the total number
of optimally solved instances for each formulation. In the first two columns, we
present the parameters and their values. In Column LPGap, we measure the qual-
ity of the LP relaxation by showing the average LPGap, which is calculated as
BestMip−LPV al

BestMip , where bestMip is the best known MIP solution for the instance
and LPV al is the optimal LP relaxation objective value. On all instances except
two, the three formulations are characterized by the same LPV al. In the remain-
ing two cases the difference is very small, thus we only report the LPGap once in
the table. The value of Θirt has been set to Θirt = min

{
caprt

capi
,
∑

d:pd=i,t≥bd
qd

}
.

In Column #Opt and MipTime, we report the number of instances solved to
prove optimality within the time limit of 10 min and the average computing time.
In Column #Nodes and Gap, we report the number of explored nodes and, for
the instances not solved to optimality within the time limit, we report the exit
gap. This gap represents the relative difference between the primal and the dual
bounds computed by the CPLEX at the time limit. For the real instances, we
report the objective function values returned by the solver in Column MipObj.

As far as the computing time necessary to calculate the LP relaxation is
concerned, the average values over all the instances are 0.37 s, 0.74 s and 0.30 s
for Form1, Form2 and Form3 respectively. Thanks to the shortest average
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computing time for the LP relaxation, Form3 is able to explore more nodes
within the given time limit. As expected, according to the Column #Opt, the
table shows that as the problem size increases, the instances become more diffi-
cult to solve. The parameter N , which has an impact on the number of binary
variables, affects the most the solvability of the instances. Take for example
Form2, when N increases from 4 to 12, the number of instances decreases from
258 to 59, whereas when D increases from 50 to 200, the number is only reduced
by 36. The number of time buckets T has a smaller impact on the computing
time. We can observe that Form1 explores a higher number of nodes, this is
probably due to the fact that it struggles to find good quality integer solutions.
On the other hand, Form2 and Form3 explore almost the same number of
nodes for the randomly generated instances, while the Form3 explores more
nodes for the 3 real-world instances. Regarding the number of randomly gener-
ated instances solved to be proven optimality, Form3 solves 416 instances and
Form2 solves 411 instances, while Form1 solves only 379. A similar behavior
can be also observed for the exit gap. For the real-world instances, we observe
similar results, i.e., the Form3 shows the best performance. Hence, according
to the computational experiments, Form3 shows the best overall computational
performance. This is due to the fact that it has the least number of constraints
with the same number of binary variables compared to the other two formula-
tions, and its LP relaxation can be solved faster.

We also compare the performances of the three formulations using the Per-
formance Profile [10] in Fig. 1. Let tp,s, op,s be the computing time and the
objective function value of instance p ∈ P , where P is the set of instances, given
by formulation s ∈ S = {Form1, Form2, Form3}. Let bp equal to mins∈S{op,s}.
The performance ratio ρs(τ) of a given τ ≥ 1 is defined as follows:

ρs(τ) =
1

|P |
∑

p∈P,rp,s≤τ

1 , rp,s =

{
tp,s

mins∈S{tp,s} if | op,s−bp
bp

| ≤ δ ,

ρM otherwise ,

where ρM is a large enough number such that ρM > rp,s for p ∈ P and s ∈ S.
When δ = 0, the ratio ρs(τ) represents the percentage of instances for which a
given formulation s returns the best known solutions given time τ mins∈S{tp,s for
each instance. Due to the numerical precision of CPLEX, we set δ = 10−6. In the
Fig. 1, the horizontal axis represents the “Time Factor τ” using the logarithmic
scale. The vertical axis represents the performance ratio ρs(τ). When τ = 1,
the performance ratio gives the percentage of instances that are solved fastest
and best by each formulation. By “best” we mean computing the best known
objective function value. We observe that Form3 obtains the best known solution
in shortest computing time for approximately 42 % instances, 36 % for Form2
and 30 % for Form1. Moreover, when τ increase, the performance ratio tends to
the percentage of instances that are solved best by each formulation within the
time limit. Form3 obtains the best solutions for approximately 78 % instances.
Therefore, we can conclude that Form3 gives the overall best performance.
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Fig. 1. Performance profile

5 Conclusion

We study a new variant of the LSP, which is based on a real-world applica-
tion. The problem combines, for the first time, several classical features of the
LSP such as setup carryover and PTW. We present and compare three differ-
ent MIP formulations of the problem. We prove that one of the formulations is
weaker since it may provide worse LP relaxation bounds. A set of instances are
randomly generated and extensive computational experiments are conducted to
compare these formulations. The results show that one of the formulation gives
the overall best performance on both real-world instances and randomly gen-
erated instances. A library of instances is available online, and we hope that
this can stimulate further research on this very challenging rich real-world LSP
(http://decisionbrain.com/ISCO2016).
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7. Gören, H.G., Tunal, S.: Solving the capacitated lot sizing problem with setup
carryover using a new sequential hybrid approach. Appl. Intell. 42(4), 805–816
(2015)

8. Haase, K.: Lotsizing and Scheduling for Production Planning. LNEM, vol. 408.
Springer, Berlin (1994)

9. Hwang, H.: Dynamic lot-sizing model with production time windows. Nav. Res.
Log. 54(6), 692–701 (2007)

10. Mittelmann, H.D., Pruessner, A.: A server for automated performance analysis of
benchmarking data. Optim. Method Softw. 21(1), 105–120 (2006)

11. Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming.
Springer, New York (2006)

12. Sandbothe, R.A., Thompson, G.L.: A forward algorithm for the capacitated lot
size model with stockouts. Oper. Res. 38(3), 474–486 (1990)

13. Sox, C.R., Gao, Y.: The capacitated lot sizing problem with setup carry-over. IIE
Trans. 31(2), 173–181 (1999)

14. Suerie, C., Stadtler, H.: The capacitated lot-sizing problem with linked lot sizes.
Manage. Sci. 49(8), 1039–1054 (2003)

15. Toledo, F.M.B.: Dimensionamento de Lotes em Máquinas Paralelas. Tese
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Abstract. The optimal design of wireless networks has been widely
studied in the literature and many optimization models have been pro-
posed over the years. However, most models directly include the signal-
to-interference ratios representing service coverage conditions. This leads
to mixed-integer linear programs with constraint matrices containing
tiny coefficients that vary widely in their order of magnitude. These for-
mulations are known to be challenging even for state-of-the-art solvers:
the standard numerical precision supported by these solvers is usually
not sufficient to reliably guarantee feasible solutions. Service coverage
errors are thus commonly present. Though these numerical issues are
known and become evident even for small-sized instances, just a very lim-
ited number of papers has tried to tackle them, by mainly investigating
alternative non-compact formulations in which the sources of numerical
instabilities are eliminated. In this work, we explore a new approach by
investigating how recent advances in exact solution algorithms for linear
and mixed-integer programs over the rational numbers can be applied to
analyze and tackle the numerical difficulties arising in wireless network
design models.
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1 Introduction

In the last decade, the presence of wireless communications in our everyday
life has greatly expanded and wireless networks have thus increased in number,
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size and complexity. In this context, the traditional design approach adopted by
professionals, based on trial-and-error supported by simulation, has exhibited
many limitations: this approach is not able to pursue an efficient exploitation of
scarce and precious radio resources, such as frequencies and channel bandwidth,
and the need for exact mathematical optimization approaches has increased.

The problem of designing a wireless network can be essentially described
as that of configuring a set of transmitters in order to cover with a telecom-
munication service a set of receivers, while guaranteeing a minimum quality
of service. Over the years, many optimization models have been proposed for
designing wireless networks (see [9,12,20] for an introduction). However, most
models have opted for so-called natural formulations, which directly include the
formulas used to assess service coverage conditions. This leads to the definition of
mixed-integer programs whose constraint matrices contain tiny coefficients that
greatly vary in their order of magnitude. Furthermore, the natural formulations
commonly include also the notorious big-M coefficients to represent disjunctive
service coverage constraints. These formulations are known to be challenging
even for state-of-the-art solvers. Additionally, the standard numerical precision
supported by these solvers is usually not sufficient to reliably guarantee feasible
solutions [23]. If returned solutions are verified in a post-optimization phase, it
is thus common to find service coverage errors.

Though these numerical issues are known and can be found even in the
case of instances of small size, it is interesting to note that just a very limited
number of papers has tried to tackle them: the majority of these works rely on
the definition of alternative non-compact formulations that reduce the numerical
drawbacks of natural formulations (see the next section for a review of the main
approaches). In contrast to these works, we propose here a new approach: we
investigate how recent advances in exact solution algorithms for (integer) linear
programs over the rational numbers can be applied to analyze and tackle the
numerical difficulties arising in wireless network design.

Our main original contributions are in particular:

1. we present the first formal discussion about why even effective state-of-the-art
solvers fail to correctly discriminate between feasible and infeasible solutions
in wireless network design;

2. we assess, for the first time in literature, both formally and computationally
the actual benefits coming from scaling the very small coefficients involved
in natural formulations; coefficient scaling is a practice that is adopted by
many professionals and scholars dealing with wireless network design, with
the belief of eliminating numerical errors; we show that just adopting scaling
is not sufficient to guarantee accurate feasibility of solutions returned by
floating-point solvers;

3. we show how extended-precision solvers can be adopted to check the correct-
ness of solutions returned by floating-point solvers and, if errors are present,
to get correct valorization of the continuous variables of the problem.

Our computational experiments are made over a set of realistic instances
defined in collaboration with a major European telecommunication company.
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The remainder of this paper is organized as follows: in Sect. 2, we formally
characterize the wireless network design problem and introduce the natural for-
mulations; in Sect. 3, we discuss the question of accuracy in Mixed Integer Pro-
gramming (MIP) solvers, addressing in particular the issues arising in wireless
network design; in Sect. 4, we present our computational experiments over real-
istic network instances.

2 The Wireless Network Design Problem

For modeling purposes, a wireless network can be described as a set of trans-
mitters T that provide a telecommunication service to a set of receivers R.
Transmitters and receivers are characterized by a location and a number of
radio-electrical parameters (e.g., power emission and transmission frequency).
The Wireless Network Design Problem (WND) consists in establishing the loca-
tion and suitable values for the parameters of the transmitters with the goal
of optimizing an objective function that expresses the interest of the decision
maker: common objectives are the maximization of a revenue function associ-
ated with wireless service coverage or, assuming a green-network perspective,
the minimization of the total power emission of the network transmitters. For
an exhaustive introduction to the WND, we refer the reader to [9,12,20].

Given a receiver r ∈ R that we want to cover with service, we must choose
a single transmitter s ∈ S, called server, that provides the telecommunication
service to r. Once the server of a receiver is chosen, all the other transmitters are
interferers and deteriorate the quality of service obtained by r from its server s.

From an analytical point of view, if we denote by pt the power emission of a
transmitter t ∈ T , a receiver r ∈ R is considered covered with service (or briefly
served) when the ratio of the service power to the sum of the interfering powers
(Signal-to-Interference Ratio - SIR) is above a threshold δ > 0, which depends
on the desired quality of service [25]:

SIRrs(p) =
ars(r) · ps(r)

N +
∑

t∈T\{s(r)} art · pt
� δ. (1)

In this inequality: (i) s(r) ∈ T is the server of receiver r; (ii) the power Pt(r)
that r receives from a transmitter t ∈ T is proportional to the emitted power
pt by a factor art ∈ [0, 1], i.e. Pt(r) = art · pt. The factor art is called fading
coefficient and summarizes the reduction in power that a signal experiences while
propagating from t to r [25]; (iii) in the denominator, we highlight the presence
of the system noise N > 0 among the interfering signals.

By simple algebra operations, inequality (1) can be transformed into the
following linear inequality, commonly called SIR inequality :

ars(r) · ps(r) − δ
∑

t∈T\{s(r)}
art · pt � δ · N. (2)

Since service coverage assessment is a central element in the design of any wireless
network, the SIR inequality constitutes the core of any optimization problem
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used in wireless network design. If we just focus attention on setting power
emissions, we can define the so-called Power Assignment Problem (PAP), in
which we want to fix the power emission of each transmitter in order to serve a
set of receivers, while minimizing the sum of all power emissions. By introducing
a non-negative decision variable pt ∈ [0, Pmax] to represent the feasible power
emission range of a transmitter t ∈ T , the PAP can be easily formulated as the
following pure Linear Program (LP):

min
∑

t∈T

pt (PAP)

ars(r) · ps(r) − δ
∑

t∈T\{s(r)}
art · pt � δ · N ∀ r ∈ R (3)

0 � pt � Pmax ∀ t ∈ T, (4)

where (3) are the SIR inequalities associated with receivers to be served.
In a hierarchy of WND problems (see [9,23] for details), the PAP constitutes

a basic WND problem that lies at the core of virtually all more general WND
problems. A particularly important generalization of the PAP is constituted
by the Scheduling and Power Assignment Problem (SPAP) [9,12,22,23], where,
besides the power emissions, it is also necessary to choose the assignment of a
served receiver to a transmitter in the network that acts as server of the receiver.
This can be easily modeled by introducing 0-1 service assignment variables,
obtaining the following natural formulation:

max
∑

r∈R

∑

t∈T

πt · xrt (SPAP)

ars · ps − δ
∑

t∈T\{s}
art · pt + M · (1 − xrs) � δ · N ∀ r ∈ R, s ∈ T (5)

∑

t∈T

xrt � 1 ∀ r ∈ R (6)

0 � pt � Pmax ∀ t ∈ T (7)
xrt ∈ {0, 1} ∀ r ∈ R, t ∈ T , (8)

which includes: (i) additional binary variables xrt to represent that receiver r is
served by transmitter t; (ii) modified SIR inequalities, defined for each possible
server transmitter s ∈ T of a receiver r, including large constant values M >
0 to activate/deactivate the corresponding SIR inequalities (as expressed by
the constraint (6) each user may be served by at most one transmitter and
thus at most one SIR inequality must be satisfied for each receiver); (iii) a
modified objective function aiming at maximizing the revenue obtained from
serving transmitters (every receiver grants a revenue πt > 0).

Drawbacks of SIR-based Formulations. The natural (mixed-integer) linear
programming formulations associated with the PAP and the SPAP and based on



Accurate Solution of WND Problems 139

the direct inclusion of the SIR inequalities are widely adopted for the WND in
different application contexts, such as DVB-T, (e.g., [22,23]), UMTS (e.g., [2]),
WiMAX (e.g., [9,12]), and wireless mesh networks and jamming (e.g., [10,13]).
In principle, such formulations can be solved by MIP solvers, but, as clearly
pointed out in works like [9,12,20,23], in practice:

(1) the fading coefficients may vary in a wide range (e.g., in DVB-T instances,
difference between coefficients may exceed 90 dB), leading to very ill-
conditioned coefficient matrices that make the solution process numerically
unstable;

(2) in the case of SPAP-like formulations, the big-M coefficients lead to
extremely weak bounds that may greatly decrease the effectiveness of solvers
implementing state-of-the-art versions of branch-and-bound techniques;

(3) the resulting coverage plans are often unreliable and may contain errors, i.e.
SIR constraints recognized as satisfied by an MIP solver are actually violated.

Though these issues are known, it is interesting to note that just a limited
number of works in the wide literature about WND has tried to tackle them
and natural formulations are still widely used. We refer the reader to [9,20] for
a review of works that have tried to tackle these drawbacks and we recall here
some more relevant ones. One of the first works that has identified the presence
and effects of numerical issues in WND is [22], where a GRASP algorithm is pro-
posed to solve very large instances of the SPAP, arising in the design of DVB-T
networks. Other exact solution approaches have aimed at eliminating the source
of numerical instabilities (i.e., the fading and big-M coefficients) by considering
non-compact formulations: in [5], a formulation based on cover inequalities is
introduced for a maximum link activation problem; in [9,12], it is instead shown
how using a power-indexed formulation, modeling power emissions by discrete
power variables allows to define a peculiar family of generalized upper bound
cover inequalities that provide (strong) formulations. In [9], it is also presented
an alternative formulation based on binary expansion of variables, which can
become strong in some relevant practical cases, thanks to the superincreasing
property of the adopted expansion coefficients. In [11], it is proposed the defi-
nition of a non-compact formulation purely based on assignment variables that
relates to a maximum feasible subsystem problem. Finally, in [8], the numerical
instabilities are tackled by a genetic heuristic exploiting power discretization.

According to a widespread belief, numerical instabilities in WND may be
eliminated by multiplying all the fading coefficients of the problem by a large
power of 10 (typically 1012). However, in our direct experience with real-world
instances of several wireless technologies (e.g., DVB-T [12], WiMAX [9,12]), this
did neither improve the performance of the solver nor of the quality of solutions
found, which were still subject to coverage errors.

3 Numerical Accuracy in Linear Programming Solvers

Wireless network design problems are not only combinatorially complex, but
as was argued before, also numerically sensitive. State-of-the-art MIP solvers



140 F. D’Andreagiovanni and A.M. Gleixner

employ floating-point arithmetic, hence their arithmetic computations are sub-
ject to round-off errors. This makes it necessary to allow for small violations of
the constraints, bounds, and integrality requirements when checking solutions for
feasibility. To this end, MIP solvers typically use a combination of absolute and
relative tolerance to define their understanding of feasibility. A linear inequality
αTx � α0 is considered as satisfied by a point x∗ if

αTx∗ − α0

max{|αTx∗|, |α0|, 1} � εfeas (9)

with a feasibility tolerance εfeas > 0.1 If the activity αTx∗ and right-hand side
α0 are below one in absolute value, an absolute violation of up to εfeas > 0
is allowed. Otherwise, a relative tolerance is applied and larger violations are
accepted. Typically, εfeas ranges between 10−6 and 10−9.

Feasibility of SIR Inequalities. When employing floating-point arithmetic to
optimize wireless network design problems containing SIR inequalities, care is
required when enforcing and checking their feasibility. First, since the coefficients
and right-hand side of the SIR inequality (2) are significantly below 10−9 in
absolute value, the inequality (9) results in a very loose definition of feasibility.
The allowed absolute violation may be larger than the actual right-hand side.

Second, though the original SIR inequality (1) is equivalent to its linear
reformulation (2), if we check their violation with respect to numerical tolerances,
they behave differently. Indeed, an (absolute) violation εlinear = δN − (arsps −
δ
∑

t∈T\{s} artpt) of (2) corresponds to a much larger violation of (1), since

εSIR = δ − arsps
N +

∑
t∈T\{s} artpt

=
εlinear

N +
∑

t∈T\{s} artpt
(10)

and the sum of noise and interference signals N +
∑

t∈T\{s} artpt typically has an
order of 10−9 or smaller. In combination with the feasibility tolerances promised
by standard MIP solvers (≈ 10−9), this would at best guarantee violations in
the order of 1 for the original problem formulation.

The Impact of Scaling. Internally, MIP solvers may apply scaling factors to
rows and columns of the constraint matrix in order to improve the numerical
stability. Primarily, this aims at improving the condition numbers of basis matri-
ces during the solution of LPs. However, from (9) it becomes apparent that an
external, a priori scaling of constraints made by the user can change the very
definition of feasibility: if the activity and right-hand side are significantly below
1 in absolute value, then scaling up tightens the feasible region. Precisely, with
a scaling factor S > 1, if |SαTx∗| < 1 and |Sα0| < 1, then

S(αTx∗ − α0)
max{|SαTx∗|, |Sα0|, 1} � εfeas ⇔ (αTx∗ − α0)

max{|αTx∗|, |α0|, 1} � εfeas
S

, (11)

1 This is the definition of feasibility used by the academic MINLP solver SCIP [1,26].
While we do not know for certain the numerical definitions used by closed-source
commercial solvers, we think that they follow a similar practice.
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and the absolute tolerance can be decreased by a factor of 1/S. This can then
be used to arrive at a sufficiently strict definition of feasibility for constraints
with very small coefficients, such as the SIR inequalities (2).

Advances in Exact LP andMIP Solving.Although the floating-point numer-
ics used in today’s state-of-the-art MIP solvers yield reliable results for the major-
ity of problems and applications, there are cases in which results of higher accuracy
are desired or needed, such as verification problems, computer proofs, or simply
numerically instable instances. In the following we will review recent advances in
methods for solving LPs and MIPs exactly over the rational numbers.

Trivially, of course, one can obtain an exact solution algorithm by performing
all computations in exact arithmetic. However, for all but a few instances of
interest, this idea is not sufficiently performant. As a starting point, it has been
observed that LP bases returned by floating-point solvers are often optimal for
real world problems [14]. For example, [21] could compute optimal bases to all of
the NETLIB LP instances using only floating-point LP solvers and subsequently
certifying them in exact rational arithmetic.

Following these observations, Applegate et al. [3] developed a simplex-based
general-purpose exact LP solver, QSopt ex, which exploits this behavior to
achieve fast computation times on average. If an optimal basis is not identified
by the double-precision subroutines, more simplex pivots are performed using
increased levels of precision until the exact rational solution is identified (see
also [15]).

Recently, Gleixner et al. [16,17] have developed an iterative refinement proce-
dure for solving LPs with high accuracy, by solving a sequence of closely related
LPs in order to compute primal and dual correction terms. The procedure avoids
rational LU factorizations and solves LP in extended precision and hence often
computes solutions with only tiny violations faster than QSopt ex. Although not
an exact method in itself, it can be used to speed up QSopt ex significantly.

Finally, exact LP solving is a crucial subroutine for solving MIPs exactly.
Once a promising assignment for the integer variables has been found, an exact
LP solver can be used to compute feasible values for the continuous variables or
prove that this integer assignment does not admit a fully feasible solution vector.

The majority of LPs within a MIP solution process, however, is solved to
bound the objective value of the optimal solution. Solving these exactly does
provide safe dual bounds, but can result in a large slow-down. The key to obtain
a faster exact MIP solver is to avoid exact LP solving by correcting the dual
solution obtained from a floating-point LP solver, see [24]. Cook et al. [6,7]
have followed this approach to develop an exact branch-and-bound algorithm
available as an extension of the solver SCIP [26].

In the following section, we will investigate empirically how these tools can be
applied to analyze and address the numerical difficulties encountered in solving
wireless network design problems.
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4 Computational Experiments

The goal of our experiments was twofold: first, in order to test whether MIP
solvers can be reliably used as decision tools for wireless network design models
as introduced in Sect. 2, we analyzed the accuracy of primal solutions returned by
a state-of-the-art MIP solver; second, we investigated the practical applicability
and performance of the exact solution methods described in the previous section.

Experimental Setup. Experimental setup. The experiments were conducted
on a computer with a 64bit Intel Xeon E3-1290 v2 CPU (4 cores, 8 threads)
at 3.7 GHz with 8 MB cache and 16 GB main memory. We ran all jobs sep-
arately to avoid random noise in the measured running time that might be
caused by cache-misses if multiple processes share common resources. We used
CPLEX 12.5.0.0 [19] (default, deterministic parallel with up to four threads),
QSopt ex 2.5.10 [3] with EGlib 2.6.10 and GMP 4.3.1 [18], and SoPlex 2.0 [27]
with GMP 5.0.5 [18] (both single-thread).

Test Instances. We performed our experiments on realistic instances of a
WiMAX network, defined in cooperation with a major European telecommu-
nications company. The instances correspond to various scenarios of a single-
frequency network adopting a single transmission scheme.2 For each instance, we
solved the corresponding SPAP model from Sect. 2. We considered ten instances
with between 100 and 900 receivers (|R|) and between 8 and 45 transmitters
(|T |). The maximum emission power Pmax of each transmitter was set equal to
30 dBmW and the SIR threshold (δ) was between 8 dB and 11 dB.3

Accuracy of MIP Solutions. In our first experiment, we ran CPLEX with a
time limit of one hour (because of the combinatorial complexity of the problems,
only the smallest instances can be solved to optimality within this limit) and
checked the feasibility of the best primal solution returned. Table 1 shows the
results for the unscaled instances, Table 2 shows the results for the instances
with the linearized SIR inequalities (2) multiplied by S = 1012 as in Sect. 2.

The first two columns give the size of each instance, while the second two
columns state the smallest and largest absolute value in the coefficients and
right-hand sides of the SIR constraints. These values differ by up to 1012, a first
indicator of numerical instability. Column “obj.” gives the objective value of the
solution at the end of the solving process that we checked, i.e., the number of
receivers served by one transmitter. We report both the maximum violation of
the original SIR inequalities (1) in column “SIR viol.” and their linearization (2).
Both for scaled and unscaled models, the results show that they differ by a factor
of up to 1012. This demonstrates that the linearized SIR inequalities must be
satisfied with a very tight tolerance if we want to guarantee a reasonably small
tolerance, 10−6, say, for the original problem statement.

2 For more details on WiMAX networks, see [9].
3 The smallest MIP has 808 variables, 900 constraints, and 8 000 nonzeros, the largest

instance contains 32 436 variables, 33 300 constraints, and 1 231 200 nonzeros.



Accurate Solution of WND Problems 143

Table 1. A posteriori check and exact verification of binary assignments from floating-
point MIP solutions for instances without scaling.

Instance Post processing Exact LP

|R| |T | αmin αmax obj. linear viol. SIR viol. served unserved stat. time

100 8 4·10−17 4·10−8 41 1.7·10−10 12.6 13 28 ∅ 0.2

169 20 1·10−19 3·10−8 73 6.4·10−11 6.3 1 72 ∅ 20.3

225 20 2·10−19 2·10−8 176 1.2·10−10 6.3 5 171 ∅ 10.0

256 40 4·10−19 3·10−8 155 9.0·10−11 6.3 15 140 ∅ 103.0

400 25 8·10−20 2·10−8 373 1.2·10−10 6.3 7 366 ∅ 55.7

400 40 8·10−20 2·10−8 301 9.0·10−11 6.3 13 288 ∅ 233.7

441 45 8·10−20 2·10−8 312 1.0·10−10 6.3 15 297 ∅ 440.5

529 40 8·10−20 2·10−8 421 9.0·10−11 6.3 13 408 ∅ 337.1

625 25 2·10−17 5·10−5 280 1.9·10−9 6.0 225 55 ∅ 113.2

900 36 2·10−20 9·10−9 890 7.7·10−11 2.5 14 876 ∅ 660.1

Table 2. A posteriori check and exact verification of binary assignments from floating-
point MIP solutions for instances scaled with 1012.

Instance Post processing Exact LP

|R| |T | αmin αmax obj. linear viol. SIR viol. served unserved stat. time

100 8 4·10−5 4·105 28 7.1·10−17 4.6·10−6 24 4 � 0.1

169 20 1·10−7 3·105 44 7.3·10−17 8.0·10−6 43 1 � 2.1

225 20 3·10−7 2·105 42 6.2·10−17 7.0·10−6 38 4 � 0.9

256 40 4·10−7 3·105 72 8.1·10−17 5.1·10−6 62 10 � 11.7

400 25 8·10−8 2·105 77 6.7·10−17 1.4·10−5 71 6 � 5.5

400 40 8·10−8 2·105 95 6.7·10−17 7.9·10−6 85 10 � 20.2

441 45 8·10−8 2·105 101 8.9·10−16 4.8·10−5 89 12 � 35.5

529 40 8·10−8 2·105 101 8.8·10−15 6.1·10−4 96 5 � 29.9

625 25 8·10−5 5·107 417 1.9·10−14 1.9·10−3 415 2 � 6.0

900 36 2·10−8 9·104 202 8.1·10−18 1.4·10−6 200 2 � 58.0

As it can be seen, the results for the unscaled models are significantly worse in
this respect: although the violation of the linearized constraint looks quite small,
the original SIR inequalities are strongly violated. As a result, these solutions
cannot be implemented in practice.4

The column “served” states the number of receivers r served by a trans-
mitter s for which the corresponding quantity SIRrs(p) is at least δ − 10−6.

4 Although with this kind of unreliability, this does not matter anymore, note that
the numerical difficulties during the solving process are also reflected in the lower
objective values obtained by the unscaled models.
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Table 3. Exact computation of the power vector via QSopt ex versus iterative refine-
ment via SoPlex to a tolerance of 10−25 for instances scaled with 1012.

Instance QSopt ex SoPlex

|R| |T | αmin αmax obj. stat. time max. viol. time rel. [%]

100 8 4·10−5 4·105 28 � 0.1 3.7·10−29 0.1 −0.0

169 20 1·10−7 3·105 44 � 2.1 2.4·10−39 1.0 −52.4

225 20 3·10−7 2·105 42 � 0.9 2.2·10−29 0.5 −44.4

256 40 4·10−7 3·105 72 � 11.7 1.6·10−36 2.5 −78.6

400 25 8·10−8 2·105 77 � 5.5 1.8·10−27 1.3 −76.4

400 40 8·10−8 2·105 95 � 20.2 6.9·10−40 4.4 −78.2

441 45 8·10−8 2·105 101 � 35.5 3.1·10−40 6.3 −82.2

529 40 8·10−8 2·105 101 � 29.9 5.7·10−27 4.9 −83.6

625 25 8·10−5 5·107 417 � 6.0 3.0·10−29 2.8 −53.3

900 36 2·10−8 9·104 202 � 58.0 5.4·10−40 11.7 −79.8

This gives the (cardinality of the) subset of receivers that can reliably be served
by the power vector p of the MIP solution. It is evident these values are signif-
icantly below the claimed objective value of the MIP solution for the unscaled
models. Although the situation is much better for the scaled models, also these
exhibit a notable number of receivers that are incorrectly claimed to be served.

Exact Verification of Binary Assignments. As these first results show, the
values of the binary variables in the MIP solutions are not supported by the
power vector given by the continuous variables. In our second experiment, we
tried to test whether the binary part of the solutions are correct in the sense that
there exists a power vector p that satisfies these receiver-transmitter assignments.
To this end, we fixed the binary variables to their value in the MIP solution and
solved the remaining LP, effectively obtaining a PAP instance as defined in
Sect. 2, exactly with QSopt ex. Note that this is a pure feasibility problem.

For the unscaled models, all LPs turned out to be infeasible, as is indicated
by the symbol “∅” in Table 1. On the contrary, the LPs obtained from the scaled
models could all be verified as feasible. Hence the exact LP solver computed a
power vector p to serve all receivers as claimed by the MIP solver.

Additionally, we can see that proving the infeasibility of the unscaled LPs
took notably longer than proving the scaled LPs feasible. The reason is that
in the first case, QSopt ex always had to apply increased 128bit arithmetic,
while for the scaled LPs, the basis information after initial double-precision solve
turned out to be already exactly feasible.

Exact MIP Solving. We stress that the approach above only yields proven pri-
mal bounds on the optimal objective value. Because CPLEX uses floating-point
LP bounds, it is unclear whether optimal solutions have been cut off. In order to
further investigate this, we tried to apply the exact extension of the SCIP solver.
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However, for all but the smallest instances, we could not get any results. For
the instance with 225 transmitters and 20 receivers, the solving took over 20 h,
139 097 820 branch-and-bound nodes, and more than 7 GB peak memory usage.
The result was 42 and thus confirmed the optimality of the solution found by
CPLEX.

The slow performance is not really surprising, as the current implementation
is a pure branch-and-bound algorithm and lacks many of the sophisticated fea-
tures of today’s state-of-the-art MIP solvers. Hence, this should not be taken as
a proof that exact MIP solvers are in principle not applicable to this application.

Accurate Computation of the Power Vector. Arguably, computing the
power vector exactly is more than necessary for the practical application, and
the running times of QSopt ex with almost one minute for the largest LP may
become a bottleneck. However, in practice it suffices to compute a power vector
that satisfies the original SIR inequalities (1) within a reasonably small toler-
ance. In our last experiment, we tested whether the idea of iterative refinement
available in the SoPlex solver, can achieve this faster than an exact LP solver.
We used an (absolute) tolerance of 10−25, which for the scaled models suffices
to guarantee a tolerance of the same order of magnitude for (1).

Table 3 shows the results: the actually reached maximum violation of the
LP rows (as small as 10−40), the solving time, and its relative difference to the
running times of QSopt ex. For all but the two instances that are solved within
one second, SoPlex is at least twice as fast as QSopt ex. Note, however, that
the implementation of both solvers, in particular the simplex method, differs in
many details, and so we cannot draw a reliable conclusion, let alone on such
a limited test set. However, it suggests that iterative refinement may be more
suited to the practical setting of certain applications.

5 Conclusion

This paper has tried to highlight a number of numerical issues that must be
considered when solving MIP models for wireless network design. We demon-
strated that the linearization of the crucial SIR inequalities in combination with
the definition of feasibility used in floating-point solvers can lead to completely
unreliable results and that an a priori scaling of the constraints can help, but it
is not able to make the solutions completely reliable. We also showed that the
current performance of exact MIP solvers is not sufficient to address the com-
binatorial difficulty of these models. On the positive side, we could show that
recent advances in exact and accurate LP solving are of great help for computing
reliable primal solutions. So far, we have applied these only as a post processing
after the MIP solution process. Ideally, however, the accurate solution of LPs on
the continuous variables should be integrated into the branch-and-bound process
and used as a direct verification of the primal bound given by the incumbent
solution. An important next step will be to extend the experiments to larger sets
of instances including other types of wireless technologies, such as DVB-T.
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Abstract. In this paper we consider the multidimensional binary vector
assignment problem. An input of this problem is defined by m disjoint
multisets V 1, V 2, . . . , V m, each composed of n binary vectors of size p.
An output is a set of n disjoint m-tuples of vectors, where each m-tuple
is obtained by picking one vector from each multiset V i. To each m-tuple
we associate a p dimensional vector by applying the bit-wise AND opera-
tion on the m vectors of the tuple. The objective is to minimize the total
number of zeros in these n vectors. We denote this problem by min

∑
0,

and the restriction of this problem where every vector has at most c zeros
by (min

∑
0)#0≤c. (min

∑
0)#0≤2 was only known to be APX-complete,

even for m = 3 [5]. We show that, assuming the unique games conjecture,
it is NP-hard to (n− ε)-approximate (min

∑
0)#0≤1 for any fixed n and

ε. This result is tight as any solution is a n-approximation. We also prove
without assuming UGC that (min

∑
0)#0≤1 is APX-complete even for

n = 2, and we provide an example of n − f(n, m)-approximation algo-
rithm for min

∑
0. Finally, we show that (min

∑
0)#0≤1 is polynomial-

time solvable for fixed m (which cannot be extended to (min
∑

0)#0≤2

according to [5]).

1 Introduction

1.1 Problem Definition

In this paper we consider the multidimensional binary vector assignment prob-
lem denoted by min

∑
0. An input of this problem (see Fig. 1) is described by m

multisets V 1, . . . , V m, each multiset V i containing n binary p-dimensional vec-
tors. For any j ∈ [n]1, and any i ∈ [m], the jth vector of multiset V i is denoted
vi

j , and for any k ∈ [p], the kth coordinate of vi
j is denoted vi

j [k].
The objective of this problem is to create a set S of n stacks. A stack s =

(vs
1, . . . , v

s
m) is an m − tuple of vectors such that vs

i ∈ V i, for any i ∈ [m].
Furthermore, S has to be such that every vector of the input appears in exactly
one created stack.

1 Note that [n] stands for {1, 2, . . . , n}.
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 148–159, 2016.
DOI: 10.1007/978-3-319-45587-7 13
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We now introduce the operator ∧ which assigns to a pair of vectors (u, v) the
vector given by u ∧ v = (u[1] ∧ v [1], u[2] ∧ v [2], . . . , u[p] ∧ v [p]). We associate to
each stack s a unique vector given by vs =

∧
i∈[m] v

s
i .

The cost of a vector v is defined as the number of zeros in it. More formally
if v is p-dimensional, c(v) = p − ∑

k∈[p] v [k]. We extend this definition to a set
of stacks S = {s1, . . . , sn} as follows: c(S) =

∑
s∈S c(vs).

The objective is then to find a set S of n disjoint stacks minimizing the total
number of zeros. This leads us to the following definition of the problem:

Optimization Problem 1 min
∑

0

Input m multisets of n p-dimensional binary vectors.

Output A set S of n disjoint stacks minimizing c(S).

Throughout this paper, we denote (min
∑

0)#0≤c the restriction of
min

∑
0 where the number of zeros per vector is upper bounded by c.

V 1 V 2 V 3 S

001101

110111

011101

111101

110010

010101

110011

010101

110110

010110

010011

001111

110010

000000

010001

000101

vs1

vs2

vs3

vs4

c(vs1 ) = 3

c(vs2 ) = 6

c(vs3 ) = 4

c(vs4 ) = 4

s1

s2

s3

s4

Fig. 1. Example of min
∑

0 instance with m = 3, n = 4, p = 6 and of a feasible solution
S of cost c(S) = 17.

1.2 Related Work

The dual version of the problem called max
∑

1 (where the objective is to max-
imize the total number of 1 in the created stacks) has been introduced by Reda
et al. in [8] as the “yield maximization problem in Wafer-to-Wafer 3-D Inte-
gration technology”. They prove the NP-completeness of max

∑
1 and pro-

vide heuristics without approximation guarantee. In [6] we proved that, even
for n = 2, for any ε > 0, max

∑
1 is O(m1−ε) and O(p1−ε) inapproximable

unless P = NP. We also provide an ILP formulation proving that max
∑

1 (and
thus min

∑
0) is FPT2 when parameterized by p.

We introduced min
∑

0 in [4] where we provide in particular 4
3 -approximation

algorithm for m = 3. In [5], authors focus on a generalization of min
∑

0,
called Multi Dimensional Vector Assignment, where vectors are not nec-
essary binary vectors. They extend the approximation algorithm of [4] to get
a f(m)-approximation algorithm for arbitrary m. They also prove the APX-
completeness of the (min

∑
0)#0≤2 for m = 3. This result was the only known

inapproximability result for min
∑

0.

2 i.e. admits an algorithm in f(p)poly(|I|) for an arbitrary function f .
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1.3 Contribution

In Sect. 2 we study the approximability of min
∑

0. Our main result in this
section is to prove that assuming UGC, it is NP-hard to (n − ε)-approximate
(min

∑
0)#0≤1 (and thus min

∑
0) for any fixed n ≥ 2, ∀ε > 0. This result is

tight as any solution is a n-approximation.
Notice that this improves the only existing negative result for min

∑
0, which

was the APX-hardness of [5] (implying only no-PTAS).
We also show how this reduction can be used to obtain the APX-hardness

for (min
∑

0)#0≤1 for n = 2 unless P = NP, which is weaker negative result,
but does not require UGC. We then give an example n− f(n,m) approximation
algorithm for the general problem min

∑
0.

In Sect. 3, we consider the exact resolution of min
∑

0. We focus on sparse
instances, i.e. instances of (min

∑
0)#0≤1. Indeed, recall that authors of [5]

show that (min
∑

0)#0≤2 is APX-complete even for m = 3, implying that
(min

∑
0)#0≤2 cannot be polynomial-time solvable for fixed m unless P = NP.

Thus, it is natural to ask if (min
∑

0)#0≤1 is polynomial-time solvable for fixed
m. Section 3 is devoted to answer positively to this question. Notice that the
question of determining if (min

∑
0)#0≤1 is FPT when parameterized by m

remains open.

2 Approximability of min
∑

0

We refer the reader to [1,7] for the definitions of Gap and L-reductions.

2.1 Inapproximability Results for (min
∑

0)#0≤1

From now we suppose that ∀k ∈ [p], ∃i, ∃j such that vi
j [k] = 0. In other words,

for any solution S and ∀k, there exists a stack s such that vs[k] = 0. Otherwise,
we simply remove such a coordinate from every vector of every set, and decrease
p by one. Since this coordinate would be set to 1 in all the stacks of all solutions,
such a preprocessing preserves approximation ratios and exact results.

In a first time, we define the following polynomial-time computable function
f which associates an instance of (min

∑
0)#0≤1 to any k-uniform hypergraph,

i.e. an hypergraph G = (U,E) such that every hyperedges of E contains exactly
k distinct elements of U .

Definition of f . We consider a k-uniform hypergraph G = (U,E). We call f the
polynomial-time computable function that creates an instance of (min

∑
0)#0≤1

from a G as follows.

1. We set m = |E|, n = k and p = |U |.
2. For each hyperedge e = {u1, u2, . . . , uk} ∈ E, we create the set V e containing

k vectors {ve
j , j ∈ [k]}, where for all j ∈ [k], ve

j [uj ] = 0 and ve
j [l] = 1 for

l �= uj . We say that a vector v represents u ∈ U iff v[u] = 0 and v[l �= u] = 1
(and thus vector ve

j represents uj).

An example of this construction is given in Fig. 2.
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a

b

c

d

V a V b

V c V d1

2

3

4 5

6

7

0111111

1011111

1111110

0111111

1101111

1110111

1011111

1110111

1111011

1111011

1111101

1111110

Fig. 2. Illustration of the reduction from an hypergraph G = (U = {1, 2, 3, 4, 5, 6, 7},
E = {{1, 2, 7} , {1, 3, 4} , {2, 4, 5} , {5, 6, 7}}) to an instance (min

∑
0)#0≤1

Negative Results Assuming UGC. We consider the following problem.
Notice that what we call a vertex cover in a k-regular hypergraph G = (U,E) is
a set U ′ ⊆ U such that for any hyperedge e ∈ E, U ′ ∩ e �= ∅.

Decision Problem 1 Almost Ek Vertex Cover

Input We are given an integer k ≥ 2, two arbitrary positive constants
ε and δ and a k-uniform hypergraph G = (U,E).

Output Distinguish between the following cases:

YES Case there exist k disjoint subsets U1, U2, . . . , Uk ⊆ U ,
satisfying |U i| ≥ 1−ε

k |U | and such that every hyperedge con-
tains at most one vertex from each U i.

NO Case every vertex cover has size at least (1 − δ)|U |.
It is shown in [2] that, assuming UGC, this problem is NP-complete.

Theorem 1. For any fixed n ≥ 2, for any constants ε, δ > 0, there exists a
n−nδ
1+nε -Gap reduction from Almost Ek Vertex Cover to (min

∑
0)#0≤1. Con-

sequently, under UGC, for any fixed n (min
∑

0)#0≤1 is NP-hard to approxi-
mate within a factor (n − ε′) for any ε′ > 0.

Proof. We consider an instance I of Almost Ek Vertex Cover defined by two
positive constants δ and ε, an integer k and a k-regular hypergraph G = (U,E).

We use the function f previously defined to construct an instance f(I) of
min

∑
0. Let us now prove that if I is a positive instance, f(I) admits a solution

S of cost c(S) < (1 + nε)|U |, and otherwise any solution S of f(I) has cost
c (S) ≥ n(1 − δ)|U |.

NO Case. Let S be a solution of f(I). Let us first remark that for any stack
s ∈ S, the set {k : vs[k] = 0} defines a vertex cover in G. Indeed, s contains
exactly one vector per set, and thus by construction s selects one vertex per
hyperedge in G. Remark also that the cost of s is equal to the size of the
corresponding vertex cover.
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Now, suppose that I is a negative instance. Hence each vertex cover has
a size at least equal to (1 − δ)|U |, and any solution S of f(I), composed of
exactly n stacks, verifies c(S) ≥ n(1 − δ)|U |.

YES Case. If I is a positive instance, there exists k disjoint sets
U1, U2, . . . , Uk ⊆ U such that ∀i = 1, . . . , k, |U i| ≥ 1−ε

k |U | and such that
every hyperedge contains at most one vertex from each U i.

We introduce the subset X = U\⋃k
i=1 U i. By definition {U1, U2,

. . . , Uk,X} is a partition of U and X ≤ ε|U |. Furthermore, U i ∪ X is a
vertex cover ∀i = 1, . . . , k. Indeed, each hyperedge e ∈ E that contains no
vertex of U i, contains at least one vertex of X since e contains k vertices.

We now construct a solution S of f(I). Our objective is to construct
stacks {si} such that for any i, the zeros of si are included in Ui ∪ X (i.e.
{l : vsi

[l] = 0} ⊆ Ui ∪ X). For each e = {u1, . . . , uk} ∈ E, we show how
to assign exactly one vector of V e to each stack s1, . . . , sk. For all i ∈ [k], if
ve

j represents a vertex u with u ∈ U i, then we assign ve
j to si. W.l.o.g., let

S′
e = {s1, . . . , sk′} (for k′ ≤ k) be the set of stacks that received a vertex dur-

ing this process. Notice that as every hyperedge contains at most one vertex
from each U i, we only assigned one vector to each stack of S′

e. After this, every
unassigned vector v ∈ V e represents a vertex of X (otherwise, such a vector
v would belong to a set U i, i ∈ k′, a contradiction). We assign arbitrarily
these vectors to the remaining stacks that are not in S′

e. As by construction
∀i ∈ [k], vsi contains only vectors representing vertices from U i ∪ X, we get
c(si) ≤ |U i| + |X|.

Thus, we obtain a feasible solution S of cost c(S) =
∑k

i=1 c(si) ≤
k|X| +

∑k
i=1 |U i|. As by definition we have |X| +

∑k
i=1 |U i| = |U |, it

follows that c(S) ≤ |U | + (k − 1)ε|U | and since k = n, c(S) < |U |(1 + nε).

If we define a(n) = (1 + nε)|U | and r(n) = n(1−δ)
(1+nε) , the previous reduction

is a r(n)-Gap reduction. Furthermore, limδ,ε→0 r(n) = n, thus it is NP-hard to
approximate (min

∑
0)#0≤1 within a ratio (n − ε′) for any ε′ > 0.

�
Notice that, as a function of n, this inapproximability result is optimal.

Indeed, we observe that any feasible solution S is an n-approximation as, for
any instance I of min

∑
03, Opt(I) ≥ p and for any solution S, c(S) ≤ pn.

Negative Results Without Assuming UGC. Let us now study the negative
results we can get when only assuming P �= NP. Our objective is to prove that
(min

∑
0)#0≤1 is APX-hard, even for n = 2. To do so, we present a reduction

from Odd Cycle Transversal, which is defined as follows. Given an input
graph G = (U,E), the objective is to find an odd cycle transversal of minimum
size, i.e. a subset T ⊆ U of minimum size such that G[U \ T ] is bipartite.

3 Recall that we assume ∀k ∈ [p], ∃i, ∃j such that vi
j [k] = 0.
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For any integer γ ≥ 2, we denote Gγ the class of graphs G = (U,E) such that
any optimal odd cycle transversal T has size |T | ≥ |U |

γ . Given G a class of graphs,
we denote OCTG the Odd Cycle Transversal problem restricted to G.

Lemma 1. For any constant γ ≥ 2, there exists an L-reduction from OCTGγ
to

(min
∑

0)#0≤1 with n = 2.

Proof. Let us consider an integer γ, an instance I of OCTGγ
, defined by a graph

G = (V,E) such that G ∈ Gγ . W.l.o.g., we can consider that G contains no
isolated vertex.

Remark that any graph can be seen as a 2-uniform hypergraph. Thus, we use
the function f previously defined to construct an instance f(I) of (min

∑
0)#0≤1

such that n = 2. Since, G contains no isolated vertex, f(I) contains no position
k such that ∀i ∈ [m], ∀j ∈ [n], vi

j [k] = 1.
Let us now prove that I admits an odd cycle transversal of size t if and only

if f(I) admits a solution of cost p + t.
⇐ We consider an instance f(I) of (min

∑
0)#0≤1 with n = 2 admitting a

solution S = {sA, sB} with cost c(S) = p + t. Let us specify a function g which
produces from S a solution T = g(I, S) of OCTGγ

, i.e. a set of vertices of U such
that G[U\T ] is bipartite.

We define T =
{
u ∈ U : vsA

[u] = vsB
[u] = 0

}
, the set of coordinates equal to

zero in both sA and sB . We also define A =
{
u ∈ V : vsA

[u] = 0 and vsB
[u] = 1

}

(resp. B =
{
u ∈ V : vsB

[u] = 0 and vsA
[u] = 1

}
), the set of coordinates set to

zero only in sA (resp. sB). Notice that {T,A,B} is a partition of U .
Remark that A and B are independent sets. Indeed, suppose that ∃{u, v} ∈ E

such that u, v ∈ A. As {u, v} ∈ E there exists a set V (u,v) containing a vector
that represents u and another vector that represents v, and thus these vectors
are assigned to different stacks. This leads to a contradiction. It follows that
G[U\T ] is bipartite and T is an odd cycle transversal.

Since c(S) = |A| + |B| + 2|T | = p + |T | = p + t, we get |T | = t.
⇒ We consider an instance I of OCTGγ

and a solution T of size t. We now
construct a solution S = {sA, sB} of f(I) from T .

By definition, G[U\T ] is a bipartite graph, thus the vertices in U\T may
be split into two disjoint independent sets A and B. For each edge e ∈ E, the
following cases can occur:

– if ∃u ∈ e such that u ∈ A, then the vector corresponding to u is assigned to
sA, and the vector corresponding to e \ {u} is assigned to sB (and the same
rule holds by exchanging A and B)

– otherwise, u and v ∈ T , and we assign arbitrarily ve
u to sA and the other to sB.

We claim that the stacks sA and sB describe a feasible solution S of cost at
most p + t.

Since, for each set, only one vector is assigned to sA and the other to sB , the
two stacks sA and sB are disjoint and contain exactly m vectors. S is therefore
a feasible solution.
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Remark that vsA
(resp. vsB

) contains only vectors v such that v [k] = 0 =⇒
k ∈ A∪T (resp. k ∈ B ∪T ), and thus c(vA) ≤ |A|+ |T | (resp. c(vB) ≤ |B|+ |T |).
Hence c(S) ≤ |A| + |B| + 2|T | = p + t.

Let us now prove that this reduction is an L-reduction.

1. By definition, any instance I of OCTGγ
verifies |Opt(I)| ≥ |U |/γ. Thus,

Opt(f(I)) ≤ |U | + Opt(I) ≤ (γ + 1)Opt(I)

2. We consider an arbitrary instance I of OCTGγ
, f(I) the corresponding

instance of (min
∑

0)#0≤1, S a solution of f(I) and T = g(I), S the cor-
responding solution of I.
We proved |T |−Opt(I) = c(S)−|U |− (Opt(f(I))−|U |) = c(S)−Opt(f(I)).

Therefore, we get an L-reduction for α = γ + 1 and β = 1. �
Lemma 2. ([3]). There exist a constant γ and G ⊂ Gγ such that OCTG is
APX-hard.

The following result is now immediate.

Theorem 2. (min
∑

0)#0≤1 is APX-hard, even for n = 2.

2.2 Approximation Algorithm for min
∑

0

Let us now show an example of algorithm achieving a n − f(n,m) ratio. Notice
that the (n− ε) inapproximability result holds for fixed n and #0 = 1, while the
following algorithm is polynomial-time computable when n is part of the input
and #0 is arbitrary.

Proposition 1. There is a polynomial-time n − n−1
nρ(n,m) approximation algo-

rithm for min
∑

0, where ρ(n,m) > 1 is the approximation ratio for independent
set in graphs that are the union of m complete n-partite graphs.

Proof. Let I be an instance of min
∑

0. Let us now consider an optimal solution
S∗ = {s∗

1, . . . , s
∗
n} of I. For any i ∈ [n], let Z∗

i = {l ∈ [p] : vs∗
i
[l] = 0 and vs∗

t
[l] =

1,∀t �= i} be the set of coordinates equal to zero only in stack s∗
i . Let Δ =∑n

i=1 |Z∗
i |. Notice that we have c(S∗) ≥ Δ + 2(p − Δ), as for any coordinate l

outside
⋃

i Z∗
i , there are at least two stacks with a zero at coordinate l. W.l.o.g.,

let us suppose that Z∗
1 is the largest set among {Z∗

i }, implying |Z∗
1 | ≥ Δ

n .
Given a subset Z ⊂ [p], we will construct a solution S = {s1, . . . , sn} such

that for any l ∈ Z, vs1 [l] = 0, and for any i �= 1, vsi
[l] = 1. Informally, the zero

at coordinates Z will appear only in s1, which behaves as a “trash” stack. The
cost of such a solution is c(S) ≤ c(s1) +

∑n
i=2 c(si) ≤ p + (n − 1)(p − |Z|). Our

objective is now to compute such a set Z, and to lower bound |Z| according
to |Z∗

1 |.
Let us now define how we compute Z. Let P = {l ∈ [p] : ∀i ∈ [m], |{j :

vi
j [l] = 0}| ≤ 1} be the subset of coordinates that are never nullified in two
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different vectors of the same set. We will construct a simple undirected graph
G = (P,E), and thus it remains to define E. For vector vi

j , let Zi
j = Z(vi

j) ∩ P ,
where Z(v) ⊆ [p] denotes the set of null coordinates of vector v. For any i ∈ [m],
we add to G the edges of the complete n-partite graph Gi = ({Zi

1 × · · · × Zi
n})

(i.e. for any j1, j2, v1 ∈ Zi
j1

, v2 ∈ Zi
j2

, we add edge {v1, v2} to G). This concludes
the description of G, which can be seen as the union of m complete n-partite
graphs.

Let us now see the link between independent set in G and our problem.
Let us first see why Z∗

1 is a independent set in G. Recall that by definition of
Z∗
1 , for any l ∈ Z∗

1 , vs∗
1
[k] = 0, but vs∗

j
[k] = 1, j ≥ 2. Thus, it is immediate

that Z∗
1 ⊆ P . Moreover, assume by contradiction that there exists an edge in

G between to vertices l1 and l2 of Z∗
1 . This implies that there exists i ∈ [m], j1

and j2 �= j1 such that vi
j1

[l1] = 0 and vi
j2

[l2] = 0. As by definition of Z∗
1 we must

have vs∗
j
[k1] = 1 and vs∗

j
[k2] = 1 for j ≥ 2, this implies that s∗

1 must contains
both vi

j1
and vi

j2
, a contradiction. Thus, we get Opt(G) ≥ |Z∗

1 |, where Opt(G) is
the size of a maximum independent set in G.

Now, let us check that for any independent set Z ⊆ P in G, we can construct
a solution S = {s1, . . . , sn} such that for any l ∈ Z, vs1 [l] = 0, and for any
i �= 1, vsi

[l] = 1. To construct such a solution, we have to prove that we can add
in s1 all the vectors v such that ∃l ∈ Z such that v[l] = 0. However, this last
statement is clearly true as for any i ∈ [m], there is at most one vector vi

j with
Z(vi

j) ⊆ Z.
Thus, any ρ(n,m) approximation algorithm gives us a set Z with |Z| ≥

|Z∗
1 |

ρ(n,m) ≥ Δ
nρ(n,m) , and we get a ratio of

p+(n−1)(p− Δ
nρ(n,m) )

2p−Δ ≤ n − n−1
nρ(n,m) for

Δ = p.
�

Remark 1. We can get, for example, ρ(n,m) = mnm−1 using the following algo-
rithm. For any i ∈ [m], let Gi = (Ai

1, . . . , A
i
n) be the i-th complete n-partite

graph. W.l.o.g., suppose that A1
1 is the largest set among {Ai

j}. Notice that
|A1

1| ≥ Opt
m . The algorithm starts by setting S1 = A1

1 (S1 may not be an indepen-
dent set). Then, for any i from 2 to m, the algorithm set Si = Si−1 \ (∪j �=j0A

i
j),

where j0 = arg maxj{|Si−1 ∩ Ai
j |}. Thus, for any i we have |Si| ≥ |Si−1|

n , and Si

is an independent set when considering only edges from ∪i
l=1G

l. Finally, we get
an independent set of G of size |Sm| ≥ S1

nm−1 ≥ Opt
mnm−1 .

3 Exact Resolution of Sparse Instances

The section is devoted to the exact resolution of min
∑

0 for sparse instances
where each vector has at most one zero (#0 ≤ 1). As we have seen in Sect. 2,
(min

∑
0)#0≤1 remains NP-hard (even for n = 2). Thus it is natural to ask

if (min
∑

0)#0≤1 is polynomial-time solvable for fixed m (for general n). This
section is devoted to answer positively to this question. Notice that we can-
not extend this result to a more general notion of sparsity as (min

∑
0)#0≤2 is



156 M. Bougeret et al.

APX-complete for m = 3 [5]. However, the question if (min
∑

0)#0≤1 is fixed
parameter tractable when parameterized by m is left open.

We first need some definitions, and refer the reader to Fig. 3 where an example
is depicted.

Definition 1

– For any l ∈ [p], i ∈ [m], we define B(l,i) = {vi
j : vi

j [l] = 0} to be the set
of vectors of set i that have their (unique) zero at position l. For the sake
of homogeneous notation, we define B(p+1,i) = {vi

j : vi
j is a 1 vector}. Notice

that the B(l,i) form a partition of all the vectors of the input, and thus an
input of (min

∑
0)#0≤1 is completely characterized by the B(l,i).

– For any l ∈ [p + 1], the block Bl =
⋃

i∈[m] B
(l,i).

Informally, the idea to solve (min
∑

0)#0≤1 in polynomial time for fixed m
is to parse the input block after block using a dynamic programming algorithm.
When arriving at block Bl we only need to remember for each c ⊆ [m] the
number xc of “partial stacks” that have only one vector for each V i, i ∈ c.
Indeed, we do not need to remember what is “inside” these partial stacks as all
the remaining vectors from Bl′ , l′ ≥ l cannot “match” (i.e. have their zero in
the same position) the vectors in these partial stacks.
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Fig. 3. Left: instance I of (min
∑

0)#0≤1 partitioned into blocks. Right: A profile

P =
{
x{∅} = 2, x{1} = 1, x{2} = 1, x{3} = 1, x{1,2}=1, x{1,3}=1, x{2,3}=1, x{1,2,3}=1

}

encoding a set S of partial stacks of I containing two empty stacks. The support of s7
is sup(s7) = {1, 3} and has cost c(s7) = 1.

Definition 2

– A partial stack s = {vs
i1

, . . . , vs
ik

} of I is such that {ix ∈ [m], x ∈ [k]} are
pairwise disjoints, and for any x ∈ [k], vs

ix
∈ V ix . The support of a partial

stack s is sup(s) = {ix, x ∈ [k]}. Notice that a stack s (i.e. non partial) has
sup(s) = [m].
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– The cost is extended in the natural way: the cost of a partial stack c(s) =
c(

∧
x∈[k] v

s
ix

) is the number of zeros of the bitwise AND of the vectors of s.

We define the notion of profile as follows:

Definition 3. A profile P = {xc, c ⊆ [m]} is a set of 2m positive integers such
that

∑
c⊆[m] xc = n.

In the following, a profile will be used to encode a set S of n partial stacks
by keeping a record of their support. In other words, xc, c ⊆ [m] will denote the
number of partial stacks in S of support c. This leads us to introduce the notion
of reachable profile as follows:

Definition 4. Given two profiles P = {xc : c ⊆ [m]} and P ′ = {x′
c′ : c′ ⊆ [m]}

and a set S = {s1, . . . , sn} of n partial stacks, P ′ is said reachable from P
through S iff there exist n couples (s1, c1), (s2, c2), . . . , (sn, cn) such that:

– For each couple (s, c), sup(s) ∩ c = ∅.
– For each c ⊆ [m], | {(sj , cj) : cj = c, j = 1, . . . , n} | = xc. Intuitively, the con-

figuration c appears in exactly xc couples.
– For each c′ ⊆ [m], | {(sj , cj) : sup(sj) ∪ cj = c′, j = 1, . . . , n} | = x′

c′ . Intu-
itively, there exist exactly x′

c′ couples that, when associated, create a partial of
profile c′.

Given two profiles P and P ′, P ′ is said reachable from P , if there exists a
set S of n partial stacks such that P ′ is reachable from P through S.

Intuitively, a profile P ′ is reachable from P through S if every partial stack
of the set encoded by P can be assigned to a unique partial stack from S to
obtain a set of new partial stacks encoded by P ′.

Remark that, given a set of partial stacks S only their profile is used to
determine whether a profile is reachable or not. An example of a reachable
profile is given on Fig. 4.

c5 = {1}
c4 = {1}
c3 = {3, 4}
c2 = {2, 4}
c1 = {∅}

s5 : sup(s5) = {2, 4}
s4 : sup(s4) = {2}
s3 : sup(s3) = {1, 2}
s2 : sup(s2) = {∅}

s1 : sup(s1) = {1, 2, 4}

c5 = {1, 2, 3, 4}
c4 = {1, 2, 4}
c3 = {1, 2, 4}
c2 = {2, 4}
c1 = {1, 2}

P

x{∅} = 1

x{2,4} = 1

x{3,4} = 1

x{1} = 2

P

x{1,2} = 1

x{2,4} = 1

x{1,2,4} = 2

x{1,2,3,4} = 1

(c1, s1)

(c2, s2)

(c3, s3)

(c4, s4)

(c5, s5)

Fig. 4. Example of a profile P ′ =
{
x{1,2} = 1, x{2,4} = 1, x{1,2,4} = 2, x{1,2,3,4} = 1

}

reachable from P =
{
x{∅} = 1, x1 = 2, x{2,4} = 1, x{3,4} = 1

}
through S = {s1 :

sup(s1) = {1, 2, 4} , s2 : sup(s2) = {∅} , s3 : sup(s3) = {1, 2} , s4 : sup(s4) = {2} ,
s5 : sup(s5) = {2, 4}}.
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We introduce now the following problem Π. We then show that this prob-
lem can be used to solve (min

∑
0)#0≤1 problem, and we present a dynamic

programming algorithm that solves Π in polynomial time when m is fixed.

Optimization Problem 2 Π

Input (l, P ) with l ∈ [p + 1], P a profile.

Output A set of n partial stacks S = {s1, s2, . . . , sn} such that S is a
partition of B =

⋃
l′≥l B

l′ and for every c ⊆ [m], |{s ∈ S|sup(s) =
[m] \ c}| = xc and such that c(S) =

∑n
j=1 c(sj) is minimum.

Remark that an instance I of (min
∑

0)#0≤1 can be solved optimally by
solving optimally the instance I ′ = (1, P = {x∅ = n, xc = 0,∀c �= ∅}) of Π. The
optimal solution of I ′ is indeed a set of n partial disjoint stacks of support [m]
of minimum cost.

We are now ready to define the following dynamic programming algorithm
that solves any instance (l, P ) of Π by parsing the instance block after block
and branching for each of these blocks on every reachable profile.

Note that this dynamic programming assumes the existence of a procedure
that enumerates efficiently all the profiles P ′ that are reachable from P . The
existence of such a procedure will be shown thereafter.

Lemma 3. For any instance of Π (l, P ), MinSumZeroDP(l, P ) = Opt(l, P ).

Proof. Lemma 3 is true as in a given block l, the algorithm tries every reachable
profile, and the zeros of vectors in blocks B =

⋃
l′<l B

l′ cannot be matched with
those of vectors in block B′ =

⋃
l′≥l B

l′ . This is the reason why the support
of the already created partial stacks (stored in profile P ) is sufficient to keep a
record of what have been done (the positions of the zeros in the partial stacks
corresponding to P is not relevant). �

Let us focus now on the procedure in charge of the enumeration of the reach-
able profile. A first and intuitive way to perform this operation is by guessing,
for all c, c′ ⊆ [m], yc,c′ the number of partial stacks in configuration c that will
be turned into configuration c′ with vectors of current block Bl. For each such
guess it is possible to greedily verify that each yc,c′ can be satisfied with the
vectors of the current block. As each of the yc,c′ can take values from 0 to n
and c and c′ can be both enumerated in O∗(n2m

), the previous algorithm runs
in O∗(n22m

).
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This complexity can be improved as follows. The idea is to enumerate every
possible profile P ′ and to verify using another dynamic programming algo-
rithm if such a P ′ is reachable from P . We define AuxP ′(P,X), that veri-
fies if P ′ is reachable from P by using all vectors of X. If X = ∅, then the
algorithm returns whether P is equal to P ′ or not. Otherwise, we consider
the first vector v of X (we fix any arbitrary order) for which a branching is
done on every possible assignment of v. More formally, the algorithm returns∨

c⊆[m],xc>0,c∩sup(v)=∅ AuxP ′(P2 = {x′
l},X \ {v}), where x′

l = xl − 1 if l = c,
x′

l = xl + 1 if l = c ∪ sup(v), and x′
l = xl otherwise.

Using Aux in MinSumZeroDP, we get the following theorem.

Theorem 3. (min
∑

0)#0≤1 can be solved in O∗(n2m+2
).

We compute the overall complexity as follows: for each of the pn2m

possible
values of the parameters of MinSumZeroDP, the algorithm tries the n2m

profiles
P ′, and run for each one AuxP ′ in O∗(n2m

nm) (the first parameter of Aux can
take n2m

values, and the second nm as we just encode how many vectors left
in X).
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Abstract. Given a positive integer k, the {k}-packing function problem
({k}PF) is to find in a given graph G, a function f of maximum weight
that assigns a non-negative integer to the vertices of G in such a way
that the sum of f(v) over each closed neighborhood is at most k. This
notion was recently introduced as a variation of the k-limited packing
problem (kLP) introduced in 2010, where the function was supposed to
assign a value in {0, 1}. For all the graph classes explored up to now,
{k}PF and kLP have the same computational complexity. It is an open
problem to determine a graph class where one of them is NP-complete
and the other, polynomially solvable. In this work, we first prove that
{k}PF is NP-complete for bipartite graphs, as kLP is known to be. We
also obtain new graph classes where the complexity of these problems
would coincide.

Keywords: Computational complexity · F-free graph · Bipartite graph

1 Basic Definitions and Preliminaries

All the graphs in this paper are simple, finite and undirected.
For a graph G, V (G) and E(G) denote respectively its vertex and edge sets.

For any v ∈ V (G), NG[v] is the closed neighborhood of v in G. For a given
graph G and a function f : V (G) → R, we denote f(A) =

∑
v∈A f(v), where

A ⊆ V (G). The weight of f is f(V (G)).
A graph H is bipartite if V (G) is the union of two disjoint (possibly empty)

independent sets called partite sets of G. Equivalently, bipartite graphs are
defined as odd-cycle-free graphs, i.e. graphs that have no induced odd-cycle.

A graph is complete if E(G) contains all edges corresponding to any pair of
distinct vertices from V (G). The complete graph on n vertices is denoted by Kn.

Given G1 and G2 two graphs, the strong product G1 ⊗ G2 is defined on the
vertex set V (G1) × V (G2), where two vertices u1v1 and u2v2 are adjacent if
and only if u1 = u2 and (v1, v2) ∈ E(G2), or v1 = v2 and (u1, u2) ∈ E(G1), or
(v1, v2) ∈ E(G2) and (u1, u2) ∈ E(G1).
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 160–165, 2016.
DOI: 10.1007/978-3-319-45587-7 14
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Given a graph G and a positive integer k, a set B ⊆ V (G) is a k-limited
packing in G if each closed neighborhood has at most k vertices of B [7]. Observe
that a k-limited packing in G can be considered as a function f : V (G) → {0, 1}
such that f(NG[v]) ≤ k for all v ∈ V (G). The maximum possible weight of a
k-limited packing in G is denoted by Lk(G). When k = 1, a k-limited packing
in G is a 2-packing in G and Lk(G) is the known packing number of G, ρ(G).

This concept is a good model for many utility location problems in operations
research, for example the problem of locating garbage dumps in a city. In most
of them, the utilities—garbage dumps—are necessary but probably obnoxious.
That is why it is of interest to place the maximum number of utilities in such a
way that no more than a given number of them (k) is near to each agent in a
given scenario.

In order to expand the set of utility location problems to be modeled, the
concept of {k}-packing function of a graph was introduced in [4] as a variation of
a k-limited packing. Recalling the problem of locating garbage dumps in a given
city, if a graph G and a positive integer k model the scenario, when dealing
with {k}-packing functions we are allowed to locate more than one garbage
dump in any vertex of G subject to there are at most k garbage dumps in each
closed neighborhood. Formally, given a graph G and a positive integer k, a {k}-
packing function of G is a function f : V (G) → Z

0
+ such that for all v ∈ V (G),

f(NG[v]) ≤ k. The maximum possible weight of a {k}-packing function of G is
denoted by L{k}(G) [4].

Fig. 1. A graph G with L3(G) = 4 and L{3}(G) = 6.

Since any k-limited packing in G can be seen as a {k}-packing function of
G, it is clear to see that Lk(G) ≤ L{k}(G). For K3, L3(K3) = L{3}(K3) = 3.
Nevertheless, for the graph in Fig. 1, these numbers do not coincide.

The above definitions induce the study—started in [2,4]—of the computa-
tional complexity of the following decision problems:

k-LIMITED PACKING, fixed k ∈ Z+ (kLP) [2]

Instance: (G, l), where G is a graph and l ∈ Z+.
Question: Does G have a k-limited packing of size at least l?

{k}-PACKING FUNCTION, fixed k ∈ Z+ ({k}PF) [4]

Instance: (G, l), where G is a graph and l ∈ Z+.
Question: Does G have a {k}-packing function of weight at least l?
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Table 1. “NP-c”, “P” and “?” mean NP-complete, polynomial and open problem,
resp.

Class kLP {k}PF

General graphs NP-c [3] NP-c [5,6]

Strongly chordal P [2] P [4]

Dually chordal ? P [5,6]

Doubly chordal ? P [6]

P4-lite P [3] P [4]

P4-tidy P [3] P [4]

Bounded tree-width P [4] P [4]

Bounded clique-width P [4] P [4]

Split NP-c [3] NP-c [6]

Chordal NP-c [3] NP-c [6]

Bipartite NP-c [3] ?

Table 1 summarizes the already known results on the complexity of {k}PF
in contrast with kLP, for fixed k ∈ Z+.

It is an open problem to determine a graph class where one of these problems
is NP-complete and the other, polynomially solvable.

In Sect. 2 we prove that {k}PF is NP-complete on bipartite graphs, answering
in this way one of the open questions in Table 1.

In Sect. 3 we obtain new graph classes where the complexity of kLP and
{k}PF would coincide.

2 {k}-Packing Functions on Bipartite Graphs

As Table 1 shows, it is already known that kLP is NP-complete on bipartite
graphs [3]. The proof is based on a reduction from a variation of the classical
domination problem on a bipartite graph to kLP on a bipartite graph.

In this section we state that also {k}PF is NP-complete for bipartite graphs.
In this case the proof consists in a reduction from {k}PF in a general graph to
{k}PF in a bipartite graph.

We have:

Theorem 1. For every fixed k ∈ Z+, {k}PF is NP-complete on bipartite graphs.

Proof. Let k ∈ Z+ be fixed. It is already known that {k}PF is NP-complete for
general graphs [5].

Let (G, l) be an instance of {k}PF. We build a bipartite graph B in the
following way (see Fig. 2). Let

X = {xv : v ∈ V (G)} ∪ {x}, Y = {yv : v ∈ V (G)} ∪ {y}
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be the partite sets of B. Let also

E(B) =
⋃

v∈V (G)

{(xv, yu) : u ∈ NG[v]} ∪ {(x, y′) : y′ ∈ Y }.

Fig. 2. Construction of B from a graph G in Theorem1.

We will prove that
L{k}(B) = L{k}(G) + k.

On the one hand, let f be a {k}-packing function of G with weight L{k}(G).
Consider the function h : V (B) → Z

0
+ defined as follows. For each v ∈ V (G) let

h(xv) = f(v) and h(yv) = 0. Let also h(x) = 0 and h(y) = k. Notice that h is
indeed a {k}-packing function of B with weight L{k}(G) + k. Hence,

L{k}(B) ≥ L{k}(G) + k.

On the other hand, let h be a {k}-packing function of B with weight L{k}(B).
We can assume that h satisfies h(x) = 0 and h(yv) = 0 for each v ∈ V (G): if h
does not satisfy these conditions, we can construct another {k}-packing function
ĥ of B of maximum weight, by defining ĥ(xv) = h(xv) and ĥ(yv) = 0 for each
v ∈ V (G), ĥ(x) = 0 and ĥ(y) =

∑
v∈V (G) h(yv) + h(x) + h(y). Now we construct

a function f : V (G) → Z
0
+ by letting f(v) = h(xv) for each v ∈ V (G). Clearly,

f is a {k}-packing function of G with weight L{k}(B) − ĥ(y). Hence, L{k}(G) ≥
L{k}(B) − ĥ(y). Since ĥ(y) =

∑
v∈V (G) h(yv) + h(x) + h(y) = h(NB [x]) ≤ k, it

follows that
L{k}(G) ≥ L{k}(B) − k. 	


3 A General Result

Clearly, there are polynomial-time reductions from kLP ({k}PF) to {k}PF
(kLP), since both problems are NP-complete in the general case. It is known
a linear reduction from {k}PF to kLP that involves changes in the graph; more
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precisely, it is proved that L{k}(G) = Lk(G ⊗ Kk), for every graph G and posi-
tive integer k [4]. This reduction is closed within some graph classes, for instance
strongly chordal graphs and graphs with the parameter clique-width bounded
by a constant. From these facts it is derived the polynomiality of {k}PF for
strongly chordal graphs and graphs with the parameter clique-width bounded
by a constant [4].

In this section we prove that the above reduction is closed within certain
graph class defined by forbidden induced subgraphs, following the ideas of
Theorem 9 in [1]. For this purpose, we consider the following definition:

Definition 1. Let F be a family of graphs satisfying the following property:
for every graph G in F , |V (G)| ≥ 2 and, for every v ∈ V (G), no connected
component of G − v is complete. We call G the class of F-free graphs.

Some examples of graph classes in G are {house, hole, gem}-free graphs,
{house, hole, domino}-free graphs and {house, hole, domino, sun}-free graphs.
It is worth studying the complexities for the mentioned classes since they all
have the parameter clique-width unbounded. For other examples, like distance-
hereditary graphs which are {house, hole, domino, gem}-free graphs, the com-
plexity of both problems is already known since they have the parameter clique-
width bounded by a constant.

We can state and prove:

Theorem 2. Consider the graph class G in Definition 1. For fixed positive inte-
ger k and graph G in G, G ⊗ Kk ∈ G.

Proof. Let k be a fixed positive integer and G be graph in G. We will prove that
G ⊗ Kk ∈ G, i.e. we will prove that G ⊗ Kk is F-free. Let G′ be a subgraph of
G ⊗ Kk induced by V ′ with |V ′| ≥ 2. Then V ′ is the disjoint union of sets V ′

vj

with j ∈ J , where 1 ≤ |J | ≤ |V (G)|.
When |J | = 1, G′ = Kk and thus G′ /∈ F . When |J | ≥ 2, consider the

subgraph G′′ of G induced by the vertices {v1, . . . , v|J|}. Since G is F-free, there
is a vertex vr with r ∈ J and such that G′′ − vr has a complete connected
component. From the definition of G ⊗ Kk, it is not difficult to see that G′ − v′

r

has a complete connected component, where v′
r is any vertex in V ′

vr
. Therefore,

G′ /∈ F . Since G′ is arbitrary, this proves that G⊗Kk is F-free, concluding that
G ⊗ Kk ∈ G. 	


As a corollary, knowing from [4] that L{k}(G) = Lk(G⊗Kk) for every graph
G and positive integer k, we have:

Corollary 1. Consider the graph class G in Definition 1. Then, for fixed pos-
itive integer k, {k}PF is solvable in polynomial time in the class G, provided
that kLP is solvable in polynomial time in G. Besides, if {k}PF is NP-complete
in G, then kLP is NP-complete in G.



Towards a Polynomial Equivalence 165

4 Final Remarks

It remains an open problem to know if there exists a graph class where one of
the problems considered in this work is NP-complete and the other can be solved
in polynomial time. Corollary 1 helps to keep working on this line of research.
Besides, it is an open problem to determine the complexity of kLP for dually
chordal graphs, as shown in Table 1, or at least for one of its maximal subclasses
constituted by doubly chordal graphs (also shown in Table 1).
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Abstract. The purpose of this paper is to solve the 0–1 k-item quadratic
knapsack problem (kQKP ), a problem of maximizing a quadratic func-
tion subject to two linear constraints. We propose an exact method based
on semidefinite optimization. The semidefinite relaxation used in our
approach includes simple rank one constraints, which can be handled
efficiently by interior point methods. Furthermore, we strengthen the
relaxation by polyhedral constraints and obtain approximate solutions
to this semidefinite problem by applying a bundle method. We review
other exact solution methods and compare all these approaches by exper-
imenting with instances of various sizes and densities.

Keywords: Quadratic programming · 0–1 knapsack · k-cluster ·
Semidefinite programming

1 Introduction

The 0–1 k-item quadratic knapsack problem consists of maximizing a quadratic
objective function subject to a linear capacity constraint with an additional
equality cardinality constraint:

(kQKP )

⎧
⎪⎪⎨

⎪⎪⎩

max f(x) =
∑n

i=1

∑n
j=1 cijxixj

s.t.
∑n

j=1 ajxj ≤ b (1)
∑n

j=1 xj = k (2)
xj ∈ {0, 1} j = 1, . . . , n

where n denotes the number of items, and all the data, k (number of items
to be filled in the knapsack), aj (weight of item j), cij (profit associated with
the selection of items i and j) and b (capacity of the knapsack) are nonnegative
integers. Without loss of generality, matrix C = (cij) is assumed to be symmetric.
Moreover, we assume that maxj=1,...,n aj ≤ b <

∑n
j=1 aj in order to avoid either

trivial solutions or variable fixing via constraint (1). Let us denote by kmax the
largest number of items which could be filled in the knapsack, that is the largest
number of the smallest aj whose sum does not exceed b. We can assume that
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 166–176, 2016.
DOI: 10.1007/978-3-319-45587-7 15



Exact Solution Methods for the k-Item Quadratic Knapsack Problem 167

k ∈ {2, . . . , kmax}, where kmax can be found in O(n) time [2]. Otherwise, either
the value of the problem is equal to maxi=1,...,n cii (for k = 1), or the domain of
(kQKP ) is empty (for k > kmax).

(kQKP ) is an NP-hard problem as it includes two classical NP-hard subprob-
lems, the k-cluster problem [6] by dropping constraint (1), and the quadratic
knapsack problem [18] by dropping constraint (2). Even more, the work of
Bhaskara et al. [4] indicates that approximating k-cluster within a polynomial
factor might be a harder problem than Unique Games. Rader and Woeginger [19]
state negative results concerning the approximability of QKP if negative cost
coefficients are present.

Applications of (kQKP ) cover those found in previous references for k-cluster
or classical quadratic knapsack problems (e.g., task assignment problems in
a client-server architecture with limited memory), but also multivariate linear
regression and portfolio selection. Specific heuristic and exact methods includ-
ing branch-and-bound and branch-and-cut with surrogate relaxations have been
designed for these applications (see, e.g., [3,5,9,17,22]).

The purpose of this paper is twofold.

1. We introduce a new algorithm for solving (kQKP ) and
2. we briefly review other state of the art methods and compare the methods

by running numerical experiments.

Our new algorithm consists of a branch-and-bound framework using

– a combination of a semidefinite relaxation and polyhedral cutting planes to
obtain tight upper bounds and

– fast hybrid heuristics [16] for computing high quality lower bounds.

This paper is structured as follows. In Sect. 2 a semidefinite relaxation is
derived, followed by a discussion of solving the semidefinite problems in Sect. 3.
The relaxation is used inside a branch-and-bound framework, the various compo-
nents of this branch-and-bound algorithm are discussed in Sect. 4. Other methods
for solving (kQKP ) and numerical results are presented in Sect. 5 and Sect. 6
concludes.

Notation. We denote by e the vector of all ones of appropriate size. diag(X)
refers to diagonal of X as a vector and Diag(v) is the diagonal matrix having
diagonal v.

2 A Semidefinite Relaxation of (kQKP )

In order to develop a branch-and-bound algorithm for solving (kQKP ) to opti-
mality we aim in finding strong upper bounds. Semidefinite optimization proved
to provide such strong bounds, see e.g. [1,20,21].

A straightforward way to obtain a semidefinite relaxation is the following.
Express all functions involved as quadratic functions, i.e. functions in xxt, replace
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the product xxt by a matrix X and get rid of non-convexities by relaxing X = xxt

to X � xxt.
Hence, we apply the following changes:

– Replace the constraint etx = k by the constraint (etx − k)2 = 0.
– As for the capacity constraint, define b′ to be the sum of the weights of the k

smallest items. Clearly, b′ ≤ atx is a valid constraint for (kQKP ). Combining
this redundant constraint with the capacity constraint we obtain (b′ −atx)(b−
atx) ≤ 0.

– Transform the problem to a ±1 problem by setting y = 2x − e.
– Relax the problem by relaxing Y = yyt to Y � yyt, i.e., dropping the con-

straint Y being of rank one.

This procedure yields the following semidefinite problem:

max 〈C̃, Y 〉
s.t. diag(Y ) = e

〈Ẽ, Y 〉 = 0

〈Ã, Y 〉 ≤ (b − b′)2

Y � 0

(SDP1)

with Ẽ = ẽẽt, ẽ =
(

n − 2k
e

)

, Ã = ããt, ã =
(

ate − (b + b′)
a

)

, and appropriate C̃.

Observation 1. (SDP1) has no strictly feasible point and thus Slater’s condi-
tion does not hold.

Proof. Note that 〈Ẽ, Y 〉 = ẽtY ẽ = 0 together with Y � 0 implies Y being
singular and thus every feasible solution is singular.

��

Observe that ẽ =
(

n − 2k
e

)

is an eigenvector to the eigenvalue 0 of every feasible

Y . Now consider matrix V =
(

1
2k−net

In

)

. V spans the orthogonal complement

of the span of eigenvector ẽ. Set Y = V XV t to “project out” the 0-eigenvalue
and consider the n × n matrix X instead of the (n + 1) × (n + 1) matrix Y . The
relationship between X and Y is simply given by

Y = V XV t =
( 1

(2k−n)2 etXe 1
2k−n (Xe)t

1
2k−nXe X

)

.

Looking at the effect of the constraints of (SDP1) on matrix X, we derive the
following conditions.
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– From diag(Y ) = e we obtain the constraints

etXe = (2k − n)2

diag(X) = e

– The left-hand side of constraint 〈Ẽ, Y 〉 = 0 translates into

〈Ẽ, Y 〉 = 〈Ẽ, V XV t〉 = 〈V tẼV,X〉 = 〈0,X〉 = 0

and the constraint becomes obsolete.
– Constraint 〈Ã, Y 〉 ≤ (b − b′)2 yields the following.

〈Ã, Y 〉 = 〈Ã, V XV t〉 = 〈V tÃV,X〉 =

= 〈(ate − (b + b′)
2k − n

e + a)(
ate − (b + b′)

2k − n
e + a)t,X〉

Hence,

〈(ate − (b + b′)
2k − n

e + a)(
ate − (b + b′)

2k − n
e + a)t,X〉 ≤ (b − b′)2

Defining ā = (ate−(b+b′)
2k−n e + a) we finally obtain

max 〈C̄,X〉
s.t. diag(X) = e

〈E,X〉 = (2k − n)2

〈A,X〉 ≤ (b − b′)2

X � 0

(SDP )

where E = eet, A = āāt, and appropriate cost matrix C̄.

Strengthening the Relaxation. Since we derived a relaxation from a problem
in ±1 variables, we can further tighten the bound by adding the well known
triangle inequalities to the semidefinite relaxation (SDP ). These are for any
triple 1 ≤ i < j < k ≤ n:

xij + xik + xjk ≥ −1
−xij − xik + xjk ≥ −1
−xij + xik − xjk ≥ −1

xij − xik − xjk ≥ −1

(1)

For several problems formulated in ±1 variables adding these constraints sig-
nificantly improves the bound, see e.g. [20]. The set of matrices satisfying all
triangle-inequalities is called the metric polytope and is denoted by MET . Thus,
the strengthend semidefinite relaxation reads
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max 〈C̄,X〉
s.t. diag(X) = e

〈E,X〉 = (2k − n)2

〈A,X〉 ≤ (b − b′)2

X ∈ MET

X � 0

(SDPMET )

3 Solving the Semidefinite Relaxations

3.1 Solving the Basic Relaxation (SDP )

The most prominent methods for solving semidefinite optimization problems are
interior point methods. The interior point method is an iterative algorithm where
in each iteration Newton’s method is applied in order to compute new search
directions.

Consider the constraints A(X) = (
...) with A(X) =

⎛

⎜
⎜
⎜
⎝

〈A1,X〉
〈A2,X〉

...
〈Am,X〉

⎞

⎟
⎟
⎟
⎠

. In each iter-

ation we determine a search direction Δy (y are variables in the dual semidefinite
problem) by solving the system MΔy = rhs where

mij = trace(Z−1AjXAi).

Z denotes the (positive definite) matrix variable of the dual semidefinite
program.

Forming this system matrix requires O(mn3 +m2n2) steps and is among the
most time-consuming operations inside the interior point algorithm. (The other
time-consuming steps are maintaining positive definiteness of the matrices X
and Z and linear algebra operations such as forming inverse matrices.)

The primal-dual pair of (SDP ) in variables (X, s, y, Z, t) is given as follows.

max
{〈C̄,X〉
s.t. diag(X) = e, 〈E,X〉 = (2k − n)2, 〈A,X〉 + s = (b − b′)2, X � 0, s ≥ 0

}

min
{
ety1:n + (n − 2k)2yn+1 + (b − b′)2yn+2

s.t. Diag(y1:n) + yn+1E + yn+2A − Z = C̄, yn+2 − t = 0, Z � 0, t ≥ 0
}
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Hence, the set of constraints is rather simple and the system matrix M reads
⎛

⎝
Z−1 ◦ X diag(Z−1EX) diag(Z−1AX)

diag(Z−1EX)t 〈E,Z−1EX〉 〈E,Z−1AX〉
diag(Z−1AX)t 〈A,Z−1EX〉 〈A,Z−1AX〉 + s

t

⎞

⎠ .

Even more, all data matrices have rank one which can be exploited when com-
puting the inner products, e.g.,

〈A,Z−1AX〉 = trace(āātZ−1āātX) = (ātZ−1ā)(ātXā)

Thus, the computation of the inner products of the matrices simplifies and
computing the system matrix can be reduced from O(mn3 +m2n2) to O(mn2 +
m2n). And since m = n + 2 in our case, we end up with O(n3).

Hence, (SDP ) can be solved efficiently by interior point methods.

3.2 Solving the Strengthened Relaxation (SDPMET )

Problem (SDPMET ) has a considerably larger number of constraints than (SDP ).
Remember that X ∈ MET is described by 4

(
n
3

)
linear inequalities and thus solv-

ing (SDPMET ) by interior point methods is intractable. An alternative has been
proposed in [12]. Therein the concept of bundle methods is used, in order to obtain
an approximate optimizer on the dual functional and thus getting a valid upper
bound on (SDPMET ), leading to a valid upper bound on (kQKP ).

Bundle methods have been developed to minimize nonsmooth convex func-
tions. To characterize the problem to be solved, an oracle has to be supplied
that evaluates the function at a given point and computes an ε-subgradient. The
set of points, function values, and subgradients is collected in a “bundle”, which
is used to construct a cutting plane model minorizing the function to be mini-
mized. By doing a sequence of descent steps the cutting plane model is refined
and one gets closer to the minimizer of the function.

We will apply the bundle method to minimize the dual functional of
(SDPMET ). Let

X = {X � 0: diag(X) = e, 〈E,X〉 = (2k − n)2, 〈A,X〉 ≤ (b − b′)2}

i.e., the feasible region of (SDP ). We introduce the dual functional

f(γ) = max
X∈X

{〈C̄,X〉 + γt(e − T (X)}
= etγ + max

X∈X
〈C̄ − T t(γ),X〉 (2)

where T (X) ≤ e denotes the triangle inequalities (1). Minimizing f(γ) over
γ ≥ 0 gives a valid upper bound on (kQKP ). In fact, any γ̃ ≥ 0 gives a valid
upper bound

z∗ = min
γ≥0

f(γ) ≤ f(γ̃) for any γ̃ ≥ 0.
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Since we use this bound inside a branch-and-bound framework, this allows us
to stop early and prune a node as soon as f(γ̃) is smaller than some known
lower bound. Furthermore, we do not rely on getting to the optimum. We will
stop once we are “close” to optimum and branch, rather than investing time in
dropping the bound by a tiny number.

Evaluating function (2) (the most time consuming step in the bundle method)
amounts in solving (SDP ) (with varying cost matrix), which can be done effi-
ciently as discussed in the previous section. Having the maximizer X∗ of (SDP ),
i.e. the function evaluation, a subgradient is given by g∗ = e − T (X∗).

Dynamic Version of the Bundle Method. The number of variables γ in (2) is
4
(
n
3

)
. This number is substantially larger than the dimension of the problem

and we are interested only in those inequalities that are likely to be active at
the optimum. Thus, we do not consider all triangle inequalities but work with
a subset that is updated on a regular basis, say every fifth descent step. The
update consists of

1. adding the m inequalities being most violated by the current iterate X and
2. removing constraints with γ close to 0 (an indicator for an inactive

constraint).

In this way we are able to efficiently run the bundle algorithm by keeping the
size of the variable vector γ reasonably small.

4 Branch and Bound

We develop an exact solution method for solving (kQKP ) by designing a branch-
and-bound framework using relaxation (SDPMET ) discussed above for getting
upper bounds.

The remaining tools of our branch-and-bound algorithm are described in this
section.

4.1 Heuristics for Obtaining Lower Bounds

We use two heuristics to obtain a global lower bound inside our algorithm: one
that is executed at the root node and another one that is called at each other
node in the branch-and-bound tree.

As a heuristic method at the root node we chose the primal heuristic denoted
by Hpri in [16], which is an adaption of a well-known heuristic developed by
Billionnet and Calmels [7] for the classical quadratic knapsack problem (QKP).
This primal heuristic combines a greedy algorithm with local search.

At each node of the branch-and-bound tree, we apply a variable fixation
heuristic inspired from Hsdp [16]. This heuristic method uses the solution of
the semidefinite relaxation obtained at each node, it fixes variables under some
treshold ε > 0 to zero and applies the primal heuristic over the reduced problem.
It updates the solution by performing a fill-up and exchange procedure over the
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unreduced problem. This procedure iterates, increasing ε at each iteration, until
the reduced problem is empty.

Both heuristics, the primal and the variable fixation one, are very fast and
take only hundredths of a second for sizes of our interest.

4.2 Branching Rule and Search Strategy

As a branching variable we choose the “most fractional” variable, i.e., v =
argmini|12 − xi|. The vector x is extracted from matrix X given by the semi-
definite relaxation.

We traverse the search tree in a best first search manner, i.e., we always
consider the node in the tree having the smallest upper bound.

4.3 Speed up for Small k

Whenever k, the number of items to be filled in the knapsack, is small, a branch-
and-prune algorithm is triggered in order to speed-up the approach. No relax-
ation is performed at each node of the branch-and-prune tree and a fast depth
first search strategy, in priority fixing variables to one, is implemented. We only
check the feasibility of the current solution through the cardinality and capacity
constraints.

This branch-and-prune approach is very fast, at most a few seconds, for very
small k. So we embedded it into our branch-and-bound algorithm and run it at
nodes where the remaining number of items to be filled in the current knapsack is
very small (less or equal than 5 in practice). To solve the original problem, we can
also replace the global branch-and-bound method using this branch-and-prune
approach for small initial values of k, in practice we choose k ≤ 10.

5 Numerical Results

We coded the algorithm in C++. For the function evaluation (i.e., solving
(SDP )) we implemented a predictor-corrector variant of an interior point
algorithm [14]. We use the ConicBundle Library of Ch. Helmberg [13] as frame-
work for the bundle method to solve (SDPMET ).

We compare our method (B&C) to:

– (Cplex): IBM CPLEX solver, version 12.6.2 [11], with default settings. The
original nonconvex 0–1 quadratic problem is given directly to CPLEX which
is now able to deal with such a formulation.

– (MIQCR+Cplex): our implementation of the MIQCR method [8]. MIQCR
uses a semidefinite relaxation in order to obtain a problem having a convexified
objective function; the resulting convex integer problem can then be solved
by standard solvers. We use the CSDP solver [10] for solving the semidefinite
relaxation to convexify the objective function, and IBM CPLEX 12.6.2 [11]
with default settings to solve the reformulated convex problem.
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– (BiqCrunch): Also BiqCrunch [15] is an algorithm based on semidefinite and
polyhedral relaxations within a branch-and-bound framework. In BiqCrunch
a quadratic regularization term is added to the objective function of the semi-
definite problem and a quasi-Newton method is used to compute the bounds.
We use the BiqCrunch solver enhanced with our primal and variable fixation
heuristics described in Sect. 4.1.

All experiments have been performed on an Intel i7-2600 quad core 3.4 GHz
with 8 GB of RAM, using only one core. The computational results have been
obtained for randomly generated instances from [16] with up to 150 variables.
We choose k ∈ {1, . . . , �n

4 �}, b, aj and cij are positive integers. The time limit
for each approach is 3 h.

In Table 1 we display the run time of the overall algorithm, the gap at the
root node, and the number of nodes produced during the branch-and-bound
algorithm for each method. Each line of Table 1 represents average values over
10 instances for each n and δ where n is the number of variables and δ is the
density of the profit matrix C. We put the number of instances solved within
the time limit into brackets in case not all 10 instances could be solved. Average
values are computed only over instances solved within the time limit.

The numerical experiments demonstrate that the methods having semidefi-
nite optimization inside clearly outperform Cplex. In fact, Cplex already fails to
solve all instances of size n = 50 within the time limit.

Table 1. Numerical results comparing four approaches. (Time limit: 3 h)

Cplex MIQCR+Cplex BiqCrunch B&C
Gap root % Time (s) #Nodes Gap root % Time (s) #Nodes Gap root % Time (s) #Nodes Gap root % Time (s) #Nodes

n δ

50 25 102.7 3.7 3426.9 30.5 1.0 621.2 7.4 21.4 79.6 0.9 72.4 11.6
50 150.6 150.8 77807.9 25.2 1.0 1276.3 4.9 24.9 136.8 1.3 9.1 11.2
75 230.3 213.1 104419.5 102.0 0.7 656.7 56.1 26.6 98.6 0.6 3.6 9.1
100 356.5 (8) 53.1 (8) 14228.8 62.7 1.5 3620.0 31.4 23.0 89.6 0.9 73.0 38.1

60 25 60.8 3.0 917.1 127.4 0.9 621.2 123.0 32.2 85.2 0.6 18.3 18.4
50 93.7 282.4 134246.3 15.1 1.4 1280.3 4.7 39.7 136.8 2.0 110.3 88.1
75 212.7 (9) 50.9 (9) 8258.3 137.5 3.3 7594.5 131.4 71.3 123.0 1.3 75.8 28.2
100 284.5 (8) 188.6 (8) 55411.8 61.2 3.2 5808.1 47.8 63.0 147.2 0.3 21.5 18.4

70 25 130.2 23.7 12065.8 37.9 3.4 2884.9 13.8 109.6 147.7 4.5 259.3 42.0
50 177.1 (6) 213.8 (6) 63859.7 71.7 8.4 11221.8 59.2 141.0 207.4 2.2 128.2 139.7
75 382.4 (8) 873.0 (8) 105465.6 56.1 16.2 33821.0 17.4 196.2 211.7 3.5 246.8 114.9
100 252.2 (4) 60.2 (4) 10867.5 59.6 14.6 25809.6 53.0 153.3 243.2 4.0 319.7 338.8

80 25 111.2 226.6 89013.4 33.5 7.8 6115.3 13.0 149.6 195.2 7.5 390.9 86.1
50 271.6 (8) 872.9 (8) 181325.9 55.0 26.8 36346.3 20.9 373.9 366.2 8.6 544.8 213.6
75 313.3 (5) 278.7 (5) 14838.5 82.0 47.8 96543.3 70.8 615.1 745.2 2.6 413.4 359.0
100 473.0 (6) 1469.5 (6) 98024.5 43.0 96.5 216700.0 17.1 717.5 804.6 5.4 1849.4 1219.7

90 25 118.5 (9) 585.9 (9) 693035.0 111.5 23.3 22836.9 107.3 188.6 390.4 3.6 430.6 94.1
50 248.6 (6) 3708.5 (6) 312105.5 82.2 67.8 99574.6 72.3 532.3 810.0 3.4 729.1 404.9
75 388.7 (2) 2850.5 (2) 62190.5 37.9 735.1 1348558.3 14.2 1281.2 970.8 8.7 (7) 3234.1 (7) 2233.1
100 390.0 (3) 146.2 (3) 5047.5 26.6 180.4 282966.1 10.4 1094.7 5644.1 6.5 2740.9 1357.9

100 25 169.4 2308.1 623731.5 74.4 65.4 71449.9 61.6 392.5 617.4 10.9 1583.1 284.0
50 145.7 (6) 1724.3 (6) 122716.0 17.5 308.0 465749.5 7.6 986.9 882.0 8.0 (9) 3379.6 (9) 1488.6
75 270.9 (2) 4243.5 (2) 88176.5 21.8 856.8 1322350.0 6.8 980.0 967.8 14.8 (7) 2613.0 (7) 855.6
100 473.0 (5) 2658.8 (5) 120959.0 98.6 649.7 977246.9 94.0 (9) 723.8 (9) 5166.7 6.0 (7) 318.1 (7) 115.4

110 25 124.0 (6) 277.4 (6) 36270.2 72.2 327.0 288129.4 64.4 848.8 1003.6 13.5 (8) 2602.9 (8) 810.4
50 117.5 (3) 661.5 (3) 55327.0 14.3 1188.1 1089556.0 4.7 1010.2 727.8 5.7 (7) 2065.1 (7) 652.3
75 580.7 (6) 908.8 (6) 35891.8 138.7 (7) 27.4 (7) 37408.8 118.8 (8) 2305.7 (8) 4523.3 10.7 (7) 1062.7 (7) 297.7
100 332.2 (1) 1911.6 (1) 118552.0 19.6 (8) 758.0 (8) 956886.3 7.1 (8) 1438.1 (8) 1575.0 7.0 (6) 1789.2 (6) 511.7

120 25 55.1 (6) 320.1 (6) 94936.5 95.3 1771.4 1644176.9 111.8 424.3 447.6 5.7 (8) 1872.3 (8) 317.3
50 288.1 (3) 2995.9 (3) 81429.7 90.3 (7) 1888.9 (7) 1554792.4 82.5 (8) 1073.9 (8) 821 10.2 (6) 1725.3 (6) 427.5
75 507.6 (5) 305.0 (5) 11101.2 133.8 (6) 484.9 (6) 177043.8 128.7 (9) 3001.6 (9) 7996.3 7.9 (5) 0.8 (5) 0.0
100 179.7 (3) 41.9 (3) 4166.5 66.2 (6) 61.6 (6) 36075.0 68.7 (9) 1552.6 (9) 969.0 3.6 (6) 683.4 (6) 144.4

130 25 129.1 (6) 2014.5 (6) 383586.2 24.7 1256.6 698989.0 10.6 3341.8 2520.8 7.1 (8) 4194.0 (8) 850.7
50 411.8 (4) 3246.9 (4) 245787.0 67.3 (7) 493.0 (7) 384516.5 50.5 (8) 1719.6 (8) 2330.7 6.9 (7) 2590.8 (7) 450.8
75 207.3 (0) (0) 12.2 (5) 4975.3 (5) 3138617.2 3.8 (9) 2630.0 (9) 1000.3 11.9 (2) 6813.5 (2) 1430.0
100 383.5 (0) (0) 21.1 (4) 2250.4 (4) 1170285.3 8.8 (6) 4365.0 (6) 2437.4 14.1 (3) 2012.0 (3) 83.5

140 25 207.9 (5) 15.0 (5) 1180.5 48.8 (8) 1770.8 (8) 654605.8 44.4 2624.2 1993.3 13.3 (4) 2561.8 (4) 298.5
50 306.2 (1) 2401.8 (1) 106348.0 36.8 (5) 2692.3 (5) 2306370.0 16.4 (7) 4809.5 (7) 1134.1 24.0 (3) 3360.3 (3) 213.3
75 259.0 (0) (0) 19.6 (4) 2263.5 (4) 1520163.5 8.0 (5) 4065.2 (5) 1773.4 12.5 (1) 431.0 (1) 0.0
100 647.8 (2) 64.1 (2) 483.0 49.4 (4) 1042.9 (4) 1238929.3 37.1 (6) 6123.7 (6) 17745.3 13.3 (4) 2561.7 (4) 298.5

150 25 103.7 (4) 1744.3 (4) 202004.0 67.4 (6) 587.1 (6) 552495.8 69.1 (8) 3203.9 (8) 994.8 12.6 (3) 1458.0 (3) 164.3
50 105.6 (5) 91.8 (5) 5591.7 98.2 (7) 2240.0 (7) 935027.4 101.4 (7) 2761.5 (7) 2349.4 8.8 (5) 2797.7 (5) 3453.7
75 496.9 (0) (0) 7.9 (5) 957.2 (5) 300455.4 23.1 (3) 3908.7 (3) 876.3 17.5 (2) 155.0 (2) 0.0
100 171.1 (1) 1039.3 (1) 24546.0 43.7 (3) 3493.0 (3) 5264462.0 3.3 (4) 4320.1 (4) 2171.0 8.1 (3) 5391.7 (3) 554.3

Avg 258.5 (236) 787.0 (236) 127524.4 59.0 (372) 570.0 (372) 902502.7 45.7 (394) 1215.4 (394) 1487.2 7.4 (328) 1250.5 (328) 433.8
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Instances with up to n = 100 variables can be solved most efficiently by the
MIQCR approach, i.e., finding a convexified problem via semidefinite optimiza-
tion and then solve the resulting convex problem using Cplex.

For n > 100, BiqCrunch performs best in terms of overall run time, but the
domincance to MIQCR and our approach is not significant.

Our new approach provides by far the smallest gap at the root node. The
high quality of our bound is also reflected in the number of nodes in the branch-
and-bound tree. Our method explores a substantial smaller number of nodes
than the other approaches.

Our approach is not superior to MIQCR or BiqCrunch in terms of over-
all computation time, however, the implementation is a prototype and there is
room for speeding up the approach by experimenting with different settings in
the branch-and-bound framework (such as branching strategies) as well as para-
meter settings in the bundle algorithm and in the update of the set of triangle
inequalities. This is currently under investigation.

6 Conclusion

The 0–1 k-item quadratic knapsack problem is a challenging problem, as it
includes two NP-hard problems, namely quadratic knapsack and k-cluster. We
review approaches to solve this problem to optimality and introduce a new
method, where the bound computation is based on a semidefinite relaxation.
The derived basic semidefinite relaxation has only simple constraints, in fact
all constraints are of rank one. This can be exploited in interior point methods
to efficiently compute the system matrix. We strengthen the relaxation using
triangle inequalities and solve the resulting semidefinite problem by a dynamic
version of the bundle method.

To have a comparison with state of the art algorithms we implement the
convexification algorithm MIQCR [8], use BiqCrunch [15] enhanced with our
primal heuristics, and run Cplex. The numerical results prove that CPLEX is
clearly outperformed by all the methods based on semidefinite programming.
Our new method provides the tightest bound at the root node, while the overall
computation time is smallest for MIQCR for n ≤ 100 and BiqCrunch for larger
n. An optimized implementation and a study of the best parameter settings for
the various components inside our code is subject of further study.
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Abstract. 2-level polytopes naturally appear in several areas of mathe-
matics, including combinatorial optimization, polyhedral combinatorics,
communication complexity, and statistics.

We investigate upper bounds on the product of the number of facets
fd−1(P ) and the number of vertices f0(P ), where d is the dimension of
a 2-level polytope P . This question was first posed in [3], where experi-
mental results showed f0(P )fd−1(P ) ≤ d2d+1 up to d = 6.

We show that this bound holds for all known (to the best of our knowl-
edge) 2-level polytopes coming from combinatorial settings, including
stable set polytopes of perfect graphs and all 2-level base polytopes of
matroids. For the latter family, we also give a simple description of the
facet-defining inequalities. These results are achieved by an investigation
of related combinatorial objects, that could be of independent interest.

1 Introduction

Let P ⊆ R
d be a polytope. We say that P is 2-level if, for all facets F of

P , all the vertices of P that are not vertices of F lie in the same translate
of the affine hull of F (Fig. 1). Equivalently, P is 2-level if and only if it has
theta-rank 1 [9], or all its pulling triangulations are unimodular [16], or it has
a slack matrix with entries that are only 0 or 1 [3]. Those last three definitions
appear in papers from the semidefinite programming, statistics, and polyhedral
combinatorics communities respectively, showing that 2-level polytopes naturally
arise in many areas of mathematics.

Arguably, the most important reasons 2-level polytopes are interesting for
researchers in polyhedral combinatorics and theoretical computer science are
their connections with the theory of linear extensions and the prominent log-
rank conjecture in communication complexity, since they generalize stable set
polytopes of perfect graphs.

Because of all the reasons above, a complete understanding of 2-level poly-
topes would be desirable. Unfortunately, despite an increasing number of studies
[3,9–11], such an understanding has not been obtained yet: we do not have e.g.
any decent bound on the number of d-dimensional 2-level polytopes or on their
linear extension complexity, nor do we have a structural theory of their slack
matrices, of the kind that has been developed for totally unimodular matrices
(see e.g. [14]). On the positive side, many properties of 2-level polytopes have
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 177–188, 2016.
DOI: 10.1007/978-3-319-45587-7 16
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Fig. 1. The first three polytopes (the simplex, the cross-polytope and the cube) are
clearly 2-level. The fourth one is not 2-level, due to the highlighted facet (Images
excerpted from [9] with permission from the authors).

been shown. For instance, each d-dimensional 2-level polytope is affinely isomor-
phic to a 0/1 polytope [9], hence it has at most 2d vertices. Interestingly, one
can show that a d-dimensional 2-level polytope has at most 2d facets [9]. This
makes 2-level polytopes quite different from “random” 0/1 polytopes, that have
(d/ log d)Θ(d) facets [2]. In fact, 2-level polytopes seem to be a very restricted
subclass of 0/1 polytopes, as experimental results from [3] have shown.

The goal of this paper is to shed some light on the relationship between the
number of vertices and the number of facets of a 2-level polytope. Experimental
evidence from [3] up to dimension 6 suggests the existence of a trade-off between
those two numbers, in a very strong sense: a d-dimensional 2-level polytope can
have at most 2d vertices and facets, but their product seems to be upper bounded
by a number much smaller than 22d. More formally, for a polytope P and i ∈ Z+,
let fi(P ) be the number of its i-dimensional faces. The following was posed as a
question in [3], and we turn it here into a conjecture.

Conjecture 1 (Vertex/Facet Trade-off). Let P be a d-dimensional 2-level
polytope. Then f0(P )fd−1(P ) ≤ d2d+1. Moreover, equality is achieved if and only
if P is affinely isomorphic to the cross-polytope or the cube.

It is immediate to check that the cube and the cross-polytope (its polar)
indeed verify f0(P )fd−1(P ) = d2d+1. The conjecture above essentially states
that those basic polytopes maximize f0(P )fd−1(P ) among all 2-level polytopes
of a fixed dimension.

Conjecture 1 has an interesting interpretation as an upper bound on the
“size” of slack matrices of 2-level polytopes, since f0(P ) (resp. fd−1(P )) is the
number of columns (resp. rows) of the (smallest) slack matrix of P . Many funda-
mental results on linear extensions of polytopes (including the celebrated upper
bound on the extension complexity of the stable set polytope of perfect graphs
[17]) are based on properties of slack matrices. We believe therefore that answer-
ing Conjecture 1 would be an interesting step towards a better understanding of
2-level polytopes.

Our Contribution and Organization of the Paper. We show that
Conjecture 1 holds true for all known classes (to the best of our knowledge)
of 2-level polytopes coming from combinatorial settings. In most cases, this
is deduced from properties of associated combinatorial objects, that are also
shown in the current paper and we believe could be of independent interest.
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Detailed results and the organization of the paper are as follows. We introduce
some common definitions and techniques in Sect. 2: those are enough to show
that Conjecture 1 holds for Hanner polytopes. In Sect. 3 we give a simple but
surprisingly sharp upper bound on the product of the numbers of stable sets and
cliques of a graph. This is used to show that the conjecture holds for stable set
polytopes of perfect graphs, order polytopes, and Hansen polytopes. In Sect. 4,
we give a non-redundant description of facets of the base polytope of the 2-sum
of matroids in terms of the facets of the base polytopes of the original matroids.
This is used to obtain a compact description (in the original space) of 2-level
base polytopes of matroids and a proof of Conjecture 1 for this class. In Sect. 5,
we prove the conjecture for the cycle polytopes of certain binary matroids, which
generalizes all cut polytopes that are 2-level. In Sect. 6 we give examples showing
that Conjecture 1 does not trivially hold for all “well-behaved” 0/1 polytopes.
NOTE: Because of space constraints, most proofs and some definitions are
deferred to the journal version of the paper.

Related Work. We already mentioned the paper [3] that provides an algorithm
based on the enumeration of closed sets to list all 2-level polytopes, as well as
papers [9,11,16] where equivalent definitions and/or families of 2-level polytopes
are given. Among other results, in [9] it is shown that the stable set polytope
of a graph G is 2-level if and only if G is perfect. A characterization of all
base polytopes of matroids that are 2-level is given in [11], building on the
decomposition theorem for matroids that are not 3-connected (see e.g. [13]).

2 Basics

We let R+ be the set of non-negative real numbers. For a set S and an element
e, we denote by A+ e and A− e the sets A∪{e} and A \ {e}, respectively. For a
point x ∈ R

I , where I is an index set, and a subset J ⊆ I, let x(J) =
∑

i∈J xi.
For basic definitions about polytopes and graphs, we refer the reader to [18]

and [6], respectively. The d-dimensional cube is [−1, 1]d, and the d-dimensional
cross-polytope is its corresponding polar. Taking the polar of a polytope is a dual
operation, that produces a polytope of the same dimension, where the number
of vertices and the number of facets are swapped. Thus, a polytope and its polar
will simultaneously satisfy or not satisfy Conjecture 1. A 0/1 polytope is the
convex hull of a subset of the vertices of [0, 1]d. The following facts will be used
many times:

Lemma 2 [9]. Let P be a 2-level polytope of dimension d. Then

1. f0(P ), fd−1(P ) ≤ 2d.
2. Any face of P is again a 2-level polytope.

One of the most common operation with polytopes is the Cartesian product.
Given two polytopes P1 ⊆ R

d1 , P2 ⊆ R
d2 , their Cartesian product is P1 × P2 =

{(x, y) ∈ R
d1+d2 : x ∈ P1, y ∈ P2}. This operation will be useful to us as it

preserves the bound of Conjecture 1.
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Lemma 3. If two 2-level polytopes P1 and P2 satisfy Conjecture 1, then so does
their Cartesian product.

2.1 Hanner Polytopes

We start off with an easy example. Hanner polytopes can be defined as the
smallest family that contains the [−1, 1] segment of dimension 1, and is closed
under taking polars and Cartesian products. These polytopes are 2-level and
centrally symmetric, and from the previous observations it is straightforward
that they verify Conjecture 1.

Theorem 4. Hanner polytopes satisfy Conjecture 1.

3 Graph Theoretical 2-Level Polytopes

We present a general result on the number of cliques and stable sets of a graph.
Proofs of all theorems from the current section will be based on it.

Theorem 5 (Stable set/clique trade-off). Let G = (V,E) be a graph on n
vertices, C its family of non-empty cliques, and S its family of non-empty stable
sets. Then |C||S| ≤ n(2n − 1). Moreover, equality is achieved if and only if G or
its complement is a clique.

Proof. Consider the function f : C × S → 2V , where f(C,S) = C ∪ S. For a set
W ⊂ V , we bound the size of its pre-image f−1(W ). This will imply a bound for
|C × S| =

∑
W⊂V |f−1(W )|. If W is a singleton, the only pair in its pre-image

is (W,W ). For |W | ≥ 2, we claim that |f−1(W )| ≤ 2|W |.
There are at most |W | intersecting pairs (C,S) in f−1(W ). This is because

the intersection must be a single element, C ∩S = {v}, and once it is fixed every
element adjacent to v must be in C, and every other element must be in S.

There are also at most |W | disjoint pairs in f−1(W ), as we prove now. Fix
one such disjoint pair (C,S), and notice that both C and S are non-empty proper
subsets of W . All other disjoint pairs (C ′, S′) are of the form C ′ = C \A∪B and
S′ = S \ B ∪ A, where A ⊆ C, B ⊆ S, and |A|, |B| ≤ 1. Let X (resp. Y ) denote
the set formed by the vertices of C (resp. S) that are anticomplete to S (resp.
complete to C). Clearly, either X or Y is empty. We settle the case Y = ∅, the
other being similar. In this case ∅ �= A ⊆ X, so X �= ∅. If X = {v}, then A = {v}
and we have |S| + 1 choices for B, with B = ∅ possible only if |C| ≥ 2, because
we cannot have C ′ = ∅. This gives at most 1 + |S| + |C| − 1 ≤ |W | disjoint pairs
(C ′, S′) in f−1(W ). Otherwise, |X| ≥ 2 forces B = ∅, and the number of such
pairs is at most 1 + |X| ≤ 1 + |C| ≤ |W |.

We conclude that |f−1(W )| ≤ 2|W |, or one less if W is a singleton. Thus

|C × S| ≤
n∑

k=0

2k

(
n

k

)

− n = n2n − n,
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where the (known) fact
∑n

k=0 2k
(
n
k

)
= n2n holds since

n2n =
n∑

k=0

(k + (n − k))
(

n

k

)

=
n∑

k=0

k

(
n

k

)

+ (n − k)
(

n

n − k

)

= 2
n∑

k=0

k

(
n

k

)

.

The bound is clearly tight for G = Kn and G = Kn. For any other graph,
there is a subset W of 3 vertices that induces 1 or 2 edges. In both cases,
|f−1(W )| = 5 < 2|W |, hence the bound is loose. �

For a graph G = (V,E), its stable set polytope STAB(G) is the convex hull
of the characteristic vectors of all stable sets in G. It is known that STAB(G) is
2-level if and only if G is a perfect graph [9], or equivalently [5] if and only if

STAB(G) = {x ∈ R
V
+ : x(C) ≤ 1 for all maximal cliques C of G}.

Theorem 6. Stable set polytopes of perfect graphs satisfy Conjecture 1.

Given a (d − 1)-dimensional polytope P , the twisted prism of P is the
d-dimensional polytope defined as the convex hull of {(x, 1) : x ∈ P} and
{(−x,−1) : x ∈ P}. For a perfect graph G with d − 1 vertices, its Hansen poly-
tope Hans(G) is defined as the twisted prism of STAB(G). Hansen polytopes are
2-level and centrally symmetric.

Theorem 7. Hansen polytopes satisfy Conjecture 1.

Given a poset P on [d], with order relation <P , its order polytope O(P ) is:

O(P ) = {x ∈ [0, 1]d : xi ≤ xj ∀ i <P j}.

A subset I ⊆ P is called an upset if x ∈ I and x <P y imply y ∈ I. In [15] the
following characterization of vertices of an order polytope is given.

Lemma 8. The vertices of O(P ) are the characteristic vectors of upsets of P .
In particular, the number of vertices of O(P ) is the number of upsets of P .

From this result it is clear that O(P ) is a 2-level polytope. Indeed, if all vertices
of a polytope have 0/1 coordinates and all facet-defining inequalities can be
written as 0 ≤ cTx ≤ 1 for integral vectors c, then the polytope is 2-level.

Given a poset P , we say that j covers i in P if i <P j and there is no k in P
such that i <P k <P j. We say that i, j is a covering pair if j covers i or i covers
j. P can be described by a graph called Hasse Diagram GP ([d], E), with ij ∈ E
if and only i, j is a covering pair. This graphical representation and Theorem 5
are the main ingredients to prove the following.

Theorem 9. Order polytopes satisfy Conjecture 1.
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4 2-Level Matroid Base Polytopes

We now give a non-redundant description of the base polytopes of the 2-sum
M1 ⊕2 M2 of matroids in terms of the facets of the base polytopes of M1 and
M2. We then focus on 2-level matroids. We give an explicit description of the
associated base polytopes, and prove that they verify Conjecture 1. For basic
definitions and facts about matroids we refer to [13].

4.1 The Base Polytope of the 2-Sum of Matroids

We identify a matroid M by the couple (E,B), where E = E(M) is its ground set,
and B = B(M) is its base set. Given M = (E,B) and a set F ⊆ E, the restriction
M |F is the matroid with ground set F and independent sets I(M |F ) = {I ∈
I(M) : I ⊆ F}; and the contraction M/F is the matroid with ground set M \F
and rank function rM/F (A) = rM (A ∪ F ) − rM (F ). For an element e ∈ E, the
removal of e is M − e = M |(E − e). A set F ⊆ E is a flat if it is maximal for its
rank, i.e. r(F ) < r(F + x) for all x ∈ E \ F .

Consider matroids M1 = (E1,B1) and M2 = (E2,B2), with non-empty base
sets. If E1 ∩ E2 = ∅, we can define the direct sum M1 ⊕ M2 as the matroid with
ground set E1 ∪ E2 and base set B1 × B2. If, instead, E1 ∩ E2 = {p}, where
p is neither a loop nor a coloop in M1 or M2, we let the 2-sum M1 ⊕2 M2 be
the matroid with ground set E1 ∪ E2 − p, and base set {B1 ∪ B2 − p : Bi ∈
Bi for i = 1, 2 and p ∈ B1�B2}. A matroid is connected if it cannot be written
as the direct sum of two matroids, each with fewer elements.

The base polytope B(M) ⊆ R
E of a matroid M = (E,B) is given by the

convex hull of the characteristic vectors of its bases. For a matroid M , the
following is known to be a description of B(M).

B(M) = {x ∈ [0, 1]E : x(F ) ≤ r(F ) for F ⊆ E; andx(E) = r(E)}. (1)

When M is connected [7] give the following characterization of the facet-defining
inequalities for (1). (We report the statement as it appears in [11])

Theorem 10. Let M = (E,B) be a connected matroid. For every facet F of
B(M) there is a unique S ⊆ E, S �= ∅, such that F = B(M)∩{x ∈ R

E : x(S) =
r(S)}. Moreover, a non-empty subset S gives rise to a facet of B(M) if and only
if one of the these two conditions holds:

1. S is a flat such that M |S, M/S are connected;
2. S = E − e for some e ∈ E such that M |S, M/S are connected.

The subsets S in 1. are called flacets, and they are in 1-to-1 correspondence with
the facet-defining inequalities in (1) of the form x(S) ≤ r(S), including xe ≤ 1
for e ∈ E. For S = E − e satisfying the conditions in 2., we refer to element e as
defining a non-negativity facet. Indeed it can be easily seen that it defines the
same facet as xe ≥ 0.

Throughout the rest of the section, we assume that M1(E1,B1), M2(E2,B2)
are connected matroids, with, E1 ∩ E2 = {p}, and we define M = M1 ⊕2 M2.
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It is well known that under these assumptions M is also connected. By the
arguments above, characterizing B(M) essentially boils down to characterizing
flacets of M1 ⊕2 M2.

Theorem 11. Let F be a flacet of M . One of the following holds:

1. F = Ei ∪ F ′ − p, where F ′ is a flacet of Mj containing p, and i �= j ∈ {1, 2}.
2. F is a flacet of Mi not containing p for some i ∈ {1, 2}.
3. F = Ei − p for some i ∈ {1, 2}.
Conversely, let F1 be a flacet of M1, F1 �= {p}. Then

1. If p ∈ F1, F = E2 ∪ F1 − p is a flacet of M .
2. If p /∈ F1, F1 is a flacet of M .
3. If M2/p and M1 − p are connected, then E1 − p is a flacet of M .

We remark that a statement similar to the first half of Theorem 11 for an
analogous definition of 2-sum and flacets appeared in [4]. However, we were not
able to convince ourselves that the proof from [4] is complete, and some of its
statements appear to be wrong.

Corollary 12. The following is a non-redundant description of B(M):

B(M) = {x ∈ R
E :

xe ≥ 0 e ∈ Ei − p : Mi − e connected , i = 1, 2
x(Ei ∪ F − p) ≤ r(Ei ∪ F − p) F flacet ofMj : {p} � F, i �= j ∈ {1, 2}
x(F ) ≤ r(F ) Fflacet ofMi : p �∈ F, i ∈ {1, 2}
x(Ei − p) ≤ r(Ei − p) ifMi − p,Mj/p connected, i �= j ∈ {1, 2}
x(E) = r(E)}.

(2)

Corollary 13. Let us write f(M) = fd−1(B(M)), and similarly for M1, M2.
Then f(M1) + f(M2) − 2 ≤ f(M) ≤ f(M1) + f(M2) + 2.

4.2 Linear Description of 2-Level Matroid Base Polytopes

A matroid M(E,B) is uniform if B =
(
E
k

)
, where k is the rank of M . We denote

the uniform matroid with n elements and rank k by Un,k. Notice that, if M1 and
M2 are uniform matroids with |E(M1) ∩ E(M2)| = 1, then M1 ⊕2 M2 is unique
up to isomorphism, for any possible common element. Let M be the class of
matroids whose base polytope is 2-level. M has been characterized in [11]:

Theorem 14. The base polytope of a matroid M is 2-level if and only if M
can be obtained from uniform matroids through a sequence of direct sums and
2-sums.

The following lemma implies that we can, when looking at matroids in M,
decouple the operations of 2-sum and direct sum.
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Lemma 15. Let M be a matroid obtained by applying a sequence of direct sums
and 2-sums from the matroids M1, . . . ,Mk. Then M = M ′

1 × M ′
2 × ... × M ′

t,
where each of the M ′

i is obtained by repeated 2-sums from some of the matroids
M1, . . . ,Mk.

Since the base polytope of the direct sum of matroids is the Cartesian product
of the base polytopes, to obtain a linear description of B(M) for M ∈ M, we
can focus on base polytopes of connected matroids obtained from the 2-sums
of uniform matroids. A sequence of 2-sums can be represented via a tree (see
Fig. 2): the following is a version of [13, Proposition 8.3.5] tailored to our needs.

Theorem 16. Let M be obtained by a sequence of 2-sums operations from
matroids M1, . . . ,Mt. Then there is a t-vertex tree T = T (M) with edges labelled
e1, . . . , et−1 and vertices labelled M1, . . . ,Mt, such that

1. E(M1) ∪ E(M2) ∪ · · · ∪ E(Mt) = E(M) ∪ {e1, . . . , et−1};
2. if the edge ei joins the vertices Mj1 and Mj2 , then E(Mj1) ∩ E(Mj2) = {ei};
3. if no edge joins the vertices Mj1 and Mj2 , then E(Mj1) ∩ E(Mj2) = ∅.
Moreover, M is the matroid that labels the single vertex of the tree T/e1, . . . , et−1

at the conclusion of the following process: contract the edges e1, . . . , et−1 of T
one by one in order; when ei is contracted, its ends are identified and the ver-
tex formed by this identification is labeled by the 2-sum of the matroids that
previously labeled the ends of ei.

1, 2, 3, 4, 5

5, 6, 7

8, 9, 10

6, 11, 12

7, 13, 14, 15

U5,2

U6,3

U3,1

U4,1
5

7

6

Fig. 2. An example of the tree structure of a matroid M that is a 2-sum of uniform
matroids. Note that the elements 5, 6, 7 will not be present in the ground set of M .
From the picture it is easy to see that M is a matroid with 12 elements and rank 4.
One basis of M is e.g. {1, 8, 9, 14}.

Observation 17. If M ∈ M is connected and non-uniform, we can assume
without loss of generality that every node in its tree structure given by Theorem16
is a uniform matroid with at least 3 elements. Each of those uniform matroid
has no flacets besides its singletons.
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For a connected matroid M(E,B) ∈ M, Theorem 16 reveals a tree structure
T (M), where every node represents a uniform matroid, and every edge repre-
sents a 2-sum operation. We now give a simple description of the associated
base polytope. Let a be an edge of T (M). The removal of a breaks T into 2 con-
nected components C1

a and C2
a . Let E1

a (resp. E2
a) be the set of elements from

E that belong to uniform matroids from C1
a (resp. C2

a). All inequalities needed
to describe B(M) are the “trivial” inequalities 0 ≤ x ≤ 1, plus x(F ) ≤ r(F ),
where F = E1

a or E2
a for some edge a of T (M). Thus the number of inequalities

is linear in the number of elements.

Theorem 18. Let M = (E,B) ∈ M be a connected matroid obtained as 2-sums of
uniform matroids U1 = Un1,k1 , . . . , Ut = Unt,kt

. Let T (N,A) be the tree structure
of M according to Theorem16. For each a ∈ A, let C1

a, C2
a, E1

a, E2
a be defined as

above. Then

B(M) = {x ∈ R
E : x ≥ 0

x ≤ 1
x(F ) ≤ r(F ) for F = Ei

a for some i ∈ {1, 2} and a ∈ A,
x(E) = r(E)}.

Moreover, if F = Ei
a for i ∈ {1, 2} and some a ∈ A, then r(F ) = 1 − |Ci

a| +∑
j:Uj∈Ci

a
kj.

Proof. Let us call a subset C ⊆ N a valid component for T if C = Ci
a for some

i ∈ {1, 2} and a ∈ A, and denote the set of all valid components of T by F .
Each connected subtree of T (N,A) represents a connected matroid obtained as
2-sums of uniform matroids. Thus, we can prove the theorem by induction on t.
The statement on the rank is immediate. For t = 1, F is empty and thanks to
Observation 17, the remaining inequalities are enough to describe B(M). Now let
t > 1. Thanks to Theorem 10, to prove the thesis it is enough to show that, if F
is a flacet of M with |F | ≥ 2, then F ∈ F . First notice that we can write, without
loss of generality, M = M ′ ⊕2 Ut, where Ut corresponds to a leaf vt of T and M ′

is obtained as 2-sums of U1, . . . , Ut−1, hence it satisfies the inductive hypothesis.
Note that the tree corresponding to M ′ is then T − vt. Let us denote by vl the
only neighbor of vt in T . Let E′ +p, E(Ut) = Et+p be the ground sets of M ′, Ut

respectively, where E′ =
⋃t−1

i=1 Ei, and Ei = E ∩ E(Ui) for i = 1, . . . , t. Clearly
p ∈ E(Ul). Now, since F is a flacet of M , we can apply Theorem11 to get three
possible cases. If F has non-empty intersection with both E(M ′) and Et, then
we are in case 1 and either F = E(Ut) ∪ F ′ − p or F = E′ ∪ Ft − p, where F ′, Ft

are flacets of M ′, Ut respectively, containing p. However, the latter case is not
possible because of Observation 17, so the only possibility is that F = Et∪F ′. By
induction, F ′ belongs to F ′ defined for M ′ as in the statement of the theorem.
Moreover, since F ′ contains p, its corresponding component C in T −vt contains
vl and then C + vt is a valid component for T . Moreover |F ′ ∩ Ei| ∈ {0, |Ei|}
for any i = 1, . . . , t − 1, which implies F ∈ F . Suppose now we are in case 2,
i.e., F is strictly contained in one of E′, Et. Then F is a flacet of one of M ′,
Ut, the latter not being possible again due to Observation 17. So F is a flacet of
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M ′ and it does not contain p, hence by induction hypothesis its corresponding
component C does not contain vl. But then C is a valid component of T and
again F ∈ F . Finally, if we are in case 3 then F = Et or F = E, and in both
cases F ∈ F . �
Theorem 19. 2-Level matroid base polytopes satisfy Conjecture 1.

As the forest matroid of a graph G is in M if and only if G is series-parallel
[11], we deduce the following.

Corollary 20. Conjecture 1 is true for the spanning tree polytope of series-
parallel graphs.

5 Cut Polytope and Matroid Cycle Polytope

A cycle of a matroid M is a disjoint union of circuits. The cycle polytope C(M)
is given by the convex hull of the characteristic vectors of its cycles, and it is
a generalization of the cut polytope CUT (G) for a graph G [1]. In this section
we prove Conjecture 1 for the cycle polytope C(M) of the binary matroids M
that have no minor isomorphic to F ∗

7 , R10, M∗
K5

and are 2-level. When those
minors are forbidden, a complete linear description of the associated polytope
is known (see [1]). This class includes all cut polytopes that are 2-level, and has
been characterized in [8]:

Theorem 21. Let M be a binary matroid with no minor isomorphic to F ∗
7 , R10,

M∗
K5

. Then C(M) is 2-level if and only if M has no chordless cocircuit of length
at least 5.

Corollary 22. The polytope CUT (G) is 2-level if and only if G has no minor
isomorphic to K5 and no induced cycle of length at least 5.

Recall that the cycle space of graph G is the set of its Eulerian subgraphs
(subgraphs where all vertices have even degree), and it is known (see for instance
[12]) to have a vector space structure over the field Z2. This statement and one of
its proofs generalizes to the cycle space (the set of all cycles) of binary matroids.

Lemma 23. Let M be a binary matroid with d elements and rank r. Then the
cycles of M form a vector space C over Z2 with the operation of symmetric
difference as sum. Moreover, C has dimension d − r.

Corollary 24. Let M be a binary matroid with d elements and rank r. Then
M has exactly 2d−r cycles.

The only missing ingredient is a description of the facets of the cycle polytope
for the class of our interest.
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Theorem 25 [1]. Let M be a binary matroid, and let C be its family of chordless
cocircuits. Then M has no minor isomorphic to F ∗

7 , R10, M∗
K5

if and only if

C(M) = {x ∈ [0, 1]E : x(F ) − x(C \ F ) ≤ |F | − 1 for C ∈ C, F ⊆ C, |F | odd}.

Theorem 26. Let M be a binary matroid with no minor isomorphic to F ∗
7 , R10,

M∗
K5

and such that C(M) is 2-level. Then C(M) satisfies Conjecture 1.

Proof. As remarked in [1,8], the following equations are valid for C(M):
(a) xe = 0, for e coloop of M ; and (b) xe − xf = 0, for {e, f} cocircuit of M .

The first equation is due to the fact that a coloop cannot be contained in a
cycle, and the second to the fact that circuits and cocircuits have even intersec-
tion in binary matroids. A consequence of this is that we can delete all coloops
and contract e for any cocircuit {e, f} without changing the cycle polytope:
for simplicity we will just assume that M has no coloops and no cocircuit of
length 2. In this case C(M) has full dimension d = |E|. Let r be the rank of M .
Corollary 24 implies that C(M) has 2d−r vertices. Let now T be the number of
cotriangles (i.e., cocircuits of length 3) in M , and S the number of cocircuits of
length 4 in M . Thanks to Theorem 25 and to the fact that M has no chordless
cocircuit of length at least 5, we have that C(M) has at most 2d + 4T + 8S
facets. Hence the bound we need to show is:

2d−r(2d + 4T + 8S) ≤ d2d+1, which is equivalent to 2T + 4S ≤ d(2r − 1).

Since the cocircuits of M are circuits in the binary matroid M∗, whose rank is
d−r, we can apply Corollary 24 to get T +S ≤ 2r −1, where the −1 comes from
the fact that we do not count the empty set. Hence, if d ≥ 4,

2T + 4S ≤ 4(T + S) ≤ d(2r − 1).

The bound is loose for d ≥ 5. The cases with d ≤ 4 can be easily verified, the
only tight examples being affinely isomorphic to cubes and cross-polytopes. �
Corollary 27. 2-level cut polytopes satisfy Conjecture 1.

6 Conclusions

In this paper, we showed that Conjecture 1 holds true for many important
classes of 2-level polytopes. Whether the results and ideas from this paper can
be extended to all 2-level polytopes remains open. Another natural question is
whether 2-levelness is the “right” assumption for proving fd−1(P )f0(P ) ≤ d2d+1,
and whether this bound is also valid for more general classes of 0/1 polytopes.
We provide here two examples showing that spanning tree and forest polytopes –
two classes of “well-behaved” 0/1 polytopes – do not verify Conjecture 1.

Example 28 (Forest polytope of K2,d). Conjecture 1 implies an upper bound of
d22(d+1) = O(4 + ε)d for f0(P )fd−1(P ), with P being the (full-dimensional)
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forest polytope of K2,d and any ε > 0. Each subgraph of K2,d that takes, for
each node v of degree 2, at most one edge incident to v, is a forest. Those graphs
are 3d. Moreover, each induced subgraph of K2,d that takes the nodes of degree
d plus at least 2 other nodes is 2-connected, hence it induces a (distinct) facet
of P . Those are 2d − (d + 1). In total f0(P )fd−1(P ) = Ω(6d).

Example 29 (Spanning tree polytope of the skeleton of the 4-dimensional cube).
Let G be the skeleton of the 4-dimensional cube, and P the associated spanning
tree polytope. Numerical experiments show that f0(P )fd−1(P ) ≥ 1.603 · 1011,
while the upper bound from Conjecture 1 is ≈ 1.331 · 1011.
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Abstract. Gabow and Tarjan [9] provided a very elegant and fast algo-
rithm for the following problem: given a matroid defined on a red and
blue colored ground set, determine a basis of minimum cost among those
with k red elements, or decide that no such basis exists. In this paper,
we investigate possible extensions of this result from ordinary matroids
to the more general notion of poset matroids. Poset matroids (also called
distributive supermatroids) are defined on the collection of all ideals of an
underlying partial order on the ground set. We show that the problem on
general poset matroids becomes NP-hard, already if the underlying poset
consists of binary trees of height two. On the positive side, we present
two polynomial algorithms: one for integer polymatroids, i.e., the case
where the poset consists of disjoint chains, and one for the problem to
determine a minimum cost ideal of size l with k red elements, i.e., the
uniform rank-l poset matroid, on series-parallel posets.

1 Introduction

In a seminal paper [9], Gabow and Tarjan developed a very fast and elegant
algorithm to solve the following problem: given an undirected graph G = (V,E)
whose edge set is partitioned into red and blue elements E = R ∪ B, a cost
function c : E → R+, and some integer k, determine a spanning tree T ⊆ E of
minimum cost among those with k red edges, or decide that no such tree exists.
This algorithm not only works for spanning trees but also for the more general
notion of matroid bases [9].

A nonempty family F ⊆ 2E defined on a finite ground set E defines a matroid
M = (E,F) if for all X,Y ⊆ E the following two properties are satisfied:

(i) Y ∈ F ,X ⊂ Y implies X ∈ F , and
(ii) X,Y ∈ F , |X| < |Y | implies ∃e ∈ Y \ X with X ∪ {e} ∈ F .

Sets in F are called independent, inclusionwise maximal sets in F are called
bases.
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Examples of matroids include the collection of cycle-free edge sets of an undi-
rected graph G = (V,E) (the “graphic matroid”), linearly independent column-
sets of a given matrix with columns indexed by E (the “linear matroid”), or the
subsets of cardinality at most l of a given ground set E (the “uniform rank-l
matroid”).

Given a matroid M = (E,F) with basis set B defined on a red-blue colored
ground set E = R∪B, a cost function c : E → R+, and some integer k, the color-
induced budget-constrained matroid problem asks for a min-cost basis among
those with k red elements. This problem can be formulated as

min{
∑

e∈F

ce | F ∈ B and |F ∩ R| = k}. (1)

Variants and Extensions of the Problem. For general weight functions w ∈ R
E
+,

the resulting budget-constrained matroid problem min{c(F ) | F ∈ B, w(F ) ≤ k}
immediately becomes NP-hard, already in the special case of graphic matroids
(see the NP-hardness proof of length-bounded MST in [1]).

Therefore, when seeking for variants or extensions of the problem, one might
consider alternative combinatorial structures B ⊆ 2E . For example, for the class
of perfect matchings and rooted arborescences, color-induced budget constrained
optimization problems have been investigated before:

Given a graph with red-blue colored edges and an integer k, it has been shown
that the problem to find a maximum matching containing exactly k red edges is
solvable in polynomial time by a randomized algorithm due to Mulmuley et al.
[13], and deterministically with an additive error of one due to Yuster [17].

Räbiger [15] presented an FPTAS and a pseudopolynomial algorithm for the
(k, r)-arborescence problem which asks for a min-cost arborescence in a red-blue
colored graph rooted at r containing at most k red edges.

Moreover, a shortest path with k red edges can be found using a multicriteria
variant of Dijkstra (see e.g. [12]).

Color-Induced Budget Constrained Poset Matroids. In this paper, we investigate
generalizations of the color-induced budget-constrained matroid problem from
ordinary matroids to poset matroids: Poset matroids, as introduced by Dunstan,
Ingleton and Welsh [3], are also known as distributive supermatroids and are a
special case of ordered matroids as introduced by Faigle [5].

For poset matroids, it is assumed that a partial order P = (E,
) on ground
set E is given. Recall that a set I ⊆ E is called ideal w.r.t. poset P if e ∈ I, g 
 e
implies g ∈ I. We denote by D(P ) the collection of all ideals of P . A nonempty
family F ⊆ D(P ) forms (the independent sets of) a poset matroid if and only if
the matroid-defining properties (i) and (ii) hold for two ideals Y ∈ F , X ⊂ Y
and X,Y ∈ F , respectively. As before, the inclusion-wise maximal sets in F are
called bases of the poset matroid. The set of all bases in F is denoted by B.

To get an intuition for poset matroids, it is important to observe that the
intersection of independent sets of a matroid (E,F) and the ideals of a poset
on E (a structure investigated in [7]) does not necessarily yield a poset matroid.
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Consider for example the graphic matroid on a multigraph G = ({a, b, c}, {e1 =
{a, b}, e2 = {a, b}, e3 = {b, c}, e4 = {b, c}}) with a partial order e1 
 e3, e2 
 e4
on the edges. Then the sets {e1, e3} and {e2} are independent ideals, but property
(ii) is not fulfilled.

Note that there is a one-to-one correspondence between feasible points of
an integral polymatroid (we will provide a brief introduction in Sect. 2) and
independent sets of poset matroids whose underlying poset consists of the disjoint
union of chains. Recall that a set C ⊆ E is a chain in P if any two elements in
C are comparable.

Poset matroids admit a generalization of the following two important notions
from matroids: (1) the symmetric exchange property [2] and (2) the optimality
of the greedy algorithm [4] for min{c(F ) | F ∈ B}. The latter requires cost
function c to be consistent, that is, c(e) ≤ c(g) holds whenever e 
 g.

Since Gabow and Tarjan’s algorithm [9] heavily relies on these two matroid-
characterizing properties, it seems plausible that the algorithm could be adapted
to solve the color-induced budget constrained poset matroid problem: Given a
poset matroid defined on a red-blue colored set E = R ∪ B of elements, costs
c : E → R+, and some integer k, find a min-cost basis among those with exactly
k red elements or decide that no such basis exists.

Our Contribution. In Sect. 2, we extend Gabow and Tarjan’s algorithm to min-
imize a separable discrete convex function over an integral polymatroid subject
to the additional constraint x(R) :=

∑
i∈R xi = k. This way, we show that the

algorithm can be generalized to poset matroids with a consistent cost function
c whose underlying poset consists of a disjoint union of chains (Theorem 1).

For poset matroids in general, we prove that even deciding if a feasible
solution of the color-induced budget constrained poset matroid problem exists
becomes NP-hard. The result holds already on very simple posets, namely, binary
trees of height two (Theorem 2).

This motivates the restriction to simple matroid-types, like uniform poset
matroids: Note that problem (1) restricted to uniform rank-l poset matroids can
equivalently be stated as follows: Given a poset P = (E,
) on a red-blue colored
set E = R∪B, a cost function c : E → R+, and two integers l, k ∈ Z+, find a min-
cost ideal of cardinality l among those with k red elements. We show that it is
still NP-hard to decide if there exists a feasible solution (Theorem 3). We then
conclude that the optimization problem is NP-hard even if the cost function
is consistent and a trivial feasible solution exists. Our most involved result is
a polynomial algorithm, even for general costs, for the special case where the
underlying poset is series-parallel (Theorem 4).

2 Color-Induced Budget Constraints on Integer
Polymatroids

Recall the polyhedral description of matroids: Given a matroid M = (E,F),
its associated rank function r : 2E → Z+ assigns each subset S ⊆ E its rank
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r(S) := max{|F | | F ∈ F , F ⊆ S}. Matroid rank functions can be characterized
by the following properties:

(i) r(∅) = 0 (“r is normalized”),
(ii) r(S) ≤ r(S ∪ {e}) ≤ r(S) + 1 for all S ⊆ E and e ∈ E \ S (“r is unit

increasing”),
(iii) r(S) + r(T ) ≥ r(S ∩ T ) + r(S ∪ T ) for all S, T ⊆ E (“r is submodular”).

Moreover, the (incidence vectors of) bases of M are exactly the vertices of the
matroid basis polytope {x ∈ R

E
+ | x(S) ≤ r(S) ∀S ⊆ E, x(E) = r(E)}. As a

consequence, problem (1) can equivalently be written as

min
x∈Z

E
+

{c(x) | x(S) ≤ r(S) ∀S ⊆ E, x(E) = r(E), x(R) = k}, (2)

where c(x) =
∑

e∈E cexe. If we relax the unit-increase property and only require
monotonicity of r in the sense that S ⊆ T implies r(S) ≤ r(T ) for all S, T ⊆ E,
the polytope P̄ (r) := {x ∈ R

E
+ | x(S) ≤ r(S) ∀S ⊆ E} is called polymatroid

and the set of integer vectors in P̄ (r) is called integer polymatroid. A vector
x with x(E) = r(E) is a base of an (integer) polymatroid and r : 2E → Z+

is called polymatroid rank function. We denote the set of bases of an integer
polymatroid by P(r). For more about polymatroids, we refer to Fujishige’s book
[8]. In contrast to incidence vectors of matroid bases, elements of P(r) are not
necessarily {0, 1}-vectors anymore. Instead of separable linear objective functions
c(x) =

∑
e∈E cexe, we now consider more general separable discrete convex

functions. Recall that a function c : ZE
+ → R is (discrete) separable convex if

c(x) =
∑

e∈E ce(xe) for each x ∈ Z
E
+, where each function ce : Z+ → R, e ∈ E is

discrete convex in the sense ce(xe + 1) − ce(xe) ≤ ce(ye + 1) − ce(ye) ∀xe, ye ∈
Z+ with xe ≤ ye.

Any separable discrete convex function can be minimized over P(r) in a
greedy-type manner, e.g., with Faigle’s ordered greedy algorithm [4]. While this
algorithm is simple and fast, its running time depends on the size of the ordered
matroid and is therefore pseudopolynomial. However, [10] also presented a more
involved polynomial algorithm. We show in the following how to extend Gabow
and Tarjan’s algorithm for matroids to minimize a separable discrete convex
function over the bases of an integer polymatroid with an additional color-
induced budget constraint of type x(R) = k.

Theorem 1. Given an integer polymatroid with rank function r : 2E → Z+,
a separable discrete convex cost function c : ZE → R, an integer k, and a
coloring E = R ∪ B, the problem of finding a minimum cost basis x with
x(R) :=

∑
i∈R xi = k can be solved in polynomial time.

Proof of Theorem 1. The idea of the algorithm can be sketched as follows: the
algorithm starts with a basis vector x̄ in P(r) of minimum cost among those bases
x minimizing x(R). This can be done efficiently by minimizing the (separable
discrete convex) cost function c̄ defined by c̄e(xe) = ce(xe) + M if e ∈ R and
c̄e(xe) = ce(xe) otherwise for some sufficiently large constant M > 0, over P(r).
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We define for each integer t ∈ {1, . . . , k} the set Pt(r) := {x ∈ P(r) | x(R) = t}.
Hence, x̄(R) is the minimal index t such that Pt(r) �= ∅. In order to prove the
theorem, it suffices to compute a cost-minimal basis x̄k in Pk(r) or decide that
Pk(r) is empty. If x̄(R) > k, clearly Pk(r) = ∅. Therefore, we assume x̄(R) ≤ k
and define tmin := x̄(R).

In analogy to Gabow and Tarjan, we show that, given a cost-minimal basis
x̄t ∈ Pt(r), a cost-minimal basis x̄t+1 ∈ Pt+1(r) can in fact be determined in a
very simple way if it exists: As we show in Lemma 1 below, it suffices to search
for the minimal “swap” which shifts one unit from a blue component to a red
component. In general, given a basis b ∈ P(r), we call (i, j) a swap for b if i ∈ R,
j ∈ B, and b+χi −χj ∈ P(r). A swap (i, j) for b is minimal if the cost difference
c(b + χi − χj) − c(b) = ci(bi + 1) − ci(b) + cj(bj − 1) − cj(bj) is minimized.

Algorithm:

1. Set x̄ ← argmin{c̄(x) | x ∈ P(r)} and t = tmin.
2. While t < k and Pt(r) �= ∅ do: determine a minimal swap (i, j) for x̄t or

decide that Pt+1(r) = ∅; then iterate with x̄t+1 = x̄t + χi − χj and t = t + 1.
3. If Pk(r) �= ∅, return x̄k.

Lemma 1. Suppose b is a cost-minimal basis in Pt−1(r) and Pt(r) �= ∅. If (i, j)
is a minimal swap for b, then b + χi − χj is a cost-minimal basis in Pt(r).

Proof. We denote by βt the collection of cost-minimal bases in Pt(r). We will
show that there always exists a swap (u, v) for b such that b+χu−χv ∈ βt, which
implies the lemma. Let b′ ∈ βt be a basis such that

∑|E|
i=1 |bi − b′

i| is minimal and
let u be an index in R with b′

u > bu. Then the strong basis exchange property
for polymatroids (see, e.g., [14], page 101) implies there exists an index v such
that bv > b′

v and both, b̃ := b + χu − χv and b̂ := b′ − χu + χv, are bases in P(r).
We show that v is blue. For the sake of contradiction, suppose v ∈ R. Then

b̃ ∈ Pt−1(r) and b̂ ∈ Pt(r). To simplify notation, for a given integer p ∈ Z and
i ∈ E, we denote by Δi(p) the difference ci(p) − ci(p − 1).

Thus, c(b) ≤ c(b̃) = c(b) + Δu(bu + 1) − Δv(bv) ⇒ Δu(bu + 1) ≥ Δv(bv) and
c(b′) ≤ c(b̂) = c(b′) − Δu(b′

u) + Δv(b′
v + 1) ⇒ Δv(b′

v + 1) ≥ Δu(b′
u).

Since all functions ci are discrete convex, we can conclude Δu(bu + 1) ≥
Δv(bv) ≥ Δv(b′

v +1) ≥ Δu(b′
u) ≥ Δu(bu +1). As a consequence, c(b′) = c(b̂) and

b̂ ∈ βt. But
∑t

i=1 |bi − b′
i| − ∑t

i=1 |bi − b̂i| = b′
u − bu + bv − b′

v − (b′
u − 1 − bu +

bv − (b′
v + 1)) = 2, in contradiction to the choice of b′.

Therefore, v �∈ R from which b̃ ∈ Pt(r) and b̂ ∈ Pt−1(r) follows. The latter
implies c(b) ≤ c(b̂) = c(b′) − Δu(b′

u) + Δv(b′
v + 1) which is equivalent to c(b′) ≥

c(b)+Δu(b′
u)−Δv(b′

v+1) ≥ c(b)+Δu(bu+1)−Δv(bv) = c(b̃). The last inequality
holds by definition of ci. This shows b̃ ∈ βt. ��

We remark that the Corollaries 3.1, 3.2 and 3.3 from [9] that are used for
improving the running time of the algorithm can be generalized directly to our
setting using their proofs combined with the techniques used in the proof of
Theorem 1. But the subsequent idea from [9] of a swap sequence cannot be
generalized directly because of the order-dependence in our case.
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3 Hardness on Poset Matroids

Gabow and Tarjan’s algorithm, as well as its extension described in the previous
section, heavily relies on the symmetric exchange property of integer polyma-
troids, as well as the optimality of the greedy algorithm to determine a cost-
minimal basis without color-induced budget constraint.

Barnabei et al. presented a variant of the symmetric exchange property for
poset matroids in [2] and Faigle showed in [4] how to obtain a minimum cost
basis using a greedy algorithm if the cost function is consistent.

However, as the following theorem states, the color-induced budget con-
strained poset matroid turns out to be NP-hard, even on very simple posets
(see [11]). This is done by reduction from Matroid Parity. For the proof, we
refer to the full version.

Theorem 2. Let P = (E,
) be a poset on the red-blue colored ground set E =
R∪B and M = (E,F) be a poset matroid. Deciding if a basis T with |T ∩R| = k
exists for a given k ∈ N is NP-hard even if the poset consists of binary trees of
height two.

Since Matroid Parity is NP-hard in general, but efficiently solvable for
several matroid classes, we restrict our considerations to simple poset matroids.

4 Uniform Poset Matroids or the Problem of Finding an
Ideal with Color-Induced Constraints

As we have seen in the previous section, deciding if a basis with k red elements
exists is NP-hard for poset matroids, even if the poset structure is simple. There-
fore, we now consider a simple matroid structure: uniform rank-l poset matroids.
That means, for a given poset, any ideal of size at most l is independent. From
now on, we will use an equivalent formulation of the problem without referring
to poset matroid terminology: Given a poset P = (P,
) with red-blue colored
elements P = R ∪ B, a weight function w : P → R and numbers k ≤ l ∈ N. The
goal is to find a minimum weight ideal of size l which contains k red elements.
We call this problem the Minimum Colored Ideal Problem (MCIP).

This problem has been studied without an additional color-induced budget
constraint. Faigle and Kern showed that the problem to find a minimum cost
ideal of size l is strongly NP-hard for arbitrary nonnegative weights [6]. On the
other hand, if the objective function is consistent (and not necessarily nonneg-
ative), this problem can be solved using Faigle’s greedy algorithm for ordered
matroids [5]. However, the addition of color-induced budget constraints makes
even deciding if such an ideal exists NP-hard:

Theorem 3. Given an instance P, k, l of MCIP. The problem to decide if an
ideal of size l with k red elements exists in P is strongly NP-hard.
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The proof uses a reduction from the clique problem similar to [6]. We give
the details in the full version. By reduction from the above existence problem,
we obtain:

Corollary 1. MCIP is strongly NP-hard even if the existence of an ideal of size
l with k red elements is guaranteed and the cost function is consistent.

To verify the corollary, let P, k, l be an instance of the above existence prob-
lem and assign a cost of one to all elements of P. Add l incomparable elements, k
of which are red, to the poset. Moreover, we make sure that these new elements
are so expensive that they will only be picked if there is no other option.

In the remainder of this section, we are going to show that for a series-parallel
poset, MCIP can be solved in polynomial time for arbitrary weights even with a
color-induced budget constraint. We remark that the poset used in the proof of
Theorem 2 is series-parallel. Thus, for general poset matroids, deciding whether
a feasible solution exists is NP-hard even for series-parallel posets.

A poset P is called series-parallel if it can be constructed by the following
constructive characterization.

(i) A single element is series-parallel.
(ii) The disjoint union of multiple series-parallel posets is series-parallel (parallel

composition).
(iii) For series-parallel posets Q and Q′, the poset that arises by adding all

comparabilities such that x ∈ Q, y ∈ Q′ ⇒ x 
 y is series-parallel (series
composition).

The definition of series-parallel digraphs is analogous. It is possible to decide
in linear time if a given digraph (and thus a given poset) is series-parallel and
if so, to obtain the decomposition tree [16]. The decomposition tree is one way
to represent the construction of a series-parallel poset using the steps described
above. For simplicity, we are going to assume from now on that we are given a
fixed construction sequence. That is, an order of the above steps which constructs
the given poset. Such a sequence can be obtained from the decomposition tree.
If we talk about the next composition containing a poset P, we refer to the next
step in our fixed construction sequence that contains P. A component in the
construction sequence is any poset that can occur during the construction.

Theorem 4. MCIP can be solved in polynomial time for series-parallel posets.

In the remainder of this section, we prove this theorem. We start by sum-
marizing the idea: Construct an acyclic digraph with source s, sink t and nodes
that correspond to the inclusion or exclusion of certain subsets of P in the ideal
to be constructed. Our graph G will be designed in such a way that each s-t-
path corresponds to an ideal and each ideal of size at most l containing at most
k red elements corresponds to an s-t-path (note that this is not a one-to-one
correspondence). The cost w(p) for p ∈ P will be modeled by costs on ingoing
edges. Each vertex will be assigned a number of red elements rG(v) and total
number of elements lG(v) (we omit the index if it is obvious from the context).
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In order to find a minimum cost ideal, we apply a multi-criteria shortest path
algorithm in G. We describe the idea, for a more detailed description see e.g.
[12]. For each node v and each pair (i, j) with i ≤ k and j ≤ l, the length of
a cheapest s-v-path F with

∑
v∈V (F ) r(v) = i and

∑
v∈V (F ) l(v) = j is stored:

Instead of maintaining a single label that contains the length of a shortest path
from s at a node, we store at each node different labels encoding additional side
constraints. In our case, there are k ·l labels per node. To update a node label, we
consider the relevant labels of preceding nodes. For example, for a label (i, j) at
v with r(v) = 2 and l(v) = 3 and an edge (w, v) we consider the label (i−2, j−3)
at w. Depending on whether the cost function is positive, we can use Dijkstra’s
algorithm or Moore-Bellman-Ford for the shortest path computation.

It remains to show how G is constructed and prove the correspondence of
s-t-paths and ideals. All paths that we refer to will be directed. As usual we
denote by NG(S) for S ⊂ V (G) the neighborhood of S in G (not including S).

Let us present the construction formally. For an example of the complete
construction see Fig. 3. For a series-parallel poset P, we introduce vertices s, t and
x and for each p ∈ P a vertex p+. Intuitively, visiting p+ corresponds to including
p in an ideal and x corresponds to ∅. Then, we introduce additional vertices and
edges to construct a graph G depending on the construction sequence of the
poset. The graph G is constructed in the same order as the series-parallel poset
P, following its construction sequence.

Construction of G: For a single vertex p ∈ P , G = ({p+, x, s, t}, {(s, v), (v, t) |
v ∈ {p+, x}). We have r(p+) = 1 for p ∈ R, l(p+) = 1 and r(v) = l(v) = 0 for
all other vertices. Also, c(s, p+) = w(p) and c(e) = 0 for the remaining edges.

Given two series-parallel posets P1,P2 with corresponding graphs G1 and
G2, we construct graph G from G1 and G2:

If the posets P1 and P2 are joined by parallel composition (i.e. their elements
are incomparable), we set V (G) := (V (G1) \ {t}) ∪ (V (G2) \ {s, x}) ∪ {v1, v2}
where the vi’s are two new vertices. Intuitively, visiting vertex vi tells us that we
want to choose some element from the given parallel components but not one in
Pi. We set

E(G) := E[V (G1) \ {t}] ∪ E[V (G2) \ {s}] ∪ {(s, v1), (v2, t)} ∪ {((NG1(t)\
{x}) ∪ {v1}) × ((NG2(s) \ {x}) ∪ {v2})}.

If the parallel composition joins more than two components, the construction
is analogous with a new vertex vi for each component and only one vertex x in
the graph G. For a schematic example see Fig. 1.

For v ∈ V (Gi) we have rG(v) = rGi
(v) and r(vi) = 0 since these vertices

model the exclusion of Pi (analogously for lG(v)). The edge costs are assigned
analogously: c(e) = 0 if e ∈ δ−(vi), otherwise for e ∈ δ−

G(v) let e′ ∈ δ−
Gi

(v) and
set c(e) = c(e′).

If P1 and P2 are joined by series composition (the elements of P2 are smaller
than those of P1), we set V (G) := (V (G1) \ {t}) ∪ (V (G2) \ {s, x}) ∪ {u, z}.
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P2 P1

s q+ p+

x

t

v1 v2

G1 G2

Fig. 1. Construction for parallel composition

The vertex u will be used as a shortcut. Any path that visits a node in V (G1) \
{x, s, t} must visit u without visiting V (G2). This models the following: If an
ideal contains an element of P1, it also contains all elements of P2 and thus
u corresponds to the inclusion of all of them. Vertex z is used to model the
opposite: The ideal should contain some element of P2 but no element of P1.
Then

E(G) := E[V (G1) \ {t}] ∪ E[V (G2) \ {s}] ∪ {(NG1(t) \ {x}) × {u}} ∪ {(s, z),
(u, t)} ∪ {{z} × (NG2(s) \ {x})},

r(u) = |R ∩ P2|, l(u) = |P2| and c(v, u) =
∑

p∈P2
w(p), r(z) = l(z) = 0 and

c(s, z) = 0, otherwise rG(v) = rGi
(v) and c is determined as in the parallel

composition. The idea is illustrated in Fig. 2.
Therefore, for a parallel composition, the order of P1 and P2 can be chosen

arbitrarily but for series decomposition, we start with the larger poset (w.r.t. 
).
Moreover, the structure of the graph depends heavily on the chosen construction
sequence of the poset.

Since the size of G and the number of labels per node is polynomially
bounded, a shortest s-t-path F with

∑
v∈V (F ) r(v) = k and

∑
v∈V (F ) l(v) = l

can be found in polynomial time if it exists by considering the path correspond-
ing to the label (k, l) at t. Thus, we obtain an optimal solution for MCIP as the
following claim shows.

Claim. Any s-t-path F with
∑

v∈F r(v) = i and
∑

v∈F l(v) = j corresponds to
an ideal of size j with cost c(F ) and i red elements for i ≤ k and j ≤ l and vice
versa.

Proof of the Claim. We define a function f : V (G) → 2P which, for each vertex,
maps to the corresponding elements in P . That is, for p ∈ P , f(p+) = {p}, for
u ∈ V (G) introduced for a series decomposition where Pi is the lower of the two
posets f(u) = Pi and otherwise f(v) = ∅.

Observe that for any s-t-path F and vertices u, v ∈ V (F ), we have f(u) ∩
f(v) = ∅: Since P is series-parallel and nodes are always mapped to components
in the construction sequence, either f(u)∩f(v) = ∅ or w.l.o.g. f(u)∩f(v) = f(u).
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P2
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Fig. 2. Construction for series composition
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a+ b+ c+ d+ e+ f+ g+ h+ i+

x

G r > 0

Fig. 3. Example for a given series-parallel partial order
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But, for a parallel composition, only elements corresponding to disjoint subsets are
connected. For a series composition, a vertex v with f(v) �= ∅ is only connected
to a vertex v′ where y′ 
 y and y′ �= y for all y ∈ f(v), y′ ∈ f(v′). Thus, the
statement follows.

To prove the claim, we show that for an s-t-path F in G, the set I :=
∪v∈V (F )f(v) is an ideal of cost c(F ) with |I| =

∑
v∈V (F ) l(v) and

∑
v∈V (F ) r(v)

red elements. The claim about the equivalence of costs and r, l-values follows
from the above observation.

If I = ∅, it obviously is an ideal. Therefore, consider a ∈ I and a direct
predecessor b 
 a. We show that b ∈ I. If there exists v ∈ V (F ) such that
{a, b} ⊆ f(v), this is clearly true, so suppose there is no such v. At some point
there must have been a series composition of two components Pa, where a was
a smallest, and Pb, where b was a largest element. Let Pab be the resulting
component. By the assumption above, F does not visit a vertex v with Pab ⊆
f(v). Thus, a ∈ I implies that F visits some vertex y in the corresponding graph
Gab with y �∈ {x, z}. The construction for series compositions then implies, that
F visits u ∈ V (Gab). But b ∈ f(u) and thus b ∈ I. By transitivity, it follows that
I is an ideal.

Conversely, for an ideal I ⊆ P , it can be shown by induction over the number
of steps in the construction sequence of P that there is a path corresponding to I.

If the construction sequence is empty, we have |P | ≤ 1. So an ideal either
consists of the element p ∈ P with corresponding path {s, p+, t} or is empty
which corresponds to {s, x, t}.

Consider a series-parallel poset which is constructed using more than one
step. Suppose the last construction step is a parallel composition of P1, . . . ,Pj

ordered by the order induced by G. By induction, we know that there is a path
Fi in Gi corresponding to Pi ∩ I for all i ≤ j. If Fi = {s, x, t} for all i, then
F := {s, x, t}. Otherwise, we concatenate the paths Fi: Start with F1, end with
Fj and for connecting Fi and Fi+1, let (yi, t) be the last edge of Fi, (s, y′

i+1) the
first edge of Fi+1. Then by construction (yi, y′

i+1) ∈ E(G) and we can use that
edge to connect the vertices. There is one exception: If Fi = {s, x, t}, then we
connect to and from the vertex vi instead.

Now assume that the last construction step is a series composition of P1 and
P2 such that P2 contains the smaller elements. Again, if I = ∅, set F = {s, x, t}.
If I∩P1 = ∅, we know by induction that there exists a path F ′ corresponding to I
in G2. Let (s, y) be the first edge of F ′. Then the path {s, z, F ′

[y,t]} is the desired
path in G. Otherwise, by induction there is a path F ′′ in G1 corresponding to
I ∩ P1. Let (y, t) be the last edge of F ′′. Then y �= x and thus, (y, u) ∈ E(G).
Therefore, {F ′′

[s,y], u, t} is the desired path since P2 ⊂ I. ��

5 Concluding Remarks

It seems like color-induced budget constraints generate problems that are on
the edge of NP-hardness in the sense that we can find interesting special cases
that are in P as well as NP-complete ones. Hence, investigating other poset
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matroids that have a well-understood structure in this setting would also be
interesting. The problem we considered on polymatroids in Sect. 2 where each
index is assigned a color is still a special kind of coloring in terms of poset
matroids. Since there is a one-to-one correspondence between poset matroids on
chains and integer polymatroids, it is natural to consider a more general budget-
constraint: Given a poset matroid where the poset P consists only of chains
and a coloring P = R ∪ B, find a minimum cost basis with k red elements. For
non-uniform poset matroids, the complexity of this problem remains open even
for consistent weight functions. While Dilworth completion has been successfully
used in similar contexts, unfortunately it is not helpful here.
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Abstract. The stable set problem is a well-known NP-hard combinato-
rial optimization problem. As well as being hard to solve (or even approx-
imate) in theory, it is often hard to solve in practice. The main difficulty
is that upper bounds based on linear programming (LP) tend to be weak,
whereas upper bounds based on semidefinite programming (SDP) take a
long time to compute. We propose a new method to strengthen the LP-
based upper bounds. The key idea is to take violated Chvátal-Gomory
cuts and then strengthen their right-hand sides. Although the strength-
ening problem is itself NP-hard, it can be solved reasonably quickly
in practice. As a result, the overall procedure proves to be capable of
yielding competitive upper bounds in reasonable computing times.

Keywords: Stable Set Problem · Clique inequalities · Chvátal-Gomory
cuts · Cutting plane algorithm

1 Introduction

Given an undirected graph G = (V,E), a stable set in G is a set of pairwise non-
adjacent vertices. The convex hull of the incidence vectors of all stable sets in
G is called the stable set polytope and denoted by STAB(G) [19]. The Stable Set
Problem (SSP) calls for a stable set of maximum cardinality α(G), or, if a weight
vector w ∈ Q

n
+ is given, of maximum weight αw(G). The SSP is strongly NP-

hard even to approximate [22]; and it is naturally stated as the binary program
max{∑i∈V wixi : xi + xj ≤ 1 ∀{i, j} ∈ E, x ∈ {0, 1}|V |}. Optimizing over its
continuous relaxation provides very weak upper bounds on αw(G). Therefore, a
great effort has been devoted to improving the basic relaxation FRAC(G) = {x ∈
[0, 1]|V | : xi + xj ≤ 1 ∀{i, j} ∈ E}, by studying valid inequalities for STAB(G).
The first steps are due to Padberg, who introduced the clique inequalities [28].
These have the form

∑
i∈C xi ≤ 1, for any C ⊆ V inducing a maximal clique

in G, and induce facets of STAB(G). The polytope defined by all clique and
nonnegativity inequalities is denoted by QSTAB(G) [19].

c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 201–212, 2016.
DOI: 10.1007/978-3-319-45587-7 18
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Many other valid inequalities, such as the odd hole and odd antihole, web
and antiweb inequalities, have been derived. We refer the reader to [2,14,19] for
detailed surveys. The Chvátal rank of some of these inequalities with respect
to FRAC(G) and QSTAB(G) has been investigated in [23]. On the computa-
tional side, after the pioneering experience illustrated in [27] with clique and
lifted odd-hole inequalities, more extensive results have been obtained with gen-
eral rank inequalities and some of their (non-rank) lifted versions. These have
been generated by project-and-lift separation heuristics introduced in [30] and
recently improved in [8,9,29]. A study concerned with the exact separation of
rank inequalities is described in [10]. Despite the fairly sophisticated techniques
explored in these papers, the resulting upper bounds are not yet satisfactory for
several graph classes.

Much stronger upper bounds can be obtained by Semidefinite Programming
(SDP) relaxations. In the seminal paper [25], Lovász introduced the theta func-
tion, denoted by ϑ(G), as the optimal value of a SDP problem (we refer the reader
to [19] for a comprehensive introduction). It has been proved that ϑ(G) domi-
nates the bound obtained by optimizing over QSTAB(G) [19], and it is often much
stronger in practice. Some classes of graphs for which this occurs are illustrated
in [31], while a computational comparison is documented in [14]. Computational
experiments with ϑ(G), or stronger relaxations obtained by adding valid linear
inequalities, are presented in [4,11,15,20,24]. These approaches typically require
long computing times. In order to manage this difficulty, ellipsoidal relaxations
have been introduced [16], which allow one to obtain useful convex programming
relaxations and derive effective cutting planes. In fact, this method allows one to
achieve upper bounds close to ϑ(G) by optimizing over a linear relaxation.

Strong upper bounds have also been obtained by applying the Lovász and
Schrijver lift-and-project operators [26] to FRAC(G). The N operator, based
on LP, has been tested by Balas et al. [3]. The N+ operator, based on SDP,
yields a much stronger relaxation than the N operator, but it is often very hard
to solve in practice. Computational experiments are presented in [5]. Finally,
the M(k, k) operator has been applied to QSTAB(G) [13,14]: the resulting non-
compact linear relaxations turns out to provide upper bounds comparable to
those from SDP relaxations at reasonable computational cost.

We propose a new method to strengthen the LP-based upper bounds. The
key idea is to take violated Chvátal-Gomory cuts and then strengthen their right-
hand sides relative to STAB(G). Although the strengthening problem is itself a
SSP, a careful selection of the source cut can make it computationally tractable
in practice. We present a cutting-plane algorithm based on the strengthened cuts
and show that it is capable of yielding competitive upper bounds in moderate
computing times. The algorithm is illustrated in the next section, while the
computational experience is described in Sect. 3. Finally, some conclusions are
drawn in Sect. 4.

2 Cutting Plane Algorithm

We consider an initial formulation of the SSP based on clique inequalities. In
general, G may have exponentially many cliques and the separation problem
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associated to clique inequalities is strongly NP-hard [27]. Nevertheless, greedy-
like separation heuristics perform extremely well: experience shows that a cutting-
plane algorithm embedding such a heuristic often achieves upper bounds quite
close to those obtained by exactly optimizing over QSTAB(G). We therefore con-
centrate on the collection C of cliques generated by such an algorithm (see [13,14]
for details) and consider the basic relaxation Q(C) = {Ax ≤ 1, x ≥ 0}, where
A = AC is the incidence matrix of the cliques in C versus the vertices of G. We also
let UBC = {max wTx : x ∈ Q(C)} be the associated upper bound on α(G).

We experiment with a cutting plane algorithm based on the classical Chvátal-
Gomory (CG) cuts [7,17,18]. These have the form

�uTA�x ≤ �uT b�, u ∈ R
m
+ .

The cut generation procedure has two main stages:

1. Identify a violated CG cut λTx ≤ λ0

2. Strengthen λ0 relative to STAB(G)

which are described in the following subsections.

2.1 Cut Separation

The choice of u ∈ R
m
+ is critical for deriving useful inequalities. The classical

idea from Gomory [17,18] is based on basic solutions. If one considers Q(C) in
standard form (A, I) and a fractional vertex x∗ associated with a basis B, any
row i of B−1 associated with a fractional component of x∗ determines a vector of
multipliers u such that the resulting CG inequality cuts off x∗. In what follows,
we refer to these inequalities as CG cuts from the tableau.

A different approach to obtaining useful CG cuts has been proposed in [12],
where the separation problem associated to CG cuts (for a general MIP) is
formulated as a MIP. Let x∗ be the current fractional point and denote by
J(x∗) = {j ∈ {1, . . . , n} : 0 < x∗

j < 1} the associated fractional support. Let
also λTx ≤ λ0 be the CG cut to be generated, where λ = �uTA� and λ0 = �uT b�
for some multiplier u ∈ R+. The MIP-CG separation model has the form

max (
∑

j∈J(x∗)

λjx
∗
j−λ0) −

m∑

i=1

γiui

s.t.

fj = uTAj−λj , j ∈ J(x∗)

f0 = uT b−λ0

0 ≤ fj ≤ 1 − δ, j ∈ J(x∗) ∪ {0}
0 ≤ ui ≤ 1 − δ, i = 1, . . . ,m

λj integer j ∈ J(x∗) ∪ {0}.
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Some parts of this model are redundant and have been introduced in [12] for
technical reasons. In detail, the explicit slack variables fj = uTAj − �uTAj�,
along with the parameter δ (fixed to 0.01), improve numerical tractability; and
the constraints ui ≤ 1 − δ reduce the chance of generating dominated cuts.
Our experience confirmed that these arrangements are indeed helpful. Another
key feature of MIP-CG deals with the objective function: besides cut violation∑

j∈J(x∗) λjx
∗
j − λ0, it includes a penalty on multipliers

∑m
i=1 γiui, with γi =

10−4, which helps to make the cut sparser and stronger. According to [12], the
penalty term γi has to be applied only to tight constraints, that is, those for
which s∗

i = 1 − aT
i x∗ = 0. Sparsity is, in general, an important feature for

a cutting plane to be numerically well-behaved. In our development it is also
crucial to make the strengthening stage tractable, as discussed later.

Due to all of these modifications, MIP-CG is not an exact separation oracle
any more. However, as pointed out in [12], exceptions are likely to occur only
in pathological cases. We solve MIP-CG by the commercial MIP solver IBM
Cplex 12.6.3 (default settings). The computation is stopped using two para-
meters cutviolation and septlim. In detail, the solver halts if: (i) a feasible
solution of value greater than or equal to cutviolation has been found; (ii) the
elapsed cpu time reaches septlim. In both cases, we store the whole catalog of
violated inequalities corresponding to feasible solutions contained in Cplex pool
at termination.

2.2 Cut Strengthening

Andersen and Pochet [1] present a general method to strengthen the left-hand
side (lhs) coefficients and right-hand side (rhs) of inequalities relative to the
mixed-integer hull. Their theoretical development suggests that the rhs should
be strengthened before the lhs coefficients are strengthened. In our context,
strengthening the rhs of a cut λTx ≤ λ0 relative to the integer hull amounts to
solving the problem λ∗

0 = max{λTx : x ∈ STAB(G)} and replacing λ0 by λ∗
0.

This can be translated into the integer program {max λTx : x ∈ P, x ∈ {0, 1}},
referred to as MIP-RHS = MIP-RHS(P), where P is any linear formulation of the
problem. Notice that the number of nonzero entries of λ determines the actual
size of the subproblem MIP-RHS to be solved. In other words, the sparser the
cut, the easier the strengthening problem. Again, MIP-RHS is solved by Cplex
to which a time limit rhstlim is imposed. When it is reached, λ∗

0 is set equal to
the best upper bound returned by the solver at the time limit.

The overall cutting-plane algorithm is summarized in Algorithm1. The para-
meter niter determines the maximum number of iterations (i.e., the maximum
number of cuts generated); maxpercnz establishes the maximum percentage cut
density allowed for CG cuts from the tableau; and minimprove stops the algo-
rithm when tailing-off is reached: it establishes the minimum improvement of
the objective value between consecutive iterations required to proceed.

In the separation stage of Algorithm 1 a first CG cut, namely, the one with
the smallest support (number nnz(λ) of nonzero coefficients), is obtained from
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the tableau. Ties are broken by selecting the cut that forms the minimum angle
with the objective function. Then, if this cut turns out to be too dense, the exact
MIP-CG separation is invoked with the aim of detecting a sparser one, with the
exception of the first iteration, when the cut from the tableau is always preferred.
Notice that MIP-CG always generates rank-1 CG cuts of relaxation Q(C), as the
generated cutting planes are never added to it. This turned out to be useful to
keep safe the sparsity of the cuts. The rationale for this policy is that, although
MIP-CG may be time consuming, it is typically largely counterbalanced by the
saving yielded by a sparser source cut when solving MIP-RHS.

Algorithm 1. Cutting plane algorithm
Input: Formulation Q(C)
Output: An updated formulation P, the upper bound CG-S;
Parameters: niter,cutviolation,septlim,

rhstlim,maxpercnz,minimprove

P ← Q(C)
Optimize over P, get x∗

for (i := 1 to niter and x∗ is fractional) do
Evaluate all violated Gomory cuts from the current tableau
Select the sparsest cut (λ, λ0)
if (nnz (λ) > maxpercnz ∗ |V |) and i > 1 then

Solve MIP-CG(Q(C), cutviolation,septlim)
Select the sparsest violated cut (β, β0)
if nnz (λ) > nnz (β) then

λ := β, λ0 := β0

end if
end if
λ∗
0 ← Solve MIP-RHS(P, rhstlim)

P ← P ∪ {λT x ≤ λ∗
0}

x̄ ← x∗

Optimize over P, get x∗

if (wT x̄ − wT x∗) < minimprove then
return CG-S = wT x∗

end if
end for
return CG-S = wT x∗

3 Computational Achievements

The upper bound CG-S computed by Algorithm1 is now compared to those
achieved by other methods in the literature. The test-bed consists of the
DIMACS Second Challenge (Johnson and Trick [21]) benchmark collection, avail-
able at the web site [6], representing the standard benchmark for evaluating
MSS and max-clique algorithms. We consider the complemented version of these
graphs, as they were originally created for the max-clique problem. We include
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all the graphs with n ≤ 400 except the “easy” ones, i.e., those for which that
upper bound UBC is close to the integer optimum α(G). The latter include the
whole family of johnson graphs and most of the c-fat, hamming and san graphs.
All instances are unweighted instances, as these tend to be the most difficult in
practice. The computations are run on a machine with processor AMD Opteron
6376 (64 cores) clocked at 1.4 GHz with 64 GB RAM. The LP-MIP solver is
IBM CPLEX 12.6.3 (using 32 threads): settings are default for MIP-CG, while
mipemphasis is set to moving best bound for CG-RHS. The parameter settings for
Algorithm 1 are as follows: niter = 30, cutviolation = 0.2, septlim ∈ {5, 50},
rhstlim ∈ {100, 150}, maxpercnz ∈ {0.9, 0.7}, minimprove = 0.01. Pairs {x, y}
of values indicate that the parameter assumes the value x for |V | ≤ 200 and y
otherwise. Before going through the evaluation of CG-S we analyze the strength
of the first Chvátal closure of Q(C).

3.1 On the Strength of the First Chvátal Closure of QSTAB(G)

Let us denote by Q1(C) the first Chvátal closure of Q(C) and by UBQ1(C) =
{max1Tx : x ∈ Q1(C)}. A close approximation to UBQ1(C) (unless pathological
cases) is obtained by a cutting plane algorithm which uses MIP-CG as separation
oracle. Table 1 compares UBQ(C) and UBQ1(C) and shows the percentage gap
closed by the first Chvátal closure.

In 16 out of 26 cases the gap closed is less than 2%, in 21 cases less than
6% and only in two cases greater than 10%. Overall it turns out to that Q1(C)
is almost as tight as Q(C). This also gives a strong pointer about the strength
of the Chvátal closure of QSTAB(G), which includes well known inequalities,
such as odd-hole, odd-antihole and antiweb inequalities [23]. These results pro-
vide a benchmark to demonstrate the remarkable effect of cut strengthening, as
documented below.

3.2 Evaluation of CG-S

Table 2 compares the upper bound CG-S returned by Algorithm1 to the follow-
ing upper bounds: UBC ; ϑ(G); BCS, obtained by separation algorithms for rank
inequalities and local cuts [29]; CMDK, obtained by separation algorithms for
rank and non-rank inequalities [8]; MKK, computed by the Lovász and Schrijver
M(k, k) lifting operator applied to QSTAB(G) [14]; BLP derived from MKK
through projection [13]; GR, obtained by strengthening the Lovász theta relax-
ation with odd circuit and triangle inequalities [20]; DR, obtained by tailored
SDP algorithms to compute ϑ+ [11]; BV, computed by optimizing over the
Lovász and Schrijver lifting operator M+ applied to FRAC(G) [5]; L, computed
by strengthening the ϑ bound with non valid inequalities [24]; ELL achieved by
outer approximation of ellipsoidal relaxations [16]. An asterisk in the DR or BV
columns means that result was not reported.

The results clearly show the high quality of CG-S. In 10 out of 26 cases CG-S
is the (unique) best upper bound while this holds 9 times for ϑ(G) and MKK.
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Table 1. Upper bounds from the first Chvátal closure

Graph α(G) UBQ(C) UBQ1(C)

UBQ(C)−UBQ1(C)
UBQ(C)−α(G)

%

brock200 1 21 38.02 37.83 1.12

brock200 2 12 21.21 21.12 0.98

brock200 3 15 27.3 27.22 0.65

brock200 4 17 30.66 30.54 0.88

brock400 1 27 63.96 63.92 0.11

brock400 2 29 64.39 64.34 0.14

brock400 3 31 64.18 64.13 0.15

brock400 4 33 64.21 64.16 0.16

C125.9 34 43.05 42.59 5.08

C250.9 44 71.39 70.99 1.46

c-fat200-5 58 66.67 65.76 10.5

DSJC125.1 34 43.16 42.64 5.68

DSJC125.5 10 15.39 15.25 2.6

mann a9 16 18 17 50

mann a27 126 135 134.15 9.44

hamming6-4 4 5.33 5.23 7.52

keller4 11 14.82 14.76 1.57

p hat300-1 8 15.26 15.24 0.28

p hat300-2 25 33.59 33.54 0.58

p hat300-3 36 54.33 54.18 0.82

san200 0.7-2 18 20.36 20.28 3.39

san200 0.9-3 42 45.13 44 36.1

sanr200 0.7 18 33.34 33.17 1.11

sanr200 0.9 42 59.82 59.39 2.41

sanr400 0.5 13 41.29 41.26 0.11

sanr400 0.7 21 57.02 56.96 0.17

In 11 out of 24 cases it outperforms ϑ(G) (to the best of our knowledge ϑ(G) has
never been computed for the two sanr400 graphs) and in all the remaining cases
it is quite close to ϑ(G). Looking at the other bounds, CG-S is the best bound
ever computed for all instances in the hard classes brock, p hat and sanr. It is
also evident that BCS and CMDK, obtained by inequalities with a combinatorial
structure, tend to be weaker in general. However, CMDK performed pretty well
in some specific instances.

Table 3 reports the times in seconds required to compute several among the
tightest upper bounds. The computing times of MKK, BLP, ELL are reported
as in the original papers. These refer to different computers: all of them have
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Table 3. Computational times (sec.) and details

Graph MKK BLP ELL CG-S MIP-CG MIP-RHS #cuts #cuts Average |C| UBC
time time tableau frac time

brock200 1 17,670 373 9.88 87.95 2.61 82.71 16 14 116.75 2, 127 1.10

brock200 2 26,501 190 5.8 93.03 14.92 72.74 12 1 101 3, 902 0.65

brock200 3 22,386 338 14.37 115.8 0 111.82 16 16 97.81 2, 867 3.84

brock200 4 25,362 196 20.12 92.88 7.11 83.03 15 9 109.8 2, 567 2.21

brock400 1 * * 11.43 661.99 110.93 510.07 18 1 269.28 5, 676 15.93

brock400 2 * * 5.88 838.44 110.29 681.67 21 1 268.24 5, 713 17.26

brock400 3 * * 5.44 923.55 172.79 683.1 26 1 278.69 5, 673 16.89

brock400 4 * * 5.83 1, 091.41 143.9 896.7 16 1 285.5 7, 325 12.74

C.125.9 227 391 0.6 9.48 4.28 5.1 15 8 111.33 489 0.06

C.250.9 9,397 8,908 5.02 323.94 11.71 309.63 20 9 201.85 1, 724 0.40

c-fat200-5 265 45 * 16.17 0 6.85 16 16 191.12 7561 1.34

DSJC125.1 274 297 0.44 6.48 1.76 4.62 14 11 106.93 464 0.06

DSJC125.5 377 27 2.27 19.55 3.55 15.21 11 5 81.09 1, 522 0.17

mann a9 0.41 0.26 * 3.95 0.14 3.83 18 4 40.44 48 0.01

mann a27 393 120 * 1.63 0 1.55 20 20 370.05 468 0.07

hamming6-4 4 5 * 48.5 43.89 4.53 16 1 30.06 149 0.02

keller4 15,324 9,586 0.64 30.07 7.51 22.12 13 1 86.85 868 0.54

p hat300 1 4,910 767 4.23 66.26 5.61 59.54 12 1 78.25 1, 124 1.78

p hat300 2 24,337 2,207 3.35 95.92 13.76 80.69 11 5 127.09 2, 016 1.03

p hat300 3 46,408 2,419 25.94 255.36 18.68 228.91 12 7 192.17 4, 074 9.41

san200 0.7-2 300 151 * 47.93 20.2 26.36 14 1 138.43 1, 537 1.16

san200 0.9-3 143 * * 0.24 0 0.23 1 1 152 1, 143 0.14

sanr200 0.7 9,971 762 6.02 64.95 5.29 57.46 14 8 114.43 2, 280 1.64

sanr200 0.9 8,483 949 1.42 56.68 5.15 50.87 15 8 156.6 1, 150 0.25

sanr400 0.5 * * * 1, 637.08 137.21 1, 454.1 23 1 207.65 4, 886 9.80

sanr400 0.7 * * * 1, 551.21 285.11 1, 152.83 25 1 267.84 8, 540 25.36

CPU-s with higher clock frequency but a smaller number of cores. Although the
comparison is not rigorously documented, these values can be considered reli-
able enough for a general judgment. In the column CG-S the total time required
by Algorithm 1 is reported, while the successive two columns contain the over-
all time spent for solving MIP-CG and MIP-RHS respectively. The remaining
columns report: the number of cuts generated; the number of cuts generated from
the tableau; the average size of the fractional support and, finally, the number
of clique inequalities in the initial formulation Q(C) and the time required to
construct it and compute UBC .

Table 3 shows that the strong bounds are achieved by a few cuts. Indeed,
the very first cuts turn out to close a significant portion of the integrality gap.
Notice also that the number of cuts generated by solving MIP-CG is large, which
highlights that the adjustments of MIP-CG towards sparsification play a role.
In 12 cases only one cut from the tableau is selected. It is indeed the first cut: at
the first iteration even the cuts from MIP-CG are very dense and are not worth
generating.
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The average time for a single cut separation is quite reasonable and, as one
can expect, most of this time is spent in solving MIP-RHS. These facts suggest
that strengthened CG cuts can be cost-effective when embedded in a branch-
and-cut framework.

Looking at computing times, the proposed method is outperformed only by
ELL [16], while it is competitive with the other LP-based methods. Even if a
direct comparison cannot be done, methods GR, DR, BV, L, based on sophisti-
cated SDP approaches tend to be slower.

Another important fact is that the size of the average fractional support is
often around 0.5|V |−0.7|V |. In our experience this nice effect is rarely observable
with other cutting planes which typically keep |J(x∗)| 
 |V |. This of course
impacts on the efficiency of the method, which turns out to practical for graphs
with 400 vertices.

It is worthwhile to remark that these experiments were carried out with
general-purpose parameter settings, and that results on specific graphs may
improve significantly with dedicated tuning.

The overall picture of this experience is that strengthened CG cuts can be
quite effective even for a very structured combinatorial optimization problem
such as the SSP. In fact, they seem to be competitive with inequalities that are
derived from polyhedral studies. Notice also that the latter tend to be sparser
than general CG cuts, a feature that usually guarantees a better numerical
behaviour. Nevertheless, the above results, along with our previous experience
with other general cutting planes, show that some denser cuts are required in
order to achieve very strong bounds. This is a key issue for the development of
IP algorithms for the SSP and deserve further investigation.

4 Conclusions

We showed that strengthening the right-hand-side of rank-1 CG cuts from a
clique relaxation relative to the stable set polytope is extremely effective. In par-
ticular, the upper bounds obtained are competitive to those from sophisticated
SDP approaches. This is so even though our implementation of the strengthen-
ing procedure is rather rudimentary and has significant room for improvement.
In fact, one major research direction deals with speeding up the strengthening
stage, either by using a combinatorial solver for the weighted SSP instances,
or by using upper bounds on the weighted stability number that are faster to
compute. Overall, our feeling is that the method can be improved so as to tackle
larger graphs. A natural development will also be testing these cutting planes in
a branch-and-cut framework. Finally, a theoretical study of strengthened rank-1
CG cuts would be interesting. It can be shown, for example, that the odd hole,
odd antihole, web and antiweb inequalities, along with certain lifted versions of
them, are cuts of this type.
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110, 3–20 (2007)

13. Giandomenico, M., Rossi, F., Smriglio, S.: Strong lift-and-project cutting planes
for the stable set problem. Math. Program. 141, 165–192 (2013)

14. Giandomenico, M., Letchford, A., Rossi, F., Smriglio, S.: An application of the
Lovász-Schrijver M(K, K) operator to the stable set problem. Math. Program.
120, 381–401 (2009)

15. Giandomenico, M., Letchford, A.N., Rossi, F., Smriglio, S.: Approximating the
Lovász theta function with the subgradient method. Elec. Notes Discr. Math. 41,
157–164 (2013)

16. Giandomenico, M., Letchford, A.N., Rossi, F., Smriglio, S.: Ellipsoidal relaxations
of the stable set problem: theory and algorithms. SIAM J. Optim. 25(3), 1944–1963
(2015)

17. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.
Bull. Amer. Math. Soc. 64, 275–278 (1958)

18. Gomory, R.E.: An algorithm for integer solutions to linear programs. In: Graves,
R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–
302. McGraw-Hill, New York (1963)

19. Grötschel, M., Lovász, L., Schrijver, A.J.: Geometric Algorithms in Combinatorial
Optimization. Wiley, New York (1988)

20. Gruber, G., Rendl, F.: Computational experience with stable set relaxations. SIAM
J. Optim. 13, 1014–1028 (2003)

ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique
ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique
http://arxiv.org/abs/1512.08757v1
http://www.optimization-online.org/DB_HTML/2014/08/4514.html
http://www.optimization-online.org/DB_HTML/2014/08/4514.html


212 A.N. Letchford et al.

21. Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring, Satisfiability: Observation
of Strains: The 2nd DIMACS Implementation Challenge. American Mathematical
Society, Providence (2011)

22. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Math. 182, 105–142
(1999)

23. Holm, E., Torres, L.M., Wagler, A.K.: On the Chvátal rank of linear relaxations
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Abstract. Many organisations need periodic retraining of staff. Due to
certain requirements on the composition of study groups, the planning
of training sessions is an NP-hard problem. The paper presents linear
and nonlinear mathematical programming formulations of this problem
together with three column generation based heuristic optimisation pro-
cedures. The procedures are compared by means of computational experi-
ments that use data originating from a large Australian electricity distrib-
utor with several thousand employees.

1 Introduction

This research is motivated by the problem of planning periodic training at
Australia’s largest electricity distributor, Ausgrid. Australian law mandates that
all workers in such organisations must undertake regular safety and technical
training. Ausgrid provides training to thousands of its employees and contrac-
tors, and also to third parties.

Keeping in mind the primal goal of the training provider, it is reasonable
to refer to the people undergoing training as workers, although such terms as
students and trainees, justified by the broad variety of participants, are often
used in practice, and in the context of this paper have the same meaning. Many
of these workers have different learning styles, different levels of education, and
different requirements to the learning outcome. Therefore, it is desired to form
separate classes for each category of trainees. However, due to the cost of training
and the scarcity of resources, it is often not possible to run segregated classes.

The considered situation can be modelled by introducing for each pair of
trainees a cost (penalty) for assigning this pair to the same training session
(class). Such a penalty may not only be associated with different categories of
trainees but can also reflect a variety of other factors, e.g. work requirements to
the staff availability which restrict who can undertake training simultaneously.

Most of the training at Ausgrid has a limited period in which it is valid.
Workers are only permitted to work in roles for which they have up-to-date
training. Therefore the company incurs a certain cost each time an employee is
not permitted to work due to the expiration of required training. Furthermore,
training sessions (classes) have different suitability for a trainee not only because

c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 213–224, 2016.
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they are held at different dates but also because they differ by location, teaching
mode, etc. Instead of specifying for each class all these attributes, the models
below involve a cost (penalty) for allocating a trainee to a particular class.

Several factors such as the cost of training, nature of the presented material,
teaching methods, premises, etc. impose lower and upper bounds on the number
of trainees for each training session. Another considered restriction is the lower
and upper bounds on the number of different types of trainees in the same class.
All these bounds vary from training session to training session. The sessions that
do not satisfy these restrictions are cancelled.

The considered problem is a problem of minimising the objective function
that is a weighted sum of the total cost of assigning pairs of trainees to the same
class and the total cost of assigning each individual trainee to the respective
class. This objective function is to be minimised subject to the above mentioned
restrictions on the composition of the training sessions. The considered problem
is NP-hard in the strong sense.

The remainder of the paper is organised as follows. Section 2 briefly reviews
the related literature. Section 3 presents quadratic programming and integer lin-
ear programming formulations. Section 4 describes three optimisation procedures
that are based on column generation. Section 5 gives the methodology and results
of testing these optimisation procedures. The concluding remarks can be found
in Sect. 6.

2 Related Literature

Without the restrictions on the number of student types in training sessions,
the considered class formation problem can be viewed as a graph partitioning
problem (GPP) where the nodes of a given undirected graph are to be parti-
tioned into several given clusters. Some clusters can occur empty as a result of
a partition.

If a cluster is not empty, then the number of assigned nodes must be between
the upper and lower limits specified for this cluster. The nodes of the graph
represent trainees whereas the clusters represent available training sessions. In
this formulation, the cost associated with an edge is the penalty for assigning
the pair of trainees, corresponding to the end nodes of the edge, to the same
class.

Although graph partitioning problems were considered in the literature, to
our knowledge, the above mentioned graph partitioning problem is new. For
instance, the two most relevant publications, [3,8], do not consider a penalty for
assigning a node to a cluster. As far as the solution methods are concerned, the
first of these two papers uses valid inequalities, whereas the second adopted a
column generation approach.

The Edge-Partition Problem (EPP), which is related to the GPP, is the
problem of covering the edges of a graph with subgraphs that contain at most
k edges [6]. The NP-hardness of the EPP is shown in [6], and also a linear time
approximation algorithm with performance guarantee is proposed. [10] discuss
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a combination of integer and constraint programming method for the stochastic
EPP, and present a two-stage cutting plane algorithm.

The considered problem can also be viewed as an extension of the Quadratic
Multiple Knapsack Problem (QMKP) which is a combination of the multiple
knapsack and quadratic knapsack problems. The QMKP received little attention
in the literature until recently. The suggested methods include metaheuristics [2,
5,7,9], Lagrangian relaxation [1], and greedy algorithms [9].

3 Problem Formulation

Let N = {1, · · · , N}, M = {1, · · · ,M}, and K = {1, · · · ,K} be the set of
available classes, the set of students to be assigned, and the set of student types
respectively. Denote the cost of assigning student j ∈ M to class i ∈ N by ci,j ,
and the cost of pairing student types k ∈ K and l ∈ K together in the same
class by bk,l. Each student has exactly one type, and the set of students who
are of type k is represented by Tk, k ∈ K. Each student must be assigned to
exactly one class, but not all classes must be run. Each class i ∈ N that is run
must contain at least ai and at most bi students, and at least pi and at most qi
student types. Students or student types cannot be assigned to classes that are
not run. The binary variable Xi,j is defined to be 1 if student j is assigned to
class i, or 0 otherwise; the binary variable Yi,k is defined to be 1 if student type
k is assigned to class i, or 0 otherwise; The binary variable Zi is defined to be 1
if class i is run, or 0 otherwise. The following Quadratic Program describes the
problem:

(QP) Minimise: α

N∑

i=1

K∑

k=1

K∑

l=1

bk,lYi,kYi,l + β

N∑

i=1

M∑

j=1

ci,jXi,j (1)

Subject To:
N∑

i=1

Xi,j = 1 j = 1, . . . ,M (2)

aiZi ≤
M∑

j=1

Xi,j ≤ biZi i = 1, . . . , N (3)

piZi ≤
K∑

k=1

Yi,k ≤ qiZi i = 1, . . . , N (4)

Xi,j ≤ Yi,k i = 1, . . . , N ; k = 1, . . . ,K; j ∈ Tk (5)

Yi,k ≤
∑

j∈Tk

Xi,j i = 1, . . . , N ; k = 1, . . . ,K (6)

Xi,j ∈ {0, 1} i = 1, . . . , N ; j = 1, . . . ,M (7)
Yi,k ∈ {0, 1} i = 1, . . . , N ; k = 1, . . . ,K (8)
Zi ∈ {0, 1} i = 1, . . . , N (9)
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The quadratic term in (1) represents the cost of pairing student types
together, and the linear term represents the cost of assigning students to classes,
weighted by coefficients α and β, respectively.

The constraints (2) express the requirement that each student must be
assigned to exactly one class. The constraints (3) and (4) express the require-
ment that each running class must have between ai and bi students, and between
pi and qi student types, respectively, if the class is run, or zero otherwise. The
constraints (5) express the requirement that a student may only be assigned to
a class if that student’s type has also been assigned to that class. The con-
straints (6) ensure that a class can only be assigned a type if at least one student
of that type is in the class.

It is possible to linearise the quadratic term in (1) by introducing Ŷi,k,l =
Yi,kYi,l together with constraints:

Ŷi,k,l ≤ Yi,k i = 1, . . . , N ; k = 1, . . . , K; l = 1, . . . ,K (10)

Ŷi,k,l ≤ Yi,l i = 1, . . . , N ; k = 1, . . . , K; l = 1, . . . ,K (11)

Ŷi,k,l ≥ Yi,k + Yi,l − 1 i = 1, . . . , N ; k = 1, . . . , K; l = 1, . . . ,K (12)

to give the linearised model:

(LQP) Minimise: α
N∑

i=1

K∑

k=1

K∑

l=1

bk,lŶi,k,l + β

N∑

i=1

M∑

j=1

ci,jXi,j (13)

Subject To: (2) − (12)

Ŷi,k,l ∈ {0, 1} i = 1, . . . , N ; k = 1, . . . ,K; l = 1, . . . ,K. (14)

An augmented model (AQP) can be constructed by relaxing constraints (2)
by introducing variables Sj ∈ Z

+ and Tj ∈ Z
+, where Z

+ is the set of nonnega-
tive integers, which together represent the deviation in the number of classes to
which student j is assigned. The sum of these variables is then heavily penalised
in the objective function:

(AQP) Minimise: α

N∑

i=1

K∑

k=1

K∑

l=1

bk,lYi,kYi,l + β

N∑

i=1

M∑

j=1

ci,jXi,j + γ(
M∑

j=1

Sj + Tj)

(15)

Subject To:
N∑

i=1

Xi,j + Sj − Tj = 1 j = 1, . . . ,M (16)

(3) − (9)

Sj ∈ Z
+ j = 1, . . . ,M (17)

Tj ∈ Z
+ j = 1, . . . ,M (18)
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where γ is very large, typically many orders of magnitude greater than α and
β. The (LQP) model can be modified in the same way to form the (ALQP)
augmented linearised model.

The advantage of the augmented model is that feasible solutions are signifi-
cantly easier to find as violations of (2) allow (3) and (4) to be satisfied more eas-
ily. In the event that a solution cannot be found in which maxj Sj = maxj Tj = 0,
the organisation can then decide what steps to take next, for example to create
additional classes, to modify class size constraints, etc.

The time required for a general purpose MIP/QP solver to find an optimal
solution to each of the models discussed so far grows rapidly. Even very small test
cases with just a few dozen trainees can take many hours to solve with a powerful
computer and a commercial optimisation solver. As real world problem instances
are significantly larger than this, we propose to use a heuristic approach.

4 Column Generation Approaches

Define Pi to be the set of all feasible sets of trainees that can be assigned to
class i. We define p ∈ Pi to be a pattern.

We can then define the set-covering formulation:

(M) Minimise:
N∑

i=0

∑

p∈Pi

cipX
i
p (19)

Subject To:
∑

p∈Pi

Xi
p ≤ 1 i = 1, . . . , N (20)

N∑

i=1

∑

p∈Pi

sip,jX
i
p = 1 j = 1, . . . ,M (21)

Xi
p ∈ {0, 1} i = 1, . . . , N ; p ∈ Pi (22)

where the binary variable Xi
p is 1 if pattern p is selected for class i or zero

otherwise; cip is the cost of selecting pattern p for class i, and sip,j is 1 if student
j exists in pattern p or 0 otherwise.

The constraints (20) express the requirement that each class can have at most
one pattern selected, and the constraints (21) express the requirement that each
trainee must be assigned to exactly one class.

For problems of practical size, there are far too many patterns in the master
problem (M) to consider. For all such problems, it is useful to consider the
reduced master problem (RM) that is identical to (M), but contains only a
subset of patterns Pi ⊆ Pi.

The (RM) objective function and constraints equivalent to (21) can easily
be modified to incorporate the Sj and Tj variables, as with (AQP), to give the
augmented reduced master problem (ARM).
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According to the column generation approach [4], new columns (patterns)
are iteratively added to Pi for each class i. First, the linear relaxation of the
reduced master problem is solved for an initial set of patterns. If we solve the
augmented variant, the initial set of patterns can be empty. At each iteration,
new patterns can be generated by solving with an IP solver, for each class i, the
subproblem:

(SPi)Minimise: α

K∑

k=1

K∑

l=1

bk,lYi,kYi,l + β

M∑

j=1

ci,jXi,j − π1,i −
M∑

j=1

π2,jXi,j (23)

Subject To: ai ≤
M∑

j=1

Xi,j ≤ bi (24)

pi ≤
K∑

k=1

Yi,k ≤ qi (25)

Xj ≤ Yi,k k = 1, . . . , K; j ∈ Tk (26)

Yi,k ≤
∑

j∈Tk

Xk k = 1, . . . , K (27)

Xi,j ∈ {0, 1} j = 1, . . . ,M (28)
Yi,k ∈ {0, 1} k = 1, . . . , K (29)

where π1,i is the dual variable corresponding to constraint (20) for class i, and
π2,j is the dual variable corresponding to constraint (21) for student j from the
linear relaxation of (ARM). The objective of (SPi) is therefore to find the pattern
with the most negative reduced cost to add to Pi.

At each iteration, the linear relaxation of (RM) or (ARM) is solved subject
to the set of available patterns Pi, and (SPi) is solved for each class i to find
new patterns with the most negative reduced cost. If (SPi) cannot produce a
pattern with negative reduced cost, then no new patterns are available for class
i in this iteration. When no new patterns are available for any class, the column
generation procedure has reached its conclusion and can be terminated.

The above-mentioned column generation procedure will most likely not yield
a feasible integer solution to the original problem as it is solved for the lin-
ear relaxation of (RM) or (ARM). We now present three solution approaches,
incorporating the column generation procedure, to produce integer solutions.

4.1 Reduced Master Heuristic

The most simple solution approach is to solve (RM) or (ARM) with their origi-
nal, unrelaxed integer variables, subject to the patterns generated according to
the column generation approach. This approach is not guaranteed to yield an
optimal solution since the set of generated patterns may not contain the neces-
sary patterns required for an optimal solution. Moreover, the (RM) may not have
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a feasible integer solution if the generated patterns cannot satisfy (21), however
the (ARM) problem will always yield a feasible integer solution, regardless of
the available patterns.

Solving (RM) or (ARM) with many patterns can still be computationally
challenging. In cases where the number of patterns is very large, solving (RM)
or (ARM) may not be possible in acceptable time, and alternative approaches
may need to be considered.

4.2 Fix Columns

Another solution approach based on column generation is to make assumptions
about which patterns will run in the final solution using information from the
linear relaxation of the master problem. Those patterns whose corresponding
variables in the linear relaxation of the master problem have the greatest value
are assumed to run, i.e. the corresponding Xi

p variable is set to 1 in (RM) or
(ARM). We refer to these as accepted patterns. If the corresponding variable’s
value in the solution to the linear relaxation was already 1, then setting this
variable equal to 1 will not affect the objective value since no change has been
made. If, however, the value of the variable in the solution was less than 1, then
setting it equal to 1 may cause the objective value to deteriorate. The process
of finding these accepted patterns is applied iteratively, with more and more
patterns assumed in the final solution. Whenever the objective value deteriorates
by more than a factor of τ since the previous iteration, typically around 1%, the
column generation procedure will be run again to generate new patterns subject
to the set of accepted patterns. Since there are only N classes and at most one
pattern can be run per class, at most N patterns can be fixed.

Pattern-Fixing Heuristic

Step 1. Generate the initial set of patterns P by the column generation proce-
dure described above. Initialise the empty set of accepted patterns P̂ . Initialise
the iteration counter c to 1.

Step 2. Solve the linear relaxation to (ARM) subject to the patterns P , with the
additional assumption that the Xi

p variables corresponding to each pattern
in P̂ must have value 1. The optimal LP solution is denoted by σ∗

c .
Step 3. Find a pattern p̃ from P \ P̂ whose corresponding Xi

p variable in σ∗
c has

greatest value. Add p̃ to P̂ , and remove all patterns from P that are mutually
exclusive with p̃.

Step 4. If the objective value of σ∗
c is worse than σ∗

c−1 by more than a fac-
tor of τ then generate additional patterns by running the column generation
procedure described above, with the assumption in (ARM) that the Xi

p vari-
ables corresponding to each pattern in P̂ must have value 1. Add these new
patterns to P .

Step 5. If some students remain unallocated in P̂ , increment c and return to
Step 2.
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The only parameter in the pattern fixing heuristic is τ , which determines
how much objective value deterioration is required to trigger the subroutine to
generate additional patterns. In practice, however, it is useful to impose a time
limit and/or iteration limit on both the subroutine to generate more patterns
and also the algorithm as a whole. When the time or iteration limit is reached
in the pattern generating subroutine, the subroutine terminates with the pat-
terns generated so far. When the time or iteration limit is reached on the whole
algorithm between Step 2 and Step 4, the current (ARM) is solved as an IP to
produced a solution.

Aside from the time and iteration limit, the pattern generating subroutine
normally terminates when no more patterns can be generated, i.e. when there are
no more patterns with reduced cost less than zero. In practice, this subroutine
can sometimes continue generating a very large number of new patterns for a
long time, with reduced costs very close to zero. While having more patterns
allows more possible solutions in (ARM), having too many patterns results in
a problem with many variables, which can be computationally difficult to solve.
When the number of patterns grows very large, typically above ten thousand,
even the linear relaxation can take a minute or more to solve. For this reason,
the pattern generating subroutine should also terminate when no patterns can
be generated with reduced cost with absolute value less than some small ε.

4.3 Student Clustering

Another solution approach based on the column generation procedure is to make
assumptions about which pairs of students will be assigned to classes together
using information from the linear relaxation of the master problem. Let pj1,j2 =
∑

p∈P̃(j1,j2)
Xi

p
∗, for set of patterns P̃(j1,j2) ⊆ P containing student pair (j1, j2) and

solution values Xi
p
∗, which can be interpreted as an indication that students j1 and

j2 should appear in the same pattern in the final solution. The pairs with highest
pj1,j2 values will be enforced in the solution process. We refer to these as accepted
pairs of students. The process of finding accepted pairs of students is applied itera-
tively, with more and more pairs of students assumed in the final solution. As with
the pattern-fixing heuristic from Sect. 4.2, when the objective value deteriorates
by more than a factor of τ since the previous iteration, new patterns are generated
subject to the pairs of students that have been fixed thus far.

Student-Clustering Heuristic

Step 1. Generate the initial set of patterns P by the column generation pro-
cedure described above. Initialise the empty set of accepted student pairs Ŝ.
Initialise the iteration counter c to 1.

Step 2. Solve the linear relaxation to (ARM) subject to the patterns P . The
optimal LP solution is denoted by σ∗

c .
Step 3. Find a pair of students (j1, j2) not already in Ŝ where pj1,j2 has greatest

value. Add this pair of students to Ŝ and delete all patterns from P that
contain j1 but not j2, or contain j2 but not j1.
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Step 4. If the objective value of σ∗
c is worse than σ∗

c−1 by more than a factor
of τ then generate additional patterns by the column generation procedure
described above, with the assumption in each (SPi) that Xj1 = Xj2 for all
pairs (j1, j2) ∈ Ŝ, and increment c.

Step 5. If some students remain unpaired in Ŝ, increment c and return to
Step 2. Otherwise, solve (AQP) subject to the pairs specified in Ŝ.

As with the pattern-fixing heuristic described in Sect. 4.2, the only parameter
is τ , but it is useful to impose time and iteration limits to the main algorithm
and the pattern generating subroutine. It is again also useful to terminate the
pattern generating subroutine when no new patterns can be generated whose
reduced cost has absolute value greater than some small ε.

5 Computational Experiments

In order to test the proposed solution approaches, a set of 27 test cases were
randomly generated with similar characteristics to real-world cases from Ausgrid.

The three column generation-based solution approaches described in
Sects. 4.1, 4.2, and 4.3 were computationally tested and compared, and the
results are presented in this section. All test cases and corresponding solution
files are available for download at https://goo.gl/S4b305.

We used an Intel i7-4790K quad core CPU with 16 GB RAM, running
Microsoft Windows 10 64-bit. Code was written in C# 4.0, and we used IBM
ILOG CPLEX 12.5.0.0 64-bit using the ILOG Concert API to solve the math-
ematical programming models. In all cases, except where otherwise specified,
we solved the augmented model variants, i.e. those models with the S and T
variables so that feasible solutions could be found more easily. For the objec-
tive functions, we used α = β = 1, and γ = 106. For the heuristics, we used
τ = 1% and ε = 10−3. The time limit we chose for each heuristic was given
by (|K| + |M| + |K|) × 18 s, meaning the smallest test case would be allowed
(10 + 40 + 100) × 18 = 2700 s, and the largest test case would be allowed
(40 + 120 + 400) × 18 = 10080 s.

Table 1. The parameters of the 27 test cases.

Ca Ty Cl St Va Cs Ca Ty Cl St Va Cs Ca Ty Cl St Va Cs

01 10 40 100 6440 10060 10 20 40 100 12640 27860 19 40 40 100 37040 99460

02 10 40 200 10640 14160 11 20 40 200 16840 31960 20 40 40 200 41240 103560

03 10 40 400 19040 22360 12 20 40 400 25240 40160 21 40 40 400 49640 111760

04 10 80 100 12680 20020 13 20 80 100 25080 55620 22 40 80 100 73880 198820

05 10 80 200 20880 28120 14 20 80 200 33280 63720 23 40 80 200 82080 206920

06 10 80 400 37280 44320 15 20 80 400 49680 79920 24 40 80 400 98480 223120

07 10 160 100 25160 39940 16 20 160 100 49960 111140 25 40 160 100 147560 397540

08 10 160 200 41360 56040 17 20 160 200 66160 127240 26 40 160 200 163760 413640

09 10 160 400 73760 88240 18 20 160 400 98560 159440 27 40 160 400 196160 445840

https://goo.gl/S4b305
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Table 1 outlines the 27 test cases used for the computational experimentation.
For each test case (Ca), we report the total number of student types (Ty), the
total number of classes (Cl), the total number of students (St), the total number
of variables (Va) and constraints (Cs) for the corresponding (ALQP) model.

Table 2 presents the remainder of the results of the computational experi-
mentation. For each test case (Ca), we report the objective value (denoted by
Z) of the best solution without the contribution of the augmenting variables S

and T , the total number of violations
∑M

j=1 Sj+Tj (denoted by V ), and the total
time, in seconds, (denoted by T ) required to obtain the solution. The solution
approaches compared are solving the (ARM) model with integer variables as
described in Sect. 4.1 (ZMP), (VMP), and (TMP); by the Pattern-fixing heuristic
described in Sect. 4.2 (ZPF), (VPF), and (TPF); the Student-clustering heuristic
described in Sect. 4.3 (ZSC), (VSC), and (TSC); and straightforward solution of
the (AQP) model (ZAQP) and (VAQP). When solving the (AQP) model, default

Table 2. A comparison of the solution approaches for each of the test cases.

Ca ZMP VMP TMP ZPF VPF TPF ZSC VSC TSC ZAQP VAQP

01 30.21 3 2700 49.93 0 164 34.83 0 1632 34.83 0

02 139.6 23 4500 218.89 4 1009 152.16 0 4502 180.40 0

03 560.62 94 8101 1232.87 45 5407 552.6 0 8101 572.43 0

04 12.33 0 0 15.48 0 55 12.33 0 127 12.33 0

05 49.58 7 5220 55.3 0 930 46.17 0 5227 73.56 0

06 323.36 86 8821 191.58 0 8826 184.67 0 8833 218.53 0

07 2.94 0 0 3.53 0 16 2.94 0 12 2.98 0

08 12.38 0 2 14.48 0 199 12.38 0 1576 20.87 0

09 71.5 30 10261 55.46 0 10030 55.29 0 10266 105.39 0

10 44.89 1 2880 46.86 0 338 41.68 0 2890 62.16 0

11 183.31 25 4680 310 4 2250 199.74 0 4690 268.01 0

12 724.55 107 8281 1841.08 22 5673 704.81 0 8283 704.81 0

13 14.71 0 0 16.22 0 148 14.71 0 2179 17.15 0

14 57.12 7 5400 66.16 0 4660 69.59 0 5410 140.68 0

15 357.13 83 9001 273.4 0 9003 339.8 0 9000 481.30 0

16 3.81 0 0 4.09 0 25 3.81 0 38 3.81 0

17 12.91 0 3 17.96 0 1085 15.72 0 6865 20.69 0

18 87.99 28 10441 101.34 0 6305 104.93 0 10441 170.37 235

19 56.89 1 3240 68.77 0 925 61.4 0 3244 96.62 4

20 248.01 28 5040 258.88 0 3691 302.85 0 5040 468.74 84

21 921.31 112 8641 1910.95 58 5571 1191.44 0 8640 533.58 284

22 13.28 0 0 22.57 0 93 19.17 0 3967 79.49 1

23 94.76 7 5760 84.31 0 2580 126.68 0 5761 294.86 31

24 599.69 103 9361 501.42 0 9361 454.14 0 9366 705.62 241

25 3.35 0 0 4.68 0 44 3.35 0 182 4.33 0

26 14.81 0 3 21.54 0 1016 21.32 0 7202 93.13 79

27 143.13 29 10801 144.29 0 10804 161.85 0 10802 0.00 400

Avg 177.19 28.67 4560.63 278.96 4.93 3341.04 181.12 0 5343.56 201.65 50.33



Scheduling Personnel Retraining: Column Generation Heuristics 223

CPLEX settings were used, except for a time limit equal to the largest of the
three heuristic times for that test case (i.e. max{TMP,TPF,TSC}). The bottom
row shows the average values for the column above.

It is clear from the results in Table 2 that the approach of solving the integer
reduced master problem, subject to generated patterns, does not produce con-
sistently good solutions. While this method did outperform the other heuristics
in a few test cases, there were many instances where the number of constraint
violations was much higher than for the other methods. This is not to say that
the set of generated patterns did not allow for an integer solution with no viola-
tions, but that this approach could not find such a solution within the allowed
time.

For most of the tested cases, the pattern-fixing approach outperformed the
integer reduced master problem approach in terms of time and solution quality.
In most cases the pattern-fixing approach produced solutions with no constraint
violations, and the approach often terminated well before the time limit was
reached.

The student-clustering approach performed significantly better than the
other two approaches. While it required more time than the pattern-fixing app-
roach, the student-clustering approach was able to consistently produce solutions
with no constraint violations. In the 22 cases where both the pattern-fixing and
student-clustering approaches produced solutions without constraint violations,
the latter approach produced superior solutions for all but six test cases.

The approach of solving the (AQP) model directly, subject to the time limit,
produced results that were generally poorer than those provided by the heuris-
tics, especially for the larger test cases. For the smaller test cases, good solutions
were produced with no constraint violations. For 9 out of the 10 largest test
cases, solving the (AQP) model, subject to the time limit, produced solutions
with many constraint violations.

6 Conclusion

The paper presents three column generation based heuristics for the optimisation
problem of assigning employees to classes for the purpose of technical and safety
training and retraining under restrictions on the composition of these classes.
The considered problem is common to many large organisations.

The proposed heuristics were tested by computational experiments on a num-
ber of randomly generated test cases, based on data supplied by Ausgrid. The
basic approach of solving the integer reduced master problem subject to gener-
ated columns did not perform well, most often producing solutions with many
constraint violations. The approach of preferentially fixing patterns performed
much better, but could not always produce solutions without constraint viola-
tions. The approach of preferentially clustering students performed the best, on
average, producing good quality solutions free of constraint violations in accept-
able time. The straight forward approach of solving the augmented quadratic
programming model did not perform well on the larger test cases.
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10. Taşkın, Z.C., Smith, J.C., Ahmed, S., Schaefer, A.J.: Cutting plane algorithms for
solving a stochastic edge-partition problem. Discrete Optim. 6(4), 420–435 (2009)



Diagonally Dominant Programming
in Distance Geometry

Gustavo Dias and Leo Liberti(B)
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Abstract. Distance geometry is a branch of geometry which puts the
concept of distance at its core. The fundamental problem of distance
geometry asks to find a realization of a finite, but partially specified,
metric space in a Euclidean space of given dimension. An associated
problem asks the same question in a Euclidean space of any dimension.
Both problems have many applications to science and engineering, and
many methods have been proposed to solve them. Unless some structure
is known about the structure of the instance, it is notoriously difficult to
solve these problems computationally, and most methods will either not
scale up to useful sizes, or will be unlikely to identify good solutions. We
propose a new heuristic algorithm based on a semidefinite programming
formulation, a diagonally-dominant inner approximation of Ahmadi and
Hall’s, a randomized-type rank reduction method of Barvinok’s, and a
call to a local nonlinear programming solver.

1 Introduction

The main problem studied in this paper is the

Distance Geometry Problem (DGP). Given an integer K ≥ 1 and a
simple, edge-weighted, undirected graph G = (V,E, d), where d : E → R+,
verify the existence of a realization function x : V → R

K , i.e. a function
such that:

∀{i, j} ∈ E ‖xi − xj‖ = dij . (1)

A recent survey on the DGP with the Euclidean norm is given in [15]. The DGP
is NP-hard, by reduction from Partition using 2-norms [21]. Three well-known
applications are to clock synchronization (K = 1), sensor network localization
(K = 2), and protein conformation (K = 3). If distances are Euclidean, the
problem is called Euclidean DGP (EDGP) — but, given the preponderance of
Euclidean distances in the DGP literature w.r.t. other distances, if the norm is
not specified, it is safe to assume the 2-norm is used.
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A related problem, the Distance Matrix Completion Problem
(DMCP), asks whether a partially defined matrix can be completed to a distance
matrix. The difference is that while K is part of the input in the DGP, it is part
of the output in the DMCP, in that a realization to a Euclidean space of any
dimension satisfying (1) provides a certificate. When the completion is required
to be to a Euclidean distance matrix (EDM), i.e. where distances are given by
2-norms, this problem is called Euclidean DMCP (EDMCP). It is remarkable
that, albeit the difference between EDGP and EDMCP is seemingly minor, it
is not known whether the EDMCP is in P or NP-hard (whereas the EDGP is
known to be NP-hard). The EDMCP is currently thought to be “between the
two classes”.

In this paper we propose a new heuristic algorithm designed to be accurate
yet solve instances of sufficiently large sizes. Our motivation in proposing new
heuristics based on Mathematical Programming (MP) formulations is that they
can be easily adapted to uncertainty on the distances dij expressed as intervals,
i.e. they can also solve the problem

∀{i, j} ∈ E dL
ij ≤ ‖xi − xj‖ ≤ dU

ij . (2)

This is in contrast to some very fast combinatorial-type algorithms such as the
Branch-and-Prune (BP) [13,14], which are natively limited to solving Eq. (1). In
fact, this paper is in support of a study which is auxiliary to the development
of the BP algorithm, namely to endow the BP with an ability to treat at least
some fraction of the distances being given as intervals, which appears to be the
case in practice for protein conformation problems from distances.

Our heuristic has three main ingredients: Diagonally Dominant Program-
ming (DDP), very recently proposed by Ahmadi et al. [1,18]; a randomized
rank-reduction method of Barvinok’s [4]; and a call to a general-purpose local
Nonlinear Programming (NLP) solver.

DDP is a technique for obtaining a sequence of inner approximating Linear
Programs (LP) or Second-Order Cone Programs (SOCP) to semidefinite pro-
gramming (SDP) formulations. In this paper we only consider the LP variant,
since LP solution technology is more advanced than SDP or SOCP. DDP has
been proposed in very general terms; its adaptation to (dual) SDP formulations
for the DGP yields a valid LP relaxation for the DGP. In this paper, since we
are proposing a heuristic method, and need feasible solutions, we apply DDP to
a primal SDP formulation of the DGP.

Note that SDP solutions are square symmetric matrices of any rank, whereas
a feasible solution of the DGP must have the given rank K. Although there are
many rank reduction techniques, most of them do not have guaranteed proper-
ties, even in probability, of preserving the feasibility of the solution. In fact, in
the case of the DGP, it is exactly this rank constraint which makes the problem
hard, so we can hardly hope in an efficient rank reduction technique that works
infallibly. We found the next best thing to be a probabilistic rank reduction tech-
nique proposed by Barvinok: although it does not exactly preserve feasibility, it
gives a probabilistic guarantee that it will place the reduced rank solution fairly
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close to all of the manifolds Xij of realizations x satisfying ‖xi − xj‖ = dij (for
each {i, j} ∈ E). At this point, we attempt to achieve feasibility via a single call
to a local NLP solver.

Our computational results are preliminary and are simply designed as valida-
tion, as this is work-in-progress. We compare the heuristic sketched above to the
same, with DDP replaced by SDP. With this limited set-up, we found that the
DDP approach exhibits its large-scale potential as the instance sizes increase.

The rest of this paper is organized as follows. We give some technical notation
and background in Sect. 1.1. We propose some existing and new SDP formula-
tions of the DGP and EDMCP in Sect. 2. We explain DDP and give a new DDP
formulation for the DGP and EDMCP in Sect. 3. We discuss our new DGP
heuristic in Sect. 4. We present our preliminary results in Sect. 5. We sketch our
roadmap ahead in Sect. 6.

1.1 Relevant Background

The EDGP calls for a solution to the set of nonlinear equations

∀{i, j} ∈ E ‖xi − xj‖2 = dij , (3)

where xi ∈ R
K for all i ≤ n = |V |. Usually, the squared version of Eq. (3)

is employed, for two reasons: first, since the vast majority of algorithmic
implementations employ floating point representations, there is a risk that∑

k(xik −xjk)2 = 0 might be represented by a tiny negative floating point scalar,
resulting in a computational error when extracting the square root. Secondly, as
pointed out in [6], the squared EDM D2 = (d2ij) has rank at most K + 2, a fact
which can potentially be exploited. Obviously, solving the squared system yields
exactly the same set of solutions as the original system.

Most methods for solving Eq. (3) do not address the original system explicitly,
but rather a penalty function:

∑

{i,j}∈E

(‖xi − xj‖22 − d2ij)
2, (4)

which has global optimum x∗ with value zero if and only if x∗ satisfies Eq. (3).
This formulation is convenient since most local NLP solvers find it easier to
improve the cost of a feasible non-optimal solution, rather than achieving fea-
sibility from an infeasible point. This is relevant since such solvers are often
employed to solve EDGP instances. Equation (4) can be easily adjusted to deal
with imprecise distances represented by intervals (see e.g. [17]).

There are several Semidefinite Programming (SDP) relaxations of the EDGP
[2,19,22], mostly based on linearizing the constraint

∀{i, j} ∈ E ‖xi‖22 + ‖xj‖22 − 2xi · xj = d2ij

into
∀{i, j} ∈ E Xii + Xjj − 2Xij = d2ij (5)
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and then relaxing the rank constraint X = xx� to X � xx�, which, via the
Schur complement, can be written as the semidefinite constraint

Y =
(

IK x�

x X

)

� 0. (6)

Such formulations mostly come from the application to sensor networks, for
which K = 2. In his EE392O course 2003, Y. Ye proposes the objective function:

min tr(Y ), (7)

motivated by a probabilistic interpretation of the solution of the SDP. Purely
based on (unpublished) empirical observations, we found what is possibly a bet-
ter objective function (at least for some protein conformation instances), dis-
cussed in Sect. 2 below.

Several methods aim to decompose large graphs into rigid components [5,9,
11], since many rigid graphs can be realized efficiently [7,16]. Each rigid subgraph
realization is then “stiched up” consistently by either global optimization [9] or
SDP [5,11].

One notable limitation of SDP for practical purposes is that current tech-
nology still does not allow us to scale up to large-scale instance sizes. More or
less, folk-lore says that interior point methods (IPM) for SDP are supposed to
work well up to sizes of “around” 1000 variables, i.e. a matrix variable of around
33 × 33, which is hardly “large-scale”. As remarked, a technique which can
address this limitation is the very recent DDP [1,18]. Since all diagonally domi-
nant (DD) matrices are positive semidefinite (PSD), any DDP obtained from an
SDP by replacing the PSD constraint with a DD one is an inner approximation
of the original SDP. The interesting feature of DDP is that it can be reformulated
to an LP, which current technology can solve with up to millions of variables.

Once a solution X̄ of an SDP relaxation has been found, the problem of find-
ing another solution of the correct rank, which satisifies X = xx� is called rank
reduction. Possibly the most famous rank reduction algorithm is the Goemans-
Williamson algorithm for Max Cut [8]. Other ideas, connected with the con-
centration of measure phenomenon, have been proposed in [4] in order to find a
solution x which is reasonably close, on average and with high probability, from
the manifolds Xij described in Eq. (3).

Although being “reasonably close to a manifold” is certainly no guarantee
that a local NLP solver will move the reasonably close point to the manifold
itself, there is a good hope of this being the case.

2 SDP Formulations for DG

We represent a realization x in matrix form by an n × K matrix where n = |V |,
and where each of the n rows is a vector xi ∈ R

K which gives the position
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of vertex i ∈ V . We discussed a well known SDP for the EDGP in Sect. 1.1,
which we recall here without the objective function, for later reference.

∀{i, j} ∈ E Xii + Xjj − 2Xij = d2ij

Y =
(

IK x�

x X

)

� 0.

⎫
⎬

⎭
(8)

2.1 A Better Objective for Protein Conformation

The empirical evidence collected by Ye about Eq. (8) with min tr(Y ) as objective
concerns the application of EDGP to the localization of sensor networks. Our own
(unpublished and preliminary) computations on protein conformation instances
with the above objective were not particularly encouraging. We found relatively
better results with a different objective function:

min
∑

{i,j}∈E

(Xii + Xjj − 2Xij)

∀{i, j} ∈ E Xii + Xjj − 2Xij ≥ d2ij

Y =
(

IK x�

x X

)

� 0.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(9)

Note that Eq. (9) can be trivially derived as the natural SDP relaxation of the
nonconvex NLP:

min
∑

{i,j}∈E

‖xi − xj‖22
∀{i, j} ∈ E ‖xi − xj‖22 ≥ d2ij ,

}

(10)

which is an exact reformulation of Eq. (4) since, if Eq. (3) has a solution x∗, at x∗

all of the inequality constraints of Eq. (10) are tight, and therefore the objective
cannot be further decreased. Conversely, if there was an x′ with lower objective
function value, at least one of the constraints would be violated.

For the EDMCP, where the rank is of no importance, we only require that
X should be the Gram matrix of a realization x (of any rank). Since the Gram
matrices are exactly the PSD matrices, Eq. (9) can be simplified to:

min
∑

{i,j}∈E

(Xii + Xjj − 2Xij)

∀{i, j} ∈ E Xii + Xjj − 2Xij ≥ d2ij
X � 0.

⎫
⎪⎬

⎪⎭
(11)

Note that objective functions for the EDGP are often (though not always [3])
a matter of preference and empirical experience on sets of instances, which makes
sense since the EDGP is a pure feasibility problem (other possible objectives
include adding slack variables which are then minimized). From here onwards,
therefore, we shall simply discuss pure feasibility formulations expressed with
equality constraints, each of which can be turned into an optimization problem
at need, with equality constraints possibly changed into inequalities, and/or by
additional slacks and surplus variables to be minimized.
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3 Diagonally Dominant Programming

One serious drawback of SDP is that current solving technology is limited to
instances of fairly low sizes. Ahmadi and Hall recently remarked [1] that diago-
nal dominance provides a useful tool for inner approximating the PSD cone. A
matrix (Yij) is DD if

∀i ≤ n Yii ≥
∑

j �=i

|Yij |. (12)

It follows from Gershgorin’s theorem that all DD matrices are PSD (the converse
does not hold, hence the inner approximation). This means that

∀{i, j} ∈ E Xii + Xjj − 2Xij = d2ij

Y =
(

IK x�

x X

)

is DD

⎫
⎬

⎭
(13)

is a DDP formulation with a feasible region which is an inner approximation of
that of Eq. (8).

The crucial observation is that Eq. (12) is easy to linearize exactly, as follows:

∀i ≤ n
∑

j �=i

Tij ≤ Yii

∀i, j ≤ n − Tij ≤ Yij ≤ Tij .

We exploit this idea to derive a new DDP formulation related to the EDGP,
which is in fact an LP for the EDGP.

∀{i, j} ∈ E Xii + Xjj − 2Xij = d2ij(
IK x�

x X

)

= Y

∀i ≤ n + K
∑

j≤n+K
j �=i

Tij ≤ Yii

−T ≤ Y ≤ T.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(14)

Note that, previous to Eq. (14), the only existing LP formulation for the
EDGP was the relaxation of Eq. (4) in which every monomial m(x) of the quartic
polynomial in the objective is linearized to a variable μ subject to linear convex
and concave relaxations of the nonconvex constraint μ = m(x). It is known [12]
that, for large enough variable bounds, this relaxation is much weaker than the
obvious lower bound 0. We hope that the new formulation Eq. (14) will improve
the situation.

3.1 DDP from the Dual

Since Eq. (14) is an inner approximation of Eq. (8), there might conceivably be
cases where the feasible region of Eq. (14) is empty while the feasible region of
Eq. (8) is non-empty (quite independently of whether the original EDGP instance
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has a solution or not). For such cases, Ahmadi and Hall recall that the dual of
any SDP is another SDP (moreover, strong duality holds). So it suffices to derive
a DDP from the dual of the SDP relaxation Eq. (8) in order to obtain a new,
valid LP relaxation of the EDGP.

3.2 Iterative Improvement of the DDP Formulation

Ahmadi and Hall also provide an iterative method to improve the DDP inner
approximation for general SDPs, which we adapt here to Eq. (14). For any sym-
metric n × n matrix U , we have U�U � 0 since any Gram matrix is PSD. By
the same reason, U�XU � 0 for any X � 0. This implies that

D(U) = {U�AU | A is DD} (15)

is a subset of the PSD cone. We can therefore replace the constraint “Y is DD”
by Y ∈ D(U) in Eq. (13). Note that this means the LP formulation is now
parametrized on U , which offers the opportunity to choose U so as to improve
the approximation. More precisely, we define a sequence of DDP formulations:

∀{i, j} ∈ E Xii + Xjj − 2Xij = d2ij

Y =
(

IK x�

x X

)

∈ D(Uh),

⎫
⎬

⎭
(16)

for each h ∈ N, with

U0 = I

Uh = factor(Ȳ h−1),

where factor(·) indicates a factor of the argument matrix (Ahmadi and Hall
suggest using Choleski factors for efficiency), and Ȳ h is the solution of Eq. (16)
for a given h.

The iterative method ensures that, for each h, the feasible region of Eq. (16)
contains the feasible region for h − 1. This is easily seen to be the case since, if
Uh is a factor of Ȳ h−1, we trivially have (Uh)�

IUh = (Uh)�
Uh = Ȳ h−1, and

since I is trivially DD, Ȳ h−1 ∈ D(Uh). Moreover, Ȳ h−1 is feasible in Eq. (16),
which proves the claim.

The transformation of the constraint Y ∈ D(U) into a set of linear con-
straints is also straightforward. Y ∈ D(U) is equivalent to “Y = U�ZU and
Z is DD”, i.e.

∀i ≤ n + K
∑

j≤n+K
j �=i

Tij ≤ Zii

−T ≤ Z ≤ T

U�ZU = Y,

as observed above.



232 G. Dias and L. Liberti

4 A New Heuristic for the DGP

In this section we use some of the techniques discussed above in order to derive a
new heuristic algorithm which will hopefully be able to solve large-scale EDGP
instances.

1. Solve a DDP approximation to an SDP relaxation of the DGP (see previous
sections) to yield X̄. If rank(X̄) ≤ K, factor X̄ = x̄x̄� and return x̄.

2. We now have X̄ with rank(X̄) > K. We run Barvinok’s randomized rank
reduction algorithm [4]:
(a) sample y ∈ R

nK from a multivariate normal distribution N nK(0, 1)
(b) let T = factor(X̄)
(c) let x′ = Ty (optionally repeat a given number of times from Step 2a and

choose best x′).
3. Call any local NLP solver with x′ as a starting point, and hope to return a

rank K solution x∗ ∈ R
nK which is feasible in Eq. (3).

Barvinok proves that there is concentration of measure for the randomized rank
reduction in Steps 2a–c, so that, if κ is the least number such that m = |E| ≤ nκ,
there is n0 large enough such that, if n ≥ n0, we have:

Prob

(

∀{i, j} ∈ E dist(x′,Xij) ≤ c(κ)
√

‖X̄‖2 lnn

)

≥ p, (17)

where dist(x,Xij) is the Euclidean distance from x to the manifold Xij , ‖X‖2
is the largest eigenvalue of X̄, c(κ) is a constant depending only on κ, and p is
given in [4] as p = 0.9.

Note that we can actually solve an SDP relaxation of the DGP, in Step 1,
rather than a DDP approximation thereof. This variant of the heuristic will be
used to obtain a computational comparison in Sect. 5.

We remark that we are actually mis-using Barvinok’s rank reduction algo-
rithm, which was originally developed only for K = 1. Concentration of measure
phenomena, however, are based on average behaviour being what one would
expect; the most important part of the work is always to prove that large dis-
tortions from the mean are controllably improbable. We therefore believe we
are justified in our mis-appropriation, at the risk of the probability being some-
what lower than advertised; but since we have no good estimations for c, this
vagueness is not overly detrimental. Essentially, most concentration of measure
results are often used qualitatively in algorithmic design, as a statement that, for
large enough sizes, the expected behaviour is going to happen with ever higher
probability.

On the other hand, mis-using a theoretical result is not to be taken lightly,
even if justified by common sense. This is why we also obtained some additional
computational experiments (not reported here) with SDPs and DDPs derived
from writing realizations as vectors in R

nK rather than n×K matrices, i.e. pre-
cisely the setting of Barvinok’s theorem. We found that these results yielded
similar outcomes to our heuristic, but in much slower times, due to the much
larger size O(nK × nK) of the involved matrices.
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5 Preliminary Computational Assessment

We implemented the proposed heuristic in Python 2.7 and tested it on a Darwin
Kernel 15.3 (MacOSX “El Capitan”) running on an Intel i7 dual-core (virtual
quad-core) CPU at 3.1 GHz with 16 GB RAM.

These are very preliminary experiments, and should be taken as a token of
validation of our ideas, not as sound empirical evidence that our idea is computa-
tionally the best for the task. As concerns the task, we aim at finding solutions
for Eq. (1). Although our stated motivation is to be able to solve Eq. (2), we
would like our heuristic to be able to handle both equalities and inequalities,
and, for this work, all we had time for was the former.

We tested two variants of our heuristic for comparison: the original one, with
Step 1 solving a DDP, and the variant where Step 1 solves an SDP.

Our heuristic is configured as follows.

1. We solved DDP formulations with CPLEX 12.6 [10] (default configuration),
which automatically exploits all the cores.

2. We implemented Barvinok’s rank approximation heuristic in Python, which
only runs on a single core. Steps 2a–c are repeated five times.

3. After testing a few local NLP solvers, we decided to use the L-BFGS imple-
mentation given in the Python module scipy.optimize in its default config-
uration, as it gives a good trade-off between speed and solution quality.

We decided not to use the iterative DDP approximation method (Sect. 3.2)
because of an implementation issue of the Python modelling API we used [20].

For each instance and solution method we record the (scaled) largest distance
error (LDE) of the solution x, defined as

lde(x) = max
{i,j}∈E

(| ‖xi − xj‖2 − dij |/dij),

the (scaled) mean distance error (MDE)

mde(x) =
1

|E|
∑

{i,j}∈E

(| ‖xi − xj‖2 − dij |/dij),

and the CPU time. All CPU times have been computed in Python using the
time module. They indicate the CPU time used by the Python process as well
as its spawned sub-processes (including CPLEX and the local NLP solver) to
reach termination.

We tested some randomly generated instances as well as some protein
instances taken from the Protein Data Bank (PDB). In the latter, only edges
smaller than 5 Å were kept, which is realistic w.r.t. Nuclear Magnetic Resonance
(NMR) experiments.

Our first test (see Table 1) aims at solving DGPs for K = 2 on three groups
of instances.
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– Small toy instances, infeasible for K = 2.
– A set of instances named euclid-n p, generated randomly as follows:

1. place n points in a square, uniformly at random;
2. generate the cycle 1, . . . , n to ensure biconnectedness;
3. for each other vertex pair i, j, decide whether {i, j} ∈ E with probability p;
4. record the Euclidean distance dij between pairs of points in E;

obviously, all such instances are feasible.
– Two protein instances 1b03 and 1crn, obviously infeasible for K = 2.

Table 1. Tests for K = 2.

Instance LDE MDE CPU

Name |V | |E| SDP DDP SDP DDP SDP DDP

test1 4 6 0.06 0.58 0.03 0.21 0.07 0.06

test2 4 6 0.44 0.44 0.09 0.09 0.10 0.08

test3 4 6 0.06 0.55 0.02 0.18 0.11 0.05

random-8 0.5 8 19 0.79 1.00 0.17 0.15 0.16 0.19

cl3 10 23 2.97 2.97 0.53 0.53 0.30 0.28

dmdgp-3 10 10 24 0.81 0.56 0.13 0.15 0.27 0.33

dmdgp-3 20 20 54 0.80 0.80 0.15 0.13 1.24 1.17

testrandom 100 1008 0.98 0.97 0.21 0.21 35.75 67.96

euclid-10 0.5 10 26 0∗ 0∗ 0∗ 0∗ 0.32 0.41

euclid-20 0.5 20 111 2.32 0∗ 0.14 0∗ 1.54 1.70

euclid-30 0.5 30 240 0∗ 0∗ 0∗ 0∗ 3.20 3.98

euclid-40 0.5 40 429 0∗ 0∗ 0∗ 0∗ 6.21 9.57

euclid-50 0.2 50 290 0∗ 12.56 0∗ 0.25 8.10 10.29

euclid-50 0.3 50 412 0∗ 0∗ 0∗ 0∗ 8.23 12.77

euclid-50 0.4 50 535 0∗ 0∗ 0∗ 0∗ 11.96 12.28

euclid-50 0.5 50 642 0∗ 0∗ 0∗ 0∗ 11.51 16.43

euclid-60 0.2 60 407 6.38 14.78 0.08 0.22 11.42 14.72

euclid-60 0.5 60 938 0∗ 0∗ 0∗ 0∗ 17.31 20.75

euclid-60 0.6 60 1119 0∗ 0∗ 0∗ 0∗ 20.07 21.61

euclid-70 0.5 70 1212 0∗ 0∗ 0∗ 0∗ 29.05 33.43

euclid-80 0.5 80 1639 0∗ 0∗ 0∗ 0∗ 38.17 44.69

euclid-90 0.5 90 1959 0∗ 0∗ 0∗ 0∗ 62.03 72.70

1b03 89 456 0.98 0.85 0.13 0.13 63.18 53.53

1crn 138 846 1.20 1.12 0.14 0.14 481.13 214.50

0∗ indicates values of O(10−5) or less.



Diagonally Dominant Programming in Distance Geometry 235

Our heuristic, when based on SDP, outperforms the DDP-based one on smaller
instances, but, time-wise, the technological edge of solving LPs is visible in the
larger instances.

Our second test (Table 2) is more realistic, and finds realizations of (feasible)
protein instances in K = 3. The tests validate our expectations: SDP provides
a tighter bound than DDP, and hence the SDP-based heuristic yields better
quality solutions, but at the expense of CPU time.

Table 2. Tests on proteins for K = 3.

Instance LDE MDE CPU

Name |V | |E| SDP DDP SDP DDP SDP DDP

C0700.odd.G 36 308 0∗ 0.42 0∗ 0.01 59.84 37.79

C0700.odd.H 36 308 0∗ 0.42 0∗ 0.02 35.07 32.89

C0150alter.1 37 335 0∗ 0.58 0∗ 0.06 61.80 14.69

C0080create.1 60 681 0∗ 0∗ 0∗ 0∗ 172.55 121.15

C0080create.2 60 681 0∗ 0.55 0∗ 0.04 149.40 83.92

1b03 89 456 0.28 0.48 0.02 0.04 255.75 103.22

1crn 138 846 0.73 0.88 0.03 0.03 874.17 469.99

1guu-1 150 959 0.83 0.89 0.02 0.04 2767.71 978.39

0∗ indicates values of O(10−5) or less.

6 Conclusion

We propose a new heuristic algorithm for the DGP, based on diagonally-
dominant programming, a randomized rank reduction algorithm, and a local
NLP solver. Although our computational test set-up is prelimimnary, we believe
our results are promising, and give an indication that the computational bottle-
neck of SDP can be overcome by diagonal dominance and LP.
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Abstract. In this paper we consider an extended version of the classical
capacitated single allocation hub location problem in which the size of the
hubs must be chosen from a finite and discrete set of allowable capacities.
We develop a Lagrangian relaxation approach that exploits the problem
structure and decomposes the problem into a set of smaller subproblems
that can be solved efficiently. Upper bounds are derived by Lagrangian
heuristics followed by a local search method. Moreover, we propose some
reduction tests that allow us to decrease the size of the problem. Our
computational experiments on some challenging benchmark instances
from literature show the advantage of the decomposition approach over
commercial solvers.

Keywords: Hub location · Capacity decisions · Lagrangian relaxation

1 Introduction

Given a complete graph G = (N,A), where N represents the origins, destinations
and possible hub locations, and A is the edge set. Hub location problems consider
the location of hubs and the allocation of origin-destination nodes to hub nodes
in order to route the flow wij from each origin i ∈ N to each destination j ∈ N .
Hub nodes are used to sort, consolidate, and redistribute flows and their main
purpose is to realize economies of scale: while the construction and operation of
hubs and the resulting detours lead to extra costs, the bundling of flows decreases
costs. The economies of scale are usually modelled as being proportional to the
transport volume, defined by multiplication with a discount factor α ∈ [0, 1].

Depending on the way in which non-hub nodes may be assigned to hub nodes,
hub location problems can be classified as either multiple allocation [7] or single
allocation [6,13,15,16] hub location problems. In multiple allocation problems,
the flow of the same non-hub node can be routed through different hubs, while in
single allocation problems, each non-hub node is assigned to exactly one hub. In
addition, each of these problems can be classified as capacitated or uncapacitated
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depending on various types of capacity restrictions. In particular, there can be
limitations on the total flow routed on a hub-hub link [12] or on the volume
of flow into the hub nodes [8]. For recent overviews on hub location problems
we refer the reader to [1,3]. Hub location problems have important applications
including, among others, telecommunication systems [11], airline services [10],
postal delivery services [6], and public transportation [14].

Due to the importance of capacity restrictions in real-world hub location
problems, many papers can be found in the literature that address this type of
problems in both multiple and single allocation cases [2,8]. In what follows, we
concentrate on different variants of the capacitated single allocation hub location
problem (CSAHLP). The classical mixed integer linear programming (MILP)
formulation for the CSAHLP was proposed by Campbell [2]. It allows a limit on
the incoming flow at the hubs coming from both non-hub and hub nodes and
defines set-up costs for establishing each of the hubs. Motivated by a postal deliv-
ery application, Ernst and Krishnamoorthy [8] studied a variant of the CSAHLP
with capacity constraints on the incoming flow at the hubs coming only from
non-hub nodes. They proposed an MILP formulation, two heuristics for obtain-
ing upper bounds, and a branch and bound method. Labbé et al. [12] study a
CSAHLP where for each hub there is a limit on the total flow traversing it. They
studied some polyhedral properties of the problem and propose a branch-and-
cut method. Costa et al. [9] proposed a bi-criteria approach to deal with the
CSAHLP where the second objective function either minimizes the time that
hubs take for processing the flow or minimizes the maximum service time at the
hubs. Contreras et al. [4] present a branch-and-price approach for the CSAHLP
where lower bounds are obtained using Lagrangian relaxation.

As an extension of the above models, in this paper, we consider a CSAHLP
where the choice of capacity levels is explicitly included in the model. This
problem was introduced by Correia et al. [5] and is called the capacitated sin-
gle allocation hub location problem with multiple capacity levels (CSAHLPM).
In CSAHLPM the capacity restrictions are applied only on incoming flow from
origins and each capacity level available incurs a specific set-up cost. All afore-
mentioned CSAHLPs consider a discrete set of potential hub locations, with
each hub location having an exogenously defined maximum capacity, while in
CSAHLPM individual capacity levels can be installed for each hub location.
Accordingly, not only have the hub nodes to be chosen but also the capacity
level at which each of them will operate. In [5], the authors propose some MILP
formulations for the problem, compare them in terms of the linear programming
relaxation, and use state-of-the art optimization software to solve the problem.

In this paper we consider a general form of the CSAHLPM where distances
between possible hub locations are not necessarily Euclidean distances in the
plane. Starting from a natural quadratic binary program, we first provide a
reformulation of the problem which shifts the quadratic term from the objec-
tive function to a set of constraints. This allows us to deal with an even more
general form of the problem where transportation costs do not need to be linear
anymore [17,19]. We develop a Lagrangian relaxation scheme of a path-based
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MILP formulation by relaxing the assignment constraints and also constraints
that link the assignment variables with the path variables. The Lagrangian func-
tion exploits the problem structure and decomposes the problem into a set of
smaller subproblems that can be solved efficiently. Some of the latter can be
reduced to continuous knapsack problems that can be solved quickly. Since the
proposed Lagrangian relaxation does not have the so-called integrality prop-
erty, the obtained bound will be stronger than the one given by the continuous
relaxation of the MILP. To calculate feasible solutions we propose a two-phase
heuristic where a greedy algorithm is used to construct an initial solution in
the first phase and a local search scheme tries to improve the initial solution
in the second phase. Finally, we present some reduction tests that allow us to
decrease the size of the problem without affecting the set of optimal solutions
and, accordingly, to obtain tighter bounds with less computational effort.

2 Problem Formulations

Let a directed graph G = (N,A) be given, where the set N contains the nodes,
representing the origins, destinations and possible hub locations, and A is the
edge set. Let wij be the amount of flow to be transported from node i to node j.
We denote by Oi =

∑
j∈N wij and Di =

∑
j∈N wji the total outgoing flow from

node i and the total incoming flow to node i, respectively. For each k ∈ N , we
consider Qk = {1, 2, . . . , sk} as a set of different capacity levels available for a
potential hub to be installed at node k. For each k ∈ N and each � ∈ Qk, let fk�

and Γk� represent the fixed set-up cost and the capacity of hub k associated
with capacity level �. The capacity of a hub represents an upper bound on
the total incoming flow that can be processed in the hub. Thus, it refers only
to the sum of the flow generated at the nodes that are assigned to the hub
and not taking into account the inter-hub flow. The cost per unit of flow for
each path i − k − m − j from an origin node i to a destination node j which
passes hubs k and m respectively, is χdik + αdkm + δdmj , where χ, α, and δ are
the nonnegative collection, transfer and distribution costs respectively, and dij

represents the distance between nodes i and j. Note that we do not require
that the distances satisfy the triangle inequality. The CSAHLPM now consists
in selecting a subset of nodes as hubs with specific capacity levels and assigning
the remaining nodes to these hubs such that each non-hub node is assigned to
exactly one hub node without exceeding its chosen capacity, with the minimum
overall cost.

2.1 Quadratic Binary Formulation

In order to model the problem as an integer quadratic program, we define binary
variables xik indicating whether a source/sink i is allocated to a hub k. In par-
ticular, the variables xkk are used to indicate whether k becomes a hub. More-
over, for each k ∈ N and � ∈ Qk, we define a binary variable tk� indicating
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whether node k receives a hub with capacity level �. For ease of presentation, we
set cik := dik (χ Oi + δ Di). The CSAHLPM can then be formulated as follows:

P: min
∑

i

∑

k

cikxik +
∑

i

∑

j

∑

k

∑

m

αdkmwij xikxjm +
∑

k

∑

�∈Qk

fk�tk�

s.t.
∑

k xik = 1 (i ∈ N) (1)
xik ≤ xkk (i, k ∈ N) (2)
∑

i Oixik ≤ ∑
�∈Qk

tk�Γk� (k ∈ N) (3)
∑

�∈Qk
tk� = xkk (k ∈ N) (4)

∑
k xkk ≥ p (5)

xik ∈ {0, 1} (i, k ∈ N) (6)
t�k ∈ {0, 1} (k ∈ N, � ∈ Qk) (7)

where the objective function measures the total transport costs consisting of the
collection and distribution costs of nonhub-hub and hub-nonhub connections, the
hub-hub transfer costs, as well as the set-up costs of the hubs. Constraints (1)
force every node to be allocated to precisely one hub node. Constraints (2) state
that i can only be allocated to k if k is chosen as a hub. Constraints (3) are
capacity constraints and ensure that the overall incoming flow of nodes assigned
to a hub does not exceed its capacity. Constraints (4) assure that if a hub is
installed at a node then exactly one capacity level is chosen.

Finally, Constraint (5) sets a lower bound p on the number of chosen hubs.
We use this constraint only to strengthen the lower bounds given by this model,
choosing a value for p that is a lower bound on the number of hubs already due
to the remaining constraints, so that Constraint (5) is redundant. For details
about the computation of p we refer the reader to [5].

Now, let us consider a reformulation of the above model in which the
quadratic term from the objective function is shifted to the set of constraints. To
this end, we define a new continuous variable zkm that models the traffic on the
hub-hub connection (k,m) ∈ A. This allows us to rewrite the above model as:

P1: min
∑

i

∑
k cik xik +

∑
k

∑
m α dkm zkm +

∑
k

∑
�∈Qk

fk�tk�

s.t.
∑

i

∑
j wij xikxjm ≤ zkm (k,m ∈ N) (8)

(1) − (7)

where the traffic variable zkm for (k,m) ∈ A is determined by Constraints (8).
Note that since all data are non-negative, there exists an optimal solution for
problem P1 where all constraints (8) are tight. Therefore, the problems P and P1
are equivalent.

2.2 Linearization

All formulations proposed in [5] for the CSAHLPM are, in fact, based on the
classical path based formulation of [2,18] and the flow based formulation of [8].
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Moreover, in [5] the authors assume that the distances between nodes satisfy the
triangle inequality. However, if the distances considered are, for example, road
distances which do not necessarily satisfy the triangle inequality, then the flow
based formulations cannot be applied.

To linearize Problem P1, we follow the path based formulation of [18] for
uncapacitated hub location problems and define a set of binary variables yikjm

for i, k, j,m ∈ N to indicate whether the flow from node i to node j travels via
hubs located at nodes k and m or not. The resulting formulation is as follows:

ILP1: min
∑

i

∑
k cikxik +

∑
k

∑
m α dkm zkm +

∑
k

∑
�∈Qk

fk�tk�

s.t.
∑

i

∑
j wij yikjm ≤ zkm (k,m ∈ N) (9)

∑
k yikjm = xjm (i, j,m ∈ N) (10)

∑
m yikjm = xik (i, j, k ∈ N) (11)

0 ≤ yikjm ≤ 1 (i, k, j,m ∈ N) (12)
(1) − (7).

This problem is equivalent to Problem P. However, if the integrality restrictions
on variables x or t are relaxed, it is no longer equivalent to P, but only provides
a lower bound on its objective function value.

3 Solution Method

3.1 Lagrangian Relaxation

Due to the large number of variables and constraints, solving the linear relax-
ation of ILP1 requires considerable running time as the size of the instances
increases. To overcome this problem, we develop a Lagrangian relaxation app-
roach based on relaxing Constraints (1), (10) and (11) of the ILP1 formulation.
Using Lagrangian multipliers π, λ, and μ, respectively, we obtain the following
Lagrangian function:

L(π, λ, μ) : min
∑

i πi +
∑

i

∑
k c̄ikxik +

∑
k

∑
�∈Qk

fk�tk�

+
∑

k

∑
m α dkm zkm +

∑
i

∑
j

∑
k

∑
m(λijm + μjik)yikjm

s.t. (2) − (7), (9), (12)

where
c̄ik := cik − πi − ∑

j(λjik + μjik) (i, k ∈ N).

The best lower bound is then obtained by solving the Lagrangian dual problem
given as maxπ,λ,μL(π, λ, μ).

Considering the independence between the two groups of variables (x, t)
and (y, z) in L(π, λ, μ), we can first decompose the latter into two subprob-
lems Lxt(π, λ, μ) and Lyz(λ, μ):
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Lxt(π, λ, μ) : min
∑

i

∑
k c̄ikxik +

∑
k

∑
�∈Qk

fk�tk�

s.t. (2) − (6) (13)
Lyz(λ, μ) : min

∑
k

∑
m dkm zkm +

∑
i

∑
j

∑
k

∑
m(λijm + μjik)yikjm

s.t. (9), (12). (14)

Solving Lxt(π, λ, μ): To solve Subproblem (13), let us suppose that node k
receives a hub with capacity level �, that is, tk� = 1. Then the remaining nodes
that will be assigned to hub k can be found by solving the following binary
knapsack problem:

ξk� = min
∑

i�=k c̄ikxik

s.t.
∑

i�=k Oixik ≤ Γk� − Ok

xik ∈ {0, 1} (i ∈ N, i �= k).

Now suppose that a hub is located at k ∈ N , such that xkk = 1. Then the
following problem just selects the best capacity level of the hub from Qk:

εk = min
∑

�∈Qk
(fk� + ξk�)tk�

s.t.
∑

�∈Qk
tk� = 1

tk� ∈ {0, 1} (� ∈ Qk).

Finally, solving the following problem gives the optimal value of Lxt(π, λ, μ):

min
∑

k(εk + c̄kk)xkk

s.t.
∑

k xkk ≥ p

xkk ∈ {0, 1} (k ∈ N).

This problem can be solved easily by sorting and choosing at least the p hubs
with smallest objective coefficient εk + c̄kk.

Solving Lyz(λ, μ): Subproblem (14) can be further decomposed into n2 subprob-
lems, one for each pair (k,m), as follows:

max − αdkm zkm − ∑
i

∑
j(λijm + μjik)yikjm

s.t.
∑

i

∑
j wij yikjm ≤ zkm

0 ≤ yikjm ≤ 1 (i, j ∈ N)

where we may assume λijm + μjik < 0 for all i, j ∈ N . This problem is a
special knapsack problem where the capacity of the knapsack is part of the
decision making process with per unit cost αdkm. An optimal solution for this
problem can be found by adding only those items to the knapsack whose profit
per unit of weight exceeds the cost of one unit of capacity. More precisely, for
each item i, j ∈ N , if

−(λijm + μjik)yikjm/wij > αdkm

we add this item to the knapsack and set yikjm = 1, otherwise we set yikjm = 0.
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3.2 Primal Heuristics

To obtain a valid upper bound for our given formulation, we aim at creating a
feasible solution in a two step process, starting from the current solution of the
Lagrangian relaxation procedure. In the first step, we try to derive a feasible
solution and, if we found one, we reassign hubs with a local search algorithm to
improve the solution.

Let (x, t, z) be the solution of the Lagrangian relaxation in the current iter-
ation. As this solution does not need to be feasible, we first try to find valid
variable assignment. Firstly, we will only consider the current solution if the
opened capacity is large enough to meet the demand. The procedure to heuris-
tically generate a feasible solution (x̄, t̄, z̄) is as follows: whenever xkk = 1 in the
Lagrangian relaxation, node k will be a hub in the heuristic solution, i.e., x̄kk = 1,
and we set t̄k� = tk� for all � ∈ Qk. If a node i is assigned to more than one
hub, we only assign it to the hub with the least cost. The remaining unassigned
nodes will now be sorted according to their weights Oi and we consider the free
capacity γk in each hub given by

γk :=
∑

�∈Qk
Γk�t̄k� − ∑n

i=1 Oix̄ik .

Now we iteratively assign each remaining node to a hub, starting with the one
with the highest Oi. The node with the highest weight will be assigned to the
hub with the lowest cost and so on. If we cannot assign every node to a hub in
this way, we stop our heuristic.

In the second step we try to improve the upper bound found in the first step
by means of a local search algorithm. For that, we only consider reassigning nodes
if the calculated upper bound from the first step is not considerably worse than
the best known upper bound. The local search phase then tries to find possible
shift or swap moves that improve the current solution. While shifting tries to
assign nodes to different hubs with enough free capacity, swapping exchanges
two assigned hubs. Note that when we reassign a node we only need to calculate
the estimated cost Δ of the new feasible solution in terms of the old upper
bound, corrected by the influence of the new assignment. For example in the
shifting step, when node i is reassigned from hub k to hub m, the value of Δ is
computed as:

Δ = z̄km + z̄mk + cim − cik

+
∑

j �=m

α(djmz̄jm + dmj z̄mj) +
∑

j �=k

α(djkz̄jk + dkj z̄kj).

If Δ < 0, then the so found upper bound is smaller than the original one and
we update the solution accordingly.

3.3 Reduction Test

The size of ILP1 may be reduced by eliminating the hub variables which do not
appear in any optimal solution of a given instance. For this, we use informa-
tion obtained from the Lagrangian function at a given iteration for any given
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Lagrangian multipliers π, λ and μ. Our reduction test is based on testing if a
hub k with a specific level � is going to be excluded in the optimal solution of a
given instance. The main idea of fixing a variable to zero is to check if including
this variable in the solution will lead to a lower bound greater than the best
upper bound found so far. If so, the variable cannot belong to an optimal solu-
tion. We consider variables tk�, k ∈ N, � ∈ Qk, that are not already fixed and
are equal to zero in the current iteration. We thus impose an additional con-
straint tk� = 1 to the current Lagrangian function. Let LBk� represent the new
value of the Lagrangian function. If LBk� ≥ UB, then we fix tk� = 0 and add it
to the list of fixed variables.

The main question arising here is how to compute LBk� without resolving
the Lagrangian function. To answer this question, we distinguish between the
following two situations: (i) If xkk = 1, then there exists a level �′ ∈ Qk such
that tk�′ = 1. Therefore, to open hub k with different capacity level �, we need
to exclude hub k with capacity level �′. Hence we have:

LBk� = LB − (fk�′ + ξk�′) + (fk� + ξk�).

(ii) If xkk = 0, we consider two different scenarios. If the number of open hubs
agrees with the lower bound p and all values εm + c̄mm of open hubs are non-
positive, or the number of open hubs is strictly greater than p, we do not need
to close any hubs in order to open hub k, which means:

LBk� = LB + (c̄kk + fk� + ξk�) (15)

Otherwise, if for some open hubs the values εm + c̄mm are positive, we close the
most expensive one and subtract εm∗ + c̄m∗m∗ from LBk�, i.e.,

LBk� = LB + (c̄kk + fk� + ξk�) − (εm∗ + c̄m∗m∗)

where m∗ = argmax{εm + c̄mm | xmm = 1} is the most expensive open hub.
Note that if for every k and all � ∈ Qk we have tk� = 0, we can fix all xkk and xik

to zero as well.
In our computational experiments we performed this reduction test in any

iteration of the subgradient method. When the set of potential hubs or the set
of capacity levels for a given hub was reduced, we updated Subproblems (13)
and (14) accordingly.

4 Extension to Link Capacities

The reformulation of Problem P as Problem P1 allows to extend the CSAHLPM
in order to include link capacities. In particular, consider an application in
telecommunication networks containing set-up cost sij for installing needed
capacities on the connection (i, j) ∈ A; see [19]. The capacity is provided by the
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installation of an integer number of links of a fixed capacity q. The resulting
problem is as follows:

MILP1: min
∑

i

∑
k cik xik +

∑
k

∑
m skm zkm +

∑
k,�∈Qk

fk�tk�

s.t.
∑

i

∑
j wij yikjm ≤ q zkm (k,m ∈ N) (16)

(1) − (7), (9) − (12)
zij ≥ 0, integer (i, j) ∈ A

where zij indicates the number of installed links on (i, j) ∈ A. Constraints (16)
relate the number of installed links on each hub-hub connections to the total
flow passing the link and state that the flow on each hub-hub connection cannot
exceed the capacity of the link. Moreover, since the total incoming and outgoing
flow for each node i is given, the cost factors cik can be precomputed. Note that
if we divide all wij by q and set skm = αdkm, and if we relax the integrality of
the z variables, Problem MILP1 agrees with Problem ILP1.

Such stepwise cost functions make the problem much harder to solve. They
have been considered also in [17] for the uncapacitated single allocation hub
location problem arising in transportations where the stepwise function results
from the integrality of the number of vehicles on hub-hub-connections.

Note that our decomposition approach is still valid for problem MILP1 with a
simple modification in Subproblem (14) to include the integrality of z variables.
An efficient solution method can be found in [17].

5 Computational Experiments

In this section we present our computational experiments on the lower bound
and upper bound computations for the CSAHLPM. We apply our decomposi-
tion approach to both problems ILP1 and MILP1, and compare the results with
those obtained from the linear relaxation of these models solved by Cplex 12.6.
To compute the optimal (or near-optimal) Lagrangian multipliers, we use a sub-
gradient optimization method with a maximum number of 2000 iterations. We
implemented the algorithms in C++ and performed all experiments on an Intel
Xeon processor running at 2.5 GHz.

For our numerical tests, we considered the Australian Post data set (AP) from
the OR library1, which is used frequently for different hub location problems. We
followed the pattern proposed in [5] to generate hub levels: for the highest hub
level, the capacity and the set-up cost are equal to the values that are included
in the AP data set. Additional levels are produced recursively, starting from the
second highest level, according to the formulae

Γk� = 0.7 · Γk �+1 and fk� = ρ · 0.7 · fk �+1 ,

where ρ = 1.1 or 1.2 is a factor to model economies of scale. We consider instances
with either three or five levels, with the highest capacity level equal to the
1 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/phubinfo.html.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/phubinfo.html
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Table 1. Computational results for the original CSAHLPM.

Instance Lagrangian relaxation Cplex

Type Level Ub Gap(%) Time(s) ch(%) chl(%) Gap(%) Time(s)

ρ = 1.1

25LL 3 216557.6 0.1 18.0 4.0 66.7 0.1 15.9

5 202773.6 8.3 14.6 0.0 5.6 7.3 6.0

25LT 3 278062.7 1.0 16.8 8.0 56.0 1.1 11.5

5 260850.8 2.2 17.1 4.0 42.4 3.5 11.7

50LL 3 217183.0 1.1 405.2 6.0 59.3 1.0 993.2

5 200016.4 1.5 408.5 0.0 45.6 2.1 815.9

50LT 3 290376.8 1.9 390.4 18.0 54.0 2.2 1837.3

5 272592.7 1.1 384.4 24.0 58.0 1.9 1651.4

ρ = 1.2

25LL 3 227274.4 0.1 16.4 64.0 86.7 4.8 12.1

5 211538.1 0.3 17.3 0.0 69.6 11.2 4.9

25LT 3 289881.1 0.6 16.7 16.0 58.7 0.9 11.7

5 282810.3 0.8 16.9 8.0 56.8 2.3 14.6

50LL 3 229339.1 1.4 407.2 4.0 41.3 6.3 1414.6

5 219429.2 1.0 406.1 2.0 46.8 10.7 1205.2

50LT 3 303998.6 1.5 393.7 12.0 43.3 1.3 1715.3

5 291289.2 0.2 372.0 56.0 85.2 1.5 1522.3

loose (L) capacity for the potential hub in the corresponding instance in the AP
data set. For the highest set-up cost level we use both the tight (T) and the
loose (L) set-up costs from the AP data set. For the data used in MILP1 we
followed [16]: for all i, j ∈ N , we set sij = α q dij , where q =

∑
i,j wij/p2.

Tables 1 and 2 present the results for problems ILP1 and MILP1, respectively.
Each of these tables is divided into two parts where we separately report results
for ρ = 1.1 or 1.2. In both tables, the first columns indicate the problem type
(|N |Lx) with |N | ∈ {25, 50} and x ∈ {L, T}. The next two columns give the
number of levels (level) and the best upper bound (Ub) obtained with our primal
heuristic. The next columns present the results of our Lagrangian relaxation
and the results of Cplex. For each algorithm, gap(%), and time(s) represent the
relative gap in percent and the total required time (in seconds), respectively.
The formula we used to compute the relative gaps is 100× (Ub−Lb)/Ub, where
Lb stands for the value of the lower bound. The columns under the headings
ch(%) and chl(%) of the Lagrangian relaxation present, respectively, the percent
of closed hubs and closed hub levels by our reduction tests.

As we can observe from Table 1, the Lagrangian relaxation almost always
outperforms Cplex in terms of both the bound tightness and running times.
More precisely, the duality gaps for instances with ρ = 1.1 and ρ = 1.2 are,
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Table 2. Computational results for the CSAHLPM with link capacities.

Instance Lagrangian relaxation Cplex

Type Level Ub Gap(%) Time(s) ch(%) chl(%) Gap(%) Time(s)

ρ = 1.1

25LL 3 292025.9 3.4 62.2 0.0 14.7 25.9 11.4

5 292025.9 3.5 70.1 0.0 13.6 35.6 4.7

25LT 3 353996.0 4.6 54.5 4.0 13.3 22.3 11.1

5 362634.8 6.6 56.7 4.0 5.6 30.6 11.1

50LL 3 288545.2 3.4 1144.1 2.0 14.7 25.5 772.1

5 284577.4 2.1 1167.4 2.0 18.4 31.2 751.6

50LT 3 339367.0 7.2 957.0 8.0 20.7 16.3 1152.4

5 350838.8 9.8 883.3 4.0 10.0 23.8 1616.1

ρ = 1.2

25LL 3 292025.9 3.5 55.2 4.0 17.3 22.3 11.8

5 292025.9 3.4 60.8 0.0 12.8 28.2 7.7

25LT 3 360757.7 6.0 58.5 4.0 6.7 20.3 11.4

5 360757.7 5.9 60.8 4.0 7.2 23.4 14.4

50LL 3 292622.1 5.4 1169.5 2.0 4.7 23.1 1123.3

5 289010.6 3.4 1193.7 2.0 13.2 26.1 804.2

50LT 3 358772.3 11.7 894.6 8.0 10.7 16.4 1462.5

5 359860.4 12.1 1010.3 6.0 8.0 20.3 1427.7

on average, 2.1 % and 0.7 % for the Lagrangian relaxation, and 2.4 % and 4.9 %
for Cplex. The results reported in columns 6 and 7 show the effectiveness of
the proposed reduction tests in closing hub levels: on average, 49 % and 61 %
of levels have been closed for instances with ρ = 1.1 and ρ = 1.2, respectively.
This has a significant positive effect on the required computational times of our
Lagrangian relaxation.

Table 2 reports the results for the CSAHLPM with link capacities (MILP1).
As we can observe, in principle, the problem is much more difficult than ILP1.
However, the Lagrangian relaxation outperforms Cplex significantly: the average
duality gap is 5.7 % for the Lagrangian relaxation, compared with an average
duality gap of 24.5 % for Cplex.
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Abstract. Generalizing the concept of tree metric, Hirai (2006) intro-
duced the concept of subtree distance. A mapping d : X × X → R+ is
called a subtree distance if there exist a weighted tree T and a family
{Tx |x ∈ X} of subtrees of T indexed by the elements in X such that
d(x, y) = dT (Tx, Ty), where dT (Tx, Ty) is the distance between Tx and
Ty in T . Hirai (2006) gave a characterization of subtree distances which
corresponds to Buneman’s four-point condition (1974) for the tree met-
rics. Using this characterization, we can decide whether or not a given
matrix is a subtree distance in O(n4) time. However, the existence of a
polynomial time algorithm for finding a tree and subtrees representing a
subtree distance has been an open question. In this paper, we show an
O(n3) time algorithm that finds a tree and subtrees representing a given
subtree distance.

Keywords: Tree metrics · Phylogeny · Realization algorithm

1 Introduction

Let X be a finite set. A mapping d : X × X → R+ is said to be a dissimilarity
mapping on X if for each x, y ∈ X we have d(x, x) = 0 and d(x, y) = d(y, x).
A dissimilarity mapping d on X is called a tree metric if there exist a tree
T = (V,E) with X ⊆ V and a length function l : E → R+ such that for each
x, y ∈ X we have d(x, y) = dT (x, y), where dT (x, y) is the length of the unique
path in T connecting x and y.

Buneman [2] gave a characterization of tree metrics as follows.

Proposition 1 (Buneman [2]). A dissimilarity mapping d on X is a tree met-
ric if and only if for each x, y, z, w ∈ X we have

d(x, y) + d(z, w) ≤ max{d(x, z) + d(y, w), d(x,w) + d(y, z)}. (1)
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Inequality (1) is called the four-point condition. By Proposition 1, the problem
of deciding whether or not a given dissimilarity mapping is a tree metric can
be solved in O(n4) time, where n = |X|. If d : X × X → R+ is a tree metric,
a tree T = (V,E) with X ⊆ V and a length function l : E → R+ such that
d(x, y) = dT (x, y) is called a representation of d. Given a tree metric, we can find
its representation by Neighbor-Joining [6] in O(n3) time or by the algorithm [3]
in O(n2) time.

A connected subgraph of a tree is called a subtree. Generalizing the concept of
tree metric, Hirai [4] introduced the concept of subtree distance. A dissimilarity
mapping d on X is called a subtree distance if there exist a tree T = (V,E) with
length function l : E → R+ and a family {Tx |x ∈ X} of subtrees of T indexed
by the elements in X such that d(x, y) = dT (Tx, Ty), where

dT (Tx, Ty) = min{dT (vx, vy)|vx ∈ V (Tx), vy ∈ V (Ty)}.

In this case, we call T and {Tx|x ∈ X} represent d. For example, a representation
of a subtree distance d in (2), where X = {a, b, c, e, f, g, h, i}, is shown in Fig. 1.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a b c e f g h i

a 0 3 3 1 6 4 7 8
b 3 0 4 2 7 5 8 9
c 3 4 0 1 7 5 8 9
e 1 2 1 0 4 2 5 6
f 6 7 7 4 0 1 5 6
g 4 5 5 2 1 0 1 1
h 7 8 8 5 5 1 0 3
i 8 9 9 6 6 1 3 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2)

We note two applications of subtree distances. It was proved by Ando [1] that
the computation of the Shapley value of minimum cost spanning tree games is
#P-hard in general. However, in the same paper [1], it was shown that if the
cost function defining a minimum cost spanning tree game is a subtree distance,
then the Shapley value of the game can be computed in polynomial time. Also,
in [5], Hirai considered a node-capacitated multiflow problem where a multiflow
is weighted by a subtree distance. He showed the duality between such multi-
flow problems and tree-shaped facility location problems on trees establishing a
combinatorial min-max theorem for the multiflow problems.

Hirai [4] gave the following characterization of subtree distances.

Theorem 1 (Hirai [4]). A dissimilarity mapping d on X is a subtree distance
if and only if for each x, y, z, w ∈ X we have

d(x, y) + d(z, w) ≤ max

⎧
⎪⎪⎨

⎪⎪⎩

d(x, z) + d(y, w), d(x,w) + d(y, z),
d(x, y), d(z, w),
d(x,y)+d(y,z)+d(z,x)

2 , d(x,y)+d(y,w)+d(w,x)
2 ,

d(x,z)+d(z,w)+d(w,x)
2 , d(y,z)+d(z,w)+d(w,y)

2

⎫
⎪⎪⎬

⎪⎪⎭
. (3)
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Fig. 1. A weighted tree T and a family {Tx|x ∈ X} of subtrees of T .

If d satisfies the triangular inequality, then the condition (3) is reduced to the
four-point condition.

Using Theorem 1, we can decide in O(n4) time whether or not a given dissim-
ilarity mapping is a subtree distance. However, no polynomial time algorithm for
finding a representation of a subtree distance was known so far. In this paper,
we present an O(n3) time algorithm for finding a representation of a subtree
distance. By using this algorithm, one can decide in O(n3) time whether or not
a given dissimilarity mapping is a subtree distance.

The rest of the paper is organized as follows. In Sect. 2, we describe an algo-
rithm for finding a representation of a subtree distance. In Sect. 3, we show the
validity and the time complexity of the algorithm. In Sect. 4, we give conclusions
of this paper.

2 An Algorithm for Finding a Representation
of a Subtree Distance

In this section, we present an O(n3) time algorithm for finding a representation
of a subtree distance. We first show the construction of the underlying weighted
tree. Then, we show the construction of the subtrees.

2.1 Construction of an Underlying Tree

We begin with the following fundamental result.
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Lemma 1. If d : X ×X → R+ is a subtree distance, then there exists an x ∈ X
such that for all y, z ∈ X we have d(x, y) + d(x, z) ≥ d(y, z).

Proof. Choose x,w ∈ X such that

d(x,w) = max{d(u, v)|u, v ∈ X}. (4)

On the contrary, suppose that there exist y, z ∈ X such that

0 ≤ d(x, y) + d(x, z) < d(y, z). (5)

We will show that inequality (3) is not satisfied.
By (4) and (5), we have the following inequalities.

(d(x,w) + d(y, z)) − (d(x, y) + d(z, w))
> d(x,w) + d(x, y) + d(x, z) − d(x, y) − d(z, w)
≥ d(x, z)
≥ 0, (6)
(d(x,w) + d(y, z)) − (d(x, z) + d(y, w))
> d(x,w) + d(x, y) + d(x, z) − d(x, z) − d(y, w)
≥ d(x, y)
≥ 0. (7)

Also, by (4) and (5), we have

(d(x,w) + d(y, z)) − d(x,w) = d(y, z) > 0, (8)
(d(x,w) + d(y, z)) − d(y, z) = d(x,w) > 0, (9)

respectively. By (4) and (5), we have

(d(x,w) + d(y, z)) − d(x,w) + d(w, y) + d(y, x)
2

=
d(x,w) − d(w, y)

2
+ d(y, z) − d(y, x)

2

≥ d(y, z) − d(y, x)
2

> d(x, y) + d(x, z) − d(x, y)
2

=
d(x, y)

2
+ d(x, z)

≥ 0, (10)
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(d(x,w) + d(y, z)) − d(x,w) + d(w, z) + d(z, x)
2

=
d(x,w) − d(w, z)

2
+ d(y, z) − d(z, x)

2

≥ d(y, z) − d(z, x)
2

> d(x, y) + d(x, z) − d(x, z)
2

= d(x, y) +
d(x, z)

2
≥ 0. (11)

By (5), we have

(d(x,w) + d(y, z)) − d(x, y) + d(y, z) + d(z, x)
2

= d(x,w) +
d(y, z) − d(x, y) − d(z, x)

2
> d(x,w)
> 0. (12)

Finally, by (4) and (5), we obtain

(d(x,w) + d(y, z)) − d(w, y) + d(y, z) + d(z, w)
2

= d(x,w) +
d(y, z)

2
− d(w, y) + d(z, w)

2

≥ d(y, z)
2

> 0. (13)

It follows from (6)–(13) that inequality (3) is not satisfied, and hence, by
Theorem 1 that d is not a subtree distance, which is a contradiction.

For a subtree distance d : X × X → R, define V0 by

V0 = {x ∈ X|∀y, z ∈ X, d(x, y) + d(x, z) ≥ d(y, z)}. (14)

We have V0 �= ∅ by Lemma 1.
For a dissimilarity mapping d on X and a subset Y ⊆ X, the restriction d|Y of

d to Y is a dissimilarity mapping on Y defined by (d|Y )(x, y) = d(x, y) (x, y ∈ Y ).
Since d|V0 satisfies the triangular inequality, we have the following.

Proposition 2. If d : X × X → R+ is a subtree distance, then d|V0 is a tree
metric, where V0 is defined by (14).
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Fig. 2. Weighted tree T representing d|V0.

Since d|V0 is a tree metric by Proposition 2, there exists a weighted tree
which represents d|V0. For example, for the subtree distance d given by (2), we
see that V0 = {a, b, c, f, h, i} and that a tree T in Fig. 2 represents d|V0.

2.2 Construction of Subtrees

Let d : X×X → R+ be a subtree distance. For v ∈ X−V0 define binary relation
v∼ on V0 by

x
v∼ x′ ⇔ d(x, x′) ≤ d(x, v) + d(x′, v) (x, x′ ∈ V0). (15)

Lemma 2. Let d : X × X → R+ be a subtree distance and v ∈ X − V0. Then,
the binary relation v∼ defined by (15) is an equivalence relation.

Proof. Let d and v be as stated in the present lemma. It is clear that v∼ satisfies
the reflexivity and the symmetry. We will show that v∼ satisfies the transitivity.

For x, x′, x′′ ∈ V0 suppose that x
v∼ x′ and x′ v∼ x′′. Then, by definition of

the binary relation, we have

d(x, x′) ≤ d(x, v) + d(x′, v), (16)

d(x′, x′′) ≤ d(x′, v) + d(x′′, v). (17)

First, we consider the case of d(x′, v) = 0. By (16) and (17), we have

d(x, x′) + d(x′, x′′) ≤ d(x, v) + d(x′′, v). (18)
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Since x′ ∈ V0, we have

d(x, x′′) ≤ d(x, x′) + d(x′, x′′). (19)

It follows from (18) and (19) that

d(x, x′′) ≤ d(x, v) + d(x′′, v),

and hence, x v∼ x′′.
Next, suppose that d(x′, v) > 0. On the contrary, suppose that

d(x, x′′) > d(x, v) + d(x′′, v). (20)

We will show that inequality (3) does not hold for x = x, y = x′′, z = x′ and
w = v.

By (16) and (20), we have

(d(x, x′′) + d(x′, v)) − (d(x, x′) + d(x′′, v))
≥ d(x, x′′) + d(x′, v) − (d(x, v) + d(x′, v) + d(x′′, v))
= d(x, x′′) − (d(x, v) + d(x′′, v))
> 0. (21)

By (17) and (20), we have

(d(x, x′′) + d(x′, v)) − (d(x, v) + d(x′, x′′))
≥ d(x, x′′) + d(x′, v) − (d(x, v) + d(x′, v) + d(x′′, v))
= d(x, x′′) − (d(x, v) + d(x′′, v))
> 0. (22)

By the assumption d(x′, v) > 0 and (20), we have the followings.

(d(x, x′′) + d(x′, v)) − d(x, x′′) = d(x′, v) > 0, (23)
(d(x, x′′) + d(x′, v)) − d(x′, v) = d(x, x′′) > 0. (24)

By (16), (17) and (20), we have

(d(x, x′′) + d(x′, v)) − d(x, x′′) + d(x′, x′′) + d(x, x′)
2

≥ d(x, x′′) + d(x′, v) − d(x, x′′) + d(x, v) + 2d(x′, v) + d(x′′, v)
2

=
d(x, x′′) − (d(x, v) + d(x′′, v))

2
> 0. (25)
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By (20), we have

(d(x, x′′) + d(x′, v)) − d(x, x′′) + d(x′′, v) + d(x, v)
2

= d(x′, v) +
d(x, x′′) − d(x′′, v) − d(x, v)

2
> d(x′, v)
≥ 0, (26)

and by (16) and (20), we have

(d(x, x′′) + d(x′, v)) − d(x, x′) + d(x′, v) + d(x, v)
2

≥ d(x, x′′) + d(x′, v) − (d(x, v) + d(x′, v))
= d(x, x′′) − d(x, v)
> 0. (27)

Finally, by (17) and (20), we have

(d(x, x′′) + d(x′, v)) − d(x′, x′′) + d(x′, v) + d(x′′, v)
2

≥ d(x, x′′) + d(x′, v) − (d(x′, v) + d(x′′, v))
= d(x, x′′) − d(x′′, v)
> 0. (28)

It follows from (21)–(28) that the inequality (3) does not hold for (x, y, z, w) =
(x, x′′, x′, v), and hence, by Theorem 1, d is not a subtree distance. This is a
contradiction. Therefore, we must have x

v∼ x′′.

For a subtree distance d : X ×X → R+ and v ∈ X − V0, let us denote by Cv

the equivalence classes induced by the equivalence relation v∼. We see that the
number of the equivalence classes is at least two for each v ∈ X − V0.

Proposition 3. Let d be a subtree distance and v∼ be defined by (15). Then, for
each v ∈ X − V0, we have |Cv| ≥ 2.

Let T be a tree representing the tree metric d|V0. We can assume without
loss of generality that V0 is the leaves of T and that lengths of all edges T are
positive except for those incident to a leaf by adding an edge of length zero. For
a vertex set W of T , the minimum subtree of T whose vertex set contains W is
called the subtree of T spanned by W and is denoted by TW .

For C ∈ Cv, let zC be a vertex of TC which is adjacent to a vertex outside
TC . The existence of such a vertex zC is guaranteed by Proposition 3. Note that
if |C| > 1 then, the degree of zC in TC is at least two.

To define the subtree Tv of T for each v ∈ X−V0, we use vertices zC (C ∈ Cv)
of T . The following lemma describes properties of such vertices zC .



An Algorithm for Finding a Representation of a Subtree Distance 257

Lemma 3. Let v ∈ X − V0 and C ∈ Cv. We have the followings.

(a) There exists a unique vertex zC in TC which is adjacent to a vertex outside
TC .

(b) For each i ∈ C, we have d(i, v) ≥ dT (i, zC).
(c) If there exist two edges outside TC which are incident to zC , then we have

dT (i, zC) = d(i, v) (i ∈ C).
(d) If an edge outside TC which is incident to zC is unique, then, letting {zC , z′

C}
be such an edge, we have dT (i, zC) ≤ d(i, v) ≤ dT (i, z′

C) (i ∈ C).

Let v ∈ X − V0. For each C ∈ Cv, if there exist edges outside TC incident
to zC we let wC = zC . Otherwise, divide the unique edge {zC , z′

C} outside TC

incident to zC into two edges {zC , wC}, {wC , z
′
C} and define the lengths for them

so that d(i, v) = dT (i, wC) and l(zC , z′
C) = l(zC , wC) + l(wC , z

′
C), where i ∈ C

is arbitrary. Then, define Tv as the subtree of T spanned by {wC |C ∈ Cv}. Also,
for each y ∈ V0 we define Ty = ({y}, ∅).

For subtree distance (2) we saw that V0 = {a, b, c, f, h, i} and the tree metric
d|V0 is represented by the tree T in Fig. 2. For e ∈ X − V0, V0 is partitioned
into the equivalence classes Ce = {C,D,E}, where C = {a, b}, D = {c} and
E = {f, h, i}. The vertices wC , wD and wE and the subtree Te spanned by them
are depicted in Fig. 3.

Fig. 3. Vertices wC , wD and wE for C = {a, b}, D = {c} and E = {f, h, i} and the
subtree Te spanned by them.



258 K. Ando and K. Sato

3 The Validity and the Complexity of the Algorithm

We summarize our algorithm for finding a representation of a subtree distance
in Algorithm 1. As the following lemma shows, the distances between those
subtrees defined by the algorithm constitute the representation of the given
subtree distance.

1 find V0 defined by (14);
2 construct a tree representing d|V0;
3 foreach y ∈ V0 do
4 let Ty = ({y}, ∅);
5 end
6 foreach v ∈ X − V0 do
7 find the partition Cv;
8 find zC for each C ∈ Cv;
9 foreach C ∈ Cv do

10 if there exist at least two edges outside TC incident to zC then
11 let wC = zC ;
12 else
13 divide the unique edge {zC , z′

C} outside TC incident to zC into two
edges {zC , wC}, {wC , z

′
C} and define the lengths for them so that

d(i, v) = dT (i, wC) and l(zC , z
′
C) = l(zC , wC) + l(wC , z

′
C), where

i ∈ C is arbitrary;

14 end

15 end
16 let Tv be the subtree of T spanned by {wC |C ∈ Cv};
17 end

Algorithm 1. Find a representation of a subtree distance.

Lemma 4

(a) For each y ∈ V0 and v ∈ X − V0, we have dT (Tv, Ty) = d(v, y).
(b) For each v1, v2 ∈ X − V0, we have dT (Tv1 , Tv2) = d(v1, v2).

Theorem 2. Given an arbitrary subtree distance d : X×X → R+, Algorithm 1
finds a weighted tree T and a family of subtrees {Tx|x ∈ X} which represent d
in O(n3) time.

Proof. The validity of the algorithm is clear from Lemma 4 and the fact that T
represents d|V0. We show the running time of the algorithm is O(n3).

It is clear that V0 can be find in O(n3) time. A tree T representing d|V0 can
be found in O(n3) time by Neighbor-Joining [6]. For each v ∈ X −V0, Cv can be
found in O(n2) time. It is easy to see that for a v ∈ X − V0 all zC (C ∈ Cv) can
be found in O(n2) time. For each C ∈ Cv, wC can be found in O(1) time. Also,
by |X − V0| ≤ n, for each v ∈ X − V0, the subtree Tv of T can be computed in
O(n2) time. Therefore, the overall computational time of Algorithm 1 is O(n3).
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Corollary 1. There exists an algorithm which decides whether or not a given
dissimilarity mapping d on X is a subtree distance in O(n3) time.

4 Conclusion

The concept of subtree distance is a generalization of that of tree metric and had
been introduced by Hirai [4]. So far, no efficient algorithm for finding represen-
tation of a subtree distance has been known. In this paper, we showed an O(n3)
time algorithm that finds a representation of a given subtree distance on X, where
n = |X|. It follows that we have an O(n3) algorithm for deciding whether a given
dissimilarity mapping is a subtree distance or not. A future research direction is
to modify the algorithm to have a better time complexity, namely O(n2).

Acknowledgments. The authors are grateful to Professor Hiroshi Hirai for useful
suggestions for the design of the algorithm presented in this paper. Thanks are also due
to the anonymous referees for their useful comments which improved the presentation
of our results.
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Abstract. In the double TSP with multiple stacks, a vehicle with sev-
eral stacks performs a Hamiltonian circuit to pick up some items and
stores them in its stacks. It then delivers every item by performing
another Hamiltonian circuit while satisfying the last-in-first-out policy
of its stacks. The consistency requirement ensuring that the pickup and
delivery circuits can be performed by the vehicle is the major difficulty
of the problem. This requirement corresponds, from a polyhedral stand-
point, to a set covering polytope. When the vehicle has two stacks this
polytope is obtained from the description of a vertex cover polytope. We
use these results to develop a branch-and-cut algorithm with inequalities
derived from the inequalities of the vertex cover polytope.

Keywords: Double traveling salesman problem with multiple stacks ·
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The traveling salesman problem (TSP) is the problem of finding a Hamil-
tonian circuit of minimum cost in a complete weighted digraph. The TSP is a
well-known NP-hard problem. Nevertheless, one of the greatest advances in com-
binatorial optimization has been the design of algorithms that made possible to
practically solve TSP instances of considerable size [1].

In this paper, we study a generalization of the TSP, namely the double TSP
with multiple stacks (DTSPMS ). In this problem, n items have to be picked up
in one city, stored in a vehicle having s identical stacks of finite capacity, and
delivered to n customers in another city. We assume that the pickup and the
delivery cities are far from each other, thus the pickup phase has to be completed
before the delivery phase starts. The pickup (resp. delivery) phase consists in a
Hamiltonian circuit performed by the vehicle which starts from a depot and visits
the n pickup (resp. delivery) locations exactly once before coming back to the
depot. Each time a new item is picked up, it is stored on the top of an available
stack of the vehicle and no rearrangement of the stacks is allowed. During the
delivery circuit the stacks are unloaded by following a last-in-first-out policy:
only the items currently on the top of their stack can be delivered. The goal is
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to find a pickup and a delivery circuit that are s-consistent and that minimize
the total traveled distance — a pickup and a delivery Hamiltonian circuits are
s-consistent if a vehicle with s stacks can perform both while satisfying the
last-in-first-out policy and the capacity of the stacks.

The DTSPMS has been recently introduced in [22] and has received since
considerable attention. Several heuristics [6,7,9,22], combinatorial exact meth-
ods [15,16] and branch-and-cut algorithms [17,21] have been proposed for its
resolution. When the vehicle has two stacks, the best algorithms [2,5] solve to
optimality instances with up to 16 items, but mostly fail from 18 items. The main
conclusion that can be drawn is that the DTSPMS is extremely hard to solve
in practice. We emphasize that, as noted in [2], the finiteness of the capacity is
not the major computational difficulty.

An explanation of the fact that exact approaches fail to solve the DTSPMS
efficiently is the following. The combinatorial structure behind the consistency
of the two circuits has not been deeply addressed. In contrast, the routing part
associated with TSP circuits is well understood.

In this paper, we enhance the approach of [2] to overcome this difficulty. More
precisely, by focusing on the consistency requirements, we reveal a strong poly-
hedral connection between the formulation of [2] and set cover problems. This
allows us to derive new valid inequalities for the DTSPMS which are embedded
into a competitive branch-and-cut algorithm.

The approach of [2] mainly considers the variant of the problem where the
stacks have an infinite capacity. The authors develop theoretical results which are
implemented in a branch-and-cut framework. A second version of their algorithm
is developed with additional features to handle stacks of finite capacity. As we
focus on the consistency requirements, we restrict our attention to the problem
with stacks of infinite capacity. Indeed, the features of [2] to handle the finite
capacities can also be added to our framework. We refer to [2] for more details
on these additional features. For a sake of clarity, DTSPMS will now refer to the
variant where the stacks have an infinite capacity.

This paper is organized as follows. In Sect. 1 we recall the formulation for
the DTSPMS introduced in [2] and the known results about the routing part
associated with this formulation. In Sect. 2 we study the set covering polytope
that arises from the consistency requirements. In Sect. 3 we consider the case
of the DTSPMS with two stacks. We show that in this case the set covering
polytope associated with the consistency requirements corresponds to a vertex
cover polytope. By using this observation, we derive valid inequalities for the
DTSPMS with two stacks. Finally, we test these inequalities in a branch-and-
cut algorithm.

1 Formulation of the DTSPMS

In this section, we first describe the DTSPMS in terms of graphs and then present
the integer linear formulation for the DTSPMS introduced in [2].

An instance of the DTSPMS with n items is given by a complete digraph,
two cost vectors defined on its arcs and a positive integer. The complete digraph
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D = (V,A) with V = {0, . . . , n} and A = {(i, j) : i �= j ∈ V } models both cities.
The depot is vertex 0. Item i has to be picked up from vertex i of the first city,
and delivered to vertex i of the second city. The vectors c1 ∈ R

|A| and c2 ∈ R
|A|

represent the distances between the locations of the pickup and delivery cities,
respectively. The positive integer s is the number of stacks of the vehicle. Hence,
the DTSPMS consists in finding a pair of s-consistent Hamiltonian circuits C1

and C2 whose cost c1(C1) + c2(C2) is minimum.
Each Hamiltonian circuit of D induces a linear order on V \ {0} correspond-

ing to the order in which the vertices of V \ {0} are visited starting from 0.
Since the pickup and delivery circuits are Hamiltonian circuits of D, the follow-
ing proposition characterizes the s-consistency thanks to the linear orders they
induce:

Proposition 1 ([4,6,25]). A pickup circuit and a delivery circuit are s-
consistent if and only if no s + 1 vertices of V \ {0} appear in the same order in
the linear orders induced by the two circuits.

Our starting point is the formulation of the DTSPMS of [2], which we now
explain. First, the Hamiltonian circuits of D are represented with arc variables
x ∈ R

|A| which model the arcs of the Hamiltonian circuits, and precedence vari-
ables y ∈ R

n(n−1) which model the associated linear orders. They are described
by the following constraints [24]:

∑

j∈V \{i}
xij = 1 for all i ∈ V, (1)

∑

i∈V \{j}
xij = 1 for all j ∈ V, (2)

yij + yji = 1 for all distinct i, j ∈ V \ {0}, (3)
yij + yjk + yki ≥ 1 for all distinct i, j, k ∈ V \ {0}, (4)

xij ≤ yij for all distinct i, j ∈ V \ {0}, (5)
yij ∈ {0, 1} for all distinct i, j ∈ V \ {0}, (6)
xij ∈ {0, 1} for all distinct i, j ∈ V. (7)

By the integrality constraints (6) and (7), constraints (1) and (2) ensure that
each vertex has exactly one leaving and one entering arc. Inequalities (3) and (4)
are the antisymmetry and transitivity constraints respectively, and each binary
vector y satisfying them represents a linear order on V \ {0} [13]. Finally, con-
straints (5) imply that if the arc (i, j) is in the Hamiltonian circuit then i precedes
j in the associated linear order.

Therefore, the DTSPMS can be formulated as follows. Let (x1, y1, x2, y2) ∈
R

|A| × R
n(n−1) × R

|A| × R
n(n−1). The variables (x1, y1) will correspond to the

arc and precedence variables associated with the pickup circuit whereas (x2, y2)
will refer to the arc and precedence variables associated with the delivery circuit.
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The solutions to the DTSPMS are described by the following constraints:1

(xt, yt) satisfies (1) − (7) for t = 1, 2, (8)
s∑

i=1

(y1
vivi+1

+ y2
vivi+1

) ≥ 1 for all distinct v1, . . . , vs+1 ∈ V \ {0}. (9)

Inequalities (8) ensure that (xt, yt) corresponds to a Hamiltonian circuit for
t = 1, 2. Inequalities (9) imply that the two Hamiltonian circuits are s-consistent.
Indeed, if a constraint (9) is not satisfied, then the vertices vs+1, . . . , v1 associ-
ated with this constraint appear in this order in both the pickup and delivery
circuits — a contradiction to Proposition 1. Proposition 1 being an equivalence,
the correctness of the above formulation follows.

In the rest of the paper, we will denote by DTSPMSn,s the convex hull of
the solutions to (8)–(9). Moreover, ATSPn will denote the convex hull of the
solutions to (1)–(7).

The above formulation makes apparent that the DTSPMS may be separated
into two parts: a routing part associated with (8) and a consistency part asso-
ciated with (9). Every valid inequality for ATSPn can be used to strengthen
the linear relaxation of the DTSPMS. Actually, every facet of ATSPn gives two
facets of DTSPMSn,s, as expressed in the following theorem.

Theorem 2 ([2]). For n ≥ 5 and s ≥ 2, if ax+by ≥ c defines a facet of ATSPn,
then axt + byt ≥ c defines a facet of DTSPMSn,s, for t = 1, 2.

Theorem 2 characterizes a super-polynomial number of facets of DTSPMSn,s

since ATSPn has a super-polynomial number of facets [10]. Unfortunately, none
of these facets relies on the consistency part of the problem. This part has actually
not been well studied, and the next section will address this matter.

2 A Set Covering Approach for the s-consistency

As stated in the previous section, there is a one-to-one correspondence between
Hamiltonian circuits of D and linear orders on V \{0}. Thus, the projection onto
the precedence variables y1, y2 of the solutions to the DTSPMS corresponds to
the couples of linear orders on V \{0} satisfying (9). When focusing on the consis-
tency part of the problem, we will consider only the consistency constraints (9).
In this case, we are interested in the following polytope:

SCn,s = conv{(y1, y2) ∈ {0, 1}n(n−1) × {0, 1}n(n−1) : (9) are satisfied}.

Clearly, we have proj(y1,y2)(DTSPMSn,s) ⊆ SCn,s. Moreover, SCn,s is a set cov-
ering polytope, that is a polytope of the form conv{x ∈ {0, 1}d : Ax ≥ 1}, with
A being a 0,1-matrix. Set covering polytopes have been intensively studied — see
for instance [3].
1 In the rest of the paper, the DTSPMS will refer to either the problem and the integer

linear formulation depending on the context.
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In constraints (9), the coefficients associated with y1
ij and y2

ij are the same
for all i �= j ∈ V \ {0}, and hence SCn,s has a specific form. Indeed, it turns
out that all facets of SCn,s can be obtained by studying the following polytope,
hereafter called restricted set covering polytope:

RSCn,s = conv{y ∈ {0, 1}n(n−1) :
s∑

i=1

yvivi+1 ≥ 1 for all distinct v1, . . . , vs+1 ∈ V \ {0}}.

Moreover, as shown in the following lemma, the vertices of RSCn,s are con-
nected to the ones of SCn,s.

These results are not surprising, yet we did not find them in the literature,
thus we provide our own proof. In our proofs we often implicitly use the fact
that a binary point of a binary polytope is one of its vertices.

Lemma 3. For y = (y1, y2) ∈ R
n(n−1) × R

n(n−1), define f(y) ∈ R
n(n−1) by

f(y)ij = max{y1
ij , y

2
ij}, for all distinct i, j ∈ {1, . . . , n}. Then,

RSCn,s = conv{f(y) ∈ R
n(n−1) : y is a vertex of SCn,s}.

Proof. Let P = conv{f(y) ∈ R
n(n−1) : y is a vertex of SCn,s}.

To show P ⊆ RSCn,s, let v̄ be a vertex of P . By construction, v̄ = f(ȳ)
for some vertex ȳ of SCn,s. Since ȳ is binary, so is v̄. In addition, v̄jiji+1 = 0
if and only if ȳ1

jiji+1
= ȳ2

jiji+1
= 0. The vector v̄ being binary,

∑s
i=1 v̄jiji+1 <

1 if and only if v̄jiji+1 = 0 for all i = 1, . . . , s. But this can happen only if∑s
i=1(ȳ

1
jiji+1

+ ȳ2
jiji+1

) = 0, which is impossible by ȳ ∈ SCn,s and (9). Hence,
v̄ ∈ RSCn,s. As this holds for every vertex v̄ of P , convexity implies P ⊆ RSCn,s.

We prove now that RSCn,s ⊆ P . Given a vertex v̄ of RSCn,s, we define
ȳ = (ȳ1, ȳ2) ∈ {0, 1}n(n−1) × {0, 1}n(n−1) as follows.

ȳ1
jiji+1

= ȳ2
jiji+1

= 1 if vjiji+1 = 1,

ȳ1
jiji+1

= ȳ2
jiji+1

= 0 otherwise.

For distinct j1, . . . , js+1, we have
∑s

i=1(ȳ
1
jiji+1

+ ȳ2
jiji+1

) = 0 if and only if v̄j1j2 =
v̄j2j3 = · · · = v̄jsjs+1 = 0. The latter is impossible since v̄ ∈ RSCn,s. Hence, since
ȳ is binary, it satisfies (9). Thus ȳ is a vertex of SCn,s. By construction, we have
v̄ = f(ȳ), therefore v̄ is a vertex of P . This holds for every vertex v̄ of RSCn,s,
hence RSCn,s ⊆ P by convexity. ��

The next proposition shows how the linear description of SCn,s can be
deduced from the one of RSCn,s. Inequalities that consist in 0,1 bounds on
the variables are called trivial.

Proposition 4. Every non-trivial facet-defining inequality of SCn,s is of the
form ay1 + ay2 ≥ b, where ay ≥ b is a non-trivial facet-defining inequality of
RSCn,s.
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Proof. Well-known results about set covering polytopes — see e.g., [19] — imme-
diately imply the following:

(i) SCn,s is full dimensional.
(ii) Inequalities yt

ij ≤ 1 define facets of SCn,s for all distinct 1 ≤ i, j ≤ n and
t = 1, 2.

(iii) If a1y1 + a2y2 ≥ b is non-trivial and defines a facet of SCn,s, then b > 0
and at

ij ≥ 0 for all distinct 1 ≤ i, j ≤ n and t = 1, 2.

We first show that all facets of RSCn,s define facets of SCn,s.

Claim. If ay ≥ b is a non-trivial facet-defining inequality of RSCn,s, then ay1 +
ay2 ≥ b is a facet-defining inequality of SCn,s.

Proof. We first prove that ay1 + ay2 ≥ b is valid for SCn,s. Let γ = (γ1, γ2) be
a vertex of SCn,s and suppose that aγ1 +aγ2 < b. By Lemma 3, f(γ) is a vertex
of RSCn,s. From γ ≥ 0, we get f(γ)ij ≤ γ1

ij + γ2
ij for all distinct 1 ≤ i, j ≤ n.

Since, by (iii), aij ≥ 0, we get af(γ) ≤ aγ1 + aγ2 < b, contradicting the validity
of ay ≥ b for RSCn,s.

We now prove that ay1 + ay2 ≥ b defines a facet of SCn,s. Let F ′ denote the
facet of RSCn,s defined by ay ≥ b and {ξ1, . . . , ξn(n−1)} be an affine base of F ′.
Since b > 0 these vectors are linearly independent. Thus the 2n(n − 1) vectors
{(ξ�,0), (0, ξ�)}�=1,...,n(n−1) are linearly independent points of SCn,s, satisfying
ay1 + ay2 ≥ b with equality. �

We now show that non-trivial facet-defining inequalities of SCn,s have a
symmetric structure:

Claim. Let a1y1 + a2y2 ≥ b be a non-trivial facet-defining inequality of SCn,s.
Then a1 = a2.

Proof. Let us fix i, j ∈ {1, . . . , n} with i �= j and let us write for convenience the
vectors γ ∈ R

2n(n−1) as (γ̄, γ1
ij , γ

2
ij). By contradiction, we suppose that a1

ij > a2
ij .

By (iii), we get a1
ij > 0. If (γ̄, 1, 1) is a vertex of SCn,s, then so are (γ̄, 1, 0) and

(γ̄, 0, 1), since, in each of constraints (9), the coefficients of y1
ij and y2

ij are the
same.

Let F = SCn,s∩{a1y1+a2y2 = b} be the facet defined by the given inequality
and B a base of F . It is not restrictive to assume B is composed of vertices of
SCn,s. Then, no element of B has the form (γ̄, 1, 1), as otherwise, by āγ̄ + a1

ij +
a2

ij = b and a1
ij > 0, we would get that (γ̄, 0, 1) violates the given inequality.

Given that F arises from a non-trivial facet-defining inequality of SCn,s, there
exists (γ̄, 1, 0) ∈ B as otherwise, F ⊆ SCn,s∩{y1

ij = 0}. This implies that (γ̄, 0, 1)
violates the facet-defining inequality. We deduce that a1

ij ≤ a2
ij . Symmetrically,

a2
ij ≤ a1

ij and the desired equality follows. �

We finally prove that all the facets of RSCn,s can be obtained from those
of SCn,s.
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Claim. If ay1 + ay2 ≥ b is a non-trivial facet-defining inequality of SCn,s, then
ay ≥ b is a non-trivial facet-defining inequality of RSCn,s.

Proof. The point (γ,0) is a vertex of SCn,s whenever γ is a vertex of RSCn,s.
Thus the validity of ay ≥ b for RSCn,s follows from the validity of ay1 +ay2 ≥ b
for SCn,s.

Now, let us suppose, by contradiction, that ay ≥ b does not define a facet
of RSCn,s. Then there exists an integer f ≥ 2 such that a =

∑f
i=1 λia

i and
b =

∑f
i=1 λib

i, where λi > 0 and aiy ≥ bi is a facet of RSCn,s for every
0 ≤ i ≤ f . Thus, the inequalities aiy1 + aiy2 ≥ bi are valid for SCn,s. However,
(a, a) =

∑f
i=1 λi(ai, ai), contradicting the fact that ay1 +ay2 ≥ b defines a facet

of SCn,s. �
��

Proposition 4 asserts that the linear description of RSCn,s immediately
gives the description of SCn,s. Since proj(y1,y2)(DTSPMSn,s) ⊆ SCn,s, the
s-consistency of two Hamiltonian circuits can be modeled by using inequalities
which are valid for RSCn,s. Our goal is to use such inequalities to better capture
the s-consistency in a branch-and-cut algorithm to solve the DTSPMS.

3 Focus on Two Stacks

In this section we first observe that, in the special case of the DTSPMS with
two stacks, the restricted set covering polytope is a vertex cover polytope. This
result allows us to derive valid inequalities for the DTSPMS. These inequalities
are then embedded in a branch-and-cut algorithm, described at the end of the
section together with the corresponding experimental results.

3.1 A Vertex Cover Approach

As explained in the previous section, the linear relaxation of our formulation
can be strengthened by studying facet-defining inequalities of RSCn,s. When
considering only two stacks, the polytope RSCn,2 is:

conv{y ∈ {0, 1}n(n−1) : yij + yjk ≥ 1 for all distinct i, j, k ∈ V \ {0}}.
As it turns out, RSCn,2 can be expressed as a vertex cover polytope. Let

Gn = (U,E) be the graph whose vertices are uij for all distinct i, j ∈ V \ {0}
and the edges are {uij , ujk} for all distinct i, j, k ∈ V \ {0}. A vertex cover of
a graph is a set S of vertices such that each edge contains a vertex of S. The
vertex cover polytope of a graph is the convex hull of the incidence vectors of its
vertex covers.

Please note that RSCn,2 and the vertex cover polytope of Gn have the same
variables. Moreover, each non-trivial inequality of RSCn,2 contains two variables
which correspond to the extremities of an edge of Gn. Therefore RSCn,2 is
nothing but the vertex cover polytope of Gn.

The vertex cover polytope has been intensively studied. Many families of
valid inequalities are known. We will more specifically use the so-called odd hole
inequalities to derive new valid inequalities for the DTSPMS with two stacks.
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Odd Hole Inequalities. An odd hole of a graph G = (W,F ) is a vertex subset
H = {v1, . . . , v2k+1} such that {vi, vj} ∈ F if and only if |i−j| = 1 or |i−j| = 2k
for all distinct i, j ∈ {1, . . . , n}. The following inequalities are valid for the vertex
cover polytope of G [20]:

y(H) ≥ |H| + 1
2

for all odd holes H of G. (10)

Corollary 5. Inequalities

y1(H) + y2(H) ≥ |H| + 1
2

for all odd holesH of Gn, (11)

are valid for DTSPMSn,2.

There is a one-to-one correspondence between the vertices of Gn and the
arcs of D. However, if every odd circuit of D provides an odd hole of Gn, the
converse is not true. Thus, inequalities (11) generalize the odd circuit inequalities
introduced in [2].

3.2 A Branch-and-Cut Algorithm

This section presents a branch-and-cut algorithm for the DTSPMS with two
stacks. The reader interested in an exhaustive description of branch-and-cut
methods can refer to e.g., [18].

Initialization. The linear program we start with for computing the lower bounds
is the one given by inequalities (1)–(3) and (5) and the trivial inequalities. Since
the available instances are symmetrical, we add the constraint y1

12 = 1 to our
starting formulation. This trick halves the number of solutions to our problem
without affecting the correctness of the algorithm. In addition, we provide our
algorithm with the upper bound given by the heuristic algorithm of [7].

Separation. To strengthen the routing part we consider the so-called GDDL
inequalities [12] and the 2-simple cut inequalities [11]. The separation phase is
as follows. The families of inequalities are separated in this order:

– 2-consistency constraints (9),
– GDDL inequalities,
– 2-simple cut inequalities,
– transitivity constraints (4),2

– odd hole inequalities (11).

Constraints (4) and (9) are separated by enumeration. For the 2-simple cut
inequalities we use the exact separation algorithms given in [11]. We also use for
separating the GDDL inequalities the algorithm of [11] which we restrict to the

2 We use the lifted version yij + yjk + yki − xji ≥ 1, for all distinct i, j, k ∈ V \ {0}.
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most promising cases to speed it up. Finally we apply the heuristic separation
algorithm given in [23] for the odd hole inequalities to the point ȳ = ȳ1+ȳ2, where
(ȳ1, ȳ2) are the precedence variables of the current solution. The separation of
each family is performed when separating the previous ones yielded no violated
constraint. Moreover we mention that, since inequalities (4) and (9) are problem-
defining, we always separate them on integer current points.

3.3 Experimental Results

The branch-and-cut algorithm described above is a first and preliminary imple-
mentation of the vertex cover approach for the DTSPMS with two stacks. The
algorithm has been coded in C++ using CPLEX 12.5 [8]. The graph-based rou-
tines have been coded with the COIN-OR library LEMON [14]. The algorithm
is tested over the benchmark instances introduced in [22], with a CPU time
limit of 3 h. Tests are run in a Linux environment, using a 3.4 GHz Intel Core i7
processor, in sequential mode (1 thread).

Since we test our algorithm only for two stacks of unlimited capacity, we
present a comparison with the approach given in [2]. However, please recall the
conclusion of [2] stating that the capacity of the stacks has little impact on the
performance of the algorithm, in terms of CPU time and enumerated nodes of
the search tree.3 Both versions of the algorithm of [2] with finite and infinite
capacity for the stacks outperform all other exact approaches.

Table 1 presents the results obtained by the branch-and-cut algorithm
described in this paper and those obtained in [2]. Each row of the table cor-
responds to a tested instance. The first two columns contain the information rel-
ative to each instance: its name given in [22] and the number of items it involves.
For both algorithms the remainder of the table consists of five columns. Columns
UB and LB respectively contain the value of the best integer feasible solution
obtained for that instance, and the best lower bound obtained by the algorithm
within the 3 h. Columns CPU and Nodes respectively report the time spent (in
seconds) and the number of nodes of the branch-and-cut tree. Finally, column
Gap reports the gap for each instance, calculated as 100·(UB-LB)/UB.

The algorithm proposed in this paper solves all the instances up to 16 items
to optimality. Moreover, it solves nine out of the 20 instances with 18 items. For
the instances not solved to optimality, the average gap is 1.94% for 18 items.

Compared with [2], our current algorithm exhibits a better performance.
More precisely, it needs respectively 5.9%, 33.7% and 7.3% less time to solve
the instances with 14, 16 and 18 items. Moreover, it solves within the time limit
one instance more with 18 items with respect to the algorithm of [2]. Finally,
we mention that the algorithm presented in this paper solves at optimality two
instances with 20 items, within the time limit.

3 Note that the optimal values can differ when passing from the finite capacity case
to the infinite capacity case.
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Table 1. Computational results of our algorithm and comparison with the results of [2].

Our B&C B&C of [2]

Instance Items UB LB CPU Nodes Gap UB LB CPU Nodes Gap

R00 14 766 766.00 147.99 1717 0.00 766 766.00 118,39 1544 0.00

R01 14 761 761.00 22.80 239 0.00 761 761.00 27.97 346 0.00

R02 14 690 690.00 68.65 833 0.00 690 690.00 129.33 1648 0.00

R03 14 791 791.00 28.77 336 0.00 791 791.00 52.13 593 0.00

R04 14 756 756.00 606.73 8305 0.00 756 756.00 509.33 6918 0.00

R05 14 773 773.00 87.35 958 0.00 773 773.00 127.46 1589 0.00

R06 14 811 811.00 16.10 167 0.00 811 811.00 28.71 304 0.00

R07 14 693 693.00 24.13 239 0.00 693 693.00 28.21 319 0.00

R08 14 824 824.00 288.28 3749 0.00 824 824.00 259.09 3573 0.00

R09 14 733 733.00 9.15 67 0.00 733 733.00 5.93 58 0.00

R10 14 733 733.00 95.29 1267 0.00 733 733.00 99.86 1330 0.00

R11 14 719 719.00 362.73 4359 0.00 719 719.00 238.89 2975 0.00

R12 14 803 803.00 86.78 1088 0.00 803 803.00 59.10 722 0.00

R13 14 743 743.00 28.04 319 0.00 743 743.00 36.56 508 0.00

R14 14 747 747.00 193.64 2207 0.00 747 747.00 353.82 4847 0.00

R15 14 765 765.00 29.90 308 0.00 765 765.00 32.47 484 0.00

R16 14 685 685.00 37.69 411 0.00 685 685.00 31.57 376 0.00

R17 14 818 818.00 142.82 1591 0.00 818 818.00 246.35 2992 0.00

R18 14 774 774.00 68.06 920 0.00 774 774.00 94.40 1325 0.00

R19 14 833 833.00 211.86 2472 0.00 833 833.00 237.57 3002 0.00

Average 127.84 1577.60 0.00 135.86 1772.65 0.00

R00 16 795 795.00 1346.11 10356 0.00 795 795.00 1498.13 12002 0.00

R01 16 794 794.00 104.99 686 0.00 794 794.00 169.58 1467 0.00

R02 16 752 752.00 5239.07 40516 0.00 752 752.00 6688.66 51700 0.00

R03 16 855 855.00 2431.51 18037 0.00 855 855.00 1879.71 13641 0.00

R04 16 792 792.00 3350.76 26204 0.00 792 792.00 6616.13 52883 0.00

R05 16 820 820.00 1203.36 9616 0.00 820 820.00 4248.95 32078 0.00

R06 16 900 900.00 813.29 5930 0.00 900 900.00 988.01 8057 0.00

R07 16 756 756.00 87.90 624 0.00 756 756.00 130.26 958 0.00

R08 16 907 907.00 1057.53 9036 0.00 907 907.00 1526.68 12634 0.00

R09 16 796 796.00 67.47 535 0.00 796 796.00 99.46 789 0.00

R10 16 755 755.00 357.42 2791 0.00 755 755.00 664.12 5300 0.00

R11 16 759 759.00 1095.26 8151 0.00 759 759.00 909.18 7377 0.00

R12 16 825 825.00 348.77 2661 0.00 825 825.00 653.00 5264 0.00

R13 16 824 824.00 427.94 3051 0.00 824 824.00 719.47 5878 0.00

R14 16 823 823.00 2764.04 20967 0.00 823 823.00 5892.60 41223 0.00

R15 16 807 807.00 934.73 6731 0.00 807 807.00 568.39 4549 0.00

R16 16 781 781.00 462.52 3850 0.00 781 781.00 2347.62 18234 0.00

R17 16 852 852.00 1584.47 12029 0.00 852 852.00 2136.11 16101 0.00

R18 16 846 846.00 1674.27 13835 0.00 846 846.00 1289.01 10532 0.00

R19 16 882 882.00 1566.98 11750 0.00 882 882.00 1589.97 12501 0.00

Average 1345.92 10367.80 0.00 2030.75 15658.40 0.00

R00 18 839 839.00 3485.49 17926 0.00 839 839.00 5128.95 28232 0.00

R01 18 825 825.00 1101.54 5129 0.00 825 825.00 1574.57 7119 0.00

R02 18 793 759.81 10800.00 47666 4.19 793 750.06 10800.00 46046 5.42

R03 18 896 864.13 10800.00 44448 3.56 896 848.67 10800.00 43700 5.28

R04 18 832 781.29 10800.00 41852 6.09 832 781.50 10800.00 44790 6.07
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Table 1. Continued.

Our B&C B&C of [2]

Instance Items UB LB CPU Nodes Gap UB LB CPU Nodes Gap

R05 18 873 858.42 10800.00 55248 1.67 873 847.60 10800.00 50545 2.91

R06 18 930 930.00 6454.46 33943 0.00 930 930.00 9257.50 44850 0.00

R07 18 805 805.00 1686.81 9072 0.00 805 805.00 1488.97 7918 0.00

R08 18 962 922.29 10800.00 47664 4.13 962 907.68 10800.00 43758 5.65

R09 18 815 815.00 254.36 1354 0.00 815 815.00 448.44 2510 0.00

R10 18 856 820.18 10800.00 47890 4.18 856 825.04 10800.00 44155 3.62

R11 18 813 795.99 10800.00 55568 2.09 823 788.97 10800.00 51234 4.13

R12 18 871 871.00 2650.59 12942 0.00 871 871.00 4291.89 21560 0.00

R13 18 845 845.00 3415.79 17689 0.00 845 845.00 3455.85 19047 0.00

R14 18 862 830.62 10800.00 47245 3.64 873 813.67 10800.00 40037 6.80

R15 18 869 840.90 10800.00 48243 3.23 869 834.64 10800.00 47370 3.95

R16 18 811 811.00 3195.68 16843 0.00 811 811.00 5499.46 28197 0.00

R17 18 900 862.50 10800.00 43859 4.17 900 840.50 10800.00 38099 6.61

R18 18 883 867.22 10800.00 50824 1.79 883 867.33 10800.00 47342 1.77

R19 18 909 909.00 7982.98 37904 0.00 909 893.13 10800.00 51974 1.75

Average 7451.39 34165.45 1.94 8037.28 35424.15 2.70

4 Concluding Remarks

In this paper we have considered the DTSPMS. We have focused on the s-
consistency requirements ensuring that both the pickup and delivery circuits
can be performed by a vehicle with s stacks satisfying the last-in-first-out policy
conditions. We have considered the polytope defined by the consistency con-
straints and the trivial inequalities. It is a relaxation of the convex hull of the
solutions to the DTSPMS but it catches most of the difficulty of the problem and
every valid inequality for this polytope can be used to reinforce the DTSPMS.
This polytope is a set covering polytope and we have shown that when we have
only two stacks, this latter can be reduced to a vertex cover polytope.

We used these results to develop a branch-and-cut algorithm to solve the
DTSPMS with two stacks of infinite capacity. This algorithm uses the inequal-
ities derived from the odd hole inequalities which are valid for the vertex cover
polytope. This branch-and-cut algorithm is competitive with respect to the exist-
ing algorithms for the DTSPMS. We believe that strengthening the formulation
using inequalities derived from the vertex cover approach will provide an efficient
algorithm to solve instances of a larger size.

Apart from these algorithmic questions, one can wonder whether the relax-
ation we have considered is far from the convex hull of the solutions to the
DTSPMS. A way to answer this question is to determine which facets of the set
covering polytope define facets of the convex hull. This is another direction of
our future work.
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Abstract. This paper addresses a problem of shared multicast trees
(SMT), which extends a recently studied problem of shared broadcast
trees (SBT). In SBT, a common optimal tree for a given set of nodes
allowing broadcasting from any node to the rest of the group is searched.
In SMT, also nodes that neither initiate any transmission, nor act as des-
tinations are considered. Their purpose is exclusively to relay messages
between nodes. The optimization criterion is to minimize the energy con-
sumption. The present work introduces this generalization and devises
solution methods. We model the problem as an integer linear program
(ILP), in order to compute the exact solution. However, the size of
instances solvable by ILP is significantly limited. Therefore, we also focus
on inexact methods allowing us to process larger instances. We design
a fast greedy method and compare its performance with adaptations of
algorithms solving related problems. Numerical experiments reveal that
the presented greedy method produces trees of lower energy than alter-
native approaches, and the solutions are close to the optimum.

Keywords: Ad hoc wireless network · Steiner tree · Multicast commu-
nication · ILP model · Heuristic algorithm

1 Introduction

The purpose of a multicast communication in a wireless ad-hoc network is to
route information from a source to a set of destinations. Given a set of devices
and distances between them, the task is to assign power to each device (node), so
that the demands of the network are met and the energy consumption is as low
as possible, assuming their locations are fixed. Power efficiency is an important
aspect in constructing ad-hoc wireless networks since the devices are typically
heavily energy-constrained. Individual devices work as transceivers, which means
that they are able to both transmit and receive a signal. Moreover, the power
level of a device can be dynamically adjusted during a multicast session.

Unlike wired networks, nodes in ad-hoc wireless networks use omnidirectional
antennas, and hence a message reaches all nodes within the communication range
of the sender. This range is determined by the power assigned to the sender,
which is the maximum rather than the sum of the powers necessary to reach
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 273–284, 2016.
DOI: 10.1007/978-3-319-45587-7 24
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all intended receivers. This feature is often referred to as the wireless multicast
advantage [18].

The problems of finding power-minimizing trees in wired networks are gener-
alizations of the minimum Steiner tree problem (e.g. [14]). Many wireless network
design tasks are NP-hard [7,12]. The following problems are relevant to our work.

Minimum Energy Broadcast (MEB) is the problem of constructing an opti-
mal arborescence for broadcasting from a given source to all remaining nodes. In
order to be able to perform a broadcast session from different sources, a separate
tree has to be stored for each source. A generalized multicast version assumes
that the message is intended for a predefined subset of vertices. Remaining ver-
tices can be used as intermediate nodes forwarding the message to other nodes,
and possibly reduce the total cost. Such nodes are referred to as Steiner nodes.

Range Assignment Problem (RAP) concerns the problem of assigning trans-
mission powers of minimum sum to the wireless nodes while ensuring network
connectivity [1,6]. Unlike MEB, the resulting links formed by the energy assign-
ment are undirected. A generalization of the problem considers the strong con-
nectivity within a nonempty subset of nodes.

Shared Broadcast Tree (SBT). A crucial drawback of MEB is the necessity
of storing one tree for each source. The basic idea of SBT [16,19] is to construct
a common tree that is source independent and hence simplifies routing, as the
relaying node does not need to know the original source in order to adjust its
corresponding power level. Instead, the power level depends merely on the imme-
diate neighbour from which the message was received. This idea is based on the
observation that a signal that is being forwarded by a node does not have to
reach the neighbour from which it originally came. So, if a signal comes from
the most distant neighbour, the relaying power must correspond to the second
most distant neighbour. When, on the other hand, a message comes from one of
the closer neighbours, it has to be forwarded with the power necessary to reach
the most distant one. With this conception, we get two power levels, and their
selection involves only a single binary decision making.

This work introduces the shared multicast tree (SMT) problem, a general-
ization of SBT. Analogously to the multicast versions of MEB and RAP, in
SMT we assume that there are two types of nodes, called destinations and non-
destinations, respectively. Destinations can initiate a transmission, and must
receive every transmission initiated by other destinations. Non-destinations can
relay a message, but do not initiate any transmission. Neither do they have to
receive any transmission. Passing messages via non-destinations is thus optional,
and is chosen only if it saves energy, which is the main motivation for SMT. The
goal is to find a common source-independent tree that connects the destinations
while minimizing the power.

The decentralized nature of wireless ad-hoc networks implies its suitability for
applications, where it is not possible to rely on central nodes, or where network
infrastructure does not exist. This is typical for various short-term events like
conferences or fixtures. Simple maintenance makes them useful in applications



Shared Multicast Trees in Ad Hoc Wireless Networks 275

such as emergency situations, disaster relief, military command and control, and
most recently, in the mobile commerce sector.

2 Related Work

MEB was introduced in [18], where the authors considered three heuristic algo-
rithms of which most cited is Broadcast Incremental Power (BIP), a greedy
O(N2 log N) approximation algorithm. To our best knowledge, the most recent
results for lower and upper bounds on the approximation ratio are 4.6 [3] and
6 [2], respectively. Much is written about refinements of fast sub-optimal meth-
ods, for instance [10,11,13,17]. In [6], the authors study RAP and compare cases
when the resulting graph is required to be strongly and weakly connected. Several
heuristic approaches are proposed (e.g. in [4,5]). Many works are also dedicated
to mathematical programming techniques. Various ILP models for both MET
and RAP are presented in [8,9,12,15]. A special case where the transmission
ranges of the stations ensure the communication between any pair of stations in
at most h hops is investigated in [7].

The first work concerning SBT is [16], where the idea of a single source-
independent tree embedding N broadcast trees for different sources is intro-
duced. The authors show that using the same broadcast tree does not result in
widely varying total powers for different sources. Another contribution of [16] is
a polynomial-time approximation algorithm to construct a single broadcast tree,
including an analysis of its performance. In [19], the authors present an ILP for-
mulation and apply a dual decomposition method. This approach enables solving
larger instances than an explicit formulation can solve, and with less than 3 %
performance gap to global optimality.

3 Notation and Assumptions

Let H = (VH , EH) be an undirected graph and u ∈ VH . The degree of u in H
is denoted by degH(u). The input and output degree of v ∈ VK in a directed
graph K = (VK , AK) is denoted by deg−

K(v) and deg+K(v), respectively. Let
H ′ = (VH′ , EH′) be a subgraph of H. Then, H \ H ′ denotes the graph induced
by the node set VH \ VH′ .

A wireless network is modelled as a complete graph G = (V,E), where V
corresponds to the network nodes, and the edges E correspond to potential direct
links between them, i.e. ∀i, j ∈ V, i �= j : {i, j} ∈ E. The set A = {(i, j) : i, j ∈
V, i �= j} contains all arcs derived from E. Next, D ⊆ V is a nonempty set of
destinations with N = |V | and M = |D|.

Let z ∈ {0, 1}E be a vector with components corresponding to edges in E.
The undirected graph induced by z is defined as Gz = (V,Ez), where {i, j} ∈
Ez ⇔ zij = 1. The directed graph induced by x ∈ {0, 1}A is defined analogously.

For i, j ∈ V , the power requirement for transmission from i to j is denoted
by pij , and depends on the distance dij between i and j and environmental
properties. More precisely, pij = κdα

ij , where α is an environment-dependent
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parameter (typically valued between 2 and 4) and κ is a constant. In this work,
the power requirements pij are referred to as the arc costs. It follows from dij =
dji that the power requirements are symmetric.

If {i, j} is an edge in a tree T = (VT , ET ), where VT ⊆ V , ET ⊆ E, we use
Ti/j to denote the subtree of T consisting of all vertices k such that the path
from k to j visits i, as introduced in [19]. Additionally, we define a function
nod(Ti/j) that returns the number of destinations in Ti/j .

Neighbours of i in T are denoted iT1 , iT2 , iT3 , . . . in non-increasing order of
distance from i. If there is no risk of confusion, we simply omit the superscript
T . The highest and second highest power levels of i are defined by its neighbours
i1 and i2, respectively. If i is a leaf, we set pii2 = 0. The contribution cT (i) of i
in T to the total cost depends on i’s power levels:

cT (i) = nod(Ti1/i)pii2 + nod(T \ Ti1/i)pii1 . (1)

The total cost P (T ) of the tree T is then determined as

P (T ) =
∑

i∈V

cT (i). (2)

Problem 1. (SMT): Find a tree T in G minimizing P (T ) such that T spans D.

The most costly two incident edges of each node contribute to the objective
function value. This reflects the nature of SBT/SMT, when the power level of
a node is determined by the most costly link along which a message has to be
forwarded. The power requirement of the link is multiplied by the number of
senders whose transmissions are relayed through this link, which captures how
often the link is used.

4 Discrete Optimization Model

We present an integer programming model for SMT, extending the model in
[19] by non-destinations. In this setting we consider a set of destinations D ⊆ V
where a broadcast session takes place. Variables are defined as follows:

zij =

{
1 if edge {i, j} ∈ E is in T,

0 otherwise,

xs
ij =

{
1 if arc (i, j) ∈ A is used to transmit messages from s ∈ D,

0 otherwise,

ys
ij =

{
1 if node i ∈ V uses power pij to transmit messages from s ∈ D,

0 otherwise.

Let xs ∈{0, 1}A denote the vector consisting of variables xs
ij for all (i, j) ∈ A.

The ILP model is presented below. The x-variables induce |D| directed trees,
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that are encapsulated into a single spanning tree induced by the z-variables. The
power levels are determined by the y-variables.

min
∑

(i,j)∈A

∑

s∈D

pijy
s
ij (3a)

s.t.
∑

{i,j}∈E

zij ≤ N − 1 (3b)

∑

i∈V \{j}
xs

ij = 1 j, s ∈ D, j �= s, (3c)

xs
jk ≤

∑

i∈V \{j}
xs

ij ≤ 1 j ∈ V \ D, s ∈ D, k ∈ V \ {j}, (3d)

∑

i∈V \{j}
xs

ij ≤
∑

k∈V \{j}
xs

jk s ∈ D, j ∈ V \ D, (3e)

xs
ij + xs

ji = zij {i, j} ∈ E, s ∈ D, (3f)

xj
ij = 0 j ∈ D, i ∈ V \ {j}, (3g)

xs
ij ≤

∑

k∈V :pik≥pij

ys
ik s ∈ D, (i, j) ∈ A, (3h)

z ∈ {0, 1}E , x,y ∈ {0, 1}A×D. (3i)

By constraint (3b), we express the upper bound on the number of edges in
the Steiner tree. There is also a lower bound M − 1 on the size of the spanning
tree, but addition of this constraint would neither reduce the space of feasible
solutions nor increase the strength of the model. If the tree does not contain any
Steiner nodes, its size is the lower bound, while if all nodes are used (either as
Steiner nodes, or D = V ), its size equals the upper bound. By (3c), we ensure
that a message from source s reaches a destination j from exactly one neighbour
i ∈ V . Next, constraint (3d) covers the case when j ∈ V \D: If a non-destination
j forwards a message from s towards k, the message must come from exactly one
neighbour i. Note that assuming there is no outgoing arc from a non-destination
j, constraint (3d) does not prevent j from being a leaf in Gxs . We make such
undesired solutions impossible by adding constraint (3e), which reduces the set
of feasible solutions. However, (3e) is not necessary, because a solution, where a
non-destination that does not relay any message is assigned a non-zero power,
would be filtered out by the minimization procedure. The expression (3f) says
that for any edge {i, j} in Gz a message from s is transferred via either arc (i, j)
or arc (j, i). The next constraint (3g) expresses that a transmission initiated
by s ∈ D cannot reach s again, which implies non-existence of a directed cycle
containing s. Finally, by (3h), we define a relation between x-variables and y-
variables. When arc (i, j) is used for transmission of a message from s ∈ D, vertex
i relaying the message must be assigned power at least pij . The remainder of
this section justifies that the model is a correct formulation of SMT. Proofs of
all claims can be found in Appendix A.
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Lemma 1. Let (x, z) satisfy (3b)–(3i). A replacement of all directed arcs in Gxs

by undirected ones yields graph Gz, for all s ∈ D.

Lemma 2. Let (x, z) satisfy (3b)–(3i) and s ∈ D. All arcs in a path (s =
u1, u2, . . . , uk) in digraph Gxs are directed from s towards uk.

Proposition 1. Let (x, z) satisfy constraints (3b)–(3i). If Q is a connected com-
ponent in Gz such that VQ ∩ D �= ∅, then, Q does not contain any cycle.

Proposition 2. If (x, z) satisfies constraints (3b)–(3i), then there exists a path
in Gz between any two destinations s, t ∈ D.

The optimal solution to (3a)–(3i) is a graph Gz with one connected compo-
nent containing all destinations. Non-destinations outside of this component are
isolated vertices, as any potential links between them would be eliminated by
the optimization.

Proposition 3. If (x,y, z) is an optimal solution to (3a)–(3i), then one of
the connected components of Gz is an optimal tree in Problem 1, and

∑
(i,j)∈A∑

s∈D pijy
s
ij = P (Gz).

5 Inexact Methods

Solving the ILP model presented in the previous section provides the optimal
power assignment, but the computation in large instances takes prohibitively
long time. Hence, we now focus on algorithms with better trade-off between
optimality and runtime. Any tree T in G spanning D is a feasible solution to
SMT . We study the following methods:

1. Construction by MST (minimum-weight spanning tree), where all vertices are
considered as destinations, and a MST is constructed over the set V .

2. Construction by BIP, where we regard the set of vertices as an instance of
MEB, and apply the BIP algorithm over V .

3. Greedy Anticipating SMT algorithm described in the following Sect. 5.1.

The global impact of a local change suggests that the first two algorithms are
rather myopic for our purposes. Unlike MST and MEB, the nature of SBT/SMT
implies that an addition of an edge does not cause only a local change of power
levels. Every time a new edge is appended, all nodes already included in the
tree increase their contributions to the resulting cost, because the addition of
an edge also increases the size of corresponding subtrees of every interior node.
Therefore, the new cost cannot be calculated in constant time.

In general, the algorithms work in two phases. The first phase, construction,
creates a spanning tree according to a certain strategy. Further improvements
can be achieved in the second phase (refinement) which can be applied regardless
of what construction method is used.
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5.1 Greedy SMT Approach

We present in Algorithm 1 GASMT, a greedy algorithm aimed to construct a
Steiner tree T = (VT , ET ), with low SMT cost. The algorithm starts with T
containing only a pre-defined root, and iteratively expands T by an edge until
all destinations are present in VT . The selection of the new edge is based on an
anticipation of the entire resulting tree.

Algorithm 1. Greedy Anticipating SMT (GASMT)
Input: Complete graph G = (V,E), root r ∈ V , destinations D ⊆ V
Output: Steiner tree T = (VT , ET ), D ⊆ VT ⊆ V , ET ⊆ E
1: procedure BuildTree(G)
2: T ← ({r}, ∅)
3: while D �⊆ VT do
4: bestCost ← ∞
5: Cand ← {{i, j} : i ∈ VT , j = arg min{dik : k ∈ V \ VT }}
6: for each {i, j} ∈ Cand do
7: T ′ ← AnticipateTree(T, i, j)
8: if P (T ′) < bestCost then
9: bestCost ← P (T ′)

10: {i∗, j∗} ← {i, j}
11: T ← (VT ∪ {j∗}, ET ∪ {{i∗, j∗}})

return T
12:
13: procedure AnticipateTree(T, i, j)
14: T ′ ← (VT ∪ {j}, ET ∪ {{i, j}})
15: Disconnected ← V \ VT ′

16: for each v ∈ Disconnected ∩ D do
17: u ← arg min{dkv : k ∈ VT ′}
18: T ′ ← (VT ′ ∪ {v}, ET ′ ∪ {{u, v}})

return T ′

Before a new edge is appended, we determine a set Cand of potential edges
that can be selected: for every u ∈ VT , we remember a potential edge linking
u to the closest v ∈ V \ VT (line 5 in Algorithm 1). For each candidate edge
{i, j}, we build an anticipated tree spanning D. The edge {i, j} is temporarily
appended to T , which produces tree T ′. Subsequently, all destinations that are
not yet included in T ′ are connected one by one to the growing anticipated T ′

using the shortest possible edges. The candidate link resulting in the cheapest
anticipated tree is then selected and added permanently to T . The purpose of the
anticipation procedure is to predict the sizes of individual subtrees in the final
tree. This allows a more realistic estimation of the resulting objective value, in
contrast to the construction by MST and BIP. Non-destinations are disregarded
in the anticipation procedure, because they do not alter the subtree sizes.
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5.2 Refinement

Any construction algorithm can be followed by an additional phase refining the
existing tree T . In particular, this phase handles non-destinations, and replaces
expensive transmissions by cheaper ones.

Although the use of non-destinations may reduce the cost, the construction
phase does not guarantee that all non-destinations do. Thus, cost reductions
can be achieved by removing non-destinations that actually deteriorate the tree.
How a non-destination v is processed depends on its degree:

• deg(v) = 1: Non-destination leaves can immediately be deleted recursively.
• deg(v) = 2: Let (v1, . . . , vm) be a maximal path in T such that deg(v1) =

· · · = deg(vm) = 2 and v1, . . . , vm ∈ V \ D, and consider the two connected
components T1 and T2 arising when the path is deleted from T . If there
exists an edge e ∈ E connecting T1 and T2 such that P (T ′) < P (T ), where
T ′ = (VT1 ∪ VT2 , ET1 ∪ ET2 ∪ {e}), the path is replaced by the best choice of
e. If no such edge exists, T .

• deg(v) ≥ 3: Let E(v) be the set of edges incident to v in T and let T ′ =
(VT \ {v}, (ET \ E(v)) ∪ EMST), where EMST is the set of edges of a MST
constructed over the set of v’s neighbours in T . If P (T ′) < P (T ), the current
tree is updated to T ′.

The cost of the tree can be further improved by eliminating unnecessary
transmissions by means of so called “sweep” operations [18]. After removal of an
edge e, the vertices are partitioned into a cut. We then select and include the
edge across the cut leading to the cheapest tree, possibly e itself. This procedure
can be done for all edges, or only for selected ones - for example it makes sense
to test only edges longer than a certain threshold.

6 Experimental Evaluation

We have implemented the ILP model as well as the inexact algorithms and
compared numerically their performance in terms objective value and runtime.

The input parameters of the procedure generating individual instances are
the number of all vertices and the number of destinations. It generates instances
with the intended number of destinations and non-destinations with random
coordinates uniformly distributed on a square. Finally, the power requirements
are determined using pij = κdα

ij with κ = 1 and α = 2. All experiments were
run on an Intel Core 2 Quad CPU at 2.83 GHz and 7 GB RAM.

6.1 ILP Model

The integer programming formulation was implemented in AMPL and submitted
to solver CPLEX [20] which computed optimal solutions as well as LP relaxations
of the generated instances. The running time of determining the optimal solution
for instances containing more than 22 vertices becomes excessively long, and so
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Fig. 1. Dependence of the total cost on the number of all vertices

we computed only the corresponding LP relaxations, which gives lower bounds
on the objective function value.

Two instance settings were tested. In the first setting, we kept the number of
non-destinations |V \ D| constant, while increasing the number of destinations
|D|. The abbreviation ID-CN is used to refer to this series of experiments, fol-
lowed by |V \ D| whenever it needs to be specified. In the second setting, |D|
was constant while |V \ D| was increasing (IN-CD).

The first series of experiments concerns the change of the objectve function
value with growing instance size. It is obvious from the graphs in Fig. 1, that
in ID-CN, increasing the number of vertices also increases the total SMT cost.
On the other hand, in IN-CD, the total cost decreases. This decline gradually
mitigates, and it can be assumed that the average cost converges to a constant
value. By way of contrast, the first graph in Fig. 1 also contains the costs obtained
by the inexact algorithm. The difference between the optimum and the result of
GASMT is almost negligible.

The second series of experiments shows how fast the CPU time grows with
increasing number of nodes. It is apparent that the time used by the solver grows
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Fig. 2. Dependence of the solution time on the total number of vertices

faster in ID-CN than in IN-CD, as seen in Fig. 2. Nevertheless, in both settings,
the time grows exponentially. In the smallest instances, the CPU time is longer
for IN-CD, because the number of destinations is higher than in ID-CN. This
difference is gradually reduced. From approximately 20 vertices on, the solving
time of the LP-relaxations in ID-CN becomes longer. In IN-CD(10) and ID-
CN(10), every added destination causes an average increase in the ILP solution
time by 89 % and 208 %, respectively.

6.2 Greedy and Heuristic Approach

The next set of experiments compares the objective value of inexact solutions
produced by GASMT and the construction by MST and BIP discussed in Sect. 5.
Each run of an inexact algorithm was followed by a refinement procedure, namely
two iterations of non-destination removal and two iterations of sweep operations
for every edge. The graphs in Fig. 3 show the results of two experimental settings,
IN-CD(10) (left) and ID-CN(10) (right). Each column in the graphs corresponds
to the average SMT cost calculated for 100 instances with fixed |V |/|D| ratio.

It can be seen that the cost of the solutions produced by the construction
by MST and BIP are similar, but GASMT is always perceptibly better. Never-
theless, worse time complexity of GASMT becomes apparent while processing

Fig. 3. Comparison of the greedy methods. The fractions on the x-axis determine the
corresponding |D|/|V | values.
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instances of around 100 nodes, when the time spent on one instance is approx-
imately units of minutes. On the contrary, the other two methods return the
solution almost immediately.

7 Conclusion and Future Work

We have introduced a multicast version of SBT, a natural generalization of
the problem. We have proposed a discrete optimization model together with the
proof of its correctness. Due to the limited size of instances solvable in a practical
time, heuristic and greedy approaches are also developed.

Moreover, we have conducted several numerical experiments using the
CPLEX solver. It turned out that the presented ILP model can be used for
solving instances with up to around 20 vertices. An increasing number of des-
tinations causes a much faster growth of the solution time than an increasing
number of non-destinations. In addition, these experiments give us insight into
the cost reduction as a function of increasing number of non-destinations.

Further experiments involved the inexact methods. The GASMT algorithm
presented in this work gives better results than the construction by MST and
BIP applied on SMT. Moreover, the solutions provided by GASMT are close to
the optimal ones determined by solving the ILP model.

A subject of continued research is a detailed theoretical study of the inex-
act methods. There are several interesting questions regarding this topic, like
whether any inexact method is an approximation algorithm for SBT/SMT, or
whether any method performs consistently better than others. There is also a
substantial room for further improvements of the ILP model so that it can be
applicable for larger instances. In particular, methods like strong valid inequali-
ties, lazy constraints and user cuts could serve for this purpose.
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Abstract. A (convex) polytope is said to be 2-level if for every facet-
defining direction of hyperplanes, its vertices can be covered with two
hyperplanes of that direction. These polytopes are motivated by ques-
tions, e.g., in combinatorial optimization and communication complexity.
We study 2-level polytopes with one prescribed facet. Based on new gen-
eral findings about the structure of 2-level polytopes, we give a complete
characterization of the 2-level polytopes with some facet isomorphic to
a sequentially Hanner polytope, and improve the enumeration algorithm
of Bohn et al. (ESA 2015). We obtain, for the first time, the complete list
of d-dimensional 2-level polytopes up to affine equivalence for dimension
d = 7. As it turns out, geometric constructions that we call suspensions
play a prominent role in both our theoretical and experimental results.
This yields exciting new research questions on 2-level polytopes, which
we state in the paper.

1 Introduction

We start by giving a formal definition of 2-level polytopes and reasons why we
find that they are interesting objects.

Definition 1 (2-level polytope). A polytope P is said to be 2-level if each
hyperplane Π defining a facet of P has a parallel Π ′ such that every vertex of P
is on either Π or Π ′.

Motivation. First of all, many famous polytopes are 2-level. To name a few,
stable set polytopes of perfect graphs [3], twisted prisms over those — also known
as Hansen polytopes [15] — Birkhoff polytopes, and order polytopes [21] are all
2-level polytopes. Of particular interest in this paper are a family of polytopes
interpolating between the cube and the cross-polytope.

Definition 2 (sequentially Hanner polytope). We call a polytope H ⊆ R
d

a sequentially Hanner polytope if either H = H ′ × [−1, 1] or H = conv(H ′ ×
{0} ∪ {−ed, ed}), where H ′ is a sequentially Hanner polytope in R

d−1 in case
d > 1, or H = [−1, 1] in case d = 1. We call H ′ the base of H.
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The name comes from the fact that these polytopes are Hanner polytopes [14]
but not all Hanner polytopes are sequentially Hanner. Hanner polytopes are
related to some famous conjectures such as Kalai’s 3d conjecture [16] and the
Mahler conjecture [19].

More motivation for the study of 2-level polytopes comes from combinatorial
optimization, since 2-level polytopes have minimum positive semidefinite exten-
sion complexity [9]. Moreover, a finite point set has theta rank 1 if and only if it
is the vertex set of a 2-level polytope. This result was proved in [7], and answered
a question of Lovász [17]. We already mentioned the stable set polytopes of per-
fect graphs as prominent examples of 2-level polytopes. To our knowledge, the
fact that these polytopes have small positive semidefinite extended formulations
is the only known reason why one can efficiently find a maximum stable set in
a perfect graph [13]. Moreover, 2-level polytopes are also related to nice classes
of matrices such as totally unimodular or balanced matrices that are central in
integer programming, see e.g. [20].

Finally, 2-level polytopes are also of interest in communication complexity
since they provide interesting instances to test the log-rank conjecture [18], one
of the fundamental open problems in that area. Indeed, every d-dimensional
2-level polytope has a slack matrix that is a 0/1-matrix of rank d+1. If the log-
rank conjecture were true, the communication problem associated to any such
matrix should admit a deterministic protocol of complexity polylog(d), which is
open. Returning to combinatorial optimization, the log-rank conjecture for slack
matrices of 2-level polytopes is (morally) equivalent to the statement that every
2-level polytope has an extended formulation with only 2polylog(d) inequalities.

Goal. Despite the motivation described above, we are far from understanding the
structure of general 2-level polytopes. This paper offers results in this direction.
The recurring theme here is how much local information about the geometry of
a given 2-level polytope determines its global structure. For instance, it is fairly
easy to prove that if a 2-level polytope has a simple vertex, then it is necessarily
isomorphic1 to the stable set polytope of a perfect graph — this observation
generalizes a result of [7]. Here, we study 2-level polytopes with a prescribed
facet.

Prescribing facets of 2-level polytopes is a natural way to enumerate 2-level
polytopes. Indeed, since every facet of a 2-level polytope is also 2-level, in order
to enumerate all d-dimensional 2-level polytopes one could go through the list of
all (d − 1)-dimensional 2-level polytopes P0 and enumerate all 2-level polytopes
P having P0 as a facet. The enumeration algorithm [2] builds on this strategy.
It gave the complete list of 2-level polytopes up to dimension d = 6. However,
the method in [2] was by far not able to compute the list of 2-level polytopes in
d = 7.

1 While in general two polytopes can be combinatorially equivalent without being
affinely equivalent, for 2-level polytopes these two notions coincide [2]. We simply
say that two 2-level polytopes are isomorphic whenever they are combinatorially (or
affinely) equivalent.
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Contribution and Outline. The contribution of this paper is twofold.
First, we revisit the enumeration algorithm from [2] and propose a new and

significantly more efficient variant based on a more geometric interpretation of
the algorithm. We implemented the new algorithm and computed for the first
time the complete list of 2-level polytopes up to isomorphism for d = 7. The
algorithm and the results are exposed in Sect. 2.

Second, we characterize 2-level polytopes with a cube or cross-polytope facet
and more generally with a sequentially Hanner facet, see Sect. 3. We give an infor-
mal statement (Theorem 1) of the result there and illustrate the proof strategy
with the special case of the cube and cross-polytope. The full statement and
proof can be found in the appendix.

Our main tool to obtain these results is a certain polyhedral subdivision that
one can define given any prescribed facet, see below in the present section. In
addition to this, we make use of the lattice decomposition property, a general
property of 2-level polytopes that is tightly related to the integer decomposition
property.

Finally, in Sect. 4, we discuss suspensions of 2-level polytopes. A suspension
of a polytope P0 ⊆ {x ∈ R

d | x1 = 0} is any polytope P obtained as the convex
hull of P0 and P1, where P1 ⊆ {x ∈ R

d | x1 = 1} is the translate of some
non-empty face of P0. The prism and the pyramid over a polytope P0 are special
cases of suspensions. As an outcome of our results, we found that suspensions
seem to play an important role in understanding the structure of general 2-level
polytopes. We conclude Sect. 4 by stating promising new research questions on
2-level polytopes that are inspired by this.

Now, we describe our approach in more detail and then give further pointers
to related work.

Approach. Given any 2-level (d − 1)-polytope P0 that we wish to prescribe
as a facet of a 2-level d-polytope P , we define a new polytope that we call the
“master polytope” and a polyhedral subdivision of this master polytope.

Definition 3 (Master polytope, polyhedral subdivision). Let P0 be a
(d−1)-dimensional 2-level polytope embedded in {x ∈ R

d | x1 = 0} � R
d−1. Since

P0 is 2-level, each facet-defining hyperplane Π− has a parallel hyperplane Π+

such that Π− and Π+ together contain all the vertices of P0. Let v− and v+ be
vertices of P0 on Π− and Π+ respectively. Consider the three hyperplanes Π− −
v+, Π− − v− = Π+ − v+ and Π+ − v−. Let Q(P0) ⊆ {x ∈ R

d | x1 = 0} denote
the polytope bounded by the “outer” hyperplanes Π− −v+ and Π+ −v− obtained
for each facet-defining direction. We call Q = Q(P0) the master polytope of P0.
The “middle” hyperplanes Π−−v− = Π+−v+ define a polyhedral subdivision of
the master polytope Q, which we denote by S(P0). See Fig. 1 for an illustration
for d = 3, 4.

The improved enumeration algorithm that we propose in Sect. 2 is based on
three new ideas, two of which are related to the polyhedral subdivision S(P0): (i)
we enumerate the possible vertex sets of the top face P1 in the whole polyhedral
subdivision S(P0), instead of branching prematurely and miss the opportunity
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0

−1 ≤ x3 ≤ 0

0 ≤ x3 ≤ 1

0 ≤ x2 ≤ 1−1 ≤ x2 ≤ 0

0 ≤ x2 + x3 ≤ 1

−1 ≤ x2 + x3 ≤ 0

(a) Triangle (b) 3-dimensional cross-polytope

Fig. 1. (a) The polyhedral subdivision S(P0) in case P0 is a triangle. Coloured sets
correspond to the 2-level polytopes P computed by the enumeration algorithm. Red sets
yield suspensions. (b) polyhedral subdivision S(P0) in case P0 is the 3-cross-polytope;
the blue cells yield prisms, all the faces yield suspensions except from yellow cells that
yield quasi-suspensions (figure from Wikipedia). (Color figure online)

to discard redundant computations; (ii) we exploit the fact that many possible
vertex sets for P1 are related to each other by translations within S(P0), which
further decreases the number of cases to consider; (iii) we use an ordering on the
set of prescribed 2-level facets that allows the algorithm to compute significantly
less convex hulls.

In order to prove our main theoretical result stated in Sect. 3, we embed the
given sequentially Hanner facet P0 = H in {x ∈ R

d | x1 = 0}, and consider
the polyhedral subdivision S(H). Up to isomorphism, every 2-level polytope P
that has H as a facet is the convex hull of P0 = H and some 2-level (possibly
low-dimensional) polytope P1 in {x ∈ R

d | x1 = 1}. We prove that P1 is always
a translate of some face of S(H), a fact that we repeatedly use in our analy-
sis. This uses the fact that for sequentially Hanner polytopes, facet directions
exactly correspond to 2-level directions. Although the structure of S(H) for a
sequentially Hanner facet H seems quite wild, we are able to characterize which
points of {x ∈ R

d | x1 = 1} can possibly appear as vertices of P , assuming that
e1 is a vertex of P . There, we use the lattice decomposition property.

Then, we analyse the vertex set of P1 through an associated bidirected graph
which determines the projection of P1 to a subset of the coordinates, namely,
those that correspond to prism operations in the sequentially Hanner facet H.
We prove that this bidirected graph can always be assumed to be a star (possibly
with some parallel edges). In order to reconstruct P1 from its bidirected graph, we
show that every bidirected edge of our bidirected graph has corresponding face in
P1, which is an axis-parallel cube. Next, we characterize the choices of cubes that
lead to a 2-level polytope and conclude that P is a generalization of a suspen-
sion, which we call quasi-suspension. Finally, we complete the characterization
by proving that quasi-suspensions of sequentially Hanner polytopes are always
2-level.
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Related Work. The enumeration of all combinatorial types of point configu-
rations and polytopes is a fundamental problem in discrete and computational
geometry. Latest results in [4] report complete enumeration of polytopes for
dimension d = 3, 4 with up to 8 vertices and d = 5, 6, 7 with up to 9 vertices.
For 0/1-polytopes this is done completely for d � 5 and d = 6 with up to 12
vertices [1].

Regarding 2-level polytopes, recent related results include an excluded minor
characterization of 2-level matroid base polytopes [12], a O(cd) lower bound on
the number of 2-level matroid d-polytopes [11], and a complete classification
of polytopes with minimum positive semidefinite rank, which generalize 2-level
polytopes, in dimension 4 [8].

2 Enumeration of 2-Level Polytopes

Preliminaries. We start by sketching the main ideas of the algorithm of [2]
along with definitions and useful tools.

Definition 4 (Slack matrix). The slack matrix of a polytope P ⊆ R
d with m

facets F1, . . . , Fm and n vertices v1, . . . , vn is the m × n nonnegative matrix
S = S(P ) such that Sij is the slack of the vertex vj with respect to the facet Fi,
that is, Sij = gi(vj) where gi : R

d → R is any affine form such that gi(x) � 0
is valid for P and Fi = {x ∈ P | gi(x) = 0}. The slack matrix of a polytope is
defined up to scaling its rows by positive reals.

A polytope is 2-level if and only if each row of its slack matrix takes exactly
two values (namely, 0 and some positive number that can may vary from row
to row). When dealing with 2-level polytopes, we will always assume the slack
matrices to be 0/1, which may be always achieved by scaling the rows of the
matrix with positive scalars.

Definition 5 (Simplicial core). A simplicial core for a d-polytope P is a (2d+
2)-tuple (F1, . . . , Fd+1; v1, . . . , vd+1) of facets and vertices of P such that each
facet Fi does not contain vertex vi but contains vertices vi+1, . . . , vd+1.

Every d-polytope P admits a simplicial core and this fact can be proved
by a simple induction on the dimension, see, e.g., [9, Proposition 3.2]. We use
simplicial cores to define two types of embeddings that are full-dimensional.
Let P be a 2-level d-polytope with m facets and n vertices, and let Γ :=
(F1, . . . , Fd+1; v1, . . . , vd+1) be a simplicial core for P . From now on, we assume
that the rows and columns of the slack matrix S(P ) are ordered compatibly
with the simplicial core, so that the ith row of S(P ) corresponds to facet Fi

for 1 � i � d + 1 and the j-th column of S(P ) corresponds to vertex vj for
1 � j � d + 1.

Definition 6 (V- and H-embedding). The H-embedding with respect to Γ
is defined by mapping each vj to the unit vector ej of R

d for 1 � j � d, and
vd+1 to the origin. In the H-embedding of P , facet Fi for 1 � i � m is defined
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by the inequality
∑

j∈[d],Sij=1 xj � 0 if vd+1 ∈ Fi and by
∑

j∈[d],Sij=0 xj � 1 if
vd+1 �∈ Fi. In the V-embedding of P with respect to Γ , vertex vj is the point of
R

d whose ith coordinate is Sij, for 1 � j � n and 1 � i � d.

Equivalently, the V-embedding can be defined via the transformation x �→
Mx, where the embedding matrix M = M(Γ ) is the top left d × d submatrix of
S(P ) and x ∈ R

d is a point in the H-embedding.
The next result is fundamental for the enumeration algorithm.

Proposition 7 ([2]). In the H-embedding P of a 2-level d-polytope with respect
to any simplicial core Γ , the vertex set of P equals P ∩M−1 ·{0, 1}d ⊆ Z

d, where
M = M(Γ ) is the embedding matrix of Γ .

The algorithm computes a complete set Ld of non-isomorphic 2-level d-
polytopes, from a similar set Ld−1 of 2-level (d − 1)-polytopes. For a given
polytope P0 ∈ Ld−1, define L(P0) to be the set of all 2-level polytopes that have
P0 as a facet. Since every facet of a 2-level polytope is 2-level, the union of these
sets L(P0) over all polytopes P0 ∈ Ld−1 is our desired set Ld. The main loop
of the algorithm is as follows (Algorithm 1, lines 2–18): given some P0 ∈ Ld−1,
embed it in the hyperplane {x ∈ R

d |x1 = 0} � R
d−1. Then compute a collec-

tion A ⊆ {x ∈ R
d |x1 = 1} of point sets, such that for each 2-level polytope

P ∈ L(P0), there exists A ∈ A with P � conv(P0 ∪ {e1} ∪ A). For each A ∈ A,
compute P = conv(P0 ∪ {e1} ∪ A) and, in case it is 2-level and not isomorphic
to any polytope in the current set Ld, add P to Ld (Algorithm 1, lines 11–18).

The efficiency of this approach depends greatly on how the collection A is
chosen. In [2], A is constructed using a proxy for 2-level polytopes in terms of
closed sets with respect to a closure operator.

Definition 8 (Closure operator). An operator cl : 2X → 2X over a ground
set X is a closure operator if it is: (i) idempotent (i.e., cl(cl(A) = cl(A)), (ii)
(�,
)-monotone (i.e., A � B ⇒ cl(A) 
 cl(B)) and (iii) �-expansive (i.e.,
A � cl(A)), where A,B ⊆ X , A � B ⇔ A = B or max((A∪B)� (A∩B)) ∈ B,
A 
 B ⇔ A ⊆ B and max(B � A) � min A, and ⊆ is the usual containment.

The reader can verify that A 
 B ⇒ A ⊆ B ⇒ A � B. A set A ⊆ X is said to
be closed with respect to cl if cl(A) = A.

In [2] the closure operator clG ◦ cl(X ,F) is used, where F ⊆ R
d is a finite

set of points disjoint from X and G is an “incompatibility graph”. Then the
algorithm of [5] is used, which is a polynomial delay algorithm for enumerating
all the closed sets of a given closure operator.

New Enumeration Algorithm. We propose a new variant of the algorithm
described above, Algorithm 1, inspired by a more geometric understanding of the
enumeration method, relying on polyhedral subdivisions. There are three main
improvements. They are described below.

In the first improvement we change the way the algorithm constructs the
ground set X whose subsets are candidate point sets for the collection A. In [2]
Md is computed — using (1) — for each possible bit-vector b ∈ {0, 1}d−2 and
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Algorithm 1. Enumeration algorithm

1 Set Ld := ∅;
2 foreach P0 ∈ Ld−1 with simplicial core Γ0 := (F ′

2, . . . , F
′
d+1; v2, . . . , vd+1) do

3 Construct the H-embedding of P0 in {0} × R
d−1 � R

d−1 w.r.t. Γ0;
4 Let Md−1 := M(Γ0) and X := ∅;

5 foreach bit vector b ∈ {0, 1}d−2 do /* Improv. 1 */

6 Complete Md−1 to a d × d matrix in the following way:

Md :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0
0
b1
...

bd−2

Md−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(1)

7 X := X ∪ M−1
d · ({1} × {0, 1}d−1) � {e1};

8 Let F := vert(P0) ∪ {e1};
9 Let G be the incompatibility graph on X w.r.t. P0 and Md;

10 Using the Ganter-Reuter algorithm [5], compute the list A of closed sets of
the closure operator cl(G,X ,F) (see Equation (2)) ; /* Improv. 2 */

11 foreach A ∈ A do
12 if P0 has as many vertices as every adjacent facet in conv(A ∪ F) then

/* Improv. 3 */

13 Let P := conv(A ∪ F);
14 if P is 2-level and not isomorphic to any polytope in Ld then
15 Let F1 := P0 and v1 := e1;
16 for i = 2, . . . , d + 1 do
17 Let Fi be the facet of P distinct from F1 s.t. Fi ⊇ F ′

i ;

18 Add P to Ld with Γ := (F1, . . . , Fd+1; v1, . . . , vd+1);

X := M−1
d · ({1} × {0, 1}d−1) � {e1}. Here we construct a larger ground set X

as the union of all the old X sets. See Algorithm 1, lines 5–7.
To illustrate the difference of approaches in d = 2 note that in Fig. 1 the old

approach would construct two ground sets of four points each (corresponding to
the two small squares to the right), while the new approach constructs a single
ground set of six points. What we gain is that Algorithm1 avoids enumerating
many times a set A in the intersection of cells of S(P0) (blue sets in Fig. 1). In
this section, to simplify things, we translate the master polytope Q(P0) and its
subdivision S(P0) in the {x ∈ R

d | x1 = 1} hyperplane, so that the origin is
translated to e1.

The second improvement is to exploit symmetries in a more sophisticated
way. The symmetries we have in mind are translations “within” S(P0). Note
that the closure operator used in [2] satisfies stronger properties than those in
Definition 8, in particular, it is idempotent, (⊆,⊆)-monotone, and ⊆-expansive.
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Letting A ‡ a := ((A ∪ {e1}) + e1 − a) � {e1} for a ∈ A, we define a new closure
operator as follows:

cl(G,X ,F)(A) := max
�

{clG ◦ cl(X ,F)(A ‡ a) | a ∈ A, A ‡ a ⊆ X}, (2)

where A ⊆ X . This new operator returns a single representative from an equiv-
alence class of point sets A in the polyhedral subdivision S(P0) (green sets in
Fig. 1). The idea is that since all sets of points A in the equivalence class yield
the same polytope, we only need a single representative, which we define as
the maximum within the equivalence class with respect to �. The new closure
operator is used in line 10 of Algorithm1.

The third improvement consists in considering a partial order on the set
Ld−1 of (d − 1)-dimensional 2-level polytopes, which is based on the number
of vertices. The idea is that if the d-dimensional 2-level polytope P contains a
facet having strictly more vertices than the current prescribed facet P0, then
it has been already enumerated before. We choose an ordering of Ld−1 that is
consistent with this.

Actually, the algorithm does not check that no facet of P = conv(A ∪ F)
has strictly more vertices than P0, because we want to avoid unnecessary convex
hull computations as much as possible. Instead, we check that this condition
holds only for the facets of P that are adjacent to P0, which is possible without
computing any new convex hull, since we know already all facets of P0. This
improvement is implemented in line 12 of Algorithm1.

Finally, in Theorem9 we prove the correctness of Algorithm 1.

Theorem 9. Algorithm1 outputs the list of all combinatorial types of 2-level
d-polytopes, each with a simplicial core.

Implementation andExperiments. We implement the skeleton of Algorithm 1
in Perl. For demanding computations, such as isomorphism tests, convex hull
computations, and linear algebra operations we use polymake [6], a standard
library for polyhedral computation. The implementation is based upon and
improves the implementation presented in [2]. The improvements described above
in current section yield a significant speed-up in the algorithm, which is ×12 for
d = 6. There are 447362 convex hulls (i.e. 96% of total convex hulls) avoided in
d = 6 yielding a 0.065 ratio of the number of computed 2-level polytopes over the
total number convex hulls computed. More interestingly, we enumerate all 2-level

Table 1. Experimental results of enumeration algorithms (time is sequential).

Method d 2-level closed sets not 2-level time(sec) 2-level
closed sets

Algorithm from [2] 6 1150 4.1 · 106 3.5 · 106 6.9 · 105 3.0 · 10−4

Algorithm 1 6 1150 4.6 · 105 1.1 · 104 5.5 · 104 2.5 · 10−3

7 27291 1.9 · 108 1.1 · 106 2.1 · 107 1.4 · 10−4
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polytopes in one dimension higher than in [2], namely d = 7. See Table 1 for more
details on experimental results2.

On the technical part, for d = 7 we create 1150 jobs one for each 6-
dimensional 2-level polytope and submit them to a computer cluster3. The vast
majority of the jobs, namely 1132 finish in less than a day. The remaining 18
finished in a range from a week to a month. The use of high performance com-
puting is crucial for this computation since the corresponding sequential time for
this experiment is more than 5 years! The most time demanding job is the one
corresponding to the simplex, which however corresponds to the known case of
simplicial 2-level polytopes. Simplicial 2-level polytopes have been characterized
in [10]. By applying the result in d = 7 there exist exactly two simplicial 2-level
7-polytopes: the simplex and the cross-polytope.

3 Prescribing a Sequentially Hanner Facet

We start by the following property, which plays an important role in our analysis.

Definition 10 (Strong separation property). Let P be a d-dimensional
polytope. We say that P satisfies the strong separation property if for every
ordered pair K1, K2 of non-empty disjoint faces of P , there exists a facet F of
P such that F ⊇ K1 and F ∩ K2 = ∅.

In general, it is not true that all suspensions of a given 2-level polytope Q
are 2-level. However, this is true when Q has the strong separation property.

Proposition 11. Let Q ⊆ R
d−1 be a full-dimensional 2-level polytope that sat-

isfies the strong separation property. Let G be one of its non-empty faces, and
let P ⊆ R

d denote the suspension of Q with respect to G. Then every facet of P
either is parallel to {0} × Q or intersects {0} × Q in a facet. In particular, P is
a 2-level polytope.

All sequentially Hanner polytopes have the strong separation property.

Prescribing a Cubical Facet. Consider a 2-level d-polytope P one of whose
facets is the (d − 1)-cube P0 = {0} × [−1, 1]d−1 ⊆ {x ∈ R

d | x1 = 0}. Let
P1 ⊆ {x ∈ R

d | x1 = 1} denote the face of P opposite to P0. Without loss of
generality, assume that e1 is a vertex of P1. The master polytope Q(P0) is the
cube 2P0. This larger cube is subdivided by the coordinate hyperplanes in the
polyhedral subdivision S(P0). The cells of S(P0) are 2d−1 translated copies of
P0. It is easy to prove that P1 is the translate of some face of S(P0), and thus
the translate of some face of P0. In other words, P is a suspension. Combining
this with Proposition 11, we obtain:

2 The computed polytopes in polymake format and more experimental results are avail-
able online http://homepages.ulb.ac.be/∼vfisikop/data/2-level.html.

3 Hydra balanced cluster: http://cc.ulb.ac.be/hpc/hydra.php.

http://homepages.ulb.ac.be/~vfisikop/data/2-level.html
http://cc.ulb.ac.be/hpc/hydra.php
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Proposition 12. A d-dimensional 2-level polytope P has a facet isomorphic to
a (d−1)-cube if and only if it is isomorphic to some suspension of a (d−1)-cube.

Prescribing a Cross-Polytope Facet. This time, consider a 2-level d-polytope
P one of whose facets is the (d − 1)-cross-polytope P0 := conv{±e2, . . . ,±ed} ⊆
{x ∈ R

d | x1 = 0} and define P1 ⊆ {x ∈ R
d | x1 = 1} as before, so that

P = conv(P0 ∪ P1). Again, assume that e1 is a vertex of P1. Using the lattice
decomposition property, we can prove that the vertices of P1 are all of the form
e1 + w1 + w2 where w1 and w2 are vertices of the base P0.

Using the properties of the embedding of P , we construct a bidirected graph
G = G(P ) that encodes the vertices of the top face P1. The node set of G is
V := {2, . . . , d}, and for every vertex x = e1 ± ei ± ej , i, j ∈ V , of P1 that is
distinct from e1 we create an edge in G with endpoints i and j, each endowed
with a sign that coincides with the signs of the corresponding coordinate of x.

The rest of the analysis is done by establishing properties of the bidirected
graph G. The most important is the fact that G has no two disjoint edges. Next,
we establish a form of sign-consistency for G: every two edges of G have the
same sign at exactly one of their one or two common endpoints.

These two properties put extreme restrictions on the bidirected graph G.
One possible case arises when all the edges of G have a common endpoint, which
has the same sign in all the edges. This forces P to be a suspension. Moreover,
the presence of a pair of parallel edges or loop automatically leads to the case
of a prism. In the remaining case G is a triangle without pair of parallel edges
or loop. This leads to the sporadic case of the hypersimplex Δ(4, 2). We obtain
the following result.

Proposition 13. A d-dimensional 2-level polytope P has a facet isomorphic to
a (d − 1)-cross-polytope if and only if it is isomorphic to some suspension of a
(d − 1)-cross-polytope or to the hypersimplex Δ(4, 2).

Prescribing a Sequentially Hanner Facet. The following result generalizes
Propositions 12 and 13.

Theorem 1 (Informal). The 2-level polytopes with a facet isomorphic to a
sequentially Hanner polytope essentially coincide with the suspensions of sequen-
tially Hanner polytopes.

4 Discussion

In this last section, we discuss suspensions of 2-level polytopes (called just sus-
pensions below). As is supported by the theoretical and experimental results
of this paper, suspensions seem to play an important role towards a broader
understanding of the structure of general 2-level polytopes.

Since there are suspensions that are not 2-level, it is natural to ask what is
the class of 2-level polytopes whose suspensions are always 2-level. Proposition 11
sheds some light in this direction by providing a sufficient condition for any
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Table 2. Number of 2-level suspensions s(d), 2-level polytopes �(d), ratio of number
of 2-level suspensions to 2-level polytopes, and maximum number of faces of 2-level
polytopes f(d) for low dimensions d.

d 3 4 5 6 7

�(d) 5 19 106 1150 27291

s(d) 4 15 88 956 23279
s(d)
l(d)

.8 .789 .830 .831 .853

f(d) 28 82 304 940 3496

suspension of a 2-level polytope to be 2-level. It remains open to find a necessary
and sufficient condition.

Another related question is the following: what fraction of 2-level d-polytopes
are suspensions of (d − 1)-polytopes? Table 2 gives the ratio for small dimension
d. Excluding dimension 3, we observe that this fraction increases with the dimen-
sion. Using notation from Table 2, is true that �(d) = O(s(d))?

If one could prove that this is true, this would have strong consequences
on �(d). Let c > 1 be any constant such that �(d) � c · s(d). Since 2-level
d-polytopes have at most 2d vertices, each of them being affinely equivalent
to 0/1-polytope, we have f(d) � cd2

provided we choose c large enough. Now
assume that �(d − 1) ≤ c(d−1)3 (this would be our induction hypothesis). Then
we would have: �(d) � c ·s(d) � c ·�(d−1) ·f(d−1) � c ·c(d−1)3 ·c(d−1)2 � cd3

. In
fact, a singly exponential upper bound on f(d) would imply �(d) = 2O(d2). This
would not contradict any known lower bound, since all known constructions of
2-level polytopes are ultimately based on graphs and do not imply more than
a 2Ω(d2) lower bound on �(d). For instance, stable sets of bipartite graphs show
�(d) � 2

d2
4 −o(1). Can one show at least �(d) � 2poly(d)? Independently of this, is

it true that f(d) = 2O(d)?
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68, 93–102 (1939)

20. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
21. Stanley, R.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986)

http://arxiv.org/abs/1408.1262


Optimum Solution of the Closest String Problem
via Rank Distance

Claudio Arbib1, Giovanni Felici2(B), Mara Servilio2, and Paolo Ventura2

1 Dipartimento di Scienze/Ingegneria dell’Informazione e Matematica,
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Abstract. The Closest String Problem (CSP) calls for finding an n-
string that minimizes its maximum distance from m given n-strings.
Integer linear programming (ILP) proved to be able to solve large CSPs
under the Hamming distance, whereas for the Levenshtein distance, pre-
ferred in computational biology, no ILP formulation has so far be inves-
tigated. Recent research has however demonstrated that another metric,
rank distance, can provide interesting results with genomic sequences.
Moreover, CSP under rank distance can easily be modeled via ILP: opti-
mal solutions can then be certified, or information on approximation
obtained via dual gap. In this work we test this ILP formulation on ran-
dom and biological data. Our experiments, conducted on strings with
up to 600 nucleotides, show that the approach outperforms literature
heuristics. We also enforce the formulation by cover inequalities. Inter-
estingly, due to the special structure of the rank distance between two
strings, cover separation can be done in polynomial time.

1 Introduction

Let A be an alphabet with p symbols. The Closest String — or Center
String — Problem (CSP) calls for finding a string x ∈ An that best approxi-
mates a given set S of strings s1, . . . , sm ∈ An. Approximation is measured with
a distance function d(., .). A center (optimal solution of the CSP) is an x∗ that,
among all strings x ∈ An, minimizes the maximum distance d(x, si) from any
si ∈ S.

When d is the Hamming distance, d returns the number of different compo-
nents in the two strings. A different metric, the rank distance recently proposed
by Dinu and Ionescu [6] and Dinu and Popa [7], seems to provide more interesting
information in DNA sequence comparisons, with respect to the Hamming distance.
Similarly to Levenshtein distance (a special type of edit distance, [10]) and unlike
Hamming, the rank distance is in fact able to take into account, via specific penal-
ties, symbol insertions or deletions. In the sequel, we will call rank-central a string
x∗ that minimizes the maximum rank-distance from the strings of S.
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 297–307, 2016.
DOI: 10.1007/978-3-319-45587-7 26
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To compute the rank distance between two strings, one has first to enucle-
ate from each string the substrings formed by identical symbols (here gener-
ally referred to α-substrings when formed by symbols equal to α). For instance,
s = abbcbba contains the a-substring a1a2, the b-substring b1b2b3b4 and the c-
substring c1, whereas s′ = aaccbab contains a1a2a3, b1b2 and c1c2. The subscript
of each character indicates the rank that the symbol has in the relevant sub-
string. If two α-substrings of s and s′ have different lengths l, l′, then we say
they have |l − l′| out-of-ranks.

The total rank distance d(s, s′) sums up the distances between the positions
of identical symbols, one in s and the other in s′, that have the same rank, plus
a penalty for each out-of-rank in s and s′. In [6], such a penalty is assumed equal
to the position of the out-of-rank in the string. Precisely, let

– R denote the set of index pairs hk such that sh = s′
k and the symbol has the

same rank in the respective substrings.
– O,O′ denote the positions of the out-of-ranks in s, s′.

Then
d(s, s′) =

∑

hk∈R

|h − k| +
∑

k∈O∪O′
k .

In our example, we first rewrite s = a1b1b2c1b3b4a2, s′ = a1a2c1c2b1a3b2;
then we compare the positions of αk in both strings for α = a, b, c, and add
penalties for out-of-ranks (b3, b4 in s and c2, a3 in s′). As a result we get (Fig. 1)

d(s, s′) = (|1 − 1| + |7 − 2| + 6)
︸ ︷︷ ︸

a

+ (|2 − 5| + |3 − 7| + 11)
︸ ︷︷ ︸

b

+ (|4 − 3| + 4)
︸ ︷︷ ︸

c

= 34

Fig. 1. Computation of rank distance.
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Integer linear programming (ILP) formulations have been proposed to solve
the CSP with the Hamming metric, see [4], and ILP is a key factor of success
for state-of-the-art heuristics [2,5]. Aim of the present research is to extend the
ILP approach to the rank metric. In fact another advantage of rank distance is
that it is not difficult to formulate the problem of finding a rank-central string
as an integer linear program.

The paper is organized as follows. In Sect. 2 we formulate the CSP via rank
distance in terms of bipartite multi-weight matching. A computational experi-
ence based on both random and biological data is reported and commented in
Sect. 3.

2 Rank Distance Optimization: A Matching Model

In this section we formulate as an integer linear program the problem of finding a
string x∗ ∈ An that is rank-central with respect to a given set S = {s1, . . . , sm}
of strings in An. The formulation basically follows [7].

Solution encoding

Let li(α) denote the length of the α-substring of si, α ∈ A and i = 1, . . . ,m, and
define l(α) = maxi=1,...,m{li(α)}. The model encodes a solution x by 0-1 assign-
ment variables yα

kr associated with the arcs of a bipartite graph G = (U ∪ V,E),
where (see Fig. 2):

– U contains n nodes, one per component of x.
– V contains l =

∑
α∈A l(α) ≥ n nodes.

Decision variables

For any α ∈ A, r = 1, . . . , l(α) and k = r, . . . , n, we set yα
kr = 1 if xk = α

and, specifically, the k-th component of x is matched with the r-th character
of the α-string α1 . . . αl(α). Otherwise, we set yα

kr = 0. Notice that variables are
undefined for k < r, that is: a symbol of rank r in any α-substring cannot be
matched to any component of x before the r-th. Each triple (α, r, k) indexing a
y-variable identifies an arc of G (see Fig. 2).

A solution x may not contain all the characters of a substring, that is, the
r-th occurrence of a symbol α may remain unmatched (out-of-rank). We express
this by a further 0-1 variable yα

n+1,r defined for all α ∈ A and r = 1, . . . , l(α).

Encoding constraints

Symbol αr is assigned to either one or no position in x:

n+1∑

k=r

yα
kr = 1 α ∈ A and r = 1, . . . , l(α) (1)



300 C. Arbib et al.

On the other hand, every component of x needs to be defined, thus:

∑

α∈A

min{k,l(α)}∑

r=1

yα
kr = 1 k = 1, . . . , n (2)

Finally, by definition, the yα
kr fulfill upper/lower bounds and integrality clauses

yα
kr ≥ 0 (3)

−yα
kr ≥ −1 (4)

yα
kr integer α ∈ A; r = 1, . . . , l(α); k = r, . . . , n + 1 (5)

Distance constraints

To write the rank distance d(x, si) from a target string si, we introduce kα,i
r

as the (known) position that the r-th character of the α-substring has in si,
r = 1, . . . , li(α). So ka,i

1 is the position of the first a of si etcetera. For example,
referring to si = s = acbabca, ka

1 = 1, ka
3 = 7, kb

1 = 3 and so on. The distance
is the sum of penalties and misplacement costs cα,i

kr . Penalties are of two types:
pα,i

k , accounting for an α out-of-rank in x; qα,i
r for an α out-of-rank in the target

string. Misplacement costs measure instead the distance between the positions
of matched pairs, when α is not out-of-rank in x:

cα,i
kr =

⎧
⎨

⎩

|k − kα,i
r | 1 ≤ r ≤ li(α)

pα,i
k li(α) < r ≤ l(α)

qα,i
r k = n + 1, 1 ≤ r ≤ li(α)

for any i (in [6], it is assumed pα,i
k = |0 − k| = k, qα,i

r = |0 − kα,i
r | = kα,i

r ). Note
that misplacement costs and penalties pα,i

r are associated with variables yα,i
kr ,

k ≤ n (therefore with the arcs of G), whereas penalties qα,i
r correspond to the

yα,i
n+1,r.

To limit the rank distance between x and si we can then write

d(x, si) =
∑

α∈A

l(α)∑

r=1

n∑

k=r

cα,i
kr yα

kr +
∑

α∈A

li(α)∑

r=1

cα,i
n+1,ry

α
n+1,r ≤ d (6)

where d is a convenient upper bound.

Additional constraints

To respect the arrangement in each α-substring, no two arcs of G can cross each
other. This constraint, strengthened by lifting as in [1], can be enforced in this
way:

k∑

s=r

yα
sr −

k−1∑

s=r−1

yα
s,r−1 ≤ 0 (7)

for α ∈ A, r = 2, . . . , l(α) and k = r, . . . , n.
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Moreover, constraints on variables yα
n+1,r should be used to prevent the r-th

character of an α-substring from being matched when the previous is not:

yα
n+1,r−1 ≤ yα

n+1,r α ∈ A and r = 1, . . . , l(α)

Note, however, that the above constraints are implied by other inequalities. In
fact, by (7) and (3)

n∑

s=r

yα
sr ≤

n−1∑

s=r−1

yα
s,r−1 ≤

n∑

s=r−1

yα
s,r−1

from which, using (1), we get the previous inequalities.
Additionally, based on the definition of the rank distance, we also note that

inequalities (7) are not necessary, since it is easy to verify that

Proposition 1. With the rank distance defined as in [6], cα,i
hr + cα,i

ks ≤ cα,i
hs + cα,i

kr

whenever r < s and h < k ≤ n.

Example

Let us explain model (1)–(6) via an example. Let s1 = aabab, s2 = accba. In this
case

l1(a) = 3 l1(b) = 2 l1(c) = 0

l2(a) = 2 l2(b) = 1 l2(c) = 2

thus l(a) = 3 and l(b) = l(c) = 2.
Figure 2 shows graph G. The feasible matching M = {1b1, 2a1, 3b2, 4c1, 5c2}

(thick arcs) encodes x = babcc. Let us illustrate the computation of the rank
distance between x and s2 = accba via matching M , adopting for penalties the
convention proposed in [6]. The arc weights in M give the first term of d(x, s2):

cb,2
11 = |1 − kb

1| = |1 − 4| = 3 ca,2
21 = |2 − ka

1 | = |2 − 1| = 1

cb,2
32 = pb

3 = |3 − 0| = 3 cc,2
41 = |4 − kc

1| = |4 − 2| = 2
cc,2
52 = |5 − kc

2| = |5 − 3| = 2

These weights measure the symbol misplacements, plus an out-of-rank
penalty for the second b ∈ x.

The second term of d(x, s2) sums, up to l2(α), the out-of-rank penalties in
s2: these correspond to nodes of s2 that are uncovered by M . There is just one
of these nodes: a2 (in fact, a3 �∈ s2); its weight is qa,2

2 = |0 − ka
2 | = 5. Therefore,

d(x, s2) = 16.
Generally speaking, string s2 introduces the distance constraint

ya
21 + 2ya

31 + 3ya
41 + 4ya

51 + 3ya
22 + 2ya

32 + ya
42 + 3ya

33 + 4ya
43 + 5ya

53

+ 3yb
11 + 2yb

21 + yb
31 + yb

51 + 2yb
22 + 3yb

32 + 4yb
42 + 5yb

52

+ yc
11 + yc

31 + 2yc
41 + 3yc

51 + yc
22 + yc

42 + 2yc
52

+ ya
61 + 5ya

62 + 4yb
61 + 2yc

61 + 3yc
62 ≤ d
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Fig. 2. Graph G associated with s1 = aabab, s2 = accba: l(a) = 3, l(b) = l(c) = 2;
the matching encodes x = babcc (as implied by thick arcs in G). Distances from the
positions of homologous characters of x, s1 and x, s2 are shown down left.

No-cross constraints can be written

ya
22 + ya

31 ≤ 1 ya
32 + ya

41 ≤ 1 ya
42 + ya

31 ≤ 1 ya
52 + ya

41 ≤ 1

ya
33 + ya

42 + ya
51 ≤ 1 ya

43 + ya
52 ≤ 1

yb
22 + yb

31 ≤ 1 yb
32 + yb

41 ≤ 1 yb
42 + yb

51 ≤ 1

yc
22 + yc

31 ≤ 1 yc
32 + yc

41 ≤ 1 yc
42 + yc

51 ≤ 1

or in the lifted form (7). But as observed (Proposition 1), these inequalities are
useless for the rank distance defined in [6].

Valid inequalities

As shown by Kaparis and Letchford [9], multiple knapsack constraints (6) can
be strengthened by global cover inequalities [3,8]. Let T i contain all the triples
t = (α, r, k) indexing the y-variables occurring in the i-th inequality (6). A cover
is a set C ⊆ T i such that ∑

t∈C

ct > d

and is said to be minimal if C − {t} is not a cover for any t ∈ C. A local cover
inequality is a constraint of the form

∑

t∈C

yt ≤ |C| − 1 (8)

where C is a minimal cover.
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Let ỹ be a fractional solution of (1)–(6). Separating ỹ by a cover inequality
(8) means finding C ⊆ T i such that (8) is violated by ỹ. The violation is

viol(ỹ) =
∑

t∈C

ỹt − |C| + 1 = 1 −
∑

t∈C

(1 − ỹt)

Defining vt = 1 − ỹt ≥ 0, we reduce the problem of finding a maximally violated
inequality (8) to the 0-1 knapsack problem

max
∑

t∈T i

vtzt (9)

∑

t∈T i

ctzt ≤
∑

t∈T i

ct − d − 1 = bi

zt ∈ {0, 1} t ∈ T i

a solution z of which is the incidence vector of the triples in T i that are not part
of the cover. The non-negativity of vt, ct guarantees that an optimal solution
identifies a minimal cover.

Proposition 2. A cover inequality that is maximally violated by a given frac-
tional solution to (1)–(6) can be found in time O(n5).

Proof. Problem (9) is solved by the following recursion:

v(t, β) = max{v(t − 1, β), v(t − 1, β − ct) + vt}
v(t, 0) = 0 (10)

for t ∈ T i and β = 1, . . . , bi. The theorem immediately derives from observing that
|T i| ≤ l(n + 1) ≤ 4n(n + 1) and the weights ct fulfill ct ≤ n for any t ∈ T i. �	

Indeed, the minimal covers are subject to assignment conditions (1)–(2).
However, such conditions are always fulfilled by a violated inequality: in fact,
should more than one variable occur both in (8) and in one of (1)–(2), no more
than |C| − 1 variables out of those indexed in C could get value 1.

A cover C can be strengthened by up- and down-lifting [11] as follows:
∑

t∈C\D

zt +
∑

t�∈C

γtzt +
∑

t∈D

δtzt ≤ |C \ D| +
∑

t∈D

δt − 1 (11)

where D ⊂ C. In this way a lifted cover inequality (LCI) is obtained. A global
LCI (GLCI) shares with a local one the same form (11). The difference lies in
the way up- and down-lifting coefficients γ, δ can be computed: as in local LCIs,
one can solve a 0-1 knapsack problem per coefficient, but [9] gives evidence that
computing lifting via a multiple 0-1 knapsack is more effective.
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3 Computational Experience

We tested formulation (1)–(6) with the min-max objective

min d (12)

The model was solved using IBM Ilog Cplex version 12.6 with standard settings
and single processor. We set a cutoff to halt search as soon as

– either the root gap dUB−dLP

dLP
goes below 0.2%, where dLP is the value of the

LP relaxation at root node and dUB is the value of the best integer solution
found;

– or the program has run for 3600 s.

The experiments were run on a 8-core i7 Intel processor 2.597 GHz with 8 GB
RAM and Windows 7 Professional 64 bits operating system.

Test bed

The test bed of our experience consists of both artificial instances imitating DNA
sequences and biological samples from http://www.embl.org/. Each artificial
instance is obtained by a number of random perturbations of a “seed” string
of length n with elements chosen in an alphabet A with four symbols. A seed
is generated randomly according to a uniform probability of occurrence of each
α ∈ A, independently on position.

From a seed, m new strings are then generated to obtain a problem instance:
each string is a perturbation of the seed according to a substitution matrix S,
whose rows and columns are associated with the symbols of A. The probability
of changing a symbol into another is computed after the elements sαβ of S:

p(α, β) =
sαβ∑

γ∈A sαγ

We assumed sαα identical for all α ∈ A and sαβ = 1 for α �= β: therefore
the probability that a derived string preserves any given symbol α of the seed is
sαα times larger than that of changing it in any other symbol. In our samples
(denoted as diag sαα), we adopted sαα = 1, 3, 5. Seed positions are identically
affected by the changes expressed by S.

Test outcome

We generated a first set of instances (square problems) with m = n and
n = 50, 100, 150, 200, 300, 400 using a uniform pseudo-random generator.
The outcome for such instances is reported in Table 1.

Results in Table 1 highlight the good performance of our model. All instances
are solved in extremely manageable times, optimally or with a negligible cutoff
gap (≤ 0.2%): on average, we solved problems with 400 strings of length 400 in
slightly more than ten minutes. Standard deviation of results testifies a sparse
range of difficulty of the problems generated, thus indicating a test with no

http://www.embl.org/
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Table 1. Computational test (I): simulation of DNA sequences, square problems.

problem nodes time (sec) root gap

sample size (n = m) average standard average standard average standard

deviation deviation deviation

diag 1 50 32071.13 52450.57 59.58 99.15 0.6056 0.1453

100 18946.63 20771.31 183.88 175.47 0.2603 0.0445

150 1477.33 1551.04 90.08 62.31 0.1966 0.0246

200 589.40 737.10 119.87 90.44 0.1877 0.0148

300 302.33 264.69 342.76 156.35 0.1728 0.0213

400 152.00 102.57 636.03 230.04 0.1602 0.0402

diag 3 50 19655.97 20251.82 36.10 36.70 0.6720 0.1747

100 16823.67 19238.87 146.32 140.25 0.2518 0.0568

150 2154.77 1919.04 105.81 63.87 0.2061 0.0266

200 737.10 1474.77 123.06 123.57 0.1873 0.0295

300 192.33 189.39 251.68 114.84 0.1707 0.0297

400 146.00 115.39 632.05 261.98 0.1661 0.0334

diag 5 50 40820.60 163209.53 67.62 260.50 0.6397 0.1415

100 13034.30 31779.50 105.99 202.37 0.2507 0.0406

150 1497.40 1541.88 78.77 50.96 0.1924 0.0257

200 419.97 533.73 92.10 59.53 0.1874 0.0200

300 280.03 359.23 280.74 164.38 0.1743 0.0265

400 174.00 185.45 614.48 363.84 0.1567 0.0387

uncontrolled bias. We note an inverse correlation between branch-and-bound
nodes and instance size, to be explained with the different impact of cutoff
on the search tree as the solution value increases (rank distance grows in fact
quadratically with string length). Such a correlation is however direct when
considering CPU time. Finally, the small gaps at root (LP relaxation vs. best
integer found, last column of Table 1) indicate that the multi-weighted matching
model is a good way to represent the structure of the CSP under rank-distance.

The second set of artificial instances consists of rectangular problems. In a
first subset, we keep constant the target set size (m = 50) and vary the string
lengths from n = 100 to n = 600, step 100. For each n, we generated and solved
10 random instances. Symmetrically, in another subset we keep constant the
string length (n = 100) and vary the target set size from m = 100 to m = 1000,
step 100. Also in this case, we solved 10 random repetitions for each m. Results
are shown in Tables 2 and 3.

Again, we observe a good model performance: the algorithm was seldom halted
for expired time limit (3600 s), and solution time remains manageable also for very
large problems (about 45 min in the worst case). As in square problems, we record
an inverse correlation of the search tree nodes and m (but not n).
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Table 2. Computational test (II): simulation of DNA sequences, rectangular problems
with 50 strings and variable length n (average values on 10 repetitions per size).

length (n) gap closed (%) average #nodes average time (sec) average gap at root (%)

100 100% 61083.80 166.74 0.7196

200 100% 82697.70 411.08 0.7784

300 100% 78889.00 661.49 0.7521

400 80% 179059.70 1996.86 0.9438

500 50% 181677.70 2762.45 0.9837

600 70% 99378.20 1934.09 0.8314

Table 3. Computational test (III): simulation of DNA sequences, rectangular problems
with fixed length (n = 100) and variable number of strings (average values on 10
repetitions per size). All problems were closed at cutoff value.

#strings (m) average #nodes average time (sec) average gap at root (%)

100 7614 86.74 0.24605

200 850.2 75.96 0.18553

300 151 89.47 0.1675

400 97 161.80 0.17069

500 103 290.41 0.15061

600 123 581.68 0.1733

700 28 408.03 0.13433

800 71 1231.48 0.14502

900 75 1579.70 0.14172

1000 28 1458.41 0.1367

For further validation, we replicated the experiments carried out in [6]. These
tests aim at finding rank-central n-nucleotides strings between pairs of sequences.
We used the same substrings as [6], extracted from Homo Sapiens V00662, Pan
Paniscus D38116, Equus Asinus X97337 (first 200 nucleotides), Rattus Norvegicus
X14848, Mus Musculus V00711, Myoxusglis AJ001562, Bos Taurus V00654 (first
150 nucleotides). In all cases we obtained the optimal solution in a fraction of the
computational time used by the heuristic [6] to find a non-optimal solution.

4 Conclusions and Future Research

We developed and tested an integer linear programming formulation of the
Closest String Problem (CSP) under the rank distance defined in [6,7].
Our experiments show that, even for quite large problems, the use of local
search heuristics is not justified, since they are outperformed by integer lin-
ear programming. In fact, using Cplex 12.6 we could solve problems with up to
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400 quaternary strings of 400 elements each in few minutes, and tackle rectan-
gular problems of larger size in very reasonable CPU time. Moreover, replicas of
experiments in [6] show that our method finds optimal solutions more quickly
than recent heuristics do to find suboptimal solutions.

According to our experiments, room for improvement is to be searched in
rectangular problems with either a large target set or very long strings. A possible
approach might be that of exploiting valid inequalities. Natural candidates are
cover inequalities and their global lifting, that is, as suggested in [9], sequential
lifting taking the whole multi-knapsack constraint into account.
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Abstract. We consider the problem of unrelated parallel machines
with precedence constraints (UPMPC), with the aim of minimizing the
makespan. Each task has to be assigned to a unique machine and no
preemption is allowed. In this paper, we show the relation between the
interval graph and the UPMSPC problem. We propose valid inequalities
and study the facial structure of their polytope. Facets are presented
to strength the associated integer linear program formulation to help in
solving the global problem. We develop a Branch and Cut algorithm for
solving the problem and present some experimental results.

Keywords: Polyhedral · Valid inequalities · Unrelated parallel
machines · Scheduling · Precedence constraints · Branch-and-Cut

1 Introduction

The problem under consideration is to schedule n jobs on m machines which are
arranged in parallel with the aim of minimizing the total completion time. Let
J be the set of the jobs and M be the set of the parallel machines. A precedence
constraint between two jobs j1 and j2 is denoted by (j1 ≺ j2) and it requires
that job j2 cannot start to be processed until job j1 will finish its processing.
The graph associated with the jobs is denoted by D = (U,A), where U is the
set of vertices associated at each job J and A denotes the set of arcs associated
with each precedence constraint. We call this graph the precedence graph. We
take also the case where {u, v, w} ⊆ U such that u before v and v before w then
u before w. We consider also the speeds for all machines denoted by si, where
i ∈ M . Every job j ∈ J has a processing time pj and its effective processing time
depends on the selected machine i, where pij=pjsi. Each machine i ∈ M cannot
process more than one job at a given time. Furthermore, machines have different
speeds and preemption of jobs is not allowed. According to the well-known α|β|γ
scheduling problem classification scheme proposed initially by Graham et al. [10],
the problem can be denoted as R|prec|Cmax.
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 308–319, 2016.
DOI: 10.1007/978-3-319-45587-7 27
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According to this definition, the problem of unrelated parallel machine with
precedence constraints (URPMPC) has many applications in various fields, such
as in cloud computing, projects scheduling, textile, semi-conductor manufac-
turing. The applications occur also in many production and service industries,
including telecommunications, health care, and bank service, generally in all
situations in which resources have to be allocated to activities over time consid-
ering the jobs dependencies. The majority of the literature on parallel machine
scheduling considers the case of identical machines. The problem is known to be
NP-hard in the strong sense (see Garey and Johnson [10]). Among the numer-
ous papers dealing with such problems, we may cite the following references that
concern the minimization of the makespan. Several methods have been proposed
to solve this problem. In [11], Martello et al. proposed exact and approxima-
tion algorithms for optimizing maximum completion time in unrelated parallel
machine scheduling without precedence constraints. For the problem of R||Cmax

Ghirardi et al. in [8] developed a recovering beam search algorithm. Gacias et al.
in [3] proposed different methods for solving parallel machine scheduling prob-
lem with precedence constraints and setup times between the jobs. They pro-
posed dominance conditions based on the analysis of the problem structure and
an extension to setup times of the energetic reasoning constraint propagation
algorithm. An exact branch-and-bound procedure and a climbing discrepancy
search heuristic based on these components are defined. In [1] Alessandro et al.
studied the problem of m parallel dedicated machines with a regular criterion.
Chain precedence constraints among the tasks, deterministic processing times
and processing machine of each task are given which can be viewed as a special
case of unrelated machines. They proposed computational complexity results and
solution algorithms for some special cases. When the precedence relations among
the tasks are given by two chains, they provided efficient solution algorithms for
the minimization of the weighted sum of completion times and the number of
tardy jobs. In [14] the problem of unrelated parallel machine with setup time
was studied. An improved mixed-integer linear formulation was proposed and a
Lagrangian heuristic was developed to solve the problem. Kumar [15] proposed
approximation algorithms for R|prec|Cmax and R|prec|∑j WjCj problems.

However, the literature on parallel machine scheduling with precedence con-
straints is quite limited. To the best of our knowledge, there are few works on
polyhedral study for the problem under consideration. Coll et al. [13] proposed
an integer model for R|prec|Cmax problem, this model is based on partitioning
linear ordering. Some valid inequalities have been derived. Also facet defining
inequalities are presented. Mokotoff in [5] dealt with the polyhedral structure of
the scheduling problem R||Cmax. The authors proposed a mixed integer pro-
gram and identify some valid inequalities for fixed values of the maximum com-
pletion time.

In this paper, we first describe in Sect. 2 an Integer Linear Program (ILP)
for the problem. In the following we consider a sub problem, where all valid
inequalities remain valid in the general ILP. The facial structure of the poly-
tope associated with the sub problem is investigated in Sect. 3, and facets are



310 M.-A. Hassan et al.

presented. The class of these inequalities is based on forbidden subgraphs. A
branch and cut algorithm and the associated experimental results are presented
in Sect. 4. Concluding remarks and perspectives are made in the last section.

2 Mathematical Formulation

In this section we will recall the Integer Linear Program given in [9] which is
compared with two mathematical models found in the literature for solving the
same problem and the computational results show that this mathematical model
obtained the best results for solving UPMSPC problem. This ILP considers the
beginning of the job and the relation between jobs if they processed on the same
machine. It also verifies if one job processed before another job or at the same
time.

This model is based on interval graph and an m-clique free graph, because
the graph induced by each solution must be interval graph, and m − cliquefree
graph. A graph G(V,E) is called interval graph if its vertices V can be repre-
sented by interval IV of the real line such that two vertices are adjacent if and
only if the corresponding intervals intersect [2]. Let a clique K, in G be a subset
of the vertices, K ⊆ V , such that every two distinct vertices of K are adjacent.
This is equivalent to the condition that the subgraph of G induced by K is com-
plete. Let I ⊆ E be a subset of edges, the graph G[I] is an m− clique free if and
only if G[I] does not contain a clique of size strictly greater than m.

In the following we will present the IPL.
For each job we consider a variable defining the beginning of job.
yj ∈ N

+ is the beginning of job j for all job j in J .
We consider binary variables for assigning the jobs to machines.

xi
j =

{
1 if job j on machine i,
0 otherwise, ∀i ∈ M,∀j ∈ J.

For all two jobs sharing a time unit, the associated subgraph must be interval
and m-clique free. For this reason we consider the following binary variables to
know if two jobs share a time unit.

The variables zj1,j2 , and z̄j1,j2 correspond to the edges of the induced interval
subgraph.

zj1,j2 =
{

1 if job j1 and job j2 processed at the same time
0 otherwise ∀j1, j2 ∈ J.

z̄j1,j2 =

{
1 if job j1 processed before or at the same time with job j2
0 otherwise

∀j1, j2 ∈ J.

The variable z̄j1,j2 demonstrate the precedence between jobs. For every j ∈ J :
Cj ∈ N

+ is the completion time of job j.
Cmax ∈ N

+ is the maximum of Cj .
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The URPMPC can be solved by the following ILP, denoted by (P ):

min Cmax

yj +
∑

i∈M

pijx
i
j ≤ Cmax, ∀j ∈ J, (1)

∑

i∈M

xi
j = 1, ∀j ∈ J, (2)

xi
j1 + xi

j2 ≤ 2 − zj1,j2 ∀j1, j2 ∈ J,∀i ∈ M, (3)

yj1 +
∑

i∈M

pij1x
i
j1 ≤ yj2 , ∀(j1, j2) ∈ A, (4)

yj1 +
∑

i∈M

pij1x
i
j1 ≤ yj2 + Cz̄j2,j1 , ∀j1, j2 ∈ J, (5)

z̄j1,j2 + z̄j2,j1 ≤ 1 + zj1,j2 , ∀j1, j2 ∈ J, (6)
∑

(j1,j2)∈E(Ī)

zj1,j2 −
∑

(j1,j2)∈E�E(Ī)

zj1,j2 ≤ |E(Ī)| − 1, ∀I ⊆ I, (7)

∑

(j1,j2)∈E(K)

zj1,j2 −
∑

(j1,j2)∈E�E(K)

zj1,j2 ≤ |E(K)| − 1, ∀K ⊆ K, (8)

The objective function is to minimize the makespan. Inequalities (1) ensure
that the beginning time for each job plus its processing time is less than or equal
to the total completion time. Inequalities (2) controls each job to be processed
on one machine. Inequalities (3) guarantee that there is no two jobs processed
on the same machine at the same time. Inequalities (4) control the precedence
constraints between jobs then job j1 has to be completed before job j2 can be
processed. Inequalities (5) ensure that the starting of any job must be after the
finishing of its predecessor. Inequalities (6) ensure that, if the job j1 processed
before or at the same time with job j2, and job j2 processed before or at the
same time with job j1 then job j1 and j2 will be process at the same time.
If we consider a solution given by the vector (z), then the induced subgraph
G = (V,E) where for each job j ∈ J we associate a vertex vj ∈ V and for
all zj1j2 = 1 we associate an edge uv ∈ E must be an interval graph and the
clique of maximum size must be less or equal to m. We denote by Ī the set
of all non interval induced subgraph, and by K the set of all cliques of size
greater or equal to m+1. The inequalities (7) ensure that all induced subgraphs
are interval graphs. The inequalities (8) ensure that all induced subgraphs have
no clique of size greater or equal to m + 1. In the following we are interested
in the analysis of the polytope associated with the Interval and m-clique free
sub problem (IMCFSP). This polytope associated with the ILP obtained by
projection to z variables of P .

3 Interval and m − Cliquefree Subgraph Problem

In this section, we present the problem of finding an interval and m−cliquefree
subgraph. Let I := {I ⊆ E |G[I] be the set of edges set inducing interval and
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m-clique free subgraph}. The vector zI is called the incidence vector associated
with I. We define the IMCFSP polytope as follows:

PI(G,m) := conv{zI ∈ {0, 1}|E||I ∈ I},

Now, we analyze the dimension of the polytope.

Proposition 1. Polytope PI(G,m) is full dimensional.

In the following we will prove that the trivial inequality is facet.

Proposition 2. Let e ∈ E. The trivial inequality ze ≥ 0 defines a facet of
PI(G,m).

3.1 Forbidden Subgraphs Inequalities

In this section, we define some families of graphs. In Fig. 1, we can see five
forbidden subgraphs [4]. Recall that a hole is a cycle without chord. When the
induced subgraph has one of the forbidden graphs, then it is not interval graph.
Recall that, clique is new forbidden subgraph. If we have clique of size strictly
grater than m, then the subgraph is not m-clique free. We introduced this family
of forbidden subgraphs because our sub problem is to find a valid solution, which
is interval and m-clique free.

2

1

3 4

5

6 7

(a) Bipartite Claw

2

1

3 4 5 6

7

(b) Umbrella

b

a

1 2 3 ...n
c d

(c) n-net, n≥ 2

a

b c

1 2 3 4 ...n

(d) n-tent, n≥ 3

1 2

3 ...n

(e) Hole of size≥ 4

Fig. 1. Forbidden subgraphs characterization
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(d) Subset BC

Fig. 2. Subsets of complementary bipartite claw

Bipartite Claw. In this subsection we give inequalities to avoid the bipartite
claw forbidden subgraph. An example is given in Fig. 2d.

We give some notations to help in analyzing the bipartite claw forbidden
subgraph.

Consider the complete graph K7 with seven nodes. We partition this graph
to BC and BC. We denote by BC the set of all edges that construct the bipar-
tite claw as in Fig. 2d. Furthermore, we denote by BC, the set of edges in the
complementary graph. BC is partitioned in the following denoted subsets: BC

4

h

is the set of all edges that formulate a hole of size 4 in bipartite claw. BC� is
the set of the three edges, such that when we add one of these edges then we
obtain a central triangle. BCi is the set of edges that formulate a triangle with
the inner vertex. BC

5

h is the set of all edges that formulate a hole of size 5 in
bipartite claw. Figure 2 shows these subsets.

– BC = {(1, 2), (1, 3), (1, 4), (2, 5), (4, 7), (3, 6)}.
– BC = {(7,1), (7,2), (7,3), (7,5), (7,6), (6,1), (6,2), (6,4), (6,5), (5,1), (5,3),

(5,4), (4,2), (4,3), (3,2)}.
– BC

4

h = {(3, 5),(2, 6),(5, 4),(2, 7),(3, 7),(4, 6)}.
– BC� = {(2, 3),(2, 4),(3, 4)}.
– BCi = {(1, 5), (1, 6), (1, 7)}.
– BC

5

h = {(5, 6), (5, 7), (6, 7)}.

We consider two cases, when m = 2, and when m ≥ 3.
If m = 2 then the following inequality is valid.

∑

e∈BC

ze ≤ 5. (9)
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Indeed, when we add an edge from BC�, by definition, the resulting subgraph
will contain a clique of size 3, which is not m-clique free in this case, as well it
is 2 − net. Moreover, when we add an edge e ∈ BC

4

h, then we obtain a hole. If
we add another edge to break this hole then we obtain a clique of size 3.

Proposition 3. The inequality (9) defines a facet, when m = 2.

Now if m ≥ 3 then the following inequality is valid.
∑

e∈BC

ze −
∑

e∈BC

ze ≤ 5. (10)

Indeed, if we add one edge may be the resulting graph is interval and m-clique
free. Inequality (9) dominates (10) since (10) is a linear combination of (9) and
the trivial inequalities −ze ≤ 0 where e ∈ BC.

Now, we strength this inequality by analyzing when the resulting graph is
a valid solution or not. If we add one edge of BC� to the bipartite claw, then
the resulting subgraph contains 2 − net. If we add one edge of BC

5

h or BC
4

h we
obtain a hole of size 5 or 4 respectively. It is clear when we add any one, two or
three edges of BCi then the resulting graph become interval and m-clique free.

∑

e∈BC

2ze −
∑

e∈BC
4
h∪BC�

ze − 2
∑

e∈BCi

ze ≤ 10 (11)

Proposition 4. Inequality (11) defines a facet, when m ≥ 3.

Umbrella Inequalities. For the umbrella subgraph as shown in Fig. 3d, let
H = (U,Eu) be a graph that formulates the umbrella, and Eu be a set of the
complementary edges for H. In the following we will give a family of valid inequal-
ities that delete the umbrella subgraphs. To analyze this forbidden subgraph we
need the following notations:

Let Ei
u ⊂ Eu is the set of the inner three edges in umbrella subgraph. Et

u ⊂
Eu is the set of the edges, such that when we add one of these edges to the
umbrella we create new triangle. Ea

u ⊂ Ec the dashed edges in Fig. 3b. Ea
u ⊂ Eu

be the set of the around edges. Eh
u ⊂ Eu be the set of edges if they connected

they will formulate a hole of size 4 or of size 5.

– Ei
u = {(1, 3), (1, 4), (1, 5)}.

– Et
u = {(1, 7), (3, 7), (5, 7)}.

– Ec
u = {(2, 4), (3, 5), (4, 6)}.

– Ea
u = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (1, 6), (4, 7)}.

– Eh
u = {(2, 7), (6, 7), (2, 5), (2, 6), (3, 6)}.

Remark that, the graph induced by Hu = {Ei
u ∪ Et

u ∪ Ec
u ∪ Ea

u ∪ Eh
u} is a

complete graph.
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Fig. 3. Subsets of umbrella and its complementary

In the umbrella subgraph when m = 2, we need the subgraph must be trian-
gle free and hole free. If we remove the edges (1, 5), and (1, 3), then we have no
triangle but we obtain a hole of size 4. Thus in order to be valid, the induced sub-
graph of umbrella for m = 2, at least we need to eliminate 4 edges, because with
7 edges we will have either a hole or a triangle. We can deduce that inequality
(12) is valid, for m = 2.

∑

e∈Eu\{(4,7)}
ze + z(2,6) + z(2,5) + z(3,6) + z(3,5) ≤ 5. (12)

When m = 3, to keep all edges of Eu it is necessary to add at least one edge of
Et

u. Moreover, when we add an edge from Ec
u in this case the subgraph contains

a clique of size 4. If we add an edge from Eh
u , then the induced subgraph will

contain a hole.
Thus, the valid inequalities when m = 3 will be:

∑

e∈Ea
u\{(4,7)}

ze + z(2,6) + z(2,5) + z(3,6) ≤ 5. (13)

When m ≥ 4, in order to find a valid solution we can add also the edges from
Ec

u. Then, the valid inequalities when m ≥ 4 will be:
∑

e∈Ea
u

ze −
∑

e∈Et
u∪Ec

u

ze ≤ 6. (14)

Proposition 5. Inequality (14) defines a facet if m ≥ 4.

Hole Inequalities. It is convenient to define a hole here as an induced subgraph
of G isomorphic to Ck for some k ≥ 4, [2]. The hole C is a forbidden subgraph as
in Fig. 1e. Let C denote the set of edges that construct the hole, C = {(u1, u2),
(u2, u3), ..., (u|C|−1, u|C|), (u|C|, u1)}. If (i + k) > |C|, then ui+k = ui′ , i′ =
(i + k) − |C|. Let C denote the set of all chords of hole C.

Suppose we have a hole of size 4, this graph is non-interval graph. The induced
subgraph of hole is valid only if we add at least one chord.
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Proposition 6. For a hole C, the minimum number of necessary chords that
will be added to the hole to be an interval graph is |C| − 3, when |C| ≥ 4.

In the following we will present valid inequalities for the hole forbidden sub-
graph. If m = 2, then inequality (15) is valid.

∑

e∈C

ze ≤ |C| − 1. (15)

Let e ∈ C, if we add one chord to C ⊂ {e}, then we will obtain a triangle and it
is not valid for m = 2. If m ≥ 3, then Inequality (16) is valid.

∑

e∈C

(|C| − 3)ze −
∑

e∈C

ze ≤ (|C| − 1)(|C| − 3). (16)

Proposition 7. Let C be a hole of size greater than 3, then Inequality (16)
associated with cycle C defines a facet if m ≥ 3.

3.2 Clique Inequalities

In this section, we study the clique subgraph and provide valid inequalities and
facets.

Proposition 8. Let K be a clique of size m + 1, such that K ⊆ V . Let e ∈
E�E(K), e′ ∈ E(K), then the graph induced by E(K)�{e′}∪{e} is an interval
graph and m − clique free.

Proposition 9. Let K be a clique of size m + 1. The inequality (17) defines a
facet.

∑

e∈E(K)

ze ≤ |E(K)| − 1. (17)

4 Branch and Cut Algorithms

In this section, we present a branch and cut algorithm for URPMPC problem.
After illustrating many facets in the previous section, we can apply the cutting
plane scheme for these classes of inequalities. Cutting plane algorithms mainly
consist in generating constraints by means of a separation procedure. See, for
example, (see [12]) for a survey on this domain and (see [7]) for how polyhedral
results are used in cutting plane algorithms. The results of the previous sections
have allowed us to derive two exact cutting plane algorithms and four heuristic
cutting plane algorithms for the sub problem to solve URPMPC. In the following
paragraphs we will describe these separation algorithms.
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Exact Separation. Let the solution z∗ ∈ R be a solution of linear relaxation.
The separation algorithm consists in finding one bipartite claw violated by z∗

then we will add this inequality to the ILP. Remark that, if we select the two first
edges (1, 2) and (1, 3), if (2z∗

(1,2) + 2z∗
(1,3) − z∗

(2,3) < 2) then there does not exist a
bipartite claw with in these two edges in this position. With the same argument
we test the weight of all partial subgraph to drop non interesting subgraph. This
process is used for exact and all heuristic algorithms. The running time of the
exact algorithm in the worst case is in O(n7).

H1-Sep Separation. In this heuristic we start by searching the vertices u1,
u2, u3, and u4 that maximize (2z(1,2) + 2z(1,3) + 2z(1,4) − z(2,4) − z(2,3) − z(3,4)).
If this value is greater than 4, then we search u5, u6, and u7 such that the
BC induced by these vertices is violated by z∗. Using this greedy approach the
heuristic running time is in O(n4).

H2-Sep Separation. This heuristic follows the greedy approach to find a vio-
lated BC inequality. Let z∗ be the solution of the linear relaxation. We search
at each step the best next edge to add in BC. This heuristic has O(n2) running
time. Remark that, we keep the lazy cut for inequalities (7), and (8) presented
in [9] to ensure the validity of the optimal solution. We use the same idea for
Umbrella separation algorithms.

4.1 Computational Results

To test the efficiency of the inequalities mentioned in Sect. 3.1, we developed
the mentioned exact and heuristics separations. All computational results were
obtained by using Cplex 12.6 and Java for implementing exact and heuristics
algorithms. The ILP with the valid inequalities was tested under the following
proposed benchmark of instances.

The processing times are uniformly, distributed between 1 and 100 as it is
common in the literature [6]. We generated five different sets of DAG where the
graph density is equals 0.15 and calculated as follow GD = |E|

|V |(|V |−1) where E

is the set of edges associated with precedence constraints between jobs, and V
is the set of vertices associated with jobs, with the following combinations of
number of jobs n = {10, 12, 14, 16, 18, 20} and the number of machines m = 3.
The speed of machines generated randomly between 10 and 20. In total 5 × 6
instances are generated. CPU time required is in seconds. We limit to 3600 s the
running time for each instance, and 4.0 GB of RAM.

The result of this test are presented in Table 1. Column “Cplex” gives
the number of optimal solutions obtained without adding user cuts. Column
“ExactSep” provides the number of optimal solutions for the exact algorithm.
Column “H1Sep” and “H2Sep” give the numbers of optimal solutions obtained
by heuristic H1Sep and H2Sep respectively. The average of all solved instances
is also reported in the same table. We observed that for the instances of n ≥ 16
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Table 1. Number of optimal solutions obtained.

Instance Cplex ExactSep H1Sep H2Sep

3×10 4/5 4/5 4/5 4/5

3×12 4/5 2/5 3/5 4/5

3×14 1/5 3/5 2/5 2/5

3×16 0/5 2/5 1/5 0/5

3×18 0/5 0/5 1/5 0/5

3×20 0/5 2/5 1/5 0/5

Average 0.16 0.43 0.40 0.26

none of the instances have been solved in the time limit. Whereas, when we
use ExactSep, and H1Sep separation algorithms they are capable to solve more
instances. That shows the efficiency of our valid inequalities. We just give a result
for small number of machines, but we noticed that Cplex can solve instances with
10 to 12 jobs quickly, because when we add the cuts we increase computational
time. However, the exact algorithm and H1Sep can solve big number of instances
within a reasonable running time.

4.2 Conclusion and Perspectives

In this paper we presented a polyhedral study for this problem. We also proposed
families of valid inequalities based on interval and m-clique free subgraph. A
polyhedral investigation of the convex hull of these vectors yielded several results
on facets for this new polytope. We also designed and implemented a branch-
and-cut algorithms based upon families of strong valid inequalities presented in
this paper. We separate some forbidden subgraphs. Computational experiments
on set of instances have shown that the algorithms are capable to solve many
instances to optimality within a reasonable CPU time. Further research in this
direction will be helpful to strengthen the integer programming formulations of
a large variety of URPMPC problems. In the future work, we will continue on
polyhedral study, and will try to find new facets for the polytope associated with
this problem. Moreover, we can improve our heuristics. We will work for adding
valid inequalities for the other forbidden subgraphs.
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Abstract. In this paper we discuss a variant of the well-known
k-separator problem. Consider the simple graph G = (V ∪ T,E) with
V ∪T the set of vertices, where T is a set of distinguished vertices called
terminals, inducing a stable set and E a set of edges. Given a weight
function w : V → N, the multi-terminal vertex separator problem con-
sists in finding a subset S ⊆ V of minimum weight intersecting every
path between two terminals. We characterize the convex hull of the solu-
tions of this problem in two classes of graph which we call, star trees and
clique stars. We also give TDI systems for the problem in these graphs.

Keywords: Vertex separator problem · Total dual integrality ·
Combinatorial optimization · Polytope characterization

1 Introduction

Let G = (V ∪ T,E) be a simple graph with V ∪ T the set of vertices, where T is a
set of distinguished vertices called terminals, inducing a stable set and E a set of
edges. Given a weight function w : V → N, the multi-terminal vertex separator
problem (MTVSP) consists in finding a subset S ⊆ V of minimum weight such
that each path between two terminals intersects S. The problem can be solved
in polynomial time when |T | = 2, [3] but when |T | ≥ 3, the MTVSP is NP-
hard ([6,9]). In this paper we deal with the MTVSP in two specific classes of
graph, star trees and clique stars, showing that this problem can be solved in
polynomial time for any size of T in these two classes. We show also that the
associated polytope is integer and we give a min-max relation for each class.
The MTVS problem has applications in different areas like VLSI design, linear
algebra, connectivity problems and parallel algorithms. It has also applications
in network security, for instance, consider a graph G = (V ∪ T,E) representing
a telecommunication network, with V the set of routers, T the set of customers
and an edge between two vertices represents the possibility of transferring data
between each other. We search to set up a monitoring system of minimum cost
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 320–331, 2016.
DOI: 10.1007/978-3-319-45587-7 28
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on some routers, in order to monitor all data exchanged between customers. The
set of these routers represents a minimum multi-terminal vertex separator. The
MTVSP is a variant of the k-serparator problem that consists in partitioning
the set of vertices of a graph G, into k + 1 subsets {S, V1, . . . , Vk}, such that S
has a minimum weight and no vertex in Vi is adjacent to a vertex in Vj . Many
other variants of the k-serparator problem have been considered in the literature
([2,8]). In [1], the authors discuss the following problem. Given a simple graph
G = (V,E) and an integer β(n) with n = |V |, partition V into three subsets A,B
and C such that |C| is minimum, no vertex in A is adjacent to a vertex in B and
max{|A|, |B|} ≤ β(n). In [3] authors consider another variant of the problem.
Given a simple graph G = (V,E) with a, b ∈ V two terminals, the problem here
is to partition V into three subsets A,B and C such that a ∈ A, b ∈ B, no
edge connecting A and B and the size of the cut induced by C is minimum.
They show that this problem can be reduced to a minimum cut problem in an
auxiliary graph and then, it can be solved in polynomial time.

Fig. 1. Star tree and clique star

The MTVS problem was considered in [6], in which the authors present
several valid inequalities and develop a branch-and-cut algorithm to solve the
problem. They also present two classes of graph, called star trees, see Fig. 1(a)
and clique stars, see Fig. 1(b), on which our work is based. In [10], authors give a
linear system for the MTVSP and characterize the class of graph for which it is
total dual integral for any size of T , i.e., the dual problem has an integer optimal
solution for any integer vertex weight vector. The main motivation of this paper
is to derive TDI descriptions for other classes of graph. This is a preliminary
work on two specific classes, star trees and clique stars. In this paper we first
characterize the polytope of the multi-terminal vertex separators for these two
classes of graph and then we give TDI linear systems. The paper is organized
as follows, in Sect. 2, we introduce some notations and definitions that we use
in the remainder of the paper, in Sect. 3, we characterize the polytope of the
multi-terminal vertex separators for two classes of graph, in Sect. 4, we give a
total dual integral system for each of these classes of graph.



322 Y. Magnouche and S. Martin

2 Preliminaries

In this paper, we denote by n the cardinality of V and k the number of terminals
in T . A path is a set of p distinct vertices v1, v2, . . . , vp such that for all i ∈
{1, . . . , p − 1}, vivi+1 is an edge. The vertices v2, . . . , vp−1 are called internal
vertices of the path. A terminal path Ptt′ is the set of internal vertices of a path
P between two terminals t, t′ ∈ T , such that P ∩ T = {t, t′}. A terminal path
Ptt′ is minimal if there does not exist another terminal path Ptitj

in the graph,
such that Ptitj

⊂ Ptt′ . The support graph of an inequality is the graph induced
by the vertices of variables having positive coefficient in the inequality. Given
a vertex v ∈ V ∪ T , we denote by N(v) ⊆ V ∪ T the set of vertices adjacent
to v. Given a graph H, we denote by V (H) its set of vertices and E(H) its set
of edges. Given x ∈ R

V and W ⊆ V ∪T , we let x(W ) =
∑

v∈W∩V

x(v). Consider a

graph G = (V ∪T,E) and two subgraphs G1 = (V1 ∪T1, E1), G2 = (V2 ∪T2, E2)
of G. Graph G1 is said to be completely included in G2, if V1 ∪ T1 ⊆ V2 ∪ T2.

A star tree Hk = (VHk
∪ THk

, EHk
), Fig. 1(a), where THk

= {t1, . . . , tk}, is a
tree that is the union of k paths Pt1 , . . . , Ptk

, such that one end of each Pti
is a

common node vr ∈ VHk
, called the root, and the other end is a terminal ti.

A clique star Qk = (VQk
∪ TQk

, EQk
), Fig. 1(b), is a graph defined by a

clique Kk of k vertices and k disjoint paths Pt1 , . . . , Ptk
between all terminals of

TQk
= {t1, t2, . . . , tk} and vertices of Kk.

In the star trees and clique stars the path Pt is refereed as a branch. For any
star tree H (resp. clique star Q), we denote by t(H) (resp. t(Q)) the number of
branches of H (resp. Q).

Fig. 2. Star trees and clique stars

Figure 2 gives some star trees and clique stars where the terminals are given
by triangles. If k = 1, the star tree and the clique star are reduced to a single
branch, see Fig. 2(a). If k = 2, the star tree and the clique star are reduced to a
path between two terminals, see Fig. 2(b).

If k ≥ 3, the star tree (resp. clique star) with k terminals contains
(

k
k′

)
star trees

(resp. clique stars) as subgraphs with k′ ∈ {1, . . . , k} terminals. Let Π (resp. Θ)
be the set of all star trees subgraphs of Hk (resp. clique stars subgraphs of Qk).
Note that Π (resp. Θ) contains Hk (resp. Qk). Let Πv (resp. Θv) be the star trees
(resp. clique stars) of Π (resp. Θ) containing vertex v ∈ VHk

(resp. v ∈ VQk
).
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Let x ∈ {0, 1}V be a vector of variables such that for a vertex v ∈ V , x(v) = 1
if v belongs to the separator and x(v) = 0 otherwise. The vector xS is called an
incidence vector of the separator S. Consider the vertex weight vector w ∈ N

V ,
the MTVSP is equivalent to the following integer linear program P ′

min
∑

v∈V

w(v)x(v) (1)

x(Ptt′) ≥ 1 ∀Ptt′ ∈ Γ (2)
x(v) ≤ 1 ∀v ∈ V (3)
x(v) ≥ 0 ∀v ∈ V (4)
x(v) integer (5)

where Γ is the set of all terminal paths in G.
Let P (G,T ) = conv(x ∈ [0, 1]V |x satisfies (2)) be the polytope given by

inequalities (2)–(4).
In this paper we consider a star tree Hk and a clique star Qk satisfying the

following hypothesis

1. the number of terminals is at least three, otherwise the linear system (2) and
(4) is TDI, [10].

2. each branch of the star tree Hk contains at least one internal vertex, otherwise
the linear system (2) and (4) is TDI, [10].

In star trees and clique stars, under the above hypothesis, the polytope P (G,T )
is full-dimensional [6].

3 Polytope Characterization

In this section we will characterize the multi-terminal vertex separator’s polytope
in the star trees and clique stars.

3.1 Star Trees

Proposition 3.11. In star trees, the polytope P (G,T ) is not integral.

Proof. Consider a star tree Hk = (VHk
∪ THk

, EHk
) with at least one vertex in

each branch. Let x ∈ [0, 1]Vk be a solution of P (Hk, THk
) defined as follows

– x(v) = 0.5 ∀v ∈ N(vr)
– x(v) = 0 ∀v ∈ VHk

\ N(vr)

The vector x represents a fractional extreme point of P (Hk, THk
), since there is k

fractional variables and k terminal path inequalities that are linearly independent
and tight by x. �



324 Y. Magnouche and S. Martin

Consider the following valid inequalities presented in [6]

x(VHk′ \ {vr}) + (k′ − 1)x(vr) ≥ k′ − 1 Hk′ ∈ Π (6)

We recall that terminal paths are star trees of two terminals and inequalities (2)
are included in (6). We notice that all inequalities (6) associated with the star
trees of Π with one terminal are dominated by trivial inequalities.

Theorem 3.11. For any star tree, the polytope given by inequalities (6) and
trivial inequalities is integer.

Proof. Let us assume the contrary and let x∗ be a fractional extreme point of the
polytope P (Hk, Tk) associated with the star tree Hk, where |VHk

| is minimum
(i.e., for all star trees of n′ vertices whith n′ < |VHk

|, the associated polytope is
integer). Thus x∗ satisfies a unique system of linear independent equalities A

x(VHk′ \ {vr}) + (k′ − 1)x(vr) = k′ − 1 ∀Hk′ ∈ Π1 (7)
x∗(v) = 1 ∀v ∈ V1 (8)
x∗(v) = 0 ∀v ∈ V2 (9)

such that |Π1|+ |V1|+ |V2| = |VHk
|, Π1 ⊆ Π, V1 ⊆ VHk

and V2 ⊆ VHk
. Moreover

we have the following claims

Claim 3.11. For all v ∈ VHk
\ {vr}, x∗(v) > 0.

Proof of claim 3.11. Otherwise, |VHk
| cannot be minimum. �

Claim 3.12. For each branch Pt, x∗(Pt) ≤ 1.

Proof of claim 3.12. Otherwise, the variables of internal vertices of Pt must
belong to (8) and to no other equality. Thus, |VHk

| cannot be minimum. �

Claim 3.13. For the root vertex vr, x∗(vr) < 1.

Proof of claim 3.13. Otherwise, x∗ cannot be fractional. �

Claim 3.14. Each branch Pt contains at most one internal vertex.

Proof of claim 3.14. Otherwise, from Claims 3.11 and 3.12 the variables associ-
ated with the internal vertices of Pt are fractional and cannot appear separately
in (7) (i.e., if a variable of a vertex vi ∈ Pt appears in an equality (7), all the
variables associated with the vertices of Pt appear in the same equality). It is
easy to construct another feasible solution for the system of equalities A, which
contradicts the extremity of x∗. �

Claim 3.15. If there exists a branch Pt such that x∗(Pt) < 1, then all support
graphs of equalities (7), contain the branch Pt.

Proof of claim 3.15. Otherwise, let ax∗ = b be an equality (7) not containing the
variables associated with the vertices of Pt \ {vr}. Thus, the star tree inequality
x∗(Pt) + ax∗ ≥ b + 1 is violated. �
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Claim 3.16. For the root vertex vr, x∗(vr) > 0.

Proof of claim 3.16. Otherwise, there must exists two branches Pt and Pt′ such
that x∗(Pt) < 1 and x∗(Pt′) < 1. It follows that these two branches must belong
to all support graphs of equalities (7). It is easy to construct another solution
for the system of equalities A, which contradicts the extremity of x∗. �

From the claims 3.11, 3.12, 3.13 and 3.16 we deduce that for all v ∈ VHk
,

0 < x∗(v) < 1. We distinguish two cases

a. There exists a branch Pt such that x∗(Pt) < 1.
Let y∗ ∈ R

V defined as follows
– y∗(v) = x∗(v) for v ∈ Pt \ {vr, t}
– y∗(vr) = x∗(vr) + ε
– y∗(v) = x∗(v) − ε for all v ∈ VHk

\ (Pt ∪ {vr})
From claim 3.15, the vector y∗ satisfies all equalities of A. Contradiction with
x∗ a fractional extreme point.

b. For each branch Pt, x∗(Pt) = 1
It follows that for each pair of vertices vi, vj ∈ VHk

\{vr}, x∗(vi) = x∗(vj) =
1 − x∗(vr). Since all the variables are fractional, the variable associated with
each vertex v ∈ VHk

\ {vr} must belong to at least one equality (7)

x(VHk′ \ {vr}) + (k′ − 1)x(vr) = k′ − 1 for k′ ∈ {2, . . . , k}
By the variable changing presented before

k′ − k′x(vr) + (k′ − 1)x(vr) = k′ − 1

Hence, x(vr) = 1 which contradicts the extremity of x∗. �

3.2 Clique Stars

Proposition 3.21. For clique stars, P (G,T ) is not integral. �

Consider the following valid inequalities presented in [6]

x(Qk′) ≥ k′ − 1 ∀Qk′ ∈ Θ (10)

We recall that Θ contains all the terminal paths in Qk since they are clique stars
of two terminals and inequalities (2) are included in (10).

Theorem 3.21. For clique stars, the polytope given by inequalities (10) and
trivial inequalities is integer. �

4 TDI-ness

In this section we give a TDI descriptions for the multi-terminal vertex separator
problem in star trees and clique stars.
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4.1 Star Trees

We first introduce some notations. Consider two star trees Hi
l and Hj

s subgraphs
of Hk, such that s ≥ 2, l ≥ 2, i ∈ {1, . . . ,

(
k
l

)} and j ∈ {1, . . . ,
(
k
s

)}. We denote
by Hi∩j

l,s the star tree subgraph of Hk, whose branches are all those in common
with Hi

l and Hj
s . We denote by Hi∪j

l,s a star tree subgraph of Hk with min{s +
l − t(Hi∩j

l,s ), s + l − 1} terminals, whose branches belong either to Hi
l or to Hj

s .
If t(Hi∩j

l,s ) = 0, Hi∪j
l,s is any star tree of s + l − 1 branches.

Fig. 3. Star trees, subgraphs of H4 in Fig. 1(a)

To illustrates these notations, if Hi
l is the graph in Fig. 3(c) and Hj

s the
graph in Fig. 3(e), then Hi∪j

l,s is the graph in Fig. 3(a) or the graph in Fig. 3(b)
and Hi∩j

l,s does not exist. If Hi
l is the graph in Fig. 3(a) and Hj

s the graph in
Fig. 3(b), then Hi∪j

l,s is the graph in Fig. 1(a) and Hi∩j
l,s is the graph in Fig. 3(c).

Let P ∗ be the linear program defined by the variable vector x, the objective
function (1), the trivial inequalities (4) and inequalities (6). Let y ∈ R

Π
+ be the

dual variable vector associated with inequalities (6). Consider the dual D∗ of P ∗

max
∑

Hk′∈Π

(k′ − 1)yHk′

∑

H∈Πv

yH ≤ w(v) ∀v ∈ V \ {vr} (11)

∑

H∈Π

(k′ − 1)yH ≤ w(vr) (12)

yH ≥ 0 ∀H ∈ Π (13)

We notice that D∗ consists in packing star trees of Π in Hk satisfying the capac-
ity w of each vertex. Let y∗ ∈ R

Π
+ be an optimal solution of D∗.

The solution y∗ is called maximal optimal if for each other optimal solution
y ∈ R

Π
+ there exists s ∈ {1, . . . , k} satisfying the following conditions

1.
fl∑

i=1

yHi
l

=
fl∑

i=1

y∗
Hi

l
, for all l ∈ {s + 1, . . . , k} and fl =

(
k
l

)

2.
f∑

i=1

yHi
s

<
f∑

i=1

y∗
Hi

s
, for f =

(
k
s

)
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There must exists one maximal optimal solution in D∗, and in the following
we suppose that y∗ is a maximal optimal.

Lemma 4.11. For each pair of star trees Hi
l and Hj

s ∈ Π, such that y∗
Hi

l
> 0,

y∗
Hj

s
> 0 either Hi

l is completely included in Hj
s or Hj

s is completely included
in Hi

l . �
Corollary 4.11. For s ∈ {1, . . . , k}, there exists at most one star tree Hj

s with
a value y∗

Hj
s

> 0 over all star trees with s terminals.

Fig. 4. A maximal optimal solution structure

Figure 4 illustrates the structure of the maximal optimal solution y∗ (each
star tree is included in another, except Hk, and no more than one star tree with
the same number of terminals).

Theorem 4.11. For star trees, the linear system of P ∗ is TDI.

Proof. We should prove that D∗ has an integer optimal solution. For this, we
need to show the claims below.

Claim 4.11. If for a star tree Hj
s ∈ Π,

k∑

l=s

(k
l)∑

i=1

y∗
Hi

l
< wv for each vertex v ∈

V (Hj
s ) \ {vr} then y∗

Hi
p

= 0 for each star tree Hi
p ∈ Π with p ≤ s − 1 terminals.

Proof of claim 4.11. Let us assume the contrary, then there exists Hj
s ∈ Π such

that
k∑

l=s

(k
l)∑

i=1

y∗
Hi

l
< wv for all vertices v ∈ V (Hj

s ) \ {vr} and there exists p ∈
{2, . . . , s − 1} and i ∈ {1, . . . ,

(
k
p

)} such that y∗
Hi

p
> 0 (from Lemma 4.11, Hi

p

is a subgraph of Hj
s ). We suppose that p is maximum. To prove the claim, we

will show that y∗ cannot be maximal optimal by constructing another solution
y ∈ R

Π
+ from y∗. Indeed, proving that y, obtained by adding α > 0 to y∗

Hj
s

and subtracting β > 0 from y∗
Hi

p
, is feasible and optimal, will contradicts the

maximality of y∗. To guarantee the optimality of y we should have α× (s−1) =

β×(p−1). Then if α = min{
y∗

Hi
p
(p−1)

(s−1) , min
v∈V

H
j
s
\{vr}

{c(v)−
k∑

l=s

(k
l)∑

i=1

y∗
Hi

l
}} then α > 0

and β = α(s−1)
p−1 . Since p is maximum, thus y must be feasible optimal solution

for D∗. Thus our claim holds. �
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Claim 4.12. If y∗ is fractional then there exists exactly one star tree Hj
s ∈ Π

such that y∗
Hj

s
is fractional.

Proof of claim 4.12. We suppose that there exists two different star trees Hi
l

and Hj
s , such that y∗

Hj
s

and y∗
Hi

l
are fractional. We suppose that s is maximum

(i.e., for all p ∈ {s + 1, . . . , k}, y∗
Hp

is integer). From Corollary 4.11, s > l. We
distinguish two cases

a. There exists a vertex v ∈ VHj
s

\ {vr} such that
k∑

p=s

(k
p)∑

q=1
y∗

Hq
p

= w(v). Since

s is maximum, we know that y∗
Hp

is integer for any star tree Hp with p ∈

{s + 1, . . . , k},
k∑

p=s

(k
p)∑

q=1
y∗

Hq
p

= w(v) and w(v) is integer. Thus, y∗
Hj

s
is integer.

Contradiction with y∗
Hj

s
fractional.

b. For all vertex v ∈ VHj
s

\ {vr}, we have
k∑

p=s

(k
p)∑

q=1
y∗

Hq
p

< w(v). From the Claim

4.11, y∗
Hp

= 0 for any star tree Hp ∈ Π with p ≤ s−1 terminals. Contradiction
with y∗

Hi
l

fractional.

Thus there exists at most one star tree Hj
s ∈ Π such that y∗

Hj
s

is fractional. �

Claim 4.13. If y∗ is fractional then there exists another optimal solution y that
is integer.

Proof of claim 4.13. Let Hj
s ∈ Π be the star tree such that y∗

Hj
s

is fractional.
We distinguish three cases

– If s = 1 then let y ∈ R
Π
+ be the solution obtained from y∗ by setting y∗

Hj
s

= 0.
The vector y represents an integer feasible optimal solution.

– If s ≥ 2 then it is clear that (s−1)y∗
Hj

s
is integer. We denote by ε = y∗

Hj
s
−�y∗

Hj
s
�.

It follows that (s − 1)�y∗
Hj

s
� + (s − 1)ε is integer. Thus (s − 1)ε is integer. Let

y ∈ R
Π
+ be another solution obtained from y∗ by subtracting ε from y∗

Hj
s

and
by adding 1 to y∗

Hε×(s−1)+1
for an arbitrary star tree Hε×(s−1)+1.

Thus y is an integer optimal solution for D∗. �
Then the proof is ended and the linear system of P ∗ is TDI. �

As consequence, we obtain the following min-max relation: In star trees, the
minimum number of vertices covering all terminal paths is equal to the maximum
packing of star trees.

4.2 Clique Stars

For this section we introduce some notations. Consider two clique stars Qi
l and

Qj
s subgraphs of Qk such that s ≥ 2, l ≥ 2, i ∈ {1, . . . ,

(
k
l

)} and j ∈ {1, . . . ,
(
k
s

)}.
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Let Qi∩i
l,s be the clique star subgraph of Qk whose branches are all those in

common with Qi
l and Qj

s. We denote by Qi∪j
l,s the clique star subgraph of Qk

whose branches are all those in common either with Qi
l or with Qj

s.
Let PQ be the linear program defined by the variable vector x, the objective

function (1) and inequalities (4) and (10). Let DQ be the dual of PQ. We notice
that the DQ consists in packing clique stars of Θ in Qk satisfying the capacity of
each vertex. Let y ∈ R

Θ
+ be the dual variables associated with inequalities (10)

and y∗ the optimal solution of DQ. The solution y∗ is called maximal optimal if
for each other optimal solution y ∈ R

Θ
+ there exists s ∈ {1, . . . , k} satisfying the

following conditions

1.
f∑

i=1

yQi
l
=

f∑

i=1

y∗
Qi

l
, for all l ∈ {s + 1, . . . , k} and f =

(
k
l

)

2.
f∑

i=1

yQi
s

<
f∑

i=1

y∗
Qi

s
, for f =

(
k
s

)

There must exists one maximal optimal solution in DQ, and in the following we
suppose that y∗ is a maximal optimal.

Theorem 4.21. For clique stars, the linear system of PQ is TDI.

Proof. We have the following claims.

Claim 4.21. For all two different subgraphs Qi
l and Qj

s of Qk, such that y∗
Qj

s
> 0

and y∗
Qj

s
> 0, either Qj

s is completely included in Qi
l or Qi

l is completely included

in Qj
s.

Proof of claim 4.21. We suppose that there exists two subgraphs Qi
l and Qj

s of
Qk, such that y∗

Qi
l

> 0 and y∗
Qj

s
> 0 and no one is included in the other. There

exists ε > 0 such that y ∈ R
Θ
+, obtained from y∗ by subtracting ε from y∗

Qi
l

and
from y∗

Qj
s

and by adding ε to y∗
Qi∪j

l,s

and to y∗
Qi∩j

l,s

, is feasible and optimal solution

for D∗. Thus contradiction with y∗ maximal optimal. �
Corollary 4.21. For s ∈ {1, . . . , k}, there exists at most one clique star Qj

s

with a value y∗
Qj

s
> 0 over all clique stars with s terminals.

Claim 4.22. For all Qj
s subgraph of Qk, there exists a vertex v ∈ V (Qj

s) such

that
k∑

p=s

(k
p)∑

q=1
y∗

Qq
p

= w(v).

Proof of claim 4.22. We suppose there exists Qj
s subgraph of Qk, such that for

all v ∈ V (Qj
s),

k∑

p=s

(k
p)∑

q=1
y∗

Qq
p

< w(v). There must exist Qq
p ∈ Θ subgraph of Qk such

that 2 ≤ p < s and y∗
Qq

p
> 0, Otherwise the solution is not optimal. We suppose

that p is maximum. There exists 0 < ε ≤ y∗
Qq

p
such that y ∈ R

Θ
+, obtained from

y∗ by subtracting ε from y∗
Qq

p
and by adding ε to y∗

Qj
s
, is feasible and optimal

solution for D∗. Thus contradiction with y∗ maximal optimal. �
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Then we deduce an algorithm to solve D∗. We start by packing the clique
star of Θ having a maximum number of terminals until the capacity of some
vertex is all used. The branches containing a saturated vertex, are we subtract
the number of packed clique stars from the capacities of the other vertices. The
same operations are repeated until Qk becomes a branch.

Algorithm 1. An exact algorithm for solving the D∗

Data: The graph Qk = (VQk
∪ TQk

, EQk
), a vector w ∈ N

V

Result: A maximal optimal solution y∗

1 begin
2 Let Qk+1 ← Qk;
3 for (i = k → 1) do
4 Qi ← clique star obtained from Qi+1 by deleting each branch Pt

containing a vertex v with w(v) = 0;
5 y∗

Qi = min
∀v∈V (Qi)

{w(v)};

6 for (v ∈ V (Qi)) do
7 w(v) = w(v) − min

∀v∈V (Qi)
{w(v)};

Corollary 4.22. From Claims 4.21 and 4.22, the algorithm 1 gives an optimal
solution y∗ for D∗, and since the capacities are integer, it follows that y∗ is
integer.

As consequence, we obtain the following min-max relation: In clique stars,
the minimum number of vertices covering all terminal paths is equal to the
maximum packing of clique stars.

5 Conclusion

In this paper we characterized the polytope of the multi-terminal vertex sepa-
rators in two classes of graph, the star trees and the clique stars and we showed
that the associated linear system is total dual integral. Hence, the multi-terminal
vertex separator problem is polynomial in these two classes of graph. It would
be interesting to extend the results on other classes of graph, for instance, the
terminal cycles [6], the graph composed of a cycle C of k vertices and k disjoint
paths between each vertex of C and k terminals, the terminal tree [6], which is
a tree with all leaves int T .
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Abstract. Using a metaprogramming technique and semialgebraic com-
putations, we provide computer-based proofs for old and new cutting-
plane theorems in Gomory–Johnson’s model of cut generating functions.

1 Introduction

Inspired by the spectacular breakthroughs of the polyhedral method for combi-
natorial optimization in the 1980s, generations of researchers have studied the
facet structure of convex hulls to develop strong cutting planes. It is a showcase
of the power of experimental mathematics: Small examples are generated, their
convex hulls are computed (for example, using the popular tool PORTA [9]),
conjectures are formed, theorems are proved. Some proofs feature brilliant new
ideas; other proofs are routine. Once the theorems have been found and proved,
separation algorithms for the cutting planes are implemented. Numerical tests
are run, the strength-versus-speed trade-off is investigated, parameters are tuned,
papers are written.

In this paper, we ask how much of this process can be automated: In particu-
lar, can we use algorithms to discover and prove theorems about cutting planes?
This paper is part of a larger project in which we aim to automate more stages
of this pipeline. We focus on general integer and mixed integer programming,
rather than combinatorial optimization, and use the framework of cut-generating
functions [10], specifically those of the classic single-row Gomory–Johnson model
[14,15]. Cut-generating functions are an attractive framework for our study for
several reasons. First, it is essentially dimensionless: Cuts obtained from cut-
generating functions can be applied to problems of arbitrary dimension. Second,
it may be a way towards effective multi-row cuts, though the computational
approaches so far have disappointed. Third, work on new cuts in the single-
row Gomory–Johnson model has, with few exceptions, become a routine, but
error-prone task that leads to proofs of enormous complexity; see for exam-
ple [24,25]. Fourth, finding new cuts in the multi-row Gomory–Johnson model
has a daunting complexity, and few attempts at a systematic study have been
made. Fifth, working on the Gomory–Johnson model is timely because only
recently, after decades of theoretical investigations, the first computational tools
for cut-generating functions in this model became available in [3] and the soft-
ware implementation [20].
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 332–344, 2016.
DOI: 10.1007/978-3-319-45587-7 29
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Of course, automated theorem proving is not a new proposition. Probably
the best known examples in the optimization community are the proof of the
Four Color Theorem, by Appel–Haken [1], and more recently and most spectac-
ularly the proof of the Kepler Conjecture by Hales [18] and again within Hales’
Flyspeck project in [19]. In the domains of combinatorics, number theory, and
plane geometry, Zeilberger with long-term collaborator Shalosh B. Ekhad have
pioneered automated discovery and proof of theorems; see, for example [13].
Many sophisticated automated theorem provers, by names such are HOL light,
Coq, Isabelle, Mizar, etc. are available nowadays; see [28] and the references
within for an interesting overview.

Our approach is pragmatic. Our theorems and proofs come from a metapro-
gramming trick, applied to the practical software implementation [20] of compu-
tations with the Gomory–Johnson model; followed by computations with semi-
algebraic cell complexes. As such, all of our techniques are reasonably close to
mathematical programming practice. The correctness of all of our proofs depends
on the correctness of the underlying implementation. We make no claims that
our proofs can be formalized in the sense of the above mentioned formal proof
systems that break every theorem down to the axioms of mathematics; we make
no attempt to use an automated theorem proving system.

Our software is in an early, proof-of-concept stage of development. In this
largely computational and experimental paper we report on the early successes of
the software. We computationally verify the results on the gj forward 3 slope1

(https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def
def+gj forward 3 slope%28%22) and drlm backward 3 slope (https://github.
com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm backward
3 slope%28%22) functions. We find a correction to a theorem by Chen [8] reg-

arding the extremality conditions for his chen 4 slope (https://github.com/mk
oeppe/infinite-group-relaxation-code/search?q=%22def+chen 4 slope%28%22)
family.2 We find a correction to a result by Miller, Li and Richard [24] on the so-
called CPL=

3 functions (mlr cpl3 . . . ). We discover several new parametric fam-
ilies, kzh 3 slope param extreme 1 (https://github.com/mkoeppe/infinite-gr
oup-relaxation-code/search?q=%22def+kzh 3 slope param extreme 1%28%22)
and kzh 3 slope param extreme 2 (https://github.com/mkoeppe/infinite-gro
up-relaxation-code/search?q=%22def+kzh 3 slope param extreme 2%28%22),
of extreme functions and corresponding theorems regarding their extremality,
with automatic proofs.

1 A function name shown in typewriter font is the name of the constructor of this
function in the Electronic Compendium, part of the SageMath program [20]. In an
online copy of this paper, hyperlinks lead to this function in the GitHub repository.

2 This is a new result, which should not be confused with our previous result in
[22] regarding Chen’s family of 3-slope functions (chen 3 slope not extreme,
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+ch
en 3 slope not extreme%28%22).

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_forward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_3_slope_param_extreme_1%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_3_slope_param_extreme_1%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_3_slope_param_extreme_2%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_3_slope_param_extreme_2%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_3_slope_not_extreme%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_3_slope_not_extreme%28%22
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2 The Gomory–Johnson Model

We restrict ourselves to the single-row (or, “one-dimensional”) infinite group
problem, which has attracted most of the attention in the past and for which
the software [20] is available. It can be written as

∑

r∈R

r y(r) ≡ f (mod 1),

y : R → Z+ is a function of finite support,
(1)

where f is a given element of R \ Z. We study the convex hull Rf (R,Z) of the
set of all functions y : R → Z+ satisfying the constraints in (1). The elements of
the convex hull are understood as functions y : R → R+.

After a normalization, valid inequalities for the convex set Rf (R,Z) can be
described using so-called valid functions π : R → R via 〈π, y〉:= ∑

r∈R
π(r)y(r) ≥

1. Valid functions π are cut-generating functions for pure integer programs. Take
a row of the optimal simplex tableau of an integer program, corresponding to a
basic variable xi that currently takes a fractional value:

xi = −fi +
∑

j∈N

rjxj , xi ∈ Z+, xN ∈ Z
N
+ .

Then a valid function π for Rfi
(R,Z) gives a valid inequality

∑
j∈N π(rj)xj ≥

1 for the integer program. (By a theorem of Johnson [21], this extends easily
to the mixed integer case: A function ψ can be associated to π, so that they
together form a cut-generating function pair (ψ, π), which gives the coefficients
of the continuous and of the integer variables.)

In the finite-dimensional case, instead of merely valid inequalities, one is inter-
ested in stronger inequalities such as tight valid inequalities and facet-defining
inequalities. These rôles are taken in our infinite-dimensional setting by minimal
functions and extreme functions. Minimal functions are those valid functions
that are pointwise minimal; extreme functions are those that are not a proper
convex combination of other valid functions.

By a theorem of Gomory and Johnson [14], minimal functions for Rf (R,Z)
are classified: They are the subadditive functions π : R → R+ that are periodic
modulo 1 and satisfy the symmetry condition π(x) + π(f − x) = 1 for all x ∈ R.

Obtaining a full classification of the extreme functions has proved to be
elusive, however various authors have defined parametric families of extreme
functions and provided extremality proofs for these families. These parametric
families of extreme functions from the literature, as well as “sporadic” extreme
functions, have been collected in an electronic compendium as a part of the
software [20]; see [22].

We refer the interested reader to the recent surveys [4,5,11] for a more
detailed exposition.
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3 Examples of Cutting-Plane Theorems
in the Gomory–Johnson Model

To illustrate what cutting-plane theorems in the Gomory–Johnson model look like,
we give three examples, paraphrased for precision from the literature where they
were stated. As we will show later, the last theorem is incorrect.

Fig. 1. gj forward 3 slope (https://github.com/mkoeppe/infinite-group-relaxation-co
de/search?q=%22def+gj forward 3 slope%28 %22)

Theorem 3.1 (reworded from Gomory–Johnson [16, Theorem 8]). Let f ∈
(0, 1) and λ1, λ2 ∈ R. Define the periodic, piecewise linear gj forward 3 slope
(Fig. 1, https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%
22def+gj forward 3 slope(%22) function π : R/Z → R as follows. The function
π satisfies π(0) = π(1) = 0; it has 6 pieces between 0 and 1 with breakpoints at
0, a′, a, b, b′, f and 1, where a = λ1f

2 , a′ = a+ λ2(f−1)
2 , b = f −a and b′ = f −a′.

The slope values of π on these pieces are s+, s−, 1
f , s−, s+ and s−, respectively,

where s+ = λ1+λ2
λ1f+λ2(f−1) and s− = 1

f−1 . If λ1 and λ2 satisfy that (i) 0 ≤ λ1 ≤ 1
2 ,

(ii) 0 ≤ λ2 ≤ 1 and (iii) 0 < λ1f + λ2(f − 1), then the function π is an extreme
function for Rf (R/Z).

Theorem 3.2 (Dey–Richard–Li–Miller [12]; in this form, for the real
case, in [22], Theorem 4.1). Let f and b be real numbers such that 0 <
f < b ≤ 1+f

4 . The periodic, piecewise linear drlm backward 3 slope (Fig. 2,
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+
drlm backward 3 slope%28%22) function π : R/Z → R defined as follows is an
extreme function for Rf (R/Z):

π(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x
f if 0 ≤ x ≤ f

1 + (1+f−b)(x−f)
(1+f)(f−b) if f ≤ x ≤ b

x
1+f if b ≤ x ≤ 1 + f − b
(1+f−b)(x−1)
(1+f)(f−b) if 1 + f − b ≤ x ≤ 1

Theorem 3.3 (reworded from Chen [8], Theorem 2.2.1). Let f ∈ (0, 1),
s+ > 0, s− < 0 and λ1, λ2 ∈ R. Define the periodic, piecewise linear chen 4

slope (Fig. 3, https://github.com/mkoeppe/infinite-group-relaxation-code/
search?q=%22def+chen 4 slope%28%22) function π : R/Z → R as follows. The

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope%28%22
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Fig. 2. drlm backward 3 slope (https://github.com/mkoeppe/infinite-group-relaxati
code/search?q=%22def+drlm backward 3 slope%28%22)

Fig. 3. chen 4 slope (https://github.com/mkoeppe/infinite-group-relaxation-code/sea
rch?q=%22def+chen 4 slope%28%22)

function π satisfies π(0) = π(1) = 0; it has 10 pieces between 0 and 1 with
breakpoints at 0, a′, a, b, b′, f, d′, d, c, c′, 1, where

a′ = λ1(1−s−f)
2(s+−s−) , a = λ1f

2 , c = 1 − λ2(1−f)
2 , c′ = 1 − λ2(1−s+(1−f))

2(s+−s−)

and b = f − a, b′ = f − a′, d = 1 + f − c, d′ = 1 + f − c′. The slope values of π
on these pieces are s+, s−, 1

f , s−, s+, s−, s+, 1
f−1 , s+ and s−, respectively. If the

parameters f, λ1, λ2, s
+ and s− satisfy that

f ≥ 1
2 , s+ ≥ 1

f , s− ≤ 1
f−1 , 0 ≤ λ1 < min{ 1

2 , s+−s−
s+(1−s−f)}, and

f − 1
s+ < λ2 < min

{
1
2 , s+−s−

s−(s+(f−1)−1)

}
,

then π is an extreme function for Rf (R,Z).

Observation 3.4

(i) These theorems are about families of periodic, continuous piecewise linear
functions π : R → R that depend on a finite number of real parameters in a
way that breakpoints and slope values can be written as rational functions
of the parameters.

(ii) There are natural conditions on the parameters to make the function even
constructible; for example, in Theorem 3.2, if f < b is violated, then the
function is not well-defined. These conditions are inequalities of rational
functions of the parameters. Hence the set of parameter tuples such that
the construction describes a function is a semialgebraic set.

(iii) There are additional conditions on the parameters that ensure that the func-
tion is an extreme function. Again, all of these conditions are inequalities
of rational functions of the parameters. Hence the set of parameter tuples
such that the construction gives an extreme function is a semialgebraic set.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope%28%22
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Remark 3.5. Some families of extreme functions in the literature are defined
in more general ways. Some use parameters that are integers (for example,
drlm 2 slope limit (https://github.com/mkoeppe/infinite-group-relaxation-
code/search?q=%22def+drlm 2 slope limit%28%22) has integer parameters
that control the number of pieces of the function). Others use non-algebraic oper-
ations such as the floor/ceiling/fractional part operations to define the break-
points and slope values of the function (for example, dg 2 step mir (https://
github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg 2 st
ep mir%28%22)). Another family, bhk irrational (https://github.com/mko
eppe/infinite-group-relaxation-code/search?q=%22def+bhk irrational%28%22),
requires an arithmetic condition, the Q-linear independence of certain parame-
ters, for extremality. These families are beyond the scope of this paper.

4 Semialgebraic Cell Structure of Extremality Proofs

The minimality of a given periodic piecewise linear function can be easily tested
algorithmically; see, for example, [4, Theorem 3.11]. Basu, Hildebrand, and
Köppe [3] gave the first algorithmic tests for extremality for a given function π
whose breakpoints are rational with a common denominator q. The simplest of
these tests uses their finite-oversampling theorem (see [5, Theorem 8.6] for its
strongest form). Extremality of the function π is equivalent to the extremality
of its restriction to the refined grid 1

3qZ/Z for the finite master group problem.
Thus it can be tested by finite-dimensional linear algebra.

The proof of the finite-oversampling theorem in [3] (see also [5, Sect. 7.1] for a
more high-level exposition) provides another algorithm, based on the computa-
tion of “affine-imposing” (“covered”) intervals and the construction of “equivari-
ant” perturbation functions. This algorithm in [3] is also tied to the use of the
grid 1

qZ/Z; but it has since been generalized in the practical implementation
[20] to give a completely grid-free algorithm, which is suitable also for rational
breakpoints with huge denominators and for irrational breakpoints.3

Observation 4.1. On inspection of this grid-free algorithm, we see that it
only uses algebraic operations, comparisons, and branches ( if-then-else and
loops), and then returns either True (to indicate extremality) or False (non-
extremality).

Enter parametric analysis of the algorithm, that is, we wish to run the algo-
rithm for a function from a parametric family and observe how the run of the
algorithm and its answer changes, depending on the parameters. It is then a sim-
ple observation that for any algorithm of the type described in Observation 4.1,

3 The finiteness proof of the algorithm, however, does depend on the rationality of the
data. In this paper we shall ignore the case of functions with non-covered intervals
and irrational breakpoints, such as the bhk irrational (https://github.com/
mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk irrational%28%22)
family.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_2_slope_limit%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_2_slope_limit%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational%28%22
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the set of parameters where the algorithm returns True must be a union of sets
described by equations and inequalities of rational functions in the parameters.
If the number of operations (and thus the number of branches) that the algo-
rithm takes is bounded finitely, then it will be a finite union of “cells”, each
corresponding to a particular outcome of comparisons that led to branches, and
each described by finitely many equations and inequalities of rational functions
in the parameters. Thus it will be a semialgebraic set.

Within each of the cells, we get the “same” proof of extremality. A complete
proof of extremality for a parametric family is merely a collection of cells, with
one proof for each of them. This is what we compute as we describe below.

5 Computing One Proof Cell by Metaprogramming

Now we assume that we are given a tuple of concrete parameter values; we
will compute a semialgebraic description of one cell of the proof, i.e., a cell of
parameter tuples for which the algorithm takes the same branches.

It is well known that modern programming languages provide facilities known
as “operator overloading” or “virtual methods” that allow us to conveniently
write “generic” programs that can be run on objects of various types. For exam-
ple, the program [20], written in the SageMath system [26], by default works
with (arbitrary-precision) rational numbers; but when parameters are irrational
algebraic numbers, it makes exact computations in a suitable real number field.

We make use of the same facilities for a metaprogramming technique that
transforms the program [20] for testing extremality for a function corresponding
to a given parameter tuple into a program that computes a description of the
cell that contains the given parameter tuple. No code changes are necessary.

We define a class of elements4 that support the algebraic operations and
comparisons that our algorithm uses, essentially the operations of an ordered
field. Each element stores (1) a symbolic expression5 of the parameters in the
problem, for example x + y and (2) a concrete value, which is the evaluation of
this expression on the given parameter tuple, for example 13. In the following,
we denote elements in the form x + y |=13. Every algebraic operation (+, −, ∗,
. . . ) on the elements of the class is performed both on the symbolic expressions
and on the concrete values. For example, if one multiplies the element x |=7 and
another element x + y |=13, one gets the element x2 + xy |=91.

When a comparison (<, ≤, =, . . . ) takes place on elements of the class, their
concrete values are compared to compute the Boolean return value of the com-
parison. For example, the comparison x2 + xy |=91 > 42 evaluates to True. But
we now have a constraint on the parameters x and y: The inequality x2+xy > 42
needs to hold so that our answer True is correct. We record this constraint.6

4 These elements are instances of the class ParametricRealFieldElement. Their
parent, representing the field, is an instance of the class ParametricRealField.

5 Since all expressions are, in fact, rational functions, we use exact seminumerical
computations in the quotient field of a multivariate polynomial ring, instead of the
slower and less robust general symbolic computation facility.

6 This information is recorded in the parent of the elements.
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After a run of the algorithm, we have a description of the parameter region
for which all the comparisons would give the same truth values as they did for
the concrete parameter tuple, and hence the algorithm would take the same
branches. This description is typically a very long and highly redundant list of
inequalities of rational functions in the parameters.

It is crucial to simplify the description. “In theory”, manipulation of inequal-
ities describing semialgebraic sets is a solved problem of effective real algebraic
geometry. Normal forms such as Cylindrical Algebraic Decomposition (CAD)
[6, Chapts. 5 and 11] are available in various implementations, such as in the
standalone QEPCAD B [7] or those integrated into CAS such as Maple and
Mathematica, underlying these systems’ ‘solve’ and ‘assume’ facilities. In compu-
tational practice, we however observed that these systems are extremely sensitive
to the number of inequalities, rendering them unsuitable for our purposes; see
[27, Sect. 5] for a study with Maple. We therefore roll our own implementation.

1. Transform inequalities and equations of rational functions into those of poly-
nomials by multiplying by denominators, and bring them in the normal form
p(x) < 0 or p(x) = 0. In the case of inequalities, this creates the extra con-
straint that the denominator takes the same sign as it does on the test point.
So this transformation may break cells into smaller cells.

2. Factor the polynomials p(x) and record the distinct factors as equations
and inequalities. In the case of inequalities, this potentially breaks cells into
smaller cells. We can ignore the factors with even exponents in inequalities.

3. Reformulation–linearization: Expand the polynomial factors in the standard
monomial basis and replace each monomial by a new variable. This gives a
linear system of inequalities and equations and thus a not-necessarily-closed
polyhedron in an extended variable space. We use this polyhedron to repre-
sent our cell. Indeed, its intersection with the algebraic variety of monomial
relations is in linear bijection with the semialgebraic cell.

4. All of this is implemented in an incremental way. We use the excellent Parma
Polyhedra Library [2] via its SageMath interface written in Cython. PPL is
based on the double description method and supports not-necessarily-closed
polyhedra. It also efficiently supports adding inequalities dynamically and
injecting a polyhedron into a higher space. The latter becomes necessary
when a new monomial appears in some constraint. The PPL also has a fast
implementation path for discarding redundant inequalities.

In our preliminary implementation, we forgo opportunities for strengthening this
extended reformulation by McCormick inequalities, bounds propagation etc.,
which would allow for further simplification. We remark that all of these poly-
hedral techniques ultimately should be regarded as a preprocessing of input for
proper real-algebraic computation. They are not strong enough on their own to
provide “minimal descriptions” for semialgebraic cells. In a future version of our
software, we will combine our preprocessing technique with the CAD implemen-
tation in Mathematica.
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6 Computing the Cell Complex Using Wall-Crossing BFS

Define the graph of the cell complex by introducing a node for each cell and an
edge if a cell is obtained from another cell by flipping one inequality. We compute
the cell complex by doing a breadth-first search (BFS) in this graph. This is a
well-known method for the case of the cells of arrangements of hyperplanes; see
[17, Chap. 24] and the references within. The nonlinear case poses challenges due
to degeneracy and possible singularities, which we have not completely resolved.

Our preliminary implementation uses a heuristic numerical method to con-
struct a point in the interior of a neighbor cell, which will be used as the next
concrete parameter tuple for re-running the algorithm described in Sect. 5. This
may fail, and so we have no guarantees that the entire parameter space is cov-
ered by cells when the breadth-first search terminates. This is the weakest part
of our current implementation.

7 Automated Proofs and Corrections of Old Theorems

Using our implementation, we verified Theorems 3.1 and 3.2, as well as other the-
orems regarding classical extreme functions from the literature. Figure 4 shows
the visualizations of the corresponding cell complexes. Using our implementa-
tion we also investigated Theorem 3.3 regarding chen 4 slope (https://githu
b.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen 4 slope
%28%22) and discovered that it is incorrect. For example, the function with
parameters f = 7/10, s+ = 2, s− = −4, λ1 = 1/100, λ2 = 49/100 satisfies
the hypotheses of the theorem; however, it is not subadditive and thus not an
extreme function. On the other hand, the stated hypotheses are also not nec-
essary for extremality. For example, the function with parameters f = 7/10,
s+ = 2, s− = −4, λ1 = 1/10, λ2 = 1/10 does not satisfy the hypotheses, how-
ever it is extreme. We omit a statement of corrected hypotheses that we found
using our code.

We also investigated another family of functions, the so-called CPL=
3 func-

tions, introduced by the systematic study by Miller, Li, and Richard [24]. Their
method can be regarded as a predecessor of our method, albeit one that led to
an error-prone manual case analysis (and human-generated proofs). Though our
general method can be applied directly, we developed a specialized version of our
code that follows Miller, Li, and Richard’s method to allow a direct comparison.
This revealed mistakes in [24] (we omit the details in this extended abstract).

8 Computer-Assisted Discovery of New Theorems

In [23], the authors conducted a systematic computer-based search for extreme
functions on the grids 1

qZ for values of q up to 30. This resulted in a large catalog
of extreme functions that are “sporadic” in the sense that they do not belong
to any parametric family described in the literature. Our goal is to automati-
cally embed these functions into parametric families and to automatically prove

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope%28%22
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Fig. 4. The cell complexes of two parametric families of functions. Left, gj forward

3 slope (https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22
def+gj forward 3 slope%28%22), showing the (λ1, λ2)-plane for fixed f = 4/5. Right,
drlm backward 3 slope (https://github.com/mkoeppe/infinite-group-relaxation-co
de/search?q=%22def+drlm backward 3 slope%28%22), showing the parameters
(f, bkpt). Cell colors: ‘not constructible’ (white), ‘constructible, not minimal’ (yellow),
‘minimal, not extreme’ (green) or ‘extreme’ (blue). (Color figure online)

theorems about their extremality. In this section, we report on cases that have
been done successfully with our preliminary implementation; the process is not
completely automatic yet.

We picked an interesting-looking 3-slope extreme function found by our
computer-based search on the grid 1

qZ. We then introduced parameters f, a, b, v
to describe a preliminary parametric family that we denote by param 3 slope 1.
In the concrete function that we started from, these parameters take the values
6
19 , 1

19 , 5
19 , 8

15 ; see Fig. 5 (left). So a denotes the length of the first interval right
to f , b denotes the length of interval centered at (1 + f)/2 and v = π(f + a).
By this choice of parameters, the function automatically satisfies the equations
corresponding to the symmetry conditions. Next we run the parametric version
of the minimality test algorithm. It computes True, and as a side-effect computes
a description of the cell in which the minimality test is the same.

sage: K.<f,a,b,v>=ParametricRealField([6/19,1/19,5/19,8/15])

sage: h = param_3_slope_1(f,a,b,v)

sage: minimality_test(h)

True

sage: K._eq_factor

{-f^2*v + 3*f*b*v + f^2 + f*a - 3*f*b - 3*a*b - f*v + b}

In particular, the above line shows that it has discovered one nonlinear equa-
tion that holds in the cell corresponding to the minimality proof of the function.
We use this equation, quadratic in f and multilinear in the other parameters, to

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope%28%22
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Fig. 5. Two new parametric families of extreme functions. Left, kzh 3 slope param

extreme 1 (https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=
%22def+kzh 3 slope param extreme 1%28%22). Right, kzh 3 slope param extreme 2

(https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh
3 slope param extreme 2%28%22).

eliminate one parameter.7 This gives our parametric family kzh 3 slope param
extreme 1 (https://github.com/mkoeppe/infinite-group-relaxation-code/search
?q=%22def+kzh 3 slope param extreme 1%28%22), which depends only on f ,
a, and b. The definition of the parametric family is the only input to our algo-
rithm. Cells with respect to this family will be full-dimensional; this helps to
satisfy a current implementation restriction of our software. Indeed, re-running
the algorithm yields the following simplified description of the cell in which the
concrete parameter tuple lies.

3*f + 4*a - b - 1 < 0 -a < 0

-f^2 - f*a + 3*f*b + 3*a*b - b < 0 -f + b < 0

f*a - 3*a*b - f + b < 0 -f - 3*b + 1 < 0

-f^2*a + 3*f*a*b - 3*a*b - f + b < 0

We then compute the cell complex by BFS as described in Sect. 6. By inspec-
tion, we observe that the collection of the cells for which the function is extreme
happens to be a convex polytope (this is not guaranteed). We discard the inequal-
ities that appear twice and thus describe inner walls of the complex. By inspec-
tion, we discard nonlinear inequalities that are redundant. We obtain a descrip-
tion of the union of the cells for which the function is extreme as a convex
polytope. We obtain the following:

Theorem 8.1. Let f ∈ (0, 1) and a, b ∈ R such that

0 ≤ a, 0 ≤ b ≤ f and 3f + 4a − b − 1 ≤ 0.

The piecewise linear kzh 3 slope param extreme 1 (https://github.com/mkoep
pe/infinite-group-relaxation-code/search?q=%22def+kzh 3 slope param extreme

7 We plan to automate this in a future version of our software.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_3_slope_param_extreme_1%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_3_slope_param_extreme_1%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_3_slope_param_extreme_2%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_3_slope_param_extreme_2%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_3_slope_param_extreme_1%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_3_slope_param_extreme_1%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_3_slope_param_extreme_1%28%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_3_slope_param_extreme_1%28%22
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1%28%22) function π : R/Z → R defined as follows is extreme. The function π
has breakpoints at

0, f, f + a,
1 + f − b

2
,
1 + f + b

2
, 1 − a, 1.

The values at breakpoints are given by π(0) = π(1) = 0, π(f +a) = 1−π(1−a) =
v and π(1+f−b

2 ) = 1 − π( 1+f+b
2 ) = f−b

2f , where v = f2+fa−3fb−3ab+b
f2+f−3bf .

A similar process leads to a theorem about the family kzh 3 slope param
extreme 2 (https://github.com/mkoeppe/infinite-group-relaxation-code/sear
ch?q=%22def+kzh 3 slope param extreme 2%28%22) shown in Fig. 5 (right).
We omit the statement of the theorem.
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1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
{katerina.boehmova,enrico.kravina}@inf.ethz.ch

2 Department of Knowledge Engineering,
Maastricht University, Maastricht, Netherlands
matus.mihalak@maastrichtuniversity.nl

Abstract. We consider a scheduling problem with machine dependent
intervals, where each job consists of m fixed intervals, one on each of
the m machines. To schedule a job, exactly one of the m intervals needs
to be selected, making the corresponding machine busy for the time
period equal to the selected interval. The objective is to schedule a max-
imum number of jobs such that no two selected intervals from the same
machine overlap. This problem is NP-hard and admits a deterministic
1/2-approximation. The problem remains NP-hard even if all intervals
have unit length, and all m intervals of any job have a common inter-
section. We study this special case and show that it is APX-hard, and
design a 501/1000-approximation algorithm.

Keywords: Fixed interval scheduling · Interval selection · Computa-
tional complexity · Approximation algorithms

1 Introduction

We study a fixed-interval scheduling problem with m machines and n jobs,
called IntervalSelection on unrelated machines, where each job has on every
machine an open interval of the reals (denoting the exact time interval when the
job can be processed on the machine). By scheduling a job on a machine, one
implicitly selects the corresponding interval of the job (and makes the machine
unavailable for that time period), a job is scheduled by selecting one of its inter-
vals. The goal is to schedule the maximum number of jobs such that no two
selected intervals from the same machine intersect.

If m = 1, the problem becomes the classic interval scheduling problem which
is solvable in O(n log n) time by the following greedy algorithm: Scan iteratively
the right endpoints of the intervals from left to right, and in each iteration select
the considered interval, if and only if it does not intersect any of the previously
selected intervals. We will refer to this algorithm as the single-machine greedy.

Already for m ≥ 2, the problem is NP-hard [2]. A straightforward general-
ization of the single-machine greedy has an approximation ratio of 1/2: Consider
the machines one by one in an arbitrary order, run the single-machine greedy on
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 345–356, 2016.
DOI: 10.1007/978-3-319-45587-7 30
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the intervals of the currently considered machine, add all the selected intervals to
the solution and remove the jobs that correspond to them from all the subsequent
machines. We will refer to this algorithms as the multi-machine greedy. For m = 2,
there exists a 2/3-approximation algorithm; this algorithm has recently been gen-
eralized for any constant m, achieving approximation ratio (12 + 1

3m(m−1) ) [3].
There are many variants of the broad class of interval scheduling, see, e.g., a

recent surveys by Kolen et al. [7] and by Kovalyov et al. [8]. In a classic variant
(with identical machines), each job is identified with exactly one interval, and a
job (i.e., the interval) can be scheduled on any of the machines. This problem
is a special variant of IntervalSelection where the intervals of each partic-
ular job are the very same time interval (on all the machines). This problem is
polynomially solvable even in the weighted case [1,4] (and for any m).

On the other hand, IntervalSelection can be seen as a special case of
JISPk, the job interval selection problem, where each job has exactly k inter-
vals on the real line (and the goal is to schedule a maximum number of jobs).
Any instance of JISPk where the real line can be split into k parts (by k − 1
vertical lines) so that every part contains exactly one interval for each job,
is also an instance of IntervalSelection, where each part represents one
machine. JISPk for k ≥ 2 was shown to be NP-hard [6,9] and subsequently
even APX-hard [10]. There is a deterministic 1/2-approximation algorithm for
JISPk [10] which works similarly as the multi-machine greedy, and a random-
ized e−1

e -approximation algorithm [5]. This is the only algorithm that beats the
barrier of 1/2 in a general setting. The algorithm is randomized, and there is no
standard approach to de-randomize it. Thus, beating the approximation ratio of
1/2 in the deterministic case is, in that view, a main open problem.

In this paper, we study a special case of IntervalSelection, where all the
m intervals of every job have a point in common. In other words, the intersection
of all the m intervals is non-empty. We call such a common point a core of the
job. We call this special case IntervalSelection with cores.

Situations where jobs have cores arise naturally in practice. Our motivation
comes from the problem of assigning cars to n users of a car-sharing system with
m cars, each at a different location. Assume that every user can reach every car
(say, by public transport), and she wants to use it to arrive to a particular place
of a fixed-time appointment. Then, depending on the distance of the car to the
place of the appointment, she needs to specify different time interval for which
she needs each of the cars. Clearly, the time of the appointment naturally induces
a time point common to all intervals specified by a particular user, and thus a
“core” in the underlying scheduling problem.

IntervalSelection with cores can be solved optimally in a running time
exponential in m by a dynamic programming algorithm [11] (and thus in poly-
nomial time, whenever m is a constant). However, for a non-constant m, the
problem was shown to be NP-hard even for unit intervals [2] (i.e., when every
interval has a length one). One can show that even for the unit intervals case, the
multi-machine greedy remains a 1/2-approximation (i.e., there is an instance of
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the problem on which the algorithm schedules only a half of an optimum number
of jobs).

In this paper we show that IntervalSelection with cores and unit intervals
can be deterministically approximated strictly better than 1/2, without any
restriction on the number of machines m of the given instance. At the same
time, we remark that the problem is not an easy one by showing that it is
APX-hard. The two main results are stated in the following theorems.

Theorem 1. IntervalSelection with cores and unit intervals is APX-hard.

Theorem 2. There is a deterministic 501
1000 -approximation algorithm for Inter-

valSelection with cores and unit intervals.

Due to space constraints, the details of the APX-hardness are omitted
entirely. We note that the proof uses a new analysis of an existing NP-hardness
proof [2]. (We also note that the APX-hardness of the more general problem
JISP2 does not carry over to our problem.)

The remaining of the paper describes the algorithm and its analysis. The
approximation ratio of our algorithm is at least 501/1000. We believe that this
ratio can be further improved by fine-tuning the parameters of the algorithm,
and using a more careful analysis. In particular, in most of the subroutines of
the algorithm we actually obtain a ratios strictly better than 501/1000. In some
cases, we set the constants of the algorithm or in the analysis in such a way
that we get exactly 501/1000. Thus, by a slight modification of the parameters,
better approximation ratio can be obtained. None the less, we prefer to keep the
algorithm and its analysis relatively simple. We also note that our algorithm is,
to the best of our knowledge, the first deterministic algorithm having an approx-
imation ratio better than 1/2 for any NP-hard variant of IntervalSelection
that does not restrict the number of machines m.

1.1 Standard Techniques Fail

Before we describe the algorithm, let us remark that some standard techniques
– greedy approach and a shifting technique – fail in the goal of achieving an
approximation ratio better than 1/2. Due to space constraints, we omit the
details.

2 The Approximation Algorithm

In the following, we use the term window to refer to a time interval (independent
of machines and jobs). Also, if a job has more cores, we fix any of those (say,
the left-most), and refer to it as the core of the job.

The approximation algorithm, which we call SplitAndMerge, is a recur-
sive divide-and-conquer algorithm. Described on a high level, in every step it
either provides a good enough solution for the considered (sub)instance (and
goes back in the recursion), or identifies a middle subinstance – a set of jobs
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with cores inside a small window W , for which a good enough solution can be
provided; in this case, the algorithm recursively proceeds with the two subin-
stances induced by the jobs having cores left of W , and right of W , respectively,
and then merges the three solutions. Here, good enough solution needs to sched-
ule close-to-optimum many jobs of the subinstance, and at the same time, it must
allow to merge the solutions from the left, middle, and the right subinstances
without losing much of the quality.

The algorithm considers two types of a middle subinstance. The first type is
induced by a window W of size 6 which contains at most m cores. The second
type is structurally more involved: the algorithm first runs a greedy algorithm,
called adaptive greedy, for the considered (sub)instance; then, if there is a window
W of size 20 such that the adaptive greedy schedules all jobs with cores in W ,
then one can identify a sub-window W that induces the middle instance.

The algorithm takes special care of middle windows W for which the left or
the right subinstance is empty. For this reason, we say that a window W is on
the left border of an instance, if there is no core strictly to the left of W , and at
the same time there is a core at the left endpoint of W . We analogously define
W to be on the right border. We say that W is in the interior of an instance if
there is both a core strictly to the left and strictly to the right of W .

The algorithm SplitAndMerge works as follows (the auxiliary procedures
are subroutines which are described in detail later):

(1) If there are at most m jobs, return a schedule where every job is scheduled
(one on each of m machines).

(2a) Else if there is a window of size 6 in the interior of the instance that
contains at most m cores, then return the result obtained by the sparse
interior procedure described in Sect. 2.1.

(2b) Else if one of the two windows of size 3 on the borders of the instance
contains at most m cores, then return the result obtained by the sparse
border procedure described in Sect. 2.2.

(3) Else, run the adaptive greedy algorithm on the whole instance to obtain
a solution SAG; and mark all the cores of jobs which are not scheduled
in SAG.
(Ia) If there is a window of size 20 in the interior of the instance which

does not contain a marked core, then return the result obtained by
the middle splitting procedure described in Sect. 2.3.

(Ib) Else if one of the windows of size 9 on the borders of the instance
does not contain a marked core, then return the result obtained by
the border splitting procedure described in Sect. 2.4.

(II) Else return the solution SAG.

We now describe the adaptive greedy algorithm: it consists of m iterations,
where m is the number of machines. In each iteration it processes one machine by
running the single-machine greedy on it. All jobs scheduled on that machine are
made unavailable for subsequent iterations. The order in which the machines are
processed is decided in an adaptive (greedy) way. In each iteration, the chosen
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machine is the one that maximizes the number of selected intervals (among all
not yet processed machines). Such a machine is found by running single-machine
greedy on each of the remaining unprocessed machines. Obviously, the running
time of multi-machine greedy is polynomial in n and m, since it runs the single-
machine greedy (m + (m − 1) + . . . + 2) = O(m2) many times.

The adaptive greedy algorithm has the following guarantee on the number
of scheduled jobs:

Lemma 1. During the first q iterations, the adaptive greedy selects at least(
q
m − q2

2m2

)
s intervals, where s is the optimum of the instance.

Proof. Let us fix an underlying optimum of size s. Let ti, i ∈ {1, . . . ,m}, denote
the number of intervals selected by adaptive greedy during its ith iteration and
let si, i ∈ {1, . . . ,m}, denote the number of intervals of the underlying optimum
that are still available in the beginning of the ith iteration.

Observe that an interval I from the optimum can become unavailable for
two reasons: either the adaptive greedy selects another interval I ′ on the same
machine that intersects I and that ends earlier than I, or the adaptive greedy
scheduled the job of I earlier (by selecting an interval of the job on a different
machine). Thus, every chosen interval of the adaptive greedy can make at most
two intervals of the optimum unavailable. Therefore, if ti intervals are selected
by the adaptive greedy in iteration i, we have si+1 ≥ si −2ti. In the beginning of
the ith iteration, there are still m− i+1 machines to be processed, and there are
still si intervals of the optimum available on those machines. Therefore, there
is a machine with at least si

m−i+1 many intervals of the optimum and from the
strategy of adaptive greedy and optimality of single-machine greedy it follows
that ti ≥ si

m−i+1 .
Using these recurrence relations we prove the lemma by induction on m and

q ≤ m. We note that for q = 1 and arbitrary m, the statement of the lemma
holds, since in the first iteration at least s

m intervals are selected. Now let us
consider the base case, that is, m = 1. Since q ≤ m, we are in the situation
where q = 1 and the statement of the lemma follows from the just noted fact.

Next, assuming m ≥ q ≥ 2 and that the statement holds for any instance with
m − 1 machines, we analyze the number of intervals selected in the first q itera-
tions. After the fist iteration, t1 ≥ s1

m intervals are selected and the optimum on
the remaining machines is of size s2 ≥ s1−2t1. By applying the induction hypoth-
esis we obtain that in the next q−1 iterations at least

(
q−1
m−1 − (q−1)2

2(m−1)2

)
(s1−2t1)

intervals are selected. Therefore, altogether, in the next q iterations, at least
t1 +

(
q−1
m−1 − (q−1)2

2(m−1)2

)
(s1 − 2t1) intervals are selected. For increasing values of

t1 ≥ s1/m, this lower bound also increases, and thus the bound is minimized for
t1 = s1/m. Therefore, at least

s1
m

+
(

q − 1
m − 1

− (q − 1)2

2(m − 1)2

) (
s1 − 2

s1
m

)
≥(∗)

(
q

m
− q2

2m2

)

s1

intervals are selected (the inequality (∗) can be obtained by a straightforward
manipulation of the formula). ��
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Observe that for q = m, the algorithm schedules at least 1
2s many intervals.

Thus, this algorithm alone does not achieve a better approximation ratio than
1
2 . However, observe that in the first rounds, the lemma guarantees that the
algorithm takes larger fractions of s than in the last rounds. Thus, if we had a
good alternative bound on the number of intervals selected by the algorithm in
its last rounds, we could obtain a better approximation ratio by simply summing
the two different lower bounds on the number of selected intervals, i.e., the lower
bound for the first q′ rounds of the algorithm, plus the lower bound for the last
m − q′ rounds of the algorithm. Later on, we will provide exactly such a lower
bound on the number of intervals selected in the last rounds of the algorithm.

2.1 The Sparse Interior Procedure

If the sparse interior procedure is called, then there must be a window W of size
6 in the interior that contains at most m cores. Let x be the left endpoint of
W . The sparse interior procedure creates a left subinstance consisting of jobs
with cores to the left of x + 2, and a right subinstance consisting of jobs with
cores to the right of x + 4. After that, it recursively calls SplitAndMerge to
obtain solutions to these two subinstances. Finally, the sparse interior procedure
merges these two results as follows. We observe that intervals of jobs with cores
to the left of x + 2 cannot intersect intervals of jobs with cores to the right of
x + 4 (since all intervals have unit length). This implies that the sparse interior
procedure can merge the left and right solutions without any conflicts. It remains
to add to this result all the jobs with cores in the window from x + 2 to x + 4.
The sparse interior procedure schedules these jobs on those machines where no
job with core in the window from x to x+2 and no job with core in the window
from x + 4 to x + 6 has been scheduled. Since by assumption there are at most
m jobs in the window from x to x + 6, this can always be done.

2.2 The Sparse Border Procedure

The sparse border procedure is similar to the sparse interior procedure. We
describe only the sparse border procedure for the right border, since the pro-
cedure for the left border is symmetric. Suppose that the window W of size 3
on the right border of the instance contains at most m cores, and let x be the
left endpoint of W . The sparse border procedure uses SplitAndMerge (recur-
sively) to obtain a solution for the subinstance that consists of the jobs with
cores to the left of x + 2. We observe that the jobs with cores in the window
from x + 2 to x + 3 cannot conflict with jobs with cores to the left of x. Since
there are no more than m jobs with cores in the window from x to x + 3, the
sparse border procedure can schedule all the jobs with cores in the window from
x + 2 to x + 3 without causing any conflict.

2.3 The Middle Splitting Procedure

The middle splitting procedure is applied if there is a window W of size 20 in
the interior of the instance with no marked core inside W . This means that all
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jobs with core inside W have been scheduled by the adaptive greedy (i.e. they
are in the solution SAG).

The procedure identifies a middle window, a sub-window of W , to naturally
split the instance into a left, middle, and right instance. The procedure recur-
sively calls SplitAndMerge to obtain solutions for the left and right instances,
and combines them with the “unblocked” intervals of SAG having core in the
middle window.

To choose the middle window, we first subdivide the window W in 10 windows
of size 2, see Fig. 1. Starting from the left, we call these windows wL

5 , wL
4 , wL

3 ,
wL

2 , wL
1 , wR

1 , wR
2 , wR

3 , wR
4 , wR

5 . For a window w we denote with |w| the number
of cores inside of w. For i ∈ {1, 2, 3, 4, 5}, we let ri = |wL

i | + |wR
i | and define the

windows σi as σi =
⋃i

j=1(w
L
j ∪ wR

j ). Finally, we let κi := |σi| and observe that
κi =

∑i
j=1 rj . The middle window is chosen among the four candidates σ2, σ3,

σ4, and σ5. Motivated by the desired approximation guarantee, let α := 501
1000 .

For i ∈ {2, 3, 4} we say that the window σi is valid if ri ≤ 1−α
α κi−1. If one of

σ2, σ3 or σ4 is valid, we choose it as the middle window (if more than one of is
valid, any one of them can be chosen). If on the other hand none of these three
windows is valid, we choose σ5 as the middle window.

2.4 The Border Splitting Procedure

The border splitting procedure is applied if there is a window W of size 9 on
the left or on the right border of the instance with no marked intervals in it
(which means that all jobs whose core is inside W have been scheduled by the
adaptive greedy). We only describe the border splitting procedure for W on the
right border of the instance, since the case where W lies on the left border of
the instance is symmetric.

Let x be the left border of W . We define four windows w1, w2, w3, and w4

as follows (cf. Fig. 1). Window w1 has size 3 and ranges from x+6 to x+9. The
remaining windows have size 2. The window w2 ranges from x + 4 to x + 6, w3

from x + 2 to x + 4, and w4 from x to x + 2. For i ∈ {1, 2, 3, 4} we let ri = |wi|,

x+20x+18x+16x+14x+12x+10x+8x+6x+4x+2x

wR
1 wR

2 wR
3 wR

4 wR
5wL

1wL
2wL

3wL
4wL

5

σ1

σ5

x+9x+6x+4x+2x

w1w2w3w4

σ1

σ5

Fig. 1. Finding a middle window for the middle splitting procedure (up) and for the
border splitting procedure (down). For brevity, only σ1 and σ5 are depicted.
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i.e., ri is the number of cores in the window wi. For i ∈ {1, 2, 3, 4}, we define the
windows σi as σi =

⋃i
j=1 wj . Finally, let κi := |σi|. Like in the middle splitting

procedure, the border splitting procedure has to choose an appropriate border
window among the three candidates σ2, σ3, and σ4. Again, we use the constant
α = 501

1000 . For i ∈ {2, 3} we say that the window σi is valid if ri ≤ 1−α
α κi−1. If

one of σ2 or σ3 is valid, we choose it as the border window (if more than one of
is valid, any one of them can be chosen). Otherwise we choose σ4 as the border
window.

The border window naturally splits the instance into the left subinstance
and the middle subinstance. Restricting SAG to jobs with chore inside the bor-
der window gives a solution for the middle instance (scheduling all jobs), and
we obtain a solution for the left subinstance by recursively calling SplitAnd-
Merge. Afterwards, the algorithm merges the two solutions by discarding inter-
vals of the solution for the middle instance that conflict with the solution for the
left subinstance.

3 Analysis

We show that the approximation ratio of SplitAndMerge is at least 501
1000

using an induction on the size of the input instances. The base of the induc-
tion consists of instances with at most m intervals which are solved exactly by
SplitAndMerge. SplitAndMerge recursively calls different procedures. In
the following subsections we analyze each of the procedures.

3.1 Analysis of the Sparse Interior/Border Procedures

Both the sparse interior procedure and the sparse border procedure divide the
instance into a “left”, “middle”, and “right” subinstances (where the left or
the right subinstances may be empty), solve the left and the right subinstances
recursively, combine the obtained solutions without any conflicts, and addition-
ally schedules all jobs of the middle instance. By induction hypothesis, each of
the solutions of the smaller parts achieves a ratio of 501

1000 over the optimum on
the corresponding part. Therefore, the combined solution achieves at least the
same ratio.

3.2 Analysis of the Splitting Procedures

We only analyze the middle splitting procedure; the analysis of the border split-
ting procedure is analogous. We distinguish two cases. Either one of the windows
σ2, σ3 or σ4 is valid, or none of them is valid and σ5 is chosen as the middle
window.

Case 1. Let σk, k ∈ {2, 3, 4} be the chosen (valid) window. The chosen win-
dow induces a left, a middle, and a right subinstance. We show that the algo-
rithm approximates all three subinstances with approximation ratio 501

1000 and
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these three solutions can be merged without any conflict, which implies that the
merged solution is also a 501

1000 -approximation.
The left and the right subinstances are approximated with ratio 501

1000 by
inductive hypothesis. We now analyze the approximation ratio of the solution for
the middle subinstance. Since window σk is valid, we know that rk ≤ 1−α

α κk−1,
which we can rewrite as α ≤ κk−1

rk+κk−1
. Recall that the optimum of the middle

subinstance is rk + κk−1. Also, since the intervals inside of σk−1 do not conflict
with jobs of the left or right subinstance (because their cores are more than two
units away), there are at least κk−1 intervals from the solution of the middle
subinstance which are not discarded when merging the subinstances. Therefore,
the middle subinstance is approximated with ratio at least α = 501

1000 .

Case 2. Consider the case where none of the three candidate middle windows
is valid. First we show that this implies κ4 > 5m as follows. The fact that every
window of size 6 contains more than m cores implies that |wL

2 |+ |wL
1 |+ |wR

1 | > m
and that |wL

1 | + |wR
1 | + |wR

2 | > m. Adding these two inequalities we conclude
that 2r1 + r2 > 2m. Furthermore, since the window σ2 is not valid, we have that
r2 > 1−α

α κ1 = 1−α
α r1. The last two inequalities can be combined and solved for

r1+r2 (multiply the second with α and add it to the first) to obtain κ2 = r1+r2 >
2

1+αm. Since σ3 and σ4 are also not valid, we obtain κ4 = (r4 + κ3) > ( 1−α
α κ3 +

κ3) = (1−α
α +1)(r3 +κ2) > ( 1−α

α +1)2κ2 > ( 1−α
α +1)2 2

1+αm = 2
(α+1)α2 m > 5m.

Now, to bound the number of jobs with cores in σ5 that “survive” the merging
with left and right subinstance solutions, we make two observations. First, notice
that on each machine at most four intervals of the middle instance conflict with
the left or the right solution (two per merging side). Second, since none of the
jobs with cores in σ4 conflicts with the left or the right solution, all these κ4

jobs are scheduled in the combined solution. Therefore, the combined solution
contains at least max(r5 − 4m, 0) + κ4 jobs with cores in σ5

Since the optimum for the middle subinstance is r5 + κ4, we obtain that the
approximation ratio for the middle subinstance is at least max(r5−4m,0)+κ4

r5+κ4
. To

show that this ratio is greater than 501
1000 we distinguish two cases. If r5 ≤ 4m

then r5 ≤ 4
55m ≤ 4

5κ4, and we obtain that the approximation ratio of the
middle subinstance is at least κ4

r5+κ4
≥ κ4

4
5κ4+κ4

= 5
9 > 501

1000 . If r5 ≥ 4m, then the

approximation ratio is at least r5−4m+κ4
r5+κ4

= 1 − 4m
r5+κ4

≥ 1 − 4m
4m+5m = 5

9 > 501
1000 .

3.3 Analysis when no Splitting is Necessary

We consider an instance which has been processed by adaptive greedy and which
contains at least one marked core (that is, a core of a job that has not been
scheduled). We start with the following observations.

Lemma 2. If there is a marked core at x ∈ R, then on every machine adaptive
greedy has selected an interval completely contained in the window from x− 2 to
x + 1.
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Proof. Consider a fixed machine M . At some point during adaptive greedy, a run
of single-machine greedy is performed on M . Furthermore, consider an unsched-
uled job J with its core at x. On machine M , the interval I of J lies completely
between x−1 and x+1. Since I has not been selected by single-machine greedy,
it means that an interval I ′ has been selected instead. This interval I ′ has its
right endpoint in the interior of I. Hence I ′ has to lie completely between x − 2
and x + 1. ��
Lemma 3. If there are k marked cores such that the distance between any two
of those cores is strictly greater than 2, then on each machine at least k intervals
are selected.

Proof. From Lemma 2 we know that for each unmarked core at x, an interval
completely inside the window from x − 2 to x + 1 is selected. Now consider two
cores, at x1 and at x2 > x1 +2. Since the overlap of the windows (x1 −2, x1 +1)
and (x2 − 2, x2 + 1) is less then one unit, the intervals selected for the marked
cores x1 and x2 must be distinct. ��

Thus, if there are many marked cores far away from each other, then the
adaptive greedy scheduled many jobs. We define the width of an instance as the
distance between the leftmost and the rightmost core.

Lemma 4. If all windows of size 20 in the interior of the instance and both
windows of width 9 at the borders of the instance contain at least one marked
core, then adaptive greedy selected on each machine at least ω+2

22 intervals, where
ω is the width of the instance.

Proof. Along with the proof, see the illustration in Fig. 2. Let x1 < x2 < · · · <
xk, k ∈ N be the positions of the marked cores (there may be multiple cores in
each of these positions). For i ∈ {1, 2, . . . } let wi be the window from x1+22(i−1)
to x1+22i. We divide every window wi into a left part consisting of all the points
to the left or on x1 + 22(i − 1) + 2, and into a right part consisting of all the
points strictly to the right of x1 + 22(i − 1) + 2. Let q be the smallest positive
integer number such that xk is in wq. Since each window of size 20 in the interior
contains at least one marked core, there must be a marked core in the right part
of every window wj . We now show that there are at least ω+2

22 marked cores with
distance at least 2 from each other, which together with Lemma 3 concludes the
proof. We distinguish two cases: either xk lies in the left part of wq, or it lies in
the right part of wq.

We first consider the case where xk lies in the left part of wq. We know that
there is a marked core at x1. Furthermore we know that there is at least one
marked core in the right part of each of the windows w1, . . . , wq−1. Hence in total
there are at least q marked cores with distance at least 2 from each other. By
definition of q and since xk lies in the left part of wq, we know that the distance
from x1 to xk is at most 22(q − 1) + 2). The leftmost core is at most 9 units
to the left of x1, and the rightmost core is at most 9 units to the right of xk.
Therefore the width of the instance is bounded by ω ≤ 9 + 22(q − 1) + 2 + 9,
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Width ω of the instance

≤9 ≤9

x1 x2 . . . xk

w1 w2 wq

. . .

22 22 22

Fig. 2. The vertical lines represent cores of jobs. The bold lines represent marked cores
of jobs.

from which it follows that ω +2 ≤ 22q. Therefore in this case the inequality that
we want to show holds.

Next, we consider the case where xk lies in the right part of wq. We know
that there is a marked core at x1, and that there is at least one marked core
in the right part of each of the windows w1, . . . , wq. Hence in total we have at
least q + 1 marked cores with distance at least 2 from each other. By definition
of q we know that the distance from x1 to xk is at most 22q. Accounting for the
space of at most 9 on the left and on the right yields a bound on the width of
the instance of ω ≤ 22q +18. It follows that ω +2 ≤ 22(q +1). We conclude that
also in this case the inequality that we want to show holds. ��

Let s be the size of an optimum solution. It is easy to see that the width of
the instance is at least s

m − 2. Therefore we know from Lemma 4 that on each
machine at least 1

22
s
m intervals are selected.

We now apply Lemma 1 for a carefully chosen number of iterations q of
the adaptive greedy. For this purpose let μ be the smallest nonnegative num-
ber such that (2122 + μ)m is a natural number. Note that μ < 1

m . Now, from
Lemma 1 we know that in the first (2122 + μ)m iterations of adaptive greedy, at
least

(
(2122 + μ) − 1

2 ( 2122 + μ)2
)
s =

(
483
968 + 1

22μ − 1
2μ2

)
s intervals are selected.

Since on each machine at least s
22m intervals are selected, it follows that

during the last m − (
21
22 + μ

)
m iterations of adaptive greedy, at least 1

22
s
m (m −

(2122 + μ)m) = s
(

2
968 − 1

22μ
)

intervals are selected.
We sum these two quantities and obtain that in total at least s

(
485
968 − 1

2μ2
)

intervals are selected. Since μ ≤ 1
m , for large m this converges towards 485

968s. In
particular, for m ≥ 150 we obtain an approximation ratio of at least 501

1000 . It can
be shown that for m < 150 the algorithm also achieves approximation ratio of
501
1000 . For simplicity, let us omit this here. For the sake of seeing that there is a
501
1000 -approximation algorithm, one can modify the presented algorithm in that
it runs the exact (optimum) algorithm from the literature for every m < 150,
and runs SplitAndMerge for m ≥ 150.
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Abstract. In the second category of the Ecuadorian football league, a
set of football teams must be grouped into k geographical zones accord-
ing to some regulations, where the total distance of the road trips that
all teams must travel to play a Double Round Robin Tournament in each
zone is minimized. This problem can be modeled as a k-clique partition-
ing problem with constraints on the sizes and weights of the cliques. An
integer programming formulation and a heuristic approach were devel-
oped to provide a solution to the problem which has been implemented
in the 2015 edition of the aforementioned football championship.

Keywords: Integer programming models · Graph partitioning ·
Heuristics · Football

1 Introduction

The regulations of the Ecuadorian football federation (FEF) stipulate that the
second category of the Ecuadorian professional football league be conformed
by the best two teams from each provincial football association that have their
venues in the capital city or in nearby cities in the province. For the design of
the first stage of the championship in this category, called the zonal stage, the
provinces are grouped into 4 geographical zones. For example, during the 2014
edition of this league, 21 provincial associations participated (42 teams total),
and there were three zones with 10 teams and one zone with 12. The teams of
each zone are divided into two subgroups with the same cardinality. The division
into subgroups is made at random, satisfying the constraints that two teams of
the same provincial association do not belong to the same subgroup, and every
subgroup must have the same number of best and second-best teams whenever
possible. The teams of every subgroup play a Double Round Robin Tournament,
i.e., 8 tournaments of this type. Finally, the best teams of each subgroup and
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the four second-best teams with the highest scores advance to the next stage
of the second category league, called the national stage, which is the prelude to
the final stage of this championship. The FEF managers asked themselves, and
the authors of this work, whether the design of the geographical zones for the
zonal stage of this championship was optimal or not. This question resulted in
an interesting mathematical problem, which is addressed in this work.

In the context of this problem and according to FEF regulations, the distance
between two provinces is defined as the road trip distance between its capital
cities. Thus, the problem proposed by the FEF managers consists in grouping the
provinces into k zones such that the number of provinces in each zone differs at
most by one, there exists a certain homogeneity of football performance among
the teams in each class of the partition, and the total geographical distance
between the provinces in each zone is minimized.

From the practical application point of view, and in the most general form,
this problem is known in the literature as sports team realignment : professional
sport teams are grouped in divisions in which a tournament is played to classify
one or more teams to another stage in a sports league. Divisions are usually based
on geography in order to minimize travel costs. The number of teams in each
division needs to be similar to ensure that each team has equal opportunity to
become the champion of the division, and therefore, to qualify for another stage
in the sport championship. Peculiarly, in the Ecuadorian football realignments,
the divisions are composed of provinces instead of teams, which could also be
viewed as a territory design problem. This generated a suggestion to FEF of a
new form of realignment, according to what is done in other leagues in the region
and internationally, which will be explained later.

The sports team realignment problem has been modeled in different ways
and for different leagues. A quadratic binary programming model is set up to
divide 30 teams, of the National Football League (NFL) in the United States,
into 6 compact divisions of 5 teams each [11]. The results, obtained directly from
a nonlinear programming solver, are considerably less expensive for the teams
in terms of total intradivisional travel, in comparison with the realignment of
the 1995 edition of this league. On the other hand, McDonald and Pulleyblank
[6] propose a geometric method to construct realignments for several sports
leagues in the United States: NHL, MLB, NFL and NBA. The authors claim that
with their approach they always find the optimal solution. To prove this, they
solve mixed integer programming problems corresponding to practical instances,
using CPLEX.

When it is possible to divide the teams into divisions of equal size, the sports
team realignment problem can be modeled as a k-way equipartition problem:
given an undirected graph with n nodes and edge costs, the problem is to find
a k-partition of the set of vertices, each of the same size, such that the total
cost of edges which have both endpoints in one of the subsets of the partition is
minimized. Mitchell [7] solved the realignment of the NFL optimally for 32 teams
and 8 divisions; the problem is modeled as a k-way equipartition problem, and is
solved using a branch-and-cut algorithm; the author shows that the 2002 edition
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of the NFL could have reduced the sum of intradivisional travel distances by
45%. Later, the same problem was solved using a branch-and-price method [8].

When n mod k �= 0, the sports team realignment problem is modeled as a
Clique Partitioning Problem (CPP) with minimum clique size constraints [9],
where the size of the subsets (clusters) satisfies a lower bound of �n/k� and the
problem is solved with a branch-and-price-and-cut method. Since they consider
an undirected complete graph, all the clusters are also cliques and that is why
they refer to the problem as a clique partitioning problem.

The CPP has been extensively studied in the literature. This graph optimiza-
tion problem was introduced by Grötschel and Wakabayashi [1] to formulate a
clustering problem. They studied this problem from a polyhedral point of view
and the theoretical results are used in a cutting plane algorithm that includes
heuristic separation routines for some classes of facets. Jaehn and Pesch [2] pro-
pose a branch-and-bound algorithm where tighter bounds for each node in the
search tree are reported. Ferreira et al. [3] analyze the problem of partitioning
a graph satisfying capacity constraints on the sum of the node weights in each
subset of the partition. Additionally, constraints on the size of subcliques are
introduced for the CPP and the structure of the resulting polytope is studied [5].

This project is part of a cooperation agreement between the Department
of Mathematics of Escuela Politécnica Nacional and the football association of
Pichincha province (AFNA) in Ecuador. This agreement was based on a previous
successful project for scheduling the first division of the professional Ecuadorian
football league [10].

In Sect. 2 of this paper, an integer programming formulation for the balanced
k-clique partitioning problem is proposed as a base model to solve the practical
application in the second category of the Ecuadorian football league. A heuristic
algorithm to find feasible solutions for practical instances is shown in Sect. 3.
Practical and computational experience based on real-world data is reported in
Sect. 4, and the paper ends in Sect. 5 with some concluding remarks.

2 Balanced k-Clique Partitioning Problem with Weight
Constraints

By associating provincial capitals with the nodes of a graph, the distance between
provinces with costs on the edges, and a measure of football performance of the
teams of each province with weights on the nodes, the realignment problem in
the second category of the Ecuadorian football league problem can be modeled as
a k-Clique Partitioning Problem with constraints on the size (number of nodes
in each subset differs at most in one) and weight of the cliques (total sum of
node weights in the clique). From now on, we refer to this problem as a balanced
k-clique partitioning problem with weight constraints (BWk-CPP ).

Let G = (V,E) be an undirected complete graph with node set V =
{1, . . . , n}, edge set E = {{i, j} : i, j ∈ V, i �= j}, cost on the edges d : E −→ R

+

with dij = dji, weights on nodes w : V −→ R
+ and a fixed number k,

with n ≥ k ≥ 2. A k-clique partition of G is a collection of k subgraphs
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(V1, E(V1)), . . . , (Vk, E(Vk)) of G, where Vi �= ∅, for all i = 1, . . . , k, Vi ∩ Vj = ∅,
for all i �= j, ∪k

i=1Vi = V , and E(Vi) is the set of edges with end nodes in Vi.
Moreover, let WL,WU ∈ R

+, WL ≤ WU , be the lower and upper bounds, respec-
tively, for the weight of each clique. The weight of a clique is the total sum of
the node weights in the clique. Then, the balanced k-clique partitioning prob-
lem with weight constraints (BWk-CPP ) consists of finding a k-clique partition
such that

WL ≤
∑

j∈Vc

wj ≤ WU , ∀c = 1, . . . , k, (1)

||Vi| − |Vj || ≤ 1, ∀i, j ∈ {1, 2, . . . , k}, i < j, (2)

and the total edge cost over all cliques is minimized.
Notably, to the extent of our knowledge, balanced k-clique partitioning

problems with weight constraints have not been reported in the literature. In
fact, some of these problems can be obtained from BWk-CPP by fixing para-
meters adequately. For instance, if weight constraints (1) are suppressed, the
balanced k-clique partitioning problem appears. Similarly, if (1) is removed and
n mod k = 0, i.e., the size of the cliques coincides with n/k, the problem becomes
the so-called k-way equipartition problem. Moreover, when k = 2 is fixed, n is
even and (1) is taken away, the equicut problem arises. It is known that all these
problems are NP-hard. Even, if we restrict ourselves to k = 3, WL = WU = 0
and weights wi = 0 for all i ∈ V , the decision problem associated to our problem
BWk-CPP is NP-complete.

Proposition 1. Let G = (V,E) be a complete graph, cost on the edges d : E −→
R

+ and a value t ∈ R
+. Deciding if G has a 3-clique partition satisfying (2) with

total edge cost at most t is NP-complete.

Proof. We give a polynomial transformation from the 3-EQUITABLE COL-
ORING PROBLEM which is NP-complete [4], and consists of deciding if an
undirected graph G = (V,E) has a partition of V into stable sets V1, V2, V3 of G
satisfying (2).

For a given graph G = (V,E), consider the following instance of the deci-
sion problem: a complete graph G′ = (V,E′), costs dij = 1 for all {i, j} ∈ E
and dij = 0 for all {i, j} ∈ E′\E, and t = 0. Clearly, there exists a 3-clique
partition of G′ with total edge cost zero if and only if V1, V2, V3 are stable sets
satisfying (2). �

The last result gives us a remote possibility of finding a polynomial time
algorithm to solve the BWk-CPP problem to optimality. It is also known that
approaches based on Integer Linear Programming have proven to be one of
the best tools to solve these kind of hard problems. An integer programming
formulation is provided below.

If n mod k �= 0, a set A of zero-weight dummy nodes of cardinality k−(n mod k)
are included to the set V , i.e., V := V ∪A. Consequently, zero-cost dummy edges
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are included to the set E, i.e., E := E ∪ {{i, j} : i ∈ A, j ∈ V, i �= j}. Observe
that the inclusion of the set of vertices A to the set V implies that n mod k = 0.

Let xc
i be the variable that takes the value 1 if the node i ∈ V belongs to

clique c, for all c = 1, . . . , k, and 0 otherwise. Moreover, xc
ij = 1 indicates that

the edge {i, j} ∈ E is assigned to clique c, for all c = 1, . . . , k, and xc
ij = 0

otherwise. Then, the BWk-CPP can be formulated as:

min
k∑

c=1

∑

{i,j}∈E

dijx
c
ij (3)

∑

i∈V

xc
i =

n

k
, ∀c = 1, 2, . . . , k (4)

k∑

c=1

xc
i = 1, ∀i ∈ V (5)

∑

i∈A

xc
i ≤ 1, ∀c = 1, 2, . . . , k (6)

WL ≤
∑

i∈V

wix
c
i ≤ WU , ∀ c = 1, . . . , k (7)

∑

j∈δ(i)

xc
ij =

(n

k
− 1

)
xc

i , ∀i ∈ V, c = 1, 2, . . . , k (8)

xc
i , x

c
ij ∈ {0, 1}, ∀i ∈ V, c = 1, 2, . . . , k, and {i, j} ∈ E, (9)

where δ(i) is the set of incident edges to node i ∈ V .
The objective function (3) seeks to minimize the total edge cost of the cliques;

constraints (4) build cliques of equal size; constraints (5) ensure that each node
belongs to exactly one clique; constraints (6) guarantee that there is at most one
dummy node in each clique; constraints (7) impose the weight requirement on
each clique; constraints (8) establish that if a node belongs to a subgraph, then
it is connected with the other n/k − 1 nodes in the subgraph, i.e., it is a clique.
Observe that (8) can be obtained as linear combinations of the classical forcing
constraints xc

ij ≥ xc
i + xc

j − 1.
The formulation provided above has exactly k(n + 3) + n constraints and

kn(n + 1)/2 variables. For small size instances (n ≤ 22; k = 4), the last formu-
lation was solved to optimality using the Gurobi solver, in order to provide a
solution for the realignment problem in the Ecuadorian Football League. How-
ever, a heuristic approach was also explored in order to obtain feasible solutions
for practical instances in which the Gurobi solver failed to return an optimal
solution quickly.

3 Heuristic Approach

In this section a heuristic approach to solve the problem addressed in this paper is
explained. Although it is not intended to compare the performance of this heuris-
tic with state-of-the-art heuristics for Graph Partitioning Problems, it behaves
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reasonably fast and meets our needs and expectations. It is based on the decom-
position of BWk-CPP in two sub-problems that are much easier to solve. The first
sub-problem consists of finding a set of k initial nodes that are the “seeds” of the
subsets in the partition. Then, the k subsets are constructed by solving the second
sub-problem, where the remaining nodes are assigned to the subsets adequately,
so that they become a clique and satisfy the size and weight constraints. Each iter-
ation of the heuristic consists of solving the two sub-problems one after the other,
where the first sub-problem provides a different set of seed nodes. The process is
repeated a fixed number of iterations and the best solution is stored.

3.1 Seed Nodes Location Phase

For the choice of seed nodes, two variants have been tested:

Variant 1: Select k nodes randomly, where the probability of choosing a node
i ∈ V is directly proportional to its weight wi. As in the practical application,
the weight of a node corresponds to a measure of football performance of a
team, it is more likely that a strong team be chosen as the seed of a group,
which is desirable from the practical point of view.

Variant 2: Perform an iterative location procedure sketched in Algorithm 1,
where S is the set of seed nodes.

Algorithm 1. Seed location, variant 2.
S = ∅
p = 1
Choose one node j ∈ V randomly using the variant 1.
Assign node j as the seed of subset Vp and set S = {j}.
for p = 2, . . . , k do

Find the farthest node j to the seed nodes in the subsets V1, . . . , Vp−1 by comput-
ing:

j = arg max
i∈V \S

∑

s∈S
dsi

and set node j as the seed node of Vp.
S = S ∪ {j}

end for

The second variant chooses, as a seed node, the “farthest node” from the set
of seed nodes chosen in a previous iteration. In the context of the application,
it makes sense that the seed teams be located in a disperse fashion, ensuring
that they will never play together. Recall that a separate tournament is played
in each subset of teams (zone).

3.2 Allocation-Completion Phase

After the seed location stage has been performed, and every subset Vl, l = 1, . . . , k
has a seed node, the remaining n − k nodes must be allocated to the sets Vl to
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conform k cliques that satisfy size and weight requirements and with minimum
total cost. In order to find the solution to this problem, the clique condition over
the subsets is relaxed and the following model is solved: let S be the set of seed
nodes determined in the last phase; let xc

i be a variable that is equal to 1 if the
remaining node i ∈ V \ S is assigned to the subset with seed node c, and 0 other-
wise. Then, the allocation model can be formulated as:

min
∑

i∈V \S

∑

c∈S
dicx

c
i (10)

s.t.
∑

c∈S
xc

i = 1, ∀ i ∈ V \ S, (11)

∑

i∈A

xc
i ≤ 1, ∀c ∈ S (12)

∑

i∈V \S
xc

i =
n

k
− 1, ∀ c ∈ S, (13)

WL ≤ wc +
∑

i∈V \S
wix

c
i ≤ WU , ∀ c ∈ S, (14)

xc
i ∈ {0, 1}, ∀ i ∈ V \ S, c ∈ S (15)

The expression (10) aims to minimize the total edge cost between nodes and
seed nodes. Constraints (11) ensure that all the remaining nodes in V \ C are
assigned to exactly one subset; constraints (12) guarantee again that there is
at most one dummy node in each clique; constraints (13) impose the number
of nodes on each subset (every subset already has the seed node). Finally, con-
straints (14) guarantee weight requirements. This model has n + 2k constraints
and (n − k)k variables, which are far fewer constraints and variables than the
original model.

After obtaining a node partition P = {V1, . . . , Vk} of V , by solving the seed
location and allocation phases sequentially, we can easily construct a feasible
clique partition for the BWk-CPP by completing the remaining edges {i, j}
(completion step), where i, j ∈ Vl \ {s}, for all l = 1, . . . , k and i, j are not
seed nodes. This phase is completed by computing the balanced k-clique parti-
tioning cost z(P) induced by P as z(P) =

∑k
l=1

∑
i,j∈Vl
i<j

dij .

Finally, the location and allocation-completion phases are integrated in the
following routine: a complete graph with weights on the nodes and costs on the
edges, a fixed number of iterations N > 0, and the number of cliques k ≥ 2 in
which the graph must be partitioned are given as inputs. In the main loop, seed
location and allocation-completion phases are performed in cascade a fixed num-
ber of iterations. At the end, the feasible balanced k−clique partition induced
by a partition P∗ with minimum value z(P∗) is returned. Figure 1 depicts how
the allocation-completion phase works.
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Allocation Completion

v1

v2

v3

v4

v5
v6

v7

v1

v2

v3

v4

v5
v6

v7

Fig. 1. Given a complete graph with seven nodes and k = 2, the allocation-completion
phase is performed where S = {v1, v6} is the set of seed nodes.

3.3 Local Search

After a feasible solution of the BWk-CPP is found by using the heuristic method
explained before, a local search algorithm is performed with the hope to find
a partition of less total cost. Given a balanced k-clique partition induced by
P = {V1, . . . , Vk}, a feasible solution reachable from P is made up by exchanging
the seed node s ∈ Vl with a neighbor node j ∈ Vl, for every l = 1, . . . , k, one
exchange on each iteration. Note that this procedure returns a different set of
seed nodes S ′. Using this new set of seed nodes, the allocation-completion phase
is performed to obtain a new partition P ′ = {V ′

1 , . . . , V
′
k}. If the total cost z(P ′)

is smaller than z(P), then the current best solution is updated to the clique
partition induced by P ′. The procedure stops when all possible changes have
been done in every subset Vl, l = 1, . . . , k.

4 Practical Experience and Computational Results

For the 2014 edition of the second category of the Ecuadorian professional foot-
ball league, the realignment of provinces in the first stage (zonal stage) was
made using an empirical method. This empirical solution is presented in Fig. 2,
where the zones, the provinces in each zone, and the total distance of road trips
are depicted. The value shown in the figure is the distance traveled by all the
teams to play a Double Round Robin Tournament in each zone. This value is
computed by multiplying the total cost of the clique induced by every subgroup
by four, and adding these quantities for all the cliques. The latter is due to the
fact that in a Round Robin Tournament, every pair of teams play once at a
home venue (home game) and once visiting the other team (away game). Thus,
for every edge {i, j} associated with teams with venues in the cities (nodes) i
and j, respectively, in an away game every team travels twice the distance dij

between the capital cities: once to go the game, and once to get back home.
On the other hand, the optimal solution for the 2014 edition of the cham-

pionship, which was provided by the mathematical programming approach, is
depicted in Fig. 3. The node weights were computed considering historical perfor-
mance of the teams, in a very similar way to the approach of the South American
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Fig. 2. Empirical solution, 2014 edition.
Total road trip distance: 39830.4 km.

Fig. 3. Optimal solution, 2014 edition.
Total road trip distance: 38298 km.

Football Confederation for ranking teams. The bounds on the node weights were
fixed to WL = μ(n/k) − σ and WU = μ(n/k) + σ, where μ and σ are the mean
and standard deviation of the node weights, respectively.

The optimal solution showed that the first stage of the second category foot-
ball championship could have reduced the total road trip distance by 1532.4 km,
which represents a difference of 4% with respect to the empirical solution. It is
important to remark that the evaluation of the empirical versus the mathemat-
ical programming method is made assuming that only one double Round Robin
Tournament is played in each zone. The latter is because the realignment in the
Ecuadorian football league considers provinces instead of teams, as it was stated
in the introduction of this article. Even though the reduction in travel distance
was small, FEF managers were pleased to know that it was possible to improve
the realignment. This allowed this mathematical method to be implemented in
practice for the 2015 edition of the championship.

Once the problem was mathematically modeled and solved, AFNA managers
suggested the inclusion of additional constraints for the realignment of the 2015
edition of the championship, which are detailed as follows.

4.1 Historically Strong and Weak Teams

The teams representing the provinces of Guayas, Manab́ı and Pichincha are
considered to be the strongest teams because of the good results obtained during
the last editions of the championship. Thus, for the 2015 edition it was required
that these provinces belong to different zones in the realignment. This task was
done by fixing adequately the variables corresponding to these teams.

On the other hand, the five teams representing the provinces of the Amazon
region of Ecuador have obtained poor results in previous editions of the tourna-
ment. Therefore, in this case the requirement was that at most three Amazon
provinces belong to the same zone:

∑
i∈Amazon xc

i ≤ 3, for all c = 1, . . . , k.
Taking into account these restrictions, which were added to the model (3)–(9)

and to the heuristic algorithm, the optimal realignment for the 2015 edition of
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Zone 1

1 Pichincha
2 Imbabura
3 Carchi
4 Orellana
5 Sucumb́ıos
6 Napo

Zone 2

1 Cotopaxi
2 Tungurahua
3 Chimborazo
4 Boĺıvar
5 Pastaza
6 Morona Santiago

Zone 3

1 Manab́ı
2 Esmeraldas
3 Santo Domingo
4 Los Ŕıos
5 Santa Elena

Zone 4

1 Guayas
2 Azuay
3 Loja
4 rañaC
5 El Oro

Fig. 4. 2015 edition: optimal realignment. Total road trip distance: 45354 km.

the championship was computed. The proposal of optimal realignment, includ-
ing this solution, was presented under the auspices of AFNA to the FEF; this
solution, which was used in practice, appears in Fig. 4.

4.2 A Proposal to Change the Design of the Zonal Stage

As it was stated in the introduction of this work, in the zonal stage, the teams in
each zone are divided into two subgroups, where a Double Round Robin Tour-
nament is played in each one of them. A question immediately arises: why not
make the realignment in order to obtain the subgroups directly? Unfortunately,
this change in the realignment method requires a change in the regulations of the
FEF that has not been implemented yet. Nevertheless, we wanted to show the
realignment of teams for the 2015 edition of the championship and to compare
its benefits against the realignment of provinces. In this case, the nodes in the
graph correspond to the exact position of the venues of the teams, instead of
assuming that the venue is the capital of the province. Notice that now we have
the usual realignment problem reported in the literature.

For the 2015 edition of the football league, the total road trip distance of all
the teams during the zonal stage, considering every subgroup in each zone (8
subgroups, 44 teams in total), was 94736 km. The optimal solution, under this
proposal, reported a total road trip of 86192 km. In conclusion, if this new pro-
posal had been implemented, the second category football championship could
have reduced the total road trip distance by 8544 km, which represents a dif-
ference of approximately 9%. This reduction is significant if we consider that
Ecuador has only a total area of 283 561 km2.

A proposal including the team realignment explained in this subsection was
presented to FEF managers in mid-2015. As of the submission of this paper,
the FEF regulations have not yet been reformed to put this new realignment
methodology into practice.
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4.3 Computational Results

The performance of the Gurobi solver and the heuristics are shown in Table 1.
Three instances are presented: the 2014 edition, the 2015-proposal related to the
new design of the zonal stage explained in Sect. 4.2, and the 2015 edition which was
put into practice. The data corresponding to these instances is accessible at [12].

The integer programming formulation, and the heuristic method were imple-
mented in the C++ programming language on a Core i7 PC with 8 GB RAM
running Ubuntu 12.04 LTS and using GUROBI v6.5.0 as an IP solver. The run-
ning time in any case was limited to 14400 s and the number of iterations of
the heuristic algorithm was set to at most 5000 iterations because beyond this
number of iterations, no improvement was observed.

Table 1. Computational results

Heuristic approach

Gurobi solver Variant 1 Variant 2

Instance n k cost t (s) Gap (%) # iterations cost t (s) cost t (sec)

2014 21 4 38298 11.3 0 500 38298 3.9 38298 2.1

2015-proposal 44 8 86192 14400 12.6 5000 87296 177.4 87903.0 54.5

2015 22 4 45354 13.2 0 1000 45354 7.8 45354 1.5

5 Concluding Remarks

The realignments obtained by the optimization method were presented to the
AFNA managers, who were pleased by the reduction of the total distance trav-
elled by the teams. They emphasized the potential of mathematical tools, as
opposed to the empirical process, in which political and subjective issues may
affect the ultimate decision. Under the auspices of AFNA, the solution was pre-
sented to the managers of FEF to be considered for the design of leagues in the
future. In fact, this methodology was used for designing the 2015 edition of the
zonal league.

Acknowledgments. We thank Patricio Torres, authority of the team Liga Deportiva
Universitaria, and Galo Barreto, former manager of AFNA, for their support to this
project. This research was partially supported by the PACK-COVER MATH-AmSud
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Abstract. In discrete optimization, representing an objective function
as an s-t cut function of a network is a basic technique to design an
efficient minimization algorithm. A network representable function can
be minimized by computing a minimum s-t cut of a directed network,
which is a very easy and fastly solved problem. Hence it is natural to ask
what functions are network representable. In the case of pseudo Boolean
functions (functions on {0, 1}n), it is known that any submodular func-
tion on {0, 1}3 is network representable. Živný-Cohen-Jeavons showed by
using the theory of expressive power that a certain submodular function
on {0, 1}4 is not network representable.

In this paper, we introduce a general framework for the network rep-
resentability of functions on Dn, where D is an arbitrary finite set. We
completely characterize network representable functions on {0, 1}n in our
new definition. We can apply the expressive power theory to the network
representability in the proposed definition. We prove that some ternary
bisubmodular function and some binary k-submodular function are not
network representable.

Keywords: Network representability · Valued constraint satisfaction
problem · Expressive power · k-submodular function

1 Introduction

The minimum s-t cut problem is one of the most fundamental and efficiently
solved problems in discrete optimization. Thus, representing a given objective
function by the s-t cut function of some network leads to an efficient minimization
algorithm. This idea goes back to a classical paper by Ivănescu [10] in 60’s,
and revived in the context of computer vision in the late 80’s. Efficient image
denoising and other segmentation algorithms are designed by representing the
energy functions as s-t cut functions. Such a technique (Graph Cut) is now
popular in computer vision; see [5,14] and references therein. An s-t cut function
is a representative example of submodular functions. Mathematical modeling
c© Springer International Publishing Switzerland 2016
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and learning algorithms utilizing submodularity are now intensively studied in
machine learning community; see e.g. [1]. Hence efficient minimization algorithms
of submodular functions are of great importance, but it is practically impossible
to minimize very large submodular functions arising from machine learning by
using generic polynomial time submodular minimization algorithms such as [7,
11,15,17]. Thus, understanding efficiently minimizable subclasses of submodular
functions and developing effective uses of these subclasses for practical problems
have been being important issues.

What (submodular) functions are efficiently minimizable via a network rep-
resentation and minimum cut computation? Ivănescu [10] showed that all sub-
modular functions on {0, 1}2 are network representable, and Billionet-Minoux [2]
showed that the same holds for all submodular functions on {0, 1}3. Note that
it is meaningful to investigate network representability of functions having a
few variables, since they can be used as building blocks for large network repre-
sentations. Kolmogorov-Zabih [14] introduced a formal definition of the network
representability, and showed that network representable functions are necessarily
submodular. Are all submodular functions network representable? This question
was negatively solved by Živný-Cohen-Jeavons [19]. They showed that a certain
submodular function on {0, 1}4 is not network representable. In proving the
non-existence of a network representation, they utilized the theory of expressive
power developed in the context of valued constraint satisfaction problems.

In this paper, we initiate a network representation theory for functions on
Dn, where D is a general finite set beyond {0, 1}. Our primary motivation is
to give a theoretical basis for applying network flow methods to multilabel
assignments (e.g. Potts model) in practical area. Our main target as well as
our starting point is network representations of k-submodular functions [8] which
have recently been gained attention as a promising generalization of submodular
functions on {0, 1, 2, . . . , k}n [6,12]. Iwata-Wahlström-Yoshida [12] considered a
network representation of k-submodular functions for design of FPT algorithms.
Independently, Ishii [9] considered another representation, and showed that all 2-
submodular (bisubmodular) functions on {0,−1, 1}2 are network representable.
In this paper, by generalizing and abstracting their approaches, we present a uni-
fied framework for network representations of functions on Dn. Features of the
proposed framework as well as results of this paper are summarized as follows:

• In our network representation, to represent a function on Dn, each variable in
D is associated with several nodes. More specifically, three parameters (k, ρ, σ)
define one network representation. The previous network representations (by
Kolmogorov-Zabih, Ishii, and Iwata-Wahlström-Yoshida) can be viewed as our
representations for special parameters.

• We completely characterize network representable functions on {0, 1}n under
our new definition; they are network representable in the previous sense or they
are monotone (Theorems 7 and 8). The minimization problem of monotone
functions is trivial. This means that it is sufficient only to consider the original
network representability for functions on {0, 1}n.
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• An important feature of our framework is its compatibility with the expressive
power theory, which allows us to prove that a function cannot admit any
network representation.

• As application of above, we prove that some bisubmodular function on
{0,−1, 1}3 and some k-submodular function on {0, 1, 2, . . . , k}2 are not net-
work representable for a certain parameter (Theorems 9 and 10). This answers
negatively an open problem raised by [12].

The proofs of theorems had to be omitted due to space constraints. They
will be included in the full version of this paper.

Organization. In Sect. 2, we introduce a submodular function, an s-t cut func-
tion, and a k-submodular function. We also introduce the network representation
of submodular functions by Kolmogorov-Zabih [14]. Furthermore we explain con-
cepts of expressive power and weighted polymorphism, which play key roles in
proving the non-existence of a network representation. In Sect. 3, we explain the
previous network representations of k-submodular functions. Then we introduce
a framework for the network representability of functions on Dn, and discuss its
compatibility with the expressive power theory. We also present our results on
the network representability in our framework.

Notation. Let Q and Q+ denote the sets of rationals and nonnegative rationals,
respectively. In this paper, functions can take the infinite value +∞, where
a < +∞ and a + ∞ = +∞ for a ∈ Q. Let Q := Q ∪ {+∞}. For a function
f : Dn → Q, let dom f := {x ∈ Dn | f(x) < +∞}. For a positive integer k, let
[k] := {1, 2, . . . , k}, and [0, k] := [k] ∪ {0}. By a (directed) network (V,A; c), we
mean a directed graph (V,A) endowed with rational nonnegative edge capacity
c : A → Q+ ∪ {+∞}. A subset X ⊆ V is also regarded as a characteristic
function X : V → {0, 1} defined by X(i) = 1 for i ∈ X and X(i) = 0 for i �∈ X.
A function ρ : F → E with F ⊇ E is called a retraction if it satisfies ρ(a) = a
for a ∈ E. ρ : F → E is extended to ρ : Fn → En by defining (ρ(x))i := ρ(xi)
for x ∈ Fn and i ∈ [n].

2 Preliminaries

2.1 Submodularity

A submodular function is a function f on {0, 1}n satisfying the following inequal-
ities

f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y) (x, y ∈ {0, 1}n),

where binary operations ∧,∨ are defined by

(x ∧ y)i :=

{
1 if xi = yi = 1,

0 if xi = 0 or yi = 0,
(x ∨ y)i :=

{
1 if xi = 1 or yi = 1,

0 if xi = yi = 0,
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for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
The s-t cut function of a network G = (V ∪ {s, t}, A; c) is a function C on

2V defined by

C(X) :=
∑

(u,v)∈A, u∈X∪{s}, v �∈X∪{s}
c(u, v) (X ⊆ V ).

For X ⊆ V , we call X ∪ {s} an s-t cut. An s-t cut function is submodular. In
particular, an s-t cut function can be efficiently minimized by max-flow min-cut
algorithm. The current fastest one is O(|V ||A|) time algorithm by Orlin [16].

Let us introduce a class of functions on [0, k]n, which also plays key roles in
discrete optimization. A k-submodular function is a function f on [0, k]n satis-
fying the following inequalities

f(x) + f(y) ≥ f(x � y) + f(x  y) (x, y ∈ [0, k]n),

where binary operations �, are defined by

(x � y)i :=

{
xi if xi = yi,

0 if xi �= yi,
(x � y)i :=

⎧
⎪⎨

⎪⎩

yi (resp. xi) if xi = 0 (resp. yi = 0),

xi if xi = yi,

0 if 0 �= xi �= yi �= 0,

for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). A k-submodular function was
introduced by Huber-Kolmogorov [8] as an extension of submodular functions.
In k = 1, a k-submodular function is submodular, and in k = 2, a k-submodular
function is called bisubmodular, which domain is typically written as {0,−1, 1}n

(see [4]). It is not known whether a k-submodular function can be minimized in
polynomial time under oracle model for k ≥ 3. By contrast, it is known that a k-
submodular function can be minimized in polynomial time in valued constraint
satisfaction problem model for all k [13].

In the following, we denote the set of all submodular functions having at
most n variables as Γsub,n, and let Γsub :=

⋃
n Γsub,n. We also denote the set

of all bisubmodular functions (resp. k-submodular functions) having at most n
variables as Γbisub,n (resp. Γksub,n).

2.2 Network Representation over {0, 1}
A function f : {0, 1}n → Q is said to be network representable if there exist a
network G = (V,A; c) and a constant κ ∈ Q satisfying the following:

– V ⊇ {s, t, 1, 2, . . . , n}.
– For all x = (x1, x2, . . . , xn) ∈ {0, 1}n, it holds that

f(x) = min{C(X) | X : s-t cut, X(i) = xi for i ∈ [n]} + κ.

This definition of the network representability was introduced by Kolmogorov-
Zabih [14]. A network representable function has the following useful properties:
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Property 1: A network representable function f can be minimized via com-
puting a minimum s-t cut of a network representing f .

Property 2: The sum of network representable functions f1, f2 is also network
representable, and a network representation of f1 + f2 can easily be con-
structed by combining networks representing f1, f2.

By the Property 1, a network representable function can be minimized efficiently,
provided a network representation is given. By the Property 2, it is easy to
construct a network representation of a function f if f is the sum of “smaller”
network representable functions. Hence it is meaningful to investigate network
representability of functions having a few variables. For example, by the fact that
all submodular functions on {0, 1}2 are network representable, we know soon that
the sum of submodular functions on {0, 1}2 is also network representable. This
fact is particularly useful in computer vision application. Moreover, thanks to
extra nodes, a function obtained by a partial minimization (defined in Sect. 2.3)
of a network representable function is also network representable.

2.3 Expressive Power

It turned out that the above definition of network representability is suitably
dealt with in the theory of expressive power, which has been developed in the
literature of valued constraint satisfaction problems [18]. In this subsection, we
introduce the concepts concerning expressive power.

Let D be a finite set, called a domain. A cost function on D is a function
f : Dr → Q for some positive integer r = rf , called the arity of f . A set of cost
functions on D is called a language on D. A cost function f= : D2 → Q defined
by f=(x, y) = 0 if x = y and f=(x, y) = +∞ if x �= y, is called the weighted
equality relation on D. A weighted relational clone [3] on D is a language Γ on
D such that

– f= ∈ Γ ,
– for α ∈ Q+, β ∈ Q, and f ∈ Γ , it holds that αf + β ∈ Γ ,
– an addition of f, g ∈ Γ belongs to Γ , and
– for f ∈ Γ , a partial minimization of f belongs to Γ .

Here an addition of two cost functions f, g is a cost function h obtained by

h(x1, . . . , xn) = f(xσ1(1), . . . , xσ1(rf )) + g(xσ2(1), . . . , xσ2(rg)) (x1, . . . , xn ∈ D)

for some σ1 : [rf ] → [n] and σ2 : [rg] → [n]. A partial minimization of f of arity
n + m is a cost function h of arity n obtained by

h(x1, . . . , xn) = min
xn+1,...,xn+m∈D

f(x1, . . . , xn, xn+1, . . . , xn+m) (x1, . . . , xn ∈ D).

For a language Γ , the expressive power 〈Γ 〉 of Γ is the smallest weighted rela-
tional clone (as a set) containing Γ [18]. A cost function f is said to be repre-
sentable by a language Γ if f ∈ 〈Γ 〉.

By using these notions, Živný-Cohen-Jeavons [19] noted that the set of net-
work representable functions are equal to the expressive power of Γsub,2.
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Lemma 1 ([19]). The set of network representable functions coincides with
〈Γsub,2〉.
The previous results for network representability and nonrepresentability are
summarized as follows.

Theorem 2. The following hold:

[14] 〈Γsub,2〉 ⊆ Γsub.
[2] 〈Γsub,2〉 = 〈Γsub,3〉.
[19] 〈Γsub,2〉 �⊇ Γsub,4.

When proving 〈Γsub,2〉 �⊇ Γsub,4, Živný-Cohen-Jeavons [19] actually found a 4-ary
submodular function f such that f ∈ 〈Γsub,2〉.

2.4 Weighted Polymorphism

How can we prove f �∈ 〈Γ 〉? We here introduce an algebraic machinery, called
a weighted polymorphism, proving this. A function ϕ : Dk → D is called a
k-ary operation on D. For x1 = (x1

1, . . . , x
1
n), . . . , xk = (xk

1 , . . . , x
k
n) ∈ Dn, we

define ϕ(x1, . . . , xk) by ϕ(x1, . . . , xk) :=
(
ϕ(x1

1, . . . , x
k
1), . . . , ϕ(x1

n, . . . , xk
n)

) ∈
Dn. A k-ary projection e

(k)
i for i ∈ [k] on D is defined by e

(k)
i (x) = xi for

x = (x1, x2, . . . , xk) ∈ Dk. A k-ary operation ϕ is called a polymorphism of Γ if
for all f ∈ Γ and for all x1, x2, . . . , xk ∈ dom f , it satisfies ϕ(x1, x2, . . . , xk) ∈
dom f . Let Pol(k)(Γ ) be the set of k-ary polymorphisms of Γ , and let Pol(Γ ) :=
⋃

k Pol(k)(Γ ). Note that for any Γ , all projections are in Pol(Γ ). Let us define a
weighted polymorphism. A function ω : Pol(k)(Γ ) → Q is called a k-ary weighted
polymorphism of Γ [3] if it satisfies the following:

–
∑

ϕ∈Pol(k)(Γ ) ω(ϕ) = 0.
– If ω(ϕ) < 0, then ϕ is a projection.
– For all f ∈ Γ and for all x1, x2, . . . , xk ∈ dom f ,

∑

ϕ∈Pol(k)(Γ )

ω(ϕ)f(ϕ(x1, x2, . . . , xk)) ≤ 0.

Let wPol(k)(Γ ) be the set of k-ary weighted polymorphisms of Γ , and let
wPol(Γ ) :=

⋃
k wPol(k)(Γ ). Here the following lemma holds:

Lemma 3 ([3]). Suppose that Γ is a language on D and f is a cost function
on D. If there exist some ω ∈ wPol(k)(Γ ) and x1, x2, . . . , xk ∈ dom f satisfying

∑

ϕ∈Pol(k)(Γ )

ω(ϕ)f(ϕ(x1, x2, . . . , xk)) > 0,

then it holds that f �∈ 〈Γ 〉.
Thus we can prove nonrepresentability by using Lemma 3.
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3 General Framework for Network Representability

3.1 Previous Approaches of Network Representation over D

Here we explain previous approaches of network representation for functions for a
general finite set D. Ishii [9] considered a method of representing a bisubmodular
function, which is a function on {0,−1, 1}n, by a skew-symmetric network. A
network G = ({s+, s−, 1+, 1−, . . . , N+, N−}, A; c) is said to be skew-symmetric
if it satisfies that if (u, v) ∈ A, then (v, u) ∈ A and c(u, v) = c(v, u). Here define
u by u := i+ if u = i− and u := i− if u = i+. An s+-s− cut X is said to
be transversal if X �⊇ {i, i} for every i ∈ [n]. The set of transversal s-t cuts is
identified with {0,−1, 1}N by X �→ xi := X(i+)−X(i−) for i ∈ [N ]. Ishii gave a
definition of the network representability for a function on {0,−1, 1}n as follows:

A function f : {0,−1, 1}n → Q is said to be skew-symmetric network
representable if there exist a skew-symmetric network G = (V,A; c) and a
constant κ ∈ Q satisfying the following:
– V ⊇ {s+, s−, 1+, 1−, 2+, 2−, . . . , n+, n−}.
– For all x = (x1, x2, . . . , xn) ∈ {0,−1, 1}n,

f(x) = min{C(X) |X : transversal s-t cut,

X(i+) − X(i−) = xi for i ∈ [n]} + κ.

In a skew-symmetric network, the minimal minimum s+-s− cut is transversal [9].
Hence a skew-symmetric network representable function can be minimized effi-
ciently via computing a minimum s+-s− cut. Here the following holds:

Lemma 4 ([9]). Skew-symmetric network representable functions are bisub-
modular.

Moreover Ishii proved the following theorem:

Theorem 5 ([9]). All binary bisubmodular functions are skew-symmetric net-
work representable.

This representation has both Properties 1 and 2. Therefore a bisubmodular func-
tion given as the sum of binary bisubmodular functions is skew-symmetric net-
work representable. Thanks to extra nodes, a bisubmodular function given as
partial minimization of a skew-symmetric network representable function is also
skew-symmetric network representable.

Iwata-Wahlström-Yoshida [12] considered another method of representing a
k-submodular function by a network. For an s-t cut X, let X := {s}∪⋃

i∈[n]{il |
X ∩ {i1, i2, . . . , ik} = il for some l ∈ [k]}. For x = (x1, x2, . . . , xn) ∈ [0, k]n, let
Xx := {s} ∪ ⋃

xi �=0{il | xi = l}.
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A function f : [0, k]n → Q is said to be k-network representable if there
exist a network G = (V,A; c) and a constant κ ∈ Q satisfying the following:
– V = {s, t} ∪ {il | (i, l) ∈ [n] × [k]}.
– The s-t cut function C of G satisfies

C(X) ≥ C(X) (X : s-t cut).

– For all x = (x1, x2, . . . , xn) ∈ [0, k]n, it holds that

f(x) = C(Xx) + κ.

k-network representable functions can be minimized via computing a minimum
s-t cut by definition, and constitute an efficiently minimizable subclass of k-
submodular functions, as follows.

Lemma 6 ([12]). k-network representable functions are k-submodular.

Iwata-Wahlström-Yoshida constructed networks representing basic k-submodular
functions, which are special k-submodular functions. This method also has both
Properties 1 and 2. Therefore a k-submodular function given as the sum of basic
k-submodular functions is k-network representable.

As was seen in Sect. 2.3, network representable functions on {0, 1}n are con-
sidered as the expressive power of Γsub,2, and hence we can apply the expressive
power theory to network representability. However Ishii and Iwata-Wahlström-
Yoshida network representation methods cannot enjoy the expressive power the-
ory, since (i) the set of network representable functions under Iwata-Wahlström-
Yoshida method is not a weighted relational clone, and (ii) the concept of expres-
sive power only focuses on the representability of functions on the same domain.
We introduce, in the next subsection, a new network represetability definition
for resolving (i), and in Sect. 3.4, we also introduce an extension of expressive
power for resolving (ii).

3.2 Definition

By abstracting the previous approaches, we here develop a unified framework
for network representability over D. The basic idea is the following: Consider
networks having nodes i1, i2, . . . , ik for each i ∈ [n], where |D| ≤ 2k. We associate
one variable xi in D with k nodes i1, i2, . . . , ik. The k nodes have 2k intersection
patterns with s-t cuts. We specify a set of |D| patterns, which represents D, for
each i. The cut function restricted to cuts with specified patterns gives a function
on Dn. To remove effect of irrelevant patterns in minimization, we fix a retraction
from all patterns to specified patterns, and consider networks with the property
that the retraction does not increase cut capacity. Now functions represented by
such networks are minimizable via minimum s-t cut with retraction.

A formal definition is given as follows. Let k be a positive integer, and E a
subset of {0, 1}k. We consider a node il for each (i, l) ∈ [n]× [k]. For a retraction
ρ : {0, 1}k → E, a network G = (V,A; c) is said to be (n, ρ)-retractable if G
satisfies the following:
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– V ⊇ {s, t} ∪ {il | (i, l) ∈ [n] × [k]}.
– For all x = (x1

1, . . . , x
k
1 , x

1
2, . . . , x

k
2 , . . . , x

1
n, . . . , xk

n) ∈ {0, 1}kn,

Cmin(x) ≥ Cmin(ρ(x1
1, . . . , x

k
1), . . . , ρ(x1

n, . . . , xk
n)),

where

Cmin(x) := min{C(X) | X : s-t cut, X(il) = xl
i for (i, l) ∈ [n] × [k]}.

Let σ be a bijection from D to E. A function f : Dn → Q is said to be (k, ρ, σ)-
network representable if there exist an (n, ρ)-retractable network G = (V,A; c)
and a constant κ ∈ Q satisfying that

f(x) = Cmin(σ(x1), σ(x2), . . . , σ(xn)) + κ

for all x = (x1, x2, . . . , xn) ∈ Dn. A (k, ρ, σ)-network representable function can
be minimized efficiently via computing a minimum s-t cut.

The network representability in the sense of Kolmogorov-Zabih is the same as
the (1, id, id)-network representability, where id : {0, 1} → {0, 1} is the identity
map. Let ρk : {0, 1}k → {0, 1}k and σk : [0, k] → {0, 1}k be maps defined by

ρk(x) :=

{
x if x = (0, . . . , 0,

i

1̌, 0, . . . , 0) for some i ∈ [k],
(0, . . . , 0) otherwise,

σk(x) :=

{
(0, . . . , 0,

i

1̌, 0, . . . , 0) if x = i ∈ [k],
(0, . . . , 0) if x = 0.

Then skew-symmetric network representability is a special class of the (2, ρ2, σ2)-
network representability, and k-network representability is a special class of the
(k, ρk, σk)-network representability.

The (k, ρ, σ)-network representability possesses both Properties 1 and 2. Fur-
thermore a function given as a partial minimization of a (k, ρ, σ)-network repre-
sentable function is also (k, ρ, σ)-network representable.

3.3 Results on Network Representability

In our network representation, one variable is associated with “several” nodes
even if D = {0, 1}. Hence the set of network representable functions on {0, 1}n in
our sense may be strictly larger than that in the original. The following theorem
says that additional network representable functions are only monotone.

Theorem 7. If a function f on {0, 1}n is (k, ρ, σ)-network representable for
some k, ρ, σ, then f is (1, id, id)-network representable, or monotone.

The minimization of a monotone function is trivial. Therefore it is sufficient only
to consider (1, id, id)-network representability (original network representability)
for functions on {0, 1}n.
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We give a more precise structure of network representable functions on
{0, 1}n. Let ρ1 : {0, 1}2 → {0, 1}2, ρ2 : {0, 1}2 → {0, 1}2, and σ0 : {0, 1} →
{0, 1}2 be functions defined by

ρ1(x) =

{
(1, 0) if x = (1, 0),
(0, 1) otherwise,

ρ2(x) =

{
(0, 1) if x = (0, 1),
(1, 0) otherwise,

σ0(x) =

{
(1, 0) if x = 1,

(0, 1) if x = 0.

Then the following holds:

Theorem 8. A function f on {0, 1}n is (k, ρ, σ)-network representable for some
k, ρ, σ if and only if f is (1, id, id)-network representable, (2, ρ1, σ0)-network rep-
resentable, or (2, ρ2, σ0)-network representable.

We next present network nonrepresentability results for functions on Dn,
especially, k-submodular functions. These results will be proved via the theory
of expressive power. We have seen in Theorem 5 that all binary bisubmodular
functions are (2, ρ2, σ2)-network representable. We show that the same property
does not hold for ternary bisubmodular functions.

Theorem 9. Some ternary bisubmodular function is not (2, ρ2, σ2)-network rep-
resentable.

We also know that all binary basic k-submodular functions are (k, ρk, σk)-
network representable [12], and their sum is efficiently minimizable. A nat-
ural question raised by [12] is whether all binary k-submodular functions are
k-network representable or not. We answer this question negatively.

Theorem 10. Some binary k-submodular function is not (k, ρk, σk)-network
representable for all k ≥ 3.

Theorems 7, 8, 9 and 10 are consequences of Theorems 13, 14, 15 and 16 in the
next subsection.

3.4 Extended Expressive Power

To incorporate the theory of expressive power into our framework, we introduce a
way of handling languages on D from a language Γ on another domain F , which
generalizes previous arguments. Let k be a positive integer with |D| ≤ |F |k. Let
E be a subset of F k with |E| = |D|, ρ : F k → E a retraction, and σ : D → E a
bijection. We define 〈Γ 〉k by

〈Γ 〉k := {f ∈ 〈Γ 〉 | The arity rf of f is a multiple of k}.

Regard 〈Γ 〉k as a language on F k. A language 〈Γ 〉k
ρ on E is defined by

〈Γ 〉k
ρ := {f |Erf | f ∈ 〈Γ 〉k, f(x) ≥ f(ρ(x)) for x ∈ dom f}.
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A function f is representable by (Γ, ρ, σ) if there exists g ∈ 〈Γ 〉k
ρ such that

f(x) = g(σ(x)) for x ∈ Dn. We define a language 〈Γ 〉k
(ρ,σ) on D as the set of

functions representable by (Γ, ρ, σ). By comparing these notions to our network
representations, we obtain an generalization of Lemma 1.

Lemma 11. The set of (k, ρ, σ)-network representable functions coincides with
〈Γsub,2〉k

(ρ,σ).

The following theorem enables us to deal with our network representability
on Dn from the theory of expressive power.

Theorem 12. For a language Γ on F , 〈Γ 〉k
(ρ,σ) is a weighted relational clone

on D.

Let Γ be a language on F . A function f on D is called representable by Γ
if f ∈ 〈Γ 〉k

(ρ,σ) for some positive integer k, ρ : F k → E, and σ : D → E. The

set of cost functions on D representable by a language Γ is denoted by 〈Γ 〉D.
Notice that 〈Γ 〉D is not a weighted rational clone in general. By using these
notations, Theorems 7 and 8 are reformulated as follows. Here let Γmono be the
set of monotone functions.

Theorem 13. 〈Γsub,2〉 � 〈Γsub,2〉{0,1} � 〈Γsub,2〉 ∪ Γmono.

Theorem 14. 〈Γsub,2〉{0,1} = 〈Γsub,2〉 ∪ 〈Γsub,2〉2(ρ1,σ0)
∪ 〈Γsub,2〉2(ρ2,σ0)

.

Theorem 9 is rephrased as Γbisub,3 �⊆ 〈Γsub,2〉2(ρ2,σ2)
. We prove a stronger

statement such that Γbisub,3 is not included even in the set of (Γsub, ρ2, σ2)-
representable functions.

Theorem 15. Γbisub,3 �⊆ 〈Γsub〉2(ρ2,σ2)
.

Theorem 10 is rephrased as Γksub,2 �⊆ 〈Γsub,2〉k
(ρk,σk)

. Again we prove a stronger
statement such that Γksub,2 is not included even in the set of (Γsub, ρk, σk)-
representable functions.

Theorem 16. Γksub,2 �⊆ 〈Γsub〉k
(ρk,σk)

for all k ≥ 3.

We prove Theorem 15 (resp. Theorem 16) by finding some ternary bisubmodular
function (resp. binary k-submodular function) and some weighted polymorphism
of 〈Γsub〉2(ρ2,σ2)

(resp. 〈Γsub〉k
(ρk,σk)

) satisfying the condition in Lemma 3.
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Abstract. k-submodular functions were introduced by Huber and
Kolmogorov as a generalization of bisubmodular functions. This paper
establishes a compact representation of minimizers of k-submodular func-
tions by posets with inconsistent pairs (PIPs), and completely charac-
terizes the class of PIPs (elementary PIPs) corresponding to minimizers
of k-submodular functions. Our representation coincides with Birkhoff’s
representation theorem if k = 1 and with signed-poset representation by
Ando and Fujishige if k = 2. We also give algorithms to construct the ele-
mentary PIP representing the minimizers of a k-submodular function f
for three cases: (i) a minimizing oracle of f is available, (ii) f is network-
representable, and (iii) f is the objective function of the relaxation of
multiway cut problem. Furthermore, we provide an efficient algorithm
to enumerate all maximal minimizers from the PIP representation. Our
results are applied to obtain all maximal persistent assignments in label-
ing problems arising from computer vision.

1 Introduction

The minimizer set of a submodular function forms a distributive lattice. By
celebrated Birkhoff’s representation theorem, the minimizer set is compactly
written by a poset (partially ordered set). Applications of this fact include DM-
decomposition of matrices and further generalizations [12]. In this paper we shall
consider the minimizer sets of k-submodular functions. A k-submodular function
was introduced by Huber and Kolmogorov [8] as a generalization of submod-
ular and bisubmodular functions. 1-submodular functions and 2-submodular
functions are identical to submodular functions and bisubmodular functions,
respectively.

The main result of this paper is to establish a compact representation for
minimizers of k-submodular functions by posets with inconsistent pairs (PIPs)
[2,3,13]. This is a generalization of the compact representation of minimizer sets
of submodular functions and Ando–Fujishige’s signed-poset representation for
bisubmodular functions [1]. In our representation, each minimizer corresponds
to some special ideal of the PIP, called a consistent ideal. We also characterize
PIPs arising from k-submodular functions. Such PIPs are called elementary.
c© Springer International Publishing Switzerland 2016
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Our representation is compact since the number of elements in an elementary
PIP is at most kn, where n is the number of variables of the corresponding
k-submodular function. Moreover, we present three algorithms to obtain the
elementary PIP representing the minimizer set of a k-submodular function f for
three cases: (1) a minimizing oracle of f is given, (2) f is network-representable,
and (3) f is the relaxed multiway cut function. We also give a fast algorithm to
enumerate all maximal consistent ideals of an elementary PIP.

The rest of this paper is organized as follows. Section 2 is preliminaries. In
Sect. 3, we introduce our compact representation for minimizers of k-submodular
functions. In Sect. 4, we present our algorithms. Finally in Sect. 5, we describe
applications to k-submodular relaxation [6,9].

Omitted proofs and algorithms are given in the full version.

2 Preliminaries

For a nonnegative integer n, we denote {1, 2, . . . , n} by [n] (with [0] ··= ∅).

2.1 k-Submodular Function

Let Sk be a finite set of k + 1 elements {0, 1, . . . , k} and � a partial order
on Sk defined by a � b

def⇐⇒ a ∈ {0, b} for each a, b ∈ Sk. For a subset
X ⊆ Sk

n, the subposet (X,�) of (Sk
n,�) is simply denoted by X. For every

x = (x1, x2, . . . , xn) ∈ Sk
n, the subset {i ∈ [n] | xi �= 0} of [n] is called support

of x and denoted by suppx.
A k-submodular function is a function f : Sk

n → R̄ ··= R ∪ {+∞} satisfying
the following inequality

f(x) + f(y) ≥ f(x � y) + f(x  y) (1)

for all x, y ∈ Sk
n. Here the binary operation � on Sk

n is given by

(x � y)i ··=
{

min {xi, yi} (xi and yi are comparable on �),
0 (xi and yi are incomparable on �),

(2)

for every x, y ∈ Sk
n and i ∈ [n]. The other operation  in (1) is dually defined

by changing min to max in (2).
It is not known whether k-submodular functions for k ≥ 3 can be minimized

in polynomial time on the standard oracle model. However, some special classes
of k-submodular functions are efficiently minimizable. For example, Kolmogorov,
Thapper and Živný [11] showed that a sum of low-arity k-submodular functions
can be minimized in polynomial time through linear programming. Note that it
is assumed that each low-arity function is given as the table storing all function
values; hence the total input size is O(mkr), where m is the number of low-arity
k-submodular functions and r is the maximum arity. We can also minimize a
nonnegative combination of (binary) basic k-submodular functions, introduced
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by Iwata, Wahlström and Yoshida [9], by computing a minimum (s, t)-cut on a
directed network; see Sect. 4.2.

A nonempty subset of Sk
n is said to be (�,)-closed if it is closed under the

operations � and . From (1), the following obviously holds.

Lemma 1. The minimizer set of a k-submodular function is (�,)-closed.

2.2 Median Semilattice and PIP

A key tool for providing an efficient representation of (�,)-closed sets is a
correspondence between median semilattices and PIPs, which was established
by Barthélemy and Constantin [3].

A median semilattice [16] is a meet-semilattice L = (L,≤) satisfying following
conditions:

(MS1) every principal ideal is a distributive lattice.
(MS2) for all x, y, z ∈ L, if x∨y, y ∨ z and z ∨x exist, then x∨y ∨ z exists in L.

Note that every distributive lattice is a median semilattice. We denote the set
of join-irreducible elements of L by J (L). The minimum element of L is not
join-irreducible.

Next we introduce a poset with inconsistent pairs (PIP). This notion was
independently introduced in different contexts with different names: “event
structure” in [13], “site” in [3], and “PIP” in [2] which we use. Let (P,≤) be a
finite poset and # a symmetric binary relation on P . A PIP is a triplet (P,≤,#)
satisfying the following:

(IC1) for all p, q ∈ P with p # q, there is no r ∈ P with p ≤ r and q ≤ r.
(IC2) for all p, q, p′, q′ ∈ P , if p′ ≤ p, q′ ≤ q and p′ # q′, then p # q.

The relation # is called an inconsistent relation. Each unordered pair {p, q} of P
is called inconsistent if p#q. Note that any inconsistent pair of P is incomparable
and has no common upper bound in P . An inconsistent pair {p, q} of P is said
to be minimally inconsistent if p′ ≤ p, q′ ≤ q and p′ # q′ imply p = p′ and q = q′

for all p′, q′ ∈ P . If {p, q} is minimally inconsistent, the p # q is particularly
denoted by p · q. We can check the following properties about the minimally
inconsistent relation:

(MIC1) for all p, q ∈ P with p · q, there is no r ∈ P with p ≤ r and q ≤ r.
(MIC2) for all p, q, p′, q′ ∈ P with p′ ≤ p and q′ ≤ q, if p′ · q′ and p · q, then

p′ = p and q′ = q.

Indeed, PIPs can also be defined as a triplet (P,≤, · ), where (P,≤) is a poset
and · is a binary symmetric relation on P satisfying the conditions (MIC1) and
(MIC2). In this definition, the inconsistent relation # on P is obtained by

p # q
def⇐⇒ there exist p′, q′ ∈ P with p′ ≤ p, q′ ≤ q and p′ · q′ (3)
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Fig. 1. Examples of PIPs and non-PIP structures. Solid arrows indicate the orders
between elements (drawn from the smaller elements to the larger ones). Dotted lines
and dashed lines represent the inconsistent relations. In (a), (b) and (d), labels indicate
where the violations of (PIP1) and (PIP2) are. In (c) and (e), the minimally inconsistent
relations are drawn by dashed lines.

for every p, q ∈ P . Since both definitions of PIPs are fundamentally equivalent,
we make use of a convenient one. For a PIP P = (P,≤,#), every ideal of (P,≤)
is called a consistent ideal of P if it contains no (minimally) inconsistent pair.
We denote the family of consistent ideals of P by C(P). Figure 1 shows examples
of PIPs and non-PIP structures.

The following theorem associates median semilattices with PIPs. Namely,
there is a one-to-one correspondence between median semilattices and PIPs.

Theorem 2 ([3]). The following hold.

(1) Let L = (L,≤) be a median semilattice and # a symmetric binary relation
on L defined by

x # y
def⇐⇒ x ∨ y does not exist on L

for every x, y ∈ L. Then P ··= (J (L),≤,#) forms a PIP with inconsistent
relation #. The poset (C(P),⊆) is isomorphic to L, where the isomorphism
is given by I �→ ∨

x∈I x (with ∅ �→ min L).
(2) Let P be a PIP. The poset L ··= (C(P),⊆) forms a median semilattice. Let

P ′ be the PIP obtained from L in the same way as defined in (1). Then P ′

is isomorphic to P, where the isomorphism is given by I �→ max I.

3 (�,�)-Closed Set and Elementary PIP

Our starting point for a compact representation of (�,)-closed sets is the
following.
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Fig. 2. Example of a (�,�)-closed set and the corresponding PIP. Join-irreducible
elements are surrounded by double-lined frames. In (b), only minimally inconsistent
relations are drawn.

Lemma 3. Any (�,)-closed set on Sk
n is a median semilattice.

Let � be a symmetric binary relation on Sk
n defined by

x � y
def⇐⇒ x ∨ y does not exist on Sk

n

for every x, y ∈ Sk
n. Note that if x �� y then it holds x ∨ y = x  y for every

x, y ∈ M . From Theorem 2 (1) and Lemma 3, we obtain the following.

Theorem 4. Let M ⊆ Sk
n be a (�,)-closed set. Then P ··= (J (M),�,�)

forms a PIP with inconsistent relation �. The poset (C(P),⊆) is isomorphic to
M , where the isomorphism is given by I �→ ∨

x∈I x (with ∅ �→ min M).

Figure 2 shows an example of a (�,)-closed set and the corresponding PIP.
From Theorem 4, it will be turned out that the set J (M) of join-irreducible
elements of every (�,)-closed set M ⊆ Sk

n does not lose any information
about the structure of M . To reconstruct each element in M , the minimum
element of M is needed besides from J (M). The other elements in M can be
obtained as the join of one or more join-irreducible elements of M . Therefore
M can be completely reconstructed from the pair (J (M),min M). Furthermore,
the following proposition guarantees the compactness of this representation.

Proposition 5. Let M be a (�,)-closed set on Sk
n. The number of join-

irreducible elements of M is at most kn.

From Theorem 4, any (�,)-closed set can be represented by a PIP. However,
not all PIPs correspond to some (�,)-closed sets. A natural question then arises:
What class of PIPs represents (�,)-closed sets? The main result (Theorem 7)
of this section answers this question. In what follows, we frequently denote the
PIP (J (M),�,�) by J (M) for brevity.

Definition 6. Let P = (P,≤, · ) be a PIP with poset (P,≤) and minimally
inconsistent relation · on P . We call P elementary if it satisfies the following
conditions:
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Fig. 3. Examples of elementary PIPs and non-elementary PIPs. In all diagrams, the
drawn PIPs satisfy the condition (EP0) with n = 2. The partition of elements are
illustrated by colors (white and black). Non-minimally inconsistent relations are not
drawn in each diagram.

(EP0) P is the disjoint union of P1, P2, . . . , Pn such that for all distinct x, y ∈ P ,
it holds x · y if and only if {x, y} ⊆ Pi for some i ∈ [n].

(EP1) for any distinct i, j ∈ [n], if |Pi| ≥ 2 and |Pj | = 1, there are no elements
x ∈ Pi and y ∈ Pj with x < y.

(EP2) for any distinct i, j ∈ [n], if |Pi| ≥ 2 and |Pj | ≥ 2, either of the following
holds:
(EP2-1) every x ∈ Pi and y ∈ Pj are not comparable.
(EP2-2) there exist x′ ∈ Pi and y′ ∈ Pj such that x′ < y and y′ < x for

all x ∈ Pi \ {x′} and y ∈ Pj \ {y′}.

Examples of elementary PIP and non-elementary PIPs are illustrated in
Fig. 3.

Theorem 7. The following hold:

(1) For every (�,)-closed set M , the set J (M) of join-irreducible elements of
M forms an elementary PIP, and (C(J (M)),⊆) is isomorphic to (M,�).

(2) For every elementary PIP P, there is a (�,)-closed set M such that (M,�)
is isomorphic to (C(P),⊆).

In case of k = 2, the condition (EP2) in Definition 6 is equivalent to the skew-
symmetricity of the corresponding Hasse diagram, hence our representation for
(�,)-closed sets coincides with one by Ando–Fujishige [1].

4 Algorithms

4.1 By a Minimizing Oracle

We can obtain the elementary PIP for the minimizer set of a k-submodular
function f : Sk

n → R̄ by a minimizing oracle, which returns a minimizer of f and
its restrictions. Before describing the algorithm, we introduce some additional
notations. Let D(f) be the minimizer set of f . For i ∈ [n] and l ∈ Sk, we define
a new k-submodular function f |(i,l) : Sk

n → R̄ from f by

f |(i,l)(x1, . . . , xi, . . . , xn) ··= f(x1, . . . ,

i�
l , . . . , xn)

for every x ∈ Sk
n. Namely, f |(i,l) is a function obtained by fixing the i-th variable

of f to l.
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Algorithm 1. Obtain the minimum minimizer of a k-submodular function
Input : A k-submodular function f : Sk

n → R̄

Output: The minimum minimizer min D(f) of f
1: function GetMinimumMinimizer(f)
2: x ← GetMinimizer(f)
3: for i ∈ suppx do
4: if min f |(i,0) = min f then
5: xi ← 0

6: return x

The minimum minimizer. We first present an algorithm to obtain the minimum
minimizer of a k-submodular function in Algorithm 1, where GetMinimizer is
the minimizing oracle. This algorithm correctly returns the minimum element of
D(f) since min f |(i,0) is equal to min f if (min D(f))i = 0 and otherwise it holds
min f |(i,0) > min f . The algorithm calls the oracle at most n + 1 times and the
time complexity is O(nγ), where γ is the time required by a single oracle call.

Join-irreducible minimizers. Algorithm 2 shows a procedure to collect all join-
irreducible minimizers of a k-submodular function. Let x be the minimum min-
imizer of f . The function fx : Sk

n → R̄ used in the algorithm is defined by
fx(y) ··= f((y  x)  x) for every y ∈ Sk

n. Since ((y  x)  x)i is equal to yi if
xi = 0 and to xi if xi �= 0, we can regard fx as a function obtained by fixing each
i-th variable of f to xi if xi �= 0. Note that the minimum values of f and fx are
same. The correctness of this algorithm is based on the following proposition:
the set of join-irreducible minimizers of f coincides with the set

{
min D

(
fx|(i,l)

)
i ∈ [n] \ suppx, l ∈ [k], min fx|(i,l) = min f

}
. (4)

Each join-irreducible minimizer is collected according to (4) one-by-one. The
time complexity is O

(
kn2γ

)
since the algorithm calls Algorithm 1 at most nk+1

times. Consequently, if a minimizing oracle is available, the entire minimizer set
can also be obtained in polynomial time.

Theorem 8. On the minimizing oracle model, we can obtain the elementary
PIP for the minimizer set of a k-submodular function f : Sk

n → R̄ in O
(
kn2γ

)

time, where γ is the time required by a single oracle call.

4.2 On Network-Representable k-Submodular Functions

Iwata, Wahlström and Yoshida [9] introduced basic k-submodular functions, a
special class of k-submodular functions. They showed a reduction of the mini-
mization problem of a nonnegative combination of (binary) basic k-submodular
functions to the minimum cut problem on a directed network. We describe their
method and present an algorithm to obtain the elementary PIP that represents
the minimizer set.
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Algorithm 2. Collect all join-irreducible minimizers of a k-submodular function
Input : A k-submodular function f : Sk

n → R̄

Output: The set J (D(f)) of all join-irreducible minimizers of f
1: function GetJoinIrreducibleMinimizers(f)
2: x ··= GetMinimumMinimizer(f)
3: fx ··= the function obtained by fixing the i-th variable of f to xi for all i ∈ suppx
4: J ← ∅

5: for i ∈ [n] \ suppx do
6: for l ← 1 to k do
7: if min fx|(i,l) = min f then

8: J ← J ∪
{
GetMinimumMinimizer(fx|(i,l))

}

9: return J

Let n and k be nonnegative integers. We consider a directed network N =
(V,A, c) with vertex set V , edge set A and nonnegative edge capacity c. Suppose
that V consists of source s, sink t and other vertices vl

i, where i ∈ [n] and l ∈ [k].
Let Ui ··=

{
v1

i , v2
i , . . . , vk

i

}
for i ∈ [n]. An (s, t)-cut of N is a subset X of V such

that s ∈ X and t /∈ X. We call an (s, t)-cut X legal if |X ∩ Ui| ≤ 1 holds for
every i ∈ [n]. There is a natural bijection ψ from Sk

n to the set of legal (s, t)-cuts
of N defined by

ψ(x) ··= {s} ∪ {vxi
i | i ∈ suppx}

for every x ∈ Sk
n. For an (s, t)-cut X of N , let X̌ denote a legal (s, t)-cut

obtained by removing vertices in X ∩ Ui from X for every i ∈ [n]. The capacity
of X is defined as d(X) ··= ∑

e∈δX c(e), where δX is the set of edges from X to
V \X. We say that a network N represents a function f : Sk

n → R̄ if it satisfies
the following:

(NR1) there exists a constant K ∈ R such that f(x) = d(ψ(x)) + K for all
x ∈ Sk

n.
(NR2) it holds d(X̌) ≤ d(X) for all (s, t)-cuts X of N .

From (NR1), the minimum value of f +K is equal to the capacity of a minimum
(s, t)-cut of N . For every minimum (s, t)-cut X of N , X̌ is also a minimum (s, t)-
cut since N satisfies the condition (NR2). Therefore ψ−1(X̌) is a minimizer of f ,
and a minimum (s, t)-cut can be computed by maximum flow algorithms. Indeed,
Iwata, Wahlström and Yoshida [9] showed that a nonnegative combination of
basic k-submodular functions are representable by such networks.

Now we shall consider obtaining all minimizers of a k-submodular function
f : Sk

n → R̄ represented by a network N . The minimizer set of f is isomorphic
to the family of legal minimum (s, t)-cuts of N ordered by inclusion, where the
isomorphism is ψ. As for the family of (not necessarily legal) minimum (s, t)-cuts,
it is well-known that the family forms a distributive lattice. Thus, by Birkhoff’s
representation theorem, the family is efficiently representable by a poset. Picard
and Queyranne [15] showed how to obtain the poset from the residual graph
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corresponding to a maximum (s, t)-flow of N . Our result (Theorem 9) is based
on their algorithm. For an (s, t)-flow ϕ of N , the residual graph corresponding
to ϕ is a directed graph Gϕ = (V,Aϕ), where

Aϕ ··= {a ∈ A | ϕ(a) < c(a)} ∪ {(u, v) ∈ V × V | (v, u) ∈ A and 0 < ϕ(v, u)} .

Theorem 9. Let N = (V,A, c) be a network representing a k-submodular func-
tion f : Sk

n → R̄ and Gϕ denote the residual graph corresponding to a maxi-
mum (s, t)-flow ϕ of N . Let V be the set consisting of sccs of Gϕ other than the
following:

(1) sccs reachable from s.
(2) sccs reachable to t.
(3) sccs reachable to an scc containing two or more elements in Ui for some

i ∈ [n].
(4) sccs reachable to distinct sccs Y and Z such that |Y ∩ Ui| = |Z ∩ Ui| = 1

for some i ∈ [n].

Let ≤ be a partial order on V defined by

X ≤ Y
def⇐⇒ X is reachable from Y on Gϕ

for every X,Y ∈ V. In addition, let · be a symmetric binary relation on V
defined as follows:

X · Y
def⇐⇒ X �= Y and there exists i ∈ [n] such that |X ∩ Ui| = |Y ∩ Ui| = 1

for every X,Y ∈ V. Then P = (V,≤, · ) forms an elementary PIP, where ·
is the minimally inconsistent relation of P. The consistent ideal family of P is
isomorphic to the set of minimizers of f , where the isomorphism is ψ−1 ◦ τN .

By using an efficient technique (like dynamic programming) for obtaining V,
the following theorem holds.

Theorem 10. Let f : Sk
n → R̄ be a k-submodular function represented by a

network N with m edges. We can obtain the elementary PIP for the minimizer
set of f in O(MF(kn,m) + n (k + m)) time.

Here MF(n′,m′) denotes the time complexity to find a maximum (s, t)-flow
of a directed network with n′ nodes and m′ edges. The state-of-the-art algorithm
for the maximum (s, t)-flow problem on a directed network is [14] by Orlin, where
MF(n′,m′) = O(n′m′). Therefore the time complexity for obtaining V from Gϕ

is much less than one for computing Gϕ from the network N .

4.3 Multiway Cut Problem

Let N = (V,E, c, S) be an undirected network with vertex set V , edge set E,
nonnegative edge capacity c and nonempty subset S = {s1, s2, . . . , sk} of V ,
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called terminals. A multiway cut X is a partition of V such that each part
contains exactly one of the terminals. The capacity of X is defined as the sum of
capacities of all edges whose ends belong to different parts in X . The multiway
cut problem (MCP) in N is the problem of finding a multiway cut with minimum
capacity. This problem is known to be NP-hard if k ≥ 3.

There is a natural relaxation, implicitly in [4] of MCP, which turned out to
be a k-submodular relaxation [6,9]. For every X,Y ⊆ V , let d(X,Y ) denote the
sum of capacities of edges between X and Y . d(X,V \ X) is denoted by d(X).
For each s ∈ S, an s-isolating cut is a cut X of N such that X∩S = {s}. A semi-
multiway cut Y of N is a subpartition {X1,X2, . . . , Xk} of V such that Xl is an
sl-isolating cut for each l ∈ [k]. The capacity of Y is defined as 1

2

∑k
l=1 d(Xl).

If Y forms a multiway cut, the capacities of Y as a semi-multiway cut and
as a multiway cut are equal. A semi-multiway cut is said to be minimum if its
capacity is the minimum in all semi-multiway cuts of N . The relaxation problem
(RMCP) of MCP is the problem of finding a minimum semi-multiway cut of N . A
standard uncrossing argument gives a simple solution of this problem as follows.

Lemma 11. For l ∈ [k], let Yl be the minimal minimum sl-isolating cut. Then
{Y1, Y2, . . . , Yk} is a minimum semi-multiway cut. In particular, a minimum
semi-multiway cut is precisely a subpartition consisting of minimum s-isolating
cuts over s ∈ S.

Here an s-isolating cut is said to be minimum if its capacity is minimum in all
s-isolating cuts of N . In particular, RMCP can be solved by k minimum-cut
computations.

The objective function of RMCP is a representative example of k-submodular
functions. Let n ··= |V | and m ··= |E|. Observe that Sk

n−k and the set of
all semi-multiway cuts are in one-to-one correspondence by Sk

n−k � x �→
{{sl} ∪ {u | xu = l}}l∈[k]. Therefore, finding a minimum semi-multiway cut is also

viewed as the minimization of function gN : Sk
n−k → R defined by x �→ 1

2

∑k
l=1

d({sl} ∪ {u | xu = l}).

Lemma 12 ([6,9]). gN is k-submodular.

From Lemma 11 we have a minimizing oracle of gN , and obtain the PIP repre-
sentation of the minimizer set of gN (= the set of minimum semi-multiway sets)
by the algorithm in Sect. 4.1. Furthermore, gN is network-representable [9] in
the sense of the previous subsection, though the representing network is dif-
ferent from N . Therefore we also obtain the PIP representation for gN in
O(MF(kn, km) + n (k + m)) time if we use the network construction of [9].

We proved a more efficient algorithm is possible.

Theorem 13. Let N = (V,E, c, S) be an undirected network with vertex set V ,
edge set E, nonnegative edge capacity c and terminal set S. We can obtain
the elementary PIP representing the minimum semi-multiway cuts of N in
O(log k · MF(n,m)) time, where n ··= |V | ,m ··= |E| and k ··= |S|.
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4.4 Enumeration of All Maximal Consistent Ideals

The compact representation for (�,)-closed sets by elementary PIPs is kind of
a data compression. Hence it is natural to consider an efficient way to extract
elements of the original (�,)-closed sets. This corresponds to an enumeration
of consistent ideals of elementary PIPs. Indeed, PIPs and their consistent ideal
families can be regarded as special cases of Boolean 2-CNFs and their satisfi-
ability instances, respectively. Thus we can enumerate all consistent ideals in
output-polynomial time [5] (i.e. the algorithm stops in time polynomial in the
length of the input and output).

As described in Sect. 5, maximal consistent ideals are of special interest. Now
we consider enumerating them. This can also be done in output-polynomial time
by using the algorithm of [10] in O

(
k3n3

)
time per one output. We developed

a faster algorithm. Due to the space limit, we state only the following theorem;
see the full version for detail.

Theorem 14. Let P = (P,≤,#) be an elementary PIP with n parts and
G = (P,A) a directed graph representing the poset (P,≤). We can enumer-
ate all maximal consistent ideals of P in O(|P | + |A| + nN) time, where N is
the number of maximal consistent ideals of P.

Our algorithm is efficient since the running time is proportional to the length
of the input and output.

5 Application

For a function g : [k]n → R̄, a k-submodular function f : Sk
n → R̄ is called

a k-submodular relaxation [6,9] of g if it satisfies f(x) = g(x) for all x ∈ [k]n.
Iwata, Wahlström and Yoshida [9] investigated k-submodular relaxations as a
key tool for designing efficient FPT algorithms. Gridchyn and Kolmogorov [6]
applied k-submodular relaxations to labeling problems in computer vision. Hirai
and Iwamasa [7] characterized the class of functions which admit k-submodular
relaxations.

The most important property of k-submodular relaxations is the following,
called persistency [6,9].

Lemma 15 ([6,9]). For every minimizer x ∈ Sk
n of f , there exists a minimizer

y ∈ [k]n of g such that xi �= 0 implies xi = yi for each i ∈ [n].

Namely, each minimizer of f gives us partial information about a minimizer
of g. In particular, minimizers that contain more nonzero elements have more
information. Indeed, the following lemma holds.

Lemma 16. Let M be a (�,)-closed set. The supports of all maximal (with
respect to �) elements in M are all the same.
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From this lemma, it will be turned out that all maximal minimizers of f
have the same amount of information about minimizers of g. As described in
Sect. 4.4, we can enumerate all maximal minimizers efficiently. We hope that this
enumeration algorithm will be applied to FPT algorithms and labeling problems
arising from computer vision.
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Abstract. It is necessary for railway companies to construct daily
schedules of assigning rolling stocks to utilization paths. A utilization
path consists of a series of trains that a particular rolling stock performs
in a day. A mixed integer programming model based on Lai et al. [1] is
presented and is shown that straightforward applications of the model
result in too much computational time and also inappropriate assignment
schedules due to end effects. We show that the model can be modified to
alleviate these difficulties, and also show that the repeated applications
of the optimization model in the rolling horizon allow to generate a fea-
sible assignment schedule for a longer period of time thus indicating the
feasibility of the optimization approach.

Keywords: Railway rolling stock · Inspection requirements · Utilization
path · Mixed integer programming

1 Introduction

In order to operate trains, it is necessary for a railway company to assign rolling
stocks to trains. A series of trains that a particular rolling stock executes during
a day is called a utilization path. A rolling stock assignment problem, then, is a
generalized multi-period assignment problem of making an assignment schedule
for rolling stocks to a given set of utilization paths for a specified time horizon.
Important considerations of the rolling stock assignment problem are inspec-
tion requirements. This paper considers two types of inspections, namely, daily
inspections and monthly inspections. Normally, these inspections must be
performed at a specified set of stations or train bases.

2 A Rolling Stock Assignment Problem

2.1 Problem Statement

We list assumptions of the rolling stock assignment problem.

c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 393–402, 2016.
DOI: 10.1007/978-3-319-45587-7 34
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1. A finite horizon model is considered in which a period corresponds to a day.
2. The starting station and the ending station of each utilization path are

given.
3. Each utilization path is assigned to a rolling stock.
4. No deadhead is allowed, and thus the ending station of the utilization path

in day k must coincide with the starting station of the utilization path in
day k + 1 for each rolling stock.

5. Initial conditions with regard to the utilization path assigned to each rolling
stock in day 0 are given, together with the accumulative operating times for
daily and monthly inspections, and the accumulative operating mileage for
monthly inspection at the end of day 0 for each rolling stock.

6. For each rolling stock, a daily inspection must be performed at least every
other day. On the other hand, a monthly inspection should be performed at
least once in 30 days, or within 30,000 km, whichever comes first.

7. Monthly inspections are performed at specific stations (including nearby
train bases), and utilization paths which perform monthly inspections are
known in advance together with the locations where inspections are per-
formed.

8. Daily inspections can be performed at one of several stations that can per-
form daily inspections.

9. There exists an upper limit for the number of inspections that can be per-
formed in a day at a particular station.

10. Costs of a daily and a monthly inspections are known, and the total inspec-
tion cost is minimized.

2.2 Related Studies

Lai et al. [1] studied rolling stock assignment at Taiwan High Speed Rail, which
forms the basis of this study. Their problem is basically the same as ours except
that deadheads are allowed possibly at very high cost. They presented a mixed
integer programming formulation, which again forms the basis of this study, and
detailed information concerning its application to their problems.

Maroti and Kroon [2,3] consider adjustments of a given roling stock schedule
so that train units that require maintenance in the forthcoming one to three days
can reach the maintenance facility in time. They considered a multicommodity
type model for the maintenance routing problem.

2.3 Typical Instances

Typical instances considered in this paper are (1) a Taiwan High Speed Rail
instance of Lai et al. consisting of 30 utilization paths and 30 sets of rolling
stocks, and (2) an instance of a bullet-train line (Shinkansen) of Japan consisting
of 26 utilization paths and 26 sets of rolling stocks.

Out of 30 utilization paths of the Taiwan instance, 24 paths are operation
utilization paths which connect all operational trains in the timetable, 2 paths
are maintenance spare utilization paths for major maintenance performed, say,
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once in 3 years, 2 paths are operation spare utilization paths for unexpected
disruptions from defective trains, and finally 2 monthly inspection utilization
paths in which only monthly inspections are performed. On the other hand, all
of 26 utilization paths of the Japan instance are all operation utilization paths,
among which 4 operation utilization paths include monthly inspections to be
performed at specific stations. No maintenance utilization paths and operational
spare utilization paths are considered in the Japan instance.

3 Formulation

We first define notations, and then present the mixed integer programming for-
mulation.

Sets

E @Set of stations (including nearby train bases) where daily inspections can
be performed

K @Set of days in the planning horizon
N @Set of utilization paths
Ne @Set of utilization paths which end at depot e
V @Set of rolling stocks

Constants

Gi(Ai) @Starting (Ending) station of utilization path i
Li @Operating mileage of utilization path i in kilometer
Ti @Operating time of utilization path i in day
Q @Cost of a monthly inspection
F @Cost of a daily inspection
I1D @Upper bound of accumulative operating time for daily inspection in day
I2D @Upper bound of accumulative operating time for monthly inspection in

day
I2L @Upper bound of accumulative operating mileage for monthly inspection in

km
M @Arbitrarily large numbers
Ue @Capacity of monthly inspection at station e
W @Weight used in the objective function

Variables

xkv
i @Variable that takes value 1 when rolling stock v is assigned to utilization

path i in day k, and 0 otherwise
ykve @Variable that takes value 1 when rolling stock v performs monthly inspec-

tion at station e in day k, and 0 otherwise
zkv @Variable that takes value 1 when rolling stock v performs daily inspection

in day k, and 0 otherwise
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Dk
1v(D

k
2v) @Accumulative operating time of rolling stock v for daily (monthly)

inspection in day
Lk
2v @Accumulative operating mileage of rolling stock v for monthly inspection
in kilometer

minimize Q
∑

e∈E

∑

k∈K

∑

v∈V

ykve

+ F
∑

k∈K

∑

v∈V

zkv

+ W
∑

k∈K

∑

v∈V

(Dk
1v + Dk

2v + Lk
2v) (1)

s.t.
∑

i∈N

xkv
i = 1 ∀k ∈ K,∀v ∈ V (2)

∑

v∈V

xkv
i = 1 ∀k ∈ K,∀i ∈ I (3)

Dk
1v ≤ I1D ∀k ∈ K,∀v ∈ V (4)

Dk
1v ≤ Dk−1

1v +
∑

i∈N

Tix
kv
i

− M
∑

e∈E

ykve − Mzkv

∀k ∈ K,∀v ∈ V (5)

Dk
2v ≤ I2D ∀k ∈ K,∀v ∈ V (6)

Dk
2v ≤ Dk−1

2v +
∑

i∈N

Tix
kv
i − Mzkv

∀k ∈ K,∀v ∈ V (7)

Lk
2v ≤ I2L ∀k ∈ K,∀v ∈ V (8)

Lk
2v ≥ Lk−1

2v +
∑

i∈N

Lix
kv
i − Mzkv ∀k ∈ K,∀v ∈ V (9)

∑

i∈Ne

xkv
i ≥ ykve

∀k ∈ K,∀v ∈ V,∀e ∈ E (10)
∑

i∈N

xkv
i ≥ zkv ∀k ∈ K,∀v ∈ V (11)

∑

v∈V

ykve ≤ Ue ∀k ∈ K,∀v ∈ E (12)

∑

i∈N

Aix
(k−1)v
i =

∑

i∈N

Gix
kv
i ∀k ∈ K,∀v ∈ V (13)

xkv
i ∈ {0, 1} ∀i ∈ N,∀k ∈ K,∀v ∈ V (14)

ykve ∈ {0, 1} ∀k ∈ N,∀v ∈ V,∀e ∈ E (15)
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zkv ∈ {0, 1} ∀k ∈ K,∀v ∈ V (16)

Dk
1v ≥ 0 ∀k ∈ K,∀v ∈ V (17)

Dk
2v ≥ 0 ∀k ∈ K,∀v ∈ V (18)

Lk
2v ≥ 0 ∀k ∈ K,∀v ∈ V (19)

The major difference between the above model and the original model of Lai
et al. [1] is the treatment of deadheads. The above model prohibits deadheads
with Constraint (13), but other than that, the above model is basically identical
to their model.

4 Evaluation of the Mixed Integer Programming Model

Detailed information of input data for Lai’s experiments is given in Lai et al. [1].
They indicate that the problem with the planning horizon of 28 days (4 weeks)
was solved in CPU 6 h, whereas the manual assignment took 8 h. They showed
the results of 4-week assignments obtained manually and by the optimization
model.

We evaluated the mixed integer programming model on their instance (some
undisclosed information is estimated) using a standard commercial solver. Exper-
iments are performed on a PC with Intel(R) Core i7-4770 CPU 3.40 GHz and
8 GB memory using AMPL-Gurobi version 6.0.2 on Windows 7 Professional.

Table 1 shows, for two instances of the planning horizon of 7 days and 14 days,
upper and lower bounds, duality gap (i.e., (upper bound – lower bound)/lower
bound) * 100), the numbers of monthly and daily inspections, CPU times in
seconds to solve the linear programming relaxation optimally and also when
the best integer solution is obtained, together with the cutoff time when the
computations are aborted because of too much CPU time. We managed to obtain
a feasible integer solution when the planning horizon was 7 days, but failed to
get even a feasible integer solution when the planning horizon was extended
to 14 days. Obviously, no feasible integer solutions could be obtained when the
planning horizon is more than 14 days.

The main reason for difficulties in solving longer horizon problems is esti-
mated to be the limited number of utilization paths in which monthly inspec-
tions can be performed. This could be verified by solving problems under the

Table 1. Evaluation of model/instance of Lai et al. [1] (CPU time in seconds)

Planning
horizon

Upper
bound

Lower
bound

GAP
(%)

# of Monthly
inspections

# of Daily
inspections

LP
time

IP
time

Cutoff
time

7 12423 6864 44.8 2 83 55 3585 7749

14 − 31469 − − − 765 − 8682
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artificial condition that monthly inspections could be performed in all utilization
paths. Under this fictitious assumption, we managed to obtain feasible solutions
for the problem with the planning horizon of 28 days, even though the optimality
could not be reached at all. The duality gaps and CPU time are also very large.
Another difficulties were found from the (feasible) solution obtained under the
artificial condition that monthly inspections could be performed in any of the
utilization paths.

Figure 1 is an assignment schedule for a 21-day problem, where monthly
inspections are performed in colored (yellow) cells. Note that all monthly inspec-
tions are performed during day 1 through day 13, and no monthly inspections
are performed after day 13. Also, the right-most column of the figure shows the
cumulative operating mileage of each rolling stock at the end of the planning
horizon of 21 days. Note that the cumulative operating mileages at the end of
the horizon are very close to the upper limit of 30,000 km. This is because the
problem is formulated as a finite horizon problem, and also because the objective
function leads to less number of inspections during the planning horizon. This
is sometimes called the End Effects.

It is obvious that the model cannot obtain a feasible assignment schedule for
the “next” planning horizon starting from day 22, as ending operating mileages
of most rolling stocks are too close to the upper limit of 30,000 km.

Figure 1 is a result for the Taiwan instance, but similar results are obtained
for the Japan instance also. In the next section, we try to modify the model to
reduce end effects and also to speed up the computations.

Fig. 1. End effects (Color figure online)
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5 Modifications to the Mixed Integer Programming
Model

It appears necessary to remove or at least reduce end effects. One way to reduce
end effects is forcing to perform monthly inspections more uniformly throughout
the planning horizon. This can be achieved by setting some limits on the number
of monthly inspections.

From a series of experiments in which utilization paths that can per-
form monthly inspections are artificially adjusted, we found that “restrictive”
instances in which the number of utilization paths that can perform a monthly
inspection is very small is difficult to solve, and tends to take longer CPU time.
At the same time, we recognized a rather puzzling phenomenon that a feasible
assignment schedule that was found by solving the problem in which a monthly
inspection can be performed in a moderate number of utilization paths, could
not be found when a more relaxed problem in which a monthly inspection can
be performed in all utilization paths. That is, a feasible solution that is found in
a more restricted problem could not be found when the more relaxed problem
is solved. The optimization algorithm and the software seem to have difficulties
to find feasible (not necessarily, optimal) solutions to problems with too much
freedom, just like they have difficulties to solve very restrictive problems. We
experienced similar phenomena several times for very restrictive problems to
which feasible solutions are difficult to obtain and also for problems with too
much freedom.

Upon various experiments, we come to think that setting some forms of
lower and upper limits for the number of monthly inspections in the
assignment schedule helps reduce not only end effects but also CPU time. Many
alternative forms of setting limits can be considered, and after a series of exper-
iments, we found the following ways of setting limits are effective.

(1) Lower Limit: For each subperiod of 7 days, the lower limit on the number
of monthly inspections is set to 6. Subperiods are considered in an overlapping
fashion such as “from day 1 to day 7”, “from day 2 to day 8”, “from day 3 to
day 9”, etc. Some informal explanation for the magic number of 6 is the fact
that the number of monthly inspections per rolling stock per 7-day subperiod
is 7/30, recalling that a monthly inspection should be performed within 30 days
from the previous inspection. Since the number of rolling stocks is 26 in the
Japanese instance (the number happens to be the same in the Taiwan instance,
if we disregard 2 major maintenance utilization paths and 2 operation spare
utilization paths), the lower bound becomes 26 ∗ 7/30 = 6.06 > 6.

(2) Upper Limit: For each day in the planning horizon, the maximum
number of monthly inspections is 2.

Adding these constraints concerning lower and upper limits on the number of
monthly inspections gives equalizational effects and thus alleviates end effects.
Interestingly, the equalization with the added constraints also helps reduce CPU
time, and for the Japan instance, the problems for which feasible solutions could
be obtained have expanded from the planning horizon of 7 days to 14 days.
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6 Applications of the Mixed Integer Programming
Model: A Rolling Horizon Approach

The modified model now allows us to generate more “reasonable” assignment
schedules at least for the planning horizon of 7 days, and possibly more. This,
however, does not mean that a 7-day period optimization model can be used in
reality, as the process may not be repeated due to infeasibility. It is then neces-
sary to observe that generation of the optimization-based assignment schedule
can be repeated for some reasonable period of time.

In this section, we report results of simulation in a rolling horizon fashion to
see how long the optimization can be repeated to come up with an assignment
schedule for an extended period of time. Two alternative methods are considered
to repeat the optimization process, depending on whether planning horizons of
two “adjacent” optimization models time-wise overlap or not.

(1) Non-overlapping Horizon: Solve first the optimization model for the
specified planning horizon. Using the ending conditions of the optimization as
initial conditions, solve the optimization model for the next planning horizon.
If the length of the planning horizon is one week, solve the optimization model
for week 1. Using the final conditions of week 1 as initial conditions, solve the
optimization model for week 2, etc.

(2) Overlapping Horizon: Solve first the optimization model for the spec-
ified planning horizon as in the non-overlapping case. However, the obtained
assignment schedule is not used in its entirety, and only the earlier portion of
the schedule is adopted. Using the final conditions of the adopted portion as the
initial conditions, resolve the optimization model, and so force. For example, if
the length of the planning horizon is one week, and only the first 3 days of the
resultant schedule are adopted, check the ending conditions of day 3, and using
these conditions as initial conditions, the optimization problem is solved again
for the next one week, i.e., from day 4 to day 10. The non-overlapping horizon
can be viewed as a special case of the overlapping horizon in which the length of
the optimization planning horizon coincides with the length of the adopted part
of the assignment schedule.

Table 2 summarizes, for the Japan instance, the maximum period of time
for which a feasible assignment schedule can be generated, under the non-
overlapping horizon (Case No.1–No.3) and also for the overlapping horizon (Case
No.4–No.6). The table should be read as follows: For the planning horizon of
7 days under the non-overlapping horizon, the optimization yielded a feasible
assignment schedule only for the first 7 days only, and the optimization model
became infeasible for the next 7 days due to the ending conditions of consecutive
mileage at the end of day 7. Similarly, when the planning horizon is 5 days, the
optimization could not be repeated at all. However, when the planning horizon is
reduced to 3 days, the optimization model can be run twice to generate a feasible
schedule for the total of 6 days, but no further.

The results for the overlapping horizon cases can be read in a similar fashion
where the length of overlapping horizons is shown. For example, when the plan-
ning horizon is 7 days and the length of overlapping horizons is 3 days, the first
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Table 2. Simulation results for non-overlapping and overlapping horizons

Case no Planning
horizon

Overlapping
period

# of Times optimization
model can be solved

Maximum period
feasible schedule
is obtained

1 7 days none 1 7 days

2 5 days none 1 5 days

3 3 days none 2 6 days

4 7 days 2 days 2 12 days

5 7 days 3 days 3 15 days

6 7 days 4 days ≥10 ≥30 days

Fig. 2. Feasible assignment obtained by rolling schedule with overlapping horizon
(Color figure online)

4 days of the assignment schedule obtained by the first optimization is adopted,
and the remaining schedule of 3 days are discarded. Based on the ending condi-
tions of day 4, the optimization model is run again for 7 days, to come up with
the total of a feasible assignment schedule of 11 days. This way, we could repeat
solving optimization model three times when the length of the overlapping period
is 3 days. As we increased the length of the overlapping period to 4 days (i.e.,
discard the last 4 days of the assignment schedule of 7 days), the optimization
could be repeated at least 10 times to come up with the assignment schedule of
at least 30 days. Generally, we can observe that the shorter the planning horizon,
the longer the period for which a feasible schedule is obtained.

Finally, Fig. 2 shows a feasible assignment schedule obtained in Case No.6
of Table 2, in which we can observe monthly inspections as indicated in color
(yellow) moving from the lower left corner toward the upper right corner,
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reflecting the fact that the initial cumulative mileages of rolling stocks are higher
as we go down the figure.

7 Conclusions

The rolling stock assignment problem is considered, and it is shown that the
mixed integer programming model of Lai et al. [1] have difficulties in generating
reasonable assignment schedules when the planning horizon becomes longer. In
particular, we pointed out that end effects of the finite horizon model gave dif-
ficulties of generating unreasonable assignment schedules. Rather simple mod-
ifications of the model by adding constraints limiting the number of monthly
inspections are shown to at least reduce the difficulties due to end effects and
also help reduce CPU time of the optimization.

Simulation experiments were performed to verify that the optimization model
can be run several times in a rolling horizon fashion with the non-overlapping as
well as the overlapping horizons. This study showed the feasibility of using mixed
integer programming optimization for the rolling stock assignment problems.
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Abstract. The matching problem is one of the most studied combina-
torial optimization problems in the context of extended formulations and
convex relaxations. In this paper we provide upper bounds for the rank
of the Sum-of-Squares (SoS)/Lasserre hierarchy for a family of matching
problems. In particular, we show that when the problem formulation is
strengthened by incorporating the objective function in the constraints,
the hierarchy requires at most � k

2
� rounds to refute the existence of a

perfect matching in an odd clique of size 2k + 1.

1 Introduction

A matching in a simple graph G = (V,E) is a subset of edges M ⊆ E such
that every vertex of V is incident to at most one edge in M . The problem
of finding a matching of maximum possible cardinality is known to admit a
polynomial time algorithm first given by Edmonds [7], and it is has been exten-
sively studied in combinatorial optimization and mathematics. The Maximum
Matching problem can be formulated as an integer linear program (ILP) in
the form maxx∈{0,1}E{∑

e∈E xe | x(δ(v)) ≤ 1,∀v ∈ V }, where δ(v) denotes the
set of edges incident to a vertex v in G and x(δ(v)) =

∑
i∈δ(v) xi. Of particular

interest is the matching polytope, which is the convex hull of the feasible points
of the ILP when the graph G is complete with n vertices.

Interestingly, despite the fact that the matching problem can be solved in
polynomial time, the matching polytope cannot be described using a polynomial
number of linear inequalities and hence the problem cannot be solved using a
single linear program (LP) of polynomial size (however, the decision version
of the matching problem can be solved using a polynomial-sized LP and thus
the optimization version is solvable to arbitrary precision using a sequence of
LPs [3]). In his seminal work, Yannakakis [26] showed that no symmetric LP
of polynomial size can describe the matching polytope, and later Rothvoß [21]
showed this for any LP of polynomial size. In light of these negative results
for LPs, it is natural to ask whether the matching problem can be expressed
compactly in a framework such as semidefinite programming (SDP) that is more
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powerful than linear programming but still allows efficient optimization. Recently
Braun et al. [5] proved that no symmetric polynomial size SDP captures the
matching polytope. This result was proved by showing that among all symmetric
SDP relaxations for the matching problem, the Sum-of-Squares (SoS)/Lasserre
SDP hierarchy is optimal. More precisely, for every constant t, the t-round SoS
SDP relaxation yields at least as good an approximation as any SDP relaxation of
size nO(t). The result in [5] follows by appealing to a result by Grigoriev [10] that
shows that Ω(n)-rounds of the SoS SDP hierarchy cannot refute the existence
of a perfect matching in an odd clique of size n = 2k + 1.

A particular systematic way of studying LP and SDP formulations of com-
binatorial problems are the so-called lift-and-project methods, which produce a
sequence of convex relaxations converging to the integral polytope of the prob-
lem. Typically in such methods a starting formulation of a problem is lifted by
adding new variables and constraints, and after optimizing over the relaxation, the
solution is projected back to the space of the integral polytope. Some of the most
studied lift-and-project methods include the Lovász-Schrijver (LS) [15], Sherali-
Adams (SA) [22] and the SoS [12,17,19,23] hierarchies. It is known that the SoS
hierarchy produces stronger relaxations than the LS and SA hierarchies (see for
example [13]). Common to these hierarchies is that they are parameterized by
their level t, which is a positive integer less than or equal to n, the number of deci-
sion variables. Using for example the ellipsoid method, solving the relaxations is
possible in polynomial time if t = O(1) and hence their study is also of inter-
est in the context of approximation algorithms. Recent results show that lift-and-
project methods might produce the best possible mathematical models of a given
size for certain class of problems. For some constraint satisfaction problems, like
Max Cut, Chan et al. [6] proved that the SA hierarchy is at least as good as any
LP of the same size. On the other hand, Lee et al. [14] proved that for approxi-
mating maximum constraint satisfaction problems, SDPs of polynomial-size are
equivalent in power to those arising from constant level SoS relaxations.

Since the matching problem admits a polynomial time algorithm, but cannot
be solved using a single small LP or symmetric SDP, it is of interest to study
how lift and project methods perform when applied to the problem. We call the
rank of a lift-and-project method the smallest level t such that the method at
that level exactly captures the integral polytope of the underlying problem. In [9]
Goemans and Tunçel proved that the rank of the LS procedure for the matching
polytope of K2k+1 is at least 2k−1 and at most 2k2−1, and in [24] Stephen and
Tunçel proved that the rank is exactly k for a stronger semidefinite variant of
the LS procedure. For the SA hierarchy, Mathieu and Sinclair [16] showed that
the rank is exactly 2k − 1. Recently Worah [25] studied the performance of the
SA∗ hierarchy (a variant of the SA hierarchy) when applied to the matching
polytope. He showed that the SA∗ rank of the matching polytope is at most k.
The first result for the SoS hierarchy was given by Grigoriev [10], who showed
that the rank is Ω(k). In [1] Au and Tunçel sketch a proof that the rank of the
matching polytope of K2k+1 for the SoS hierarchy is at least �k

2 � and at most k
(the full proof is postponed for the future in a subsequent paper [2]).
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In this paper we provide upper bounds for the SoS rank of the polytopes
of a general family of matching problems. More precisely, we consider the r-
Uniform Hypergraph Maximum b-Matching, where the problem is to find
a maximal cardinality subset of hyperedges in an r-uniform hypergraph1 under
the constraint that no vertex can be incident to more than b edges. We show
that when the natural polytope of the problem is strengthened by requiring
that the objective function attains a specific value (i.e., by adding to the initial
formulation the constraint

∑
e∈E xe = c for appropriate constant c), the SoS rank

has an upper bound of max
{

b, 1
2� b|V |

r �
}

. In the case r = 2, b = 1 corresponding
to the Maximum Matching problem, the problem formulation we use is the
same used by Grigoriev [10] when the graph is K2k+1. When combining our
result with the solution of Au and Tunçel [1], we show that the SoS rank of the
considered problem is �k

2 	 or �k
2 � (when k is even the characterization is tight).

We obtain our result by showing that at the level given above the SoS hier-
archy is able to detect a contradiction between the matching constraints and
the constraint that the objective function attains a specific superoptimal value.
Alternative ways to obtain upper bounds for the hierarchy include the Decom-
position Theorem [11] (see also [20]) and a recent result [8] for unconstrained
quadratic optimization problems. We remark that our technique is more spe-
cialized than the Decomposition Theorem and yields an upper bound for the
matching problems that is tighter by a factor of 2 than what one obtains by
applying the Decomposition Theorem.

2 The SoS Hierarchy

In this section we provide a definition of the SoS hierarchy [12,19] when applied
to feasibility problems with 0/1-variables. Although feasibility testing and opti-
mization are equivalent in their complexity up to logarithmic factors, the fea-
sibility testing formulation usually produces tighter SoS relaxations since the
objective function is incorporated in the constraints. For convenience, our pre-
sentation follows the “pseudoexpectation” notation (see for example [4,18]).

Consider the following feasibility problem

p(x) = c,

qi(x) ≥ 0, ∀i = 1, ...,m,

x2
i = xi, ∀i = 1, ..., n, (1)

where p(x) is a linear function, c ∈ R and qi(x) are polynomials of degree at
most 2.

Let R[x] denote the ring of polynomials with real coefficients in variables x =
(x1, ..., xn) ∈ R

n, and R[x]d the set of polynomials of R[x] of degree at most d.

1 An r-uniform hypergraph is given by a set of vertices V and set of hyperedges E
where each hyperedge e ∈ E is incident to exactly r vertices.
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Lasserre [12] proposed the following hierarchy of relaxations of (1) parameterized
by an integer t: find a linear map Ẽ : R[x]2t+2 → R that satisfies

Ẽ(1) = 1,

Ẽ
(
u2(x)

) ≥ 0, ∀u ∈ R[x]t+1,

Ẽ
(
u2(x)(p(x) − c)

)
= 0, ∀u ∈ R[x]t,

Ẽ
(
u2(x)qi(x)

) ≥ 0, ∀u ∈ R[x]t, i = 1, ...,m,

Ẽ
(
u2(x) · (x2

i − xi)
)

= 0, ∀u ∈ R[x]t, i = 1, ..., n. (2)

The linear map Ẽ(·) is usually called degree-2t+2 pseudoexpectation operator.
For consistency, we refer to it as the level-t pseudoexpectation operator. In (2)
one looks for a linear operator over a finite dimensional space whose dimension
depends on the fixed constant t. It can be shown that (2) corresponds to solving
a semidefinite programming problem that is solvable in time (m + 1)nO(t) to
arbitrary precision using for example the ellipsoid method.

To see that (2) is a relaxation of (1), consider a feasible point x∗ to (1)
and the pseudoexpectation defined by Ẽ(f(x)) = f(x∗) which merely evaluates
any given polynomial f at the point x∗. Then Ẽ(·) is linear and satisfies the
conditions of (2) since x∗ is a feasible solution. Furthermore, it can be shown
(see for example [13]) that any feasible solution to the relaxation (2) gives a
feasible solution to (1) when the parameter t = n.

Next, we discuss some properties of the pseudoexpectation operator and
present the essential ingredients for our main result.

Lemma 1. Assume Ẽ(·) is a solution to (2), and the problem has the equality
constraint q(x) = 0 (i.e., two constraints of the form q(x) ≥ 0 and −q(x) ≥ 0)
of degree at most 2. Then Ẽ(uq) = 0 for every u ∈ R[x]2t.

Proof. It is sufficient to prove that the claim is true for monomials. Let r(x) =
xi1
1 · · · xin

n be any monomial such that r ∈ R[x]2t. We partition the product r
into two parts, v and w, such that v = xk1

1 · · · xkn
n and w = xl1

1 · · · xln
n , r = vw

and v2, w2 ∈ R[x]2t. Then, by definition since Ẽ(·) is feasible, we have

0 = Ẽ
(
(v + w)2q

)
= Ẽ

(
v2q

)
+ 2Ẽ(vwq) + Ẽ

(
w2q

)
= 2Ẽ(rq)

which proves the claim. �
The above lemma together with the requirement Ẽ

(
x2

i

)
= Ẽ(xi) (originating

from the constraints of the relaxation (2)) allows us to linearize monomials, in
other words, we can write for any polynomial u ∈ R[x]2t and index i = 1, ..., n
that Ẽ

(
x2

i u
)

= Ẽ(xiu). Hence, in what follows we only consider multilinear
polynomials (i.e., polynomials consisting of monomials of the form

∏
i∈I xi for

some I ⊆ {1, ..., n}).
In the following lemma we show that under certain conditions any feasible

solution to the relaxation (2) gives a feasible solution to (1) for parameter t
potentially much smaller than n. We apply the lemma to a family of match-
ing problems, but provide a more general statement in order to highlight the
underlying assumptions.
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Lemma 2. Let P be a feasibility problem of the form (1) with the function
p(x) =

∑n
i=1 xi. If the constraints of P imply that for the level-t pseudoexpec-

tation operator the equation Ẽ
(∏

i∈I xi

)
= 0 holds for every I ⊆ [n] of size

|I| ≥ 2t + 1, and c > 2t, then there is no feasible solution to the SoS relaxation
at level t.

Proof. Assume that there exists a level-t pseudoexpectation operator Ẽ(·) for
P. We prove by induction that Ẽ

(∏
i∈S xi

)
= 0 for any S ⊆ [n], |S| ≤ 2t.

Indeed, assume Ẽ
(∏

i∈S′ xi

)
= 0 for |S′| = r and consider some S ⊆ E such that

|S| = r − 1. Consider the relaxation of the equation
∑n

i=1 xi = c. We have by
Lemma 1

0 = Ẽ

⎛

⎝
∏

i∈S

xi

⎛

⎝
∑

j∈[n]

xj − c

⎞

⎠

⎞

⎠ = Ẽ

⎛

⎝
∏

i∈S

xi

∑

j∈S

xj +
∏

i∈S

xi

∑

j∈[n]\S

xj − c
∏

i∈S

xi

⎞

⎠

= Ẽ

(

(|S| − c)
∏

i∈S

xi

)

+ Ẽ

⎛

⎝
∏

i∈S

xi

∑

j∈[n]\S

xj

⎞

⎠ = (|S| − c) Ẽ

(
∏

i∈S

xi

)

where the last equality follows from the induction hypothesis. Since |S| − c �= 0,
we get that Ẽ

(∏
i∈S xi

)
= 0. In particular this implies that Ẽ(xi) = 0 which

contradicts the assumption that Ẽ

(∑
i∈[n] xi − c

)
= 0. �

Lemma 3. If u ∈ R[x]t+1 and Ẽ(·) is a level-t pseudoexpectation operator such
that Ẽ

(
u2

)
= 0, then Ẽ(uw) = 0 for every w ∈ R[x]t+1.

The proof of Lemma 3 can be found for example in the appendix of [4].

Lemma 4. Let u ∈ R[x]t+1 be any monomial and Ẽ(·) a level-t pseudoexpec-
tation operator such that Ẽ(u) = 0, then Ẽ(uw) = 0 for every w such that
uw ∈ R[x]2t+2.

Proof. It is sufficient to prove the claim for monomials w =
∏

i∈I xi. Write
w =

∏
k∈K xk

∏
j∈J xj for some disjoint K,J such that K ∪J = I, u

∏
k∈K xk ∈

R[x]t+1 and
∏

j∈J xj ∈ R[x]t+1. Then, since by the linearization property it
holds Ẽ(u) = Ẽ

(
u2

)
= 0, we have by Lemma 3 that Ẽ

(
u

∏
k∈K xk

)
= 0. Using

the linearization again, we have Ẽ
(
u

∏
k∈K xk

)
= Ẽ

(
u2

∏
k∈K x2

k

)
= 0 and thus

again by Lemma 3, Ẽ
(
u

∏
k∈K xk

∏
j∈J xj

)
= 0. �

3 SoS Rank Upper Bound for the r-Uniform Hypergraph
b-Matching Problem

Given an r-uniform hypergraph G = (V,E) with n vertices and m hyperedges,
each incident to exactly r vertices, a b-matching M in G is a set of edges such
that at most b edges share a common vertex. The r-Uniform Hypergraph



408 A. Kurpisz et al.

Maximum b-Matching problem in G consists of finding a b-matching of max-
imum cardinality. Below is a natural integer linear programing formulation of
the problem:

max
∑

e∈E

xe

s.t.
∑

e∈δ(v)

xe ≤ b, for each v ∈ V,

xe ∈ {0, 1} , for each e ∈ E. (3)

We consider a slightly modified formulation, where the objective function
is incorporated in the constraints. For this formulation, which is the same as
used by Grigoriev [10] in the case r = 2, b = 1 and for the complete graph,
we obtain an upper bound for the SoS rank. This modification replaces the
optimization problem with the problem of finding a feasible solution. Then,
the question of whether or not the SoS hierarchy captures exactly the integral
polytope is replaced by the question of whether or not the hierarchy is able to
detect that there is no solution with a superoptimal value. Hence, we formulate
the problem (3) as

∑

e∈E

xe = c,

∑

e∈δ(v)

xe ≤ b, for each v ∈ V,

xe ∈ {0, 1}, for each e ∈ E, (4)

where c ∈ R.
In what follows we show an upper bound for the SoS rank of (4). Informally,

we show that when the constant c is set such that (4) does not have a feasi-
ble solution, after certain level the SoS hierarchy detects that the constraint∑

e∈E xe − c = 0 is inconsistent with the other constraints.
Then, we discuss the special case when b = 1 and r = 2, which is the usual

Maximum Matching problem. More precisely, we show that for the complete
graph K4k+1, the SoS relaxation of (4) has rank exactly k. We do this by appeal-
ing to the result of Au and Tunçel [1] to argue that the rank of the SoS relaxation
of (4) is at least k and by our main result at most k.

3.1 Upper Bound for the SoS Rank for the Matching Problem (4)

In this section we prove the upper bound of max
{

b, 1
2� b|V |

r �
}

for the rank of
SoS relaxation of (4).

Lemma 5. For every SoS relaxation of (4) of level t at least b, the following
holds:

Ẽ

(
∏

e∈I

xe

)

= 0
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for every v ∈ V and every I ⊆ δ(v) such that b < |I| ≤ 2t + 2.

Proof. First consider any vertex v and a set J of b edges incident to v. Then

0 ≥ Ẽ

⎛

⎝

⎛

⎝
∏

e∈J

xe

⎞

⎠

2⎛

⎝
∑

f∈δ(v)

xf − b

⎞

⎠

⎞

⎠ = Ẽ

⎛

⎝
∑

f∈δ(v)\J

xf

∏

e∈J

xe +
∑

f∈J

xf

∏

e∈J

xe − b
∏

e∈J

xe

⎞

⎠

= Ẽ

⎛

⎝
∑

f∈δ(v)\J

∏

e∈J∪{f}
xe +

∑

f∈J

∏

e∈J

xexf − b
∏

e∈J

xe

⎞

⎠ =
∑

f∈δ(v)\J

Ẽ

⎛

⎝
∏

e∈J∪{f}
xe

⎞

⎠.

Here we used Ẽ

(∑
f∈J

∏
e∈J xexf

)
= Ẽ

(∑
f∈J

∏
e∈J xe

)
= Ẽ

(
b
∏

e∈J xe

)
, and

since Ẽ

(∏
e∈J∪{f} xe

)
= Ẽ

(∏
e∈J∪{f} x2

e

)
≥ 0, by the linearization property of

the pseudoexpectation operator, it follows that Ẽ

(∏
e∈J∪{f} xe

)
= 0.

The claim follows then by Lemma 4 and by noting that any set I ⊆ δ(v) of
size |I| > b contains a subset H of size b + 1 for which Ẽ

(∏
e∈H xe

)
= 0 by the

above reasoning. �
Lemma 6. For an r-uniform hypergraph G = (V,E) the maximum b-matching
is at most of size � b|V |

r �.
Proof. Let VM denote the vertices incident to some edge in a matching M . Let
δM (v) denote the set of edges in the matching incident to a vertex v ∈ VM . Each
vertex v ∈ VM can be incident to at most b edges, so the number of edges can
be counted as

|M | =
1
r

∑

v∈VM

|δM (v)| ≤ |VM |b
r

≤ |V |b
r

.

Since |M | is an integer, we get that |M | ≤ � |V |b
r �. It is easy to check that the

bound is tight at least when the graph is complete and b = r. �
Using the above lemma we can show that for the matching problems consid-

ered in this paper the pseudoexpectation has the property required by Lemma2.
The following is the main result of the paper.

Theorem 1. There is no feasible pseudoexpectation operator for the SoS relax-
ation of level greater than or equal to t = max

{
b, 1

2� b|V |
r �

}
for (4) when c is not

integral or greater than 2t + 1.

Proof. By Lemma 6, the size of a maximum b-matching in any r-uniform hyper-
graph G = (V,E) is at most � b|V |

r �, so in any set of edges S ⊆ E of size � b|V |
r �+1

there must be a subset I such that I ⊆ δ(v) for some v and |I| = b + 1.
Then, since t ≥ b by Lemma 5, Ẽ

(∏
e∈I xe

)
= 0. Furthermore, |S| ≤ 2t + 1

and so Lemma 4 implies that Ẽ
(∏

e∈S xe

)
= 0. Applying Lemma 2 proves the

claim. �
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3.2 Exact SoS Rank for the Matching Polytope of K4k+1

In [1] Au and Tunçel show that the SoS rank of (3) for K4k+1 is at least k. More
precisely, they show that the following operator defines a SoS relaxation of (3)
of level k − 1

Ẽ

(
∏

e∈I

xe

)

=
{∏|I|−1

i=0
1

4k−2i ,whenever the I ⊆ E is a matching
0, otherwise.

(5)

In the following we show that the pseudoexpectation operator (5) is also a fea-
sible solution to the SoS relaxation of the feasibility matching polytope (4) for
a constant c = 2k + 1

2 , when b = 1 and r = 2. Note that this choice of c
implies that every constraint of the form

∑
e∈δ(v) xe ≤ 1 has to be satisfied with

equality. Conversely, if we replace the inequalities with equalities, the constraint∑
e∈E xe = 2k + 1

2 is implied.
Thus, if we are able to show that the pseudoexpectation (5) is feasible

when the inequalities in (3) are replaced by equalities, then the pseudoexpec-
tation is also feasible for (4) when c = 2k + 1

2 . Therefore, we need to show

that Ẽ

(
u2(x)(

∑
e∈δ(v) xe − 1)

)
= 0 for every v ∈ V and for every polynomial

u ∈ R[x]k−1 for the pseudoexpectation defined in (5).

Lemma 7. For the pseudoexpectation operator (5)

Ẽ

⎛

⎝u2(
∑

e∈δ(v)

xe − 1)

⎞

⎠ = 0, for every v ∈ V for everyu ∈ R[x]k−1.

Proof. We prove that Ẽ

(∏
i∈S xi(

∑
e∈δ(v) xe − 1)

)
= 0 for any monomial

∏
i∈S xi ∈ R[x]2k−2, which implies the claim.Consider any setS ⊆ E, |S| ≤ 2k−2.

Suppose S does not form a matching in K4k+1. Then for every v ∈ V

Ẽ

⎛

⎝
∏

i∈S

xi(
∑

e∈δ(v)

xe − 1)

⎞

⎠ = Ẽ

⎛

⎝
∑

e∈δ(v)

∏

i∈S∪{e}
xi

⎞

⎠ − Ẽ

(
∏

i∈S

xi

)

= 0

since for every e ∈ δ(v), S ∪ {e} does not form a matching.
Next suppose that S forms a matching in K4k+1. This implies that for every

v ∈ V , |S ∩ δ(v)| ≤ 1. Assume first that the intersection is nonempty and let
S ∩ δ(v) = {e′}. Then

Ẽ

⎛

⎝
∏

i∈S

xi(
∑

e∈δ(v)

xe − 1)

⎞

⎠ = Ẽ

⎛

⎝
∑

e∈δ(v)\{e′}

∏

i∈S∪{e}
xi

⎞

⎠+ Ẽ

⎛

⎝
∏

i∈S∪{e′}
xi

⎞

⎠− Ẽ

⎛

⎝
∏

i∈S

xi

⎞

⎠

which is 0 since for every e ∈ δ(v) \ {e′}, S ∪ {e} does not form a matching and
thus Ẽ

(∏
i∈S∪{e} xi

)
= 0. Furthermore, S ∪ {e′} = S, so Ẽ

(∏
i∈S∪{e′} xi

)
=

Ẽ
(∏

i∈S xi

)
.
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Finally, assume S ∩ δ(v) = ∅, and let M ⊆ δ(v) such that e ∈ M if and only
if S ∪ {e} forms a matching in K4k+1. We get

Ẽ

⎛

⎝
∏

i∈S

xi(
∑

e∈δ(v)

xe − 1)

⎞

⎠ = Ẽ

⎛

⎝
∑

e∈M

∏

i∈S∪{e}
xi

⎞

⎠+ Ẽ

⎛

⎝
∑

e∈δ(v)\M

∏

i∈S∪{e}
xi

⎞

⎠− Ẽ

⎛

⎝
∏

i∈S

xi

⎞

⎠

which is 0 since for every e ∈ δ(v) \ M , Ẽ
(∏

i∈S∪{e} xi

)
= 0, and

Ẽ

⎛

⎝
∑

e∈M

∏

i∈S∪{e}
xi

⎞

⎠ = (4k − 2|S|)
|S|∏

i=0

1
4k − 2i

=
|S|−1∏

i=0

1
4k − 2i

= Ẽ

(
∏

i∈S

xi

)

.

Here we used the fact that |M | + 2|S| = |δ(v)| = 4k. Note that the level bound
for the relaxation is needed here, since it allows us to assume that |S| ≤ 2k − 2.
A larger level would permit the case |S| = 2k, and the last step of the proof
would fail. �

The above lemma shows that (5) is a feasible level k − 1 pseudoexpectation
operator for the SoS relaxation of (4) when the graph is K4k+1. On the other
hand, from Theorem1 we get that when b = 1, r = 2, the rank is at most
1
2� |V |

2 � = k. We remark that for the graph K4k+3, Lemma 7 is still true, but the
upper bound for the rank from Theorem1 is k + 1, implying that the rank is
either k or k + 1.

4 An Open Question

It is known that the convergence of the SoS hierarchy to the convex hull of
integral solutions for a given problem is sensitive to the problem formulation.
In this paper we proved that for the complete graph K4k+1 the rank of the SoS
relaxation of the formulation (4) for b = 1, r = 2 is exactly k. On the other hand,
the following theorem is shown in [1].

Theorem 2 ([1]). For the complete graph K2k+1 the rank of the SoS relaxation
of the formulation (3) for b = 1, r = 2 is at least �k

2 � and at most k.

It is natural that the stronger formulation (4) produces a potentially tighter
relaxation than the relaxation of (3). However, we are able to show the following,
which suggests that the SoS ranks of (4) and (3) might not be very different.

Lemma 8. There is no feasible symmetric pseudoexpectation operator for the
SoS relaxation of level t = 1 for (3) with b = 1 and r = 2 for the complete graph
K5 with the objective value greater than 2.

In the above lemma the symmetry of the solution refers to the situation where
the image of each monomial Ẽ

(∏
i∈I xi

)
is either only dependent on the size of

the set I or zero. In this sense, the solution (5) is symmetric.

Open question: Is the SoS rank of (3) different from the SoS rank of (4) with
the parameters b = 1, r = 2 in the case of the complete graph?
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Abstract. The quadratic assignment problem (QAP) is one of the
hardest combinatorial optimization problems. Its range of applications
is wide, including facility location, keyboard layout, and various other
domains. The key success factor of specialized branch-and-bound frame-
works for minimizing QAPs is an efficient implementation of a strong
lower bound. In this paper, we propose a lower-bound-preserving trans-
formation of a QAP to a different quadratic problem that allows for
small and efficiently solvable SDP relaxations. This transformation is
self-tightening in a branch-and-bound process.

Keywords: Quadratic assignment · Semidefinite program · Lower
bound · Branch and bound

1 Introduction

Assignment problems are some of the best-studied problems in combinatorial
optimization, the task being to find a one-to-one correspondence of n items and
n locations, i.e., an

x ∈ Πn :=

{

X ∈ Zn×n :
n∑

i=1

xik = 1∀k ∈ [n] and
n∑

k=1

xik = 1∀i ∈ [n]

}

,

such that the total cost of the assignment is minimized. If the objective function
is linear, i.e., of the form

∑
i,k cikxik, the optimum can be computed efficiently

due to Birkhoff’s theorem [1], e.g., with the Hungarian method [2] in O(n3),
or with the bipartite matching algorithm of Duan and Su [3] for integer costs
of at most C in O(n5/2 log C). However, the linear objective function restricts
the modeling power because it does not account for the interaction between the
items nor for the interactions between the locations. Therefore, Koopmans and
Beckmann investigated a variant of a quadratic objective function of the form∑

i,j,k,� cijk�xikxj� that also considers pair-wise dependencies of the input objects
[4]. In their variant, the cost factors into dependencies between items and depen-
dencies between locations, respectively. That is, cijk� = fij · dk�, or C = F ⊗ D
in matrix notation using the Kronecker product. This variant of the QAP offers
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various practical applications such as the facility location problem [5] or the key-
board layout problem [6]. Moreover, it generalizes the traveling salesman prob-
lem [7] and several further real-life combinatorial problems such as the wiring
problem [8] or hospital layout [9,10]. However, the QAP is very hard to solve
even for small instances (n ≥ 30). For example, the problem library QAPLIB
[11] still contains decades-old unsolved instances and ones that were solved only
recently by newly proposed techniques and/or the usage of massive computa-
tional power [12]. In the time of writing, its smallest unsolved instance consists of
just 30 items and locations. On the theoretical side, Queyranne showed that the
QAP is NP-hard to approximate within any constant factor, even if the cost can
be factorized to a symmetric block diagonal flow matrix and a distance matrix
describing the distances of a set of points on a line [13]. Detailed surveys on the
Quadratic Assignment Problem can be found in [14–16].

A systematic approach for solving a QAP is to compute relaxations in a
branch-and-bound framework. One of the earliest published lower bounds, the
Gilmore-Lawler bound [17,18] for the Koopmans-Beckmann variant, reduces the
problem to a linear assignment problem. However, it deteriorates quickly with
increasing instance sizes [19]. On the other hand, already the first level of the
reformulation linearization technique (RLT) by Frieze and Yadegar [20] produces
strong lower bounds. But this comes at the expense of introducing n4 many
binary variables yijk�, i.e., one for each quadratic term occurring in the objective
function. Thus, it takes a lot of resources (both in terms of CPU and RAM)
to solve LP-relaxations for instances of practical input size. In contrast, the
formulation of Kaufman and Broeckx [21] only contains O(n2) variables, and
thus, its LP-relaxation can be solved efficiently. Moreover, the primal heuristics of
state-of-the-art MIP-solvers are able to quickly produce strong incumbents with
this formulation. However, the lower bounds obtained by relaxing the integrality
constraints of this formulation are very weak such that they often do not even
surpass the trivial lower bound of

∑
i,j min{cijk� : k, � ∈ [n]} in reasonable time,

which makes it impractical to use this formulation alone to close the gap between
upper and lower bounds in a branch-and-bound process.

Furthermore, there are various relaxations of the QAP as a semidefinite
program (SDP). For example, SDP-relaxations for the non-convex constraint
Y = X ⊗ X were introduced in [22,23]. Recent approaches (e.g., [24]) have
shown that these approaches can often efficiently produce good lower bounds
for the QAP and beat common linear relaxations. We follow a different app-
roach since we do not derive our SDP from this formulation, but transform the
QAP to a different quadratic problem beforehand. In that sense, our approach
is somewhat orthogonal to recent other SDP relaxations.

1.1 Our Contribution

In this paper, we propose a novel SDP derived from a lower-bound-preserving
transformation of a QAP instance to an auxiliary quadratic minimization prob-
lem with only O(n log n) variables. SDP-relaxations with that few variables can be
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solved efficiently with modern interior point methods for conic optimization prob-
lems. Moreover, it is straight forward to integrate our relaxation in a branch-and-
bound framework.While branching on single assignment variables typically results
in very unbalanced branch-and-bound trees, our approach avoids this by design.
To this end, we introduce the concept of cut pseudo bases, which has not been
used — to the best of our knowledge — in this context before. Our goal was to
develop an approach that still works with limited computational resources, e.g.,
on a laptop, for the cases when the lower bounds provided by Kaufman-Broeckx
are too weak and when it is already infeasible to solve the LP-relaxation of
RLT1. Furthermore, we present experimental results for instances with n ≥ 25
in which we outperform both lower bounds mentioned above in terms of effi-
ciency and effectiveness. The bounds produced by our SDP always exceed —
just by construction — the trivial lower bound mentioned above.

2 A Novel Lower Bound Using SDP

Let n denote, throughout this paper, the respective number of items and loca-
tions. We assume for the sake of presentation that n is a power of 2. This is not
a restriction because we can pad n with dummy items and locations. Moreover,
the dummy items can be projected out easily in an implementation so that this
also does not harm its performance.

The derivation is done in two steps. First, we design a new quadratic program
that lower bounds the QAP and allows for a balanced branching tree. In the
second step, we relax the new problem to an SDP.

Concerning the goal of achieving balanced branching trees, we revisit the
well-known problem of branching on single assignment variables. Setting xik to
1 means fixing item i to location j, which is a very strong decision that affects
all other variables in the i-th row or k-th column, forcing them to 0. On the
other hand, if we set xik to 0, we just decide not to fix i to j. However, there
are still n− 1 other possible locations for i, so we basically did not decide much.
This yields highly imbalanced branching trees as it is much more likely to prune
in the 1-branches of a branch-and-bound process. This undesirable effect can
be avoided by the well-known idea of generalized upper-bound branching (see
Sect. 7 of [25]). Inspired by this, we consider a similar approach illustrated in the
following IP formulation with n auxiliary z-variables:

minimize
n∑

i,j,k,�=1

cijk�xikxjl

s.t.
n∑

i=1

xik = 1 ∀k ∈ [n]

n/2∑

k=1

xik = zi

n∑

k=n/2+1

xik = 1 − zi ∀i ∈ [n]

xik ∈ {0, 1} ∀i, k ∈ [n]
zi ∈ {0, 1} ∀i ∈ [n].
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If we branch on the z-variables instead of the assignment variables, our
branching tree is much more likely to be balanced because either choice is equally
strong. However, it is not sufficient to branch only on these z-variables because
too many degrees of freedom still remain open even after all z-variables are set.
If we want to completely determine the x-variables and thus be able to project
them out, we should introduce further binary z-variables. To this end, we intro-
duce cut pseudo bases.

2.1 Introduction of Cut Pseudo Bases

The key idea of cut pseudo bases is the usage of cuts in the complete graph with
the locations as nodes. Consider a balanced subset of the nodes, i.e., one of size
n/2. Instead of assigning an item to a certain location, we now assign it to one of
the “halves” of the location space. We repeat this cutting of the location space
until we reach a state where — after a finite number of assignments — every
item can be uniquely mapped to a single location. Moreover, we cut the space
in a balanced way, i.e., we require that each side of the cut is equally large. Let
us formalize these requirements.

Definition 1. A set of cuts over the location space such that

– all cuts are balanced,
– all singleton locations can be expressed by a linear combination of cuts, and
– it is inclusion-wise minimal

is called a cut pseudo base.

Clearly, the size of a cut pseudo base is log2 n when n is a power of 2 and
thus �log2 n� in general by the padding argument. To illustrate the concept of a
pseudo base, consider the following example.

Example 1. Enumerate the n = 2k locations by 0, . . . , n − 1, and consider the
binary decomposition of these numbers. For every bit b = 0, . . . , k − 1, we define
a cut that separates all locations with numbers differing in the b-th bit. Then,
this collection of cuts forms a cut pseudo base.

Note that any arbitrary cut pseudo base can be transformed to the binary decom-
position pseudo base by a permutation of the locations. Hence, we will employ
this cut pseudo base as a reference throughout this paper for the sake of presen-
tation and simplicity.

2.2 Exchanging Assignment Variables by Cut Variables

The cut pseudo bases introduced in the previous subsection are balanced by def-
inition, meaning that assigning an item to one side of a cut in the pseudo base is
just as effective as assigning it to the other side. However, the decision of whether
a particular item should be assigned to a fixed location is highly unbalanced,
as we have already discussed. Hence, our goal is to get rid of the assignment
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variables and introduce the cut variables instead. This will also benefit the num-
ber of binary variables which decreases from n2 assignment variables to n log2 n
cut variables. Let (Sb)b∈[B] be an arbitrary but fixed cut pseudo base. Note that
B = �log2 n�, otherwise, (Sb) cannot be a cut pseudo base. We introduce the
variables zb

i ∈ {0, 1} for every cut Sb, indicating whether i is assigned to the 0-
or 1-side of the cut Sb, i.e., to the outside or the inside, respectively. We relate
them to the assignment variables in the following manner.

xij = 1 ⇔ ∀b ∈ [B] j ∈ zb
i -side of cut Sb

We consider an arbitrary cut b in the following and omit the superscript b to
simplify the notation and thereby improve readability. Observe that

zizj + zi(1 − zj) + (1 − zi)zj + (1 − zi)(1 − zj) = 1

holds for any zi, zj ∈ R and that for a binary solution exactly one of the four
terms is 1, and the others vanish.

Thus, we obtain for any assignment x and the corresponding binary
z-variables that∑

i,j,
k,�

cijk�xikxj�

=
∑

i,j [zizj + zi(1 − zj) + (1 − zi)zj + (1 − zi)(1 − zj)]
∑

k,� cijk�xikxj�

≥ ∑
i,j zizj ·min{∑k,� cijk�xikxj� : x ∈ Π

(11)
ij }

+
∑

i,j zi(1 − zj) ·min{∑k,� cijk�xikxj� : x ∈ Π
(10)
ij }

+
∑

i,j(1 − zi)zj ·min{∑k,� cijk�xikxj� : x ∈ Π
(01)
ij }

+
∑

i,j(1 − zi)(1 − zj) ·min{∑k,� cijk�xikxj� : x ∈ Π
(00)
ij }

where Π
(11)
ij denotes the set of all assignments in which i and j are both assigned

inside the cut, where Π
(10)
ij denotes the set of all assignments in which i is

assigned inside the cut and j is assigned to the outside, and so on. In the
following, we argue that this is indeed a valid lower bound. To this end, let
c
(αβ)
ij := min{∑k,� cijk�xikxj� : x ∈ Π

(αβ)
ij } denote the optimum objective values

of the corresponding optimization problems for α, β ∈ {0, 1}, and observe that
c
(αβ)
ij only contributes to the right-hand side if zi = α and zj = β.

This yields an objective function that is free of x-variables. Furthermore, the
minimum of the original objective taken over all x ∈ Π is bounded from below
by the minimum over all z that determine an assignment.

At first glance, it seems that we have to solve 4n2 QAPs to compute the
coefficients for the new objective function. However, a close inspection of the
subproblems reveals that c

(αβ)
ij is determined by the minimum cijk� over all

k, � such that the b-th bits of k and � are α and β, respectively. This can be
computed efficiently for each pair ij by a single scan over all cijk�. Note that in
the Koopmans-Beckmann variant of a QAP, we have cijk� = fij ·dk�, and thus, it
suffices to scan over the distance pairs dk� of the locations k and �. Furthermore,
such a single scan can also take additional constraints into account, e.g., excluded
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pairs due to a branching process. Hence, the lower bound of our approach is
self-tightening in a branch-and-bound process. In every branching step, we can
update our cost estimation for this particular setting of excluded pairs.

2.3 Towards an SDP

In order to obtain a reasonable SDP relaxation, we apply the typical transfor-
mation to map {0, 1}-variables to {−1, 1}-variables. That is, we use the linear
transformation zi = 1+yi

2 . This implies that 1 − zi = 1−yi

2 . Plugging this into

c
(11)
ij zizj + c

(10)
ij zi(1 − zj) + c

(01)
ij (1 − zi)zj + c

(00)
ij (1 − zi)(1 − zj)

yields

1∑

α,β=0

c
(αβ)
ij · 1−(−1)αyi

2 · 1−(−1)βyj

2 =
1∑

α,β=0

c
(αβ)
ij · 1−(−1)αyi−(−1)βyj+(−1)α+βyiyj

4

=
c
(11)
ij +c

(10)
ij +c

(01)
ij +c

(00)
ij

4 +
c
(11)
ij +c

(10)
ij −c

(01)
ij −c

(00)
ij

4 · yi

+
c
(11)
ij −c

(10)
ij +c

(01)
ij −c

(00)
ij

4 · yj +
c
(11)
ij −c

(10)
ij −c

(01)
ij +c

(00)
ij

4 · yiyj .

We separate and symmetrize the constant, linear, and quadratic terms such
that we can write the total sum over all i, j in matrix-vector notation as

yT Cy + cT y + γ

with

Cij :=
c
(11)
ij + c

(11)
ji − c

(10)
ij − c

(10)
ji − c

(01)
ij − c

(01)
ji + c

(00)
ij + c

(00)
ji

8

ci :=
1
4

n∑

j=1

c
(11)
ij + c

(11)
ji + c

(10)
ij − c

(10)
ji − c

(01)
ij + c

(01)
ji − c

(00)
ij − c

(00)
ji

γ :=
1
4

n∑

i=1

n∑

j=1

c
(11)
ij + c

(10)
ij + c

(01)
ij + c

(00)
ij .

To relax the quadratic part in the objective using a semidefinite matrix, we
use a standard fact about the trace, i.e., yT Cy = tr(yT Cy) = tr(CyyT ). Thus,
we replace the quadratic term yT Cy in the objective function by the Frobenius
product1 C •Y and hope that Y = yyT . However, such a rank-1-constraint is not
convex, and we relax it to Y � yyT , which means that Y − yyT is positive semi-
definite. Since the latter is a Schur complement, this condition is equivalent to

(
1 yT

y Y

)

� 0.

1 The Frobenius product A•B := tr(ATB) =
∑

i,j aijbij is the standard inner product
on the space of n × n matrices used in semi-definite programming.
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To accomplish this, we could augment the matrix Y by a 0-th row and column,
or we could also use an item that has already been fixed w.r.t. the side of the
cut b under consideration, e.g., use one of the dummy items introduced to fill
up the number of items to a power of 2. That is, if yi = 1 is already fix for
some item i, we may require Yij = yj for all j and Y � 0. The former constraint
can be written as eie

T
j • Y − eT

j y = 0, which modern SDP solvers such as Mosek
[26] directly allow without a transformation to an equivalent block-diagonal pure
SDP formulation. If yi = −1, we obtain the constraints eie

T
j • Y + eT

j y = 0 for
all items j instead.

In the following, we list further constraints that we may add to the SDP to
improve the strength of the lower bound on the QAP. Recall that we omitted
any superscripts to identify the cut under consideration. However, we will argue
with the complete cut pseudo base in the following, so we use Y b for the matrix
corresponding to cut b and yb to identify the linear terms corresponding to this
cut. Similarly, we shall use Cb, cb, and γb to denote the corresponding parts in
the objective function. We emphasize again that the cut pseudo base in use is
fixed and contains B = �log 2(n)� many cuts.

Domain of Y . We make sure that every yb
i ∈ {−1, 1}. For the linear variables,

we relax this constraint to yb
i ∈ [−1, 1], but in the SDP, we can require something

stronger. By using the fact that
(
yb

i

)2 = 1, we can add the constraint Y b
ii = 1

for all b ∈ [B], i ∈ [n]. Formally, we do this by the SDP constraint Ei • Y b = 1
where Ei has a 1 on index (i, i) and 0s everywhere else.

Injectivity of the Assignment. We ensure that the assignment is injective,
i.e., that no two different keys are assigned to the same spot. In terms of y
variables, we require for all distinct i and j that yb

i be different from yb
j for at

least one b. We have yb
i = yb

j if and only if the corresponding entry in Y , namely
Y b

ij , is 1. Hence, we add the constraint

B∑

b=1

Y b
ij ≤ B − 1 ⇔

(
B∑

b=1

1
2
Y b

ij +
1
2
Y b

ji

)

≤ B − 1.

Note that in an integer optimal solution, the constraints above already ensure
all the properties, we want to have. However, we have found that it is beneficial
for the relaxed SDP to add the following constraint.

Zero Row Sums. In the original formulation, injectivity implies that the num-
ber of keys assigned to one side of a cut is as large as the number of keys assigned
to the opposite side. Recall that we are assuming n = 2k, and we have a cut
pseudo base. Hence, the implication above indeed holds. In terms of y variables,
this can be modeled as the constraint

n∑

j=1

yb
j = 0
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or as
n∑

j=1

Y b
ij =

n∑

j=1

yb
i y

b
j = yi

b ·
n∑

j=1

yb
j

!= 0

in the SDP for an arbitrary fixed i ∈ [n]. Hence, taking the row sum of Y b in
this case yields the term we are looking for.

Total Entry Sum. We have observed that we can condense the zero-sum-
constraints to a single one by exploiting the positive semidefiniteness of Y .

Lemma 1. Let Y ∈ Rn×n be positive semidefinite. If 11T • Y = 0, then for any

i ∈ [n], it holds that
n∑

j=1

Y b
ij = 0.

Proof. Observe that
0 = 11T • Y = 1T Y 1.

Since Y is positive semidefinite, 1 is an eigenvector of Y with eigenvalue 0, which
implies that Y 1 = 01 = 0 and proves the claim.

Hence, instead of imposing n constraints for every single row of Y , we have
shown that one constraint is enough to fix all row sums to 0.

2.4 Alternative Objective Functions for the SDP

In the previous subsection, we first fixed some cut b and then derived a lower
bound on the minimum QAP objective value by minimizing an SDP relaxation.
That is, we obtain a valid lower bound by solving an SDP with the objective
function Cb • Y b + (cb)T yb + γb, subject to the constraints mentioned above.
However, considering only one cut of the pseudo base in the objective could be
weak because costs could be evaded by charging them to the other cuts of the
pseudo base that are not accounted for in the objective.

Averaging over the Cut Pseudo Base. Since the lower bound holds for
arbitrary cuts b, it also holds for the average over all cuts in the cut pseudo
base, i.e., the objective becomes

1
B

B∑

b=1

Cb • Y b + (cb)T yb + γb.

There is no need to add further auxiliary variables or constraints that may harm
the numeric stability of an SDP-solver.
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Taking the Maximum. An even stronger lower bound is obtained by taking
the maximum over the cuts of the pseudo base because the arithmetic mean
never exceeds the maximum. The standard way to model the maximum over the
cut pseudo base is to introduce a new linear variable - say z - and add log2 n
many constraints, ensuring that z is at least the cost of each cut in the pseudo
base. However, the Mosek solver (v7.1.0.53) often stalled with this objective
function, in contrast to the averaging objective.

We are now ready to plug this SDP into a branch-and-bound framework of
the QAP. Recall that we branch on the cut variables. However, as soon as we
encounter an integral solution, there is a one-to-one-correspondence between the
cut variables and the original assignment variables. This means, the cost of every
incumbent is calculated with the original formulation. Hence, the framework will
produce an optimal solution for any general QAP.

3 Evaluation

We compare our approach to two classical linearizations, the Kaufman-Broeckx
linearization [21] and the first level of the Reformulation Linearization Technique
(RLT1) [20]. We use the commercial state-of-the-art solver Gurobi (v6.5.1) [27]
to solve the linearizations, and we use Mosek (v7.1.0.53) [26] as the SDP solver.
All three approaches are embedded in a branch-and-bound framework. We will
report the best known lower bound produced by running the branch-and-bound
process for one hour.

We ran experiments on a compute server restricted to one Intel (R) Xeon
(R) E5-2680 2.50 GHz core and a limited amount of 8 GB RAM running Debian
GNU/Linux 7 with kernel 3.18.27.1. The code was compiled with gcc version
4.7.2 using the -03 flag. The instances are taken from the QAPLIB home-
page [11]. The names of the instances are formed by the name of the author
(first three letters), the number of items, followed by a single letter identifier.
The test instances cover a wide range of QAP applications including keyboard
assignment, hospital layout and several further graph problems.

Figure 1 shows the average lower bound of the different approaches after one
hour of computation time. We decided to average the lower bounds of a certain
instance set because the single test cases within that set were similar and all
approaches behaved consistently there. One can see that RLT1 performs quite
well if we have enough computation power to compute bounds there (see tai or
had, for example). However, many test instances are too large for our computing
resources to compute even the RLT1 root relaxation. In these hard cases, our
approach outperforms both linear relaxations by several orders of magnitude.

The nug instances are a special instance set because this set contains test
cases of increasing size. Therefore, the behavior of the three approaches varies
throughout the different test cases and the average reported in Fig. 1 cannot
reflect the overall behavior for nug. To this end, we report a detailed description
of the whole nug test set in Fig. 2. This also shows how our framework scales
with increasing n. At the beginning, for small n, RLT1 can solve the instances
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Fig. 1. Averaged QAPLIB instances after one hour of computation (Color figure online)

Fig. 2. The Nugent instances with 12 to 30 items after one hour of computation, RLT1
fails to solve n ≥ 15 within this time and resource limit.

even to optimality, which meets our expectations. For instances of small size, the
advantages of our approach in efficiency are just too small to make up for the
loss of precision caused by the distance approximations. The trend changes as
soon as n grows above 16. The RLT1 formulations are already too large to solve
the root relaxation after one hour of computation with a single thread and the
bounds of the Kaufman-Broeckx relaxation are lower than ours. This confirms
the use-case that we proposed in the introduction of this paper.

4 Future Work

We plan to work on several heuristics to produce better incumbents during the
branching, e.g., using randomized rounding. The current version fully focuses on
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producing good lower bounds. Adding good primal heuristics could improve the
framework further. Furthermore, it is still open whether our formulation can be
improved by further cutting planes. An idea is to add triangle inequalities. Since
these are potentially many additional constraints, we might consider the idea of
dynamic constraint activation, which does [28], for example.

Moreover, we plan to tackle some numerical stability issues in our framework.
Although our problem satisfies Slater’s condition, it is clear that the primal SDP
never contains an interior point (because the balanced constraints force at least
one eigenvalue to 0). Recent approaches (e.g., [22]) consider this problem and
reformulate the SDP they use such that both primal and dual problems are
strictly feasible in order to improve the numerical stability. We will investigate
whether it is possible to adapt this idea to our framework.
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Abstract. In this paper, we introduce the Maximum Matrix Contrac-
tion problem, where we aim to contract as much as possible a binary
matrix in order to maximize its density. We study the complexity and
the polynomial approximability of the problem. Especially, we prove this
problem to be NP-Complete and that every algorithm solving this prob-
lem is at most a 2

√
n-approximation algorithm where n is the number

of ones in the matrix. We then focus on efficient algorithms to solve the
problem: an integer linear program and three heuristics.

Keywords: Complexity · Approximation algorithm · Linear
programming

1 Introduction

In this paper, we are given a two dimensional array in which some entries contain
a dot and others are empty. Two lines i and i + 1 of the grid can be contracted
by shifting up every dot of line i + 1 and of every line after. Two columns j
and j + 1 of the grid can be contracted by shifting left the corresponding dots.
However, such a contraction is not allowed if two dots are brought into the same
entry. The purpose is maximize the number of neighbor pairs of dots (including
the diagonal ones). An illustration is given in Fig. 1.
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• •
•
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2

1

1 2 3 4

(a)

• • •
• •
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(b)

• • •
• •
•

3/4

2

1

1/2 3 4

(c)

Fig. 1. In Fig. 1.a, we give a 4 × 4 grid containing 6 dots. Valid contractions are repre-
sented by dotted lines and columns. It is not allowed to contract lines 1 and 2 because
the two dots (1;1) and (2;1) would be brought into the same entry. Figure 1.b is the
result of the contraction of lines 3 and 4 and Fig. 1.c is the contraction of columns 1
and 2. The number of neighbor pairs in each grid is respectively 4, 7 and 10.
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Motivation. This problem has an application in optimal sizing of wind-farms [1]
where we must first define, from a given set of wind-farms location, the neighbor-
hood graph of this set, i.e. the graph such that two wind farms are connected if
and only if their corresponding entries in the grid are neighbors. More precisely,
given a set of points in the plane, we consider a first grid-embedding such that
any two points are at least separated by one vertical line and one horizontal
line. Then, we consider the problem of deciding which lines and columns to con-
tract such that the derived embedding maximize the density of the grid, i.e., the
number of edges in the corresponding neighbor graph.

Contributions. In this paper, we formally define the grid contraction problem as
a binary matrix contraction problem in which every dot is a 1 and every other
entry is 0. We study the complexity and the polynomial approximability of the
problem. Especially, we prove this problem to be NP-Complete. Nonetheless,
every algorithm solving this problem is at most a 2

√
n-approximation algorithm

where n is the number of 1 in the matrix. We then focus on efficient algorithms
to solve the problem. We first investigate the mathematical programming formu-
lation of MMC. We give two formulations: a straightforward non-linear program
and a linear program. Secondly, we describe three polynomial heuristics for the
problem. We finally give numerical tests to compare the performances of the
linear program and each algorithm.

In Sect. 2, we give a formal definition of the problem. In Sect. 3, we prove that
the corresponding decision problem is NP-complete, then we give, in Sect. 4 some
results about approximability of the problem. In Sect. 5 we derive a linear integer
program for the model and run some experiments, then in the next section, we
present and compare the three different heuristics.

2 Problem Definition

The following definitions formalize the problem we want to solve with binary
matrices. A binary matrix is a matrix with entries from {0, 1}. Such a matrix
modelizes a grid in which each dot is a 1 in the matrix.

Definition 1. Let M be a binary matrix with p lines and q columns. For each
i ∈ [[1; p − 1]]1 and each j ∈ [[1; q − 1]], we define the line contraction matrix Li

and the column contraction matrix Cj by

Li =

1 2 i p
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1 0 · · · 0 0 0 0 0 · · · 0 1
0 1 · · · 0 0 0 0 0 · · · 0 2
...
...
. . .

...
...
...
...
...
. . .

...
0 0 · · · 1 0 0 0 0 · · · 0
0 0 · · · 0 1 1 0 0 · · · 0 i
0 0 · · · 0 0 0 1 0 · · · 0
0 0 · · · 0 0 0 0 1 · · · 0
...
...
. . .

...
...
...
...
...
. . .

...
0 0 · · · 0 0 0 0 0 · · · 1
0 0 · · · 0 0 0 0 0 · · · 0 p

Cj =

1 2 j q
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1 0 · · · 0 0 0 0 · · · 0 0 1
0 1 · · · 0 0 0 0 · · · 0 0 2
...
...
. . .

...
...
...
...
. . .

...
...

0 0 · · · 1 0 0 0 · · · 0 0
0 0 · · · 0 1 0 0 · · · 0 0 j
0 0 · · · 0 1 0 0 · · · 0 0
0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0
...
...
. . .

...
...
...
...
. . .

...
...

0 0 · · · 0 0 0 0 · · · 1 0 q

.

1 The meaning of [[p; q]] is the list [p, p + 1, . . . , q].
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The size of Li is p × p and the size of Cj is q × q.

Definition 2. Let M be a binary matrix of size p × q, I = [i1, i2, . . . , i|I|] a
sublist of [[1; p − 1]] and J = [j1, j2, . . . , j|I|] a sublist of [[1; q − 1]]. We assume I
and J are sorted. We define the contraction C(M, I, J) of the lines I and the
columns J of M by the following matrix

C(M, I, J) =

⎛

⎝
|I|∏

k=1

Lik

⎞

⎠ · M ·
⎛

⎝
1∏

k=|J|
Cjk

⎞

⎠ .

Example 1. Let M be the matrix corresponding to the grid of Fig. 1.a. The
following contraction gives the grid 1.c:

C(M, [3], [1]) = L3 · M · C1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎝

1 0 0 0
1 0 1 0
0 0 1 0
0 1 0 1

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎝

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 0 0 0
1 1 0 0
1 1 1 0
0 0 0 0

⎞

⎟
⎟
⎠

Definition 3. A contraction C(M, I, J) is said valid if and only if C(M, I, J)
is a binary matrix.

Example 2. The following contraction is not valid:

C(M, [], [1, 2]) = M · C2 · C1 =

⎛

⎜
⎜
⎝

1 0 0 0
1 0 1 0
0 0 1 0
0 1 0 1

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎝

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 0 0 0
2 0 0 0
1 0 0 0
1 1 0 0

⎞

⎟
⎟
⎠

Definition 4. Let M be a binary matrix of size p×q. The density is the number
of neighbor pairs of 1 in the matrix (including the diagonal pairs). This value may
be computed with the following formula:

d(M) =
1
2

·
∑

i,j

(

Mi,j ·
(

1∑

δ=−1

1∑

γ=−1

Mi+δ,j+γ

)

− 1

)

where we define that Mi,j = 0 if (i, j) /∈ [[1; p − 1]] × [[1; q − 1]]

Problem 1. Maximum Matrix Contraction problem (MMC). Given a binary
matrix M of size p×q such that n entries equal 1 and p ·q−n entries equal 0, the
Maximum Matrix Contraction problem consists in the search for two sublists I
of [[1; p− 1]] and J of [[1; q − 1]] such that the contraction C(M, I, J) is valid and
maximizes d(C(M, I, J)).

We study in the next two sections the complexity and the approximability
of this problem.
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3 Complexity

This section is dedicated to proving the NP-Completeness of the problem.

Theorem 1. The decision version of (MMC) is NP-Complete.

Proof. Let M be an instance of MMC. Given an integer K, a sublist I of [[1; p−1]]
and a sublist J of [[1; q − 1]], we can compute in polynomial time the matrix
C(M, I, J) and check if the contraction is valid and if d(C(M, I, J)) ≥ K. This
proves the problem belongs to NP.

In order to prove the NP-Hardness, we describe a polynomial reduction from
the NP-Complete Maximum Clique problem [2]. Lets G(V,E) be an instance of
the Maximum Clique problem, we build an instance M of MMC with p = q =
(4|V | + 6). We arbitrarily number the nodes of G : V = {v1, v2, . . . v|V |}.

Let li and ci be respectively the 6+4(i−1)+1-th line and the 6+4(i−1)+1-
th column. We associate the four lines li, li +1, li +2, li +3 and the four columns
ci, ci + 1, ci + 2, ci + 3 to vi. The key idea of the reduction is that each node
v is associated with two 1 of the matrix. If we choose the node v to be in the
clique, then, firstly, the two 1 associated with v are moved next to each other
and this increases the density by one; and secondly, for every node w such that
(v, w) �∈ E, the two 1 associated to cannot be moved anymore.

A complete example is given in Fig. 2. For each node vi, we set Mli,ci =
Mli+2,ci+2 = 1. If the nodes vi and vj are not linked with an edge, we set
Mli,cj = Mli+1,cj+1 = 1. If, on the contrary, there is an edge (vi, vj), then the
intersections of the lines of vi and the column of vj is filled with 0. Finally, we
add some 1 in the six first columns and the six first lines of the matrix such that
only the contractions of the line li and the column ci for i ∈ [[1;n]] are valid.

The initial density in this matrix is d0 = 11 + 6|V | + (|V |(|V | − 1) − 2|E|).
Note that, in order to add one to the density of the matrix, the only way is to
choose a node vi and contract the column ci and the line li. If the column ci is
contracted and if (vi, vj) �∈ E, the two entries Mlj ,ci and Mlj+1,ci+1 are moved
on the same column. Similarly, if the line li is contracted, the two entries Mli,cj

and Mli+1,cj+1 are moved on the same line. This prohibits the contraction of
the line lj and the column cj . Consequently, in order to add C to the density,
we must find a clique of size C in the graph and contract every line and column
associated with the nodes of that clique.

Thus, there is a clique of size K if and only if there is a feasible solution for
M of density d0 + K. This concludes the proof of NP-Completeness.

The Maximum Clique problem cannot be approximated to within |V | 1
2−ε

in polynomial time unless P = NP [3]. Unfortunately, the previous reduction
cannot be used to prove a negative approximability result occurs for MMC.
Indeed, the density of any feasible solution of the MMC instance we produce is
between d0 +1 and d0 + |V |, with d0 = O(|V |2 −|E|). Consequently, the optimal
density is at most (1 + 1/|V |) times the worst density. A way to prove a higher
inapproximability ratio for MMC would be to modify the reduction such that
the gap between the optimal solution and another feasible solution increases.
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Fig. 2. This figure illustrates, on the left, a graph in which we search for a maximum
clique and, on the right, the matrix obtained built with the reduction. We do not show
the 0 entries of the matrix for readability. The dotted lines and columns represent the
valid contractions.

In the next section, we prove that a n
1
2−ε harness ratio would almost tight

the approximability of MMC as there exists a 2
√
n-approximation algorithm.

4 Approximability

In this section we define the notion of maximal feasible solution and prove that
every algorithm returning a maximal feasible solution is a 2

√
n-approximation

where n is the number of 1 in the matrix.

Definition 5. We say a feasible solution is maximal if it is not strictly included
in another feasible solution. In other words, when all the lines and columns of
that solution are contracted, no contraction of any other line or column is valid.

Lemma 1. Let M be an instance of MMC, (I, J) be a maximal feasible solution
and M ′ = C(M, I, J) then 2

√
n ≤ d(M ′) ≤ 4n.

Proof. A 1 in a matrix cannot have more than 8 neighbors, thus the density of
M ′ is no more than 4n.

Let p′ and q′ be respectively p−|I| and q−|J |. For each line i ∈ [[1, p′ −1]] of
M ′, there is a column j such that M ′

i,j = M ′
i+1,j = 1, otherwise we could contract

line i and (I, J) would not be maximal. Similarly for each column j ∈ [[1, q′ −1]].
Thus d(M ′) ≥ p′ + q′ where p′ × q′ is the size of M ′. From the inequality of
arithmetic and geometric means, we have p′ + q′ ≥ 2

√
p′ · q′ and, as M ′ contains

n entries such that M ′
i,j = 1, p′ · q′ ≥ n. Thus p′ + q′ ≥ 2

√
n.
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From the upper bound and the lower bound given in the previous lemma, we
can immediately prove the following theorem.

Theorem 2. An algorithm returning any maximal solution of an instance of
MMC is a 2

√
n-approximation.

Theorem 2 proves a default ratio for every algorithm trying to solve the
problem. Note that there are instances in which the ratio between an optimal
density and the lowest density of a maximal solution is O(

√
n). An example is

given in the external report in [4]. In Sect. 6, we describe three natural heuristics
to solve the problem. We show in [4] that their approximability ratio is O(

√
n)

by exhibiting a worst case instance.
Determining if MMC can be approximated to within a constant factor is an

open question. As it was already pointed at the end of Sect. 3, the problem may
possibly be not approximable to within n

1
2−ε and this would almost tight the

approximability of MMC.
The next two sections focus on efficient algorithms to solve the problem. The

next section is dedicated to the mathematical programming methods.

5 Linear Integer Programming

For i ∈ [[1; p − 1]] (resp. j ∈ [[1; q − 1]] ), let xi (resp. yj) be the binary variable
such that xi = 1 (resp. yj = 1) if and only if line i is contracted, i.e. i ∈ I (resp.
column j is contracted, i.e. j ∈ J). From the definitions of Sect. 2, we can model
the MMC problem by the following non-linear binary program:

(∗)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
x,y

d(A)

A =
p−1∏

i=1

((Li − Ip)xi + Ip)M
1∏

j=q−1

((Cj − Iq)yj + Iq)

Ai,j ≤ 1, ∀(i, j) ∈ [[1; p − 1]] × [[1; q − 1]]
xi, yj ∈ {0, 1}

where Ip denotes the identity matrix of size p and where the formula of d(A) is
the one given in Definition 4.
Although this formulation is very convenient to write the mathematical model,
it is intractable as we would need to add an exponential number of linearizations:
for all subset I, J ⊆ [[1; p − 1]] × [[1; q − 1]] we would need a variable xI =

∏

i∈I

xi

and yI =
∏

j∈J

yj .

We now present a linear integer programming model for the MMC problem:
instead of linearizing the products

∏

i∈I

xi and
∏

j∈J

yj , we cut the product
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A =
p−1∏

i=1

((Li−Ip)xi+Ip)M
1∏

j=q−1

((Cj −Iq)yj +Iq) in T = p+q−1 time-steps.

More precisely, define A(1) = M ; for all t = 2, ..., p, we define by A(t) the matrix
which is computed after deciding the value of yj for j ≥ p − t + 1; similarly, for
all p+1 ≤ t ≤ T , A(t) is determined by the value of yj for all j and by the value
of xi for i ≥ q − t + p. We obtain the following program:

(P )

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
x,y

d(A(T ))

A(t+1) = ((Lp−t − Ip)xp−t + Ip)A(t) ∀1 ≤ t ≤ p − 1
A(t+1) = A(t)((Cq−t+p − Iq)yq−t+p + Iq) ∀p ≤ t ≤ T

A
(t)
i,j ≤ 1, ∀(i, j, t) ∈ [[1; p − 1]] × [[1; q − 1]] × [[2;T ]]

xi, yj ∈ {0, 1}

We can easily linearize the model above by introducing, for all (i, j, t) ∈ [[1; p −
1]]×[[1; q−1]]×[[2;T ]] ri,j,t = A

(t)
i,j ∗xp−t if 1 ≤ t ≤ p−1 and ri,j,t = A

(t)
i,j ∗yq−t+p if

p+1 ≤ t ≤ T , noticing that the variables A(t)
i,j , xt, yt are all binary. Finally, after

linearizing the product A(T )
i,j A

(T )
k,l in the objective function, d(A(T )), we obtain a

polynomial size integer programming formulation of the MMC problem.

5.1 Numerical Results

We test the proposed model using IBM ILOG CPLEX 12.6. The experiments are
performed on an Intel i7 CPU at 2.70 GHz with 16.0 GB RAM. The models are
implemented in Julia using JuMP [5]. The algorithm is run on random squared
matrices. Given a size p and a probability r, we produce a random binary matrix
M of size p×p such that Pr(Mi,j = 1) = r. The expected value of n is then r ·p2.
We test the model for n ∈ {6, 9, 12} for a probability r ∈ {0.1, 0.15, 0.2, 0.25, 0.3}
and we report the optimal value d∗ and the running time. For each value of p
and r, 10 random instances are created, whose averages are reported on Table 1.

We notice that the integer programming model is not very efficient to solve
the problem. For p = 15, in most of the cases, CPLEX needs to run more than
2 hours to solve the model.

Table 1. Test of random instances for the integer linear program model.

r

0.1 0.15 0.20 0.25 0.3

d∗ time (s) d∗ time (s) d∗ time (s) d∗ time (s) d∗ time (s)

(p,q)=(6,6) 6.0 0.3 4.1 0.26 12.1 0.2 15.3 0.28 22.0 0.15

(p,q)=(9,9) 15.1 5.3 22.1 5.1 32.3 7.8 36.5 7.0 44.5 3.4

(p,q)=(12,12) 30.8 171.6 48.0 281.2 55.0 183.0 64.4 101.0 71.0 95.1
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6 Polynomial Heuristics

In this section, we describe three heuristics for MMC: a first-come-first-served
algorithm and two greedy algorithms.

6.1 The LCL Heuristic

This algorithm is a first-come-first-served algorithm. It is divided into two parts:
the Line-Column (LC) part and the Column-Line (CL) part.

The LC part computes and returns a maximal feasible solution MLC by,
firstly, contracting a maximal set of lines ILC and, then, by contracting a maxi-
mal set of columns JLC . The algorithm builds ILC as follows: it checks for each
line from p − 1 down to 1 if the contraction of that line is valid. In that case,
the contraction is done and the algorithm goes on. JLC is built the same way.

The CL part computes and returns a maximal feasible solution MCL by
starting with the columns and ending with the lines. The LCL algorithm then
returns the solution with the maximum density.

The advantage of such an algorithm is its small time complexity.

Theorem 3. The time complexity of the LCL algorithm is O(p · q).
Proof. The four sets ILC , JLC , ICL and JCL can be implemented in time O(p·q)
using an auxiliary matrix M ′. The proof is given for the first one, the implemen-
tation of the three other ones is similar. At first, we copy M into M ′. For each
line i from p − 1 to 1 of M ′, we check with 2q comparisons if there is a column
j such that M ′

i,j = M ′
i+1,j = 1. In that case, we do nothing. Otherwise, we add

i to ILC and we replace line i with the sum of the i-th and the i + 1-th lines.
Finally, given a matrix M and a set of lines I, one can compute C(M, I, ∅)

in time O(p · q) by, firstly, computing in time O(p) an array A of size p such that
Ai is the number of lines in I strictly lower than i and, secondly, returning a
matrix C of size p − |I| × q such that Ci−Ai,j = Mi,j .

Remark 1. Note that, if there is at most one 1 per line of the matrix of
the matrix, the LCL algorithm is asymptotically a 4-approximation when n
approaches infinity. Indeed, the LC part returns a line matrix in which each
entry is a 1. The density of this solution is n − 1. As the maximum density is
4n by Lemma 1, the ratio is 4 n

n−1 . On the contrary, an example given in the
external report [4] proves that this algorithm is, in the worst case, at least a
O(

√
n)-approximation.

6.2 The Greedy Algorithm

The greedy algorithm tries to maximize the density at each iteration. The algo-
rithm computes d(C(M, {i}, ∅)) and d(C(M, ∅, {j})) for each line i and each
column j if the contraction is valid. It then chooses the line or the column max-
imizing the density. It starts again until the solution is maximal.
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Theorem 4. The time complexity of the Greedy algorithm is O(p2 · q2).
Proof. There are at most p · q iterations. At each iteration, we compute one
density per line i and one density per column j. The density of C(M, {i}, ∅)
is the density of M plus the number of new neighbor pairs of 1 due to the
contraction of lines i and i+ 1. The increment can be computed in time O(q) as
there are at most three new neighbors for each of the q entries of the four lines
i − 1 to i + 2. Similarly, the density of C(M, ∅, {j}) can be computed in time
O(p). Thus one iteration takes O(p · q) iterations.

Remark 2. We prove in [4] that the greedy algorithm is at least a O(
√
n)-

approximation algorithm.

6.3 The Neighborization Algorithm

The neighborization algorithm is a greedy algorithm trying to maximize, at each
iteration, the number of couple of entries that can be moved next to each other
with a contraction. This algorithm is designed to avoid the traps in which the
LCL algorithm and the Greedy algorithm fall in by never contracting lines and
columns that could prevent some 1 entries to gain a neighbor.

We define a function N from ([[0; p − 1]] × [[0; q − 1]])2 to {0, 1}. For each
couple c = ((i, j), (i′, j′)) such that Mi,j = 0 or Mi′,j′ = 0, N(c) = 0. Otherwise,
N(c) = 1 if and only if there is a sublist of lines I and a sublist of columns J such
that C(M, I, J) is valid and such that the two entries are moved next to each
other with this contraction. Finally, we define N(M) as the sum of all the values
N((i, j), (i′, j′)). The algorithm computes N(C(M, {i}, ∅)) and N(C(M, ∅, {j}))
for each line i and each column j if the contraction is valid. It chooses the line or
the column maximizing the result and starts again until the solution is maximal.

Theorem 5. The time complexity of the Greedy algorithm is O(n2·p3·q3·(p+q)).

Proof. Let M be a binary matrix, we first determine the time complexity we
need to compute N(M). Let ((i, j), (i′, j′)) be two coordinates such that Mi,j =
Mi′,j′ = 1. We assume i < i′ and j < j′. The two entries may be moved
next to each other if i′ − i − 1 of the i′ − i lines and j′ − j − 1 of the j′ − j
columns between the two entries may be contracted and this can be done in time
O(p · q · (j′ − j) · (i′ − i)) = O(p2 · q2). As there are at most n2 entries satisfying
Mi,j = Mi′,j′ = 1, we need O(n2 · p2 · q2) operations to compute N(M).

As there are at most p ·q iterations. At each iteration, we computes one value
per line i and one value per column j in time O(n2 ·p2 ·q2). The time complexity
is then O(n2 · p3 · q3 · (p + q)).

Remark 3. We prove in [4] that the neighborization algorithm is at least a
O(

√
n)-approximation algorithm.
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6.4 Numerical Results

In this last subsection, we give numerical results of the three algorithms in order
to evaluate their performances.

The experiments are performed on an Intel(R) Core(TM) i7-4810MQ CPU
@ 2.80GHz processor with 8Go of RAM. The algorithms are implemented with
Java 82. The algorithms are run on random squared matrices. Given a size p and
a probability r, we produce a random binary matrix M of size p × p such that
Pr(Mi,j = 1) = r. The expected value of n is then r · p2. Before executing each
algorithm, we first reduce the size of each instance by removing every column
and line with no 1.

Small instances. We first test the three algorithms on small instances on which
we can compute an exact brute-force algorithm. This algorithm exhaustively
enumerates every subset of lines and columns for which the contraction is valid
and returns the solution with maximum density. The results are summarized on
Tables 2 and 3.

We can observe from Table 2 that the running time first increases when r
grows and then decreases. Similarly, the number of times the heuristics return an
optimal solution first decreases and then increases. The first behavior is explained
by the fact that the size of instances with small values of n can be reduced. On
the other hand, if r is high, the number of lines and columns of which the
contraction is not valid increases and, then, the search space of the algorithms
is shortened. Considering the running times, as it was predicted by the time
complexities, the LCL and the greedy heuristics are the fastest algorithms. We
can observe that the neighborization algorithm can be slower than the exact
algorithm on small instances because the running time of the former is more
influenced by n than the latter. However, we do not exclude the fact the imple-
mentation of the neighborization algorithm may be improved. Considering the
quality of the solutions returned by the algorithms, according to Tables 2 and
3, the neighborization heuristic shows better performances than the greedy and
the LCL algorithms.

Big instances. We then test the two fastest algorithms LCL and Greedy on
bigger instances. The results are given on Table 4. Four interesting differences
with Table 2 emerges from Table 4. Firstly, the LCL algorithm is faster than
the greedy algorithm. This is coherent with the time complexities. Secondly, the
LCL algorithm does not follow the same behavior as the exact algorithm and the
neighborization heuristic for small instances: the running time increases with r
even if the search space is shortened. Indeed, contrary to the three other algo-
rithms, the implementation does not depend on this search space. Thirdly, the
running time of the greedy algorithm first increases with r, then decreases and
and finally slowly increases again. This last increase is due to the computation
time of the density and the line and columns that can be contracted. Finally,
the solution returned by the LCL algorithm seems to be better for small values
2 The implementations can be found at https://github.com/mouton5000/MMCCode.

https://github.com/mouton5000/MMCCode
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Table 2. This table details the results for each algorithm. For each values of p and r, the
algorithms are executed on 50 instances. We give for each heuristic the mean running
time in milliseconds, the mean ratio between the optimal density d∗ and returned
density d and the number of instances for which the ratio is 1.

Exact LCL Greedy Neigh.

p r time (ms) time (ms) d∗
d d = d∗ time (ms) d∗

d d = d∗ time (ms) d∗
d d = d∗

5 0.01 < 1 ms < 1 ms 1 50 < 1 ms 1 50 < 1 ms 1 50

0.02 < 1 ms < 1 ms 1 50 < 1 ms 1 50 < 1 ms 1 50

0.03 < 1 ms < 1 ms 1 50 < 1 ms 1 50 < 1 ms 1 50

0.04 < 1 ms < 1 ms 1.00 49 < 1 ms 1 50 < 1 ms 1 50

0.05 < 1 ms < 1 ms 1.00 48 < 1 ms 1 50 < 1 ms 1 50

0.1 < 1 ms < 1 ms 1.00 46 < 1 ms 1.00 49 < 1 ms 1 50

0.2 < 1 ms < 1 ms 1.00 45 < 1 ms 1.00 46 < 1 ms 1 50

0.3 < 1 ms < 1 ms 1.00 43 < 1 ms 1.00 45 2.52 1.00 49

10 0.01 < 1 ms < 1 ms 1.00 48 < 1 ms 1 50 < 1 ms 1 50

0.02 < 1 ms < 1 ms 1.02 46 < 1 ms 1.00 46 < 1 ms 1 50

0.03 < 1 ms < 1 ms 1.04 37 < 1 ms 1.00 41 1.22 1.00 49

0.04 < 1 ms < 1 ms 1.02 35 < 1 ms 1.00 39 1.92 1.00 49

0.05 < 1 ms < 1 ms 1.10 28 < 1 ms 1.00 26 1.98 1.00 46

0.1 2.60 < 1 ms 1.00 19 < 1 ms 1.00 21 15.50 1.00 34

0.2 < 1 ms < 1 ms 1.00 23 < 1 ms 1.00 23 66.42 1.00 40

0.3 < 1 ms < 1 ms 1.00 31 < 1 ms 1.00 34 66.64 1.00 42

15 0.01 < 1 ms < 1 ms 1.16 33 < 1 ms 1.00 43 < 1 ms 1 50

0.02 < 1 ms < 1 ms 1.06 21 < 1 ms 1.00 25 1.64 1.00 40

0.03 < 1 ms < 1 ms 1.08 17 < 1 ms 1.00 17 4.36 1.00 40

0.04 3.76 < 1 ms 1.02 11 < 1 ms 1.00 15 14.84 1.00 34

0.05 9.40 < 1 ms 1.02 18 < 1 ms 1.00 14 38.96 1.00 33

0.1 295.74 < 1 ms 1.00 6 < 1 ms 1.00 8 355.54 1.00 19

0.2 28.24 < 1 ms 1.00 14 < 1 ms 1.00 18 892.10 1.00 33

0.3 < 1 ms < 1 ms 1.00 30 < 1 ms 1.00 37 541.58 1.00 45

20 0.01 < 1 ms < 1 ms 1.18 23 < 1 ms 1.00 31 1.04 1.00 45

0.02 59.06 < 1 ms 1.14 10 < 1 ms 1.00 15 21.24 1.00 29

0.03 431.60 < 1 ms 1.04 9 < 1 ms 1.00 6 119.82 1.00 20

0.04 2275.64 < 1 ms 1.00 2 < 1 ms 1.00 5 273.82 1.00 19

0.05 10223.92 < 1 ms 1.00 3 < 1 ms 1.00 4 622.92 1.00 8

0.1 44268.36 < 1 ms 1.00 7 < 1 ms 1.00 2 3809.98 1.00 17

0.2 424.84 < 1 ms 1.00 15 < 1 ms 1.00 11 5302.22 1.00 33

0.3 < 1 ms < 1 ms 1.00 34 < 1 ms 1.00 46 1553.86 1.00 49

Table 3. Each entry of this table details, for each couple of heuristics, the number
of instances of Table 2 (there are 1600 instances) for which the line heuristic gives a
strictly better results than the column heuristic.

LCL Greedy Neigh

LCL − 366 70

Greedy 426 − 86

Neigh 629 587 −
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Table 4. This table details the results for the LCL algorithm and the greedy algorithm.
For each values of p and r, the algorithms are executed on 50 instances. We give for
each heuristic the mean running time in milliseconds and how many times the returned
density is strictly better than the density returned by the other algorithm.

LCL Greedy

p r time (ms) dL > dG time (ms) dL < dG

200

0.01 < 1 ms 49 17.78 1

0.02 < 1 ms 48 22.58 2

0.03 < 1 ms 43 21.82 5

0.04 < 1 ms 31 19.26 18

0.05 < 1 ms 21 16.76 29

0.1 1.28 10 5.18 40

0.2 1.92 0 < 1 ms 0

0.3 2.58 0 < 1 ms 0

500

0.01 3.28 50 382.06 0

0.02 3.58 44 321.30 6

0.03 3.92 17 237.06 33

0.04 4.56 10 164.82 40

0.05 4.88 4 104.48 46

0.1 6.80 0 4.70 2

0.2 10.66 0 3.34 0

0.3 15.06 0 4.58 0

LCL Greedy

p r time (ms) dL > dG time (ms) dL < dG

1000

0.01 12.00 50 2832.52 0

0.02 14.04 21 1890.40 29

0.03 16.34 1 1099.38 49

0.04 17.72 1 553.90 49

0.05 18.74 5 233.70 45

0.1 24.72 0 7.82 0

0.2 41.50 0 12.62 0

0.3 59.18 0 18.36 0

2000

0.01 53.54 49 22068.00 1

0.02 59.96 0 10664.44 50

0.03 65.66 0 3914.08 50

0.04 71.68 6 1049.00 44

0.05 76.36 0 186.04 10

0.1 100.16 0 28.88 0

0.2 167.42 0 50.46 0

0.3 237.54 0 72.88 0

of r and, on the other hand, the greedy algorithm returns better densities for
middle values. The two algorithms are equivalent for high values of r because
those instances can probably not be contracted.

7 Conclusion

In this paper, we introduced the Maximum Matrix Contraction problem (MMC).
We proved this problem is NP-Complete. However, we also proved that every
algorithm which solves this problem is an O(

√
n)-approximation algorithm. Con-

sidering that the NP-Completeness was derived from the Maximum Clique prob-
lem, and that this problem cannot be polynomially approximated to within n

1
2−ε,

MMC is very likely to not being approximable to within the same ratio. Such a
result would almost tight the approximability of MMC.

Moreover, we studied four algorithms to solve the problem, an integer lin-
ear program, a first-come-first-served algorithm and two greedy algorithms, and
gave numerical results. It appears firstly that integer linear programming is not
adapted to MMC while the three other heuristics returns really good quality
solutions in short amount of time even for large instances. Those results seems
to disconfirm the n

1
2−ε inapproximability ratio. It would be interesting to deepen

the study in order to produce a constant-factor polynomial approximation algo-
rithm or a polynomial-time approximation scheme if such an algorithm exists.



438 D. Watel and P.-L. Poirion

References

1. Pillai, A., Chick, J., Johanning, L., Khorasanchi, M., de Laleu, V.: Offshore wind
farm electrical cable layout optimization. Eng. Optim. 47(12), 1689–1708 (2015)

2. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher,
J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103.
Springer, Heidelberg (1972)

3. H̊astad, J.: Clique is hard to approximate within n̂(1 − ε). Acta Math. 182(1),
105–142 (1999)

4. Watel, D., Poirion, P.: The Maximum Matrix Contraction problem: Appendix. Tech-
nical report CEDRIC-16-3645, CEDRIC laboratory, CNAM, France (2016)

5. Lubin, M., Dunning, I.: Computing in operations research using Julia. INFORMS
J. Comput. 27(2), 238–248 (2015)



Integrated Production Scheduling and Delivery
Routing: Complexity Results

and Column Generation

Azeddine Cheref1,2(B), Christian Artigues1, Jean-Charles Billaut2,
and Sandra Ulrich Ngueveu1
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Abstract. In this paper, we study an integrated production scheduling
and delivery routing problem. The manufacturer has to schedule a set
of jobs on a single machine without preemption and to deliver them to
multiple customers. A single vehicle with limited capacity is used for
the delivery. For each job are associated: a processing time, a size and a
specific customer location. The problem consists then to determine the
production sequence, to constitute batches and to find the best delivery
sequence for each batch. The objectives of the proposed problems are
to find a coordinated production and a delivery schedule that minimizes
the total completion time (makespan) or the sum of the delivery times
of the products. We present complexity results for particular cases and
a column generation scheme to solve a relaxed version of the problem,
leading to a lower bound of high quality. Some computational results
show the good performances of the method.

Keywords: Integrated production and distribution · Complexity ·
Column generation

1 Introduction

This paper considers an integrated model of scheduling and delivery, where jobs
are scheduled on a single machine and finished products are delivered from the
manufacturer to multiple customer locations. The relationship between produc-
tion and distribution being strong, an increasing amount of research has been
devoted to this field during the last years. The problem has been largely analysed
and reviewed in [4], where the author proposes a classification scheme for a vari-
ety of issues reflected by these models.

In this paper, jobs are scheduled on a single machine and preemption is not
allowed. Different processing times, sizes and delivery destinations are associated
to the jobs. Distribution is performed by a single vehicle with a limited capacity
c© Springer International Publishing Switzerland 2016
R. Cerulli et al. (Eds.): ISCO 2016, LNCS 9849, pp. 439–450, 2016.
DOI: 10.1007/978-3-319-45587-7 38
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and can be seen as a variant of the multitrip vehicle routing problem [15], in
which deliveries are ensured by a single vehicle and with a constrained batching
phase. Delivery costs are not taken into account in this paper but the total
time required to complete the production and the delivery of the products and
the total delivery time are both meaningful indicators of the overall efficiency
of the delivery process. Therefore, the objectives of the proposed problems are
to find a coordinated production and delivery schedule that minimize the total
completion time (makespan) or the sum of the delivery times of the products.

We review below a few relevant papers.
In [13], a similar model is considered but the size of jobs is not included and

the authors propose a polynomial time algorithm in the case of a fixed number of
distinct destinations. In [6], the authors consider the problem of minimizing the
makespan on a single machine scheduling problem with a unique capacitated
vehicle and a no wait constraint. No wait constraints implies that the batch
must be delivered at its completion time. In [8], an heuristic method is proposed
for minimizing the makespan when lifespan constraints are introduced for the
products. Most of the models presented in the literature explicitly take into
account transportation times to reach the customer’s location, but there are no
proper routing decisions, since the number of distinct customers is typically very
small. Hence, the focus of the analysis is often on scheduling and batching. In
[10], the authors consider the problem in which the delivery dates are fixed in
advance and in [5], there are various destinations but a batch must contain jobs
of the same destination. Complexity results are given by [3] for the problem with
a single vehicle, a storage area and one or two customers. In [12], the authors
minimize the makespan for the one machine scheduling problem with pickup
and delivery in which a single vehicle travels between the machines and the
warehouse, whereas in [17], the authors study a similar problem in which three
different locations and two vehicles are considered. The first vehicle transports
unprocessed jobs between the warehouse and the factory and the second one
transports finished jobs between the factory and the customer. Some models in
the literature treat a coordinating problem in which the customer sequence is
fixed. For example, in [1,16], the authors minimize the total satisfied demand in
a single round trip, the authors consider that the products expire in a constant
time after their completion time and a time window delivery for each product.

The problem is formally defined in Sect. 2. We present in Sect. 3 some com-
plexity results for particular cases and in Sect. 4 a column generation scheme to
solve a relaxed version of the problem, leading to a lower bound of high quality.
Computational results are given in Sect. 5.

2 Problem Definition and Notations

We consider a set of n jobs J = {J1, J2, . . . , Jn} to be processed on a sin-
gle machine and delivered to a set of n corresponding customers. Each job Jj ,
j = 1, . . . , n, requires a certain processing time pj . Delivery is performed by a
single vehicle with capacity c. As mentioned before, there is a set of n customer
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locations and each job Jj , j = 1, . . . , n, is additionally characterized by its loca-
tion j and its size sj where 0 ≤ sj ≤ c. We denote by tij the transportation time
from location i to location j and Dj the arrival time (decision variable) to the
location j, i.e. the delivery time of Jj . We use M to denote the machine and, by
analogy with vehicle routing problems, we refer to the machine location as the
depot.

The vehicle loads a certain number of jobs which have been processed and
starts the round trip to deliver them at their respective locations. The set of
jobs delivered during a single round trip is called a batch. The problem is then
to determine the scheduling sequence, cluster the jobs into batches and determine
the best route for each batch. Using the notation introduced by [11], the general
problem considered here with one machine, several customers, one vehicle and
a limited capacity is denoted by 1 → D, k ≥ 1|v = 1, c|Dmax for the makespan
objective and 1 → D, k ≥ 1|v = 1, c|∑ Dj for the total completion time (1 → D
means “one machine to delivery”, k is the number of customers, v is the number
of vehicles, c indicates that a capacity is considered). An illustration for the
problem with n = 7 jobs and n customers is given in Fig. 1.

D1 D2 D3 D4 D5 D6 D70

J1 J2 J3 J4 J5 J6 J7

1 2 3 4 5 6 7

Dmax

Fig. 1. An illustration for problems 1 → D, k ≥ 1|v = 1, c|Dmax or
∑

Dj

We first discuss the complexity of special cases of the problem. Then we pro-
pose extended formulations and a column generation framework for the general
case.

3 Particular Cases

In this section, we consider two special cases of the problem for both objectives
functions. We give complexity results for the single customer case and some
remarks for the fixed-batches case.

3.1 One Customer Case

In [3], the authors prove that the problem 1 → D, k = 1|v = 1, c|Dmax is
equivalent to the NP-hard Bin Packing problem when the processing times pj = 0
for all j. Note that this reasoning becomes invalid for the total delivery time
objective. However, we prove that problem 1 → D, k = 1|v = 1, c|∑j Dj is
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strongly NP-hard by reduction from 3-PARTITION problem. For our purpose, we
introduce the 3-PARTITION problem.

3-PARTITION. Given 3h integers a1, . . . , a3h, so that
∑

ai = hb, and such
that b/4 < ai < b/2 for all i, is it possible to partition them into h disjoint sets
each summing up to b?

Theorem 1. Problem 1 → D, k = 1|v = 1, c = z|∑j Dj is NP-hard in the
strong sense.

Proof. Given a 3-PARTITION instance, we construct an instance for our problem
as follows:

n = 3h jobs, c = b, tM1 = t1M = t and t > 0
For each job Jj : pj = 0, sj = aj

Sum of the delivery times y = 3th2

From there, the problem consists in determining whether a solution exists such
that

∑
j Dj ≤ y.

→ If there is 3-PARTITION, then there exists a feasible schedule to our prob-
lem with

∑
j Dj ≤ y. Let H1, H2,. . . , Hh be a solution of 3-PARTITION. Then,

we construct a schedule to our problem by setting each batch bi to the triple
Hi. The vehicle starts the tour at time zero, delivers the first three jobs at time
t and is back at the depot at 2t. Since the processing times are equal to zero,
the vehicle restarts immediately and the second batch is delivered at time 3t.
Following this reasoning (see Fig. 2), a batch bi is delivered at time (2i−1)t and
the total delivery time

∑
j Dj = 3

∑h
i=1(2i − 1)t = y.

t 3t0

....
Hh

5t (2h − 1)t

H3H2H1

Fig. 2. 3-PARTITION solution

← Suppose that a schedule S for our problem exists in which
∑

j Dj ≤ y.
According to the generated instance, the number of batches in S cannot be
smaller than h, the number of jobs in each batch cannot exceed 3 and the vehicle
is never idle at the depot in an optimal solution. We denote by h′ the number of
batches in S. Firstly, we suppose that h′ = h and denote by S1 the corresponding
schedule. This implies that each batch b1, b2, . . . , bh of S1 contains exactly three
jobs and for each batch

∑
j∈bi

sj = b. Thus, b1, . . . , bh define a solution of the
3-PARTITION problem. Suppose now that there exists a schedule S2 for which∑

j Dj ≤ y and h′ > h. Let n1 the number of jobs in b1, . . . , bh and n2 the
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number of jobs in bh+1, . . . , bh′ . We denote by σS1
j and σS2

j the jobs scheduled
at position j in the schedule S1 and S2 respectively. Due to the fact that each
batch in S1 contains three jobs, one can see that

∑n1
j=1 D

σ
S2
j

≥ ∑n1
j=1 D

σ
S1
j

. In

the schedule S2, the remaining n2 jobs are delivered after the time (2h − 1)t
which represents the delivery time of J

σ
S2
n1

and the last job J
σ
S1
n

in S1. So,
∑n

j=n1+1 D
σ
S2
j

>
∑n

j=n1+1 D
σ
S1
j

which implies
∑

j Dj > y on the solution S2.

Remark 1. Problem 1 → D, k = 1|v = 1, c|∑j Dj is polynomially solvable when
all jobs have the same size [13]. The authors propose a polynomial time algorithm
with a complexity in O(n2) to solve the problem.

3.2 Fixed-Batch Case

In this case, we consider that the jobs are already clustered into batches and
that, for each one, the delivery route is known. We consider below the makespan
criterion and the sum of delivery times criterion.

1 → D, k = 1|v = 1, c, fixed − batches|Dmax problem

Proposition 1. Problem 1 → D, k ≥ 1|v = 1, c = z, fixed − batches|Dmax is
polynomially solvable.

If we consider a batch as a job, this problem becomes equivalent to the well-
known polynomial two-machine flow shop problem with makespan criterion [9].
In the resulting problem, we consider the duration of the batch on the machine
as the processing time of the corresponding job on the first machine and the
duration of the route of the batch as the processing time on the second machine.

1 → D, k = 1|v = 1, c, fixed − batches|
∑

j
Dj problem

Proposition 2. Problem 1 → D, k ≥ 1|v = 1, c = z, fixed − batches|∑j Dj is
NP-hard.

We consider the case in which each batch contains exactly one job and we denote
by C ′

j the time at which the vehicle is back at the depot after the delivery of
job Jj . The delivery time Dj of a job Jj is then Dj = C ′

j − tjM and
∑n

j=1 Dj =
∑n

j=1 C ′
j − ∑n

j=1 tjM , with
∑n

j tjM a constant. This problem is equivalent to
solving the NP-hard two-machine flow shop problem with the sum of completion
times criterion [7], in which the processing times of a job Jj on the first machine
is equal to pj , equal to tMj + tjM on the second machine and a completion time
on the second machine equal to C ′

j .

4 General Case

For the general case, we first establish the following fundamental dominance
property. As there are no release dates for the jobs, from any solution, the
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machine sequence can obviously be reordered according to the routing sequence
and the jobs can be scheduled at the earliest without increasing the objective
function for both the Dmax and

∑
j Dj criteria. The property then follows:

Property 1. There exists an optimal solution satisfying the following conditions:

– Jobs are processed on the machine without idle time,
– Production sequence and routing sequence are the same.

This implies that when the round trip of a batch is given, the sequence on the
machine can be deduced. For both objective functions, one can see that the opti-
mal solution of the problem can be obtained by combining batches and the prob-
lems are able to be modeled as a set covering problem. Hence, extended formu-
lations and column generation approaches can be considered for both problems.
Note that if there was no machine scheduling phase, the problem would resort
to the multi-trip travelling salesman problem. Below, we detail these approaches
for each criterion. Note that column generation and branch-and-price are tech-
niques of choice for the related multi-trip vehicle routing problem [2,15]. How-
ever, we have in our case a single vehicle and a preliminary constrained batching
phase due to the machine sequencing sub-problem. It is thus relevant to wonder
whether a column generation approach can still be successfully applied or not.

4.1 1 → D,K ≥ 1|V = 1, C|Dmax Problem

We introduce in this section a set covering formulation for the master problem.
A column represents a batch and its position on the delivery sequence. The set
of feasible batches is denoted as β. For each batch b ∈ β, its duration on the
machine and its round trip duration are known. We denote by Pb,1 =

∑
j∈b pj

the duration of the batch b on the machine and, Pb,2 the duration of the round
trip that delivers the batch b. Since the jobs contained in a batch are known,
ai,b takes the value 1 if the job Ji is in the batch b and 0 otherwise. A unique set
of variables xb,k is used to minimize the Dmax objective. Variables xb,k ∈ {0, 1}
indicates if the batch b at the position k is selected.

min Dmax (1)

Dmax ≥
l∑

k=1

∑

b∈β

Pb,1xb,k +
n∑

k=l

∑

b∈β

Pb,2xb,k, ∀l ∈ {1, ..., n} (2)

∑

b∈β

xb,k ≤ 1, ∀k ∈ {1, ..., n} (3)

∑

b∈β

(ai,b

n∑

k=1

xb,k) = 1, ∀i ∈ {1, ..., n} (4)

∑

b∈β

xb,k ≥
∑

b∈β

xb,k+1, ∀k ∈ {1, ..., n − 1} (5)
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∑

b∈β

xb,k = 1, ∀k ∈ {1, ..., δ} (6)

xb,k ∈ {0, 1} ∀k ∈ {1, ..., n},∀b ∈ β (7)

The first set of constraints (2) is equivalent to the fixed-batches case presented
above. It ensures that the processing of a batch on the machine starts after
the completion of the previous one and that the vehicle starts the delivery of a
batch after its completion on the machine, and the end of the previous tour. Con-
straints (3) state that a position can contain at most one batch and constraints
(4) ensure that each job is contained in exactly one selected batch. Constraints
(5) are symmetry breaking constraints that enforce that all selected columns
(batches) appear consecutively at the first positions. Constraints (6) sets a min-
imum number of batches using a lower bound δ of the number of round trips
to deliver all the jobs. To obtain δ, we use the First Fit Decreasing rule
which is a 3/2 approximation for the Bin Packing problem. Let τ the number of
bins obtained by the FFD algorithm. A lower bound of the minimum number of
batches δ is then equal to 2/3τ .

Following a standard column generation scheme, the master problem is
restricted to a subset of variables (columns) β̃ ⊆ β and a pricing problem is
needed to find new non basic variables that can improve the solution for the LP
relaxation of model (1–7).

The Pricing Problem. This sub-problem searches for an element of β \ β̃
such that the reduced cost of the new column is negative. We denote by c̄b,k the
reduced cost of xb,k and, one has:

c̄b,k ≤ 0 ⇔ ∑n
i=1

pi

∑n
l=k αl − γi

∑k
l=1 αl

︸ ︷︷ ︸
li

ai,b + Pb,2 <
βk − σk−1 + σk + ξk

∑k
l=1 αl

︸ ︷︷ ︸
rk

where αl, βk, γi, σk and ξk denote the dual values associated to the constraints
(2), (3), (4), (5), (6) respectively. Note that the dual values ξk exist only for
k ≤ δ, σk−1 for k ≥ 2 and σk for k ≤ n − 1.

We define an auxiliary directed graph G = (V,A) in which V = N ∪ {vs, vd}
where nodes N = {v1, . . . , vn} represent the locations 1, . . . , n and nodes {vs, vd}
the duplicated depot. The set of arcs is A = {(vi, vj)|vi ∈ N ∪ {vs}, vj ∈
N ∪ {vd}, vi �= vj}. Finally, the sub-problem consists in solving an elementary
shortest path problem with resource constraints (ESPPRC) on graph G, in which
the distance value dij of an arc (vi, vj) is equal to li + tij for vi ∈ V − {vs},
dsj = tMj for each arc (vs, vj), and dsd = rk for arc (vs, vd). The constraints
concern the capacity of the vehicle. A column xbk corresponding to an elemen-
tary shortest path in G is introduced in the restricted master problem only if
the length of such path is smaller than rk. From the resulting path and given
that the jobs sequence on the machine and the delivery sequence are the same,
the round trip length and the batch processing on the machine can be obtained.
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An exact method is used to solve the elementary shortest path problem with
resource constraints. The interested reader will find more details about the used
algorithm in [14].

Starting from the first position, the sub-problem searches for a new column
to add by scanning all positions and stops when a column with negative reduced
cost is found. The new column is then added. We propose below a heuristic to
initiate the column generation process, taking account of this particularity.

Initial Solution Heuristic. In order to accelerate the sub-problem solution
phase by using a minimal number of positions, we propose the following initial
solution heuristic:

(1) The first step is to assign jobs into batches according to their sizes. The
First Fit Decreasing rule is used for this purpose.

(2) Given a constitution of the batches, the route is determined using the
nearest neighbor search rule.

(3) As soon as the duration of the batch on the machine and the duration of
the routes are known, the Johnson’s rule (known to solve the two-machine
flow-shop problem to optimality) is used to optimally order the batches.

4.2 1 → D,K ≥ 1|V = 1, C| ∑
j Dj Problem

In this part, a formulation for the general problem with a cumulative objective
function

∑
j Dj is suggested. In order to obtain the delivery time of each job,

the new columns of the master problem must take the departure time of a batch
into account. Hence, we define binary variables ybkt, which take the value 1 if
the batch b is delivered at position k and starts to deliver it at time t if selected,
0 otherwise. For each position k, the departure time is given by variable Sk ≥ 0.
As the considered objective needs the exact delivery time of each job, we denote
by Rib the time between the departure time of the vehicle and the arrival time
to location i. This value is known once a batch b is given. Let T be an upper
bound on the latest possible departure time of the vehicle for the last batch. As
long as the triangle inequality holds, this is given by:

T =
n∑

i=1

(pi + 2t0,i)

The other notations remain the same as those used for the formulation with the
Dmax objective function. Let β′ denote the set of feasible batches.

Minimize
∑

b∈β′

n∑

k=1

T∑

t=1

∑

i∈b

ai,b(t + Ri,b)yb,k,t (8)

Sk′ ≥
l∑

k=1

∑

b∈β′

T∑

t=1

Pb,1yb,k,t +
k′−1∑

k=l

∑

b∈β′

T∑

t=1

Pb,2yb,k,t,
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∀k′ ∈ {1, ..., n}, ∀l ∈ {1, ..., k′} (9)

∑

b∈β′

T∑

t=1

yb,k,t ≤ 1, ∀k ∈ {1, ..., n} (10)

∑

b∈β′

T∑

t=1

(ai,b

n∑

k=1

yb,k,t) ≥ 1, ∀i ∈ {1, ..., n} (11)

∑

b∈β′

T∑

t=1

tyb,k,t ≥ Sk, ∀k ∈ {1, ..., n} (12)

∑

b∈β′

T∑

t=1

yb,k,t ≥
∑

b∈β′

T∑

t=1

yb,k+1,t, ∀k ∈ {1, ..., n − 1} (13)

∑

b∈β′

T∑

t=1

yb,k,t = 1, ∀k ∈ {1, ..., δ} (14)

yb,k,t ∈ {0, 1} ∀b ∈ β′,∀k ∈ {1, ..., n},∀t ∈ {1, . . . , T} (15)

The delivery time of a job Ji is given by the addition of the departure time
of the batch which contains it and the transportation time between the depot
and the location i (9). The other constraints are similar to those used for the
previous formulation.

We denote by ¯c′
bkt the reduced cost of variable ybkt. Let β̃′ ⊆ β′. The sub-

problem searches for an element of β′ \ β̃′ such that the reduced cost of a new
column is negative.

¯c′
bkt ≤ 0 ⇔

n∑

i=1

(t + Ri,b)
︸ ︷︷ ︸

di

ai,b +
n∑

i=1

(pi,1(
n∑

k′=1

k′
∑

l=k

αl,k′) − γi)

︸ ︷︷ ︸
l
′
i

ai,b +

+Pb,2 (
n∑

k′=k+1

k∑

l=1

αl,k′)

︸ ︷︷ ︸
q

≤ βk + tδk − σk−1 + σk + ξk
︸ ︷︷ ︸

r
′
kt

where αlk′ , βk, γi, δk, σk and ξk the dual values associated to the constraints
(9), (10), (11), (12), (13) and (14) respectively. The dual values ξk exists only
for k ≤ δ, σk−1 for k ≥ 2 and σk for k ≤ n − 1.

An auxiliary graph G′ is defined in the same way as the one defined above
so that the sub-problem consists in finding an elementary shortest path with
resource constraints (ESPPRC) on graph G′ in which the distance dij of an arc
(vi, vj) is equal to l

′
i + q · tij . However, a new label is introduced in order to store

the elapsed time Rib between the departure time of the vehicle and the arrival
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time to location i. To optimally solve the (ESPPRC), Lozano et al. algorithm is
also used.

5 Computational Results

The results are performed on a set of data generated as follows. For each job,
processing times and the size follow a sets of discrete uniform distribution
U(1, 100) and U(1, 10) respectively. For a location j, integer coordinates (Xj , Yj)
are randomly generated in the interval [1, 40] and the distances between the
locations are obtained by computing the classical euclidean distance.

ti,j = tj,i = E

(√
(Xi − Xj)2 + (Yi − Yj)2

)

Note that the processing times, locations and sizes of the jobs are generated inde-
pendently of each other. Capacity c of the vehicle is fixed to 20 and 5 instances are
generated for each number of jobs n ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100}. Hence,
the experiments are performed on 45 instances.

The column generation process could be carried out efficiently only for the
Dmax criterion. Indeed, for the

∑
Dj model, the need to explicitly represent time

makes the convergence much slower as the number of variables becomes huge in
the master problem.

Table 1. Computational results for 1 → D, k ≥ 1|v = 1, c|Dmax problem

n LB(sec) #col %GAPinit %GAPUB

20 1.1 203 21.14 4.62

30 4.6 363 13.67 1.83

40 12.1 595 9.94 0.99

50 46.4 954 10.34 0.88

60 86.4 1136 10.21 0.69

70 215.1 1670 7.30 0.57

80 383.7 1963 7.67 0.42

90 804.8 2637 5.44 0.39

100 1181.9 3041 5.06 −

The experiments have been implemented for the 45 instances on a Xeon
3.20 GHz computer with 8 GB using ILOG CPLEX 12.6 to solve the LPs. We
evaluate and compare the solutions obtained by the column generation which
represents a lower bound (LB) for the problem with the integer solution obtained
by branch and bound on the generated columns, which represents an upper
bound (UB). In order to obtain an upper bound in a reasonable time, the sub-
problem add a single column at each time. Therefore, to obtain a good upper
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bound, all columns with negative reduced costs are integrated to the master
problem which has the advantage of providing good upper bounds and the dis-
advantage of a larger execution times.

In Table 1, we were interested on the aggregate results for each value of n. The
statistics take into account the average CPU times for the column generation
(column LB(sec)). The number of columns generated during the process is given
in column #col. The gap between the initial solution and the relaxed solution
is given in column (%GAPinit). Finally, the gap between UB solution and the
relaxed solution is given by column (%GAPUB). The results show a gap lower
than 1 % for instances with n ≥ 40, which proves the very good quality of the
bounds. The computational times remain lower than 1200 s for instances with
up to 100 jobs.

6 Conclusions

In this paper we presented an integrated production scheduling and delivery
routing problem that can be seen as a variant of the multi-trip traveling sales-
man problem with a constrained batching phase due to machine sequencing
constraints. We presented complexity results for particular cases and an efficient
column generation scheme for the makespan criterion. In the near future, we
shall focus on the implementation of a branch-and-price algorithm to close the
remaining gap. We will also focus on finding a better decomposition scheme for
the sum of deliveries criterion.

Acknowledgement. This work was supported by the financial support of the ANR
ATHENA project, grant ANR-13-BS02-0006 of the French Agence Nationale de la
Recherche.
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